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Preface

Mathematics is a key area of study in any engineering course. A sound knowledge
of this subject will help engineering students develop analytical skills, and thus
enable them to solve numerical problems encountered in real life, as well as apply
mathematical principles to physical problems, particularly in the field of engineering.

Users

This book is designed for the 4™ semester GTU Computer Engineering students
pursuing the course Numerical and Statistical Methods (CODE 2140706). 1t covers
the complete GTU syllabus for the course on Numerical and Statistical Methods for
computer engineering branches.

Objective

The crisp and complete explanation of topics will help students easily understand the
basic concepts. The tutorial approach (i.e., teach by example) followed in the text will
enable students develop a logical perspective to solving problems.

Features

Each topic has been explained from the examination point-of-view, wherein the theory
is presented in an easy-to-understand student-friendly style. Full coverage of concepts
is supported by numerous solved examples with varied complexity levels, which is
aligned to the latest GTU syllabus. Fundamental and sequential explanation of topics
is well aided by examples and exercises. The solutions of examples are set following a
‘tutorial’ approach, which will make it easy for students from any background to easily
grasp the concepts. Exercises with answers immediately follow the solved examples
enforcing a practice-based approach. We hope that the students will gain logical
understanding from solved problems and then reiterate it through solving similar
exercise problems themselves. The unique blend of theory and application caters to
the requirements of both the students and the faculty. Solutions of GTU examination
questions are incorporated within the text appropriately.
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Highlights

e Crisp content strictly as per the latest GTU syllabus of Numerical and Statistical
Methods (Regulation 2014)

e Comprehensive coverage with lucid presentation style

e Each section concludes with an exercise to test understanding of topics

e Solutions of GTU examination papers from 2010 to 2015 present appropriately
within the chapters

e Solution of 2016 GTU examination paper can be accessible through weblink.
e Rich exam-oriented pedagogy:

> Solved Examples within chapters: 420

> Solved GTU questions tagged within chapters: 112

> Unsolved Exercises: 148

Online Learning Center

All the C Programs included in Numerical and Statistical Methods (Computer
Engineering) are available on OLC link http.//www.mhhe.com/singh/nsm2e/cse/gtu2017

Chapter Organization

The content spans the following ten chapters which wholly and sequentially cover
each module of the syllabus.

(4 Chapter 1 introduces Error Analysis.

[ Chapter 2 discusses Roots of Equations.

[ Chapter 3 presents Systems of Linear Algebraic Equations.
[ Chapter 4 covers Interpolation.

(4 Chapter 5 deals with Curve Fitting.

[ Chapter 6 presents Numerical Integration.

(4 Chapter 7 explains Ordinary Differential Equations.

(d Chapter 8 discusses Statistical Methods.

(4 Chapter 9 deals with Correlation and Regression.

[ Chapter 10 introduces Trend Analysis.
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ROADMAP TO THE SYLLABUS

This text is useful for
Numerical and Statistical Methods (Code 2140706)
For Computer Engineering

Module 1: Mathematical Modelling and Engineering Problem-Solving

Approximations and errors; Significant figures; Accuracy and precision; Errors;
Round-off and truncation errors; Error propagation

GO TO

CHAPTER 1: Error Analysis

Module 2: Roots of Equations

Mathematical background; Bisection; Regula falsi method; Newton—-Raphson
method; Secant method; Successive approximation method; Budan's theorem;
Barristow's method; Case studies

GO TO

CHAPTER 2: Roots of Equations

Module 3: Systems of Linear Algebraic Equations

Mathematical background; Gauss elimination; Pitfalls and techniques for
improvement; Matrix inversion and Gauss-Seidel methods; Ill-conditional
equations; Predictor-corrector methods; Case studies

GO TO

CHAPTER 3: Systems of Linear Algebraic Equations

Module 4: Curve Fitting

Mathematical background; Least squares method; Linear and polynomial
regression; Lagrange's interpolating polynomials; Spline interpolation; Case
studies

GO TO

CHAPTER 4: Interpolation

CHAPTER 5: Curve Fitting




xvi Roadmap to the Syllabus

Module 5: Numerical Integration

Newton-Cotes integration formulae; Trapezoidal rule and Simpson's rules;
Interpolation; Case studies

GO TO

CHAPTER 6: Numerical Integration

Module 6: Ordinary Differential Equations

Euler's method; Runge—Kutta methods; General methods for boundary-value
problems; Case studies

GO TO

CHAPTER 7: Ordinary Differential Equations

Module 7: Statistical Methods

Frequency distributions; Data analysis; Expectations and moments; Corelation
and regression; Trend analysis; Seasonal effects; Cyclical fluctuation; Moving
average; MSE; Predictions; Non-parametric statistics; Computer-based
resampling techniques; Confidence intervals and statistical significance

GO TO

CHAPTER 8: Statistical Methods

CHAPTER 9: Correlation and Regression

CHAPTER 10: Trend Analysis




CHAPTER

Error Analysis

Chapter Outline

1.1 Introduction

1.2 Accuracy and Precision
1.3 Types of Errors

1.4  Sources of Errors

1.5 Significant Figures

1.1 INTRODUCTION

The main goal of numerical analysis is to develop efficient algorithms for computing
precise numerical values of mathematical quantities, including functions, integrals,
solutions of algebraic equations, solutions of differential equations, etc. Often the
numerical data and the methods used are approximate ones. Hence, the error in a
computed result may be caused by the errors in the data, or the errors in the method, or
both. In any numerical computation, there are four key sources of errors:
(i) Inexactness of mathematical model for the underlying physical phenomenon

(i1) Errors in measurements of parameters entering the model

(iii) Round-off errors in computer arithmetic

(iv) Approximations used to solve the mathematical systems

1.2 ACCURACY AND PRECISION

Measurements and calculations can be characterized with regard to their accuracy and
precision. Accuracy refers to how closely a computed or measured value agrees with
the true value. Precision refers to how closely individually computed or measured
values agree with each other. Inaccuracy is the systematic deviation from the truth.
Imprecision refers to the magnitude of scatter. Figure 1.1 illustrates the concepts of
accuracy and precision.
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High Accuracy Low Accuracy High Accuracy Low Accuracy
High Precision High Precision Low Precision Low Precision

Fig. 1.1

The term error represents the imprecision and inaccuracy of a numerical
computation.

1.3 TYPES OF ERRORS

There are various types of errors in measurements and calculations:
(i) Absolute error
(i1) Relative error
(iii) Percentage error

Absolute Error It is the difference between the measured or calculated value and
true value. If X, is the true or exact value and X, is the measured or calculated or

approximate value, the absolute error dx is given by

€,=0x=

Xexact ~ Xapprox

Relative Error It is the ratio of absolute error and true value of the quantity.

c = ox _ Xexact ~ Xapprox

r

X X,

exact

Percentage Error It is relative error expressed in terms of per 100.

ep:@x100=
X

X —-X

exact approx
_oxact  Tapprox | 100
X

exact

1.4 SOURCES OF ERRORS

There are three sources of errors, namely, inherent error, truncation error, and round-
off error.

Inherent Error It is the error that pre-exist in the problem statement itself before
its solution is obtained. Such errors arise in the values of data from the real world or
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by uncertainty in measurements or due to the given data being approximate or due to
the limitations of mathematical tables, calculators, digital computer, etc. These errors
cannot be completely eliminated but can be minimized if better data is selected or
high-precision computer computations are employed, e.g., representation of irrational
numbers such as 7, e, \/5 cannot be represented with a finite number of digits. Even
a simple fraction in many cases has no exact representation, such as a rational number
1

3
Truncation Error It is the error that results from using an approximation in place
of exact mathematical expressions. It is caused by truncating a finite number of terms.
The most common example is the truncation of an infinite series to a finite number of
terms, e.g., sin x is represented by the Maclaurin series as

Yo X X

sinx=x——+———+——r0=x
3t 50 79 exact
But, if sin x is calculated by terminating the series up to x orx’,
)C3 XS X7 X9

sinx=x——+—-—-—+—=x
3150 71 91 PR

Hence, truncation error = Xex,e; = Xapprox

Round-off Error Itis the error that results due to chopping or rounding or arithmetic
operations using normalized floating-point numbers. It is due to the inaccuracies that
arise because of a finite number of digits of precision used to represent numbers. All
computers represent numbers, except for integer and some fractions, with imprecision.
Digital computers use floating-point numbers of fixed word length. This type of
representation will not express the exact or true values correctly. Error introduced by
the omission of significant figures due to computer imperfection is called round-off
error.

1.5 SIGNIFICANT FIGURES

The significant figures of a number are digits that carry meaning contributing to its
measurement resolution. This includes all digits except (i) all leading zeros, and (ii) all
trailing zeros when they are merely placeholders to indicate the scale of the number.

Rules for Identifying Significant Figures

(i) All nonzero digits are considered significant, e.g., 93 has two significant
figures, i.e., 9 and 3, while 135.76 has five significant figures, i.e., 1, 3,5, 7,
and 6.

(i1) All zeros between two nonzero digits are significant, e.g., 205.1308 has seven
significant figures, i.e., 2, 0, 5, 1, 3, 0 and 8.
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(iii)) Leading zeros are not significant, e.g., 0.00075 has two significant figures,
7 and 5.

(iv) Trailing zeros in a number containing a decimal point are significant, e.g.,
13.4000 has six significant figures, i.e., 1, 3, 4, 0, 0, and 0. The number
0.000134000 still has only six significant figures (the zeros before the 1 are
not significant). The number 120.00 has five significant figures since it has
three trailing zeros. The number of significant figures in 8200 is at least two,
but it could be three or four because it is not clear if the zeros are significant
or not. To avoid uncertainty, scientific notation is used to place zeros behind a
decimal point, i.e., 8.200 x 10 has four significant figures, whereas 8.2 x 10°
has two significant figures.

Example 1

Find the relative error and percentage error if 0.005998 is truncated to
three decimal digits.

Solution
Xopae = 0.005998
Xypprox = 0.005
Relative error — | exet — “approx
xexact
0005998 -0.005|
| 0005998 |
=0.1664

Xexact ~ Xapprox

Percentage error = %100

'xexact

=0.1664 x 100
=16.64%

Example 2

For a = 3.141592 and an approximation value of a as 3.14, evaluate
absolute error, relative error, and percentage error.

Solution

=3.141592, a =3.14

approx

=3.141592 - 3.14 = 0.001592

anaC[

Absolute error = 8a = Gy, — Aypprox

Relative error = 5_a = M =5.0675x107*

a 3.141592

Percentage error = ﬁ %100 = 5.0675x10™* x100 = 0.05067%
a
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Example 3

If the approximate solution of a problem is x, = 35.25 with relative error
of at the most 2%, find the range of values correct up to four decimal
digits in which the exact value of the solution lies.

Solution
XOppprox = 35.25
€,= 2% of 35.25=0.705
Er: xoexacl N xoappmx
xoexact
X, —3525
0.705 = et
Xo

exact

(1-0.705) x, _ =35.25
X, _119.4915
exact

The range of values correct up to four decimal digits in which the exact value of the
solution lies is [119.4915, 119.50].

Example 4

The approximate solution of a problem is 3.436. If the absolute error in
the solution is less than 0.01 then find the interval within which the exact
solution lies.

Solution
Xapprox = 3.436
6x<0.01
Sx = Xexact ~ Xapprox
KXexact
o —3.436
Foact 27D 0,01
Xexact
Xexact (1-0.01)<3.436
X <3.4707

exact

Hence, the exact solution lies in the interval [3.47, 3.48].
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Example 5
Ifu= 200 — 5y, find the percentage error in u at v =1 if the error in v is

0.05.

Solution
u=2v" -5y
Su=12v° dv—>56v
O 100 =1[12 % 5vx100-5 8vx100]
u u
:+[12v5 Svx100—58vx100 |
2v° =5v
Putting ov=0.05, y=1
o 100 = 6;[12(1)5 (0.05) (100)— 5(0.05) (100) |
u 2(1)° —5(1)

=-11.67%

Hence, the percentage error in u =—11.67%.

Example 6
Given the trigonometric function f(x) = sin x,

(i)  expand f(x) about x = 0 using the Taylor series
(ii)  truncate the series to n = 6 terms

(iii)  find the relative error at x = ry due to truncation.

Solution
(1) f(x)=sinx
By the Taylor series,
3 5 7 9
. x x> x' x

f(x) =Sinx = X—E'F?—?‘i‘g—"‘

(i1) Truncation of the Taylor series to n = 6 terms
3 5
X x
f6 (x) =X— ? + ?

(iii) Relative error at x = T due to truncation
4

(5l
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. (n) T n°
sin| — |- | ——=——+
4 4 384 122880
. (ﬂ)
sin| =
4

5.1286 %107

Example 7
Given the function f(x) = ¢,
(i)  expand f(x) about x = 0 using the Taylor series
(ii)  truncate the series to n = 5 terms
(iii)  find the relative error at x =1 due to truncation.

Solution

(@) f=e"
By the Taylor series,

+
21 31 41 5!

(i) Truncation of the Taylor series to n = 5 terms
2 .3 4

XX
TR TR}

(iii) The relative error at x = 1 due to truncation

1 1 1 3
D=1-1+———+—=—
5O 21 31 4! 8
fh=e"

. _|fo-s0
o
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Example 8

IfR = X y2 z2 and 0.03, 0.01, 0.02 are errors in x, y, z respectively at
x=1,y=1,z="2. Calculate the absolute error and percentage error in
calculation of R.

Solution
R=xy? 7
Taking logarithm on both the sides,
log R =log X+ log y2 +log Z

=3logx+2logy+2logz
1 2 2
— 0 =35x+—5y+—5z
R X y Z
1) 6x .0y 0z

R 3 =422 42—=
R X y Z

Putting x =0.03, 9y =0.01, &=0.02, x=1,y=1,z=2,
R=(1) (1)) =4

5_R=3(0.O3)+2(0.01)+2(0.O2)
4 1 1 1

5—R=0.15
4
6R=0.6

Hence, absolute error = 0.6.
Percentage errorin R = 5?13 x100

=0.15x100
=15%

Example 9
Find the percentage error in calculating the area of a rectangle when an
error of 3% is made in measuring each of its sides.

Solution

Let a and b be the sides of the rectangle and A be its area.
A=ab
Taking logarithm on both the sides,
logA=loga+logh
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L Y
A a b

5_AX100:5_aX100+@X100
A a b
Putting 5—a><100=3, %x100=3,
a
6—A><100=3+3
A
=6

Hence, percentage error in calculating area = 6%.

Example 10

Find the percentage error in the area of an ellipse when errors of 2%
and 3% are made in measuring its major and minor axes respectively.
Solution
Let 2a and 2b be the major and minor axes of the ellipse and A be its area.
A=mab

Taking logarithm on both the sides,

log A=logm+loga+logh

= B O B 8B

A b

a
6—Ax100:@x100+ﬁx100
A a b

Putting QXIOOZZ, %xlOOzl
a
5—A><100=2+3
A
=5

Hence, percentage error in area of ellipse = 5%.

Example 11 1

2 1
The focal length of a mirror is found from the formula — =———. Find
vV ou

the percentage error in f if u and v are both in error by 2% each.



1.10  Chapter 1 Error Analysis

Solution
211
f v u
2
—50f =~ 17 ou
I v u
_ 297 criig=—2 51004 L B0
Vv u u
Putting 0% 00=2, Vxit0=1
u 14
28f

————xlOO———(2)+ (2)
fr

vV ou f
5—fx100=2
J

Hence, percentage error in = 2%.

Example 12

Find the possible percentage error in computing the parallel resistance
R of two resistances R, and R, if R,, R, are each in error by 2%.

Solution
L .
R R R,
1 1 1
——,,5R:——76R1 5 5R2
) Ry 2
SR OR,
l‘ss—Rxloo:l— 100+——°%2 100
R R R, R, R, R,
OR OR,
Putting —Lx100=2,—%x100=2,
R R

1 2

LR 100=L 2+
RR R, R,

=2 L.}.L
Rl R2

-
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6—R><100=2
R

Hence, percentage error in R = 2%

Example 13

The resonant frequency in a series electrical circuit is given by

1
| =——F—. If the measurement of L and C are in error by 2% and
2nVLC

—1% respectively, find the percentage error in f.

Solution
I

2n\LC

Taking logarithm on both the sides,

11 1
log f=log———logL——logC
g f gzﬂ 5 g 5 g

lgf :()_llgL_ligc

f 2L 2C
%XIOOI—%%XIOO—%%XIOO
Putting 5TL><100=2, S?Cxl()O:—l
Sof

1 1
O 100 == By
fX )0 2() 2( )

=-0.5

Hence, percentage error in f=— 0.5%

Example 14

In calculating the volume of a right circular cone, errors of 2% and
1% are made in the height and radius of base respectively. Find the
percentage error in the calculating the volume.

Solution

Let r and & be the radius of base and height of the right circular cone and V be its
volume.

V= l7rr2/z
3
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Taking logarithm on both the sides,
logV = 10g%+210gr+ logh

Lsv—0+26r+16n
\% r h
6—V><100=22><100+5—h><100
\% r h
Putting QX]O() =1, %XIOO =2
r 1

67v><I00=2(])+2

=4

Hence, percentage error in volume = 4%

Example 15

In calculating the volume of a right circular cylinder, errors of 2% and
1% are found in measuring the height and base radius respectively. Find
the percentage error in the calculated volume of the cylinder.

Solution

Let r and h be the base radius and height of the right circular cylinder and V be its
volume.
V=nr’h
Taking logarithm on both the sides,
logV =logm+2logr+logh

ov—0iZsrslon
Vv r h

6—V><100=2Q><10()+ﬁ><100
% r h
Putting ﬂ>< 100 = l,?xl()() =2,
v 1
1%

—x100=2(1)+2
= )

=4
Hence, percentage error in volume = 4%.
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Example 16
1
Evaluate [(3.82)> +2(2.1)°]3 using the theory of approximation.
Solution
1
Let z= (3 +2y%)5
L, 55 5% T P
6z= g(x +2y7) 3 (2x)5x+g(x +2y7) 3(6y°)0y
i 4
= g()c2 +2y%) 5 (2x8x+6y° 8y)
Putting x=4,y=2,
6x=382-4=-0.18,
Sy=2.1-2=0.1
2+ 2y =42 +202)°
=32
-
and oz= g -(32) 3[2(4) (—O.l8)+6(2)2 (0.D]
=0.012

Approximate value = z + 8z
=(32)"" +0.012
=2.012

Example 17

1
Find the approximate value of [(0.982 +(2.01)% +(1 .94)2]E .
Solution

Let

W=x+y + 7
2udu = 2x0x + 2ydy + 220z
udu =x6x + yoy + 76z
Putting x=1,y=2,z=2,
0x=0.98 -1=-0.02,
6y=2.01-2=0.01,
6z=194-2=-0.06
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u=12+2% +2?
=3
and udu =1(-0.02)+2(0.01) + 2(-0.06)
=-0.12
ou=-0.04
Approximate value = u + du
=3-0.04
=2.96
Example 18
1
Evaluate (1 .99)2 (3.01)3 (0.98)!10 using approximation.
Solution
A
Let u= x> y> z10
logu = 2logx+3logy+%logz
lﬁu = 2l6x+3l5_v+Ll5z
u X y 10 z
Putting x=2, y=3, z=1,
6x=1.99-2=-0.01,
Sy =3.01-3=001,
0z=098-1=-0.02
1
u= 23110 =108
and L5u—2-[lj(—()()1)+3»(l](0 01)+i(1)(—0 02)
108 2) 3) 10l1)
ou=-0.216
Approximate value = u + u
=108 - 0.216

=107.784.
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EXERCISE 1.1

1. Round off the following numbers to 4-significant digits:
(i) 2.36345 (ii) 0.34176 (iii) 3.40087 (iv) 0.000143479
[Ans.: (i) 2.363 (ii) 0.3417 (iii) 3.401 (iv) 0.0001435]
2. Find the error and relative error in the following cases:
(1) Xexact = 1000000, Xapprox = 999996
(i1) Xeyact = 0.000012, Xapprox = 0-000009
[Ans.: (i) 4, 0.000004 (ii) 0.000003, 0.25]

3. Find the relative error of x — y for x = 12.05 and y = 0.802 having
absolute error 6x = 0.005 and dy = 0.001.

[Ans.: 0.00029]

4. Find absolute error, relative error, and percentage error if % is
approximated to 4-significant digits.
[Ans.: 0.000033, 0.0000495, 0.005%]

5. If the approximate value of % is 0.7854, calculate (i) absolute error,

(ii) relative error, and (iii) percentage error.
[Ans.: (i) 0.00031, (ii) 0.00039, (iii) 0.04%]
6. If ox = 0.005 and oy = 0.001 be the absolute errors in x = 2.11 and
y = 4.15, find the relative error in computation of x + y.
[Ans.: 0.000958]

7. In calculating the volume of right circular cone, errors of 2.75% and
1.25% are made in height and radius of the base. Find the percentage
error in volume.

[Ans.: 5.25%]

8. The height of a cone is H = 30 cm, the radius of base R = 10 cm. How
will the volume of the cone change if H is increasing by 3 mm while R

is decreasing by 1 mm?
[Ans.: decreased by 10z cm?]

9. Find the percentage error in calculating the area of a rectangle when
an error of 2% is made in measuring each of its sides.

[Ans.: 4%]



10.

11.

12.

13.

14.

15.

16.

17.

Chapter 1 Error Analysis

If R, and R, are two resistances in parallel, their resistance R is given by

% = Rl+ Ri . If there is an error of 2% in both R, and R,, find percentage
1 2
error in R.

[Ans.: 2%]

One side of a rectangle is a = 10 cm and the other side b = 24 cm. How

will the diagonal [ of the rectangle change if a is increased by 4 mm

and b is decreased by 1 mm? 4
Ans.: —cm
e

The resistance R of circuit was found by using the formula / = % If there

is an error of 0.1 ampere in reading | and 0.5 volts in reading E, find the
corresponding percentage error in R when | = 15 amperes and E = 100
volts.

[Ans.: -0.167%]

The voltage V across a resistor is measured with error h, and the

resistance R is measured with an error R. Show that the error in
. Vi v

calculating the power W = FISF(ZRh —VR). If V can be measured to

an accuracy of 0.5% and to an accuracy of 1%, what is the approximate

possible percentage error in W?
[Ans.: 0%]

The radius and height of a cone are 4 cm and 6 cm respectively. What
is the error in its volume if the scale used in taking the measurement
is short by 0.01 cm per cm?

[Ans.: 0.967 cm®]

Show that the error in calculating the time period of a pendulum at
any place is zero if an error of u% is made in measuring its length and
gravity at that place.

The diameter and the altitude of a right circular cylinder are measured
as 24 cm and 30 cm respectively. There is an error of 0.1 cm in each
measurement. Find the possible error in the volume of the cylinder.

[Ans.: 50.47 cm]

If the measurements of base radius and height of a right circular cone
are changed by -1% and 2%, show that there will be no error in the
volume.



18.

19.

20.

21.

22.

23.

24.

25.

26.

Points to Remember 1.17

g
If f=x%y*z"°, find the approximate value of f when x = 1.99, v = 3.01
and z = 0.98.

[Ans.: 107.784]

If f = x3 y* 7%, find the approximate value of f when x = 1.99, vy = 3.01,
z=10.99.

1 [Ans.: 68.5202]
If f=(160-x>—y*)3, find the approximate value of f (2.1, 2.9) - f (2, 3)
[Ans.: 0.016]

If f =&Y, find the approximate value of f when x = 0.01, v = 1.01,
z=2.01. [Ans.: 1.02]

1
Find [(2.92)° +(5.87)’]° approximately by using the theory of
approximation.

. [Ans.: 2.96]
Find [(11.99)* +(5.01)?]> approximately by using the theory of
approximation. [Ans.: 12.99]

Find (1.04)>°" by using theory of approximation.
[Ans.: 1.1253]

1

If f(x, y) = (50— X% —y?)? find the approximate value of [f(3, 4)—f(3.1, 3.9)]

[Ans.: -0.018]
Find log[\3/1.04+\“/0.97—1} approximately by using the theory of
approximation. [Ans.: 0.0058]

Points to Remember

Accuracy and Precision

Accuracy refers to how closely a computed or measured value agrees with the true
value. Precision refers to how closely individually computed or measured values
agree with each other.

Types of Errors

Absolute Error It is the difference between the measured or calculated value and
true value.

€= Ox = Xexact ~ Xapprox
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Relative Error It is the ratio of absolute error and true value of the quantity.

X

c = Ox _ | Mexact ~ Xapprox

r

X X,

exact

Percentage Error It is relative error expressed in terms of per 100.

ox
€p= 7X100=

Xexact ~ Xapprox

x100

xexact

Sources of Errors

Inherent Error It is the error that pre-exist in the problem statement itself before
its solution is obtained.

Truncation Error It is the error that results from using an approximation in place
of exact mathematical expressions.

Round-off Error It is the error that results due to chopping or rounding or
arithmetic operations using normalized floating-point numbers.

Significant Figures

The significant figures of a number are digits that carry meaning contributing to its
measurement resolution. This includes all digits except (i) all leading zeros, and
(ii) all trailing zeros when they are merely placeholders to indicate the scale of the
number.




CHAPTER

Roots of Equations

Chapter Outline

2.1 Introduction
2.2 Bisection Method
2.3 Regula Falsi Method
2.4 Newton—Raphson Method
2.5 Secant Method
2.6 Successive Approximation Method
2.7 Descartes’ Rule of Signs
2.8 Budan’s Theorem
2.9 Bairstow’s Method
2.1 INTRODUCTION

An expression of the form f(x) = ayx" + axX" ' +a " 4+ a, x+a,, where ay,
a,, are constants and # is a positive integer, is called an algebraic polynomial
of degree n if ay # 0. The equation f(x) = 0 is called an algebraic equation if f(x)
is an algebraic polynomial, e.g., x* = 4x — 9 = 0. If f(x) contains functions such as
trigonometric, logarithmic, exponential, etc., then f(x) = 0 is called a transcendental

a, ay, ...,

equation, e.g., 2% — log (x+3)tanx + " =0.

In general, an equation is solved by factorization. But in many cases, the method of
factorization fails. In such cases, numerical methods are used. There are some methods

to solve the equation f(x) = 0 such as
(i) Bisection method
(ii)) Regula Falsi method
(i1ii)) Newton—Raphson method
(iv) Secant method
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2.2 BISECTION METHOD

Let f(x) = O be the given equation. Let x,
and x, be two real values of x at P and Q
respectively such that f(x,) is positive and
f(xp) is negative or vice versa (Fig. 2.1).
Then there is one root of the equation f(x)
= 0 between x; and x,. Now, this interval
[xp, x;] is divided into two sub-intervals
Xo +x;
2

If f(x,) and f(x,) are of opposite signs

then the interval [x,, x,] is divided into
Xy + X, Plxo, f(xo)]
[xp> x3] and [x3, x,], where x; = 5 Fig. 2.1

y

Qlx1, f(x)]

[xo, x,] and [x,, x;], where x, =

Ol

However, if f(x,) and f(x,) are of the same
sign then f(x,) and f(x,) will be opposite signs and the interval [x|, x,] is divided into

X1 +)C2

[x;, x3] and [x3, x,], where x; = . This process is continued till the desired

accuracy is obtained.

Example 1
Find the positive root of X —2x -5 =0, correct up to two decimal
places.

Solution
Let fx)=x*-2x-5
f()=-6and f(2) =-1,f(3) =16
Since f(2) < 0 and f(3) > 0, the root lies between 2 and 3.
2+3

2
f(x) = £(2.5)=5.625

2.5

X

Since f(2.5) > 0 and f(2) < 0, the root lies between 2.5 and 2.

_ 25+2 —995

X3
f(xy) = f(2.25)=1.8906
Since f(2.25) > 0 and f(2) < 0, the root lies between 2.25 and 2.
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_ 2.25+2 — 9125

X3
f(x;) = f(2.125) = 0.3457

Since f(2.125) > 0 and f(2) < 0, the root lies between 2.125 and 2.

212542

X =2.0625

f(x,) = £(2.0625) =—0.3513

Since f(2.0625) < 0 and f(2.125) > 0, the root lies between 2.0625 and 2.125.

_2.0625+2.125

X5 =2.09375

f(x5) = £(2.09375) = —0.0089

Since f(2.09375) < 0 and f(2.125) > 0, the root lies between 2.09375 and 2.125.

_2.09375+2.125
2
f(xg) = f(2.109375) = 0.1668

Since f(2.109375) > 0 and f(2.09375) < 0, the root lies between 2.109375 and
2.09375.

X, =2.109375

= 2.109375+2.09375
.=
2

Since x¢ and x; are same up to two decimal places, the positive root is 2.10.

=2.10156

Example 2

Find a root of X -5x+3=0 by the bisection method correct up to four
decimal places. [Summer 2015]
Solution

Let fx)=x'-5x+3

f(0)=3and f(1)=-1
Since f(0) > 0 and f(1) < 0, the root lies between 0 and 1.
_0+1
===
f(x;)=f(0.5)=0.625

X 0.5

Since f(0.5) > 0 and f(1) < 0, the root lies between 0.5 and 1.

_ 05+1 —0.75

X

f(x,)=f(0.75)=-0.3281
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Since f(0.75) < 0 and £(0.5) > 0, the root lies between 0.75 and 0.5.

075405

X =0.625

f(x3) = £(0.625)=0.1191

Since £(0.625) > 0 and £(0.75) < 0, the root lies between 0.625 and 0.75.

_0.625+0.75
2

X, =0.6875

f(x,) = £(0.6875)=—0.1125

Since f(0.6875) < 0 and f(0.625) > 0, the root lies between 0.6875 and 0.625.

_ 0.6875+0.625

x5 = 0.65625

f(x5) = £(0.65625) = 0.00137

Since £(0.65625) > 0 and f(0.6875) < 0, the root lies between 0.65625 and 0.6875.
0.65625+0.6875
Xg =TT ——
2
f(xg) = f(0.67188) = —0.0561

=0.67188

Since f(0.67188) < 0 and £(0.65625) > 0, the root lies between 0.67188 and 0.65625.

_ 0.67188+0.65625
2
f(x5)= £(0.66407) = -0.02750

=0.66407

X7

Since f(0.66407) < 0 and f(0.65625) > 0, the root lies between 0.66407 and 0.65625.
0.66407 +0.65625
X3 =
2
f(xg) = £(0.66016) = -0.01309

=0.66016

Since f(0.66016) < 0 and £(0.65625) > 0, the root lies between 0.66016 and 0.65625.

_0.66016+0.65625
2
f(x9)= f(0.65821) = -0.00589

X, = 0.65821

Since f(0.65821) < 0 and f(0.65625) > 0, the root lies between 0.65821 and 0.65625.
0.65821+0.65625
Yo =
2
f(x9) = f(0.65723) = -0.0023

=0.65723

Since £(0.65723) < 0 and f(0.65625) > 0, the root lies between 0.65723 and 0.65625.
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X, = 0.65723;-0.65625 065674

f(x;) = f(0.65674) = —0.00044

Since f(0.65674) < 0 and f(0.65625) > 0, the root lies between 0.65674 and 0.65625.

0.65674 +0.65625
X =
2
f(x,) = f(0.6565) = 0.00044

Since £(0.6565) > 0 and f(0.65674) < 0, the root lies between 0.6565 and 0.65674.

. . 4
X, = 0 6565-!—20 6567 — 0.6566

f(x;3) = f(0.6566) = 0.00075

=0.6565

Since f(0.6566) > 0 and f(0.65674) < 0, the root lies between 0.6566 and 0.65674.

0.6566 +0.65674
Xyy=—""7"""""—
2
Since x,3 and x4 are same up to four decimal places, the root is 0.6566.

=0.65667

Example 3
Perform the five iterations of the bisection method to obtain a root of the
equation f(x) = ¥ —x-1=0.
Solution
Let f(x)=x3—x—l
f(H)=-1and f(2)=5

Since f(1) < 0 and f(2) > 0, the root lies between 1 and 2.

1+2

2
f(x) = £(1.5)=0.875

X 1.5

Since f(1.5) > 0 and f(1) < 0, the root lies between 1.5 and 1.

Xy =i2+1=1.25

f(xy) = f(1.25)=-0.2968

Since f(1.25) < 0 and f(1.5) > 0, the root lies between 1.25 and 1.5.

:M: 1.375

X3

fxy) = £(1.375) = 0.2246
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Since f(1.375) > 0 and f(1.25) < 0, the root lies between 1.375 and 1.25.

X, = 1.375+1.25 _ 13125
2

f(x,)=f(1.3125)=-0.0515

Since f(1.3125) < 0 and f(1.375) > 0, the root lies between 1.3125 and 1.375.

_ 1.3125+1.375

x5 =1.3438

Hence, the root is 1.3438 up to five iterations.

Example 4
FMdMe@manm%sdmwnW%3+x—l:OawmanMMw%kdmd
places. [Winter 2013]
Solution

Let fo)=x>+x-1

fO)=-land f(1)=1
Since f(0) < 0 and f(1) > 0, the root lies between 0 and 1.
_0+1
===
f(x)=f(0.5)=-0.375

X 0.5

Since £(0.5) < 0 and f(1) > 0, the root lies between 0.5 and 1.

_ 0.5+1 ~075

X3
f(x,)=f(0.75)=0.1719

Since f(0.75) > 0 and £(0.5) < 0, the root lies between 0.75 and 0.5.

075405

X =0.625

f(x3) = £(0.625) = —0.1309

Since £(0.625) < 0 and £(0.75) > 0, the root lies between 0.625 and 0.75.

_ 0.6252-4- 0.75 — 06875

X4
f(x,) = f(0.6875) = 0.01245

Since f(0.6875) > 0 and f(0.625) < 0, the root lies between 0.6875 and 0.625.

_ 0.6875+0.625

x5 = 0.6563

f(xs) = £(0.6563) = —0.0644
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Since f(0.6563) < 0 and f(0.6875) > 0, the root lies between 0.6563 and 0.6875.
0.6563+0.6875
Xy =——————
2
f(xg) = f(0.6719) =-0.0248

=0.6719

Since f(0.6719) < 0 and f(0.6875) > 0, the root lies between 0.6719 and 0.6875.

_ 0.6719+0.6875
2
f(x7)=f(0.6797)=-0.0141

X, =0.6797

Since f(0.6797) < 0 and f(0.6875) > 0, the root lies between 0.6797 and 0.6875.
0.6797+0.6875
Xy =—
2
f(xg) = £(0.6836) = 0.0031

=0.6836

Since £(0.6836) > 0 and f(0.6797) < 0, the root lies between 0.6836 and 0.6797.

_0.6836+0.6797
2
f(x9)= f(0.6817)=-0.0015

X =0.6817

Since f(0.6817) < 0 and f(0.6836) > 0, the root lies between 0.6817 and 0.6836.
0.6817+0.6836
Moo= 5
2
f(x;9) = £(0.6827) = 0.00089

=0.6827

Since £(0.6827) > 0 and f(0.6817) < 0, the root lies between 0.6827 and 0.6817.
.6827+0.6817
Xy = w =0.6822

Since x,, and x,; are same up to three decimal points, the root is 0.682.

Example 5

Find a root of the equation X —4x-9=0 using the bisection method in
four stages.

Solution

Let f(x):x3—4x—9
f2)=-9 and f(3)=6
Since f(2) < 0 and f(3) > 0, the root lies between 2 and 3.
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_243_
===
f(x) = f(2.5)=-3.375

X 2.5

Since f(2.5) < 0 and f(3) > 0, the root lies between 2.5 and 3.

2,
X, = 52+3 =275

f(x,) = £(2.75)=0.7969

Since f(2.75) > 0 and f(2.5) < 0, the root lies between 2.75 and 2.5.

= M =2.625

A3
f(x3) = f(2.625)=-1.4121
Since f(2.625) < 0 and f(2.75) > 0, the root lies between 2.625 and 2.75.

X, = 2.625+2.75 = 96375
2

Hence, the root is 2.6875 up to four stages.

Example 6

Find the negative root of X —Tx+3 by the bisection method up to three
decimal places.

Solution

Let f)=x—Tx+3
f(=2)=9 and f(-3)=-3
Since f(-2) > 0 and f(-3) < 0, the root lies between —2 and 3.
=25
2
f(x))=f(-2.5)=4.875

Since f(-2.5) > 0 and f(-3) < 0, the root lies between —2.5 and 3.

_25-3

Xy = =-2.75

f(xy) = f(=2.75)=1.4531

Since f(-2.75) > 0 and f(-3) < 0, the root lies between —2.75 and -3.

—2.75-3
Xy == =285

f(x3)

£(=2.875)=—0.6387
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Since f(-2.875) < 0 and f(-2.75) > 0, the root lies between —2.875 and —2.75.

—2.875-2.

f(xy) = f(—2.8125) = 0.4402

Since f(-2.8125) > 0 and f(-2.875) < 0, the root lies between —2.8125 and —2.875.

~2.8125-2.
X5 =W= ~2.8438

f(x5)= f(-2.8438)=-0.0918
Since f(-2.8438) < 0 and f(-2.8125) > 0, the root lies between —2.8438 and —2.8125.

—2.8438-2.812
L

fxg) = f(~2.8282)=0.1754

Since f(-2.8282) > 0 and f(-2.8438) < 0, the root lies between —2.8282 and —2.8438.
—2.8282—-2.8438
Xy =
2
f(x;)= f(-2.836) = 0.0423

=-2.836

Since f(-2.836) > 0 and f(-2.8438) < 0, the root lies between —2.836 and —2.8438.
—2.836—2.8438

xy = = 2.8399

f(xg) = f(-2.8399) =-0.0246
Since f(-2.8399) < 0 and f(-2.836) > 0, the root lies between —2.8399 and —2.836.

X = —2.8399-2.836 — 5838

2
f(xy) = f(-2.838) =0.0081
Since f(-2.838) > 0 and f(-2.8399) < 0, the root lies between —2.838 and —2.8399.

X = -2.838-2.8399 — 78389
2

Since x4 and x; are same up to three decimal places, the negative root is —2.838.

Example 7

Perform three iterations of the bisection method to obtain the root of the
equation 2 sin x — x = 0, correct up to three decimal places.

[Summer 2015]
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Solution
Let fx)=2sinx—x
f(1)=0.6829 and f(2)=-0.1814
Since f(1) > 0 and f(2) < 0, the root lies between 1 and 2.
_1+2
2
f(x)) = f(1.5)=0.4949

X 1.5

Since f(1.5) > 0 and f(2) < 0, the root lies between 1.5 and 2.

_ 1.5+2 —175

X
f(x,)=f(1.75)=0.2179

Since f(1.75) > 0 and f(2) < 0, the root lies between 1.75 and 2.

1.75+2
X3 =

=1.875

Hence, the root is 1.875 up to three iterations.

Example 8

Solve x = cos x by the bisection method correct to two decimal places.
[Summer 2014]

Solution

Let f(x)=x-cosx

f(O)=-1 and f(1)=0.4597
Since f(0) < 1 and f(1) > 0, the root lies between 0 and 1.
_0+1
===
f(x;)= f(0.5)=-0.3776

X 0.5

Since f(0.5) < 0 and f(1) > 0, the root lies between 0.5 and 1.
0.5+1

Xy =0.75
f(x,)=f(0.75)=0.0183
Since £(0.75) > 0 and £(0.5) < 0, the root lies between 0.75 and 0.5.

0.75+0.5

X = 0.625

f(x3)= f(0.625)=-0.186



2.2 Bisection Method 2.11

Since £(0.625) < 0 and £(0.75) > 0, the root lies between 0.625 and 0.75.

X, = 0.625+0.75 — 0.6875
2

f(x,) = f(0.6875)=-0.0853

Since f(0.6875) < 0 and f(0.75) > 0, the root lies between 0.6875 and 0.75.

_ 0.6875+0.75

X5 =0.71875

f(x5) = f(0.71875) =—0.0338

Since f(0.71875) < 0 and £(0.75) > 0, the root lies between 0.71875 and 0.75.

1 .
X6:07 87§+075=0.7344

f(xg) = £(0.7344) =—0.0078

Since £(0.7344) < 0 and f(0.75) > 0, the root lies between 0.7344 and 0.75.

_0.734440.75

X, =0.7422

f(x;)=£(0.7422) = 0.0052

Since f(0.7422) > 0 and f(0.7344) < 0, the root lies between 0.7422 and 0.7344.

0.7422+0.7344
x8 ==

2
f(xg) = f(0.7383) = —0.0013

=0.7383

Since £(0.7383) < 0 and f(0.7422) > 0, the root lies between 0.7383 and 0.7422.
0.7383+0.7422
Xy =—"——
2
f(xy) = £(0.74025) = 0.00195

=0.74025

Since £(0.74025) > 0 and f(0.7383) < 0, the root lies between 0.74025 and 0.7383.

g = 0.740252+ 0.7383 ~07393

f(x;0) = £(0.7393) = 0.0004
Since £(0.7393) > 0 and f(0.7383) < 0, the root lies between 0.7393 and 0.7383.
0.7393+0.7383
X = 5,

Since x |, and x;, are the same up to two decimal places, the root is 0.73.

=0.7388
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Example 9

Find a real root between 0 and 1 of the equation ¢™ — x = 0, correct up
to three decimal places.

Solution
Let f)=e*—x
f(0)=1and f(1)=-0.63
Since f(0) > 0 and f(1) < 0, the root lies between 0 and 1.
0+1
'xl = —
2

f(x) = £(0.5)=0.1065

0.5

Since f(0.5) > 0 and f(1) < 0, the root lies between 0.5 and 1.

_ 0.5+1 _0.75

X
f(xy) = f(0.75)=-0.2776

Since £(0.75) < 0 and £(0.5) > 0, the root lies between 0.75 and 0.5.

0.75+0.5

X3 =0.625

f(x3) = £(0.625)=—0.0897

Since £(0.625) < 0 and f(0.5) > 0, the root lies between 0.625 and 0.5.

_0.625+0.5

X, =0.5625

f(x,)= f(0.5625)=7.28 107

Since £(0.5625) > 0 and f(0.625) < 0, the root lies between 0.5625 and 0.625.

_0.5625+0.625

X =0.5938

f(x5)=£(0.5938)=-0.0416

Since £(0.5938) < 0 and f(0.5625) > 0, the root lies between 0.5938 and 0.5625.

_0.5938+0.5625
2
f(xg) = £(0.5782) =—0.0173

X, =0.5782

Since £(0.5782) < 0 and f(0.5625) > 0, the root lies between 0.5782 and 0.5625.
0.5782+0.5625
x7 e —————————
2
f(x;) = £(0.5704) = -5.1007 x 107

=0.5704
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Since £(0.5704) < 0 and f(0.5625) > 0, the root lies between 0.5704 and 0.5625.
0.5704+0.5625
Xg = —

f(xg) = £(0.5665) = 1.008 107

=0.5665

Since £(0.5665) > 0 and f(0.5704) < 0, the root lies between 0.5665 and 0.5704.
0.5665+0.5704
Xy =—"—
2
f(xg) = f(0.5685) = —2.1256 X 107

=0.5685

Since f(0.5685) < 0 and f(0.5665) > 0, the root lies between 0.5685 and 0.5665.

X = 0.5685+0.5665 —0.5675
2

f(x0) = £(0.5675) = —5.5898 x 10~*

Since f(0.5675) < 0 and f(0.5665) > 0, the root lies between 0.5675 and 0.5665.

X, = 0.5675;—0.5665 0567

Since x,, and x, are the same up to three decimal places, the root is 0.567.

Example 10

Find the root of cos x — xe* = 0 in four steps.

Solution
Let f(x) =cos x — xe*
fO)=1 and f(1)=-2.18
Since f(0) > 0 and f(1) < 0, the root lies between 0 and 1.
_0+1
2
f(x))=£(0.5)=0.0532

0.5

X

Since f(0.5) > 0 and f(1) < 0, the root lies between 0.5 and 1.
0.5+1

X, =0.75
f(x,)=f(0.75)=-0.8561
Since £(0.75) < 0 and £(0.5) > 0, the root lies between 0.75 and 0.5.

0.75+0.5

X =0.625

f(x3)= f(0.625)=-0.3567
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Since f(0.625) < 0 and f(0.5) > 0, the root lies between 0.625 and 0.5.

_0.625+0.5

X, = 0.5625

f(x,) = f(0.5625)=-0.1413

Since £(0.5625) < 0 and f(0.5) > 0, the root lies between 0.5625 and 0.5.

0.5625+0.5
Xg = ——————

Hence, the root is 0.53125 in four steps.

EXERCISE 2.1

=0.53125

Find a positive root of the following equations correct to four decimal
places using the bisection method:

1.

x*-4x-9=0

x*+3x-1=0

xX*+x*-1=0

x*-x'-x*-6x-4=0

. 3x=.1+sinx

3x =cosx +1

x—cosx=0

xe* =1

x log,, x =1.2 lying between 2 and 3

[Ans

[Ans.

[Ans.:

[Ans.:

[Ans.:

[Ans.:

[Ans.:

[Ans.

[Ans.:

.1 2.7065]

: 0.3222]

0.7549]

2.5528]

0.3918]

0.6071]

0.7391]

: 0.5671]

2.7406]
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2.3 REGULA FALSI METHOD

This method resembles the bisection method. In this method, two points x, and x,
are chosen such that f(x;) and f(x,) are of opposite signs, i.e., the graph of y = f(x)
crosses the x-axis between these points. Hence, a root lies between x, and x; and
f(xp) f(x)) <0 (Fig. 2.2).

The equation of the chord joining the points

P[xo’ f(x())] and Q[xp f(x1)] is

f(x1)_f(xo) x

y_f(xo)= ( _xo)

1 0

In this method, the curve PQ is replaced by
the chord PQ and the point of intersection of
the chord with the x-axis is taken as an
approximation to the root.

If x, is the point of intersection of the O X0,
x-axis and the line joining P[x,, f(x,) and !
QOlx;, f(x)] then x, is closer to the root o Plxo, f(Xo)]
than x, and x;.

Fig. 2.2
Using the slope formula,

G = £y _ )= ) _ 0= F(x)

X1 = %o Xy =X Xy =X
X
0=y T
X
Xy =Xp— mf( 0)

which is an approximation to the root.

If f(x,) and f(x,) are of opposite signs, the root lies between x, and x,, and the next
approximation x; is obtained as

X~
X3 =X~ mf (xp)
If the root lies between x; and x,, the next approximation x; is obtained as
B X
BB e

This process is repeated till the root is obtained to the desired accuracy. This iteration
process is known as the method of false position or regula falsi method.

f(xy)
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Example 1

Find a positive root of x° —4x + 1 correct up to three decimal places.
[Summer 2015]

Solution

Let fo)=x—4x+1

fO)=1 and f(1)=-2
Since f(0) > 0 and f(1) < 0, the root lies between 0 and 1.

Let x, =0, x =1
_ X -
S f(xl) f( o)f( *o)
‘O‘ﬁm
=0.3333

f(xy) = f(0.3333) =-0.2962
Since (0.3333) < 0 and f(0) > 0, the root lies between 0.3333 and 0, i.e., x, and x.

x
X3 = Xo — mf( Xy)
_03333-0
-0.2962 -1
=0.2571

f(x3)=f(0.2571)=-0.0114
Since £(0.2571) < 0 and f(0) > 0, the root lies between 0.2571 and 0, i.e., x5 and x.

.x
T f(xo)
0.2571-0

—0-——""——"q
“o011a—1)

=0.2542
f(x,) = £(0.2542) =—0.0004

Since £(0.2542) < 0 and f(0) > 0, the root lies between 0.2542 and 0, i.e., x, and x.

f(x)

Xy

X5 = Xg — —f( -1 O)f( Xo)
Lo 025020
—-0.0004 -1

=0.2541
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Since x, and x5 are same up to three decimal places, a positive root is 0.254.

Example 2

Find the root of the equation 2x —1og,yx = 7, which lies between 3.5 and
4, correct up to five places of decimal.

Solution
Let fx) =2x—log;px -7
f(3.5)=-0.54407 and f(4)=0.39794
Since f(3.5) < 0 and f(4) > 0, the root lies between 3.5 and 4.
Letx,=3.5, x =4
X
X, = X, —f( )
TCY ETES R
=3.5- 435 (~0.54407)
0.39794 + 0.54407
=3.78878

f(xy) = £(3.78878) =—0.00094

Since f(3.78878) < 0 and f(4) > 0, the root lies between 3.78878 and 4, i.e., x, and x;.

x
X, =X —f( )
TR T~ fo)
3788782 —>-78878 (—0.00094)
0.39794 +0.00094
=3.78928

f(x3)= f(3.78928) = 0.000003
Since £(3.78928) > 0 and f(3.78878) < 0, the root lies between 3.78928 and 3.78878,

i.e., x3 and x,.

x
TR T ) - f(xz)f( 2)

=3.78878— 3.78928 378878 (=0.00094)

0.000003 +0.00094

=3.78928
Since x; and x, are same up to five decimal places, the root is 3.78928.
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Example 3

Find a real root of the equation x log,, x = 1.2 by the regula falsi method.
[Summer 2015]

Solution

Let fx)=xlogpx—1.2

f(2)=-0.5979 and f(3)=0.2314
Since f(2) < 0 and f(3) > 0, the root lies between 2 and 3.

Let x, =2, x =3
x
Xy = xy -0 ey
20T G = fag) 0
Coe— 372 (05979)
0.2314+0.5979
=2.721

f(xy)=f(2.721)=-0.0171
Since f(2.721) < 0 and f(3) > 0, the root lies between 2.721 and 3, i.e., x, and x;.

X3 =Xy — __hthH
S = f(x)
=2.721—i(—0.0171)
0.2314 +0.0171
=2.7402

f(x3)= f(2.7402) =-0.0004
Since f(2.7402) < 0 and f(3) > 0, the root lies between 2.7402 and 3, i.e., x; and x;.

f(xy)

X3

X=X —f( )
TR T
__ 27042-3 0.2314)

—-0.0004 -0.2314
=2.7406

Since x3 and x, are same up to three decimal places, a real root is 2.740.

Example 4

Solve the equation x tan x = —1, starting with x, = 2.5 and x, = 3, correct
up to three decimal places.
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Solution

Let f(x)=xtanx+ 1
f(2.5)=-0.8676 and f(3)=0.5724
Since f(2.5) < 0 and £(3) > 0, the root lies between 2.5 and 3.

Letx,=2.5, x =3
X -
X, = X, —f( )
2T T ) fa
3725 08676)
0.5724+0.8676
=2.8013

f(xy)= f(2.8013) = 0.0082
Since f(2.8013) > 0 and f(2.5) < 0, the root lies between 2.8013 and 2.5, i.e., x, and

xo.
Xy

X3 =X —f (x0)
P )= )
=25 _M(_O.g;m@
0.0082+0.8676

=2.7985
f(x3) = £(2.7985) = 0.0003

Since f(2.7985) > 0 and f(2.5) < 0, the root lies between 2.7985 and 2.5, i.e., x3 and

.xO.

X,
X4 =X, —f( )
TP TS R
= 2.5—M(—0.8676)
0.0003 +0.8676

=2.7984
Since x3 and x, are same up to three decimal places, the root is 2.798.

Example 5

Find the real root of the equation log,, x — cos x = 0, correct to four
decimal places.

Solution

Let J(x) =log;px —cos x
f(1)=-0.5403 and f(1.5)=0.10535
Since f(1) < 0 and f(1.5) > 0, the root lies between 1 and 1.5.
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Letx,=1, x =15
X —
X, =X —f( )
2T T ) = )0
PP el S PT)
0.10535+0.5403
=1.41842

f(x,) = £(1.41842) = 0.00002

Since f(1.41842) > 0 and f(1) < 0, the root lies between 1.41842 and 1, i.e., x, and x,,
Xy~
Xy =X, —f (xo)
P )= )
1.41842 —
=1- 8—(—0.5403)
0.00002 +0.5403
=1.41840

Since x, and x5 are same up to four decimal places, the real root is 1.4184.

Example 6

Find the smallest root of an equation x — e = 0 correct to three
significant digits. [Summer 2015]
Solution

Let f)=x-e*

f(O)=-1 and f(1)=0.6321
Since f(0) < 0 and f(1) > 0, the root lies between 0 and 1.

Let x, =0, x =1
)C
Xy = Xy ——— 0 f(x)
20T G = fg) 0
_o-— 170y
0.6321+1
=0.6127

f(x,) = £(0.6127) = 0.0708

Since £(0.6127) > 0 and f(0) < 0, the root lies between 0.6127 and 0, i.e., x, and x.
X~
Xy =Xy ———
T - f( X))
0.6127-0

—0-——— (-1
0070841 "

=0.5722
f(x3) = £(0.5722) = 0.0079

f(xp)
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Since £(0.5722) > 0 and f(0) < 0, the root lies between 0.5722 and 0, i.e., x5 and x.
X3

T - f( %)
—0- 0.5722—0(_1)
0.0079+1

=0.5677
f(x,) = £(0.5677) = 0.0009

Since f(0.5677) > 0 and f(0) < 0, the root lies between 0.5677 and 0, i.e., x, and x.
Xy

X5 =X — mf( o)
_ 0567720
0.0009+1

=0.5672
Since x, and x5 are same up to three significant digits, a positive root is 0.567.

f(x)

Example 7

Find the root of the equation cos x — xe* = 0 correct up to three decimal
places, lying between 0.5 and 0.7.

Solution
Let f(x) = cos x — xe*
f(0.5)=0.0532 and f(0.7) =-0.6448
Since f(0.5) > 0 and f(0.7) < 0, the root lies between 0.5 and 0.7.
Letx,=0.5, x,=0.7
x
Xy =X —f (x0)
2T T )~ )
— 05— 07705 (0.0532)
—0.6448 — 0.0532
=0.5152

f(xy)= f(0.5152) = 0.0078
Since (0.5152) > 0 and f(0.7) < 0, the root lies between 0.5152 and 0.7, i.e., x, and x;.

X

Xy =X —f( )
TR T - fa) T
0515227 =0-5152 (0.0078)
—0.6448 — 0.0078
=0.5174

f(x3) = £(0.5174)=0.0011
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Since £(0.5174) > 0 and £(0.7) < 0, the root lies between 0.5174 and 0.7, i.e., x5 and
xl.
Xy X
f(xl)_f(xg)
0.7-0.5174

=0.5174— (0.0011)
—0.6448 —0.0011

f(x3)

X4 =

=0.5177

Since x5 and x, are same up to three decimal places, the root is 0.517.

EXERCISE 2.2

Find a real root of the following equations correct to three decimal places
using the regula falsi method:

1. X*+x-1=0

[Ans.: 0.682]
2. x*-4x-9=0

[Ans.: 2.707]
3. xX*-5x-7=0

[Ans.: 2.747]
4, xe’=3

[Ans.: 1.050]
5. e —sinx=0

[Ans.: 0.5885]

6. 2x=cosx+3
[Ans.: 1.524]

7. x*—log, x =12
[Ans.: 3.646]

8. e*=3x
[Ans.: 1.512]

2.4 NEWTON—RAPHSON METHOD

Let f(x) = 0 be the given equation and x, be an approximate root of the equation. If
X, =X, + h be the exact root then f(x;) = 0.

ie., flg+h)=0
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hZ
f(xo)"'hf’(xo)"';f”(xo)""":0

Since & is small, neglecting h? and higher powers of £,

f(x0)+h f,(xo):()

f(xo)
f/(xo)

[By Taylor’s series]

—_ Sf(xg)
f,(x())
X=Xy th=x,—
Similarly, starting with x,, a still better approximation x, is obtained.
_ f(xl)
=TT
S(xp)
_ f(x,)
In general, Xypl =X, =5 ——
J(x,)

This equation is known as the Newton—Raphson formula or Newton’s iteration

formula.

2.4.1 Geometrical Interpretation

Let x, be a point near the root o of the
equation f(x) = 0 (Fig. 2.3). The equation of
the tangent at Py[x,, flx,)] is

y=f(xg)=f"(xp)(x = xp)
This line cuts the x-axis at x;.

_ f(xo) e)

X =Xo — f,(x())

which is a first approximation to the root c.

Polxo, f(Xo)]

O X Xq

Fig. 2.3

If P, is the point corresponding to x; on the curve then the tangent at P, will cut the
x-axis at x, which is nearer to o and is the second approximation to the root. Repeating
this process, the root ¢ is approached quite rapidly. Thus, this method consists of
replacing the part of the curve between the point P, and the x-axis by means of the

tangent to the curve at P,.

2.4.2 Convergence of the Newton—Raphson Method

By the Newton—Raphson method,

fGy)
sy T o)

Xpel =X

2.1
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The Newton—Raphson method converges if 1¢{x) < 1.

f(x)

()

-1 [ NG f”(x)} LIS

[£'(0] [F'(0)]

F) f7(x)
[

Hence, the Newton—Raphson method converges if

J) f7(x)
[re]

0o freol < [FoT (2.2)

If aris the actual root of f(x) = 0, a small interval should be selected in which f(x), f/(x)
and f”(x) are all continuous and the condition given by Eq. (2.2) is satisfied.

9(x)=x~

¢'(x)| = |

<1

Hence, the Newton—Raphson method always converges provided the initial
approximation x, is taken very close to the actual root c.

2.4.3 Rate of Convergence of the Newton—Raphson
Method

Let azbe exact root of f(x) = 0 and let x,, x,, , | be two successive approximations to the
actual root. If €, and €, , | are the corresponding errors then
x,=a+e,
Xnpl = O+ €54

Substituting in Eq. (2.1),

fla+e)
fla+e,)
S =€ S E——

n+l n= s
flla+e,)

2
flo)y+¢€, f'(o)+ %f”(a)+...
=T , e [By Taylor’s series]
flay+e, f/(a)+--

2
e, fa)+ %”f”(oc) oo

ST fa e, @) L S =0]
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Neglecting the derivatives of order higher than two,

e2
€, fl(a)+ 7”f "(o)
€ =€ —

n+l n f,(a)+€n f”(Ol)

) }
2| fl@)+e, (@)
f//(a)
A NAC)
2 I+ e, (@
(@)
& @

2 fla)

2.25

..(2.3)

Equation (2.3) shows that the error at each stage is proportional to the square of the
error in the previous stage. Hence, the Newton—Raphson method has a quadratic con-

vergence and the convergence is of the order 2.

Example 1

Find the root of the equation X +x-1=0, correct up to four decimal
places.

Solution

Let f(x)=x3+x—1

f(0)=-1 and f(1)=1
Since f(0) < 0 and f(1) > 0, the root lies between 0 and 1.
Letx,=1
F)=3x"+1
By the Newton—Raphson method,
_ f(x,)
Xl = Xy — ’
f(x,)
flxp)=f=1
f'Gg)=f =4
_ f(xo)
M =X T
f (xo)
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f(x;)=f(0.75)=0.171875
f'(x)=f(0.75)=2.6875
X, =X _ S0
f,(x1)
0.171875

2.6875
=0.68605

f(x,) = f(0.68605) = 0.00894
f(x,) = f(0.68605)=2.41198
Xy =X — S(xy)
f,(xz)
0.00894
2.41198

=0.75-

=0.68605—
=0.68234

f(x3)= £(0.68234) = 0.000028
f(x3)= f’(0.68234) = 2.39676
f,(x3)
0.000028
2.39676

X4 =Xy

=0.68234 -
=0.68233

Since x3 and x, are same up to four decimal places, the root is 0.6823.

Example 2

Find a root of X=X +10x+7 =0, correct up to three decimal places
between -2 and —1 by the Newton—Raphson method.

Solution

Let fo=x -+ 10x+7
The root lies between -2 and —1.

Let xy=-2

F/(x) =4x° = 3x° + 10
By the Newton—Raphson method,
X+l = Xy _w
f(x,)
flxp)=f(=2)=11
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'(x)=f'(=2)=-34
X =Xy — f(xo)
f,(x())
_ 11
3
=-1.6765
f(x) = f(-1.6765) =2.8468
f'(x) = f'(-1.6765) =—-17.2802
X, = X _ S
f,(xl)
2.8468
(—17.2802)

=-1.6765—

=-15118
f(xy)=f(-1.5118)=0.561
f(xy) = f(-1.5118) = -10.6777
_ f(xz)
D)
0.561
T (-10.6777)

X3 =X

=-1.5118

—1.4593
f(x3)= f(~1.4593) = 0.0497
f(x3) = f(-1.4593) = -8.8193
X, =X _ )
f,(x3)
0.0497
(—8.8193)

=-1.4593 -

=-1.4537
f(x,) = f(=1.4537)=10.0008
f(xy) = f'(~1.4537) = -8.6278
X5 =X, _ S
f,(x4)
0.0008

= 14537 ——————
(-8.6278)

=—1.4536

Since x, and x5 are same up to three decimal places, a root is —1.453.
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Example 3

Find the root of xt—x-10=0, correct up to three decimal places.
Solution

Let fo) =x*-x-10

f(1)=-10, and f(2)=4
Since f(1) < 0 and f(2) > 0, the root lies between 1 and 2.

Letxy=2
=4 -1
By the Newton—Raphson method,
S
n+l n f/ (xn )

f(xg)=f(2)=4
()= f"(2)=31

X =x— Jf(xg)
f,(x())
4
31
=1.871
f(x)=f(1.871)=0.3835

f'(x)=f'(1.871)=25.1988

[ f(xl)
2T )
0.3835
25.1988

=1.871-

=1.8558
f(x,) = f(1.8558)=5.2922x107
f/(x,) = f(1.8558) = 24.5655
_ f(xz)
X3 =X =
f (xz)
5.2922x107°
24.5655

=1.8558—
=1.8556

Since x, and x; are same up to three decimal places, the root is 1.855.
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Example 4

Find the real root of xlog,, x — 1.2 = 0, correct up to three decimal
places. [Summer 2015]
Solution

Let fx)=xloggx—12

f(H=-1.2, f(2)=-0.5979 and f(3)=0.2314
Since f(2) < 0 and f(3) > 0, the root lies between 2 and 3.

f'(x)=log,, x+x =log,, x +log,, e =log,, x +0.4343

xlog, 10
By the Newton—Raphson method,
_ fx,)
Xnt1 =X =
f(x,)

f(xg)=f(3)=0.2314
fl(x)=f'(3)=09114
X = X — f(xo)
TS
- 0.2314
0.9114
=2.7461
f(x)) = f(2.7461) = 4.759x 107
£(x) = f/(2.7461) = 0.8730
= X — f(x1)
2 ! f’(xl)
4.759%107
0.8730

=2.7461-

=2.7406
f(xy) = f(2.7406) =—4.0202x 107
f/(x,) = f'(2.7406) = 0.8721
X3 =X~ f,(XZ)
1'(xy)
(=4.0202x107%)
0.8721

=2.7406—
=2.7406

Since x, and x; are the same up to three decimal places, the real root is 2.7406.
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Example 5

Find a root between 0 and 1 of the equation ¢*sin x = 1, correct up to
four decimal places.

Solution
Let fx)=¢€"sinx—-1
f(0)=-1 and f(1)=1.28
Since f(0) < 0 and f(1) > 0, the root lies between 0 and 1.
Letx,=0
f/(x) = €* (cos x + sin x)
By the Newton—Raphson method,
X1 = Xy _M
1(x,)
flx)=f(0)=-1
()= f(0)=1

o= xn f(x())
0 ()
(1)

:O——
1

=1

fx)=f(1)=1.2874
F(x) = f(1) =3.7560
X, =x — f(xl)
f,(xl)
12874
T 37560
=0.6572

f(x,)=f(0.6572)=0.1787
f(x)) = f7(0.6572) =2.7062

R f(xz)
T ()
0.1787

2.7062

=0.6572 -
=0.5912
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f(xy) = £(0.5912) = 6.6742x 107
f/(x3) = £7(0.5912) = 2.5063

_ f(xy)
: f,(x3)
6.6742x107°
e

Xy =X

=0.5912-

=0.5885
f(x,)=f(0.5885)=-8.1802x107°
f7(x,)= £7(0.5885) = 2.4982
_ f(x4)
‘x5 - 'x4 Y
f (x4)
-8.1802x107°
2.4982

=0.5885—-
=0.5885

Since x4 and x5 are the same up to four decimal places, the root is 0.5885.

Example 6

Find the real root of the equation 3x = cos x + 1, correct up to four
decimal places.

Solution
Let f(x)=3x—-cosx—1
f(0)=-2 and f(1)=1.4597
Since f(0) < 0 and f(1) > 0, the root lies between 0 and 1.
Letx,=1
f/(x)=3+sinx
By the Newton—Raphson method,
X+l = Xy _M
1(x,)
f(xy)=f(1)=1.4597
f(xy)=f'(1)=3.8415
X=Xy — f(x())
f’(xo)
1.4597

T 38415
—0.62
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f(x)) = £(0.62) = 0.0461
f/(x) = £'(0.62) =3.5810
_ f(xl)
)
0.0461
3.5810
=0.6071
f(xy) = f(0.6071)=—-5.8845x107°
f’(x,) = f/(0.6071) = 3.5705
X3 =X, —M
f’(xz)
-5.8845x107°
3.5705

X, =x

=0.62-

=0.6071-
=0.6071

Since x, and x5 are the same up to four decimal places, the real root is 0.6071.

Example 7

Find the real positive root of the equation x sin x + cos x = 0, which is
near x = T correct up to four significant digits. [Summer 2015]

Solution

Let f(x) =xsinx + cos x
Letxy=T7
f7(x) = x cos x + sin x — sin x = x cos x
By the Newton—Raphson method,
 fx,)
")
flx)=f(m)=—-1
F'x)=f'(m)y=-n
f(xo)
M =X T
f (xo)
_&h
(=)
=2.82328

Xnsl =X
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f(x;) = f(2.82328) =-0.06618

f(x) = f'(2.823287) = —2.68145
_ Jf(x))

ACD)

(—0.06618)
(—2.68145)

X, =x

=2.82328 -

=2.7986
f(x,) = £(2.7986) =—0.00056
F(x,) = £/(2.7986) = —2.63559
Xy =, — f(xz)
f’(xz)
(—=0.00056)
(=2.63559)
=2.79839
f(x3) = £(2.79839) =—0.0001
F/(xy) = £1(2.79839) = —2.63519

[ f(x3)
T )
(=0.0001)
(-2.63519)

=2.7986

=2.79839 -

=2.79839

Since x; and x4 are same up to four decimal point, the root is 2.7983.

Example 8
Find the positive root of x = cos x using Newton’s method correct to
three decimal places.
Solution
Let f(x)=x—cosx
f0)=-1 and f(1)=0.4597

Since f(0) < 0 and f(1) > 0, the root lies between 0 and 1.
Let xp=1
fx)=1+sinx
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By the Newton—Raphson method,
_ f(x,)
Xl =X =
1(x,)
f(xy)=f(1)=0.4597
f(x)=f"(1)=1.8415
_ f(x())
f,(xo)
- 0.4597

1.8415
=0.7504

f(x) = f(0.7504)=0.019
f(x))=f(0.7504) =1.6819
Xy =x - JS(x))
f,(xl)
0.019
1.6819

X1 =Xy

=0.7504 -

=0.7391
f(x,) = £(0.7391) = 0.00002

f'(xy)=£7(0.7391) = 1.6736
f(xz)
Xo =1
f (xz)
0.00002
1.6736

X3 =

=0.7391-

=0.7391

Since x, and x; are same up to three decimal places, the root is 0.7309.

Example 9

Derive the iteration formula for \/ﬁ and, hence, find

(i) 28 [Summer 2015]
(i) 65 [Winter 2014]
(iii) 3 [Winter 2014]

correct up to three decimal places.
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Solution
Let X = \/ﬁ
¥-N=0
Let fx)=x*-N
(0 =2x
By the Newton—Raphson method,
I CS
n+l n f/(xn )
xﬁ -N
=X, —
2x,
_ x,zl +N
2x

This is the iteration formula for \/ﬁ .
() ForN=28, f(x)=x>-28
f(5)=-3 and f(6)=38

Since f(5) < 0 and f(6) > 0, the root lies between 5 and 6.
Letxy =5
x> +28
2x,
xg +28

X =—=53
2x,

2
+28
x, =122 _ 50015
2x,

2
+28
Xy =222 250915
2x,

Since x, and x; are same up to three decimal places,

28 =5.2915
(ii) For N = 65, f(x) = x* — 65
f@8)=-1 and f(9)=16
Since f(8) < 0 and f(9) > 0, the root lies between 8 and 9.

2.35
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Letx,=38
x2+65
Ynrl T 75
n
2
+65
x =072 g 0625
o
2
+65
x, =122 80623
X

Since x; and x, are same up to three decimal places,

J65 =8.0623
(i) For N =43, f(x)=x*-3
fMH=-2 and f(2)=1
Since f(1) < 0 and f(2) > 0, the root lies between 1 and 2.

2
X, +3

X
2x,

2

+3
X =0 o175
X0

X, =
3
2x,

Since x, and x; are same up to three decimal places,

J3=1.7321
Example 10
Find an iterative formula for ’\C/ﬁ , where N is a positive number and
hence, evaluate (i) g/ﬁ , and (ii) %/5 [Summer 2015]
Solution
Let X = \/ﬁ

*-N=0
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Let Jfx) = +*-N
F)=kd!
By the Newton—Raphson method,
TG
n+l n f/(xn)
k
_ x, —N
e
_(k=Dxi+N
- & !

This is the iterative formula for ’\‘/ﬁ .
(i) When N=11and k=3,

fo)=x-11

f2)=-3 and f(3)=16
Since f(2) < 0 and f(3) > 0, the root lies between 2 and 3.
Letx,=3
C2x) +11

3x2

C2xg 411
- 3x]
C2x +11

X
2
3x]

2x3 +11
BETI
3x;
C2x 411

2
3x3

X

X, =2.4074

=2.2376
=2.2240

X, = 2.2240

Since x3 and x, are same up to four decimal places,
11 =2.2240

(i1)) When N =58 and k = 3,
f)y=x-58
f3)=-31 and f(4)=6

Since f(3) < 0 and f(4) > 0, the root lies between 3 and 4.

2.37
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Letx,=4

2x2 +58

2
3x,

_2x; +58

X
1 2
3x;

X1 =

=3.875

_2x) +58
27 3x?
1

_2x3 +58

2
3x;

=3.8709

=3.8709

X3

Since x, and x; are same up to four decimal places,

3[58 =3.8709

EXERCISE 2.3

Find the roots of the following equations using the Newton-Raphson
method:
1. *-x-1=0

[Ans.: 1.3247]
2. X +2x*+50x+7=0

[Ans.: —0.1407]

3. X -5x+3=0

[Ans.: 0.6566]
4. x*-x-9=0

[Ans.: 1.8134]
5. cos x—xe*=0

[Ans.: 0.5177]
6. xlogy x=4.772393

[Ans.: 6.0851]
7. x-2sinx=0

[Ans.: 1.8955]
8. xtanx=1.28

[Ans.: 6.4783]

9. cos x=x?

[Ans.:

0.8241]
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Il. Find the values of the following:

1. /35

[Ans.: 5.916]

2. 24
[Ans.: 2.884]

1
J14 [Ans.: 0.2673]

2.5 SECANT METHOD

The Newton—Raphson method requires the evaluation of two functions (the function
and its derivative) per iteration. For complicated expressions, the method takes a large
amount of time. Hence, it is desirable to have a method that converges as fast as the
Newton—Raphson method but involves
only evaluation of the function.

Let f(x) = 0 be the given equation. Let
X, and x, be the approximate roots of the
equation f(x) = 0 and f(x,) and f(x,) are
their function values respectively. If x, is
the point of intersection of the x-axis and
the line joining points P[x,, f(x,)] and
Qlx,, fix))] then X is closer to the root o Pyixo, fixo)]
than x,, and x, (Fig. 2.4).

Using the slope formula,

_ f(x1)_f(x()) _ f(xz)_f(xl) _ O_f(xl)

X1~ Xo Xy — X Xy — X

 f(x4)]

Fig. 2.4

x
Xy =X =— mf( D)

PR Tt (N
2T F o) - f(x)

Using x; and x,, the process is repeated to obtain x;.

f(x)

In general,

X
—x Tl , >1
Xn+l Xy — f(x ) f(xn l)f( ) n

This method is similar to the regula falsi method. This method starts with two initial
approximations x, and x; and calculates x, by the same formula as in the regula falsi
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method but proceeds to the next iteration without considering any root bracketing, i.e.,
the condition f(x,) f(x;) < 0.

Convergence of the Secant Method

By the Secant method,
Xn T Xn-1

I e R
S = f(x,2)

Let o be the exact root of f(x) = 0 and let x,, x,, , ; be two successive approximations
to the actual root.

X

fx,) .24

Ife,, €, _,, are the corresponding error then
xX,=0+€,
X, =0+e,

Xn+1 = o+ €+l

Substituting in Eq. (2.4),
€, —€,_

— _ n n—1
a+eg,,  =oteE, f(06+€n)—f(a+€n_1)f(a+€n)
€,.=€, — Cn ~ Cnmt fla+¢€,)
T flate,) - flate, ) "
(€, — &, l)[f(a)+e e+ f”(a)+--}
= en —
(€, —€,) f (@) +% (ei - ei_] ) f”(a)+---  [By Taylor’s series]
2 .. —
(€0 <, )l F@+ St f”(a)} =0
_ and neglecting
- ” higher order
(€, — €, ) F/(0) +~ (e —e )@
derivatives of f(a)
f ()
- 1
o (en €,_ ef(a)|:+2f()}
' (€ +€ut) £7(@)
- 1
(e, — €, )f(a)+{+ 5 @
€, (1 +c en)
=e

" l+c(e, +€,,)

1 ”
where ¢ = — (@

2 ) (2.5)
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2 2
€, tce, +ceE, | —€,—Cc€,

€ 1+c(en +en_1)

n+l =

4 en en—l

- 1+ c(en + en_l)
~ce,e, [+ 1+c(e, +e,4)=1] (2.6)

Equation (2.5) is a nonlinear difference equation which can be solved by letting
€, =A€el or g, =A€’_ .
r 1

€, =€ A"

Substituting in Eq. (2.6),
r 1

Ael=ce, el A ?

1

=] 14—
P — P P
€, =cA €,

Equating the power of €, on both the sides,

p=1+—
p
p —p-1=0
p=—(1£+5)
Taking the positive sign only,
p=1.618

Hence, the rate of convergence of the secant method is 1.618 which is lesser than
the Newton—Raphson method. The secant method evaluates the function only once in
each iteration, whereas the Newton—Raphson method evaluates two functions f(x) and
f 7(x) in each iteration. Hence, the secant method is more efficient than the Newton—
Raphson method.

Example 1

Find the approximate root of X —2x-1=0, starting from x, = 1.5,
X, =2, correct up to three decimal places.

Solution
Let fo)=x>-2x-1
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xXp=15,x=2
f(xp) =f(1.5) =-0.625 and f(x)) =f(2) =3
By the secant method,

X

e = N
xn+1 'xn f( ) f(xn l)f( )
X, =X —xl_—of(xl)
f(xl)_f(xo)
2-1.5
=2 350625 ")
=1.5862

f(x,)= £(1.5862) =—0.1815

_ x
BT ) - f( )
1.5862-2

=1.5862—————(-0.1815)
-0.1815-3

f(xy)

=1.6098
f(x3)= f(1.6098) =—0.0479
_ x
S
1.6098 —1.5862

=1.6098 ————(-0.0479)
—-0.0479+0.1815

f(x3)

=1.6183
f(x,)=f(1.6183)=0.0016

Xe =X x4—f( )
ST T G fay T
0.0016+0.0479

=1.6181

Since x, and x5 are same up to three decimal places, the root is 1.618.

Example 2

Find the approximate root of the equation X +x%—3x-3=0, correct
up to five decimal places.

Solution

Let f(x)=x"+x*—3x-3=0
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Let xo=1,x,=2
fxp) =f(1)=—4 and f(x)) =f(2) =3
By the secant method,

X, —X

— n n—1
Xn+l Xn — f(x ) f(xn l)f( )
.X
Xy =X~ mf( xp)
2-1
=234 Y
=1.57143

F(xy) = £(1.57143) = —1.36442

Xy

Y= x —f( )
ST T ) - fon
=1.57143 —w(—1.36442)
—-1.36442 -3
=1.70541

f(x3) = £(1.70541) = —0.24775

x
5= )
1.70541-1.57143

=1.70541- (=0.24775)
—0.24775+1.36442

=1.73514
f(x,) = f(1.73514) = 0.0293
- X4~
Xg =Xy — f(x4) f(x;)f( 4)
1.73514 -1.70541

=1.73514 - (0.0293)
0.0293+0.24775

=1.732
f(xs)= f(1.732) =-0.00048
_ x
e
1.732-1.73514

=1.732-— : (=0.00048)
—0.00048 —0.0293

=1.73205
f(xg) = f(1.73205) =-0.000008

f(xs)

2.43



2.44  Chapter 2 Roots of Equations

Xe

Xy = Xg — 8 f(x)
T T )~ fag)
=1.73205- 1.73205-1.732 (=0.000008)
—0.000008 +0.00048

=1.73205

Since x4 and x; are same up to five decimal places, the root is 1.73205.

Example 3
Find the root of x log,, x — 1.9 = 0, correct up to three decimal places
with xy =3 and x|, = 4.

Solution
Let f(x)=xlog;px—1.9
xp=3,x,=4
Sf(xg) =£(3) =—0.4686 and f(x,) = f(4) = 0.5082
By the secant method,

Nyt =%~ f ()
T f) = f(x,)
_ 4T
S f(xl) f(xo)f( 1)
=4 —L(o.sosz)
0.5082 +0.4686
=3.4797
f(x,) = f(3.4797) = -0.0156
x
R T AR
=3.4797 —M(—o.om)

—-0.0156-0.5082
=73.4952
f(x3) = f(3.4952) =—0.0005
_ X3 —
MR- e )
3.4952 -3.4797

=3.4952 ————— ———(-0.0005)
—-0.0005+0.0156

f(x3)

=3.4957

Since x; and x4 are same up to three decimal places, the root is 3.495.



2.5 Secant Method 2.45

Example 4
Find the positive solution of x —2 sin x = 0, correct up to three decimal
places starting from xy =2 and x, = 1.9. [Summer 2014]
Solution
Let Jx)=x-2sinx

xXp=2,x,=19

S(xp) =f(2) =0.1814 and f(x,) = f(1.9) = 0.0074
By the secant method,

X X,

= B B o
xn+1 xn f( ) f(xn l) f( )
x
Xy =X — f(x1) f(xo_)f( 1)
—19-— 1972 (50074
0.0074—0.1814
=1.8957
f(x,) = £(1.8957) = 0.00034
x
BT T ) - f( )
=1.8957 —M(O.OOOM)
0.00034 —0.0074
=1.8955

Since x, and x; are same up to three decimal places, the positive root is 1.895.

Example 5

Solve xe* — 1 =0, correct up to three decimal places between 0 and 1.
Solution

Let ) =xe — 1

Let Xo=0,x =1

f(xg) =f(0)=-1and f(x,) =f(1) =1.7183
By the secant method,
X

— n " Xn-1
Xn+1 Xn — f( ) f(.xn l)f( )
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x
AT f(xl) f(xo)f( 1)
1-
=1- m“”“)

=0.3679
f(xy) = f(0.3679) =—-0.4685

x
BERT ﬂ@)f@lﬂz)

= 03679—— 2367971 4685

-0.4685—-1.7183
=0.5033

f(x3)= f(0.5033)=-0.1675

.X
5= S )
0.5033-0.3679

=0.5033———— 1" (_(1675)
—0.1675+0.4685

=0.5786
f(x,)=£(0.5786)=0.032

_ X4~
BT ﬂ&)fw3ﬂ4)

—0.5786— 0.5786-0.5033 (0.032)
0.032+0.1675

=0.5665
f(x5)= f(0.5665)=-0.0018

x
Yo T AT ﬂs)f<pﬂ5)

=0.5665 —w(—o.om&

-0.0018-0.032
=0.5671

f(xg) = £(0.5671) =—0.0001

.x
=T ﬂ%)f@ﬁﬂﬁ)
0.5671-0.5665

=0.5671 ————(=0.0001)
—-0.0001+0.0018

=0.5671

Since x, and x; are same up to three decimal places, the root is 0.567.
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Example 6
Find the root of cos x — xe* =0, correct up to three decimal places.

Solution
Let f(x) = cos x — xe"
Let xX=0,x,=1
J(xp) =f(0) = 1 and f(x;) = f(1) =-2.178

By the secant method,

Xypt = %, = f(x,)
T ) = f(x,)
.X
REaT ﬂa>fuwﬂl)
1-0
= 1—m(—2.178)
=0.3147
f(x,) = £(0.3147)=0.5198
X
9T )
= 0.3147—M(0.5198)

0.5198+2.178
=0.4467

F(x3) = £(0.4467) = 0.2036

X
AT ﬂ%)f@ﬁﬂ3)
0.4467-0.3147

=0.4467 ————(0.2036)
0.2036-0.5198

=0.5317
f(xy)=f(0.5317)=-0.0429

Xy
X5 =X —f (x4)
ST T G-y
=05317— M(—O,O429)
—0.0429-0.2036

=0.5169
f(x5) = £(0.5169) = 0.0026
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.x
X = X5 — mf( Xs)

=0.5169 —M(O.OO%)
0.0026 +0.0429

=0.5177
f(xg)= f(0.5177) = 0.0002

x
X, =X, —f( )
T T )~ flag)
05177 0.5177-0.5169 0.0002)
' 0.0002-0.0026

=0.5178

Since x4 and x; are same up to three decimal places, the root is 0.517.

EXERCISE 2.4

Find a real root of the following equations correct up to three decimal

places using the secant method:
1. -2 +3x-4=0

2. °+3x*-3=0

3. &-4x=0

4, sin x=¢€*-3x

5. 2X-7-l0g10X=O

6. e“tan x =1

7. 3x - 6 =logox

[Ans.:

[Ans.:

[Ans.:

[Ans.:

[Ans.:

[Ans.:

[Ans.:

1.650]

0.879]

0.357]

0.360]

3.789]

3.183]

2.108]
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2.6 SUCCESSIVE APPROXIMATION METHOD
(ITERATION METHOD)

Consider an equation f(x) = 0.
Rewriting the equation,
xX= q)(x) (2.7

Assuming x, to be the starting approximate value to the actual root o of x = ¢(x), the
first approximation is

X = ¢(xo)
The second approximation is
Xy = P(x)
The third approximation is
x3 = P(x,)
In general, the n approximation is
X, 41 = O(x,), n=0,1,2,..

The sequence of approximate roots x,, x,, ..., X,, if it converges to « is taken as the root
of the equation f(x) = 0.

Condition for the Convergence

Let / be the interval containing the root x = ¢ of the equation x = ¢(x). If ¢’(x)| <1 for
all x in / then the sequence of approximations x, x|, X,, ..., X, will converge to ¢, if the
initial starting value x is chosen in /.

Example 1

Find the positive root of an equation CHxr-1=0 by the iteration
method correct up to four decimal places. [Summer 2015]
Solution

Let fo=x+x-1

fO)=-landf(1)=1
Since f(0) < 0 and f(1) > 0, the root lies between 0 and 1.
Rewriting the equation,

X+xl-1=0

Z(x+D)-1=0
P (x+D)=1
, 1
2o
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1
1
P =—r
2(x+1)2

¢’(x)<1 forO<x<l

Hence, the iteration method can be applied.
By the iteration method,
1

X4l =ﬁ, }’l=0,1, 2,
X, +1
Let .XO = 0.5
1
X = 0(xy) = N 0.81649
1
X = 0(x,) =~ = 074197
: Y J0.81649 +1
1
X = O(x)) = =0.75767
3 =9(x, J0.74197 +1
1
X, = () = e = (75428
4 =9 J0.75767+1
1
X = (x,) = e = 0.75501
> 0 J0.75428 1
1
X = O(xs) = e = 0.75485
6 > J0.75501+1
= 0.75489

1
Py S
7= 0% J0.75485+1

Since x, and x; are same up to four decimal places, the positive root is 0.7548.

Example 2
Find a real root of x* —x—1=0 correct to three decimal places by the
iteration method.

Solution

Let f(x)=x3—x—l
f(H)=-1 and f2)=5
Since f(1) < 0 and f(2) > 0, the root lies between 1 and 2.
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Rewriting the equation,

¥ -x-1=0

¥ =x+1

1
x=(x+1)} =¢(x)
) 2
¢(0)=S(+D) 3

¢'(x)<1 for 1<x<?2

Hence, the iteration method can be applied.
By the iteration method,

1
'xl1+l :('xn +1)3’ nZO, 1, 2,

Let Xo=12
1

X =0(x)=(12+1)3  =1.3006
1

X, = ¢(x,) = (1.3006+1)3 =1.3201
1

X5 = 0(x,) = (1.3201+1)3 =1.3238
1

x, = 0(x;) = (13238 +1)3 =1.3245
1

X5 = (x,) = (1.3245+1)% =1.3247

Since x, and x5 are same up to three decimal places, the real root is 1.324.

Example 3

Find the root of the equation 2x — log,,x — 7 = 0 correct up to four
decimal places using the iteration method. [Winter 2012]
Solution

Let JS(x)=2x—logpx—7

f(3)=-1.4471 and f(4)=0.3979
Since f(3) < 0 and f(4) > 0, the root lies between 3 and 4.
Rewriting the equation,
2x —log;px—7=0

1
x= E(log10 x+7)=¢(x)
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, 1{1

(0] ()c):—(—log10 e)
2\ x

¢’ (x)<1 for 3<x<4

Hence, the iteration method can be applied.
By the iteration method,

1
X1 = E(IOgIO x,+7), n=0,12,..
Let Xy =3.6

X = 0(xy) = %(mgm 3.6+7)=3.77815

X, = 0(x;) = %(loglo 3.77815+7) = 3.78864
X3 = (x,) = %(mgm 3.78864 +7) = 3.78924
X, = 0(x;) = %(mgm 3.78924+7) =3.78928

Since x3 and x, are same up to four decimal places, the root is 3.7892.

Example 4

Find a real root of the equation cos x + 1 = 3x correct up to three decimal
places by the iteration method.

Solution

Let f(x)=cosx—3x+1
/4

f0)=2 and f(;) =-3.7124

Since f(0) > 0 and f(%) < 0, the root lies between 0 and % .

Rewriting the equation,
cosx—3x+1=0

x= %(cosx+1) =@(x)

, sin x
¢'(x)=—
¢'(x)|= _sn;x <1 for O<x<%

Hence, the iteration method can be applied.
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By the iteration method,
1
Xy =7 (cos x, +1), n=0,1,2,...
Let X, =0.5

X, = 0(xy) = %(cos 0.5+1) =0.6258
X, = 0(x;) = %(cos 0.6258+1) = 0.6035
X3 = 0(xy) = %(cos 0.6035+1) = 0.6078
X, = 0(x;) = %(cos 0.6078 +1) = 0.607

Since x; and x, are same up to three decimal places, the real root is 0.607.

Example 5

Find a real root of ¢ = 10x correct to four decimal places by the
iteration method.

Solution

Let fx)=e—10x
f0)=1 and f(1)=-9.6321
Since f(0) > 0 and f(1) < 0, the root lies between 0 and 1.

Rewriting the equation,

e =10x=0
-x
e
*=T0 =¢(x)
’ __e_x
o'(x)= 0
¢'(x)|=‘—elo <1 for 0<x<1

Hence, the iteration method can be applied.
By the iteration method,

—X,

X = el_o’ n=0,12,..
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—0.1

e
= = =0.09048

X ¢(x0) 10
—0.09048

Xy =(x)) = 10 =0.09135
—0.09135

X3 =P(x,) = =0.09127
—0.09127

Xy =0(x3)= =0.09128

Since x; and x, are same up to four decimal places, the real root is 0.0912.

Example 6
Find a positive root of 3x —~/1+sinx =0 by the iteration method.

Solution

Let f(x)=3x—+/1+sinx
f(0)=-1 and f(1)=1.643
Since f(0) < 1 and f(1) > 0, the root lies between 0 and 1.

Rewriting the equation,

3x—A/l+sinx =0
1
x:§\/1+sinx =¢(x)

COos X

()= — e
’ 6+/1+sin x
cosx
‘(X)) =|———=|<1 for 0<x<1
o | ‘6\/1+sinx

Hence, the iteration method can be applied.

By the iteration method,

1

Let xy=04

X =0(xy) = %\/1 +sin(0.4)  =0.39291
Xy = @(x;) = % [1+5in(0.39291) = 0.39199

1
X3 = 0(xy) =§ 1+5in(0.39199) = 0.39187
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1
Xy =0(x3) = 3 1+sin(0.39187) = 0.39185

Since x; and x, are same up to four decimal places, the positive root is 0.3918.

EXERCISE 2.5

Solve the following equations by the iteration method:

1. X +x+1=0

[Ans.: -0.682]

2. X +x*-100=0
[Ans.: 4.3311]

3. X +2X2+10x-20=0

[Ans.: 1.3688]
4. sinx:x—Jr1
X-1

[Ans.: -0.4204]

5. 2sinx=x
[Ans.: 1.8955]

6. 3x—-cosx-2=0
[Ans.: 0.879]

7. 3x+sinx=¢€"
[Ans.: 0.3604]

8. 3x =6+ logox
[Ans.: 2.108]

2.7 DESCARTES’ RULE OF SIGNS

Descartes’s rule of signs is another theorem that is often used to obtain information
about the roots of a polynomial function. In Descartes’ rule of signs, the number of
variations in the sign of the coefficients of a function f(x) or f(—x) refers to the sign
changes in the coefficients from positive to negative or negative to positive in successive
terms of the function. The terms are assumed to appear in order of descending powers
of x.

Let f(x)=aygx" +a;x"" +a,x""* +---+a, ,x+a, beapolynomial function with real
coefficients ay, a;, a,, ..., a, and with the terms arranged in order of decreasing powers
of x. The number of positive roots of f(x) = 0 is equal to the number of variations in the
sign of f(x) or to that number decreased by an even integer. The number of negative
roots of f(x) = 0 is equal to the number of variations in the sign of f(—x) or to that
number decreased by an even integer.
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Example 1

Use Descartes’ rule of signs to determine both the number of possible
positive and negative roots of each polynomial function:

(i) f(x):x4—5x3+5x2+5x—6
(i) ) =2 +3° +5x>+8x+7

Solution

() fx)=x* =53 +5x +5x-6
T

There are three variations in the sign of f(x). By Descartes’ rule of signs, there
are either three or 3 — 2, i.e., one positive root of f(x) = 0.

F(=x) = (=x)* =5(=x)’ +5(=x)* +5(-x) -6
=x*+5x° +5x* —5x-6
~*

There is one variation in the sign of f(—x). By Descartes’ rule of signs, there is
one negative root of f(x) = 0.
(i) f(x)=2x"+3x" +5x° +8x+7
There is no variation in the sign of f(x). Hence, there are no positive roots of
fx)=0.
F(=3)=2(=x)" +3(=x)’ +5(=x)” +8(-x)+7
=-2x> —3x° +5x* —8x+7

\ATA A
1 2 3

There are three variations in the sign of f(—x). Hence, there are either three or
3 -2, i.e., one negative root of f(x) = 0.

Example 2
Apply Descartes’ rule of signs to

Py(x)=8x" +12x* —10x” +17x+5=0
Solution

Py(x) =8x" +£x; —1\0jj+17x+5
1 2

There are two variations in the sign of Ps(x). By Descartes’ rule of signs, there are
either two or 2-2, i.e., zero positive roots of Ps(x) = 0.
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Py(—x) = 8(=x") +12(=x)* =10(=x)* +17(=x)+5
=—8x° +12x* +LO§ —@+5

A
1 2 3

There are three variations in the sign of P5(x). By Descartes’ rule of signs, there are
either three or 3-2, i.e., one negative root of P5(x) = 0.

Example 3
Apply Descartes’ rule of signs to the polynomial

f(x)= X —x* 43 +9x2 —x+5
Solution

5 4 3 2
=x - 3x7+9x° —x+
P B GSY
1 2 3 4
There are four variations in the sign of f(x). By Descartes’ rule of signs, there are either
4, 2, or no positive roots of f(x) = 0.
fE0 =0 = 0f 430 +9(-0)° = (-2 +5
=—x—x* =32 +9x% +x+5
\_1/4

There is one variation in the sign of f(—x). By Descartes’ rule of signs, there is one
negative root of f(x) = 0.

Example 4
Apply Descartes’ rule of signs to the polynomial

f(x):x7+x6—x4—x3—x2+x—l
Solution
I 6 4 3 2 _
N N ]
1 2 3

There are three variations in the sign of f(x). By Descartes’ rule of signs, there are
either 3 or 3-2, i.e., one positive root of f(x) = 0.

F=x) = (=x) +(=0)° = (0" = (=2)* = (=2)* + (=) -1

7,.6_ 4 3_ 2
=—x_ +x ~x +x —x"—x-1
AN A A A

1 2 3 4
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There are four variations in the sign of f(—x). By Descartes’ rule of signs, there are 4 or
2 or 0 negative roots of f(x) = 0.

2.8 BUDAN’S THEOREM

Let f(x)=ayx" +a,x" "' +a,x" > +---+a, x+a, be a polynomial function with
real coefficients a,, a,, a,, ..., a,. Let v(c) be the number of variations of signs in the
sequence f(x), f'(x), f”(x), ..., f*(x) when x = ¢, where c is any real number. The
number of roots of f(x) in the interval [a, b], counted with their order of multiplicity
is equal to

v(a) — v(b) — 2m, for some m € N

i.e., the number of roots of f(x) is equal to v(a) — v(b) or v(a) — v(b) decreased by an
even integer.

Example 1

Apply Budan’s theorem to find the number of roots of the equation
fx) = = 4x® + 3x% — 10x + 8 = 0 in the interval [-1, 0] and [O, 1].
[Winter 2013, Summer 2013]

Solution

f(x)=x*—4x> +3x* =10x+38
f/(x)=4x® —12x% +6x
F7(x)=12x> —24x+6
7 (x)=24x-24
fYx)=24

The signs of these functions for x = -1, 0, and 1 are shown in the following table:

f@  f® f1) 7%  fYx) No. of variations of sign v(x)

No. of variations of sign in the interval [-1, 0] = v(-1) —v(0) =4 -2 =2.
Hence, the number of roots of f(x) in the interval [-1, 0] is either two or zero.
No. of variations of sign in the interval [0, 1] =v(0) —v(1)=2-1=1.

Hence, the number of roots of f(x) in the interval [0, 1] is one.
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Example 2

Apply Budan’s theorem to find the number of roots of the equation
x* =3x% — 4x + 13 in the interval [-3, -2], [-2, -11, [-1, 0, [0, 11, [1, 2],
and [2, 3].

Solution

Let f(x)= 2 =3xr—4x+13
fl(x)=3x*-6x—4
f7(x)=6x-6

70 =6

The signs of these functions for x =-3,-2, -1, 0, 1, 2, and 3 are shown in the following
table:

f  f 1) f"x) No. of variations of sign v(x)

-3 - + - + 3
-2 + + - + 2
-1 + + - + 2
0 + - - + 2
1 + - + 2
2 + - + 2
3 + + + 0

No. of variations of sign in the interval [-3, 2] = v(-3) - w(-2)=3-2=1.
Hence, the number of roots of f(x) in the interval [-3, —2] is one.

No. of variations of sign in the interval [-2, 1] = v(-2) —v(-1) =2 -2 =0.
Hence, the number of roots of f(x) in the interval [-2, —1] is zero.

No. of variations of sign in the interval [-1, 0] = v(-1) —=v(0) =2 -2 =0.
Hence, the number of roots of f(x) in the interval [-1, 0] is zero.

No. of variations of sign in the interval [0, 1] =v(0) —v(1)=2-2=0.
Hence, the number of roots of f(x) in the interval [0, 1] is zero.

No. of variations of sign in the interval [1, 2] = v(1) —v(2) =2-2=0.
Hence, the number of roots of f(x) in the interval [1, 2] is zero.

No. of variations of sign in the interval [2, 3] =v(2) —v(3)=2-0=2.
Hence, the number of roots of f(x) in the interval [2, 3] is either two or zero.
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Example 3

Apply Budan’s theorem to find the number of roots of the equation
X+ x40 = 3% + 3x + 1 in the interval [-2, 1], [0, 1], and [1, 2].

Solution

Let fx)=x>+x* —4x® =3x% +3x+1
F/(x)=5x" +4x> —12x* —6x+3
F7(x)=20x° +12x% —24x-6
£ (x) = 60x% +24x—24
F¥(x)=120x+24
FY(x) =120

The signs of these functions for x = -2, —1, 0, 1, and 2 are shown in the following
table:

f@® 1 7 fYx  f'()  No. of variations of sign v(x)

-2 - + - + - + 5
-1 - - 3 3 - 3 3
0 + + - - + + 2
1 - - + -+ + 1
2 + + + 0

No. of variations of sign in the interval [-2, -1] = v(-2) —v(-1) =5-3=2.
Hence, the number of roots of f(x) in the interval [-2, —1] is either two or zero.
No. of variations of sign in the interval [-1, 0] = v(-1) - v(0)=3-2=1.
Hence, the number of roots of f(x) in the interval [-1, 0] is one.

No. of variations of sign in the interval [0, []=v(0) —v(1)=2-1=1.

Hence, the number of roots of f(x) in the interval [0, 1] is one.

No. of variations of sign in the interval [1, 2] =v(1) - v(2)=1-0=1.

Hence, the number of roots of f(x) in the interval [1, 2] is one.
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Example 4

Apply Budan’s theorem to find the roots of the equation
f(x) =X - +3°+ 9% —x+5

in the interval [-3, -2], [-2, -1], [-1, 0], and [O, 1].

Solution

flx)= O —xt 433+ 9t —x+5
F/(x)=5x" —4x> +9x* +18x -1
F7(x)=20x —12x% +18x+18
£ (x)=60x* —24x+18
F¥(x)=120x-24
FY(x) =120

The signs of these functions for x = -3, -2, -1, 0, and 1 are shown in the following
table:

f® ™ 1 ™ fY@)  f'()  No. of variations of sign v(x)

-3 - + - + - + 5
-2 - + - + - + 5
-1 + - - + - + 4
0 + - + -+ - + 4
1 + + + + + 0

No. of variations of sign in the interval [-3, 2] = v(-3) —v(-2) =5-5=0.
Hence, the number of roots of f(x) in the interval [-3, -2] is zero.

No. of variations of sign in the interval [-2, -1] =v(-2) —v(-1)=5-4=1.
Hence, the number of roots of f(x) in the interval [-2, —1] is one.

No. of variations of sign in the interval [-1, 0] = v(-1) - v(0) =4 -4 =0.
Hence, the number of roots of f(x) in the interval [-1, 0] is zero.

No. of variations of sign in the interval [0, 1] =v(0) —v(1) =4 -0 =4.

Hence, the number of roots of f(x) in the interval [0, 1] is either four or two or zero.
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EXERCISE 2.6

1. Apply Descartes’ rule of signs to determine the number of positive and
negative roots of the equations:

) 6x° —3x* -5 —6x* +9x+5=0

) Xaxt -4 -3x*+3x+1=0

(Jil) 4 +3x8+ X +2x* - X+ 9> +x+1=0
) X+ X+ 4 +3x¢ +x+1=0

) 2X* - x> +4x* - 5x+3=0

[Ans.: (i) 2 or 0 positive roots, 3 or 1negative roots
(i) 2 or O positive roots, 3 or 1negative roots
(iii) 2 or O positive roots, 5 or 3 or 1negative roots
(iv) O positive roots, 5 or 3 or 1negative roots
(v) 4 or 2 or 0 positive roots, 0 negative root

2. Apply Budan’s theorem to find the number of roots of the equation
f(x) = x* — 4x® - 5x* + 3x + 2 in the intervals [-1, 0] and [0, 1].

[Ans.: One root each in the interval [-1, 0] and [0, 1]]

3. Apply Budan’s theorem to find the number of roots of the equation
X+ x* + 4x> - 3x? + 3x + 1 = 0 in the intervals [-2, -1], [-1, 0], and
[0, 1].

Ans.: One root in the interval [-2, — 1]
3 or 1roots in the interval [-1, 0]
2 or O roots in the interval [0, 1]

2.9 BAIRSTOW’S METHOD

Bairstow’s method is useful for finding the quadratic factors of a polynomial of degree
n Let f(x)=agx" +a,x" " +a,x"*+---+a, ;x+a, be a polynomial of degree n
where a, # 0. When f(x) is divided by a quadratic factor x> = px — g, the quotient will
be a polynomial of degree n—2, i.e., by X" + b, X" + -+ b, _, and the remainder will
be a first-degree polynomial of the form b, | (x —p) + b,

f(x)=ayx" +q, X! +a2x"72 +-+a, x+a,

= (" = px—q)(bex" 2 +b X" +-+b, ,)+b, (x—p)+b, (2.8)
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Equating the coefficients of different powers of x,

ay, =b, ie, by =aq,
a, = b, — pb, ie, b =a, +pb,

a, =b, — pb, —gb, ie, b, =a,+pb, +qgb,

a1 = bnfl - pbn72 - qbn—S’ Le., bn—l =a,,+t pbn—2 + qbnf3
a,=b,—pb, ,—qb,_,, ie, b, =a,+pb, ,+qb, , ..(2.9)

n

Thus, b’s are functions of p and ¢q. If X - px — ¢ is an exact factor of f(x) then

b,(p,q)=0 ..(2.10)
and b, 1(p,9)=0 ..(2.11)
If p, and g, are initial approximations of p and ¢,

pP=py+Ap
and q=qy+Aq

where Ap and Ag are small.
Substituting in Eqs (2.10) and (2.11),

b,(po+ Ap, gy +Aq) =0 (2.12)
and b,_1(py+Ap, gy +Aq) =0 (2.13)

By Taylor’s series expansion of Eqs (2.12) and (2.13), and neglecting terms of higher
powers,

ob, ob,
b, +—"Ap+—"Aq=0
"o D 3 q (2.14)
ob ob,
and b, | +——LAp+—""LAq=0 (2.15)
dp 9q
where b,, b, _ | and the partial derivatives are evaluated at p = p, g = g,
ab ob
Let no_ Chy and no— Chn (216)
op dq
Substituting Eq (2.16) in Eqs (2.14) and (2.15),
b,+c,, Ap+c,., Ag=0 ..(2.17)
by +¢, 0 Apte, 3 Ag=0 (2.18)

Solving Eqs (2.17) and (2.18), Ap and Aq can be calculated.
Hence, the first approximations for p and g are
Pi=Po+Ap.  q=qy+Aq
This procedure is repeated till the desired degree of accuracy is achieved.

The first, second, third, etc., approximations can be computed by the following
procedure which is similar to synthetic division:
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o 4 a4y
p|- pby pb - pb,, pb,,
q |- - aby o gbs gb,
by(=ay) b by - b, Db,
p p— pco pcl cee pcniz —
q —_— —_— qco e qcn_3 —_—
c(=ay) ¢ C Gy
(i) The first-row elements are the coefficients of the given equation. p, g are the
current values of the actual p and g.
(ii)) The second-row elements (from second column onwards) are obtained by
multiplying by, by, b,, ..., b,_; by p respectively.
(iii) The third-row elements (from third column onwards) are obtained by
multiplying by, by, b,, ..., b, , by q.
by, by, by, bs, ..., b, are the column totals.
(iv) Again, proceed similarly for the fifth and sixth row up to b,_; since the last ¢
value is ¢,,_;.
Example 1

Find the roots of the equation X2 +x-2=0 using Lin-Bairstow’s
method up to second iteration with p, = q, = 0.

Solution

Let

f)=x -2 +x-2

Py =0, qp=0

First iteration

1 -2 1 -2
0]- 0 0 0
01— - 0 0
1=by, 2=b 1=b, -2=1b
01— 0 0
0]- - 0
I=cy 2=¢ 1=c¢,
Hence, the equations are
1Ap-2Ag=2 (D

2Ap + 1Ag=-1 (2
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Solving Egs (1) and (2),
Ap=0
Ag=1

Hence, the first approximation is
p1=po+Ap=0+0=0
g =qy+Aq=0+1=1

Second iteration

1 -2 1 -2
0]- 0 0 0
- - 1 -2
1=by, -2=b 2=b, -4=0b,
0]- 0 0
1 |- - 1
I=cy, 2=¢ 3=c,
Hence, the equations are
3Ap-2Aq =4 ..(3)
=2Ap+ 1Aqg=-2 ..(4)
Solving Egs (3) and (4),
Ap=0
Ag=-2

Hence, the second approximation is
pr=p;+Ap=0+0=0
Gh=q+Ag=1-2=-]

Hence, the quadratic factor is ¥+ 0x + 1,i.e., ©+ 1.

The other factor is x — 2.

Hence, the roots are 2, i, and —i.

Example 2

Find all the roots of the equation X+t —x+2 using Lin—Bairstow
method. Start with the initial factor x* —0.9x + 0.9. [Winter 2014]

Solution

Let f(x)=x3+x2—x+2
Comparing x> = 0.9x + 0.9 with x* — px — q,
p=0.9, qg=-0.9
Let p,=0.9 and g, = —0.9 be the initial approximations of p and q.
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First iteration

1 1 -1 2
0.9 - 0.9 171 —0.171
-0.9 - - -0.9 -1.71
1=b, 19=b —019=b, 0.119=0b,
0.9 - 0.9 252
-0.9 - = -0.9

I=¢cy, 28=¢ 1.43=c,

Hence, the equations are

143 Ap+2.8 Ag=-0.119 (1)
28 Ap+1Aqg=0.19 ..(2)
Solving Egs (1) and (2),
Ap =0.1016
Ag =-0.0944
Hence, the first approximation is
P1=Do+Ap=0.9+0.1016 = 1.0016
q,=qy+Ap =-0.9 - 0.0944 = -0.9944
Second iteration
1 1 -1 2
1.0016 - 1.0016 2.0048 0.0104
—-0.9944 - - —-0.9944 -1.9904
1=1b, 2.0016 = b, 0.0104 =b, 0.02 = b,
1.0016 - 1.0016 3.008
—-0.9944 - - —-0.9944
1=¢, 3.0032 =¢, 2.024=c,
Hence, the equations are
2.024 Ap + 3.0032 = -0.02 ..(3)
3.0032 Ap + 1 Ag =-0.0104 (4

Solving Egs (3) and (4),
Ap =—-0.0016
Ag =—-0.0056

Hence, the second approximation is
pr=p, +Ap=1.0016-0.0016 = 1
g =¢q; + Aq =-0.9944 — 0.0056 = -1
Hence, the quadratic factor is X ox+1.
The other factor is x + 2.
Hence, all the roots are -2, —0.5 + 0.866 i.
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Example 3
Find the roots ofx3 —x — 1 =0. Start with the initial factor P Hx+ 1

Solution
Let fo)=x-x-1
Comparing x> +x+ 1 with x* — px—q,

p= -1, q= -1
Let p, = -1 and g, = —1 be the initial approximations of p and q.

First iteration

1 0 -1 -1
-1 - -1 1 1
-1 - - -1 1
1=b, -1=b -1=b, 1=b
-1] 1 -1 2
-1 - - -1
l=¢y -2=¢, 0O0=¢c,

Hence, the equations are

2 Ag=-1 (1)

2Ap+1Ag=1 ..(2)
Solving Egs (1) and (2),

Ap =-0.25

Ag=0.5

Hence, the first approximation is
pP1=po+Ap=-1-025=-1.25
q1=qp+Aq=-1+05=-0.5

Second iteration

1 0 -1 -1
-125| - -1.25 1.5625 ~0.0781
-0.5] - -0.5 0.625
1=b, -125=b 00625=b, -0.4531=b,
-125| - -1.25 3.125
-05] - - -0.5
l=c, -25=c¢, 26875=c,
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Hence, the equations are
2.6875 Ap — 2.5 Ag =0.4531
—2.5Ap + 1 Ag =-0.0625
Solving Egs (3) and (4),
Ap =-0.0833
Ag =-0.2708
Hence, the second approximation is
pr=p, +Ap=-1.25-0.0833 =-1.3333
4> =¢q, +Aq=-0.5-0.2708 =-0.7708
Hence, the quadratic factor is ¥ +1.3333 x + 0.7708.
The other factor is x — 1.3247.
Hence, the roots are 1.3247, —0.6624 + 0.5623 i.

(3
(4

Example 4

Find all the roots of the equation A+ 2% +x+41=0 using the

Lin—Bairstow method. Start with the initial factor x*+0.9x + 0.9.

[Summer 2014]

Solution

Let f(x)=x4+x3+2x2+x+l
Comparing x> +0.9x + 0.9 with x° -px—gq,
p=-0.9, q=-0.9
Let py =-0.9 and g, = —0.9 be the initial approximations of p and q.

First iteration

1 1 2 1 1
-09| - -0.9 -0.09 -0.909 -0.0009
-09| - - -0.9 -0.09 —-0.909

1=b, 0.1=b 101=b, 0.001=b; 0.0901=0,
-09| - -0.9 0.72 —-0.747
-09| - - -0.9 0.72

I=¢, -08=¢ 083=c, —0.026=c

Hence, the equations are
—0.026 Ap + 0.83 Ag =-0.0901
0.83 Ap — 0.8 Ag =-0.001

(1)
(2)
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Solving Egs (1) and (2),
Ap =-0.1091
Ag=-0.112
Hence, the first approximation is
pi1=po+Ap=-0.9-0.1091 =-1.0091
g =qy+Aq=-09-0.112 =-1.012
Second iteration

1 1 2 1 1
~1.0091 | — ~1.0091 ~0.0092 ~0.9877 ~0.0217
~1.012 | - - ~1.012 0.0092 ~0.9905
1=b, -00091=h  09788=bh, 0.0215=b, —-0.0122=b,
~1.0091 | - ~1.0091 1.0275 ~1.0033
~1.012 | - - ~1.012 1.0304
l=c, -10182=c¢, 09%43=c, 0.0486=c,

Hence, the equations are
0.0486 Ap + 0.9943 Ag =0.0122
0.9943 Ap — 1.0182 Ag =-0.0215
Solving Egs (3) and (4),
Ap =-0.0086
Ag =0.0127
Hence, the second approximation is
py=p; +Ap =-1.0091 —0.0086 =-1.0177
q>=¢q, +Aq=-1.012+0.0127 =-0.9993

Hence, the quadratic factor is ¥+ 1.0177x + 0.9993, i.e., P +x+ 1.

The other factor is x> + 1.
Hence, all the roots are i and —0.5 £ 0.866 i.

(3
(4

Example 5

x*—8x* +39x - 62x+50=0 by using Lin—Bairstow method up to third
iteration with py = g = 0. [Summer 2013]
Solution

Let Fx) = x* - 8x° +39x% — 62x + 50

Po=0, q0=0
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First iteration

1 -8 39 —-62 50
0| - 0 0 0 0
0| - - 0 0 0
1=b, -8=b, 39=b, -62=b; 50=b,
0| - 0 0 0
0| - - 0 0
I=c, -8=¢ 39=c¢, —-62=c;

Hence, the equations are

—62 Ap + 39 Ag =-50 (1)
39Ap+-8Ag=062 ..(2)
Solving Egs (1) and (2),
Ap =1.9688
Ag =1.8478
Hence, the first approximation is
P1=po+Ap=0+1.9688 = 1.9688
q,=qy+Aq=0+1.8478 =1.8478
Second iteration
1 -8 39 -62 50
1.9688 | — 1.9688 —11.8742 57.0432 -31.703
1.8478 | — - 1.8478 —11.1459 53.5374
1=b, —-6.0312=b  289736=5b, -16.1027=0b; 71.8344=0,
1.9688 | — 1.9688 —7.9981 44.9345
1.8478 | — - 1.8478 —7.5065
I=¢, —-4.0624=c; 22.8233=c, 21.3253=c,
Hence, the equations are
21.3253 Ap +22.8233 Ag =-71.8344 ..(3)
22.8233 Ap —4.0624 Ag = 16.1027 ..(4)

Solving Eqgs (3) and (4),
Ap =0.1246
Ag =-3.2638
Hence, the second approximation is
D> =p;+Ap =1.9688 + 0.1246 = 2.0934
g, =q, +Aq=1.8478 —3.2638 =-1.416
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Third iteration

1 -8 39 -62 50
2.0934 | - 20934  —12.3649 527937 ~1.3877
~1.416 |- - ~1.416 8.3634 ~35.7102

I=b, -59066=b 252191=b, —0.6629=b, 12.9021=h,
2.0934 | - 2.0934 ~7.9826 33.1186
~1.416 | - - ~1.416 5.3995

l=c, -3.8132=¢, 158205=c, 37.8552=c,

Hence, the equations are

37.8552 Ap + 15.8205 Ag = -12.9021 ..(5)

15.8205 Ap — 3.8132 Ag = 0.6629 ...(6)
Solving Eqgs (5) and (6),

Ap =-0.0981

Ag =-0.5808

Hence, the third approximation is
D3 =Dy +Ap =2.0934 - 0.0981 = 1.9953
q3=q,+Aq=-1.416 - 0.5808 = -1.9968
Hence, the quadratic factor is x* — 1.9953 x + 1.9968, i.e., x* — 2x + 2.
The other quadratic factor is x> — 6x + 25.
Hence, the complex roots are 1 =i, 3 = 4i.

EXERCISE 2.7

1. Find the complex roots of x> + x* — 2 = 0 starting with p, = g, = 0.
[Ans.: -1 £ 1]
2. Using the approximate factor x* + 2x + 2 of x* — 3x> + 20x* + 44x + 54,
find the quadratic factor performing two iterations.
[Ans.: x* + 1.94x + 1.95]
3. Find the quadratic factor of x* - 1.1x* + 2.3x* + 0.5x + 3.3 = 0
starting with the approximation x* + x + 1 = 0.
[Ans.: (x* +0.9x + 1.1)(x* - 2x + 3)]

4. Find the roots of the equation x* + 9x® + 36x? + 51x + 27 = 0 to three
decimal places.

[Ans.: —0.759, —1.42, —3.411 £ 2.903 1]

5. Find a quadratic factor of the equation x* + 5x* + 3x? — 5x — 9 starting
with x* + 3x - 5.

[Ans.: x* +2.9026x — 4.9176]
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Points to Remember

Bisection Method

In this method, two points x; and x; are chosen such that f(x,) and f(x, ) are of opposite
signs. The first approximation to the root is

Xo +X

2
If fixy)and f(x,) are of opposite signs, the root lies between x, and x, and the next

approximation x; is obtained as

.X2:

Xg+ X,
2
This process is repeated till the root is obtained to the desired accuracy.

Regula Falsi Method
In this method, two points x, and x; are chosen such that f(x,) and f(x;) are of
opposite signs.

X3 =

.x
T f(xo)

which is an approximation to the root.

f(xp)

If f(x,) and f(x,) are of opposite signs, the root lies between x,, and x,, and the next
approximation x; is obtained as

x
BT ) - f(xo)

If the root lies between x; and x,, the next approximation x; is obtained as

J(xp)

_ X -
BER G- f(xz)f( 2)

This process is repeated till the root is obtained to the desired accuracy.
Newton—Raphson Method

_ f(x,)
nl = X T 7(x,)

The Newton—Raphson method has a quadratic convergence and the convergence is
of the order 2.

X

Secant Method
T
‘xn+1 xn f( ) f( n l)f( )

The rate of convergence of the secant method is 1.618.
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Successive Approximation Method
xn+l =¢(xn)9 n:(), 1, 2, .ee

Descartes’ Rule of Signs
The number of variations in the sign of the coefficients of a function f(x) or f(—x)

refers to the sign changes in the coefficients from positive to negative or negative to
positive in successive terms of the function.

The number of positive roots of f(x) = 0 is equal to the number of variations in the
sign of f(x) or to that number decreased by an even integer. The number of negative
roots of f(x) = 0 is equal to the number of variations in the sign of f(—x) or to that
number decreased by an even integer.

Budan’s Theorem

Let f(x)=ayx" + alx"*l + a2x"72 +---+a,_ x+a, be a polynomial function with
real coefficients ay, a;, a,, ..., a,. Let v(c) be the number of variations of signs in
the sequence f(x), f'(x), f”(x), ..., f™ (x) whenx = ¢, where c is any real number.
The number of roots of f(x) in the interval [a, b], counted with their order of multi-
plicity is equal to
v(a) — v(b) — 2m, for some m € N

i.e., the number of roots of f(x) is equal to v(a) — v(b) or v(a) — v(b) decreased by an
even integer.

Bairstow’s Method
b,+c, , Ap+c,., Ag=0
b, +c,.», Ap+c, 3 Ag=0

n







CHAPTER

Systems of Linear
Algebraic Equations

Chapter Outline

3.1 Introduction

3.2 Solutions of a System of Linear Equations

3.3 Elementary Transformations

3.4 Numerical Methods for Solution of a System of Linear Equations
3.5 Gauss Elimination Method

3.6 Gauss Elimination Method with Partial Pivoting

3.7 Gauss—Jordan Method

3.8 Gauss—Jacobi Method

3.9 Gauss—Siedel Method

3.10 Tll-Conditioned Systems

3.1 INTRODUCTION

A system of m nonhomogenous linear equations in n variables x|, x,, ..., x,, or simply
a linear system, is a set of m linear equations, each in n variables. A linear system is
represented by

ap Xy +apXy +otay,x, =b,

Ay X| + Ay Xy +++ay,x, =b,

A1 X + Ay X e AynXn = bm
Writing these equations in matrix form,
Ax=B

ay  ap o 4y

Ay Gy vt Gy | . ) P )
. . . is called the coefficient matrix of order m x n,

Qi Gy 0 Gy
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X = is any vector of order nx 1

B= is any vector of order m x 1

3.2 SOLUTIONS OF ASYSTEM OF LINEAR EQUATIONS

For a system of m linear equations in n variables, there are three possibilities of the
solutions to the system:
(i) The system has a unique solution.
(i) The system has infinite solutions.
(iii)) The system has no solution.

When the system of linear equations has one or more solutions, the system is said to
be consistent, otherwise it is inconsistent.

ay Gp ot 4 ! by

' b

The matrix [A:B]= a.2] a.zz a%" i 2
: Lo

A1 A Dn i bm

is called the augmented matrix of the given system of linear equations.

To solve a system of linear equations, elementary transformations are used to reduce
the augmented matrix to echelon form.

3.3 ELEMENTARY TRANSFORMATIONS

Elementary transformation is any one of the following operations on a matrix.

(1) The interchange of any two rows (or columns)
(i) The multiplication of the elements of any row (or column) by any nonzero
number
(iii) The addition or subtraction of k times the elements of a row (or column) to the
corresponding elements of another row (or column), where &k # 0

Symbols to be used for elementary transformation:
(i) Ry: Interchange of i™ and /™ row
(i1) kR;: Multiplication of i row by a nonzero number k
(iii) R;+kR;: Addition of k times the /" row to the i row
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The corresponding column transformations are denoted by C,

i» kC;, and C; + kC;
respectively.

3.3.1 Elementary Matrices

A matrix obtained from a unit matrix by subjecting it to any row or column transfor-
mation is called an elementary matrix.

3.3.2 Equivalence of Matrices

If B be an m x n matrix obtained from an m x n matrix by elementary transformation
of A then A is equivalent to B. Symbolically, we can write A ~ B.

3.3.3 Echelon Form of a Matrix

A matrix A is said to be in echelon form if it satisfies the following properties:
(i) Every zero row of the matrix A occurs below a nonzero row.
(i1) In a nonzero row the first nonzero number from the left is 1. This is called a
leading 1.
(iii) For each nonzero row, the leading 1 appears to the right of any leading 1 in
preceding rows.
The following matrices are in echelon form:

1 1 0|1 2 -1 3/{0 1 3 5 0
010,01 5 6,001 -10
0 0 0j]|0O O I 4//0 0 0 0 1

3.4 NUMERICAL METHODS FOR SOLUTION OF A SYSTEM OF
LINEAR EQUATIONS

There are two methods to solve linear algebraic equations:

(i) Direct methods

(i1) Iterative methods

3.4.1 Direct Methods

Direct methods transform the original equations into equivalent equations that can be
solved easily. The transformation of the original equations is carried out by applying
elementary row transformations to the augmented matrix of the system of equations.

We will discuss two direct methods:

(i) Gauss elimination method

(i1) Gauss—Jordan method
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3.4.2 Iterative Methods

The direct methods lead to exact solutions in many cases but are subject to errors due
to roundoff and other factors. In the iterative method, an approximation to the true
solution is assumed initially to start the method. By applying the method repeatedly,
better and better approximations are obtained. For large systems, iterative methods are
faster than direct methods and round-off errors are also smaller. Any error made at any
stage of computation gets automatically corrected in the subsequent steps.

We will discuss two iterative methods.
(i) Gauss—Jacobi method
(ii) Gauss—Seidel method

3.5 GAUSS ELIMINATION METHOD

This method solves a given system of equations by transforming the augmented matrix
to an echelon form. The corresponding linear system of equations is then solved for the

unknowns by back substitution.

Consider the system of equations
apx+a;,,y+a;32=h
Ay X+ Ay y+0ay;2=b,
ay X +apy+apz=Db

The matrix form of the system is

a,, ap, ap || x b,
Ay Gy ay||y|=|b
31 dxn 43 |2 by

The augmented matrix of the system is
ay ap a1 b
I
[A:B]z ay, Gy Gy3 | by

]
ay; ay  ay | by

Reducing the augmented matrix to echelon form by

transformations,
‘i ‘2
elemental
[A:B] L 0 ey
row transformations —_eet
0

The corresponding system of equations is

Cxtepyt+ezz=d,

using

elementary row
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Cpy+tepz=d,
€332 =d4
The solution of the system is obtained by solving these equations by back substitution.

Working Rule

(i) Write the matrix form of the system of equations.
(i1) Write the augmented matrix.
(iii) Obtain the echelon form of the augmented matrix by using elementary row
transformations.
(iv) Write the corresponding linear system of equations from the echelon form.
(v) Solve the corresponding linear system of equations by back substitution.

Example 1
Solve the following system of equations:
x+3y+2z= 5

2x+4y—-6z=-4
x+5y+3z=10

Solution

The matrix form of the system is

1 3
2 4 —6||y|=|-4
15

W
N
[«=]

The augmented matrix of the system is

1. & Bi s
[A:B]=|2 4 -6 -4
15 310

Reducing the augmented matrix to echelon form,
R, —2R,,Ry; — R,
1 3 2: 5
[A:B]~|0 -2 -10:-14
0 2 1: 5
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1 3 2i53
~l0 1 5:7
02 1:5
R, ~2R,
13 2.5
=6 I 5i7
00 —9:-9

The corresponding system of equations is
x+3y+2z= 5

y+3z= 7
-92=-9
Solving these equations by back substitution,
z=1
y=T-5z=7-5(1)=2
x=5-3y-2z=5-3(2)-2(1)=-3

Hence, the solution is

Example 2
Solve the following system of equations:
2x+y+z=10
3x+2y+32=18
x+4y+9z=16
Solution
The matrix form of the system is
Ax=B
2 1 1f|x 10
3 2 3||ly|=]|18
1 4 9|z 16
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The augmented matrix of the system is
1:10
3:18

2 1
[A:B]=|3 2
1 4 9:16

Reducing the augmented matrix to echelon form,

R13

1 4 916
[A:B]~|3 2 318
2 1 110
R, —=3R,,Ry—2R,
1 4 916
~|0 -10 -24:-30
0 -7 -17:-22

o)

1 4 9 16

R, +7R,

1 4 916

~10 1 %3
10

00 -+
5 &

The corresponding system of equations is

x+4y+ 9z=16

3.7
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Solving these equations by back substitution,
z=5
24

24
=3-"7=3-2-(5)=-9
Y 0 lO()

x=16-4y-9z=16-4(-9)-9(5)=7

Hence, the solution is

Example 3
Solve the following system of equations:
6x— y— z=19
3x+4y+ z=26
x+2y+6z=22

Solution

The matrix form of the system is

4 1||y|=]|26
2 6|z 22
The augmented matrix of the system is
6 -1 -1:19
[A:B]=|3 4 126
1 2 622

Reducing the augmented matrix to echelon form,
Ry;
1 2 6:22
[A:B]~|3 4 1:26
6 -1 —-1:19
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R, -3R,,R;—6R,
1 2 6 22

~|0 -2 <17 -40
0 =i3 87413

(1 2 6 22

0 -13 —37 —113

Ry +13R,
(12 6 22
~lg 1 im
2
00 ¥y
L 2
The corresponding system of equations is
x+2y+ 6z= 22
17
'+ —z= 20
¥ 2
147 =147
2
Solving these equations by back substitution,
z=2
17 17
y=20—-—2z=20-—(2)=3
’ 2 2 ( )

x=22-2y-62=22-2(3)-6(2)=4

Hence, the solution is

3.9
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Example 4
Solve the following system of equations:

S5x+ Sy+ 2z=12
2x+ 4y+ S5z= 2
39x + 43y + 45z =74

Solution
The matrix form of the system is
Ax=B
5 5§ 2| = 12
2 4 Sily|=| 2
39 43 45]|z 74
The augmented matrix of the system is

5 § DiR2
[A:B]=| 2 4 5i 2
39 43 45:74

Reducing the augmented matrix to echelon form,

!

;o EiE
555
[A:B]~| 2 4 5 2
39 43 45 74

R, —2R,,R; —39R,
11 35 =
5; 5
o 21
5; 5
0 4 147 98
| 5: 5
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RREIE
5: 5
=00 1 21 : _14
10 - 10
0o 4 147:_98
L 5 S
1 202
5: 5
o o 201
10 . 10
|0 0 21: -14
The corresponding system of equations is
2 12
X+y+ —=z= —
&) S
21 14
y+—z=-—
- 10 10
21z = -14
Solving these equations by back substitution,
s e, 2
o2 3

14 21 14 21( 2
—— = -Z =0
10 10 10 m( )

12 2 12 2{ 2 8
X=—=-y——2z=———|——= ==
5 5 5 5

Hence, the solution is

Example 5

Use the Gauss elimination method to solve the following equations:
x+4y— z= -5
X+ y—6z=-12

3x— y-z= 4 [Summer 2015]
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Solution
The matrix form of the system is
Ax=B
1 4 -1||x -5
1 1 -6 =|-12

3 -1 -1||z 4

The augmented matrix of the system is

1 4 -1]-5
[A:B]=|1 1 6| -12
3 -1 -1 4

Reducing the augmented matrix to echelon form,
R, —R,,R; - 3R,

1 4 -1]-5
[A:B]~[0 -3 -5|-7
0 —-13 2 119
1
L
(3)2
1 4 -1/-5
Jo 1 317
313
0 13 2 /19
R; +13R,
14 1] -5
o1 302
303
0 o 1L 148
I 313

The corresponding system of equations is

x+4y—-z=-5
I
33
71 148
=2

3
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Solving these equations by back substitution,

148
71
75 15 (148) 81
y=———="z=7——""7"|—|=—"7=
33 3 3171 71
x=-5-4y+z =—5—4(—2)+&=£
71 71 71
Hence, the solution is
117 81 148
X=—", y =—— I=—""
71 71 71
Example 6
Solve the following system of linear equations:
8y+2z=-7
3x+5y+2z=38
6x+2y+82=26 [Summer 2014]
Solution
The matrix form of the system is
Ax=B
0 8 2||lx -7
35 2(lyl=|8
6 2 8 26
The augmented matrix of the system is
08 2}-7
[A:B]=|3 5 2|8
6 2 826

Reducing the augmented matrix to echelon form,

RlZ
35218
[A:B]~|0 8 2|7
6 2 8|26
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3208
3 33
~10 8 2%—7
6 2 826
Ry —6R,
[ 528
3 313
~10 8 2%—7
0 -8 410
1
— IR
(8) 2
3 208
3 3 3
~l0 1 l_l
41 8
10 -8 4110
R; +8R
[ 5208
3 313
~l0 1 l_l
4 8
0 0 6| 3
The corresponding system of equations is
5 2 8
X+—y+—z=—
37 3 3
A7
YTYETTR
6z=3
Solving these equations by back substitution,
1
2
__1_12__1_1[1)__
YT T T8 4
5 8 5
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Hence, the solution is

1
x=4, y=-1, 2=

3.6 GAUSS ELIMINATION METHOD WITH PARTIAL PIVOTING

For a large system of linear equations, the Gaussian elimination method can involve a
large number of arithmetic computations, each of which can produce rounding errors.
This is due to the fact that every computation is dependent on previous results.

Consequently, an error in the early step will tend to propagate, i.e., it will cause errors
in subsequent steps, and the final solution will become inaccurate. The rounding error
can be reduced by the Gaussian elimination method with partial pivoting.

Consider the system of equations:
ajx+apy+a;z=b
Ay X+ Ay y+ay2=Db,

a3 X+azy+a;z=Db

The matrix form of the system is
A G Gz || X b,

Ay Gy Ay ||Y|=|b,

31 Ay 432 b
The augmented matrix of the system is

|
ay  dp a | b
[A:B]=|ay ay ay | b

ay; ap az | by

For the partial pivoting process, the left column is searched for the largest absolute-
value entry. This entry is called the pivor. The row interchange is performed, if
necessary, to bring the pivot in the first row. The first row is divided by the pivot and
elementary row operations are used to reduce the remaining entries in the first column
to zero. The completion of these steps is called a pass. After performing the first pass,
the first row and first column are ignored and the process is repeated on the remaining
submatrix. This process is continued until the matrix is in the row echelon form.

The term partial in partial pivoting refers to the fact that in each pivot search, only
entries in the left column of the matrix or submatrix are considered. This search can be
extended to include every entry in the coefficient matrix or submatrix. The resulting
method is called the Gaussian elimination method with complete pivoting. Generally,
partial pivoting is preferred because complete pivoting becomes very complicated.
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Example 1

Solve the following system of equations using partial pivoting by the
Gauss elimination method:

2x,+2xy,+x; =6
4x, +2x,+3x, =4

Xt+x +x =0 [Summer 2015]

Solution

The matrix form of the system is

Ax=B

2 2 1||x 6

4 2 3||lx,|=|4

I 1 1]|x 0

The augmented matrix of the system is

2 2 16

[A:B]=|4 2 3|4

1110

In the left column, 4 is the pivot because it is the entry that has the largest absolute
value.

R12
4 2 3|4
[A:B]~[2 2 16
11 1]0
1
(5
L3
2 4|
~2 2 16
1 1 110
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L2y
2 4
o1 L4

2
o L L1,
L 2 4 J

This completes the first pass. For the second pass, the pivot is 1 in the submatrix
formed by deleting the first row and first column.

1
Ry—=R
322
A
2 4
o1 Ly
2
00 L3
L 2 J

The corresponding system of equations is

1 3
X +Ex2 +Zx3 =1

1
Xy —5x3 =4

1
—Xx3=-3
P
Solving these equations by back substitution,
X; =—06
4+ ] 4+ ] (-6)=1
X~ = — X, = —(— =
g 27 2

1 3 1 3
xl =1—Ex2 —Zx3 =1—E(1)—Z(—6)= 5

Hence, the solution is

x, =5, X, =1, xX3=-06
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Example 2

Solve the following system of equations using the Gauss elimination
method with partial pivoting.

x+ y+ z=7
3x+3y+4z=24

2x+ y+3z=16
Solution
The matrix form of the system is
Ax=B
I 1 1f|x 7
3 3 4||y|=(24
2 1 3|z 16
The augmented matrix of the system is
11 1}7
[A:B]=|3 3 424
21 316

In the left column, 3 is the pivot because it is the entry that has largest absolute value.

R12
33 424
[A:Bl~|1 1 1 7
2 1 316
1
— IR
(3]1
=
31
~|1 1 1;7
21 316
R,—R,. R,—-2R,
1 2
3
~lo o L1,
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This completes the first pass. For the second pass, the pivot is —1 in the submatrix
formed by deleting the first row and first column.

Ry
1 1 4 8
3
~10 -1 ] 0
3
0 0 L -1
(=DR,
11 = 8
3
~10 1 L 0
3
00 e -1
L 3 J
The corresponding system of equations is
x+ +4 8
2=
Y73
1
-—z=0
73
1
=]
3
Solving these equations by back substitution,
z=3
1 1
y=3 3()

4 4
=8—y——7z=8-1—(3)=3
X Y32 3()

Hence, the solution is

EXERCISE 3.1

Solve the following systems of equations by the Gauss elimination method:
1. xX—- y+ z= 1
-3x+2y - 3z=-6

2x -5y +4z= 5
A 0 [Ans.: x=-2,y=3,z=6]
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2. x+3y-2z=5
2x+ y-3z=1

3x+2y- z=6 [Ans.: x=1y=2,z=1]

3.6x + 3y + 6z =30
2x + 3y + 3z =17

X+2y+2z=11
[Ans.: x=1y=2,2=3]

4.2x+ y+ z=4
3y-3z=0
- y+2z=1

5.2x+ 2y + z=12

3x+ 2y +2z= 8

5x +10y — 8z =10
[Ans.: x =-12.75,y =14.375, z:8.75]

6.3x +4y + 52 =18

2x - y+8z=13

5x -2y +7z=20
[ABs =73, ¥ = 1,2

7. 2x+6y - z=-12
5«- y+ z= 11
4x - y+3z= 10

113 172 22
Ans.: xX=— y=——z2=—
69 69 69

3.7 GAUSS-JORDAN METHOD

This method is a modification of the Gauss elimination method. This method
solves a given system of equations by transforming the coefficient matrix into a
unit matrix.

Consider the system of equations

ap xtapy+azz=h
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Ay X+ 0y y+0ay;2=b,
a3 X+aypy+az=Dby

The matrix form of the system is

ayp G a3 || X b,
ay ay ay||y|=|b
ay; ayp ap ||z by

The augmented matrix of the system is

ay  ap

aj; b
[A:Bl=|a,, ay, a, :b,

a3y ay b

Applying elementary row transformations to augmented matrix to reduce coefficient
matrix to unit matrix,

1 0 04

. elementary :
[A e B] row transformations 0 l 0 dz
00 1 d

The corresponding system of equations is

x=d1
y=d,
Z=d3

Hence, the solution is
x=d1,y=d2,2=d3

Working Rule

(i) Write the matrix form of the system of equations.
(i) Write the augmented matrix.
(iii)) Reduce the coefficient matrix to unit matrix by applying elementary row
transformations to the augmented matrix.
(iv) Write the corresponding linear system of equations to obtain the solution.

Example 1
Solve the following system of equations:
x+3y+2z=17
x+2y+ 3z2=16
2x — y+ 4z =13
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Solution
The matrix form of the system is
Ax=B
1 3 2||x 17
2 3f|y|=|16
2 -1 4||z 13
The augmented matrix of the system is
1 3 2:17
[A:B]=|1 2 316
2 -1 4:13
Applying elementary row transformations to the augmented matrix,
R,—R,,R;-2R,
1 3 2:17
[A:B]~|0 -1 1 -1
0 -7 0:-21
(-DR,
1 3 2:17
~0 1 -1: 1
0 -7 0:-21

R, —3R,,R, +17R,

10 5 14
~l0 1 -1 1
0 0 -7:-14

I

-=|R
(7)3
1 0 514
~l0 1 -1:1
00 1:2
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The corresponding system of equations is

3.23

x=4
y=3
z=2
Hence, the solution is
x=dy=3,8=12
Example 2
Solve the following system of equations:
3x -2y + 5z=2
4x + y + 2z =
2x — y+4z=17
Solution
The matrix form of the system is
Ax=B
3 =2 5||=x 2
4 1 2|y|=|4
2 -1 4|z 7
The augmented matrix of the system is
3 2 5:2
[A:B]=]|4 1 24
2 -1 4:7

Applying elementary row transformations to the augmented matrix,

RI_R3

1 -1 1i-5
[A:B]~|4 1 2 4

2 -1 4: 7
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R23
[1 -1 1i-5
{0 1 2i17
0 5 224

R +R,,R, - 5R,
(1 0 3: 12
~lo01 2 17
0 0 -12° -6l

1 0 3.12

=01 217

0 0 1ﬂ
112

R, — 3Ry,R, — 2R,

L B 0 eld
4

o 10 4
56
o0 1. &
12

The corresponding system of equations is

Hence, the solution is

13
4
41
6
61
12
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Example 3
Solve the following system of equations:
x—2y =— 4
—Sy+ z== 9
4x —-3z=-10
Solution
The matrix form of the system is
Ax=B
1 2 0f]|x —4
0 -5 1I||y|=| 9
4 0 3|z -10
The augmented matrix of the system is
1 -2 0: -4
[A:B]=|]0 =5 1: -9
4 0 -3:-10
Applying elementary row transformations to the augmented matrix,
Ry —4R,
1 -2 0:-4
[A:B]~|0 -5 1:-9
0 8 -3:6
(-1
5 )™
1 -2 0:-4
o 4 oLo®
5: 5
0 8 -3: 6
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R, +2R,,R; -8R,

1o -2 _2
5t 5
oz L o2
5: 5
0 0 T A
- 5 5_
)
77
1o -2 2
5: 5
o 1 L8
5: 5
00 1 6
2
R, + < Ry, Ry +| = Ry
1 0 0:2
~10 1 0:3
0 0 1:6
The corresponding system of equations is
x=2
y=3
z=6

Hence, the solution is

Example 4

Solve the following system of equations:
2x -6y +8z=24
Sx+4y—-3z= 2
3x+ y+2¢=16



Solution

The matrix form of the system is

2 -6
5 4
301

The augmented matrix of the system is

[A:B]=

2 6 8

5 4 -3

31 2

3.7 Gauss—Jordan Method

24
2
16

Applying elementary row transformations to the augmented matrix,

R, + 3R,.R,
1 0
19

lo 1.2
19
00 2
19

1 -3 4:12
5 4 3. 2
31 216

1 3 4 12
0o 1 -2 8
19 : 19

- 10R,

54
19
58

19

- 200

ki

3.27
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1o -2
19 : 19

Jo 12
19 19

0 0 1 5

The corresponding system of equations is
x=1
y=3
z=35

Hence, the solution is

Example 5

Solve the following system of linear equations:
2x+5y—-3z=1
Sx+ y+4z=2
Tx+3y+ z=4

Solution
The matrix form of the system is
Ax=B
2 5 3||«x 1
51 4|jy|=|2
7 3 1]|z 4
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The augmented matrix of the system is
-3

5
[A:B]=|5 1 4 :
301

~N N
B NS I

Applying elementary row transformations to the augmented matrix,

L5 31
2 22
[A:B]~|5 1 4 2
7 3 1 :4
R,-5R,, R,—TR,
2 31
2 22
o 2B B 1
25 2
g W2 21
L 2 2 2]
2
~~|r
(23)2
2 31
2 2.2
o1 o L
523
0o -2 21
i 2 2 2]
RI—ERZ,R3+?R2
1o 1 =
523
o1 o1 L
523
00 3 2
L : 23]

3.29
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1o 1 2
- 23
~l0 1 -1 L
© 23
0o 1 -2
L © 69
R —R;, Ry+Ry
1oo 2
69
~0 1 0 L
3
0 0 1 _2%
L 69 |
The corresponding system of equations is
53
xX=—
69
.
Y773
26
Z=——
69
Hence, the solution is
53 1 26
X=—"7, V=—"",=—"~
69 3 69

EXERCISE 3.2

Solve the following systems of equations by the Gauss-Jordan method:

1. x+2y+z =3
2x +3y +3z=10
3Xx -y +2z=13

[Ans.: x=2,y=-1,2z=3]
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2, 2x+3y—- z=5

4x +4y — 3z =3

2x -3y +2z=2
[Ans.: x=1y=2,z=3]

3. 10x+ v+ z=12
2x +10y + z=13
X+ y+5z=17

4. 2x,+ x, -3x; =1
4x, —2x, +3x; = 8
—2x, +2x, — X; =-6

5. 2x, +6x, + X, =7
X, 2%, - X
5x, + 7x, — 4x,

o
N-JN

[Ans.:x, =10, x, =-3,x, =5

6. 2x+ y+4z=12
8x - 3y +2z=20
4x +1ly — z =33

[Ans. : x=3, y=12, z=A1]

7. x+ y+ z=1
4x +3y - z=6
3x+b5y+3z2=4

3.8 GAUSS-JACOBI METHOD

This method is applicable to the system of equations in which leading diagonal elements
of the coefficient matrix are dominant (large in magnitude) in their respective rows.

Consider the system of equations
ay x+a, y+aszz=Db
Ay X+ Gy, y+ay 2=, .. (3.1

Ay X+ azp y+ ay; 7= by
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where |a, |, |ay|, |as;| are large as compared to the other coefficients in the correspond-
ing row and satisfy the condition of convergence as follows:

|ay,| > |as| +|ays|
|ays | > || +|ans]
|a33| >|a3]]+la32|

Rewriting the equations for x, y, and z respectively,

1
x=—I((b —apy—a;32)
ap
1
y=—(b, —ay x—ayz) ...(32)
A
1
z=—(by—azx—ayy)
das3

Iteration 1

Assuming x = x,, y =¥, Z = Z as initial approximation and substituting in Eq. (3.2),

= _(bl —apYo _“1330)
a,
1
= _(172 —ay Xy _azﬂo)
ay
1
4= (173 —daz Xy "azz."o)
as3

Again substituting these values of x, y, z in Eq. (3.2), the next approximation is
obtained.

The above iteration process is continued until two successive approximations are
nearly equal.

Working Rule

(i) Arrange the equations in such a manner that the leading diagonal elements are
large in magnitude in their respective rows satisfying the conditions

|C’1 I | > |C’12|+|f’13’
|ays| > || +|az]

|ass| > |az | +|as, |

(i) Express the variables having large coefficients in terms of other variables.



3.8 Gauss—Jacobi Method 3.33

(iii) Start the iteration 1 by assuming the initial values of (x, y, z) as (xg, ¥y, 2,) and
obtain (x, y;, z).
(iv) Start the iteration 2 by putting x = x,, y = y;, Z = g; in equations of x, y, z and
obtain (x,, 5, 2,).
(v) The above process is repeated for the next iterations and it continues until two
successive approximations are nearly equal.

Example 1
Solve the following system of equations:

6x+2y— z= 4
x+3y+ z= 3
2x+ y+4z=27

Solution

Rewriting the equations,

y=—0B-x-2) (D

z=—027-2x-y
4( x=y)

Iteration 1: Assuming x, = 0, y, = 0, z, = 0 as initial approximation and putting in
Eq. (D),

2
x =—=0.67
3
3
y=—=06
5
2
7= 0k =6.75
4

Iteration 2: Putting x,, y,, z, in Eq. (1),

g é[4—2(0.6)+6.75] =159

5 = é[3—0.67 -6.75] =-0.884

=

I
Z[27 ~2(0.67)-0.6]=6.265
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Iteration 3: Putting x,, y,, z,1in Eq. (1),
1
Xy = g[4 —2(~0.884)+6.265 | = 2.005
1
Y3 = g[3 -1.59-6.265]=-0.971
23 = L. 2(1.59)—(-0.884) | = 6.176
474
Iteration 4: Putting x5, y5, z3in Eq. (1),
1
xy =—[4-2(-0.971)+6.176 | = 2.01
o= [4-2(-0.971)+6.176]
1
Yy = g[3 -2.005-6.176]=-1.03

1
g = Z[27—2(2.005)—(—0.971)] =5.99
Iteration 5: Putting x4, y4, z41n Eq. (1),

1
= g[4—2(—1.03)+5.99] =2.00
¥s = %[3—2.01 -5.99]=-1.00

Z5 = %[27—2(2.01)—(—1 03)]=6.00

Since the fourth and fifth iteration values are nearly equal, the approximate solution
is

x=2,y=-1,z=6

Example 2
Solve the following system of equations:

8x—- y+ 2z=13
x—10y + 3z=17
3x+ 2y+12z=25
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Solution

3.35

Since absolute values of all diagonal elements are large as compared to absolute values

of other coefficients, rewriting the equations,
1
K= §(13+y—2z)

1
y——m(l7—x—3z)

I
=—(25-3x-2y
2= (25-37-2)

(D

Iteration 1: Assuming x, =0, y, =0, z,= 0 as first approximation and putting in Eq. (1),

3
.
8
17
o s 7
21 10
25
=22 208
T

Iteration 2: Putting x,, y;, z; in Eq. (1),

1
, ==[13-1.7-2(2.08)] = 0.892
) 8[ 7-2(2.08)]=0.8925
I
Y2 =—5[17—1.625—3(2.08)]=—0.9135
1
=—[25-3(1.625)-2(-1.7)]=1.
% 12[25 (1.625)-2(~1.7) | =1.9604

Iteration 3: Putting x,, y,, z, in Eq. (1),

Xy é[13—0.9135—2(1 9604) | =1.0207

1
Fij= —5[17 ~0.8925-3(1.9604) | = —1.0226
1
= —[25-3(0.8925)-2(-0.9135)] = 2.
% 12[25 3(0.8925)-2(-0.9135) | = 2.0124

Iteration 4: Putting x5, ys, z3 in Eq. (1),

= %[13 ~1.0226-2(2.0124) ] = 0.9941

i —%[17 —~1.0207-3(2.0124) | =-0.9942
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= %[25 —-3(1.0207)-2(~1.0226) ] =1.9985

Since the third and fourth iteration values are nearly equal, the approximate solution
is

x=1,y=-1,z=2

The above method can also be represented in tabular form as follows:

Tteration — 1(13 +y=-22)
number 8
1 %p=0 Yo=0 0=
x,=1.625 vy =-17 z,=2.08
2 X, =0.8925 v, =—0.9135 7, = 1.9604
x;=1.0207 y; =—1.0226 73 =2.0124
4 x,=0.9941 ys=—0.9942 z, = 1.9985

EXERCISE 3.3

Solve the following system of equations by using the Gauss-Jacobi
method:

1. 4x+ y+3z=17
X+5+ z=14
2x — y+8z=12

[Ans.: x=3,y=2,z=1]

2, 10x+ y+ 2z=13
2x +10y + 3z=15
x+ 3y+10z=14

3. 10x - 2y — 3z= 205
2x —10y + 2z =-154

2x+ y-10z=-120
[Ans.: x =32,y =26,z=21|

4, 12x+ 2y + z=127

2x +15y — 3z =16

2x — 3y +25z2=123
[Ans.: x =2.0148,y =0.9731,z = 0.8756 |



3.9 Gauss—Siedel Method 3.37

5. 20x+ y- 2z= 17
3x+20y - z=-18
2x — 3y +20z= 25

[Ans.: x=1y=-12z=1]

6. 10x— 5y - 2z= 3
4x - 10y + 3z=-3
X+ 6y +10z=-3

[Ans.: x =0.342,y =0.285, z=-0.505 |

7. 8x - 3y + 2z=20
4x +1ly — z =133
6x + 3y +12z =35

[Ans.: x =3.0168,y =1.9859, z=0.9118]

8. X+ y+54z=110
27x + 6y — z= 85
6x +15y + 2z= 72

[Ans.: x=2.425y=3.573,z= 1.926]

3.9 GAUSS—SIEDEL METHOD

This method is applicable to the system of equations in which leading diagonal elements

of the coefficient matrix are dominant (large in magnitude) in their respective rows.
Consider the system of equations

apx+ap,y+a;z=h

(12|x+6122)f+az3z=b2 (33)

Ay X+a3y+apz=Db

where |a,|, [ay], |as3] are large as compared to the other coefficients in the correspond-

ing row and satisfy the condition of convergence as follows:

|"11| >|a12|+|“|3|
|a22| > |a21 ‘ +|l123|

|ass| > |as, | +|as, |
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Rewriting the equations for x, y, and z respectively,

Iteration 1

1
x= a(bl —alzy—auz)

1
y= Z(bz ‘021"‘“235)

1
g= E(bs ~ayx=a5y)

..(34)

Assuming x =x,, y =Y, Z = Z, as initial approximations and substituting in the equation

of x,

1
X =—(b —apyy —a;3%)

ap

Now, substituting x = x,, z = z,, in the equation of y,

1
= (Dy —ayx; —apszy)
072

Substituting x = x;, y =y, in the equation of z,

Iteration 2

1
7 =—(by — a3 x, —azy)
ds3

Substituting y =y, z = z in the equation of x,

1
Xy =—(by —apy —a;3z)
ap

Substituting x = x,, z = z; in the equation of y,

1
Vo= (b, —ay,x; —ay7)

ay

Substituting x = x,, y =y, in the equation of z,

2 =—(by —a3x, —ayy,)

a3

The above iteration process is continued until two successive approximations are

nearly equal.

Working Rule

(i) Arrange the equations in such a manner that the leading diagonal elements are

large in magnitude in their respective rows such that
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|ay, | >|as|+|as|

|azs| >z +as]

|6133| o |a3, |+ |a32

(i) Express the variables having large coefficients in terms of other variables.
(iii) Start the iteration 1 by assuming the initial values of (x, y, z) as (x, Yo Zo)-
(iv) In the iteration 1, put y = y,, z = z, in the equation of x to obtain x,, put
X =X, 2 =7y 1in the equation of y to obtain y,, put x = x;, y =y, in the equation
of z to obtain z;.
(v) The above process is repeated for the next iterations and it continues until two
successive approximations are nearly equal.

Example 1
Solve the following system of equations:
3x - 0.1y-02z= 7.85
0.1x+ 7y-03z=-193
03x-02y+ 10z= 714

Solution

Since diagonal elements are largest, the Gauss—Siedel method can be applied.
Rewriting the equations.

%= %(7.85 +0.1y+0.27)

y=%(—l9.3—0.1x+0.3z) (1)

1= L (71.4-03x+02y)
10

Iteration 1: Assuming x,= 0, y, = 0, z, = 0 as initial approximation and substituting in
the equation of x,

X = %(7.85) =2.6167

Putting x = x,, z = 7, in the equation of y,

= %(—19.3—0.1)‘-, +0.3z,)
_ %[—19.3—0.1(2.6]67)+O.3(O)]

=-2.7945
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Putting x = x,, y = y, in the equation of z,

1
4 =15(714-03x+02y,)

= %[71.4 -0.3(2.6167)+0.2(-2.7945)]

=7.0056
Iteration 2: Putting y = y,, z = z; in the equation of x,

I
X =2 (785+0.1y,+022)

= %[7.85 +0.1(-2.7945) +0.2(7.0056)]

=2.9906
Putting x = x,, z = z; in the equation of y,

Y2 = %(—19.3 ~0.1x, +0.3z,)

= %[—19.3 —0.1(2.9906) + 0.3(7.0056)]

=-2.4996
Putting x = x,, y = y, in the equation of z,

= %(71.4—0.3,\‘2 +0.2y,)

= %[71.4 —0.3(2.9906) +0.2(-2.4996) |

=7.0003
Iteration 3: Putting y = y,, 7 = z, in the equation of x,

Xy = %(7.85 +0.1y, +0.22,)

= %[7.85 +0.1(=2.4996) +0.2(7.0003)]

=3.000
Putting x = x3, 7 = z, in the equation of y,

3= %(—19.3—0. 1x; +0.3z,)

= %[—19.3 —0.1(3)+0.3(7.0003)|

=-2.4999
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Putting x = x5, y = y; in the equation of z,

1
= B(71.4—0.3x3 +0.2y;)

— %[71.4 -0.3(3)+0.2(-2.4999)]

=7.0000

Since the second and third iteration values are nearly equal, the approximate solution
is

x=3,y=-25,z=17

Example 2

Solve the following system of equations:
S5+ y— z=10
2x +4y+ z=14

x+ y+8z=20
Solution

Since diagonal elements are largest, the Gauss—Siedel method can be applied.
Rewriting the equations,

1
x=§(10—_\'+z)

,\':%(14—21\‘—2)

1
z=—(20—-x-y
Ho0-x-y)
Iteration 1: Assuming x, = 0, y, = 0, z, = 0 as initial approximation and substituting in
the equation of x,
1
X = g (10) =2
Putting x = x,, 7 = z,, in the equation of y,

Y, =i(14—2x,—z0)

I
_Z[14—2(2)—0]
=25
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Putting x = x,, y = y, in the equation of z,
1
4= g(zo’xl —)’1)

|
=—(20-2-25

Hoo-2-25)
=1.9375

Iteration 2: Putting y = y,, z = z; in the equation of x,

|
X, =g(10—yI +zl)
1

= g(10—2.5+l.9375)

=1.8875
Putting x = x,, z = z; in the equation of y,

1
¥ =Z(14—2x2—z,)

|

= Z[14—2(1.8875)— 1.9375 |
=2.0719

Putting x = x,, y = y, in the equation of z,

6]

1
g (20— Xy =W )

= %(20— 1.8875-2.0719)

=2.0050
Iteration 3: Putting y = y,, Z = z, in the equation of x,

1
5= 1103 +35)

= %(10—2.07|9+2.0050)

=1.9866
Putting x = x3, 7 = z, in the equation of y,

|
V3 22(14—24\'3 _ZZ)

1
=—[14-2(1.9866)-2.

4[ (1.9866)—2.005 |
=2.0055



3.9 Gauss—Siedel Method 3.43

Putting x = x5, y = y; in the equation of z,

1
Z3 =§(20—X3 = _\'3)
- %(zo ~1.9866-2.0055)
=2.0009

Iteration 4: Putting y = y3, 7 = z5 in the equation of x,

x4=%(10—y3+z3)

|
= g(l 0—2.0055+2.0009)
=1.9991
Putting x = x4, z = z5 in the equation of y,
|
y, =—(14-2x, -2
Yy 4( 4 3)
1
=—[14-2(1.9991)-2.0009
J[14-2(1.9991) ]
=2.0002

Putting x = x4, y = y, in the equation of z,

1
%y =g(20—x4 _.‘"4)

= %(20 ~1.9991-2.0002)

=2.0001

Since the third and fourth iteration values are nearly equal, the approximate solution
is
x=2,y=2,z=2

Example 3
Solve the following system of linear equations:
8x+ y+ z=5
x+8y+ z=5

x+ y+8z=35 [Summer 2015, Winter 2013]
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Solution

Since diagonal elements are largest, the Gauss—Seidel method can be applied.
Rewriting the equations,

1
=—(5-—y—
X 8( y—2)

1
:—5— —_
y 8( xX=2)

1(5 x=y)
=—0O0—Xx—-
3 y

Iteration 1: Assuming x, = 0, y, = 0, z, = 0 as initial approximation and substituting in
the equation of x.

1
x =—(5)=0.625
8
Putting x = x,, z = z,, in the equation of y,
1
=—0O-x-z
31 ] ( 1= 20)
1
= §(5—0.625—0)
=0.5469

Putting x = x;, y =y, in the equation of z,
1
z17=—05—x—
1 8( 1 yl)

= %(5 —0.625-0.5469)

=0.4785

Iteration 2: Putting y = y,, z = z; in the equation of x,
1
) =§(5—y1 —z)

1
= £ (5-05469-04785)
=0.4968

Putting x = x,, z = z; in the equation of y,
1
¥ = §(5—x2 -z)

1
= 4 (5-0.4968-0.4785)

=0.5031
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Putting x = x,, y = y, in the equation of z,

1
2 =§(5—x2—y2)

= %(5 —0.4968 —0.5031)

=0.5

Iteration 3: Putting y = y,, 7 = z, in the equation x,
1
X3 :g(s_)’z _Zz)

1
= g(S -0.5031-0.5)
=0.4996
Putting x = x3, 7 = z, in the equation of y,

1
=—05-x;—
V3 8( 3—2)

= %(5 -0.4996-0.5)
=0.5001

Putting x = x5, y = y; in the equation of z,

1
Z3 =§(5—x3—y3)

- %(5 —0.4996 - 0.5001)
~0.5

Since the second and third iteration values are nearly equal, the approximate solution
is

x=05,y=05,2=0.5

Example 4
Use the Gauss—Siedel method to solve

6x+ y+ z=105
4x + 8y + 3z =155

Sx + 4y —10z= 65 [Summer 2015]
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Solution

Since diagonal elements are largest, the Gauss—Seidel method can be applied.
Rewriting the equations,

1
=—(105-y-—
X 6( y=2)
1
yzg(155—4x—3z)

1
=——(65-5x—4
z 10( x—4y)

Iteration 1: Assuming x, = 0, y, = 0, z, = 0 as initial approximation and substituting in
the equation of x,
1
X = g(lOS) =175

Putting x = x,, z = 7, in the equation of y,
1
= §(155 —4x, —32,)
= é[lSS —4(17.5)-3(0)]
=10.625
Putting x = x;, y =y, in the equation of z,
1
= —5(65—5)51 —4y))
1
= —E[65 —5(17.5)-4(10.625) ]
=6.5

Iteration 2: Putting y = y,, z = z; in the equation of x,
1
Xy = E(IOS— Y —z)

1
= (105-10.625-6.5)

=14.6458

Putting x = x,, z = z; in the equation of y,
1
Yy = §(155—4x2 -3z))

- %[155 — 4(14.6458)~3(6.5)]

=9.6146
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Putting x = x,, y = y, in the equation of z,

1
& == (65-5x,~4y,)

= _%[65 —5(14.6458)—4(9.6146) ]
= 4.6687

Iteration 3: Putting y = y,, 7 = z, in the equation of x,
1
x5 =105y, -3)

= %(105—9.6146—4.6687)
=15.1195

Putting x = x3, 7 = z, in the equation of y,
1
V3= §(155 —4xy-3z,)
1
=3 [155-4(15.1195)—3(4.6687)]
=10.0645
Putting x = x5, y = y; in the equation of z,

1
gy == 1(65-55~4y)

= —%[65 —5(15.1195) - 4(10.0645)
=5.0856
Iteration 4: Putting y = y,, 7 = z5 in the equation of y,
X, = é(lOS—y3 -23)
= %(105 —10.0645—-5.0856)

=14.975

Putting x = x4, z = z5 in the equation of y,

1
V4 = §(155—4x4 -3z3)

= %[155 —4(14.975)—3(5.0856)
=9.9804

3.47
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Putting x = x4, y = y, in the equation of z,
1
Zy =——(65-5x, -4
4 10 ( 4 Ya )

- _% [65-5(14.975)—4(9.9804)]
=4.9797

Iteration 5: Putting y = y,, 7 = z, in the equation of x,
1
X5 = 8(105—y4 -24)

1
= 5(105 —9.9804-4.9797)
=15.0067

Putting x = x5, 7 = z, in the equation of y,

1

Vs = §(155—4x5 —3z4)
= %[155 —4(15.0067)—3(4.9797)]
=10.0043

Putting x = x5, y = ys in the equation of z,
1
ze =——(65—-5x. —4
5 10 ( 5 ys)

= —%[65 —5(15.0067) — 4(10.0043) |
=5.0051

Since the fourth and fifth iteration values are nearly equal, the approximate solution
is

x=15,y=10,z=5

Example 5
Solve the following system of equations:
25x+ 2y - 3z=48

3x+27y— 2z=156
x+ 2y+23z=752
starting with (1, 1, 0).
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Solution

Since diagonal elements are largest, the Gauss—Siedel method can be applied
Rewriting the equations,

x=%(48—2y+3z)
)r=E(56—3x+21)

1
<.—-2—3(52—x—2))

Iteration 1: 1t is given that x, = 1, y, = 1, z, = 0. Putting y = y,, z = z,, in the equation
of x,
1
x; =—(48-2y,+3z
1 25( Yo o)

1
= —_— —_— 3

= [48-2(1) + 3(0)]
=1.84

Putting x = x,, z = 7, in the equation of y,

1
» =E(56—3xl +22)

|
=—156-3(1.84)+2(0
27[ (1.84)+2(0)]
=1.8696

Putting x = x,, y = y, in the equation of z,

1
4 =§(52‘X1 ~2y)

I
= 2_3[52- 1.84-2(1.8696) |
=2.0183

Iteration 2: Putting y = y,, z = z;, in the equation of x,
1
Xy = 5(48 -2y, +3z )
= l[48 —2(1.8696)+3(2.0183)]
25

=210126
Putting x = x,, 7 = z; in the equation of y,

1
s =2—7(56—3x2 +27)
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1
= 5[56—3(2.0126)+2(2.0183)]

=1.9999

Putting x = x, , y =y, in the equation of z,
1

% = 5(52—,\'2 —2_\!2)
1
= 2—3[52—2.0126—2(1.9999)]
=1.9994

Iteration 3: Putting y = y,, Z = Z, in the equation of x,

i =%(48—2_y2+322)

I
= g[48—2(1.9999)+3(1.9994)]
=1.9999
Putting x = x3, z = 2z, in the equation of y,
I
Py 5(56—3)(3 +2z,)
I
= —[56-3(1.9999)+2(1.9994
27[ (1.9999)+2(1.9994) ]
=1.9999

Putting x = x5, y = y; in the equation of z,

I
B 5(52 —x3—2y3)

!
= —3[52-1.9999-2(1.9999)
=2.0000

Since the second and third iteration values are nearly equal, the approximate solution is
x=2,y=2,z=2

Example 6
Solve the following system of equations, by the Gauss—Seidel method:

2x+ y+6z= 9
8x +3y+2z=13
x+S5y+ z=17 [Summer 2015]
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Solution

Since diagonal elements are not largest in their respective rows, rearranging the equations,
we have
8x+3y+2z=13

x+5y+ z=17
2x+ y+6z=9

Now, diagonal elements are largest. Rewriting the equations,

x=%(l3—3y—2z)
1

:—7— —_

y 5( xX—2)
Lo-2x )

7=—(09-2x-
6 Yy

Iteration 1: Assuming x, = 0, y, = 0, z, = 0 as initial approximation and substituting in
the equation of x,

X = l(13') =1.625
8
Putting x = x,, z = z,, in the equation of y,
1
R4 =§(7_x1 _Zo)

1
=—(7-1.625-0)
5
=1.075
Putting x = x;, y = y, in the equation of z,

1
4 =20-2x-y)

= é[9—2(1.625)—1.075]

=0.7792
Iteration 2: Putting y = y,, z = z; in the equation of x,

1
Xy =2 (13-3y 23

- %[13 —3(1.075)-2(0.7792)]

=1.0271
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Putting x = x,, z = z; in the equation of y,
L7 )
=—(/—-x,—2
Y2 5 274
1
= §(7 —1.0271-0.7792)
=1.0387
Putting x = x,, y = y, in the equation of z,
1
Zp = g(9—2x2 -¥)

1
= g[9 —2(1.0271)-1.0387]
=0.9845
Iteration 3: Putting y = y,, z = 2, in the equation of x,

1
Xy =§(13—3y2 -2z)

= %[13 —3(1.0387) - 2(0.9845) |
=0.9894

Putting x = x3, 7 = z, in the equation of y,
= l(7 —X3—2,)
Y3 5 372
1
= g(7 —0.9894 —0.9845)
=1.0052
Putting x = x5, y = y; in the equation of z,
1
= 8(9—2)63 -y3)

= é[9 —2(0.9894)—1.0052 |

=1.0027
Iteration 4: Putting y = ys3, 7 = z5 in the equation of x,

1
Xy = §(13—3y3 —223)

= %[13 ~3(1.0052) - 2(1.0027)]

=0.9974
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Putting x = x4, 7 = z3 in the equation of y,
Lo )
=—(/—x,—2
Vs 3 4~
1
= §(7 —0.9974-1.0027)
=1
Putting x = x4, y = y, in the equation of z,
1
4 = g(9-2)€4 —4)

= é[9 -2(0.9974)—1]
=1.0009

Since the third and fourth iteration values are nearly equal, the approximate solution
is

Example 7
Solve the following system of equations:

x+2y+ z=0

3x+ y— z=0

x— y+4z=3
starting with (1, 1, 1).

Solution

Since diagonal elements are not largest in their respective rows, rearranging the equations,
3x+ y—- z=0
x+2y+ z=0
x— y+4z=3

Now, diagonal elements are largest. Rewriting the equations,

1
=—(—=y+2z
x 3( y+2)

|
)—E("J\"«)

-
<

1
—3—=x+y
4( y)
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Iteration 1: Assuming x, =1, y, =1, z; = 1 as initial approximation and substituting in
the equation of x,

|
X = ,‘3'(_}"() +2y)

1
=—(-1+1)
3
=0
Putting x = x,, z = z, in the equation of y,
1
Vi ==(x -z
1 2( 1 ())

1

=—(-0-1
2( )

=-05

Putting x = x,, y = y, in the equation of z,

1
3 22(3_)‘1 +y1)

1
=—@B-0-05

4( )
=0.625

Iteration 2: Putting y = y,, z = z; in the equation of x,

|
Xy = g(_)’] +2z)

|
= g[—(—o.s) +0.625]
=0.375
Putting x = x,, 7 = z;, in the equation of y,

Y2 = E(_-’fz -z

= é(—0.375 —-0.625)
=-0.5
Putting x = x,, y = y, in the equation of z,

1
2 22(3_& +y,)

1
=—(3-0.375-0.5
4( )

=0.5313
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Iteration 3: Putting y = y,, 7 = z, in the equation of x,

1
X3 = g(_.\;z + Zz)

= %[—(-0.5)+0.5313]
=0.3438

Putting x = x3, 7 = z, in the equation of y,

1
Y3 25(“/\‘3 "‘Zz)

- é(—0,3438—0.5313)
= -0.4376

Putting x = x5, y = y; in the equation of z,

|
4] 22(3—763"‘)’3)

= i(3 —0.3438-0.4376)
=0.5547

Iteration 4: Putting y = ys, z = z3 in the equation of x,

|
Xy = ;(—))3 +23)

1
= 5[—(—0.4376) +0.5547]
=0.3307
Putting x = x4, z = z5 in the equation of y,

1
Ya = 5(‘x4 = 23)

= %(—0.3307 —0.5547)

=-0.4427
Putting x = x4, y = y, in the equation of z,

1
2y 22(3_/\'4 +¥4)

= %(3 —0.3307-0.4427)
=0.5566

3.55
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Iteration 5: Putting y = y,, 7 = z, in the equation of z,

|
X5 = ;(_)'4 +24)

_ %[_(—0.4427) +0.5566]

=0.333]

Putting x = x5, 7 = z, in the equation of y,

1
5= 5(_/‘5 —24)

= %(—0.3331 —0.5566)
=-0.4449
Putting x = x5, y = ys in the equation of z,

1
Z5 =Z(3—x5+y5)

= %(3 —0.3331-0.4449)
=0.5555

Iteration 6: Putting y = ys, 7 = z5 in the equation of z,

|
¥ =3 (s +325)

_ %[_(-0.4449) +0.5555]

=0.3335

Putting x = x4, z = z5 in the equation of y,

Yo = ;(_-xﬁ -25)

= %(—0.3335 —-0.5555)
=—0.4445
Putting x = x4, y = y4 in the equation of z,
1
26 =—0CB—xg+Yy
6= ( 6t Ys)

= %(3 —0.3335-0.4445)

=0.5555
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Since the fifth and sixth iteration values are nearly equal, the approximate solution is
x=0.333,y=-0.444, 7 =0.555

Example 8
Solve the following system of equations:
2x =15y + 6z= 72
-x+ 6y—-27z= 85
54x+ y+ z=110
Solution

Since diagonal elements are not largest in their respective rows, rearranging the equations,
we have

S4x + y+ z=110
2x —15y+ 6z= 72
-x+ 6y-27z= 85

Now, diagonal elements are largest. Rewriting the equations,

1
x=—110-y-z
54( y=2)

|
)= ——(72-2x—62
Y 15( x—62)

1
z=——(85+x—6y
Tt

Iteration 1: Assuming x,= 0, y, = 0, z, = 0 as initial approximation and substituting in
the equation of x,

1
3 == (110)=2.037

Putting x = x,, 7 = z,, in the equation of y,

1
= —G(72 —2x,—62;)

- _%[72 —~2(2.037)-6(0)]

=-4.5284
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Putting x = x,, y = y, in the equation of z,
1
7y =——(85+x, -6y
1 27( 1 —6y1)
1

]
=—4.2299

Iteration 2: Putting y = y,, 7 = z;, in the equation of x,

[85+2.037 - 6(—4.5284)]

1
X, =5—4(110—yI -7)

1
= i [1 10—(—4.5284)— (—4.2299)]
=2.1992
Putting x = x,, 7 = z; in the equation of y,
1
Yy = —1—5—(72—2)62 —-6z))
1

15
=—6.1987

[72-2(2.1992) - 6(-4.2299)]

Putting x = x,, y = y, in the equation of z,

1
= —E(SS+x2 -6y,)

- _%[85 +2.1992 - 6(~6.1987)]
=-4.6071

Iteration 3: Putting y = y,, Z = z,, in the equation of x,

1
X =27 (110-y; - 2,)

I
= 5—4[1 10— (~=6.1987)— (—4.6071)]
=12,2371

Putting x = x3, z = 2z, in the equation of y,

1
V3 =—E(72—2x3 -6z,)

=- %[72 —2(2.2371)- 6(-4.6071)]
=—6.3446
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Putting x = x5, y = y; in the equation of z,

1
3 == (85+x,-6,)

1
= '5[85 +2.2371-6(—6.3446)]
=—4.6409

Iteration 4: Putting y = ys, 7 = z3, in the equation of x,

1
x4=g(110—y3—z3)

I
= a[1 10— (~6.3446) — (-4.6409)|
=2.2405

Putting x = x4, 7 = z3 in the equation of y,

|
Ya =—G(72—2x4 —623)

- _%[72 —2(2.2405) - 6(—4.6409)]

=-6.3576
Putting x = x,, y = y, in the equation of z,

1
2 =—E(85+x4 -6y,)

1
—5[85 +2.2405 - 6(—6.3576)]
=-4.6439
Iteration 5: Putting y = y,, Z = 24, in the equation of x,

1
Xs =§(110—.V4 —24)

1
= 5—4[1 10— (~=6.3576) — (=4.6439)]
=2.2408
Putting x = x5, 7 = z, in the equation of y,

1
Vs =—E(72—2x5 —62z4)

= —%[72 —2(2.2408) - 6(—4.6439)]
=-6.3588

3.59
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Putting x = x5, y = y5 in the equation of z,

1

1
—5[85 +2.2408 - 6(—6.3588)|
=—4.6442
Iteration 6: Putting y = ys, z = zs, in the equation of x,

I
xg == (110 y5—25)

= é[l 10— (=6.3588) — (—4.6442)]
=2.2408

Putting x = x4, 7 = z5 in the equation of y,

1
Y = —E(72—2x6 —625)

1
= —E[n —2(2.2408) - 6(—4.6442)|
=-6.3589
Putting x = x4, y = y, in the equation of z,
1
26— _5(854')(6 ‘6_)16)

:—2]—7[85+2.2408—6(—6-3589)]

=—4.6442

Since the fifth and sixth iteration values are nearly equal, the approximate solution is
x=2.2408, y =-6.3589, 7z = —4.6442

The above method can also be represented in tabular form as follows:

Iteration

number .\':%(110—.\'—:) .\':—%(72—2.\'—6:) ::—%(85+.\‘—6y)
| Xo=0 Yo=0 70=0
x, =2.037 vy, =-4.5284 7, =-4.2299
2 Xy =2.1992 Yy =—6.1987 2, =-4.6071
3 x3=2.2371 3 =—6.3446 23 =-4.6409
4 x4 =2.2405 Y4 =-6.3576 7, =—4.6439
5 X5 =2.2408 ys =—6.3588 75 =—4.6442
6 Xg =2.2408 Ve =—0.3589 7o = —4.6442



3.10 [ll-Conditioned Systems 3.61

EXERCISE 3.4

Solve the following system of equations by using the Gauss-Seidel method:
1. 54x+ y+ z=110

2x +15y + 6z = 72

-X+ 6y +27z= 85

[Ans.:x =192, y =3.57, z=2.42]
2. 20x+ y- 2z= 17
3x +20y - z=-18
2x — 3y +20z= 25

[Ans.:x =1, y=-1,z=1]

3. 10x+ y+ z=12

2x +10y + z=13

2x + 2y +10z =14
[Ans.:x=1y=1 z=1]

4, 27x+ 6y - z= 85
6x +15y + 2z = 72
X+ y+54z=110

[Ans.: x = 2.43, y = 3.57, z=1.92]

5. 28x + 4y - z=32
2x +17y + 4z =35
x+ 3y +10z =24

[Ans.: x =0.99, v =1.51, z=1.85]

3.10 ILL-CONDITIONED SYSTEMS

An ill-conditioned system is one in which a small change in any of the elements of
the system causes a large change in the solution of the system. Since ill-conditioned
systems are extremely sensitive to small changes in the elements of the system, they
are also extremely sensitive to round-off errors.

A well-conditioned system is one in which a small change in any of the elements of the
system causes only a small change in the solution on the system.
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Consider the following system of two linear equations in two unknowns:
400 =201l x; [ | 200
-800  401]{x, | |-200
This system can be solved by any previously discussed methods and the solution is

x,=-100, x,=-200

If one of the elements of the coefficient matrix, say a,; is changed from 400 to 401,

i.e.,
400 201 | x; | | 200
800  401||x, | |-200
then the solution is

x, =40000, x,=79800

With a small change in one of the coefficient, there is significant change in solution of
the system. The solution is very sensitive to the values of the coefficient matrix. Such
a system is called ill-conditioned system.

Points to Remember

Gauss Elimination Method
(i) Write the matrix form of the system of equations.
(i) Write the augmented matrix.
(iii) Obtain the echelon form of the augmented matrix by using elementary row
transformations.
(iv) Write the corresponding linear system of equations from the echelon form.
(v) Solve the corresponding linear system of equations by back substitution.

Gauss—Jordan Method
(1) Write the matrix form of the system of equations.
(i1) Write the augmented matrix.
(iii) Reduce the coefficient matrix to unit matrix by applying elementary row
transformations to the augmented matrix.
(iv) Write the corresponding linear system of equations to obtain the solution.

Gauss—Jacobi Method
(i) Arrange the equations in such a manner that the leading diagonal elements
are large in magnitude in their respective rows satisfying the conditions

|a”|>|al2 +‘al3|

) >|a21|+’a23‘

|(133| > |(I3| | + |(l32|



Points to Remember 3.63

(i) Express the variables having large coefficients in terms of other variables.
(iii) Start the iteration 1 by assuming the initial values of (x, y, z) as (xy, Yo, 2Zo)
and obtain (x|, y,, Z;)-
(iv) Start the iteration 2 by putting x = x|, y = y;, 2 = 2, in equations of x, y, z and
obtain (x,, 5, 2,)-
(v) The above process is repeated for the next iterations and it continues until
two successive approximations are nearly equal.

Gauss-Siedel Method
(i) Arrange the equations in such a manner that the leading diagonal elements
are large in magnitude in their respective rows such that

|ay,|> |a|2|+|"13|
|(122| >|az,|+|az3\
jass| > |y | +]as, |

(i) Express the variables having large coefficients in terms of other variables.
(iii) Start the iteration 1 by assuming the initial values of (x, y, z) as (x,, ¥, Zo)-
(iv) In the iteration 1, put y = y,, z = 7, in the equation of x to obtain x;, put
X =X, 2=z in the equation of y to obtain y,, putx = x, y =y, in the equa-
tion of z to obtain z;.
(v) The above process is repeated for the next iterations and it continues until
two successive approximations are nearly equal.
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4.1 INTRODUCTION

Interpolation is the process of reading between the lines of a table. It is the process of
computing intermediate values of a function from a given set of tabular values of the
function. Extrapolation is used to denote the process of finding the values outside the
given interval.

In the interpolation process, the given set of tabular values are used to find an expression
for f(x) and then using it to find its required value for a given value of x. But it is
difficult to find an exact form of f{x) using the limited values in the table. Hence, f(x)
is replaced by another function ¢(x), which matches with f(x) at the discrete values in
the table. This function @(x) is known as the interpolating function.
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When the interpolating function is a polynomial function, the process is known as
polynomial interpolation. Polynomial interpolations are preferred because of the
following reasons:
(i) They are simple forms of functions which can be easily manipulated.
(i) Polynomials are free from singularities whereas rational functions or other
types have singularities.

4.2 FINITE DIFFERENCES

Let the function y = f(x) be tabulated for the equally spaced values y, = f(x,),
Vi1 =f(+h), y, =f(xg +2h), ...y, =f(xg + nh), as

X Xo+h Xxy+2h ...  xy+nh

Yo Y1 Y2 Yn

To determine the values of f(x) for some intermediate values of x, the following three
types of differences can be used.

4.2.1 Forward Differences

If yg, ¥, Y3, .-, ¥, denote a set of values of y then y; =y, ¥, =y}, ..., ¥, — ¥, are called
the first forward differences of y and are denoted by Ay, Ay,, ..., Ay,_; respectively.

Ayy=y1-Y
Ay =y, -y
Ayn—l =Yu—Vna1

where A is called the forward difference operator. The differences of the first forward
differences are called second forward differences and are denoted by Azyo, Azyl, ooy
A%y, | Similarly, third forward differences, fourth forward differences, etc., can be
defined.

Az}’o=A (Ayo)
=A(y; =)
=Ay; - Ay,
=y, =1 = (1 —Yo)
=y— 2y + )
A3Yo = Az)ﬁ - Azyo
=3 =2y, +y) = (2= 2y, + yp)
=y3=3y,+3y1-Y



4.2 Finite Differences 4.3

A4}’o= A3y 1~ A3yo
= (g —3y3+ 3y, =) = (3 = 3y, + 3y, = )
=y, —4y;+ 6y, -4y, +y,

Since the coefficients occurring on the right-hand side are the binomial coefficients,
the general form is

A'yo=3, =" Y1+ "3 Y0 =+ (1) yg

Forward Difference Table

Xo Yo
Ayo=Y1=Yo
Xo+h=x  y Az)’ozA)’]—AYO
Ay =y, =y A3)’0=A2y1 —AZYO
Xo+2h=x, y, Ay, = Ay, - Ay, Alyy = Ay, - Ay,
Ay, =y3 =¥, A3)’1 = Az}’z - A2}’1
Xo+3h=x;3 y3 Ay, = Ay - Ay,
Ay3 =y4—y3

Xo+4h=x4 y,

In a difference table, x is called the argument, and y is called the function or entry.
Note When (n + 1) values are given, the highest-order difference is n, e.g., when 5
values are given, the highest-order difference is 4.

4.2.2 Backward Differences

If yo. ¥1» Y2» ---» ¥, denote a set of values of y then y;, — v, Yo = ¥i» --s Y — Vot
are called the first backward differences of y and are denoted by Vy,, Vy,, ...., Vy,,
respectively.

Vyi=y1=Yo

Vy, =y =

Vyn =V~ Yn1

where V is called the backward difference operator. Similarly, backward differences
of higher order can be defined.

Vz)’z =V (Vy)



4.4 Chapter 4 Interpolation

=V -y
=Vy, - Vy,
=V =y1— =Y
=y, =2y + Y
V3)’3 = Vz}’s - Vz}’z
=y3— 3y, + 3y, —y etc.

Backward Difference Table

X0 Yo
Vyi=y1-y
X V2, = Vy, - Vy,
Vy,=y-y VS)’3 = sza - Vz}’z
Xy Viy;=Vy3 =V, Vi, = Vi, - Vi,
Vys=y3-, V3}’4 = VZ}’4 - Vz)’3
X s V2, = Vy, = Vy;
Vyy=ys—;
Xy Vg

4.2.3 Central Differences

If yo, ¥4, 3, ..., ¥, denote a set of values of y then y, —yy, v, — ;. ..., ¥, — ¥, are called

the central differences of y and are denoted by §y, , 0y;, ..., 6y | respectively.
2 2 "
Sy =y-Y
2
oy 3 =N "N

2

6y 1 =Y = Yn1
n—

2

where 0 is called the central difference operator. Similarly, higher-order central dif-
ferences can be defined.
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52)’1 = 5}12 - 5)’1

2 2
= =yD) =01 =Y
=y, =2y + Y

53yE =8y, — 8%y, etc.
2

Central Difference Table

Yo Yo
oy =y —Yo
2
8%y, =8y, -6
o SRl
5)’3 =N 53Y3 = 52Y2 —52)’1
2 2
- 8%y, =8ys 63 8y, =85 -8y
2 2 2 2
0Ys =¥3=% &ys =823 -8,
2 2
8%y, =8y, -6
o R
0y, =Ys4—¥;
2
Xq V4

From the central difference table, it is clear that the central differences on the same
horizontal line have the same suffix. Also, the differences of odd orders are known
only for half values of the suffix and those of even orders, for only integral values of
the suffix.

Note It is clear from the three difference tables that it is only the notations which
change and not the differences.

Yi—Yo=Ayy=Vy, = 5)71
2
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4.3 DIFFERENT OPERATORS AND THEIR RELATIONS

1. Forward Difference Operator The forward difference operator is denoted
by A and is defined as

Af(x) =fx+h) - f(x)
or Ayr:yr+1_yr
where h is known as the interval of differencing.

2. Backward Difference Operator The backward difference operator is de-
noted by V and is defined as

Vi) =fx) —fx—h)
or Vyr:yr_yr—l

3. Central Difference Operator The central difference operator is denoted by

d and is defined as
of(x)= f(x+ﬁ)—f(x—ﬁ)
B 2 2

or 6y, =y 1=y |

r— r——

4, Shift Operator The shift operator is denoted by E and is defined as
E[f(0l=f(x+h)

or E Y=Y
Similarly, E7 [f0)]=f(x—h)
or E7y. =y,

5. Averaging Operator The averaging operator is denoted by u and is defined

as
h h
f(x+2) +f(x—2j

2

ufx)=

6. Differential Operator The differential operator is denoted by D and is de-
fined as

Df(x)=£f(X)
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4.3.1 Relations between Operators

1. Relation between A and E
[Summer 2015, Winter 2014, Summer 2014, Summer 2013]
Af(x) =f(x+h)—f(x)
= Ef (x)— f(x) [ Ef(x) = f(x+h)]
=(E-1 f(x)
A=E-1 or E=1+A

2. Relation between V and E [Winter 2014, Winter 2013]
VF(x) = f(x)= f(x—h)
=f=-E7'f(x) [ ETf(0) = fx—h)]
=(1-E™)f(x)
V=1-E"'

3. Relation between §and E

o ={cs2)-(-)
1
2

4. Relation between y and E

o8l

uflx)= 5

1 1
_E2f+E 2 f(0)
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5. Relation between D and E
[Winter 2014, Summer 2014]

Ef(x)= f(x+h)

2

= FO+hf )+ %f” () 4+ (By Taylor’s series]
,'12

=f(x>+th(x)+;sz(x>+~--

h2
=(1+hD+7D2 +~--jf(x)

=" f(x)
E=¢"
Also, hD =log E =log(1+A)
L _m
Corollary E % =e 2

Proof

1
E2f(x)= f(x—gj

)

=f(x)— f () +=——f"(x)-
Gl
“li-tps 22! D? - | f(x)
_hD
=e ? f(x)
1 hD
E2=¢ 2

6. Relation between u and &

o1
E?2+E ?
2

u

L1
2 | E2+E 2

=E+2+E‘1



4+ (E-E

4.3 Different Operators and their Relations

)2

4.9

Example 1
Prove that (1 +A)(1-V)=1

Solution
E=1+A
V=1-E"
E'=1-V
(1+A)(1-V)=EE' =1

Example 2
Prove that 6= 2 sinh h_D
2
Solution
h h
s=(xg)-1(+-5)
1 1
“E2_F 2
hD hD
—e? o 2
=2
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Example 3
Prove that hD = sinh™ (ud)
Solution
: _l 1 1
2 2 =
16— E2 +E [EZ_E >
2
1 =
=—(E-F
3 ( )
2uS=E-E™'
= D _ D
= 2sinh (hD)
hD = sinh™" (u8)
Example 4

Prove that Alog f(x) = log[l+w}
f(x)

Solution

Alog f(x) =log f(x+h)—log f(x)
~ log f(x+h)
fx)
1o B/
f(x)
 log 1T
fx)

:log{f(x)wf(x)}
S

= log{l + Af(x)}
Jf(x)
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Example 5
Evaluate (a) A(x2 + sin x), and (b) A? cos 3x, the interval of differencing
being h.

Solution
0 A(x? +sinx) =[(x+h)* +sin(x+h)]— (x> +sin x)
=h? +2hx+sin(x+h)—sinx
— W +2hx+2c0s| x+ 2 | sinlt
2 2
(ii) A? cos3x = A(Acos3x)
= A[cos3(x+h)—cos3x]
=Acos3(x+h)—Acos3x
=cos3[(x+h)+h]—cos3(x+h)—cos3(x+h)+cos3x
=cos3(x+2h)—2cos3(x+h)+cos3x
=cos3(x+2h)+cos3x—2cos3(x+h)
Example 6
A? Ee*
Prove that | — |e*-——=¢"
E A e*
Solution
A2 . Ee* (E—1)2 . ex+h
— ¢ 2 x = e x+h x
E A e E A —e")
E*-2E+1) et
= e
E (ex+2h _eerh _eerh +ex)
x+h
=(E-2+E")e"-

(ex+2h _Detth +ex)
(ex+h _ Zex +ex—h)ex+h

(ex+2h _2eMh 4 ex)
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x+h

e —2e T e

ex+2h _ 2ex+h + ex

Example 7
Prove that AV = (A -V)
Solution:
AV f(x)=ALf(x) = f(x—h)]
= Af(0)~Af(x—h)
=Af(x)=[f(x)= f(x=h)]
=Af(x)=Vf(x)
=(A-V) f(x)
AV =(A-V)
Example 8

Prove that A =EV =VE

Solution
Af(x)=f(x+h)—f(x) (1)

EV f(x)= E{f(x)= f(x—h)}
=Ef(x)-Ef(x—h)

=f(x+h)— f(x) (2
VEf(x)=Vf(x+h)
= fx+h)—f(x) -(3)

From Egs (1), (2), and (3),
A=EV=VE
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Example 9
Find the missing term in the following table:

Solution
Difference Table

1 7
=1
2 " 20 -2y,
13-y, 3y, -25
3 13 v =5 38 — 4y,
8 13—y,
4 21 8
16
5 37

Since only four entries are given, the fourth-order difference will be zero.
Ay, =0
38—4y,=0
¥ =95

Example 10

Obtain the estimate of missing terms in the following table:

2 4 8 - 32 - 128 256

Solution
Let f@) =a, f6)=b
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Difference Table

1 2
2
2 4 2
4 a—14
3 8 a-12 66 —4a
a-38 52 -3a 10a + b — 222
4 a 40 - 2a b+ 6a-156 706 — 20a — 6b
32-a b+3a-104 484 — 10a — 5b
5 32 b+a-64 328 —4a —4b b
b-32 22‘:3” 10b + 5a - 712
6 b 160 - 2b 6b +a—384
128-b 3b - 160
7 128 b
128
8 256
Since only six values are given,
A6y0 =0
20a + 6b =706 ...(D
15a + 15b = 1196 ...(2)
Solving Egs (1) and (2),
a=16.26
b =63.48
Example 11

The following table gives the value of y which is a polynomial of degree
five. It is known that y = f(3) is in error. Correct the error.

0 1 2 3 4 5 6
1 2 33 254 1025 3126 7777
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Solution
Let fB)=a
Since y is a polynomial of degree 5,
A® Yo=0
(E-1)yy=0

(E®—6E° + 15E* —20E> + 15E* —6E + 1) y, =0
¥ = 6ys + 15y, — 20y; + 15y, = 6y, +y, =0
7777 - 6(3126) + 15(1025) — 20a + 15(33) = 6(2) + 1 =0
~20a = —4880
a =244
Error = 254 — 244 = 10

Example 12

If u, is a function for which the fifth difference is constant and
u, + u; =784, u, + ug = 686, usy + us= 1088, find u,.

Solution

Since the fifth difference is constant,
ACu; =0
(E-1)°u, =0
(E®—6E° + 15E* = 20E* + 15E* = 6E + 1) u,; = 0
Uy — 6ug + 15us — 200, + 15u;3 — 61y +u; =0
(ug + uy) — 6(ug + uy) + 15(us + uz) —20u, =0
— 784 — 6(686) + 15(1088) — 20u, =0
20u, = 11420
uy =571

4.3.2 Factorial Notation

A product of the form x(x — 1) (x —2)...(x —n + 1) is called a factorial polynomial or
function and is denoted by [x]".

X]"=x(x-1)(x-2)...x—-n+1)
If the interval of differencing is & then

[x]"=x(x—-h) (x=2h) ... {x—(n—1) h}
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The factorial notation is of special utility in the theory of finite differences. It is
useful in finding the successive differences of a polynomial directly by simple rule of
differentiation.

Example 1
Write f(x) = o e - 2x+1in factorial notation and find A4f(x).
Solution

flx) =23 P20+ 1

Let fx) = Alx]* + B[x]> + Clx]* + D[x]' + E
Using synthetic division,

1 1 -2 1 -2 1=FE
0 1 -1 0
2 1 -1 0 -2=D
0 2 2
3 1 1 2=C
0 3
1=A |4=B

Fx) =[x +40x] +2[x)* = 2[x]' +1
Af (x) = 4[x]? +12[x]* +4[x]-2
A% f(x)=12[x]* +24[x]+4
A’ f(x) =24[x]+24
A*f(x)=24

Example 2
Express f(x) = xt =127 + 42x% = 30x + 9 and its successive differences
in terms of factorial polynomials. Also, find the function whose first
difference is f(x).
Solution

Fo) =x* = 1200 + 42x* —30x + 9
Let f@) =Alx]* + BlxI* + Cx)* + DIx]' + E
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Using synthetic division,

I 1 2 30 | o=k
0 L 31
2 T 31| 1=p
0 2 18
3 I o | 13=c
0 3
1=4 | -6=8

F(x)=[x]* —6[x]® +13[x]* +[x]' +9
A f(x)=4[x]>-18[x]* +26[x]' +1
A% f(x)=12[x]* -36[x]' +26
A’ f(x)=24[x]'-36
A*f(x)=24
A f(x)=0
By integrating f(x), the function ¢(x) whose first difference is f(x), is obtained.

I 3 1€ A T3 A £ |
o(x)= 5 1 + 3 + 5 +9[x]' +¢

Example 3
Express f(x) = 2x° = 3x* + 3x - 10 in factorial polynomial and, hence,

show that A flx)=12.
Solution
F) =28 =3 +3x-10
Let f@)=Alx] + Blx)*+ C[x)' + D
Using synthetic division,

1 -3 3 -10=D

-1 2=C

NS DO N
1l
=
1l
o]
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Fx) =2[xP +3[x* +2[x]' 10
A f(x)=6[x]* +6[x]'+2
A’ f(x)=12[x]'+6
Af(x)=12

EXERCISE 4.1

1. Prove the following identities:
(i) AV=VA
(i) V=E'A
(iii) EV=VE
) hD=-log (1-V)
AV

A+V=———
(v) vV A

(iv

(vi) (E; - E?]U—V);z \Y

. 2"
“)AL»HQ

Atan™' x
An eax

A (X + cos X)

A* (ax* + bx* + cx + d)

X-2X .. -1 h a n X
(x+2)! (ii) tan [m) (iii) (e"-1)"- ¢

(iv) 1—251n(x+%jsinx (v) a4~4!}

{Ans.: (i) -

3. Evaluate (A—Zj sin x, where the interval of difference is h.
£ [Ans.: sin (x + h) — 2 sin x + sin (x — h)]
4. Prove that
(i) Alx f(x)] = (x+h) Af(x)+ hf(x)
(ii) (A+V)? (x* + x) = 8h?
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5. Prove that f(4) = f(3) + A f(2) + A f(1) + A® F(1).

L AT(XP) AY)
6. Find E(x) and 3 X,

{Ans.: —2,2}
(1+x)

7. If y=a3*+ b(-2)*and h = 1, prove that (A2 + A — 6)y = 0.
8. Find the missing term from the following data:

X 0 1 2 3 4
y 1 3 9 - 81 [Ans.: 31]

9. From the following table, estimate y at x = 2.

el 4 6 8 10 12
VN 6 7 13 32 77 [Ans.: 7]

10. If uy=-10, u; =6, U, = 2, U3 =12, u, = 26, us = 42, find u,.
[Ans.: 46]

11. IfU3=4, U4= 12, U5=22, U6=37, U7=55, ﬁnd U8.
[Ans.: 69]

12. From the following table, find (15)°.
a3 5 7 9 11
V227 125 343 721 1331 [Ans.: 3375]

4.4 INTERPOLATION

Let the function y = f(x) take the values y,, y;, ¥, ..., ¥, corresponding to the values
Xg, X[, X, ..., X, of x. The process of finding the value of y corresponding to any value
of x = x; between x, and x,, is called interpolation. Thus, interpolation is a technique of
finding the value of a function for any intermediate value of the independent variable.
The process of computing the value of the function outside the range of given values of
the variable is called extrapolation. The study of interpolation is based on the concept
of finite differences which were discussed in the preceding section.

4.5 NEWTON’S FORWARD INTERPOLATION FORMULA

Let the function y = f(x) take the values y,, y;, 5, .... corresponding to the values x,
X}, X, ... of x. Suppose it is required to evaluate f(x) for x = x, + rh, where r is any
real number.
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v, = f(xy+rh)
=E" f(xy)
=(1+A) f(xp)
=(1+4A)"y,

=[1+rA+r(r271) A+ r(r_l)‘(r_z) A} +...}yo

[Using Binomial theorem]

r(r=1) A2y0+r(r_1)(r_2) A
2! 3!

Equation (4.1) is known as Newton’s forward interpolation formula.

=Yo+rAyy+ Yo+ (4D)

Note This formula is used for evaluating the value of y near the initial tabulated value
of x, i.e., near x,

Example 1

Compute cosh (0.56) using Newton’s forward difference formula from
the following table:

x 0.5 0.6 0.7 0.8
5] 1.127626 1.185465 1.255169 1.337435
Solution
Let x=0.56,x,=0.5,h=0.1
X—X 0.56-0.5
r=—>=0= =06
h 0.1
Difference Table
Af(x) A’f(x) Afx)
0.5 1.127626
0.057839
0.6 1.185465 0.011865
0.069704 0.000697
0.7 1.255169 0.012562
0.082266

0.8 1.337435
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By Newton’s forward difference formula,

r(r—1)

2!

r(r—=D(r-2)

3 A f(xg)+-

A f(xy)+

cosh (0.56) = 1.127626 +0.6(0.057839) + %(om 1865)

f(xg+rh) = f(xg)+rAf(xy)+

, 06006-1)(0.6-2)
31
=1.127626 +0.034703 — 0.001424 +0.000039
=1.160944

(0.000697)

Example 2
Find the value of sin 52° using Newton’s forward interpolation formula
from the following table:

6° 45° 50° 55° 60°
sin 6° 0.7071 0.7660 0.8192 0.8660
Solution
Let x=52°x,=45°, h=5°
e x—hxo _ 52°5—O45° 140
Difference Table
y =sin 6°
45° 0.7071
\0.0589
50° 0.7660 —0.0057
0.0532 —-0.0007
55° 0.8192 —-0.0064
0.0468
60° 0.8660

By Newton’s forward interpolation formula,

r(r—1)
2!

-D(r-2
y(x) =y, +rAy, + Azyo +%A3yo +---
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1.4(1.4-1
sin52° = 0.7071+1.4(0.0589) + % (—0.0057)
L 1404-1)(14-2)
31
=0.7071+0.0825—0.0016 + 0.00004
=0.7880

(=0.0007)

Example 3
Using Newton’s forward interpolation formula, find the value of f(1.6).

X 1 1.4 1.8 22
fx) 3.49 4.82 5.96 6.5

Solution
Let x=1.6,x=1,h=04
e X=X _ 1.6-1 ~15
h 0.4
Difference Table

Af(x) Afx) Afix)

1.8 5.96 -0.6
0.54
22 6.5

By Newton’s forward interpolation formula,

~1 (-2
f(xo+rh)=f(x0)+rAf(xo)+%A%(%H%Mﬂ%+...

1.5(1.5-1) 1.51.5-1)1.5-2)
3!

f(1.6)=349+1.5(1.33)+ ==———(-0.19)+ (~0.41)

=3.49+1.995-0.0713+0.0256
=5.4393
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Example 4

Use Newton’s forward difference method to find the approximate value
of f(1.3) from the following data:

X 1 2 3 4
Sfx) 1.1 42 9.3 16.4

Solution
Let x=13,xy=1,h=1
Lo X% 1.3-1 03
h 1

Af(x) Afix) Afx)

7.1
4 16.4

By Newton’s forward interpolation formula,

( r(r=H(r-2)

S Ay

F(x)= fx)+rAf(x) +——— Azf( Xo)+

f(1.3)=1.1+0.3(3.1)+%(2) 0

=1.1+0.93-0.21
=1.82

Example 5

Use Newton’s forward difference method to find the approximate value
of f(2.3) from the following data:

X 2 4 6 8
fx) 42 8.2 12.2 16.2
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Solution
Let x=23,xy=2,h=2
Lo XT X 23-2 ~0.15
h 2
Difference Table

4
6 12.2 0
4
8 16.2
By Newton’s forward interpolation formula,
F) = f(x) +rAf(xg)+ r(rz_' D A2 f (x4

f(2.3)=4.2+0.154)+0
=4.2+0.6
=438

Example 6

Using Newton’s forward interpolation formula, find the value of

f218).

x 100 150 200 250 300 350 400
f(x) 1063  13.03 1504 1681 1842 1990 2127
[Summer 2014]
Solution

Let x=218, x,=100, h=50

x—x, 218-100
h 50

=2.36

r =
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Difference Table

f(x) Af(x) Af(x) Af(x) A*(x) Af(x) A%(x)

100 10.63
\2.4
\

150 13.03 -0.39

\
2.01 0.15
\

200 15.04 -0.24 —0.07\

1.77 0.08 0.02
250 16.81 -0.16 -0.05 \ 0.02
1.61 0.03 0.04
300 18.42 -0.13 -0.01
1.48 0.02
350 19.90 -0.11
1.37

400 21.27

By Newton’s forward interpolation formula,

100 = F0x0) +raf i) + % g+

N r(r— 1)(};; 2)(r—73) A4f(x0 )+
+ r(r—=0)(r-=2)r-3)(r—4)(r->5)
6!

F(218) =10.63+2.36(2.4) +%(—0.39) 4 2:36Q236 _3})(2'36 =2

r(r— I;fr -2) A3f(x0)

r(r=0)(r-2)r-3)(r—-4)
5!

A’ f(xy)

A% f(xg)+++

(0.15)

, 2:36(2.36-1)(2.36-2)(2.36-3)
41
, 236(2.36 -1)(2.36 - 2)(2.36-3)(2.36 - 4)
5!
, 2:36(2.36-1)(2.36 - 2)(2.36 ~3)(2.36 ~ 4)(2.36 -5)
6!

=10.63+5.664 — 0.6259 +0.0289 +0.0022 + 0.0002 — 0.00009
=15.6993

-0.07)

(0.02)

(0.02)
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Example 7

From the following table, estimate the number of students who obtained
marks between 40 and 45:

Marks 30-40 40-50 50-60 60-70 70-80
Number of students 31 42 51 35 31

[Summer 2015]

Solution

Cumulative Frequency Table

Marks less than (x) 40 50 60 70 80
Number of students (y) 31 73 124 159 190

Since x = 45 is nearer to the beginning of the table, Newton’s forward interpolation
formula is used.

Let x=45,x,=40,h=10
_x—x, 45-40
h 10

0.5

r

Difference Table

60 124 -16 37
35 12

70 159 -4
31
80 190

By Newton’s forward interpolation formula,

r(r=1) » rr=0Dr-2) 3
Y A%y, + 3 A%y,

4 (r— 1)(r4—‘ 2)(r-3) A4

Y(x) =y +rAy, +

y0+...
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49 =31+0.5042) + 220220

©))

, 0:5(05-1)(05-2)
31

(=25)

N 0.5(0.5—- 1).(0.5 -2)(0.5-3)

=31+421-1.1250—1.5625—1.4453
=47.8672
~48

The number of students with marks less than 45 = 48
The number of students with marks less than 40 = 31

n 37)

Hence, the number of students obtaining marks between 40 and 45 =48 — 31 =17

Example 8

Determine the polynomial by Newton’s forward difference formula from

the following table:

X 0 1 2
y -10 -8 -8

Solution
Let xX=0,h=1
X — X, —
h 1
Difference Table

4
3 -4

14
4 10

30
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By Newton’s forward difference formula,
r(r—1) r(r=1)(r—-2) r(r—=D(r-2)(r-3)
TAZ)’O + 3 Ay, + 0 Ay,

=-10+x(2)+ x(xz'_ D -2+ Hx = 1)‘()6 —2)

Y(x) =y, +1rAy, +

6)+0
=—10+2x—x(x—1.)+x(x—1)(x—2)
=-10+2x—x> +x+x(x* —3x+2)
=—10+2x—x* +x+x° —3x% +2x

=x —4x? +5x-10

Example 9
Find a polynomial of degree 2 which takes the following values:

X 0 1 2 3 4 5 6 7
y 1 2 4 7 11 16 22 29

Solution
Let xp=0,h=1
X — X —
h 1
Difference Table

2 4 1

3 0
3 7 1

4 0
4 11 1

5 0
5 16 1

6
6 22 1

7
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By Newton’s forward interpolation formula,

r(r—1 rr=1D)(r -2
y(x)=y0+rAy0+%A2y0+%A3yo+...

=1+x(D)+

x(x—1)
o MH+0
2

X —X
=1+x+

x2 X
=l+x+——

L. o
=—(x"+x+2
2( )

4.29

Example 10

data:

X 4 6 8 10
y 1 3 8 16

Construct Newton’s forward interpolation polynomial for the following

[Summer 2015]
Solution

Difference Table

10 16

By Newton’s forward interpolation formula,

r(r—1 r(r—=D(r-2
y(x)=yo+rAyo+—(2, )A2y0+—( =2y

3! y0+...
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ey
=1+(";4)(2)+ 2 2 (3)+0

2!
=1+(x—4)+W(3)
2_
g W 10x2)
8
2
=x—3+3i—15—x+9
8 4
_3 Mk
8 4
3(25) 11(5) 13
5 =222 6=
y(3) 2 1

4.6 NEWTON’S BACKWARD INTERPOLATION FORMULA

Let the function y = f(x) take the values y,, y,, 5, .... corresponding to the values x,
X|, Xy, .... of x. Suppose it is required to evaluate f(x) for x = x, + rh, where r is any
real number.

v, = f(x,+rh)

=E" f(x,)

=(E—l)—r yn

=(1-V)"y,

:{1+rV+r(rle) V2 +r(r+l3)'(r+2) V? +~}yn

[Using Binomial theorem]

r(r+1) r(r+1)(r+2)
|

=Y rVy, A= Viy, + Viy 4o .(42)

Equation (4.2) is known as Newton’s backward interpolation formula.

Note This formula is used for evaluating the value of y near to the end of tabulated
value of x, i.e., near x,,.
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Example 1

Consider the following tabular values:

X 50 100 150 200 250
y 618 724 805 906 1032

Determine y(300) using Newton’s backward interpolation formula.

Solution
Let x =300, x, =250, h =50

_300-250 _

h 50

50 618
106
100 724 =25
81 45
150 805 20 - —40
101 o 5
200 906 / 25
s 126
250 1032
By Newton’s backward interpolation formula,
V) =y, +1Vy, + r(r2-4'- 1 szn N r(r+ 1;$r+ 2) V3y,,
N r(r+1)(r+2)(r+3) V4y,, ‘.
4!
¥(300) =1032+1(126) + 1@ (25)+ 12)3) 5+ 12)3)) (-40)

2! 3! 4!
=1032+126+25+5-40
=1148
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Example 2
The area A of a circle of diameter d is given for the following values:

d 80 85 90 95 100
A 5026 5674 6362 7088 7854

Calculate the area of a circle of a diameter of 105 units using Newton’s
interpolation formula. [Summer 2015]

Solution

Since x = d = 105 is near to the end of the table, Newton’s backward interpolation
formula is used.

Let x=105, x,=100, h=5
x—x, 105-100

1

80 5026
648
85 5674 40
688 -
90 6362 38 . .
726 - )
95 7088 - 40
/766
100 7854
By Newton’s backward interpolation formula,
y(x) =y, +rVy, + r(r-l'-l) V2y 4 r(r+ 13)Er+ 2) vy,
+ r(r+1)(r+2)(r+3) V4y,, N
41
12 12 1(2)(3)(4
V(105) = 7854 + 1(766) + %(40) X 3)'(3) (24 1€ )i)( )y

=7854+766+40+2+4
= 8666
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Example 3

From the following table, find P when t = 142°C and 175°C using
appropriate Newton’s interpolation formula.

Temperature °C 140 150 160 170 180
Pressure P 3685 4845 6302 8076 10225
[Winter 2014]

Solution

Since x = 142 is nearer to the beginning of the table, Newton’s forward interpolation

formula is used.
Let x=142, x,=140, h=10
Lo XX 142-140

h 10
Difference Table

0.2

140 3685
\

1169
150 4854 T 279

1448 T 47

\

160 6302 326 2

1774 49 —
170 8076 375 —

/

2149
180 1022/

By Newton’s forward interpolation formula,

r(r—=1)

r(r=D(r-2) 3
21 A

3! 0
N r(r=10)(r-2)r-3) A4y
4!
0.2(0.2-1) 0.2(0.2-1)(0.2-2)

P(142) = y(142) = 3685+ 0.2(1169) + == ——(279) + 5 (47)

A2y0 +

Y(xX) =y, +1Ay, +

0+...

, 02(02-1)(0.2-2)(0.2-3)
41
=3685+233.8—-22.32+2.256—0.0672
=3898.6688

2
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Since x = 175 is near to the end of the table, Newton’s backward interpolation formula
is used.
x=175, x,=180, h=10
x—x, 175-180
h 10

By Newton’s backward interpolation formula,

-0.5

WX =y, +1Vy, + r(r-:-l) szn N r(r+ 1)$r+2) v

n

r(r+ 1).(r +2)(r+3)

" 4!

(-0.5=0.5+1)
21

V4yn+...

PA75) = y(175) = 10225+ (=0.5)(2149) + (375)

+ (—0.5)(—6.5 +1)(-0.5+2)

N (49)
, (C05)0.5+ 1)(;(').5 +9C05+3) o
=10225-1074.5—46.875—3.0625—0.0781

=9100.4844

Example 4
The population of a town is given below. Estimate the population for the
yvear 1895 and 1930 using suitable interpolation.

Year 1891 1901 1911 1921 1931

Population ) 46 66 81 93 101
(in thousand)

[Summer 2015]

Solution

Since x = 1895 is near to the beginning of the table, Newton’s forward interpolation
formula is used.

Let x=1895, xy= 1891, h=10
_ 1895-1891 _

X—X
r: 0 =

h 10

0.4
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Difference Table

1891 46

\ 20 \
1901 66 -5 \
15 2 ~
1911 81 -3 / -3
12 - -1
1921 93 / -4
/ 8
1931 101
By Newton’s forward interpolation formula,
r(r—1 r(r—=1)(r-2)
Y(x) =y, +1Ay, + (2' )A2y0+ Y A3y0
N r(r=0D(r-2)r-3) A4y0 e
4!
4(0.4—-1 4(0.4-1)(04-2
y(1895) =46+0.4(20) + 0 (02' ) -5+ 0.40 3')(0 ) 2)
+ 0.4(0.4-1)(0.4-2)(0.4-3) (=3)

41
=46+8+0.6+0.128+0.1248

= 54.8528 thousands

Since x = 1930 is near to the end of the table, Newton’s backward interpolation formula
is used.

Let x=1930, x,=1931, h=10
_x—x, 1930-1931 _
o 10 a

-0.1

By Newton’s forward interpolation formula,

r(r+1) szn N r(r+1)(r+2)
2! 3!
N r(r+1)(r; 2)(r+3) v

y(x)=y,+rVy, + V3yn

yn+...
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$(1930) = 101+ (—0.1)(8)+ (—0.1(;?.1+1) (d)+ (—0.1)(—0.1;1)(—0.1+2)
N (-0.D(-0.1+ 1)(;?. 1+2)(-0.1+3) (=3)
=101-0.8+0.18+0.0285+0.062
=100.4705 thousands

(=D

Example 5

In the table below, the values of y are consecutive terms of a series of
which 23.6 is the sixth term. Find the first and tenth terms of the series:

X 3 4 5 6 7 8 9
y 4.8 84 145 236 362 528 739

To find the first term, Newton’s forward interpolation formula is used.

Solution

Let x=1,xy=3,h=1

5 145 3 T 0
9.1 05
6 236 35 0
12.6 05
7 36.2 4 0
/
16.6 05
/
8 528 45
21 1/
/ .

9 73.9
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By Newton’s forward interpolation formula,

r(r=1) rr=1D(r-2
y(x)=yo+rAyy + (2‘ A%y, +%A3yo Fo
-2)(-3 2)(-3)(—4
y1)=4.8+(-2)(3.6)+ - )( )(2 5)+()(3¢(0 5)
=4.8+72+7.5-2
=3.1
To find the tenth term, Newton’s backward interpolation formula is used.
Let x=10,x,=9,h=1
_x—x, _10—9_1
h 1
By Newton’s backward interpolation formula,
y(x)=y, +rVy, + (r+1)V2 WVS)@,+
12 12
y(10)=73.9+1(21. 1)+Q(4 S5+ ( 3)(3) 0.5)
= 73.9+21.1+4.5+0.5
=100
EXERCISE 4.2

. Find tan 67° 20’ from the table:

67° 68° 69°
EONCAN 2.1445  2.2460 2.3559 2.4751 2.6051 [Ans.: 2.3932]

2. Find (5.5)3 from the following table:

X 3 5 7 9 11
y=x 27 125 343 729 1331 [Ans.: 166.375]

3. Calculate e'®° from the following table:

1.9 2 2.1 2.2 2.3
5.474 6.050 6.686 7.389 8.166 9.025 9.974 [Ans.: 6.36]

4. Find \/; at x=2.52 and x = 2.62 from the table:

X 2.5 2.55 2.6 2.65 2.7 2.75
Jx 1.58114 1.59687 1.61245 1.62788 1.64317 1.65831

[Ans.: 1.58745, 1.6186]
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The values of specific heat (C,,) at constant pressure of a gas are tabulated
below for various temperatures. Find the specific heat at 900°C.

Temperature °C 500 1000 1500 2000
C, 31.23 35.01 39.18 43.75 [Ans.: 34.223]

P and V are connected by the following data:

vV 10 20 30 40
P 1.1 2 4.4 7.9
Determine P when V =25 and V = 45. [Ans.: 3.0375, 9.9375]

Find the number of persons getting wages less than 315 from the following
data:

Wages in 0-10 10-20 20-30 30-40
Number of persons 9 30 35 42 [Ans.: 24]

Find the number of students getting marks less than 70 from the following
data:

Marks 0-20 20-40 40-60 60-80 80-100
Number of students [EEEY| 62 65 50 17 [Ans.: 196]

From the following table, estimate the profit in the year 1925.

Year 1891 1901 1911 1921 1931
Profit in lakhs |21 66 81 93 101 [Ans.: % 96.8365 lakhs]

Find the polynomial of degree three which takes the same values as
y=2"+2x+1atx=-1,0,1, 2.

{Ans.: %(x3 +3x% +32x + 24)}

Obtain the cubic polynomial which takes the values

X 0 1 2 3

v K 2 1 0
and, hence, find f(4). [Ans.: 2x°- 7% + 6x + 1, 41]
Find a polynomial of degree 4 which takes the values

X 2 4 6 8 10

" o 0 1 0 0

{Ans. : 6l4(X4 —24x® +196x* — 624x + 640)}
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13. Given u; = 40, u; = 45, us = 54, find u, and u,. [Ans.: 42, 49]
14. Giveny, =3, y, =12, y, =81, y; =200, y, = 100, y5 = 8. Without forming
the difference table, find A5y0. [Ans.: 755]

15. Find the polynomial of least degree passing through the points (0,-1),
(1)1)) (271)) and (3l_2)

[Ans.: - %(x3 +3x% —16x + 6)}

4.7 CENTRAL DIFFERENCE INTERPOLATION

Central difference interpolation formulae are used for interpolation near the middle
of the tabulated values. If x takes the values x, — 2h, x, — h, x, X, + h, xy + 2h and the
corresponding values of y = f(x) are y_,, y_;, ¥y, ¥, ¥, the difference tables in the two
notations are given as follows:

First Second Third Fourth
Difference Difference Difference Difference
Xo—2h Yoo
Ay, = Sy 3
2
Xg—h Yo Ay ,=8y,
Ay =8y Ay, =8,
2 2
Xo Yo Ay =8, Aly, =6,
Ayp =6y, Ay =8,
2 2
Xo+h i Ay, = 8%,
Ay, =0y 3

Xo+2h Vs
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4.8 GAUSS’S FORWARD INTERPOLATION FORMULA

By Newton’s forward interpolation formula,
-1 -D@r-2

reoD o re=DE=D) s
2! 3!

+r(r—1)(r—2)(r—3) A4y
4!

A2y0 +

Y, =Yo trAy, +

X=X
where r= 0

A’y =A% Ey =A*(1+A)y =A%y +A’y
Ay, =A Ey =A’(1+A)y =Ny  +A%y
A4y0 =A* Ey_ = A1+ Ay = A4y_1 + Asy_1
Also, Ay =Ny, +A%y,
A4y_1 = A4y_2 + Asy_z, etc.
Substituting the values of A2y0 A3y0, ...in Eq. (4.3),

r(r—1 r(r—=1D)(@r-2
Ve =Yo7 Ay + (2, )(Azy_1+A3y_1)+%(A%_l%“yq)
+r(r—l)(r—2)(r—3)
4!

o e

(4.3)

(44
. (4.5)
. (4.6)

(4.7

(A*y [ +A°y )+

[Using Eqs (4.4), (4.5), and (4.6)]

r(r—=1)(r-2) A3

3
Ayt 3!

= Yo +rAy,+

r(r=1) A2 _1+|:r(r—1)
2! 2!

+|:wA4y_l fLEZDEDOZY fay +}
r(r—1) r+D)r(r-1
=y +7r Ay, + AZY—1+—A3y_1
2! 3!
LEDre=De=2) pap
4!
r(r=1) (r+Dr(r-1
=y +7r Ay, + 21 AZY—1+—A3y_1
! 3!
r+)r(r=1)(r-2
+( ( ( )(A4y_2+A5y_2)+“'
4!
[Using Eq. (4.7)]
:}’o+rAyo+r(r_yl) A? —l+wA3y

3! -
+ (r+1)r(r4—'1)(r—2) A4

y_2+...

.

(4.8)
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Equation (4.8) is known as Gauss’s forward interpolation formula.
Corollary 1In the central difference notation,

r(r—1) (r+Dr(r-1)

2 : 2

(r+Dr(r-1)(r-2)

4' 64y0+...

Notes

(1) This formula involves odd differences below the central line and even differences on
the central line.

Yo AZ)L1 A4y72 A6y73
\ / \ X e \ S e \ ;
Ay Ay, Ay

Ay,

Central line
3

(i) This formula is used to evaluate the values of y for r between 0 and 1.

Example 1
Find y(32) from the following table:
25 30 35 40

0.2707 0.3027 0.3386 0.3794
Solution
Let x=32,x,=30,h=5

poXt 32230 4,
h 5

Central Difference Table

30 0 0.3027 0.0039

35 1 0.3386 0.0049
0.0408

40 2 0.3794
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By Gauss’s forward interpolation formula,
r(r—1)

r+D)r(r-1
Y(x)=y,+rAy, + Y Azy_1 +()3#A3y_1 +---
¥(32) =0.3027+0.4 (0.0359)+%(0.0039) 047 1)(%?)(0'4 =D 0.0010)
=0.3027 + 0.0144 —0.0005—0.0001
=0.3165
Example 2

Use Gauss’s forward interpolation formula to find y(3.3) from the
following table:

1 2 3 4 5
15.3 15.1 15 14.5 14
Solution
Let x=33,xy=3,h=1
Lo XX 33-3 —03
h 1

Central Difference Table

-0.2
2 -1 15.1 0.1
0.1 0.5
3 0 15 \ /—04\ / 0.9
0.5 0.4
4 1 14.5 0
-0.5
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By Gauss’s forward interpolation formula,

-1 1 -1
Y(xX)=yy+rAy,+ r(rz‘ ) Azy_1 +%A3}L1
N (r+1)r(r4—‘ H(r-2) A4y_2 e
¥(3.3) =15+0.3(-0.5) +% 0.4+ ©3+1) (03'?) ©3-D 0.4)
. (0.3+l)(0.3)(2.'3—1)(0.3—2) 0.9)
=15-0.15+0.042 -0.0182 + 0.0174
=14.8912
Example 3

Find the polynomial which fits the data in the following table using
Gauss’s forward interpolation formula.

3 5 7 9 11
6 24 58 108 174
Solution
Let xo=7.h=2

18
5 -1 24 16
34 0
7 0 58 16 0
\ - / \ .
9 1 108 16
66

11 2 174
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By Gauss’s forward interpolation formula,
r(r=1)
2!

x—=17 1({x=7\ x=7
_58+( 2 )(SO)+5( 2 )( 2 _lj(lé)

=58+425(x—=7)+2(x—=7)(x—9)
=58+25x—175+2x* =32x+126

=2x>—7x+9

A2y71 +-..-

Y(X)=yy +rAy, +

4.9 GAUSS’S BACKWARD INTERPOLATION FORMULA

By Newton’s forward interpolation formula,

r(r—l)Az +r(r—1)(r—2) A3y

Y, =Yo+rAy,+ X Yo 3 0
“D(r=2)r-
AU )(r4' =3 ey 49
where r= %
h
Ayy=AEy_ =A(l + A)y_ = Ay, + A%y ..(4.10)
Nyo= Ny + Ay (411
Nyy=ANy  + A%y (412)
Alyg =AYy + Ay, (4.13)
Also, Ay =Ny, + Ay,
Ay =AYy, + Ay, ete. (414)
Substituting the values of Ay, A%y, A%y, .... in Eq. (4.9),
-1
y,=yot+r(Ay_ + Azyfl) + r(rz' ) (Azyfl + A3)’71)
-D(r-=-2 r(r=D)r-2)(r-3
+ % Ay + A%y )+ (r—1X n )r=3) Ay + A%y )+

[Using Eqs (4.10), (4.11), and (4.12)]

(r+hr
=y, +rAy_+ 2‘) Azy

- 31 41

+(r+1)r(r—1)A3y +(r+1)r(r—1)(r—2) A4y1

+ r(r—=1)(r-2)(r-3) Asy_

41

l+ e



4.9 Gauss’s Backward Interpolation Formula 4.45

=yo+rAy_ + (r;l)r Ay + (r+1);(r—1) @&y, +4a%y,)
+(r+1)r(r4—!1)(r—2) Aty , +A%y ) +....
[Using Eq. (4.14)]
=y, +rAy_ + (r;l)r Ay, +w Ay,
+(r+2)(r:!1)r(r—1) Aty 4 (4.15)

Equation (4.15) is known as Gauss’s backward interpolation formula.
Corollary 1In the central difference notation,

Y, =Y +r5y_l 52 (r+1):;(r_1)63y_1+(r+2)(r:'1)r(r_l)

2 2

(r +1)r

8 yy+ ...

Notes

(i) This formula involves odd differences above the central line and even differences
on the central line.

Ay Asy 3

W Ny / \A 7N

3 Central line

(i1) This formula is used to evaluate the values of y for » between —1 and 0.

Example 1

Using Gauss’s backward interpolation formula, find the population for
the year 1936 given that

Year (x) 1901 1911 1921 1931 1941 1951
Population in thousands (y) 12 15 20 27 39 52

Solution
Let x=1936, x,=1941, h =10

XX :1936—1941:_0‘5
h 10
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Central Difference Table

1901 -4 12
3
1911 -3 15 2
5 0
1921 -2 20 2 3
7 3 -10
1931 -1 27 5 -7
12 -4
1941 0 39 / \ 1 /
13
1951 1 52

By Gauss’s backward interpolation formula,

(r+Dr
2!

(r+hr(r-1) Al
3!
D+ (-0.5+1) (—;)'.5)(—0.5 )

Y(x)=y,+rAy_ + A2y_1 + Vo e

y(1936) =39+(=0.5)(12)+ -4

(=0.5+1)(=0.5)
!

=39-6-0.1250-0.25
=32.625 thousands

Example 2
Find y(2.36) from the following table:

x 1.6 1.8 2 22 24 26
y 495 605 739 903 11.02 13.46
Solution

Let x=236,xy=24,h=02

X—xy 236-24
h 0.2

-0.2

r=
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Central Difference Table

4.47

1.6 -4 495
1.1
1.8 -3 6.05 0.24
1.34 0.06
2 -2 7.39 0.3 -0.01
1.64 0.05 0.06
2.2 -1 9.03 0.35 0.05
1.99 0.1
24 0 11.02/ \0.45/
2.44
2.6 1 13.46
By Gauss’s backward interpolation formula,
r+r r+Dr(r—1
Y(x) =y, +rAy_ + ( 2') Azy_l +()3#A3y_2 +eee
$(2.36) = 11.02 +(=0.2)(1.99) +(—°-2+2M(0. 45)+ 02+ 1)(—2;2)(—0_2 Do)
=11.02-0.398-0.036+0.0032
=10.5892
Example 3
From the following table, find y when x = 38.
X 30 35 40 45 50
y 15.9 14.9 14.1 13.3 12.5
Solution
Let x=38, x,=40, h=5
XX 38 -40 —_04
h 5



4.48  Chapter 4 Interpolation

Central Difference Table

30 -2 15.9
-1
35 -1 14.9 0.2
-0.8 \ /, -0.2 \
40 0 14.1 / 0 0.2
-0.8 0
45 1 133 0
-0.8
50 2 12.5

By Gauss’s backward interpolation formula,
+ F+2)(r+Dr(r-1) X

+1 +1 -1
y(x)=Yy, +rAy_1+(r Y s A? _1+(r );r )A3y_2 i Y+
¥(38) =141+ (0.4)0.8) + T2 +21|)(_0‘4) )+ 04 1)(_2;4)(_0'4 D02
+ (-04+2)(-04 +41')(—0.4)(—O.4 -1 02)
=14.1+0.32+ 0 - 0.0112 + 0.0045
=14.4133
4.10 STIRLING’S FORMULA
By Gauss’s forward interpolation formula,
¥, = o +r Ay + r(r—1) A2 L+ (r+r(r-1) Al ,
2! 3!
LD =D 022 pay L .(4.16)

4!
By Gauss’s backward interpolation formula,

Y, =Yg t+rlAy, +_(r+l)r AZ)’A"'MA3
2! 3!
+(r+2)(r+1)r(r—1)A4y_2+... (4.17)

41

-2
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Adding Eqs (4.16) and (4.17) and then dividing by 2,

2
roo.2
oAt

Ay_ +A
yr = yO +r( y_l yo]

r(r2=1) (A3y2 +A%y, J
2

2,2
+r (r 1)A4

1 Y+ ...(4.18)
Equation (4.18) is known as Stirling’s formula.
Corollary 1In the central difference notation,
2 2,12 2,2 12
r r(r-+17) rr(r -1
e R Ly ey L e VR (S

1 1
E(Ay_] +Ayo)25[5y1 +5J’_1J:.‘15.V0
2 2

1 1
E(A3y_2 +A3y_1) 25[63y1+53y1}:,u53y0, etc.
2 2

Notes

(i) This formula involves means of the odd differences just above and below the
central line and even differences on the central line.

A A’
YO[ y—lj...A2y_l... r-2 ---A'y_, ---Central line
3
Ay, Ay

(i1) This formula gives fairly accurate values of y for » between —0.25 and 0.2 but
can be used for r between —0.5 to 0.5.

Example 1
Using Stirling’s formula, estimate the value of tan 16°.

x 0° 50 10° 15° 20° 250 30°
y=tan x 0 00875 0.1763 02679 03640 04663 0.5774
Solution
Let x=16°x,=15° h=5°

x—x, 16°-15°
h 5°

0.2

r=
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0.0875
5° -2 0.0875 0.0013
0.0888 0.0015
10° -1 0.1763 0.0028 0.0002
0.0916 0.0017 —0.0002
15° 0 0.2679 0.0045 0 0.0011
0.0961 0.0017 0.0009
20° 1 0.3640 0.0062 0.0009
0.1023 0.0026
25° 2 0.4663 0.0088
0.1111

30° 3 0.5774

By Stirling’s formula,

Ay_, +A 2 2D Ay, +A°
y(x)=y0+r( y—12 yoj+V_A2y G )( Yot Ay,

21 ! 31 2

N P2 (2 =1) Ay, r(2 =12 —4) (Asy_3 +A%y, J
41 51 2
. - é)'(rz —4) A6

(0.0916 + 0.0961)+ 0.2)
21

y_3+...

¥(16)=0.2679+0.2 (0.0045)

2 p—
L (02)(0.22-1)(0.0017+0.0017)

3! 2
. (0.2)(0.22 =1)(0.2> - 4) (—0.0002 + 0.0009)

5! 2
. 0.2)%(0.22 =1)(0.2* - 4)
6!
=0.2679+0.0188+(9%x107°)—(5.44x107)
+0+(2.2176 x107°)+(2.3232x1077)
=0.2867

(0.0011)
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Example 2
Employ Stirling’s formula to compute y (35) from the following table:

X 20 30 40 50
y 512 439 346 243

Solution
Let x=35, x,=30, h=10
_Xx—xy 35-30
h 10

Central Difference Table

20 -1 512

30 0 / \
\ / \ o
40 1 346 ~10
~103
50 2 243

By Stirling’s formula,

Ay_ +A 2 2o Ay, +A°
y(x)=y0+r( y_12 yo)+%Azy_l+r(r ) y_22 v,

3!
(—73—93) (05) 05(0.52—1)(2)
2

3! 2

¥(35) = 439+0.5 (=20)+

=439-41.5-2.5-0.3125
=394.6875

Example 3

Let f(40) = 836, f(50) = 682, (60) = 436, f(70) = 272. Use Stirling’s
formula to find f(55).

Solution

Let x=55, x,=50, h=10
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Central Difference Table

60 1 436 -82

—-164

70 2 272

By Stirling’s formula,

( Ay_; + Ay, )+ P2 A2 r(r2 -1 (A3y_2 + A3y_1 ]4_

y(x) =y, +r o v+ 3 >
2 2
y(55)=682+0.5( 154 246)+(O'5) (—92)+w(ﬂ)
2 2! 3 2
—682—100—11.5—5.4375
— 565.0625
Example 4

Using Stirling’s formula, find y(25) from the following table:

x 20 24 28 32
y 0.01427 0.01581 0.01772 0.01996
Solution

Let x=25 xy=24, h=4

X—xy 25-24
h 4

=0.25

r =



Central Difference Table

4.10 Stirling’s Formula 4,53

20 -1
24 0
28 1

32 2

By Stirling’s formula,

y(x) =Yy tr

[ Ay_, + Ay, j r?
2

0.01427
0.00154
0.0158 l/r \‘0.00037
\?).00191/' \50.00004
0.01772 0.00033
0.00224
0.01996

+—A%y |+

r(r? —1)(A3y_2 +A3y_1 )4_
2!

3! 2

2
)m25)=(101581+4125((100154+4l00191)+-«lif) (0.00037)
+(125«1252—1)(—000004)
3! 2
=0.01581+4.3125x107* +1.15625x 107> +7.8125% 107"
=0.01625
Example 5
Find the value of y(1.63) from the following table using Stirling’s
formula:
1.6 1.7 1.8 1.9
17.609 20412  23.045 25527 27.875
Solution
Let x=163, xy=16, h=0.1

x—x, 163-16

0.3

h 0.1
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Central Difference Table

1.7 1 23.045 -0.151 —-0.002
2.482 0.017

1.8 2 25.527 —-0.134
2.348

1.9 3 27.875

By Stirling’s formula,

y(x)=Y, +r(—Ay‘1;Ay° )+r2—2!A2y_1 + r(r;_l) [A3y—2 ;A3y—1 J+
(2.803 + 2.633)+ 0.3)°
21
. 0.3(0.3% =1) (0.019)
3! 2
=20.412+0.8154-7.65x107> —4.3225x107*

=21.2193

¥(1.63) = 20.412+0.3

-0.17)

EXERCISE 4.3

1. Use Gauss’s interpolation formula to find y,.
X 5 10 15 20 25
/A 26.782 19.951 14.001 8.762 4.163
2. Find e7*% by Gauss’s forward formula.

X 1.72 1.73 1.74 1.75 1.76
88 0.17907 0.17728 0.17552 0.17377 0.17204

[Ans.: 12.901]

[Ans. : 0.17508]



4.11 Interpolation with Unequal Intervals 4.55

. Find f(25) given f(20) = 14, f(24) = 32, f(28) = 35, and f(32) = 40 using
Gauss’s formula.
[Ans.: 33.41]

. Apply Gauss’s backward formula to find the population in 1926.

Year o 1911 1921 1931 1941 1951
Population in lacs vy 15 20 27 39 52
[Ans.: 22.898 lacs]
. Apply Gauss’s backward interpolation formula to find sin 45°.

x° 20 30 40 50 60 70
SOPE 0.34202 0.50200 0.64279 0.76604 0.86603 0.93969

[Ans.: 0.705990]

. Use Gauss’s backward formula, find f(5.8) given that f(x) is a polynomial
of degree four and f(4) = 270, f(5) = 648, A f(5) = 682, A2f(4) = 132

[Ans.: 1163]
. Using Stirling’s formula, find y (5) from the following table:
X 0 4 8 12
14.27  15.81 17.72 19.96
[Ans.: 16.25]

. Find +/1.12 using Stirling’s formula from the following table:
X 1.0 1.05 1.10 1.15 1.20 1.25 1.30
b4l 1.00000 1.02470 1.04881 1.07238 1.09544 1.11803 1.14017

[Ans.: 1.05830]
. Use Stirling’s formula to find tan 89° 26" from the table:

X 89° 21" 89°23" 89°25" 89°27" 89° 29
tan x 88.14 92.91 98.22  104.17 110.90

[Ans.: 101.107]

4.11 INTERPOLATION WITH UNEQUAL INTERVALS

If the values of x are unequally spaced then interpolation formulae for equally spaced
points cannot be used. It is, therefore, desirable to develop interpolation formulae for
unequally spaced values of x. There are two such formulae for unequally spaced values
of x.

(1) Lagrange’s interpolation formula
(i) Newton’s interpolation formula with divided difference
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4.12 LAGRANGE’S INTERPOLATION FORMULA

Let y = f(x) be a function which take the values y,, y;, 5, ..., ¥, corresponding to
X =X, X1, Xy, ..., X,. Since there are (n + 1) values of x and y, f(x) can be represented
by a polynomial in x of degree n.

y=f)=as(x—x) (x—x)) ... (x—x,) +a; (x—xp)) (x—xp) ... (x—x,) + ...
+a,(x—xp) (x—x) ... (x—x,_)) ...(4.19)
where a, a,, a,, ..., a, are constants.
Putting x = xy, y =y, in Eq. (4.19),
Vo = agy (Xg—x) (xg—xp) ...(xg — x,,)
Yo
(xg —x)(xg —x5)...(xy — x,,)

ag =

Similarly, putting x = x;, y =y, in Eq. (4.19),

N1
(= x0) (X —x5) ... (X — %)

a =

Proceeding in the same way,

- In
- (x, = x)(x, —x) oo (X, = x,_)

a,

Substituting the values of ay, a,, a, ..., a, in Eq. (4.19),

(x=x)(x—xy)...(x—x,) y (x=xp)(x=x5)...(x—x,)
(xg = x)(xg = x3)...(xg — x,,) 0 (e = x0)(x = x5) ... (x; — x,,) '
(x=xo)(x=x)...(x=x,_)

(x, = xp)(x, —x7)...(x, —x,_;)

f(x)=

.(4.20)

n

Equation (4.20) is known as Lagrange’s interpolation formula.

Note This formula can also be used to split the given function into partial fractions.
Dividing both sides of Eq. (4.20) by (x — xy) (x —x;) ... (x —x,,),

fx) _ Y [ 1 )
(x=xp)(x=x)..(x—=x,)  (xg—x)(x5 —X3)...(xg —x,) | x— X,

+ N [ 1 j+
(X = %) =X ). (= x ) x—x, )

e
(x, = x0)(x, —x)...(x, —x,_ )\ x—x,
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Example 1
Compute f(9.2) by using Lagrange’s interpolation method from the

following data:

X 9 9.5 11
fix) 2.1972 22513 2.3979

[Summer 2013]
Solution

By Lagrange’s interpolation formula,

(x—x)(x—x,) (x—xp)(x—x,)
+ —_— =
(xg =x)(xg — %) 7o) (x; = x)(x; —x5) 7
(x—xp)(x—x))
(x5 = x9)(xy —x;) ft)
9.2-9.5)(9.2-11) (2.1972)+ (9.2-9)(9.2-11) (2.2513)
(9-9.509-11 (9.5-9)(9.5-11)
9.2-9)(9.2-9.5) (2.3979)
(11-9)(11-9.5)

f(x)=

f092)=

=1.1865+1.0806—0.048
=2.2191

Example 2

Find the value of y when x = 10 from the following table:
X 5 6 9 11
e 12 13 14 16

Solution
By Lagrange’s interpolation formula,
(x—x)(x—2x,)(x—2x3) y (x =X )(x = X5 )(x — x3)
(xg —x) (xg —x) (xp — X3) 0 (e = X0 )(xy = x)(x; — x3) !
(x—=xp)(x—x)(x—x3) (x = x)(x = x )(x—x5)
() = xp) (X —x) (x5 — x3) g (x3 = x9)(x3 — X )(X3 — X;) :
_ (10-6)(10-9)(10-11) 12)+ (10-5)(10-9)(10—-11) (13)
5-6)(5-9)(5-11 6-5)6-9)(6-11)
(10-5)(10-6)(10—-11) (14)+ (10-5)(10-6)(10-9) 16)
9-50-6)(9-11 (11-5)11-6)(11-9)
=2-4.3333+11.6666+5.3333
=14.6666

y(x) =

y(10)
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Example 3
Compute f(4) from the tabular values given:

X 2 3 5 7
fx) 0.1506 0.3001 0.4517 0.6259

using Lagrange’s interpolation formula. [Winter 2012]

Solution

By Lagrange’s interpolation formula,

(x=x)(x—x,)(x—x3)
(xg = x;) (xg = X) (X9 — X3 (o = x0)(x; = x)(x) = x3)
(x=x5)(x—2x))(x—x3) Flx)+ (x = xp)(x—x)(x—x,)
(xxy —x9) (x5 = x) (x5 — X3) (3 = x)(x3 — x )3 — x5)
_@=3)@=-5@-7) (0.1506) + @-2)(@=-5¢4=-7 (0.3001)
(2-3)2-52-7) 3-23-53-7)
N 4-2)(4-3)4-T7) (04517)+ (4-2)4-3)4-5)
(5-2)(5-3)(5-7) (7-2)(7=-3)(7-5)
=-0.0301+0.2251+0.2259-0.0313
=0.3896

(x—=xp)(x =X )(x = x3)

fx)= )f(x0)+ f(x)

J(x3)

f(4)

(0.6259)

Example 4

Compute f(2) by using Lagrange’s interpolation method from the
following data:

X -1 0 1 3
fx) 2 1 0 -1
[Winter 2013, Summer 2015]
Solution
By Lagrange’s interpolation formula,
(x—x)(x—x)(x—x3) Flxg)+ (x = X )(x — x5 )(x — x3)

(xo_xl)(xo_xz)(xo_x3) (xl_xo)(xl _xz)(xl_x3)
(x=xp) (x—x)(x—x3) £+ (x=xp)(x—x )(x—x5)

(x5 —x0) (xy —x) (%, — x3) (3 = x9) (x5 — X1 )(x3 — x5)

fx)=

f(x1)

J(x3)
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@)= 2-0Q-D2-3) , C+h2-DC-3)
(=1-0)(=1=1)(=1-3) 0+1)(0-1)(0-3)
L 2+D2-0C-3) 0 +DR-02-D
A+1)(1-0)(1-3) B+1D)(3-0)3-1)
=0.5-1+0-0.25

=-0.75

)

Example 5

By using Lagrange’s formula, find y when x = 10.
x 5 6 9 11
y 12 13 14 16

[Summer 2015]

Solution
By Lagrange’s interpolation formula,
(x—x)(x—x)(x—x3) (x = X )(x — x5 )(x — x3)
(x() _xl)(xo _xz)(xo _x3) 0 (x1 _xo)(xl _xz)(xl _x3)
(x=xp) (x—x)(x—x3) n (x = xp )(x —x ) (x—x)
(x5 —x0) (%3 —x) (%, — x3) ? (x5 = x0)(x3 = x;)(x3 = x,) }
_ (10-6)(10-9)(10-11) 12)+ (10-5)(10-9)(10-11) (13)
5-6)5-9)(G5-11) (6-5)6-9)6-11)
(10-5)(10-6)(10—-11) (14)+ (10-5)(10-6)(10-9) (16)
9-5(09-6)(9-11) (11-5)(11-6)(11-9)
=2-4.3333+11.6667 +5.3333
=14.6667

1

y(x)=

y(10)

Example 6
Evaluate f(9) by using Lagrange’s interpolation method from the
following data:

X 5 7 11 13 17
fx) 150 392 1452 2366 5202

[Summer 2014]
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Solution

By Lagrange’s interpolation formula,
Fl)= (x=x)(x=x) (x=x3)(x—x4)
(% = xp) (xg = x) (xg = X3)(xp — X))
(x=xp)(x =X )(x = x3)(x — x4)
(o = x0)(x; = X5)(x) = 23)(x) = x4)
(x=xp) (x—x)(x—x3)(x—x4)
(x5 —x0) (0 = x) (o3 = x3)(x5 —xy)
(x=x)(x—x)(x—x)(x—x4) Fxy)
(o3 = X9 )(x3 = 2 )(x3 = X )( o3 — X))
(x = x0)(x — x )(x — x5 )(x — x3)
(g = X0 )(xy — X ) (x4 — X5 )(X4 — X3)
_O-71O-1D(O-13)9-17)
B B=-7(GE-11)(5-13)(5-17)
N 9-50-1D)O-13)(9-17) (392)
T-57-11)(7-13)(7-17)
9-50-70-13)09-17)
11=-5A1-7A1-13)A1-17)
©-50-709-1H0O-17)
(13-513-7(13-11)(13-17)
9-50-79-11)(9-13)
17-517-7)A7-11D)(17-13)
=—16.6667 +209.0667 +1290.6667 — 788.6667 +115.6
=810

f(xo)

f(x1)

f(xz)

f(x4)

)

(150)

(1452)

(2366)

(5202)

Example 7

Determine y(12) by using Lagrange’s interpolation method from the
following data:

X 11 13 14 18 20 23
y 25 47 68 82 102 124

[Winter 2014]
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Solution

By Lagrange’s interpolation formula,

(=2 (x—=2,) (x = x3)(x — x4 )(x — X5)
(xg = 21) (X9 = X) (xg = x3)(xg — X4 )(Xg — X5) ’
(x=xp)(x = x5)(x = x3)(x — x4 )(x — X5)
(3 = x) (1 = 4)(3 = 23)(xy =)0y = 5) ™!
(x—2xp) (x—x) (x = x3)(x — x4 )(x — X5)
(x5 = x) (% = x) (o0 — 2x3)(x5 — x4 )(2y — X5)
(=X )(x = x )(x = x5 )(x — x4 ) (X — X5)
(o3 = X9 )(x3 = 2 )(o3 = X )(x3 = 204 )(x3 — X5)
(x = X )(x — x )(x = X )(x — 23 )(x — x5)
(g = %)y = 2)(Xy = X,) (g = X3)(xy = x5)
(=X )(x = x )(x = x5 )(x — x3)(x — x)
(5 =205 = xp)(xs =2, )5 =43 )5 = 5,)
3(12) = (12-13)(12-14)(12-18)(12-20)(12-23) 25)
(11-13)(11-14)(11-18)(11-20)(11-23)
_(12-1D)(A2-14)(12-18)(12-20)(12 - 23)
B (13-1D)A3-14)(13-18)(13-20)(13—-23)
_(12-1D)(12-13)(12-18)(12-20)(12 - 23)
C(14-11)(14-13)(14—-18)(14 —20)(14 - 23)
_(12-1D(A2-13)(12-14)(12-20)(12-23)
C (18—11)(18—13)(18 — 14)(18 —20)(18 — 23)
_(12-11H)(12-13)(12-14)(12-18)(12 - 23)
(20-11)(20—13)(20—14)(20—18)(20— 23)
_(12-1D)(12-13)(12-14)(12-18)(12 - 20)
B (23-11)(23-13)(23—-14)(23-18)(23-20)
=5.8201 + 70.9029 — 55.4074 + 10.3086 — 5.9365 + 0.7348

y(x) =

2

3

(47)

(68)

(82)

(102)

(124)

=26.4225
Example 8
Find a second-degree polynomial passing through the points (0, 0),
(1, 1) and (2, 20) using Larange’s interpolation. [Summer 2015]
Solution
Let Xy =0, x=1, x=2

flx)) =0, flx)=1, fix) =20
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By Lagrange’s interpolation formula,

(on)a=xy) ) o))
(X = x)(xg — X) (X = xp)(x; —x3)
(x—xp)(x—x)
+—
(=3
_ (x—=D(x=2) (0)+(x—0)(x—2) (1)+(x—0)(x—1) 20)
(0-1)(0-2) (1-0)(1-2) 2-0)2-1)
=0—-x(x=2)+10x(x-1)

=9x* —8x

fx)= f(x)

Example 9

Using Lagrange’s interpolation formula, find the interpolating
polynomial for the following table:

0 1 2 5

2 3 12 147

)

By Lagrange’s interpolation formula,

Solution

(x=x)(x—x)(x—x3)

(xg = x1) (xg = x) (X = x3

(x = xp)(x—x,)(x = x3)
() = 2x0)(xy = x5 )(xy — x3)
(x=xp) (x—x)(x—x3) (x=xp)(x—x)(x—x5)
(xy = X)Xy — X)) (x5 — x5 (3 = x0)(x3 = x )5 — x5)
_ (x—l)(x—z)(x—S)(2)+ (x=0)(x=2)(x-5) 3)

0O-1)(0-2)(0-5) 1-01-2)1-5)
(x=0)(x—D(x=5) 12)+ x=0)(x—-1)(x-2)
2-02-1HR2-5) B-0)(5-DH(5-2)
_ (x—l)(x2—7x+10)+3x(x2—7x+10) +2x(x2—6x+5)+49x(x2—3x+2)
-5 4 -1 20
{—4(;;3 —8x% +17x—10)+ (15x° —105x> +150x) }

fx)= )f(xo)+ Jxp)

)f(x2)+ f(x3)

(147)

—2002x> = 12x% +10x) + (49x> —147x* +98x)
20

_20x7 +20x% —20x +40
20

=0+ —x+2
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Example 10
Find the Lagrange interpolating polynomial from the following data:

X 0 1 4 5
§169) 1 3 24 39
Solution
By Lagrange’s interpolation formula,
(x=x)(x—xy)(x—2x3) (x =X )(x — x5 )(x — x3)
= +
1) (x() _xl)(xo _xz)(xo _x3) f(XO) (xl _xo)(xl _xz)(xl _x3)

(x=xp) (x—x)(x—x3) (x=xp)(x—x )(x—x5)

(x5 =x0) (0 = x) (%, — x5 (03 = x9) (x5 — X )(x3 — x3)

f(xl)

f(x3)

)f(x2)+

_ (x=D(x—-4)(x-5) M+ (x=0)(x—4)(x-5) 3)
O-1(O0-4)(0-5) 1-0)1-4)(1-5)
+ (x=0)(x—D(x-=5) 24+ (x=0)(x—=D)(x—-4) (39)
“4-0)4-DHHE-5) B-0)(5-D(5-4)
__ (x=D(x-4)(x-5) + x(x—=4)(x-=5)
20 4
39x(x—-1)(x—4)
20
71027 +29x-20 | x’ — 9% +20x
20 4
39(x® —5x% +4x)
20

=2x(x—-D(x-5+

—(2x* =12x% +10x) +

1
= %(3;9 +10x> +27x+20)

Example 11
Use Lagrange’s formula to fit a polynomial to the data:

x -1 0 2 3
y 8 3 1 12

and hence, find y(2).



4.64  Chapter 4 Interpolation

Solution
By Lagrange’s interpolation formula,

(x=x)(x—x)(x—x3) N (x—=xp)(x=x)(x = x3)
(xo _xl)(xo _xz)(xo _x3) 0 (xl _xo)(xl _xz)(xl _x3)

(x=xp)(x=x)(x—x3) N (x=xp)(x—x)(x—x5)

y(x) = 1

(x5 —x0) (X —x) (%, —x3) 2 (23 = x9) (x5 — X1 )(x3 — x3) }

_ (x=0)(x-2)(x-3) (8)+(x+1)(x—2)(x—3)(3)
-1-0)(-1-2)(-1-3) 0+1)(0-2)(0-3)
(x+1)(x—0)(x—3)(1)+(x+l)(x—0)(x—2) 12)
2+D2-0)2-3) B+D3B-0)3-2)

| 2x(x=2)(x=3) | (A D(x=2)(x=3)

3 2
_%M+(x +D(x)(x—-2)

=%(2x3+2x2—15x+9)

y2)= %[2(8) +2(4)-15(2)+9]=1

Example 12
Express the given rational function as a sum of partial fractions:

_ 3x2 +x+1
T (x=D(x=2)(x=3)

y

Solution

Let  f()=3x"+x+1.
For x =1, x =2 and x = 3, the table is

X 1 2 3
JiOR 5 15 31
By Lagrange’s interpolation formula,
(xr=x)(x—x,) (x—xp)(x—Xx,)
R f(xg ) e f () +

f(x)=
(X9 —x)(xp — x3) (2 = X0 )X —x) (x5 = X0 )y —x7)

_(x=2)(x-3) (5)+ (x=D(x=-3) (15)+ (x=D(x~-2) (31)
(1-2)1-3) (2-12-3) (3-D3-2)

=%(x—2)(x—3)—15(x—1)(x—3)+%(x—1)(x—2)

(x—x)(x—x;)

f(xp)



4.12 Lagrange’s Interpolation Formula 4.65

- f
(x=D(x=2)(x-3)
__5 15 3l
T 2x=1) x-2 2(x-3)

Example 13

3x> —12x+11 ;
(x=D(x=2)(x-3)

using Lagrange’s formula.

Express the function s a sum of partial fractions

Solution

Let  f(x)=3x"—12x+11.
For x =1, x =2 and x = 3, the table is

N 1 2 3
N 2 -1 2

By Lagrange’s interpolation formula,

(x—x)(x—x,) (x—xp)(x—x;) (x—xp)(x—x;)

9= (xg = x;)(Xg — X7) TG+ (2 = X0 )(x; —x) sl (x5 = X0 )(xy —x7) f()
_(x=2)(x-3) 2)+ (x=D(x-3) (-1)+ (x=D(x-2) @)
(1-2)1-3) (2-D(2-3) (3-D(B-2)
=(x-2)x=-3)+(x-Dx=-3)+(x-D(x-2)
_ f(x)
Y G- D(x-2)(x-3)
1 1 1
= + +
x—1 x-2 x-3
Example 14

The following values of the function f(x) are given as f(1) =4, f(2) =5,
f(7) =5, f(8)=4. Find the value of f(6) and also the value of x for which
f(x) is maximum or minimum.

Solution

Tabular form of the data is
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By Lagrange’s interpolation formula,

f(x)=

(= x))(x = x,)(x — x3) (x = x5)(x =2, )(x — x3)
+
(xg = X)(xg = x5)(xg — x3) T (2 = X0 ) = X)(x; — x3) )
(x=xp)(x—x)(x—x3) Flo)+ (x=xp)(x—x)(x—x5)

(x5 = xp)(xy = X)Xy —x3) (x5 = x0)(x3 = x;)(x3 — x,)
_ (x=2)(x=7)(x—=18) @)+ (x=D(x=7)(x-38) 5)+ (x=D(x=2)(x—8) 5)
1-2)A-=7)(1-38) 2-D2-T7)(2-38) (7-1D(7-2)(7-3)

+ (x-D(x=2)(x=7) @
@-DB-2)8-17)

f(x3)

2 1
=—E(x3 —17x? +86x—112)+g(x3 —16x> +71x—756)

1 2
—g(x3—11x2 +26x—16) +E(x3—10x2 +23x-14)

1, 3 8
=——=X"+—-x+—
6 2 3
1 - 3 8 17
6)=——(6)" +=(6)+—=—
Q) 6() 2() 3= 3
For extreme values, fx)=0
1
——x+§=O
3 2
x=45
1
Also, )= -3 <0

Since f"(x) is negative, f(x) is maximum at x = 4.5.

Example 15

A body moving with velocity v at any time t satisfies the data

t 0 1 3 4

v 21 15 12 10
Obtain the distance travelled in 4 seconds and acceleration at the end
of 4 seconds.
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Solutions

By Lagrange’s interpolation formula,

B (=) —ty)(t—13) (t—t)t—1,)(t—13)
= VO+ Vl
(g =1ty =1))(1g —13) ~ (6 =1y)(t; —1,)(t; = 13)

(t_to)(t_tl)(t_t3) v (t_to)(t_tl)(t_tz)
(1 =1 )1, =1, )1, —13) ? (t5 —tg)t3 —1))(t; — 1)
_ (t=D(=-3)(t-4) (21)+(l—0)(t—3)(t—4) 15)
O-1)(O0-3)(0-4) 1-0(1-3)1-4)

N t=-0)-D@E—-4) (12)+ (#=0)—-D(E-3)
B-03-1)(3-4) 4-0)4-1)4-3)

V3

(10)
=%(—5t3 +387%2 =105t +252)

If s is the distance travelled in time ¢,

1
_ds — (=50 +381* —1051+252)
de 12

4
szjvdt
0

4
1
== j (=513 +38:2 —105¢+252)
0

1

_ 1| st 388 1051
12

4 3

+252t

0

=5 056428 64— 1% w16+ 1008
12| 4 3 2

=54.88
Hence, the distance travelled in 4 seconds = 54.88

v 1
a= =~ (<15* +761-105)
12

Attr=4,
a =£(—15x16+76><4—105)=3.416

4.67
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EXERCISE 7.4

1.

From the table given below, find y(x = 2).

X 0 1 3 4
1% 5 6 50 105

[Ans.: 19]

. Use Lagrange’s formula to find the velocity of the particle v = f(t) at

t = 3.5 from the following table:

t 0 1 2 3
1% 21 15 12 10

[Ans.: 8.75]
. Find f(27) from the following table:
X 14 17 31 35
f(x) 68.7 64.0 44.0 39.1
[Ans.: 49.3]
. Find f(6) from the following table:
X 2 5 7 10 12
it 18 180 448 1210 2028
[Ans.: 294]

. Find f(9) from the following table:

X 5 7 11 13 17
Jib9N 150 392 1452 2366 5202
[Ans.: 809.997]

. If yy = 4.3315, y, = 7.4046, v, = 5.6713, ys = 7.1154, find the curve

passing through these points. Hence, find y, and y,.
[Ans.: 5.1420, 6.3199]

. Iff(1)=3, f(2)=-5, f (-4) =4, find the three-point Lagrange’s interpolation

polynomial that takes the same values.

Ans.: —(—39x? — 123x + 252)
20



10.

11.

12.

13.

14.
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. A third-degree polynomial passes through the points (0,-1), (1,1), (2,1),

(3,-2). Find the polynomial.

{Ans.: %(—x3 —3x% +16x — 6)}

. If y = ag + a;x + a,x* + a;x° passes through the points

X 1 3 5 7
y 0 50 236 654
find ay, a4, a, and a;.

[Ans.: -4, 3, -1, 2]

Find the polynomial of degree 3 which takes the same values as
y=2+2x+1atx=-1,0,1, 2.

Ans.: i(x3 +3x2+32x + 24)
12

Find the polynomial which takes the values f(1) =1, f(2) =9, f(3) = 25,
f(4) =55, f(5) = 105.

[Ans.: x* — 2x* + 7x - 5]

Find f(x) from the following table:

0 2 3 6
il 659 705 729 804

{Ans. : %(— x* +29x* +1604x + 47448)}

Observe the following table:

X 1 3 4 6
3 9 30 132
Express f(x) as a third-degree polynomial in x. Also, find f’(x), f”(x) at
x=1.
[Ans.: x> - 3x* + 5x - 6, 2, 0]
Using Lagrange’s formula for unequal intervals, express the function
x* +6x -1
(x2 =1)(x —4)(x —6)

as a sum of partial fractions.

Ans.:

1.3 13 7
5(x —1) 35(x+1 10(x—4) 70(x—6)
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4.13 DIVIDED DIFFERENCES

In Lagrange’s interpolation formula, if another interpolation value is added then the
interpolation coefficients are required to be recalculated. To avoid this recalculation,
Newton’s general interpolation formula is used.

If (xg, o), (X1, ¥1), (X, y5) .... be given points then the first divided difference for x, x;
is defined by the relation,

i =
[Xg, X, 1= J1L 70
X~ X
Similarly, [x,, x,] = 22-21 etc.
Xy — X

The second divided difference for x;, x;, x, is defined as
[x]’ xz]_[xoax1]

Xy =X

[xo, x]axz]:

The third divided difference for x, x;, x,, x5 is defined as

[xl, X9, x}]_[-x()? X1» x2]

X3~ X

[x(), X1» Xo,s .X3] =

Notes

(1) The divided differences are symmetrical in their arguments, i.e., independent of the
order of arguments:

)’o+)’1

Xo~X% Y%

[xo,xl]:

= [xpxo]
Yo " B! " Yo
(xg =X )(xg —x3) (= xp)(x; —x5) (x5 —xp) (x5 — X7)

=[x, x5, X1 or [x;, Xg, x;]

[xo,xpxz]:

(ii) The n'™ divided differences of a polynomial of the n degree are constant.

Let the arguments be equally spaced so that x; —xy=x, —x;=... =x,—x,_;=h
Nn-Jy
[xg,x 1= —
X, =X,
Ay,
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[xy, 25 1 =[x, % ]

[xo,xl,x2]=
X2 =X
_ (A Ay
2h\ h h
I
= A
TS
In general,
L
[xg, X1, %y X, ] = —~A%y,
n'h

If the tabulated function is an n™ degree polynomial, A"y, will be constant. Hence, the
n'™ divided differences will also be constant.

4.14 NEWTON’S DIVIDED DIFFERENCE FORMULA

Let the function y = f(x) take values y,, y;, ¥,, ..., ¥, corresponding to x, x;, X, ..., X,
respectively. According to the definition of divided differences,

[x,xo]:m
X=X
Y=o+ (x—xp)[x,x] ..(4.21)
L, g0, ] = [, x01=1[xg, %]

X=X
[x, x0 1= [xg, % 1+ (x = x ) [ %, X, X ]
Substituting the value of [x, x,] in Eq. (4.21),
Y=Y+ (x —x) [xg, X1+ (x = x0) (x —x7) [x, X0, x;] ...(4.22)
[x, xg, % 1= [xg,X;, %5 ]

X=X,

Also,  [x, xg, X1, X,] =

[x, X, X1 = [xg, X1, X5] + (X —x) [x, X, X7, X5]
Substituting the value of [x, x,, x;] in Eq. (4.22),
Y=Y+ (x —x) [Xg, x;] + (x — x¢) (x —x)) [x, X}, X5]
+ (x —xp) (x —x)) (x — x5) [x, X0, X, X5]
Proceeding in the same manner,

Y=Y+ (x —x) [Xg, X1 + (x — xp) (x —x)) [x, X, X5]
+ (x = xp) (x —xp) (x — x5) [xg, X1, Xp, X3] + ...

+(x—xp) (x—xp) ... (x=x,_)) [x, xp, X, .. X, ...(4.23)
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Equation (4.23) is known as Newton’s general interpolation formula with divided
differences.

Example 1
If f(x)= l, find the divided difference [a, b] and |a, b, c].
X

Solution
Divided Difference Table

First Divided Second Divided
Difference Difference

11
b _a__1
b—a ab
1 1
1 _7+7
b n bc __ab =L
c—a abc
1.1
c b__1
c—b bc
1
c —
c
1
la,b]=——
ab
1
[a,b,c]=—

abc
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Example 2

Find the second divided difference for the argument x=1, 2,5, and 7 for
the function f(x) = x°. [Summer 2015]
Solution

Divided Difference Table

First Divided  Second Divided Third Divided

Difference Difference Difference
1 1
4-1
S
2-1
7-3
2 4 —=1
5-1
25-4
- = 7 0
5-2
5 25 12__7 =1
T7-2
49 —
9-25 -1
7-5
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Example 3

Find the third divided difference with arguments 2,4, 9, 10 of the function
f(x) = x° = 2x.

Solution

Divided Difference Table

First Divided Second Divided Third Divided

Difference Difference Difference
2 4
ﬂ:zs
4-2
131-26
=15
4 56 9_2
711—56=131 23—15=1
9—4 10-2
269 —131
——=23
9 711 10-4
980-711 — 269
10-9

10 980
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Example 4
Construct the divided difference for the data given below:
X -4 -1 0 2 5
fx) 1245 33 5 9 1335
[Summer 2015]

Solution
Divided Difference Table

Fourth Divided
Difference

Third Divided
Difference

Second Divided

Difference

First Divided
fx) Difference
—4 1245
33-1245 —_404
-1+4
-1 33
5-33 - 23
0+1
0 5
9=5_ 2
2-0
2 9
1335-9 — a0
5-2

5 1335

=94
0+4
10—94=_14
2+4
2+28=10 13+14=13
2+1 5+1
88—10=13
5+1
442 -2 _ g8
5-0
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Example 5

Complete f(9.2) from the following data by using Newton’s divided
difference interpolation formula.

X 8 9 9.5 11
fx) 2.079442 2.197225 2251292 2.397895

[Winter 2013]

Solution
Divided Difference Table

First Divided Second Divided Third Divided

Difference Difference Difference
8 2.079442
0.117783
9 2.197225 —-0.006433
0.108134 0.000411
9.5 2.251292 —-0.005200
0.097735
11 2.397895

By Newton’s divided difference formula,
Jx) = flxg) + (x — xp) [x, X1 + (x — xp) (x —x7) [Xg, X7, X,]
+ (x—xp) (x —x)) (x —xp) [xg, X7, Xy, X3]
f(9.2) =2.079442 + (9.2 - 8) (0.117783) + (9.2 - 8) (9.2 - 9) (—0.006433)
+(9.2-8)(9.2-9) (9.2-9.5) (0.00041)
=2.079442 + 0.141340 — 0.001544 — 0.000030
=2.219208

Example 6
Using Newton’s divided difference formula, compute f(10.5) from the

following data:
x 10 11 13 17
fx) 2.3026 2.3979 2.5649 2.8332

[Summer 2013]



Solution

Divided Difference Table
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First Divided Second Divided  Third Divided

Difference Difference

Difference

10

11

13

17

2.3026

2.3979

2.5649

2.8332

0.0953
-0.0039

0.0835 0.0002
-0.0027

0.0671

By Newton’s divided difference formula,
£ = Fxg) + (= xg) Dxgn 1] + (2 = %) (x = x) [xgs 37, 3,]
+ (x—xg) (x —xp) (x —xp) [xg, X7, Xy, X3]
f(10.5) =2.3026 + (10.5 —10) (0.0953) + (10.5-10) (10.5 - 11) (-=0.0039)
+(10.5-10) (10.5-11) (10.5 - 13) (0.0002)
=2.3026 + 0.0477 + 0.00098 + 0.00013
=2.3514

Example 7

Using Newton’s divided difference interpolation, compute the value of
f(6) from the table given below:

x 1 2 7 8
[Summer 2015]
Solution

Divided Difference Table

First Divided Second Divided  Third Divided

Difference Difference

Difference

4
> 5 2
3
1
0 _
14
7 5 1
6
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By Newton’s divided difference formula,
S ) = fxp) + (x = xp) [x0, %11 + (x = x0) (x = x1) [0, X1, X5]
+ (x—xg) (x —xp) (x —xp) [xg, X7, Xy, X3]

fO=1+06-1)A+6-1)(6-2) (—%) +(6-1)(6-2)(6-7) (i)

=1+20-13.3333 -1.4286
=6.2381

Example 8
Evaluate f(9) using the following table:

x 5 7 11 13 17
f(x) 150 392 1452 2366 5202
[Summer 2014]

Solution
Divided Difference Table

First Divided Second Divided Third Divided Fourth Divided

Difference Difference Difference Difference

5 150

121
7 392 24

265 1
11 1452 32 0

457 1
13 2366 42

709
17 5202

By Newton’s divided difference formula,

Jx) =f(xg) + (x — xp) [xg, x;] + (x — x0) (x —x7) [x0, Xy, X,]
+ (x — xp) (x —xp) (x — x5) [x0, X1, X, X3]
+ (x — xp)(x — x7) (X — xp) (x — x3) [X0, X, X, X3, X4]

SO =150+09-5 12D+ O-50O9-72H+O-50O-7O-1DH 1) +0

=150+484 +192-16
=810
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Example 9

Compute f(8) from the following values using Newton’s divided difference
formula:

x 4 5 7 10 11 13
fx) 48 100 244 900 1210 2028
Solution

Divided Difference Table

First Divided Second Divided Third Divided Fourth Divided
Difference Difference Difference Difference

Sfx)

52

5 100 15
97 1

7 244 21 0
202 1

10 900 27 0
310 1

11 1210
409 33

13 2028

By Newton’s divided difference formula,
J @) =1 xo) + (x = xp) [x0, X1 + (x = X) (x = xp) [xg, Xy, x5]
+ (x—xg) (x —xp) (x —xp) [xg, X7, Xy, X3]
J@)=48+8-4)(52)+B8-4)B-5UY+B-4)@B-5@-7)(1)+0
=48 +208 + 180 +12
=448
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Example 10

From the following table, find f(x) using Newton’s divided difference
formula:

Solution
Divided Difference Table

First Divided Second Divided  Third Divided

Difference Difference Difference
1 1
4
2 5 —2
3
0 1
14
7 5 L
6
-1
8 4

By Newton’s divided difference formula,
S0 =f(xp) + (x = xp) [xg, 211 + (x = xp) (x = x9) [x0, Xy, ;]
+ (x—xg) (x —xp) (x —xp) [xg, X7, Xy, X3]

=l+x-D4+x-1)(x-2) (—%) +x-DE=-2)(x=7) (ﬁ)
:1+4x—4—§(x2—3x+2)+ﬁ(x3—10x2+23x—14)

1 5, 29, 107 16
—— X t—x——
147 21 14" 3

Example 11

Using Newton’s divided difference formula, find a polynomial and also,

find fi-1) and f(6).

X 1 2 4 7
fx) 10 15 67 430

[Summer 2015]
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Solution
Divided Difference Table
First Divided Second Divided  Third Divided

Difference Difference Difference

5
2 15 7

26 2
4 67 19

121

7 430

By Newton’s divided difference formula,
S ) = fxg) + (x = xp) [x, %11 + (x = xp) (x = x1) [x0, X1, X,]

+ (x—xg) (x —xp) (x —xp) [xg, X7, Xy, X3]
=10+ (x=DG)+ (x—D(x=2)(7)+(x = D(x = 2)(x—4)2
=10+5x—=5+7x> =21x+14+2x> —14x* +28x—16
=2 —7x* +12x+3

f=D=2(=1)* =7(=1)* +12(-1)+3 =18
£(6) =2(6)* —7(6)* +12(6)+3 = 255

Example 12

Establish a cubic polynomial of the curve y = f(x) passing through the
points (1, =3), (3, 9), (4, 30), (6, 132). Hence, find f(2).

Solution
Divided Difference Table

First Divided Second Divided Third Divided

Difference Difference Difference

6
3 9 5

21 1
4 30 10

51

6 132
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By Newton’s divided difference formula,
S =f(xp) + (x = x0) [xg, X1] + (x = x) (x = x1) [x0, X1, X5]
+ (x —xp) (x —x7) (x — xp) [xg, X1, X5, X3]
=3+x-DO)+Ex-1DE-3)O)+x-1DxEx-3)x-4) (1)
=3+ 6x—6+50" =200+ 15+ x° —8x" + 19x— 12
=x -3 +5x-6
)=’ =32 +52)-6=0

Example 13
The shear stress in kilopound per square foot (ksf) for 5 specimens in a
clay stratum are as follows:

Depth (m) 1.9 3.1 4.2 5.1 5.8

Stress (ksf) 0.3 0.6 0.4 0.9 0.7
Use Newton’s dividend difference interpolating polynomial to compute
the stress at 4.5 m depth. [Winter 2012]
Solution

Divided Difference Table

Depth  Stress First Divided Second Divided Third Divided  Fourth Divided

X y Difference Difference Difference Difference

0.25
3.1 0.6 -0.1877
—0.1818 0.1739
42 0.4 0.3687 —0.1295
0.5556 -0.3313
5.1 0.9 —0.5258
—0.2857

5.8 0.7

By Newton’s divided difference formula,
y @) =y + (@ —xp) [x, %] + (x = xp) (x = x7) [x0, X}, X7]
+ (= xp) (x —x1) (x = xp) [xg, X1, Xp, X3]
+(x —xp) (x —xp) (x —x) (x —x3) [X, Xy, X, X3, 4]
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y(4.5)=03+4.5-1.9)(0.25) + 4.5-1.9) (4.5-3.1) (-0.1877)
+(4.5-19)4.5-3.1)(4.5-4.2)(0.1739)
+(45-19)(45-31)(45-42)(4.5-5.1)(-0.1295)

=0.3+0.65-0.6832 + 0.1899 + 0.0848
=0.5415 ksf

EXERCISE 4.5

1.

1
—, find the divided differences f(a, b), f(a, b, ¢), and

If f(x)=
X
f(a, b, c, d).
{Ans.: -

(@+b) ab+bc+ca (abc + bcd + acd + abd)
ab? ' abicd a’b*c’d?

. Find the third divided difference of f(x) with arguments 2, 4, 9, 10 where

f(x)=x> - 2x.
[Ans.: 1]

. Obtain the value of log,q 656 given log,, 654 = 2.8156, log,, 658 =2.8182,

log,, 659 = 2.8189 and log,, 666 = 2.8202.
[Ans.: 2.8169]

. Find f(5) from the following table:

X 0 1 3 6
f(x) 1 4 88 1309
[Ans.: 636]
. Find y(x = 20) from the following table:
X 12 18 22 24 32
v(x) 146 836 19481 2796 9236

[Ans.: 1305.36]

. Find a polynomial f(x) of lowest degree which takes the values 3, 7, 9,

and 19 when x = 2, 4, 5, 10.
[Ans.: 2x — 1]
Using the divided difference table, find f(x) which takes the values 1, 4,
40,85asx=0,1, 3, 4.
[Ans.: X* + X2 + x + 1]

. Find f(x) as a polynomial by using Newton’s formula:

X 1 0 3 6 7
f(x) 3 -6 39 822 1611

[Ans.: x* - 3x° + 5x% - 6]
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9. Find the polynomial vy = f (x) passing through (5, 1355), (2, 9), (0, 5), (-1,
33), and (-4, 1245).
[Ans.: 3x* - 5x° + 6x% + 14x + 5]

10. Find the polynomial equation of degree 4 passing through the points
(8, 1515), (7, 778), (5, 138), (4, 43), and (2, 3).

[Ans.: x* — 10x® + 36x* — 36x — 5]

11. Find the function y(x) in powers of (x — 1) given y(0) = 8, y(1) = 11,
v(4) = 68, y(5) = 123.
[Ans.: 11 +4(x 1) +2 (x = 1)> + (x = 1)7]

12. Using the following table, find f(x) as a polynomial in powers of (x — 6).
X -1 0 2 3 7 10
11 1 1 1 141 561
[Ans.: 73 + 54 (x — 6) + 13 (x — 6)% + (x — 6)°]

4.15 INVERSE INTERPOLATION

The process of evaluating the value of x for a value of y (which is not in the table) is
called inverse interpolation. Lagrange’s formula is a relation between two variables,
either of which may be taken as the independent variable. On interchanging x and y in
the Lagrange’s interpolation formula,
__O=0=y)-O=y) L Oy =y
= 0 1
Yo =y = ¥2)-- (Vo = 3) O =Y0)y = y2) .- (v = y,)
0=y =y =Y, 1)
O =Y =YD O = Yut)

Equation (4.24) is used for inverse interpolation.

(4.24)

Example 1
From the data given, find the value of x when y = 13.5.

X 93 96.2 100 104.2 108.7
1138 1280 1470 17.07 1991
Solution
By Lagrange’s formula for inverse interpolation,
__O=y)O=y)0=y6=y) L O=Y)G =)0y
o =)o = ¥2)(¥o = ¥3)(¥ = ¥4) 0 O = Y0)( = ¥2) = y3)( = Yy) !
O=3)O=y)O=y)6=y) . O=y)G=y)IG =)=y
(yz - yo)()’z -0 )(yz -3 )(yz - )’4) : (y3 —Yo )()’3 -0 )()’3 - )(}’3 - )’4) ’

=YY=y =y)—y3) .
Vg = Y)Y =) =) g =)
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__(35-1280)13.5-1470)(13.5-17.07(35-199D) _ o
(11.38—12.80)(11.38 —14.70)(11.38 = 17.07)(11.38 = 19.91)
(13.5-11.38)(13.5-14.70)(13.5-17.07)(13.5-19.91)
(12.80 —11.38)(12.80 — 14.70)(12.80 — 17.07)(12.80 — 19.91)
o (13.5-11.38)(13.5-12.80)(13.5-17.07)(13.5-19.91)
(14.70 —11.38)(14.70 — 12.80)(14.70 — 17.07)(14.70 — 19.91)
(13.5-11.38)(13.5-12.80)(13.5—14.70)(13.5—19.91)
(17.07-11.38)(17.07 - 12.80)(17.07 — 14.70)(17.07 - 19.91)
(13.5—11.38)(13.5-12.80)(13.5—14.70)(13.5—17.07)
(19.91—11.38)(19.91—12.80)(19.91—14.70)(19.91—17.07)

x =—7.8137 +68.4669 + 43.6076 —7.2758 +0.7711

=97.7561

(96.2)

(100)

(104.2)

(108.7)

Example 2
Find the root of the equation f(x) = 0, given that f(30) = -30,
f(34)=-13, f(38) =3, and f(42) = 18.

Solution

Let xy=30, x;=34,x,=38,x;=42
Yo=-30,y;=-13,y,=3,y; =18

It is required to find x for y = f(x) = 0.
By Lagrange’s formula for inverse interpolation,

=) =) -y;) o+ V=2 =) —y;)
Vo =300 =300 =¥3) 0 = ¥) =¥ = ¥3)
=)=y —y3) + =) =y)y—¥,)
> —Yo )(Y2 =y —y3) ? (3 =Y0)3 =y (3 = ¥) :
__ (0+13)(0-3)(0-18) 30+ (0+30)(0—3)(0—18) 34
(-30+13)(-30-3)(-30-18) (-13+30)(—-13-3)(-13-18)

L0300+1H0-18) (0 0+30)0+13)0-3) .
(3+30)(3+13)3—18) (18+30)(18 +13)(18—3)
=—0.782+6.5323+33.6818-2.2016
=37.2305

Hence, the root of f(x) =0 is 37.2305.
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EXERCISE 4.6

1.

4.1

Find x given y = 0.3887 from the following data:
X 21 23 25
y 0.3706 0.4068 0.4433
Find x corresponding to y = 85 from the following table:

X 2 5 8 14
1% 94.8 87.9 81.3 68.7

[Ans.: 22]

[Ans.: 6.5928]

. Find x corresponding to y = 100 from the following table:

X 3 5 7 9 11
2 6 24 58 108 174
i d
Find the value of 6 given f(6) = 0.3887 where f(0) = J— using
0

0
/ 1
1——sin’ 0
2

[Ans.: 8.656]

the table:

o 20 237 25
AN 0.3706 0.4068 0.4433
[Ans.: 22.0020°]

Find the age corresponding to the annuity value 13.6 from the given
table:

Age (x) 30 35 40 45 50

Annuity
value (y)

15.9 149 141 13.3 12.5

[Ans.: 43]

6 CUBIC SPLINE INTERPOLATION

In the polynomial interpolation method discussed till now, the complete set of tabulated
values were approximated by a single higher degree polynomial. But, for many
functions, the corresponding interpolation polynomial may tend to oscillate more and
more between nodes (end points of sub-intervals) as the degree of the polynomial
increases. Such oscillations are avoided using the method of splines in which piecewise
polynomial approximations are used.

In spline interpolation, the complete interval is divided into sub-intervals and the
function is approximated by lower degree polynomials called spline functions.
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Let y = f(x) be a function which takes the values  y=f(x)
Yos Y1s Ya» --r ¥, cOTEsponding to x = X, X;, Xy, ..., 1
x,. This function is approximated by cubic Sy(x)
splines in each interval x; —x;_,=h,i=1,2, ..., 2

n. Since there are n equal intervals, n cubic
polynomials are found. A cubic polynomial S(x)

S

satisfies the following conditions: i v i i " V5
(i) S(x) is a polynomial of degree one for LTy by
x<xpand x> x,. P by
(ii) S(x) is at most a cubic polynomial in P [ .y
O Xo X1 X2 X3 X4 Xs

each interval (x;_, x;, i=1,2,...,n.
(iii) S(x), S1x) and S”(x) are continuous at Fig. 4.1
each point (x;, y,),i=0, 1,2, ..., n.
@iv) Stx)=y;i=0,1,2, .., n

Since S(x) is a cubic polynomial, S$”(x) is linear in each interval (x;_, x,),i=1,2, ..., n.

1
Let §”(x)= Z[(x,. — ) 8" (x_ )+ (x—x,_)S” (x;) ] -(4.25)
Integrating Eq. (4.25) twice w.r.t. x,
1| (x;—x)° —x_,)°
S(x) = ;{% S”(xi_l)+%5”(xi) +a.(x, — )+ b (x—x,_,)

...(4.26)
where a; and b, are constants to be found out by the condition
SCx) =y i=0,1,2,...n 4.27)
Putting x = x;_,; in Eq. (4.26),

1 3
Yia = _|:%S”(-xi—1 )} +ha;

h
1 ",
a; = Z|:yl._l —?S (xi_l )i| (428)
Similarly, putting x = x; in Eq. (4.26),
1 ",
b, :Z|:yi _ES (xi):| ...(4.29)
Substituting the values of a; and b, in Eq. (4.26),
1| (x; —x)3 . (x—x;_ )3 ., 1 n? .
SOC):;{TS (xi_1)+TlS (x;) +;(x,~ =)| Yy _§S (x;-1)

1 n .,
+;(x_x,’1)|:yi—¥s (xi):|
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Writing §” (x;) = M,

1 1 h?
S(x) = a[(xi - x)SMi_1 +(x—x;_, )3Mi]+z(xi — x)[yi_l —?MH}

1 h?
Fom ) {yi —?Ml} .(4.30)

Differentiating Eq. (4.30) w.r.t. x,
, 1
§'(x) = 6_h[3(xi — (M) +3(x—x_ M, |

1 K’ } 1{ h? }
+—|=-y_ +—M. _, |+—|y—M.
h|: Vi1 6 i—1 h Vi i

Since §1x) is continuous,

. __h_h 1
S )= Mt oMy + 5700 =yi) (431
Similarly,
, h h 1
N (xl-+) = _EM,' _gMi+1 +Z()’i+1 =) ...(4.32)

Equating Eqs (4.31) and (4.32),

6 .
M, +4M; + M, = h_g(yi—l =2y + Y1) i=L2,...n ..(4.33)

Since S(x) is linear for x < x; and x > x,,, S”(x) = 0 at x = x, and x = x,,.

Hence, M;,=0, M,=0 ...(4.34)
Equations (4.33) and (4.34) give (n + 1) equations in (n + 1) unknowns M, M, M,,
..., M. Substituting the values of My, M, M,, ..., M, in Eq. (4.30), the cubic spline in
each interval is obtained.

Example 1
Test whether the following functions are cubic spline or not.
(i)  S(x)=x*—x+1  1<x<2
S,(x)=3x-3 2<x<3
(i)  S(x)=-2x"+x" -1<x<0

S,(x)=x*—2x° 0<x<1
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Solution

Each polynomial is at most a cubic polynomial in each sub-interval.

i) $(2)=3=5,(2)

51(2)=3=55(2)

$72)=2, $7(2)=0

S”(x) is not continuous at x = 2.

Hence, the functions are not cubic splines.
(ii) §,0)=0=S,(0)

S/(0)=0=S5(0)

510)=-4,87(0)=2

S”(x) is not continuous at x = 0.
Hence, the functions are not cubic splines.

4.89

Example 2
From the following data,

Compute y(1.5) and y(1) jusing cubic splines.
Solution

h=1, n=2
Also, M,=0 and M, =0 (assumption)

For cubic spline interpolation,

6 .
M, +4M,+ M, = h_z(yH =2y;+y), i=12,..,n-1

Fori=1,
My+4M,+M, =6(yy =2y, +,)
=6[-8-2(-1)+18]
=72

4M, =172 [ My=M,=0]
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The cubic spline functions are given by

1 1 h?
S(x)= 6—h[(xi —x)3MH +(x—xH)3 Mi:|+z(xi —)c)(yl-1 —?Milj

| ? ]
+—(x—x; ——M. |, i=12,...,n
h( l—l)[yt 6 i

Fori=1 inthe interval 1 <x <2,

1 1 1
S(x) =< (x, = %)’ My +(x—x,)° M, +(x, —x)(yo —EMOJ +(x—xp) (y] —EM, H

= é[(2—x)3(0)+(x—1)3(18)]+(2—x)[—8 —%(0)} + (x—l)[—l—é(lS)}

= é[18(x—1)3] +(Q2=x)(=8)+(x~1)(-4)
=3x"—9x2 +9x—3-16+8x—4x+4
=3x" —9x* +13x—15
y(1.5) = 8(1.5) = 3(1.5)° = 9(1.5)> +13(1.5) = 15 = —5.625
Y =8"(x)=9x> —18x+13
y (1) =8 1)=91)>-18(1)+13=4

Example 3

Using cubic splines, find y(0.5) and y(1), given My =M, =0
0 1 2
-5 -4 3

Solution

hzl, n=2, MOZO, M2=O
For cubic spline interpolation,

6
My + 4 M+ My == Oy =294 Y, 1=1.2,00m =1

1

Fori=1,
My+4M, +M, =6(y, =2y, +y,)
=6[-5-2(-4)+3]
=36
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4M1=36 [... MO=M2=O]
M, =9

The cubic splines function are given by

2
S=— [(x —x) M, +(x—x_ )’ M, |+ —(xi—x)[yi_l—h—Mi_lj

6
1 h?
+Z(‘x_xi—l)(yi ——6 Mi)

Fori=1 in the interval 0 < x < 1,
3 3 1 1
S(x)=— [(x1 X My + (=50 My J+(x =) Yo = Mo |+ (x=xp)| = oMy

—[(1 —x)*(0)+(x—0)° (9)] +(1-x) [—5 —%(O)} +(x-0) [—4 - é(9)}

3 3 33
=2 5(1=-x)==2
2x (1-x) 6x

=§x3—£—5
2 2
¥(0.5) = S(0.5) = (05) (025) 5=-5.0625
’_ 7’ _2 2_1
y—S(x)—zx 3
’ _ o’ _2 2_l=
y(l)—S(l)—z(l) 3 4
Example 4

Obtain the cubic splines for every sub-interval from the following

data:
X 0 1 2 3
vy =f(x) 1 2 33 244

Hence, find estimate of f(2.5). Assume M(0) =0, M(3) = 0.
[Summer 2013, Winter 2013, Summer 2014]

Solution

h=1, n=3,  My=0, M;=0
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For cubic spline interpolation,
6
M;_ +4M; + M, = h_g(yifl =2y, + i), i=12,..,n-1

Fori=1,
My+4M, +M, =6(y, =2y, +y,)
=6[1-2(2)+33]
=180
4M, + M, = 180 [ M,=0] (1)
Fori=2,
M, +4M, + M5 =6(y, =2y, +y3)
=6[2-2(33)+244]
=1080
M, +4M, =1080 [+ M;=0] (2)
Solving Egs (1) and (2),
M,=-24, M,=276

The cubic spline functions are given by

1 3 ; 1 n?
S(x):a[(xi—x) M,_ +(x—-x_)) Mi}-i-z(xi—x) yi_l—?Mi_1
1 h?
+Z(x—xi_1)(yi—?M,), i=12,..,n

Fori=1 inthe interval 0 < x < 1,
1 3 3 1 1
S(x)=g[(xl—x) My +(x—xy) M1]+(x1—x) Yo _EMO +(x—xp) yl—ng

= %[(1 - x)’(0)+(x-0) (—24)] + (- x)[l - é(O)} +(x-0) [2 —é(—24)}

=—4x +(1-x)+6x
= —4x° +5x+1

For i =2 in the interval 1 <x <2,

1 1 1
S(x) =g[(x2 — ) M, +(x=x) M, ]+ (x, —x)(yl —gM1)+ (x—xl)(yz _3M2j

- fe-v' 2ol e- x{z -%(_24)} +(x- 1)[33 -ém@}

=—4(2—x)’ +46(x—1)> +6(2—x)—13(x=1)
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=4x% —24x> +48x—32+46x> —138x> +138x—46 + 12— 6x—13x+13
=50x> —162x% +167x-53

For i = 3 in the interval 2 < x < 3,

1 1 1
S(x)= g[(XS —x)' M, +(x—x2)3M3J +(x3 _X)()’z _gMz) + (x—xz)(y3 —EM3)
= é[(?} —x)’(276)+(x—2) (0)] +3-x) |:33 —é(276)j| +(x=2) [244—%(0):|

- %[(3 — 1)} (276) |+ (B3 — x)(=13)+ (x— 2)(244)

=46(27-27x+9x* = x*)=39+13x+244x — 488
=—46x +414x*> —985x+715

£(2.5) = S(2.5) = —46(2.5)° + 414(2.5)* —985(2.5)+ 715 =121.25

Example 5

Obtain the cubic splines and evaluate y(1.5) and y“(3) for the following
data:

1 2 3 4

1 2 5 11
[Summer 2015, Winter 2012, 2014]

Solution

Also, My,=0 and M; =0 (assumption)

For cubic spline interpolation,

6
M +4M; + M, = h_z(yi—l =2y, +y) i=12,..,n-1

Fori=1,
My+4M +M, =6(y, =2y, +y,)
=6[1-2(2)+5]
=12
4M, + M, =12 [ M,=0] (1)
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Fori=2,
M, +4M, +M; =6(y, =2y, +y3)
=6[2-2(5)+11]
=18
M, +4M, =18 [ M;=0] .(2)
Solving Egs (1) and (2),
M, =2, M,=4
The cubic spline functions are given by

1 1 h?
S(x)= a[(xi —x)°} M,_, +(x—xi_1)3Mi] + Z(xi - )c)(yi_1 —?MH)

1 > ]
+—(x—x; ——M. |, i=12,..,n
h( l—])(yl 6 i

Fori=1, in the interval 1 <x <2,
1 1 1
S(x)=g[(x1—x)3M0+(x—x0)3M1]+(x1—x)(yo—gM0j+(x—x0)(y1—ngj
=é[(z—x)3(0)+(x—1)3(2)]+(2—x)[1—%(0)}@-1)[2—%(2)}
=§(x—1)3+(2—x)+§(x—1)
=%[x3—3x2+3x—1+6—3x+5x—5]
= %(ﬁ —3x2 +5x)
For i =2 in the interval 2 < x < 3,
1 1 1
S(x)=g[(x2_x)3M1+(x_x1)3M2]+(x2_x)()ﬁ_EM1)+(X—XI)()’2—€M2)
| , 5 1 1
=g[(3—x) 2)+(x—2) (4):|+(3—x)[2—g(2)}+(x—2) [5—5(4)]
RPN SR PIPIE BN DO P
=G0+ =D+ G0 S (=)
=%|:(3—x)3+2(x—2)3+5(3—x)+13(x—2):|
:%[(27—27x+9x2—x3)+(2x3—12x2+24x+15)+(15—5x)+(13x—26)]

= %[x3 -3x° +5x]
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For i = 3 in the interval 3 < x <4,
1 1 1
- é[(4—x)3(4)+(x—3)3(0)]+(4—x)[S—é(4)} +(x=3) [11—%(0)}
=§(4—x)3 +%(4—x)+11(x—3)
=%[—2x3 +24x% —96x+128+52—13x+33x-99]

= %(—2x3 +24x% —=76x+81)

y(1.5) = S(1.5) = %[(1.5)3 ~3(1.5) +5(1.5) | = %1
In the interval 2 < x <3,
y' =8"(x)= %(3x2 —6x+5)
1 14
Y3)=8'(3)= g[3(3)2 —6(3)+5]= 3

In the interval 3 <x <4,

1
Y =8"(x)= g(—6x2 +48x—76)

y(3)=503)= %[—6(3)2 +48(3)— 76] = %
Example 6
Find the cubic spline in the interval [0, 2] for the following data:
0 2 4 6
1 9 41 41

Given My =0 and M5 = —-12.

Solution
h=2, n=3, My=0, My=-12

For cubic spline interpolation,

6
M +4M; + M, = h_z(yi_l =2y;+yi), i=12,.,n-1
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Fori=1,
6
My,+4M, + M, =Z(yO =2y, +y,)
3
=5[1—2(9)+41]
4M,| + M, = 36 [ M,=0] (1)
Fori=2,
6
M, +4M, + M, =Z(y1 =2y, +y3)
3
25[9_2(41)+41]
=48
M, +4My =-36 [ My=-12] ()

Solving Egs (1) and (2),
M, =12, M, =-12

The cubic spline function are given by

1 1
S(x)= 6—h[(xi - )c)3MF1 +(x—xi71)3Mi:'+Z(xi —)c)(yi1 -

Fori=1 in the interval 0 < x < 2,

2
")

1 n? )
+—(x—x. ——M.
h(x x,_1)(y, 6

S(x) :E[(xl —x)3M0 +(x—x0)3M]]+E(xl —x)(yo _EMOJ

1 4
+E(x—x0)(y1 _EMI)

_ s _ov o o 2
_12[(2 )2 (0)+(x—0) (12)]+2(2 x)[l 6(0)}

1
=— (12 +1-2 42
12 22

=1+

1 4
+ E(x—O)[9—g(12)}
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EXERCISE 4.7

1. Find the natural cubic spline for the following data:

X 0 1 2
y 0 1 0

Ans.: M, = -3, 5(x) =%(3x—x3) for0<x<1

1",
y(0-5)—z,y(1)—0

2. Find the natural cubic spline in [0, 1] for the following data:
X 0 1 2
y 0 2 6
Also, find y(0.5) and y'(1).
Ans.: M, =3,5(x)= %(3x+x3) for0<x <1

13
0.5 =—,y'()=3
v(0.5) 16 v'()

3. Find the cubic spline in the interval [3, 4] for the function given by the
following data under the conditions M(1) = 0, M(4) = 0:

X 1 2 3 4
1% 3 10 29 65
62 112

Ans.: IM1 = ?, A'12 = T,

S,(x) = % (-56x> +672x* —2092x +2175)for 3< x < 4

4. Find the cubic spline for the following data under the conditions M(0) =0,
M(3) = 0 in the interval [1, 2]. Hence, find y(1.5).

X 0 1 2 3
y 1 4 10 8

Ans.:M =8, M, =-14,

S,(x) = %(—11x3 +45x* —40x +18) for 1< x < 2
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5. Find the natural cubic spline for the data in the interval [1, 2] and,
hence, find y(1.5).

X 1 2 3 4
y 1 5 11 8
Ans.: M, = %, M, = —E,

5
S,(x) = %(1 7x*—51x* +94x —45) for 1< x < 2
y(1.5) =2.575
6. Test whether the following functions are cubic splines or not.
S,(x) =-x* +20x°, -1<x<0
S,(x)=-x*+6x°, 0<x<1

[Ans.: Yes]

7. Obtain the cubic splines, given f(-1) = 0, f(0) = 4, f(1) = 0 and M, = 24,
Mz = 24.

Ans.:S(x)=4-12x*-8x’>, -1<x<0
S,(x)=4-12x" +8x°, 0<x<1

8. Find the cubic spline corresponding to the interval [2, 3] from the
following data:

X 1 2 3 4 5
£(x) 30 15 32 18 25
Hence, find f(2.5) and f13).

Ans.: S(x) = %[—1 42.9x* +1058.4x% — 2475.2x +1 950],

f(2.5)=-24.03, f'(3)=2.817

9. Find the cubic spline S(x), given f(0) = 3, f(2) = 5, f(4) = 31, My = 1 and
M, = 21. Also, find f(1) and f(3).

Ans.:S)(x)=3+x-2x" +X°, 0<x<2
S(X)=5+5(x-2)+4(x-2)*, 2<
f=3, f3)=14

10. Find the cubic splines for the following data:

X 0 1 2 3
y 1 0 -1 0



Points to Remember
Given S10) =My =0,  S3) = M; = -6. Also, find y(0.5).

S,(x) = —2(x = 1) — (x= 12 + 2(x—1’,

3
y(0~5)—z

Points to Remember

[Ans.:S,(x)=1-x%, 0<x<

S,(X)=-1+2(x-2)+5(x—2)* -6(x -2)’), 2<x<

4.99

Forward Differences
Ayn-1 = Yn = Y1
Backward Differences
VY= Yu=Yn1

Central Differences
Oy 1 =Vn"Vum1

2
Newton’s Forward Interpolation Formula

+r(r—1)(r—2) A3
3!

r(r—l)Az
2!

y, =Yg trAy,+ Yo Yot

Newton’s Backward Interpolation Formula
r(r+1) r(r+1)(r+2)
2! 3!

V= Y VY, + vy, + Vi, o

Gauss’s Forward Interpolation Formula

r(r—1) (r+Dr(r-1
Y= Yo+ Ay + Ny +——— Ay,
2! 3!
N (r+1)r(r4—' DH(r-2) A4y_2 e

Gauss’s Backward Interpolation Formula
r+br , r+)r@r-1) 3
o At A
+ (r+2)(r-:l—‘l)r(r—1) A

Y, =Yy trAy_ +
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Stirling’s Formula

Ay_, + Ay, 72 2 r(r2 -1 A3y_2 +A3y_l
yr yO ( 2 y

21 31 2
2,2
rr(rr=10 4
+ a0 A"y 5+

Lagrange’s Interpolation Formula

F)= G =x)(x—x)...(x—x,) (x—x)(x=x,)...(x—x,)

+
(X —x;1) (X — x5)...(x, —)cn)yO (= x0) (X = x5)...(x —xn)y1

(x=xp)(x=x)...(x=x,_,)
(x, = x0)(x, = X)) (x, —x,_) "
Newton’s Divided Difference Formula
Y=Y+ (x —xg) [xg, x; ] + (x = x0) (x —x7) [x, X, X5]
+ (x —xp) (x —x7) (x — xp) [x, X, Xo, X3] + ...
+(x—xp) (x—x) ... (x=x,_p) [x, X0, Xp5 ..., X,,]
Inverse Interpolation
O=y)=y)...(y—y,) .
o =YD = ¥2)--- g =3) °

N =200 =y)...(y=y,)
X1
01 =000 = ¥2)--. (1= y,)
N O=y)=y).-. = Y,_1) X,
O =900, =) (Y = Vurt)

Cubic Spline Interpolation

6 .
M, +4M; + M, , :h_z(yi—l =2y, +y), i=12,..,n-1

1 1 h?
S(x) = 6—h[(x,. XM +(x—x,) M,.]+;(x,. - x)( Vi —?Milj

+l(x—x )( —ﬁM) i=12,..,n
]’l i—1 yi 6 il 9 iy aney




CHAPTER

Curve Fitting

Chapter Outline

5.1 Introduction

5.2 Least Square Method

5.3 Fitting of Linear Curves

5.4 Fitting of Quadratic Curves

5.5 Fitting of Exponential and Logarithmic Curves

5.1 INTRODUCTION

Curve fitting is the process of finding the ‘best-fit’ curve for a given set of data. It is
the representation of the relationship between two variables by means of an algebraic
equation. On the basis of this mathematical equation, predictions can be made in many
statistical problems.

Suppose a set of n points of values (x;, y,), (x5, ¥5), ..., (x,, y,) of the two variables
x and y are given. These values are plotted on a rectangular coordinate system, i.e.,
the xy-plane. The resulting set of points is known as a scatter diagram (Fig. 5.1).
The scatter diagram exhibits the trend and it is possible to visualize a smooth curve
approximating the data. Such a curve is known as an approximating curve.

4 Y
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5.2 LEAST SQUARE METHOD

From a scatter diagram, generally, more than one curve Y
may be seen to be appropriate to the given set of data. The
method of least squares is used to find a curve which passes
through the maximum number of points.

Let P (x;, y;) be a point on the scatter diagram (Fig. 5.2).
Let the ordinate at P meet the curve y = f(x) at Q and the
x-axis at M.
Distance =~ QP = MP - MQ

=Y~y

=y, —f(x;)

The distance QP is known as deviation, error, or residual and is denoted by d,. It may
be positive, negative, or zero depending upon whether P lies above, below, or on the
curve. Similar residuals or errors corresponding to the remaining (n — 1) points may be
obtained. The sum of squares of residuals, denoted by E, is given as

n

E=Yd? =1y~ fx)I
i=1 i=1
If E = 0 then all the n points will lie on y = f(x). If E # 0, f(x) is chosen such that E is
minimum, i.e., the best fitting curve to the set of points is that for which E is minimum.
This method is known as the least square method. This method does not attempt to
determine the form of the curve y = f(x) but it determines the values of the parameters
of the equation of the curve.

5.3 FITTING OF LINEAR CURVES

Let (x;, y;), i =1, 2, ..., n be the set of n values and let the relation between x and y be
y = a + bx. The constants a and b are selected such that the straight line is the best fit to
the data.

The residual at x = x; is
di =y; = f(x)
=y, —(a+bx;) i=1,2,..,n

E= idﬁ
i=1
= ZI:yl- —(a+bx; )]2
i=1

=i(yi —a-bx;)’
i=1
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For E to be minimum,
qy 9E_
da
N 2(y; —a—bx)(-1)=0
i=1

0

i(yi—a—bxl-)=0

1:1 n n
Zyi = aZl + bel-
i=1 i=1 i=1
Zy =na +b2x
(ii) 3—5 =0

iZ(yi —a—bx;)(—x;)=0

i=1

n
Z(xiyi —ax; —bxiz) =0

i? n n
le- v = ale- H?z:xi2
i=1 i=1 i=1
2xy = a2x+b2x2

5.3

These two equations are known as normal equations. These equations can be solved
simultaneously to give the best values of a and b. The best fitting straight line is

obtained by substituting the values of @ and b in the equation y=a+bx .

Example 1
Fit a straight line to the following data:

X 1 2 3 4
y 24 3 3.6 4
Solution
Let the straight line to be fitted to the data be

y=a+bx

The normal equations are

2y=na+b2x
2xy=a2x+b2x2

...(D)
...(2)
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Here,n=6
2 3 4 6
3 3.6 9 10.8
4 4 16 16
6 5 36 30
8 6 64 48
Yx=24 Yy=24 Y% =130 Say=113.2
Substituting these values in Eqs (1) and (2),
24 =6a+24b
113.2 =24a+130b
Solving Eqgs (3) and (4),

Hence, the required equation of the straight line is

y=1.9764+0.5059x

.03
e,

Example 2

Fit a straight line to the following data. Also, estimate the value of y at

x=2.5.

X 0
y 1

Solution

Let the straight line to be fitted to the data be

The normal equations are

Here,n=5

Zyzna+b2x

2xy=a2x+b2x2

(D)
o)
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0 1 0 0

1 1.8 1 1.8

2 33 4 6.6

3 45 9 13.5

4 6.3 16 252
Yx=10 Yy=16.9 TP =30 Yxy=47.1

Substituting these values in Eqgs (1) and (2),

16.9=5a+10b ..(3)
47.1=10a+30b ()
Solving Egs (3) and (4),
a=0.72
b=1.33
Hence, the required equation of the straight line is
y=0.72+1.33x
Atx=2.5,
y (2.5)=0.72+1.33 (2.5) =4.045
Example 3

A simply supported beam carries a concentrated load P(lb) at its
midpoint. Corresponding to various values of P, the maximum deflection
Y(in) is measured. The data is given below:

P 100 120 140 160 180 200
Y 0.45 0.55 0.60 0.70 0.80 0.85

Find a law of the formY = a + bP using the least square method.
[Summer 2015]

Solution

Let the straight line to be fitted to the data be
Y=a+bP

NY=na+by P (1)

The normal equations are
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Y PY=a) P+bY P - (2)

Here,n=6
P Y P? PY
100 0.45 10000 45
120 0.55 14400 66
140 0.60 19600 84
160 0.70 25600 112
180 0.80 32400 144
200 0.85 40000 170
2P =900 Y =395 SP?P=142000 YPY=621
Substituting these values in Eqgs (1) and (2),
3.95 =6a + 900 b ..(3)
621 =900 a + 142000 b (4
Solving Eqgs (3) and (4),
a=0.0476
b=0.0041

Hence, the required equation of the straight line is
Y=0.0476 + 0.0041 P

Example 4
Fit a straight line to the following data. Also, estimate the value of y at
x=70.

x 71 68 73 69 67 65 66 67
y 69 7 70 70 68 67 68 64
Solution

Since the values of x and y are larger, we choose the origin for x and y at 69 and 67
respectively,
Let X=x-69 and Y=y-67
Let the straight line to be fitted to the data be
Y=a+bX
The normal equations are

2Y=na+b2X )
Y Xy =a) X+bY X* 2
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Here,n =28
X y X Y X2 Xy
71 69 2 2 4 4
68 72 -1 5 1 -5
73 70 4 3 16 12
69 70 3 0 0
67 68 -2 1 -2
65 67 -4 0 16 0
66 68 -3 1 9 -3
67 64 -2 -3 4 6
YX=-6  XY=12 YX* =54 >Xr=12
Substituting these values in Eqs (1) and (2),
12=8a-6b ..(3)
12 =—6a+54b e,
Solving Eqgs (3) and (4),
a=1.8182
b=10.4242

Hence, the required equation of the straight line is
Y =1.8182 +0.4242X

y—67=1.8182 +0.4242(x - 69)

y=0.4242x + 39.5484
y(x = 70) = 0.4242(70) + 39.5484 = 69.2424

Example 5
Fit a straight line to the following data taking x as the dependent vari-
able.
X 1 3 4 6 8 9 11 14
1 2 4 4 5 7 8 9
Solution

If x is considered the dependent variable and y the independent variable, the equation
of the straight line to be fitted to the data is

x=a+by
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The normal equations are

2x=na+b2y )
Y xy=a) y+by y’ 2

Here,n =28

1 1 1
3 2 4 6
4 4 16 16
6 4 16 24
8 5 25 40
9 7 49 63
11 8 64 88
14 9 81 126
Yx =56 2y =40 Yy* =256  Yxy=364
Substituting these values in Eqs (1) and (2),
56 =8a+40b ...(3)
364 = 40a +256b )
Solving Eqgs (3) and (4),
a=-0.5
b=15
Hence, the required equation of the straight line is
x=-=05+1.5y

Example 6

If P is the pull required to lift a load W by means of a pulley block, find
a linear law of the form P = mW + ¢ connecting P and W using the
following data:

P 12 15 21 25
w 50 70 100 120

where P and W are taken in kg-wt. Compute P when W = 150 kg.

Solution

Let the linear curve (straight line) fitted to the data be
P=mW+c=c+mW
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The normal equations are

ZPznc+mW (1)
YPW=cYW+mYy W (2)
Here,n=4

P w w? PW

12 50 2500 600

15 70 4900 1050

21 100 10000 2100

25 120 14400 3000

SP=173 SW =340 SW?=31800 SPW=6750

Substituting these values in Eqs (1) and (2),

73=4c+340m ..(3)
6750 =340 c + 31800 m ..(4)
Solving Egs (3) and (4),
c=2.2759
m=0.1879

Hence, the required equation of the straight line is
P=0.1879 W+ 2.2759

When W= 150 kg,
P =0.1879(150) + 2.2759 = 30.4609

EXERCISE 5.1

1. Fit the line of best fit to the following data:

X 0 5 10 15 20 25
y 12 15 17 22 24 30
[Ans.:y=0.7x +11.28]

2. The results of a measurement of electric resistance R of a copper bar at
various temperatures t°C are listed below:

t°C 19 25 30 36 40 45 50
R 76 77 79 80 82 83 85

Find a relation R = a+ bt where a and b are constants to be determined.
[Ans. : R=70.0534+0.2924 t]
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3. Fit a straight line to the following data:

X 1.53 1.78 2.60 2.95 3.42
y 33.50 36.30 40.00 45.85 53.40
[Ans.: y =19+9.7x]

4. Fit a straight line to the following data:
X 100 120 140 160 180 200
y 0.45 0.55 0.60 0.70 0.80 0.85
[Ans.: y =0.0475+0.00407x |

5. Find the relation of the type R =aV +b, when some values of R and V
obtained from an experiment are

v 60 65 70 75 80 85 90
R 109 114 118 123 127 130 133

[Ans.: R=0.8071V + 61.4675]

5.4 FITTING OF QUADRATIC CURVES

Let (x;, ), i=1,2, ..., n be the set of n values and let the relation between x and y be
y= a+bx +cx® . The constants a, b, and c are selected such that the parabola is the
best fit to the data. The residual at x = x;is

d; :yi_f(xi)

=yi—(a+bxi+cxi2)

E= idf
1:1 ,
= Z[yi —(a+bx,- +cxi2)]
l:l ,
= Z(yi —a—bxi—cxiz)
i=1
For E to be minimum,
.. OE
() o 0

iZ (yi—a—bxi —cxi)(—l)zo
i=1
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n

Z(yi—a—bxi—cxi)=0
i=1

n n n n
Zyi = a21+b2xi +szi2
i=1 i=1 i=1 i=1
Zyi :na+b2x+c2x2

(i) 3_‘;5 0
iZ(yi —a—bx; —cx;)(—x;)=0
P
(i —ax, b —ex) =0
5
ixiyi = aixi +bix,.2 +Cixi3
= i=1 i=1 i=1
Y xy=na+by x> +cy x°
(i) &£ =0

Y 2(y; —a—bx, —ex))(x7) =0

i=1

n

2 2 3 4 _
in v —ax; —bx; —cx; =0
i=1

ixizyi = ai’xi2 +bi‘xi3 +cix?
i=1 i=1 i=1 i=1
szy = asz +b2x3 +c2{x4

These equations are known as normal equations. These equations can be solved simul-

taneously to give the best values of a, b, and c. The best fitting parabola is obtained by

substituting the values of a, b, and c in the equation y =a+bx+ ox?.

Example 1
Fit a least squares quadratic curve to the following data:

X 1 2 3 4
y 1.7 1.8 23 32

Estimate y(2.4).
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Solution

Let the equation of the least squares quadratic curve (parabola) be y =a+bx+ ex?.
The normal equations are

2y=na+b2x+c2x2 (D
ny=a2x+b2x2+02x3 (2
Zx2y=a2x2+b2x3+02x4 ...(3)

Here,n=4

1.7 1 1 1 1.7 1.7

1
2 1.8 4 8 16 3.6 7.2
3 23 9 27 81 6.9 20.7
4 3.2 16 64 256 12.8 51.2
Ix=10  Xy=9  52=30 xP=100 Xx*=354 Zwy=25 5,’y=8§0.8

Substituting these values in Eqgs (1), (2), and (3),
9=4a+10b+30c e
25=10a+30b+100c (5
80.8 =30a +100b+354c .(6)
Solving Egs (4), (5), and (6),
a=2
b=-0.5

c=0.2
Hence, the required equation of least squares quadratic curve is

y=2-0-5x+0-2x>

y(2-4):2—0-5(2~4)+0-2(2.4)2 =1-952

Example 2
Fit a second-degree polynomial using least square method to the
following data:

[Summer 2015]
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Solution
Let the equation of the least squares quadratic curve be y = a + bx + ¢x*. The normal

equations are
Zy =na+ be + szz (D)
ny = aZx + bez + c2x3 ..(2)
szy = asz + bth3 + c2x4 ..(3)

Here,n=5

0 1 0 0 0 0 0
1 1.8 1 1 1 1.8 1.8
2 1.3 4 8 16 2.6 52
3 2.5 9 27 81 7.5 22.5
4 6.3 16 64 256 25.2 100.8

Sx=10 Yy=129 Yx*=30 Xx=100 Xx*=354 Yxy=37.1 DA’y =130.3

Substituting these values in Eqgs (1), (2), and (3),
129=5a+10b+ 30 ¢ (4)
37.1 = 10a + 30b + 100c ..(5)
130.3 = 30a + 1005 + 354c¢ ...(6)
Solving Eqgs (4), (5), and (6),
a=142
b=-1.07
¢=0.55
Hence, the required equation of the least squares quadratic curve is
y=142-1.07 x+0.55x*

Example 3
By the method of least squares, fit a parabola to the following data:

Also, estimate y at x = 6.
Solution

Let the equation of the parabola be y = a + bx + ¢x*. The normal equations are

Zy =na+ be + szz (D)
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ny = aZx + bez + c2x3
szy = asz + b2x3 + 62x4

Here,n=5

(2)
(3

1 5 1 1 1 5
2 12 4 8 16 24
3 26 9 27 81 78
4 60 16 64 256 240
5 97 25 125 625 485

960
2425

Sx=15 2y=200 Ya*=55 2x=225 Xx*=979 Day=832 Yi’y=3672

Substituting these values in Eqgs (1), (2), and (3),
200=5a+ 15b+55 ¢
832 = 15a + 55b + 225¢
3672 =55a + 225b + 979¢
Solving Eqgs (4), (5), and (6),
a=104
b=-11.0857
c=5.7143
Hence, the required equation of the parabola is
y=10.4-11.0857 x + 5.7143 x*
¥(6) = 10.4 — 11.0857(6) + 5.7143(6)* = 149.6006

(4
.(5)
..(6)

Example 4
Fit a second-degree parabolic curve to the following data.

X 1 2 3 4 5 6 7 8
y 2 6 7 8 10 11 11 10

Solution
Let X=x=35
Y=y-10

Let the equation of the parabolabe Y =a+bX +cX .

The normal equations are

ZY = na+b2{X+62‘X2

...(D
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Y XY=a) X+bY X*+cY X (2)
Y XY =aY X*+bY X>+cy X* .3

Here,n=9

X ,

1 2 -4 -8 16 —64 256 32 —-128
2 6 -3 —4 9 27 81 12 -36
3 7 -2 -3 4 -8 16 6 —-12
4 8 =Il =2 1 =l 2 =2
5 10 0 0 0 0 0 0 0
6 11 1 1 1 1 1
7 11 2 4 8 16 2 4
8 10 3 0 9 27 81 0 0
9 9 4 -1 16 64 256 -4 -16

IX=0 XY =-16 3x2=60 X3 =0 X4 =708 ZXY =51 3x2y =-189

Substituting these values in Eqgs (1), (2), and (3),

—16 =9a+60c ()
51=60b ...(5)
—189 = 60a+708¢ ..(6)
Solving Eqgs (4), (5), and (6),
a=0.0043
b=0.85
c=-0.2673

Hence, the required equation of the parabola is
Y =0.0043 + 0.85X — 0.2673X>
y—10=0.0043 + 0.85(x — 5) — 0.2673(x — 5)°

y =10+ 0.0043 + 0.85(x — 5) — 0.2673(x* — 10x + 25)
=10 +0.0043 + 0.85x — 4.25 — 0.2673x + 2.673x — 6.6825

=-0.9282 +3.523x — 0.2673x”

Example 5
Fit a second-degree parabola y = a + bx* to the following data:

X 1 2 3 4 5
y 1.8 5.1 8.9 14.1 19.8
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Solution

Let the curve to be fitted to the data be
y=a+ bx*

dy=nathx’ (1)
2 y=ay X +bYy xt (2)

The normal equations are

Here,n=5

y

1 1.8 1 1 1.8
2 5.1 4 16 20.4
3 8.9 9 81 80.1
4 14.1 16 256 225.6
5 19.8 25 625 495
Yy=497  ¥x*=55 Yt =979 Yo’y = 8229
Substituting these values in Eqs (1) and (2),
49.7 =5a + 55b ..(3)
822.9=55a+979 b .(4)
Solving Egs (3) and (4),
a=1.8165
b=0.7385

Hence, the required equation of the curve is
y=1.8165 + 0.7385 x*

Example 6
Fit a curve y=ax+ bx* for the following data:

X 1 2 3 4 5 6
y 2.51 5.82 9.93 14.84 20.55 27.06

Solution

Let the curve to be fitted to the data be
y=ax+ bx?

The normal equations are

2xy=a2x2+b2x3 ..(D
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szy = a2x3 +b2x4

o)

1 2.51 1 1 1 2.51

2 5.82 4 8 16 11.64

3 9.93 9 27 81 29.79

4 14.84 16 64 256 59.36

5 2055 25 125 625 102.75

6  27.06 36 216 1296 162.36
P =91 =441 x*=2275 Zxy=36841

2.51
23.28
89.37

237.44
513.75
974.16

x?y =1840.51

Substituting these values in Eqs (1) and (2),

368-41=91la+441b
1840-51=441a+2275b
Solving Eqs (3) and (4),
a=2.11
b=04

Hence, the required equation of the curve is

y=2-11x+0-4x"

EXERCISE 5.2

.3
e,

1. Fit a parabola to the following data:

X -2 -1 0 1 2
1% 1.0 1.8 1.3 2.5 6.3

[Ans.: y =1.48 +1.13x + 0.55x"]

2. Fit a curve y = ax + bx* to the following data:

x [ -1 0 1 2
N 72 46 12 35 93

[Ans.: y =41.1x + 2.147x*]
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3. Fit a parabola y = a+ bx +cx* to the following data:

X 0 2 5 10
y 4 7 6.4 -6
[Ans.: y =4.1+1.979x — 0.299x?]

4. Fitacurve y = a, +ax +a,x* for the given data:

X 3 5 7 9 11 13
y 2 3 4 6 5 8

[Ans.: y = 0.7897 + 0.4004x + 0.0089x?]

5.5 FITTING OF EXPONENTIAL AND LOGARITHMIC CURVES

Let (x;, y),i=1,2, ..., n be the set of n values and let the relation between x and y be
y=ab".
Taking logarithm on both the sides of the equation y = ab”,

log, y=log, a+xlog, b

Putting log, y=Y, log,a=A,x=X, and log,b = B,
Y=A+BX

This is a linear equation in X and Y. The normal equations are

Y Y=nA+BY X
Y Xy =AY X+BY x*

Solving these equations, A and B, and, hence, a and b can be found. The best fitting
exponential curve is obtained by substituting the values of a and b in the equation
y=ab".

b.

Similarly, the best fitting exponential curves for the relation y = ax” and y = ae™ can be

obtained.

Example 1
Find the law of the form y = ab” to the following data:

X 1 2 3 4 5 6 7 8
y 1 1.2 1.8 25 3.6 47 6.6 9.1
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Solution
y=ab”
Taking logarithm on both the sides,

log, y=1log, a+xlog, b

Putting log, y=Y, log,a=A, x=X and log,b=5,

Y=A+BX
The normal equations are
Y Y=nA+BY X (D
Y Xy =AY X+BY X* (2

1 1 1 0.0000 1 0.0000
2 1.2 2 0.1823 4 0.3646
3 1.8 3 0.5878 9 1.7634
4 2.5 4 0.9163 16 3.6652
5 3.6 5 1.2809 25 6.4045
6 4.7 6 1.5476 36 9.2856
7 6.6 7 1.8871 49 13.2097
8 9.1 8 2.2083 64 17.6664

YXx=36 YY=86103 Y X*=204 Y XY=52.3594

Substituting these values in Eqs (1) and (2),
8.6103=8A+368B ...(3)
52.3594=36 A+204 B NCY)
Solving Egs (3) and (4),
A=-0.3823
B=0.3241
log,a=A
log, a =-0.3823
a=0.6823
log,b=B
log, b=0.3241
b=1.3828
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Hence, the required law is
y =0.6823 (1.3828)"

Example 2

Fit a curve of the form y = ab” to the following data by the method of
least squares:

87 97 113 129 202 195 193

Solution
y=ab"
Taking logarithm on both the sides,
log,y = log,a + x log,b
Putting log,y =Y, log,a=A, x =X and log,b = B,

Y=A+BX
The normal equations are
Y Y=nA+BYX (1)
YXY=AYX+BY X (2
Here,n="7
x y X Y x> XY
1 87 1 4.4659 1 4.4659
2 97 2 4.5747 4 9.1494
3 113 3 47274 9 14.1822
4 129 4 4.8598 16 19.4392
5 202 5 5.3083 25 26.5415
6 195 6 5.2730 36 31.6380
7 193 7 5.2627 49 36.8389

SX=28 YY=344718 XX*=140 YXY=142.2551
Substituting these values in Eqs (1) and (2),

344718 =7A + 28 B ..(3)
142.2551 =28 A+ 140 B .(4)
Solving Egs (3) and (4),
A =4.30006

B=0.156
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loga=A

log,a = 4.3006
a=73.744

log,b =B

log,b =0.156
b=1.1688

Hence, the required curve is

y=73.744 (1.1688)"

Example 3
Fit a curve of the form y = ax’ to the following data:

x 20 16 10 11 14
y 22 41 120 89 56

y=ax

Solution

Taking logarithm on both the sides,
log, y=log, a+blog, x

Putting log, y=Y, log,a=A, b=B and log, x = X,

Y=A+BX
The normal equations are
Y Y=nA+BY X W
Y xy =AY X+BY X* @
Here,n=5
x y X Y X2 XY
20 22 2.9957 3.0910 8.9742 9.2597
16 41 2.7726 3.7136 7.6873 10.2963
10 120 2.3026 4.7875 5.3019 11.0237
11 89 2.3979 4.4886 5.7499 10.7632
14 56 2.6391 4.0254 6.9648 10.6234

D X=13.1079 Y ¥Y=20.1061 Y x?=34.6781 D XY =51.9663

Substituting these values in Eqgs (1) and (2),

20.1061 = 5A + 13.1079 B .0
51.9663 = 13.1079 A + 34.6781 B @
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Solving Eqs (3) and (4),
A=10.2146
B=-2.3624
log,a=A
log, a =10.2146
a=127298-8539
and b=B=-2.3624
Hence, the required equation of the curve is

y=27298.8539 x 23624

Example 4
Fit a curve of the form y = ae™ io the following data:

X 1 3 5 7 9
y 115 105 95 85 80

Taking logarithm on both the sides,

Solution

log,y = log,a+ bx log,e

=log, a+bx

Putting log, y=Y, log,a=A, b=B and x=X,

Y =A+BX
The normal equations are
Y=nA+B) X
by 2 )
Xy =AY x+BY x*
2 2X+BY, 2
Here,n=5
x y X Y X’ XY
1 115 1 4.7449 1 4.7449
3 105 3 4.6539 9 13.9617
5 95 5 4.5539 25 22.7695
7 85 7 4.4427 49 31.0989
9 80 9 4.3820 81 39.438
Yx=25 Yy=227774 YX’=165 Y XY=112.013
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Substituting these values in Eqs (1) and (2),
22.7774=5A+25B ..03)
112.013 =25A+165B (4
Solving Egs (3) and (4),
A =4.7897
B =-0.0469
log,a= A
log, a=4.7897
a =120.2653
b= B=-0.0469
and
Hence, the required equation of the curve is
y =120.2653 ¢ 0469«
Example 5
Fit the exponential curve y = ae™ 1o the following data:
X 0 2 4 6 8
y 150 63 28 12 5.6
[Summer 2015]
Solution
y = aebx
Taking logarithm on both the sides,
log,y = log,a+bxlog, e
=log, a+bx
Putting log,y =Y, log,a=A,b=Band x =X,
Y=A+BX
The normal equations are
2Y=nA+b2X (D
Y Xy =AY X+BY X* (2)
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Here,n=5
0 150 0 5.0106 0 0
2 63 2 4.1431 4 8.2862
4 28 4 3.3322 16 13.3288
6 12 6 2.4849 36 14.9094
8 5.6 8 1.7228 64 13.7824

YX=20 YY=166936 Y X*=120 > XY =50.3068

Substituting these values in Egs (1) and (2),
16.6936 =5A+20B ..(3)
50.3068 =20 A + 120 B .(4)
Solving Egs (3) and (4),
A =4.9855
B=-0.4117
loga=A
log,a = 4.9855
a=146.28
and b=B=-04117
Hence, the required equation of the curve is
y=146.28 ¢ 417 x

Example 6

The pressure and volume of a gas are related by the equation PV’ = c.
Fit this curve to the following data:

P 0.5 1.0 1.5 2.0 2.5 3.0
1% 1.62 .00 075 0.62 052 046

Solution
PVi=¢

Taking logarithm on both the sides,
log, P+vylog,V =log,c

1 1
log,V=—log,c——log, P
Y 14

Putting log, V = y,lloge c=a,log, P =x,—l=b,
Y Y

y=a+bx
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The normal equations are
Zy =na+ be
ny = aZx + bez

Here,n=06

0.5 1.62 —0.6931 0.4824 0.4804 —0.3343
1.0 1.00 0 0 0 0

1.5 0.75 0.4055 -0.2877 0.1644 -0.1166
20  0.62 0.6931 —0.4780 0.4804 —0.3313
2.5 0.52 0.9163 —0.6539 0.8396 -0.5992
3.0 046 1.0986 —0.7765 1.2069 —-0.8531

Sx=24204 Yy=-17137 3 =3.1717 Yay=-2.2345

Substituting these values in Eqgs (1) and (2),

—1.7137 = 6a + 2.4204 b ..(3)
—2.2345 =2.4204a + 3.1717 b ..(4)
Solving Egs (3) and (4),
a =-0.002
b =-0.7029
1
——=p
Y
y =1.4227
lloge c=a
log, c =-0.002
1.4227
c=0.9972

Hence, the required equation of the curve is
pPv427) = 0.9972

EXERCISE 5.3

1. Fit the curve y = ab” to the following data:

X 2 3 4 5 6
v 144 172.3  207.4  248.8  298.5

[Ans.: y =100 (1.2)"]
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2. Fit the curve y = ae™ to the following data:
y

3. Fit the curve y = ax” to the following data:

X 1 2 3 4
y 2.50 8.00 19.00 50.00
[Ans.: y = 2.227x*%]

4. Estimate y by fitting the ideal gas law PV = c to the following data:
P 16.6 39.7 78.5 115.5 195.3 546.1
v 50 30 20 15 10 5

Points to Remember

0 2 4
5.012 10 31.62

[Ans.: v = 4.642¢%46%]

[Ans.: y = 1.504]

Fitting of Linear Curves
(i) The normal equations for the straight line y = a + bx are

2 y=na+ bz by
2 Xy = az x4+ bz x?
(ii) The normal equations for the straight line x = a + by are

2x=na+b2y
Y xy=ay y+by y

Fitting of Quadratic Curves
(i) The normal equations for the least squares quadratic curve (parabola)
y=a+bx+ ex* are

Zy:na+b2x+c2x2
ny = a2x+b2x2 +c2x3
szy = asz +b2x3 +02x4

(i) The normal equations for the curve y = a + bx are
Z y=na+b 2 x?
szy = asz +b2x4




Points to Remember

(iii) The normal equations for the curve y = ax + b’ are
ny = asz +1924x3
szy = a2x3 +b2x4

Fitting of Exponential and Logarithmic Curves

For the curve y=ab",

Taking logarithm on both the sides of the equation y = ab”,
log, y=1log, a+xlog, b

Putting log, y=Y, log, a=A,x=X, and log,b = B,
Y=A+BX

This is a linear equation in X and Y. The normal equations are

Y Y=nA+BY X
Y Xy =AY X+BY X

Similarly, the best fitting exponential curves for the relation y = ax” and y=ae
obtained.

b

* can be
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CHAPTER

Numerical Integration

Chapter Outline

6.1 Introduction

6.2 Newton—Cotes Quadrature Formula

6.3 Trapezoidal Rule

6.4 Simpson’s 1/3 Rule

6.5 Simpson’s 3/8 Rule

6.6 Gaussian Quadrature Formulae
6.1 INTRODUCTION

The process of evaluating a definite integral from a set of tabulated values of f(x)
is called numerical integration. This process when applied to a function of a single
variable is known as quadrature. In numerical integration, f(x) is represented by an
interpolation formula and then it is integrated between the given limits. In this way,
the quadrature formula is derived for approximate integration of a function defined by
a set of numerical values only.

6.2

NEWTON-COTES QUADRATURE FORMULA

Let the function y = f(x) takes values y,, y;, ¥, .., y

v, for x, x;, x, ..., x, respectively (Fig. 6.1).
b
Let I= '[ f(x)dx . Dividing the interval (a, b)

into n sub-intervals of width % such that
Xo=a,X; =Xo+h, X, =x¢+2h, ..., x,=xg+nh=>b

b Xo+nh
Jfode= [ flode ; x
a )CO
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Putting x = xy + rh, dx = hdr
When x =x,, r=0
Whenx =x,+nh,r=n

b n
[ £ydx=n foxy+rhydr
a 0

r(r=1)(r-2) A3

3 y0+--1dr

T -1
= hj[yo +rAy, +MA2y0 +
0 21

[By Newton’s forward interpolation formula]

n

302 4
PR LABE g
= h|ry, +— Ay, + Ay, + Ay, +--
Yo 5 Yo > Yo 6 Yo
0
Xo+nh 2
n n2n-3) , nn—-2)" ;5
X)dx=hn|y,+=Ayy + —— A"y + ———— Ay, +---
J S(x) l:y() > Yo D Yo 24 Yo
X0
This equation is known as the Newton—Cotes quadrature formula.
6.3 TRAPEZOIDAL RULE
By the Newton—Cotes quadrature formula,
Xxo+nh 2
n n2n-3) 5 nn-2)" 3
xX)dx=hn|y,+—=Ayy +—— A"y, + —— Ay, +--
){) f( l:)b S Ao+ A+ = AT (6.1

Putting n = 1 in Eq. (6.1) and ignoring the differences of order higher than one,

Xo+h 1
[ reode= h(yo +5A)’0j

0

=h[yo +%(y| —yo)}

h
= ) (YO + Y1)
Similarly,
xo+2h h
[ redr=2(n+y)
Xo+h
Xo+nh

h
[ redv=2(+5)

Xo+(n—=1)h
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Adding all these integrals,

Xo+nh

h
| f(x)dx=5[(yo +3,)+2(3 42y o3,
X0

h
=Z[X+2R
2[ ]

where X = extreme terms, R = remaining terms
This is known as the trapezoidal rule.

Errors in the Trapezoidal Rule
Expanding y = f(x) in the neighbourhood of x = x; by Taylor’s series,

(x—xp)

2! y0+...

y(x) = yo +(x—xy)y) +

where y) = [y'(x)]x:x() , and so on.

& ! 2
4 (x_x) ”
jydxz J[yo+(x—x0)yo+—oy0 +--|dx

2!
X )
X1
('x_x())2 ’ (X_XO)3 ”
= |Yox+ Yo ot
2! 3! %0
(x1_xo)2 ’ (x1_x0)3 ”
=Yy (x; —x9)+ 2 0+ Y 0t
2 3
:h)’o"'z_!yo"‘ayo"'"‘
where X —xp=h

X
h
Also, f ydx = E(y0 +y,) = Area of the first trapezium = A,

0
Putting x = x, in Eq. (6.2),

2
(xl —Xo ) ”

y(xp) =y =Yg+ —x) g + X Yo o

h2
=y, +hy +7y(’)'+~~~

Substituting Eq. (6.5) in Eq. (6.4),

h L
A zg{Yo*‘Yo’LhYO % +}

2 3
=hy,+—y,+——y] +
YT 0TS0y Y0

6.3

..(62)

(6.3)

...(6.4)

.(6.5)

.(6.6)
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Subtracting Eq. (6.6) from Eq. (6.3),

X
jydx —h3 0 LI +
3' 2(2!)

X0
=——h3
12

1
Hence, the error in the first interval (x, x,), neglecting other terms, is —Eh3 Y5

”

1
Similarly, the error in the interval (x;, x,) is _Eh v and the error in the interval

(x

n—

, X,) 1s ——h3
1 X) 1 12 ynl

Hence, the total error is

1 ” ’” ”
E=_Eh3(}’o+)’1 et yiy)

Let y”() be the largest value of Yo Y1+« Yn—1 where xy<&<x,.
E<——Laun? y7 (&)
12

_(xn _xo)

5 hy”(€) [ nh=x,—x]

Example 1

Find the area bounded by the curve and the x-axis from x = 7.47 to
x =7.52 from the following table, by using the trapezoidal rule.

X 747 748 749 750 751 752
f) 1.93 1.95 198 2.01 203 2.06

Solution
a=747,b=17.52,h=0.01
752
Area = j f(x)dx
747
By the trapezoidal rule,
752
[ reodc= [(yo +35)+2( + 2 + 3 +y) |
747

01
= %[(1.93 +2.06)+2(1.95+1.98+2.01+2.03)]
=0.0996
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Example 2
Consider the following tabular values:

by 25.0 25.1 252 253 254 255 256
f) 3205 3.217 3.232 3245 3.256 3.268 3.280
Determine the area bounded by the given curve and the x-axis between
x =25 and x = 25.6 by the trapezoidal rule.

Solution
a=25 b=256, h=0.1
By the trapezoidal rule,

25.6

h
| ydx=5[(yo +36)+2(3 +32 33 + 34 +5) |
25

1
= 07[(3.205 +3.280)+2(3.217+3.232 +3.245+3.256 +3.268)|

=1.9461

Example 3

Given the data below, find the isothermal work done on the gas if it is
compressed from v, =22Ltov,=2L.

Va2
Use W = —I pdv
Y1
v, L 2 7 12 17 22
il 12.20 3.49 2.049 1.44 1.11

[Winter 2012]

Solution
v =22,v,=2,h=5
By the trapezoidal rule,

v
W= —_[pdv

V1

2
=—jpdv
2
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2
= dev
2

h
= 5 [(yo + y4)+2(y1 +¥, +y3):|
= % [(12.20+1.11) + 2(3.49 + 2.049 + 1.44)]

=68.17

Example 4
2
Use trapezoidal rule to evaluate J‘%dx, dividing the interval into

0vV2+x

four equal parts.

Solution

h=-"L =0.5
n 4
X
y=f(x)=
\/2+x2
0 0.5 1 1.5 2

0 0.3333 0.5774 0.7276 0.8165

Yo Y1 Y2 Y3 Y4

By the trapezoidal rule,
Tde = ﬁ[()’o +)’4)+2()’1 Ry +)’3)J
oV 2+ x2 2

= % [(0 +0.8165)+2(0.3333+0.5774 + 0.7276)]
=1.0233

Example 5

1
Evaluate jex dx, with n = 10 using the trapezoidal rule.
0
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Solution

y=f(x)=e"

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.10
1 1.1052 1.2214 1.3499 1.4918 1.6487 1.8221 2.0138 2.2255 2.4596 2.7183

Yo N Y2 V3 V4 Vs Y6 Y7 Y8 Y9 Y10

By the trapezoidal rule,

1

h
jede=E[(YO+Y1o)+2(Y1+Y2+)’3+)’4+)’5+)’6+)’7+)’8+)’9)]
0

= % [(1+2.7183)+2(1.1052 +1.2214 +1.3499 + 1.4918 + 1.6487)

+1.8211+2.0138+2.2255+ 2.4596)]
=1.7196

Example 6

1
Calculate J2 e* dx with n = 10 using the trapezoidal rule.

0 [Winter 2014]

Solution
a=0,b=1,n=10
_b-a _ﬂ_
n 10
y=f(x)=2¢"

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.1

2 22103 2.4428 2.6997 2.9836 3.2974 3.6442 4.0275 4.4511 4.9192 5.4365

Yo Y1 h) Y3 Yq Vs Y6 Y7 Vs Yo Y10
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By the trapezoidal rule,

1
x h
.[26 dx:E[(yO 10+ 200+ Y3 Yy T Vs + Vet s +)’9)]
0
1
- 07 [(2+5.4365)+2(2.2103+2.4428 +2.6997 +2.9836

+3.2974 +3.6442 + 4.0275+ 44511 + 4.9192)]
=3.4394

Example 7
1
Compute the integral I e* dx using the trapezoidal rule for n = 4.
-1
Solution
a=-1,b=1,n=4
X, —xy  1-(=1)

n 4
y=fx)=¢"

1 =05 0 05 |

vl 0.3679  0.6065 1 1.6487 2.7183
Yo Y1 Y2 V3 V4

By the trapezoidal rule,
1

[ef dng[(yo +34)+ 20+, +3) ]

-1

h 0.5

= % [(0.3679 + 2.7183) + 2(0.6065 + 1 + 1.6487)

=2.39916

Example 8

1
2
Evaluate j e " dx with n = 10 using the trapezoidal rule.
0

Solution
a=0,b=1,n=10
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b=a _1-0_,,
n 10

y=f(x)= e

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 09 0.10
0.99 0.9608 0.9139 0.8521 0.7788 0.6977 0.6126 0.5273 0.4449 0.3679

Vi Y2 Y3 Vs Vs Ve Y7 Y8 Yo Y10

2

_o1
2

1

e h
Jer o= [0+ 210) #2004 224 33 #3035 43+ 37 35+ )
0

[(1 +0.3679) +2(0.99 +0.9608 +0.9139+0.8521+0.7788

+0.6977+0.6126+0.5273 + 0.4449)]
=0.7462

6.4 SIMPSON’S 1/3 RULE

By the Newton—Cotes quadrature formula,

Xo+nh 2
n n(2n—3) n(n—2)
j f(x)dx=hn|:y0 +EAy0 +TA2yO +—24 A3y0 +i| (67)

X0
Putting n = 2 in Eq. (6.7) and ignoring the differences of order higher than 2,
xo+2h 1
| rede= 2h{y0 + Ay, +gA2yo}
X0
¥2 =23+ H

:2h|:y0+(y1—y0)+( -

h
:g()’o +4y, +y2)

Similarly,
xo+4h

h
J f(x)dXZE()b +4y; +)’4)

Xo+2h

Xo+nh

h
j f(x)dng(yn—2+4yn71+yn)
X +(n-2)h
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Adding all these integrals,

Xo+nh

h
[ reode=2{(v+3,)+40n+ys ot y,)+ 200+ 440,00
X

=ﬁ[x+40+2E]
3

where X = extreme terms, O = odd terms, £ = even terms
This is known as Simpson’s 1/3 rule.

Note To apply this rule, the number of sub-intervals must be a multiple of 2.

Errors in Simpson’s 1/3 Rule
Expanding y = f(x) in the neighbourhood of x = x,, by Taylor’s series,

(x_‘xo )2 ”+ (x_‘xo )3 /”+ (x_x0)4 iv
TR TR TR

Y(x)=yy +(x—x5) ¥y + ..(6.8)

where yj =[y"(x)],-, and so on.

x x) 2 3 4
, L emxg)t L, (emxg) L, (mxp)T
jydx:j|:yo+(x—xo)yo+ 2'0 Yo + 3'0 Yo + 4‘0 yOV +}dx

X0 X0
x2
_ (‘x_xo)z ’ (‘x_‘xO)3 ” (x_x0)4 ” (‘x—xo)s iv
B T TR TR A TR
()Cz_xo)2 , ()‘2_950)3 ”
—yO(xz_xo)+ X Yo+ 30 Yo
(xz—x0)4 " (xz_xo)s iv
4 0T o
oy A 8, tent L, 32K G
=21y X Yo Y Yo 41 Yo 51 Yo
an® 2h* an® |
2.7 ” ”m iv
=2y +2hNo + =Yg+ =Y gy Yo o ..(6.9)
where x, — x, = 2h
X
h . .
Also, J ydx = E(yo +4y, + y2) = Area in the interval (xo, xz) =A ...(6.10)

X0
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Putting x = x, in Eq. (6.8),

2 3 4
(xl _xO) yr/+ (‘xl _XO) ym+ (xl _XO) iv

y(x) =y = Yo +(x; =) yo + N 0 3 0 a0 e
2 3 o
— 7 I ” . ”r I 1v v
=Yy +hyy + X Yot 30 Yot 21 Yo t+ ..(6.11)

Putting x = x, in Eq. (6.8),
4n* , 8h’ ,, 16h*

¥(xy) =y, = ¥y +2hy) +7y6’+?yo T Y0t (612)
Substituting Eq. (6.11) and (6.12) in Eq. (6.10),
’ 4h3 ” 2h4 " Shs iv
A =20y, + 2175 + IR RETIR R -.(6.13)

Subtracting Eq. (6.13) from Eq. (6.9),

.X2 4 )
jydx_Al :(__i By e

15 18
X0
|
= —— h v + ...
90 Yo
Hence, the error in the interval (x, x,), neglecting higher powers of h, is
1 5 ;
— R Y ..
90 Yo

1 4
Similarly, the error in the interval (x,, x,) is ~% h V5.

Hence, the total error is

Bem it o)

Let y"(&) be the largest value of Yo' s Vo' s eees Youa where X< E<xy,
E<——nh® y" (&)
90

O =%) 14 i

120 (3] [ 2nh=x,, —x]
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Example 1

Consider the following values:
x 10 11 12 13 14 15 16
y .02 094 0.89 0.79 0.71 0.62 0.55

16

Find _[ ydx by Simpson’s 1/3 rule.
10

Solution
a=10, b=16, h=1
By Simpson’s 1/3 rule,
16 h
[y de=2(0+56) + 401433 +35) +2(2 % 34
10
1
=3 [(1.02+0.55)+4(0.94 +0.79+0.62) + 2(0.89 + 0.71) ]
=4.7233

Example 2

A rocket is launched from the ground. Its acceleration is registered
during the first 80 seconds and is given as follows:

t(s) 0 10 20 30 40 50 60 70 80
e 30 31.63 3334 3547 3775 4033 4325 46.69 50.67
By Simpson’s 1/3 rule, find the velocity at t = 80 s.

Solution

a=0, b=80, h=10
By Simpson’s 1/3 rule,
80
Velocity = _[ adr
0

h
= g[()’o+YS)+4(Y1+y3+)’5+)’7)+2(J’2+)’4+)’6)]

1
= ?0 [(30 + 50.67) + 4(31.63 + 35.47 + 40.33 + 46.69)

+2(33.34 + 37.75 + 43.25)]
=3086.1 m/s
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Example 3

A river is 80 metres wide. The depth ‘d’in metres at a distance x metres
from one bank is given by the following table. Calculate the area of
cross section of the river using Simpson’s 1/3 rule. [Summer 2015]

X 0 10 20 30 40 50 60 70 80
y 0 4 7 9 12 15 14 8 7
Solution
a=0, b=80, h=10
80
A= J ydx
0
By Simpson’s 1/3 rule,

80

h
Iydx=§[(yo +Yg) 4 (3 + 3 + s +37)+2(32 Y4 +36) |
0

=? (0+7)+4(4+9+15+8)+2(7+12+14)]

=723.33m?

Example 4

6
1
Evaluate _[l—dx taking h=1 using Simpson’s 1/3 rule. Hence,
0

obtain an approximate value of log 7. [Winter 2013]
Solution
a=0, b=6, h=1
L _b-a_6-0_,
h 1
1
y=f(x)=——-
1+
0 1 2 3 4 5 6
1 0.5 0.3333 0.25 0.2 0.1667  0.1429

Yo Y1 Y2 V3 V4 Vs Y6
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By Simpson’s 1/3 rule,
6
1
Jl_ = [y0+y6)+4(YI+y3+)’5)+2(Y2+y4)]
0

=3 L [(140.1429) 4 4(05+0.25+ 0.1667) + 203333 +0.2)]

=1.9588 (D)

By direct integration,

6
J de:|log (l+x)|6:10g7
1+x 0 (2
From Eqgs (1) and (2),
log 7=1.9588

Example 5
Evaluate j4—+5 by using Simpson’s 1/3 rule, taking 10 equal parts.
04x

Hence, find the approximate value of log,5.

Solution
a=0, b=5 n=10
p=2=2_370_4s
n 10
1
y= f()— p—

0 0.5 1.0 1.5 2.0 2.5 3.0 35 4.0 45 5.0
iGN 0.2 0.1428 0.1111 0.0910 0.0769 0.0667 0.0588 0.0526 0.0476 0.0435 0.04

Yo Y1 Y2 V3 Y4 Vs Ve Y7 Vs Yo Y10

By Simpson’s 1/3 rule,

5

dx h
‘[4x+5 3[()70"'}’10)"‘4()’1 +y3+y5+y7+y9)+2(y2+y4 + Y +}’3)]

= js[(O.Z +0.04)+4(0.1428 +0.0910 +0.0667 +0.0526 +0.0435)

+2(0.11114+0.0769+0.0588 + 0.0476)]
=0.4026 (D
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By the direct method,

j dr |log,(4x+5)
4x+5 _|

4

) !
1
= Z(loge 25-log, 5)

—llo 2
4 85

1
=—log,5
4 g,
Equating Eqgs (1) and (2),

%loge 5=0.4026
log,5=1.6104

(2)

Example 6
6 3

Evaluate the integral J (1+x2 )5 dx by Simpson’s 1/3 rule with taking

-2

6 sub-intervals. Use four digits after the decimal point for calculations.

[Winter 2012]
Solution
a=-2, b=6, n=6
L_b-a_6-(2) _4
n 6 3
3
y=fx)=(1+x°)2
, 22 , b ]
- 3 3 3 3
11.1803 1.7360  1.7360 11.1803 42.1479 108.7094  225.0622
Yo Vi Y2 Y3 V4 Vs Yo
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By Simpson’s 1/3 rule,

6 3

3o
j(1+x2)2dx=§[(yo +36)+4 (3 + 33 +5) +2(3s + ) |
-2

4
= 5 [(1 1.1803+225.0622) +4(1.7360+11.1803 +108.7094)

+2(1.7360 + 42.1479)

=360.2280
Example 7
06
Using Simpson’s 1/3 rule, find _[ e " dx by taking n = 6.
0 [Summer 2015]
Solution

0.1 0.2 0.3 0.4 0.5 0.6
0.99 0.9608 0.9139 0.8521 0.7788 0.6977

Vi Y2 V3 V4 Vs Y6

By Simpson’s 1/3 rule,

0.6

h
j e”‘zdeE[(yO +Ye ) +4 (1 +y3 +5)+2(», +y4)]
0

1
= % [(1+0.6977) +4(0.99 +0.9139 +0.7788) + 2(0.9608 + 0.8521) |
=0.5351

Example 8

3

Estimate J‘COS2 x dx by using Simpson’s 1/3 rule with 6 intervals.
0
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Solution

0 0.5 1.0 1.5 2.0 25 3.0
1 0.9999  0.9996 09993  0.9988  0.9981  0.9973

Yo Y1 Y2 Y3 Va4 Vs Y6

By Simpson’s 1/3 rule,

3
h

Icoszxdx = 5[()’0 +y6)+4()’1 +; +)’5)+2()’2 +}’4):|

0

= 0—; [(1+0.9973) +4(0.9999 +0.9993 +0.9981) +2(0.9996 + 0.9988)]

=2.9978

Example 9

T
2

Compute the integral _[\/ sinx dx for n = 6 with an accuracy to five
0

decimal places using Simpson’s 1/3 rule.

Solution
a=0, b=", n=6
2
T
h= b-a :E__O:l
n 6 12
J/sin x
x T T r S x
12 6 4 3 12 2

0.5087  0.7071  0.8409  0.9306  0.9828 1.0

Y1 Y2 Y3 V4 Vs Yo
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By Simpson’s 1/3 rule,
a2
7 h
J\/sinx dx = gl:(yo +y6)+4(y1 + 3 +)’5)+2()’2 +)’4)]
0
[(0 +1)+4(0.5087 +0.8409 + 0.9828) + 2(0.7071 + 0.9306)]

-
36
=1.1873

Example 10

The speed v metres per second, of a car, t seconds after it starts, is
shown in the following table:

t 0 12 24 36 48 60 72 84 96 108 120
v 0 3.60 10.08 1890 21.60 18.54 1026 450 4.5 5.4 9.0

Using Simpson’s 1/3 rule, find the distance travelled by the car in
2 minutes.

Solution

Let s (metres) distance be travelled in  (seconds).
ds
=2y

dr
J ds = _[ vdt

s=Jvdt

The distance travelled in 2 minutes, i.e., 120 seconds is
120
s = J v dt
0
Also, h =12 seconds
By Simpson’s 1/3 rule,
120

h
j vdtzE[(y0+y10)+4(y1 +y3tys+y; +y9)+2(y2 + Yy +y6+y8):|
0

12
= ?[(O +9.0)+4(3.60+18.90+18.54 +4.50+5.4)

+2(10.08+21.60+10.26 +4.5)]
=1222.56 metres



6.5 Simpson’s 3/8 Rule 6.19

6.5 SIMPSON’S 3/8 RULE

By the Newton—Cotes quadrature formula,

Xo+nh 2

n n(2n—-73) n(n-2)
.[ f(x)dx=hn|:yo +5AyO+ 12 Az)’0+ 24 A3y0+'-~i| ...(6.14)
X0

Putting n = 3 in Eq. (6.14) and ignoring the differences of order higher than 3,

Xo+3h 3 3 1
[ rde= 3h[y0 +2 A% +ZA2yO +§A3yo}

X0

3h
:§(y0 +3y, +3y, +y3)

Xxo+6h

Similarly, J‘ Fx)dx = ﬁ()@ +3y, +3y5 +Y6)
Xo+3h 8
Xo+nh 3
J f(x)dx=?(yn—3+3yn—2+3yn—1+yn)
Xo+(n=3)h
Adding all these integrals,
Xo+nh 3
J f(x)dx:?[(yo +yn)+2(y3 + Y +---+yn73)+3(y1 +y, +y, + s +-~~+yn,1)]
X0
= %[X+2T+3R]

where X = extreme terms, 7' = multiple of three terms, R = remaining terms
This is known as Simpson’s 3/8 rule.

Note To apply this rule, the number of sub-intervals must be a multiple of 3.

Errors in Simpson’s 3/8 Rule
Expanding y = f(x) in the neighbourhood of x = x;, by Taylor’s series,

_ 2 _ 3 _ 4
X)) o DX e, X2%0) vy (6.15)

YOO = 3 + (0= %)+ T oy Ty g

where y) = [y'(x)]x:x(), and so on.
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x3 3 IR VIR IRV
jy@=j{Yo+(X—xo)Y(’)+(x X)L (T X0) e (X7 X0) lv—|-~~j|

2 Yo 30 Yo 41 Yo
o %
= yox+(x_2);°)2 ¥ (x_3);°)3 4 (x_4)§°)4 i (x_sfo)s WY e :
= 3ol = xp) + 2 —Z!xO)Z yp + ;lxof w4 :on)4 '
+ (x5 _S!xo)5 y(i)v e
=3hy°+%y5 * 273};3 y5'+814]?4 5 2453!}15 o (6.16)

where x; — x, = 3h

x3
Also, _[ ydx = % (yo +3y; +3y, +y3) = Area inthe interval (x,, x;) =4,  ...(6.17)
X0
Putting x = x, in Eq. (6.15),
2 3 4

’ ” h iV
(X)) =y, =Yy +hy +2_!)’o +§yo +4_!)’o +oe ..(6.18)

Putting x = x, in Eq. (6.16),

2 3 4
Y(xp) =y, = yo +2hy; + % Yo + 83L, Yo+ 164’; S -(6.19)
Putting x = x5 in Eq. (6.17),
9w,
TR TR Y
Substituting Eqs (6.18), (6.19) and (6.20) in Eq. (6.17),

Amgpy O 2T, s, 33
1= YERL 31 Yo ITRRL T

Subtracting Eq. (6.21) from Eq. (6.16),

X3 1 )
Jydx—Ae(S——ﬁ B+

3 4

y(x3)=y3 =y, +3hy; +

$eee(6.21)

40 16
X0
3 .
=——h 1V+...
g0 0

3 4
Hence, the error in the interval (x, x3), neglecting higher powers of 4, is ——Oh5 Yo -

iv

.. . . . 3
Similarly, the error in the interval (x5, x;) is —%hs V3.
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Hence, the total error is
3 5 iv iv iv
E= ~30 h (J’o +; +“'+Y3n—3)
Let y"(&) be the largest value of Yg s Y3 s Y2 3 where Xy <E<xy,.
3 5
E<——nk’y"
0™ Y ©

(g, - Xp)
80

< hyY (&) I: 3nh = x5, — xo]

Example 1

3
1 .
Evaluate J-de with n=06 by using Simpson’s 3/8 rule and, hence,
o 1+x

calculate log 2. [Summer 2014]
Solution

1 1.5 2 2.5 3
0.5 0.4 0.3333 0.2857 0.25

Y2 Y3 Ya Vs Yo
By Simpson’s 3/8 rule,

1 3h
£1+x dx =?[(y0+y6)+2(y3)+3(y1+h R +J’5)]

_305 [(1+0.25)+2(0.4) +3(0.6667 +0.5+0.3333 + 0.2857)]

=1.3888 ..(D)
By direct integration,

}de:|1og(1+x)|3
o 1+x 0

=log4
=log(2)’
=2log?2 (2)
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From Eqgs (1) and (2),
2 log 2 =1.3888
log 2 =0.6944

Example 2
)
S by using Simpson’s 3/8 rule.

T
Evaluate j
5+4cosx

0

Solution

a=0, b=rm
Dividing the interval into six equal parts, i.e., n = 6,

_b—a_n—O_E

h r—v
n 6 6
sin® x
= X)y=——mmm
yf()5+4c0sx
, ® = m am sn
6 3 2 3 6 T

0 0.02954 0.10714 02  0.25 0.16277 0

Yo Y1 Y2 V3 V4 Ys Ve

By Simpson’s 3/8 rule,

2

V3 . 3h
ijZlcjsxdx:?[(y0+y6)+2(y3)+3(y1 +y2+y4+y5)]
0

= 3(%)[(0 +0)+2(0.2) +3(0.02954 +0.10714+0.25+0.16277)]

8

T
=—(2.04835

T ( )
=0.40219

Example 3

2
Find '[ l—lsinztdt using one of the methods of numerical

0
integration.
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Solution

Dividing the interval |:0, %} into six equal parts and applying Simpson’s 3/8 rule,

T
h:b_a:E__Ozl
n 6 12
[
y=f()=[1-=sin’t
2
o E z z z 5z z
12 6 4 3 12 2

1 0.9831 0.9354  0.8660 0.7906  0.7304  0.7071
Yo Y1 Y2 V3 V4 Vs Ve

By Simpson’s 3/8 rule,

1. 3h
/1_581n2t dt=§[(y0 +36)+2(v3)+3 (3 +y, + 4 +y5):|

3(nm
_ g(ﬁ) [(1+0.7071)+ 2(0.8660)

O — [y

+3(0.9831+0.9354 +0.7906 + 0.7304)]
=1.3496

Example 4

T

2
Find J' 040 by Simpson’s 3/8 rule, dividing the interval [O, %} into
0

six equal parts.

Solution
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b4 T T T
3

12 6 4

Sm /4

12 2
12953  1.6487 20281 23773 2.6247 27182

Vi Y2 Y3 V4 Vs Ve

By Simpson’s 3/8 rule,
r
2

4 3h
Jesmew:?[(yo +36)+2(33)+3(n + 32+, +ys)]
0

3(nx
=—| — [[(1+2.7182) + 2(2.0281
o (1 2j[( ) +2(2.0281)
+3(1.2953 + 1.6487 + 2.3773 + 2.6247)|
=3.1012
Example 5
1 .
) , sin x . 1
By Simpson’s 3/8 rule, evaluate J taking h = g
0
Solution
1
a=0, b=1, h=—
6
h b—a _ 1-0 -6
o1
6
sin x
y=fx=——o
lim Sin x -1
x—=0 X
. L 1 1 2 s 1
6 3 2 3 6
1 0.9954 0.9816 0.9589 0.9276 0.8882 0.8415
Yo Vi Y2 V3 Ya Vs Yo

By Simpson’s 3/8 rule,

1 . 3]1
J'Slnx dx=?[(y0 +y6)+2(y3)+3(y1 +Y,+y, +}75):|

0 X
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_ % (éj [(1+0.8415) + 2(0.9589)

+3(0.9954 + 0.9816 + 0.9276 + 0.8882)]
=0.9461

Example 6

The velocity of a train which starts from rest is given by the following
table, the time being reckoned in minutes from the start and speed in

km/h.
Time 3 6 9 12 15 18
Velocity 22 29 31 20 4 0
Estimate approximately the distance covered in 18 minutes by Simpson’s

3/8 rule.
Solution

Let s km distance be covered in ¢t minutes.
ds
=y
dt

st='[vdt
s = J.vdt

The distance covered in 18 minutes is
18
s = _[ vdt
0

Since the train starts from rest, at r =0, v=0 o ye=0

Time (7) 0 3 6 9 12 15 18
Velocity (v) 0 22 29 31 20 4 0

Yo Y1 Y2 V3 Vg Vs Ve

Also, h = 3 minutes = i = i hours
60 20
By Simpson’s 3/8 rule,
18

3
_[vdtz?[(yo +36)+2(3)+3 (0 + 30 + 34 +5) ]
0
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8
=5.38125

—i(ioj[(m 0) +2(31) +3(22 +29 + 20 + 4)]

Example 7
Find the volume of a solid of revolution formed by rotating about the

x-axis the area bounded by the lines x =0, x = 1.5, y = 0, and the curve
passing through the following points:

X 0.00 0.25 0.50 0.75 1.00 1.25 1.50
y 1.00 0.9826 0.9589 0.9089 0.8415 0.7624 0.7589
Solution
Volume is given by
V= jnyz dx
0.00 0.25 0.50 0.75 1.00 1.25 1.50
1.00  0.9655  0.9195 0.8261 0.7081 0.5812  0.5759
Yo Y1 Y2 Y3 Ya Vs Yo
h=0.25

By Simpson’s 3/8 rule,
3h
[y dx =§|:(y0 +36)+2(v3) +3 (3 + 3 + 34 +35)]

= @[(1.00 +0.5759) + 2(0.8261)
+3(0.9655 + 0.9195 + 0.7081 + 0.5812)]
=1.1954
Volume = ﬂj y2 dx

= 71(1.1954)
=3.7555

Example 8

52
Evaluate j log x using the trapezoidal rule and Simpson’s 3/8 rule,

4
take h =0.2.
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Solution

a=4, b=52, h=02
_b-—a 52-4
Ch 02
y=f(x)=logx

n

6

4 4.2 4.4 4.6 4.8 5.0
1.3863  1.4351 1.4816  1.5261 1.5686  1.6094

Yo Y1 Y2 Y3 V4 Vs

By the trapezoidal rule,
52 i
[ log xdx= 5[(yo +6) +2( + ¥y + ¥y 34 +5) ]
4

= %[(1.3863 +1.6487)

5.2
1.6487

Ve

+2(1.4351+1.4816 +1.5261 + 1.5686 + 1.6094)]

=1.8277

By Simpson’s 3/8 rule,

52 3]1
| 10gdx=§[(yo +36)+2(y3)+3(3 + 2 + 34 +5) |
4

= % [(1.3863 +1.6487) + 2(1.5261)

+3(1.4351+ 1.4816 + 1.5686 +1.6094)|
=1.8278

6.27

Example 9

1
Evaluate

0 1+ .x2
trapezoidal rule.

Solution

a=0, b=1, h=l
6

takinghzé using Simpson’s 3/8 rule and the



6.28 Chapter 6 Numerical Integration

b— 1-0
n= a:—:6
oL
6
1
1+ x2
o2 s
3 2 3 6
s 4 2 36 1
10 5 13 61 2
Y2 V3 Ya Vs Yo

By Simpson’s 3/8 rule,

todv 3h

J.1+x2 =?|:(y0+y6)+2(y3)+3(y1+y2+y4+y5):|

0
:i(l)[(]+l)+2(i)+3(§+2+i+ﬁ)i|
8\ 6 2 5 37 10 13 61
=0.7854

By the trapezoidal rule,

1

dx h
E').1+x2 :E[(yo +y6)+2(y1 +y2+y3+y4+y5)]
1 K 1) (36 9 4 9 36)}
=—||1+= |+2| =+ —+=+—+—
12 2 37 10 5 13 61
=0.7842
Example 10
6
Evaluate J1+ > by using (i) trapezoidal rule, (ii) Simpson’s 1/3 rule,
0 X
(iii) Simpson’s 3/8 rule. [Summer 2014]
Solution
a=0,b=6

Dividing the interval into six equal parts, i.e., n = 6,
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S
|

Q

@)}

n 6
1

0 1 2 3 4 5 6
1 0.5 0.2 0.1 0.0588 0.0385 0.027

Yo Y1 Y2 Y3 Ya Vs Yo
(i) By the trapezoidal rule,

© dr _h
'[1+x2 =5[(y0+y6)+2(y1+y2+y3+y4 +)’5):|

!

2

=1.4108
(i) By Simpson’s 1/3 rule,

0

[(14+0.027)+2(0.5+0.2+0.1+0.0588 +0.0385) |

© dx  h
'[1+x2 :g[(y0+y6)+4(Y1+Y3+}’5)+2(y2+)’4):|
0

= %[(1 +0.027) +4(0.5+0.1+0.0385) +2(0.2 +0.0588)|

=1.3662
(iii) By Simpson’s 3/8 rule,

¢ dx 3
.[1+x2 :?[(yo +y6)+2(y3)+3(y1 R +}’4+Y5):|

0
= %[(1 +0.027)+2(0.1)+3(0.5+0.2 + 0.0588 +0.0385)]

=1.3571

EXERCISE 6.1

taking h = 0.2, using trapezoidal rule.

2
1. Evaluatej dxz
11+ x
[Ans.: 0.3228]

0.3
2. Evaluate the value of j V1-8x* dx using Simpson’s 3/8 rule.
0 [Ans.: 0.2916]
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10.

.
dx

. Evaluate J3—
0 X*+X

Chapter 6 Numerical Integration

a

2
. Evaluate jeS‘""dx by Simpson’s 3/8 rule.
0

[Ans.: 3.1044]

1
d
Evaluate Jﬁ by using (i) trapezoidal rule, (ii) Simpson’s 1/3 rule, and
0
(iii) Simpson’s 3/8 rule. Take h = 0.25.
[Ans.: (i) 0.6970 (ii) 0.6932 (iii) 0.6932]

2
Calculate Jsinx dx by dividing the interval into ten equal parts, using
0

the trapezoidal rule and Simpson’s 1/3 rule. [Ans.: 0.9981, 1.0006]

1 tox?
Find the value of log23 from J 3
o T+Xx

h=0.25. [Ans.: 0.2311]

1.4

Compute the value of _[ (sinx —log x + e*)dx taking h = 0.2 and using the
0.2

using Simpson’s 1/3 rule with

trapezoidal rule, and Simpson’s rule. [Ans.: 4.0715, 4.0521]

0.7
. Evaluate j Jx e*dx using Simpson’s 3/8 rule.
0.5

[Ans.: 0.0841]

" using Simpson’s 1/3 rule, taking h = 0.25.

[Ans.: 0.6305]

A curve is drawn to pass through the points given by the following
table:

X 1 1.5 2 2.5 3 3.5 4
y 2 2.4 2.7 2.8 3 2.6 2.1
Obtain the area bounded by the curve, the x-axis, and the lines x = 1 and

X = 4 by any method.
[Ans.: 7.7833]
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6.6 GAUSSIAN QUADRATURE FORMULAE

An n-point Gaussian quadrature formula is a quadrature formula constructed to give an
exact result for polynomials of degree 2n — 1 or less by a suitable choice of the points
x; and weights w, for i = 1, 2, ..., n. Gauss quadrature formula can be expressed as

1 n
[ reode=Ywfx) (622)
-1 i=1

6.6.1 One-point Gaussian Quadrature Formula

Consider a function f(x) over the interval [-1, 1] with sampling point x; and weight w.
The one-point Gaussian quadrature formula is

1
[ FCo dx = wyf(x)) (6.23)
I

This formula will be exact for polynomials of degreesupto 2n—-1=2(1)-1=1,1i.e.,
it is exact for f(x) = 1 and x.

Substituting f(x) in Eq. (6.23) successively,

J Ldx=w,
-1
1
|x |_1 =w
1
j xdx=wx
-1
5!
T o=wx
) 1%
-1
0=wx, ...(6.25)
Solving Egs (6.24) and (6.25),
w; =2
xl = O
1
Hence, [ Feodx=2£(0) (6.26)
-1

Equation (6.26) is known as one-point Gaussian quadrature formula. This formula is
exact for polynomials up to degree one.
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6.6.2 Two-Point Gaussian Quadrature Formula

Consider a function f(x) over the interval [-1, 1] with sampling points x,;, x, and
weights w,, w, respectively. The two-point Gaussian quadrature formula is

1
J FGo dxe=wy f)+wy f(xy) (627)
-1

This formula will be exact for polynomials of degreesup to 2n—-1=2(2)-1=3,1i.e.,
it is exact for f(x) =1, x, x* and x°.

Substituting f{x) in Eq. (6.27), successively,

1
_[ Ldx=w, +w,
-1
1
4= M 2
|x| w +w
2=w +w, ..(6.28)
1
J xdx=wx; +w,yx,
-1
5[
x
—| =wix +wyx,
-1
0=wx; +w,x, ..(6.29)
1
sz dx = w1x12 +w2x§
-1
1
3
X _ 2 2
—| =wX FwyX;
-1
2 2 2
3" WiX; +WyX) ..(6.30)

1

34 3 3
Jx dx =wyx; +w,x;
-1

n

X 3

_ 3
= WX + WH Xy

-1

0= w1x13 + wzxg ...(6.31)
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Solving Eqgs (6.28), (6.29), (6.30), and (6.31),

wy=w, =1
1 1

xl :——’_)C2 =

37

‘ 1 1
Hence, jlf(x) drx=f (_f) +f (f) ..(6.32)

Equation (6.32) is known as the two-point Gaussian quadrature formula. This formula
is exact for polynomials up to degree three.

6.6.3 Three-Point Gaussian Quadrature Formula

Consider a function f{x) over the interval [-1, 1] with sampling points x;, x,, x; and
weights wy, w,, w; respectively. The three-point Gaussian Quadrature formula is

1
If(x)dx=Wlf(x1)+W2f(x2)+W3f(x3) ..(6.33)
-1

This formula will be exact for polynomials of degreesupto2n—-1=23)-1=5,1i.e.,
it is exact for f(x) = 1, x, x2, x3, x*and X°.
Substituting f(x) in Eq. (6.33) successively,

1
J.ldx=w1+w2+w3
-1

1
XL, = wy +w, +ws
O=w, +w,y +w; ...(6.34)

1
J x dx =wx; +wyx, +wix,
-1

1

x2

= WX +w2x2 +w3x3

-1
0=wx; +wyx, +Wsx; ...(6.35)

1
24 .2 2 2

Jx dx = wix; +wyx; +wsx;

-1

1

x3

_ 2 2 2
=W X] +WoXy +Wa X3

-1

2
3 W XE + WX +Wax; ...(6.36)
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1
X dx = wpx +wyns + w3x§
-1

1
)C4

= WX + Wy +w3x§

-1

0= wyx; +wyx +wsx; (637)

1

49 _ 4 4 4
Jx dx = wx; +w,yx, +wyx;
-1

51

X 4

o, b 4
= WX FWyXy +WaXs

-1

2 4 4 4
=W +wyxs +wyx;

...(6.38)
1
X dx= w]xl5 +w2x§ +w3x§
-1
1
6
X _ 5 5 5
=WiX] +W,oX5 +WaX;
-1
0=wx> +w,x5 +wix]
=W 2% 343 ...(6.39)

Solving Eqs (6.34), (6.35), (6.36), (6.37), (6.38), and (6.39),

3 3
X =—\/;,x2 =0, x; =\/;
| ; [ \/gj ; ; (\/gJ
Hence, S dx=—f| == |+ =fO)+=f| /= ...(6.40)
_j] o’ '\s5) 97 97 \s

Equation (6.40) is known as the three-point Gaussian quadrature formula. This formula
is exact for polynomials up to degree 5.

Example 1
1

Evaluate J 5 by one-point, two-point, and three-point Gaussian
-1
Sformulae.
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Solution
f(x)=
1+ x?
By the one-point Gaussian formula,
1
dx
J4 20
S1+x
o[
1+0
=2

By the two-point Gaussian formula,

By the three-point Gaussian formula,
J -
1+x7

5 3) 8 5 3
af(‘ ‘)*6f<°>+6f(@
5( 1 8( 1 ) 5( 1

=— +— +— 3
9 9\1+0/) 9 1+g

W

-1

1+2
5

=1.5833

Example 2

1

t

Evaluate .[1— by ome-point, two-point, and three-point Gaussian

0
Sformula.
Solution

b—a b+a

Let t= X+

2 2
Here, a=0, b=1
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Whent=0, x=-1
Whent=1, x=1
dx

¢ dr _1
'([1+t_2:'.11+;(x+1)
1
dx
::"lx+3

1
f(x)—m

By the one-point Gaussian formula,
1

1+t_ [ X+3
=2f(0)

(53]

=0.6667

By the two-point Gaussian formula,
fdr '1[ dx
oI+t J x+3

A

1 1
= +
—\/T+3 \/T+3
3 3

=0.6923

By the three-point Gaussian formula,

1
dx
l+t '[lx 3

+
5 31 8 5 3
—5f[‘@+af<°)+af[@
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s(1 8( 1) 5( 1

RIS ANNE
—\f+3 \f+3

5 5

=0.6931

Example 3

6 3
Evaluate the integral J‘ (1+x%)2dx by the Gaussian formula for n = 3.

2 [Winter 2012]
Solution
Let = b—a b+a

2 2
Here, a=-2, b=6
x=4t+2
dx =4dr

When x=-2, t=-1
When x=6, =1

6 3 1 3
Ja+ad)? de=[[1+@r+22 ]2 4 ar
-2 -1
1 3
=4j(16t2+16t+5)2 dr
-1
3
f()=(161* +161+5)2

By the three-point Gaussian formula,

6 3 1 3
j(1+x2)2 dx=4j (162 +16¢+5)2 dr
) -1

;gf(—\@%ﬂong f( ;EH |
Sl st 3ol )]

=358.6928

Il
~

Il
N
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Example 4
1
2
Evaluate _[e_x dx by using the Gaussian quadrature formula with
0
n=23. [Winter 2014, Summer 2015]
Solution
b—a b+a
Let X=——t+—
2 2
Here, a=0, b=1
1 1 1
=—t—=—(t+1
X > t+ ) (t+1)
dx = 1 dr
2

When x=0, t=-1

When x=1, =1
11

J‘efxz dx = % J. eiZ(Hl)2 dr
0 2

L2

fx)=e *

By the three-point Gaussian quadrature formula,

115 3 8 5 3
‘E[Ef[‘@w“”;f(m
1 3 ’ 1{ /3 ’
42 ABa) s w5 () ]
219 9 9
=0.746815

Example 5

T

2
Evaluate jsint dt by the two-point Gaussian formula.
0
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Solution

Let t=

Here, a=0, b:E
2

1= Z 2 E e
474 g
dr=2 dx
4

1
jsintdzzfjsinf(xﬂ)dx
0 4—] 4

f(x)= sin%(x +1)

By the two-point Gaussian formula,

1
T T
sintdr=— | sin—(x+1)dx
4_11 LD

%H—%}” (%ﬂ
-=ant{ Lo (L)

=0.99847

S — [y

EXERCISE 6.2

6.39

Evaluate the following integrals by using Gaussian quadrature formulae:

[Ans.: 2.342696]

1

1. Jex dx (2 points)
0
todx

2. J (2 points)
0 1—X4

[Ans.: 1.311028]
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7

3. JLZ (2 points)
oV1-sin®6 [Ans.: 1.226]
7

4, Jlog(1+x) dx (2 points)
0 [Ans.: 0.858]
3

5. sz cos x dx (3 points)
0 [Ans.: —4.936]
2

6. Jex dx (3 points)
1

[Ans.: 4.67077]

Points to Remember

Newton—Cotes Quadrature Formula

Xotnh 2
n n2n-3) ., nn—=2)" ;3
dx=nh +—=Ay, + A7y, + Ayg+--
[ Oodv=hn] yo+2 Ay + == Ay £ === Ay,
0
Trapezoidal Rule
Xo+nh

h
| f(x)dx=5[(yo +3,)+2(3 43 3, ]
X

Simpson’s 1/3 Rule

Xo+nh

h
j f(x)dng[(yo + 3, )+ 4+ s+t v )20+ s +-~~+yn_2)]
B0

Simpson’s 3/8 Rule

Xo+nh

3h

| f(x)dx=§[(yo +3,)+2(y3 + Ve + 0+ 3,3)

3y 43y Vg Y5+t Y, )]
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Gaussian Quadrature Formulae
1 n
[ Fooydx= Y wifx)
—1 i=1
1. One-point Gaussian Quadrature Formula

1
[ reode=270)
-1

2. Two-Point Gaussian Quadrature Formula

frow-A{-g)(5)

3. Three-Point Gaussian Quadrature Formula

s
flf(x)dx—gf(— SO+ 3







CHAPTER

Ordinary Differential
Equations

Chapter Outline

7.1 Introduction

7.2 Taylor’s Series Method

7.3  Euler’s Method

7.4 Modified Euler’s Method

7.5 Runge—Kutta Methods

7.6 Milne’s Predictor-Corrector Method

7.1 INTRODUCTION

Many problems in science and engineering can be reduced to the problem of solving
differential equations satisfying certain given conditions. The analytical method of
solutions of differential equations can be applied to solve only a selected class of
differential equations. In many physical and engineering problems, these methods
cannot be used and, hence, numerical methods are used to solve such differential
equations.

Consider the first-order differential equations
dy
= = f(x,
rAC)

with the initial condition y(x,) = y,

A number of numerical methods yield solutions either as a power series in x from
which the values of y can be found by direct substitution, or as a set of values of
x and y. Picard’s and Taylor’s series methods belong to the former class of solutions,
whereas those of Euler, Runge—Kutta, Milne, etc., belong to the latter class. In these
later methods, the values of y are calculated in short steps for equal intervals of x and
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are, therefore, termed step-by-step methods. In the Euler and Runge—Kutta methods,
the interval length % should be kept small and, hence, these methods can be applied
for tabulating y over a limited range only. If, however, the function values are desired
over a wide range, the Milne method may be used. These later methods require starting
values which are found by Picard’s or Taylor series or Runge—Kutta methods.

7.2 TAYLOR’S SERIES METHOD

Consider the differential equation
dy
= = f(x, ..(7.1)
] f(x,y)

with the initial condition y(x,) = y,.
If y(x) is the exact solution of Eq. (7.1) then the Taylor’s series for y(x) around x = x,
is given by

(X—XO)Z ” (X—XO)3 ”r
Y yo + 3l Yo+ .(7.2)

Vi = y(x) =y +(x—x0)y5 +

Putting x — x, = h in Eq. (7.2),
2 3

’ h ” h ”
Y1 =Yo thyg FopYo gt .(7.3)

Similarly, Taylor series for y(x) around x = x, is given by
2 3

7 ” h ”s
Y2 =y +hy +§y1 +§)’1 +eo (7.4)

Proceeding in the same way,
2 3

’ h ” h ”s
Vsl =Y Hhy, METR AR

Example 1

Solve % =x+y by the Taylor’s series method. Start from x =1,y =0,

and carry to x = 1.2 with 2 = 0.1. [Summer 2015]

Solution
dy
—=f(x,y)=x+
i e y) y
(i) Given: xy=1, y,=0, h=0.1, x=x,+h=1+0.1=1.1
y=x+y yo=1+0=1
y =1+y’ y=1+1=2
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y=y" Yo' =2
W=y ¥ =2
By Taylor’s series,
2 3 B
= y(x;) =y + by +7y0 3 — ¥+ 0 yo e
:y(1.1)=0+0.1(1)+(0 b? (2)+(0 D’ (2)+(0£'11')4 2)+---

=0.1103
(i) Now,x;=1.1,y,=0.1103, h=0.1, x, =x; + h=1.1+0.1= 1.2
¥ =1.1+0.1103 =1.2103
y'=1+12103=2.2103

yl’”— 2.2103
y1 =2.2103
By Taylor’s series,
2 3 4
Y2 =Y00) = Fhy+ ey e T
(0.1)2

v, =¥(1.2)=0.1103+0.1(1.2103) + (2.2103)

L. 1) (0 1)

=0.2428

(2.2103) +-

7.3

Example 2

d
Solve 2 = 2y+3e* with initial conditions x, =0, y, = 1 by the Taylor’s

Solution
&= fw =2y 43¢
(1) Given: x3=0, yy,=1, x=0.1, h=x-x=01-0=0.1
Y =2y +3e" Yo =2()+3¢" =5
Y’ =2y"+3e" yi=2(5)+3¢" =13
Y =2y" +3e" v =2(13)+3¢" =29

YW =2y"" + 3" yo =2(29)+3e =61

series method. Find the approximate value of y for x = 0.1 and x = 0.2.
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By Taylor’s series,

2 h3 4
n= y(xl): Yo +hy6 +Ey6'+§y6”+zy(l)v +..-
(0.1 (0.1y° 0.1

3 =3O =1+015) +-——(13)+ =29 +— =D+
=1.5700
(ii) Now, x, =0.1,y, =1.5700, x, =0.2, h = x, —x; =0.2-0.1=0.1
¥ =2(1.5700)+ 3% = 6.4555
yi'=2(6.4555)+3¢"! =16.2265

y'=2(16.2265)+3¢"! =35.7685
v’ =2(35.7685)+3¢"" =74.8525

2 3 o
’ ” ”nrs v
)’2=)’(x2)=)’1+h)ﬁ+§)’1+§)’1 +Z)’1 tee
(0.1)
¥, = ¥(0.2)=1.5700+0.1(6.4555) + 2 (16.2265)
1)° 1
+ (03 ') (35.7685) + (04 ') (74.8525)+---

=2.303

Example 3

d
Solve Ey = 1+y2 with initial conditions xy = 0, y, = 0 by the Taylor’s

series method. Find the approximate value of y for x = 0.2 and x = 0.4.

Solution

dy 2
— = s =]+
oS n=lty

(i) Given: x, =0, y,=0, x,=02, h=x-x,=02-0=02

y =1+y* yo=1+0=1
Y =2y Yy =0
y/// — 2yy1/+2(y/)2 y(/)//: 0+2(1)2 =2

w4

yiv — zyfy// +2yy/// + 4y/y// — 2yyr// + 6y y y(l)v =0
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By Taylor’s series,
2 3 o
N=y ) =g thy + SeygF Iy Y e
2y
v =y(0.2)=0+02(1)+0+ (03') 2)+0+---
=0.2027
(i) Now, x;,=0.2,y, =0.2027,x, =04, h=x,—x;,=04-0.2=0.2
y =1+ (0.2027)*> =1.0411
y'=2(0.2027) (1.0411) = 0.4221
¥'=2(0.2027) (0.4221)+2(1.041 1)> =2.3389
y}" =2(0.2027)(2.3389)+6(1.0411)(0.4221) = 3.5849
By Taylor’s series,
2 3 e
Y2 =y Qo) =yt hyy ey e
2)° 2)°
¥, =y(0.4)=0.2027+0.2(1.0411) + (02 ') (0.4221)+ (03‘) (2.3389)
4
+%(3.5849)+~--

41
=0.4227

Example 4

Use the Taylor’s series method to solve %zxzy—l, y(0)=1. Also

find y(0.03).
Solution
dy 2
—=f(x,y)=x"y-1
™ flx,y)=x"y
Given: x,=0, y,=1, x=0.03, h=x-x,=0.03-0=0.03
Y =x'y-1 ¥, =0-1=-1
v =2xy+ xzy' vy =0
V" =2y +4xy +x°y" yo =2(1)+0+0=2

YV =6y +6xy” +x7y" Yo =6(=1)+0+0=-6
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By Taylor’s series.
2 3 4

_ ’ ” h 7’ h iv
y(x) =Yy +hy, +E)’0 +§)’o +Z)’0 T
3 4
¥(0.03)=1+0.03(-)+0+ (0.2)'3) 2)+ (0'2'3) (—6)+
=0.970009
Example 5
Using the Taylor’s series method, find correct to four decimal places,
. d
the value of y(0.1), given ay =x*+ y2 and y(0) = 1.
Solution
dy 2, .2
—_—= ) = —+
o fluy)=x"+y
Given: x,=0, y,=1, x=0.1, h=x-x,=0.1-0=0.1
y’:)c2+y2 ¥, =0+1=1
v’ =2x+2yy’ y§ =20)+2(MD) =2
Y =24+ 2yy" +2(y) vy =2+2()(2)+2(1)* =8
YWY =6y +2yy” Y = 6(1)(2)+2(1)(8) = 28
By Taylor’s series,
2 3 o
y(x) = yo +hyg +Ey6’+§y6”+ﬂyév +ee
(0.1)? 0.1 0.1)*
¥(0.1)=1+0.1(1) + ' )+ 31 &)+ 2 28)+---

=1.1115

Example 6
Using the Taylor’s series method, find y(1.1) correct to four decimal

1
places given that ﬂ: xyg, y(1)=1,h=0.1.
dx

Solution

1

dy _ .3
dx—f(x,y) xy
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Given: xy=1, yy=1, h=0.1, x=xy+h=1+01=11

1 1
¥ =xy? yo=11)* =1
2 1 1 1 2 1
1 - = 1, — 1 -= - 4
Z=—xy 3y +y3 =—x’y 3+)3 Y=—()(1) 3+1)3 =—
Y =R YAy =Xy y Yo 3()() @ 3

4 1 2 4 1
”r 1 2( 1) 3. 2 3 1 3. ”r 1 2( 1) 3 2 3
==X |- +— +— =—( — ) 3M+=D)) 3
y )Y YA ATy Y Y 3() 3() ) 3()()

2

13
+3M 3

1 2 1 8
=S+ —=—
9 3 3 9
By Taylor’s series,
2 "3
y(x) = yo +hyg +EYO +§)’0 e
(0.1)2(4) (0.1)3(8)
1.D=1+0.10+ — |+ — |+
&b AT Y AT

=1.1068

Example 7

Evaluate y(0.1) correct to four decimal places using the Taylor’s series

method if % =y>+x, y(0)=1.

[Summer 2015]
Solution
dy 2
—=f(x, )=y +x
™ fley)=y
Given: x,=0, y,=1, x=0.1, h=x-x,=0.1-0=0.1
Y =y +x ¥, =12 +0=1
Y7 o=2yy"+1 yo =2()+1=3
Y =2y +2y) ¥ =2)3)+2(1)* =8

”r

YW= 29y 4 2y'y +4y'y" =2y + 6y Y =2(1)(8)+6(1)(3) = 34
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By Taylor’s series,

2 3 4

”r

Y0 = Yo Hhyg + Y+ oy Ay e

21

2 3
y(0.1) = 1+0.1(1) + L 0.1)

3! 4!

0.1)*

2!
=1.1165

EXERCISE 7.1

)+ 3 &)+

PTRCALan

Solve the following differential equations:

1.

dy

dx

dy

dx

dy

dx

dy

dx

dy
dx

dy _

dx

=x*+y’ withx, =0,y,=0at x=0.4

=y—xy withx, =0,y, =2

[Ans.: 0.0215]

3 4
[Ans.:2+2x—2%_x_+..}

=x-y’ withx, =0,y, =1at x=0.1

=ysinx +cosx withx, =0,y, =0

=xy—-1withx, =1y, =2at x=1.02

1

x* +y?

with x, =4,y, =4 at x = 4.1

7. d—y=3x+%y with x; =0,y, =1at x=0.1

dx

dy
d

dy
dx

=3x+y* withy(0)=1at x =0.1
X

=e* —y? withy(0)=1at x =0.1

6

[Ans.: 0.9138]

{Ans.; Xy +}
6 120

[Ans.: 2.0206]
[Ans.: 4.0031]
[Ans.: 1.0065]
[Ans.: 1.1272]

[Ans.: 1.005]
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dy .
10. a=—xy with x, =0,y, =1

2 4 6
[Ans.:1—x—+x——x—+---}
2 8 48

7.3 EULER’S METHOD

Consider the differential equation

jx—y = f(x.y)

with the initial condition y(x,) = y,.

The solution of the differential
equation is represented by the curve
as shown in Fig. 7.1. The point
Py(xy, o) lies on the curve.

d
2 :f(xo’)’o)

At x = x, I
X:XO

The equation of the tangent to the
curve at the point (x, y,) is given by

d
y—)’():[_y ](x—xo)
X=X

dx
:f(xmyO) (x_xo)
Y=Y +f(x0,)’0)(x_xo)

Fig. 7.1

If the point x, is very close to x, the curve is approximated by the tangent line in the
interval (x,, x;). Hence, the value of y on the curve is approximately equal to the value
of y on the tangent at the point (x,, ;) corresponding to x = x;.
1= +f(x0, y()) (xl _x())
=y, +h f(x9,¥) where h = x; — x,

If(xlv )’1)

X=X1

Atx =xy, ay

Again the curve is approximated by the tangent line through the point (x,, y,).
Yo =y +hf(xp, 3)

Hence, Vel =Yy th f(x,,y,)

This formula is known as Euler’s formula. In this method, the actual curve is approxi-
mated by a sequence of short straight lines. As the step size 4 increases, the straight
line deviates much from the actual curve.

Hence, accuracy cannot be obtained.
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Example 1

. . dy 2x _
Using Euler’s method, find y(0.2) given a=y——,y(0)=l with
y

h=0.1.

Solution
dy 2x
== fx,y)=y——=
= flx,y)=y 5
Given: x=0, yo=1, h=0.1, x=02
n:x—x0_0.2—0=

= 2
h 0.1

x;=0.1

Y =Yy thf(x,¥)
=1+0.1f(0,1)

= 1+O.1[1—@}

=1.1

Yo =0 +hf(x, )
= 1.140.1£(0.1,1.1)
= 1.1+0.1[1.1—&i|
1.1
=1.1918

Hence, ¥, =¥(0.2) =1.1918

Example 2

Find the value of y for % =x+y,¥(0)=1 when x = 0.1, 0.2 with step
size h = 0.05. [Summer 2015]

Solution

dy
_— = s = =+
o flx,y)=x+y

Given: x=0, yo=1, h=0.05 x=02
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— o
n:x xOZO 0

h 0.05
x, =005, x,=0.1, x=0.15

Y1 = Yo +hf(x, ¥p)
=14+0.05£(0, 1)
=1+0.05(0+1)
=1.05

Yo =y +hf(xp, 3)
=1.05+0.05f(0.05,1.05)
=1.054+0.05(0.05+1.05)
=1.105

V3 =Y +hf(xy, ;)
=1.105+0.05£(0.1,1.105)
=1.105+0.05(0.1+1.105)
=1.16525

Y4 = Y3 +h f(x3,y3)
=1.16525+0.05£(0.15,1.16525)
=1.16525+0.05(0.15+1.16525)
=1.231

Hence, ¥, =y(0.1) = 1.105
v, =y(0.2) = 1.231

Example 3

d
Solve the initial-value problem Ey=x v,y(1)=1 and, hence, find

v(1.5) by taking h = 0.1 using Euler’s method. [Summer 2015]
Solution
= fw =y
Given: xo=1, yo=1, h=0.1, x=15
_ X=X _ 1.5-1 _5
h 0.1

x =11 x,=12, x3=13, x,=14
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yi =Yo thf(xy, %)
=14+0.1£(1,1
=1+0.1(11)
=1.1

Yo =y +hf(x,y)
= 11+0.1£(1.1,1.1)
=1.1+0.11.1y1.1)
=1.2154

y3=Y, +hf(xy, ;)
=1.2154 +0.1 f(1.2,1.2154)

=1.2154+0.1(1.2v1.2154)
=1.3477

V4 =y3+hf(x3,93)
=1.3477+0.11(1.3,1.3477)
=1.3477+0.1(1.3/1.3477)
=1.4986

Vs = vy th f(xg,54)
=1.4986+0.1f(1.4,1.4986)

=1.4986+0.1(1.4~/1.4986)
=1.67
Hence, y5 =y(0.5) = 1.67

Example 4
Using Euler’s method, find the approximate value of y at x = 1.5 taking

h=0.1. Given jx_yzﬂ and y(1) = 2.

Jo

Solution
dy y—x
L=y ==
dx Jo
Given: xo=1, yo=2, h=01, x=15
_XTX% 1ol o
h 0.1

x=L1L x,=12, x3=13, x,=14
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i =Yo T hf(xy, )
=2+0.1f(1,2)

2-1
=24+0.1| —
{m}
=2.0707

Yo =y Hhf(x, )
=2.0707 + 0.1(£(1.1,2.0707)

—2.0707 +0.1| 2711
J1.12.0707)
=2.1350

V3 =Y +hf(xy,y,)
=2.1350+0.1f(1.2,2.1350)

21350+ 0.1 2012
\J1.2(2.1350)
=2.1934

Y4 =Y3 +hf(x3, ;)
=2.1934 +0.1f(1.3,2.1934)

=2.1034 +0.1| 213
+1.3(2.1934)
=2.2463

Vs =Ys +hf(xy ys)
=2.2463 +0.1f (1.4, 2.2463)
2.2463-14 }

J1.4(2.2463)

=2.2463 + 0.1{

=2.2940
Hence, s =y(1.5) =2.2940

Example 5
Using Euler’s method, find the approximate value of y at

x = 1 taking h = 0.2. Given %: X2 +y2 and y (0)=1.
Solution

dy 2 2
—_—= s = +
] feuy)y=x"+y
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Given: X=0, yo=1, h=02, x=1
x—-x, 1-0

Th 02
x=02,x,=04,x3=0.6,x,=0.8

5

i =Yo +hf(xy, )
=1+0.2£(0,1)
=1+ 0.2[(0)* +(1)*]
=12

Yo =y +hflx,y)
=12+02£(02,1.2)
=12+02[(0.2)% +(1.2)*]
= 1.496

V3=t hf(xy,¥,)
=1.496 + 0.2 £(0.4, 1.496)
=1.496 + 0.2[ (0.4)> +(1.496)* |
=1.9756

Yo =y3+h f(x3,y3)
=1.9756+0.2£(0.6,1.9756)
=1.9756 +0.2[ (0.6)* +(1.9756)” |
=2.8282

Vs =Yy th f(xy, yq)
=2.8282+0.2£(0.8, 2.8282)
=2.8282+0.2[(0.8)? +(2.8282)°
= 4.5559

Hence, ys=y(1) =4.5559

Example 6

dx
x = 0.1 in five steps.

-X
Given —y=yT with the initial condition y = 1 at x = 0. Find y at
y+x

Solution

y—x
y+x

%:f(x, y) =
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Given: x=0, yo=1, n=5 x=0.1

_x—x, 0.1-0

h —=0.02
5

n
x,=0.02, x,=0.04, x;=0.06, x,=0.08

Y=Yt hf(xo, y())
=1+0.02/(0,1)

=1+ o.oz(ﬂ)
1+0

=1.02

Y=nt hf(xl, y1)
=1.02+0.02£(0.02,1.02)

1.02— o.ozj

=1.02+0.02 (—
1.02+0.02

=1.0392
V3=Y thf(xy,y,)
=1.0392+0.02£(0.04,1.0392)

1.0392 —0.04)

=1.0392+0.02 (—
1.0392+0.04

=1.0577
Yy =y3+hf(x3, ;)
=1.0577+0.02£(0.06,1.0577)

1.0577 - 0.06j

=1.0577+ 0.02(
1.0577+0.06

=1.0756

Y5 = Y4 +hf(x4, y4)
=1.0756+0.02£(0.08,1.0756)

1.0756 — 0.08)

=1.0756+ 0.02(
1.0756 +0.08

=1.0928
Hence, ys=y(0.1) = 1.0928

EXERCISE 7.2

Solve the following differential equations using Euler’s method:

1. j—y=xywithy(0)=2, h=0.2atx=1
X [Ans.: 2.9186]
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2. Y _Y=X ithy()=2 at x = 2 taking h = 0.2
dx X

[Ans.: 2.6137]

3. j—y=yz—¥withy(1)=1 taking h=0.1at x=1.3 and x = 1.5
X X
[Ans.: 1.0268, 1.0889]
4, j—y=x+y2 with y(0) =1 taking h = 0.1 at x = 0.2
X

[Ans.: 1.231]

5. dy =1-2xy withy(0)=0 taking h=0.2 at x=0.6

dx
[Ans.: 0.5226]
6. j_yz’“r\/; with y(2) = 4 taking h = 0.2 at x = 3
’ [Ans.: 8.7839]
d .

[Ans.: 1.1117]

8. j—y=1—y2 with y(0) = 0 taking h = 0.2 at x = 1
X
[Ans.: 0.8007]

7.4 MODIFIED EULER’S METHOD

The Euler’s method is very easy to implement but it cannot give accurate solutions. A
very small step size is required to get any meaningful result. Since the starting point
of each sub-interval is used to find the slope of the solution curve, the solution would
be correct only if the function is linear. In the modified Euler’s method, the arithmetic
average of the slopes is used to approximate the solution curve.

In the modified Euler’s method, y(?) is first calculated from the Euler’s method.

)’fo) =Yo +h f(xg, o)

This value is improved by making use of average slopes at (x,, y,) and (x|, y{o)). The
first approximation to y, is written as

h
w0 =y, +E[f(xo’yo)+f(x1’y1(0))]

This value of yl(l) is further improved by the equation

h
ny) = yo +5|:f(.X(), y0)+f(x1’ yfl))]

which is the second approximation to y;.
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In general,

i h n
}’f = Yo +E[f(xo,y0)+f(x1, yl( >)J,n:O, L2,..

where y™ is the n'™ approximation to vy

The procedure will be terminated depending on the accuracy required. If two consecu-
tive values of yfk) and yl(]“r D are equal, y, = yl(k).

Now, yéo) is calculated from the Euler’s method.
W =y +h fx,3)

Better approximation to y, is obtained as

h
yél’ =y +E[f(x1, y+ [, yéo))]

This procedure is repeated till two approximation to y, are equal. Proceeding in the
same manner, other values, i.e., y3, y,, etc., can be calculated.

Example 1
Determine the value of y when x = 0.1 correct up to four decimal places

d
by taking h = 0.05. Given that y(0) = 1 and ay =x"+ V.
Solution

L fley =ty
(i) Given: x%=0, yo=1, h=005 x, =005
f(xg,¥)=0+1=1
WO = vy +h f(xg, ¥p) = 1+0.05(1) = 1.05

First approximation to y,
h
A" =0+ 517G 300+ 0 A1)

= 1+%[1+ £(0.05,1.05)]

- l+%[l+{(0.05)2 +1.05}]

=1.0513
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Second approximation to y,

h
W=y, +_[f(xo’ Vo) + f(xy, yfl))]

1+%[1+f(0 05,1.0513)]

= 1+%[1+{(0.05)2 +1.0513}]
=1.0513

1)

Since the values of y; ’ and y, @ are equal,

=(0.05) = 1.0513
(i) Now, x, =005, y =10513, h=0.05 x,=0.1
f(x, ) =(0.05)7 +1.0513=1.0538
W =y +h f(x;, ) =1.0513+0.05(1.0538) = 1.1040

First approximation to y,
3 =+ 2 L7+ G )]

=1.0513 +'—[1.0538 +£(0.1,1.1040) |

=1.0513 +?[1 0538 +{(0.1)> +1.1040} ]

=1.1055
Second approximation to y,
8= 3+ L0 30+ f )]

=1. 0513+@[1 0538+ £(0.1,1.1055)]

- 1.0513+'T[1.0538+ {(0.1? +1.1055} |

=1.1055

Since the values of y(l) and y2(2) are equal,

v, =y(0.1) = 1.1055

Example 2

d
Using the modified Euler’s method, solve ay: 1—y with the initial
condition y(0) =0 at x=0.1, 0.2.
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Solution

dy
—_— x’ :1—
™ f(x,y) y
(i) Given: x3=0, y,=0, h=x-x,=0.1, x,=0.1
f(xg,¥9)=1-0=1

YO =y +h f(xg, ¥5) =0+ 0.1(1)= 0.1

First approximation to y,
h
A =30+ 3L Gor o)+ £ 1)
0.1
= 0+7[1+f(0.1, 0.1)]

=o+%[1+(1—0.1)]
=0.095

Second approximation to y,

WD =y + [f(xo, Yo + £ 3]
=0 +E[1 +£(0.1,0.095)]

= o+—[1+(1 0.095)]
=0.0953

Third approximation to y,
W =0+ 5[ £ o)+ )]

= 0+—[1+f(0 1,0.0953)]

= o+7‘[1 +(1-0.0953)]
=0.0952
Fourth approximation to y,

h
Y=y, +E|:f(xo’)’0)+f(xl’yl(3)):|

= 0+%[1+ £(0.1,0.0952) ]

= 0+%[1 +(1-0.0952)]

=0.0952
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Since the values of y1(3) and yl(4) are equal,

y; =¥(0.1) =0.0952
(i) Now, x =01, y,=0.0952, h=0.1, x,=02
S, y) =1-0.0952 = 0.9048

YO =y, +h f(x,,y,) = 0.0952+0.1(0.9048) = 0.1857
First approximation to y,

h
A=+ 2L F 0+ 7))
0.1
=0.0952+=~ [0.9048 + £(0.2,0.1857) ]

=0.0952 +%[0.9048 +(1-0.1857)]

=0.1812

Second approximation to y,

h
W =y, +5[f(x1, ¥+ F, 14

=0.0952 +% [0.9048 + £(0.2,0.1812)]

=0.0952 +E[O.9048 +(1-0.1812)]

2
=0.1814

Third approximation to y,
h
3 =+ LA+ Fa )]

=0.0052+ 21 [0.9048 + £(0.2,0.1814)]

2
0.1
=0.952+—= [0.9048 +(1-0.1814)]
=0.1814

Since the values of y§2) and y§3 ) are equal,
v, =¥(0.2)=0.1814

Example 3

Apply the modified Euler’s method to solve the initial-value problem
y' = x + y with y(0) = 0 choosing h = 0.2 and compute y for x = 0.2,
x=04. [Winter 2014]
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Solution
dy
—_—= s =X+
™ foy)=x+y
(i) Given: X=0, y,=0, h=02, x,=0.2
f(x0,¥9)=0+0=0
WO =y, +h f(xy, p) = 0+0.2(0) =0

First approximation to y,
¥ =y + [f(xo, o)+ (9]
= 0+—[0+f(0 2,0)]

= o+?[o+(0.2+0)]
=0.02

Second approximation to y,
W2 =y + [f(xo, o)+ ()]
2
=0 +0— [0+ £(0.2,0.02)]

—0+—[0+(o 2+0.02)]
=0.022

Third approximation to y,
W =y + [f(xo, yo)+ £, 1)

—0+—[0+f(0 2,0.022)]

= o+?[0 +(0.2+0.022)]
=0.0222

Fourth approximation to y,
h
Y =30+ 2[00 300+ 70 5]
0.2
= 0+7[0 +£(0.2,0.0222) ]

= 0+%[0 +(0.2+0.0222) ]
=0.0222

7.21
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Since the values of y](3) and y1(4) are equal,

y; =y(0.2) =0.0222
(i) Now,x; =0.2, y,=0.0222, h=0.2, x,=04

F(x.y) =0.2+0.0222 = 0.2222

0.2
y§0) =y +hf(x,y)=0.0222 + 7(0.2222) =0.0444
First approximation to y,
h
W= +5[f(x1, y+f(x,, yg)))}

=0.0222 + 02;2 [0.2222 + £(0.4,0.0444)]

0.2

=0.0222 +7[0.2222 +(0.4+0.0444) ]

=0.0889

Second approximation to y,
h
A =y 3L+ ]
0.2
=0.0222 +7 [0.2222 + £(0.4, 0.0889)]

=0.0222 +%[0.2222 +(0.4+0.0889)]
=0.0933

Third approximation to y,
h
) =+ 2L+ Fa )]

=0.0222 +%[0.2222 +£(0.4,0.0933)]

=0.0222 +%[0.2222 +(0.4+0.0933) ]

=0.0938

Fourth approximation to y,
h
Y =+ 2Ly + Fn 8

=0.0222 + %[0.2222 + £(0.4,0.0938)]

=0.0222 + 02;2[0.2222 +(0.4+0.0938)]
=0.0938
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Since the value of y2(3) and y2(4) are equal,

¥, = y(0.4) = 0.0938

Example 4
Use modified Euler’s method to find the value of y satisfying the equation

% =log(x+y) forx=1.2 and x = 1.4, correct up to four decimal places

by taking h = 0.2. Given that y(1) = 2.

Solution

%=f(x,y)= log(x+y)

(i) Given: x=1, y=2, h=02, x;=12
f(x,yy) =1log(1+2)=1.0986
W = vy +h f(xg, ¥y) =2+0.2(1.0986) = 2.2197
First approximation to y,
h
yl(l) =Y +E[f(xo’ y())"'f(x], )’50))]

=2 +%[1.0986 +£(1.2,2.2197) ]

2
= 2+07[1 0986 +1log (1.2+2.2197)]
=2.2328

Second approximation to y,

h
y§2) = yO +5|:f(-x0’ y0)+f('x1’ yfl)):|

=2 +0—; [1.0986+ f(1.2,2.2328)]

2
=2 +OT[1 0986 +log(1.2+2.2328)]
=22332

Third approximation to y,
h
Y =30+ [0 3+ S 5]

= 2+%[1.0986 +£(1.2,2.2332)]
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=2 +—[1 0986 +log (1.2+2.2332)]

=2.2332
Since the values of y(z) and y(3) are equal,
=y(1.2) =2.2332
(i1) Now, x =12, y,=22332, h=02, x,=14

f(x, ) =log(1.2+2.2332) =1.2335
¥ =y +h f(x;, y)=2.2332+0.2(1.2335) = 2.4799

First approximation to y,
W=y + [fUmy0+f@pfmﬂ

=2, 2332+—[1 2335+ f(1.4,2.4799)]

=2.2332 +?[1.2335 +log(1.4+2.4799)]
=2.4291
Second approximation to y,
8= 3+ 2L 30+ 8]

=2.2332 +% [1.2335+ f(1.4,2.4921)]

2
=2.2332 +07[1.2335 +log(1.4+2.4921)]
=2.4924

Third approximation to y,
h
) =+ LA+ Fa )]

=2. 2332+—[1 2335+ f(1.4,2.4924)]

=2.2332 +?[1.2335 +log(1.4+2.4924)]

=2.4924

) (3)

Since the values of y,” and y,

y, = y(1.4) = 2.4924

are equal,
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Example 5

Solve % =2+ \/E with x, = 1.2, yo = 1.6403 by Euler’s modified
method for x = 1.6, correct up to four decimal places by taking h = 0.2.
Solution

L~ fn =2+
() Given:  xy=12, y,=16403, h=02, x =14
F(xg5¥0) =2+4/(1.2) (1.6403) = 3.4030
W = yo+h f(xy, ¥y) = 1.6403+0.2(3.4030) = 2.3209

First approximation to y,

h
0 = 30+ 2 0 300+ £ 0]

=1.6403 +0;22[3.4030+ £(1.4,2.3209)]

— 1.6403 +%[3.4030 +2+ 423209 H
=2.3609

Second approximation to y,
h
A = yo+ 3£ o)+ £ o)

0.2
=1.6403+ 7[3.4030 +£(1.4,2.3609)]

=1.6403+ %[3.4030 +{2+ 14 23609) }]
=2.3624

Third approximation to y,

h
Y =y, +§[f(xo’ Yo+ f(xy, Y§2))]

=1.6403 +0;22[3.4030+ f(1.4,2.3624)]

= 1.6403 +0;22[3.4030 2+ [T @3620) ||

=2.3625
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Fourth approximation to y,

h
nY =, +§[f(x(), yo)+ £ )]

=1.6403 +£[3 4030+ £(1.4,2.3625)]

— 1.6403 +0T[3'4030 2+ JU9H23625) }]

=2.3625

Since the values of y(g) and y1(4) are equal,

=y(1.4) =2.3625
(i) Now, x =14, y,=23625 h=02, x,=1.6

F(x,y)=2+4(1.4) (2.3625) =3.8187

yéo) =y +hf(x,y)=23625+0.2(3.8187) = 3.1262
First approximation to y,

W =y, + [f(xl, D+ i )]

=2. 3625+%[3 8187+ £(1.6,3.1262)]

- 2.3625+%[3.8187+{2+1/(1.6)(3.1262)}}

=3.1680

Second approximation to y,
h
W =+ [ FC v+ Fa ]
0.2
=2.3625+ 7[3.81 87+ £(1.6,3.1680)]

:2.3625+02;2[3.8187+{2+«/(1.6)+3.1680)H

=3.1695

Third approximation to y,
W =y + [f(xl, Y0+ F 0, y32)]

= 2.3625+;[3.8187+f(1.6, 3.1695)]

=2. 3625+%[3 8187+{2+J(1 6)(3. 1695)}]

=3.1696
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Fourth approximation to y,
h
Y =+ oL+ 7 )]
0.2
=2.3625 +7[3.8187 + £(1.6,3.1696)]

=2,3625+%[3.8187+{2+\/(1.6)(3796)}]

=3.1696

Since the values of y2(3) and y§4) are equal,

Yo =y(1.6) =3.1696

EXERCISE 7.3

Solve the following differential equations by the modified Euler’s
method:

1. j—y:x+3y with x, =0, y, =1 taking h = 0.05 at x = 0.1

X [Ans.: 1.3548]
2. j—y:x—y2 with x, =0, y, =1 taking h = 0.05 at x = 0.1

X [Ans.: 0.9137]
3. j—y:x+y with x, =0, y, =1 taking h = 0.05 at x = 0.1

X

[Ans.: 1.1104]

4. j_y — _xy? with y(0) = 2 for x = 0.2 by taking h = 0.1
X [Ans.: 1.9238]

= withy()=2for x=1.2
dx X

[Ans.: 2.6182]

6. j—y=x+\/; with y(0) = 1for x = 0.2
X [Ans.: 1.2309]

7. j—y = y? — Y with y(1) = 1for x = 1.1 taking h = 0.05
X X [Ans.: 1.0073]

8. :—y:y—x with y(0)=2 for x =0.2
X [Ans.: 2.4222]
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7.5 RUNGE—KUTTA METHODS

Runge—Kutta methods do not require the determination of higher order derivatives.
These methods require only the function values at different points on the sub-
interval. The main advantage of Runge—Kutta methods is the self-starting feature and,
consequently, the ease of programming. One disadvantage of Runge—Kutta methods
is the requirement that the function must be evaluated at different values of x and y in
every step of the function. This repeated determination of the function may result in a
less efficient method with respect to computing time than other methods of comparable
accuracy in which previously determined values of the dependent variable are used in
the subsequent steps.

7.5.1 First-Order Runge—Kutta Method

Consider the differential equation

jx—y=f(x, y)

with the initial condition y(x,) = y,
By Euler’s method,

yn+1 = yn +hf(xn9 yn)

Expanding LHS by Taylor’s series,
h2
Yo+l = Vn +hy:l +7y;l,+

Euler’s method is known as the first-order Runge—Kutta method.

7.5.2 Second-Order Runge—Kutta Method (Heun Method)

The second order Rungta-Kutta method is given by the equations

kl :hf(xn’ yn)
ky=hf(x,+h,y,+k)

1
k=—(k +k
2(1 2)
yn+l:yn+k

7.5.3 Third-Order Runge—Kutta Method

The third-order Runge—Kutta method is given by the equations
ki=hf(x,,y,)
ky

h
ky=nh +—,y,+—
2 f(xn 2 Yn 2)
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ky=hf(x,+h,y,+2k, —k)
k:%(kl +4k, +k3)

Yn+1 = Vn +k

7.5.4 Fourth-Order Runge—Kutta Method

This method is mostly used and is often referred to as the Runge—Kutta method only
without reference of the order. The fourth-order Runge—Kutta method is given by the
equations

ky=hf(x,,y,)

h k
ky=h +—, +—1)
2 f('xn 2 Yn 2

h k
ky=hf|x, +—, +—2)
ky=hf(x,+h,y, +k;)

1
k=g(k1+2k2+2k3+k4)

Yn+1 :yn+k

Example 1
Given that y = 1.3 when x = 1 and % =3x+y. Use the second-order

Runge—Kutta method (i.e., Heun method) to approximate y when x = 1.2.

Use a step size of 0.1. [Winter 2012]
Solution
&= f) =3v+y
(i) Given: x,=1, y,=13, h=0.1, n=0
ki =h f(x, y)

=0.1 £(1,1.3)

=0.1[3(1)+1.3]

=0.43

ky =h f(xy+h, yy+ki)
—0.1 f(14+0.1,1.3 +0.43)
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=0.1 £(1.1,1.73)
=0.1[3(1.1)+1.73]
=0.503

1
k=—(k +k
2(1 2)

= %(0.43 +0.503)

=0.4665
Y=Ytk
=1.3+0.4665
=1.7665
(i) Now,x,; =1.1, y,=1.7665, h=0.1, n=1
ky=hf(x,y)
=0.1f(1.1, 1.7665)
=0.1 [3(1.1) + 1.7665]
=0.5067
ky =h f(x; +h,y +kp)
=0.1 f(1.140.1,1.7665 +05067)
=0.1£(1.2,2.2732)
=0.1[3(1.2)+2.2732)]
=0.5873

1
k=—(k +k
2(1 5)

= %(0.5067 +0.5873)

=0.5470

Yo =y tk
=1.7665+0.5470
=2.3135

Hence, Y, =y(1.2) =2.3135

Example 2
Use the second-order Runge—Kutta method to find an approximate value

of y given that % =x- y2 and y(0) =1 at x =0.2 taking h =0.1.



Solution

(i) Given:

(ii)) Now,

dy_ _ 2
dx—f(x,y)—x y

x=0, yo=1,

ki =h f(xq, ¥9)
=0.1 £(0,1)
=0.1[0—(1)2]
=—0.1

ky =h f(xq+h,y,+k)
=0.1 f10 + 0.1, 1+ (=0.1)]
=0.1 £(0.1,0.9)
=0.1 [0.1— (0.9)2]
=-0.071

1
k=—(k +k
2(1 2)

h=0.1, n=0

1
=—(-0.1-0.071
2( )

=-0.0855
Y=Ytk

=1-0.0855

=0.9145
x=0.1, y,=09145, h=0.1,
ky=h f(x;, y)

= 0.1 £(0.1,0.9145)
- 0.1[0.1 —(0.9145)2]

=-0.0736
ky =hf(x, +h,y +k)

7.5 Runge—Kutta Methods

n=1

=0.1 £[0.1+0.1,0.9145-0.0736

=0.1 £ (0.2,0.8408)
- 0.1[0.2 . (0.8408)2}
=-0.0507

7.31



7.32  Chapter 7 Ordinary Differential Equations

1
k=—(k +k
2(1 2)

1
= E(—0.0736 —-0.0507)

=-0.0622

Yo =)tk
=0.9145-0.0622
=0.8523

Hence, y, = y(0.2) = 0.8523

Example 3
Obtain the values of y at x = 0.1, 0.2 using the Runge—Kutta method of

third order for the differential equation %+ y=0,y0)=1.

Solution
dy _
dx —f(X,Y)— y
(i) Given: xX=0, yo=1, h=01, n=0
ki =h f(xg, ¥9)
=0.1 f(0,1)
=0.1(-1
=-0.1

h k
ky=h +—, +—1)
2 f(xo 2 Yo )

0.1 0.1
=0.1 f(0+7,1—7)
=0.1 £(0.05,0.95)
=0.1(-0.95)
=-0.095
ky=hf(xy+h, yy+2ky — k)
=0.1 £[0+0.1,1+2(-0.095)+0.1]
=0.1 £(0.1,0.91)
=0.1-0.91)
=-0.091
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1
k=l + 4k +y)

= é[—o. 1+4(=0.095)—0.091]

=-0.0952
Y=Ytk
=1-0.0952
=0.9048
Hence, y; =y(0.1) =0.9048
(i) Now,x; =0.1, y,=09048, h=0.1, n=1
ky=hf(x;,y)
=0.1 £(0.1,0.9048)
=0.1(-0.9048)
=-0.0905
h k, )
ky=nh +—,y +—=
2 f()ﬁ ) N >

=0.1 f(O.l-k%, 0.9048 — 0'0905)

=0.1 £(0.15, 0.8596)
=0.1(-0.8596)
=-0.086
ky =h f(x, +h, y, +2k, —k,)
=0.1 £[0.1+0.1,0.9048 + 2(~0.086) + 0.0905
=0.1 (0.2, 0.8233)
=0.1(-0.8233)
=-0.0823

1
k=g(k1+4k2+k3)

= é[—o.0905 +4(-0.086)—0.0823 |

=-0.0861
Yo =y +k
=0.9048-0.0861
=0.8187
Hence, ¥, =y(0.2) =0.8187
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Example 4
Apply the third-order Runge—Kutta method to the initial-value problem
d
ay =x? - v, y(0) =1 over the interval (0, 0.2) taking h = 0.1.
Solution
%= floy)=x"-y
(i) Given: x=0, yo=1, h=0.1, n=0
ky = hf(xo, Yo)
=0.1 £(0,1)
=0.100-1)
=-0.1

h k
ky=h +—, +—1)
2 f(xo 2 Yo 5

0.1 0.1
=01f|0+—,1——
f( 2 2 )

=0.1 £(0.05, 0.95)

=0.1[(0.05)> =0.95]
~0.0948
ky =h f(xy+h, yy+2k, —k;)
=0.1 £[0+0.1,1+2(=0.0948) + 0.1]
=0.1 £(0.1,0.9104)
=0.1[(0.1)> =0.9104]
=-0.09

k =é(k1 +4k, +ky)

= é[—o. 1+4(-0.0948)-0.09]

=-0.0949
=Ytk

=1-0.0949

=0.9051
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(i) Now,x;=0.1, y,=0.9051, h=0.1, n=1
ki =hf(x;, )
=0.1 £(0.1,0.9051)
=0.1[(0.1)> =0.9051]
=-0.0895

h k
ky=nh +—, +—‘)
2 f(x1 2 N )

=0.1 f(O.l-k%, 0.9051- 0'0895)

=0.1 £(0.15, 0.8604)

=0.1[(0.15)* - 0.8604]
=-0.0838
ky =h f(x, +h, y, +2k, — k)
= 0.1 £[0.1+0.1,0.9051+2(~0.0838) +0.0895
=0.1 £(0.2,0.827)
=0.1[(0.2)> - 0.827]
=-0.0787

1
k =g(k1 +4ky +ky)

= é[—0.0895 +4(-0.0838)-0.0787]

=-0.0839

Y, =y Hk
=0.9051-0.0839
=0.8212

Example 5

d
Solve the differential equation Ey = x+y, with the fourth-order Runge—

Kutta method, where y(0) =1, withx = 0 tox = 0.2 with h = 0.1.
[Winter 2012]

Solution

dy
—_—= s = +
l fx,y)=x+y
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(1) Given: x=0, yo=1, h=0.1, n=0
k1=hf(x0,yo)

=0.1 £(0,1)
=0.1(0+1)
=0.1
h k
k,=h +—, +—1)
2 f(xo 2 Yo >

:O.lf(0+£,l+ﬂ)

2 2
=0.1 £(0.05,1.05)
=0.1(0.05+1.05)
=0.11

ks =hf(x0+%,y0 +k?2j
=O.1f(0+£,l+ﬂ)

2 2

=0.1 £(0.05,1.055)
=0.1(0.05+1.055)
=0.1105

ky =hf(xy+h,y,+ky)
=0.1 f(0+0.1,1+0.1105)
=0.1 f(0.1,1.1105)
=0.1(0.1+1.1105)
=0.1211

1
k= + 2k + 2k +hy)

= é[0.1+2(0.11)+ 2(0.1105)+0.121 1]

=0.1103

Y= Yotk
=1+0.1103
=1.1103

(i) Now,x; =0.1, y,=1.1103, h=0.1, n=1

ky=hf(x, »)
=0.1f(0.1,1.1103)
=0.1(0.1+1.1103)
=0.1210
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h k
ky=h +—, +—1)
2 f(’ﬁ > N )

=0.1 f(0.1+%, 1.1103+ 0'1210)

=0.1 £(0.15,1.1708)
=0.1(0.15+1.1708)
=0.1321

h k
ky=hf|x +—, +—2j
3 f(1 2Y1 B

=0.1 f(O.l-k%, 1.1103+ 0'1321)

=0.1 f(0.15,1.1764)
=0.1(0.15+1.1764)
=0.1326

kg =hf(x +h,y +ky)
=0.1 f(0.1+0.1,1.1103+0.1326)
=0.1 £(0.2,1.2429)
=0.1(0.2+1.2429)
=0.1443

1
ko= + 2k + 2k k)

=é[0.1210+2(0.1321)+2(0.1326)+0.1443]

=0.1325

Yo =y Hk
=1.1103+0.1325
=1.2428

Example 6

Using the Runge—Kutta method of fourth-order, solve 10% = x>+ yz,
v(0)=1atx=0.1and x=0.2 taking h = 0.1. [Summer 2015]
Solution

+y?

X 2 2
= =0.1 +
@ YT 0 (@ +y7)
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(1) Given: x=0, yo=1, h=0.1, n=0
ki =h f(x, ¥)

=0.1 £(0,1)
=0.100.DH(0+1)
=0.01
h k
ky,=h +—, +—1)
2 f(xo > Yo >

:O.lf(0+ﬂ,1+—0'01j
2 2

=0.1 £(0.05,1.005)
- 0.1(0.1)[(0.05)2 + (1.005)2}

=0.0101
h k
ky=hf|x,+—, +—2)
3 f( 0TS Yo >

=0.1f(0+ﬂ, 1+0'0101)
2 2

=0.1 £(0.05,1.0051)
=0.100.1) [(0.05)2 + (1.0051)2]
=0.0101

ky = h f(xg +h, v +hs)
=0.1 £(0+0.1,1+0.0101)
=0.1 £(0.1,1.0101)

- 0. 1(0.1)[(0.1)2 +a .0101)2]
=0.0103

1
k =g(k1 +2ky +2ky +ky)

= %[0.01 +2(0.0101)+2(0.0101)+0.0103

=0.0101
Y=Ytk

=1+0.0101

=1.0101
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(i) Now,x; =0.1, y,=1.0101, h=0.1, n=1
ky =hf(x;, )
=h £(0.1,1.0101)

- 0.1(0.1)[(0.1)2 +d .0101)2]
~0.0103

h k
ky=hf|x +=, +—1j
2 f(1 2)’1 )

01 7{01+ 2L 1001+ 22%)

=0.1 £(0.15,1.0153)
= 0.1(0.1)[(0.15)2 + .0153)2]
=0.0105

h k
ky=nh +—, +—2)
3 f(xl ) Y >

01 {021 10101 221%)

= 0.1 £(0.15,1.0154)
- 0. 1(0.1)[(0.15)2 + (1.0154)2]

=0.0105

ky=hf(x +h,y +k;)
=0.1 f(0.1+0.1,1.0101+0.0105)
=0.1 f(0.2,1.0206)

~0.1 (0.1)[(0.2)2 + .0206)2]
~0.0108

1
k :g(kl +2ky +2ky +k,)

= é[0.0103 +2(0.0105)+2(0.0105)+0.0108

=0.0105

Y2 =y tk
=1.0101+0.0105
=1.0206
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Example 7
Use the fourth order Runge—Kutta method to find the value of y at x = 1,
given that . =2=% (0)=1 with h = 0.5, [Summer 2015]
dx y+x
Solution
b_ _y-x
d)C - f('x’ )7) y +x
(i) Given: X=0, yo=1, h=05, n=0
kl = hf(xoa yO)
=0.5 £(0,1)
_ 0‘5(ﬂj
1+0
=0.5
h k
k, =hf(x0 2030 +?1j

=0.5 f(0+£,1+£)
2 2

=0.5 £(0.25,1.25)

:0'5(1.25—0.25)
1.25+0.25
=0.3333
h k
ky=nh +—, +—2)
3 f(xo > Yo 5
=05 f(0+%,1+—0‘3333j
=0.5 £(0.25,1.1667)
B 5(1.1667—0.25)
~ 71,1667 +0.25
=0.3235
ky=hf(xy+h,yy+k3)
=0.5 f(0+0.5,1+0.3235)
=0.5(0.5,1.3235)
_ 0‘5(1.3235—0.5)
1.3235+0.5
=0.2258



7.5 Runge—Kutta Methods 7.41

1
=+ 2k + 2k + k)

= é[o.s +2(0.3333)+2(0.3235) +0.2258 |

=0.3399
Vi =Ytk
=1+0.3399
=1.3399
(i) Now,x; =05, y,=1.3399, h=05, n=1
ky=hf(x;, y)

=0.5 £(0.5,1.3399)

_ 05(1.3399—0.5)
1.3399+0.5

=0.2282

h k
k,=nh +—, +—1)
2 f(xl 2 Vi >

= O.Sf(O.S +0—;, 1.3399 + 0‘2282)

=0.5 £(0.75,1.454)
_ 05(1.454—0.75)

1.454+0.75
=0.1597

h kz)
ky=h +—,y +—=
3 f(x1 2 N >

=0.5 f(O.S +%, 1.3399 + 0'1597)

=0.5 £(0.75,1.4198)

05(1.4198—0.75)
“\1.4198+0.75
=0.1543

ky =hf(x, +h, y +k;)
=0.5 £(0.5+0.5,1.3399+0.1543)
=0.5 f(1,1.4942)
_ 0‘5(1.4942—1)
1.4942 +1

=0.0991
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1
ko=l + 2k + 2k k)

= é[o.zzsz +2(0.1597) +2(0.1543) +0.0991]

=0.1592

Y2 =)tk
=1.3399+0.1592
=1.4991

Hence, v, =y(1) =1.4991

Example 8
Using the fourth order Runge—Kutta method, find y at x = 0.1 for

differential equation % =3e¢* +2y, y(0)=0 by taking h=0.1.

[Summer 2015]
Solution
dy X
— = f(x,y)=3e" +2
o f(x,y)=3e" +2y
(i) Given: X=0, y,=0, A=01, n=0
ki =h f(xq,y9)
=0.1 £(0,0)
=0.1(3¢" +0)
=03
h k
ky=h +—, +—1)
2 f(xo > Yo 5

:O.If(O+E,O+%)
2 2
=0.1 £(0.05,0.15)

=0.1[3°% +2(0.15) |
= 0.3454
h k
ky=h +—, +—2j
3 f(xo 2 Yo 5
:o,lf(mE,OJFWJ
2 2

=0.1 £(0.05,0.1727)
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=0.1[3¢"% +2(0.1727)]
=0.3499

ky =h f(xg +h, o +h3)
= 0.1 £(0+0.1,0+0.3499)
= 0.1 £(0.1,0.3499)
= 0.1[ 3¢%" +2(0.3499) |
=0.4015

1
k =g(k1 +2ky +2ky +ky)

= %[0.3 +2(0.3454) +2(0.3499) +0.4015|

=0.3487
Vi =Yotk
=0+0.3487
=0.3487
Hence, v, =y(0.1) =0.3487

Example 9

Determine y(0.1) and y(0.2) correct to four decimal places from

d
Ey =2x+y,y0)=1 with h=0.1.
Solution

dy
—=f(x,y)=2x+
™ Sx,y)=2x+y

(i) Given: x,=0, yo=1, h=0.1, n=0

k= hf(xo, Y())
=0.1£(0,1)
=0.1[2(0)+1]
=0.1

k,=h —, —‘)
2 f(xo Yo t+ )
0.1 0.
=01f]0+—,1+—
f( 2 Zj

=0.1 £(0.05,1.05)
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Hence,

(i1) Given:

=0.1[2(0.05)+1.05]
=0.115

h k
ky=nh +—, +—2)
3 f(xo 2 Yo >

=0.1f(0+£,1+—0'115)
2 2

=0.1 £(0.03,1.0575)
=0.1[2(0.05)+1.0575]
=0.11575
ky=hf(xy+h,y,+ky)
=0.1 f(0+0.1,1+0.11575)
=0.1 f(0.1,1.11575)
=0.1[2(0.1)+1.11575]
=0.13158

1
k :g(k1 +2ky +2ky +ky)

= %[0.1 +2(0.115)+2(0.11575)+0.13158]

=0.1155
Y=Ytk

=1+0.1155

=1.1155

y; =y(0.1) = 1.1155
x;=0.1, y,=11155, h=0.1, n=1
ki =h f(x;, )

=0.1 £(0.1,1.1155)

=0.1[2(0.1)+1.1155]

=0.13165

h k
ky=h +—, +—1)
2 f(’ﬁ > N >

:O.lf(0.1+%, 1'1155+Mj

=0.1 £(0.15,1.1813)
=0.1[2(0.15)+1.1813]
=0.14813
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h k
ky=h +—, +—2j
3 f()ﬁ 2 N >

:O.lf(0.1+%, 1.1155+ 0'14813]

=0.1 £(0.15,1.18965)
=0.1[2(0.15)+1.18965]
=0.149

ky =h(x, +h, y, +k;)
=0.1 £(0.1+0.1,1.1155+0.149)
=0.1 £(0.2,1.2645)
=0.1[2(0.2)+1.2645]
=0.16645

1
k =g[k1 +2ky +2ky +ky)

1
= 5[0.13165 +2(0.14813) +2(0.149) + 0.16645]

=0.1487

Y=y tk
=1.1155+0.1487
=1.2642

Hence, v, =y(0.2) = 1.2642

Example 10
Apply the Runge—Kutta method of fourth order to find an approximate

d
value of y at x = 0.6 ay =\ x+y, y(0.4)=0.41 in two steps.

Solution

d
L= =yxty

() Given: x,=04, y,=041, h=01, n=0
ky = hf(xq,9)
=0.1 £(0.4,0.41)

=0.140.4+0.41

=0.09
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(i1) Now,

h k
ky = hf| xy +—, +—1j
2 f(o 2yo 5

—01f(04+0 ,0.41+ 039)

=0.1 £(0.45, 0.455)

=0.140.45+0.455

=0.0951

h k
ky=nh +—, +—2J
3 f(xo > Yo )

_01f(04+01 0.41+ 00951)

=0.1f(0.45,0.4576)
=0.140.45+0.4576
=0.0953

ky =hf(xy+h,y,+k3)
=0.1 £(0.4+0.1,0.41+0.0953)
=0.1 £(0.5,0.5053)

=0.140.5+0.5053

=0.1003

k:%(kl+2k2+2k3+k4)

= %[0.09 +2(0.0951) +2(0.0953) +0.1003]

=0.0952
Vi =Ytk

=0.414+0.0952

=0.5052
x, =05, y,=05052, h=0.1, n=1
ky=h f(x;, »)

=0.1 £(0.5,0.5052)

=0.140.5+0.5052

=0.1003

h k
ky=hf|x +—, +—1)
2 f(1 2)’1 >

=0.1 f(0.5+%, 0.5052+ 0'1003)
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=0.1 £(0.55,0.5554)

=0.1,/0.55 + 0.5554

=0.1051

h k
ky=h +—, +—2j
3 f(xl 5 N >

:O.lf(0.5+%,0.5052+0'1051j

=0.1 £(0.55,0.5578)

=0.140.55+0.5578

=0.1053

kg =hf(x +h,y +k;)
=0.1 f(0.5+0.1,0.5052 +0.1053)
=0.1 (0.6, 0.6105)

=0.140.6+0.6105

=0.1100

k =é(k1 +2ky +2ky +ky)

= é[0.1003 +2(0.1051) + 2(0.1053)+0.1100]

=0.1052
Y=y tk
=0.5052+0.1052
=0.6104
Hence, ¥, =y(0.6) =0.6104
Example 11
d
Solve the differential equation & ——,x,=0,y, =1 for the interval
dx x+y

(0, 1) choosing h = 0.5 by the Runge—Kutta method of fourth order.

Solution

dy 1
dx —f(X,Y)— x+y
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(1) Given: x=0, yo=1, h=05 n=0

ki =h f(xq, ¥9)

=0.5£(0,1)

:0_5(L]

0+1
=0.5
h k

ky=h +—, +—1j
2 f(xo > Yo >

=0.5 f(0+0;5,1+0—'5)
2 2

=0.5 £(0.25,1.25)

0.25+1.25

=0.3333
h k
ky=nh +—, +—2)
3 f(xo > Yo >

=0.5 f(0+%,1+ 03333)

=0.5 £(0.25,1.1666)

= 0.5(;j
0.25+1.1666
=0.3529
ky=hf(xy+h,y,+ky)
=0.5 f(0+0.5,1+0.3529)
=0.5 £(0.5,1.3529)

o)
0.5+1.3529
=0.2698

k :é(k1 +2ky +2ky +ky)

= é[O.S +2(0.3333)+2(0.3529) +0.2698 |

=0.3570
Y=Ytk

=1+0.3570

=1.3570
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(i) Now, x, =05, y,=13570, h=05, n=1

k1 = hf(xl, )
=0.5 £(0.5,1.3570)

o)
0.5+1.3570
=0.2692

h k
ky,=h +—, +—1)
2 f(xl > N )

=05 f(O.S +07'5, 1.3570 + 0'2692)

=0.5 £(0.75,1.4916)

0.75+1.4916
=0.2230

h k
ky=nh +—, +—2)
3 f(xl 2 Y >

=0.5 f(O.S +%, 1.3570+ 0’22230)

=0.5 f(0.75,1.4685)

o ]
0.75+1.4685
=0.2253
ky=hf(x; +h,y +k;)
=0.5 f(0.5+0.5,1.3570+0.2253)
=0.5 f(1,1.5823)

:0_5(;)
1+1.5823

=0.1936
1
ko=l + 2k + 2k k)

= é[0.2692 +2(0.2230) +2(0.2253)+0.1936

=0.2265

Y2 =y tk
=1.3570+0.2265
=1.5835
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Example 12
Apply the Runge—Kutta method of fourth order to find an approximate

d
value of y at x = 0.2 ifayz x+y2, given that y = 1 when x = 0 in steps

of h=0.1. [Summer 2014]

Solution

L= fley)=x+y?
(i) Given: x=0, yo=1, h=0.1, n=0
ky =h f(xq, ¥o)
=0.1£(0,1)
=0.100+1%)
=0.1

h kl)
ky=h +—=, Yy +t—
2 f(xo 2 Yo 2

=0.1 f(0+g, 1+£)
2 2
=0.1 £(0.05,1.05)

=0.1[0.05+(1.05) ]
=0.1152
h kzj
ky=nh +—=, Yy +—
3 f(xo 2 Yo )

=O.1f(0+%,1+—0'1152j

=0.1 £(0.05,1.0576)

=0.1[0.05+(1.0576)* |
=0.1168

ky=hf(xy+h,y,+ky)
=0.1 f(0+0.1,1+0.1168)
=0.1 £(0.1,1.1168)

=0.1[0.1+(1.1168)* ]
=0.1347
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1
=+ 2k + 2k + k)

= %[0.1 +2(0.1152)+2(0.1168) +0.1347]

=0.1164

Y= Yotk
=1+0.1164
=1.1164

(i) Now,x; =0.1, y,=1.1164, h=0.1, n=1

ky=hf(x;, yp)
=0.1£(0.1,1.1164)
=0.1[0.1+(1.1164)* |
=0.1346

h k
ky=h +—, +—1)
2 f(xl > N 5

=0.1 f(0.1+%, 1.1164 + 0'1346)

=0.1 £(0.15,1.1837)

=0.1[0.15+(1.1837)* |
=0.1551

h k
ky=nh +—, +—2)
3 f(xl > M| >

:O.If(0.1+%,1.1164+ 0.1551)

=0.1 £(0.15,1.1939)

=0.1[0.15+(1.1939) ]
= 0.1575
ky=hf(x +h,y +k;)
= 0.1 £(0.1+0.1,1.116440.1575)
=0.1 £(0.2,1.2739)

=0.1[0.2+(1.2739)* |
=0.1822
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1
k :g(kl +2ky +2ky +k,)

= é[0.1346 +2(0.1551)+2(0.1575)+0.1822]

=0.157

Y2 =)tk
=1.1164+0.157
=1.2734

Hence, v, =y(0.2) =1.2734

EXERCISE 7.4

Solve the following differential equations by the Runge—-Kutta method:

1.

:—y:x+ywithx0:0,y0:1atx:0.2
X [Ans.: 1.2424]

dy

. —=xywithy(l)=2atx=1.2,x=1.4
dx

[Ans.: 2.4921, 3.2311]

. j—y:x2+y2 withx, =1, y, =1.5, h=0.1at x =1.2
X [Ans.: 2.5043]
22
d_y:yz XZ withy(0)=1,at x=0.2and x=0.4
dx vy*+x
[Ans.: 1.8310, 2.0214]
CI—y:uwithxO =0,y,=1atx=0.2
dx vy+x
[Ans.: 1.1678]
Y v withx =0y, = _
"y =1+y” withx, =0,y,=0at x=0.2,0.4and 0.6
X
[Ans.: 0.2027, 0.4228, 0.6891]
dy _ 2 .
A xy® with x, =2,y, =1for x =2.2 taking h=10.2
[Ans.: —1.7241]
dy

. —=x-y* withx, =0,y, =1at x =0.2 taking h = 0.1

dx
[Ans.: 0.8512]
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dy _x-y

o dx  xy

with x, =1y, =1at x =1.1
[Ans.: 1.0045]
dy y -2x
10 with x, =0,y, =1at x=0.1,0.2,0.3, and 0.4

Cdx yl+x
[Ans.: 1.0911, 1.1677, 1.2352, 1.2902]

7.6 MILNE’S PREDICTOR-CORRECTOR METHOD

Consider the differential equation
dy
= X,
AC)

with the initial condition y(x,) = y,.
By Taylor’s series method,

v =y(xy+h)

Vv, =y (xy +2h)

v3 = y(x, +3h)

Also, Jo = F(xg, ¥0)
f[ :f(xo +h, yl)
fo = f(xy+2h,y,)
S =f(xy+3h,y;)

By Newton’s forward interpolation formula,

n—1 n(n—1(n-2
Jxy) = fo +ndfy + (2 )A2f0 %A3fo+
xo+4h
Now, Ya=Yot j J(x,y)dx
X0
xo+4h
nn-1) nn—1(n-2)
=)t J. (fo+”Afo X Afo TA3fO+---)dx
XO .
Putting x = x, + nh, dx = hdn
When x = x,, n=0
When x = x, + 4h n=4
4
n(n 1) n(n—1)(n-2)
Y4=YO+hJ (fo"‘”Afo A+ TA3f0+---)dn

0
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4

=y, +h
Y0 32

2 3 2 4
fon+ S+ ! ["——"—]Azfo +é[%—n3 +n2jA3f0 +

0

=y0+h{4f0+8Af0+%(%—8)A2f0+é(64—64+16)A3f0+--}
20
=y0+h{4fo+8Af0 A2 Afo }

Neglecting fourth and higher order differences and expressing Af, A2f0 and A3f0 in
terms of the function values,

Yap :yo‘”{‘lfo +8(f1 _f0)+23_0(f2 -2/ +fo)+§(f3 =34 +3f _fo)}

:y0+hH4 8+23—0—§)f0 (8—?+8jfl (20 )f2+ 1‘3}

8 4 8
=Yo +h(§f1 _gfz +§f3)

4h
=yt (2h-f+2f)

This equation is known as predictor.

In general,
4h

y(n+1)p Yn— 3+ (an 2 fn—1+2fn)
From y,, a first approximation to f; = f(x, + 4h, y,) is obtained.

A better value of y, is obtained by Simpson’s rule.
h
Vie = Y2 +§(f2 +4f5+ 1)

This equation is known as corrector.

In general,

Yn+e = Yot (fn | H4f, +fn+1)

Then an improved value of f, is calculated using y,. and again the corrector is applied
to find a still better value of y,, . This step is repeated till two consecutive values of y,,
are same.

Once y, and f; are obtained to the desired degree of accuracy, the next value of y is
obtained from predictor-corrector equations.

This method is known as Milne’s predictor-corrector method.
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Example 1
Given %:%(szwz and y(0) = 1, y(0.1) = 1.06, y(0.2) = 1.12,
v(0.3) = 1.21, evaluate y(0.4).

Solution
X =0,%x=01x,=02,x,=03,x, =04
Yo=Ly =106y, =1.12,y;, =121, h=0.1
dy 1 2, .2
—=f(x,y) ==+

dx fx,y) 2( x7)y

£ :%(1+x12)y12 = 2[1+0.12]1.06)> = 0.5674
5 :%(1+x§)y§ = [1+02)?]1.12)* = 0.6523

[1+(0.3* Ja.21)? =0.7979

R|—= N|—= ]~

1
fy =5(1+x§>y§ =
By Milne’s predictor method,
4h
Yap = Yo +?(2fl —fH+21)

4(0.1)
3

=1+ [2(0.5674)-0.6523+2(0.7979) |

—1.2771
fi=5 0+,

=%[1 1047 ] 1277172

= 0.9460

By Milne’s corrector method,

h
Vie = Y2 +§(f2 +4f5+ 1)

=112 +%[0.6523 +4(0.7979+0.9460 = 1.2797

. 1
Again, fi=50+ X3) Vi,

- %[1 +(0.4)2 ] (0.2797)?
= 0.9498
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By Milne’s corrector method,

h
Yac = Y2 +§(f2 +4f5+ 1)

=112 +%[0.6523 +4(0.7979)+0.9498 |

=1.2798
¥(0.4) = 1.2798

Example 2
Find y(4.4) given 5xy’ + y* — 2 = 0 with y(4) = 1, y(4.1) = 1.0049,
y(4.2) =1.0097, y(4.3) = 1.0143.
Solution
xXo=4,x,=41x,=42,x,=43,x, =44
Yo =1y, =1.0049, y, =1.0097, y, =1.0143, h = 0.1

dy _ -y
o fx,y) .
22—y 2-(1.0049)°
5x, 5(4.1)
2-y2 2. 2
=2 (22009 ) 67
5x, 5(4.2)
2y 2-(1.0143)
=8 (LOI43)” _ ) 0452
5x, 5(4.3)

By Milne’s predictor method,
4h
4p = Yo +?(2f1 —hL+2f)

4(0.1
= 1+%[2(0.0483)—0.0467+2(0.0452)]
=1.0187

2-y;, 2-(1.0187)

=2 _2ZAOISIT 6437

5x, 5(4.4)

By Milne’s corrector method,

h
Yac =2 +§(f2 +4f+ 1)

=1.0097 +%[0.0467 +4(0.0452) +0.0437)

=1.0187
y(4.4) = 1.0187
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Example 3
Given y’ = x(x* + yz) e, y(0) =1, find y at 0.1, 0.2, and 0.3 by Taylor’s
series method and compute y(0.4) by Milne’s method.

Solution

—X

%=f(x, y)=x(x>+yH)e

(i) Given: x,=0, Yo=1, h=0.1, xX1=xy+h=0+0.1=0.1

Y =x(P+yhe Y6 =0
v’ = ':(x3 + xyz)(—efx) +3x2 4+ y2 + x(2y)] e
=V (—x" —xy? +3x7 + 7 +2x0)) y=1

- o 43yt 2xyy 43 + )P "_ s
=-¢ ’ ’ ’ ’ yO =T
+2xyy" = 6x =2y = 2x(y")" = 2xyy

”r

By Taylor’s series,
2 3

h
n=y(x) =Y, +h)’o +?)’o 31

= y(0. 1)_1+01(0)+(0 D’ (1)+(0 D’ (=2)+-

/Il

— Yo T

=1.0047
(ii) Given:x,=0.1, y,=1.0047, h=0.1, x,=x,+h=0.1+0.1=02
yl' =0.0922
=0.849
= —1.247

By Taylor s series,
2 3
”rs

h
ST

= =y +hy +
Yy =¥(xy) =y +hy + X 31

v, =¥(0.2)=1.0047+0.1(0.0922) + ——— (O 1) (0.849) + —— (0 1) (=1.247)+---

=1.018

(iii) Given:x,=0.2, y,=1018, h=0.1, x=x+h=02+0.1=03
y; =0.176
¥y =0.77
¥)’=0.819
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By Taylor’s series,

h? n
y; = y(x3)=y, +hy; +2—!y£’+§y§”+
1)? 1)°
y; = ¥(0.3)=1.018+0.1(0.176) + (02 ') .77+ (03 ') (0.819)+---
=1.04
For Milne’s method,
xy =0 Yo =1
x; =0.1 v, =1.0047 f; =0.092
x, =02 v, =1.018 5 =0.176
x;=0.3 v, =1.04 ;=026

By Milne’s predictor method,
4h
Yap =Yo +?(2f1 —hH+2f)
_y, 40D
3

2(0.092) - 0.176 +2(0.26)]
=1.09

x, =04, y,,=1.09

fi=x4 (xi + yip)e_x“
=0.4[(0.4)* +(1.09)* | ¢

=0.3615
By Milne’s corrector method,

h
Yac =2 +§(f2 +4f+ 1)

= 1.018+%[0.176+4(0.26)+0.3615]

=1.071
$(0.4) = 1.071

Example 4

Determine the value of y(0.4) using the predictor-corrector method,
d

given ay=xy+y2,y(0)=1. Use Taylor series to get the values of

v(0.1), ¥(0.2), ¥(0.3). Take h = 0.1. [Summer 2013, 2015]
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Solution
dy 5
— = f(x,y)=xy+
™ foy)=xy+y
(i) Given: x,=0, yo=1, h=0.1, x,=x,+h=0+0.1=0.1
Y =xy+y’ vy =0+(1)* =1
V' =xy' +y+2yy ¥, =0+1+2(1)(1) =3

Y =y 2y 42y 4200 vy =0+2(D+2(1)(3) +2(1)* =10

By Taylor’s series,

2 3
Y1 =y(x) =y +hyg + 2,)’0+? Yo e
— (0. 1)_1+01(1)+(O b’ (3)+(0 D’ (10) +--

=1.1167
(i) Given: x;=0.1, y,=1.1167, h=0.1, x,=x+h=0.1+0.1=02
¥ =0.1(1.1167)+(1.1167)* =1.3587
vy =0.1(1.3587)+1.1167 +2(1.1167)(1.3587) = 4.2871

yi'=0.1(4.2871)+2(1.3587) +2(1.1167)(4.2871) +2(1.3587)*
=16.4131
By Taylor’s series,

h? n
¥y = ¥(xy) =y, +hy +;y1 +?y1’"
0.1 0.1
v, =(0.2)=1.1167+0.1(1. 3587)+( ) 4. 2871)+( ) (16.4131)

=1.2767
(iii) Given: x,=0.2, y,=12767, h=0.1, X3=x,+h=02+01=03

y; =0.2(1 2767)+(1.2767)* =1.8853
vy =0.2(1.8853)+1.2767+2(1.2767)(1.8853) = 6.4677

¥’ =0.2(6.4677)+2(1.8853) +2(1.2767)(6.4677) +2(1.8853)*
=28.6875

By Taylor’s series,
2 3
7”7’

’ h ”
y3 =y(x3) =y, +hy; +7yz+ a2 +-

(0 1) (0 1)

3 = ¥(0.3) =1.2767 +0.1(1.8853) + ———(6.4677) +———(28.6875) +---

=1.5023
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For Milne’s method,

X, =0 Yo =1

x =0.1 v, =1.1167 £, =(0.)1.1167)+(1.1167)* =1.3587
x, =02 v, =1.2767 £ =(0.2)(1.2767)+(1.2767)* = 1.8853
x;=0.3 y; =1.5023 2 =(0.3)(1.5023) + (1.5023)* = 2.7076

By Milne’s predictor method,
4h
4p = Yo +?(2f1 —hL+2f)
4(0.1)
3
=1.833
x, =04,  y,,=1833
f, =(0.4)(1.833)+(1.833)* = 4.093

By Milne’s corrector method,

=1+ [2(1.3587)—1.8853+2(2.7076) ]

h
Yac = Y2 +§(f2 +4f+ 1)

=1.2767 +%[1.8853 +4(2.7076)+4.093 ]

=1.83699
$(0.4) = 1.83699

Example 5
Using Taylor’s series method, compute the approximate values of y

d
at x = 0.2, 0.4, and 0.6 for the differential equation ay: x—y> with

the initial condition y(0) = 0. Now, apply Milne’s predictor-corrector

method to find y at x = 0.8. [Winter 2012]
Solution
dy _ 2
d)C - f(x’ )’) =x-)y
(i) Given: x,=0, y,=0, h=0.2, x;=x+h=0+02=0.2
Y =x-y Y% =0
y'=1=2yy’ ¥y =1=-2(0) -1 =1

Y =2yy =200y =—2000(3)-2(0)" =0
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By Taylor’s series,

2 3
= y(x;) = yo +hy) +?yo +?)’(’)N+ -
¥ =y(0.2)=0+0.2(0)+ (022) D+ ©. 2) 0)+--

=0.02
(ii) Given: x,=02, y, =002, h=02, x,=x,+h=02+02=04

¥ =0.2-(0.02)* =0.1996
y7'=1-2(0.02)(0.1996) = 0.9920
yi''==2(0.02)(0.9920) — 2(0.1996)* = —0.1194

By Taylor’s series,

h2 3
y, = y(x,) =y, +hy] + Fyl 3 — 7+
2) 2)°
¥, = y(0.4) = 0.02+0.2(0.1996) + (02 ') (0.9920) + (03') (—0.1194) +---

=0.0796
(iii) Given: x,=04, y,=0.0796, h=02, x;=x,+h=04+02=0.6

y; =0.4—(0.0796)* = 0.3937
¥y =1-2(0.0796)(0.3937) = 0.9373
¥y =-2(0.0796)(0.9373) — 2(0.3937)* = —0.4592

By Taylor’s series,

2 3
Y3 =¥(0) =y thyy + oy oy
0.2 0.2
=0.0796+0.2(0.3937) + —— ( ) 0.9373)+— ( ) (—0.4592) +---
=0.1765
For Milne’s method,
xy =0 Yo =0
=02 ¥, =0.02 £, =0.2-(0.02)* =0.7996
x, =04 ¥, =0.0796  f, =0.4—(0.0796)* = 0.3937

X, =0.6 y3=0.1765  f,=0.6—(0.1765)> = 0.5688
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By Milne’s predictor method,

4h
Yap =o +?(2fl —hHht2f)

=0 +@[2(0.1996)— 0.3937+2(0.5688)]

=0.3048
x, =08, Y4y =0.3048

f, =0.8-(0.3048)* =0.7071

By Milne’s corrector method,

h
Yae =2 +§(f2 +4f+ fy)

=0.0796 +03;2[0.3937 +4(0.5688)+0.7071]

=0.3047
. ¥(0.8)=0.3047

EXERCISE 7.4

. Giveny’ =

dy

. Find y(2) if y(x) is the solution of d—:l(x+y) given y(0) = 2,
X

2
y(0.5) = 2.636, y(1) = 3.595 and y(1.5) = 4.968.
[Ans.: 6.8732]

. Find y(0.8) given y’=y—x*, y(0) = 1, y(0.2) = 1.12186, y(0.4) = 1.46820,

y(0.6) = 1.73790.
[Ans.: 2.01105]

. Giveny’=x* -y, y(0) = 1, y(0.1) = 0.9052, y(0.2) = 0.8213, find y(0.3)

by Taylor series. Also, find y(0.4) and y(0.5).
[Ans.: 0.6897, 0.6435]

If j—y =2e* —y, y(0) = 2, y(0.1) = 2.010, y(0.2) = 2.040, y(0.3) = 2.090,
X

find y(0.4) and y(0.5).
[Ans.: 2.1621, 2.546]

,v(0)=2,y(0.2)=2.0933, y(0.4)=2.1755, y(0.6) =2.2493,

X+y
find y(0.8).
[Ans.: 2.3164]
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Taylor’s Series Method
2 3

’ h ’”
Y1 = Y +hyn +?yn +? Yn R

Euler’s Method
yn+l = yn +hf(xn’ yn)

Modified Euler’s Method

W = vy +h f(xg, Vo)

h
A =30+ 5[0 )+ 53 )]

h
"=y +E[f(xo’ Yo)+ f(xy, yl(l)):l

n h n
e =yo+5[f<x0,yo>+f(xl,y{ H]n=0,1,2,.

Y =y +h f(xg, »)

h
W=y, +§[f(x1, W+ f 8]

Runge-Kutta Methods

1. First-Order Runge—Kutta Method
h2
Ynt1 = Y +hyr’l +?yr,l,+

2. Second-Order Runge-Kutta Method (Heun Method)

ki =hf(x,,y,)
ky=hf(x,+hy,+k)

1
k=—(k +k
2(1 2)

Ynt1 = Y +k
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3. Third-Order Runge-Kutta Method
ky=hf(x,,y,)

k, = hf(xn +%, Y, +k?]j
ky=hf(x,+h,y,+2k, — k)
k= é(k] +4k, +k3)
Vi1 = Ytk
4. Fourth-Order Runge-Kutta Method
ky=hf(x,, y,)

h klj
ky=h +—,y, +—
2 f(xn 2 Yn 2

h k
ky :hf(xn 20 +72)
ky=hf(x,+hy,+k;)

k:é(k1+2k2+2k3+k4)

Yn+1 :yn+k

Milne’s Predictor-Corrector Method

4h
y(n+1)p =Yn-3 +?<2fn72 _fnfl +2fn)

h
Yin+e = Yn-1 +§(fn—1 +4f, +fn+l)
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8.1 INTRODUCTION

Statistics is the science which deals with the collection, presentation, analysis, and
interpretation of numerical data. Statistics should possess the following characteristics:
(1) Statistics are aggregates of facts.
(ii) Statistics are affected by a large number of causes.
(iii) Statistics are always numerically expressed.
(iv) Statistics should be enumerated or estimated.
(v) Statistics should be collected in a systematic manner.
(vi) Statistics should be collected for a pre-determined purpose.
(vii) Statistics should be placed in relation to each other.
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The use of statistical methods help in presenting a complex mass of data in a simplified
form so as to facilitate the process of comparison of characteristics in two or more
situations. Statistics also provide important techniques for the study of relationship
between two or more characteristics (or variables) in forecasting, testing of hypothesis,
quality control, decision making, etc.

8.2 DATA ANALYSIS

The collection and analysis of data constitute the main stages of execution of any
statistical investigation. The procedure for collection of data depends upon various
considerations such as objective, scope, nature of investigation, etc. Data may be
collected for each and every unit of the whole lot (population), which will ensure greater
accuracy. Data may also be collected for a sample of population and conclusions that
can be drawn on the basis of this sample are taken to hold for the population.

8.3 CLASSIFICATION OF DATA

The collected data are a complex and unorganized mass of figures which is very
difficult to analyze and interpret. Therefore, it becomes necessary to organize the data
so that it is easier to grasp its broad features. In order to analyze the data, it is essential
that the data are arranged in a definite form. This task is accomplished by the process
of classification. The main objectives of any classification are

(i) To present the data in a condensed form.

(i) To bring out the relationship between variables.

(iii) To prepare data for tabulation and analysis.

(iv) To highlight the effect of one variable by eliminating the effect of others.
Consider the raw data relating to marks obtained in mathematics by a group of 60
students:

38,11, 40, 0, 26, 15, 5, 40, 31, 12, 35,0, 7, 20, 5, 28, 8, 21, 7, 28, 48, 45, 42, 17, 2, 38,
41, 18,16, 16,0, 19, 10, 7, 5, 1, 17, 22, 35, 44, 28, 46, 9, 16, 29, 34, 31, 27, 4, 12, 35,
39,41, 8, 6,13, 14, 17, 19, 20.

This data can be grouped and shown in tabular form as follows:

Class interval Frequency Cumulative frequency
0-6 10 10
7-13 11 21
14-20 13 34
21-27 4 38
28-34 7 45
35-41 10 55

42-48 5 60
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Thus, the 60 values have been put into only 7 groups, called the classes. The width
of the class is called the class interval and the number in that interval is called the
frequency. The mid-point or the mid-value of the class is called the class mark.

8.4 FREQUENCY DISTRIBUTION

A table in which the frequencies and the associated values of a variable are written
side by side, is known as a frequency distribution. A frequency distribution can be
discrete or continuous depending upon whether the variable is discrete or continuous.
A frequency distribution has the following parameters:
(i) Number of class intervals

(i1) Width of a class interval

(iii) Mid-value of a class

(iv) Cumulative frequency

8.4.1 Class Intervals

The class intervals can be exclusive or inclusive. In the exclusive class interval, the
upper limit of a class is taken to be equal to the lower limit of the next class. To keep
various class intervals as mutually exclusive, the observations with magnitude greater
than or equal to lower limit but less than the upper limit of a class are included in it.
For example, if the lower limit of a class is 20 and its upper limit is 30 then this class,
written as 20-30, includes all the observations which are greater than or equal to 20 but
less than 30. The observations with magnitude 30 will be included in the next class.

0-10 5
10-20 17
20-30 25
3040 12
40-50 8

In the inclusive class interval, all the observations with magnitude greater than or equal
to lower limit and less than or equal to upper limit of a class are included in it.

0-9 12
10-19 9
20-29 18
30-39 35

40-49 20
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Inclusive class intervals can be converted into exclusive class intervals by the following
procedures:
(i) Find the difference between the lower limit of the second class and the upper
limit of the first class.
(i) Divide the difference by 2.
(iii) Subtract the value so obtained from all the lower limits and add the value to all
the uppper limits.

In the above example, the lower limit of the second class is 10 and the upper limit

of the first class is 9. Hence, 10-9 = (.5 is subtracted from all the lower limits and

added to all the upper limits as follows:

Class intervals Frequency

-0.5-9.5 12

9.5-19.5 9
19.5-29.5 18
29.5-39.5 35
39.5-49.5 20

8.4.2 Mid-value of a Class

In exclusive types of class intervals, the mid-value of a class is defined as the arithmetic
mean of its lower and upper limits.

8.4.3 Cumulative Frequency

There are two types of cumulative frequency distributions:

(1) Less than cumulative frequency: Less than cumulative frequency for any value
of the variable/class is obtained by adding successively the frequencies of all the
previous classes, including the frequency of the class, against which the total
are written provided the values are written in ascending order of magnitude.

(i1) More (or greater) than cumulative frequency: More than cumulative frequency
for any value of the variable/class is obtained by adding successively the
frequencies of all the succeeding classes, including the frequency of the class,
against which the total are written provided values are written in ascending
order of magnitude.

8.5 GRAPHICAL REPRESENTATION

A frequency distribution is conveniently represented by means of a graph. Graphs are
good visual aids. It makes the raw data readily intelligible and leaves a more lasting
impression on the mind of the observer. But it does not give accurate measurements
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of the variable as are given by the table. Some important types of graphs are given
below:

1. Histogram A histogram is drawn by erecting rectangles over the class intervals,
such that the areas of the rectangles are proportional to the class frequencies. If the
class intervals are of equal size, the height of the rectangles will be proportional to
the class frequencies. For drawing a histogram, all the class intervals are marked off
along the x-axis on a suitable scale and frequencies are marked off along the y-axis
on a suitable scale. If, however, the classes are of unequal width then the height of
the rectangle will be proportional to the ratio of the frequencies to the width of the
classes. The diagram of continuous rectangles so obtained is called a histogram. If
the grouped frequency distribution is not continuous, first it is to be converted into a
continuous distribution and then the histogram is drawn. The frequency distribution
and corresponding histogram are shown below:

y
o I
8- — |
74 —_—
Class intervals Frequency 6
30-42 7 8 5
2
42-54 4 g 44 o
g .
54-66 8 2
66-78 9 2
78-90 5 1
- AN } X
20-102 > O " 30 42 54 66 78 90 102 114
102-114 2

Class intervals
Fig. 8.1

2. Frequency Polygon A frequency polygon for an ungrouped frequency
distribution is obtained by joining points

plotted with the variable values as y

abscissae and the frequencies as the 10-

ordinates. For a grouped frequency 9+

distribution, the abscissae of the points 8 7”7\

are mid-values of the class intervals. For @ Z' v ™

equal class intervals, the frequency ¢ 5: ‘<« Frequency
polygon can be obtained by joining the % 44

middle points of the upper sides of the 2 34

adjacent rectangles of the histogram by 2

straight lines. If the class intervals are of 1 R
small width, the polygon can be obtained Ol 10 20 30 40 50 60 70 80
by drawing a smooth curve through the Class intervals
vertices of the frequency polygon and is Fig. 8.2

called the frequency curve.
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3. Cumulative Frequency Curve or Ogive A cumulative frequency curve or
ogive is obtained by plotting cumulative frequencies above or below a given value.
Since a cumulative frequency distribution can be of ‘less than’ or ‘more than’ type and
accordingly there are two types of ogives—‘less than’ ogive or ‘more than’ ogive.

A ‘less than’ ogive is obtained by plotting the points with the upper limits of the classes
as abscissae and the corresponding less than cumulative frequency as ordinates and
joining these points by a freehand smooth curve. A ‘more than’ ogive is obtained by
plotting the points with the lower limits of the classes as abscissae and the corresponding
more than cumulative frequency as ordinates and joining these points by a freehand
smooth curve.

An ogive is used to determine certain positional averages like median, quartiles,

deciles, percentiles, etc. Various frequency distributions can be compared on the basis
of their ogives.

Example 1
Draw a histogram and frequency curve for the following data:

Profit

. 0-15 15-30 3045 45-60 60-75 75-90 90-105 105-120 120-135
(X in thousands)

No. of 8 7 18 25 20 12 6 5 2

companies

Solution

Histogram and Frequency curve

y
25
25 X J«~— Histogram
II \\go
_8 207 18/ Y ,— Frequency curve
§ I/’ \\
15 T /I \\
E / 12
- / ]
© 10+ ! ‘
o 7 ,’ \
z % 6 5
5 3, N 2
0 g
15 30 45 60 75 90 105 120 135 150

Profit
Fig. 8.3



8.5 Graphical Representation 8.7

Example 2
Draw a histogram and a frequency polygon for the following data:

Output
(EIEHEE 500-509  510-519  520-529 530-539 540-549 550-559 560-569

worker)

No. of
workers

Solution

The data is presented in the form of inclusive class intervals. It can be converted into
exclusive class intervals. The difference between the lower limit of the second class

interval and the upper limit of the first class interval is 510 — 509 = 1. The new classes

will be formed by subtracting 1 from the lower limit and adding % to the upper
2

limit.

. No. of workers
Class intervals

(frequency)
499.5-509.5 8
509.5-519.5 18
519.5-529.5 23
529.5-539.5 37
539.5-549.5 47
549.5-559.5 26
559.5-569.5 16
Y 47
50 - J«—— Histogram
37 4 N
» 40 ol |
I3 '« Frequency polygon
g 30 23, " 26
=% N
5 204 18, 16
2 10 81
O 492).5 499.5 509.5 519.5 529.5 539.5 549.5 559.5 569.5

Class intervals
Fig. 8.4
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Example 3

Construct a histogram and a frequency polygon for the following
frequency distribution:

Marks (mid-value) 100 120 140 160 180 200
No. of students 5 6 4 6 4 5

Solution
The given data of mid-points is first converted into class interval form. The difference

between two mid-values is 20. Hence, E is subtracted from each mid-value to get

the lower limit and 20 is added to each mid-value to get the upper limit of a class
interval. 2

y
6 6 Frequency
67 ) ~ /— polygon
5.4 N |/ 5
5+ A
Class intervals  No. of students \‘ 4,/ \ 4 /
90-110 5 47 v ]
110-130 6 34
<— Histogram
130-150 4
2_
150-170 6
170-190 4 1+
190-210 5 m
Ol " 90 110 130 150 170 190 210
Fig. 8.5
Example 4

The following are the scores of two groups of a class in a test of reading
ability:

Scores Group A Group B
50-52 4 2
47-49 10 3
44-46 15 4
41-43 18 8
38-40 20 12
35-37 12 17

32-34 13 22



8.5 Graphical Representation 8.9

Construct a frequency polygon for each group on the same axes.
Solution

For both the groups, i.e., group A and group B, the two hypothetical intervals with
zero frequencies, one at the beginning and the other at the end with frequencies zero
(53-55) and (29-31) are created.

Table for Group A
Scores Class marks Frequency Points
53-55 54 0 (54,0)
50-52 51 4 (51,4)
47-49 48 10 (48, 10)
44-46 45 15 (45, 15)
41-43 42 18 (42, 18)
38-40 39 20 (39, 20)
35-37 36 12 (36, 12)
32-34 33 13 (33, 13)
29-31 30 0 (30, 0)
Table for Group B
Scores Class marks Frequency Points
53-55 54 0 (54,0)
50-52 51 2 (51,2)
47-49 48 3 (48,3)
44-46 45 4 45,4
41-43 42 8 (42, 8)
38-40 39 12 (39, 12)
35-37 36 17 (36, 17)
32-34 33 22 (33,22)

29-31 30 0 (30, 0)
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y
25+
Group B
201 ’\/_
3
& 151
3
& 104
I Group A
5-
L w4 . . . . . . !
@) 30 33 36 39 42 45 48 51 54
Scores
Fig. 8.6
Example 5

Draw ‘less than’ and ‘more than’ ogive distributions of monthly salary
of 250 families.

1}]‘1;’\“31 0-500 500-1000 10001500 1500-2000 2000-2500 2500-3000 3000-3500 3500-4000

No. of

. 50 80 40 25 25 15 10 5
families

Solution

‘Less than’ and ‘More than’ Frequency Distributions

Less than More than
Income intervals No. of families [DEE cumulative
frequency frequency
0-500 50 50 250
500-1000 80 130 200
1000-1500 40 170 120
1500-2000 25 195 80
2000-2500 25 220 55
2500-3000 15 235 30
3000-3500 10 245 5
35004000 5 250 5

A ‘less than’ ogive is obtained by plotting the points (500, 50), (1000, 130), (1500,
170), (2000, 195), (2500, 220), (3000, 235), (3500, 245), (4000, 250) and joining them
by a freehand curve.



8.5 Graphical Representation 8.11

A ‘more than’ ogive is obtained by plotting the points (0, 250), (500, 200), (1000,
120), (1500, 80), (2000, 55), (2500, 30), (3000, 15), (3500, 5) and joining them by a
freehand curve.

y
Less than ogive
250 -+ o
8
= 200 A
S
£ 150
kS
s 100 A
z
50 r More than ogive
1 1 1 1 1 1 1 X
Ol 500 1000 1500 2000 2500 3000 3500 4000
Income intervals
Fig. 8.7
Example 6

Draw the ‘less than’ ogive for the following distribution:
Age (in years) 0-9 10-19 20-29 30-39 40-49 50-59 60-69

No. of persons 5 15 20 25 15 12 8

Solution

The given frequency distribution is not continuous. It is first converted into continuous
or exclusive class intervals.

Age (in years)  Class intervals  No. of persons (i::gf;t:;e
0-9 -0.5-9.5 5 5
10-19 9.5-19.5 15 20
20-29 19.5-29.5 20 40
30-39 29.5-39.5 25 65
40-49 39.549.5 15 80
50-59 49.5-59.5 12 92
60-69 59.5-69.5 8 100

A ‘lessthan’ ogive is obtained by plotting points (9.5, 5), (19.5,20), (29.5,40), (39.5, 65),
(49.5, 80), (59.5, 92), (69.5, 100) and joining them by a freehand smooth curve.
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l— Less than ogive
100 -

80 -
60 -

40 1

No. of persons

20

1 1 1 1 1 1 1
o] 9.5 19.5 29.5 39.5 49.5 59.5 69.5
Age (in years)

Fig. 8.8

Example 7

Convert the following distribution into a more than frequency
distribution:

Weekly wages less than (%) 20 40 60 80 100

No. of workers 41 92 156 194 201

For the data given, draw ‘less than’ and ‘more than’ ogives.

Solution

‘Less than’ and ‘more than’ frequency distribution.

Less than More than

Weekly wages (3) No. of workers f cumulative cumulative

frequency frequency
0-20 41 41 201
20-40 92-41 =51 92 160
40-60 156-92 = 64 156 109
60-80 194-156 = 38 194 45
80-100 201-194 =7 201 7

A ‘less than’ ogive is obtained by plotting the points (20, 41), (40, 92), (60, 156), (80,
194), (100, 201) and joining them by a freehand curve.

A ‘more than’ ogive is obtained by plotting the points (0, 201), (20, 160), (40, 109),
(60, 45), (80, 7) and joining them by a freehand curve.
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y Less than ogive
200 1

180 1
160 1
1401
120+
1001
801
60
404
201

No. of workers

o More than ogive

1 1 1 1 1 X
o 20 40 60 80 100
Weekly wages

Fig. 8.9

EXERCISE 8.1

1. The following are the monthly rents in rupees of 40 shops. Tabulate the
data by grouping in intervals of ¥ 8.
38, 42, 49, 35, 82, 35, 77, 60, 50, 75, 84, 75, 63, 40, 70, 42, 36, 65,
51, 48, 74, 47, 50, 55, 64, 67, 72, 77, 82, 51, 31, 38, 43, 75, 67, 70,
43, 64, 84, 71.
2. The following table shows the distribution of the number of students
per teacher in 750 colleges:

Students 1 4 7 10 13 16 19 22 25 28
FEEERE 7 46 165 195 189 89 28 19 9 3

3. Draw a histogram for the following data:

WSRO 25 5-11  11-12 12-14 14-15 15-16
No. of boys 6 6 2 5 1 3
4. Draw the histogram and frequency polygon for the following data:

Monthly wages
(% in thousands)

No. of workers 6 53 85 56 21 16 8

5. Draw the histogram and frequency polygon for the following
distribution:

EEERLUERZEIN 0-99 100-199 200-299 300-399 400-499 500-599 600-699 700-799
Frequency 10 54 184 264 246 40 1 1

11-13 13-15 1517 17-19 19-21 21-23 23-25
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Represent the following distribution by (i) histogram and (ii) frequency

polygon:
30-39 1
40-49 3
50-59 14
60-69 20
70-79 22
80-89 12
90-99 2

Represent the following distribution by an ogive:

EWS No. of students IES No. of students
0-10 5 50-60 4
10-20 13 60-70 1
20-30 12 70-80 3
30-40 11 80-90 1
40-50 8 90-100 2

. The following table gives the distribution of monthly income of 600

middle-class families in a certain city:

Monthly income in¥  Frequency Monthly income in%  Frequency

Below 76 69 300-375 58
76-150 167 375-450 25
150-225 207 450 and over 10
225-300 65

Draw ‘less than’ and ‘more than’ ogive for the above data.

. Draw an ogive by less than method for the following data:

No. of rooms 1 2 3 4 5 6 7 8 9 10
N\CMGIEGISI I 4 9 22 28 24 12 8 6 5 2

Draw histogram, frequency polygon and ogive for the following data:

IES Frequency ES Frequency

0-10 4 40-50 20
10-20 10 50-60 18
20-30 16 60-70 8

30-40 22 70-80 2
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8.6 MEASURES OF CENTRAL TENDENCY

Summarization of data is a necessary function of any statistical analysis. The data
is summarized in the form of tables and frequency distributions. In order to bring
the characteristics of the data, these tables and frequency distributions need to be
summarized further. A measure of central tendency or an average is very essential and
an important summary measure in any statistical analysis.
An average is a single value which can be taken as a representative of the whole
distribution. There are five types of measures of central tendency or averages which
are commonly used.

(1) Arithmetic mean

(i) Median

(iii) Mode

(iv) Geometric mean

(v) Harmonic mean

A good measure of average must have the following characteristics:
(i) It should be rigidly defined so that different persons obtain the same value for
a given set of data.
(ii) It should be easy to understand and easy to calculate.
(i1i) It should be based on all the observations of the data.
(iv) It should be easily subjected to further mathematical calculations.
(v) It should not be much affected by the fluctuations of sampling.
(vi) It should not be unduly affected by extreme observations.
(vii) It should be easy to interpret.

8.7 ARITHMETIC MEAN

The arithmetic mean of a set of observations is their sum divided by the number of
observations. Let x{, x,,..., X, be n observations. Then their average or arithmetic mean
is given by

X =
n n n
For example, the marks obtained by 10 students in Class XII in a physics examination
are 25, 30, 21, 55, 40, 45, 17, 48, 35, 42. The arithmetic mean of the marks is given
by
)X 25430+421+55+440+45+17+48+35+42 358
X = = = —
n 10 10
If n observations consist of n distinct values denoted by x,, x,, ..., x,, of the observed

variable x occurring with frequencies f}, f5, ..., f, respectively then the arithmetic mean
is given by

=358
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T fixi + hx, ++ fx, _i=

1 —
fitftot ], . N N

where N=Y fi=fi+f++f,
i=1

8.7.1 Arithmetic Mean of Grouped Data

In case of a grouped or continuous frequency distribution, the arithmetic mean is given
by

Zfixi 2 e

e =La— :—Nf ,whereNZZfi
i=1

and x is taken as the mid-value of the corresponding class.

Example 1
Find the arithmetic mean from the following frequency distribution:

x 5 6 7 8 9 10 11 12 13 14
f 25 45 90 165 112 96 81 26 18 12

Solution

X f fx
5 25 125
6 45 270
7 90 630
8 165 1320
9 112 1008
10 96 960
11 81 891
12 26 312
13 18 234
14 12 168

Sf=670  Yfc=5918
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N=Y) f=670
o 28
N 670
Example 2

Find the arithmetic mean of the marks from the following data:

Marks 0-10 1020  20-30 3040 40-50 50-60
Number of students 12 18 27 20 15 8

Solution
Number of .
—— Mid-value (x)
0-10 12 5 60
10-20 18 15 270
20-30 27 25 675
3040 20 35 700
40-50 15 45 675
50-60 8 55 440
>f=100 > fx=2820
N=Y f=100
— x 2820
X = Zf =——-=28.20
N 100

8.7.2 Arithmetic Mean from Assumed Mean

If the values of x and (or) f are large, the calculation of mean becomes quite time-
consuming and tedious. In such cases, the provisional mean ‘a’ is taken as that value of
x (mid-value of the class interval) which corresponds to the highest frequency or which
comes near the middle value of the frequency distribution. This number is called the

assumed mean.
Let d=x-a

fd=f(x-a)= fr—af
Y fd=Y fe-ayf
zzfx—aN
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Dividing both the sides by n,

S i
N N
=X—-a
_ fd
x=a+
N
Example 1

Ten coins were tossed together and the number of tails resulting from
them were observed. The operation was performed 1050 times and the
frequencies thus obtained for different numbers of tail (x) are shown in
the following table. Calculate the arithmetic mean.

x 0 1 2 3 4 5 6 7 8 9 10
f 2 8 43 133 207 260 213 120 54 9 1
Solution

Let a = 5 be the assumed mean.

d=x-a=x-5

X f d=x-5 fd
0 2 -5 -10
1 -4 -32
2 43 -3 -129
3 133 -2 —266
4 207 -1 207
5 260 0 0
6 213 1 213
7 120 2 240
8 54 3 162
9 9 4 36
10 1 5 5
>f=1050 Sfd=12
N=Y f=1050
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— 5+£
1050

=5.0114

Example 2
Calculate the mean for the following frequency distribution

Class 0-8 8-16 1624  24-32 3240 4048
Frequency 8 7 16 24 15 7

Solution
Let a = 28 be the assumed mean.
d=x-a=x-28
Class Frequency Mid-value (x) d=x-28
0-8 8 4 24 -192
8-16 7 12 -16 -112
16-24 16 20 -8 -128
24-32 24 28 0 0
32-40 15 36 8 120
40-48 7 44 16 112
Xf=171 Sfd =200
N=Yf=171
_ >
X=a+
N
g4 5200
77
=25-403

8.7.3 Arithmetic Mean by the Step-Deviation Method

When the class intervals in a grouped data are equal, calculation can be simplified by
the step-deviation method. In such cases, deviation of the variate x from the assumed
mean a (i.e., d = x — a) are divided by the common factor /4 which is equal to the width
of the class interval.

Let d=x_a
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where «a is the assumed mean

xX—

a . .. .
d= is the deviation of any variate x from a

h is the width of the class interval
N is the number of observations

Example 1

Calculate the arithmetic mean of the following marks obtained by
students in mathematics:

Marks (x) 10 15 20 25 30 35 40 45 50

Number of students (f) 43 75 67 72 45 39 9 8 6

Solution
Let a = 30 be the assumed mean and & = 5 be the width of the class interval.

x—a x-30

d=
h 5
Yf=384 2fd =-598
N=Y f=384
d
)_c=a+h2f
N
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Example 2

The following table gives the distribution of companies according to
size of capital. Find the mean size of the capital of a company.

Capital (R in lacs) <5 <10 <15 <20 <25 <30

No. of companies 20 27 29 38 48 53

Solution

This is a ‘less than’ type of frequency distribution. This will be first converted into
class intervals. Let a = 12.5 be the assumed mean and /& = 5 be the width of the class
interval.
x—a x-12.5

ho 5

d=

Class
intervals

Frequency f  Mid-value x

5-10 7 75 -1 7
10-15 2 12.5 0
15-20 9 17.5 1
20-25 10 22.5 2 20
25-30 5 27.5 3 15
Yf=53 dfd=-3
N=Yf=53
d
XxX=a+h Zf
N
=12.545 (_—3)
53

=12.22 lacs
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Example 3

Following is the distribution of marks obtained by 60 students in a
mathematics test:

Marks Number of students

More than 0 60
More than 10 56
More than 20 40
More than 30 20
More than 40 10
More than 50 3

Calculate the arithmetic mean.

Solution

This is a ‘more than’ type of frequency distribution. This will be first converted into
class intervals. Let a = 35 be the assumed mean and 2 = 10 be the width of the class
interval.

x—a x-35

d=
h 10
x—35
RS . Mid-valuex d= :
students f
0-10 4 5 -3 -12
10-20 16 15 -2 -32
20-30 20 25 -1 -20
3040 10 35 0 0
40-50 7 45 1 7
50-60 3 55 2 6
>f=60 >fd=-51
N=Y f=60
d
e arn 2t
N

=35+ 10(_—51)
60

=26.5
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EXERCISE 8.2

1. Find the mean of the following marks obtained by students of a class:

WES 15 20 25 30 35 40
No. of students 9 7 12 14 15 6

[Ans.:25.58]

2. The following table gives the distribution of total household expenditure
(in rupees) of manual workers in a city:

Expenditure 100- 150- 200- 250- 300- 350- 400- 450-
(in¥) 150 200 250 300 350 400 450 500

Frequency 24 40 33 28 30 22 16 7
Find the average expenditure (in %) per household.

[Ans.: 2 266.25]

3. Calculate the mean for the following data:

Heights 135- 140- 145~ 150- 155- 160- 165- 170-
(in cm) 140 145 150 155 160 165 170 175

No. of boys 4 9 18 28 24 10 5 2
[Ans.:153.45 cm]

4. The weights in kilograms of 60 workers in a factory are given below.
Find the mean weight of a worker.

Weight (in kg) 60 61 62 63 64 65
No. of workers 5 8 14 16 10 7

[Ans.:62.65 kg]

5. Calculate the mean from the following data:

Marks less than/up to 10 20 30 40 50 60
No. of students 10 30 60 110 150 180
[Ans.: 35]

6. Calculate the mean from the following data:

Marks more than 0 10 20 30 40 50 60
No. of students 180 170 150 120 70 30 0

[Ans.:35]
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7. Calculate the mean from the following data:

1-5 6-10 11-15 16-20 21-25 26-30 31-35 36-40 41-45
7 10 16 30 24 17 10 5 1

students

[Ans.:20.33]
8.8 MEDIAN

Median is the central value of the variable when the values are arranged in ascending
or descending order of magnitude. It divides the distribution into two equal parts.
When the observations are arranged in the order of their size, median is the value of
that item which has equal number of observations on either side.

In case of ungrouped data, if the number of observations is odd then the median is the
middle value after the values have been arranged in ascending or descending order of
magnitude. If the number of observations is even, there are two middle terms and the
median is obtained by taking the arithmetic mean of the middle terms.

Examples

(i) The median of the values 20, 15, 25, 28, 18, 16, 30, i.e., 15, 16, 18, 20, 25, 28,
30 is 20 because n =7, i.e., odd and the median is the middle value, i.e., 20.
(i1)) The median of the values 8, 20, 50, 25, 15, 30, i.e., 8, 15, 20, 25, 30, 50 is the

arithmetic mean of the middle terms, i.e., 20+25

cven.

=1722.5 because n = 6, i.e.,

In case of discrete frequency distribution, the median is obtained by considering the
cumulative frequencies. The steps for calculating the median are given below:
(i) Arrange the values of the variables in ascending or descending order of
magnitudes.

N
(ii) Find > where N = Ef

N
(iii)) Find the cumulative frequency just greater than Y and determine the

corresponding value of the variable.
(iv) The corresponding value of x is the median.

Example 1

The following table represents the marks obtained by a batch of 12
students in certain class tests in physics and chemistry.

Marks (Physics) 53 54 32 30 60 46 28 25 48 72 33 65
WERSH(OEHIERARS 55 41 48 49 27 25 23 20 28 60 43 67

Indicate the subject in which the level of achievement is higher.
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Solution

The level of achievement is higher in that subject for which the median marks are
more.
Arranging the marks in two subjects in ascending order,

Marks (Physics) 25 28 30 32 33 46 48 53 54 60 65 72
WERSN(OEHITRAM 20 23 25 27 28 41 43 48 49 55 60 67

Since the number of students is 12, the median is the arithmetic mean of the middle
terms.

Median marks in physics = 46+48 =47
Median marks in chemistry = 4 J2r 43 =42

Since the median marks in physics are greater than the median marks in chemistry, the
level of achievement is higher in physics.

Example 2
Obtain the median for the following frequency distribution.

X 0 1 2 3 4 5 6 7
f 7 14 18 36 51 54 52 18

Solution

X f Cumulative frequency
0 7 7
1 14 21
2 18 39
3 36 75
4 51 126
5 54 180
6 52 232
7 18 250

N =250

% = ? =125

The cumulative frequency just greater than = 125 is 126 and the value of x

0| =

corresponding to 126 is 4. Hence, the median is 4.
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Median for Continuous Frequency Distribution
In case of continuous frequency distribution (less than frequency distribution), the

. . . N .
class corresponding to the cumulative frequency just greater than —, is called the
median class, and the value of the median is given by 2

Median = l+£(ﬁ—c)
f\2

where [ is the lower limit of the median class
f1is the frequency of the median class
h is the width of the median class
c is the cumulative frequency of the class preceding the median class
N is sum of frequencies, i.e., N = Zf
In case of ‘more than’ or ‘greater than’ type of frequency distributions, the value of the
median is given by
Median = u —ﬁ(ﬁ— cj
fi2
where u is the upper limit of the median class
f1is the frequency of the median class
h is the width of the median class
c is the cumulative frequency of the class succeeding the median class

Example 1

The following table gives the weekly expenditures of 100 workers. Find
the median weekly expenditure.

Weekly expenditure 0-10 10-20 20-30 30-40 40-50
(in %)

Number of workers 14 23 27 21 15

Solution

Weekly expenditure (in¥)  Number of workers (f) Cumulative frequency

0-10 14 14
10-20 23 37
20-30 27 64
30-40 21 85
40-50 15 100

N=100
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N _ 100
2

The cumulative frequency just greater than % =50 is 64 and the corresponding class

20-30 is the median class.
Here, %=50, =20, h=10, f=27, c=37

Median = l+£(£—c)
f\2

=20+2(50-37)
27
=24.815

Example 2
From the following data, calculate the median:
Marks (Less than) 5 10 15 20 25 30 35 40 45
No. of students 29 224 465 582 634 644 650 653 655
[Summer 2015]

Solution

This is a ‘less than’ type of frequency distribution. This will be first converted into
class intervals.

Class intervals Frequency Less than CF

5-10 195 224
10-15 241 465
15-20 117 582
20-25 52 634
25-30 10 644
30-35 6 650
35-40 3 653
40-45 2 655
N =655
N 655

Since ? = T =327.5, the median class is 10-15.
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Here, /=10, h=5, f=241, c=224
Median =l+£(ﬁ—c)
f\2

Z10+— (327.5-224)
241

=12.147

Example 3
Find the mean of the following data:

Age greater than (in years) 0 10 20 30 40 50 60 70
No. of persons 230 218 200 165 123 73 28 8

Solution

This is a ‘greater than’ type of frequency distribution. This will be first converted into
class intervals.

Class intervals Frequency Greater than CF

0-10 12 230
10-20 18 218

20-30 35 200
30-40 42 165

40-50 50 123
50-60 45 73

60-70 20 28

70 and above 8 8
N =230

Since % = % =115, the median class is 40-50.

Here, u = 50, h =10, =50, c=173

Median =u—£(£—c)
f\2

= 50—2(115—73)
50

=41.6 years
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Example 4

The following table gives the marks obtained by 50 students in
mathematics. Find the median.

Marks 10-14  15-19 20-24 25-29 30-34 35-39 40-44 4549
No. of students 8 6 10 5 7 3 9 6

Solution

Since the class intervals are inclusive, it is necessary to convert them into exclusive
series.

No. of students Cumulative frequency
9.5-14.5 4 4
14.5-19.5 6 10
19.5-24.5 10 20
24.5-29.5 5 25
29.5-34.5 7 32
34.5-39.5 3 35
39.5-44.5 9 44
44.5-49.5 6 50
N=50

Since % = % =25, the median class is 24.5-29.5.

Here, [=24.5, h=35, f=5, c=20

Median =1+ ﬁ(ﬁ—cj
f\2

=245 +§(25 -20)
=295

Example 5
Find the median of the following distribution:
Mid-values 1500 2500 3500 4500 5500 6500 7500

Frequency 27 32 65 78 58 32 8



8.30 Chapter 8 Statistical Methods

Solution

The difference between two mid-values is 1000. On subtracting and adding half of
this, i.e., 500 to each of the mid-values, the lower and upper limits of the respective
class intervals are obtained.

Class intervals Frequency Cumulative frequency
1000-2000 27 27
2000-3000 32 59
30004000 65 124
4000-5000 78 202
5000-6000 58 260
6000-7000 32 292
7000-8000 8 300

N=300

Since % =150, the median class is 4000-5000.
Here, [=4000, h=1000,  f=78, c=124
Median =1+ % (%— c)

1000 (150-124)

78
=4333.33

=4000 +

EXERCISE 8.3

1. The heights (in cm) of 15 students of Class Xl are 152, 147, 156,
149, 151, 159, 148, 160, 153, 154, 150, 143, 155, 157, 161. Find the
median.

[Ans.:153 cm]

2. The median of the following observations are arranged in the ascending
order: 11, 12, 14, 18, x + 2, x + 4, 30, 32, 35, 41 is 24. Find x.
[Ans.: 21]
3. Find the median of the following frequency distribution:
X 10 11 12 13 14 15 16
| 8 15 25 20 12 10 5

[Ans.:12]
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4. Find the median of the following frequency distribution:

Wages (in %) 20-30 30-40 40-50 50-60 60-70
No. of workers 3 5 20 10 5

[Ans.: 46.75]

5. Calculate the median of the following data:
X 34 4-5 5-6 6-7 7-8 8-9 9-10 10-11
f 3 7 12 16 22 20 13 7
[Ans.:7.55]

6. The weekly wages of 1000 workers of a factory are shown in the
following table:

Weekly wages
(less than)

425 475 525 575 625 675 725 775 825 875

No. of workers 2 10 43 123 293 506 719 864 955 1000

[Ans.:673.59]

7. Calculate the mean of the following distribution of marks obtained by
50 students in advanced engineering mathematics.

Marks more than 0 10 20 30 40 50
No. of students 50 46 40 20 10 3

[Ans.:27.5]
8. Calculate the median from the following data:

WILRZEINESS 115 125 135 145 155 165 175 185 195
Frequency 6 25 48 72 116 60 38 22 3

[Ans.:153.79]

8.9 MODE

Mode is the value which occurs most frequently in a set of observations and around
which the other items of the set are heavily distributed. In other words, mode is the
value of the variable which is most frequent or predominant in the series. In case of a
discrete frequency distribution, mode is the value of x corresponding to the maximum
frequency.
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Examples

(i) In the series 6, 5, 3,4,3,7,8,5,9, 5, 4, the value 5 occurs most frequently.
Hence, the mode is 5.
(i1) Consider the following frequency distribution:

1 2 3 4 5 6 7 8
4 9 16 25 22 15 7 3

The value of x corresponding to the maximum frequency, viz., 25, is 4. Hence,
the mode is 4.

For an asymmetrical frequency distribution, the difference between the mean and the
mode is approximately three times the difference between the mean and the median.

Mean — Mode = 3 (Mean — Median)
Mode = 3 Median — 2 Mean
This is known as the empirical formula for calculation of the mode.

Mode for a Continuous Frequency Distribution

In case of a continuous frequency distribution, the class in which the mode lies is
called the modal class and the value of the mode is given by

Mode=l+h(—fm il ]
2fm _fl _f2

where [ is the lower limit of the modal class
h is the width of the modal class
fn 18 the frequency of the modal class
/i 1s the frequency of the class preceding the modal class
/> is the frequency of the class succeeding the modal class

This method of finding the mode is called the method of interpolation. This formula is
applicable only to a unimodal frequency distribution.

Example 1
Find the mode for the following data:

Profit per shop 0-100  100-200 200-300 300-400 400-500 500-600
No. of shops 12 18 27 20 17 6

Solution

Since the maximum frequency is 27, which lies in the class 200-300, the modal class
is 200-300.

Here,/=200, h=100,  f,=27, fi=18, f,=20
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Mode=1+h[ﬂj
me _fl _f2

= 200+100[—27_18 }
2(27)-18 =20

=256.25

Example 2

The frequency distribution of marks obtained by 60 students of a class
in a college is given by

Marks 30-34  35-39 4044 4549  50-54 5559  60-64
Frequency 3 5 12 18 14 6 2

Find the mode of the distribution.

Solution

The class intervals are first converted into a continuous exclusive series as shown in

the following table:
Marks Frequency

29.5-34.5 3
34.5-39.5 5
39.5-44.5 12
44.5-49.5 18
49.5-54.5 14
54.5-59.5

59.5-64.5

Since the maximum frequency is 18 which lies in the interval 44.5-49.5, the modal
class is 44.5-49.5.

Here, [=44.5, h=5, fn=18, fi=12, fr=14
Mode = 1+;{M]

2fw—fi— 1>
— 44545 {&}
2(18)— 12— 14

=475
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Example 3
Find the mode for the following distribution:

Class intervals 0-10 1020 20-30 3040 40-50

Frequency 45 20 14 7 3

Solution

Since the highest frequency occurs in the first class interval, the interpolation formula
is not applicable. Thus, empirical formula is used for calculation of mode.

Class intervals  Frequency CF Mid-value d=-

10

0-10 45 45 5 -2 -90
10-20 20 65 15 -1 -20
20-30 14 79 25 0 0
30-40 7 86 35

40-50 3 89 45 2 6

=289 Sftd=-97
N=Y f=89
. N 89 . .
Since 7 = ? =44.5, the median class is 0-10.

Here, [=0, h =10, =45, c=0

Median = l+£(ﬁ—c)
f\2

— 0+ 4a5-0)
45
=9.89

2./

N
=25+ 10(_—97)
89
=14.1

Hence, mode = 3 Median — 2 Mean
=3(9.89)-2(14.1)
=147

Mean=a+h
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EXERCISE 8.4

1. Calculate the mode for the following distribution:

X 6 12 18 24 30 36
f 12 24 36 38 37 6

[Ans.: 24]
2. Calculate the mode for the following distribution:
X 10 20 30 40 50 60 70
f 17 22 31 39 27 15 13
[Ans.: 40]
3. Calculate the mode for the following distribution:
Class interval 0-4 4-8 8-12 12-16
Frequency 4 8 5 6
[Ans.: 6.28]

4. Calculate the mode of the following distribution:
&l 0-5 5-10 10-15 15-20 20-25 25-30 30-35 35-40 40-45
f 20 24 32 28 20 16 37 10 18

[Ans.:13.33]

5. Calculate the mode for the following data:
@EH 1020 20-30 3040 40-50 50-60 60-70 70-80
f 24 42 56 66 108 130 154
[Ans.:71.348]

6. Find the mode of the following distribution:

Ot 55-64 65-74 75-84 85-94 95-104 105-114 115-124 125-134 135-144
f 1 2 9 22 33 22 8 2 1

[Ans.:99.5]
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7. Calculate the modal marks from the following distribution of marks of
100 students of a class:

Marks (more than) 80 70 60 50 40 30 20 10

No. of students 4 15 33 53 76 92 98 100

[Ans.: 47]

8.10 STANDARD DEVIATION

Standard deviation is the positive square root of the arithmetic mean of the squares
of the deviations of the given values from their arithmetic mean. It is denoted by the
Greek letter 0. Let X be a random variable which takes on values, viz., x|, X, ..., X,,.
The standard deviation of these n observations is given by

_[Za-o
I

> x

n

is the arithmetic mean of these observations.

where X =

This equation can be modified further.

\/Z(xz—Zx)_H-f)z

X —2x2x+x 21

£
szz zxzx [ijz e Sien]

n n

Zx

= \/ Mean of squares — Square of mean

In case of a frequency distribution consisting of n observations x,, x,, ..., x,, with
respective frequencies f, f5, ..., f,, the standard deviation is given by

~ /Zf(x—ff
B N
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This equation can also be modified.

JZf (x? —2x% + T2)
s zxzfx Y]

N

5

Jzz zfx)
N
8.10.1 Variance

The variance is the square of the standard deviation and is denoted by 0°. The method
for calculating variance is same as that given for the standard deviation.

=

?@

Example 1

Calculate the standard deviation of the weights of ten persons.

Weight (in kg) 45 49 55 50 41 44 60 58 53 55

Solution
n=10
Yx=45+49 +55+50+41 +44 + 60 + 58 + 53 + 55 =510

Y P =457+ 497 + 557 + 50° + 417 + 447 + 60° + 58” + 537 + 557 = 26366

]

Aliter:
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49 -2 4

55 4 16
50 -1 1

41 -10 100
44 -7 49
60 9 81

58 7 49

53 2 4

55 4 16

S (x-x)* =356

_7=\2
oo [2G=D
n
_ [356
V10

=5.967

Example 2
Calculate the standard deviation of the following data:

X 10 11 12 13 14 15 16 17 18
f 2 7 10 12 15 11 10 6 3

Solution
10 2 20 100 200
11 7 77 121 847
12 10 120 144 1440
13 12 156 169 2028
14 15 210 196 2940
15 11 165 225 2475
16 10 160 256 2560
17 6 102 289 1734
18 3 54 324 972

SF=76  Dfc=1064 >fi2=15196
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Aliter:

10 2 —4 16 32
11 7 -3 9 63
12 10 -2 4 40
13 12 -1 1 12
14 15 0 0 0
15 11 1 1 11
16 10 2 4 40
17 6 3 9 54
18 3 4 16 48

3 f(x—x)* =300

—\2
oo Y fx-%)
\ N
_ [
~\ 76

=1.987

8.10.2 Standard Deviation from the Assumed Mean
If the values of x and f are large, the calculation of fx, fx2 becomes tedious. In such a
case, the assumed mean « is taken to simplify the calculation.
Let a be the assumed mean.
d=x-a
x=a+d
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Y o= fla+d)=Na+) fd
Dividing both the sides by N,

szx e szd
+

a
x— d—

—2

o = /qu—x)
N

_ /Zf<d—c7>2
- N

=O'd

=
I

QU X

=
Il

Hence, the standard deviation is independent of change of origin.

or 53]

N

Example 1
Find the standard deviation from the following data:

Size of the item 10 11 12 13 14 15 16
Frequency 2 7 11 15 10 4 1

Solution

Let a = 13 be the assumed mean.

d=x-a=x-13

Size of item (x)  Frequency (f) d
10 2 -3 9 -6 18
11 7 -2 4 -14 28
12 11 -1 1 -11 11
13 15 0 0 0 0
14 10 1 1 10 10
15 4 2 4 8 16
16 1 3 9 3 9

>f=50 Sfd=-10 Dfd =92
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8.10.3 Standard Deviation by Step-Deviation Method

Let a be the assumed mean and & be the width of the class interval.
x—a
N
x=a+hd

Y fe=Y f(a+hd)=Na+h), fd
Dividing both the sides by N,

LA :a+hzfd
N N

X=a+hd
x—x=h(d-d)

—2
o - )
N
_ |2 fhd-ay
- /T
) ¥ s @-ay
- N

=hoy,

d=

Hence, the standard deviation is independent of change of origin but not of scale.

]

N N
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Example 1
Find the standard deviation for the following distribution:
Marks 10-20 20-30 3040 40-50 50-60 60-70 70-80
Number of students 5 12 15 20 10 4 2

Solution
Let a =45 be the assumed mean and 4 = 10 be the width of the class interval.

x—a x-45
h 10

d=

Number of Mid-value

Marks

students f X
10-20 5 15 -3 9 -15 45
20-30 12 25 -2 4 24 48
30-40 15 35 -1 1 -15 15
40-50 20 45 0 0 0 0
50-60 10 55 1 1 10 10
60-70 4 65 2 4 8 16
70-80 2 75 3 9 6 18
Sf=68 Sfd=-30 Yfd*=152
N=Yf=68
oo |2 {Zde
N N

2
ﬂOEE{éﬂ)
68 68

=14.285
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Example 2
Find the mean and standard deviation of the following distribution:

Age (in years) No. of persons

less than 20 0

less than 25 170
less than 30 280
less than 35 360
less than 40 405
less than 45 445
less than 50 480

Solution

This is a ‘less than’ type of frequency distribution. This is first converted into an
exclusive series. Let a = 32.5 be the assumed mean and /& = 5 be the width of the class
interval.

- -32.5
d= x—a _x
h 5
= ? x—32.5
. S . No. of . Mid-value x d= .
intervals persons f
20-25 170 225 -2 -340 680
25-30 110 27.5 -1 -110 110
30-35 80 325 0 0 0
35-40 45 37.5 1 45 45
40-45 40 425 2 80 160
45-50 35 47.5 3 105 315
=480 Yfd=-220 Yfd*=1310
N=Y f=480
d
Xx=a+h Z f
N

=32.5+5 (ﬂ}
480

=30.21 years
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o hJ (2]

N
_s 1310_(—220]2
V480 \ 480
=7.94 years

8.10.4 Coefficient of Variation

The standard deviation is an absolute measure of dispersion. The coefficient of
variation is a relative measure of dispersion and is denoted by CV.

cv=2x100
X

where o is the standard deviation and X is the mean of the given series. The coefficient
of variation has great practical significance and is the best measure of comparing the
variability of two series. The series or groups for which the coefficient of variation is
greater is said to be more variable or less consistent. On the other hand, the series for
which the variation is lesser is said to be less variable or more consistent.

Example 1

The arithmetic mean of the runs scored by three batsmen Amit, Sumeet,
and Nayan in the series are 50, 48, and 12 respectively. The standard
deviations of their runs are 15, 12, and 2 respectively. Who is the more
consistent of the three?

Solution

Let X}, X,, x; be the arithmetic means and o, 0,, 03 be the standard deviations of the
runs scored by Amit, Sumeet, and Nayan.

X, =50,%, =48, %, =12,0, =150, = 12,0, =2

cv, = 2L x100
X

= E>< 100
50

=30%

cv, =22 %100
X

= 2>< 100
48

=25%
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cv, =2 %100
X3
=i><100
12

=16.67%

Since the coefficient of variation of Nayan is least, he is the most consistent.

Example 2

The runs scored by two batsmen A and B in 9 consecutive matches are

given below:

A 85 20 62 28 74 5 69
B 72 4 15 30 59 15 49
Which of the batsmen is more consistent?

Solution
n=9
For the batsman A,
ZXA =85+20+62+28+74+5+69+4+13 =360

27 26

Y x; =857 +20° +62° +28° +74° +5° +697 +47 +13° =22700

n n

]

_ [22700 ( 360 )2

9 9
=30.37
X
- Y x, _360 _ 0
n 9
cv, =24 %100
XA
3037 o
40

=75.925%
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For the batsman B,

sz =T72+4+15+30+59+15+49+27+26 =297
Y xp =727 +4% +15% +30% +59” +15° +49% + 277 +26° = 13837

e aed)

~ 13837_(@)2
9 9

=21.18

cV, =28 %100
Xp
21.1
=—8><100
33

=64.18%

Since CV, < CV,, the batsman B is more consistent.

Example 3

Two automatic filling machines A and B are used to fill a mixture of
cement concrete in a beam. A random sample of beams on each machine
showed the following information:

Machine A 32 28 47 63 71 39 10 60 96 14
Machine B 19 31 48 53 67 90 10 62 40 80

Find the standard deviation of each machine and also comment on the
performances of the two machines.

[Summer 2015]
Solution
n=10
fo X _ A0
n 10
o) S0,



8.10 Standard Deviation

Machine A Machine B

8.47

32 -14 196
28 -18 324
47 1 1
63 17 289
71 25 625
39 =7 49
10 -36 1296
60 14 196
96 50 2500
14 -32 1024
ox = 460
> a-57
O-A ¥ —
n
_ [6500
V10
= 25.495
30—
Op =4 =——
n
~ [5968
V10
=24.429
cv, =24 %100
X
25495
= 55.423%
cv, =28 %100
y
2449
= 48.858%

19
31
48
53
67
90
10
62
40
80

T(x-%)>=6500 Yy=500

-31 961
-19 361
) 4

3 9

17 289
40 1600
40 1600
12 144
-10 100
30 900

T(y—7)> = 5968

Since CV, < CV,, there is less variability in the performance of the machine B.
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EXERCISE 8.5

1. Find the standard deviation of 10 persons whose income in rupees is
given below:

312, 292, 227, 235, 269, 255, 333, 348, 321, 299
[Ans.:39.24]

2. Calculate the standard deviation from the following data:

Heights in cm 150 155 160 165 170 175 180

No. of students 15 24 32 33 24 16 6

[Ans.:8.038 cm]

3. Find the standard deviation of the following data:

Size of items 10 M1 12 13 14 15 16

Frequency 2 7 11 15 10 4 1
[Ans.:1.342]

4. Calculate the standard deviation for the following frequency
distribution:

Class interval 04 4-8 8-12 12-16

Frequency 4 8 2 1

[Ans.:3.27]

5. Calculate the standard deviation of the following series:

Marks 0-10 1020 20-30 30-40 40-50
Frequency 10 8 15 8 4

[Ans.:12.37]

6. Calculate the SD for the following distributions of 300 telephone calls
according to their durations in seconds:

Duration
(in seconds)

No. of calls 9 17 43 82 81 44 24

0-30 30-60 60-90 90-120 120-150 150-180 180-210

[Ans.: 42.51]
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7. Calculate the standard deviation from the following data:
PCEHESRGEGNIGRZEGE 10 20 30 40 50 60 70 80
No. of persons 15 30 53 75 100 110 115 125

[Ans.:19.75]

8. Find the standard deviation from the following data:
Mid-value 30 35 40 45 50 55 60 65 70 75 80
Frequency 1 2 4 7 9 13 17 12 7 6 3
[Ans.:11.04]

9. Two cricketers scored the following runs in ten innings. Find who is a
better run-getter and who is a more consistent player.

S 42 17 83 59 72 76 64 45 40 32
28 70 31 0 59 108 82 14 3 95

[Ans.: A is a better run-getter and B is more consistent.]

10. Two workers on the same job show the following results over a long
period of time:

Worker A Worker B

Mean time (in minutes) 30 25

Standard deviation (in minutes) 6 4

[Ans.: B is more consistent |

8.11 MOMENTS

Moment is the arithmetic mean of the various powers of the deviations of items from
their assumed mean or actual mean. If the deviations of the items are taken from the
arithmetic mean of the distribution, it is known as central moment. If the mean of the
first power of deviations are taken, the first moment about the mean is obtained and
is denoted by ;. The mean of the second power of the deviations gives the second
moment about the mean and is denoted by p,. Similarly, the mean of the cubes of
deviations gives third moment about the mean and is denoted by ;. The mean of
the fourth power of the deviations from the mean gives the fourth moment about the

moment about mean or r

mean and is denoted by L. Thus, the mean of the A power of deviations gives the P
™ central moment and is denoted by u,.
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8.11.1 Central Moments or Moments about Actual Mean

Let x, Xy,..., X, be n observations with arithmetic mean x. The various moments about
actual mean are given by by the following:

2. (x=%)
n

First moment about the mean  p, =

D (x=%)’
Second moment about the mean i, =
n

Y (x-x)
n

D -n'

Fourth moment about the mean = &~
n

Y (x=x)
n

Third moment about the mean 5 =

In general,

™ moment about the mean H,.=

In case of a frequency distribution consisting of n observations x;, x,,..., x, with
respective frequencies fj, f»,-.., f, having arithmetic mean x,

N=Yf
D fx

f =
N
The various moments about the actual mean are given by the following:
. 2 f(x-%)
First moment about the mean ;= =N
—2
Second moment about the mean i, = MTJC)
. 2 fa-%)
Third moment about the mean 5 = TR
—\4
Fourth moment about the mean i, = z’f(x—x)
N
In general,
™ moment about the mean u.= z‘f(xT_x)

8.11.2 Properties of Central Moments

(i) The first moment about the mean is always zero, i.e., i; = 0.
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(i1) The second moment about the mean measures variance, i.e.,
U, =0’ or SD=c=1% U,

(iii) The third moment about the mean measures skewness.
If 15 > 0, the distribution is positively skewed.
If 15 < 0, the distribution is negatively skewed.
If 15 = 0, the distribution is symmetrical.

2
H
3

2

Skewness B, =

(iv) The fourth moment about the mean measures kurtosis. It gives information on
the peakedness or height of the peak of a frequency distribution, i.e., whether
it is more peaked or more flat topped than a normal curve.

; My
Kurtosis 3, = -
2
(v) In a symmetric distribution, all odd moments are zero, i.e., ;= Uz = ls= -

=ty =0.

8.11.3 Raw Moments or Moments about Arbitrary Origin

When the actual mean of a distribution is a fraction, it is tedious to calculate central
moments. In such cases, moments about an arbitrary origin ‘a’ is calculated and then
these moments are converted into the moments about actual mean. The moments
about the arbitrary origin are known as raw moments and are denoted by u. Thus,
U7 denotes the first moment about an arbitrary origin, % denotes the second moment
about an arbitrary origin and so on.

The various raw moments are given by the following:

x—a
First moment about the arbitrary origin ~ ui= L
n
. o Dx—a)
Second moment about the arbitrary origin yj= &—
n
. . o, Y x-a)
Third moment about the arbitrary origin  p3= &=~
n
. o Dx—a)t
Fourth moment about the arbitrary origin ;= &=— "
n
In general,
h

" moment about the arbitrary origin u/ =

Y (x—a)
n
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In case of frequency distribution consisting of n observations x;, X,, ...

respective frequencies f, f5, ..., f, having the arbitrary origin a,

N=Yf

d=x—a

The various moments about the arbitrary origin are given by the following:

_ A

First moment about the arbitrary origin ~ pj= “=—
N

DI

Second moment about the arbitrary origin u5 = =

f&

M

Third moment about the arbitrary origin  u5 =

=z

fd*

[\

Fourth moment about the arbitrary origin uj =

Z

In general,

h

2

N

t
7

moment about the arbitrary origin 1/ =

, X, with

In case of frequency distribution with ‘a’ as arbitrary origin and & as width of the class

interval,

N=Yf

g4
h
The various moments about the arbitrary origin are given by the following:
d
First moment about the arbitrary origin ~ u7 = hsz
. i, 2
Second moment about the arbitrary origin y5 = h N
. . y s LI
Third moment about the arbitrary origin = u5= h N
. o, s A
Fourth moment about the arbitrary origin uj; = h N
In general,
dr
™ moment about the arbitrary origin u/ = h" Z—f

N
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8.11.4 Relation between Central Moments and
Raw Moments

The moments about the actual mean, i.e., central moments and moments about the
arbitrary origin, i.e., raw moments are related with each other by the following equations:

First central moment W= —p =0

Second central moment U, = Uj — ( u )2
Third central moment Wy = Wy =305l +2(u )
Fourth central moment 1, = g —4u5 py +645 (1 )2 =3(u )4

Similarly, the raw moments can be expressed in terms of central moments.

First raw moment Ui=x-a

Second raw moment o=+ (u))?

Third raw moment W=y + 3, 1] + (1))’

Fourth raw moment W= Uy + Ay 1]+ 6p,(u))* + ()’

8.11.5 Moments about Zero

The moments about zero are denoted by vy, v,, v3, v, etc. The various moments about
zero are given by the following:
2 fx

First moment about zero v, =

N
2
Second moment about zero v, =
N
. W
Third moment about zero  v; =
N
2
Fourth moment about zero v, =
N
In general,
i
" moment about zero v, = ZN

8.11.6 Relation between Moments about Zero and
Central Moments

The moments about zero and central moments are related by the following equations:

First moment about zero v, =a+ Uj=x
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Second moment about zero v, = U, + (v1)2
Third moment about zero vy = 3 + 3v;v, — 2(v1)3

Fourth moment about zero v, =t + 4v,v; — 6(\/1)2\12 + 3»(\/1)4

Example 1
Find the first four moments for the set of numbers 2, 4, 6,
Solution
n=4
_ 2+4+6+8 20
=TT s
4 4

8.

Yx=20 Sx-x)=0 Dx-Xx’=20 Dx-xP=0
Moments about the actual mean:

_26-% 0

81
Sx—x) =164

==0
Hy » 4
_Z(x—f)Q _E—S
S
Y x-% 0
=—=—=0
H " 4
_ =4
#422()6 i =@—41
n 4
Example 2

Calculate the first four moments from the following data:

Also, calculate the values of B, and [3,.



Solution

8.11 Moments

fa-37  fa-x)
0 5 0 4 20 80 -320 1280
1 10 10 3 30 90 270 810
2 15 30 2 230 60 ~120 240
3 20 60 -1 20 20 20 20
4 25 100 0 0 0 0 0
5 20 100 1 20 20 20 20
6 15 90 2 30 60 120 240
7 10 70 3 30 90 270 810
8 5 40 4 20 80 320 1280
>f >fx Sfx-x) Xfx-Xx) —s_o Xfa-X)t=
=125 =500 =0 _sp0 HE-0=0 T
Moments about the actual mean:
e 2 /a=0 0
! N 125
_ 2 fG=% 500
Ha N 125
DY
3 N 125
_4
X—X
4=Zf( ) _ 4100 _
N 125
2
u 0
Bl = —:; = —= 0
M 64
37.6
B =t 202535
Hy 16
Example 3

Calculate the first four moments of the following distribution about the

mean:

8.55
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Also, evaluate B, and J3,.
Solution

Let a = 4 be the arbitrary origin.

fx—a) fx-a)

0 1 -4 -4 16 -64
1 8 -3 -24 72 -216
2 28 -2 -56 112 -224
3 56 -1 -56 56 -56
4 70 0 0 0 0
5 56 1 56 56 56
6 28 2 56 112 224
7 8 3 24 72 216
8 1 4 4 16 64
Xf Yfx-a)  Xfx-aP  Efix—a)’
=256 =0 =512 =0
NY. f=256
Moments about the arbitrary origin:
, XS0 o
M= Tase
,_2f@-a’ 512,
=N Tse
, DY fx-a) 0
S
, X fGx-a)t 2816
My = = =11
N 256
Moments about the actual mean:
=0
wy = = ()’
=2-0

=2

fex-a)

256
648
4438
56

0

56
448
648
256

Yfx—ayt
=2816
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py =y =3 +2 ()
=0-3(2)(0)+2(0)
=0

wy = — 4]+ 6 (uf Y =3 ()
=11-4(0)(0)+6(2)(0)> —=3(0)*

=11
2
u
ﬁ1=_33=0
M
My _ 11
B, =t =—" =275
P
Example 4

Find the first four moments of the following data about the assumed
mean 25 and actual mean:

Class limit 0-10 10-20  20-30  30-40

Frequency 1 3 4 2

Solution
Let a = 25 be the assumed mean and / = 10 be the width of the class limits.

d= x—a _ x—25

Class  Frequency Mid-value ,_ ¥=25

limit

0-10 1 5 -2 -2 4 -8 16

10-20 3 15 il -3 3 -3 3

20-30 4 25 0 0 0 0 0

30-40 2 35 1 2 2 2 2
>f=10 Sfd=-3 Yfd=9 Yfd=-9 Yfd'=21
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Moments about the assumed mean:

uf = 2 10('—3) =3

N 10

d2
Wy =h? 2/ =100(i)=90
N 10
a3 —
wy=hn LA 1000(—9) =-900
N 10

d4
My = h“%: 10000(21) =21000

10

Moments about the actual mean:

=0
’ ’ 2
Hy =y _(/Jl)
=90 (-3)*
=81

7 7 ’ ’ 3
My = 15 =35 py +2(uy)
=-900 —3(90)(=3) + 2(=3)°
=—144

g =y =45 i+ 65 (uf)” - 3(wp)*

= 21000 — 4(=900)(-3) + 6(90)(-3)* — 3(-3)*
=14817

Example 5
Find the first four central moments of the following distribution:

Class-limits 100-104.9 105-109.9 110-1149 115-119.9 120-124.9

Frequency 7 13 25 25 30

Solution

Let a = 112.45 be the arbitrary origin and & = 5 be the width of class limits.
_x—a x-112.45
N 5

d
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Class  Frequency Mid-value

limits f X

100-104.9 7 102.45 -2 -14 28 -56 112

105-109.9 13 107.45 -1 -13 13 -13 13

110-114.9 25 112.45 0 0 0 0 0

115-119.9 25 117.45 1 25 25 25 25

120-124.9 30 122.45 2 60 120 240 480

3f Afd  Yfd= Yfdl= Yfd*=
=100 =58 186 196 630
N=Yf=100

Moments about the arbitrary origin:

= hM = s(ﬁ) =29

N 100
2
W, =h* ZL = 25(@) =465
N 100
3
W =h 2 125(%) =245
N 100
o
w,=h' LA 625(@) =3937.5
N 100
Moments about the actual mean:
My =0
7 ’ 2
Hy =y — (/-ll)
=46.5—(2.9)
=38.09

= 115 =345 1] +2 ()’
=245-3(46.5)(2.9) + 2(2.9)°
=-110.772
g =y =4 il + 6185 (uf)” =3 ()’
= 3937.5— 4(245)(2.9) + 6(46.5)(2.9)* — 3(2.9)"
=3229.7057

Example 6

The first four moments of distribution about x=2 are 1,2.5,5.5, and 16.
Calculate the four moments about x and about zero.
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Solution
=1 wp;=25 u;=55 u;=16

Moments about the mean:

u =0
’ /2
Uy = Uy _(ﬂl)
=25-(1)°
=15

= 15 =3 +2(uf)’
=5.5-32.5)1)+201)°
=0
wy = 1 =4 +6u5 (1) =3 (u)’
=16—-4(5.5)()+6(2.5)(1)> =3()*
=6
Moments about zero:

V3 = Uy +3vv, —2(v1 )3
=0+3(3)(10.5)-2(3)°
=405

Vy = Hy +4vv, —6\1]2 Vv, +3(v, )4
= 6+4(3)(40.5) - 6(3)*(10.5) +3(3)*
=168

Example 7
The first three moments of a distribution about the value 2 of the
variables are 1, 16, and —40. Show that the mean = 3, variance = 15
and [y = —86.
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Solution
a=2, ‘ul’zl, #5216, #5216, /~l§:—40

Mean =3
7 ’ 2
Hy =y — (ﬂl)
=16—-(1)°
=15
Variance = i, = 15
’ ’ ’ ’ 3
fy = 3 =35 u +2 ()
=—-40-3(16)(1) +2(1)*
=-86

EXERCISE 8.6

1. Calculate the first four moments about the mean from the following
data:

[Ans.: 0, 1.262, 0.722, 3.795]

2. Calculate the first four moments about the mean and also the value of
B, from the following table:

X 0 1 2 3 4 5 6 7 8

f 1 8 28 156 170 56 28 8 1
[Ans.: 0, 1.294, 0.642, 0.582, 3.93]

3. Calculate the first four moments about mean from the following data:

Class interval 0-10 10-20 20-30 3040 40-50

Frequency 2 2 3 2 1
[Ans.: 0, 156, 144, 49392]

4. The first four moments of a distribution about the value 4 of the
variables are 1, 4, 10, and 45. Show that the mean = 5, variance = 3,
and u; = 0.
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5. The first four central moments of a distribution are 0, 2.5, 0.7, and
18.75. Calculate B, and S,.

[Ans.: 0.031, 3]

6. The values of 4, uy, usand y,are 0, 9.2, 3.6, and 1.22 respectively.
Find skewness and kurtosis of the distribution.

[Ans.: 0.129, 1.4]

7. The first four moments about the working mean 28.5 of a distribution
are 0.294, 7.144, 14.409, and 454.98. Calculate the moments about the
mean. Also, evaluate 3, and j3,.

[Ans.: 28.794, 7.058, 36.151, 408.738, 3.717, 8.205]

8.12 RANDOM VARIABLES

A random variable X is a real-valued function of the elements of the sample space of a
random experiment. In other words, a variable which takes the real values, depending
on the outcome of a random experiment, is called a random variable, e.g.,
(1) When a fair coin is tossed, S = {H, T}. If X is the random variable denoting the
number of heads,
XH)=1and X(T)=0
Hence, the random variable X can take values O and 1.
(ii)) When two fair coins are tossed, S = {HH, HT, TH, TT}. If X is the random
variable denoting the number of heads,
X(HH) =2, X(HT)=1, X(TH) =1, X(TT) = 0.
Hence, the random variable X can take values O, 1, and 2.
(iii) When a fair die is tossed, S = {1, 2, 3,4, 5, 6}.
If X is the random variable denoting the square of the number obtained,
X(1H)=1,X12)=4,X3)=9, X(4) =16, X(5) =25, X(6) = 36
Hence, the random variable X can take values 1, 4, 9, 16, 25, and 36.

Types of Random Variables

There are two types of random variables:
(i) Discrete random variables
(ii) Continuous random variables

1. Discrete Random Variables A random variable X is said to be discrete if it
takes either finite or countably infinite values. Thus, a discrete random variable takes
only isolated values, e.g.,

(1) Number of children in a family

(i) Number of cars sold by different companies in a year
(iii) Number of days of rainfall in a city
(iv) Number of stars in the sky

(v) Profit made by an investor in a day
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2. Continuous Random Variables A random variable X is said to be continuous
if it takes any values in a given interval. Thus, a continuous random variable takes
uncountably infinite values, e.g.,

(i) Height of a person in cm

(ii)) Weight of a bag in kg
(iii)) Temperature of a city in degree Celsius
(iv) Life of an electric bulb in hours

(v) Volume of a gas in cc

Example 1
Identify the random variables as either discrete or continuous in each
of the following cases:
(i) A page in a book can have at most 300 words
X = Number of misprints on a page
(ii) Number of students present in a class of 50 students
(iii) A player goes to the gymnasium regularly
X = Reduction in his weight in a month

(iv) Number of attempts required by a candidate to clear the IAS
examination

(v) Height of a skyscraper
Solution

(i) X = Number of misprints on a page
The page may have no misprint or 1 misprint or 2 misprint ... or 300 misprints.

Thus, X takes values 0, 1, 2, ..., 300. Hence, X is a discrete random variable.
(i) Let X be the random variable denoting the number of students present in a
class. X takes values O, 1, 2, ..., 50. Hence, X is a discrete random variable.

(iii) Reduction in weight cannot take isolated values 0, 1, 2, etc., but it takes any
continuous value.

Hence, X is a continuous random variable.

(iv) Let X be a random variable denoting the number of attempts required by a
candidate. Thus, X takes values 1, 2, 3, .... Hence, X is a discrete random
variable.

(v) Since height can have any fractional value, it is a continuous random variable.

8.13 DISCRETE PROBABILITY DISTRIBUTION

Probability distribution of a random variable is the set of its possible values
together with their respective probabilities. Let X be a discrete random variable
which takes the values x,, x,, ... x,. The probability of each possible outcome x; is
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p;i=px;) =PX=x;)fori=1,2, ..., n. The number p(x;), i = 1,2, .... must satisfy the
following conditions:
(1) p(x;) =0 for all values of i

(i) Y px)=1
i=1
The function p(x;) is called the probability function or probability mass function or
probability density function of the random variable X. The set of pairs {x, p(x;)},
i=1,2,...,nis called the probability distribution of the random variable which can be
displayed in the form of a table as shown below:

X =ux; X, X, X3 X X,
px) =P(X = x)) p(xy) p(x) pl)  ply) L p(xy,)
8.14 DISCRETE DISTRIBUTION FUNCTION
Let X be a discrete random variable which takes the values x;, x,, ... such that
x| <X, < ... with probabilities p(x,), p(x,) ... such that p(x;) = 0 for all values of i and

> plx)=1
i=1
The distribution function F(x) of the discrete random variable X is defined by
F(x)=P(X<x)= p(x;)
i=1

where x is any integer. The function F(x) is also called the cumulative distribution
function. The set of pairs {x;, F(x)}, i =1, 2, ... is called the cumulative probability
distribution.

X X2

p(xy) pxy) + p(xy)

Example 1

A fair die is tossed once. If the random variable is getting an even
number, find the probability distribution of X.

Solution
When a fair die is tossed,
S={1,2,3,4,5, 6}
Let X be the random variable of getting an even number. Hence, X can take the values
Oand 1.
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P(X=0)=P(1,3,5) =

PX=1)=P(2,4,6) =

AW | w
= =

Hence, the probability distribution of X is

l\)l»—i

Also, ZP(X:’C):%+%:1

Example 2

Find the probability distribution of the number of heads when three
coins are tossed.

Solution

When three coins are tossed,
S = {HHH, HHT, HTH, THH, HTT, THT, TTH, TTT}

Let X be the random variable of getting heads in tossing of three coins. Hence, X can
take the values 0, 1, 2, 3.

P(X =0) = P(no head) = P(TTT) = %

P(X = 1) = P(one head) = P(HTT, THT, TTH) = =

oo | W

P(X =2) = P(two heads) = P(HHT, THH, HTH) = %

P(X = 3) = P(three heads) = P(HHH) = %

Hence, the probability distribution of X is

o |
o0 | —
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Example 3

State with reasons whether the following represent the probability mass
function of a random variable:

(i)
0 1 2 3
0.4 0.3 0.2 0.1
(ii)
0 1 2 3
1 1 1 1
) 3 6 4
(iii)
0 1 2 3
s 1 1 3
3 7 4 4
Solution

(1) Here, 0 < P(X =x) <1 is satisfied for all values of X.

2P(X=x)=P(X=O)+P(X= D+PX=2)+PX=3)
=04+03+02+0.1
=1
Since ZP(X =x) = 1, it represents the probability mass function.
(i1)) Here, 0 < P(X =x) <1 is satisfied for all values of X.

SPX=x)= PX=0)+P(X=1)+P(X=2)+P(X=3)

1 1 1 1
=—+—+—+—

2 3 6 4
=§>1

4

Since Z(P(X =x) > 1, it does not represent a probability mass function.

(iii) Here, 0 < P(X = x) < 1 is not satisfied for all the values of X as

P(X=0)= —%.

Hence, P(X = x) does not represent a probability mass function.
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Example 4

Verify whether the following functions can be regarded as probability
mass functions for the given values of X:

. 1
(i) P(X=x)=—
5
=0 , otherwise

for x=0,1,2,3,4

(ii) P(X=x) =X;2  x=1,2,3,4,5

=0 , otherwise

2
X

iii) PX =x) ==— , x=0,1,2,3,4
(iii) P( ) 30

=0 otherwise

Solution

6] P(X=O)=P(X=1)=P(X:2):P(X=3)=P(X:4):%
P(X =x) >0 for all values of x

2P(X=x)=P(X=0)+P(X= D+PX=2)+PX=3)+P(X=4)
1 1 1 1 1
= —+—t+—+—+—=
5 5 5 5 5
=1
Hence, P(X = x) is a probability mass function.
ay pPx=n=1=2__1_,
5 5

Hence, P(X = x) is not a probability mass function.
(iii)) PX=0)=0
1

PX=1)= —
30
PxX=2)= %
30
9
P(X=3)= —
( ) 30
16
PX=4)= —
( ) 30

P(X =x) 20 for all values of x
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SPX=x)=P(X=0)+PX=1)+P(X=2)+PX=3)+PX=4)
1 4 9 16

=0+—+—+—+—
30 30 30 30
=1

Hence, P(X = x) is a probability mass function.

Example 5
A random variable X has the probability mass function given by

X 1 2 3 4
el 01 02 05 02

Find (i) P2 <x < 4), (ii) P(X > 2), (iii) P(X is odd), and (iv) P(X is
even).

Solution

(i) PR<X<4)=P(X=2)+P(X=3)
=02+0.5
=07
(i) PX>2)=P(X=3)+P(X=4)
=0.5+0.2
=0.7
(iii) P(Xisodd)=P(X=1)+P(X=3)
=0.1+0.5
=0.6
(iv) P(Xiseven)=P(X=2)+P(X=4)
=02+02
=04

Example 6

If the random variable X takes the value 1, 2, 3, and 4 such that
2P(X = 1) =3P(X =2) = P(X = 3) = 5P(X = 4). Find the probability
distribution.

Solution

Let2P(X=1)=3P(X=2)=PX=3)=5PX=4)=k

Px=1=%
2
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P(X:Z):g

P(X=3)=k

Px=4y=K

5

Since Y(P(X=x) =1,

£+£+k+£:1
23 5

_30

61

Hence, the probability distribution is

k

15 10 30 6
61 61 61 6l

8.69

Example 7
A random variable X has the following probability distribution:

0 1 2 3 4 5 6 7

a 4a 3a Ta 8a 10a 6a 9a
(i) Find the value of a.

(ii) Find P(X < 3).

(iii) Find the smallest value of m for which P(X < m) = 0.6.

Solution

(i) Since P(X = x) is a probability distribution function,
Y (PX=x)=1

PX=0)+PX=1)+PX=2)+P(X=3)+PX=4)+PX=5)+PX=6)

+PX=T7=1
a+4a+3a+Ta+8a+10a+6a+9a=1
1
T 48
(i) P(X<3) =PX=0+PX=1)+P(X=2)
=a+4a+3a
=8a

a
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0

1

6

(iii)) PX<4) =PX=0)+PX=1)+PX=2)+PX=3)+P(X=4)
=a+4a+3a+T7a+8a

=23a

e
48

=0.575
PX<5)=P(X=0)+P(X=1)+P(X=2)+P(X=3)+P(X=4)+PX=5)

=a+4a+3a+T7a+ 8a+ 10a
=33a

(3

=0.69
Hence, the smallest value of m for which P(X <m) > 0.6 is 5.

Example 8

The probability mass function of a random variable X is zero
except at the points X = 0, 1, 2. At these points, it has the values
PX = 0) =3¢ PX = 1) = 4c — 10¢*, P(X = 2) = 5¢ — 1.
Find (i) ¢, (ii) P(X < 1), (iii) P(1 < X <2), and (iv) P(0 < X £ 2).

Solution
(i) Since P(X = x) is a probability mass function,
YPX=x)=1

PX=0)+PX=1)+PX=2)=1
33 +4c-10c* +5¢c-1=1
3¢~ 10c* +9¢-2=0
Be-1D(c-2)(c-1)=0
c= l, 2, 1
3
But ¢ < 1, otherwise given probabilities will be greater than one or less than
Zero.
C —

1
3
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Hence, the probability distribution is

1 2
2 2
9 3

(i) P(X<1)=P(X=0)= é

(i) P(1 <X<2)=P(X=2)= %

(iv) PO<X<2)=P(X=1)+P(X=2)

2 2
= — 4+ —
9 3
_8
"9

Example 9

From a lot of 10 items containing 3 defectives, a sample of 4 items is
drawn at random. Let the random variable X denote the number of
defective items in the sample. Find the probability distribution of X.

Solution

The random variable X can take the value 0, 1, 2, or 3.
Total number of items = 10

Number of good items =7

Number of defective items = 3

c, 1
P(X = 0) = P(no defective) = m 4 ——
c, 6
e, e, 1
P(X = 1) = P(one defective and three good items) = % = 3
¢,
’c,’c, 3
P(X =2) = P(two defectives and two good items) = % = m
¢,

C
P(X = 3) = P(three defectives and one good item) = ———=——
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Hence, the probability distribution of the random variable is

123
LR
210 30

Example 10

Construct the distribution function of the discrete random variable X
whose probability distribution is as given below:

X 1 2 3 4 5 6 7
2o eFsn 0.1 0.15 025 02 015 0.1 0.05

Solution
Distribution function of X

X P(X=x) F(x)

| 0.1 0.1

2 0.15 0.25
3 0.25 0.5

4 0.2 0.7

5 0.15 0.85
6 0.1 0.95
7 0.05 1

Example 11

A random variable X has the probability function given below:

X 0 1 2
PX=x) W3 2k 3k

Find (i) k, (ii)) P(X < 2), P(X<2), P(0 < X < 2), and (iii) the distribution
function.

Solution
(i) Since P(X = x) is a probability density function,
YPx=x=1
k+2k+3k=1
6k =1
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1 2

R

6 6

y 12 1

(i) PX<2)=P(X=0)+P(X=1)= ~ 4 ==~

6 6 2
P(XS2)=P(X=0)+P(X=1)+P(X=2)=é_,_%_,_%:l

P(O<X<2):P(X:1):%

(iii) Distribution function

X  PX=x)  FX

1 1

0 — —
6 6
2 1

1 o —
6 2
3

2 — 1
6

Example 12

A random variable X takes the values -3, =2, -1, 0, 1, 2, 3, such that
PX=0)=PX>0)=PX<0),
PX=-3)=PX=-2)=PX=-1)=PX=1)=P(X=2)=PX=3).
Obtain the probability distribution and the distribution function of X.

Solution
Let P(X =0)= P(X > 0) = P(X < 0) =k,

Since Y P(X =x) =1
ki +k +k =1

1
kl:g
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P(X=O)=P(X>O)=P(X<0)=%

Let PX=1)=P(X=2)=PX=3)=k,
PX>0)=P(X=1)+P(X=2)+PX=23)

1
—=k+k,+k
3 Tfthth

1
9
P(X=1)=P(X=2)=P(X=3)=

ky =

O |~

Similarly, P(X =-3) = P(X=-2) = P(X =—1) = %

Probability distribution and distribution function

X  PX=x) F&

1 1

-3 — —
9 9

1 2

) — =
9 9

1 3

-1 - =
9 9

1 6

0 — =
3 9

1 7

1 - —
9 9

1 8

2 — =
9 9

O |~
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Example 13
A discrete random variable X has the following distribution function:
0 x<l1
— 1<x<4
3
1
F(x)=<— 4<x<6
2
3 6<x<10
6
1 x=10
Find (i) P(2 < X £6), (ii) P(X =5), (iii) P(X = 4), (iv) P(X £ 6), and
(v) P(X = 6).
Solution
- _ 5 131
() PR<X<6)=F(6)-F2)==-—===—
(i) PX=5)=P(X<5)-P(X<5)=F(5)-P(X<5)= %—%:0
(i) PX=4)=P(X<4)-P(X<4)=F(4)-P(X<4)= %_%=%
(iv) P(X<6)=F(6)= g
(v) P(X=6)=P(X<6)—P(X<6)=F(6)-P(X<6)= g—%=l

EXERCISE 8.7

1. Verify whether the following functions can be considered probability
mass functions:

2
(i) P(X = x) = X1—;“1,x=0, 1,2,3 [Ans.: Yes)
2 —
(i) P(X = x) = XTZ, x=123 [Ans.: No]
(i) P(X = x) = ZX;1,X=0, 1,2,3 [Ans.: No]
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. The probability density function of a random variable X is

X 0o 1 2 3 4 5 6
e k3 5k 7k 9% 11k 13k

Find P(X < 4) and P(3 < X < 6).

Ans.:ﬁ, 2
49° 49

. Arandom variable X has the following probability distribution:

3 4 5 6 7
P(X = X) 3k K2 KE+k 2K 4K2

Find ( P(X < 5), (iii) P(X > 5), and (iv) P(0 £ X < 5)
1 49 3 29
Ans.: — (ii) — (iii iv
[ 8()64( )32()32}
. A discrete random variable X has the following probability
distribution:
0 1 2 3
P(X = X) 02 2k 03 3k
Find (i) k , and (iii) P(-2 < X < 2).

1 1 2
[Ans ‘5 (n) — (iii) 5]

. Given the following probability function of a discrete random variable

3 4 5 6 7
P(X = x) 2c 3 & 2 1t+c

Find (i) c, P(X = 6), (iii)) P(X < 6), and (iv) find k if P(X < k) > —
where k is a posmve mteger

[Ans.: (i) 0.1 (ii) 0.19 (iii) 0.81 (iv) 4]

. A random variable X assumes four values with probabilities

1+43X, 1;X, 1+42X and 1_44)(. For what value of x do these values

represent the probability distribution of X? [ 1 1}

Ans.: ——< X <—
3 4
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7. Let X denote the number of heads in a single toss of 4 fair coins.
Determine (i) P(X < 2), and (ii) P(1 < X < 3).

[Ans.: (i) % (if) a

8. If 3 cars are selected from a lot of 6 cars containing 2 defective cars,
find the probability distribution of the number of defective cars.

0 1 2
Ans.: 1 3 2
5 5 3

9. Five defective bolts are accidentally mixed with 20 good ones. Find the
probability distribution of the number of defective bolts, if four bolts
are drawn at random from this lot.

X 0 1 2 3 4

969 1140 380 40 1
2530 2530 2530 2530 2530

Ans.:

P(X = x)

10. Two dice are rolled at once. Find the probability distribution of the
sum of the numbers on them.

Ans.:

11. Arandom variable X takes three values 0, 1, and 2 with probabilities

, %, and % respectively. Obtain the distribution function of X.

w| =

[Ans.: F(0) = % F(l) = % FQ)= 1}

12. Arandom variable X has the following probability function:

X 0 1 2 3 4

PX = x) k 3k 5k 7k 9%
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Find (i) the value of k, (ii) P(X < 3), P(X > 3), P(0 < X < 4), and
(iii) distribution function of X.

1.9 16 3
AnS..(])E,(")E,E,g
4 16
(lll)F(O)—EFﬂ) 25 .F(2)= 25 F3)= 55" , F(4)=1

13. Arandom variable X has the probability function

X 2 -1 0 1 2 3
P =x) BN k 02 2k 0.3 k
Find (i) k, (ii) P(X< 1), (iii) P(-2 < X< 1), and (iv) obtain the distribution
function of X.

[Ans.: (i) 0.1 (ii) 0.6 (iii) 0.3]

14. The following is the distribution function F(x) of a discrete random
variable X:

X -3 -2 -1 0 1 2 3
0.08 0.2 0.4 0.65 0.8 0.9 1
Find () the probabmty distribution of X, (ii) P(-2 < X < 1), and
ifi)
b% 3 2 1 0 1 2 3

e 0.08 0.12 02 0.25 0.15 0.1 0.1
(i) 0.72 (i) 0.35

Ans.: (i)

8.15 MEASURES OF CENTRAL TENDENCY FOR A DISCRETE
PROBABILITY DISTRIBUTION

The behaviour of a random variable is completely characterized by the distribution
function F(x) or density function p(x). Instead of a function, a more compact description
can be made by single numbers such as mean, median, mode, variance, and standard
deviation known as measures of central tendency of the random variable X.

1. Mean The mean or average value (u) of the probability distribution of a discrete
random variable X is called expectation and is denoted by E(X).

H=EX)=Y x p(x)= Y x p(x)
i=1
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where p(x) is the probability density function of the discrete random variable X.
Expectation of any function ¢(x) of a random variable X is given by

E[p(x)]= Y, 0(x) p(x;)) = ¢(x) p(x)
i=1

Some important results on expectation:
() EX+k=EX)+k
(il)) E(aX*tb)=aEX)tb
(iii) EXX+Y) = EX) + E(Y) provided E(X) and E(Y) exists
(iv) E(XY)=E(X) E(Y) if X and Y are two independent random variables

2. Variance Variance characterizes the variability in the distributions since two
distributions with same mean can still have different dispersion of data about their means.
Variance of the probability distribution of a discrete random variable X is given by

Var(X) = 0° = E(X - j1)°
=E(X* - 2Xu + /,Lz)
= E(X*) - EQXu) + E()

= E(Xz) -2uEX) + ,u2 [ E(constant) = (constant)]
= E(C) - 2 + 118
= EX) - i

= () - [EX)P
Some important results on variance:
(i) Var(k)=0
(ii) Var (kX) = k> Var (X)
(iii) Var (X + k) = Var (X)
(iv) Var (aX + b) = a* Var(X)

3. Standard Deviation Standard deviation is the positive square root of the

variance.
SD=0= /lez p(x,) — u?
i=1

= JE(X?) - 2
= JE (X)) - [EX)P
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Example 1

A random variable X has the following distribution:
1 2 3 4 5 6
1 3 5 7 9 11

36 36 36 36 36 36
Find (i) mean, (ii) variance, and (iii) P(1 < X < 6).

Solution
(1) Mean = (1 = Y xp(x)
e e A R i €
36 36 36 36 36 36
_ls1
T 36
=4.47

(ii) Variance = ¢ = Y.xp(x) — 1

(303

+ 36(%) — (447Y

_ P 1908
36
=1.99
(iii) P(1<X<6) =P(X=2)+P(X=3)+P(X=4)+P(X=5)
3.5 79
T 36 36 36 36
24
" 36
=0.67

Example 2

The probability distribution of a random variable X is given below. Find
(i) E(X), (ii) Var(X), (iii) E(2X — 3), and (iv) Var (2X — 3)

X -2 -1 0 1 2
P(X =x) 0.2 0.1 0.3 0.3 0.1
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Solution

() EX)= 2 x p(x)
=-2(0.2) - 1(0.1) + 0 + (0.3) + 2(0.1)
=0
()  VarX)= Xx? p(x)-[EX)
=4(0.2) + 1(0.1) + 0 + 1(0.3) + 4(0.1) = 0
=16
(iii) EQ2X-3)=2EX)-3
=2(0)-3
=-3
(iv) Var 2X - 3)=(2)* Var (X)
= 4(1.6)
=6.4

Example 3

The mean and standard deviation of a random variable X are 5 and 4
respectively. Find E(Xz) and standard deviation of (5 — 3X).

Solution
EX)=u =5
SD=0c=4
Var(X) = o = 16
Var(X) = E(X°) - [EX)])?
16 = E(X%) - (5)°
E(X?) =41
Var (5 - 3X) = Var (5) - (—3)2 Var (X)
=0+9(16)
=144
SD (5 - 3X) = [Var (5-3X)
= 144
=12
Example 4

A machine produces an average of 500 items during the first week of the
month and on average of 400 items during the last week of the month,
the probability for these being 0.68 and 0.32 respectively. Determine the
expected value of the production.

[Summer 2015]
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Solution

Let X be the random variable which denotes the items produced by the machine. The
probability distribution is

500 400

0.68 0.32

Expected value of the production E(X) = z x p(x)

=500(0.68) + 400(0.32)
=468

Example 5

The monthly demand for Allwyn watches is known to have the following
probability distribution:

Demand (x) 1 2 3 4 5 6 7 8
Probability p(x) 0.08 0.12 0.19 024 0.16 0.10 0.07 0.04

Find the expected demand for watches. Also, compute the variance.

Solution
E(X)=2xp(x)

=1(0.08)+2(0.12) +3(0.19) + 4(0.24) + 5(0.16)
+6(0.10)+7(0.07)+8(0.04)

=4.06

Var(X) = E(X*)-[E(X)]?

=% 2 p(x)-[EX)]?

=1(0.08)+4(0.12) +9(0.19) +16(0.24) + 25(0.16)
+36(0.10)+49(0.07) +64(0.04) — (4.06)2

=19.7-16.48

=3.21

Example 6

A discrete random variable has the probability mass function given
below:

k 01 2 01 2k

Find k, mean, and variance.
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Solution
Since P(X = x) is a probability mass function,
Y P(X=x)=1
024+k+0.1+2k+0.1+2k =1
Sk+0.4=1
S5k=0.6
(206 3
5 25

Hence, the probability distribution is

Mean = E(X)=} xp(x)

= (—2)(3) + (—1)(1) +0+ l(i) + Z(LJ +3(£)
10 25 25 10 25
6

=25
Variance = Var(X) = E(X?)— [E(X)]2

=3 po-[EX)T

(i) l)ron(ae) o) olae-()

7336
7250 625
293
T 625

Example 7
A random variable X has the following probability function:

0 kK 2 2k 3k K 2% T +k

(i) Determine k. (ii) Evaluate P(X < 6), P(X =2 6), P(0 < X < 5), and
P(0 £ X <4). (iii) Determine the distribution function of X. (iv) Find the
mean. (v) Find the variance.
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Solution
(1) Since p(x) is a probability mass function,
2. p0=1
0+k+2k+2k+3k+k* +2k> +Tk* +k =1
10k +9k-1=1
10k-1)(k+1)=0
k= % ork=-1
k =%= 0.1[ p(x)=0,k=-1]
Hence, the probability function is
0 1 2 3 4 5 6 7

0 0.1 0.2 0.2 03 001 002 0.17

(i) PX<6)=P(X=0+PX=D+P(X=2)+P(X=3)+P(X=4)+P(X=5)
=0+0.1+0.2+0.2+0.3+0.01
=0.81

P(X26) =1-P(X<6)

=1-0.81
=0.19

PO0<X<5) =P X=D+P(X=2)+P(X=3)+P(X=4)
=0.1+0.2+0.2+0.3
=0.8

PO<X<4) =PX=0+P(X=1D)+P(X=2)+P(X=3)+P(X=4)
=0+0.1+0.2+0.2+0.3
=0.8

(ii1) Distribution function of X

x px) F(x)
0 0 0

1 0.1 0.1

2 0.2 0.3

3 0.2 0.5

4 0.3 0.8

5 0.01 0.81
6 0.02 0.83
7 0.17 1
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(iv) p=2,xp(x)
=0+1(0.1)+2(0.2)+3(0.2) +4(0.3)+ 5(0.01) + 6(0.02) + 7(0.17)
=3.66
(v) Var(X)=0" =Y x* p(x)-
=0+1(0.1)+4(0.2)+9(0.2)+16(0.3) +25(0.01) + 36(0.02)
+49(0.17) - (3.66)°
=3.4044

Example 8

A fair die is tossed. Let the random variable X denote twice the number
appearing on the die. Write the probability distribution of X. Calculate
mean and variance.

Solution

Let X be the random variable which denotes twice the number appearing on the die.
(i) Probability distribution of X

O\|>—~
O\|>—~
0\|>—~
| =
| =

(il)) Mean=u = zxp(x)

=2(1)+4(1)+6(1)+8[1j+lo(l)ﬂz(l)

6 6 6 6 6 6
=7

(iii) Variance = 0 = sz p(x)—,u2

ool oo

=11.67

Example 9
Two unbiased dice are thrown at random. Find the probability distribution
of the sum of the numbers on them. Also, find the mean and variance.

Solution
Let X be the random variable which denotes the sum of the numbers on two
unbiased dice. The random variable X can take values 2, 3,4, 5,6, 7, 8,9, 10, 11, 12.



8.86  Chapter 8 Statistical Methods

The probability distribution is

Mean = i = Y, x p(x)

RN IR IR EIREIRE
SR EIRlEAREC)

3
36
=17
Variance = 0° = sz p(x)—u?

Aol
SORCREE

+ 121(i)+144(i)—(7)2
36 36
36

=5.83

Example 10

A sample of 3 items is selected at random from a box containing 10
items of which 4 are defective. Find the expected number of defective
items.

Solution

Let X be the random variable which denotes the defective items.
Total number of items = 10

Number of good items = 6

Number of defective items = 4
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6
C 1
P(X =0) = P(no defective item) =7 3 = g
G
6, 4
C,"°C, 1
P(X =1) = P(one defective item) = # =3
3
6, 4
C, C 3
P(X =2) = P(two defective items) = 1(]) 2 - m
G
¢ 1
P(X = 3) = P(three defective items) = 5 3 = 0
3
Hence, the probability distribution is
0 1 2 3

LS
6 2 10 30

Expected number of defective items = E(X)= Y x p(x)

ol

=12

8.87

Example 11

A player tosses two fair coins. He wins I 100 if a head appears and
% 200 if two heads appear. On the other hand, he loses ¥ 500 if no
head appears. Determine the expected value of the game. Is the game
favourable to the players?

Solution

S ={HH, HT, TH, TT}

p(x;)=P(X =0)= P(no heads)

p(x,)=P(X =1)= P(one head) =

0| —

p(x3) = P(X =2) = P(two heads) =

Amount to be lost if no head appears =x; =-3 500

Let X be the random variable which denotes the number of heads appearing in tosses
of two fair coins.
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Amount to be won if one head appears = x, =% 100
Amount to be won if two heads appear = x; = ¥ 200

Expected value of the game = u = 2 x p(x)

=x; p(x;)+x, p(x5)+x3 p(x3)

=-500 (l) +100 (l) +200 (l)
4 2 4
=%-25

Hence, the game is not favourable to the player.

Example 12

Amit plays a game of tossing a die. If a number less than 3 appears, he
gets X a, otherwise he has to pay X 10. If the game is fair, find a.

Solution

Let X be the random variable which denotes tossing of a die.

2 1
Probability of getting a number less than 3, i.e., 1 or 2 = p(x;) = 5 3

4
Probability of getting number more than or equal to 3, i.e., 3,4, 5,0r 6 = p(x,) = re

SRR )

Amount to be received for number less than 3 =x; =% a
Amount to be paid for numbers more than or equal to 3 = x, =3 -10

E(X)= Y xp(x)
=X P(x1 )+ Xy P(xz)

At)cnf3

a 20

3 3
For a pair game, E(x) = 0.
a 20 -0

3 3
a=20
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Example 13

A man draws 2 balls from a bag containing 3 white and 5 black balls.
If he is to receive X 14 for every white ball which he draws and X 7 for
every black ball, what is his expectation?

Solution

Let X be the random variable which denotes the balls drawn from a bag. 2 balls drawn
may be either (i) both white, or (ii) both black, or (iii) one white and one black.

3

c, 3
Probability of drawing 2 white balls = p(x;) == =~
c, 28
B . °C, 10
Probability of drawing 2 black balls = p(x,) = c—==—
c, 28

3 C] 5C1 E

Probability of drawing 1 white and 1 black ball = p(x3) = T =53
2
Amount to be received for 2 white balls =x; =% 14 x 2 =X 28

Amount to be received for 2 black balls =x, =37 x2=% 14
Amount to be received for 1 white and 1 black ball =x; =% 14 +¥ 7 =% 21

Expectation = E(X) = Zx p(x)
= x) p(x)) + x5 p(xy)+ X3 p(x3)
= 28(1j+14(ﬂj+21(£j
28 28 28

=319.25

Example 14

The probability that there is at least one error in an account statement
prepared by A is 0.2 and for B and C, they are 0.25 and 0.4 respectively.
A, B, and C prepared 10, 16, and 20 statements respectively. Find the
expected number of correct statements in all.

Solution

Let p(x,), p(x,) and p(x;) be the probabilities of the events that there is no error in the
account statements prepared by A, B, and C respectively.

p(x;) =1-(Probability of at least one error in the account
statement prepared by A)
=1-0.2
=0.8
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Similarly, plxy)=1-0.25= 0.75
pxy)=1-04=0.6
Also, x, =10, x, =16, x;=20

Expected number of correct statements = E(X) = z x p(x)
=X p(xl )+ Xy P(xz )+ X3 P(x3)
=10(0.8)+16(0.75)+20(0.6)
=32

Example 15

A man has the choice of running either a hot-snack stall or an ice-cream
stall at a seaside resort during the summer season. If it is a fairly cool
summer, he should make ¥ 5000 by running the hot-snack stall, but if
the summer is quite hot, he can only expect to make I 1000. On the
other hand, if he operates the ice-cream stall, his profit is estimated at
% 6500, if the summer is hot, but only X 1000 if it is cool. There is a 40
percent chance of the summer being hot. Should he opt for running the
hot-snack stall or the ice-cream stall?

Solution

Let X and Y be the random variables which denote the income from the hot-snack and
ice-cream stalls respectively.

Probability of hot summer = p; =40% = 0.4
Probability of cool summer=p,=1-p, =1-0.4=0.6
x; = 1000, X, = 5000, ¥y = 6500, ¥, = 1000

Expected income from hot-snack stall = E(X)
=Xt Dy
=1000(0.4)+5000(0.6)
=%3400

Expected income from ice-cream stall = E(Y)

=MDty P
= 6500 (0.4)+1000(0.6)
=% 3200

Hence, he should opt for running the hot-snack stall.
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EXERCISE 8.8

1. The probability distribution of a random variable X is given by

-2 -1 0 1 2 3
P(X=x) A k 0.2 2k 0.3 k

.

Find k, the mean, and variance.
[Ans.: 0.1,0.8, 2.16]

2. Find the mean and variance of the following distribution:

P(

4 5 6 8
S 0.1 03 04 0.2

[Ans.:5.9,1.49]

3. Find the value of k from the following data:

X 0 10 15

k-6 2 14
PX=x Rl

Also, find the distribution function and expectation of X.

X 0 10 15
31
Ans.: 8, , 20
Fix) [ 1
5 20
4. For the following distribution,
X -3 -2 -1 0 1 2

JPevR 0.01 01 02 03 02 0.5
find (i) P(X = 1), (ii) P(X < 0), (iii) E(X), and (iv) Var(X)
[Ans.: (i) 0.35 (ii) 0.35 (iii) 0.05 (iv) 1 .8475]
5. Arandom variable X has the following probability function:

X 0 1 2 3 4 5 6 7 8

2k 6k Tk Bk 4k
45 45 45 45 45

kK k kK
P(X = x X X K
Gl 5 15 9 5
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Determine (i) k, (ii) mean, (iii) variance, and (iv) SD.
[Ans.: (i) 1(ii) 0.4622 (iii) 4.9971 (iv) 2.24]

6. A fair coin is tossed until a head or five tails appear. Find (i) discrete
probability distribution, and (ii) mean of the distribution.

X 1 2 3 4 5

Ans.: (i)
pc= TR |
2 4 8 16 16

(i) 1.9
7. Let X denote the minimum of two numbers that appear when a pair

of fair dice is thrown once. Determine (i) probability distribution,
(ii) expectation, and (iii) variance.

1 9 7 5 3 1

36 36 36 36 36 36

i (ii) 2.5278 (iii) 1.9713
8. For the following probability distribution,
X 3 2 A 0 1 2 3
Ve 0.001  0.01 0.1 ? 0.1 0.01 0.001

find (i) missing probability, (ii) mean, and (iii) variance.
[Ans.: (i) 0.778 (ii) 0.2 (iii) 0.258]

9. A discrete random variable can take all integer values from 1 to k

each with the probability of % Show that its mean and variance are

2
k+1andk +1

2 2

10. An urn contains 6 white and 4 black balls; 3 balls are drawn without
replacement. What is the expected number of black balls that will be

obtained?
{Ans.: 9}
5

11. A six-faced die is tossed. If a prime number occurs, Anil wins that
number of rupees but if a non-prime number occurs, he loses that

respectively.
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number of rupees. Determine whether the game is favourable to the
player.
[Ans.: The game is favourable to Am'l.]

12. A man runs an ice-cream parlour at a holiday resort. If the summer is
mild, he can sell 2500 cups of ice cream; if it is hot, he can sell 4000
cups; if it is very hot, he can sell 5000 cups. It is known that for any

year, the probability of summer to be mild is ; and to be hot is ; A

cup of ice cream costs ¥ 2 and is sold for ¥ 3.50. What is his expected
profit?
[Ans.:3 6107.14 ]

13. A player tosses two fair coins. He wins ¥ 1 or ¥ 2 as 1 tail or 1 head
appears. On the other hand, he loses ¥ 5 if no head appears. Find the
expected gain or loss of the player.

[Ans.: Loss of ¥ 0.25]

14. Abag contains 2 white balls and 3 black balls. Four persons A, B, C, D in
the order named each draws one ball and does not replace it. The first
to draw a white ball receives % 20. Determine their expectations.

[Ans.:%8,36,34,32]

Points to Remember

Arithmetic Mean
The arithmetic mean of a set of observations is their sum divided by the number of
observations. If x|, x,,..., x, be n observations then their average or arithmetic mean
is given by
n
X x4 x, g;x‘ B Y x
n n n

X =

If n observations consist of n distinct values denoted by x,, x,, ..., x,, of the observed
variable x occurring with frequencies fj, f,, ..., f, respectively then the arithmetic
mean is given by

zo fixit oo+t X, s

1
ht+th++f, 1L N N
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1. Arithmetic Mean of Grouped Data

In case of a grouped or continuous frequency distribution, the arithmetic mean is
given by

X n
)_c=’=i =sz,whereN=2fi
Zﬁ i=l1
and x is taken as the mid-value of the corresponding class.

2. Arithmetic Mean from Assumed Mean
S
N
3. Arithmetic Mean by the Step-Deviation Method

2./

N

x=a+

xX=a+h

4. Weighted Arithmetic Mean
WX WXy Fo WX,

Weighted arithmetic mean =
Wi+ w, W,

_ Z wx
X, =
Sow

When the assumed mean is used for calculation,

_ z wd

X, =a+

Yow

When the step-deviation method is used for calculation,
2 wd
Y w

Combined Arithmetic Mean

If X, x,,...,x; are the means of k series of sizes n,, n,,..., n; respectively then the
mean X of the composite series is given by

X, =a+h

n1x1+n2x2 +“'+I’lk X

f:
ny+ny 4oty
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Median

Median is the central value of the variable when the values are arranged in ascending
or descending order of magnitude.

In case of ungrouped data, if the number of observations is odd then the median is the
middle value after the values have been arranged in ascending or descending order
of magnitude. If the number of observations is even, there are two middle terms and
the median is obtained by taking the arithmetic mean of the middle terms.

In case of discrete frequency distribution, the median is obtained by considering the
cumulative frequencies. The steps for calculating the median are given below:
(i) Arrange the values of the variables in ascending or descending order of mag-
nitudes.

(ii) Find % where N = ) f

(iii) Find the cumulative frequency just greater than % and determine the cor-
responding value of the variable.
(iv) The corresponding value of x is the median.
Median for Continuous Frequency Distribution
In case of a continuous frequency distribution (less than frequency distribution), the

N
class corresponding to the cumulative frequency just greater than —, is called the
median class, and the value of the median is given by 2

Median = 1+£(ﬂ_cj
fl2

In case of ‘more than’ or ‘greater than’ type of frequency distributions, the value of
the median is given by

Median = u— ﬁ[ﬂ— cj
fl2
where u is the upper limit of the median class
f1s the frequency of the median class
h is the width of the median class
c is the cumulative frequency of the class succeeding the median class

Mode

Mode is the value which occurs most frequently in a set of observations and around
which the other items of the set are heavily distributed.

Mode for a Continuous Frequency Distribution

In case of a continuous frequency distribution, the class in which the mode lies is
called the modal class and the value of the mode is given by

Mode=l+h(ﬂj
2fn—hHh—f
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where [ is the lower limit of the modal class

h is the width of the modal class

fon 1s the frequency of the modal class

/i is the frequency of the class preceding the modal class
/> 1s the frequency of the class succeeding the modal class

Harmonic Mean
The harmonic mean of a number of observations, none of which is zero, is the
reciprocal of the arithmetic mean of the reciprocals of the given values.

1
M=)
)
_ n
11 1
7+7+.. +7
X X X

In case of a frequency distribution consisting of n observations x;, x,, ..., x, with
respective frequencies f, f5, ..., f,, the harmonic mean is given by

HM = f1+f2+...+f;
£+£+...+7n
X Xn

5
5()

If x;, x5, ..., x,, are n observations with weights w;, w,, ..., w, respectively, their
weighted harmonic mean is given by
w
HM = Z_

5(3)

Relation between Arithmetic Mean, Geometric Mean, and Harmonic Mean
AM > GM > HM
For two observations x; and x, of a series,

GM =+vAM-HM

Standard Deviation
Standard deviation is the positive square root of the arithmetic mean of the squares

of the deviations of the given values from their arithmetic mean.
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’ 2
oo Z(x X)
n

- E]

In case of a frequency distribution consisting of n observations x,, x,, ..., x, with
respective frequencies f, f, ..., f,, the standard deviation is given by

2
2z
O =4 |=/———-| =—
N N
1. Standard Deviation from the Assumed Mean
2
N N
2. Standard Deviation by Step-Deviation Method

oo ZA (L]

N

3. Variance

The variance is the square of the standard deviation and is denoted by o°. The
method for calculating variance is same as that given for the standard deviation.

4. Coefficient of Variation

The standard deviation is an absolute measure of dispersion. The coefficient of
variation is a relative measure of dispersion and is denoted by CV.

cv=2x100
X
Random Variables

A random variable X is a real-valued function of the elements of the sample space
of a random experiment. In other words, a variable which takes the real values,
depending on the outcome of a random experiment is called a random variable,

1. Discrete Random Variables A random variable X is said to be discrete if it
takes either finite or countably infinite values.

2. Continuous Random Variables A random variable X is said to be continuous
if it takes any values in a given interval.
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Discrete Probability Distribution

Probability distribution of a random variable is the set of its possible values together
with their respective probabilities.

Discrete Distribution Function

F(x)=P(X<x)=Y p(x;)

i=1

Measures of Central Tendency for Discrete Probability Distribution
1. Mean

p=EX)=3x p(x) =Y x px)

i=1

2. Variance
Var(X) = 0° = E(X - )’
= E(X) - [EX)]

3. Standard Deviation

SD=o= ix,z plx) —pu?
=
= JE(X") - p’

= JE (X®) - [EQX)P
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9.1 INTRODUCTION

Correlation and regression are the most commonly used techniques for investigating the
relationship between two quantitative variables. Correlation refers to the relationship
of two or more variables. It measures the closeness of the relationship between the
variables. Regression establishes a functional relationship between the variables. In
correlation, both the variables x and y are random variables, whereas in regression, x is
a random variable and y is a fixed variable. The coefficient of correlation is a relative
measure whereas the regression coefficient is an absolute figure.
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9.2 CORRELATION

Correlation is the relationship that exists between two or more variables. Two variables
are said to be correlated if a change in one variable affects a change in the other variable.
Such a data connecting two variables is called bivariate data. Thus, correlation is a
statistical analysis which measures and analyses the degree or extent to which two
variables fluctuate with reference to each other. Some examples of such a relationship
are as follows:

1. Relationship between heights and weights.

2. Relationship between price and demand of commodity.

3. Relationship between rainfall and yield of crops.

4. Relationship between age of husband and age of wife.

9.3 TYPES OF CORRELATIONS

Correlation is classified into four types:
1. Positive and negative correlations
2. Simple and multiple correlations
3. Partial and total correlations
4. Linear and nonlinear correlations

9.3.1 Positive and Negative Correlations

Depending on the variation in the variables, correlation may be positive or negative.
1. Positive Correlation If both the variables vary in the same direction, the
correlation is said to be positive. In other words, if the value of one variable increases,
the value of the other variable also increases, or, if value of one variable decreases, the
value of the other variable decreases, e.g., the correlation between heights and weights
of group of persons is a positive correlation.

Height (cm) 150 152 155 160 162 165
Weight (kg) 60 62 64 65 67 69

2. Negative Correlation If both the variables vary in the opposite direction,
correlation is said to be negative. In other words, if the value of one variable increases,
the value of the other variable decreases, or, if the value of one variable decreases,
the value of the other variable increases, e.g., the correlation between the price and
demand of a commodity is a negative correlation.

Price (% per unit) 10 8 6 5 4 1
Demand (units) 100 200 300 400 500 600
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9.3.2 Simple and Multiple Correlations

Depending upon the study of the number of variables, correlation may be simple or
multiple.

1. Simple Correlation When only two variables are studied, the relationship is
described as simple correlation, e.g., the quantity of money and price level, demand
and price, etc.

2. Multiple Correlation When more than two variables are studied, the relationship
is described as multiple correlation, e.g., relationship of price, demand, and supply of
a commodity.

9.3.3 Partial and Total Correlations

Multiple correlation may be either partial or total.

1. Partial Correlation When more than two variables are studied excluding some
other variables, the relationship is termed as partial correlation.

2. Total Correlation When more than two variables are studied without excluding
any variables, the relationship is termed total correlation.

9.3.4 Linear and Nonlinear Correlations

Depending upon the ratio of change between two variables, the correlation may be
linear or nonlinear.

1. Linear Correlation If the ratio of change between two variables is constant, the
correlation is said to be linear. If such variables are plotted on a graph paper, a straight
line is obtained, e.g.,

Milk (/) 5 10 15 20 25 30
Curg (kg) 2 4 6 8 10 12

2. Nonlinear Correlation If the ratio of change between two variables is not
constant, the correlation is said to nonlinear. The graph of a nonlinear or curvilinear
relationship will be a curve, e.g.,

Advertising expenses (% in lacs) 3 6 9 12 15

Sales (% in lacs) 10 12 15 15 16

9.4 METHODS OF STUDYING CORRELATION

There are two different methods of studying correlation, (1) Graphic methods
(2) Mathematical methods.

Graphic methods are (a) scatter diagram, and (b) simple graph.
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Mathematical methods are (a) Karl Pearson’s coefficient of correlation, and
(b) Spearman’s rank coefficient of correlation.

9.5 SCATTER DIAGRAM

The scatter diagram is a diagrammatic representation

of bivariate data to find the correlation between two

variables. There are various correlationships between y

two variables represented by the following scatter .
diagrams. .°

1. Perfect Positive Correlation If all the plotted .*
points lie on a straight line rising from the lower o]
left-hand corner to the upper right-hand corner, the Fig. 9.1
correlation is said to be perfectly positive (Fig. 9.1).

2. Perfect Negative Correlation If all the ‘.
plotted points lie on a straight line falling from the ..
upper-left hand corner to the lower right-hand corner, .
the correlation is said to be perfectly negative ol

(Fig. 9.2). Fig. 9.2

3. High Degree of Positive Correlation If all
the plotted points lie in the narrow strip, rising from .
the lower left-hand corner to the upper right-hand .
corner, it indicates a high degree of positive correlation

(Fig. 9.3). o

4. High Degree of Negative Correlation If all y
the plotted points lie in a narrow strip, falling from
the upper left-hand corner to the lower right-hand
corner, it indicates the existence of a high degree of .
negative correlation (Fig. 9.4).

5. No Correlation If all the plotted points lie on a

straight line parallel to the x-axis or y-axis or in a y
haphazard manner, it indicates the absence of any *t cr=0
relationship between the variables (Fig. 9.5).

Merits of a Scatter Diagram o X

1. It is simple and nonmathematical method to find )
out the correlation between the variables. Fig. 9.5
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2. It gives an indication of the degree of linear correlation between the
variables.

It is easy to understand.

4. It is not influenced by the size of extreme items.

e

9.6 SIMPLE GRAPH

A simple graph is a diagrammatic representation of bivariate data to find the correlation
between two variables. The values of the two variables are plotted on a graph paper.
Two curves are obtained, one for the variable x and the other for the variable y. If both
the curves move in the same direction, the correlation is said to be positive. If both
the curves move in the opposite direction, the correlation is said to be negative. This
method is used in the case of a time series. It does not reveal the extent to which the
variables are related.

9.7 KARL PEARSON’S COEFFICIENT OF CORRELATION

The coefficient of correlation is the measure of correlation between two random vari-
ables X and Y, and is denoted by 7.

cov(X,Y)
r —_— —
OxOy

where cov (X, Y) is covariance of variables X and Y,
Oy is the standard deviation of variable X,
and Oy is the standard deviation of variable Y.

This expression is known as Karl Pearson’s coefficient of correlation or Karl Pearson’s
product-moment coefficient of correlation.

1
COV(X,Y)=;Z(X—Y) -y

V n

_=\2

o _ [20-T
n

o Y (x-%)(r-y)
IS =07 Y -7

The above expression can be further modified.
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Expanding the terms,
L Y (xy—xy —Xy +Xy)
\/Z(xz—fo+)_c2)\/2(yz —2y +5°)
ny—yz:x—EZy-H_ci 21
YO -2E Y+ YT 27 Py+3t Y1
S 3 e 2Ty, 2T 2,
SRISIO Y S S

n n n

zxy_szy

n

9.8 PROPERTIES OF COEFFICIENT OF CORRELATION

1. The coefficient of correlation lies between —1 and 1, i.e., —1<r<1.

Proof Let x andy be the mean of x and y series and o, and o, be their respective
standard deviations.

X=X  y-y > -+ sum of squares of real quantities
Let Y t=—=1| >0

o o, cannot be negative

=2 )2 = =
Z(xzx) +Z(y2y) i22<x D= o

o o 0,0,

n+nx2nr=>20

2nt2nr 20
2n(1tr)=0
1£r=20
ie., 1+4r=20 or 1-r=0
r=—-1 or r<i

Hence, the coefficient of correlation lies between —1 and 1, i.e., -1 <r< 1.
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2. Correlation coefficient is independent of change of origin and change
of scale.
xX—a y—>b
Proof Letd, = , d =2——
h Y k
x=a+hd,, y=b+

kd,
where a, b, 1 (>0) and k(>0) are constants.
x=a+hd =X=a+hd, = x-%=h(d,—d )
y=b+kd, =y =b+hd, = y-y=kd,—d,)
2D =)
IS =37 T -7
~ > h(d,—d,)k(d,~d,)
Xrd a3 e, -d,)
_ 2d,-d)d,~d,)
X - Jd,-a,p

=Taa,

Hence, the correlation coefficient is independent of change of origin and change of
scale.

Note Since correlation coefficient is independent of change of origin and change

of scale,
Ydd, —2 Zd
[z B4 szi_(zdyi

3. Two independent variables are uncorrelated.

r=

Proof 1If random variables X and Y are independent,
Y (x=%)(y=y)=0 or cov(X,Y)=0
r=0
Thus, if X and Y are independent variables, they are uncorrelated.

Note The converse of the above property is not true, i.e., two uncorrelated variables
may not be independent.
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Example 1

Calculate the correlation coefficient between x and y using the following
data:

W 18 12 10 8 7 5
Solution
n=6

18 4 324 36

2

4 12 16 144 48
5 10 25 100 50
6 8 36 64 48
8 7 64 49 56
11 5 121 25 55

Yx =36 Yy =60 YxP=266 X)y’=706  Yxy=293

ZW_ZXEy

n
(36)(60)
6

r=

293 -

2 2
\/ 266 — (36) \/ 706 - (60)
6 6

=-0.9203

Example 2

Calculate the coefficient of correlation from the following data:

X 12 9 8 10 11 13 7
y 14 8 6 9 11 12 3
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Solution
n=7

9.9

12 14 144 196 168
9 8 81 64 72
8 6 64 36 48
10 9 100 81 90
11 11 121 121 121
13 12 169 144 156
7 3 49 9 21
Yx=70 Yy =063 YxP=728 Y)*=651 Yxy=676
Xy
ny—ﬁ
r= L
2 2
[ BT s o (2]
n n
676 — (70) (63)
_ 7
2 2
\/728—(70) \/651—(63)
7 7
=0.949
Example 3

Calculate the coefficient of correlation for the following data:
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Solution
n=9

15 81 225 135

9

8 16 64 256 128
7 14 49 196 98
6 13 36 169 78
5 11 25 121 55
4 12 16 144 48
3 10 9 100 30
2 8 4 64 16
1 9 1 81 9

Yx=45 Yy=108  Xx*=285 Xy*=1356 Xxy=597
Xy
DD
n

n
_ (45)(108)

r=

597

2 2
\/285— Sa \/1356— (108)
9 9

=0.95

Example 4

Calculate the correlation coefficient between the following data:

X 5 9 13 17 21
y 12 20 25 33 35
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Solution

n=>5

(x=x)(y=Y)

5 12 -8 -13 64 169 104
9 20 4 5 16 ’5 -
21 35 8 10 64 100 80
Z(X—f) Z -y Y =2 Z(x—f)( _—)
Yx=65 Ty=125 G-y Za-3° ZO-Y) Y-y
=0 =0 =160 =38 =236
2.G=D-3)
r=
X -9 o=
236
V160 /358
=0.986
Example 5

Calculate the correlation coefficient between for the following values of
demand and the corresponding price of a commodity:

Demand in quintals 65 66 67
Price in rupees per kg 67 68 65

68
72

69 70 72
7269 71
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Solution

Let the demand in quintal be denoted by x and the price in rupees per kg be denoted
by y.

-y? @-00Q-y)

65 67 -3 -2 9 4 6
66 68 -2 -1 4 1 2
67 65 -1 -4 1 16 4
67 68 -1 -1 1 1 1
68 72 0 3 0 9 0
69 72 1 3 1 9 3
70 69 2 0 4 0 0
72 71 4 2 16 4 8

-X -y =2 =2 e
Sx=544 Yy =552 =X X0-Y) I(x-%7 T(y-y)’ ZO=DO-Y)

=0 =0 =36 =44 =24
e PREEEICEND!
Y- Y-
. S
36 44
=0.603
Example 6

Calculate the coefficient of correlation for the following pairs of
xandy:

X 17 19 21 26 20 28 26 27
y 23 27 25 26 27 25 30 33
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Solution

Let a =23 and b = 27 be the assumed means of x and y series respectively.
d.=x—a=x-23
d,=y-b=y-27

n=8

19 27 —4 0 16 0 0
21 25 -2 -2 4 4 4
26 26 3 -1 9 1 =3
20 27 -3 0 9 0 0
28 25 5 -2 25 4 -10
26 30 3 3 9 9 9
27 33 4 6 16 36 24

Yd,=0 Xd,=0 3Yd}=124 3d}=70 3d.d,=48
2.4 2.
Y dd, - =D
2
Y dx) Sd

48-0
~J124-070-0

=0.515

r=

Example 7

Calculate the correlation coefficient from the following data:
X 23 27 28 29 30 31 33 35 36 39
y 18 22 23 24 25 26 28 29 30 32
Solution

Let a = 30 and b = 25 be the assumed means of x and y series respectively.
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d.=x—a=x-30
d,=y-b=x-25
n=10

27 22 -3 -3 9 9 9
28 23 -2 -2 4 4 4
29 24 -1 -1 1 1 1
30 25 0 0 0 0 0
31 26 1 1 1 1 1
33 28 3 3 9 9 9
35 29 5 4 25 16 20
36 30 6 5 36 25 30
39 32 9 7 81 49 63

Yd, =11 3d,=7 3d’=215 Xd;=163 Xd d,=186

2d.yd
dedy_fy

(s Ee 5 (B0

n

r =

186 (DD
_ 10
2 2
\/215— an \/163— @)
10 10
=0.996
Example 8

Calculate the coefficient of correlation between the ages of cars and
annual maintenance costs.

Age of cars (year) 2 4 6 7 8 10 12

Annual maintenance cost
(69)

1600 1500 1800 1900 1700 2100 2000
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Solution

Let the ages of cars in years be denoted by x and annual maintenance costs in rupees
be denoted by y.

Let a =7 and b = 1800 be the assumed means of x and y series respectively.
Leth=1, k=100

x ]

2 4

4 1500 -3 3 9 9 9
6 1800 -1 1 0

7 1900 0 0 1

8 1700 1 -1 1 1 -1
10 2100 3 9 9 9
12 2000 5 2 25 4 10

Yd.=0 Xd,=0 Xd;=70 3Xd =28 Ydd,=37
2.d,.2d
Yd d - EED
2 2
n

n
_37-0
J70-0 28-0

=0.836

r=

Example 9

Calculate Karl Pearson’s coefficient of correlation for the data given

below:
X 10 14 18 22 26 30
y 18 12 24 6 30 36
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Solution

Let a = 22 and b = 24 be the assumed means of x and y series respectively.

Leth=4,k=6

26 30 1 1 1 1 1
30 36 2 2 4 4 4
Yd,=-3 Yd,=-3 3d}=19 Xd;=19 3d.d=12
dezaz
dedy_ -
r:
[z BT szz (Zaf
12_(—3)(—3)
_ 6
2 2
\/19_(—? \/19_(—2)
=0.6
Example 10

The coefficient of correlation between two variables X andY is 0.48. The
covariance is 36. The variance of X is 16. Find the standard deviation

of Y.

Solution

r=048, cov(X,Y)=36, oy=16
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. cov (X,Y)
Ox Oy
36
40y,
. oy =18.75

0.48 =

9.17

Example 11

Given n = 10, oy = 5.4, oy = 6.2, and sum of the product of deviations

from the mean of x and y is 66. Find the correlation coefficient.

Solution
n=10,04 =5.4,0, =6.2
> (x=%)(y-y)=66

=2

o = D (x=%)
n

—2

s |[2G-D
10

Y (x—%)* =291.6

2

o, - >o-9
n

—\2

620 |20~
10

Y (y-)’ =384.4

L Y2 E=H(-Y)
-5 S o=
66

B \291.6 \/384.4

=0.197

Example 12

From the following information, calculate the value of n.

Yx=4,Yy=4Yx"=44,Y y* =44, Y xy=—40,r =1
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Solution
zxy_ Zx Zy
[ B s (B
GG
1= n
\/44—(4)2 \/44—(4)2
n=_§

Example 13

From the following data, find the number of items n.
r=0.5Y (x-x)(y-y)=120,0, =38, Z(x—f)2 =90

-y
= 2T
=2
o /Z(y y)
n

2. (=3 =64n
L 2XDO-Y)
Y2 =37 Y-

120

0°="750 Jean

n=10

Solution

Example 14

Calculate the correlation coefficient between x and y from the following
data:

n=10,Y x=140,Y y=150,Y (x—10)* =180
3 (y=15)* =215, 3 (x=10) (y—15) = 60
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Solution
Y.d; =Y (x-10)* =180
Yd, =Y (y-15=215
Yd.d, = (x-10) (y—15)=60

a=10
b=15
n=10
po 210,
n 10
Fo) 10
n 10
Y=a+2dx
n
14=10+zdx
10
Yd, =40
d,
7zb+Z :
n
15=15+<2
>d, =0

4 Yd,
Sdd, - = EE

(e Cal 5, (o)

n
(40)(0)

60—

10
{ 2
180—(40) ,f215—£
10 10

=0.915

Example 15

A computer operator while calculating the coefficient between two

variates x and y for 25 pairs of observations obtained the following
constants:
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n=25Yx=125 x* =650,y y =100,
3 y? =460, Y xy =508

It was later discovered at the time of checking that he had copied down
two pairs as (6, 14) and (8, 6) while the correct pairs were (8,12) and
(6, 8). Obtain the correct value of the correlation coefficient.

Solution
n=25

Corrected Zx = Incorrect Zx — (Sum of incorrect x) + (Sum of correct x)
=125-(6+8)+ (8+6)
=125

Similarly,
Corrected Y y=100—(14+6) + (12+8) =100
Corrected Y x* =650— (6> +8%) + (8> +67) = 650
Corrected M y* =460 — (14> +6°) + (12° +8%) =436
Corrected . xy =508 — (84 +48) + (96 + 48) = 520

Correct value of correlation coefficient

ZW_ZXZy

n
(125)(100)
25

2 2
\/650 _4257 \/436 _100)
25 25

r=

520-

=0.67

EXERCISE 9.1

1. Draw a scatter diagram to represent the following data:

X 2 4 5 6 8 11
v 18 12 10 8 7 5

Calculate the coefficient of correlation between x and y.
[Ans.: —0.92]
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. Find the coefficient of correlation between x and y for the following
data:

X 10 12 18 24 23 27
13 18 12 25 30 10
[Ans.: 0.223]
. From the following information relating to the stock exchange quotations

for two shares A and B, ascertain by using Pearson’s coefficient of
correlation how shares A and B are correlated in their prices?

Price share (A) 160 164 172 182 166 170 178
Price share (B) % 292 280 260 234 266 254 230
[Ans.: —0.96]

. Find the correlation coefficient between the income and expenditure
of a wage earner.

Month Jan Feb Mar Apr  May  Jun Jul

Income 46 54 56 56 58 60 62

Expenditure 36 40 44 54 42 58 54
[Ans.: 0.769]

. From the following data, examine whether the input of oil and output
of electricity can be said to be correlated.

Input of oil 69 82 7.8 48 9.6 8.0 7.7
Output of electricity 1.9 35 6.5 1.3 55 35 22

[Ans.: 0.696]

. For the following data, show that cov (x, xz) =0.
X -3 -2 —1 0 1 2 3
X2 9 4 1 0 1 4 9

. Find the coefficient of correlation between x and y for the following
data:

X 62 64 65 69 70 71 72 74
y 126 125 139 145 165 152 180 208
[Ans.: 0.9032]

. The following data gave the growth of employment in lacs in the
organized sector in India between 1988 and 1995:

Year 1988 1989 1990 1991 1992 1993 1994 1995
Public sector 98 101 104 107 113 120 125 128
Private sector 65 65 67 68 68 69 68 68
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Find the correlation coefficient between the employment in public and

private sectors.
[Ans.: 0.77]

9. Calculate Karl Pearson’s coefficient of correlation from the following
data, using 20 as the working mean for price and 70 as working mean
for demand.

Price 14 16 17 18 19 20 21 22 23
84 78 70 75 66 67 62 58 60
[Ans.: —0.954]
10. A sample of 25 pairs of values x and y lead to the following results:

Y x=127, Yy =100, ¥ x* =760, 3 y? = 449, Y xy = 500

Later on, it was found that two pairs of values were taken as (8, 14)
and (8, 6) instead of the correct values (8, 12) and (6, 8). Find the
corrected coefficient between x and y.

[Ans.: —0.31]

9.9 RANK CORRELATION

Let a group of n individuals be arranged in order of merit with respect to some
characteristics. The same group would give a different order (rank) for different
characteristics. Considering the orders corresponding to two characteristics A and B,
the correlation between these n pairs of ranks is called the rank correlation in the
characteristics A and B for that group of individuals.

9.9.1 Spearman’s Rank Correlation Coefficient

Let x, y be the ranks of the /™ individuals in two characteristics A and B respectively
where i = 1, 2, ..., n. Assuming that no two individuals have the same rank either for x
or y, each of the variables x and y take the values 1, 2, ..., n.

1+243+--+n _ n(n+l) n+l
n 2n 2

Y (=% =Y (7 —2x X +¥%°)
=Zx2 —2?2)64—}2 21
=2x2—2n22+n72 [ zx=nfand21=n:|

2 -2
= X —nx

X=y=

2
=(12+22+---+n2)—n(n;1)



:nm+D@n+D_nm+D2

6 4
-0t
Similarly, Z(y y)? =—(n —n)

If d denotes the difference between the ranks of the i

variables,
d=x-y=(x-0-(-7)

Squaring and summing over i from 1 to n,

SE=Y[x-0-0-»]

9.9 Rank Correlation 9.23

™ individuals in the two

=]

=Y =X+ (=Y =22 (x=%) (y-y)
S -DH - = Z(x—f>2+2<y—§>2—2d2
2

zi(n -n)—

12

Hence, the coefficient of correlation between these variables is

PNEESCEND

) JZ(x—?c)zZ(y—i)z

1

n’—n)—

i(n )

12

6> d’

3
n —n

6y d

n(n® -1)

This is called Spearman’s rank correlation coefficient and is denoted by p.

Note Y d=) (x-y)=Yx-Yy=nx-y)=0

Example 1

Ten participants in a contest are ranked by two judges as follows:

o 1 3 7 5
' 3 1 4 5

Calculate the rank correlation coefficient.

10 9 8
8 10 2
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Solution
10

n=

Rank by first  Rank by second

Judge x Judge y d=x-y

1 3 -2 4
3 1 2 4
7 4 9
5 5 0 0
4 6 2 4
6 9 -3 9
2 7 5 25
10 8 2 4

9 10 -1
2 6 36

Sd=0 Sd& =96

2
i 6§d
n(n®—1)
_609)
10[10)* -1]
=0.418

=1

Example 2

Ten competitors in a musical test were ranked by the three judges A, B,
and C in the following order:

Rank by A 1 6 5 10 3 2 4 9
Rank by B 3 5 8 4 7 10 2 1 6 9
Rank by C 6 4 9 8 1 2 310

Using the rank correlation method, find which pair of judges has the
nearest approach to common liking in music. [Summer 2015]

Solution
n=10
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Rank Rank Rank
by A by B by C

4
3 4
2 0
4 2 1
9 1 10 -9 1 64 81 1
7 6 5 1 1 -2 1 1 4
8 9 7 -1 2 -1 1 4 1

Yd =0 Xd,=0 Ydy=0 Xd} =200 Xd5 =214 Ydj =60

6y d}
n(n* -1
_ 6(200)
10[10)? -1]
=021
6> d5
nn* =1
6(214)
10[(10)? -1]
=-0.296
6 d;
nn* -1
6(60)
10[ 10> 1]
=0.64

Since r(z, x) is maximum, the pair of judges A and C has the nearest common
approach.

r(x,y)=1-

=1

’”(y,Z)=1_

=1-

r(z,x)=1-

=1-

Example 3

Ten students got the following percentage of marks in mathematics and
physics:
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Mathematics (x) 8 36 98 25 75 82 92 62 65 35
Physics (y) 84 51 91 60 68 62 8 58 35 49

Find the rank correlation coefficient.

Solution
n=10

Rank in Rank in

mathematics x physics y
8 84 10 3 7 49
36 51 7 8 -1 1
98 91 1 1 0
25 60 9 6 9
75 68 4 4 0
82 62 3 5 -2 4
92 86 2 2 0 0
62 58 6 7 -1 1
65 35 5 10 -5 25
35 49 8 9 -1 1

Yd=0 >d* =90
2
nn”-1)
-1 6(90)
10[ 102 -1]
=0.455
Example 4

The coefficient of rank correlation of the marks obtained by 10 students
in physics and chemistry was found to be 0.5. It was later discovered
that the difference in ranks in the two subjects obtained by one of the
students was wrongly taken as 3 instead of 7. Find the rank coefficient
of the rank correlation.

Solution
n=10
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6y d’

r=1 nn* -1
6y
10(100—1)

Y d* =825

Correct Zdz = Incorrect z d> - (Incorrect rank difference)2

+ (Correct rank difference)2
=82.5-(3) +(7)°
=122.5
6(122.5)
10(100—1)
=0.26

Correct coefficient of rank correlation r =1—

9.9.2 Tied Ranks

If there is a tie between two or more individuals ranks, the rank is divided among equal

individuals, e.g., if two items have fourth rank, the 4™ and 5" rank is divided between
them equally and is given as % =4.5" rank to each of them. If three items have

4+5+6

the same 4" rank, each of them is given 5t rank. As a result of this, the

following adjustment or correction is made in the rank correlation formula. If m is the
number of item having equal ranks then the factor é(nf —m) is added to zdz. If

there are more than one cases of this type, this factor is added corresponding to each
case.

1 1
6[2(12 +E(m13 —m1)+E(m§ —m2)+--}

r=1-
n(nz—l)

Example 1

Obtain the rank correlation coefficient from the following data:

x 10 12 18 18 15 40
y 12 18 25 25 50 25

Solution

Here,n=6
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Rankx  Ranky

12 18 2 2 0 0

18 25 45 4 0.5 0.25

18 25 45 4 0.5 0.25

15 50 6 -3 9

40 25 6 4 2 4
Yd =135

There are two items in the x series having equal values at the rank 4. Each is given the
rank 4.5. Similarly, there are three items in the y series at the rank 3. Each of them is
given the rank 4.

my =2,m, =3

[ 1 1
6 Zdz +E(m13 —m1)+E(m§’ —mz)}

n(n® -1)
6 13.50+1(8—2)+1(27—3)}
L 12 12

6[ 6 -1]

=0.5429

EXERCISE 9.2

1. Compute Spearman’s rank correlation coefficient from the following
data:

X 18 20 34 52 12
y 39 23 35 18 46
[Ans.: —0.9]

2. Two judges gave the following ranks to a series of eight one-act plays
in a drama competition. Examine the relationship between their
judgements.

Judge A 8 7 6 3 2 1 5 4
Judge B 7 4 1 3 2 6 8
[Ans.: 0.62]

3. From the following data, calculate Spearman’s rank correlation between
xandy.

(8]
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X 36 56 20 42 33 44 50 15 60
y 50 35 70 58 75 60 45 80 38
[Ans.: 0.92]

4. Ten competitors in a voice test are ranked by three judges in the
following order:

Rank by First Judge 6 10 2 9 8 1 5 3 4 7
Rank by Second Judge 5 4 10 1 9 3 8 7 2 6
Rank by Third Judge 4 8 2 10 7 6 9 1 3 6
Use the method of rank correlation to gauge which pairs of judges has

the nearest approach to common liking in voice.
[Ans.: The first and third judge]

5. The following table gives the scores obtained by 11 students in English
and Tamil translation. Find the rank correlation coefficient.

Slelel g liaB 40 46 54 60 70 80 82 85 8 90 95
Scores in Tamil 45 45 50 43 40 75 55 72 65 42 70
[Ans.: 0.36]

6. Calculate Spearman’s coefficient of rank correlation for the following
data:

53 98 95 81 75 71 59 55
47 25 32 37 30 40 39 45
[Ans.: —0.905]

7. Following are the scores of ten students in a class and their I1Q:
Score 35 40 25 55 85 90 65 55 45 50
1Q 100 100 110 140 150 130 100 120 140 110
Calculate the rank correlation coefficient between the score 1Q.
[Ans.: 0.47]

9.10 REGRESSION

Regression is defined as a method of estimating the value of one variable when that
of the other is known and the variables are correlated. Regression analysis is used to
predict or estimate one variable in terms of the other variable. It is a highly valuable tool
for prediction purpose in economics and business. It is useful in statistical estimation
of demand curves, supply curves, production function, cost function, consumption
function, etc.
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9.11 TYPES OF REGRESSION

Regression is classified into two types:
1. Simple and multiple regressions
2. Linear and nonlinear regressions

9.11.1 Simple and Multiple Regressions

Depending upon the study of the number of variables, regression may be simple or
multiple.

1. Simple Regression The regression analysis for studying only two variables at a

time is known as simple regression.

2. Multiple Regression The regression analysis for studying more than two
variables at a time is known as multiple regression.

9.11.2 Linear and Nonlinear Regressions
Depending upon the regression curve, regression may be linear or nonlinear.

1. Linear Regression If the regression curve is a straight line, the regression is
said to be linear.

2. Nonlinear Regression If the regression curve is not a straight line i.e., not a
first-degree equation in the variables x and y, the regression is said to be nonlinear
or curvilinear. In this case, the regression equation will have a functional relation
between the variables x and y involving terms in x and y of the degree higher than one,
i.e., involving terms of the type xz, yz, x3, y3, Xy, etc.

9.12 METHODS OF STUDYING REGRESSION

There are two methods of studying correlation:
(i) Method of scatter diagram
(i) Method of least squares

9.12.1 Method of Scatter Diagram

It is the simplest method of obtaining the lines of regression. The data are plotted
on a graph paper by taking the independent variable on the x-axis and the dependent
variable on the y-axis. Each of these points are generally scattered in a narrow strip. If
the correlation is perfect, i.e., if 7 is equal to one, positive, or negative, the points will
lie on a line which is the line of regression.
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9.12.2 Method of Least Squares

This is a mathematical method which gives an objective treatment to find a line of
regression. Itis used for obtaining the equation of a curve which fits best to a given set of
observations. Itis based on the assumption that the sum of squares of differences between
the estimated values and the actual observed values of the observations is minimum.

9.13 LINES OF REGRESSION

If the variables, which are highly correlated, are plotted on a graph then the points lie
in a narrow strip. If all the points in the scatter diagram cluster around a straight line,
the line is called the line of regression. The line of regression is the line of best fit and
is obtained by the principle of least squares.

Line of Regression of y on x

It is the line which gives the best estimate for the values of y for any given values of x.
The regression equation of y on x is given by

— O-y —
y=y=r—(x-X)
G)C

It is also written as
y=a+ bx

Line of Regression of x on y

It is the line which gives the best estimate for the values of x for any given values of y.
The regression equation for x on y is given by

=X =rt(y-5)
y
It is also written as
x=a+ by
where x and y are means of x series and y series respectively, 0, and o, are standard
deviations of x series and y series respectively, r is the correlation coefficient between
xand y.

9.14 REGRESSION COEFFICIENTS

The slope b of the line of regression of y on x is also called the coefficient of regression
of y on x. It represents the increment in the value of y corresponding to a unit change
in the value of x.

b, = Regression coefficient of y on x

Q

Y

=y —
Oy
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Similarly, the slope b of the line of regression of x on y is called the coefficient of
regression of x on y. It represents the increment in the value of x corresponding to a
unit change in the value of y.

b, = Regression coefficient of x on y
c

:r_X

Gy

Expressions for Regression Coefficients
(i) We know that
L 2=DO-Y)
V-0 X o-37
D (=%

and b =r—>

Y x=-H -y
Y y-yy

(i1)) We know that

zxy_Zny

B
5
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and bxy=r%
: 5. L
57

(ii1)) We know that

n
byxzr&
X
2d.2.d
:zdxdy_ n :
2
,_(Xd,)
S
o
and bxyzrg—’y‘
2d.2d
S, - =0

9.33
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9.15 PROPERTIES OF REGRESSION COEFFICIENTS

1. The coefficient of correlation is the geometric mean of the coefficients of
regression, i.e., r=_/b_b._ .

yxYx;
Proof We know that
o,
b =r—2
yx
O-X
o
by, =r—
oy
9 o
y X
byx by, =r—r—
o, O,

r=, /byx bxy

2. If one of the regression coefficients is greater than one, the other must be less
than one.

Proof Letb,, >1

We know that
r*<1 and r*=b,b

yx Zxy
byx bxy <1

hoe
bxy
Hence, if byx <1, bxy >1

3. The arithmetic mean of regression coefficients is greater than or equal to the
coefficient of correlation.

Proof We have to prove that

1
E(byx +bxy) >r

i.e., l(rﬁ+r&J2r
2| o, o,

ie., ﬁ+&22
o, O,

i.e. o’+0*-20.0,20
’ y X Xy
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. 2
ie., (O'y—Gx) >0
which is always true, since the square of a real quantity is 1 > 0.

4. Regression Coefficients are independent of the change of origin but not of
scale.

Proof Let d. = ,d, =——
f * h Y k

x=a+hd,, y:b+kdy
where a, b, h (> 0) and k(> 0) are constants.

_ > 1L 5 5 1 5
rdxdy =1y 04, _h2 O-X’O-dy _kz Oy

. h
Similarly, b dyd, = ;byx
5. Both regression coefficients will have the same sign i.e., either both are positive

or both are negative.

6. The sign of correlation is same as that of the regression coefficients, i.e., r > 0 if
b,>0andb, >0;andr<0ifb,, <0and b, <0.

9.16 PROPERTIES OF LINES OF REGRESSION
(LINEAR REGRESSION)

1. The two regression lines x on y and y on x always intersect at their means

x,y).
2. S.ince P = by, by, ., r=/b, b, therefore, r, by, b, all have the same
sign.

3. If r =0, the regression coefficients are zero.

4. The regression lines become identical if r = +1. It follows from the regression
equations that x =X and y =7y . If r = 0, these lines are perpendicular to each
other.
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Example 1

The regression lines of a sample are x + 6y = 6 and 3x + 2y = 10. Find
(i) sample means X and y, and

(ii) the coefficient of correlation between x and y.

(iii) Also estimate y when x = 12.

Solution
(1) The regression lines pass through the point (X, y) .
xX+6y=6 (1)
3x+2y=10 -(2)
Solving Eqgs (1) and (2),
1
x=3 y=—
Y 2
(i1) Let the line x + 6y = 6 be the line of regression of y on x.
6y=-x+6
1
=——x+1
3
1
byx = —g
Let the line 3x + 2y = 10 be the line of regression of x on y.
3x=-2y+10
= 2,410
3 Y 3
2
b, = -3

1 2 1
= b b =ll—=|l=2==
"N e e ( 6)( 3) 3

Since by, and b, are negative, r is negative.

Estimated value of y when x = 12 is

1
=——(12)+1=-1
y 6( )
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Example 2

If the two lines of regression are 4x — 5y + 30 =0 and 20x -9y — 107 = 0,
which of these are lines of regression of x on'y and y on x? Find r,, and
o, when o, = 3.

Solution

For the line 4x -5y +30=0,
=Sy=—4x-130
y=08x+6
. b,,=0.8
For the line 20x 9y — 107 0
20x =9y + 107
x=0.45y +5.35
. b,,=0.45
Both b, and b, are positive.
Hence, line 4x — 5y + 30 = 0 is the line of regression of y one x and line
20x — 9y — 107 = 0 is the line of regression of x on y.

r= \/byx o =~(0.8)(0.45) = 0.6

b =r—y

yx O'

0.8= O6(—yj
3

o, =4

y

Example 3

The following data regarding the heights (y) and weights (x) of 100
college students are given:

S x=15000, Y x?=2272500, Y y=6800
Y 32 =463025, 3 xy=1022250

Find the coefficient of correlation between height and weight and also
the equation of regression of height and weight.

Solution
n=100
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zxy_szy

b

ZXZ (ZX)

(15000) (6800)
100

(15000)*
100

1022250 -

2272500 —

=0.1
DN
Xy

S 5

(15000)(6800)
100
(6800)>

1022250 -

463025
=3.6

r= by by, =(0.D(3.6) =06

)_C:Zx:wooo:lso
n 100
y:Zy:6800:68
n 100

The equation of the line of regression of y on x is
y=y=b, (x—X)
y—68=0.1(x—150)
y=0.1x+53
The equation of the line of regression of x on y is
x=X=b (y-Y)

x—150=3.6(y—68)
x=3.6y—-94.8
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Example 4

For a bivariate data, the mean value of x is 20 and the mean value of y is

1
45. The regression coefficient of y on x is 4 and that of x on y is 9

Find

(i)  the coefficient of correlation, and

(ii) the standard deviation of x if the standard deviation of y is 12.
(iii) Also write down the equations of regression lines.

Solution

=20, y=45 b, =4, b =

(ii) b, =r—

o,=2
(iii) The equation of the regression line of y on x is
y=y=b,(x=x)
y—45=4(x-20)
y=4x-35
The equation of the regression line of x on y is

X=X =b,(y-7)

1
—20=—(y—45
x 9(y )

1
x=—y+15
9}’

Example 5

From the following results, obtain the two regression equations and
estimate the yield when the rainfall is 29 cm and the rainfall, when the
vield is 600 kg:
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Yield in kg Rainfall in cm
Mean 508.4 26.7
SD 36.8 4.6

The coefficient of correlation between yield and rainfall is 0.52.

Solution
Let rainfall in cm be denoted by x and yield in kg be denoted by y.
x=267 y=5084, o,=46, 0,=368 r=052

WETA
36.8

=0.065
The equation of the line of regression of y on x is
y=y=by (x—X)
y—508.4=4.16(x-26.7)
y=4.16x+397.328
The equation of the line of regression of x on y is
X=X =b, (y-7)
x—=26.7=0.065(y—508.4)
x=0.065y—-6.346
Estimated yield when the rainfall is 29 cm is
y=4.16 (29) + 397.328 = 517.968 kg

Estimated rainfall when the yield is 600 kg is
x =0.065 (600) — 6.346 = 32.654 cm

Example 6

Findthe regression coefficients b, and b, and hence, find the correlation
coefficient between x and y for the following data:
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Solution

n=>5

4 4 16 16 16

2 4 4 16 8

Zx=15 Ty=15 % =49 2y’ =49 Zxy =44
X2y

3o 22

. (2)2

(15)(15)
5

15>
5

44—

49—

=-0.25

_ ny_ z‘)CnE’y
Sy B

(15)(15)
5

(15
5

44—

49—
=-025

r= by by, =[(-025)(-0.25) =0.25
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Since by, and b, are negative, r is negative.
r=-0.25

Example 7

The following data give the experience of machine operators and their
performance rating as given by the number of good parts turned out per
100 pieces.

Operator 1 2 3 4 5 6
Performance rating (x) 23 43 53 63 73 83
Experience (y) 5 6 7 8 9 10

Calculate the regression line of performance rating on experience and
also estimate the probable performance if an operator has 11 years of
experience. [Summer 2015]

Solution

23 5 25 115
43 6 36 258
53 7 49 371
63 8 64 504
73 9 81 657
83 10 100 830

S =338 Sy=45 Sy* =355 Yxy=2735

zxy_ Zny

b [ { S—
Xy 2
, (2)
2=
2735 (339)45)
i 355- (45)2
6

=11.429
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The equation of regression line of x on y is
X=X =b, (y-7)
x—56.33=11.429(y-1.5)
x=11.429 y—-29.3875

Estimated performance if y =11 is
x=11.429(11) — 29.3875 = 96.3315

Example 8

The number of bacterial cells (y) per unit volume in a culture at different
hours (x) is given below:

43 46 82 98 123 167 199 213 245 272

Fit lines of regression of y on x and x on y. Also, estimate the number of
bacterial cells after 15 hours.

Solution

0 43 0 0 1849
1 46 1 46 2116
2 82 4 164 6724
3 98 9 294 9604
4 123 16 492 15129
5 167 25 835 27889
6 199 36 1194 39601
7 213 49 1491 45369
8 245 64 1960 60025
9 272 81 2448 73984

Sx=45 Yy=1488  Yx*=285 Sxy = 8924 3% =282290
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ny_zxzy

byx T e 2
(X)
2
S =
(45)(1488)
10
(45)°
10

8924 —

285 -
=27.0061

5 iy

b

R

gopy _ (45)(1488)

282290 -

(1488)°

=0.0366
2x_45_
n 10

Dy_1488 o
n

=
Il

<l
Il

The equation of the line of regression of y on x is
Y= =by,(x~3)
y—148.8 =27.0061 (x —4.5)
y=27.0061x+27.2726
The equation of the line of regression of x on y is
x=x=b,(y-y)
x—4.5=0.0366(y—148.8)
x=0.366y-0.9461

At x = 15 hours,
y=27.0061 (15) + 27.2726 = 432.3641
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Example 9
Find the regression coefficient of y on x for the following data:

X 1 2 3 4 5
y 160 180 140 180 200

x=X)(y-Y)
1 160 ) -12 4 24
2 180 -1 8 1 -8
3 140 0 -32 0 0
4 180 1 8 1 8
5 200 2 28 4 56

Yx=15 Yy=860 Z(x-X)=0 2X(y-»=0 Yx-x)’ =10 XZ(x-X)(y-y)=80

2 E=DO-Y)
AL Z(x_f)2
80
T 10
=8
Example 10

Calculate the two regression coefficients from the data and find
correlation coefficient.

x 7 4 8 6 5
y 6 5 9 8 2
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Solution

(y-75) x=X)(y-y)
7 6 1 0 ! 0 0
4 5 -2 =1 ‘s ! ;
8§ 9 2 3 4 ’ °
6 8 0 2 g 4 0
s 2 - 4 ! o *
- -y %) ¥’
Zx; 230= 2(=xo ) Z(Zoy) Z(:Ox) Z(i;g) S(x-B)(y-7)=12
yx = Z(X_f)z
12
T
=12
T Y-y
12
T30
—04

r= by, by =(1.2)(04) =0.693

Example 11

Obtain the two regression lines from the following data and hence, find
the correlation coefficient.

[Summer 2015]
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Solution
n=>5
f=2x=£=6
n 5
_ Dy 40
= :—:8
Y n 5

(x=X)(y-Y)

6 9 0 1 0 ! 0
2 11 E 3 L ? B
10 5 4 -3 16 ? RS
4 8 -2 0 0 0
7 2 -1 ! =
2(x-X) 2=y -3 -3’ Za-DO-y)’
Yx=30 Yy=40 -0 -0 — 40 =20 =-26
yx Z(X_E)z
]
© 40
=-0.65
Y-y
2%
© 20
=-13

The equation of regression line of y on x is
y=y=b,(x-X)
y—8=-0.65(x—6)
y=-0.65x+11.9
The equation of regression line of x on y is
=T =b,(y=-7)
x—6=-13(-9)
x=-13y+164
r= \/byx b,, =+/(=0.65) (-1.3) =0.9192
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Since by, and b, are negative, r is negative.
r=-0.9192.

Example 12

Calculate the regression coefficients and find the two lines of regression
from the following data:

X 57 58 59 59 60 61 62 64
y 67 68 65 68 72 72 69 71
Find the value of y when x = 66.

Solution

(x=xX)(y=y)
57 67 -3 -2 9 4 6
58 68 -2 -1 4 2
59 65 -1 -4 1 16 4
59 68 -1 -1 1 1 1
60 72 0 3 0 9 0
61 72 1 3 1 9 3
62 69 2 0 4 0 0
64 71 4 2 16 4 8

-5 _3 -2 2
Sx= Sy= 2x=X) 2(-Y) Yx-3)? Xy-y) ST (y—7)=24

480 552 =0 =0 =36 =44
2 E=D0-Y)
yx Z(x_f)z
_24
36

=0.667
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b - PNEEEIICESD
> -y’
24
44
=0.545
The equation of regression line of y on x is
y=y=b, (x-x)
y—69 =0.667(x—60)
y=0.667x+28.98

The equation of regression line of x on y is
x=X=by (y-7)
x—60=0.545(y - 69)
x=0.545y+22.395

Value of y when x = 66 is
y=0.667 (66) + 28.98 = 73.002

Example 13

The following data represents rainfall (x) and yield of paddy per hectare
(v) in a particular area. Find the linear regression of x on y.

X 113 102 95 120 140 130 125
y 1.8 1.5 1.3 1.9 1.1 2.0 1.7

Solution
Let a = 120 and b = 1.8 be the assumed means of x and y series respectively.
d,=x—a=x-120
d,=y-b=y-138
n=7
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113 1.8 =7 0 0 0

102 1.5 -18 -0.3 0.09 54
95 1.3 =25 -0.5 0.25 12.5
120 1.9 0 0.1 0.01 0
140 1.1 20 -0.7 0.49 -14
130 2.0 10 0.2 0.04 2.0
125 1.7 5 0.1 0.01 -0.5

Yr=825 Yy=113 Xd,=-15 Xd,=-13 3d’=089 Xdd,=54

434
T SR

e

n
(-15)(~1.3)
7
(-1.3)°

54-

0.89—

The equation of the regression line of x on y is
X=X =by (=)
x—117.86 =4.03 (y—1.614)
x=4.03y+111.36

Example 14
Find the two lines of regression from the following data:

Age of husband (x) 25 22 28 26 35 20 22 40 20 18
Age of wife (y) 18 15 20 17 22 14 16 21 15 14
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Hence, estimate (i) the age of the husband when the age of the wife is 19,
and (ii) the age of the wife when the age of the husband is 30.
Solution
Let a =26 and b = 17 be the assumed means of x and y series respectively.
d.=x—a=x-26
d,=y-b=y-17
n=10

25 18 -1 1 1 1 -1

22 15 —4 -2 16 4 8
28 20 2 3 4 9 6
26 17 0 0 0 0 0
35 22 9 5 81 25 45
20 14 —6 -3 36 9 18
22 16 —4 -1 16 1 4
40 21 14 4 196 16 56
20 15 -6 -2 36 4 12
18 14 -8 -3 64 9 24

Yx=256 Xy=172 Xd,=-4 Xd,=2 Xd;=450 3d;=78 Xdd =172

2d.>d
. dedy_#

Doy (Ze)

n

172 DD
_ 10
2
450 &Y
10

=0.385
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d. Y d
_ zdxdy _fy

b
xy 2
zdz_(zdy)
M n
17 DO
_ 10
2
SR CO
10
=227
T= 2 =26 _ 156
n 10
o2t 121,
n 10

The equation of the regression line of y on x is
Y=y =b, (x=%)
y—17.2=0.385(x—-25.6)
y=0.385x +7.344
The equation of the regression line of x on y is
x=X=b,(y-Y)
x—25.6=2.227(y—-17.2)
x=2.227y-12.704
Estimated age of the husband when the age of the wife is 19 is
x=2.227(19) — 12.704 = 29.601 or 30 nearly
Age of the husband = 30 years
Estimated age of the wife when the age of the husband is 30 is

y=10.385(30) + 7.344 = 18.894 or 19 nearly
Age of the wife = 19 years

Example 15

From the following data, obtain the two regression lines and correlation
coefficient.

Seites (3] 100 98 78 8 110 93 80
Purchase () IR 2!




9.16 Properties of Lines of Regression (Linear Regression) 9.53

Solution

Let a =93 and b = 81 be the assumed means of x and y series respectively.
d,=x—a=x-93
dy=y-b=y-91
n="7

100 85 7 4 49 16 28

98 90 5 9 25 81 45
78 70 -15 -11 225 121 165
85 72 ) -9 64 81 72
110 95 17 14 289 196 238
93 81 0 0 0 0 0
80 74 -13 =7 169 49 91

Yx=644 Xy=567 Xd,=-7 Xd,=0 3Xd =821 3d =544 Xdd, =639

2.4, 2.4,
b - zdxdy .

oy (2a)

n
639 DO
_ 7
821- 7’
=0.785

34 ¥4,
D

oy 2

n

630 DO
_ 7
2
54— O
7

=1.1746
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S 64,
n 7

_ >y 567

Y n 7

The equation of regression line of y on x is

V=V =b,(x-%)
y—81=0.785(x—-92)
y=0.785x+8.78

The equation of regression line of x on y is

x=x=b,(y=Yy)
x—92=1.1746(y—81)
x=1.1746 — 3.1426
r= by, by, =(0.785)(1.1746) = 0.9602

EXERCISE 9.3

1. The following are the lines of regression 4y = x + 38 and 9y = x + 288.

Estimate y when x = 99 and x when y = 30. Also, find the means of x and
v.
[Ans.: y=43,x=82,Xx=162,y =50]

. The equations of the two lines of regression are x = 19.13 — 0.87 y and
y=11.64 - 0.50 x. Find (i) the means of x and y, and (ii) the coefficient
of correlation between x and y.

[Ans.: X =15.79, ¥ = 3.74, (i) r = -0.66, b, = -0.5,b_ = 0.87]

. Given var(x) = 25. The equations of the two lines of regression are

5x —y=22and 64 x — 45y = 24. Find (i) X andy, (ii) r, and (iii) o,.

[Ans.: X =6, =8, (ii) r =1.87 (i) 5, = 0.2]

. In a partially destroyed laboratory record of analysis of correlation data
the following results are legible. Variance = 9, the equations of the
lines of regression 4x — 5y + 33 =0, 20 x — 9y — 107 = 0. Find (i) the
mean values of x and y, (ii) the standard deviation of y, and (iii) the
coefficient of correlation between x and y

[Ans.: ()X =13,V =17, (i) 0, = 4, (i) r = 0.6 ]
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5. From a sample of 200 pairs of observation, the following quantities
were calculated:

Y x=11.34,>y=20.78, > x* =12.16, 3 y* = 84.96, > xy =22.13

From the above data, show how to compute the coefficients of the
equation y = a + bx.

[Ans.: a =0.0005, b=1.82]

6. In the estimation of regression equations of two variables x and y, the
following results were obtained:

X =90,y =70,n=10, X(x — X)* = 6360, X(y — y)* = 2860
2(x —X) (v —y)=3900
Obtain the two lines of regression.
[Ans.: x=1.361y —5.27, y=0.613 x + 14.812]

7. Find the likely production corresponding to a rainfall of 40 cm from the
following data:

Rainfall (in cm) Output (in quintals)
mean 30 50
SD 5 10
r=0.8

[Ans.: 66 quintals]

8. The following table gives the age of a car of a certain make and annual
maintenance cost. Obtain the equation of the line of regression of cost
on age.

Age of a car 2 4 6 8
Maintenance 1 2 2.5 3
[Ans.: x = 0.325y + 0.5]

9. Obtain the equation of the line of regression of y on x from the following
data and estimate y for x = 73.

X 70 72 74 76 78 80
N 163 170 179 188 196 220
[Ans.: v =5.31 x — 212.57, y = 175.37]

10. The heights in cm of fathers (x) and of the eldest sons (y) are given
below:

& 165 160 170 163 173 158 178 168 173 170 175 180
A 173 168 173 165 175 168 173 165 180 170 173 178
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Estimate the height of the eldest son if the height of the father is
172 cm and the height of the father if the height of the eldest son is
173 cm. Also, find the coefficient of correlation between the heights of
fathers and sons.

[Ans.: (i) y = 1.016 x — 5.123 (ii) x = 0.476 v + 98.98
(i) 169.97, 173.45 (iv) r = 0.696]

11. Find (i) the lines of regression, and (ii) coefficient of correlation for
the following data:

X 65 66 67 67 68 69 70 72
y 67 68 65 66 72 72 69 71
[Ans.: (i) y=19.64 + 0.72 x, x = 33.29 + 0.5 vy, (ii) r = 0.604]

12. Find the line of regression for the following data and estimate y
corresponding to x = 15.5.

X 10 12 13 16 17 20 25
y 19 22 24 27 29 33 37
[Ans.: y=1.21x + 7.71, y = 26.465]

13. The following data give the heights in inches (x) and weights in lbs (v)
of a random sample of 10 students:

61 68 68 64 65 70 63 62 64 67
y 112 123 130 115 110 125 100 113 116 126

Estimate the weight of a student of height 59 inches.
[Ans.: 126.4 [bs]

14. Find the regression equations of y on x from the data given below
taking deviations from actual mean of x and y.

Price in rupees (x) 10 12 13 12 16 15
Demand (y) 40 38 43 45 37 43

Estimate the demand when the price is 320.
[Ans.: v = —0.25 x + 44.25, y = 39.25]

Points to Remember

Karl Pearson’s Coefficient of Correlation

) . cov(X,Y)
OxOy



Points to Remember

L 2E-HO-Y)
Y-S -5
S - 212

\/de—(zj")z \/zdg_(zdy)z

(ii)

(iii) r=

(iv) r=

n

Spearman’s Rank Correlation Coefficient

6y d’

n(n* -1

r=1

Spearman’s Rank Correlation Coefficient for Tied Ranks

1 1
6‘:2d2 +E(m13 —m1)+E(m§’ —mz)—i—---}

r=1-
n(n*-1)

Lines of Regression

Line of Regression of y on x

It is also written as
y=a+bx
Line of Regression of x on y

(o)
X=X =r o (y-3)
y

It is also written as
x=a+by

9.57
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Regression Coefficients

b, =r

yx

Q |%q

=

N
[
=~
Q |>9

y

Expressions for Regression Coefficients
o TR0
Y (x-%)

PNEEEICESD
and b, =—z(y_y)2

ZW_ZXZY

(ii) b

and b, =—-—T

XX

i) p = n

5 a0 Z4Z

and bxy = n
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CHAPTERl O

Trend Analysis

Chapter Outline

10.1 Introduction

10.2  Objectives of Time-Series

10.3  Components of a Time-Series

10.4 Measurement of Trend

10.5 Freehand or Graphic Method

10.6 Method of Semi-Averages

10.7 Method of Moving Averages

10.8 Method of Least Squares

10.9 Measurement of Seasonal Variations
10.10 Method of Ratio to Moving Average

10.1 INTRODUCTION

A series of observations on a variable, recorded after successive intervals of time, is
called a time-series. A time-series is an arrangement of statistical data in accordance
to the time of occurrence in a chronological order. The data on the population of
India is a time-series data where time interval between two successive figures is
10 years. Similarly, figures of national income, agricultural and industrial production,
etc., are available on yearly basis. Time-series analysis is done primarily for the
purpose of making forcasts for the future and also for the purpose of evaluating past
performances. The analysis of time-series plays an important role in the study of all
economic, business, and natural and social sciences. Thus, time-series analysis is
helpful in studying any phenomenon whose values are arranged chronologicallly over
successive intervals of time.

10.2 OBJECTIVES OF TIME-SERIES

1. Analysis It helps in the analysis of past behaviour of data. Analysis of past data
gives information about various factors which affects the data.
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2. Forcasting It helps to make forcasts for the future. The analysis of past data is
the basis of forecasting the future behaviour of the variable under study.

3. Evaluation It helps in the evaluation of current achievements. The review and
evaluation of progress made on the basis of a plan are done on the basis of time-series
data.

4. Comparison It helps in making comparative studies. Once the data is arranged

chronologically, the comparison can be done. It provides a scientific basis for making
comparisons by studying the effects of various components of a time-series.

10.3 COMPONENTS OF A TIME-SERIES

There are four components of a time-series:
1. Secular trend, or trend
2. Seasonal variations
3. Cyclical variations
4. Irregular variations

10.3.1 Secular Trend

Secular trend, or simply trend, is the general tendency of the data to increase or
decrease or stegnate over a long period of time. Most of the business and economic
time-series would reveal a tendency to increase or to decrease over a number of years.
An upward tendency is usually upward in time-series relating to population, production
and sales, prices, incomes, and money in circulation, while a downward tendency is
noticed in the data of deaths and epidemics as a result of advancement in medical
sciences, illiteracy, etc. Thus, a trend is either upward or downward. Hence, secular
trend is that irreversible movement which continues, in general, in the same direction
for a considerable period of time. Further, it is not necessary that increase or decrease
should be in the same direction throughout the given period.

10.3.2 Seasonal Variations

Seasonal variations refer to such movements in a time-series which repeat themselves
periodically in every season. These variations repeat themselves in less than one year.
Seasonal variations are usually measured in an interval. The main causes of seasonal
variations are climatic conditions, customs, and traditions. The changes in climatic
conditions affect the value of a time-series variable. For example, the sale of woolen
garments is generally at its peak in the months of November—December. The customs
and traditions of people also give rise to the seasonal variations in time-series. For
example, the sale of garments and ornaments may be highest during the marriage
season and Diwali. Both the causes are often repeated after a gap of less than or equal
to one year.
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10.3.3 Cyclical Variations

Cyclical variations are the oscillatory movements in a time-series with the period of
oscillation greater than one year. These variations in a time-series are due to ups and
downs recurring after a period greater than one year. Normally, the period of cyclical
variations lies between 3 to 10 years.

The main objectives of measuring cyclical variations are:

(i) To analyse the behaviour of cyclical variations in the past
(i1) To predict the effect of cyclical variations for future business policies

10.3.4 Irregular Variations

Irregular variations do not exhibit any regular pattern of movements and there is no
regular period or time of their occurrence. These variations are caused by random
factors such as strikes, floods, fire, war, famines, etc. These are accidental changes
which are purely random, unforseen, and unpredictable. Normally, they are short-term
variations but sometimes their effect may be so intense that the value of trend may get
permanently affected.

10.4 MEASUREMENT OF TREND

The following methods are used to measure the trend:
1. Freehand or graphic method
2. Method of semi-averages
3. Method of moving averages
4. Method of least squares

10.5 FREEHAND OR GRAPHIC METHOD

This is the simplest method of studying the trends. The given series data are plotted
on a graph paper by taking time on the x-axis and the other variable on the y-axis. A
smooth line or curve, drawn through the plotted points, gives the trend of the given
data. It is a very simple method of estimating the trend which requires no mathematical
calculations. It is a flexible method as compared to rigid mathematical trends and
can be used to describe all types of trends. The strongest objection to this method
is that it is highly subjective in nature. The values of trends, obtained by different
persons would be different and, hence, not reliable. Predictions made on the basis of
this method are of little value.
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Example 1

Determine the trend of the following time-series by the graphical
method:

Years 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988

i 60 80 70 100 80 120 110 140 130 160 150

(in thousand)

Solution
Sales
170 (1987, 160)
160- e
150 e — Actual data line
140 (1988, 150) ___. Trend line

130+
120
110
100+
90
80
704 /.- (
60 ¥~ (1980, 70)
50 (1978, 60)

40
30
20
10

(1981, 100) -~ 1984, 110)

T T T T T T T
1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 Years

Fig. 10.1

Example 2

Determine the trend of the following times-series data by the freehand
curve method:

Years 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991

Values 128 164 194 142 156 224 230 262 176 260



Solution
Values

280
260
240
220
200
180
160

140 4 .-

(1984, 1

120 (1982, 128)

100 -

94)

(1988, 230)
(1987, 224)

(1989, 262)

(1986, 156)
(1985, 142)

10.6 Method of Semi-Averages

(1991, 260)

— Actual data line

---- Trend line
(1990, 176)

Years

1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991
Fig. 10.2

10.6 METHOD OF SEMI-AVERAGES

10.5

In this method, semi-averages are calculated to find out the trend values. Semi-averages
are the averages of the two halves of a series, i.e., the whole times series is classified
into two equal parts with respect to time. Each semi-average is paired with the centre
of time period of its part. The two pairs are then plotted on a graph paper and the points
are joined by a straight line to find the trend. In case of odd number of observations the
two equal parts are obtained by excluding the middle-most observation.

It is a simple method of measuring trends. It is an objective method because any two
persons will get the same trend line from a set of figures. This method assumes the
presence of linear trend which would not be true in many cases. The trend values
obtained by this method and the predicted values for the future are not precise and

reliable.

Example 1

Fit a trend line to the following data by the method of semi-averages:

Years

Output
(in tons)

30

1982

40

1983

198

35

4 1985

55

1986 1987 1988 1989 1990

45 50 64 50 60



10.6  Chapter 10 Trend Analysis

Solution

Since the data are given for nine years, the middle year is excluded for the
calculation.

Average output of the first four years = w =50
Average output of the last four years = w =56

The semi-average of first four years, i.e., 40 is plotted against the mid-point of the first
four years, i.e., 1983.5 and the semi-average of the last four years, i.e., 56, is plotted
against the mid-point of the last four years, i.e., 1988.5. By joining these two points, a
trend line is obtained (Fig. 10.3).

Output
70 (1988, 64) ).~
(1983.5, 40) 25,55
60 (1985, 55) . -°/(1990, 60)
50 |98, 50) 1989, 50) .
0 4 " (1986, 45) — Actual data line
| ---- Trend line
30 (1984, 35)
(1982, 30)
3 1 1 1 1 1 1 1 1 Years

1982 1983 1984 1985 1986 1987 1988 1989 1990
Fig. 10.3

Example 2
Draw a trend line by the method semi-averages.

Years 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991

Sales 210 200 215 205 220 235 210 235 225 245

(in thousands)

Solution

Since the data are given for ten years, there are two halves of 5 years each.

Average sales of the first five years = 210+200+215+205+220 =210

5

Average sales of the second five years = 235+210 ; 235+245 =230




10.7 Method of Moving Averages 10.7

The semi-average of first five years, i.e., 210 is plotted against the mid-point of the
first five years, i.e., 1984. The semi-average of the second five years, i.e., 230 is plotted
against the mid-point of the second five years, i.e., 1989. By joining these two points,
a trend line is obtained (Fig. 10.4).

Sales
250
(1991, 245)
245 -
240 /’/
235
2307 71889, 230)
225
(1990, 225) — Actual data line
2201 ---- Trend line
215
(1982, 210)
210
(1988, 210)
205 h (1985, 205)
s (1984, 210)
200 ‘
< (1983, 200)
1 1 1 1 1 1 1 1 YeaI’S

1982 1983 1984 1985 1986 1987 1988 1989 1990 1991

Fig. 10.4

10.7 METHOD OF MOVING AVERAGES

The method of moving averages is a simple method for reducing fluctuations and
obtaining trend values with a fair degree of accuracy. In this method, the arithmetic
mean of the values for a certain span of time is taken and then it is placed at the
centre of the time span. The average value of a number of years is taken as the trend
value for the middle point of the period of moving averages. The process of averaging
smoothens the curve and reduces the fluctuations. The period of moving averages can
be 3-yearly moving averages, 4-yearly moving averages, 5-yearly moving averages,
7-yearly moving averages, etc.

Let Y}, Y,, ..., ¥, be the n values of a time-series for successive time periods 1, 2,
..., h respectively. The calculation of 3-yearly moving averages and 4-yearly moving
averages are shown in the following tables:
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3-yearl
Time Values of e Time Values of 4-yearly moving Centred

moving

period Y

period Y averages values
average

M+, +Y,+Y,

A
4 1
Y, +Y: +Y, A+A
3 Y, % 3 Y, sz
Y, +Y+Y, +Y;
—=A2
4
Y, +Y, +7. A+ A
4 Y4 3 ; 5 4 Y4 22 3
Y, +Y, +Ys+Y,
4> "0 -4,
4
Y, + Y5 +7,
5 Ys i—?—i 5 Ys
n Y - 6 Y - -

n n

In case of 3-yearly moving averages, it is not possible to get the moving averages for
the first and the last period. Similarly, larger the period of the moving average, more
will be the information loss at the end of a time-series.

When the period of moving average is even, the computed average will correspond to
the middle of the two middle-most periods. These values should be centred by taking
the arithmetic mean of the two successive averages. Hence, in case of even period of
moving averages, the trend values are obtained after centering the averages.
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Example 1
Calculate the 3-yearly moving averages of the following data:

Years 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989

Sales 3 4 8 6 7 11 9 10 14 12

(millions of rupees)

Solution
3-yearly Moving Average

Sales 3-yearly moving 3-yearly moving
(millions of rupees) total average (trend value)
1980 3 - -
1981 4 15 5
1982 8 18 6
1983 6 21 7
1984 7 24 8
1985 11 27 9
1986 9 30 10
1987 10 33 11
1988 14 36 12
1989 12 - -
Example 2

Calculate the 5-yearly moving averages of the number of students
passing from a college from the following data:

Number of students Year Number of students
2003 332 2008 405
2004 317 2009 410
2005 357 2010 427
2006 392 2011 405
2007 402 2012 438

[Winter 2012]
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Solution
S-yearly Moving Averages

Five-yearly moving

Number of students Five-early moving total

average (Trend value)

2003 332 - -
2004 317 - -
2005 357 1800 360
2006 392 1873 374.6
2007 402 1966 393.2
2008 405 2036 407.2
2009 410 2049 409.8
2010 427 2085 417
2011 405 - -
2012 438 - -
Example 3

Calculate the T-yearly moving averages for the following data showing
the number of students of an engineering college clearing GATE:

Number of students Number of students

1999 23 2007 9

2000 26 2008 13

2001 28 2009 11

2002 32 2010 14

2003 20 2011 12

2004 12 2012 9

2005 12 2013

2006 10 2014 1

[Summer 2014, Winter 2014]
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Solution

7-yearly Moving Average

Seven-yearly moving Seven-yearly moving

Number of students

total average (Trend value)
1999 23 - -
2000 26 - -
2001 28 - -
2002 32 153 21.86
2003 20 140 20
2004 12 123 17.57
2005 12 108 15.43
2006 10 87 12.43
2007 9 81 11.57
2008 13 81 11.57
2009 11 78 11.14
2010 14 71 10.14
2011 12 63 9
2012 9 - -
2013 3 - -
2014 1 - -
Example 4

Assume a four-yearly cycle and calculate the trend by the method of
moving averages from the following data relating to the production in
pen drives in India:

Year 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009

N 464 SIS 518 467 502 540 557 ST1 586 612

(million kgs)

[Summer 2015]
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Solution

Four-yearly Moving Average

Production Four Yearly Four Yearly Centred Value
(million kgs) Moving total Moving Average (Trend value)

2000 465 - - -

2001 515 - - -
1965 491.25

2002 518 495.875
2002 500.5

2003 467 503.625
2027 506.75

2004 502 511.625
2066 516.5

2005 540 529.5
2170 542.5

2006 557 553
2254 563.5

2007 571 572.5
2326 581.5

2008 586 - - -

2009 612 - - -

Example 5

Compute the 4-yearly moving averages from the following data:

Year 1991 1992 1993 1994 1995 1996 1997 1998

Annual sales 36 43 43 34 44 54 34 24

(X in crores)
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Solution
4-yearly Moving Average

4-yearly centred

Annual sales @  4-yearly moving 4-yearly moving

moving averages

in crores) total GYEra X (Trend value)

1991 36 - - -

1992 43 - - -
156 39

1993 43 40
164 41

1994 34 42.375
175 43.75

1905 “ 42.625
166 41.50

1906 ” 40.25
156 39

1997 34 - - .

1998 24 - - -

Weighted Moving Average

The weighted moving average is obtained on dividing the weighted moving totals by
the sum of weights. Let x|, x,, ..., x,, occur with weights w,, w,, ..., w, respectively.

ZWl X ZWx

XWoow
A weighted moving average with appropriate weights is used when the moving
averages are strongly affected by extreme values.

Weighted moving average =

Example 1

Find the trend for the following series using 3-year weighted moving
averages with weights 1, 2, 1:

Year 1991 1992 1993 1994 1995 1996 1997

Values 2 4 5 7 8 10 13
Solution

Total weights=1+2+1=4
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3-yearly weighted moving total

3-yearly weighted moving
average

1991 2 - -
1992 4 CxD)+@x2)+(Gx1)=15 15+4=3.75
1993 5 AxD)+(GBx2)+(Tx1)=21 21+4=525
1994 7 GOxD+(Tx2)+(8x1)=27 27 +4=6.75
1995 8 TxD+@x2)+(10x1)=33 33+4=825
1996 10 8 x 1)+ (10x2)+ (13 x 1) =41 41 +4=1025
1997 13 - -
Example 2

Calculate 5-year weighted moving averages for the following data using
weights 1, 1, 3, 2, 1 respectively.

Year

Coded sales 40

Solution

1991

1992 1993 1994 1995

33 72 81 76 68

Total weights=1+1+3+2+1=8

5-yearly weighted moving total

1996

1997 1998 1999 2000

91 87 98 97

5-yearly weighted moving

average

2 33
3 72
4 81
5 76
6 68
7 91
8 87
9 98

10 97

A0x1)+@B3x1)+(72x3)+
B1x2)+ (76 x 1) =527

B3x 1)+ (72x 1)+ (81 x3) +
(76 x 2) + (68 x 1) = 568

(72 x1) + (81 x1) + (76 x 3) +
(68 x2)+ (91 x 1) =630

@BIx1)+((76x1)+(68x3)+
91 x2)+ (87 x1) =630

(76 x 1)+ (68 x 1) + (91 x 3) +
(87 x2) + (98 x 1) = 689

68x1)+ 91 x1)+(87x3)+
O8x%x2)+(97x1)=713

527 + 8 =65.875

568 ~8 =71

630 -8 ="178.75

630 +8="78.75

689 + 8 =86.125

713 + 8 =89.125
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Example 3
Consider the following data and show that a 4-year centred moving
average is equivalent to a 5-year weighted moving average with weights
1,2,2,2, 1 respectively.

Year 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993

Annual sales [ 6 1 5 3 7 2 6 4 8 3

Solution

Total weights =1+2+2+2+1=38
5-year Weighted Moving Averages

5-year weighted

5-year weighted moving total

moving average

1983 7 - -
1984 6 - -
1985 1 IxD+6x2)+(Ax2)+(5x2)+Bx1)=34 34 +8=425
1986 5 6xD+(Ix2)+GBx2)+Bx2)+(7Tx1)=31 31 +8=3.875
1987 3 (IxD+Gx2)+Bx)+(Tx2)+2x1)=33 33+8=4.125
1988 7 GxD+BxD+(Tx)+2x2)+(6x1)=35 35+ 8=4375
1989 2 BxD+(Tx2)+2x2)+(6x2)+@x1)=37 37 +8=4.625
1990 6 (IxD+@2x2)+(6x2)+(@x2)+(@8x1)=39 39 + 8 =4.875
1991 4 2xD+6x2)+@x2)+(Bx%x2)+(Bx1)=41 41+8=5.125
1992 8 - -
1993 3 - -
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4-year Centred Moving Averages

4-years moving  4-years moving 4-years centered

Annual sales

total average moving average

1983 7 - - -

1984 6 - - -
19 4.75

1985 1 4.25
15 3.75

1986 5 3.875
16 4

1987 3 4.125
17 4.25

1988 7 4.375
18 4.5

1989 2 4.625
19 4.75

1990 6 4.875
20 5

1991 4 5.125
21 5.25

1992 8 - - -

1993 3 - - -

From the two tables, it is clear that a 4-year centred moving average is equivalent to a
5-year moving average with weights 1, 2, 2, 2, 1, respectively.

10.8 METHOD OF LEAST SQUARES

This is the best method for obtaining the trend values. This method provides a line of
best fit in a series. The line of best fit is a line from which the sum of the deviations of
various points on its either side is zero and the sum of the squares of these deviations
are minimum as compared to the sum of the squares of the deviations obtained by
using other lines.

10.8.1 Fitting of Linear Trend

When the data is given for finding the trend, the straight-line trend equation fitted to
the data is

Y=a+bX
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where Y represents the estimated values of the trend, X represents the deviations in time
period; and a and b are constants. The values of two constants a and b are estimated by
solving two normal equations.

ZY =na+b2X
Y XY =a) X+bY X’

where n represents the number of years for which data is given. The variable X can be
measured from any point of time as the origin. It is better to take the mid-point of time

as the origin which gives 2.X = 0.

When XX = 0, the two normal equations are
z Y =na
Sy
a —

n
and Y xy=b) X*
b_ZXY
- Sy

The constant a gives Y-intercept and the constant b gives the slope of the line which
indicates the change in Y for each unit change in X.

10.8.2 Fitting a Straight-line Trend for Even Number
of Years

If the number of years is even, there is no middle years. In this case, the mid-point
which is taken as the origin, lies midway between the two middle years. For example, if
the two middle years are 1997 and 1998, the midpoint lies midway between 1 January,
1997 and 1 January, 1998, which is 1 July, 1997. To avoid fractions, the unit of X is

taken as % year.

Example 1
Find the equation of a straight line which best fits the following data:

Year 2000 2001 2002 2003 2004

Sales (in ¥ thousand) 35 56 79 80 40

Compute the trend values for all the years from 2000 to 2004.
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Solution

Let the origin = 2002
unit = | year
Let the straight-line trend equation fitted to the
Y=a+bX

The normal equations are

ZY =na+b2X
Y XY=aYX+bY X

Here,n=5

Year x Sales Y X =x-2002

2000 35 -2
2001 56 -1
2002 79 0
2003 80 1
2004 40 2

>Y =290 >X=0

Substituting these values in Eqs (1) and (2),
290 = 5a
o a=>58
and 34=100
b=34

data be

A= O = B

¥X*=10

Hence, the required equation of the straight-line trend is

Y=58+34X
Trend values for the years from 2000 to 2004

Year x X Trend values Y
2000 -2 58 +3.4(-2)=51.2
2001 -1 58 +3.4(-1) =54.6
2002 0 58 +3.4(0) =58
2003 1 58+3.4(1)=614
2004 2 58 +3.4(2)=64.8

YXY =34

()
(2)
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Example 2
Using 1991 as the origin, obtain a linear trend equation by the method
of least squares:

Year 1987 1989 1990 1991 1992 1993 1996
Value 140 144 160 152 168 176 180

Find the trend value for the missing year 1988.
Solution

Let the origin = 1991
unit = | year
Let the straight line trend equation fitted to the data be
Y=a+bX

The normal equations are

SY=na+by X (1)
Y Xr=a) X+b) X* - (2)

Here,n=7

Value Y X=x-1991

1987 140 -4 16 —-560
1989 144 -2 4 -28
1990 160 -1 1 -160
1991 152 0 0 0
1992 168 1 1 168
1993 176 2 4 352
1996 180 5 25 90

Yy=1120 Sx=1 >x?=51 SXY =412

Substituting these values in Eqs (1) and (2),

1120=Ta+ b ..(3)

412=a+51b ..(4)
Solving Egs (3) and (4),

a=159.29

b =496

Hence, the required equation of the straight-line trend is
Y=159.29+496 X
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Estimated value for 1988
X=1988-1991 =-3
Y =159.29 + 4.96(-3) = 144.41

Example 3
The sales of a company in millions of rupees for the years 1994-2001
are given below:

Year 1994 1995 1996 1997 1998 1999 2000 2001
Sales 550 560 555 585 540 525 545 585
Find the linear trend equation. Estimate the sales for the year 1993.
Find the slope of the straight-line trend.
[Summer 2015]
Solution
Let the origin = 1 July 1997
. 1
unit = — year
2 M

Let the straight-line trend equation fitted to the data be
Y=a+bX
The normal equations are

2Y=na+b2X (D)
Y XY =a) X+bY X* (2)

Here,n =8

Year x Sales Y d=x-1997.5

1994 550 -3.5 =7 49 -3850
1995 560 -2.5 =5 25 —2800
1996 555 -1.5 -3 9 -1665
1997 585 0.5 -1 1 —585
1998 540 0.5 1 1 540

1999 525 1.5 3 9 1575
2000 545 2.5 5 25 2725
2001 585 35 7 49 4095

Y =4445 YX=0 XX*=168  XXY=35
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Substituting these values in Eqs (1) and (2),
4445 = 8a
. a=555.625
and 35=168b
b =0.2083
Hence, the required equation of the straight-line trend is
Y =1555.625 +0.2083 X
Estimate of Y when x = 1993
d=1993-1997.5=-45,X=-9
Y 993 = 555.625 + 0.2083 (-9) = 553.7503
Slope of the straight-line trend = b = 0.2083.

Example 4

Fit a straight-line trend equation by the method of least squares and
estimate the trend values.

MR 1981 1982 1983 1984 1985 1986 1987 1988

Value 80 90 92 83 94 99 92 104

Solution
Let the origin = 1 July 1984
|
unit = —vyear
3 y

Let the straight-line trend equation fitted to the data be
Y=a+bX

The normal equations are

2Y=na+b2X (1)
Y XY =a) X+by X’ (2

Here, n=2_8
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Year x Value Y d=x-1984.5 X=2d

1981 80 =35 -7 49 =560
1982 90 -2.5 -5 25 —450
1983 92 -1.5 -3 9 =276
1984 83 -0.5 -1 1 -89
1985 94 0.5 1 1 94
1986 99 1.5 3 9 297
1987 92 2.5 5 25 460
1988 104 3.5 7 49 728
YY =734 YX=0 XX*=168 XXY=210
Substituting these values in Eqs (1) and (2),
734 =8a
. a=91.75
and 210=168 b
b=1.25

Hence, the required equation of the straight-line trend is
Y=9175+125X

Trend Values
Year X Trend values
1981 -7 91.75 + 1.25(-7) =83
1982 -5 91.75 + 1.5(-5)=85.5
1983 -3 91.75 + 1.5(-3) =88
1984 -1 91.75 + 1.25(-1) =90.5
1985 1 91.75 + 1.25(1) =93
1986 3 91.75 + 1.25(3) = 95.5
1987 5 91.75 + 1.25(5) =98
1988 7 91.75 + 1.25(7) = 100.5
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10.9 MEASUREMENT OF SEASONAL VARIATIONS

The following methods are used to measure seasonal variations:
1. Method of simple averages
2. Method of ratio to trend
3. Method of ratio to moving average
4. Method of link relative

Out of the above methods, we will study the method of ratio to moving average.

10.10 METHOD OF RATIO TO MOVING AVERAGE

This method is also known as percentage of moving averages method. This method is
most widely used for measuring seasonal variations/fluctuations. The steps involved in
the computation of seasonal indices are as follows:
(i) Obtain the centred 12 months (4 quarters) moving average values for the given
series.

(i) Express each original value of the time-series as a percentage of the trend
value.

(iii) Arrange these percentages seasonwise for all the years and then calculate the
average of these percentages. The resultant percentages would be seasonal
indices.

(iv) Obtain the adjusted seasonal index using the following formula:

Average Seasonal Index x 400

Adjusted Seasonal Index = [For quarterly data]

Total of Average of Seasonal Index

Average Seasonal Index x 100 [For monthly datal

Adjusted Seasonal Index =
Total of Average of Seasonal Index

Example 1

Calculate seasonal indices by the ratio-to-moving average method from
the following data:

Year I Quarter II Quarter III Quarter IV Quarter
1991 68 62 61 63
1992 65 58 66 61

1993 68 63 63 67
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Solution

Calculation of Ratio to Moving Averages

Given
ouna SO e e
ear Quarter  Values nlt(())\t/;rllg total ce:tered - of center:d
centered (Col 5 +8) moving
averages
1991 1 68 - - - -
I 62 - _ =
254
I 61 505 63.125 96.63
251
v 63 498 62.25 101.20
247
1992 1 65 499 62.375 104.21
252
1T 58 502 62.75 92.43
250
I 66 503 62.875 104.97
253
v 61 511 63.875 95.5
258
1993 1 68 513 64.125 106.04
255
1T 63 516 64.5 97.67
261
I 63 = =

v 67 - -
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Calculation of Seasonal Indices

Year 1 II I 1A%
1991 - - 96.63 101.20
1992 104.21 92.43 104.97 95.5
1993 106.04 97.67 - -
Total 210.25 190.1 201.6 196.7
Average Seasonal Index 105.125 95.05 100.8 98.35
Adjusted Seasonal Index 105.3 95.21 100.97 98.52

The adjustment of seasonal index is required because the total of averages of seasonal
index, i.e., 105.125 + 95.05 + 100.8 + 98.35 = 399.325 which is less than 400.

. 400
Correction factor =
399.325

Adjusted seasonal index for Quarter I = 105.125x400 =105.3
399.325

Adjusted seasonal index for Quarter II = 95.05x400 =95.21
399.325

Adjusted seasonal index for Quarter III = 100.8x400 =100.97
399.325

Adjusted seasonal index for Quarter IV = 98.35x400 =98.52
399.325

Example 2

Obtain seasonal fluctuations from the following data using the moving-
average method:

Quarterly output of commodity (tons)

II I

1984 65 58 56 61
1985 68 63 63 67
1986 70 59 56 52

1987 60 55 51 58
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Solution
Calculation of Ratio to Moving Averages

4-Quarter

4-Quarter .
moving

4-Quarter moving

Given output as

percentage of

Year Quarter Output average

moving total total

centered of moving
centered

centered (Col.5 = 8) average
1984 1 65 - - - -
II 58 = = =
240
I 56 483 60.375 92.75
243
v 61 491 61.375 99.39
248
1985 I 68 503 62.875 108.15
255
1T 63 516 64.5 97.67
261
1T 63 524 65.5 96.18
263
v 67 522 65.25 102.68
259
1986 1 70 511 63.875 109.59
252
IT 59 489 61.125 96.52
237
I 56 464 58 96.55
227
v 52 450 56.25 92.44
223
1987 I 60 441 55.125 108.84
218
II 55 442 55.25 99.55
224
I 51 - — = =

v 58 - - - -



10.10 Method of Ratio to Moving Average 10.27

Calculation of Seasonal Indices

Year I I I v
1984 - - 92.75 99.39
1985 108.15 97.67 96.18 102.68
1986 109.59 96.52 96.55 92.44
1987 108.84 99.55 - -
Total 326.58 293.74 285.48 294.51
Average Seasonal Index 108.86 97.91 95.16 98.17

Adjusted Seasonal Index 108.83 97.89 95.14 98.15

The adjustment of seasonal index is required because the total of averages of seasonal
index, i.e., 108.86 + 97.91 + 95.16 + 98.17 = 400.1 which is more than 400.

Correction factor = 400
400.1
Adjusted seasonal index for Quarter I = 108.86 400 =108.83
400.1
Adjusted seasonal index for Quarter II = 97.91x400 =97.89
400.1
Adjusted seasonal index for Quarter III = 95.16x400 =95.14
400.1
Adjusted seasonal index for Quarter IV = % =98.15

EXERCISE 10.1

1. Calculate the 3-yearly moving averages of the following data:

() PAGEEY 1998 1999 2000 2001 2002 2003 2004 2005
Values ] 5 7 10 12 14 15 16
[Ans.: 5,7.33, 9.67, 12, 13.67, 15]
(i) \CEI8 2006 2007 2008 2009 2010 2011 2012
Values 2 4 5 7 8 10 13
[Ans.: 3.67,5.33, 6.67, 8.33, 10.33]
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2. Calculate 5-yearly moving averages of the following data:
(i) =Rl 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998
Sales 57 62 54 68 63 74 60 71 68 66
[Ans.: 60.8, 64.2, 63.8, 67.2, 67.2, 67.8]

(i) Year 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010

N RSGlSes 332 317 357 392 402 405 410 427 405 438
[Ans.: 360, 374.6, 393.2, 407.2, 409.8, 417.0]

(i11) PRLEELRH 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002

offjiellld 4 5 6 7 9 6 5 7 8 7 6 8 9 10 7 9

[Ans.: 6.2, 6.6, 6.6,6.8,7, 6.6,6.6,7.2,7.6, 8, 8, 8.6]

3. The following table shows the average monthly production of coal in
millions of tonnes for the year 2005:

Year 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

Production (in
million tonnes)

50 36.5 43 44.5 38.9 38.1 32.6 41.7 41.1 33.8

Determine the trend values using the 4-yearly moving-average
method.

[Ans.: 42.1, 40.9, 39.8, 38.15, 38.14, 37.85]
4. Calculate trend values from the following data relating to the production
of tea in India by the moving-average method, on the assumption of a
4-yearly cycle:
Year 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006
Jolellleidle) 464 515 518 467 502 540 557 571 586 612

[Ans.: 495.8, 503.6, 511.6, 529.5, 553, 572.5]

5. From the following data, calculate the trend values using the four-
yearly moving-average method:

Year 1989 1990 1991 1992 1993 1994 1995 1996 1997
\EIUEE 506 620 1036 673 588 696 1116 738 663
[Ans.: 708.75, 729.25, 748.25, 768.25, 784.5]
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6. Find the 3-yearly weighted moving average with weights 1, 4, 1 for the
following series:

Year 2001 2002 2003 2004 2005 2006 2007
Values 2 6 1 5 3 7 2
[Ans.: 4.5, 3.5, 4, 4, 5.5]

7. For the following data, verify that the 5-year weighted moving average
with weights 1, 2, 3, 3, 1 respectively is equivalent to the 4-year
centred moving average.

Year 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000

Sales

(in lakhs) 5 3 7 6 4 8 9 10 8 9

8. For the following series, verify that the 6-yearly centred moving
average is equivalent to a 7-yearly weighted moving average with
weights 1, 2,2,2,2,2, 1.

Year 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990

Sales

(in thousands) 2 4 3 6 7 9 4 6 7 8 10

9. Fit a linear trend equation to the following data. Hence, estimate the
value of sales for year 2007.

Year 2001 2002 2003 2004 2005

Sales (in lakhs) 100 120 140 160 180

[Ans.: Y =140 + 20X, 220 lakhs]

10. The following table shows the figures of production of a commodity
during the years 1989-1996 in the state of Punjab:

Year 1989 1990 1991 1992 1993 1994 1995 1996

Production
(in thousand tonnes)

38 40 65 72 69 60 87 95

Use the method of least squares to fit a straight line to the data.
[Ans.: Y =65.75 + 3.667 X]
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11. Fit a straight-line trend equation by the method of least squares to the
following data:

Year 1980 1981 1982 1983 1984 1985 1986 1987

Value 380 400 650 720 690 600 870 930

[Ans.: Y =655 + 35.838]

12. Fit astraight-line trend to the data and estimate the profit for the year
1997.

Year 1990 1991 1992 1993 1994 1995 1996
Profit (in lakhs) G0 72 75 65 80 85 95

[Ans.: Y =76 + 4.857 X, ¥ 95.428 lakhs]

13. Obtain the seasonal trend by the ratio-to-moving-average method from
the following data:

Quarters

2002 40 35 38 40
2003 42 37 39 38
2004 41 35 38 42

[Ans.: 38.5, 39, 39.375, 39.25, 38.775, 38.5, 38.125, 38.5]

14. Compute seasonal fluctuations from the following time-series using the
moving-average method:

Year
Quarter
| 75 86 90 100
Il 60 65 72 78
i 54 63 66 72
\% 59 80 85 93

[Ans.: 122.36, 92.43, 84.70, 100.51]
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Points to Remember

Time-series

A series of observations on a variable, recorded after successive intervals of time, is
called a time-series. A time-series is an arrangement of statistical data in accordance
to the time of occurrence in a chronological order.

Components of a Time-Series
1. Secular trend, or trend
2. Seasonal variations
3. Cyclical variations
4. Irregular variations

1. Secular Trend Secular trend, or simply trend, is the general tendency of the
data to increase or decrease or stegnate over a long period of time.

2. Seasonal Variations Seasonal variations refer to such movements in a time-
series which repeat themselves periodically in every season. These variations repeat
themselves in less than one year.

3. Cyclical Variations Cyclical variations are the oscillatory movements in a
time-series with the period of oscillation greater than one year.

4. Irregular Variations Irregular variations do not exhibit any regular pattern
of movements and there is no regular period or time of their occurrence. These
variations are caused by random factors such as strikes, floods, fire, war, famines,
etc.

Measurement of Trend
1. Freehand or graphic method
2. Method of semi-averages
3. Method of moving averages
4. Method of least squares

Method of Moving Averages

In this method, the arithmetic mean of the values for a certain span of time is taken
and then it is placed at the centre of the time span. The average value of a number
of years is taken as the trend value for the middle point of the period of moving
averages.

Measurement of Seasonal Variations
1. Method of simple averages
2. Method of ratio to trend
3. Method of ratio to moving average
4. Method of link relative







Index

A

Absolute error 1.2

Accuracy 1.1

Arithmetic mean 8.15

Arithmetic mean by the step-deviation method
8.19

Arithmetic mean from assumed mean 8.17

Arithmetic mean of grouped data 8.16

Augmented matrix 3.2

Average 8.15

Averaging operator 4.6

B

Backward difference operator 4.6
Backward differences 4.3
Bairstow’s method 2.62
Bisection method 2.2

Budan’s theorem 2.58

c

Central difference interpolation 4.39

Central difference operator 4.6

Central differences 4.4

Central moment 8.49, 8.50

Class intervals 8.3

Classification of data 8.2

Coefficient of variation 8.44

Components of a time-series 10.2

Continuous random variable 8.63

Convergence of the Newton—Raphson Method
223

Convergence of the Secant method 2.40

Correlation 9.2

Cubic spline interpolation 4.86

Cumulative distribution function 8.64

Cumulative frequency 8.4

Cumulative frequency curve 8.6

Cumulative probability distribution 8.64

Cyclical variations 10.3

D

Data analysis 8.2
Descartes’ rule of signs 2.55
Differential operator 4.6

Discrete distribution function 8.64
Discrete probability distribution 8.63
Discrete random variables 8.62
Divided differences 4.70

E

Echelon form of a matrix 3.3

Elementary matrices 3.3

Elementary transformations 3.2
Equivalence of matrices 3.3

Errors in Simpson’s 1/3 rule 6.10

Errors in Simpson’s 3/8 rule 6.19

Errors in the trapezoidal rule 6.3

Euler’s method 7.9

Expressions for regression coefficients 9.32

F

Factorial notation 4.15

Finite differences 4.2

First-order Runge—Kutta method 7.28

Fitting a straight-line trend for even number of
years 10.17

Fitting of exponential and logarithmic curves
5.18

Fitting of linear curves 5.2

Fitting of linear trend 10.16

Fitting of quadratic curves 5.10

Forward difference operator 4.6

Forward differences 4.2

Fourth-order Runge—Kutta method 7.29

Freehand or graphic method 10.3

Frequency distribution 8.3

Frequency polygon 8.5

G

Gauss elimination method 3.4

Gauss elimination method with partial pivoting
3.15

Gauss’s backward interpolation formula 4.44

Gauss’s forward interpolation formula 4.40

Gauss—Jacobi method 3.31

Gauss—Jordan method 3.20

Gauss—Siedel method 3.37



1.2 Index

H

Heun method 7.28

High degree of negative correlation 9.4
High degree of positive correlation 9.4
Histogram 8.5

Ill-conditioned systems 3.61
Imprecision 1.1

Inaccuracy 1.1

Inherent error 1.2

Interpolation 4.19

Interpolation with unequal intervals 4.55
Inverse interpolation 4.84

Irregular variations 10.3

Iteration method 2.49

K

Karl Pearson’s coefficient of correlation 9.5

L

Lagrange’s interpolation formula 4.56
Least square method 5.2

Less than cumulative frequency 8.4
Less than ogive 8.6

Line of regression of x ony 9.31

Line of regression of y on x 9.31
Linear correlation 9.3

Linear regression 9.30

M

Mean 8.78

Measurement of seasonal variations 10.23

Measurement of trend 10.3

Measures of central tendency 8.15

Measures of central tendency for discrete
probability distribution 8.78

Median 8.24

Median class 8.26

Median for continuous frequency distribution
8.26

Merits of a Scatter diagram 9.4

Method of interpolation 8.32

Method of least squares 9.31, 10.16

Method of moving averages 10.7

Method of ratio to moving average 10.23

Method of Scatter diagram 9.30

Method of semi-averages 10.5

Methods of studying regression 9.30

Mid-value of a class 8.4

Milne’s predictor-corrector method 7.53

Modal class 8.32

Mode 8.31

Mode for a continuous frequency distribution
8.32

Modified Euler’s method 7.16

Moments 8.49

Moments about actual mean 8.50

Moments about arbitrary origin 8.51

Moments about zero 8.53

More (or greater) than cumulative frequency 8.4

More than ogive 8.6

Multiple correlation 9.3

Multiple regression 9.30

N

Negative correlation 9.2

Newton’s backward interpolation formula 4.30
Newton’s divided difference formula 4.71
Newton’s forward interpolation formula 4.19
Newton—Cotes quadrature formula 6.1
Newton—Raphson method 2.22

No correlation 9.4

Nonlinear correlation 9.3

Nonlinear regression 9.30

Normal equations 5.3

Numerical integration 6.1

(o)

Objectives of time-series 10.1
Ogive 8.6
One-point Gaussian quadrature formula 6.31

P

Partial correlation 9.3

Percentage error 1.2

Perfect negative correlation 9.4
Perfect positive correlation 9.4
Positive correlation 9.2

Precision 1.1

Probability density function 8.64
Probability function 8.64
Probability mass function 8.64
Properties of central moments 8.50
Properties of coefficient of correlation 9.6
Properties of lines of regression 9.35

Q

Quadrature 6.1

R

Random variables 8.62

Rate of convergence of the Newton—Raphson
method 2.24

Raw moments 8.51

Regression 9.29



Regression coefficients 9.31

Regula falsi method 2.15

Relation between central moments and raw
moments 8.53

Relation between moments about zero and
central moments 8.53

Relations between operators 4.7

Relative error 1.2

Round-off error 1.3

Rules for identifying significant figures 1.3

Runge—Kutta methods 7.28

S

Scatter diagram 5.1, 9.4

Seasonal variations 10.2

Secant method 2.39

Second-order Runge—Kutta method 7.28
Secular trend 10.2

Shift operator 4.6

Significant figures 1.3

Simple correlation 9.3

Simple graph 9.5

Simple regression 9.30

Simpson’s 1/3 rule 6.9

Simpson’s 3/8 rule 6.19

Solutions of a system of linear equations 3.2
Sources of errors 1.2

Spearman’s rank correlation coefficient 9.22
Spline functions 4.86

Standard deviation 8.36, 8.79

Index I.3

Standard deviation by step-deviation method
8.41

Standard deviation from the assumed mean
8.39

Statistics 8.1

Stirling’s formula 4.48

Successive approximation method 2.49

T

Taylor’s series method 7.2

Third-order Runge—Kutta method 7.28
Three-point Gaussian quadrature formula 6.33
Tied ranks 9.27

Time-series 10.1

Total correlation 9.3

Trapezoidal rule 6.2

Truncation error 1.3

Two-point gaussian quadrature formula 6.32
Types of correlations 9.2

Types of errors 1.2

Types of regression 9.30

u

Unimodal frequency distribution 8.32

\"
Variance 8.37, 8.79

w
Weighted moving average 10.13
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