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Preface

Mathematics is a key area of study in any engineering course. A sound knowledge 

of this subject will help engineering students develop analytical skills, and thus 

enable them to solve numerical problems encountered in real life, as well as apply 

mathematical principles to physical problems, particularly in the field of engineering.

Users

This book is designed for the 4th semester GTU Computer Engineering students 

pursuing the course Numerical and Statistical Methods (CODE 2140706). It covers 

the complete GTU syllabus for the course on Numerical and Statistical Methods for  

computer engineering branches.

Objective

The crisp and complete explanation of topics will help students easily understand the 

basic concepts. The tutorial approach (i.e., teach by example) followed in the text will 

enable students develop a logical perspective to solving problems.

Features

Each topic has been explained from the examination point-of-view, wherein the theory 

is presented in an easy-to-understand student-friendly style. Full coverage of concepts 

is supported by numerous solved examples with varied complexity levels, which is 

aligned to the latest GTU syllabus. Fundamental and sequential explanation of topics 

is well aided by examples and exercises. The solutions of examples are set following a 

‘tutorial’ approach, which will make it easy for students from any background to easily 

grasp the concepts. Exercises with answers immediately follow the solved examples 

enforcing a practice-based approach. We hope that the students will gain logical 

understanding from solved problems and then reiterate it through solving similar 

exercise problems themselves. The unique blend of theory and application caters to 

the requirements of both the students and the faculty. Solutions of GTU examination 

questions are incorporated within the text appropriately.
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Highlights

∑ Crisp content strictly as per the latest GTU syllabus of Numerical and Statistical  

Methods (Regulation 2014)

∑ Comprehensive coverage with lucid presentation style

∑ Each section concludes with an exercise to test understanding of topics

∑ Solutions of GTU examination papers from 2010 to 2015 present appropriately 

within the chapters

∑ Solution of 2016 GTU examination paper can be accessible through weblink.

∑ Rich exam-oriented pedagogy:

 ã Solved Examples within chapters: 420

 ã Solved GTU questions tagged within chapters: 112

 ã Unsolved Exercises: 148

Online Learning Center

All the C Programs included in Numerical and Statistical Methods (Computer 

Engineering) are available on OLC link http://www.mhhe.com/singh/nsm2e/cse/gtu2017

Chapter Organization

The content spans the following ten chapters which wholly and sequentially cover 

each module of the syllabus.

o Chapter 1 introduces Error Analysis.

o Chapter 2 discusses Roots of Equations.

o Chapter 3 presents Systems of Linear Algebraic Equations.

o Chapter 4 covers Interpolation.

o Chapter 5 deals with Curve Fitting.

o Chapter 6 presents Numerical Integration.

o Chapter 7 explains Ordinary Differential Equations.

o Chapter 8 discusses Statistical Methods.

o Chapter 9 deals with Correlation and Regression.

o Chapter 10 introduces Trend Analysis.
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1.1 IntroductIon

The main goal of numerical analysis is to develop efficient algorithms for computing 

precise numerical values of mathematical quantities, including functions, integrals, 

solutions of algebraic equations, solutions of differential equations, etc. Often the 

numerical data and the methods used are approximate ones. Hence, the error in a 

computed result may be caused by the errors in the data, or the errors in the method, or 

both. In any numerical computation, there are four key sources of errors:

 (i) Inexactness of mathematical model for the underlying physical phenomenon

 (ii) Errors in measurements of parameters entering the model

 (iii) Round-off errors in computer arithmetic

 (iv) Approximations used to solve the mathematical systems

1.2 AccurAcy And PrecIsIon

Measurements and calculations can be characterized with regard to their accuracy and 

precision. Accuracy refers to how closely a computed or measured value agrees with 

the true value. Precision refers to how closely individually computed or measured 

values agree with each other. Inaccuracy is the systematic deviation from the truth. 

Imprecision refers to the magnitude of scatter. Figure 1.1 illustrates the concepts of 

accuracy and precision.

C H A P T E R

Error Analysis
1

chapter outline

1.1 Introduction

1.2 Accuracy and Precision

1.3 Types of Errors

1.4 Sources of Errors

1.5 Significant Figures
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Fig. 1.1

The term error represents the imprecision and inaccuracy of a numerical 

computation.

1.3 tyPes oF errors

There are various types of errors in measurements and calculations:

 (i) Absolute error

 (ii) Relative error

 (iii) Percentage error

Absolute error It is the difference between the measured or calculated value and 

true value. If xexact is the true or exact value and xapprox is the measured or calculated or 

approximate value, the absolute error dx is given by

 
exact approxa x x xdŒ = = -

relative error It is the ratio of absolute error and true value of the quantity.

 

exact approx

exact
r

x xx

x x

d -
Œ = =

Percentage error It is relative error expressed in terms of per 100.

 

exact approx

exact

100 100p

x xx

x x

d -
Œ = ¥ = ¥

1.4 sources oF errors

There are three sources of errors, namely, inherent error, truncation error, and round-

off error.

Inherent error It is the error that pre-exist in the problem statement itself before 

its solution is obtained. Such errors arise in the values of data from the real world or 
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by uncertainty in measurements or due to the given data being approximate or due to 

the limitations of mathematical tables, calculators, digital computer, etc. These errors 

cannot be completely eliminated but can be minimized if better data is selected or 

high-precision computer computations are employed, e.g., representation of irrational 

numbers such as p, e, 2  cannot be represented with a finite number of digits. Even 

a simple fraction in many cases has no exact representation, such as a rational number 

1
.

3

truncation error It is the error that results from using an approximation in place 

of exact mathematical expressions. It is caused by truncating a finite number of terms. 

The most common example is the truncation of an infinite series to a finite number of 

terms, e.g., sin x is represented by the Maclaurin series as

 

3 5 7 9

exactsin
3! 5! 7! 9!

x x x x
x x x= - + - + - • =

But, if sin x is calculated by terminating the series up to x7 or x9,

 

3 5 7 9

approxsin
3! 5! 7! 9!

x x x x
x x x= - + - + =

Hence, truncation error = xexact – xapprox

round-off error It is the error that results due to chopping or rounding or arithmetic 

operations using normalized floating-point numbers. It is due to the inaccuracies that 

arise because of a finite number of digits of precision used to represent numbers. All 

computers represent numbers, except for integer and some fractions, with imprecision. 

Digital computers use floating-point numbers of fixed word length. This type of 

representation will not express the exact or true values correctly. Error introduced by 

the omission of significant figures due to computer imperfection is called round-off 

error.

1.5 sIgnIFIcAnt FIgures

The significant figures of a number are digits that carry meaning contributing to its 

measurement resolution. This includes all digits except (i) all leading zeros, and (ii) all 

trailing zeros when they are merely placeholders to indicate the scale of the number.

Rules for Identifying Significant Figures

 (i) All nonzero digits are considered significant, e.g., 93 has two significant 

figures, i.e., 9 and 3, while 135.76 has five significant figures, i.e., 1, 3, 5, 7, 

and 6.

 (ii) All zeros between two nonzero digits are significant, e.g., 205.1308 has seven 

significant figures, i.e., 2, 0, 5, 1, 3, 0 and 8.
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 (iii) Leading zeros are not significant, e.g., 0.00075 has two significant figures, 

7 and 5.

 (iv) Trailing zeros in a number containing a decimal point are significant, e.g., 

13.4000 has six significant figures, i.e., 1, 3, 4, 0, 0, and 0. The number 

0.000134000 still has only six significant figures (the zeros before the 1 are 

not significant). The number 120.00 has five significant figures since it has 

three trailing zeros. The number of significant figures in 8200 is at least two, 

but it could be three or four because it is not clear if the zeros are significant 

or not. To avoid uncertainty, scientific notation is used to place zeros behind a 

decimal point, i.e., 8.200 × 103 has four significant figures, whereas 8.2 × 103 

has two significant figures.

example 1
Find the relative error and percentage error if 0.005998 is truncated to 

three decimal digits.

Solution

   xexact = 0.005998

 xapprox = 0.005

Relative error 
exact approx

exact

0.005998 0.005

0.005998

0.1664

x x

x

-
=

-
=

=

Percentage error 
exact approx

exact

100

0.1664 100

16.64%

x x

x

-
= ¥

= ¥
=

example 2
For a = 3.141592 and an approximation value of a as 3.14, evaluate 

absolute error, relative error, and percentage error.

Solution

 aexact = 3.141592,  aapprox = 3.14

Absolute error = da = aexact – aapprox = 3.141592 – 3.14 = 0.001592

Relative error 40.001592
5.0675 10

3.141592

a

a

d -= = = ¥

Percentage error 4100 5.0675 10 100 0.05067%
a

a

d -= ¥ = ¥ ¥ =
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example 3
If the approximate solution of a problem is x0 = 35.25 with relative error 

of at the most 2%, find the range of values correct up to four decimal 

digits in which the exact value of the solution lies.

Solution

 

approx

exact approx

exact

exact

exact

exact

exact

0

0 0

0

0

0

0

0

35.25

2% of 35.25 0.705

35.25
0.705

(1 0.705) 35.25

119.4915

r

r

x

x x

x

x

x

x

x =

=

Œ = =

-
Œ =

-
=

- =

The range of values correct up to four decimal digits in which the exact value of the 

solution lies is [119.4915, 119.50].

example 4
The approximate solution of a problem is 3.436. If the absolute error in 

the solution is less than 0.01 then find the interval within which the exact 

solution lies.

Solution

 

approx

exact approx

exact

exact

exact

exact

exact

3.436

0.01

3.436
0.01

(1 0.01) 3.436

3.4707

x

x

x x
x

x

x

x

x

x

d

d

=

<
-

=

-
<

- <

<

Hence, the exact solution lies in the interval [3.47, 3.48].
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example 5
If u = 2v

6 – 5v, find the percentage error in u at v = 1 if the error in v is 

0.05.

Solution

 

6

5

5

5

6

2 5

12 5

1
100 12 100 5 100

1
12 100 5 100

2 5

u v v

u v v v

u
v v v

u u

v v v
v v

d d d

d
d d

d d

= -

= -

È ˘¥ = ¥ - ¥Î ˚

È ˘= ¥ - ¥Î ˚
-

Putting dv = 0.05,  v = 1

 

5

6

1
100 12(1) (0.05) (100) 5(0.05) (100)

2(1) 5(1)

11.67%

u

u

d È ˘¥ = -Î ˚
-

= -

Hence, the percentage error in u = –11.67%.

example 6
Given the trigonometric function f (x) = sin x,

 (i) expand f (x) about x = 0 using the Taylor series

 (ii) truncate the series to n = 6 terms

(iii) find the relative error at 
4

x
p

=  due to truncation.

Solution

 (i) f (x) = sin x

  By the Taylor series,

 

3 5 7 9

( ) sin
3! 5! 7! 9!

x x x x
f x x x= = - + - + -

 (ii) Truncation of the Taylor series to n = 6 terms

 

3 5

6 ( )
3! 5!

x x
f x x= - +

 (iii) Relative error at 
4

x
p

=  due to truncation

 
sin

4 4
f

p pÊ ˆ Ê ˆ
=Á ˜ Á ˜Ë ¯ Ë ¯
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3 5

6

6

3 5

5

4 4

4 4 3! 5!

4 4

4

sin
4 4 384 122880

sin
4

5.1286 10

r

f

f f

f

p p

p p

p p

p

p p p p

p

-

Ê ˆ Ê ˆ
Á ˜ Á ˜Ë ¯ Ë ¯Ê ˆ

= - +Á ˜Ë ¯

Ê ˆ Ê ˆ-Á ˜ Á ˜Ë ¯ Ë ¯
Œ =

Ê ˆ
Á ˜Ë ¯

Ê ˆÊ ˆ - - +Á ˜ Á ˜Ë ¯ Ë ¯
=

Ê ˆ
Á ˜Ë ¯

= ¥

example 7
Given the function f (x) = e

–x
,

 (i) expand f (x) about x = 0 using the Taylor series

 (ii) truncate the series to n = 5 terms

(iii) find the relative error at x  = 1 due to truncation.

Solution

 (i)             f (x) = e–x

  By the Taylor series,

 

2 3 4 5

1
2! 3! 4! 5!

x x x x x
e x
- = - + - + - +

 (ii) Truncation of the Taylor series to n = 5 terms

 

2 3 4

5( ) 1
2! 3! 4!

x x x
f x x= - + - +

 (iii) The relative error at x = 1 due to truncation

 

5

1

5

1

1

1 1 1 3
(1) 1 1

2! 3! 4! 8

(1)

(1) (1)

(1)

3

8

0.0194

1.94%

r

f

f e

f f

f

e

e

-

-

-

= - + - + =

=
-

Œ =

-
=

=
=
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example 8
If R = x

3 y2 z2 and 0.03, 0.01, 0.02 are errors in x, y, z respectively at 

x = 1, y = 1, z = 2. Calculate the absolute error and percentage error in 

calculation of R.

Solution

 R = x3 y2 z2

Taking logarithm on both the sides,

 

3 2 2log log log log

3log 2 log 2 log

1 3 2 2

3 2 2

R

R

R x y z

x y z

x y z
R x y z

x y z

R x y z

d d d d

d d d d

= + +
= + +

= + +

= + +

Putting dx = 0.03, dy = 0.01, dz = 0.02, x = 1, y = 1, z = 2,

    R = (1)3(1)2(2)2 = 4

     

0.03 0.01 0.02
3 2 2

4 1 1 1

0.15
4

0.6

R

R

R

d

d

d

Ê ˆ Ê ˆ Ê ˆ
= + +Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯

=

=
Hence, absolute error = 0.6.

Percentage error in 100

0.15 100

15%

R
R

R

d
= ¥

= ¥
=

example 9
Find the percentage error in calculating the area of a rectangle when an 

error of 3% is made in measuring each of its sides.

Solution

Let a and b be the sides of the rectangle and A be its area.

 A = ab

Taking logarithm on both the sides,

 log A = log a + log b
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1 1 1

A
A

a
a

b
bd d d= +

 

d d dA

A

a

a

b

b
× = × ×100 100 100+

Putting  
d da

a

b

b
× = × =100 3 100 3, ,

 

δ A

A
× = +

=

100 3 3

6

Hence, percentage error in calculating area = 6%.

example 10
Find the percentage error in the area of an ellipse when errors of 2% 

and 3% are made in measuring its major and minor axes respectively.

Solution

Let 2a and 2b be the major and minor axes of the ellipse and A be its area.

 A = p ab

Taking logarithm on both the sides,

 

log log log logA a b

A
A

a
a

b
b

A

A

a

a

b

b

= + +

= + +

× = × + ×

p

d d d

d d d

1
0

1 1

100 100 100

Putting  
d da

a

b

b
× = 2, ×100 100 3= ,

 

d A

A
¥ = +

=

100 2 3

5

Hence, percentage error in area of ellipse = 5%.

example 11
The focal length of a mirror is found from the formula 

2 1 1

f v u
= - .  Find 

the percentage error in f if u and v are both in error by 2% each.
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Solution

 
2 1 1

f v u
= -

 

− = −

− × = − × ×

2 1 1

2
100

1
100

1
100

2 2 2f
f

v
v

u
u

f

f

f v

v

v u

u

u

δ δ δ

δ δ δ

+

+

Putting  
d du

u

v

v

¥ ¥100 2 100 2= =, ,

 

- ¥ = -

= - -
Ê
ËÁ

ˆ
¯̃ = -

Ê
ËÁ

ˆ
¯̃

¥

2
100

1
2

1
2

2
1 1

2
2

100 2

f

f

f v u

v u f

f

f

d

d

( ) ( )+

=

Hence, percentage error in f = 2%.

example 12
Find the possible percentage error in computing the parallel resistance 

R of two resistances R1 and R2 if R1, R2 are each in error by 2%.

Solution

 
1 1 1

1 2
R R R
= +

 

- = - -

¥ = ¥ + ¥

1 1 1

1
100

1
100

1
100

2

1

2 1

2

2 2

1

1

1 2

2

2

R

R

R

R

R

R

R

R

R R

R

R R

R

R

d d d

d d d

Putting  
d dR

R

R

R

1

1

2

2

100 2 100 2¥ = ¥ =, ,

 

1
100

1
2

1
2

2
1 1

2
1

1 2

1 2

R

R

R R R

R R

R

d
¥ = +

= +
Ê
ËÁ

ˆ
¯̃

=
Ê
ËÁ

ˆ
¯̃

( ) ( )
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\ ¥ =

dR

R
100 2

Hence, percentage error in R = 2%

example 13
The resonant frequency in a series electrical circuit is given by 

f
LC

=

1

2p

.  If the measurement of L and C are in error by 2% and 

−1% respectively, find the percentage error in f.

Solution

            f
LC

=

1

2p

Taking logarithm on both the sides,

 

log log log logf L C

f
f

L
L

C
C

f

f

L

= - -

= - -

¥ = -

1

2

1

2

1

2

1
0

1

2

1 1

2

1

100
1

2

p

d d d

d d

LL

C

C
¥ - ¥100

1

2
100

d

Putting                                
d dL

L

C

C
¥ = ¥ = -100 2 100 1,

 

d f

f
¥ = - - -

= -

100
1

2
2

1

2
1

0 5

( ) ( )

.

Hence, percentage error in f = − 0.5%

example 14
In calculating the volume of a right circular cone, errors of 2% and 

1% are made in the height and radius of base respectively. Find the 

percentage error in the calculating the volume.

Solution

Let r and h be the radius of base and height of the right circular cone and V be its 

volume.

 V r h=

1

3

2
p
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Taking logarithm on both the sides,

          log log log logV r h= + +
p

3
2

     

1
0

2 1

100 2 100 100

V
V

r
r

h
h

V

V

r

r

h

h

d d d

d d d

= + +

¥ = ¥ + ¥

Putting                          
d dr

r

h

h
¥ = ¥ =100 1 100 2, ,

       

dV

V
¥ = +

=

100 2 1 2

4

( )

Hence, percentage error in volume = 4%

example 15
In calculating the volume of a right circular cylinder, errors of 2% and 

1% are found in measuring the height and base radius respectively. Find 

the percentage error in the calculated volume of the cylinder.

Solution

Let r and h be the base radius and height of the right circular cylinder and V be its 

volume.

V = p r2 h

Taking logarithm on both the sides,

 

log log log logV r h

V
V

r
r

h
h

V

V

r

r

h

h

= + +

= + +

¥ = ¥ + ¥

p

d d d

d d d

2

1
0

2 1

100 2 100 1000

Putting 
d dr

r

h

h
¥ = ¥ =100 1 100 2, ,

 

dV

V
¥ = +

=

100 2 1 2

4

( )

Hence, percentage error in volume = 4%.
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example 16

Evaluate [( . ) ( . ) ]3 82 2 2 1
2 3

1

5
+  using the theory of approximation.

Solution

Let z = ( )x y
2 3

1

52+

 

d d dz x y x x x y y y

x y

= + + +

= +

- -

-

1

5
2 2

1

5
2 6

1

5
2

2 3

4

5 2 3

4

5 2

2 3

4

5

( ) ( ) ( ) ( )

( ) (22 6
2

x x y yd d+ )

Putting x = 4, y = 2, 

 d x = 3.82 − 4 = − 0.18,

 d y = 2.1 − 2 = 0.1

 (x2 + 2y
3) = 42 + 2(2)3

 = 32

and d z = ◊ - +

-1

5
32 2 4 0 18 6 2 0 1

4

5 2
( ) [ ( )( . ) ( ) ( . )]

 = 0.012

Approximate value = z + d z

  = (32)1/5 + 0.012 

 = 2.012

example 17

Find the approximate value of ( . ( . ) ( . )0 98 2 01 1 94
2 2 2

1

2+ +ÈÎ ˘̊ .

Solution

Let u x y z= + +
2 2 2

  u2 = x2 + y2 + z2

 2ud u = 2xd x + 2yd y + 2zd z

 ud u = xd x + yd y + zd z

Putting x = 1, y = 2, z = 2,

 d x = 0.98 − 1 = − 0.02,

 d y = 2.01 − 2 = 0.01,

 d z = 1.94 − 2 = − 0.06
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and 

u

u u

u

= + +

=

= - + + -

= -

= -

1 2 2

3

1 0 02 2 0 01 2 0 06

0 12

0 04

2 2 2

d

d

( . ) ( . ) ( . )

.

.

Approximate value = u + d u 

 = 3 − 0.04 

 = 2.96

example 18

Evaluate ( . ) ( . ) ( . )1 99 3 01 0 98
2 3

1

10  using approximation.

Solution

Let u = x y z
2 3

1

10

 

log log log logu x y z

u
u

x
x

y
y

z
z

= + +

= + +

2 3
1

10

1
2
1

3
1 1

10

1
d d d d

Putting x = 2, y = 3, z = 1,

 d x = 1.99 − 2 = − 0.01, 

 d y = 3.01 − 3 = 0.01,

 d z = 0.98 − 1 = − 0.02

 u = 

1

2 3 102 3 1 108=

and 
1

108
2

1

2
0 01 3

1

3
0 01

1

10

1

1
0 02du = ◊

Ê
ËÁ

ˆ
¯̃
- +

Ê
ËÁ

ˆ
¯̃

+
Ê
ËÁ
ˆ
¯̃
-( . ) ( . ) ( . ))

.du = -0 216
Approximate value = u + d u

 = 108 − 0.216

 = 107.784.
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eXercIse 1.1

 1. Round off the following numbers to 4-significant digits:

  (i) 2.36345  (ii) 0.34176  (iii) 3.40087  (iv) 0.000143479

 [Ans.: (i) 2.363 (ii) 0.3417 (iii) 3.401 (iv) 0.0001435]

 2. Find the error and relative error in the following cases:

   (i) xexact = 1000000,   xapprox = 999996

  (ii) xexact = 0.000012,    xapprox = 0.000009

 [Ans.: (i) 4, 0.000004 (ii) 0.000003, 0.25]

 3. Find the relative error of x – y for x = 12.05 and y = 0.802 having 

absolute error dx = 0.005 and dy = 0.001.

 [Ans.: 0.00029]

 4. Find absolute error, relative error, and percentage error if 
2

3
 is 

approximated to 4-significant digits.

 [Ans.: 0.000033, 0.0000495, 0.005%]

 5. If the approximate value of 
p

4
 is 0.7854, calculate (i) absolute error, 

(ii) relative error, and (iii) percentage error.

 [Ans.: (i) 0.00031, (ii) 0.00039, (iii) 0.04%]

 6. If dx = 0.005 and dy = 0.001 be the absolute errors in x = 2.11 and 

y = 4.15, find the relative error in computation of x + y.

 [Ans.: 0.000958]

 7.  In calculating the volume of right circular cone, errors of 2.75% and 

1.25% are made in height and radius of the base. Find the percentage 

error in volume.

 [Ans.: 5.25%]

 8.  The height of a cone is H = 30 cm, the radius of base R = 10 cm. How 

will the volume of the cone change if H is increasing by 3 mm while R 

is decreasing by 1 mm?

 [Ans.: decreased by 10p cm3]

 9.  Find the percentage error in calculating the area of a rectangle when 

an error of 2% is made in measuring each of its sides.

 [Ans.: 4%]
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 10.  If R1 and R2 are two resistances in parallel, their resistance R is given by 

1 1 1

1 2
R R R
= + . If there is an error of 2% in both R1 and R2, find percentage 

error in R.

 [Ans.: 2%]

 11.  One side of a rectangle is a = 10 cm and the other side b = 24 cm. How 

will the diagonal l of the rectangle change if a is increased by 4 mm 

and b is decreased by 1 mm?

 Ans.:
4

65
cm

È

Î
Í

˘

˚
˙

 12.  The resistance R of circuit was found by using the formula I
E

R
= . If there 

is an error of 0.1 ampere in reading I and 0.5 volts in reading E, find the 

corresponding percentage error in R when I = 15 amperes and E = 100 

volts.

 [Ans.: − 0.167%]

 13.  The voltage V across a resistor is measured with error h, and the 

resistance R is measured with an error R. Show that the error in 

calculating the power W
V

R

V

R
Rh VR= -

2

2
2is ( ).  If V can be measured to 

an accuracy of 0.5% and to an accuracy of 1%, what is the approximate 

possible percentage error in W?

 [Ans.: 0%]

 14.  The radius and height of a cone are 4 cm and 6 cm respectively. What 

is the error in its volume if the scale used in taking the measurement 

is short by 0.01 cm per cm?

 [Ans.: 0.96p cm3]

 15.  Show that the error in calculating the time period of a pendulum at 

any place is zero if an error of µ% is made in measuring its length and 

gravity at that place.

 16.  The diameter and the altitude of a right circular cylinder are measured 

as 24 cm and 30 cm respectively. There is an error of 0.1 cm in each 

measurement. Find the possible error in the volume of the cylinder.

  [Ans.: 50.4p cm]

 17.  If the measurements of base radius and height of a right circular cone 

are changed by −1% and 2%, show that there will be no error in the 

volume.
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 18.  If f x y z=

2 3

1

10 ,  find the approximate value of f when x = 1.99, y = 3.01 

and z = 0.98.

  [Ans.: 107.784]

 19.  If f = x3 y2 z4, find the approximate value of f when x = 1.99, y = 3.01, 

z = 0.99.

  [Ans.: 68.5202]

 20.  If f x y= − −( ) ,160 3 3

1

3  find the approximate value of f (2.1, 2.9) − f (2, 3)

  [Ans.: 0.016]

 21.  If f = exyz, find the approximate value of f when x = 0.01, y = 1.01, 

z = 2.01.  [Ans.: 1.02]

 22.  Find [( . ) ( . ) ]2 92 5 873 3
1

5
+  approximately by using the theory of 

approximation.

  [Ans.: 2.96]

 23.  Find [( . ) ( . ) ]11 99 5 012 2
1

2
+  approximately by using the theory of 

approximation.  [Ans.: 12.99]

 24. Find (1.04)3.01 by using theory of approximation.

  [Ans.: 1.1253]

 25. If f(x, y) = (50 – x2 – y 2)

1

2
 find the approximate value of [f(3, 4) – f(3.1, 3.9)] 

 [Ans.: – 0.018]

 26.  Find log . .1 04 0 97 13 4+ -È
Î

˘
˚  approximately by using the theory of 

approximation.  [Ans.: 0.0058]

Points to remember

Accuracy and Precision

Accuracy refers to how closely a computed or measured value agrees with the true 

value. Precision refers to how closely individually computed or measured values 

agree with each other. 

Types of Errors

Absolute Error It is the difference between the measured or calculated value and 

true value.

 
exact approxa x x xdŒ = = -
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Relative Error It is the ratio of absolute error and true value of the quantity.

 

exact approx

exact
r

x xx

x x

d -
Œ = =

Percentage Error It is relative error expressed in terms of per 100.

 

exact approx

exact

100 100p

x xx

x x

d -
Œ = ¥ = ¥

Sources of Errors

Inherent Error It is the error that pre-exist in the problem statement itself before 

its solution is obtained.

Truncation Error It is the error that results from using an approximation in place 

of exact mathematical expressions.

Round-off Error It is the error that results due to chopping or rounding or 

arithmetic operations using normalized floating-point numbers.

Significant Figures

The significant figures of a number are digits that carry meaning contributing to its 

measurement resolution. This includes all digits except (i) all leading zeros, and 

(ii) all trailing zeros when they are merely placeholders to indicate the scale of the 

number.



2.1 IntroductIon

An expression of the form 
1 2

0 1 2 1( ) ,n n n
n nf x a x a x a x a x a

- -
-= + + + + +  where a0, 

a1, a2, ..., an are constants and n is a positive integer, is called an algebraic polynomial 

of degree n if a0 π 0. The equation f (x) = 0 is called an algebraic equation if f (x) 

is an algebraic polynomial, e.g., x3 – 4x – 9 = 0. If f (x) contains functions such as 

trigonometric, logarithmic, exponential, etc., then f (x) = 0 is called a transcendental 

equation, e.g., 2x
3 – log (x + 3) tan x + ex = 0.

In general, an equation is solved by factorization. But in many cases, the method of 

factorization fails. In such cases, numerical methods are used. There are some methods 

to solve the equation f (x) = 0 such as

 (i) Bisection method

 (ii) Regula Falsi method

 (iii) Newton–Raphson method

 (iv) Secant method

C H A P T E R

Roots of Equations
2

chapter outline

2.1 Introduction

2.2 Bisection Method

2.3 Regula Falsi Method

2.4 Newton–Raphson Method

2.5 Secant Method

2.6 Successive Approximation Method

2.7 Descartes’ Rule of Signs

2.8 Budan’s Theorem

2.9 Bairstow’s Method
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2.2 BIsectIon Method

Let f (x) = 0 be the given equation. Let x0 

and x1 be two real values of x at P and Q 

respectively such that f (x1) is positive and 

f (x0) is negative or vice versa (Fig. 2.1). 

Then there is one root of the equation f (x) 

= 0 between x0 and x1. Now, this interval 

[x0, x1] is divided into two sub-intervals 

[x0, x2] and [x2, x1], where 0 1
2

2

x x
x

+
= .

If f (x0) and f (x2) are of opposite signs 

then the interval [x0, x2] is divided into 

[x0, x3] and [x3, x2], where 0 2
3

2

x x
x

+
= . 

However, if f (x0) and f (x2) are of the same 

sign then f (x1) and f (x2) will be opposite signs and the interval [x1, x2] is divided into 

[x1, x3] and [x3, x2], where 1 2
3

2

x x
x

+
= . This process is continued till the desired 

accuracy is obtained.

example 1
Find the positive root of x

3
 – 2x – 5 = 0, correct up to two decimal 

places.

Solution

Let  f (x) = x3 – 2x – 5

 f (1) = –6 and f (2) = –1, f (3) = 16

Since f (2) < 0 and f (3) > 0, the root lies between 2 and 3.

 

1

1

2 3
2.5

2

( ) (2.5) 5.625

x

f x f

+
= =

= =

Since f (2.5) > 0 and f (2) < 0, the root lies between 2.5 and 2.

 

2

2

2.5 2
2.25

2

( ) (2.25) 1.8906

x

f x f

+
= =

= =

Since f (2.25) > 0 and f (2) < 0, the root lies between 2.25 and 2.

Fig. 2.1
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3

3

2.25 2
2.125

2

( ) (2.125) 0.3457

x

f x f

+
= =

= =

Since f (2.125) > 0 and f (2) < 0, the root lies between 2.125 and 2.

 

4

4

2.125 2
2.0625

2

( ) (2.0625) 0.3513

x

f x f

+
= =

= = -

Since f (2.0625) < 0 and f (2.125) > 0, the root lies between 2.0625 and 2.125.

 

5

5

2.0625 2.125
2.09375

2

( ) (2.09375) 0.0089

x

f x f

+
= =

= = -

Since f (2.09375) < 0 and f (2.125) > 0, the root lies between 2.09375 and 2.125.

 

6

6

2.09375 2.125
2.109375

2

( ) (2.109375) 0.1668

x

f x f

+
= =

= =

Since f (2.109375) > 0 and f (2.09375) < 0, the root lies between 2.109375 and 

2.09375.

      
7

2.109375 2.09375
2.10156

2
x

+
= =

Since x6 and x7 are same up to two decimal places, the positive root is 2.10.

example 2
Find a root of x

3
 – 5x + 3 = 0 by the bisection method correct up to four 

decimal places. [Summer 2015]

Solution

Let  f (x) = x3 – 5x + 3

   f (0) = 3 and f (1) = –1

Since f (0) > 0 and f (1) < 0, the root lies between 0 and 1.

 

1

1

0 1
0.5

2

( ) (0.5) 0.625

x

f x f

+
= =

= =

Since f (0.5) > 0 and f (1) < 0, the root lies between 0.5 and 1.

 

2

2

0.5 1
0.75

2

( ) (0.75) 0.3281

x

f x f

+
= =

= = -
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Since f (0.75) < 0 and f (0.5) > 0, the root lies between 0.75 and 0.5.

 

3

3

0.75 0.5
0.625

2

( ) (0.625) 0.1191

x

f x f

+
= =

= =

Since f (0.625) > 0 and f (0.75) < 0, the root lies between 0.625 and 0.75.

 

4

4

0.625 0.75
0.6875

2

( ) (0.6875) 0.1125

x

f x f

+
= =

= = -

Since f (0.6875) < 0 and f (0.625) > 0, the root lies between 0.6875 and 0.625.

 

5

5

0.6875 0.625
0.65625

2

( ) (0.65625) 0.00137

x

f x f

+
= =

= =

Since f (0.65625) > 0 and f (0.6875) < 0, the root lies between 0.65625 and 0.6875.

 

6

6

0.65625 0.6875
0.67188

2

( ) (0.67188) 0.0561

x

f x f

+
= =

= = -

Since f (0.67188) < 0 and f (0.65625) > 0, the root lies between 0.67188 and 0.65625.

 

7

7

0.67188 0.65625
0.66407

2

( ) (0.66407) 0.02750

x

f x f

+
= =

= = -

Since f (0.66407) < 0 and f (0.65625) > 0, the root lies between 0.66407 and 0.65625.

 

8

8

0.66407 0.65625
0.66016

2

( ) (0.66016) 0.01309

x

f x f

+
= =

= = -

Since f (0.66016) < 0 and f (0.65625) > 0, the root lies between 0.66016 and 0.65625.

 

9

9

0.66016 0.65625
0.65821

2

( ) (0.65821) 0.00589

x

f x f

+
= =

= = -

Since f (0.65821) < 0 and f (0.65625) > 0, the root lies between 0.65821 and 0.65625.

 

10

10

0.65821 0.65625
0.65723

2

( ) (0.65723) 0.0023

x

f x f

+
= =

= = -

Since f (0.65723) < 0 and f (0.65625) > 0, the root lies between 0.65723 and 0.65625.
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11

11

0.65723 0.65625
0.65674

2

( ) (0.65674) 0.00044

x

f x f

+
= =

= = -

Since f (0.65674) < 0 and f (0.65625) > 0, the root lies between 0.65674 and 0.65625.

 

12

12

0.65674 0.65625
0.6565

2

( ) (0.6565) 0.00044

x

f x f

+
= =

= =

Since f (0.6565) > 0 and f (0.65674) < 0, the root lies between 0.6565 and 0.65674.

 

13

13

0.6565 0.65674
0.6566

2

( ) (0.6566) 0.00075

x

f x f

+
= =

= =

Since f (0.6566) > 0 and f (0.65674) < 0, the root lies between 0.6566 and 0.65674.

   
14

0.6566 0.65674
0.65667

2
x

+
= =

Since x13 and x14 are same up to four decimal places, the root is 0.6566.

example 3
Perform the five iterations of the bisection method to obtain a root of the 

equation f(x) = x
3
 – x – 1 = 0.

Solution

Let  f (x) = x3 – x – 1

     f (1) = –1 and f (2) = 5

Since f (1) < 0 and f (2) > 0, the root lies between 1 and 2.

  

1

1

1 2
1.5

2

( ) (1.5) 0.875

x

f x f

+
= =

= =

Since f (1.5) > 0 and f (1) < 0, the root lies between 1.5 and 1.

  

2

2

1.5 1
1.25

2

( ) (1.25) 0.2968

x

f x f

+
= =

= = -

Since f (1.25) < 0 and f (1.5) > 0, the root lies between 1.25 and 1.5.

  

3

3

1.25 1.5
1.375

2

( ) (1.375) 0.2246

x

f x f

+
= =

= =
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Since f (1.375) > 0 and f (1.25) < 0, the root lies between 1.375 and 1.25.

 

4

4

1.375 1.25
1.3125

2

( ) (1.3125) 0.0515

x

f x f

+
= =

= = -

Since f (1.3125) < 0 and f (1.375) > 0, the root lies between 1.3125 and 1.375.

   
5

1.3125 1.375
1.3438

2
x

+
= =

Hence, the root is 1.3438 up to five iterations.

example 4
Find the approximate solution of x

3
 + x – 1 = 0 correct to three decimal 

places. [Winter 2013]

Solution

Let    f (x) = x3 + x – 1

   f (0) = –1 and f (1) = 1

Since f (0) < 0 and f (1) > 0, the root lies between 0 and 1.

 

1

1

0 1
0.5

2

( ) (0.5) 0.375

x

f x f

+
= =

= = -

Since f (0.5) < 0 and f (1) > 0, the root lies between 0.5 and 1.

 

2

2

0.5 1
0.75

2

( ) (0.75) 0.1719

x

f x f

+
= =

= =

Since f (0.75) > 0 and f (0.5) < 0, the root lies between 0.75 and 0.5.

 

3

3

0.75 0.5
0.625

2

( ) (0.625) 0.1309

x

f x f

+
= =

= = -

Since f (0.625) < 0 and f (0.75) > 0, the root lies between 0.625 and 0.75.

 

4

4

0.625 0.75
0.6875

2

( ) (0.6875) 0.01245

x

f x f

+
= =

= =

Since f (0.6875) > 0 and f (0.625) < 0, the root lies between 0.6875 and 0.625.

 

5

5

0.6875 0.625
0.6563

2

( ) (0.6563) 0.0644

x

f x f

+
= =

= = -
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Since f (0.6563) < 0 and f (0.6875) > 0, the root lies between 0.6563 and 0.6875.

 

6

6

0.6563 0.6875
0.6719

2

( ) (0.6719) 0.0248

x

f x f

+
= =

= = -

Since f (0.6719) < 0 and f (0.6875) > 0, the root lies between 0.6719 and 0.6875.

 

7

7

0.6719 0.6875
0.6797

2

( ) (0.6797) 0.0141

x

f x f

+
= =

= = -

Since f (0.6797) < 0 and f (0.6875) > 0, the root lies between 0.6797 and 0.6875.

 

8

8

0.6797 0.6875
0.6836

2

( ) (0.6836) 0.0031

x

f x f

+
= =

= =

Since f (0.6836) > 0 and f (0.6797) < 0, the root lies between 0.6836 and 0.6797.

 

9

9

0.6836 0.6797
0.6817

2

( ) (0.6817) 0.0015

x

f x f

+
= =

= = -

Since f (0.6817) < 0 and f (0.6836) > 0, the root lies between 0.6817 and 0.6836.

 

10

10

0.6817 0.6836
0.6827

2

( ) (0.6827) 0.00089

x

f x f

+
= =

= =

Since f (0.6827) > 0 and f (0.6817) < 0, the root lies between 0.6827 and 0.6817.

  
11

0.6827 0.6817
0.6822

2
x

+
= =

Since x10 and x11 are same up to three decimal points, the root is 0.682.

example 5
Find a root of the equation x

3
 – 4x – 9 = 0 using the bisection method in 

four stages.

Solution

Let  f (x) = x3 – 4x – 9

   f (2) = –9 and f (3) = 6

Since f (2) < 0 and f (3) > 0, the root lies between 2 and 3.
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1

1

2 3
2.5

2

( ) (2.5) 3.375

x

f x f

+
= =

= = -

Since f (2.5) < 0 and f (3) > 0, the root lies between 2.5 and 3.

 

2

2

2.5 3
2.75

2

( ) (2.75) 0.7969

x

f x f

+
= =

= =

Since f (2.75) > 0 and f (2.5) < 0, the root lies between 2.75 and 2.5.

 

3

3

2.75 2.5
2.625

2

( ) (2.625) 1.4121

x

f x f

+
= =

= = -

Since f (2.625) < 0 and f (2.75) > 0, the root lies between 2.625 and 2.75.

   
4

2.625 2.75
2.6875

2
x

+
= =

Hence, the root is 2.6875 up to four stages.

example 6
Find the negative root of x

3
 – 7x + 3 by the bisection method up to three 

decimal places.

Solution

Let     f (x) = x3 – 7x + 3

  f (–2) = 9 and f (–3) = –3

Since f (–2) > 0 and f (–3) < 0, the root lies between –2 and –3.

  

1

1

2 3
2.5

2

( ) ( 2.5) 4.875

x

f x f

- -
= = -

= - =

Since f (–2.5) > 0 and f (–3) < 0, the root lies between –2.5 and –3.

 

2

2

2.5 3
2.75

2

( ) ( 2.75) 1.4531

x

f x f

- -
= = -

= - =

Since f (–2.75) > 0 and f (–3) < 0, the root lies between –2.75 and –3.

 

3

3

2.75 3
2.875

2

( ) ( 2.875) 0.6387

x

f x f

- -
= = -

= - = -
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Since f (–2.875) < 0 and f (–2.75) > 0, the root lies between –2.875 and –2.75.

 

4

4

2.875 2.75
2.8125

2

( ) ( 2.8125) 0.4402

x

f x f

- -
= = -

= - =

Since f (–2.8125) > 0 and f (–2.875) < 0, the root lies between –2.8125 and –2.875.

 

5

5

2.8125 2.875
2.8438

2

( ) ( 2.8438) 0.0918

x

f x f

- -
= = -

= - = -

Since f (–2.8438) < 0 and f (–2.8125) > 0, the root lies between –2.8438 and –2.8125.

 

6

6

2.8438 2.8125
2.8282

2

( ) ( 2.8282) 0.1754

x

f x f

- -
= = -

= - =

Since f (–2.8282) > 0 and f (–2.8438) < 0, the root lies between –2.8282 and –2.8438.

 

7

7

2.8282 2.8438
2.836

2

( ) ( 2.836) 0.0423

x

f x f

- -
= = -

= - =

Since f (–2.836) > 0 and f (–2.8438) < 0, the root lies between –2.836 and –2.8438.

 

8

8

2.836 2.8438
2.8399

2

( ) ( 2.8399) 0.0246

x

f x f

- -
= = -

= - = -

Since f (–2.8399) < 0 and f (–2.836) > 0, the root lies between –2.8399 and –2.836.

 

9

9

2.8399 2.836
2.838

2

( ) ( 2.838) 0.0081

x

f x f

- -
= = -

= - =

Since f (–2.838) > 0 and f (–2.8399) < 0, the root lies between –2.838 and –2.8399.

  
10

2.838 2.8399
2.8389

2
x

- -
= = -

Since x9 and x10 are same up to three decimal places, the negative root is –2.838.

example 7
Perform three iterations of the bisection method to obtain the root of the 

equation 2 sin x – x = 0, correct up to three decimal places.

 [Summer 2015]
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Solution

 Let  f (x) = 2 sin x – x

   f (1) = 0.6829 and f (2) = – 0.1814

Since f (1) > 0 and f (2) < 0, the root lies between 1 and 2.

  

1

1

1 2
1.5

2

( ) (1.5) 0.4949

x

f x f

+
= =

= =

Since f (1.5) > 0 and f (2) < 0, the root lies between 1.5 and 2.

 

2

2

1.5 2
1.75

2

( ) (1.75) 0.2179

x

f x f

+
= =

= =

Since f (1.75) > 0 and f (2) < 0, the root lies between 1.75 and 2.

   
3

1.75 2
1.875

2
x

+
= =

Hence, the root is 1.875 up to three iterations.

example 8
Solve x = cos x by the bisection method correct to two decimal places.

 [Summer 2014]

Solution

Let  f (x) = x – cos x

   f (0) = –1 and f (1) = 0.4597

Since f (0) < 1 and f (1) > 0, the root lies between 0 and 1.

  

1

1

0 1
0.5

2

( ) (0.5) 0.3776

x

f x f

+
= =

= = -

Since f (0.5) < 0 and f (1) > 0, the root lies between 0.5 and 1.

 

2

2

0.5 1
0.75

2

( ) (0.75) 0.0183

x

f x f

+
= =

= =

Since f (0.75) > 0 and f (0.5) < 0, the root lies between 0.75 and 0.5.

 

3

3

0.75 0.5
0.625

2

( ) (0.625) 0.186

x

f x f

+
= =

= = -
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Since f (0.625) < 0 and f (0.75) > 0, the root lies between 0.625 and 0.75.

 

4

4

0.625 0.75
0.6875

2

( ) (0.6875) 0.0853

x

f x f

+
= =

= = -

Since f (0.6875) < 0 and f (0.75) > 0, the root lies between 0.6875 and 0.75.

 

5

5

0.6875 0.75
0.71875

2

( ) (0.71875) 0.0338

x

f x f

+
= =

= = -

Since f (0.71875) < 0 and f (0.75) > 0, the root lies between 0.71875 and 0.75.

 

6

6

0.71875 0.75
0.7344

2

( ) (0.7344) 0.0078

x

f x f

+
= =

= = -

Since f (0.7344) < 0 and f (0.75) > 0, the root lies between 0.7344 and 0.75.

 

7

7

0.7344 0.75
0.7422

2

( ) (0.7422) 0.0052

x

f x f

+
= =

= =

Since f (0.7422) > 0 and f (0.7344) < 0, the root lies between 0.7422 and 0.7344.

 

8

8

0.7422 0.7344
0.7383

2

( ) (0.7383) 0.0013

x

f x f

+
= =

= = -

Since f (0.7383) < 0 and f (0.7422) > 0, the root lies between 0.7383 and 0.7422.

 

9

9

0.7383 0.7422
0.74025

2

( ) (0.74025) 0.00195

x

f x f

+
= =

= =

Since f (0.74025) > 0 and f (0.7383) < 0, the root lies between 0.74025 and 0.7383.

 

10

10

0.74025 0.7383
0.7393

2

( ) (0.7393) 0.0004

x

f x f

+
= =

= =

Since f (0.7393) > 0 and f (0.7383) < 0, the root lies between 0.7393 and 0.7383.

 
11

0.7393 0.7383
0.7388

2
x

+
= =

Since x 10 and x11 are the same up to two decimal places, the root is 0.73.
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example 9
Find a real root between 0 and 1 of the equation e

–x
 – x = 0, correct up 

to three decimal places.

Solution

Let f (x) = e–x – x

 f (0) = 1 and f (1) = – 0.63

Since f (0) > 0 and f (1) < 0, the root lies between 0 and 1.

        

1

1

0 1
0.5

2

( ) (0.5) 0.1065

x

f x f

+
= =

= =

Since f (0.5) > 0 and f (1) < 0, the root lies between 0.5 and 1.

 

2

2

0.5 1
0.75

2

( ) (0.75) 0.2776

x

f x f

+
= =

= = -

Since f (0.75) < 0 and f (0.5) > 0, the root lies between 0.75 and 0.5.

 

3

3

0.75 0.5
0.625

2

( ) (0.625) 0.0897

x

f x f

+
= =

= = -

Since f (0.625) < 0 and f (0.5) > 0, the root lies between 0.625 and 0.5.

 

4

3
4

0.625 0.5
0.5625

2

( ) (0.5625) 7.28 10

x

f x f
-

+
= =

= = ¥

Since f (0.5625) > 0 and f (0.625) < 0, the root lies between 0.5625 and 0.625.

 

5

5

0.5625 0.625
0.5938

2

( ) (0.5938) 0.0416

x

f x f

+
= =

= = -

Since f (0.5938) < 0 and f (0.5625) > 0, the root lies between 0.5938 and 0.5625.

 

6

6

0.5938 0.5625
0.5782

2

( ) (0.5782) 0.0173

x

f x f

+
= =

= = -

Since f (0.5782) < 0 and f (0.5625) > 0, the root lies between 0.5782 and 0.5625.

 

7

3
7

0.5782 0.5625
0.5704

2

( ) (0.5704) 5.1007 10

x

f x f
-

+
= =

= = - ¥
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Since f (0.5704) < 0 and f (0.5625) > 0, the root lies between 0.5704 and 0.5625.

 

8

3
8

0.5704 0.5625
0.5665

2

( ) (0.5665) 1.008 10

x

f x f
-

+
= =

= = ¥

Since f (0.5665) > 0 and f (0.5704) < 0, the root lies between 0.5665 and 0.5704.

 

9

3
9

0.5665 0.5704
0.5685

2

( ) (0.5685) 2.1256 10

x

f x f
-

+
= =

= = - ¥

Since f (0.5685) < 0 and f (0.5665) > 0, the root lies between 0.5685 and 0.5665.

 

10

4
10

0.5685 0.5665
0.5675

2

( ) (0.5675) 5.5898 10

x

f x f
-

+
= =

= = - ¥

Since f (0.5675) < 0 and f (0.5665) > 0, the root lies between 0.5675 and 0.5665.

  
11

0.5675 0.5665
0.567

2
x

+
= =

Since x10 and x11 are the same up to three decimal places, the root is 0.567.

example 10
Find the root of cos x – xe

x
 = 0 in four steps.

Solution

Let  f (x) = cos x – xe
x

   f (0) = 1 and f (1) = –2.18

Since f (0) > 0 and f (1) < 0, the root lies between 0 and 1.

       

1

1

0 1
0.5

2

( ) (0.5) 0.0532

x

f x f

+
= =

= =

Since f (0.5) > 0 and f (1) < 0, the root lies between 0.5 and 1.

 

2

2

0.5 1
0.75

2

( ) (0.75) 0.8561

x

f x f

+
= =

= = -

Since f (0.75) < 0 and f (0.5) > 0, the root lies between 0.75 and 0.5.

 

3

3

0.75 0.5
0.625

2

( ) (0.625) 0.3567

x

f x f

+
= =

= = -
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Since f (0.625) < 0 and f (0.5) > 0, the root lies between 0.625 and 0.5.

 

4

4

0.625 0.5
0.5625

2

( ) (0.5625) 0.1413

x

f x f

+
= =

= = -

Since f (0.5625) < 0 and f (0.5) > 0, the root lies between 0.5625 and 0.5.

   
5

0.5625 0.5
0.53125

2
x

+
= =

Hence, the root is 0.53125 in four steps.

exercIse 2.1

Find a positive root of the following equations correct to four decimal 
places using the bisection method:

 1. - - =3 4 9 0x x

 [Ans.: 2.7065]

 2. + - =3 3 1 0x x

 [Ans.: 0.3222]

 3. + - =3 2 1 0x x

 [Ans.: 0.7549]

 4. - - - - =4 3 2 6 4 0x x x x

 [Ans.: 2.5528]

 5. = +3 1 sinx x

 [Ans.: 0.3918]

 6. = +3 cos 1x x

 [Ans.: 0.6071]

 7. - =cos 0x x

 [Ans.: 0.7391]

 8. = 1xxe

 [Ans.: 0.5671]

 9. =
10

log 1.2 lying between 2 and 3x x

 [Ans.: 2.7406]



2.3 Regula Falsi Method        2.15

2.3 regulA FAlsI Method

This method resembles the bisection method. In this method, two points x0 and x1 

are chosen such that f (x0) and f (x1) are of opposite signs, i.e., the graph of y = f (x) 

crosses the x-axis between these points. Hence, a root lies between x0 and x1 and 

f (x0) f (x1) < 0 (Fig. 2.2).

The equation of the chord joining the points 

0 0 1 1[ , ( )] and [ , ( )]P x f x Q x f x  is

1 0
0 0

1 0

( ) ( )
( ) ( )

f x f x
y f x x x

x x

-
- = -

-

In this method, the curve PQ is replaced by 

the chord PQ and the point of intersection of 

the chord with the x-axis is taken as an 

approximation to the root.

If x2 is the point of intersection of the 

x-axis and the line joining P[x0, f (x0) and 

Q[x1, f (x1)] then x2 is closer to the root a 

than x0 and x1.

Using the slope formula,

     

1 0 2 0 0

1 0 2 0 2 0

1 0
2 0 0

1 0

1 0
2 0 0

1 0

( ) ( ) ( ) ( ) 0 ( )

( )
( ) ( )

( )
( ) ( )

f x f x f x f x f x
m

x x x x x x

x x
x x f x

f x f x

x x
x x f x

f x f x

- - -
= = =

- - -

-
- = -

-

-
= -

-

which is an approximation to the root.

If f (x0) and f (x2) are of opposite signs, the root lies between x0 and x2, and the next 

approximation x3 is obtained as

     

2 0
3 0 0

2 0

( )
( ) ( )

x x
x x f x

f x f x

-
= -

-

If the root lies between x1 and x2, the next approximation x3 is obtained as

     

1 2
3 2 2

1 2

( )
( ) ( )

x x
x x f x

f x f x

-
= -

-

This process is repeated till the root is obtained to the desired accuracy. This iteration 

process is known as the method of false position or regula falsi method.

Fig. 2.2
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example 1
Find a positive root of x

3 – 4x + 1 correct up to three decimal places.

 [Summer 2015]

Solution

Let   f (x) = x3 – 4x + 1

        f (0) = 1 and f (1) = –2

Since f (0) > 0 and f (1) < 0, the root lies between 0 and 1.

Let x0 = 0,    x1 = 1

 

1 0
2 0 0

1 0

2

( )
( ) ( )

1 0
0 (1)

2 1

0.3333

( ) (0.3333) 0.2962

x x
x x f x

f x f x

f x f

-
= -

-

-
= -

- -
=
= = -

Since f (0.3333) < 0 and f (0) > 0, the root lies between 0.3333 and 0, i.e., x2 and x0.

 

2 0
3 0 0

2 0

3

( )
( ) ( )

0.3333 0
0 (1)

0.2962 1

0.2571

( ) (0.2571) 0.0114

x x
x x f x

f x f x

f x f

-
= -

-

-
= -

- -
=
= = -

Since f (0.2571) < 0 and f (0) > 0, the root lies between 0.2571 and 0, i.e., x3 and x0.

 

3 0
4 0 0

3 0

4

( )
( ) ( )

0.2571 0
0 (1)

0.0114 1

0.2542

( ) (0.2542) 0.0004

x x
x x f x

f x f x

f x f

-
= -

-

-
= -

- -
=
= = -

Since f (0.2542) < 0 and f (0) > 0, the root lies between 0.2542 and 0, i.e., x4 and x0.

   

4 0
5 0 0

4 0

( )
( ) ( )

0.2542 0
0 (1)

0.0004 1

0.2541

x x
x x f x

f x f x

-
= -

-

-
= -

- -
=
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Since x4 and x5 are same up to three decimal places, a positive root is 0.254.

example 2
Find the root of the equation 2x – log10x = 7, which lies between 3.5 and 

4, correct up to five places of decimal.

Solution

Let    f (x) = 2x – log10x – 7

 f (3.5) = –0.54407 and f (4) = 0.39794

Since f (3.5) < 0 and f (4) > 0, the root lies between 3.5 and 4.

Let x0 = 3.5,   x1 = 4

 

1 0
2 0 0

1 0

2

( )
( ) ( )

4 3.5
3.5 ( 0.54407)

0.39794 0.54407

3.78878

( ) (3.78878) 0.00094

x x
x x f x

f x f x

f x f

-
= -

-

-
= - -

+
=
= = -

Since f (3.78878) < 0 and f (4) > 0, the root lies between 3.78878 and 4, i.e., x2 and x1.

 

1 2
3 2 2

1 2

3

( )
( ) ( )

4 3.78878
3.78878 ( 0.00094)

0.39794 0.00094

3.78928

( ) (3.78928) 0.000003

x x
x x f x

f x f x

f x f

-
= -

-

-
= - -

+
=
= =

Since f (3.78928) > 0 and f (3.78878) < 0, the root lies between 3.78928 and 3.78878, 

i.e., x3 and x2.

   

3 2
4 2 2

3 2

( )
( ) ( )

3.78928 3.78878
3.78878 ( 0.00094)

0.000003 0.00094

3.78928

x x
x x f x

f x f x

-
= -

-

-
= - -

+
=

Since x3 and x4 are same up to five decimal places, the root is 3.78928.
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example 3
Find a real root of the equation x log10 x = 1.2 by the regula falsi method.

 [Summer 2015]

Solution

Let    f (x) = x log10x – 1.2

    f (2) = – 0.5979 and f (3) = 0.2314

Since f (2) < 0 and f (3) > 0, the root lies between 2 and 3.

Let x0 = 2,    x1 = 3

 

1 0
2 0 0

1 0

2

( )
( ) ( )

3 2
2 ( 0.5979)

0.2314 0.5979

2.721

( ) (2.721) 0.0171

x x
x x f x

f x f x

f x f

-
= -

-

-
= - -

+
=
= = -

Since f (2.721) < 0 and f (3) > 0, the root lies between 2.721 and 3, i.e., x2 and x1.

  

1 2
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3

( )
( ) ( )
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( ) (2.7402) 0.0004

x x
x x f x

f x f x
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-
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-

-
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+
=
= = -

Since f (2.7402) < 0 and f (3) > 0, the root lies between 2.7402 and 3, i.e., x3 and x1.

   

3 1
4 1 1

3 1

( )
( ) ( )
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3 (0.2314)
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x x
x x f x

f x f x

-
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-

-
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- -
=

Since x3 and x4 are same up to three decimal places, a real root is 2.740.

example 4
Solve the equation x tan x = –1, starting with x0 = 2.5 and x1 = 3, correct 

up to three decimal places.
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Solution

Let  f (x) = x tan x + 1

       f (2.5) = – 0.8676 and f (3) = 0.5724

Since f (2.5) < 0 and f (3) > 0, the root lies between 2.5 and 3.

Let x0 = 2.5,    x1 = 3
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2 0 0

1 0

2

( )
( ) ( )

3 2.5
2.5 ( 0.8676)
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( ) (2.8013) 0.0082

x x
x x f x

f x f x

f x f

-
= -

-

-
= - -

+
=
= =

Since f (2.8013) > 0 and f (2.5) < 0, the root lies between 2.8013 and 2.5, i.e., x2 and 

x0.
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2.5 ( 0.8676)
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x x
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-
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-

-
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+
=
= =

Since f (2.7985) > 0 and f (2.5) < 0, the root lies between 2.7985 and 2.5, i.e., x3 and 

x0.

   

3 0
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( )
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x x
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-
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-

-
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+
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Since x3 and x4 are same up to three decimal places, the root is 2.798.

example 5
Find the real root of the equation log10 x – cos x = 0, correct to four 

decimal places.

Solution

Let      f (x) = log10x – cos x

    f (1) = – 0.5403 and f (1.5) = 0.10535

Since f (1) < 0 and f (1.5) > 0, the root lies between 1 and 1.5.
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Let x0 = 1,     x1 = 1.5

 

1 0
2 0 0

1 0

2
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( ) ( )

1.5 1
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1.41842
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x x
x x f x

f x f x

f x f

-
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-

-
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+
=
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Since f (1.41842) > 0 and f (1) < 0, the root lies between 1.41842 and 1, i.e., x2 and x0.

   

2 0
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( )
( ) ( )
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1.41840

x x
x x f x
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-
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-

-
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+
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Since x2 and x3 are same up to four decimal places, the real root is 1.4184.

example 6
Find the smallest root of  an equation x – e

–x
 = 0 correct to three 

significant digits. [Summer 2015]

Solution

Let  f (x) = x – e–x

  f (0) = –1 and f (1) = 0.6321

Since f (0) < 0 and f (1) > 0, the root lies between 0 and 1.

Let x0 = 0,    x1 = 1
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-
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-

-
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+
=
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Since f (0.6127) > 0 and f (0) < 0, the root lies between 0.6127 and 0, i.e., x2 and x0.
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Since f (0.5722) > 0 and f (0) < 0, the root lies between 0.5722 and 0, i.e., x3 and x0.

 

3 0
4 0 0

3 0

4

( )
( ) ( )

0.5722 0
0 ( 1)

0.0079 1

0.5677

( ) (0.5677) 0.0009

x x
x x f x

f x f x

f x f

-
= -

-

-
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+
=
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Since f (0.5677) > 0 and f (0) < 0, the root lies between 0.5677 and 0, i.e., x4 and x0.

   

4 0
5 0 0

4 0

( )
( ) ( )

0.5677 0
0 ( 1)

0.0009 1
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x x
x x f x

f x f x

-
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-

-
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+
=

Since x4 and x5 are same up to three significant digits, a positive root is 0.567.

example 7
Find the root of the equation cos x – xe

x
 = 0 correct up to three decimal 

places, lying between 0.5 and 0.7.

Solution

Let  f (x) = cos x – xe
x

  f (0.5) = 0.0532 and f (0.7) = – 0.6448

Since f (0.5) > 0 and f (0.7) < 0, the root lies between 0.5 and 0.7.

Let x0 = 0.5,     x1 = 0.7

 

1 0
2 0 0

1 0

2

( )
( ) ( )

0.7 0.5
0.5 (0.0532)
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x x
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f x f x

f x f

-
= -

-

-
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=
= =

Since f (0.5152) > 0 and f (0.7) < 0, the root lies between 0.5152 and 0.7, i.e., x2 and x1.
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Since f (0.5174) > 0 and f (0.7) < 0, the root lies between 0.5174 and 0.7, i.e., x3 and 

x1.

  

1 3
4 3 3

1 3

( )
( ) ( )

0.7 0.5174
0.5174 (0.0011)

0.6448 0.0011

0.5177

x x
x x f x

f x f x

-
= -

-

-
= -

- -
=

Since x3 and x4 are same up to three decimal places, the root is 0.517.

exercIse 2.2

Find a real root of the following equations correct to three decimal places 
using the regula falsi method:

 1. + - =3 1 0x x

 [Ans.: 0.682]

 2. - - =3 4 9 0x x

 [Ans.: 2.707]

 3. - - =3 5 7 0x x

 [Ans.: 2.747]

 4. =3 3xe

 [Ans.: 1.050]

 5. 
- - =sin 0xe x

 [Ans.: 0.5885]

 6. = +2 cos 3x x

 [Ans.: 1.524]

 7. - =2 log 12
e

x x

 [Ans.: 3.646]

 8. = 3xe x

 [Ans.: 1.512]

2.4 newton—rAphson Method

Let f (x) = 0 be the given equation and x0 be an approximate root of the equation. If 

x1 = x0 + h be the exact root then f (x1) = 0.

i.e.,            f (x0 + h) = 0
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2

0 0 0( ) ( ) ( ) 0
2!

h
f x hf x f x+ + + =¢ ¢¢   [By Taylor’s series]

Since h is small, neglecting h2 and higher powers of h,

\   

0 0

0

0

0
1 0 0

0

( ) ( ) 0

( )

( )

( )

( )

f x h f x

f x
h

f x

f x
x x h x

f x

+ =¢

= -
¢

= + = -
¢

Similarly, starting with x1, a still better approximation x2 is obtained.

In general,  

1
2 1

1

1

( )

( )

( )

( )

n
n n

n

f x
x x

f x

f x
x x

f x
+

= -
¢

= -
¢

This equation is known as the Newton–Raphson formula or Newton’s iteration 

formula.

2.4.1 geometrical Interpretation

Let x0 be a point near the root a of the 

equation f (x) = 0 (Fig. 2.3). The equation of 

the tangent at P0[x0, f(x0)] is

0 0 0( ) ( )( )y f x f x x x- = -¢

This line cuts the x-axis at x1.

         

0
1 0

0

( )

( )

f x
x x

f x
= -

¢

which is a first approximation to the root a.

If P1 is the point corresponding to x1 on the curve then the tangent at P1 will cut the 

x-axis at x2 which is nearer to a and is the second approximation to the root. Repeating 

this process, the root a is approached quite rapidly. Thus, this method consists of 

replacing the part of the curve between the point P0 and the x-axis by means of the 

tangent to the curve at P0.

2.4.2 convergence of the newton—raphson Method

By the Newton–Raphson method,

  1

( )
( )

( )

n
n n n

n

f x
x x x

f x
f+ = - =

¢
 ...(2.1)

Fig. 2.3
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The Newton–Raphson method converges if |f¢(x)| < 1.

  

[ ]
[ ] [ ]

[ ]
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( )

( ) ( ) ( ) ( ) ( )
( ) 1
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f x f x f x f x f x
x

f x f x

f x f x
x

f x

f

f

f

= -
¢

È ˘-¢ ¢¢ ¢¢Í ˙= - =¢
Í ˙¢ ¢Î ˚

¢¢
=¢

¢

Hence, the Newton–Raphson method converges if

  

[ ]
[ ]

2

2

( ) ( )
1

( )

( ) ( ) ( )

f x f x

f x

f x f x f x

¢¢
<

¢

<¢¢ ¢  ...(2.2)

If a is the actual root of f (x) = 0, a small interval should be selected in which f (x),  f¢ (x) 

and f¢¢ (x) are all continuous and the condition given by Eq. (2.2) is satisfied.

Hence, the Newton–Raphson method always converges provided the initial 

approximation x0 is taken very close to the actual root a.

2.4.3  rate of convergence of the newton—raphson 
Method

Let a be exact root of f (x) = 0 and let xn, xn + 1 be two successive approximations to the 

actual root. If Œn and Œn  + 1 are the corresponding errors then

    xn = a + Œn

   xn+1 = a + Œn+1

Substituting in Eq. (2.1),
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∵
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Neglecting the derivatives of order higher than two,
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ª

¢  ...(2.3)

Equation (2.3) shows that the error at each stage is proportional to the square of the 

error in the previous stage. Hence, the Newton–Raphson method has a quadratic con-

vergence and the convergence is of the order 2.

example 1
Find the root of the equation x

3
 + x – 1 = 0, correct up to four decimal 

places.

Solution

Let   f (x) = x3
 + x – 1

   f (0) = –1 and f (1) = 1

Since f (0) < 0 and f (1) > 0, the root lies between 0 and 1.

Let x0 = 1

     f¢ (x) = 3x
2 + 1

By the Newton–Raphson method,
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Since x3 and x4 are same up to four decimal places, the root is 0.6823.

example 2
Find a root of x

4 – x
3 + 10x + 7 = 0, correct up to three decimal places 

between –2 and –1 by the Newton–Raphson method.

Solution

Let      f (x) = x4 – x3
 + 10x + 7

The root lies between –2 and –1.

Let x0 = –2 

     f¢ (x) = 4x
3 – 3x

2 + 10

By the Newton–Raphson method,
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Since x4 and x5 are same up to three decimal places, a root is –1.453.
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example 3
Find the root of x

4
 – x – 10 = 0, correct up to three decimal places.

Solution

Let  f (x) = x4
 – x – 10

  f (1) = –10, and f (2) = 4

Since f (1) < 0 and f (2) > 0, the root lies between 1 and 2.

Let x0 = 2

    f¢ (x) = 4x
3 – 1

By the Newton–Raphson method,
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Since x2 and x3 are same up to three decimal places, the root is 1.855.
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example 4
Find the real root of x

 log10 x – 1.2 = 0, correct up to three decimal 

places. [Summer 2015]

Solution

Let  f (x) = x log10 x – 1.2

     f (1) = –1.2,  f (2) = – 0.5979 and f (3) = 0.2314

Since f (2) < 0 and f (3) > 0, the root lies between 2 and 3.

Let x0 = 3

   
10 10 10 10
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( ) log log log log 0.4343
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f x x x x e x
x

= + = + = +¢

By the Newton–Raphson method,
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Since x2 and x3 are the same up to three decimal places, the real root is 2.7406.
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example 5
Find a root between 0 and 1 of the equation e

x sin x = 1, correct up to 

four decimal places.

Solution

Let  f (x) = ex
 sin x – 1

   f (0) = –1 and f (1) = 1.28

Since f (0) < 0 and f (1) > 0, the root lies between 0 and 1.

Let x0 = 0

      f¢ (x) = ex (cos x + sin x)

By the Newton–Raphson method,
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Since x4 and x5 are the same up to four decimal places, the root is 0.5885.

example 6
Find the real root of the equation 3x = cos x + 1, correct up to four 

decimal places.

Solution

Let  f (x) = 3x – cos x – 1

   f (0) = –2 and f (1) = 1.4597

Since f (0) < 0 and f (1) > 0, the root lies between 0 and 1.

Let x0 = 1

     f¢ (x) = 3 + sin x

By the Newton–Raphson method,

 

1

0

0

0
1 0

0

( )

( )

( ) (1) 1.4597

( ) (1) 3.8415

( )

( )

1.4597
1

3.8415

0.62

n
n n

n

f x
x x

f x

f x f

f x f

f x
x x

f x

+ = -
¢

= =

= =¢ ¢

= -
¢

= -

=



2.32 Chapter 2 Roots of Equations

 

1

1

1
2 1

1

6
2

2

2
3 2

2

6

( ) (0.62) 0.0461

( ) (0.62) 3.5810

( )

( )

0.0461
0.62

3.5810

0.6071

( ) (0.6071) 5.8845 10

( ) (0.6071) 3.5705

( )

( )

5.8845 10
0.6071

3.5705

0.6071

f x f

f x f

f x
x x

f x

f x f

f x f

f x
x x

f x

-

-

= =

= =¢ ¢

= -
¢

= -

=

= = - ¥

= =¢ ¢

= -
¢

- ¥
= -

=

Since x2 and x3 are the same up to four decimal places, the real root is 0.6071.

example 7
Find the real positive root of the equation x sin x + cos x = 0, which is 

near x = p correct up to four significant digits. [Summer 2015]

Solution

Let  f (x) = x sin x + cos x

Let x0 = p
     f¢ (x) = x cos x + sin x – sin x = x cos x

By the Newton–Raphson method,
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Since x3 and x4 are same up to four decimal point, the root is 2.7983.

example 8
Find the positive root of x = cos x using Newton’s method correct to 

three decimal places.

Solution

Let  f (x) = x – cos x

  f (0) = –1 and f (1) = 0.4597

Since f (0) < 0 and f (1) > 0, the root lies between 0 and 1.

Let x0 = 1

 f¢ (x) = 1 + sin x
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By the Newton–Raphson method,
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Since x2 and x3 are same up to three decimal places, the root is 0.739.

example 9
Derive the iteration formula for N  and, hence, find

(i) 28  [Summer 2015]

(ii) 65  [Winter 2014]

(iii) 3  [Winter 2014]

correct up to three decimal places.
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Solution

Let      x = N

     x2
 – N = 0

Let  f (x) = x2 – N

           f¢ (x) = 2x

By the Newton–Raphson method,
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This is the iteration formula for N .

(i) For N = 28,      f (x) = x2 – 28

  f (5) = –3 and f (6) = 8

Since f (5) < 0 and f (6) > 0, the root lies between 5 and 6.

Let x0 = 5
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Since x2 and x3 are same up to three decimal places,

 28 5.2915=

(ii) For N = 65, f (x) = x2 – 65

  f (8) = –1 and f (9) = 16

Since f (8) < 0 and f (9) > 0, the root lies between 8 and 9.
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Let x0 = 8
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Since x1 and x2 are same up to three decimal places,

 65 8.0623=

(iii) For 
23, ( ) 3

(1) 2 and (2) 1

N f x x

f f

= = -
= - =

Since f (1) < 0 and f (2) > 0, the root lies between 1 and 2.

Let x0 = 2
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Since x2 and x3 are same up to three decimal places,

 3 1.7321=

example 10
Find an iterative formula for k N , where N is a positive number and 

hence, evaluate (i) 3 11 , and (ii) 3 58  [Summer 2015]

Solution

Let   x = k N

   xk
 – N = 0
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Let     f (x) = xk – N

    f¢ (x) = kx
k – 1

By the Newton–Raphson method,
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This is the iterative formula for k N .

(i) When N = 11 and k = 3,

  f (x) = x3 – 11

  f (2) = –3 and f (3) = 16

Since f (2) < 0 and f (3) > 0, the root lies between 2 and 3.

Let x0 = 3
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Since x3 and x4 are same up to four decimal places,

 
3 11 2.2240=

(ii) When N = 58 and k = 3,

   f (x) = x3 – 58

  f (3) = –31 and f (4) = 6

Since f (3) < 0 and f (4) > 0, the root lies between 3 and 4.
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Let x0 = 4
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Since x2 and x3 are same up to four decimal places,

 
3 58 3.8709=

exercIse 2.3

I.  Find the roots of the following equations using the newton–raphson 
method:

 1. x3 – x – 1 = 0

 [Ans.: 1.3247]

 2. x3 + 2x2 + 50x + 7 = 0 

 [Ans.: – 0.1407]

 3. x3 – 5x + 3 = 0 

 [Ans.: 0.6566]

 4. x4 – x – 9 = 0 

 [Ans.: 1.8134]

 5. cos x – xex = 0 

 [Ans.: 0.5177]

 6. x log10 x = 4.772393 

 [Ans.: 6.0851]

 7. x – 2sin x = 0 

 [Ans.: 1.8955]

 8. x tan x = 1.28 

 [Ans.: 6.4783]

 9. cos x = x2 

 [Ans.: 0.8241]
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II. Find the values of the following:

 1. 35  

 [Ans.: 5.916]

 2. 3 24  

 [Ans.: 2.884]

 3. 
1

14
 

 [Ans.: 0.2673]

2.5 secAnt Method

The Newton–Raphson method requires the evaluation of two functions (the function 

and its derivative) per iteration. For complicated expressions, the method takes a large 

amount of time. Hence, it is desirable to have a method that converges as fast as the 

Newton–Raphson method but involves 

only evaluation of the function.

Let f (x) = 0 be the given equation. Let 

x0 and x1 be the approximate roots of the 

equation f (x) = 0 and f (x0) and f (x1) are 

their function values respectively. If x2 is 

the point of intersection of the x-axis and 

the line joining points P[x0, f (x0)] and 

Q[x1, f(x1)] then x2 is closer to the root a 

than x0 and x1 (Fig. 2.4).

Using the slope formula,
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Using x1 and x2, the process is repeated to obtain x3.

In general,
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This method is similar to the regula falsi method. This method starts with two initial 

approximations x0 and x1 and calculates x2 by the same formula as in the regula falsi 

Fig. 2.4
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method but proceeds to the next iteration without considering any root bracketing, i.e., 

the condition f (x0) f (x1) < 0.

convergence of the secant Method

By the Secant method,
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Let a be the exact root of f (x) = 0 and let xn, xn + 1 be two successive approximations 

to the actual root.

If Œn, Œn – 1, are the corresponding error then
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Equation (2.5) is a nonlinear difference equation which can be solved by letting 
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Substituting in Eq. (2.6),
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Hence, the rate of convergence of the secant method is 1.618 which is lesser than 

the Newton–Raphson method. The secant method evaluates the function only once in 

each iteration, whereas the Newton–Raphson method evaluates two functions f (x) and 

f ¢ (x) in each iteration. Hence, the secant method is more efficient than the Newton–

Raphson method.

example 1
Find the approximate root of x

3 – 2x – 1 = 0, starting from x0 = 1.5, 

x1 = 2, correct up to three decimal places.

Solution

Let   f (x) = x3 – 2x – 1
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   x0 = 1.5, x1 = 2

       f (x0) = f (1.5) = – 0.625 and f (x1) = f(2) = 3

By the secant method,
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Since x4 and x5 are same up to three decimal places, the root is 1.618.

example 2
Find the approximate root of the equation x

3 + x2 – 3x – 3 = 0, correct 

up to five decimal places.

Solution

Let f (x) = x3 + x2 – 3x – 3 = 0
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Let   x0 = 1, x1 = 2

          f (x0) = f (1) = –4 and f (x1) = f(2) = 3

By the secant method,
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Since x6 and x7 are same up to five decimal places, the root is 1.73205.

example 3
Find the root of x log10 x – 1.9 = 0, correct up to three decimal places 

with x0 = 3 and x1 = 4.

Solution

Let     f (x) = x log10 x – 1.9

   x0 = 3, x1 = 4

 f (x0) = f(3) = – 0.4686 and f (x1) = f(4) = 0.5082

By the secant method,

 

1
1

1

1 0
2 1 1

1 0

2

2 1
3 2 2

2 1

3

( )
( ) ( )

( )
( ) ( )

4 3
4 (0.5082)

0.5082 0.4686

3.4797

( ) (3.4797) 0.0156

( )
( ) ( )

3.4797 4
3.4797 ( 0.0156)

0.0156 0.5082

3.4952

( ) (3.

n n
n n n

n n

x x
x x f x

f x f x

x x
x x f x

f x f x

f x f

x x
x x f x

f x f x

f x f

-
+

-

-
= -

-

-
= -

-

-
= -

+
=
= = -

-
= -

-

-
= - -

- -
=
=

3 2
4 3 3

3 2

4952) 0.0005

( )
( ) ( )

3.4952 3.4797
3.4952 ( 0.0005)

0.0005 0.0156

3.4957

x x
x x f x

f x f x

= -

-
= -

-

-
= - -

- +
=

Since x3 and x4 are same up to three decimal places, the root is 3.495.
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example 4
Find the positive solution of x – 2 sin x = 0, correct up to three decimal 

places starting from x0 = 2 and x1 = 1.9. [Summer 2014]

Solution

Let     f (x) = x – 2 sin x

   x0 = 2, x1 = 1.9

 f (x0) = f(2) = 0.1814 and f (x1) = f(1.9) = 0.0074

By the secant method,

  

1
1

1

( )
( ) ( )

n n
n n n

n n

x x
x x f x

f x f x

-
+

-

-
= -

-

 

1 0
2 1 1

1 0

2

2 1
3 2 2

2 1

( )
( ) ( )

1.9 2
1.9 (0.0074)

0.0074 0.1814

1.8957

( ) (1.8957) 0.00034

( )
( ) ( )

1.8957 1.9
1.8957 (0.00034)

0.00034 0.0074

1.8955

x x
x x f x

f x f x

f x f

x x
x x f x

f x f x

-
= -

-

-
= -

-
=
= =

-
= -

-

-
= -

-
=

Since x2 and x3 are same up to three decimal places, the positive root is 1.895.

example 5
Solve xe

x  – 1 = 0, correct up to three decimal places between 0 and 1.

Solution

Let     f (x) = xe
x – 1

Let    x0 = 0, x1 = 1

  f (x0) = f(0) = –1 and f (x1) = f(1) = 1.7183

By the secant method,

 

1
1

1

( )
( ) ( )

n n
n n n

n n

x x
x x f x

f x f x

-
+

-

-
= -

-
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1 0
2 1 1

1 0

2

2 1
3 2 2

2 1

( )
( ) ( )

1 0
1 (1.7183)

1.7183 1

0.3679

( ) (0.3679) 0.4685

( )
( ) ( )

0.3679 1
0.3679 ( 0.4685)

0.4685 1.7183

0.5033

x x
x x f x

f x f x

f x f

x x
x x f x

f x f x

-
= -

-

-
= -

+
=
= = -

-
= -

-

-
= - -

- -
=

 

3

3 2
4 3 3

3 2

4

4 3
5 4 4

4 3

5

( ) (0.5033) 0.1675

( )
( ) ( )

0.5033 0.3679
0.5033 ( 0.1675)

0.1675 0.4685

0.5786

( ) (0.5786) 0.032

( )
( ) ( )

0.5786 0.5033
0.5786 (0.032)

0.032 0.1675

0.5665

(

f x f

x x
x x f x

f x f x

f x f

x x
x x f x

f x f x

f x

= = -

-
= -

-

-
= - -

- +
=
= =

-
= -

-

-
= -

+
=

5 4
6 5 5

5 4

6

6 5
7 6 6

6 5

) (0.5665) 0.0018

( )
( ) ( )

0.5665 0.5786
0.5665 ( 0.0018)

0.0018 0.032

0.5671

( ) (0.5671) 0.0001

( )
( ) ( )

0.5671 0.5665
0.5671 ( 0.0001)

0.0001 0.0018

0.5671

f

x x
x x f x

f x f x

f x f

x x
x x f x

f x f x

= = -

-
= -

-

-
= - -

- -
=
= = -

-
= -

-

-
= - -

- +
=

Since x6 and x7 are same up to three decimal places, the root is 0.567.
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example 6
Find the root of cos x – xe

x  = 0, correct up to three decimal places.

Solution 

Let     f (x) = cos x – xe
x

Let    x0 = 0, x1 = 1

   f (x0) = f(0) = 1 and f (x1) = f(1) = –2.178

By the secant method,

    

1
1

1

1 0
2 1 1

1 0

2

2 1
3 2 2

2 1

3

( )
( ) ( )

( )
( ) ( )

1 0
1 ( 2.178)

2.178 1

0.3147

( ) (0.3147) 0.5198

( )
( ) ( )

0.3147 1
0.3147 (0.5198)

0.5198 2.178

0.4467

( ) (0.4467) 0.2

n n
n n n

n n

x x
x x f x

f x f x

x x
x x f x

f x f x

f x f

x x
x x f x

f x f x

f x f

-
+

-

-
= -

-

-
= -

-

-
= - -

- -
=
= =

-
= -

-

-
= -

+
=
= =

3 2
4 3 3

3 2

4

4 3
5 4 4

4 3

5

036

( )
( ) ( )

0.4467 0.3147
0.4467 (0.2036)

0.2036 0.5198

0.5317

( ) (0.5317) 0.0429

( )
( ) ( )

0.5317 0.4467
0.5317 ( 0.0429)

0.0429 0.2036

0.5169

( ) (0.5169) 0.00

x x
x x f x

f x f x

f x f

x x
x x f x

f x f x

f x f

-
= -

-

-
= -

-
=
= = -

-
= -

-

-
= - -

- -
=
= = 26
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5 4
6 5 5

5 4

6

6 5
7 6 6

6 5

( )
( ) ( )

0.5169 0.5317
0.5169 (0.0026)

0.0026 0.0429

0.5177

( ) (0.5177) 0.0002

( )
( ) ( )

0.5177 0.5169
0.5177 (0.0002)

0.0002 0.0026

0.5178

x x
x x f x

f x f x

f x f

x x
x x f x

f x f x

-
= -

-

-
= -

+
=
= =

-
= -

-

-
= -

-
=

Since x6 and x7 are same up to three decimal places, the root is 0.517.

exercIse 2.4

Find a real root of the following equations correct up to three decimal 
places using the secant method:

 1. x3 – 2x2 + 3x – 4 = 0

 [Ans.: 1.650]

 2. x3 + 3x2 – 3 = 0

 [Ans.: 0.879]

 3. ex – 4x = 0

 [Ans.: 0.357]

 4. sin x = ex – 3x

 [Ans.: 0.360]

 5. 2x – 7 – log10 x = 0

 [Ans.: 3.789]

 6. ex tan x = 1

 [Ans.: 3.183]

 7. 3x – 6 = log10 x

 [Ans.: 2.108]



2.6 Successive Approximation Method (Iteration Method)         2.49

2.6  successIve ApproxIMAtIon Method  
(IterAtIon Method)

Consider an equation f (x) = 0.

Rewriting the equation,

 x = f(x) ...(2.7)

Assuming x0 to be the starting approximate value to the actual root a of x = f(x), the 

first approximation is

 x1 = f(x0)

The second approximation is

 x2 = f(x1)

The third approximation is

 x3 = f(x2)

In general, the nth approximation is

 xn + 1 = f(xn),  n = 0, 1, 2, ...

The sequence of approximate roots x1, x2, ..., xn if it converges to a is taken as the root 

of the equation f (x) = 0.

condition for the convergence

Let I be the interval containing the root x = a of the equation x = f(x). If ( ) 1xf <¢  for 

all x in I then the sequence of approximations x0, x1, x2, ..., xn will converge to a, if the 

initial starting value x0 is chosen in I.

example 1
Find the positive root of an equation x

3 + x2 – 1 = 0 by the iteration 

method correct up to four decimal places. [Summer 2015]

Solution

Let f (x) = x3 + x2 – 1

 f (0) = –1 and f (1) = 1

Since f (0) < 0 and f (1) > 0, the root lies between 0 and 1.

Rewriting the equation,

 

3 2

2

2

2

1 0

( 1) 1 0

( 1) 1

1

1

x x

x x

x x

x
x

+ - =

+ - =

+ =

=
+
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1
( )

1
x x

x
f= =

+

 

3

2

1
( )

2( 1)

( ) 1 for 0 1

x

x

x x

f

f

=¢

+
< < <¢

Hence, the iteration method can be applied.

By the iteration method,

 

1

1
, 0,1, 2, ...

1
n

n

x n
x

+ = =
+

Let  x0 = 0.5

 

1 0

2 1

3 2

4 3

5 4

6 5

7 6

1
( ) 0.81649

0.5 1

1
( ) 0.74197

0.81649 1

1
( ) 0.75767

0.74197 1

1
( ) 0.75428

0.75767 1

1
( ) 0.75501

0.75428 1

1
( ) 0.75485

0.75501 1

1
( ) 0.75489

0.75485 1

x x

x x

x x

x x

x x

x x

x x

f

f

f

f

f

f

f

= = =
+

= = =
+

= = =
+

= = =
+

= = =
+

= = =
+

= = =
+

Since x6 and x7 are same up to four decimal places, the positive root is 0.7548.

example 2
Find  a real root of x

3 – x – 1 = 0 correct to three decimal places by the 

iteration method.

Solution

Let f (x) = x3 – x – 1

 f (1) = –1  and  f (2) = 5

Since f (1) < 0 and f (2) > 0, the root lies between 1 and 2.
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Rewriting the equation,

 

3

3

1

3

2

3

1 0

1

( 1) ( )

1
( ) ( 1)

3

( ) 1 for 1 2

x x

x x

x x x

x x

x x

f

f

f

-

- - =

= +

= + =

= +¢

< < <¢

Hence, the iteration method can be applied.

By the iteration method,

 

1

3
1 ( 1) , 0, 1, 2, ...n nx x n+ = + =

Let  x0 = 1.2

 

1

3
1 0

1

3
2 1

1

3
3 2

1

3
4 3

1

3
5 4

( ) (1.2 1) 1.3006

( ) (1.3006 1) 1.3201

( ) (1.3201 1) 1.3238

( ) (1.3238 1) 1.3245

( ) (1.3245 1) 1.3247

x x

x x

x x

x x

x x

f

f

f

f

f

= = + =

= = + =

= = + =

= = + =

= = + =

Since x4 and x5 are same up to three decimal places, the real root is 1.324.

example 3
Find the root of the equation 2x – log10x – 7 = 0 correct up to four 

decimal places using the iteration method. [Winter 2012]

Solution

Let f (x) = 2x – log10x – 7

 f (3) = –1.4471  and  f (4) = 0.3979

Since f (3) < 0 and f (4) > 0, the root lies between 3 and 4.

Rewriting the equation,

   2x – log10  x – 7 = 0

   
10

1
(log 7) ( )

2
x x xf= + =
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10

1 1
( ) log

2

( ) 1 for 3 4

x e
x

x x

f

f

Ê ˆ
=¢ Á ˜Ë ¯

< < <¢

Hence, the iteration method can be applied.

By the iteration method,

 1 10

1
(log 7), 0, 1, 2, ...

2
n nx x n+ = + =

Let  x0 = 3.6

 

1 0 10

2 1 10

3 2 10

4 3 10

1
( ) (log 3.6 7) 3.77815

2

1
( ) (log 3.77815 7) 3.78864

2

1
( ) (log 3.78864 7) 3.78924

2

1
( ) (log 3.78924 7) 3.78928

2

x x

x x

x x

x x

f

f

f

f

= = + =

= = + =

= = + =

= = + =

Since x3 and x4 are same up to four decimal places, the root is 3.7892.

example 4
Find a real root of the equation cos x + 1 = 3x correct up to three decimal 

places by the iteration method.

Solution

Let f (x) = cos x – 3x + 1

 f(0) = 2   and  3.7124
2

f
pÊ ˆ

= -Á ˜Ë ¯

Since f (0) > 0 and 0,
2

f
pÊ ˆ

<Á ˜Ë ¯
 the root lies between 0 and 

2

p
.

Rewriting the equation,

 

cos 3 1 0

1
(cos 1) ( )

3

sin
( )

3

sin
( ) 1 for 0

3 2

x x

x x x

x
x

x
x x

f

f

p
f

- + =

= + =

= -¢

= - < < <¢

Hence, the iteration method can be applied.
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By the iteration method,

       
1

1
(cos 1), 0, 1, 2, ...

3
n nx x n+ = + =

Let  x0 = 0.5

 

1 0

2 1

3 2

4 3

1
( ) (cos 0.5 1) 0.6258

3

1
( ) (cos 0.6258 1) 0.6035

3

1
( ) (cos 0.6035 1) 0.6078

3

1
( ) (cos 0.6078 1) 0.607

3

x x

x x

x x

x x

f

f

f

f

= = + =

= = + =

= = + =

= = + =

Since x3 and x4 are same up to three decimal places, the real root is 0.607.

example 5
Find a real root of e

–x = 10x correct to four decimal places by the 

iteration method.

Solution

Let f (x) = e–x – 10x

 f (0) = 1  and  f (1) = –9.6321

Since f (0) > 0 and f (1) < 0, the root lies between 0 and 1.

Rewriting the equation,

 

10 0

( )
10

( )
10

( ) 1 for 0 1
10

x

x

x

x

e x

e
x x

e
x

e
x x

f

f

f

-

-

-

-

- =

= =

= -¢

= - < < <¢

Hence, the iteration method can be applied.

By the iteration method,

 
1 , 0, 1, 2, ...

10

nx

n

e
x n

-

+ = =

Let x0 = 0.1
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0.1

1 0

0.09048

2 1

0.09135

3 2

0.09127

4 3

( ) 0.09048
10

( ) 0.09135
10

( ) 0.09127
10

( ) 0.09128
10

e
x x

e
x x

e
x x

e
x x

f

f

f

f

-

-

-

-

= = =

= = =

= = =

= = =

Since x3 and x4 are same up to four decimal places, the real root is 0.0912.

example 6
Find a positive root of 3 1 sin 0x x- + =  by the iteration method.

Solution

Let ( ) 3 1 sinf x x x= - +
 f (0) = –1  and  f (1) = 1.643

Since f (0) < 1 and f (1) > 0, the root lies between 0 and 1.

Rewriting the equation,

 

3 1 sin 0

1
1 sin ( )

3

cos
( )

6 1 sin

cos
( ) 1 for 0 1

6 1 sin

x x

x x x

x
x

x

x
x x

x

f

f

f

- + =

= + =

=¢
+

= < < <¢
+

Hence, the iteration method can be applied.

By the iteration method,

 
1

1
1 sin , 0, 1, 2, ...

3
n nx x n+ = + =

Let x0 = 0.4

 

1 0

2 1

3 2

1
( ) 1 sin (0.4) 0.39291

3

1
( ) 1 sin (0.39291) 0.39199

3

1
( ) 1 sin (0.39199) 0.39187

3

x x

x x

x x

f

f

f

= = + =

= = + =

= = + =



2.7 Descartes’ Rule of Signs        2.55

 
4 3

1
( ) 1 sin (0.39187) 0.39185

3
x xf= = + =

Since x3 and x4 are same up to four decimal places, the positive root is 0.3918.

exercIse 2.5

solve the following equations by the iteration method:

 1. x3 + x + 1 = 0

 [Ans.: –0.682]

 2. x3 + x2 – 100 = 0

 [Ans.: 4.3311]

 3. x3 + 2x2 + 10x – 20 = 0

 [Ans.: 1.3688]

 4. 
+

=
-

1
sin

1

x
x

x
 [Ans.: –0.4204]

 5. 2 sin x = x

 [Ans.: 1.8955]

 6. 3x – cos x – 2 = 0

 [Ans.: 0.879]

 7. 3x + sin x = ex

 [Ans.: 0.3604]

 8. 3x = 6 + log10x

 [Ans.: 2.108]

2.7 descArtes’ rule oF sIgns

Descartes’s rule of signs is another theorem that is often used to obtain information 

about the roots of a polynomial function. In Descartes’ rule of signs, the number of 

variations in the sign of the coefficients of a function f (x) or f (–x) refers to the sign 

changes in the coefficients from positive to negative or negative to positive in successive 

terms of the function. The terms are assumed to appear in order of descending powers 

of x.

Let 1 2
0 1 2 1( ) n n n

n nf x a x a x a x a x a
- -

-= + + + + +  be a polynomial function with real 

coefficients a0, a1, a2, ..., an and with the terms arranged in order of decreasing powers 

of x. The number of positive roots of f (x) = 0 is equal to the number of variations in the 

sign of f (x) or to that number decreased by an even integer. The number of negative 

roots of f (x) = 0 is equal to the number of variations in the sign of f (–x) or to that 

number decreased by an even integer.
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example 1
Use Descartes’ rule of signs to determine both the number of possible 

positive and negative roots of each polynomial function:

(i) f (x) = x4 – 5x
3 + 5x

2 + 5x – 6

(ii) f (x) = 2x
5 + 3x

3 + 5x
2 + 8x + 7

Solution

  

4 3 2

1 2 3

(i) ( ) 5 5 5 6f x x x x x= - + + -

 

  There are three variations in the sign of f (x). By Descartes’ rule of signs, there 

are either three or 3 – 2, i.e., one positive root of f (x) = 0.

   

4 3 2

4 3 2

1

( ) ( ) 5( ) 5( ) 5( ) 6

5 5 5 6

f x x x x x

x x x x

- = - - - + - + - -

= + + - -

  There is one variation in the sign of f (–x). By Descartes’ rule of signs, there is 

one negative root of f (x) = 0.

 (ii) 5 3 2( ) 2 3 5 8 7f x x x x x= + + + +

  There is no variation in the sign of f (x). Hence, there are no positive roots of 

f (x) = 0.

   

5 3 2

5 3 2

1 2 3

( ) 2( ) 3( ) 5( ) 8( ) 7

2 3 5 8 7

f x x x x x

x x x x

- = - + - + - + - +

= - - + - +

  There are three variations in the sign of f (–x). Hence, there are either three or 

3 – 2, i.e., one negative root of f (x) = 0.

example 2
Apply Descartes’ rule of signs to

 
5 4 3

5( ) 8 12 10 17 5 0P x x x x x= + - + + =

Solution

 

5 4 3
5

1 2

( ) 8 12 10 17 5P x x x x x= + - + +

There are two variations in the sign of P5(x). By Descartes’ rule of signs, there are 

either two or 2–2, i.e., zero positive roots of P5(x) = 0.
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5 4 3
5

5 4 3

1 2 3

( ) 8( ) 12( ) 10( ) 17( ) 5

8 12 10 17 5

P x x x x x

x x x x

- = - + - - - + - +

= - + + - +

There are three variations in the sign of P5(x). By Descartes’ rule of signs, there are 

either three or 3–2, i.e., one negative root of P5(x) = 0.

example 3
Apply Descartes’ rule of signs to the polynomial

 
5 4 3 2( ) 3 9 5f x x x x x x= - + + - +

Solution

 

5 4 3 2

1 2 3 4

( ) 3 9 5f x x x x x x= - + + - +

There are four variations in the sign of f (x). By Descartes’ rule of signs, there are either 

4, 2, or no positive roots of f (x) = 0.

 

5 4 3 2

5 4 3 2

1

( ) ( ) ( ) 3( ) 9( ) ( ) 5

3 9 5

f x x x x x x

x x x x x

- = - - - + - + - - - +

= - - - + + +

There is one variation in the sign of f (–x). By Descartes’ rule of signs, there is one 

negative root of f (x) = 0.

example 4
Apply Descartes’ rule of signs to the polynomial

 
7 6 4 3 2( ) 1f x x x x x x x= + - - - + -

Solution

 

7 6 4 3 2

1 2 3

( ) 1f x x x x x x x= + - - - + -

There are three variations in the sign of f (x). By Descartes’ rule of signs, there are 

either 3 or 3–2, i.e., one positive root of f (x) = 0.

 

7 6 4 3 2

7 6 4 3 2

1 2 3 4

( ) ( ) ( ) ( ) ( ) ( ) ( ) 1

1

f x x x x x x x

x x x x x x

- = - + - - - - - - - + - -

= - + - + - - -
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There are four variations in the sign of f (–x). By Descartes’ rule of signs, there are 4 or 

2 or 0 negative roots of f (x) = 0.

2.8 BudAn’s theoreM

Let 1 2
0 1 2 1( ) n n n

n nf x a x a x a x a x a
- -

-= + + + + +  be a polynomial function with 

real coefficients a0, a1, a2, ..., an. Let v(c) be the number of variations of signs in the 

sequence ( )( ), ( ), ( ), ..., ( )n
f x f x f x f x¢ ¢¢  when x = c, where c is any real number. The 

number of roots of f (x) in the interval [a, b], counted with their order of multiplicity 

is equal to

 v(a) – v(b) – 2m, for some m Œ

i.e., the number of roots of f (x) is equal to v(a) – v(b) or v(a) – v(b) decreased by an 

even integer.

example 1
Apply Budan’s theorem to find the number of roots of the equation 

f (x) = x4 – 4x
3 + 3x

2 – 10x + 8 = 0 in the interval [–1, 0] and [0, 1].

 [Winter 2013, Summer 2013]

Solution

 

4 3 2

3 2

2

iv

( ) 4 3 10 8

( ) 4 12 6

( ) 12 24 6

( ) 24 24

( ) 24

f x x x x x

f x x x x

f x x x

f x x

f x

= - + - +

= - +¢

= - +¢¢
= -¢¢¢

=

The signs of these functions for x = –1, 0, and 1 are shown in the following table:

x f (x) f ¢(x) f ¢¢(x) f ¢¢¢(x) f
iv(x) No. of variations of sign v(x)

–1 + – + – + 4

0 + + + – + 2

1 – – – + + 1

No. of variations of sign in the interval [–1, 0] = v(–1) – v(0) = 4 – 2 = 2.

Hence, the number of roots of f (x) in the interval [–1, 0] is either two or zero.

No. of variations of sign in the interval [0, 1] = v(0) – v(1) = 2 – 1 = 1.

Hence, the number of roots of f (x) in the interval [0, 1] is one.
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example 2
Apply Budan’s theorem to find the number of roots of the equation 

x
3 –3x

2 – 4x + 13 in the interval [–3, –2], [–2, –1], [–1, 0], [0, 1], [1, 2], 

and [2, 3].

Solution

Let 
3 2

2

( ) 3 4 13

( ) 3 6 4

( ) 6 6

( ) 6

f x x x x

f x x x

f x x

f x

= - - +

= - -¢
= -¢¢
=¢¢¢

The signs of these functions for x = –3, –2, –1, 0, 1, 2, and 3 are shown in the following 

table:

x f (x) f ¢(x) f ¢¢(x) f ¢¢¢(x) No. of variations of sign v(x)

–3 – + – + 3

–2 + + – + 2

–1 + + – + 2

0 + – – + 2

1 + – + + 2

2 + – + + 2

3 + + + + 0

No. of variations of sign in the interval [–3, –2] = v(–3) – v(–2) = 3 – 2 = 1.

Hence, the number of roots of f (x) in the interval [–3, –2] is one.

No. of variations of sign in the interval [–2, –1] = v(–2) – v(–1) = 2 – 2 = 0.

Hence, the number of roots of f (x) in the interval [–2, –1] is zero.

No. of variations of sign in the interval [–1, 0] = v(–1) – v(0) = 2 – 2 = 0.

Hence, the number of roots of f (x) in the interval [–1, 0] is zero.

No. of variations of sign in the interval [0, 1] = v(0) – v(1) = 2 – 2 = 0.

Hence, the number of roots of f (x) in the interval [0, 1] is zero.

No. of variations of sign in the interval [1, 2] = v(1) – v(2) = 2 – 2 = 0.

Hence, the number of roots of f (x) in the interval [1, 2] is zero.

No. of variations of sign in the interval [2, 3] = v(2) – v(3) = 2 – 0 = 2.

Hence, the number of roots of f (x) in the interval [2, 3] is either two or zero.
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example 3
Apply Budan’s theorem to find the number of roots of the equation 

x
5 + x4 – 4x

3 – 3x
2 + 3x + 1  in the interval [–2, –1], [0, 1], and [1, 2].

Solution

Let  5 4 3 2

4 3 2

3 2

2

iv

v

( ) 4 3 3 1

( ) 5 4 12 6 3

( ) 20 12 24 6

( ) 60 24 24

( ) 120 24

( ) 120

f x x x x x x

f x x x x x

f x x x x

f x x x

f x x

f x

= + - - + +

= + - - +¢

= + - -¢¢

= + -¢¢¢

= +

=

The signs of these functions for x = –2, –1, 0, 1, and 2 are shown in the following 

table:

x f (x) f ¢(x) f ¢¢(x) f ¢¢¢(x) f 
iv(x) f 

v(x) No. of variations of sign v(x)

–2 – + – + – + 5

–1 – – + + – + 3

0 + + – – + + 2

1 – – + + + + 1

2 + + + + + + 0

No. of variations of sign in the interval [–2, –1] = v(–2) – v(–1) = 5 – 3 = 2.

Hence, the number of roots of f (x) in the interval [–2, –1] is either two or zero.

No. of variations of sign in the interval [–1, 0] = v(–1) – v(0) = 3 – 2 = 1.

Hence, the number of roots of f (x) in the interval [–1, 0] is one.

No. of variations of sign in the interval [0, 1] = v(0) – v(1) = 2 – 1 = 1.

Hence, the number of roots of f (x) in the interval [0, 1] is one.

No. of variations of sign in the interval [1, 2] = v(1) – v(2) = 1 – 0 = 1.

Hence, the number of roots of f (x) in the interval [1, 2] is one.
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example 4
Apply Budan’s theorem to find the roots of the equation

 f (x) = x5 – x4 + 3x
3 + 9x

2 – x + 5

in the interval [–3, –2], [–2, –1], [–1, 0], and [0, 1].

Solution

 

5 4 3 2

4 3 2

3 2

2

iv

v

( ) 3 9 5

( ) 5 4 9 18 1

( ) 20 12 18 18

( ) 60 24 18

( ) 120 24

( ) 120

f x x x x x x

f x x x x x

f x x x x

f x x x

f x x

f x

= - + + - +

= - + + -¢

= - + +¢¢

= - +¢¢¢

= -

=

The signs of these functions for x = –3, –2, –1, 0, and 1 are shown in the following 

table:

x f (x) f ¢(x) f ¢¢(x) f ¢¢¢(x) f 
iv(x) f 

v(x) No. of variations of sign v(x)

–3 – + – + – + 5

–2 – + – + – + 5

–1 + – – + – + 4

0 + – + + – + 4

1 + + + + + + 0

No. of variations of sign in the interval [–3, –2] = v(–3) – v(–2) = 5 – 5 = 0.

Hence, the number of roots of f (x) in the interval [–3, –2] is zero.

No. of variations of sign in the interval [–2, –1] = v(–2) – v(–1) = 5 – 4 = 1.

Hence, the number of roots of f (x) in the interval [–2, –1] is one.

No. of variations of sign in the interval [–1, 0] = v(–1) – v(0) = 4 – 4 = 0.

Hence, the number of roots of f (x) in the interval [–1, 0] is zero.

No. of variations of sign in the interval [0, 1] = v(0) – v(1) = 4 –0 = 4.

Hence, the number of roots of f (x) in the interval [0, 1] is either four or two or zero.
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exercIse  2.6

 1. Apply Descartes’ rule of signs to determine the number of positive and 

negative roots of the equations:

 (i) 6x5 – 3x4 – 5x3 – 6x2 + 9x + 5 = 0

 (ii) x5 + x4 – 4x3 – 3x2 + 3x + 1 = 0

 (iii) 4x7 + 3x6 + x5 + 2x4 – x3 + 9x2 + x + 1 = 0

 (iv) x5 + x4 + 4x3 + 3x2 + x + 1 = 0

 (v) 2x4 – x3 + 4x2 – 5x + 3 = 0

 

(i) 2 or 0 positive roots, 3 or 1negative roots

(ii) 2 or 0 positive roots, 3 or 1negative roots

(iii) 2 or 0 positive roots, 5 or 3 or 1negative roots

(iv) 0 positive roots, 5 or 3 or 1negative roots

(v) 4 or 2 or 0 positive roots, 0 negative roo

Ans.:È ˘
Í ˙
Í ˙
Í ˙
Í ˙
Í ˙
Í ˙Î ˚t

 2. Apply Budan’s theorem to find the number of roots of the equation 

f(x) = x4 – 4x3 – 5x2 + 3x + 2 in the intervals [–1, 0] and [0, 1].

 [Ans.: One root each in the interval [–1, 0] and [0, 1]]

 3. Apply Budan’s theorem to find the number of roots of the equation  

x5 + x4 + 4x3 – 3x2 + 3x + 1 = 0 in the intervals [–2, –1], [–1, 0], and 

[0, 1].

 

One root in the interval [ 2, 1]

3 or 1roots in the interval [ 1, 0]

2 or 0 roots in the interval [0,1]

- -È ˘
Í ˙-Í ˙
Í ˙Î ˚

Ans.:

2.9 BAIrstow’s Method

Bairstow’s method is useful for finding the quadratic factors of a polynomial of degree 

n. Let - -
-= + + + + +

1 2
0 1 2 1( ) n n n

n nf x a x a x a x a x a  be a polynomial of degree n 

where a0 π 0. When f (x) is divided by a quadratic factor x2 – px – q, the quotient will 

be a polynomial of degree n – 2, i.e., b0 x
n–2 + b1 x

n–3 + ...+ bn–2 and the remainder will 

be a first-degree polynomial of the form bn–1 (x – p) + bn

  

1 2
0 1 2 1

2 2 3
0 1 2 1

( )

( )( ) ( )

n n n
n n

n n
n n n

f x a x a x a x a x a

x px q b x b x b b x p b

- -
-

- -
- -

= + + + + +

= - - + + + + - +



  ...(2.8)
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Equating the coefficients of different powers of x,

  

0 0 0 0

1 1 0 1 1 0

2 2 1 0 2 2 1 0

1 1 2 3 1 1 2 3

1 2 1 2

i.e.,

i.e.,

i.e.,

, i.e.,

, i.e.,

n n n n n n n n

n n n n n n n n

a b b a

a b pb b a pb

a b pb qb b a pb qb

a b pb qb b a pb qb

a b pb qb b a pb qb

- - - - - - - -

- - - -

= =

= - = +

= - - = + +

= - - = + +

= - - = + +

 

 ...(2.9)

Thus, b’s are functions of p and q. If x2 – px – q is an exact factor of f (x) then

 bn(p, q) = 0 ...(2.10)

and bn – 1 (p, q) = 0 ...(2.11)

If p0 and q0 are initial approximations of p and q,

 p = p0 + Dp

and q = q0 + Dq

where Dp and Dq are small.

Substituting in Eqs (2.10) and (2.11),

     bn(p0 + Dp, q0 + Dq) = 0 ...(2.12)

and bn – 1(p0 + Dp, q0 + Dq) = 0 ...(2.13)

By Taylor’s series expansion of Eqs (2.12) and (2.13), and neglecting terms of higher 

powers,

 
∂ ∂

+ D + D =
∂ ∂

0n n
n

b b
b p q

p q
 (2.14)

and   1 1
1 0n n

n

b b
b p q

p q

- -
-

∂ ∂
+ D + D =

∂ ∂
 ...(2.15)

where bn, bn – 1 and the partial derivatives are evaluated at p = p0, q = q0.

Let  - -
∂ ∂

= =
∂ ∂1 2andn n

n n

b b
c c

p q
 ...(2.16)

Substituting Eq (2.16) in Eqs (2.14) and (2.15),

 - -+ D + D =1 2 0n n nb c p c q  ...(2.17)

 1 2 3 0n n nb c p c q- - -+ D + D =  ...(2.18)

Solving Eqs (2.17) and (2.18), Dp and Dq can be calculated.

Hence, the first approximations for p and q are

 p1 = p0 + Dp,  q1 = q0 + Dq

This procedure is repeated till the desired degree of accuracy is achieved.

The first, second, third, etc., approximations can be computed by the following 

procedure which is similar to synthetic division:
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0 1 2 1

0 1 2 1

0 3 2

0 0 1 2 1

0 1 2

0 3

0 0 1 2 1

( )

( )

n n

n n

n n

n n

n

n

n

a a a a a

p pb pb pb pb

q qb qb qb

b a b b b b

p pc pc pc

q qc qc

c a c c c

-

- -

- -

-

-

-

-

-
- -

=
- -
- - -

=















 (i) The first-row elements are the coefficients of the given equation. p, q are the 

current values of the actual p and q.

 (ii) The second-row elements (from second column onwards) are obtained by 

multiplying b0, b1, b2, ..., bn–1 by p respectively.

 (iii) The third-row elements (from third column onwards) are obtained by 

multiplying b0, b1, b2, ..., bn–2 by q.

   b0, b1, b2, b3, ..., bn are the column totals.

 (iv) Again, proceed similarly for the fifth and sixth row up to bn–1 since the last c 

value is cn–1.

example 1
Find the roots of the equation x

3 – 2x
2 + x – 2 = 0 using Lin-Bairstow’s 

method up to second iteration with p0 = q0 = 0.

Solution

Let  f (x) = x3 – 2x
2 + x – 2

    p0 = 0,  q0 = 0

First iteration

 

0 1 2 3

0 1 2

1 2 1 2

0 0 0 0

0 0 0

1 2 1 2

0 0 0

0 0

1 2 1

b b b b

c c c

- -
-
- -
= - = = - =

-
- -
= - = =

Hence, the equations are

  1 Dp – 2Dq = 2 ...(1)

 –2Dp + 1Dq = –1 ...(2)
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Solving Eqs (1) and (2),

 Dp = 0

 Dq = 1

Hence, the first approximation is

 p1 = p0 + Dp = 0 + 0 = 0

 q1 = q0 + Dq = 0 + 1 = 1

Second iteration

 

0 1 2 3

0 1 2

1 2 1 2

0 0 0 0

1 1 2

1 2 2 4

0 0 0

1 1

1 2 3

b b b b

c c c

- -
-
- - -
= - = = - =

-
- -
= - = =

Hence, the equations are

  3 Dp – 2Dq = 4 ...(3)

     –2Dp + 1Dq = –2 ...(4)

Solving Eqs (3) and (4),

 Dp = 0

 Dq = –2

Hence, the second approximation is

 p2 = p1 + Dp = 0 + 0 = 0

 q2 = q1 + Dq = 1 – 2 = –1

Hence, the quadratic factor is x2 + 0x + 1, i.e., x2 + 1.

The other factor is x – 2.

Hence, the roots are 2, i, and –i.

example 2
Find all the roots of the equation x

3 + x2 – x + 2 using Lin–Bairstow 

method. Start with the initial factor x
2 – 0.9x + 0.9. [Winter 2014]

Solution

Let f (x) = x3 + x2 – x + 2

Comparing x2 – 0.9x + 0.9 with x2 – px – q,

 p = 0.9,   q = – 0.9

Let p0 = 0.9 and q0 = –0.9 be the initial approximations of p and q.
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First iteration

 

0 1 2 3

0 1 2

1 1 1 2

0.9 0.9 1.71 0.171

0.9 0.9 1.71

1 1.9 0.19 0.119

0.9 0.9 2.52

0.9 0.9

1 2.8 1.43

b b b b

c c c

-
- -

- - - - -
= = - = =

-
- - - -

= = =

Hence, the equations are

 1.43 Dp + 2.8 Dq = – 0.119 ...(1)

 2.8 Dp + 1 Dq = 0.19 ...(2)

Solving Eqs (1) and (2),

 Dp = 0.1016

 Dq = –0.0944

Hence, the first approximation is

 p1 = p0 + Dp = 0.9 + 0.1016 = 1.0016

 q1 = q0 + Dp = –0.9 – 0.0944 = –0.9944

Second iteration

   

0 1 2 3

0 1 2

1 1 1 2

1.0016 1.0016 2.0048 0.0104

0.9944 0.9944 1.9904

1 2.0016 0.0104 0.02

1.0016 1.0016 3.008

0.9944 0.9944

1 3.0032 2.024

b b b b

c c c

-
-

- - - - -
= = = =

-
- - - -

= = =

Hence, the equations are

 2.024 Dp + 3.0032 = – 0.02 ...(3)

 3.0032 Dp + 1 Dq = – 0.0104 ...(4)

Solving Eqs (3) and (4), 

 Dp = – 0.0016

 Dq = – 0.0056

Hence, the second approximation is

 p2 = p1 + Dp = 1.0016 – 0.0016 = 1

 q2 = q1 + Dq = – 0.9944 – 0.0056 = –1

Hence, the quadratic factor is x2 – x + 1.

The other factor is x + 2.

Hence, all the roots are –2, –0.5 ± 0.866 i.
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example 3
Find the roots of x

3 – x – 1 = 0. Start with the initial factor x
2 + x + 1.

Solution

Let  f (x) = x3 – x – 1

Comparing x2 + x + 1 with x2 – px – q,

 p = –1,  q = –1

Let p0 = –1 and q0 = –1 be the initial approximations of p and q.

First iteration

 

0 1 2 3

0 1 2

1 0 1 1

1 1 1 1

1 1 1

1 1 1 1

1 1 1 2

1 1

1 2 0

b b b b

c c c

- -
- - -
- - - -

= - = - = =
- -
- - - -

= - = =

Hence, the equations are

 –2 Dq = –1 ...(1)

 –2Dp + 1 Dq = 1 ...(2)

Solving Eqs (1) and (2),

 Dp = – 0.25

 Dq = 0.5

Hence, the first approximation is

 p1 = p0 + Dp = –1 – 0.25 = –1.25

 q1 = q0 + Dq = –1 + 0.5 = – 0.5

Second iteration

 

0 1 2 3

0 1 2

1 0 1 1

1.25 1.25 1.5625 0.0781

0.5 0.5 0.625

1 1.25 0.0625 0.4531

1.25 1.25 3.125

0.5 0.5

1 2.5 2.6875

b b b b

c c c

- -
- - - -
- - -

= - = = - =
- - -
- - - -

= - = =
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Hence, the equations are

 2.6875 Dp – 2.5 Dq = 0.4531 ...(3)

 –2.5Dp + 1 Dq = –0.0625 ...(4)

Solving  Eqs (3) and (4),

 Dp = – 0.0833

 Dq = –0.2708

Hence, the second approximation is

 p2 = p1 + Dp = –1.25 – 0.0833 = –1.3333

 q2 = q1 + Dq = –0.5 – 0.2708 = –0.7708

Hence, the quadratic factor is x2 + 1.3333 x + 0.7708.

The other factor is x – 1.3247.

Hence, the roots are 1.3247, –0.6624 ± 0.5623 i.

example 4
Find all the roots of the equation x

4 + x3 + 2x
2 + x + 1 = 0 using the 

Lin–Bairstow method. Start with the initial factor x
2 + 0.9x + 0.9.

 [Summer 2014]

Solution

Let f (x) = x4 + x3 + 2x
2 + x + 1

Comparing x2 + 0.9x + 0.9 with x2 – px – q,

 p = –0.9,  q = –0.9

Let p0 = –0.9 and q0 = –0.9 be the initial approximations of p and q.

First iteration

   

0 1 2 3 4

0 1 2 3

1 1 2 1 1

0.9 0.9 0.09 0.909 0.0009

0.9 0.9 0.09 0.909

1 0.1 1.01 0.001 0.0901

0.9 0.9 0.72 0.747

0.9 0.9 0.72

1 0.8 0.83 0.026

b b b b b

c c c c

- - - - - -
- - - - - -

= = = = =
- - - -
- - - -

= - = = - =

Hence, the equations are

 –0.026 Dp + 0.83 Dq = –0.0901 ...(1)

       0.83 Dp – 0.8 Dq = –0.001 ...(2)
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Solving Eqs (1) and (2),

 Dp = – 0.1091

 Dq = – 0.112

Hence, the first approximation is

 p1 = p0 + Dp = –  0.9 – 0.1091 = – 1.0091

 q1 = q0 + Dq = –  0.9 – 0.112   = –1.012

Second iteration

0 1 2 3 4

0 1 2 3

1 1 2 1 1

1.0091 1.0091 0.0092 0.9877 0.0217

1.012 1.012 0.0092 0.9905

1 0.0091 0.9788 0.0215 0.0122

1.0091 1.0091 1.0275 1.0033

1.012 1.012 1.0304

1 1.0182 0.9943 0.0486

b b b b b

c c c c

- - - - - -
- - - - -

= - = = = - =
- - - -
- - - -

= - = = =

Hence, the equations are

 0.0486 Dp + 0.9943 Dq = 0.0122 ...(3)

 0.9943 Dp – 1.0182 Dq = –0.0215 ...(4)

Solving Eqs (3) and (4),

 Dp = –0.0086

 Dq = 0.0127

Hence, the second approximation is

 p2 = p1 + Dp = –1.0091 – 0.0086 = –1.0177

 q2 = q1 + Dq = –1.012 + 0.0127 = – 0.9993

Hence, the quadratic factor is x2 + 1.0177x + 0.9993, i.e., x2 + x + 1.

The other factor is x2 + 1.

Hence, all the roots are ±i and – 0.5 ± 0.866 i.

example 5

x
4 – 8x

3 + 39x
2 – 62x + 50 = 0 by using Lin–Bairstow method up to third 

iteration with p0 = q0 = 0. [Summer 2013]

Solution

Let  f (x) = x4 – 8x
3 + 39x

2 – 62x + 50

 p0 = 0,  q0 = 0
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First iteration

 

0 1 2 3 4

0 1 2 3

1 8 39 62 50

0 0 0 0 0

0 0 0 0

1 8 39 62 50

0 0 0 0

0 0 0

1 8 39 62

b b b b b

c c c c

- -
-
- -
= - = = - = =

-
- -
= - = = - =

Hence, the equations are

 –62 Dp + 39 Dq = –50 ...(1)

 39 Dp + – 8 Dq = 62 ...(2)

Solving Eqs (1) and (2),

 Dp = 1.9688

 Dq = 1.8478

Hence, the first approximation is

 p1 = p0 + Dp = 0 + 1.9688 = 1.9688

 q1 = q0 + Dq = 0 + 1.8478 = 1.8478

Second iteration

0 1 2 3 4

0 1 2

1 8 39 62 50

1.9688 1.9688 11.8742 57.0432 31.703

1.8478 1.8478 11.1459 53.5374

1 6.0312 28.9736 16.1027 71.8344

1.9688 1.9688 7.9981 44.9345

1.8478 1.8478 7.5065

1 4.0624 22.8233 21.3253

b b b b b

c c c c

- -
- - -
- - -
= - = = - = =

- -
- - -
= - = = = 3

Hence, the equations are

 21.3253 Dp + 22.8233 Dq = –71.8344 ...(3)

 22.8233 Dp – 4.0624 Dq = 16.1027 ...(4)

Solving Eqs (3) and (4),

 Dp = 0.1246

 Dq = – 3.2638

Hence, the second approximation is

 p2 = p1 + Dp = 1.9688 + 0.1246 = 2.0934

 q2 = q1 + Dq = 1.8478 – 3.2638 = –1.416
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Third iteration

 

0 1 2 3 4

0 1 2 3

1 8 39 62 50

2.0934 2.0934 12.3649 52.7937 1.3877

1.416 1.416 8.3634 35.7102

1 5.9066 25.2191 0.6629 12.9021

2.0934 2.0934 7.9826 33.1186

1.416 1.416 5.3995

1 3.8132 15.8205 37.8552

b b b b b

c c c c

- -
- - -

- - - - -
= - = = - = =

- -
- - - -

= - = = =

Hence, the equations are

 37.8552 Dp + 15.8205 Dq = –12.9021 ...(5)

 15.8205 Dp – 3.8132 Dq = 0.6629 ...(6)

Solving Eqs (5) and (6),

 Dp = – 0.0981

 Dq = – 0.5808

Hence, the third approximation is

 p3 = p2 + Dp = 2.0934 – 0.0981 = 1.9953

 q3 = q2 + Dq = –1.416 – 0.5808 = –1.9968

Hence, the quadratic factor is x2 – 1.9953 x + 1.9968, i.e., x2 – 2x + 2.

The other quadratic factor is x2 – 6x + 25.

Hence, the complex roots are 1 ± i, 3 ± 4i.

exercIse 2.7

 1. Find the complex roots of x3 + x2 – 2 = 0 starting with p0 = q0 = 0.

 [Ans.: –1 ± i]

 2. Using the approximate factor x2 + 2x + 2 of x4 – 3x3 + 20x2 + 44x + 54, 

find the quadratic factor performing two iterations.

 [Ans.: x2 + 1.94x + 1.95]

 3. Find the quadratic factor of x4 – 1.1x3 + 2.3x2 + 0.5x + 3.3 = 0 

starting with the approximation x2 + x + 1 = 0.

 [Ans.: (x2 + 0.9x + 1.1)(x2 – 2x + 3)]

 4. Find the roots of the equation x4 + 9x3 + 36x2 + 51x + 27 = 0 to three 

decimal places.

 [Ans.: – 0.759, – 1.42, – 3.411 ± 2.903 i]

 5. Find a quadratic factor of the equation x4 + 5x3 + 3x2 – 5x – 9 starting 

with x2 + 3x – 5.

 [Ans.: x2 + 2.9026x – 4.9176]
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points to remember

Bisection Method

In this method, two points x0 and x1 are chosen such that f(x0) and f(x1) are of opposite 

signs. The first approximation to the root is 

   0 1
2

2

x x
x

+
=

If f(x0)and f(x2) are of opposite signs, the root lies between x0 and x2 and the next 

approximation x3 is obtained as

   0 2
3

2

x x
x

+
=

This process is repeated till the root is obtained to the desired accuracy. 

Regula Falsi Method
In this method, two points x0 and x1 are chosen such that f (x0) and f (x1) are of 

opposite signs.

   

1 0
2 0 0

1 0

( )
( ) ( )

x x
x x f x

f x f x

-
= -

-

which is an approximation to the root.

If f (x0) and f (x2) are of opposite signs, the root lies between x0 and x2, and the next 

approximation x3 is obtained as

   

2 0
3 0 0

2 0

( )
( ) ( )

x x
x x f x

f x f x

-
= -

-

If the root lies between x1 and x2, the next approximation x3 is obtained as

   

1 2
3 2 2

1 2

( )
( ) ( )

x x
x x f x

f x f x

-
= -

-

This process is repeated till the root is obtained to the desired accuracy.

Newton–Raphson Method

   1

( )

( )

n
n n

n

f x
x x

f x
+ = -

¢

The Newton–Raphson method has a quadratic convergence and the convergence is 

of the order 2.

Secant Method

1
1

1

( )
( ) ( )

n n
n n n

n n

x x
x x f x

f x f x

-
+

-

-
= -

-

The rate of convergence of the secant method is 1.618.
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Successive Approximation Method

 xn + 1 = f(xn),  n = 0, 1, 2, ...

Descartes’ Rule of Signs

The number of variations in the sign of the coefficients of a function f (x) or f (–x) 

refers to the sign changes in the coefficients from positive to negative or negative to 

positive in successive terms of the function. 

The number of positive roots of f (x) = 0 is equal to the number of variations in the 

sign of f (x) or to that number decreased by an even integer. The number of negative 

roots of f (x) = 0 is equal to the number of variations in the sign of f (–x) or to that 

number decreased by an even integer.

Budan’s Theorem

Let 1 2
0 1 2 1( ) n n n

n nf x a x a x a x a x a
- -

-= + + + + +  be a polynomial function with 

real coefficients a0, a1, a2, ..., an. Let v(c) be the number of variations of signs in 

the sequence ( )( ), ( ), ( ), ..., ( )n
f x f x f x f x¢ ¢¢  when x = c, where c is any real number. 

The number of roots of f (x) in the interval [a, b], counted with their order of multi-

plicity is equal to

 v(a) – v(b) – 2m, for some m Œ

i.e., the number of roots of f (x) is equal to v(a) – v(b) or v(a) – v(b) decreased by an 

even integer.

Bairstow’s Method

 1 2 0n n nb c p c q- -+ D + D =

 1 2 3 0n n nb c p c q- - -+ D + D =





3.1 introduction

A system of m nonhomogenous linear equations in n variables x1, x2, ..., xn or simply 

a linear system, is a set of m linear equations, each in n variables. A linear system is 

represented by

  

11 1 12 2 1 1

21 1 22 2 2 2

1 1 2 2

n n

n n

m m mn n m

a x a x a x b

a x a x a x b

a x a x a x b

+ + + =

+ + + =

+ + + =





   



Writing these equations in matrix form,

 Ax = B

where 

11 12 1

21 22 2

1 2

n

n

m m mn

a a a

a a a
A

a a a

È ˘
Í ˙
Í ˙=
Í ˙
Í ˙
Í ˙Î ˚





  



 is called the coefficient matrix of order m × n,
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È ˘
Í ˙
Í ˙= ¥
Í ˙
Í ˙
Í ˙Î ˚



1

2
is any vector of order 1

n

x

x
n

x

x

 

1

2
is any vector of order 1

m

b

b
B m

b

È ˘
Í ˙
Í ˙= ¥
Í ˙
Í ˙
Í ˙Î ˚



3.2 SOlutiOnS Of a SyStem Of linear equatiOnS

For a system of m linear equations in n variables, there are three possibilities of the 

solutions to the system:

 (i) The system has a unique solution.

 (ii) The system has infinite solutions.

 (iii) The system has no solution.

When the system of linear equations has one or more solutions, the system is said to 

be consistent, otherwise it is inconsistent.

The matrix 

11 12 1 1

21 22 2 2

1 2

[ : ]

n

n

m m mn m

a a a b

a a a b
A B

a a a b

È ˘
Í ˙
Í ˙=
Í ˙
Í ˙
Í ˙Î ˚





   



is called the augmented matrix of the given system of linear equations.

To solve a system of linear equations, elementary transformations are used to reduce 

the augmented matrix to echelon form.

3.3 elementary tranSfOrmatiOnS

Elementary transformation is any one of the following operations on a matrix.

 (i) The interchange of any two rows (or columns)

 (ii) The multiplication of the elements of any row (or column) by any nonzero 

number

 (iii) The addition or subtraction of k times the elements of a row (or column) to the 

corresponding elements of another row (or column), where k π 0

Symbols to be used for elementary transformation:

 (i) Rij :   Interchange of ith and jth row

 (ii) kRi :    Multiplication of ith row by a nonzero number k

 (iii) Ri + kRj : Addition of k times the jth row to the ith row
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The corresponding column transformations are denoted by Cij, kCi, and Ci + kCj 

respectively.

3.3.1 elementary matrices

A matrix obtained from a unit matrix by subjecting it to any row or column transfor-

mation is called an elementary matrix.

3.3.2 equivalence of matrices

If B be an m × n matrix obtained from an m × n matrix by elementary transformation 

of A then A is equivalent to B. Symbolically, we can write A ~ B.

3.3.3 echelon form of a matrix

A matrix A is said to be in echelon form if it satisfies the following properties:

 (i) Every zero row of the matrix A occurs below a nonzero row.

 (ii) In a nonzero row the first nonzero number from the left is 1. This is called a 

leading 1.

 (iii) For each nonzero row, the leading 1 appears to the right of any leading 1 in 

preceding rows.

The following matrices are in echelon form:

 

1 1 0 1 2 1 3 0 1 3 5 0

0 1 0 , 0 1 5 6 , 0 0 1 1 0

0 0 0 0 0 1 4 0 0 0 0 1

-È ˘ È ˘ È ˘
Í ˙ Í ˙ Í ˙-Í ˙ Í ˙ Í ˙
Í ˙ Í ˙ Í ˙Î ˚ Î ˚ Î ˚

3.4  numeriCal methOdS fOr SOlutiOn Of a SyStem Of 
linear equatiOnS

There are two methods to solve linear algebraic equations:

 (i) Direct methods

(ii) Iterative methods

3.4.1 direct methods

Direct methods transform the original equations  into equivalent equations that can be 

solved easily. The transformation of the original equations is carried out by applying 

elementary row transformations to the augmented matrix of the system of equations.

We will discuss two direct methods:

  (i) Gauss elimination method

 (ii) Gauss–Jordan method



3.4 Chapter 3 Systems of Linear Algebraic Equations

3.4.2 iterative methods

The direct methods lead to exact solutions in many cases but are subject to errors due 

to roundoff and other factors. In the iterative method, an approximation to the true 

solution is assumed initially to start the method. By applying the method repeatedly, 

better and better approximations are obtained. For large systems, iterative methods are 

faster than direct methods and round-off errors are also smaller. Any error made at any 

stage of computation gets automatically corrected in the subsequent steps.

We will discuss two iterative methods.

 (i) Gauss–Jacobi method

(ii) Gauss–Seidel method

3.5 GauSS eliminatiOn methOd

This method solves a given system of equations by transforming the augmented matrix 

to an echelon form. The corresponding linear system of equations is then solved for the 

unknowns by back substitution.

Consider the system of equations

  11 12 13 1a x a y a z b+ + =

  
a x a y a z b
21 22 23

+ + =
2

  
a x a y a z b
31 32 33 3

+ + =

The matrix form of the system is

 
a a a

a a a

a a a

x

y

z

b

b

b

11 12 13

21 22 23

31 32 33

1

2

3

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

=

È

ÎÎ

Í
Í
Í

˘

˚

˙
˙
˙

The augmented matrix of the system is

 

A B

a a a b

a a a b

a a a b

:[ ] =
È

Î

Í
Í
Í

˘

˚

˙
˙
˙

11 12 13 1

21 22 23 2

31 32 33 3

Reducing the augmented matrix to echelon form by using elementary row 

transformations,

A B

c c c d

c c:[ ] æ Æææææææelementary

row transformations

11 12 13 1

22 2
0

33 2

33 3
0 0

d

c d

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

The corresponding system of equations is

 
c x c y c z d
11 12 13 1

+ + =
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c y c z d
22 23 2

+ =

 
c z d
33 3

=

The solution of the system is obtained by solving these equations by back substitution.

Working rule

  (i) Write the matrix form of the system of equations.

 (ii) Write the augmented matrix.

(iii)  Obtain the echelon form of the augmented matrix by using elementary row 

transformations.

 (iv) Write the corresponding linear system of equations from the echelon form.

  (v) Solve the corresponding linear system of equations by back substitution.

example 1
Solve the following system of equations:

 
x y z

x y z

x y z

+ + =

+ - = -

+ + =

3 2 5

2 4 6 4

5 3 10

Solution

The matrix form of the system is

     Ax = B

 

1 3 2

2 4 6

1 5 3

5

4

10

-

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

= -

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

x

y

z

The augmented matrix of the system is

 

A B:[ ] = - -

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

1 3 2 5

2 4 6 4

1 5 3 10

Reducing the augmented matrix to echelon form,

 
R R R R2 1 3 12- -,

 

A B:[ ] - - -

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

∼

1 3 2 5

0 2 10 14

0 2 1 5
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 -
Ê
ËÁ

ˆ
¯̃

1

2
2
R

 ∼

1 3 2 5

0 1 5 7

0 2 1 5

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

 
R R
3 2

2-

      

∼

1 3 2 5

0 1 5 7

0 0 9 9- -

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

The corresponding system of equations is

 

x y z

y z

z

+ + =

+ =

- = -

3 2 5

5 7

9 9

Solving these equations by back substitution,

z = 1

y z= - = - ( ) =7 5 7 5 1 2

x y z= - - = - ( ) - ( ) = -5 3 2 5 3 2 2 1 3

Hence, the solution is

 
x y z= - = =3 2 1, ,

example 2
Solve the following system of equations:

 
2 10x y z+ + =

 
3 2 3 18x y z+ + =

 
x y z+ + =4 9 16

Solution

The matrix form of the system is

     Ax = B

 

2 1 1

3 2 3

1 4 9

10

18

16

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

=

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

x

y

z
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The augmented matrix of the system is

 

A B:[ ] =
È

Î

Í
Í
Í

˘

˚

˙
˙
˙

2 1 1 10

3 2 3 18

1 4 9 16

Reducing the augmented matrix to echelon form,

       R13

 

A B:[ ]
È

Î

Í
Í
Í

˘

˚

˙
˙
˙

∼

1 4 9 16

3 2 3 18

2 1 1 10

 
R R R R2 1 3 13 2- -,

 

~ - - -

- - -

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

1 4 9 16

0 10 24 30

0 7 17 22

 

-
Ê
ËÁ

ˆ
¯̃

1

10
2
R

 ~

- - -

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

1 4 9 16

0 1
24

10
3

0 7 17 22

 
R R
3 2

7+

 ~

- -

È

Î

Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙

1 4 9 16

0 1
24

10
3

0 0
1

5
1

The corresponding system of equations is

 

x y z

y z

z

+ + =

+ =

- = -

4 9 16

24

10
3

1

5
1
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Solving these equations by back substitution,

z = 5

y z= - = - = -3
24

10
3

24

10
5 9 ( )

x y z= - - = - - - =16 4 9 16 4 9 9 5 7( ) ( )

Hence, the solution is

 
x y z= = - =7 9 5, ,

example 3
Solve the following system of equations:

 

6 19

3 4 26

2 6 22

x y z

x y z

x y z

- - =

+ + =

+ + =

Solution

The matrix form of the system is

      Ax = B

 

6 1 1

3 4 1

1 2 6

19

26

22

- -È

Î

Í
Í
Í

˘

˚

˙
˙
˙

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

=

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

x

y

z

The augmented matrix of the system is

 
A B:[ ] =

- -È

Î

Í
Í
Í

˘

˚

˙
˙
˙

6 1 1 19

3 4 1 26

1 2 6 22

Reducing the augmented matrix to echelon form,

         R13

 

A B:[ ]
- -

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

∼

1 2 6 22

3 4 1 26

6 1 1 19
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 R2 – 3R1, R3 – 6R1

 

~ - - -

- - -

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

1 2 6 22

0 2 17 40

0 13 37 113

 

-
Ê
ËÁ

ˆ
¯̃

1

2
2
R

 

~

- - -

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

1 2 6 22

0 1
17

2
20

0 13 37 113

 
R R
3 2

13+

 

~

È

Î

Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙

1 2 6 22

0 1
17

2
20

0 0
147

2
147

The corresponding system of equations is

 

x y z

y z

z

+ + =

+ =

=

2 6 22

17

2
20

147

2
147

Solving these equations by back substitution,

 z = 2

 
y z= - = - ( ) =20

17

2
20

17

2
2 3

 
x y z= - - = - ( ) - ( ) =22 2 6 22 2 3 6 2 4

Hence, the solution is

 
x y z= = =4 3 2, ,
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example 4
Solve the following system of equations:

 

5 5 2 12

2 4 5 2

39 43 45 74

x y z

x y z

x y z

+ + =

+ + =

+ + =

Solution

The matrix form of the system is

       Ax = B

 

5 5 2

2 4 5

39 43 45

12

2

74

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

=

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

x

y

z

The augmented matrix of the system is

 

A B:[ ] =
È

Î

Í
Í
Í

˘

˚

˙
˙
˙

5 5 2 12

2 4 5 2

39 43 45 74

Reducing the augmented matrix to echelon form,

 

1

5
1

Ê
ËÁ

ˆ
¯̃
R

 

A B:[ ]

È

Î

Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙

∼

1 1
2

5

12

5

2 4 5 2

39 43 45 74

 
R R R R2 1 3 12 39- -,

 

~ -

-

È

Î

Í
Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙
˙

1 1
2

5

12

5

0 2
21

5

14

5

0 4
147

5

98

5

 

1

2
2

Ê
ËÁ

ˆ
¯̃
R
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~ -

-

È

Î

Í
Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙
˙

1 1
2

5

12

5

0 1
21

10

14

10

0 4
147

5

98

5

 R3 – 4R2

 

~ -

-

È

Î

Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙

1 1
2

5

12

5

0 1
21

10

14

10

0 0 21 14

The corresponding system of equations is

 

x y z

y z

z

+ + =

+ = -

= -

2

5

12

5

21

10

14

10

21 14

Solving these equations by back substitution,

 
z = - = -

14

21

2

3

 

y z= - - = - - -
Ê
ËÁ

ˆ
¯̃
=

14

10

21

10

14

10

21

10

2

3
0

x y z= - - = - -
Ê
ËÁ

ˆ
¯̃
=

12

5

2

5

12

5

2

5

2

3

8

3

Hence, the solution is

 
x y z= = = -

8

3
0

2

3
, ,

example 5
Use the Gauss elimination method to solve the following equations:

 

x y z

x y z

x y z

+ - = -
+ - = -
- - =

4 5

6 12

3 4  [Summer 2015]
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Solution

The matrix form of the system is

     Ax = B

 

1 4 1

1 1 6

3 1 1

5

12

4

-
-

- -

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

È

Î

Í
Í
Í

˘

˚

˙
˙
˙
=

-
-

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

x

y

z

The augmented matrix of the system is

 

1 4 1 5

[ : ] 1 1 6 12

3 1 1 4

A B

- -È ˘
Í ˙= - -Í ˙
Í ˙- -Î ˚

Reducing the augmented matrix to echelon form,

 R2 – R1, R3 – 3R1

 

2

3 2

1 4 1 5

[ : ] ~ 0 3 5 7

0 13 2 19

1

3

1 4 1 5

5 7
~ 0 1

3 3

0 13 2 19

13

1 4 1 5

5 7
~ 0 1

3 3

71 148
0 0

3 3

A B

R

R R

- -È ˘
Í ˙- - -Í ˙
Í ˙-Î ˚

Ê ˆ
-Á ˜Ë ¯

- -È ˘
Í ˙
Í ˙
Í ˙
Í ˙-Î ˚

+

- -È ˘
Í ˙
Í ˙
Í ˙
Í ˙
Í ˙
Î ˚

The corresponding system of equations is

 

4 5

5 7

3 3

71 148

3 3

x y z

y z

z

+ - = -

+ =

=
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Solving these equations by back substitution,

 

148

71

7 5 7 5 148 81

3 3 3 3 71 71

81 148 117
5 4 5 4

71 71 71

z

y z

x y z

=

Ê ˆ
= - = - = -Á ˜Ë ¯

Ê ˆ
= - - + = - - - + =Á ˜Ë ¯

Hence, the solution is

 
= = - =

117 81 148
, ,

71 71 71
x y z

example 6
Solve the following system of linear equations:

 

+ = -
+ + =
+ + =

8 2 7

3 5 2 8

6 2 8 26

y z

x y z

x y z  [Summer 2014]

Solution

The matrix form of the system is

     Ax = B

 

0 8 2 7

3 5 2 8

6 2 8 26

x

y

z

-È ˘ È ˘ È ˘
Í ˙ Í ˙ Í ˙=Í ˙ Í ˙ Í ˙
Í ˙ Í ˙ Í ˙Î ˚ Î ˚ Î ˚

The augmented matrix of the system is

 

0 8 2 7

[ : ] 3 5 2 8

6 2 8 26

A B

-È ˘
Í ˙= Í ˙
Í ˙Î ˚

Reducing the augmented matrix to echelon form,

 

12

3 5 2 8

[ : ] ~ 0 8 2 7

6 2 8 26

R

A B

È ˘
Í ˙-Í ˙
Í ˙Î ˚



3.14 Chapter 3 Systems of Linear Algebraic Equations

 

1

3 1

2

3 2

1

3

5 2 8
1

3 3 3

~ 0 8 2 7

6 2 8 26

6

5 2 8
1

3 3 3

~ 0 8 2 7

0 8 4 10

1

8

5 2 8
1

3 3 3

1 7
~ 0 1

4 8

0 8 4 10

8

5 2 8
1

3 3 3

1 7
~ 0 1

4 8

0 0 6 3

R

R R

R

R R

Ê ˆ
Á ˜Ë ¯

È ˘
Í ˙
Í ˙

-Í ˙
Í ˙
Î ˚

-

È ˘
Í ˙
Í ˙

-Í ˙
Í ˙-Î ˚

Ê ˆ
Á ˜Ë ¯

È ˘
Í ˙
Í ˙
Í ˙-Í ˙
Í ˙

-Î ˚
+

È ˘
Í ˙
Í ˙
Í ˙-Í ˙
Í ˙
Î ˚

The corresponding system of equations is

 

5 2 8

3 3 3

1 7

4 8

6 3

x y z

y z

z

+ + =

+ = -

=

Solving these equations by back substitution,

 

1

2

7 1 7 1 1
1

8 4 8 4 2

8 5 2 8 5 2 1
( 1) 4

3 3 3 3 3 3 2

z

y z

x y z

=

Ê ˆ
= - - = - - = -Á ˜Ë ¯

Ê ˆ
= - - = - - - =Á ˜Ë ¯



3.6 Gauss Elimination Method with Partial Pivoting        3.15

Hence, the solution is

 
= = - =

1
4, 1,

2
x y z

3.6  GauSS eliminatiOn methOd With Partial PivOtinG

For a large system of linear equations, the Gaussian elimination method can involve a 

large number of arithmetic computations, each of which can produce rounding errors. 

This is due to the fact that every computation is dependent on previous results.

Consequently, an error in the early step will tend to propagate, i.e., it will cause errors 

in subsequent steps, and the final solution will become inaccurate. The rounding error 

can be reduced by the Gaussian elimination method with partial pivoting.

Consider the system of equations:

 

11 12 13 1

21 22 23 2

31 32 33 3

a x a y a z b

a x a y a z b

a x a y a z b

+ + =

+ + =

+ + =

The matrix form of the system is

 

11 12 13 1

21 22 23 2

31 32 33 3

a a a x b

a a a y b

a a a z b

È ˘ È ˘ È ˘
Í ˙ Í ˙ Í ˙=Í ˙ Í ˙ Í ˙
Í ˙ Í ˙ Í ˙Î ˚Î ˚ Î ˚

The augmented matrix of the system is

 

11 12 13 1

21 22 23 2

31 32 33 3

[ : ]

a a a b

A B a a a b

a a a b

È ˘
Í ˙= Í ˙
Í ˙Î ˚

For the partial pivoting process, the left column is searched for the largest absolute-

value entry. This entry is called the pivot. The row interchange is performed, if 

necessary, to bring the pivot in the first row. The first row is divided by the pivot and 

elementary row operations are used to reduce the remaining entries in the first column 

to zero. The completion of these steps is called a pass. After performing the first pass, 

the first row and first column  are ignored and the process is repeated on the remaining 

submatrix. This process is continued until the matrix is in the row echelon form.

The term partial in partial pivoting refers to the fact that in each pivot search, only 

entries in the left column of the matrix or submatrix are considered. This search can be 

extended to include every entry in the coefficient matrix or submatrix. The resulting 

method is called the Gaussian elimination method with complete pivoting. Generally, 

partial pivoting is preferred because complete pivoting becomes very complicated.
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example 1
Solve the following system of equations using partial pivoting by the 

Gauss elimination method:

 

1 2 3

1 2 3

1 2 3

2 2 6

4 2 3 4

0

x x x

x x x

x x x

+ + =

+ + =

+ + =
 [Summer 2015]

Solution

The matrix form of the system is

 

1

2

3

2 2 1 6

4 2 3 4

1 1 1 0

A B

x

x

x

=

È ˘ È ˘ È ˘
Í ˙ Í ˙ Í ˙=Í ˙ Í ˙ Í ˙
Í ˙ Í ˙ Í ˙Î ˚ Î ˚Î ˚

x

The augmented matrix of the system is

 

2 2 1 6

[ : ] 4 2 3 4

1 1 1 0

A B

È ˘
Í ˙= Í ˙
Í ˙Î ˚

In the left column, 4 is the pivot because it is the entry that has the largest absolute 

value.

 

12

1

4 2 3 4

[ : ] ~ 2 2 1 6

1 1 1 0

1

4

1 3
1 1

2 4

~ 2 2 1 6

1 1 1 0

R

A B

R

È ˘
Í ˙
Í ˙
Í ˙Î ˚

Ê ˆ
Á ˜Ë ¯

È ˘
Í ˙
Í ˙
Í ˙
Í ˙Î ˚
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2 1 3 12 ,

1 3
1 1

2 4

1
~ 0 1 4

2

1 1
0 1

2 4

R R R R- -

È ˘
Í ˙
Í ˙
Í ˙-Í ˙
Í ˙
Í ˙-
Í ˙Î ˚

This completes the first pass. For the second pass, the pivot is 1 in the submatrix 

formed by deleting the first row and first column.

 

3 2

1

2

1 3
1 1

2 4

1
~ 0 1 4

2

1
0 0 3

2

R R-

È ˘
Í ˙
Í ˙
Í ˙-Í ˙
Í ˙
Í ˙-
Í ˙Î ˚

The corresponding system of equations is

 

1 2 3

2 3

3

1 3
1

2 4

1
4

2

1
3

2

x x x

x x

x

+ + =

- =

= -

Solving these equations by back substitution,

 

3

2 3

1 2 3

6

1 1
4 4 ( 6) 1

2 2

1 3 1 3
1 1 (1) ( 6) 5

2 4 2 4

x

x x

x x x

= -

= + = + - =

= - - = - - - =

Hence, the solution is

      x1 = 5,  x2 = 1,  x3 = –6
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example 2
Solve the following system of equations using the Gauss elimination 

method with partial pivoting.

 

7

3 3 4 24

2 3 16

x y z

x y z

x y z

+ + =
+ + =
+ + =

Solution

The matrix form of the system is

 

1 1 1 7

3 3 4 24

2 1 3 16

A B

x

y

z

=

È ˘ È ˘ È ˘
Í ˙ Í ˙ Í ˙=Í ˙ Í ˙ Í ˙
Í ˙ Í ˙ Í ˙Î ˚ Î ˚ Î ˚

x

The augmented matrix of the system is

 

1 1 1 7

[ : ] 3 3 4 24

2 1 3 16

A B

È ˘
Í ˙= Í ˙
Í ˙Î ˚

In the left column, 3 is the pivot because it is the entry that has largest absolute value.

 

12

1

2 1 3 1

3 3 4 24

[ : ] ~ 1 1 1 7

2 1 3 16

1

3

4
1 1 8

3

~ 1 1 1 7

2 1 3 16

, 2

4
1 1 8

3

1
~ 0 0 1

3

1
0 1 0

3

R

A B

R

R R R R

È ˘
Í ˙
Í ˙
Í ˙Î ˚

Ê ˆ
Á ˜Ë ¯

È ˘
Í ˙
Í ˙
Í ˙
Í ˙
Î ˚

- -

È ˘
Í ˙
Í ˙
Í ˙- -Í ˙
Í ˙
Í ˙-Í ˙Î ˚
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This completes the first pass. For the second pass, the pivot is –1 in the submatrix 

formed by deleting the first row and first column.

 

23

2

4
1 1 8

3

1
~ 0 1 0

3

1
0 0 1

3

( 1)

4
1 1 8

3

1
~ 0 1 0

3

1
0 0 1

3

R

R

È ˘
Í ˙
Í ˙
Í ˙-Í ˙
Í ˙
Í ˙- -Í ˙Î ˚

-

È ˘
Í ˙
Í ˙
Í ˙-Í ˙
Í ˙
Í ˙- -Í ˙Î ˚

The corresponding system of equations is

 

4
8

3

1
0

3

1
1

3

x y z

y z

z

+ + =

- =

- = -

Solving these equations by back substitution,

 

=

= = =

= - - = - =

3

1 1
(3) 1

3 3

4 4
8 8 1 (3) 3

3 3

z

y z

x y z

Hence, the solution is

      x = 3,  y = 1,  z = 3

exerCiSe 3.1

Solve the following systems of equations by the Gauss elimination method:

1. x - + =

- + - = -

- + =

y z

x y z

x y z

1

3 2 3 6

2 5 4 5
Ans.: x y z= - = =ÈÎ ˘̊2 3 6, ,
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2. x y z

x y z

x y z

+ - =

+ - =

+ - =

3 2 5

2 3 1

3 2 6
Ans.: x y z= = =ÈÎ ˘̊1 2 1, ,

3. 6 3 6 30

2 3 3 17

2 2 11

x y z

x y z

x y z

+ + =

+ + =

+ + =

Ans.: x y z= = =ÈÎ ˘̊1 2 3, ,

4. 2 4

3 3 0

2 1

x y z

y z

y z

+ + =

- =

- + =

Ans.: x y z= = =ÈÎ ˘̊1 1 1, ,

5. 2 2 12

3 2 2 8

5 10 8 10

x y z

x y z

x y z

+ + =

+ + =

+ - =

Ans.: x y z= - = =ÈÎ ˘̊12 75 14 375 8 75. , . , .

6. 3 4 5 18

2 8 13

5 2 7 20

x y z

x y z

x y z

+ + =

- + =

- + =

Ans.: x y z= = =ÈÎ ˘̊3 1 1, ,

7. 2 6 12

5 11

4 3 10

x y z

x y z

x y z

+ - = -

- + =

- + =

Ans.: x y z= = - =
È

Î
Í

˘

˚
˙

113

69

172

69

22

69
, ,

3.7 GauSS—JOrdan methOd

This method is a modification of the Gauss elimination method. This method 

solves a given system of equations by transforming the coefficient matrix into a 

unit matrix.

Consider the system of equations

 
a x a y a z b
11 12 13 1

+ + =
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a x a y a z b
21 22 23 2

+ + =

 
a x a y a z b
31 32 33 3

+ + =

The matrix form of the system is

 

a a a

a a a

a a a

x

y

z

b

b

b

11 12 13

21 22 23

31 32 33

1

2

3

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

=

È

ÎÎ

Í
Í
Í

˘

˚

˙
˙
˙

The augmented matrix of the system is

 

[ : ]A B

a a a b

a a a b

a a a b

=

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

11 12 13 1

21 22 23 2

31 32 33 3

Applying elementary row transformations to augmented matrix to reduce coefficient 

matrix to unit matrix,

 

A B

d

d

d

:[ ] æ Æææææææ

È

Î

elementary

row transformations

1 0 0

0 1 0

0 0 1

1

2

3

ÍÍ
Í
Í

˘

˚

˙
˙
˙

The corresponding system of equations is

 x = d1

 y = d2

 z = d3

Hence, the solution is

x = d1, y = d2, z = d3

Working rule

  (i) Write the matrix form of the system of equations.

 (ii) Write the augmented matrix.

(iii)  Reduce the coefficient matrix to unit matrix by applying elementary row 

transformations to the augmented matrix.

 (iv) Write the corresponding linear system of equations to obtain the solution.

example 1
Solve the following system of equations:

 

x y z

x y z

x y z

+ + =

+ + =

- + =

3 2 17

2 3 16

2 4 13
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Solution

The matrix form of the system is

     Ax = B

 

1 3 2

1 2 3

2 1 4

17

16

13-

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

=

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

x

y

z

The augmented matrix of the system is

 

A B:[ ] =
-

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

1 3 2 17

1 2 3 16

2 1 4 13

Applying elementary row transformations to the augmented matrix,

 
R R R R2 1 3 12- -,

 

A B:[ ] - -

- -

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

∼

1 3 2 17

0 1 1 1

0 7 0 21

  

( )-

-

- -

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

1

1 3 2 17

0 1 1 1

0 7 0 21

2R

∼

  

R R R R1 2 3 23 7

1 0 5 14

0 1 1 1

0 0 7 14

- +

~ -

- -

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

,

 -
Ê
ËÁ

ˆ
¯̃

1

7
R
3

  

∼

1 0 5 14

0 1 1 1

0 0 1 2

-

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

 
R R R R1 3 2 35- +,

  

~

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

1 0 0 4

0 1 0 3

0 0 1 2
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The corresponding system of equations is

 x = 4

 y = 3

 z = 2

Hence, the solution is

 
x y z= = =4 3 2, ,

example 2
Solve the following system of equations:

 

3 2 5 2

4 2 4

2 4 7

x y z

x y z

x y z

- + =

+ + =

- + =

Solution

The matrix form of the system is

       Ax = B

 

3 2 5

4 1 2

2 1 4

2

4

7

-

-

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

=

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

x

y

z

The augmented matrix of the system is

 

A B:[ ] =
-

-

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

3 2 5 2

4 1 2 4

2 1 4 7

Applying elementary row transformations to the augmented matrix,

  

R R

A B

1 3

1 1 1 5

4 1 2 4

2 1 4 7

-

[ ]
- -

-

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

: ∼

 

R R R R2 1 3 1 4  2- -

- -

-

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

,

∼

1 1 1 5

0 5 2 24

0 1 2 17
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R
23

1 1 1 5

0 1 2 17

0 5 2 24

∼

- -

-

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

 

R R R R1 2 3 2 5+ -

- -

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

,

∼

1 0 3 12

0 1 2 17

0 0 12 61

 

-
Ê
ËÁ

ˆ
¯̃

È

Î

Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙

1

12

1 0 3 12

0 1 2 17

0 0 1
61

12

R
3

∼

 

R R R R1 3 2 3 3  2- -

-
È

Î

Í
Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙
˙

,

∼

1 0 0
13

4

0 1 0
41

6

0 0 1
61

12

The corresponding system of equations is

 

x

y

z

= -

=

=

13

4

41

6

61

12

Hence, the solution is

 
x y z= - = =

13

4

41

6

61

12
, ,
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example 3
Solve the following system of equations:

 

x y

y z

x z

- = -

- + = -

- = -

2 4

5 9

4 3 10

Solution

The matrix form of the system is

      Ax = B

 

1 2 0

0 5 1

4 0 3

4

9

10

-

-

-

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

=

-

-

-

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

x

y

z

The augmented matrix of the system is

 

A B:[ ] =
- -

- -

- -

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

1 2 0 4

0 5 1 9

4 0 3 10

Applying elementary row transformations to the augmented matrix,

  

R R

A B

3 1
4

1 2 0 4

0 5 1 9

0 8 3 6

-

[ ]
- -

- -

-

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

: ∼

 

-
Ê
ËÁ

ˆ
¯̃

1

5
R
2

 

∼

1 2 0 4

0 1
1

5

9

5

0 8 3 6

- -

-

-

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
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R R R R1 2 3 22 8+ -,

 

∼

1 0
2

5

2

5

0 1
1

5

9

5

0 0
7

5

42

5

- -

-

- -

È

Î

Í
Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙
˙

 
-

Ê
ËÁ

ˆ
¯̃

5

7
R
3

 

∼

1 0
2

5

2

5

0 1
1

5

9

5

0 0 1 6

- -

-

È

Î

Í
Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙
˙

 

R R R R1 3 2 3+
Ê
ËÁ

ˆ
¯̃

+
Ê
ËÁ

ˆ
¯̃

2

5

1

5
,

 

∼

1 0 0 2

0 1 0 3

0 0 1 6

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

The corresponding system of equations is

 x = 2

 y = 3

 z = 6

Hence, the solution is

 x = 2, y = 3, z = 6

example 4
Solve the following system of equations:

 

2 6 8 24

5 4 3 2

3 2 16

x y z

x y z

x y z

- + =

+ - =

+ + =
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Solution

The matrix form of the system is

      Ax = B

 

2 6 8

5 4 3

3 1 2

24

2

16

-

-

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

=

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

x

y

z

The augmented matrix of the system is

 

A B:[ ] =
-

-

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

2 6 8 24

5 4 3 2

3 1 2 16

Applying elementary row transformations to the augmented matrix,

 

1

2

Ê
ËÁ

ˆ
¯̃
R
1

 A B:[ ]
-

-

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

∼

1 3 4 12

5 4 3 2

3 1 2 16

 

R R R R2 1 3 1 5 3- -

-

- -

- -

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

,

∼

1 3 4 12

0 19 23 58

0 10 10 20

 

1

19

1 3 4 12

0 1
23

19

58

19

0 10 10 20

Ê
ËÁ

ˆ
¯̃

-

- -

- -

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

R
2

∼

 

R R R R1 2 3 2 3  1+ -

- -

È

Î

Í
Í
Í
Í
Í
Í
Í

, 0

1 0
7

19

54

19

0 1
23

19

58

19

0 0
40

19

200

19

∼

˘̆

˚

˙
˙
˙
˙
˙
˙
˙
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19

40

1 0
7

19

54

19

0 1
23

19

58

19

0 0 1 5

Ê
ËÁ

ˆ
¯̃

- -

È

Î

Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙

R
3

∼

 

R R R R1 3 2 3

7

19

23

19
-
Ê
ËÁ

ˆ
¯̃

+
Ê
ËÁ

ˆ
¯̃

,

 

∼

1 0 0 1

0 1 0 3

0 0 1 5

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

The corresponding system of equations is

 x = 1

 y = 3

 z = 5

Hence, the solution is

 
x y z= = =1 3 5, ,

example 5
Solve the following system of linear equations:

 

2 5 3 1

5 4 2

7 3 4

x y z

x y z

x y z

+ - =
+ + =
+ + =

Solution

The matrix form of the system is

 

A B

x

y

z

x =

-È

Î

Í
Í
Í

˘

˚

˙
˙
˙

È

Î

Í
Í
Í

˘

˚

˙
˙
˙
=

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

2 5 3

5 1 4

7 3 1

1

2

4
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The augmented matrix of the system is

 

[ : ]A B =
-È

Î

Í
Í
Í

˘

˚

˙
˙
˙

2 5 3 1

5 1 4 2

7 3 1 4

Applying elementary row transformations to the augmented matrix,

 

1

2

1
5

2

3

2

1

2

5 1 4 2

7 3 1 4

5 7

1

2 1 3 1

Ê
ËÁ

ˆ
¯̃

-
È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

- -

R

A B

R R R R

[ : ] ~

,

~

11
5

2

3

2

1

2

0
23

2

23

2

1

2

0
29

2

23

2

1

2

2

23

-

- -

-

È

Î

Í
Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙
˙

-
Ê
ËÁ

ˆ
¯̃ RR

R R R

2

1 2 3

1
5

2

3

2

1

2

0 1 1
1

23

0
29

2

23

2

1

2

5

2

~

,

-

-

-

È

Î

Í
Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙
˙

- +
229

2

1 0 1
9

23

0 1 1
1

23

0 0 3
26

23

2R

~ -

-

È

Î

Í
Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙
˙
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-
Ê
ËÁ

ˆ
¯̃

-

-

È

Î

Í
Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙
˙

-

1

3

1 0 1
9

23

0 1 1
1

23

0 0 1
26

69

3

1 3

R

R R R

~

, 22 3

1 0 0
53

69

0 1 0
1

3

0 0 1
26

69

+

-

-

È

Î

Í
Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙
˙

R

~

The corresponding system of equations is

 

53

69

1

3

26

69

x

y

z

=

= -

= -

Hence, the solution is

 

53 1 26
, ,

69 3 69
x y z= = - = -

exerCiSe 3.2

Solve the following systems of equations by the Gauss–Jordan method:

1. x y z

x y z

x y z

+ + =

+ + =

- + =

2 3

2 3 3 10

3 2 13

Ans.: x y z= = - =ÈÎ ˘̊2 1 3, ,
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2. 2 3 5

4 4 3 3

2 3 2 2

x y z

x y z

x y z

+ - =

+ - =

- + =

Ans. : x y z= = =ÈÎ ˘̊1 2 3, ,

3. 10 12

2 10 13

5 7

x y z

x y z

x y z

+ + =

+ + =

+ + =

Ans. : x y z= = =ÈÎ ˘̊1 1 1, ,

4. 2 3 11

4 2 3 8

2 2 6

1 2 3

1 2 3

1 2 3

x x x

x x x

x x x

+ - =

- + =

- + - = -

Ans. : x x x
1 2 3

3 1 2= = - = -ÈÎ ˘̊, ,

5. 2 6 7

2 1

5 7 4 9

1 2 3

1 2 3

1 2 3

x x x

x x x

x x x

+ + =

+ - = -

+ - =

 
Ans. : x x x

1 2 3
1 3 5= = - =ÈÎ ˘̊0, ,

6. 2 4 12

8 3 2 20

4 11 33

x y z

x y z

x y z

+ + =

- + =

+ - =

 
Ans. : x y z= = =ÈÎ ˘̊3 2 1, ,

7. x y z

x y z

x y z

+ + =

+ - =

+ + =

1

4 3 6

3 5 3 4

 

Ans. : x y z= = = -
È

Î
Í

˘

˚
˙1

1

2

1

2
, ,  

3.8 GauSS—JaCObi methOd

This method is applicable to the system of equations in which leading diagonal  elements 

of the coefficient matrix are dominant (large in magnitude) in their respective rows.

Consider the system of equations

 

a x a y a z b

a x a y a z b

a x a y a z b

11 12 13 1

21 22 23 2

31 32 33 3

+ + =

+ + =

+ + =

¸

˝
Ô

˛
Ô

  … (3.1)
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where |a11|, |a22|, |a33| are large as compared to the other coefficients in the correspond-

ing row and satisfy the condition of convergence as follows:

   
a a a
11 12 13

> +

  
a a a
22 21 23

> +

 
a a a
33 31 32

> +

Rewriting the equations for x, y, and z respectively,

 

x
a

b a y a z

y
a

b a x a z

z
a

b a x a

= - -

= - -

= - -

1

1

1

11

1 12 13

22

2 21 23

33

3 31 32

( )

( )

( yy)

¸

˝

Ô
Ô
ÔÔ

˛

Ô
Ô
Ô
Ô

 … (3.2)

iteration 1

Assuming x = x0, y = y0, z = z0 as initial approximation and substituting in Eq. (3.2),

 

x
a

b a y a z
1

11

1 12 0 13 0

1
= - -( )

 

y
a

b a x a z
1

22

2 21 0 23 0

1
= - -( )

 

z
a

b a x a y
1

33

3 31 0 32 0

1
= - -( )

Again substituting these values of x, y, z in Eq. (3.2), the next approximation is 

obtained.

The above iteration process is continued until two successive approximations are 

nearly equal.

Working rule

   (i)  Arrange the equations in such a manner that the leading diagonal elements are 

large in magnitude in their respective rows satisfying the conditions

 
a a a
11 12 13

> +

 
a a a
22 21 23

> +

 
a a a
33 31 32

> +

  (ii) Express the variables having large coefficients in terms of other variables.
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(iii)  Start the iteration 1 by assuming the initial values of (x, y, z) as (x0, y0, z0) and 

obtain (x1, y1, z1).

(iv)  Start the iteration 2 by putting x = x1, y = y1, z = z1 in equations of x, y, z and 

obtain (x2, y2, z2).

   (v)  The above process is repeated for the next iterations and it continues until two 

successive approximations are nearly equal.

example 1
Solve the following system of equations:

  

6 2 4

5 3

2 4 27

x y z

x y z

x y z

+ - =

+ + =

+ + =
 

Solution

Rewriting the equations,

 

x y z

y x z

z x y

= - +

= - -

= - -

¸

˝

Ô
Ô
Ô

˛

Ô
Ô
Ô

1

6
4 2

1

5
3

1

4
27 2

( )

( )

( )

 … (1)

Iteration 1: Assuming x0 = 0, y0 = 0, z0 = 0 as initial approximation and putting in 

Eq. (1),

 
x

1
67= =

2

3
0.

 
y

1
6= =

3

5
0.

 
z
1

6 75= =

27

4
.

Iteration 2: Putting x1, y1, z1 in Eq. (1),

 
x

2

1

6
4 2 0 6 6 75 1 59= - ( ) +ÈÎ ˘̊ =. . .

 
y

2
3 67 6 75 884= - -[ ] = -

1

5
0 0. . .

 
z

2

1

4
27 2 0 67 0 6 6 265= - ( ) -ÈÎ ˘̊ =. . .
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Iteration 3: Putting x2, y2, z2 in Eq. (1),

 
x

3

1

6
4 2 0 884 6 265 2 005= - -( ) +ÈÎ ˘̊ =. . .

 
y

3
3 1 59 6 265 971= - -[ ] = -

1

5
0. . .

 
z

3

1

4
27 2 1 59 0 884 6 176= - ( ) - -( )ÈÎ ˘̊ =. . .

Iteration 4: Putting x3, y3, z3 in Eq. (1),

 
x

4

1

6
4 2 0 971 6 176 2 01= - -( ) +ÈÎ ˘̊ =. . .

 

 
y

4

1

5
3 2 005 6 176 1 03= - -[ ] = -. . .

 

 
z

4

1

4
27 2 2 005 0 971 5 99= - ( ) - -( )ÈÎ ˘̊ =. . .

Iteration 5: Putting x4, y4, z4 in Eq. (1),

 
x

5

1

6
4 2 1 03 5 99 2 00= - -( ) +ÈÎ ˘̊ =. . .

 
y

5

1

5
3 2 01 5 99 1 00= - -[ ] = -. . .

 
z

5

1

4
27 2 2 01 1 03 6 00= - ( ) - -( )ÈÎ ˘̊ =. . .

Since the fourth and fifth iteration values are nearly equal, the approximate solution 

is

 x = 2, y = –1, z = 6

example 2
Solve the following system of equations:

 

8 2 13

10 3 17

3 2 12 25

x y z

x y z

x y z

- + =

- + =

+ + =
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Solution

Since absolute values of all diagonal elements are large as compared to absolute values 

of other coefficients, rewriting the equations,

 

x y z

y x z

z x y

= + -( )

= - - -( )

= - -( )

¸

˝

Ô
Ô
Ô

˛

Ô
Ô
Ô

1

8
13 2

1

10
17 3

1

12
25 3 2

 …(1)

Iteration 1: Assuming x0 = 0, y0 = 0, z0 = 0 as first approximation and putting in Eq. (1),

 
x

1

13

8
1 625= = .

 
y

1
1 7= - = -

17

10
.

 
z
1

2 8= = .
25

12
0

Iteration 2: Putting x1, y1, z1 in Eq. (1),

 
x

2

1

8
13 1 7 2 2 08 0 8925= - - ( )ÈÎ ˘̊ =. . .

 
y

2

1

10
17 1 625 3 2 08 0 9135= - - - ( )ÈÎ ˘̊ = -. . .

 
z

2

1

12
25 3 1 625 2 1 7 1 9604= - ( ) - -( )ÈÎ ˘̊ =. . .

 

Iteration 3: Putting x2, y2, z2 in Eq. (1),

 
x

3

1

8
13 0 9135 2 1 9604 1 0207= - - ( )ÈÎ ˘̊ =. . .

 
y

3

1

10
17 0 8925 3 1 9604 1 0226= - - - ( )ÈÎ ˘̊ = -. . .

 
z

3

1

12
25 3 0 8925 2 0 9135 2 0124= - ( ) - -( )ÈÎ ˘̊ =. . .

Iteration 4: Putting x3, y3, z3 in Eq. (1),

 
x

4

1

8
13 1 0226 2 2 0124 0 9941= - - ( )ÈÎ ˘̊ =. . .

 
y

4

1

10
17 1 0207 3 2 0124 0 9942= - - - ( )ÈÎ ˘̊ = -. . .



3.36 Chapter 3 Systems of Linear Algebraic Equations

 
z

4

1

12
25 3 1 0207 2 1 0226 1 9985= - ( ) - -( )ÈÎ ˘̊ =. . .

Since the third and fourth iteration values are nearly equal, the approximate solution 

is 

 x = 1, y = –1, z = 2

The above method can also be represented in tabular form as follows:

Iteration 

number
x y z= + -

1

8
13 2( ) y x z= – ( – – )

1

10
17 3 z x y= - -

1

12
25 3 2( )

1
x0 = 0

x1 = 1.625

y0 = 0

y1 = – 1.7

z0 = 0

z1 = 2.08

2 x2 = 0.8925 y2 = – 0.9135 z2 = 1.9604

3 x3 = 1.0207 y3 = – 1.0226 z3 = 2.0124

4 x4 = 0.9941 y4 = – 0.9942 z4 = 1.9985

exerCiSe 3.3

Solve the following system of equations by using the Gauss–Jacobi 

method:

1. 4 3 17

5 14

2 8 12

x y z

x y z

x y z

+ + =

+ + =

- + =

Ans.: x y z= = =ÈÎ ˘̊3 2 1, ,

2. 10 2 13

2 10 3 15

3 10 14

x y z

x y z

x y z

+ + =

+ + =

+ + =

Ans.: x y z= = =ÈÎ ˘̊1 1 1, ,

3. 10 2 3 205

2 10 2 154

2 10 120

x y z

x y z

x y z

- - =

- + = -

+ - = -

Ans.: x y z= = =ÈÎ ˘̊32 26 21, ,

4. 12 2 27

2 15 3 16

2 3 25 23

x y z

x y z

x y z

+ + =

+ - =

- + =

Ans.: x y z= = =ÈÎ ˘̊2.0148 0.9731 0.8756, ,
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5. 20 2 17

3 20 18

2 3 20 25

x y z

x y z

x y z

+ - =

+ - = -

- + =

Ans.: x y z= = - =ÈÎ ˘̊1 1 1, ,

6. 10 5 2 3

4 10 3 3

6 10 3

x y z

x y z

x y z

- - =

- + = -

+ + = -

Ans.: x y z= = = -ÈÎ ˘̊0 0 0 0. , . , .342 285 5 5

7. 8 3 2 20

4 11 33

6 3 12 35

x y z

x y z

x y z

- + =

+ - =

+ + =

Ans.: x y z= = =ÈÎ ˘̊3 168 1 9859 9118. , . , .0 0

8. x y z

x y z

x y z

+ + =

+ - =

+ + =

54 110

27 6 85

6 15 2 72

Ans.: x y z= = =ÈÎ ˘̊2 425 3 573 1 926. , . , .

3.9 Gauss―siedel Method

This method is applicable to the system of equations in which leading diagonal elements 

of the coefficient matrix are dominant (large in magnitude) in their respective rows.

Consider the system of equations

 

a x a y a z b

a x a y a z b

a x a y a z b

11 12 13 1

21 22 23 2

31 32 33 3

+ + =

+ + =

+ + =

¸

˝
Ô

˛
Ô

 …(3.3) 

where |a11|, |a22|, |a33| are large as compared to the other coefficients in the correspond-

ing row and satisfy the condition of convergence as follows:

 
a a a
11 12 13

> +

 
a a a
22 21 23

> +

 
a a a
33 31 32

> +
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Rewriting the equations for x, y, and z respectively,

 

x
a

b a y a z

y
a

b a x a z

z
a

b a x a y

= - -( )

= - -( )

= - -

1

1

1

11

1 12 13

22

2 21 23

33

3 31 32(( )

¸

˝

Ô
Ô
ÔÔ

˛

Ô
Ô
Ô
Ô

 …(3.4) 

Iteration 1

Assuming x = x0, y = y0, z = z0 as initial approximations and substituting in the equation 

of x,

 

x
a

b a y a z1

11

1 12 0 13 0

1
= - -( )

Now, substituting x = x1, z = z0 in the equation of y,

 

y
a

b a x a z1

22

2 21 1 23 0

1
= - -( )

Substituting x = x1, y = y1 in the equation of z,

 

z
a

b a x a y1

33

3 31 1 32

1
= - -( )

Iteration 2

Substituting y = y1, z = z1 in the equation of x,

 

x
a

b a y a z2

11

1 12 1 13 1

1
= - -( )

Substituting x = x2, z = z1 in the equation of y,

 

y
a

b a x a z2

22

2 21 2 23 1

1
= - -( )

Substituting x = x2, y = y2 in the equation of z,

 

z
a

b a x a y2

33

3 31 2 32 2

1
= - -( )

 

The above iteration process is continued until two successive approximations are 

nearly equal.

Working rule

     (i)  Arrange the equations in such a manner that the leading diagonal elements are 

large in magnitude in their respective rows such that
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a a a
11 12 13

> +

 
a a a
22 21 23

> +

 
a a a
33 31 32

> +

  (ii) Express the variables having large coefficients in terms of other variables.

(iii) Start the iteration 1 by assuming the initial values of (x, y, z) as (x0, y0, z0).

  (iv)  In the iteration 1, put y = y0, z = z0 in the equation of x to obtain x1, put 

x = x1, z = z0 in the equation of y to obtain y1, put x = x1, y = y1 in the equation 

of z to obtain z1.

    (v)  The above process is repeated for the next iterations and it continues until two 

successive approximations are nearly equal.

example 1
Solve the following system of equations:

 

3 0 1 0 2 7 85

0 1 7 0 3 19 3

0 3 0 2 10 71 4

x y z

x y z

x y z

- - =

+ - = -

- + =

. . .

. . .

. . .

Solution

Since diagonal elements are largest, the Gauss–Siedel method can be applied.

Rewriting the equations.

 

x y z

y x z

z x

= + +( )

= - - +( )

= - +

1

3
7 85 0 1 0 2

1

7
19 3 0 1 0 3

1

10
71 4 0 3 0

. . .

. . .

. . .22y( )

¸

˝

Ô
Ô
Ô

˛

Ô
Ô
Ô

 …(1)

Iteration 1: Assuming x0 = 0, y0 = 0, z0 = 0 as initial approximation and substituting in 

the equation of x,

 
x1 7 85 2 6167= =

1

3
( . ) .

Putting x = x1, z = z0 in the equation of y,

 
y x z1 1 0

1

7
19 3 0 1 0 3= - - +( . . . )

  = - - ( ) + ( )ÈÎ ˘̊

= -

1

7
19 3 0 1 2 6167 0 3 0

2 7945

. . . .

.
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Putting x = x1, y = y1 in the equation of z,

 
z x y1 1 1

1

10
71 4 0 3 0 2= - +( . . . )

  
= - + -[ ]

1

10
71 4 0 3 2 6167 0 2 2 7945. . ( . ) . ( . )

   = 7.0056

Iteration 2: Putting y = y1, z = z1 in the equation of x, 

  
x y z2 1 1

1

3
7 85 0 1 0 2= + +( . . . )

  
= + - +[ ]

1

3
7 85 0 1 2 7945 0 2 7 0056. . ( . ) . ( . )

   = 2.9906

Putting x = x2, z = z1 in the equation of y,

  
y x z2 2 1

1

7
19 3 0 1 0 3= - - +( . . . )

  
= - - +[ ]

1

7
19 3 0 1 2 9906 0 3 7 0056. . ( . ) . ( . )

   = –2.4996

Putting x = x2, y = y2 in the equation of z,

 
z x y2 2 2

1

10
71 4 0 3 0 2= - +( . . . )

  
= - + -[ ]

1

10
71 4 0 3 2 9906 0 2 2 4996. . ( . ) . ( . )

   = 7.0003

Iteration 3: Putting y = y2, z = z2 in the equation of x,

 
x y z3 2 2

1

3
7 85 0 1 0 2= + +( . . . )

  
= + - +[ ]

1

3
7 85 0 1 2 4996 0 2 7 0003. . ( . ) . ( . )

   = 3.000

Putting x = x3, z = z2 in the equation of y,

 
y x z3 3 2

1

7
19 3 0 1 0 3= - - +( . . . )

  
= - - +[ ]

1

7
19 3 0 1 3 0 3 7 0003. . ( ) . ( . )

 

   = –2.4999
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Putting x = x3, y = y3 in the equation of z,

 
z x y3 3 3

1

10
71 4 0 3 0 2= - +( . . . )

  
= - + -[ ]

1

10
71 4 0 3 3 0 2 2 4999. . ( ) . ( . )

   = 7.0000

Since the second and third iteration values are nearly equal, the approximate solution 

is

 x = 3, y = –2.5, z = 7

example 2
Solve the following system of equations:

 

5 10

2 4 14

8 20

x y z

x y z

x y z

+ - =

+ + =

+ + =

Solution

Since diagonal elements are largest, the Gauss–Siedel method can be applied.

Rewriting the equations, 

 
x y z= - +

1

5
10( )

 
y x z= - -( )

1

4
14 2

 
z x y= - -( )

1

8
20

Iteration 1: Assuming x0 = 0, y0 = 0, z0 = 0 as initial approximation and substituting in 

the equation of x,

 
x1

1

5
10 2= =( )

Putting x = x1, z = z0 in the equation of y,

 
y x z
1 1 0

1

4
14 2= - -( )

  

= - -[ ]

=

1

4
14 2 2 0

2 5

( )

.
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Putting x = x1, y = y1 in the equation of z,

 

z x y
1 1 1

1

8
20

1

8
20 2 2 5

1 9375

= - -( )

= - -( )

=

.

.

Iteration 2: Putting y = y1, z = z1 in the equation of x,

 

x y z2 1 1

1

5
10

1

5
10 2 5 1 9375

1 8875

= - +( )

= - +

=

( . . )

.

Putting x = x2, z = z1 in the equation of y,

 
y x z
2 2 1

1

4
14 2= - -( )

   

= - ( ) -ÈÎ ˘̊

=

1

4
14 2 1 8875 1 9375. .

2.0719

Putting x = x2, y = y2 in the equation of z,

 
z x y2 2 2

1

8
20= - -( )

  

= - -( )

=

1

8
20 1 8875 2 0719. .

2.0050

Iteration 3: Putting y = y2, z = z2 in the equation of x,

 
x y z
3 2 2

1

5
10= - +( )

  

= - +( )

=

1

5
10 2 0719 2 0050. .

1.9866

Putting x = x3, z = z2 in the equation of y,

 y x z
3 3 2

1

4
14 2= - -( )

   

= - ( ) -ÈÎ ˘̊

=

1

4
14 2 1 9866 2 005

2 0055

. .

.
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Putting x = x3, y = y3 in the equation of z,

 
z x y
3 3 3

1

8
20= - -( )

  

= - -( )

=

1

8
20 1 9866 2 0055. .

2.0009

Iteration 4: Putting y = y3, z = z3 in the equation of x,

 
x y z
4 3 3

1

5
10= - +( )

   

= - +( )

=

1

5
10 2 0055 2 0009. .

1.9991

Putting x = x4, z = z3 in the equation of y,

 
y x z
4 4 3

1

4
14 2= - -( )

   

= - ( ) -ÈÎ ˘̊
1

4
14 2 1 9991 2 0009. .

= 2.0002

Putting x = x4, y = y4 in the equation of z,

 
z x y
4 4 4

1

8
20= - -( )

  

= - -( )

=

1

8
20 1 9991 2 0002. .

2.0001

Since the third and fourth iteration values are nearly equal, the approximate solution 

is

 x = 2, y = 2, z = 2

example 3
Solve the following system of linear equations:

         

8 5

8 5

8 5

x y z

x y z

x y z

+ + =
+ + =
+ + =  [Summer 2015, Winter 2013]
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Solution

Since diagonal elements are largest, the Gauss–Seidel method can be applied.

Rewriting the equations,

 

x y z

y x z

z x y

= - -

= - -

= - -

1

8
5

1

8
5

1

8
5

( )

( )

( )

Iteration 1: Assuming x0 = 0, y0 = 0, z0 = 0 as initial approximation and substituting in 

the equation of x.

 
x1

1

8
5 0 625= =( ) .

Putting x = x1, z = z0 in the equation of y,

 

y x z1 1 0

1

8
5

1

8
5 0 625 0

0 5469

= - -

= - -

=

( )

( . )

.

Putting x = x1, y = y1 in the equation of z,

 

z x y1 1 1

1

8
5

1

8
5 0 625 0 5469

0 4785

= - -

= - -

=

( )

( . . )

.

Iteration 2: Putting y = y1, z = z1 in the equation of x,

 

x y z2 1 1

1

8
5

1

8
5 0 5469 0 4785

0 4968

= - -

= - -

=

( )

( . . )

.

Putting  x = x2, z = z1 in the equation of y,

 

y x z2 2 1

1

8
5

1

8
5 0 4968 0 4785

0 5031

= - -

= - -

=

( )

( . . )

.
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Putting x = x2, y = y2 in the equation of z,

 

z x y2 2 2

1

8
5

1

8
5 0 4968 0 5031

0 5

= - -

= - -

=

( )

( . . )

.

Iteration 3: Putting y = y2, z = z2 in the equation x,

 

x y z3 2 2

1

8
5

1

8
5 0 5031 0 5

0 4996

= - -

= - -

=

( )

( . . )

.

Putting x = x3, z = z2 in the equation of y,

 

y x z3 3 2

1

8
5

1

8
5 0 4996 0 5

0 5001

= - -

= - -

=

( )

( . . )

.

Putting x = x3, y = y3 in the equation of z,

 

z x y3 3 3

1

8
5

1

8
5 0 4996 0 5001

0 5

= - -

= - -

=

( )

( . . )

.

Since the second and third iteration values are nearly equal, the approximate solution 

is

 x = 0.5, y = 0.5, z = 0.5

example 4
Use the Gauss–Siedel method to solve

 

6 105

4 8 3 155

5 4 10 65

x y z

x y z

x y z

+ + =
+ + =
+ - =

 [Summer 2015]
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Solution

Since diagonal elements are largest, the Gauss–Seidel method can be applied.

Rewriting the equations,

 

1
(105 )

6

1
(155 4 3 )

8

1
(65 5 4 )

10

x y z

y x z

z x y

= - -

= - -

= - - -

Iteration 1: Assuming x0 = 0, y0 = 0, z0 = 0 as initial approximation and substituting in 

the equation of x,

 
1

1
(105) 17.5

6
x = =

Putting x = x1, z = z0 in the equation of y,

 

[ ]

1 1 0

1
(155 4 3 )

8

1
155 4(17.5) 3(0)

8

10.625

y x z= - -

= - -

=

Putting x = x1, y = y1 in the equation of z,

 

[ ]

1 1 1

1
(65 5 4 )

10

1
65 5(17.5) 4(10.625)

10

6.5

z x y= - - -

= - - -

=

Iteration 2: Putting y = y1, z = z1 in the equation of x,

 

2 1 1

1
(105 )

6

1
(105 10.625 6.5)

6

14.6458

x y z= - -

= - -

=

Putting x = x2, z = z1 in the equation of y,

 

[ ]

2 2 1

1
(155 4 3 )

8

1
155 4(14.6458) 3(6.5)

8

9.6146

y x z= - -

= - -

=
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Putting x = x2, y = y2 in the equation of z,

 

[ ]

= - - -

= - - -

=

2 2 2

1
(65 5 4 )

10

1
65 5(14.6458) 4(9.6146)

10

4.6687

z x y

Iteration 3: Putting y = y2, z = z2 in the equation of x,

 

3 2 2

1
(105 )

6

1
(105 9.6146 4.6687)

6

15.1195

x y z= - -

= - -

=

Putting x = x3, z = z2 in the equation of y,

 

[ ]

= - -

= - -

=

3 3 2

1
(155 4 3 )

8

1
155 4(15.1195) 3(4.6687)

8

10.0645

y x z

Putting x = x3, y = y3 in the equation of z,

 

[ ]

3 3 3

1
(65 5 4 )

10

1
65 5(15.1195) 4(10.0645)

10

5.0856

z x y= - - -

= - - -

=

Iteration 4: Putting y = y3, z = z3 in the equation of y,

 

4 3 3

1
(105 )

6

1
(105 10.0645 5.0856)

6

14.975

x y z= - -

= - -

=

Putting x = x4, z = z3 in the equation of y,

 

[ ]

4 4 3

1
(155 4 3 )

8

1
155 4(14.975) 3(5.0856)

8

9.9804

y x z= - -

= - -

=
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Putting x = x4, y = y4 in the equation of z,

 

[ ]

4 4 4

1
(65 5 4 )

10

1
65 5(14.975) 4(9.9804)

10

4.9797

z x y= - - -

= - - -

=

Iteration 5: Putting y = y4, z = z4 in the equation of x,

 

5 4 4

1
(105 )

6

1
(105 9.9804 4.9797)

6

15.0067

x y z= - -

= - -

=

Putting x = x5, z = z4 in the equation of y,

 

[ ]

5 5 4

1
(155 4 3 )

8

1
155 4(15.0067) 3(4.9797)

8

10.0043

y x z= - -

= - -

=

Putting x = x5, y = y5 in the equation of z,

 

[ ]

5 5 5

1
(65 5 4 )

10

1
65 5(15.0067) 4(10.0043)

10

5.0051

z x y= - - -

= - - -

=

Since the fourth and fifth iteration values are nearly equal, the approximate solution 

is

 x = 15, y = 10, z = 5

example 5
Solve the following system of equations:

 

25 2 3 48

3 27 2 56

2 23 52

x y z

x y z

x y z

+ - =

+ - =

+ + =

starting with (1, 1, 0).
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Solution

Since diagonal elements are largest, the Gauss–Siedel method can be applied.

Rewriting the equations,

 x y z= - +( )
1

25
48 2 3

 
y x z= - +( )

1

27
56 3 2

 
z x y= - -( )

1

23
52 2

Iteration 1: It is given that x0 = 1, y0 = 1, z0 = 0. Putting y = y0, z = z0 in the equation 

of x,

 
x y z
1 0 0

1

25
48 2 3= - +( )

  

= - +[ ]

=

1

25
48 2 1 3 0

1 84

( ) ( )

.

Putting x = x1, z = z0 in the equation of y, 

 
y x z
1 1 0

1

27
56 3 2= - +( )

  

= - +[ ]

=

1

27
56 3 1 84 2 0( . ) ( )

1.8696

Putting x = x1, y = y1 in the equation of z,

 
z x y
1 1 1

1

23
52 2= - -( )

  

= - - ( )ÈÎ ˘̊

=

1

23
52 1 84 2 1 8696. .

2.0183

Iteration 2: Putting y = y1, z = z1, in the equation of x, 

 
x y z
2 1 1

1

25
48 2 3= - +( )

  

= - ( ) + ( )ÈÎ ˘̊

=

1

25
48 2 1 8696 3 2 0183. .

2.0126

Putting x = x2, z = z1 in the equation of y,

 
y x z
2 2 1

1

27
56 3 2= - +( )
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= - ( ) + ( )ÈÎ ˘̊

=

1

27
56 3 2 0126 2 2 0183. .

1.9999

Putting x = x2 , y = y2 in the equation of z,

 
z x y
2 2 2

1

23
52 2= - -( )

  

= - - ( )ÈÎ ˘̊

=

1

23
52 2 0126 2 1 9999. .

1.9994

Iteration 3: Putting y = y2, z = z2 in the equation of x,

 
x y z
3 2 2

1

25
48 2 3= - +( )

  

= - ( ) + ( )ÈÎ ˘̊

=

1

25
48 2 1 9999 3 1 9994. .

1.9999

Putting x = x3, z = z2 in the equation of y,

 
y x z
3 3 2

1

27
56 3 2= - +( )

  

= - ( ) + ( )ÈÎ ˘̊

=

1

27
56 3 1 9999 2 1 9994

1 9999

. .

.

Putting x = x3, y = y3 in the equation of z,

 
z x y
3 3 3

1

23
52 2= - -( )

  

= - - ( )ÈÎ ˘̊

=

1

23
52 1 9999 2 1 9999

2 0000

. .

.

Since the second and third iteration values are nearly equal, the approximate solution is

 x = 2, y = 2, z = 2

example 6
Solve the following system of equations, by the Gauss–Seidel method:

 

2 6 9

8 3 2 13

5 7

x y z

x y z

x y z

+ + =
+ + =
+ + =  [Summer 2015]
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Solution

Since diagonal elements are not largest in their respective rows, rearranging the equations, 

we have

 

8 3 2 13

5 7

2 6 9

x y z

x y z

x y z

+ + =
+ + =
+ + =

Now, diagonal elements are largest. Rewriting the equations,

 

1
(13 3 2 )

8

1
(7 )

5

1
(9 2 )

6

x y z

y x z

z x y

= - -

= - -

= - -

Iteration 1: Assuming x0 = 0, y0 = 0, z0 = 0 as initial approximation and substituting in 

the equation of x,

 
1

1
(13) 1.625

8
x = =

Putting x = x1, z = z0 in the equation of y,

 

1 1 0

1
(7 )

5

1
(7 1.625 0)

5

1.075

y x z= - -

= - -

=

Putting x = x1, y = y1 in the equation of z,

 

[ ]

1 1 1

1
(9 2 )

6

1
9 2(1.625) 1.075

6

0.7792

z x y= - -

= - -

=
Iteration 2: Putting y = y1, z = z1 in the equation of x,

 

[ ]

2 1 1

1
(13 3 2 )

8

1
13 3(1.075) 2(0.7792)

8

1.0271

x y z= - -

= - -

=
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Putting x = x2, z = z1 in the equation of y,

 

2 2 1

1
(7 )

5

1
(7 1.0271 0.7792)

5

1.0387

y x z= - -

= - -

=

Putting x = x2, y = y2 in the equation of z,

 

[ ]

2 2 2

1
(9 2 )

6

1
9 2(1.0271) 1.0387

6

0.9845

z x y= - -

= - -

=

Iteration 3: Putting y = y2, z = z2 in the equation of x,

 

[ ]

3 2 2

1
(13 3 2 )

8

1
13 3(1.0387) 2(0.9845)

8

0.9894

x y z= - -

= - -

=

Putting x = x3, z = z2 in the equation of y,

 

3 3 2

1
(7 )

5

1
(7 0.9894 0.9845)

5

1.0052

y x z= - -

= - -

=

Putting x = x3, y = y3 in the equation of z,

 

[ ]

3 3 3

1
(9 2 )

6

1
9 2(0.9894) 1.0052

6

1.0027

z x y= - -

= - -

=

Iteration 4: Putting y = y3, z = z3 in the equation of x,

 

[ ]

4 3 3

1
(13 3 2 )

8

1
13 3(1.0052) 2(1.0027)

8

0.9974

x y z= - -

= - -

=
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Putting x = x4, z = z3 in the equation of y,

 

4 4 3

1
(7 )

5

1
(7 0.9974 1.0027)

5

1

y x z= - -

= - -

=

Putting x = x4, y = y4 in the equation of z,

 

[ ]

4 4 4

1
(9 2 )

6

1
9 2(0.9974) 1

6

1.0009

z x y= - -

= - -

=

Since the third and fourth iteration values are nearly equal, the approximate solution 

is

 x = 1, y = 1, z = 1

example 7
Solve the following system of equations:

 

x y z

x y z

x y z

+ + =

+ - =

- + =

2 0

3 0

4 3

starting with (1, 1, 1).

Solution

Since diagonal elements are not largest in their respective rows, rearranging the equations,

 

3 0

2 0

4 3

x y z

x y z

x y z

+ - =

+ + =

- + =

Now, diagonal elements are largest. Rewriting the equations,

 

x y z= - +
1

3
( )

 
y x z= - -

1

2
( )

 
z x y= - +

1

4
3( )
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Iteration 1: Assuming x0 = 1, y0 = 1, z0 = 1 as initial approximation and substituting in 

the equation of x, 

 x y z1 0 0

1

3
= - +( )

  

= - +

=

1

3
1 1

0

( )

Putting x = x1, z = z0 in the equation of y,

 
y x z1 1 0

1

2
= - -( )

  

= - -

= -

1

2
0 1

0 5

( )

.

Putting x = x1, y = y1 in the equation of z,

 
z x y1 1 1

1

4
3= - +( )

  

= - -

=

1

4
3 0 0 5

0 625

( . )

.

Iteration 2: Putting y = y1, z = z1 in the equation of x,

 
x y z2 1 1

1

3
= - +( )

  

= - - +[ ]

=

1

3
0 5 0 625( . ) .

0.375

Putting x = x2, z = z1, in the equation of y,

 
y x z2 2 1

1

2
= - -( )

   

= - -

= -

1

2
0 375 0 625

0 5

( . . )

.

Putting x = x2, y = y2 in the equation of z,

  
z x y2 2 2

1

4
3= - +( )

   

= - -

=

1

4
3 0 375 0 5( . . )

0.5313
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Iteration 3: Putting y = y2, z = z2 in the equation of x,

  
x y z3 2 2

1

3
= - +( )

 

= - - +[ ]

=

1

3
0 5 0 5313( . ) .

0.3438

Putting x = x3, z = z2 in the equation of y,

 
y x z3 3 2

1

2
= - -( )

   

= - -

= -

1

2
0 3438 0 5313

0 4376

( . . )

.

Putting x = x3, y = y3 in the equation of z,

  
z x y3 3 3

1

4
3= - +( )

   

= - -

=

1

4
3 0 3438 0 4376( . . )

0.5547

Iteration 4: Putting y = y3, z = z3 in the equation of x,

 
x y z4 3 3

1

3
= - +( )

   

= - - +[ ]

=

1

3
0 4376 0 5547( . ) .

0.3307

Putting x = x4, z = z3 in the equation of y,

 y x z4 4 3

1

2
= - -( )

   

= - -

= -

1

2
0 3307 0 5547

0 4427

( . . )

.

Putting x = x4, y = y4 in the equation of z,

  z x y4 4 4

1

4
3= - +( )

   

= - -

=

1

4
3 0 3307 0 4427( . . )

0.5566
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Iteration 5: Putting y = y4, z = z4 in the equation of z,

  
x y z5 4 4

1

3
= - +( )

   

= - - +[ ]

=

1

3
0 4427 0 5566

0 3331

( . ) .

.

Putting x = x5, z = z4 in the equation of y,

  
y x z5 5 4

1

2
= - -( )

   

= - -

= -

1

2
0 3331 0 5566

0 4449

( . . )

.

Putting x = x5, y = y5 in the equation of z,

  
z x y5 5 5

1

4
3= - +( )

   

= - -

=

1

4
3 0 3331 0 4449

0 5555

( . . )

.

Iteration 6: Putting y = y5, z = z5 in the equation of z,

 
x y z6 5 5

1

3
= - +( )

   

= - - +[ ]

=

1

3
0 4449 0 5555

0 3335

( . ) .

.

Putting x = x6, z = z5 in the equation of y,

 
y x z6 6 5

1

2
= - -( )

   

= - -

= -

1

2
0 3335 0 5555

0 4445

( . . )

.

Putting x = x6, y = y6 in the equation of z, 

 
z x y6 6 6

1

4
3= - +( )

   

= - -

=

1

4
3 0 3335 0 4445

0 5555

( . . )

.
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Since the fifth and sixth iteration values are nearly equal, the approximate solution is

 x = 0.333, y = – 0.444, z = 0.555

example 8
Solve the following system of equations:

 

2 15 6 72

6 27 85

54 110

x y z

x y z

x y z

- + =

- + - =

+ + =

Solution

Since diagonal elements are not largest in their respective rows, rearranging the equations, 

we have

 

54 110

2 15 6 72

6 27 85

x y z

x y z

x y z

+ + =

- + =

- + - =

Now, diagonal elements are largest. Rewriting the equations, 

 x y z= - -

1

54
110( )

 y x z= - - -

1

15
72 2 6( )

 
z x y= - + -

1

27
85 6( )

Iteration 1: Assuming x0 = 0, y0 = 0, z0 = 0 as initial approximation and substituting in 

the equation of x,

 
x1

1

54
110 2 037= =( ) .

Putting x = x1, z = z0 in the equation of y, 

 

y x z1 1 0

1

15
72 2 6= - - -( )

  

= - - -[ ]

= -

1

15
72 2 2 037 6 0

4 5284

( . ) ( )

.
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Putting x = x1, y = y1 in the equation of z, 

 
z x y1 1 1

1

27
85 6= - + -( )

  

= - + - -[ ]

= -

1

27
85 2 037 6 4 5284

4 2299

. ( . )

.

Iteration 2: Putting y = y1, z = z1, in the equation of x,

 
x y z2 1 1

1

54
110= - -( )

   

= - - - -[ ]

=

1

54
110 4 5284 4 2299( . ) ( . )

2.1992

Putting x = x2, z = z1 in the equation of y,

 
y x z2 2 1

1

15
72 2 6= - - -( )

   

= - - - -[ ]

= -

1

15
72 2 2 1992 6 4 2299

6 1987

( . ) ( . )

.

Putting x = x2, y = y2 in the equation of z,

 
z x y2 2 2

1

27
85 6= - + -( )

   

= - + - -[ ]

= -

1

27
85 2 1992 6 6 1987

4 6071

. ( . )

.

Iteration 3: Putting y = y2, z = z2, in the equation of x,

 
x y z3 2 2

1

54
110= - -( )

   

= - - - -[ ]

=

1

54
110 6 1987 4 6071

2 2371

( . ) ( . )

.

Putting x = x3, z = z2 in the equation of y,

 
y x z3 3 2

1

15
72 2 6= - - -( )

   

= - - - -[ ]

= -

1

15
72 2 2 2371 6 4 6071

6 3446

( . ) ( . )

.
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Putting x = x3, y = y3 in the equation of z,

 
z x y3 3 3

1

27
85 6= - + -( )

   

= - + - -[ ]

= -

1

27
85 2 2371 6 6 3446

4 6409

. ( . )

.

Iteration 4: Putting y = y3, z = z3, in the equation of x,

 
x y z4 3 3

1

54
110= - -( )

   

= - - - -[ ]

=

1

54
110 6 3446 4 6409

2 2405

( . ) ( . )

.

Putting x = x4, z = z3 in the equation of y,

 
y x z4 4 3

1

15
72 2 6= - - -( )

   

= - - - -[ ]

= -

1

15
72 2 2 2405 6 4 6409

6 3576

( . ) ( . )

.

Putting x = x4, y = y4 in the equation of z,

 
z x y4 4 4

1

27
85 6= - + -( )

   

= - + - -[ ]

= -

1

27
85 2 2405 6 6 3576

4 6439

. ( . )

.

Iteration 5: Putting y = y4, z = z4, in the equation of x,

 
x y z5 4 4

1

54
110= - -( )

   

= - - - -[ ]

=

1

54
110 6 3576 4 6439

2 2408

( . ) ( . )

.

Putting x = x5, z = z4 in the equation of y,

 
y x z5 5 4

1

15
72 2 6= - - -( )

   

= - - - -[ ]

= -

1

15
72 2 2 2408 6 4 6439

6 3588

( . ) ( . )

.
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Putting x = x5, y = y5 in the equation of z,

 
z x y5 5 5

1

27
85 6= - + -( )

   

= - + - -[ ]

= -

1

27
85 2 2408 6 6 3588

4 6442

. ( . )

.

Iteration 6: Putting y = y5, z = z5, in the equation of x,

 x y z6 5 5

1

54
110= - -( )

   

= - - - -[ ]

=

1

54
110 6 3588 4 6442

2 2408

( . ) ( . )

.

Putting x = x6, z = z5 in the equation of y,

 
y x z6 6 5

1

15
72 2 6= - - -( )

   

= - - - -[ ]

= -

1

15
72 2 2 2408 6 4 6442

6 3589

( . ) ( . )

.

Putting x = x6, y = y6 in the equation of z,

 
z x y6 6 6

1

27
85 6= - + -( )

   

= - + - -[ ]

= -

1

27
85 2 2408 6 6 3589

4 6442

. ( . )

.

Since the fifth and sixth iteration values are nearly equal, the approximate solution is

 x = 2.2408, y = –6.3589, z = –4.6442

The above method can also be represented in tabular form as follows:

Iteration  

number
x y z= - -

1

54
110( ) y x z= - -– ( )

1

15
72 2 6 z x y= - + -

1

27
85 6( )

1
x0 = 0 

x1 = 2.037

y0 = 0

y1 = –4.5284

z0 = 0

z1 = –4.2299

2 x2 = 2.1992 y2 = –6.1987 z2 = –4.6071

3 x3 = 2.2371 y3 = –6.3446 z3 = –4.6409

4 x4 = 2.2405 y4 = –6.3576 z4 = –4.6439

5 x5 = 2.2408 y5 = –6.3588 z5 = –4.6442

6 x6 = 2.2408 y6 = –6.3589 z6 = –4.6442
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exerCiSe 3.4

Solve the following system of equations by using the Gauss–Seidel method:

1. 54 110

2 15 6

6 27 85

x y z

x y z

x y z

+ + =

+ + =

- + + =

72

Ans.: x y z= = =ÈÎ ˘̊1 92 3 57 2 42. , . , .

2. 20 2 17

3 20 18

2 3 20 25

x y z

x y z

x y z

+ - =

+ - = -

- + =

 [ , , ]Ans.: x y z= = - =1 1 1

3. 10 12

2 10 13

2 2 10 14

x y z

x y z

x y z

+ + =

+ + =

+ + =

 
  , ,Ans.: x y z= = =ÈÎ ˘̊1 1 1

4. 27 6 85

6 15 2 72

54 110

x y z

x y z

x y z

+ - =

+ + =

+ + =

 
Ans.: x y z= = =ÈÎ ˘̊2 43 3 57 1 92. , . , .

5. 28 4 32

2 17 4 35

3 10 24

x y z

x y z

x y z

+ - =

+ + =

+ + =

 
[ . , . , . ]Ans.: x y z= = =0 99 1 51 1 85

3.10 ill-COnditiOned SyStemS

An ill-conditioned system is one in which a small change in any of the elements of 

the system causes a large change in the solution of the system. Since ill-conditioned 

systems are extremely sensitive to small changes in the elements of the system, they 

are also extremely sensitive to round-off errors.

A well-conditioned system is one in which a small change in any of the elements of the 

system causes only a small change in the solution on the system.
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Consider the following system of two linear equations in two unknowns:

  

1

2

400 201 200

800 401 200

x

x

- È ˘È ˘ È ˘
=Í ˙Í ˙ Í ˙- -Î ˚ Î ˚Î ˚

This system can be solved by any previously discussed methods and the solution is

 x1 = –100, x2 = –200

If one of the elements of the coefficient matrix, say a11 is changed from 400 to 401, 

i.e., 

  

1

2

400 201 200

800 401 200

x

x

- È ˘È ˘ È ˘
=Í ˙Í ˙ Í ˙- -Î ˚ Î ˚Î ˚

then the solution is

 x1 = 40000, x2 = 79800

With a small change in one of the coefficient, there is significant change in solution of 

the system. The solution is very sensitive to the values of the coefficient matrix. Such 

a system is called ill-conditioned system.

Points to remember

Gauss Elimination Method
 (i) Write the matrix form of the system of equations.

 (ii) Write the augmented matrix.

(iii)  Obtain the echelon form of the augmented matrix by using elementary row 

transformations.

 (iv) Write the corresponding linear system of equations from the echelon form.

  (v) Solve the corresponding linear system of equations by back substitution.

Gauss–Jordan Method
 (i) Write the matrix form of the system of equations.

 (ii) Write the augmented matrix.

(iii)  Reduce the coefficient matrix to unit matrix by applying elementary row 

transformations to the augmented matrix.

 (iv) Write the corresponding linear system of equations to obtain the solution.

Gauss–Jacobi Method
  (i)  Arrange the equations in such a manner that the leading diagonal elements 

are large in magnitude in their respective rows satisfying the conditions

 
a a a
11 12 13

> +

 
a a a
22 21 23

> +

 
a a a
33 31 32

> +
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  (ii) Express the variables having large coefficients in terms of other variables.

(iii)  Start the iteration 1 by assuming the initial values of (x, y, z) as (x0, y0, z0) 

and obtain (x1, y1, z1).

(iv)  Start the iteration 2 by putting x = x1, y = y1, z = z1 in equations of x, y, z and 

obtain (x2, y2, z2).

   (v)  The above process is repeated for the next iterations and it continues until 

two successive approximations are nearly equal.

Gauss–Siedel Method
    (i)  Arrange the equations in such a manner that the leading diagonal elements 

are large in magnitude in their respective rows such that

 
a a a
11 12 13

> +

 
a a a
22 21 23

> +

 
a a a
33 31 32

> +

  (ii) Express the variables having large coefficients in terms of other variables.

(iii) Start the iteration 1 by assuming the initial values of (x, y, z) as (x0, y0, z0).

  (iv)  In the iteration 1, put y = y0, z = z0 in the equation of x to obtain x1, put 

x = x1, z = z0 in the equation of y to obtain y1, put x = x1, y = y1 in the equa-

tion of z to obtain z1.

    (v)  The above process is repeated for the next iterations and it continues until 

two successive approximations are nearly equal.





4.1 IntroductIon

Interpolation is the process of reading between the lines of a table. It is the process of 

computing intermediate values of a function from a given set of tabular values of the 

function. Extrapolation is used to denote the process of finding the values outside the 

given interval.

In the interpolation process, the given set of tabular values are used to find an expression 

for f(x) and then using it to find its required value for a given value of x. But it is 

difficult to find an exact form of f(x) using the limited values in the table. Hence, f(x) 

is replaced by another function f(x), which matches with f(x) at the discrete values in 

the table. This function f(x) is known as the interpolating function.

C H A P T E R

Interpolation
4
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When the interpolating function is a polynomial function, the process is known as 

polynomial interpolation. Polynomial interpolations are preferred because of the 

following reasons:

 (i) They are simple forms of functions which can be easily manipulated.

 (ii) Polynomials are free from singularities whereas rational functions or other 

types have singularities.

4.2 FInIte dIFFerences

Let the function y = f (x) be tabulated for the equally spaced values y0 = f (x0), 

y1 = f (x0 + h), y2 = f (x0 + 2h), …, yn = f (x0 + nh), as

x x0 x0 + h x0 + 2h …. x0 + nh ….

y = f (x) y0 y1 y2 …. yn ….

To determine the values of f (x) for some intermediate values of x, the following three 

types of differences can be used.

4.2.1 Forward differences

If y0, y1, y2, …, yn denote a set of values of y then y1 – y0, y2 – y1, …, yn – yn–1 are called 

the first forward differences of y and are denoted by Dy0, Dy1, …, Dyn–1 respectively.

 Dy0 = y1 – y0

 Dy1 = y2 – y1

                   

 Dyn–1 = yn – yn–1

where D is called the forward difference operator. The differences of the first forward 

differences are called second forward differences and are denoted by D2
y0, D

2
y1, …, 

D2
yn–1. Similarly, third forward differences, fourth forward differences, etc., can be 

defined.

 D2
y0 = D (Dy0)

 = D (y1 – y0)

 = Dy1 – Dy0 

 = y2 – y1 – (y1 – y0)

 = y2 – 2y1 + y0

 D3
y0 = D2

y1 – D2
y0

 = (y3 – 2y2 + y1) – (y2 – 2y1 + y0)

 = y3 – 3y2 + 3y1 – y0
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 D4
y0 = D3

y1 – D3
y0

 = (y4 – 3y3 + 3y2 – y1) – (y3 – 3y2 + 3y1 – y0)

 = y4 – 4y3 + 6y2 – 4y1 + y0

Since the coefficients occurring on the right-hand side are the binomial coefficients, 

the general form is

 Dn
y0 = yn – nc1 yn–1 + nc2 yn–2 – L + (–1)n 

y0

Forward Difference Table

x y Dy D2
y D3

y D4
y

x0 y0

Dy0 = y1 – y0

x0 + h = x1 y1 D2
y0 = Dy1 – Dy0

Dy1 = y2 – y1 D3
y0 = D2

y1 – D2
y0

x0 + 2h = x2 y2 D2
y1 = Dy2 – Dy1 D4

y0 = D3
y1 – D3

y0

Dy2 = y3 – y2 D3
y1 = D2

y2 – D2
y1

x0 + 3h = x3 y3 D2
y2 = Dy3 – Dy2

Dy3 = y4 – y3

x0 + 4h = x4 y4

In a difference table, x is called the argument, and y is called the function or entry.

note When (n + 1) values are given, the highest-order difference is n, e.g., when 5 

values are given, the highest-order difference is 4.

4.2.2 Backward differences

If y0, y1, y2, …, yn denote a set of values of y then y1 – y0, y2 – y1, …, yn – yn–1 

are called the first backward differences of y and are denoted by —y1, —y2, …., —yn, 

respectively.

 —y1 = y1 – y0

 —y2 = y2 – y1

                        

 —yn = yn – yn–1

where — is called the backward difference operator. Similarly, backward differences 

of higher order can be defined.

 —2
y2 = — (—y2)
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 = — (y2 – y1)

 = —y2 – —y1

 = y2 – y1 – (y1 – y0)

 = y2 – 2y1 + y0

 —3
y3 = —2

y3 – —2
y2

 = y3 – 3y2 + 3y1 – y0 etc.

Backward Difference Table

x y —y —2
y —3

y —4
y

x0 y0

—y1 = y1 – y0

x1 y1 —2
y2 = —y2 – —y1

—y2 = y2 – y1 —3
y3 = —2

y3 – —2
y2

x2 y2 —2
y3 = —y3 – —y2 —4

y4 = —3
y4 – —3

y3

—y3 = y3 – y2 —3
y4 = —2

y4 – —2
y3

x3 y3 —2
y4 = —y4 – —y3

—y4 = y4 – y3

x4 y4

4.2.3 central differences

If y0, y1, y2, …, yn denote a set of values of y then y1 – y0, y2 – y1, …, yn – yn–1 are called 

the central  differences of y and are denoted by d y1

2

, d y3

2

, …, d y
n-

1

2

 respectively.

 

d

d

d

y y y

y y y

y y y
n

n n

1

2

1 0

3

2

2 1

1

2

1

= -

= -

= -
-

-

  

where d is called the central difference operator. Similarly, higher-order central dif-

ferences can be defined.
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 d 
2
y1 = d y3

2

 – d y1

2

 = (y2 – y1) – (y1 – y0)

 = y2 – 2y1 + y0

 
d 3

3

2

y  = d 
2 y2 – d 

2 y1 etc.

Central Difference Table

x y d d 
2

d 
3

d 
4

x0 y0

d y y y1

2

1 0= -

x1 y1
d d d2

1 3

2

1

2

y y y= -

d y y y3

2

2 1= - d d d= -3 2 2
3 2 1

2

y y y

x2 y2
d d d2

2 5

2

3

2

y y y= - 4 3 3
2 5 3

2 2

y y yd d d= -

d y y y5

2

3 2= - 3 2 2
5 3 2

2

y y yd d d= -

x3 y3

2
3 7 5

2 2

y y yd d d= -

d y y y7

2

4 3= -

x4 y4

From the central difference table, it is clear that the central differences on the same 

horizontal line have the same suffix. Also, the differences of odd orders are known 

only for half values of the suffix and those of even orders, for only integral values of 

the suffix.

note It is clear from the three difference tables that it is only the notations which 

change and not the differences.

y1 – y0 = Dy0 = —y1 = d y1

2
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4.3 dIFFerent operators and theIr relatIons

 1.  Forward difference operator The forward difference operator is denoted 

by D and is defined as

 D f (x) = f (x + h) – f (x)

or Dyr = yr +1 – yr

where h is known as the interval of differencing.

 2.  Backward difference operator The backward difference operator is de-

noted by — and is defined as

 — f (x) = f (x) – f (x – h)

or —yr = yr – yr–1

 3.  central difference operator The central difference operator is denoted by 

d and is defined as

 
d f x f x

h
f x

h
( )= +Ê

ËÁ
ˆ
¯̃ - -Ê

ËÁ
ˆ
¯̃2 2

or  
d y y yr

r r
= -

+ -
1

2

1

2

 4. shift operator The shift operator is denoted by E and is defined as

 E [  f (x)] = f (x + h)

or              E yr = yr+1

Similarly,      E 
–1 [  f (x)] = f (x – h)

or            E 
–1 yr = yr–1

 5.  averaging operator The averaging operator is denoted by µ and is defined 

as

 µ f (x)= 

f x
h

f x
h

+Ê
ËÁ

ˆ
¯̃ + -Ê

ËÁ
ˆ
¯̃2 2

2

 6.  differential operator The differential operator is denoted by D and is de-

fined as

 
D f x

x
f x( ) ( )=

d

d
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4.3.1 relations between operators

 1. relation between D and E

 [Summer 2015, Winter 2014, Summer 2014, Summer 2013]

          

D = + -
= - = +
= -

\ D ∫ -

f x f x h f x

Ef x f x Ef x f x h

E f x

E

( ) ( ) ( )

( ) ( ) [ ( ) ( )]

( ) ( )

∵

1

11 1or E ∫ + D

 2. relation between — and E [Winter 2014, Winter 2013]

   

— = - -

= - = -

= -

- -

-

f x f x f x h

f x E f x E f x f x h

E f x

( ) ( ) ( )

( ) ( ) [ ( ) ( )]

( ) (

1 1

11

∵

))

\ — ∫ - -1 1
E

 3. relation between d and E

 

d f x f x
h

f x
h

E f x E f x

E E

( )

( ) ( )

= +Ê
ËÁ

ˆ
¯̃ - -Ê

ËÁ
ˆ
¯̃

= -

= -
Ê
Ë

ˆ

-

-

2 2
1

2

1

2

1

2

1

2 ¯̄

\ ∫ -
-

f x

E E

( )

d

1

2

1

2

 4. relation between m and E

  

m

m

f x

f x
h

f x
h

E f x E f x

E E

( )

( ) ( )

=
+Ê

ËÁ
ˆ
¯̃ + -Ê

ËÁ
ˆ
¯̃

=
+

\ ∫
+

-

-

2 2

2

2

1

2

1

2

1

2

1

22

2
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 5. relation between D and E
 [Winter 2014, Summer 2014]

  

E f x f x h

f x h f x
h

f x

( ) ( )

( ) ( )
!

( )

= +

= + + +′ ″

2

2
L  [By Taylor’s series]

  

= + + +

= + + +
Ê
ËÁ

ˆ
¯̃

=

f x hD f x
h

D f x

hD
h

D f x

e f x
hD

( ) ( )
!

( )

!
( )

( )

2
2

2
2

2

1
2

L

L

Also,     

\ ∫
∫ ∫ +

E e

hD E

hD

log log( )1 D

Corollary   E e

hD
- -

∫
1

2 2

Proof  

 

E f x f x
h

f x
h

f x

h

f x

h
D

-
= -Ê

ËÁ
ˆ
¯̃

= - +

Ê
ËÁ

ˆ
¯̃

-

= -

1

2

2

2

2

2

2

1
2

( )

( ) ( )
!

( )′ ″ L

++

Ê
ËÁ

ˆ
¯̃

-

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

=

\ ∫

-

- -

h

D f x

e f x

E e

hD

hD

2

2

2

2

2

1

2 2

!
( )

( )

L

 6. relation between m and d

 

m

m

∫
+

∫
+Ê

Ë
Á
Á

ˆ

¯
˜
˜

∫
+ +

-

-

-

E E

E E

E E

1
2

1
2

1
2

1
2

2

2

2

4

2

2

1
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∫
+ -

∫ +

∫ +

-4

4

1
4

1
4

1 2

2

2

( )E E

d

m
d

example 1

Prove that (1 + D) (1 – —) = 1

Solution

 

1

1

1

1

1

1

(1 )(1 ) 1

E

E

E

EE

-

-

-

∫ + D

— ∫ -

∫ - —

+ D - — ∫ =

example 2

Prove that d ∫ 2 sinh 
hD

2

Solution

 d ∫ +Ê
ËÁ

ˆ
¯̃

- -Ê
ËÁ

ˆ
¯̃

∫ -

∫ -

∫ Ê
ËÁ

ˆ

-

-

f x
h

f x
h

E E

e e

hD

hD hD

2 2

2
2

1

2

1

2

2 2

sinh
¯̃̄
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example 3
Prove that hD ∫ sinh–1 (µd )

Solution

   

md

md

∫
+

Ê

Ë

Á
Á
Á

ˆ

¯

˜
˜
˜

-
Ê

Ë
Á

ˆ

¯
˜

∫ -

∫ -

∫

-
-

-

-

E E
E E

E E

E E

e
h

1

2

1

2
1

2

1

2

1

1

2

1

2

2

( )

DD hD
e

hD

-
∫

-

2sinh ( )

\ hD ∫ -sinh 1 ( )md

example 4

Prove that D = +
DÈ

Î
Í

˘

˚
˙log ( ) log

( )

( )
f x

f x

f x
1

Solution

 

D = + -

=
+

log ( ) log ( ) log ( )

log
( )

( )

f x f x h f x

f x h

f x

 

=

=
+ D

=
+ DÈ

Î
Í

˘

˚
˙

=

log
( )

( )

log
( ) ( )

( )

log
( ) ( )

( )

log

E f x

f x

f x

f x

f x f x

f x

1

11+
DÈ

Î
Í

˘

˚
˙

f x

f x

( )

( )
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example 5
Evaluate (a) D(x2

 + sin x), and (b) D2
 cos 3x, the interval of differencing 

being h.

Solution

 (i)      D + = + + + - +

= + + + -

( sin ) [( ) sin ( )] ( sin )

sin ( ) sin

x x x h x h x x

h hx x h

2 2 2

2 2 xx

h hx x
h h

= + + +Ê
ËÁ

ˆ
¯̃

2 2 2
2 2

cos sin

(ii)   D = D D
= D + -
= D + - D
=

2 3 3

3 3

3 3

cos ( cos )

[cos ( ) cos ]

cos ( ) cos

cos

x x

x h x

x h x

33 3 3 3

3 2 2 3

[( ) ] cos ( ) cos ( ) cos

cos ( ) cos (

x h h x h x h x

x h x h

+ + - + - + +
= + - + )) cos

cos ( ) cos cos ( )

+
= + + - +

3

3 2 3 2 3

x

x h x x h

example 6

Prove that 
DÊ

ËÁ
ˆ

¯̃
◊
D

=
2

2E
e

E e

e
e

x
x

x

x

Solution

 

DÊ

Ë
Á

ˆ

¯
˜ ◊

D
=

-
◊
D -

=
- +Ê

Ë
Á

ˆ

¯

+

+

2

2

2

2

1

2 1

E
e

E e

e

E

E
e

e

e e

E E

E

x
x

x

x
x h

x h x

( )

( )

˜̃
- - +( )

= - + ◊
- +

+

+ + +

-
+

+ +

e
e

e e e e

E E e
e

e e e

x
x h

x h x h x h x

x
x h

x h x h

2

1

2
2

2
( )

xx

x h x x h x h

x h x h x

e e e e

e e e

( )
=

- +( )
- +( )

+ - +

+ +

2

22
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=
- +( )

- +
=

+

+ +

+
e e e e

e e e

e

x x h x

x h x h x

x

x h2

2

2

2

example 7
Prove that D— ∫ (D – —)

Solution:

 

D— = D - -
= D - D -
= D - - -
= D

f x f x f x h

f x f x h

f x f x f x h

f

( ) [ ( ) ( )]

( ) ( )

( ) [ ( ) ( )]

(( ) ( )

( ) ( )

x f x

f x

- —
= D - —

\    D— ∫ D - —( )

example 8
Prove that D ∫ E— ∫ —E

Solution

  D = + -f x f x h f x( ) ( ) ( )  ...(1)

  

E f x E f x f x h

E f x E f x h

f x h f x

— = - - }{
= - -
= + -

( ) ( ) ( )

( ) ( )

( ) ( )
 ...(2)

 

— = — +
= + -

E f x f x h

f x h f x

( ) ( )

( ) ( )  ...(3)

From Eqs (1), (2), and (3),

 D ∫ E — ∫ —E
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example 9
Find the missing term in the following table:

x 1 2 3 4 5

y 7 – 13 21 37

Solution

Difference Table

x y Dy D2
y D3

y D4
y

1 7

y1 – 7

2 y1 20 – 2y1

13 – y1 3y1 – 25

3 13 y1 – 5 38 – 4y1

8 13 – y1

4 21 8

16

5 37

Since only four entries are given, the fourth-order difference will be zero.

 

D =

- =

=

4
0

1

1

0

38 4 0

9 5

y

y

y .

example 10
Obtain the estimate of missing terms in the following table:

x 1 2 3 4 5 6 7 8

y 2 4 8 – 32 – 128 256

Solution

Let f (4) = a, f (6) = b
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Difference Table

x y Dy D2
y D3

y D4
y D5

y D6
y

1 2

2

2 4 2

4 a – 14

3 8 a – 12 66 – 4a

a – 8 52 – 3a 10a + b – 222

4 a 40 – 2a b + 6a – 156 706 – 20a – 6b

32 – a b + 3a – 104 484 – 10a – 5b

5 32 b + a – 64 328 – 4a – 4b
15b + 15a 

– 1196

b – 32
224 – 3b 

– a
10b + 5a – 712

6 b 160 – 2b 6b + a – 384

128 – b 3b – 160

7 128 b

128

8 256

Since only six values are given,

 D6
y0 = 0

 20a + 6b = 706 …(1)

 15a + 15b = 1196 …(2)

Solving Eqs (1) and (2),

 a = 16.26

 b = 63.48

example 11
The following table gives the value of y which is a polynomial of degree 

five. It is known that y = f (3) is in error. Correct the error.

x 0 1 2 3 4 5 6

y 1 2 33 254 1025 3126 7777
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Solution

Let f (3) = a

Since y is a polynomial of degree 5,

 D6 y0 = 0

 (E – 1)6 y0 = 0

 (E 
6 – 6E 

5 + 15E 
4 – 20E 

3 + 15E 
2 – 6E + 1) y0 = 0

 y
6 – 6y5 + 15y4 – 20y3 + 15y2 – 6y1 + y0 = 0

 7777 – 6(3126) + 15(1025) – 20a + 15(33) – 6(2) + 1 = 0

 –20a = – 4880

 a = 244

 Error = 254 – 244 = 10

example 12
If ux is a function for which the fifth difference is constant and 

u1 + u7 = –784, u2 + u6 = 686, u3 + u5 = 1088, find u4.

Solution

Since the fifth difference is constant,

 D6 u1 = 0

 (E – 1)6 u1 = 0

 (E 
6 – 6E 

5 + 15E 
4 – 20E 

3 + 15E 
2 – 6E + 1) u1 = 0

 u7 – 6u6 + 15u5 – 20u4 + 15u3 – 6u2 + u1 = 0

 (u7 + u1) – 6(u6 + u2) + 15(u5 + u3) – 20u4 = 0

 – 784 – 6(686) + 15(1088) – 20u4 = 0

 20u4 = 11420

 u4 = 571

4.3.2 Factorial notation

A product of the form x(x – 1) (x – 2)…(x – n + 1) is called a factorial polynomial or 

function and is denoted by [x]n.

 [x]n = x (x – 1) (x – 2) …(x – n + 1)

If the interval of differencing is h then

 [x]n = x (x – h) (x – 2h) … {x – (n – 1) h}
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The factorial notation is of special utility in the theory of finite differences. It is 

useful in finding the successive differences of a polynomial directly by simple rule of 

differentiation.

example 1
Write f(x) = x

4
 – 2x

3 + x
2 – 2x + 1 in factorial notation and find D4

f(x).

Solution

 f(x) = x4 – 2x
3 + x2 – 2x + 1

Let f(x) = A[x]4 + B[x]3 + C[x]2 + D[x]1 + E

Using synthetic division,

1 1 –2 1 –2 1 = E

0 1 –1 0

2 1 –1 0 –2 = D

0 2 2

3 1 1 2 = C

0 3

1 = A 4 = B

\ 4 3 2 1( ) [ ] 4[ ] 2[ ] 2[ ] 1f x x x x x= + + - +

 

3 2

2 2

3

4

( ) 4[ ] 12[ ] 4[ ] 2

( ) 12[ ] 24[ ] 4

( ) 24[ ] 24

( ) 24

f x x x x

f x x x

f x x

f x

D = + + -

D = + +

D = +

D =

example 2
Express f (x) = x

4
 – 12x

3
 + 42x

2
 – 30x + 9 and its successive differences 

in terms of factorial polynomials. Also, find the function whose first 

difference is f (x).

Solution

 f (x) = x4 – 12x
3 + 42x

2 – 30x + 9

Let f (x) = A[x]4 + B[x]3 + C [x]2 + D[x]1 + E
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Using synthetic division,

1 1 –12 42 –30 9 = E

0 1 –11 31

2 1 –11 31 1 = D

0 2 –18

3 1 –9 13 = C

0 3

1 = A –6 = B

\ f x x x x x( ) [ ] [ ] [ ] [ ]= - + + +4 3 2 16 13 9

 

D = - + +

D = - +

D =

f x x x x

f x x x

f x

( ) [ ] [ ] [ ]

( ) [ ] [ ]

( )

4 18 26 1

12 36 26

2

3 2 1

2 2 1

3 44 36

24

0

1

4

5

[ ]

( )

( )

x

f x

f x

-

D =

D =

By integrating f (x), the function f(x) whose first difference is f (x), is obtained.

 
f ( )

[ ] [ ] [ ] [ ]
[ ]x

x x x x
x c= - + + + +

5 4 3 2
1

5

6

4

13

3 2
9

example 3
Express f (x) = 2x

3
 – 3x

2
 + 3x – 10 in factorial polynomial and, hence, 

show that D3 
f (x) = 12.

Solution

 f (x) = 2x
3 – 3x

2 + 3x – 10

Let           f (x) = A[x]3 + B[x]2 + C [x]1 + D

Using synthetic division,

1 2 –3 3 –10 = D

0 2 –1

2 2 –1 2 = C

0 4

2 = A 3 = B
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\ 
f x x x x( ) [ ] [ ] [ ]= + + -2 3 2 103 2 1

 

D = + +

D = +

D =

f x x x

f x x

f x

( ) [ ] [ ]

( ) [ ]

( )

6 6 2

12 6

12

2 1

2 1

3

exercIse 4.1

 1. Prove the following identities:

 (i) D— ∫ —D

 (ii) — ∫ E1 D

 (iii) E — ∫ —E

 (iv) hD ∫ –log (1 – —)

 (v) D + —
D
—

-
—
D

≡

 (vi) E E
1

2

1

2

1

21-
Ê

ËÁ
ˆ

¯̃
- — ∫ —

-

( )

 2. Find

 (i) D
+

È

Î
Í

˘

˚
˙

2

1

x

x( )!

 (ii) D tan–1 x

 (iii) Dn e ax

 (iv) D (x + cos x)

 (v) D4 (ax4 + bx2 + cx + d)

ans.: (i)
( )!

-
◊
+

È

Î
Í

x

x

x2

2
 (ii) tan-

+ +

Ê

ËÁ
ˆ

¯̃
1

21

h

hx x
 (iii) (e a – 1)n ∙ ex 

(iv) 1 2
1

2
44- +

Ê
ËÁ

ˆ
¯̃

◊
˘

˚
˙sin sin (v) !x x a

 3. Evaluate 
DÊ

ËÁ
ˆ

¯̃

2

E
 sin x, where the interval of difference is h.

  [ans.: sin (x + h) – 2 sin x + sin (x – h)]

 4. Prove that

 (i) D[x f (x)] = (x + h) D f (x) + hf (x)

 (ii) (D + —)2 (x2 + x) = 8h2
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 5. Prove that f (4) = f (3) + D f (2) + D2 f (1) + D3 f (1).

 6. Find 
D2 2

2

( )

( )

x

E x
 and 

DÊ

ËÁ
ˆ

¯̃

2

E
x2.

ans.:
2

1
2

2( )
,

+
È

Î
Í

˘

˚
˙

x

 7. If y = a3x + b(–2)x and h = 1, prove that (D2 + D – 6)y = 0.

 8. Find the missing term from the following data:

x 0 1 2 3 4

y 1 3 9 – 81 [ans.: 31]

 9. From the following table, estimate y at x = 2.

x 4 6 8 10 12

y 6 7 13 32 77 [ans.: 7]

 10. If u0 = –10, u1 = –6, u2 = 2, u3 = 12, u4 = 26, u5 = 42, find u6. 

 [ans.: 46]

 11. If u3 = 4, u4 = 12, u5 = 22, u6 = 37, u7 = 55, find u8. 

 [ans.: 69]

 12. From the following table, find (15)3.

x 3 5 7 9 11

y 27 125 343 721 1331 [ans.: 3375]

4.4 InterpolatIon

Let the function y = f (x) take the values y0, y1, y2, …, yn corresponding to the values 

x0, x1, x2, …, xn of x. The process of finding the value of y corresponding to any value 

of x = xi between x0 and xn is called interpolation. Thus, interpolation is a technique of 

finding the value of a function for any intermediate value of the independent variable. 

The process of computing the value of the function outside the range of given values of 

the variable is called extrapolation. The study of interpolation is based on the concept 

of finite differences which were discussed in the preceding section.

4.5 newton’s Forward InterpolatIon Formula

Let the function y = f (x) take the values y0, y1, y2, …. corresponding to the values x0, 

x1, x2, … of x. Suppose it is required to evaluate f (x) for x = x0 + rh, where r is any 

real number.
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y f x rh

E f x

f x

y

r
r r r

r

r

r

r

= +

=

= + D

= + D

= + D +
-

D +

( )

( )

( ) ( )

( )

( )

!

0

0

0

0

2

1

1

1
1

2

(( )( )

!
....

r r
y

- -
D +È

ÎÍ
˘

˚̇

1 2

3

3
0

[Using Binomial theorem]

       
= + D +

-
D +

- -
D +y r y

r r
y

r r r
y0 0

2
0

3
0

1

2

1 2

3

( )

!

( )( )

!
L  ...(4.1)

Equation (4.1) is known as Newton’s forward interpolation formula.

note This formula is used for evaluating the value of y near the initial tabulated value 

of x, i.e., near x0.

example 1
Compute cosh (0.56) using Newton’s forward difference formula from 

the following  table:

x 0.5 0.6 0.7 0.8

f(x) 1.127626 1.185465 1.255169 1.337435

Solution

Let  x = 0.56, x0 = 0.5, h = 0.1

 
r

x x

h
=

-
=

-
=0 0 56 0 5

0 1
0 6

. .

.
.

Difference Table

x f(x) Df(x) D2
f(x) D3

f(x)

0.5 1.127626

0.057839

0.6 1.185465 0.011865

0.069704 0.000697

0.7 1.255169 0.012562

0.082266

0.8 1.337435
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By Newton’s forward difference formula,

f x rh f x r f x
r r

f x
r r r

f x( ) ( ) ( )
( )

!
( )

( )( )

!
(0 0 0

2
0

3
0

1

2

1 2

3
+ = + +

-
+

- -
D D D ))

cosh ( . ) . . ( . )
. ( . )

!
( .

+

= + +
-

L

0 56 1 127626 0 6 0 057839
0 6 0 6 1

2
0 0118655

0 6 0 6 1 0 6 2

3
0 000697

1 127626 0 034703 0 0014

)

. ( . )( . )

!
( . )

. . .

+
- -

= + - 224 0 000039

1 160944

+
=

.

.

example 2
Find the value of sin 52° using Newton’s forward interpolation formula 

from the following table:

q° 45° 50° 55° 60°

sin q° 0.7071 0.7660 0.8192 0.8660

Solution

Let  x = 52°, x0 = 45°, h = 5°

 
r

x x

h
=

-
=

∞ - ∞
∞

= ∞0 52 45

5
1 4.

Difference Table

x = q° y = sin q° Dy D2
y D3

y

45° 0.7071

0.0589

50° 0.7660 – 0.0057

0.0532 – 0.0007

55° 0.8192 – 0.0064

0.0468

60° 0.8660

By Newton’s forward interpolation formula,

 
y x y r y

r r
y

r r r
y( )

( )

!

( )( )

!
= + +

-
+

- -
+0 0

2
0

3
0

1

2

1 2

3
D D D L
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sin . . ( . )
. ( . )

!
( . )

. ( . )

52 0 7071 1 4 0 0589
1 4 1 4 1

2
0 0057

1 4 1 4 1

∞ = + +
-

-

+
- (( . )

!
( . )

. . . .

.

1 4 2

3
0 0007

0 7071 0 0825 0 0016 0 00004

0 7880

-
-

= + - +
=

example 3
Using Newton’s forward interpolation formula, find the value of f(1.6).

x 1 1.4 1.8 2.2

f(x) 3.49  4.82 5.96 6.5

Solution

Let  x = 1.6, x0 = 1, h = 0.4

 
r

x x

h
=

-
=

-
=0 1 6 1

0 4
1 5

.

.
.

Difference Table

x f(x) Df(x) D2
f(x) D3

f(x)

1 3.49

1.33

1.4 4.82 – 0.19

1.14 – 0.41

1.8 5.96 – 0.6

0.54

2.2 6.5

By Newton’s forward interpolation formula,

 

f x rh f x r f x
r r

f x
r r r

f x( ) ( ) ( )
( )

!
( )

( )( )

!
( )0 0 0

2
0

31

2

1 2

3
+ = + +

-
+

- -
D D D 00

1 6 3 49 1 5 1 33
1 5 1 5 1

2
0 19

1 5 1 5 1 1

+

= + +
-

- +
-

L

f ( . ) . . ( . )
. ( . )

!
( . )

. ( . )( .. )

!
( . )

. . . .

.

5 2

3
0 41

3 49 1 995 0 0713 0 0256

5 4393

-
-

= + - +
=



4.5 Newton’s Forward Interpolation Formula        4.23

example 4
Use Newton’s forward difference method to find the approximate value 

of f(1.3) from the following data:

x 1 2 3 4

f(x) 1.1  4.2 9.3 16.4

Solution

Let  x = 1.3, x0 = 1, h = 1

 
r

x x

h
=

-
=

-
=0 1 3 1

1
0 3

.
.

Difference Table

x f(x) Df(x) D2
f(x) D3

f(x)

1 1.1

3.1

2 4.2 2

5.1 0

3 9.3 2

7.1

4 16.4

By Newton’s forward interpolation formula,

 

f x f x r f x
r r

f x
r r r

f x

f

( ) ( ) ( )
( )

!
( )

( )( )

!
( )= + +

-
+

- -
+0 0

2
0

3
0

1

2

1 2

3
D D D L

(( . ) . . ( . )
. ( . )

!
( )

. . .

.

1 3 1 1 0 3 3 1
0 3 0 3 1

2
2 0

1 1 0 93 0 21

1 82

= + +
-

+

= + -
=

example 5
Use Newton’s forward difference method to find the approximate value 

of f(2.3) from the following data:

x 2 4 6 8

f(x) 4.2  8.2 12.2 16.2
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Solution

Let  x = 2.3, x0 = 2, h = 2

 
r

x x

h
=

-
=

-
=0 2 3 2

2
0 15

.
.

Difference Table

x f(x) Df(x) D2
f(x)

2 4.2

4

4 8.2 0

4

6 12.2 0

4

8 16.2

By Newton’s forward interpolation formula,

 

f x f x r f x
r r

f x

f

( ) ( ) ( )
( )

!
( )

( . ) . . ( )

= + +
-

+

= + +
=

0 0
2

0

1

2

2 3 4 2 0 15 4 0

4

D D L

.. .

.

2 0 6

4 8

+
=

example 6

Using Newton’s forward interpolation formula, find the value of 

f(218).

x 100 150 200 250 300 350 400

f(x) 10.63 13.03 15.04 16.81 18.42 19.90 21.27

 [Summer 2014]

Solution

Let  x = 218,   x0 = 100,   h = 50

 
r

x x

h
=

-
=

-
=0 218 100

50
2 36.
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Difference Table

x f(x) Df(x) D2
f(x) D3

f(x) D4
f(x) D5

f(x) D6
f(x)

100 10.63

2.4

150 13.03 – 0.39

2.01 0.15

200 15.04 – 0.24 – 0.07

1.77 0.08 0.02

250 16.81 – 0.16 – 0.05 0.02

1.61 0.03 0.04

300 18.42 – 0.13 – 0.01

1.48 0.02

350 19.90 – 0.11

1.37

400 21.27

By Newton’s forward interpolation formula,

 

f x f x r f x
r r

f x
r r r

f x

r

( ) ( ) ( )
( )

!
( )

( )( )

!
( )

(

= + +
-

+
- -

+

0 0
2

0
3

0

1

2

1 2

3
D D D

rr r r
f x

r r r r r
f x

r

- - -
+

- - - -

+

1 2 3

4

1 2 3 4

5

4
0

5
0

)( )( )

!
( )

( )( )( )( )

!
( )

(

D D

rr r r r r
f x

f

- - - - -
+

= +

1 2 3 4 5

6

218 10 63 2 36 2 4

6
0

)( )( )( )( )

!
( )

( ) . . ( . )

D L

++
-

- +
- -

+

2 36 2 36 1

2
0 39

2 36 2 36 1 2 36 2

3
0 15

2 36

. ( . )

!
( . )

. ( . )( . )

!
( . )

. (22 36 1 2 36 2 2 36 3

4
0 07

2 36 2 36 1 2 36 2 2 3

. )( . )( . )

!
( . )

. ( . )( . )( .

- - -
-

+
- - 66 3 2 36 4

5
0 02

2 36 2 36 1 2 36 2 2 36 3 2 36 4

- -

+
- - - -

)( . )

!
( . )

. ( . )( . )( . )( . )(( . )

!
( . )

. . . . . .

2 36 5

6
0 02

10 63 5 664 0 6259 0 0289 0 0022 0 0002

-

= + - + + + - 00 00009

15 6993

.

.=
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example 7
From the following table, estimate the number of students who obtained 

marks between 40 and 45:

Marks 30–40 40–50 50–60 60–70 70–80

Number of students 31 42 51 35 31

 [Summer 2015]

Solution

Cumulative Frequency Table

Marks less than (x) 40 50 60 70 80

Number of students (y) 31 73 124 159 190

Since x = 45 is nearer to the beginning of the table, Newton’s forward interpolation 

formula is used.

Let x = 45, x0 = 40, h = 10

 
r

x x

h
=

-
=

-
=0 45 40

10
0 5.

Difference Table

x y Dy D2
y D3

y D4
y

40 31

42

50 73 9

51 –25

60 124 –16 37

35 12

70 159 – 4

31

80 190

By Newton’s forward interpolation formula, 

   

y x y r y
r r

y
r r r

y

r r r r

( )
( )

!

( )( )

!

( )( )(

= + D +
-

D +
- -

D

+
- - -

0 0
2

0
3

0

1

2

1 2

3

1 2 33

4

4
0

)

!
D +y L
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y( ) . ( )
. ( . )

!
( )

. ( . )( . )

!
( )45 31 0 5 42

0 5 0 5 1

2
9

0 5 0 5 1 0 5 2

3
25= + +

-
+

- -
-

+
00 5 0 5 1 0 5 2 0 5 3

4
37

31 21 1 1250 1 5625 1 4453

. ( . )( . )( . )

!
( )

. . .

- - -

= + - - -
==
ª

47 8672

48

.

The number of students with marks less than 45 = 48

The number of students with marks less than 40  = 31

Hence, the number of students obtaining marks between 40 and 45 = 48 – 31 = 17

example 8
Determine the polynomial by Newton’s forward difference formula from 

the following table:

   x     0     1      2       3      4     5 

y –10    – 8    – 8     – 4    10    40

Solution

Let x0 = 0, h = 1

   
r

x x

h

x
x=

-
=

-
=0 0

1

Difference Table

x y Dy D2
y D3

y D4
y

0 –10

2

1 –8 –2

0 6

2 –8 4 0

4 6

3 –4 10 0

14 6

4 10 16

30

5 40
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By Newton’s forward difference formula,

y x y r y
r r

y
r r r

y
r r r r
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10 2 3 2
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4 5 10

2 2

2 3 2

3 2

x x x x x x

x x x x x x

x x x

( )

example 9
Find a polynomial of degree 2 which takes the following values:

x 0 1 2 3 4 5 6 7

y 1 2 4 7 11 16 22 29

Solution
Let x0 = 0, h = 1

   
r

x x

h

x
x=

-
=

-
=0 0

1

Difference Table

x y Dy D2
y D3

y

0 1

1

1 2 1

2 0

2 4 1

3 0

3 7 1

4 0

4 11 1

5 0

5 16 1

6

6 22 1

7

7 29
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By Newton’s forward interpolation formula,

 

y x y r y
r r

y
r r r

y

x
x x
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example 10
Construct Newton’s forward interpolation polynomial for the following 

data:

x 4 6 8 10

y 1 3 8 16

 [Summer 2015]

Solution

Let x0 = 4, h = 2

   
r

x x

h

x
=

-
=

-0 4

2

Difference Table

x y Dy D2
y D3

y

4 1

2

6 3 3

5 0

8 8 3

8

10 16

By Newton’s forward interpolation formula,
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4.6 newton’s Backward InterpolatIon Formula

Let the function y = f (x) take the values y0, y1, y2, …. corresponding to the values x0, 

x1, x2, …. of x. Suppose it is required to evaluate f (x) for x = x0 + rh, where r is any 

real number.

      

y f x rh

E f x

E y

y

r
r r r

r n

r
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r
n

r
n

= +

=

=
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[Using Binomial theorem]

       = + — +
+

— +
+ +

— +y r y
r r

y
r r r

yn n n n

( )

!

( )( )

!

1

2

1 2

3

2 3
L ...(4.2)

Equation (4.2) is known as Newton’s backward interpolation formula.

note This formula is used for evaluating the value of y near to the end of tabulated 

value of x, i.e., near xn.
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example 1

Consider the following tabular values:

x 50 100 150 200 250 

y 618  724 805 906 1032

Determine y(300) using Newton’s backward interpolation formula.

Solution

Let  x = 300, xn = 250, h = 50

 
r

x x

h

n=
-

=
-

=
300 250

50
1

Difference Table

x y —y —2
y —3

y —4
y

50 618

106

100 724 –25

81 45

150 805 20 – 40

101 5

200 906 25

126

250 1032

By Newton’s backward interpolation formula,
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example 2

The area A of a circle of diameter d is given for the following values:

d 80 85 90 95 100

A 5026 5674 6362 7088 7854

Calculate the area of a circle of a diameter of 105 units using Newton’s 

interpolation formula. [Summer 2015]

Solution

Since x = d = 105 is near to the end of the table, Newton’s backward interpolation 

formula is used.

Let  x = 105,  xn = 100,   h = 5

 
r

x x

h

n=
-

=
-

=
105 100

5
1

Difference Table

x = d y = A —y —2
y —3

y —4
y

80 5026

648

85 5674 40

688 –2

90 6362 38 4

726 2

95 7088 40

766

100 7854

By Newton’s backward interpolation formula,
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example 3
From the following table, find P when t = 142°C and 175°C using 

appropriate Newton’s interpolation formula.

Temperature t°C 140 150 160 170 180

Pressure P 3685 4845 6302 8076 10225

 [Winter 2014]

Solution

Since x = 142 is nearer to the beginning of the table, Newton’s forward interpolation 

formula is used.

Let  x = 142,   x0 = 140,   h = 10

 
r

x x

h
=

-
=

-
=0 142 140

10
0 2.

Difference Table

x = t° y = P Dy D2
y D3

y D4
y

140 3685

1169

150 4854 279

1448 47

160 6302 326 2

1774 49

170 8076 375

2149

180 10225

By Newton’s forward interpolation formula,
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Since x = 175 is near to the end of the table, Newton’s backward interpolation formula 

is used.

  x = 175,   xn = 180,   h = 10

 
r

x x

h

n=
-
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-

= -
175 180

10
0 5.

By Newton’s backward interpolation formula,

y x y r y
r r

y
r r r

y

r r r r

n n n n( )
( )

!

( )( )

!

( )( )(

= + — +
+

— +
+ +

—

+
+ + +

1

2

1 2

3

1 2

2 3

33

4

175 175 10225 0 5 2149
0 5 0 5 1

4)

!

( ) ( ) ( . )( )
( . )( . )

— +

= = + - +
- - +

y

P y

n L

22
375

0 5 0 5 1 0 5 2

3
49

0 5 0 5 1 0 5

!
( )

( . )( . )( . )

!
( )

( . )( . )( .

+
- - + - +

+
- - + - + 22 0 5 3

4
2

10225 1074 5 46 875 3 0625 0 0781

9100 48

)( . )

!
( )

. . . .

.

- +

= - - - -
= 444

example 4
The population of a town is given below. Estimate the population for the 

year 1895 and 1930 using suitable interpolation.

Year     x 1891 1901 1911 1921 1931

Population   y 

(in thousand)

46 66 81 93 101

 [Summer 2015]

Solution

Since x = 1895 is near to the beginning of the table, Newton’s forward interpolation 

formula is used.

Let  x = 1895,  x0 = 1891,   h = 10

 
r

x x

h
=

-
=

-
=0 1895 1891

10
0 4.
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Difference Table

x y Dy D2
y D3

y D4
y

1891 46

20

1901 66 – 5

15 2

1911 81 – 3 – 3

12 –1

1921 93 – 4

8

1931 101

By Newton’s forward interpolation formula,
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Since x = 1930 is near to the end of the table, Newton’s backward interpolation formula 

is used.

Let  x = 1930,  xn = 1931,   h = 10

 
r
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h
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-

=
-
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By Newton’s forward interpolation formula,
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example 5
In the table below, the values of y are consecutive terms of a series of 

which 23.6 is the sixth term. Find the first and tenth terms of the series:

x 3 4 5 6 7 8 9

y 4.8 8.4 14.5 23.6 36.2 52.8 73.9

Solution

To find the first term, Newton’s forward interpolation formula is used.

Let x = 1, x0 = 3, h = 1

 
r

x x

h
=

-
=

-
= -0 1 3

1
2

Difference Table

x y Dy D2
y D3

y D4
y

3 4.8

3.6

4 8.4 2.5

6.1 0.5

5 14.5 3 0

9.1 0.5

6 23.6 3.5 0

12.6 0.5

7 36.2 4 0

16.6 0.5

8 52.8 4.5

21.1

9 73.9
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By Newton’s forward interpolation formula,
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To find the tenth term, Newton’s backward interpolation formula is used.

Let x = 10, xn = 9, h = 1
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By Newton’s backward interpolation formula,
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exercIse 4.2

 1. Find tan 67º 20¢ from the table:

q 65º 66º 67º 68º 69º

tan q 2.1445 2.2460 2.3559 2.4751 2.6051 [ans.: 2.3932]

 2. Find (5.5)3 from the following table:

x 3 5 7 9 11

y = x3 27 125 343 729 1331 [ans.: 166.375]

 3. Calculate e1.85 from the following table:

x 1.7 1.8 1.9 2 2.1 2.2 2.3

ex 5.474 6.050 6.686 7.389 8.166 9.025 9.974 [ans.: 6.36]

 4. Find x  at x = 2.52 and x = 2.62 from the table:

x 2.5 2.55 2.6 2.65 2.7 2.75

x
1.58114 1.59687 1.61245 1.62788 1.64317 1.65831

   [ans.: 1.58745, 1.6186]
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 5. The values of specific heat (Cp) at constant pressure of a gas are tabulated 

below for various temperatures. Find the specific heat at 900ºC.

Temperature ºC 500 1000 1500 2000

Cp 31.23 35.01 39.18 43.75 [ans.: 34.223]

 6. P and V are connected by the following data:

V 10 20 30 40

P 1.1 2 4.4 7.9

  Determine P when V = 25 and V = 45. [ans.: 3.0375, 9.9375]

 7. Find the number of persons getting wages less than ̀ 15 from the following 

data:

Wages in ` 0–10 10–20 20–30 30–40

Number of persons 9 30 35 42 [ans.: 24]

 8. Find the number of students getting marks less than 70 from the following 

data:

Marks 0–20 20–40 40–60 60–80 80–100

Number of students 41 62 65 50 17 [ans.: 196]

 9. From the following table, estimate the profit in the year 1925.

Year 1891 1901 1911 1921 1931

Profit in lakhs 46 66 81 93 101 [ans.: ` 96.8365 lakhs]

 10. Find the polynomial of degree three which takes the same values as 

y = 2x + 2x + 1 at x = –1, 0, 1, 2.

ans.:
1

12
3 32 243 2( )x x x+ + +

È

ÎÍ
˘

˚̇

 11. Obtain the cubic polynomial which takes the values

x 0 1 2 3

y 1 2 1 0

  and, hence, find f (4). [ans.: 2x3– 7x2 + 6x + 1, 41]

 12. Find a polynomial of degree 4 which takes the values

x 2 4 6 8 10

y 0 0 1 0 0

ans. :
1

64
24 196 624 6404 3 2( )x x x x- + - +

È

ÎÍ
˘

˚̇
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 13. Given u1 = 40, u3 = 45, u5 = 54, find u2 and u4. [ans.: 42, 49]

 14. Given y0 = 3, y1 = 12, y2 = 81, y3 = 200, y4 = 100, y5 = 8. Without forming 

the difference table, find D5y0. [ans.: 755]

 15. Find the polynomial of least degree passing through the points (0,–1), 

(1,1), (2,1), and (3,–2).

ans.: - + - +
È

ÎÍ
˘

˚̇

1

6
3 16 63 2( )x x x

4.7 central dIFFerence InterpolatIon

Central difference interpolation formulae are used for interpolation near the middle 

of the tabulated values. If x takes the values x0 – 2h, x0 – h, x0, x0 + h, x0 + 2h and the 

corresponding values of y = f (x) are y–2, y–1, y0, y1, y2, the difference tables in the two 

notations are given as follows:

x y
First 

Difference

Second 

Difference

Third 

Difference

Fourth 

Difference

x0 – 2h y–2

D =-
-

y y2 3

2

d

x0 – h y–1 D2
y–2 = d 

2 y–1

D =-
-

y y1 1

2

d D =-
-

3
2

3
1

2

y yd

x0 y0 D2
y–1 = d 

2
y0 D4

y–2 = d 
4
y0

D =y y0 1

2

d D =-
3

1
3

1

2

y yd

x0 + h y1 D2
y0 = d 

2
y1

∆y y1 3

2

= d

x0 + 2h y2
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4.8 Gauss’s Forward InterpolatIon Formula

By Newton’s forward interpolation formula,
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Substituting the values of D2
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y0, ... in Eq. (4.3),
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Equation (4.8) is known as Gauss’s forward interpolation formula.

Corollary In the central difference notation,

  

y y r y
r r

y
r r r

y
r r r r

r = + +
-

+
+ -

+
+ - -

0 1

2

2
0

3
1

2

1

2

1 1

3

1 1
d d d

( )

!

( ) ( )

!

( ) ( )( 22

4

4
0

)

!
d y +L

notes

(i) This formula involves odd differences below the central line and even differences on 

the central line.

y0 … D2
y–1 … D4

y–2 … D6
y–3 … Central line

Dy0 D3
y–1 D5

y–2 D7
y–3

(ii) This formula is used to evaluate the values of y for r between 0 and 1.

example 1
Find y (32) from the following table:

x 25 30 35 40

y = f (x) 0.2707 0.3027 0.3386 0.3794

Solution

Let x = 32, x0 = 30, h = 5

 
r

x x

h
=

-
=

-
=0 32 30

5
0 4.

Central Difference Table

x r y Dy D2
y D3

y

25 –1 0.2707

0.0320

30 0 0.3027 0.0039

0.0359 0.0010

35 1 0.3386 0.0049

0.0408

40 2 0.3794
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By Gauss’s forward interpolation formula,

y x y r y
r r

y
r r r

y

y

( )
( )

!

( ) ( )

!

( ) .

= + D +
-

D +
+ -

D +

=

- -0 0
2

1
3

1

1

2

1 1

3

32 0 302

L

77 0 4 0 0359
0 4 0 4 1

2
0 0039

0 4 1 0 4 0 4 1

3
+ +

-
+

+ -
. ( . )

. ( . )

!
( . )

( . )( . )( . )

!
(00 0010

0144 0 0005 0 0001

0 3165

. )

. . .

.

= 0.3027 + 0  - -
=

example 2
Use Gauss’s forward interpolation formula to find y(3.3) from the 

following table:

x 1 2 3 4 5

y 15.3 15.1 15 14.5 14

Solution

Let x = 3.3, x0 = 3, h = 1

      
r

x x

h
=

-
=

-
=0 3 3 3

1
0 3

.
.

Central Difference Table

x r y Dy D2
y D3

y D4
y

1 –2 15.3

–0.2

2 –1 15.1 0.1

–0.1 –0.5

3 0 15 –0.4 0.9

–0.5 0.4

4 1 14.5 0

–0.5

5 2 14



4.8 Gauss’s Forward Interpolation Formula        4.43

By Gauss’s forward interpolation formula,

 

y x y r y
r r

y
r r r

y

r r r

( )
( )

!

( ) ( )

!

( ) ( )(

= + D +
-

D +
+ -

D

+
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- -0 0
2

1
3

1

1
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1 1

3

1 1 rr
y

y

-
+

= + - +
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- +
+

-
2

4

3 3 15 0 3 0 5
0 3 0 3 1

2
0 4

0 3

4
2

)

!

( . ) . ( . )
. ( . )

!
( . )

( .

D L

11 0 3 0 3 1

3
0 4

0 3 1 0 3 0 3 1 0 3 2

4
0 9

)( . )( . )

!
( . )

( . )( . )( . )( . )

!
( . )

-

+
+ - -

= 115 0 15 0 042 0 0182 0 0174

14 8912

- + - +
=

. . . .

.

example 3
Find the polynomial which fits the data in the following table using 

Gauss’s forward interpolation formula.

x 3 5 7 9 11

y 6 24 58 108 174

Solution

Let x0 = 7, h = 2

0 7

2

x x x
r

h

- -
= =

Central Difference Table

x r y Dy D2
y D3

y D4
y

3 –2 6

18

5 –1 24 16

34 0

7 0 58 16 0

50 0

9 1 108 16

66

11 2 174
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By Gauss’s forward interpolation formula,

 

2
0 0 1

2

2

( 1)
( )

2!

7 1 7 7
58 (50) 1 (16)

2 2 2 2

58 25( 7) 2( 7)( 9)

58 25 175 2 32 126

2 7 9

r r
y x y r y y

x x x

x x x

x x x

x x

-
-

= + D + D +

- - -Ê ˆ Ê ˆ Ê ˆ= + + -Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯

= + - + - -

= + - + - +

= - +

L

4.9 Gauss’s Backward InterpolatIon Formula

By Newton’s forward interpolation formula,

y y r y
r r

y
r r r

y

r r r r

r = + D +
-

D +
- -

D

+
- - -

0 0
2

0
3

0

1

2

1 2

3

1 2 3

( )

!

( )( )

!

( )( )( )

44
4 94

0

0

!
...( . )D +

=
-

y

r
x x

h

L

where

 Dy0 = DEy–1 = D(1 + D)y–1 = D y–1 + D2
y–1 ...(4.10)

 D2
y0 = D2

y–1 + D3
y–1 ...(4.11)

 D3
y0 = D3

y–1 + D4
y–1 ...(4.12)

 D4
y0 = D4

y–1 + D5
y–1 ...(4.13)

Also, D3
y–1 = D3

y–2 + D4
y–2

 D4
y–1 = D4

y–2 + D5
y–2, etc. ...(4.14)

Substituting the values of Dy0, D
2
y0, D

3
y0, …. in Eq. (4.9),

  yr =  y0 + r (Dy–1 + D2
y–1) + 

r r( )

!

-1

2
 (D2

y–1 + D3
y–1)

+ 
r r r( )( )

!

- -1 2

3
 (D3

y–1 + D4
y–1) + 

r r r r( )( )( )

!

- - -1 2 3

4
 (D4

y–1 + D5
y–1) + L

 [Using Eqs (4.10), (4.11), and (4.12)]
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D +
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D +
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y
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y
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0 1
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1 1 2( )

!

( ) ( )

!
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+
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= + D +
+

D +
+ -

D + D

+
+

- - - -y r y
r r

y
r r r

y y

r r

0 1
2

1
3

2
4

2

1

2

1 1

3

1

( )

!

( ) ( )

!
( )

( ) (rr r
y y

y r y
r

- -
D + D +

= + D +
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-

1 2

4

4 14

4
2

5
2

0 1

)( )

!
( ) ....

[Using Eq. ( . )]

( ++
D +

+ -
D

+
+ + -

D +

- -

-

1

2

1 1

3

2 1 1

4

2
1

3
2

4
2

)

!

( ) ( )

!

( )( ) ( )

!
.

r
y

r r r
y

r r r r
y L ...( . )4 15

Equation (4.15) is known as Gauss’s backward interpolation formula.

Corollary In the central difference notation,

y y r y
r r

y
r r r

y
r r r

r = + +
+

+
+ -

+
+ +

- -
0 1

2

2
0

3
1

2

1

2

1 1

3

2 1
d d d

( )

!

( ) ( )

!

( )( ) (rr
y

-
+

1

4

4
0

)

!
...d

notes

(i)  This formula involves odd differences above the central line and even differences 

on the central line.

Dy–1 D3
y–2 D5

y–3

y0 … D2
y–1 … D4

y–2 … D6
y–3 Central line

(ii) This formula is used to evaluate the values of y for r between –1 and 0.

example 1
Using Gauss’s backward interpolation formula, find the population for 

the year 1936 given that

Year (x) 1901 1911 1921 1931 1941 1951

Population in thousands (y) 12 15 20 27 39 52

Solution

Let x = 1936,  x0 = 1941,  h = 10

r
x x

h
=

-
=

-
= -0 1936 1941

10
0 5.
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Central Difference Table

x r y Dy D2
y D3

y D4
y D5

y

1901 – 4 12

3

1911 – 3 15 2

5 0

1921 – 2 20 2 3

7 3 – 10

1931 – 1 27 5 – 7

12 – 4

1941 0 39 1

13

1951 1 52

By Gauss’s backward interpolation formula,

 

y x y r y
r r

y
r r r

y

y

( )
( )

!

( ) ( )

!

( )

= + D +
+

D +
+ -

D +

=

- - -0 1
2

1
3

2

1

2

1 1

3

1936 39

L

++ - +
- + -

+
- + - - -

( . )( )
( . )( . )

!
( )

( . )( . )( . )

!
(0 5 12

0 5 1 0 5

2
1

0 5 1 0 5 0 5 1

3
--

= - - -
=

4

39 6 0 1250 0 25

32 625

)

. .

. thousands

example 2
Find y(2.36) from the following table:

x 1.6 1.8 2 2.2 2.4 2.6

y 4.95 6.05 7.39 9.03 11.02 13.46

Solution

Let x = 2.36,  x0 = 2.4,  h = 0.2

0 2.36 2.4
0.2

0.2

x x
r

h

- -
= = = -
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Central Difference Table

x r y Dy D2
y D3

y D4
y D5

y

1.6 – 4 4.95

1.1

1.8 – 3 6.05 0.24

1.34 0.06

2 – 2 7.39 0.3 – 0.01

1.64 0.05 0.06

2.2 – 1 9.03 0.35 0.05

1.99 0.1

2.4 0 11.02 0.45

2.44

2.6 1 13.46

By Gauss’s backward interpolation formula,

2 3
0 1 1 2

( 1) ( 1) ( 1)
( )

2! 3!

( 0.2 1)( 0.2) ( 0.2 1)( 0.2)( 0.2 1)
(2.36) 11.02 ( 0.2)(1.99) (0.45) (0.1)

2! 3!

11.02 0.398 0.036 0.0032

10.5892

r r r r r
y x y r y y y

y

- - -
+ + -

= + D + D + D +

- + - - + - - -
= + - + +

= - - +
=

L

example 3
From the following table, find y when x = 38.

x 30 35 40 45 50

y 15.9 14.9 14.1 13.3 12.5

Solution

Let   x = 38, x0 = 40, h = 5

- -
= = = -0 38 40

0.4
5

x x
r

h
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Central Difference Table

x r y Dy D2
y D3

y D4
y

30 –2 15.9

– 1

35 –1 14.9 0.2

– 0.8 – 0.2

40 0 14.1 0 0.2

– 0.8 0

45 1 13.3 0

– 0.8

50 2 12.5

By Gauss’s backward interpolation formula,

2 3 4
0 1 1 2 2

( 1) ( 1) ( 1) ( 2)( 1) ( 1)
( )

2! 3! 4!

( 0.4 1)( 0.4) ( 0.4 1)( 0.4)( 0.4 1)
(38) 14.1 ( 0.4)( 0.8) (0) ( 0.2)

2! 3!

( 0.4 2)( 0.4 1)( 0.4)( 0.4 1)
(0.2)

4!

14.1 0.32 0 0.0

r r r r r r r r r
y x y r y y y y

y

- - - -
+ + - + + -

= + D + D + D + D +

- + - - + - - -
= + - - + + -

- + - + - - -
+

= + + -

L

112 0.0045

14.4133

+
=

4.10 stIrlInG’s Formula

By Gauss’s forward interpolation formula,
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By Gauss’s backward interpolation formula,
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Adding Eqs (4.16) and (4.17) and then dividing by 2,

          

y y r
y y r

y
r r y y

r = +
D + DÊ

ËÁ
ˆ
¯̃

+ D +
- D + DÊ

Ë
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D +-
r r
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2 2

4
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4
4 18

( )

!
...( . )L

Equation (4.18) is known as Stirling’s formula.

Corollary In the central difference notation,

2 2 2 2 2 2
2 3 4

0 0 0 0 0

1 0 1 1 0

2 2

3 3 3 3 3
2 1 1 1 0

2 2

( 1 ) ( 1 )

2! 3! 4!

1 1
( )

2 2

1 1
( ) , etc.

2 2

r

r r r r
y ym d d m d d

d d m d

d d m d
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- -
-

+ -
= + + + + +

Ê ˆ
D + D = + =Á ˜

Ë ¯

Ê ˆ
D + D = + =Á ˜

Ë ¯

L
r

y y r y y

y y y y y

y y y y y

notes 

 (i) This formula involves means of the odd differences just above and below the 

central line and even differences on the central line.

 

y
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¯
˜ DL L L L Central line

 (ii) This formula gives fairly accurate values of y for r between –0.25 and 0.2 but 

can be used for r between –0.5 to 0.5.

example 1
Using Stirling’s formula, estimate the value of tan 16°.

x 0° 5° 10° 15° 20° 25° 30°

y = tan x 0 0.0875 0.1763 0.2679 0.3640 0.4663 0.5774

Solution

Let x = 16°, x0 = 15°, h = 5°

 
r

x x

h
=

-
=

∞ - ∞
∞

=0 16 15

5
0 2.
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x r y Dy D2
y D3

y D4
y D5

y D6
y

0° –3 0

0.0875

5° –2 0.0875 0.0013

0.0888 0.0015

10° –1 0.1763 0.0028 0.0002

0.0916 0.0017 – 0.0002

15° 0 0.2679 0.0045 0 0.0011

0.0961 0.0017 0.0009

20° 1 0.3640 0.0062 0.0009

0.1023 0.0026

25° 2 0.4663 0.0088

0.1111

30° 3 0.5774

By Stirling’s formula,
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example 2
Employ Stirling’s formula to compute y (35) from the following table:

x 20 30 40 50

y 512 439 346 243

Solution

Let  x = 35,  x0 = 30,  h = 10

0 35 30
0.5

10

x x
r

h

- -
= = =

Central Difference Table

x r y Dy D2
y D3

y

20 –1 512

–73

30 0 439 –20

–93 10

40 1 346 –10

–103

50 2 243

By Stirling’s formula,

 

y x y r
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y
r r y y
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y( ) .
( . )

!
( )

. ( .
35 439 0 5

73 93

2

0 5

2
20

0 5 0 5 12 2 ))

!

. . .

.

3

10

2

439 41 5 2 5 0 3125

394 6875

Ê
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ˆ
¯̃

= - - -
=

example 3
Let f(40) = 836, f(50) = 682, f(60) = 436, f(70) = 272. Use Stirling’s 

formula to find f(55).

Solution

Let      x = 55, x0 = 50, h = 10



4.52 Chapter 4 Interpolation

0 55 50
0.5

10

x x
r

h

- -
= = =

Central Difference Table

x r y Dy D2
y D3

y

40 –1 836

–154

50 0 682 –92

–246 174

60 1 436 –82

–164

70 2 272

By Stirling’s formula,

 

y x y r
y y r

y
r r y y
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55 682 0 5
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0 5

2
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565 0625
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!

. .
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example 4
Using Stirling’s formula, find y(25) from the following table:

x 20 24 28 32

y 0.01427 0.01581 0.01772 0.01996

Solution

Let         x = 25, x0 = 24, h = 4

0 25 24
0.25

4

x x
r

h

- -
= = =
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Central Difference Table

x r y Dy D2
y D3

y

20 –1 0.01427

0.00154

24 0 0.01581 0.00037

0.00191 – 0.00004

28 1 0.01772 0.00033

0.00224

32 2 0.01996

By Stirling’s formula,
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example 5
Find the value of y(1.63) from the following table using Stirling’s 

formula:

x 1.5 1.6 1.7 1.8 1.9

y = f (x) 17.609 20.412 23.045 25.527 27.875

Solution

Let   x = 1.63, x0 = 1.6, h = 0.1

0 1.63 1.6
0.3

0.1

x x
r

h

- -
= = =
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Central Difference Table

x r y Dy D2
y D3

y D4
y

1.5 –1 17.609

2.803

1.6 0 20.412 – 0.17

2.633 0.019

1.7 1 23.045 – 0.151 –0.002

2.482 0.017

1.8 2 25.527 – 0.134

2.348

1.9 3 27.875

By Stirling’s formula,
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exercIse 4.3

 1. Use Gauss’s interpolation formula to find y16.

x 5 10 15 20 25

y 26.782 19.951 14.001 8.762 4.163

[ans. :  12.901]

 2. Find e–1.7425 by Gauss’s forward formula.

x 1.72 1.73 1.74 1.75 1.76

e –x 0.17907 0.17728 0.17552 0.17377 0.17204

[ans. : 0.17508]
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 3. Find f (25) given f (20) = 14, f (24) = 32, f (28) = 35, and f (32) = 40 using 

Gauss’s formula.

[ans.: 33.41]

 4. Apply Gauss’s backward formula to find the population in 1926.

Year         x 1911 1921 1931 1941 1951

Population in lacs y 15 20 27 39 52

[ans. : 22.898 lacs]

 5. Apply Gauss’s backward interpolation formula to find sin 45°.

x° 20 30 40 50 60 70

sin x° 0.34202 0.50200 0.64279 0.76604 0.86603 0.93969

[ans. : 0.705990]

 6. Use Gauss’s backward formula, find f (5.8) given that f (x) is a polynomial 

of degree four and f (4) = 270, f (5) = 648, D  f (5) = 682, D2  f (4) = 132

[ans.: 1163]

 7. Using Stirling’s formula, find y (5) from the following table:

x 0 4 8 12

y 14.27 15.81 17.72 19.96

[ans.: 16.25]

 8. Find 1 12.  using Stirling’s formula from the following table:

x 1.0 1.05 1.10 1.15 1.20 1.25 1.30

f (x) 1.00000 1.02470 1.04881 1.07238 1.09544 1.11803 1.14017

 [ans.: 1.05830]

 9. Use Stirling’s formula to find tan 89° 26¢ from the table:

x 89° 21¢ 89° 23¢ 89° 25¢ 89° 27¢ 89° 29¢

tan x 88.14 92.91 98.22 104.17 110.90

[ans.: 101.107]

4.11 InterpolatIon wIth unequal Intervals

If the values of x are unequally spaced then interpolation formulae for equally spaced 

points cannot be used. It is, therefore, desirable to develop interpolation formulae for 

unequally spaced values of x. There are two such formulae for unequally spaced values 

of x.

 (i) Lagrange’s interpolation formula

 (ii) Newton’s interpolation formula with divided difference
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4.12 laGranGe’s InterpolatIon Formula

Let y = f (x) be a function which take the values y0, y1, y2, …, yn corresponding to 

x = x0, x1, x2, …, xn. Since there are (n + 1) values of x and y, f (x) can be represented 

by a polynomial in x of degree n.

y = f (x) =  a0 (x – x1) (x – x2) … (x – xn) + a1 (x – x0) (x – x2) … (x – xn) + … 

+ an (x – x0) (x – x1) … (x – xn–1) …(4.19)

where a0, a1, a2, ..., an are constants.

Putting x = x0, y = y0 in Eq. (4.19),

y0 = a0 (x0 – x1) (x0 – x2) …(x0 – xn)

 

a
y

x x x x x xn
0

0

0 1 0 2 0

=
- - -( )( ) ( )…

Similarly, putting x = x1, y = y1 in Eq. (4.19),

 

a
y
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=
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Proceeding in the same way,

 

a
y

x x x x x x
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=
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Substituting the values of a0, a1, a2 …, an in Eq. (4.19),
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Equation (4.20) is known as Lagrange’s interpolation formula.

note This formula can also be used to split the given function into partial fractions. 

Dividing both sides of Eq. (4.20) by (x – x0) (x – x1) … (x – xn),
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example 1
Compute f(9.2) by using Lagrange’s interpolation method from the 

following data:

x 9 9.5 11

f(x) 2.1972 2.2513 2.3979

 [Summer 2013]

Solution

By Lagrange’s interpolation formula,

      

0 21 2
0 1

0 1 0 2 1 0 1 2

0 1
2

2 0 2 1

( )( )( )( )
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(9.2 9)(9.2 9.5
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f x
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f
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+
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- - -
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+
)

(2.3979)
(11 9)(11 9.5)

1.1865 1.0806 0.048

2.2191

- -
= + -
=

example 2
Find the value of y when x = 10 from the following table:

x 5 6 9 11

y 12 13 14 16

Solution
By Lagrange’s interpolation formula,

                     

y x
x x x x x x

x x x x x x
y
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2 4

-
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=
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.
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example 3
Compute f(4) from the tabular values given:

x 2 3 5 7

f(x) 0.1506 0.3001 0.4517 0.6259

using Lagrange’s interpolation formula. [Winter 2012]

Solution

By Lagrange’s interpolation formula,
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x x x x x x
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x x x
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0 0301 0 2251 0 2259 0 0313

0 3896

example 4
Compute f(2) by using Lagrange’s interpolation method from the 

following data:

x –1 0 1 3

f(x) 2 1 0 –1

 [Winter 2013, Summer 2015]

Solution

By Lagrange’s interpolation formula,

      

1 2 3 0 2 3
0 1

0 1 0 2 0 3 1 0 1 2 1 3

0 1 3 0 1 2
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(2 0)(2 1)(2 3) (2 1)(2 1)(2 3)
(2) (2) (1)

( 1 0)( 1 1)( 1 3) (0 1)(0 1)(0 3)

(2 1)(2 0)(2 3) (2 1)(2 0)(2 1)
(0) ( 1)
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0.75
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+ - - + - -
= - + -
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example 5
By using Lagrange’s formula, find y when x = 10.

x 5 6 9 11

y 12 13 14 16

 [Summer 2015]

Solution

By Lagrange’s interpolation formula,

           

1 2 3 0 2 3
0 1

0 1 0 2 0 3 1 0 1 2 1 3

0 1 3 0 1 2
2 3
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- - - - - -
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example 6
Evaluate f(9) by using Lagrange’s interpolation method from the 

following data:

x 5 7 11 13 17

f(x) 150 392 1452 2366 5202

 [Summer 2014]
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Solution

By Lagrange’s interpolation formula,
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(2366)
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16.6667 209.0667 1290.6667 788.6667 115.6

810

example 7
Determine y(12) by using Lagrange’s interpolation method from the 

following data:

x 11 13 14 18 20 23

y 25 47 68 82 102 124

 [Winter 2014]
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Solution

By Lagrange’s interpolation formula,
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       = 5.8201 + 70.9029 – 55.4074 + 10.3086 – 5.9365 + 0.7348

        = 26.4225

example 8
Find a second-degree polynomial passing through the points (0, 0), 

(1, 1) and (2, 20) using Larange’s interpolation. [Summer 2015]

Solution

Let    x0 = 0,     x1 = 1,  x2 = 2

      f(x0) = 0, f(x1) = 1, f(x2) = 20
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By Lagrange’s interpolation formula,
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example 9
Using Lagrange’s interpolation formula, find the interpolating 

polynomial for the following table:

x 0 1 2 5

f (x) 2 3 12 147

Solution

By Lagrange’s interpolation formula,
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example 10
Find the Lagrange interpolating polynomial from the following data:

x 0 1 4 5

f(x) 1 3 24 39

Solution

By Lagrange’s interpolation formula,
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example 11
Use Lagrange’s formula to fit a polynomial to the data:

x –1 0 2 3

y 8 3 1 12

and hence, find y(2).
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Solution

By Lagrange’s interpolation formula,

      

1 2 3 0 2 3
0 1

0 1 0 2 0 3 1 0 1 2 1 3

0 1 3 0 1 2
2 3

2 0 2 1 2 3 3 0 3 1 3 2

( )( )( ) ( )( )( )
( )

( )( )( ) ( )( )( )

( )( )( ) ( )( )( )

( )( )( ) ( )( )( )

( 0)( 2)( 3)

( 1 0)( 1 2)

x x x x x x x x x x x x
y x y y

x x x x x x x x x x x x

x x x x x x x x x x x x
y y

x x x x x x x x x x x x

x x x

- - - - - -
= +

- - - - - -

- - - - - -
+ +

- - - - - -

- - -
=

- - - -

3 2

( 1)( 2)( 3)
(8) (3)

( 1 3) (0 1)(0 2)(0 3)

( 1)( 0)( 3) ( 1)( 0)( 2)
(1) (12)

(2 1)(2 0)(2 3) (3 1)(3 0)(3 2)

2 ( 2)( 3) ( 1)( 2)( 3)

3 2

( 1)( )( 3)
( 1)( )( 2)

6

1
(2 2 15 9)

3

1
(2) 2(

3

x x x

x x x x x x

x x x x x x

x x x
x x x

x x x

y

+ - -
+

- - + - -
+ - - + - -

+ +
+ - - + - -

- - + - -
= - +

+ -
- + + -

= + - +

= [ ]8) 2(4) 15(2) 9 1+ - + =

example 12
Express the given rational function as a sum of partial fractions:

 

y
x x

x x x
=

+ +
- - -

3 1

1 2 3

2

( )( )( )

Solution

Let f (x) = 3x
2 + x + 1.

For x = 1, x = 2 and x = 3, the table is

x 1 2 3

f (x) 5 15 31

By Lagrange’s interpolation formula,

f x
x x x x

x x x x
f x

x x x x

x x x
( )

( )( )

( )(
( )

( )( )

( )(
=

- -
- -

+
- -
-

1 2

0 1 0 2
0

0 2

1 0) 11 2
1

0 1

2 0 2 1
2

2 3

1 2

-
+

- -
- -

=
- -
-

x
f x

x x x x

x x x x
f x

x x

)

) )

(

( )
( )( )

( )( )
( )

( (

))(
)

( )( )

( )( )
( )

( )( )

( )( )
(

1 3
5

1 3

2 1 2 3
15

1 2

3 1 3 2
3

-
+

- -
- -

+
- -
- -)

(
x x x x

11

5

2
2 3 15 1 3

31

2
1 2

)

( )( ( )( ) ( )( )= - - - - - + - -x x x x x x)
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\

  

y
f x

x x x

x x x

=
- - -

=
-

-
-

+
-

( )

)( )(

( ) ( )

( )1 2 3

5

2 1

15

2

31

2 3

example 13

Express the function 
23 12 11

( 1)( 2)( 3)

x x

x x x

- +
- - -

 as a sum of partial fractions 

using Lagrange’s formula.

Solution

Let f (x) = 3x
2 – 12x + 11.

For x = 1, x = 2 and x = 3, the table is

x 1 2 3

f (x) 2 –1 2

By Lagrange’s interpolation formula,

f x
x x x x

x x x x
f x

x x x x

x x x
( )

( )( )

( )(
( )

( )( )

( )(
=

- -
- -

+
- -
-

1 2

0 1 0 2
0

0 2

1 0) 11 2
1

0 1

2 0 2 1
2

2 3

1 2

-
+

- -
- -

=
- -
-

x
f x

x x x x

x x x x
f x

x x

)

) )

(

( )
( )( )

( )( )
( )

( (

))(
)

( )( )

( )( )
( )

( )( )

( )( )
(

1 3
2

1 3

2 1 2 3
1

1 2

3 1 3 2
2

-
+

- -
- -

- +
- -
- -)

(
x x x x

))

( )

= - - + - - + - -

\ =
- - -

=

( )( ) ( )( ) ( )( )

( )

)( )(

x x x x x x

y
f x

x x x

2 3 1 3 1 2

1 2 3

11

1

1

2

1

3x x x-
+

-
+

-

example 14
The following values of the function f (x) are given as f (1) = 4, f (2) = 5, 

f (7) = 5, f (8) = 4. Find the value of  f (6) and also the value of x for which 

f (x) is maximum or minimum.

Solution

Tabular form of the data is

x 1 2 7 8

f (x) 4 5 5 4
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By Lagrange’s interpolation formula,

f x
x x x x x x

x x x x x x
f x

x x x
( )

( )( )( )

( )( )( )
( )

( )(
=

- - -
- - -

+
-1 2 3

0 1 0 2 0 3
0

0 -- -
- - -

+
- - -

x x x

x x x x x x
f x

x x x x x x

x

2 3

1 0 1 2 1 3
1

0 1 3

)( )

( )( )( )
( )

( )( )( )

( 22 0 2 1 2 3
2

0 1 2

3 0 3 1- - -
+

- - -
- -x x x x x

f x
x x x x x x

x x x x)( )( )
( )

( )( )( )

( )( )(( )
( )

( )( )( )

( )( )( )
( )

( )( )

x x
f x

x x x x x

3 2
3

2 7 8

1 2 1 7 1 8
4

1 7

-

=
- - -
- - -

+
- - (( )

( )( )( )
( )

( )( )( )

( )( )( )
( )

x x x x-
- - -

+
- - -
- - -

8

2 1 2 7 2 8
5

1 2 8

7 1 7 2 7 8
5

++
- - -
- - -

= - - + - +

( )( )( )

( )( )( )
( )

( )

x x x

x x x

1 2 7

8 1 8 2 8 7
4

2

21
17 86 1123 2 11

6
16 71 56

1

6
11 26 16

2

21
10 23 14

3 2

3 2 3 2

( )

( ) ( )

x x x

x x x x x x

- + -

- - + - + - + -

 

= - + +

= - + + =

1

6

3

2

8

3

6
1

6
6

3

2
6

8

3

17

3

2

2

x x

f ( ) ( ) ( )

For extreme values,                 f ¢(x) = 0

 

- + =

=

1

3

3

2
0

4 5

x

x .

Also,      f¢¢ (x) = -
1

3
 < 0

Since f¢¢(x) is negative, f (x) is maximum at x = 4.5.

example 15
A body moving with velocity v at any time t satisfies the data

t 0 1 3 4

v 21 15 12 10

Obtain the distance travelled in 4 seconds and acceleration at the end 

of 4 seconds.
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Solutions

By Lagrange’s interpolation formula,

 

v
t t t t t t

t t t t t t
v

t t t t t
=

- - -
- - -

+
- -( )( )( )

( )( )( )

( )( )(1 2 3

0 1 0 2 0 3
0

0 2 --
- - -

+
- - -
- -

t

t t t t t t
v

t t t t t t

t t t

3

1 0 1 2 1 3
1

0 1 3

2 0 2

)

( )( )( )

( )( )( )

( )( tt t t
v

t t t t t t

t t t t t t
v

t

1 2 3
2

0 1 2

3 0 3 1 3 2
3

)( )

( )( )( )

( )( )( )

(

-
+

- - -
- - -

=
-- - -
- - -

+
- - -
- -

1 3 4

0 1 0 3 0 4
21

0 3 4

1 0 1 3

)( )( )

( )( )( )
( )

( )( )( )

( )(

t t t t t

))( )
( )

( )( )( )

( )( )( )
( )

( )( )(

1 4
15

0 1 4

3 0 3 1 3 4
12

0 1

-

+
- - -
- - -

+
- -t t t t t tt

t t t

-
- - -

= - + - +

3

4 0 4 1 4 3
10

1

12
5 38 105 2523 2

)

( )( )( )
( )

( )

If s is the distance travelled in time t,

 

v
s

t
t t t

s v t

= = - + - +

= Ú

d

d

d

1

12
5 38 105 2523 2

0

4

( )

 

= - + - +

= - + - +

=

Ú
1

12
5 38 105 252

1

12

5

4

38

3

105

2
252

1

3 2

0

4

4 3 2

0

4

( )t t t

t t t
t

112

5

4
256

38

3
64

105

2
16 1008

54 88

- ¥ + ¥ - ¥ +È

ÎÍ
˘

˚̇
= .

Hence, the distance travelled in 4 seconds = 54.88

 
a

v

t
t t= = - + -

d

d

1

12
15 76 1052( )

At t = 4,

 
a = - ¥ + ¥ - =

1

12
15 16 76 4 105 3 416( ) .
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exercIse 7.4 

 1. From the table given below, find y(x = 2).

x 0 1 3 4

y 5 6 50 105

[ans. : 19]

 2. Use Lagrange’s formula to find the velocity of the particle v = f (t) at 

t = 3.5 from the following table:

t 0 1 2 3

v 21 15 12 10

[ans. : 8.75]

 3. Find f (27) from the following table:

x 14 17 31 35

f (x) 68.7 64.0 44.0 39.1

[ans. : 49.3]

 4. Find f (6) from the following table:

x 2 5 7 10 12

f (x) 18 180 448 1210 2028

[ans. : 294]

 5. Find f (9) from the following table:

x 5 7 11 13 17

f (x) 150 392 1452 2366 5202

[ans. : 809.997]

 6. If y0 = 4.3315, y1 = 7.4046, y3 = 5.6713, y5 = 7.1154, find the curve 

passing through these points. Hence, find y2 and y4.

[ans. : 5.1420, 6.3199]

 7. If f (1) = 3, f (2) = –5, f (–4) = 4, find the three-point Lagrange’s interpolation 

polynomial that takes the same values.

ans.:
1

20
39 123 2522( - - +

È

ÎÍ
˘

˚̇
x x )
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 8. A third-degree polynomial passes through the points (0,–1), (1,1), (2,1), 

(3,–2). Find the polynomial.

ans.:
1

6
3 16 63 2( )- - + -

È

ÎÍ
˘

˚̇
x x x

 9. If y = a0 + a1x + a2x
2 + a3x

3 passes through the points

x 1 3 5 7

y 0 50 236 654

  find a0, a1, a2 and a3.

[ans. : –4, 3, –1, 2]

 10. Find the polynomial of degree 3 which takes the same values as 

y = 2x + 2x + 1 at x = –1, 0, 1, 2.

ans.:
1

12
3 32 243 2x x x+ + +( )È

ÎÍ
˘

˚̇

 11. Find the polynomial which takes the values f (1) = 1, f (2) = 9, f (3) = 25, 

f (4) = 55, f (5) = 105.

[ans. : x3 – 2x2 + 7x – 5]

 12. Find f (x) from the following table:

x 0 2 3 6

f (x) 659 705 729 804

ans. :
1

72
29 1604 474483 2( x )- + + +

È

ÎÍ
˘

˚̇
x x

 13. Observe the following table:

x 1 3 4 6

f (x) –3 9 30 132

  Express f (x) as a third-degree polynomial in x. Also, find f ¢(x), f ¢¢(x) at 

x = 1.

[ans. : x3 – 3x2 + 5x – 6, 2, 0]

 14. Using Lagrange’s formula for unequal intervals, express the function 

x x

x x x

2

2

6 1

1 4 6

+ -
- - -( )( )( )

 as a sum of partial fractions.

ans.:
1

5 1

3

35 1

13

10 4

71

70 6( ) ( ) ( ) ( )x x x x-
+

+
-

-
+

-
È

Î
Í

˘

˚
˙
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4.13 dIvIded dIFFerences

In Lagrange’s interpolation formula, if another interpolation value is added then the 

interpolation  coefficients are required to be recalculated. To avoid this recalculation, 

Newton’s general interpolation formula is used.

If (x0, y0), (x1, y1), (x2, y2) …. be given points then the first divided difference for x0, x1 

is defined by the relation,

 

[ , ]x x
y y

x x
0 1

1 0

1 0

=
-
-

Similarly, [x1, x2] = 
y y

x x

2 1

2 1

-
-

, etc.

The second divided difference for x0, x1, x2 is defined as

 

[ , , ]
[ , ] [ , ]

x x x
x x x x

x x
0 1 2

1 2 0 1

2 0

=
-
-

The third divided difference for x0, x1, x2, x3 is defined as

 

[ , , , ]
[ , , ] [ , , ]

x x x x
x x x x x x

x x
0 1 2 3

1 2 3 0 1 2

3 0

=
-
-

notes

(i)  The divided differences are symmetrical in their arguments, i.e., independent of the 

order of arguments:

      

[ , ]

[ , ]

[ , , ]
( )( )

x x
y

x x

y

x x

x x

x x x
y

x x x x

0 1
0

0 1

1

1 0

1 0

0 1 2
0

0 1 0 2

=
-

+
-

=

=
- -

++
- -

+
- -

y

x x x x

y

x x x x

x x x x

1

1 0 1 2

2

2 0 2 1

1 2 0 2

( )( ) ( )( )

[ , , ] or [ ,=      xx x0 1, ] 

(ii) The nth divided differences of a polynomial of the nth degree are constant.

Let the arguments be equally spaced so that x1 – x0 = x2 – x1 = … = xn – xn – 1 = h

 

[ , ]x x
y y

x x

y

h

0 1
1 0

1 0

0

=
-
-

=
D
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[ , , ]
[ , ] [ , ]

!

x x x
x x x x

x x

h

y

h

y

h

h

0 1 2
1 2 0 1

2 0

1 0

2

2

1

2

1

2

=
-
-

=
D

-
DÊ

ËÁ
ˆ
¯̃

= D yy0

In general,

   
[ , , ..., ]

!
x x x x

n h
yn n

n
0 1 2 0

1
= D

If the tabulated function is an nth degree polynomial, Dn
y0 will be constant. Hence, the 

n
th divided differences will also be constant.

4.14 newton’s dIvIded dIFFerence Formula

Let the function y = f (x) take values y0, y1, y2, …, yn corresponding to x0, x1, x2, …, xn 

respectively. According to the definition of divided differences,

   

[ , ]

( )[ , ]

x x
y y

x x

y y x x x x

0
0

0

0 0 0

=
-
-

= + -
 ...(4.21)

  

[ , , ]
[ , ] [ , ]

[ , ] [ , ] ( )[ , , ]

x x x
x x x x

x x

x x x x x x x x x

0 1
0 0 1

1

0 0 1 1 0 1

=
-
-

= + -

Substituting the value of [x, x0] in Eq. (4.21),

 y = y0 + (x – x0) [x0, x1] + (x – x0) (x – x1) [x, x0, x1] ...(4.22)

Also,     [x, x0, x1, x2] = 
[ , , ] [ , , ]x x x x x x

x x

0 1 0 1 2

2

-
-

 [x, x0, x1] = [x0, x1, x2] + (x – x2) [x, x0, x1, x2]

Substituting the value of [x, x0, x1] in Eq. (4.22),

 y = y0 + (x – x0) [x0, x1] + (x – x0) (x – x1) [x0, x1, x2]

                                                      + (x – x0) (x – x1) (x – x2) [x, x0, x1, x2]

Proceeding in the same manner,

 y = y0 + (x – x0) [x0, x1] + (x – x0) (x – x1) [x0, x1, x2]

                   + (x – x0) (x – x1) (x – x2) [x0, x1, x2, x3] + …

         + (x – x0) (x – x1) … (x – xn–1) [x, x0, x1, …, xn] …(4.23)
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Equation (4.23) is known as Newton’s general interpolation formula with divided 

differences.

example 1

If 
1

( ) ,f x
x

=  find the divided difference [a, b] and [a, b, c].

Solution

Divided Difference Table

x f(x)
First Divided

Difference

Second Divided

Difference

a
1

a

1 1

1b a

b a ab

-
= -

-

b
1

b

1 1

1bc ab

c a abc

- +
=

-

1 1

1c b

c b bc

-
= -

-

c
1

c

 

1
[ , ]a b

ab
= -

 

1
[ , , ]a b c

abc
=
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example 2
Find the second divided difference for the argument x = 1, 2, 5, and 7 for 

the function f(x) = x
2. [Summer 2015]

Solution

Divided Difference Table

x f(x)
First Divided

Difference

Second Divided

Difference

Third Divided

Difference

1 1

4 1
3

2 1

-
=

-

2 4
7 3

1
5 1

-
=

-

25 4
7

5 2

-
=

-
0

5 25
12 7

1
7 2

-
=

-

49 25
12

7 5

-
=

-

7 49



4.74 Chapter 4 Interpolation

example 3
Find the third divided difference with arguments 2, 4, 9, 10 of the function 

f(x) = x
3 – 2x.

Solution

Divided Difference Table

x f(x)
First Divided

Difference

Second Divided

Difference

Third Divided

Difference

2 4

56 4
26

4 2

-
=

-

4 56
131 26

15
9 2

-
=

-

711 56
131

9 4

-
=

-
23 15

1
10 2

-
=

-

9 711
269 131

23
10 4

-
=

-

980 711
269

10 9

-
=

-

10 980
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example 4
Construct the divided difference for the data given below:

x – 4 –1 0 2 5

f (x) 1245 33 5 9 1335

 [Summer 2015]

Solution

Divided Difference Table

x f(x)
First Divided

Difference

Second Divided

Difference

Third Divided

Difference

Fourth Divided

Difference

– 4 1245

33 1245
404

1 4

-
= -

- +

–1 33
28 404

94
0 4

- +
=

+

5 33
28

0 1

-
= -

+
10 94

14
2 4

-
= -

+

0 5
2 28

10
2 1

+
=

+
13 14

13
5 1

+
=

+

9 5
2

2 0

-
=

-
88 10

13
5 1

-
=

+

2 9
442 2

88
5 0

-
=

-

1335 9
442

5 2

-
=

-

5 1335



4.76 Chapter 4 Interpolation

example 5
Complete f(9.2) from the following data by using Newton’s divided 

difference interpolation formula.

x 8 9 9.5 11

f (x) 2.079442 2.197225 2.251292 2.397895

 [Winter 2013]

Solution

Divided Difference Table

x f (x)
First Divided

Difference

Second Divided

Difference

Third Divided

Difference

8 2.079442

0.117783

9 2.197225 – 0.006433

0.108134 0.000411

9.5 2.251292 – 0.005200

0.097735

11 2.397895

By Newton’s divided difference formula,

 f(x) = f(x0) + (x – x0) [x0, x1] + (x – x0) (x – x1) [x0, x1, x2]

               +  (x – x0) (x – x1) (x – x2) [x0, x1, x2, x3]

    f(9.2) = 2.079442 + (9.2 – 8) (0.117783) + (9.2 – 8) (9.2 – 9) (– 0.006433)

                          + (9.2 – 8) (9.2 – 9) (9.2 – 9.5) (0.00041)

     = 2.079442 + 0.141340 – 0.001544 – 0.000030

     = 2.219208

example 6
Using Newton’s divided difference formula, compute f(10.5) from the 

following data:

x 10 11 13 17

f (x) 2.3026 2.3979 2.5649 2.8332

 [Summer 2013]
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Solution
Divided Difference Table

x f (x)
First Divided

Difference

Second Divided

Difference

Third Divided

Difference

10 2.3026

0.0953

11 2.3979 – 0.0039

0.0835 0.0002

13 2.5649 – 0.0027

0.0671

17 2.8332

By Newton’s divided difference formula,

 f (x) = f (x0) + (x – x0) [x0, x1] + (x – x0) (x – x1) [x0, x1, x2]

                +  (x – x0) (x – x1) (x – x2) [x0, x1, x2, x3]

   f (10.5) = 2.3026 + (10.5 –10) (0.0953) + (10.5 – 10) (10.5 – 11) (– 0.0039)

              + (10.5 – 10) (10.5 – 11) (10.5 – 13) (0.0002)

      = 2.3026 + 0.0477 + 0.00098 + 0.00013

      = 2.3514

example 7
Using Newton’s divided difference interpolation, compute the value of 

f(6) from the table given below:

x 1 2 7 8

f (x) 1 5 5 4

 [Summer 2015]

Solution

Divided Difference Table

x f (x)
First Divided

Difference

Second Divided

Difference

Third Divided

Difference

1 1

4

2 5
2

3
-

0
1

14

7 5
1

6
-

–1

8 4
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By Newton’s divided difference formula,

 f (x) = f (x0) + (x – x0) [x0, x1] + (x – x0) (x – x1) [x0, x1, x2]

                +  (x – x0) (x – x1) (x – x2) [x0, x1, x2, x3]

       f (6) = 1 + (6 – 1) (4) + (6 – 1) (6 – 2) 
2

3

Ê ˆ
-Á ˜Ë ¯  + (6 – 1) (6 – 2) (6 – 7) 

1

14

Ê ˆ
Á ˜Ë ¯

      = 1 + 20 – 13.3333 – 1.4286

      = 6.2381

example 8
Evaluate f (9) using the following table:

x 5 7 11 13 17

f (x) 150 392 1452 2366 5202

 [Summer 2014]

Solution

Divided Difference Table

x f (x)
First Divided

Difference

Second Divided

Difference

Third Divided

Difference

Fourth Divided

Difference

5 150

121

7 392 24

265 1

11 1452 32 0

457 1

13 2366 42

709

17 5202

By Newton’s divided difference formula,

f (x) = f (x0)  + (x – x0) [x0, x1] + (x – x0) (x – x1) [x0, x1, x2]  

+ (x – x0) (x – x1) (x – x2) [x0, x1, x2, x3] 

+ (x – x0)(x – x1) (x – x2) (x – x3) [x0, x1, x2, x3, x4]

f (9) = 150 + (9 – 5) (121) + (9 – 5) (9 – 7) (24) + (9 – 5) (9 – 7) (9 – 11) (1) + 0

       = 150 + 484 + 192 – 16 

   = 810
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example 9
Compute f(8) from the following values using Newton’s divided difference 

formula:

x 4 5 7 10 11 13

f (x) 48 100 244 900 1210 2028

Solution

Divided Difference Table

x f(x)
First Divided

Difference

Second Divided

Difference

Third Divided

Difference

Fourth Divided

Difference

4 48

52

5 100 15

97 1

7 244 21 0

202 1

10 900 27 0

310 1

11 1210

409 33

13 2028

By Newton’s divided difference formula,

 f (x) = f (x0) + (x – x0) [x0, x1] + (x – x0) (x – x1) [x0, x1, x2]

                +  (x – x0) (x – x1) (x – x2) [x0, x1, x2, x3]

     f (8) = 48 + (8 – 4) (52) + (8 – 4) (8 – 5) (15) + (8 – 4) (8 – 5) (8 – 7) (1) + 0

     = 48 + 208 + 180 +12

     = 448
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example 10
From the following table, find f(x) using Newton’s divided difference 

formula:

x 1 2 7 8

f (x) 1 5 5 4

Solution

Divided Difference Table

x f (x)
First Divided

Difference

Second Divided

Difference

Third Divided

Difference

1 1

4

2 5
2

3
-

0
1

14

7 5
1

6
-

–1

8 4

By Newton’s divided difference formula,

 f (x) = f (x0) + (x – x0) [x0, x1] + (x – x0) (x – x1) [x0, x1, x2]

                +  (x – x0) (x – x1) (x – x2) [x0, x1, x2, x3]

       = 1 + (x – 1) 4 + (x – 1) (x – 2) 
2

3

Ê ˆ
-Á ˜Ë ¯  + (x – 1) (x – 2) (x – 7) 

1

14

Ê ˆ
Á ˜Ë ¯

     

2 3 2

3 2

2 1
1 4 4 ( 3 2) ( 10 23 14)

3 14

1 29 107 16

14 21 14 3

x x x x x x

x x x

= + - - - + + - + -

= - + -

example 11
Using Newton’s divided difference formula, find a polynomial and also, 

find f(–1) and f(6).

x 1 2 4 7

f (x) 10 15 67 430

 [Summer 2015]
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Solution

Divided Difference Table

x f (x)
First Divided

Difference

Second Divided

Difference

Third Divided

Difference

1 10

5

2 15 7

26 2

4 67 19

121

7 430

By Newton’s divided difference formula,

 f (x) = f (x0) + (x – x0) [x0, x1] + (x – x0) (x – x1) [x0, x1, x2]

                +  (x – x0) (x – x1) (x – x2) [x0, x1, x2, x3]

     

2 3 2

3 2

10 ( 1)(5) ( 1)( 2)(7) ( 1)( 2)( 4)2

10 5 5 7 21 14 2 14 28 16

2 7 12 3

x x x x x x

x x x x x x

x x x

= + - + - - + - - -

= + - + - + + - + -

= - + +

   

3 2

3 2

( 1) 2( 1) 7( 1) 12( 1) 3 18

(6) 2(6) 7(6) 12(6) 3 255

f

f

- = - - - + - + = -

= - + + =

example 12
Establish a cubic polynomial of the curve y = f (x) passing through the 

points (1, –3), (3, 9), (4, 30), (6, 132). Hence, find f (2).

Solution

Divided Difference Table

x f (x)
First Divided

Difference

Second Divided

Difference

Third Divided

Difference

1 –3

6

3 9 5

21 1

4 30 10

51

6 132
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By Newton’s divided difference formula,

f (x) = f (x0) + (x – x0) [x0, x1] + (x – x0) (x – x1) [x0, x1, x2]

              + (x – x0) (x – x1) (x – x2) [x0, x1, x2, x3]

= –3 + (x – 1) (6) + (x – 1) (x – 3) (5) + (x – 1) (x – 3) (x – 4) (1)

= –3 + 6x – 6 + 5x
2 – 20x + 15 + x3 – 8x

2 + 19x – 12 

= x3 – 3x
2 + 5x – 6

f (2) = (2)3 – 3(2)2 + 5(2) – 6 = 0

example 13
The shear stress in kilopound per square foot (ksf) for 5 specimens in a 

clay stratum are as follows:

Depth (m) 1.9 3.1 4.2 5.1 5.8

Stress (ksf) 0.3 0.6 0.4 0.9 0.7

Use Newton’s dividend difference interpolating polynomial to compute 

the stress at 4.5 m depth. [Winter 2012]

Solution

Divided Difference Table

Depth 

x

Stress 

y

First Divided

Difference

Second Divided

Difference

Third Divided

Difference

Fourth Divided

Difference

1.9 0.3

0.25

3.1 0.6 –0.1877

–0.1818 0.1739

4.2 0.4 0.3687 –0.1295

0.5556 –0.3313

5.1 0.9 –0.5258

–0.2857

5.8 0.7

By Newton’s divided difference formula,

 y (x) = y 0 + (x – x0) [x0, x1] + (x – x0) (x – x1) [x0, x1, x2]

                + (x – x0) (x – x1) (x – x2) [x0, x1, x2, x3]

                + (x – x0) (x – x1) (x – x2) (x – x3) [x0, x1, x2, x3, x4]
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       y (4.5) = 0.3 + (4.5 – 1.9) (0.25) + (4.5 – 1.9) (4.5 – 3.1) (– 0.1877)

           + (4.5 – 1.9) (4.5 – 3.1) (4.5 – 4.2) (0.1739)

        + (4.5 – 1.9) (4.5 – 3.1) (4.5 – 4.2) (4.5 – 5.1) (– 0.1295)

        = 0.3 + 0.65 – 0.6832 + 0.1899 + 0.0848

        = 0.5415 ksf

exercIse 4.5

 1. If f x
x

( ) =
1
2 , find the divided differences f (a, b), f (a, b, c), and 

f (a, b, c, d ).

 
ans.: -

+ + +
-

+ + +È ( )
, ,

( )a b

a b

ab bc ca

a b c

abc bcd acd abd

a b c d2 2 2 2 2 2 2 2 2ÎÎ
Í

˘

˚
˙

 2. Find the third divided difference of f (x) with arguments 2, 4, 9, 10 where 

f (x) = x3 – 2x.

[ans.: 1]

 3. Obtain the value of log10 656 given log10 654 = 2.8156, log10 658 = 2.8182, 

log10 659 = 2.8189 and log10 666 = 2.8202.

[ans.: 2.8169]

 4. Find f (5) from the following table:

x 0 1 3 6

f (x) 1 4 88 1309

[ans.: 636]

 5. Find y(x = 20) from the following table:

x 12 18 22 24 32

y(x) 146 836 19481 2796 9236

[ans.: 1305.36]

 6. Find a polynomial f (x) of lowest degree which takes the values 3, 7, 9, 

and 19 when x = 2, 4, 5, 10.

[ans.: 2x – 1]

 7. Using the divided difference table, find f (x) which takes the values 1, 4, 

40, 85 as x = 0, 1, 3, 4.

[ans.: x3 + x2 + x + 1]

 8. Find f (x) as a polynomial by using Newton’s formula:

x –1 0 3 6 7

f (x) 3 –6 39 822 1611

[ans.: x4 – 3x3 + 5x2 – 6]
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 9. Find the polynomial y = f (x) passing through (5, 1355), (2, 9), (0, 5), (–1, 

33), and (–4, 1245).

[ans.: 3x4 – 5x3 + 6x2 + 14x + 5]

 10. Find the polynomial equation of degree 4 passing through the points 

(8, 1515), (7, 778), (5, 138), (4, 43), and (2, 3).

[ans.: x4 – 10x3 + 36x2 – 36x – 5]

 11. Find the function y(x) in powers of (x – 1) given y(0) = 8, y(1) = 11, 

y(4) = 68, y(5) = 123.

[ans.: 11 + 4(x – 1) + 2 (x – 1)2 + (x – 1)3]

 12. Using the following table, find f (x) as a polynomial in powers of (x – 6).

x –1 0 2 3 7 10

f (x) –11 1 1 1 141 561

[ans.: 73 + 54 (x – 6) + 13 (x – 6)2 + (x – 6)3]

4.15 Inverse InterpolatIon

The process of evaluating the value of x for a value of y (which is not in the table) is 

called inverse interpolation. Lagrange’s formula is a relation between two variables, 

either of which may be taken as the independent variable. On interchanging x and y in 

the Lagrange’s interpolation formula,

 

x
y y y y y y

y y y y y y
x

y y y yn=
- - -
- - -

+
- -( )( ) ( )

( )( ) ( )

( )( )1 2

0 1 0 2 0 1
0

0 2…

…

……

…

…

( )

( )( ) ( )
...

( )( ) ( )

y y

y y y y y y
x

y y y y y y

n

n

n

-
- - -

+

+
- - - -

1 0 1 2 1
1

0 1 1

(( )( ) ( )y y y y y y
x

n n n n
n- - - -0 1 1…

 ...(4.24)

Equation (4.24) is used for inverse interpolation.

example 1
From the data given, find the value of x when y = 13.5.

x 93 96.2 100 104.2 108.7

y 11.38 12.80 14.70 17.07 19.91

Solution
By Lagrange’s formula for inverse interpolation,

x
y y y y y y y y

y y y y y y y y
x

y
=

- - - -
- - - -

+
( )( )( )( )

( )( )( )( )

(1 2 3 4

0 1 0 2 0 3 4
0

-- - - -
- - - -

+
-

y y y y y y y

y y y y y y y y
x

y y

0 2 3 4

1 0 1 2 1 3 1 4
1

)( )( )( )

( )( )( )( )

( 00 1 3 4

2 0 2 1 2 3 2 4
2

0)( )( )( )

( )( )( )( )

( )y y y y y y

y y y y y y y y
x

y y- - -
- - - -

+
- (( )( )( )

( )( )( )( )

( )(

y y y y y y

y y y y y y y y
x

y y y

- - -
- - - -

+
-

1 2 4

3 0 3 1 3 2 3 4
3

0 -- - -
- - - -

y y y y y

y y y y y y y y
x1 2 3

4 0 4 1 4 2 4 3
4

)( )( )

( )( )( )( )
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=
- - - -

-
( . . )( . . )( . . )( . . )

( .

13 5 12 80 13 5 14 70 13 5 17 07 13 5 19 91

11 38 12.. )( . . )( . . )( . . )
( )

( . .

80 11 38 14 70 11 38 17 07 11 38 19 91
93

13 5 11

- - -

+
- 338 13 5 14 70 13 5 17 07 13 5 19 91

12 80 11 38 12 8

)( . . )( . . )( . . )

( . . )( .

- - -
- 00 14 70 12 80 17 07 12 80 19 91

96 2

13 5 11 38 13

- - -

+
-

. )( . . )( . . )
( . )

( . . )( .55 12 80 13 5 17 07 13 5 19 91

14 70 11 38 14 70 12 80

- - -
- -

. )( . . )( . . )

( . . )( . . ))( . . )( . . )
( )

( . . )( . . )

14 70 17 07 14 70 19 91
100

13 5 11 38 13 5 12 80

- -

+
- - (( . . )( . . )

( . . )( . . )( .

13 5 14 70 13 5 19 91

17 07 11 38 17 07 12 80 17 07

- -
- - -114 70 17 07 19 91

104 2

13 5 11 38 13 5 12 80 13 5

. )( . . )
( . )

( . . )( . . )( .

-

+
- - -114 70 13 5 17 07

19 91 11 38 19 91 12 80 19 91 14 70

. )( . . )

( . . )( . . )( . . )

-
- - - (( . . )

( . )

. . . . .

19 91 17 07
108 7

7 8137 68 4669 43 6076 7 2758 0 77

-
= - + + - +x 111

97 7561= .

example 2
Find the root of the equation f (x) = 0, given that f (30) = –30, 

f (34) = –13, f (38) = 3, and f (42) = 18.

Solution

Let x0 = 30,   x1 = 34, x2 = 38, x3 = 42

 y0 = −30, y1 = −13, y2 = 3, y3 = 18

It is required to find x for y = f (x) = 0.

By Lagrange’s formula for inverse interpolation,

                  

x
y y y y y y

y y y y y y
x

y y y y y
=

- - -
- - -

+
- -( )( )( )

( )( )( )

( )( )(1 2 3

0 1 0 2 0 3
0

0 2 --
- - -

+
- - -
- -

y

y y y y y y
x

y y y y y y

y y y

3

1 0 1 2 1 3
1

0 1 3

2 0 2

)

( )( )( )

( )( )( )

( )( yy y y
x

y y y y y y

y y y y y y
x

1 2 3
2

0 1 2

3 0 3 1 3 2
3

0

)( )

( )( )( )

( )( )( )

(

-
+

- - -
- - -

=
++ - -

- + - - - -
+

+ - -13 0 3 0 18

30 13 30 3 30 18
30

0 30 0 3 0)( )( )

( )( )( )
( )

( )( )( 118

13 30 13 3 13 18
34

0 30 0 13 0 18

3 30 3

)

( )( )( )
( )

( )( )( )

( )(

- + - - - -

+
+ + -
+ ++ -

+
+ + -
+ + -

=
13 3 18

38
0 30 0 13 0 3

18 30 18 13 18 3
42

)( )
( )

( )( )( )

( )( )( )
( )

-- + + -
=

0 782 6 5323 33 6818 2 2016

37 2305

. . . .

.

Hence, the root of f (x) = 0 is 37.2305.
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exercIse 4.6

 1. Find x given y = 0.3887 from the following data:

x 21 23 25

y 0.3706 0.4068 0.4433

[ans.: 22]

 2. Find x corresponding to y = 85 from the following table:

x 2 5 8 14

y 94.8 87.9 81.3 68.7

[ans.: 6.5928]

 3. Find x corresponding to y = 100 from the following table:

x 3 5 7 9 11

y 6 24 58 108 174

[ans.: 8.656]

 4. Find the value of q given f (q ) = 0.3887 where f ( )

sin

q
q

q

q

=

-
Ú

d

1
1

2

20

 using 

the table:

q 21° 23° 25°

f (q ) 0.3706 0.4068 0.4433

[ans.: 22.0020°]

 5. Find the age corresponding to the annuity value 13.6 from the given 

table:

Age (x) 30 35 40 45 50

Annuity 

value (y)
15.9 14.9 14.1 13.3 12.5

[ans.: 43]

4.16 cuBIc splIne InterpolatIon

In the polynomial interpolation method discussed till now, the complete set of tabulated 

values were approximated by a single higher degree polynomial. But, for many 

functions, the corresponding interpolation polynomial may tend to oscillate more and 

more between nodes (end points of sub-intervals) as the degree of the polynomial 

increases. Such oscillations are avoided using the method of splines in which piecewise 

polynomial approximations are used.

In spline interpolation, the complete interval is divided into sub-intervals and the 

function is approximated by lower  degree polynomials called spline functions.
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Let y = f (x) be a function which takes the values 

y0, y1, y2, ..., yn corresponding to x = x0, x1, x2, ..., 

xn. This function is approximated by cubic 

splines in each interval xi – xi – 1 = h, i = 1, 2, ..., 

n. Since there are n equal intervals, n cubic 

polynomials are found. A cubic polynomial S(x) 

satisfies the following conditions:

 (i) S(x) is a polynomial of degree one for 

x < x0 and x > xn.

 (ii) S(x) is at most a cubic polynomial in 

each interval (xi – 1, xi), i = 1, 2, ..., n.

 (iii) S(x), S¢(x) and S¢¢(x) are continuous at 

each point (xi, yi), i = 0, 1, 2, ..., n.

 (iv) S(xi) = yi, i = 0, 1, 2, ..., n.

Since S(x) is a cubic polynomial, S¢¢(x) is linear in each interval (xi – 1, xi), i = 1, 2, ..., n.

Let 
1 1

1
( ) ( ) ( ) ( ) ( )i i i iS x x x S x x x S x

h
- -= - + -¢¢ ¢¢ ¢¢È ˘Î ˚  ...(4.25)

Integrating Eq. (4.25) twice w.r.t. x,

 

3 3
1

1 1

( ) ( )1
( ) ( ) ( ) ( ) ( )

3! 3!

i i
i i i i i i

x x x x
S x S x S x a x x b x x

h

-
- -

È ˘- -
= + + - + -¢¢ ¢¢Í ˙

Î ˚
 ...(4.26)

where ai and bi are constants to be found out by the condition

 S(xi) = yi,   i = 0, 1, 2, ..., n (4.27)

Putting x = xi – 1 in Eq. (4.26),

 

3

1 1

2

1 1

1
( )

3!

1
( )

3!

i i i

i i i

h
y S x ha

h

h
a y S x

h

- -

- -

È ˘
= +¢¢Í ˙

Î ˚
È ˘

= - ¢¢Í ˙
Î ˚  ...(4.28)

Similarly, putting x = xi in Eq. (4.26),

 

21
( )

3!
i i i

h
b y S x

h

È ˘
= - ¢¢Í ˙

Î ˚  ...(4.29)

Substituting the values of ai and bi in Eq. (4.26),

   

3 3 2
1

1 1 1

2

1

( ) ( )1 1
( ) ( ) ( ) ( ) ( )

3! 3! 3!

1
( ) ( )

3!

i i
i i i i i

i i i

x x x x h
S x S x S x x x y S x

h h

h
x x y S x

h

-
- - -

-

È ˘ È ˘- -
= + + - -¢¢ ¢¢ ¢¢Í ˙ Í ˙

Î ˚ Î ˚
È ˘

+ - - ¢¢Í ˙
Î ˚

Fig. 4.1
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Writing S¢¢ (xi) = Mi,

 

2
3 3

1 1 1 1

2

1

1 1
( ) ( ) ( ) ( )

6 6

1
( )

6

i i i i i i i

i i i

h
S x x x M x x M x x y M

h h

h
x x y M

h

- - - -

-

È ˘
È ˘= - + - + - -Í ˙Î ˚ Î ˚

È ˘
+ - -Í ˙

Î ˚
 ...(4.30)

Differentiating Eq. (4.30) w.r.t. x,

 

2 2
1 1

2 2

1 1

1
( ) 3( ) ( ) 3( )

6

1 1

6 6

i i i i

i i i i

S x x x M x x M
h

h h
y M y M

h h

- -

- -

È ˘= - - + -¢ Î ˚

È ˘ È ˘
+ - + + -Í ˙ Í ˙

Î ˚ Î ˚

Since S¢(x) is continuous,

 1 1

1
( ) ( )

3 6
i i i i i

h h
S x M M y y

h

-
- -= + + -¢  ...(4.31)

Similarly,

 1 1

1
( ) ( )

3 6
i i i i i

h h
S x M M y y

h

+
+ += - - + -¢  ...(4.32)

Equating Eqs (4.31) and (4.32),

 1 1 1 12

6
4 ( 2 ), 1, 2, ...,i i i i i iM M M y y y i n

h
- + - ++ + = - + =  ...(4.33)

Since S(x) is linear for x < x0 and x > xn, S¢¢(x) = 0 at x = x0 and x = xn.

Hence,  M0 = 0,  Mn = 0 ...(4.34)

Equations (4.33) and (4.34) give (n + 1) equations in (n + 1) unknowns M0, M1, M2, 

..., Mn. Substituting the values of M0, M1, M2, ..., Mn in Eq. (4.30), the cubic spline in 

each interval is obtained.

example 1

Test whether the following functions are cubic spline or not.

2
1

2

2 3
1

2 3
2

( ) ( ) 1 1 2

( ) 3 3 2 3

( ) ( ) 2 1 0

( ) 2 0 1

i S x x x x

S x x x

ii S x x x x

S x x x x

= - + £ £

= - £ £

= - + - £ £

= - £ £
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Solution

Each polynomial is at most a cubic polynomial in each sub-interval.

 (i) 1 2

1 2

1 2

(2) 3 (2)

(2) 3 (2)

(2) 2, (2) 0

S S

S S

S S

= =

= =¢ ¢

= =¢¢ ¢¢

  S¢¢(x) is not continuous at x = 2.

  Hence, the functions are not cubic splines.

 (ii) 
1 2

1 2

1 2

(0) 0 (0)

(0) 0 (0)

(0) 4, (0) 2

S S

S S

S S

= =

= =¢ ¢

= - =¢¢ ¢¢

  S¢¢(x) is not continuous at x = 0.

  Hence, the functions are not cubic splines.

example 2
From the following data,

x 1 2 3

y –8 –1 18

Compute y(1.5) and y¢(1) jusing cubic splines.

Solution

 h = 1,  n = 2

Also, M0 = 0  and  M2 = 0  (assumption)

For cubic spline interpolation,

   
1 1 1 12

6
4 ( 2 ), 1, 2, ..., 1i i i i i iM M M y y y i n

h
- + - ++ + = - + = -

For i = 1,

 

[ ]
0 1 2 0 1 24 6( 2 )

6 8 2( 1) 18

72

M M M y y y+ + = - +

= - - - +

=

    4M1 = 72     [∵    M0 = M2 = 0]

   M1 = 18
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The cubic spline functions are given by

2
3 3

1 1 1 1

2

1

1 1
( ) ( ) ( ) ( )

6 6

1
( ) , 1, 2, ...,

6

i i i i i i i

i i i

h
S x x x M x x M x x y M

h h

h
x x y M i n

h

- - - -

-

Ê ˆ
È ˘= - + - + - -Á ˜Î ˚ Ë ¯

Ê ˆ
+ - - =Á ˜Ë ¯

For i = 1 in the interval 1 £ x £ 2,

3 3
1 0 0 1 1 0 0 0 1 1

3 3

3

3 2

1 1 1
( ) ( ) ( ) ( ) ( )

6 6 6

1 1 1
(2 ) (0) ( 1) (18) (2 ) 8 (0) ( 1) 1 (18)

6 6 6

1
18( 1) (2 )( 8) ( 1)( 4)

6

3 9 9 3 16 8 4 4

S x x x M x x M x x y M x x y M

x x x x

x x x

x x x x x

È ˘Ê ˆ Ê ˆ= - + - + - - + - -Á ˜ Á ˜Í ˙Ë ¯ Ë ¯Î ˚
È ˘ È ˘È ˘= - + - + - - - + - - -Î ˚ Í ˙ Í ˙Î ˚ Î ˚

È ˘= - + - - + - -Î ˚

= - + - - + - +

= 3 23 9 13 15x x x- + -

 

3 2

2

2

(1.5) (1.5) 3(1.5) 9(1.5) 13(1.5) 15 5.625

( ) 9 18 13

(1) (1) 9(1) 18(1) 13 4

y S

y S x x x

y S

= = - + - = -

= = - +¢ ¢

= = - + =¢ ¢

example 3
Using cubic splines, find y(0.5) and y¢(1), given M0 = M2 = 0

x 0 1 2

y –5 –4 3

Solution

 h = 1,  n = 2,  M0 = 0,  M2 = 0

For cubic spline interpolation,

 
1 1 1 12

6
4 ( 2 ), 1, 2, ..., 1i i i i i iM M M y y y n n

h
- + - ++ + = - + = -

For i = 1,

 

[ ]
0 1 2 0 1 24 6( 2 )

6 5 2( 4) 3

36

M M M y y y+ + = - +

= - - - +

=



4.16 Cubic Spline Interpolation        4.91

   4M1 = 36    [∵    M0 = M2 = 0]

   M1 = 9

The cubic splines function are given by

 

2
3 3

1 1 1 1

2

1

1 1
( ) ( ) ( ) ( )

6 6

1
( )

6

i i i i i i i

i i i

h
S x x x M x x M x x y M

h h

h
x x y M

h

- - - -

-

Ê ˆ
È ˘= - + - + - -Á ˜Î ˚ Ë ¯

Ê ˆ
+ - -Á ˜Ë ¯

For i = 1 in the interval 0 £ x £ 1,

3 3
1 0 0 1 1 0 0 0 1 1

3 3

3

3

1 1 1
( ) ( ) ( ) ( ) ( )

6 6 6

1 1 1
(1 ) (0) ( 0) (9) (1 ) 5 (0) ( 0) 4 (9)

6 6 6

3 33
5(1 )

2 6

3
5

2 2

S x x x M x x M x x y M x x y M

x x x x

x x x

x
x

Ê ˆ Ê ˆÈ ˘= - + - + - - + - -Á ˜ Á ˜Î ˚ Ë ¯ Ë ¯

È ˘ È ˘È ˘= - + - + - - - + - - -Î ˚ Í ˙ Í ˙Î ˚ Î ˚

= - - -

= - -

3

2

2

3 (0.5)
(0.5) (0.5) (0.5) 5 5.0625

2 2

9 1
( )

2 2

9 1
(1) (1) (1) 4

2 2

y S

y S x x

y S

= = - - = -

= = -¢ ¢

= = - =¢ ¢

example 4
Obtain the cubic splines for every sub-interval from the following 

data:

x 0 1 2 3

y = f (x) 1 2 33 244

Hence, find estimate of f(2.5). Assume M(0) = 0, M(3) = 0.

 [Summer 2013, Winter 2013, Summer 2014]

Solution

 h = 1,  n = 3,  M0 = 0,   M3 = 0
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For cubic spline interpolation,

 
1 1 1 12

6
4 ( 2 ), 1, 2, ..., 1i i i i i iM M M y y y i n

h
- + - ++ + = - + = -

For i = 1,

 

[ ]
0 1 2 0 1 24 6( 2 )

6 1 2(2) 33

180

M M M y y y+ + = - +

= - +

=

          4M1 + M2 = 180    [∵   M0 = 0] ...(1)

For i = 2,

 

[ ]
1 2 3 1 2 3

1 2 3

4 6( 2 )

6 2 2(33) 244

1080

4 1080 0

M M M y y y

M M M

+ + = - +

= - +

=

+ = =È ˘Î ˚∵  ...(2)

Solving Eqs (1) and (2),

 M1 = –24,  M2 = 276

The cubic spline functions are given by

  

2
3 3

1 1 1 1

2

1

1 1
( ) ( ) ( ) ( )

6 6

1
( ) , 1, 2, ...,

6

i i i i i i i

i i i

h
S x x x M x x M x x y M

h h

h
x x y M i n

h

- - - -

-

Ê ˆ
È ˘= - + - + - -Á ˜Î ˚ Ë ¯

Ê ˆ
+ - - =Á ˜Ë ¯

For i = 1 in the interval 0 £ x £ 1,

3 3
1 0 0 1 1 0 0 0 1 1

3 3

3

3

1 1 1
( ) ( ) ( ) ( ) ( )

6 6 6

1 1 1
(1 ) (0) ( 0) ( 24) (1 ) 1 (0) ( 0) 2 ( 24)

6 6 6

4 (1 ) 6

4 5 1

S x x x M x x M x x y M x x y M

x x x x

x x x

x x

Ê ˆ Ê ˆÈ ˘= - + - + - - + - -Á ˜ Á ˜Î ˚ Ë ¯ Ë ¯

È ˘ È ˘È ˘= - + - - + - - + - - -Î ˚ Í ˙ Í ˙Î ˚ Î ˚

= - + - +

= - + +

For i = 2 in the interval 1 £ x £ 2,

3 3
2 1 1 2 2 1 1 1 2 2

3 3

3 3

1 1 1
( ) ( ) ( ) ( ) ( )

6 6 6

1 1 1
(2 ) ( 24) ( 1) (276) (2 ) 2 ( 24) ( 1) 33 (276)

6 6 6

4(2 ) 46( 1) 6(2 ) 13( 1)

S x x x M x x M x x y M x x y M

x x x x

x x x x

Ê ˆ Ê ˆÈ ˘= - + - + - - + - -Á ˜ Á ˜Î ˚ Ë ¯ Ë ¯

È ˘ È ˘È ˘= - - + - + - - - + - -Î ˚ Í ˙ Í ˙Î ˚ Î ˚

= - - + - + - - -
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3 2 3 2

3 2

4 24 48 32 46 138 138 46 12 6 13 13

50 162 167 53

x x x x x x x x

x x x

= - + - + - + - + - - +

= - + -

For i = 3 in the interval 2 £ x £ 3,

3 3
3 2 2 3 3 2 2 2 3 3

3 3

3

2 3

1 1 1
( ) ( ) ( ) ( ) ( )

6 6 6

1 1 1
(3 ) (276) ( 2) (0) (3 ) 33 (276) ( 2) 244 (0)

6 6 6

1
(3 ) (276) (3 )( 13) ( 2)(244)

6

46(27 27 9 )

S x x x M x x M x x y M x x y M

x x x x

x x x

x x x

Ê ˆ Ê ˆÈ ˘= - + - + - - + - -Á ˜ Á ˜Î ˚ Ë ¯ Ë ¯

È ˘ È ˘È ˘= - + - + - - + - -Î ˚ Í ˙ Í ˙Î ˚ Î ˚

È ˘= - + - - + -Î ˚

= - + - -
3 2

39 13 244 488

46 414 985 715

x x

x x x

+ + -

= - + - +

3 2(2.5) (2.5) 46(2.5) 414(2.5) 985(2.5) 715 121.25f S= = - + - + =

example 5
Obtain the cubic splines and evaluate y(1.5) and y¢(3) for the following 

data:

x 1 2 3 4

y 1 2 5 11

 [Summer 2015, Winter 2012, 2014]

Solution

 h = 1,  n = 3,

Also,   M0 = 0  and  M3 = 0   (assumption)

For cubic spline interpolation,

 
1 1 1 12

6
4 ( 2 ) 1, 2, ..., 1i i i i i iM M M y y y i n

h
- + - ++ + = - + = -

For i = 1,

 

[ ]
0 1 2 0 1 24 6( 2 )

6 1 2(2) 5

12

M M M y y y+ + = - +

= - +

=

          4M1 + M2 = 12    [∵    M0 = 0] ...(1)
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For i = 2,

 

[ ]
1 2 3 1 2 34 6( 2 )

6 2 2(5) 11

18

M M M y y y+ + = - +

= - +

=
          M1 + 4M2 = 18    [∵    M3 = 0] ...(2)

Solving Eqs (1) and (2),

 M1 = 2,  M2 = 4

The cubic spline functions are given by

  

2
3 3

1 1 1 1

2

1

1 1
( ) ( ) ( ) ( )

6 6

1
( ) , 1, 2, ...,

6

i i i i i i i

i i i

h
S x x x M x x M x x y M

h h

h
x x y M i n

h

- - - -

-

Ê ˆ
È ˘= - + - + - -Á ˜Î ˚ Ë ¯

Ê ˆ
+ - - =Á ˜Ë ¯

For i = 1, in the interval 1 £ x £ 2,

[ ]

3 3
1 0 0 1 1 0 0 0 1 1

3 3

3

3 2

3 2

1 1 1
( ) ( ) ( ) ( ) ( )

6 6 6

1 1 1
(2 ) (0) ( 1) (2) (2 ) 1 (0) ( 1) 2 (2)

6 6 6

1 5
( 1) (2 ) ( 1)

3 3

1
3 3 1 6 3 5 5

3

1
( 3 5 )

3

S x x x M x x M x x y M x x y M

x x x x

x x x

x x x x x

x x x

Ê ˆ Ê ˆÈ ˘= - + - + - - + - -Á ˜ Á ˜Î ˚ Ë ¯ Ë ¯

È ˘ È ˘È ˘= - + - + - - + - -Î ˚ Í ˙ Í ˙Î ˚ Î ˚

= - + - + -

= - + - + - + -

= - +

For i = 2 in the interval 2 £ x £ 3,

S x x x M x x M x x y M x x y( ) ( ) ( ) ( ) ( )= - + -ÈÎ ˘̊ + - -Ê
ËÁ

ˆ
¯̃ + -

1

6

1

6
2

3
1 1

3
2 2 1 1 1 22 2

3 3

1

6

1

6
3 2 2 4 3 2

1

6
2

-Ê
ËÁ

ˆ
¯̃

= - + -ÈÎ ˘̊ + - -È
ÎÍ

˘
˚̇

M

x x x( ) ( ) ( ) ( ) ( ) ( ) ++ - -È
ÎÍ

˘
˚̇

= - + - + - + -

=

( ) ( )

( ) ( ) ( ) ( )

x

x x x x

2 5
1

6
4

1

3
3

2

3
2

5

3
3

13

3
2

1

3

3 3

(( ) ( ) ( ) ( )

( ) (

3 2 2 5 3 13 2

1

3
27 27 9 2

3 3

2 3 3

- + - + - + -ÈÎ ˘̊

= - + - + -

x x x x

x x x x 112 24 15 15 5 13 26

1

3
3 5

2

3 2

x x x x

x x x

+ + + - + -ÈÎ ˘̊

= - +[ ]

) ( ) ( )
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For i = 3 in the interval 3 £ x £ 4,

[ ]

3 3
3 2 2 3 3 2 2 2 3 3

3 3

3

3 2

1 1 1
( ) ( ) ( ) ( ) ( )

6 6 6

1 1 1
(4 ) (4) ( 3) (0) (4 ) 5 (4) ( 3) 11 (0)

6 6 6

2 13
(4 ) (4 ) 11( 3)

3 3

1
2 24 96 128 52 13 33 99

3

1
(

3

S x x x M x x M x x y M x x y M

x x x x

x x x

x x x x x

Ê ˆ Ê ˆÈ ˘= - + - + - - + - -Á ˜ Á ˜Î ˚ Ë ¯ Ë ¯

È ˘ È ˘È ˘= - + - + - - + - -Î ˚ Í ˙ Í ˙Î ˚ Î ˚

= - + - + -

= - + - + + - + -

= - 3 22 24 76 81)x x x+ - +

 

3 21 11
(1.5) (1.5) (1.5) 3(1.5) 5(1.5)

3 8
y S È ˘= = - + =Î ˚

In the interval 2 £ x £ 3,

 

2

2

1
( ) (3 6 5)

3

1 14
(3) (3) 3(3) 6(3) 5

3 3

y S x x x

y S

= = - +¢ ¢

È ˘= = - + =¢ ¢ Î ˚

In the interval 3 £ x £ 4,

 

2

2

1
( ) ( 6 48 76)

3

1 14
(3) (3) 6(3) 48(3) 76

3 3

y S x x x

y S

= = - + -¢ ¢

È ˘= = - + - =¢ ¢ Î ˚

example 6
Find the cubic spline in the interval [0, 2] for the following data:

x 0 2 4 6

y 1 9 41 41

Given M0 = 0 and M3 = –12.

Solution

 h = 2,  n = 3,  M0 = 0,  M3 = –12

For cubic spline interpolation,

 
1 1 1 12

6
4 ( 2 ), 1, 2, ..., 1i i i i i iM M M y y y i n

h
- + - ++ + = - + = -
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For i = 1,

 
[ ]

0 1 2 0 1 2

6
4 ( 2 )

4

3
1 2(9) 41

2

M M M y y y+ + = - +

= - +

          4M1 + M2 = 36    [∵    M0 = 0] ...(1)

For i = 2,

 

[ ]

1 2 3 1 2 3

1 2 3

6
4 ( 2 )

4

3
9 2(41) 41

2

48

4 36 12

M M M y y y

M M M

+ + = - +

= - +

= -

+ = - = -È ˘Î ˚∵  ...(2)

Solving Eqs (1) and (2),

 M1 = 12,  M2 = –12

The cubic spline function are given by

 

2
3 3

1 1 1 1

2

1

1 1
( ) ( ) ( ) ( )

6 6

1
( )

6

i i i i i i i

i i i

h
S x x x M x x M x x y M

h h

h
x x y M

h

- - - -

-

Ê ˆ
È ˘= - + - + - -Á ˜Î ˚ Ë ¯

Ê ˆ
+ - -Á ˜Ë ¯

For i = 1 in the interval 0 £ x £ 2,

 

3 3
1 0 0 1 1 0 0

0 1 1

3 3

3

3

1 1 4
( ) ( ) ( ) ( )

12 2 6

1 4
( )

2 6

1 1 4
(2 ) (0) ( 0) (12) (2 ) 1 (0)

12 2 6

1 4
( 0) 9 (12)

2 6

1
(12 ) 1

12 2 2

1

S x x x M x x M x x y M

x x y M

x x x

x

x x
x

x

Ê ˆÈ ˘= - + - + - -Á ˜Î ˚ Ë ¯

Ê ˆ+ - -Á ˜Ë ¯

È ˘È ˘= - + - + - -Î ˚ Í ˙Î ˚
È ˘+ - -Í ˙Î ˚

= + - +

= +
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exercIse 4.7

 1. Find the natural cubic spline for the following data:

x 0 1 2

y 0 1 0

È ˘
= - = - < <Í ˙

Í ˙
Í ˙= =¢Í ˙Î ˚

3

1 1

1
3, ( ) (3 ) for 0 1

2

11
(0.5) , (1) 0

6

M S x x x x

y y

ans.:

 2. Find the natural cubic spline in [0, 1] for the following data:

x 0 1 2

y 0 2 6

  Also, find y(0.5) and y¢(1).

È ˘
= = + < <Í ˙

Í ˙
Í ˙= =¢Í ˙Î ˚

3

1 1

1
3, ( ) (3 ) for 0 1

2

13
(0.5) , (1) 3

16

M S x x x x

y y

ans.:

 3. Find the cubic spline in the interval [3, 4] for the function given by the 

following data under the conditions M(1) = 0, M(4) = 0:

x 1 2 3 4

y 3 10 29 65

È ˘
= =Í ˙

Í ˙
Í ˙= - + - + < <Í ˙Î ˚

1 2

3 2

3

62 112
, ,

5 5

1
( ) ( 56 672 2092 2175) for 3 4

15

M M

S x x x x x

ans.:

 4. Find the cubic spline for the following data under the conditions M(0) = 0, 

M(3) = 0 in the interval [1, 2]. Hence, find y(1.5).

x 0 1 2 3

y 1 4 10 8

= = -È ˘
Í ˙
Í ˙= - + - + < <
Í ˙Î ˚

1 2

3 2

2

8, 14,

1
( ) ( 11 45 40 18) for 1 2

3

M M

S x x x x x

ans.:
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 5. Find the natural cubic spline for the data in the interval [1, 2] and, 

hence, find y(1.5).

x 1 2 3 4

y 1 5 11 8

È ˘
= = -Í ˙

Í ˙
Í ˙= - + - < <Í ˙
Í ˙=Î ˚

1 2

3 2

1

34 76
, ,

5 5

1
( ) (17 x 51 94 45) for 1 2

15

(1.5) 2.575

M M

S x x x x

y

ans.:

 6. Test whether the following functions are cubic splines or not.

   

= - + - £ <

= - + £ £

2 3

1

2 3

2

( ) 20 , 1 0

( ) 6 , 0 1

S x x x x

S x x x x

[ans.: Yes]

 7. Obtain the cubic splines, given f(–1) = 0, f(0) = 4, f(1) = 0 and M0 = 24, 

M2 = 24.

È ˘= - - - £ <
Í ˙

= - + £ £Í ˙Î ˚

2 3

1

2 3

2

( ) 4 12 8 , 1 0

( ) 4 12 8 , 0 1

S x x x x

S x x x x

ans.:

 8. Find the cubic spline corresponding to the interval [2, 3] from the 

following data:

x 1 2 3 4 5

f(x) 30 15 32 18 25

  Hence, find f(2.5) and f¢(3).

È ˘È ˘= - + - +Í ˙Î ˚
Í ˙

= - =¢Í ˙Î ˚

3 21
( ) 142.9 1058.4 2475.2 1950 ,

6

(2.5) 24.03, (3) 2.817

S x x x x

f f

ans.:

 9. Find the cubic spline S(x), given f(0) = 3, f(2) = 5, f(4) = 31, M0 = 1 and 

M2 = 21. Also, find f(1) and f(3).

È ˘= + - + £ £
Í ˙

= + - + - £ <Í ˙
Í ˙= =Î ˚

2 3

0

2

1

( ) 3 2 , 0 2

( ) 5 5( 2) 4( 2) , 2 4

(1) 3, (3) 14

S x x x x x

S x x x x

f f

ans.:

 10. Find the cubic splines for the following data:

x 0 1  2 3

y 1 0 –1 0
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  Given S¢(0) = M0 = 0,  S¢(3) = M3 = –6. Also, find y(0.5).

È ˘= - £ £
Í ˙

= - - - - + - £ £Í ˙
Í ˙= - + - + - - - £ £Í ˙
Í ˙

=Í ˙Î ˚

2

0

2 3

1

2 3

2

( ) 1 , 0 1

( ) 2( 1) (x 1) 2(x 1) , 1 2

( ) 1 2( 2) 5( 2) 6( 2) , 2 3

3
(0.5)

4

S x x x

S x x x

S x x x x x

y

ans.:

points to remember

Forward Differences

 Dyn–1 = yn – yn–1

Backward Differences

 —yn = yn – yn–1

Central Differences

          

d y y y
n

n n
-

-= -1

2

1

Newton’s Forward Interpolation Formula

yr = + D +
-

D +
- -

D +y r y
r r

y
r r r

y0 0
2

0
3

0

1

2

1 2

3

( )

!

( )( )

!
L

Newton’s Backward Interpolation Formula

yr = + — +
+

— +
+ +

— +y r y
r r

y
r r r

yn n n n

( )

!

( )( )

!

1

2

1 2

3

2 3
L

Gauss’s Forward Interpolation Formula

y y r y
r r

y
r r r

y

r r r r

r = + D +
-

D +
+ -

D

+
+ - -

- -0 0
2

1
3

1

1

2

1 1

3

1 1

( )

!

( ) ( )

!

( ) ( )( 22

4

4
2

)

!
D +-y L

Gauss’s Backward Interpolation Formula

y y r y
r r

y
r r r

y

r r r r

r = + D +
+

D +
+ -

D

+
+ +

- - -0 1
2

1
3

2

1

2

1 1

3

2 1

( )

!

( ) ( )

!

( )( ) ( --
D +-

1

4

4
2

)

!
y L
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Stirling’s Formula

y y r
y y r

y
r r y y

r = +
D + DÊ

ËÁ
ˆ
¯̃

+ D +
- D + DÊ

Ë
Á

ˆ
-

-
- -

0
1 0

2
2

1

2 3
2

3
1

2 2

1

3 2!

( )

! ¯̄
˜

+
-

D +-
r r

y
2 2

4
2

1

4

( )

!
L

Lagrange’s Interpolation Formula

f x
x x x x x x

x x x x x x
y

x x xn

n

( )
( )( ) ( )

( )( ) ( )

( )(
=

- - -
- - -

+
- -1 2

0 1 0 2 0
0

0…

…

xx x x

x x x x x x
y

x x x x x x

n

n

n

2

1 0 1 2 1
1

0 1 1
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5.1 introduction

Curve fitting is the process of finding the ‘best-fit’ curve for a given set of data. It is 

the representation of the relationship between two variables by means of an algebraic 

equation. On the basis of this mathematical equation, predictions can be made in many 

statistical problems.

Suppose a set of n points of values (x1, y1), (x2, y2), …, (xn, yn) of the two variables 

x and y are given. These values are plotted on a rectangular coordinate system, i.e., 

the xy-plane. The resulting set of points is known as a scatter diagram (Fig. 5.1). 

The scatter diagram exhibits the trend and it is possible to visualize a smooth curve 

approximating the data. Such a curve is known as an approximating curve.

o x

y

o x

y

Fig. 5.1
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5.2 LEAST SQUARE METHOD

From a scatter diagram, generally, more than one curve 

may be seen to be appropriate to the given set of data. The 

method of least squares is used to find a curve which passes 

through the maximum number of points.

Let P (xi, yi) be a point on the scatter diagram (Fig. 5.2). 

Let the ordinate at P meet the curve y = f (x) at Q and the 

x-axis at M.

Distance      QP MP MQ= -
= -y yi

= -y f xi i( )

The distance QP is known as deviation, error, or residual and is denoted by di. It may 

be positive, negative, or zero depending upon whether P lies above, below, or on the 

curve. Similar residuals or errors corresponding to the remaining (n – 1) points may be 

obtained. The sum of squares of residuals, denoted by E, is given as

E d y f xi

i

n

i i

i

n

= = -
= =
Â Â2

1

2

1

[ ( )]

If E = 0 then all the n points will lie on y = f (x). If E π 0, f (x) is chosen such that E is 

minimum, i.e., the best fitting curve to the set of points is that for which E is minimum. 

This method is known as the least square method. This method does not attempt to 

determine the form of the curve y = f (x) but it determines the values of the parameters 

of the equation of the curve.

5.3 FiTTing OF LinEAR CURvES

Let (xi, yi), i = 1, 2, …, n be the set of n values and let the relation between x and y be 

y = a + bx. The constants a and b are selected such that the straight line is the best fit to 

the data.

The residual at x = xi is

d y f xi i i= - ( )

= - + =y a bx i ni i( ) , , ...,1 2

E di

i

n

=
=
Â 2

1
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2

1
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Â ( )y a bxi i
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n
2
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Mo x

y

Fig. 5.2
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For E to be minimum,

(i)  
∂

∂
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E

a
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2 1 0
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n
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xy a x b xÂ Â Â= + 2

These two equations are known as normal equations. These equations can be solved 

simultaneously to give the best values of a and b. The best fitting straight line is 

obtained by substituting the values of a and b in the equation y a bx= + .

Example 1
Fit a straight line to the following data:

x 1 2 3 4 6 8

y 2.4 3 3.6 4 5 6

Solution

Let the straight line to be fitted to the data be 

y a bx= +

The normal equations are

 
y na b xÂ Â= +

 …(1)

 
xy a x b xÂ Â Â= + 2

 …(2)
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Here, n = 6

x y x
2

xy

1 2.4  1 2.4

2 3  4 6

3 3.6  9 10.8

4 4 16 16

6 5 36 30

8 6 64 48

Âx = 24 Ây = 24 Âx
2 = 130 Âxy = 113.2 

Substituting these values in Eqs (1) and (2), 

 24 6 24= +a b  …(3)

 113 2 24 130. = +a b  …(4)

Solving Eqs (3) and (4),

a = 1.9764

b = 0.5059

Hence, the required equation of the straight line is

y x= +1.9764 0.5059

Example 2
Fit a straight line to the following data. Also, estimate the value of y at 

x = 2.5.

x 0 1 2 3 4

y 1 1.8 3.3 4.5 6.3

Solution

Let the straight line to be fitted to the data be

y a bx= +

The normal equations are

 
y na b xÂ Â= +

 …(1)

 
xy a x b xÂ Â Â= + 2

 …(2)

Here, n = 5
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x y x
2

xy

0 1 0 0

1 1.8 1 1.8

2 3.3 4 6.6

3 4.5 9 13.5

4 6.3 16 25.2

Âx = 10 Ây = 16.9 Âx
2 = 30 Âxy = 47.1

Substituting these values in Eqs (1) and (2), 

 16 9 5 10. = +a b  …(3)

 47 1 10 30. = +a b  …(4)

Solving Eqs (3) and (4),

a = 0.72

b = 1.33

Hence, the required equation of the straight line is

y x= +0.72 1.33

At x = 2.5, 
y (  2 5 0 72 1 33 2 5 4 045. ) . . ( . ) .= + =

Example 3
A simply supported beam carries a concentrated load P(lb) at its 

midpoint. Corresponding to various values of P, the maximum deflection 

Y(in) is measured. The data is given below:

P 100 120 140 160 180 200

Y 0.45 0.55 0.60 0.70 0.80 0.85

Find a law of the form Y = a + bP using the least square method.

 [Summer 2015]

Solution

Let the straight line to be fitted to the data be

 Y = a + bP

The normal equations are

 Y na b P= + ÂÂ  ...(1)
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 PY a P b P= + ÂÂÂ 2
 ...(2)

Here, n = 6

P Y P
2

PY

100 0.45 10000 45

120 0.55 14400 66

140 0.60 19600 84

160 0.70 25600 112

180 0.80 32400 144

200 0.85 40000 170

ÂP = 900 ÂY = 3.95 ÂP
2 = 142000 ÂPY = 621

Substituting these values in Eqs (1) and (2),

 3.95 = 6a + 900 b ...(3)

 621 = 900 a + 142000 b ...(4)

Solving Eqs (3) and (4),

 a = 0.0476

 b = 0.0041

Hence, the required equation of the straight line is

 Y = 0.0476 + 0.0041 P

Example 4
Fit a straight line to the following data. Also, estimate the value of y at 

x = 70.

x 71 68 73 69 67 65 66 67

y 69 72 70 70 68 67 68 64

Solution

Since the values of x and y are larger, we choose the origin for x and y at 69 and 67 

respectively,

Let X x= - 69  and Y y= - 67

Let the straight line to be fitted to the data be

 Y a bX= +
The normal equations are

 
Y na b X= + ÂÂ  …(1)

 
XY a X b XÂ Â Â= + 2

 …(2)
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Here, n = 8

x y X Y X
2

XY

71 69   2  2 4  4

68 72 −1  5 1 −5

73 70   4  3 16 12

69 70   0  3 0  0

67 68 −2  1 4 −2

65 67 −4  0 16  0

66 68 −3  1 9 −3

67 64 −2 −3 4  6

ÂX = –6 ÂY = 12 ÂX
2 = 54 ÂXY = 12

Substituting these values in Eqs (1) and (2),

 12 8 6= -a b  …(3) 

 12 6 54= - +a b  …(4)

Solving Eqs (3) and (4),

 a = 1.8182

 b = 0.4242

Hence, the required equation of the straight line is

Y X= +1 8182 0 4242. .

y x- = + -67 1 8182 0 4242 69. . ( )

y x= +0 4242 39 5484. .

y x( ) . ( ) . .= = + =70 0 4242 70 39 5484 69 2424

Example 5
Fit a straight line to the following data taking x as the dependent vari-

able.

x 1 3 4 6 8 9 11 14

y 1 2 4 4 5 7 8 9

Solution

If x is considered the dependent variable and y the independent variable, the equation 

of the straight line to be fitted to the data is

x a by= +
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The normal equations are

 
x na b yÂ Â= +

 …(1)

 xy a y b y= +ÂÂ Â 2
 …(2)

Here, n = 8

x y y
2

xy

 1 1  1  1

 3 2  4  6

 4 4 16  16

 6 4 16  24

 8 5 25  40

 9 7 49  63

11 8 64  88

14 9 81 126

Âx = 56 Ây = 40 Ây
2 = 256 Âxy = 364

Substituting these values in Eqs (1) and (2),

   56 8 40= +a b  …(3)

     364 40 256= +a b  …(4)

Solving Eqs (3) and (4),

 a = − 0.5

 b = 1.5

Hence, the required equation of the straight line is

          
x y= - +0 5 1 5. .

Example 6
If P is the pull required to lift a load W by means of a pulley block, find 

a linear law of the form P = mW + c connecting P and W using the 

following data:

P 12 15 21 25

W 50 70 100 120

where P and W are taken in kg-wt. Compute P when W = 150 kg.

Solution

Let the linear curve (straight line) fitted to the data be

 P = mW + c = c + mW
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The normal equations are

 ÂP = nc + mW ...(1)

 ÂPW = cÂW + mÂW
2 ...(2)

Here, n = 4

P W W
2

PW

12 50 2500 600

15 70 4900 1050

21 100 10000 2100

25 120 14400 3000

ÂP = 73 ÂW = 340 ÂW
2 = 31800 ÂPW = 6750

Substituting these values in Eqs (1) and (2),

 73 = 4c + 340 m  ...(3)

 6750 = 340 c + 31800 m ...(4)

Solving Eqs (3) and (4),

 c = 2.2759

 m = 0.1879

Hence, the required equation of the straight line is 

 P = 0.1879 W + 2.2759

When W = 150 kg,

 P = 0.1879(150) + 2.2759 = 30.4609

ExERCiSE 5.1

1.  Fit the line of best fit to the following data:

x  0  5 10 15 20 25

y 12 15 17 22 24 30

Ans. : y x= +ÈÎ ˘̊0 11 28. .7

2.  The results of a measurement of electric resistance R of a copper bar at 

various temperatures t°C are listed below:

t°C 19 25 30 36 40 45 50

R 76 77 79 80 82 83 85

Find a relation R a bt= +  where a and b are constants to be determined.

Ans. : R t= +ÈÎ ˘̊70 0534 0 2924. .
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3.  Fit a straight line to the following data:

x 1.53 1.78 2.60 2.95 3.42

y 33.50 36.30 40.00 45.85 53.40

Ans. : y x= +ÈÎ ˘̊19 9 7.

4.  Fit a straight line to the following data:

x 100 120 140 160 180 200

y 0.45 0.55 0.60 0.70 0.80 0.85

Ans. : y x= +ÈÎ ˘̊0 0475 0 00407. .

5.   Find the relation of the type  R aV b= + ,  when some values of R and V 

obtained from an experiment are

V  60  65  70  75  80  85  90

R 109 114 118 123 127 130 133

Ans. : R = +ÈÎ ˘̊0 8071 61 4675. .V

5.4 FiTTing OF QUADRATiC CURvES

Let (xi, yi), i = 1, 2, …, n be the set of n values and let the relation between x and y be 

y a bx cx= + + 2 . The constants a, b, and c are selected such that the parabola is the 

best fit to the data. The residual at x = xi is

d y f xi i i= - ( )
= - + +( )y a bx cxi i i

2

E di

i

n

=
=
Â 2

1

= - + +( )È
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=
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2
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These equations are known as normal equations. These equations can be solved simul-

taneously to give the best values of a, b, and c. The best fitting parabola is obtained by 

substituting the values of a, b, and c in the equation y a bx cx= + + 2 .

Example 1
Fit a least squares quadratic curve to the following data:

x 1 2 3 4

y 1.7 1.8 2.3 3.2

Estimate y(2.4).
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Solution

Let the equation of the least squares quadratic curve (parabola) be y a bx cx= + + 2 .

The normal equations are

 y na b x c x= + + ÂÂÂ 2
 …(1)

 xy a x b x c x= + +Â ÂÂÂ 2 3
 …(2)

 x y a x b x c x
2 2 3 4= + +Â ÂÂÂ  …(3)

Here, n = 4

x y x
2

x
3

x
4

xy x
2
y

1 1.7  1  1  1 1.7 1.7

2 1.8  4  8  16 3.6 7.2

3 2.3  9 27  81 6.9 20.7

4 3.2 16 64 256 12.8 51.2

Sx = 10 Sy = 9 Sx
2 30= Sx

3 100= Sx
4 354= Sxy = 25 Sx y

2 80 8= .

Substituting these values in Eqs (1), (2), and (3),

 9 4 10 30= + +a b c  …(4)

 25 10 30 100= + +a b c  …(5)

 80 8 30 100 354. = + +a b c  …(6)

Solving Eqs (4), (5), and (6),

 a = 2

 b = − 0.5

 c = 0.2

Hence, the required equation of least squares quadratic curve is

 
y x x= - ◊ + ◊2 0 5 0 2 2

y( ) ( ) ( . )2 4 2 0 5 2 4 0 2 2 4 1 9522◊ = - ◊ ◊ + ◊ = ◊

Example 2
Fit a second-degree polynomial using least square method to the 

following data:

x 0 1 2 3 4

y 1 1.8 1.3 2.5 6.3

 [Summer 2015]
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Solution

Let the equation of the least squares quadratic curve be y = a + bx + cx
2. The normal 

equations are

     Ây = na + bÂx + cÂx
2 ...(1)

   Âxy = aÂx + bÂx
2 + cÂx

3 ...(2)

 Âx
2
y = aÂx

2 + bÂx
3 + cÂx

4 ...(3)

Here, n = 5

x y x
2

x
3

x
4

xy x
2
y

0 1 0 0 0 0 0

1 1.8 1 1 1 1.8 1.8

2 1.3 4 8 16 2.6 5.2

3 2.5 9 27 81 7.5 22.5

4 6.3 16 64 256 25.2 100.8

Âx = 10 Ây = 12.9 Âx
2 = 30 Âx

3 = 100 Âx
4 = 354 Âxy = 37.1 Âx

2
y = 130.3

Substituting these values in Eqs (1), (2), and (3),

 12.9 = 5a + 10b + 30 c ...(4)

 37.1 = 10a + 30b + 100c ...(5)

 130.3 = 30a + 100b + 354c ...(6)

Solving Eqs (4), (5), and (6),

 a = 1.42

 b = –1.07

 c = 0.55

Hence, the required equation of the least squares quadratic curve is

 y = 1.42 – 1.07 x + 0.55 x2

Example 3
By the method of least squares, fit a parabola to the following data:

x 1 2 3 4 5

y 5 12 26 60 97

Also, estimate y at x = 6.

Solution

Let the equation of the parabola be y = a + bx + cx
2. The normal equations are

      Ây = na + bÂx + cÂx
2 ...(1)
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   Âxy = aÂx + bÂx
2 + cÂx

3 ...(2)

 Âx
2
y = aÂx

2 + bÂx
3 + cÂx

4 ...(3)

Here, n = 5

x y x
2

x
3

x
4

xy x
2
y

1 5 1 1 1 5 5

2 12 4 8 16 24 48

3 26 9 27 81 78 234

4 60 16 64 256 240 960

5 97 25 125 625 485 2425

Âx = 15 Ây = 200 Âx
2 = 55 Âx

3 = 225 Âx
4 = 979 Âxy = 832 Âx

2
y = 3672

Substituting these values in Eqs (1), (2), and (3),

 200 = 5a + 15b + 55 c ...(4)

 832 = 15a + 55b + 225c ...(5)

 3672 = 55a + 225b + 979c ...(6)

Solving Eqs (4), (5), and (6),

 a = 10.4

 b = –11.0857

 c = 5.7143

Hence, the required equation of the parabola is

 y = 10.4 – 11.0857 x + 5.7143 x2

 y(6) = 10.4 – 11.0857(6) + 5.7143(6)2 = 149.6006

Example 4
Fit a second-degree parabolic curve to the following data.

x 1 2 3 4  5  6  7  8 9

y 2 6 7 8 10 11 11 10 9

Solution

Let X x= - 5

 Y y= -10

Let the equation of the parabola be Y a bX cX= + + 2 .

The normal equations are

 Y na b X c X= + + ÂÂÂ 2
 …(1)
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 X a X b X c XY = + +Â ÂÂ Â2 3
 …(2)

 X Y a X b X c X
2 2 3 4= + +Â ÂÂÂ  …(3)

Here, n = 9

x y X Y X 
2

X 
3

X 
4

XY X 
2
Y

1  2 −4 −8 16 −64 256 32 −128

2  6 −3 −4  9 −27  81 12  −36

3  7 −2 −3  4  −8  16  6  −12

4  8 −1 −2  1  −1  1  2   −2

5 10  0  0  0   0  0  0   0

6 11  1  1  1  1  1  1   1

7 11  2  1  4  8  16  2   4

8 10  3  0  9  27  81  0   0

9  9  4 −1 16  64 256 −4  −16

SX = 0 SY = -16 SX
2 60= SX

3 0= SX
4 708= SXY = 51 SX Y

2 189= -

Substituting these values in Eqs (1), (2), and (3),

 - = +16 9 60a c  …(4)

 51 60= b  …(5)

 - = +189 60 708a c  …(6)

Solving Eqs (4), (5), and (6),

a = 0.0043

b = 0.85

c = − 0.2673

Hence, the required equation of the parabola is

Y X X= + -0 0043 0 85 0 2673 2. . .

y x x- = + - - -10 0 0043 0 85 5 0 2673 5 2. . ( ) . ( )

y x x x= + + - - - +10 0 0043 0 85 5 0 2673 10 252. . ( ) . ( )

= + + - - + -10 0 0043 0 85 4 25 0 2673 2 673 6 68252. . . . . .x x x

= - + -0 9282 3 523 0 2673 2. . .x x

Example 5
Fit a second-degree parabola y = a + bx

2
 to the following data:

x 1 2 3 4 5

y 1.8 5.1 8.9 14.1 19.8
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Solution

Let the curve to be fitted to the data be

 y = a + bx
2

The normal equations are

 y na b x= + ÂÂ 2
 ...(1)

 x y a x b x
2 2 4= + ÂÂÂ  ...(2)

Here, n = 5

x y x
2

x
4

x
2
y

1 1.8 1 1 1.8

2 5.1 4 16 20.4

3 8.9 9 81 80.1

4 14.1 16 256 225.6

5 19.8 25 625 495

Ây = 49.7 Âx
2 = 55 Âx

4 = 979 Âx
2
y = 822.9

Substituting these values in Eqs (1) and (2),

  49.7 = 5a + 55b ...(3)

 822.9 = 55a + 979 b ...(4)

Solving Eqs (3) and (4),

 a = 1.8165

 b = 0.7385

Hence, the required equation of the curve is

 y = 1.8165 + 0.7385 x2

Example 6

Fit a curve y ax bx= + 2
 for the following data:

x 1 2 3 4 5 6

y 2.51 5.82 9.93 14.84 20.55 27.06

Solution

Let the curve to be fitted to the data be

 
y ax bx= + 2

The normal equations are

   xy a x b x= +Â ÂÂ 2 3
 …(1)
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 x y a x b x
2 3 4= + ÂÂÂ  …(2)

x y x
2

x
3

x
4

xy x
2
y

1 2.51  1  1  1 2.51 2.51

2 5.82  4  8  16 11.64 23.28

3 9.93  9  27  81 29.79 89.37

4 14.84 16  64  256 59.36 237.44

5 20.55 25 125  625 102.75 513.75

6 27.06 36 216 1296 162.36 974.16

Sx
2 91= Sx

3 441= Sx
4 2275= Sxy = 368 41. Sx y

2 1840 51= .

Substituting these values in Eqs (1) and (2),

 368 41 91 441◊ = +a b  …(3)

 1840 51 441 2275◊ = +a b  …(4)

Solving Eqs (3) and (4),

 a = 2.11

 b = 0.4

Hence, the required equation of the curve is

    
y x x= ◊ + ◊2 11 0 4 2

ExERCiSE 5.2

1.  Fit a parabola to the following data:

x −2 −1 0 1 2

y 1.0 1.8 1.3 2.5 6.3

[ . . . ]Ans. : y x x= + +1 48 1 13 0 55 2

2. Fit a curve y ax bx= +
2
 to the following data:

x −2 −1  0 1 2

y −72 −46 −12 35 93

[ . . ]Ans. : y x x= +41 1 2 147 2



5.18 Chapter 5 Curved Fitting

3. Fit a parabola y a bx cx= + +
2  to the following data:

x 0 2 5 10

y 4 7 6.4 −6

[ . . . ]Ans. : y x x= + -4 1 1 979 0 299 2

4. Fit a curve y a a x a x= + +
0 1 2

2  for the given data:

x 3 5 7 9 11 13

y 2 3 4 6  5  8

[ . . . ]Ans. : y x x= + +0 7897 0 4004 0 0089 2

5.5 FiTTing OF ExpOnEnTiAL AnD LOgARiTHMiC CURvES

Let (xi , yi), i = 1, 2, …, n be the set of n values and let the relation between x and y be 

y = ab
x.

Taking logarithm on both the sides of the equation y = ab
x,

log log loge e ey a x b= +

Putting log ,e y Y= log ,e a A= x = X, and logeb = B,

Y A BX= +

This is a linear equation in X and Y. The normal equations are 

YÂ Â= +nA B X

XY A X B XÂ Â Â= + 2

Solving these equations, A and B, and, hence, a and b can be found. The best fitting 

exponential curve is obtained by substituting the values of a and b in the equation 

y = ab
x.

Similarly, the best fitting exponential curves for the relation y = ax
b and y = ae

bx can be 

obtained.

Example 1
Find the law of the form y = ab

x
 to the following data:

x 1 2 3 4 5 6 7 8

y 1 1.2 1.8 2.5 3.6 4.7 6.6 9.1
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Solution

y = ab 
x

Taking logarithm on both the sides,

log log loge e ey a x b= +

Putting log ,e y Y= log ,e a A= x X=  and loge b B= ,

Y A BX= +

The normal equations are

 Y nA B XÂ Â= +  …(1)

 XY A X B XÂ Â Â= + 2
 …(2)

Here, n = 8

x y X Y X 
2

XY

1 1 1 0.0000  1 0.0000

2 1.2 2 0.1823  4 0.3646

3 1.8 3 0.5878  9 1.7634

4 2.5 4 0.9163 16 3.6652

5 3.6 5 1.2809 25 6.4045

6 4.7 6 1.5476 36 9.2856

7 6.6 7 1.8871 49 13.2097

8 9.1 8 2.2083 64 17.6664

XÂ = 36 Y =Â 8 6103. X
2 204=Â XY =Â 52 3594.

Substituting these values in Eqs (1) and (2), 

 8.6103 = 8  + 36  A B  …(3)

 52.3594 = 36  + 204 A B  …(4)

Solving Eqs (3) and (4),

A = − 0.3823

B = 0.3241

loge a A=

log .e a = - 0 3823

a = 0.6823

loge b B=

log .e b = 0 3241

b = 1.3828
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Hence, the required law is

y = 0.6823 (1.3828)x

Example 2
Fit a curve of the form y = ab

x
 to the following data by the method of 

least squares:

x 1 2 3 4 5 6 7

y 87 97 113 129 202 195 193

Solution

 y = ab
x

Taking logarithm on both the sides,

 logey = logea + x logeb

Putting logey = Y, logea = A, x = X and logeb = B,

 Y = A + BX

The normal equations are

 ÂY = nA + BÂX ...(1)

 ÂXY = AÂX + BÂX
2 ...(2)

Here, n = 7

x y X Y X
2

XY

1 87 1 4.4659 1 4.4659

2 97 2 4.5747 4 9.1494

3 113 3 4.7274 9 14.1822

4 129 4 4.8598 16 19.4392

5 202 5 5.3083 25 26.5415

6 195 6 5.2730 36 31.6380

7 193 7 5.2627 49 36.8389

ÂX = 28 ÂY = 34.4718 ÂX
2 = 140 ÂXY = 142.2551

Substituting these values in Eqs (1) and (2),

 34.4718 = 7A + 28 B ...(3)

 142.2551 = 28 A + 140 B ...(4)

Solving Eqs (3) and (4),

 A = 4.3006

 B = 0.156
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 logea = A

 logea = 4.3006

    a = 73.744

 logeb = B

 logeb = 0.156

    b = 1.1688

Hence, the required curve is

 y = 73.744 (1.1688)x

Example 3
Fit a curve of the form y = ax

b
 to the following data:

x 20 16 10 11 14

y 22 41 120 89 56

Solution

y = ax
b

Taking logarithm on both the sides,

log log loge e ey a b x= +

Putting log ,e y Y= log ,e a A= b B=  and log ,e x X=

Y A BX= +
The normal equations are

 
Y nA B XÂ Â= +

 …(1)

 
XY A X B XÂ Â Â= + 2

 …(2)

Here, n = 5

x y X Y X 
2

XY

20  22 2.9957 3.0910 8.9742  9.2597

16  41 2.7726 3.7136 7.6873 10.2963

10 120 2.3026 4.7875 5.3019 11.0237

11  89 2.3979 4.4886 5.7499 10.7632

14  56 2.6391 4.0254 6.9648 10.6234

XÂ = 13 1079. Y =Â 20 1061. X
2 34 6781=Â . XY =Â 51 9663.

Substituting these values in Eqs (1) and (2),

 20.1061 = 5  + 13.1079  A B  …(3)

 51.9663 = 13.1079  + 34.6781  A B  …(4)
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Solving Eqs (3) and (4),

A = 10.2146

B = -2 3624.

loge a A=

loge a = 10.2146

a = ◊27298 8539

and b B= = -2 3624.

Hence, the required equation of the curve is

y x = 27298.8539 2.3624-

Example 4
Fit a curve of the form y ae

bx =  to the following data:

x  1  3  5  7  9

y 115 105 95 85 80

Solution

y ae
bx =  

Taking logarithm on both the sides,

log  log   loge e ey a e= + bx

= +loge a bx

Putting log ,e y Y= log ,e a A= b B=  and x X= ,

Y A BX= +
The normal equations are

 
YÂ Â= +nA B X

 …(1)

 
X A X B XYÂ Â Â= + 2

 …(2)

Here, n = 5

x y X Y X 
2

XY

1 115 1 4.7449 1 4.7449

3 105 3 4.6539  9 13.9617

5  95 5 4.5539 25 22.7695

7  85 7 4.4427 49 31.0989

9  80 9 4.3820 81 39.438

XÂ = 25 Y =Â 22 7774. X
2 165=Â XY =Â 112 013.
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Substituting these values in Eqs (1) and (2),

 22.7774 5 25 = +A B   …(3)

 112.013 25 165= +A B   …(4)

Solving Eqs (3) and (4),

A = 4.7897

B = − 0.0469

loge a A=

log .e a = 4 7897

a = 120 2653.

and 
b B= = - 0 0469.

Hence, the required equation of the curve is 

y e
x= -120 2653 0 0469. . 

Example 5
Fit the exponential curve y ae

bx =  to the following data:

x 0 2 4 6 8

y 150 63 28 12 5.6

 [Summer 2015]

Solution
y ae

bx =  

Taking logarithm on both the sides,

log  loge e e

e

y a bx e

a bx

= +

= +

log

log

Putting logey = Y, logea = A, b = B and x = X,

             Y = A + BX

The normal equations are

          Y nA b X= + ÂÂ  ...(1)

          XY A X B X= +Â ÂÂ 2  ...(2)
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Here, n = 5

x y X Y X
2

XY

0 150 0 5.0106 0 0

2 63 2 4.1431 4 8.2862

4 28 4 3.3322 16 13.3288

6 12 6 2.4849 36 14.9094

8 5.6 8 1.7228 64 13.7824

XÂ = 20 Y =Â 16 6936. X
2 120=Â XY =Â 50 3068.

Substituting these values in Eqs (1) and (2),

 16.6936 = 5 A + 20 B ...(3)

 50.3068 = 20 A + 120 B ...(4)

Solving Eqs (3) and (4),

 A = 4.9855

 B = –0.4117

 logea = A

 logea = 4.9855

 a = 146.28

and b = B = –0.4117

Hence, the required equation of the curve is

 y = 146.28 e–0.4117 x

Example 6
The pressure and volume of a gas are related by the equation PV

g = c. 

Fit this curve to the following data:

P 0.5 1.0 1.5 2.0 2.5 3.0

V 1.62 1.00 0.75 0.62 0.52 0.46

Solution

PV
g = c

Taking logarithm on both the sides,

 

log log log

log log log

e e e

e e e

P V c

V c P

+ =

= -

g

g g

1 1

Putting log , log , log , ,e e eV y c a P x b= = = - =
1 1

g g

 y = a + bx
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The normal equations are

 Ây = na + bÂx

 Âxy = aÂx + bÂx
2

Here, n = 6

P V x y x
2

xy

0.5 1.62 –0.6931 0.4824 0.4804 –0.3343

1.0 1.00 0 0 0 0

1.5 0.75 0.4055 –0.2877 0.1644 –0.1166

2.0 0.62 0.6931 –0.4780 0.4804 –0.3313

2.5 0.52 0.9163 –0.6539 0.8396 –0.5992

3.0 0.46 1.0986 –0.7765 1.2069 –0.8531

Âx = 2.4204 Ây = –1.7137 Âx
2 = 3.1717 Âxy = –2.2345

Substituting these values in Eqs (1) and (2),

 –1.7137 = 6a + 2.4204 b ...(3)

 –2.2345 = 2.4204a + 3.1717 b ...(4)

Solving Eqs (3) and (4),

 a = –0.002

 b = –0.7029

 

- =

=

=

= -

=
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1 4227

1

1

1 4227
0 002

0 9972

g

g
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c

c

e

e

.

log

.
log .

.

Hence, the required equation of the curve is

         PV 
(1.4227) = 0.9972

ExERCiSE 5.3

1. Fit the curve y abx=  to the following data:

x  2 3 4 5 6

y 144 172.3 207.4 248.8 298.5

[Ans.: y = 100 (1.2)x]
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2. Fit the curve y aebx= to the following data:

x 0 2 4

y 5.012 10 31.62

[Ans.: y = 4.642e0.46x]

3. Fit the curve y axb=  to the following data:

x 1 2 3 4

y 2.50 8.00 19.00 50.00

[Ans.: y = 2.227x2.09]

4. Estimate g  by fitting the ideal gas law PV g = c to the following data:

P 16.6 39.7 78.5 115.5 195.3 546.1

V 50 30 20 15 10 5

[Ans.: g  = 1.504]

points to Remember

Fitting of Linear Curves
 (i) The normal equations for the straight line y = a + bx are

 y na b xÂ Â= +

 
xy a x b xÂ Â Â= + 2

 (ii) The normal equations for the straight line x = a + by are

 x na b yÂ Â= + xy a y b y= +ÂÂ Â 2

Fitting of Quadratic Curves
 (i)  The normal equations for the least squares quadratic curve (parabola) 

y = a + bx + cx
2 are

 y na b x c x= + + ÂÂÂ 2

 xy a x b x c x= + +Â ÂÂÂ 2 3

 x y a x b x c x
2 2 3 4= + +Â ÂÂÂ

(ii) The normal equations for the curve y = a + bx
2 are

 y na b x= + ÂÂ 2

 x y a x b x
2 2 4= + ÂÂÂ
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(iii) The normal equations for the curve y = ax + bx
2 are

   xy a x b x= +Â ÂÂ 2 3

 x y a x b x
2 3 4= + ÂÂÂ

Fitting of Exponential and Logarithmic Curves

For the curve y = ab
x,

Taking logarithm on both the sides of the equation y = ab
x,

 
log log loge e ey a x b= +

Putting log ,e y Y= log ,e a A= x = X, and logeb = B,

 Y = A + BX

This is a linear equation in X and Y. The normal equations are 

 
YÂ Â= +nA B X

 
XY A X B XÂ Â Â= + 2

Similarly, the best fitting exponential curves for the relation y = ax
b and y = ae

bx can be 

obtained.





6.1 IntroductIon

The process of evaluating a definite integral from a set of tabulated values of f (x) 

is called numerical integration. This process when applied to a function of a single 

variable is known as quadrature. In numerical integration, f (x) is represented by an 

interpolation formula and then it is integrated between the given limits. In this way, 

the quadrature formula is derived for approximate integration of a function defined by 

a set of numerical values only.

6.2 newton—cotes Quadrature Formula

Let the function y = f (x) takes values y0, y1, y2 …, 

yn for x0, x1, x2 …, xn respectively (Fig. 6.1).

Let I f x x
a

b

= Ú ( )d . Dividing the interval (a, b) 

into n  sub-intervals of width h such that

x0 = a, x1 = x0 + h, x2 = x0 + 2h, ..., xn = x0 + nh = b
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x nh

a

b

( ) ( )d d=
+
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6.1 Introduction

6.2 Newton–Cotes Quadrature Formula

6.3 Trapezoidal Rule

6.4 Simpson’s 1/3 Rule

6.5 Simpson’s 3/8 Rule

6.6 Gaussian Quadrature Formulae
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o x0 x1 x2 x0 + nh
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Putting x = x0 + rh, dx = hdr

When x = x0, r = 0

When x = x0 + nh, r = n
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[By Newton’s forward interpolation formula]
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This equation is known as the Newton–Cotes quadrature formula.

6.3 trapezoIdal rule

By the Newton–Cotes quadrature formula,
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Putting n = 1 in Eq. (6.1) and ignoring the differences of order higher than one,
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Adding all these integrals,
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where X = extreme terms, R = remaining terms

This is known as the trapezoidal rule.

errors in the trapezoidal rule

Expanding y = f(x) in the neighbourhood of x = x0 by Taylor’s series,
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where     x1 – x0 = h

Also, 
1

0

0 1 1d ( ) Area of the first trapezium
2
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h
y x y y Aª + = =Ú  ...(6.4)

Putting x = x1 in Eq. (6.2),
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Substituting Eq. (6.5) in Eq. (6.4),
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Subtracting Eq. (6.6) from Eq. (6.3),
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Hence, the error in the first interval (x0, x1), neglecting other terms, is 3
0

1
.

12
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Similarly, the error in the interval (x1, x2) is 3
1
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example 1
Find the area bounded by the curve and the x-axis from x = 7.47 to 

x = 7.52 from the following table, by using the trapezoidal rule.

x 7.47 7.48 7.49 7.50 7.51 7.52

f (x) 1.93 1.95 1.98 2.01 2.03 2.06

Solution

          a = 7.47, b = 7.52, h = 0.01
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example 2
Consider the following tabular values:

x 25.0 25.1 25.2 25.3 25.4 25.5 25.6

f (x) 3.205 3.217 3.232 3.245 3.256 3.268 3.280

Determine the area bounded by the given curve and the x-axis between 

x = 25 and x = 25.6 by the trapezoidal rule.

Solution

  a = 25, b = 25.6, h = 0.1

By the trapezoidal rule,

      

y x
h

y y y y y y yd
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example 3

Given the data below, find the isothermal work done on the gas if it is 

compressed from v1 = 22 L to v2 = 2 L.

Use W p v
v

v

= - Ú d

1

2

v, L 2 7 12 17 22

P, atm 12.20 3.49 2.049 1.44 1.11

 [Winter 2012]

Solution

      v1 = 22, v2 = 2, h = 5

By the trapezoidal rule,
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example 4

Use trapezoidal rule to evaluate 
x

x
x

2 2
0

2

+
Ú d ,  dividing the interval into 

four equal parts.

Solution

           a = 0, b = 2, n = 4

 

0

2

2 0
0.5

4

( )
2

nx x
h

n

x
y f x

x

- -
= = =

= =
+

x 0 0.5 1 1.5 2

y = f(x) 0 0.3333 0.5774 0.7276 0.8165

y0 y1 y2 y3 y4

By the trapezoidal rule,

 

x

x
x

h
y y y y y

2 2
2

2
0 4 1 2 3

0

2

+
= +( ) + + +( )ÈÎ ˘̊Ú d

 

= + + + +[ ]
=

0 5

2
0 0 8165 2 0 3333 0 5774 0 7276

1 0233

.
( . ) ( . . . )

.

example 5

Evaluate e x
x d ,

0

1

Ú  with n = 10 using the trapezoidal rule.



6.3 Trapezoidal Rule        6.7

Solution

           a = 0, b = 1, n = 10

 

1 0
0.1

10

( ) x

b a
h

n

y f x e

- -
= = =

= =

x 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.10

f(x) 1 1.1052 1.2214 1.3499 1.4918 1.6487 1.8221 2.0138 2.2255 2.4596 2.7183

y0 y1 y2 y3 y4 y5 y6 y7 y8 y9 y10

By the trapezoidal rule,

 

[
]

1

0 10 1 2 3 4 5 6 7 8 9

0

d ( ) 2( )
2

0.1
(1 2.7183) 2(1.1052 1.2214 1.3499 1.4918 1.6487)

2

1.8211 2.0138 2.2255 2.4596)

1.7196

x h
e x y y y y y y y y y y y= + + + + + + + + + +È ˘Î ˚

= + + + + + +

+ + + +

=

Ú

example 6

Calculate 2
0

1

e x
x dÚ  with n = 10 using the trapezoidal rule. 

 [Winter 2014]

Solution

        a = 0, b = 1, n = 10

      

h
b a

n

y f x e
x

=
-

=
-

=

= =

1 0

10
0 1

2

.

( )

x 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

f (x) 2 2.2103 2.4428 2.6997 2.9836 3.2974 3.6442 4.0275 4.4511 4.9192 5.4365

y0 y1 y2 y3 y4 y5 y6 y7 y8 y9 y10
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By the trapezoidal rule,

 

2
2

2

0 1

2

0

1

0 10 1 2 3 4 5 6 7 8 9e x
h

y y y y y y y y y y y
xdÚ = + + + + + + + + + +ÈÎ ˘̊

=

( ) ( )

.
(( . ) ( . . . .

. .

2 5 4365 2 2 2103 2 4428 2 6997 2 9836

3 2974 3 6442 4

+ + + + +[
+ + + .. . . )

.

0275 4 4511 4 9192

3 4394

+ + ]
=

example 7

Compute the integral e
x

 dx
-
Ú
1

1

 using the trapezoidal rule for n = 4.

Solution

        a = –1, b = 1, n = 4

 
h

x x

n

n=
-

=
- -

=0 1 1

4
0 5

( )
.

  y = f (x) = ex

x –1 –0.5 0 0.5 1

f (x) 0.3679 0.6065 1 1.6487 2.7183

y0 y1 y2 y3 y4

By the trapezoidal rule,

 e
x

 dx
h

y y y y y

-
Ú = +( ) + + +( )ÈÎ ˘̊
1

1

0 4 1 2 3
2

2

   = 
0 5

2

.
 [(0.3679 + 2.7183) + 2(0.6065 + 1 + 1.6487)

                      = 2.39916

example 8

Evaluate e x
x-Ú

2

0

1

d  with n = 10 using the trapezoidal rule.

Solution

       a = 0, b = 1, n = 10
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h
b a

n

y f x e
x

=
-

=
-

=

= = -

1 0

10
0 1

2

.

( )

x 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.10

f (x) 1 0.99 0.9608 0.9139 0.8521 0.7788 0.6977 0.6126 0.5273 0.4449 0.3679

y0 y1 y2 y3 y4 y5 y6 y7 y8 y9 y10

By the trapezoidal rule,

 

e x
h

y y y y y y y y y y y
x- = +( ) + + + + + + + + +( )ÈÎ ˘̊

=

Ú
2

2
2

0 1

0 10 1 2 3 4 5 6 7 8 9

0

1

d

.

22
1 0 3679 2 0 99 0 9608 0 9139 0 8521 0 7788

0 6977 0

( . ) ( . . . . .

. .

+ + + + + +[
+ + 66126 0 5273 0 4449

0 7462

+ + ]
=

. . )

.

6.4 sImpson’s 1/3 rule

By the Newton–Cotes quadrature formula,

f x x hn y
n

y
n n

y
n n

y

x

x nh

( )
( ) ( )

d

0

0

0 0
2

0

2
3

0
2

2 3

12

2

24

+

Ú = + D +
-

D +
-

D +
È

Î
Í 

ÍÍ

˘

˚
˙
˙  …(6.7)

Putting n = 2 in Eq. (6.7) and ignoring the differences of order higher than 2,

     

f x x h y y y

h y y y
y y y

x

x h

( )d

0

0 2

0 0
2

0

0 1 0
2 1

2
1

6

2
2

+

Ú = + D + DÈ

ÎÍ
˘

˚̇

= + -( ) +
- + 00

0 1 2

6

3
4

Ê
ËÁ

ˆ
¯̃

È

Î
Í

˘

˚
˙

= + +( )h
y y y

Similarly,

 

f x x
h

y y y

f x x
h

y

x h

x h

x n h

x nh

n

( )

( )

( )

d

d

0

0

0

0

2

4

2 3 4

2

3
4

3

+

+

+ -

+

Ú

Ú

= + +( )

=



-- -+ +( )2 14y yn n
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Adding all these integrals,

    

f x x
h

y y y y y y y y

x

x nh

n n n( )d

0

0

3
4 20 1 3 1 2 4 2

+

- -Ú = +( ) + + + +( ) + + + +( )ÈÎ   ˘̊̆

= + +[ ]h
X O E

3
4 2

where X = extreme terms, O = odd terms, E = even terms

This is known as Simpson’s 1/3 rule.

note To apply this rule, the number of sub-intervals must be a multiple of 2.

errors in simpson’s 1/3 rule

Expanding y = f (x) in the neighbourhood of x = x0 by Taylor’s series,

 y x y x x y
x x

y
x x

y
x x

y( ) ( )
( )

!

( )

!

( )

!
= + - ¢ +

-
¢¢ +

-
¢¢¢+

-
0 0 0

0
2

0
0

3

0
0

4

0
2 3 4

iiv +  ...(6.8)

where ¢ = ¢ =y y x x x0 0
[ ( )] , and .so on

y x y x x y
x x

y
x x

y
x x

x

x

d

0

2

0 0 0
0

2

0
0

3

0
0

4

2 3Ú = + - ¢ +
-

¢¢ +
-

¢¢¢+
-

( )
( )

!

( )

!

( )

44

2 3

0

0
0

2

0
0

3

0

0

2

!

( )

!

( )

!

(

y x

y x
x x

y
x x

y
x x

x

x

iv d+
È

Î
Í

˘

˚
˙

= +
-

¢ +
-

¢¢ +
-

Ú 

00
4

0
0

5

0

0 2 0
2 0

2

0

4 5

2

0

2
)

!

( )

!

( )
( )

!

(

¢¢¢+
-

+

= - +
-

¢ +

y
x x

y

y x x
x x

y
x

x

x

iv


22 0
3

0

2 0
4

0
2 0

5

0

0

2

3

4 5

2
4

2

-
¢¢

+
-

¢¢¢+
-

+

= + ¢

x
y

x x
y

x x
y

h y
h

)

!

( )

!

( )

!

!

iv


yy
h

y
h

y
h

y

h y h y
h

y

0

3

0

4

0

5

0

0
2

0

3

8

3

16

4

32

5

2 2
4

3

+ ¢¢ + ¢¢¢+ +

= + ¢ + ¢¢

! ! !

iv


00

4

0

5

0

2

3

4

15
+ ¢¢¢+ +

h
y

h
y

!

iv
 ...(6.9)

where x2 – x0 = 2h

Also,   y x
h

y y y x x A

x

x

d Area in the interval= + +( ) = ( ) =Ú 3
40 1 2 0 2 1

0

2

,  ...(6.10)
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Putting x = x1 in Eq. (6.8),

y x y y x x y
x x

y
x x

y
x

( ) ( )
( )

!

( )

!

(
1 1 0 1 0 0

1 0
2

0
1 0

3

0
1

2 3
= = + - ¢ +

-
¢¢ +

-
¢¢¢+

- xx
y0

4

0
4

)

!

iv +

       = + ¢ + ¢¢ + ¢¢¢+ +y hy
h

y
h

y
h

y0 0

2

0

3

0

4

0
2 3 4! ! !

iv
  ...(6.11)

Putting x = x2 in Eq. (6.8),

 y x y y hy
h

y
h

y
h

y( )
! ! !

2 2 0 0

2

0

3

0

4

02
4

2

8

3

16

4
= = + ¢ + ¢¢ + ¢¢¢+ +iv

  ...(6.12)

Substituting Eq. (6.11) and (6.12) in Eq. (6.10),

 A h y h y
h

y
h

y
h

y1 0
2

0

3

0

4

0

5

2 2
4

3

2

3

5

18
= + ¢ + ¢¢ + ¢¢¢+ +0

iv
  ...(6.13)

Subtracting Eq. (6.13) from Eq. (6.9),

 

y x A h y

h y

x

x

d 0
iv

0
iv

- = -Ê
ËÁ

ˆ
¯̃ +

= - +

Ú 1
5

5

0

2
4

15

5

18

1

90





Hence, the error in the interval (x0, x2), neglecting higher powers of h, is 

- +
1

90

5
h y0

iv


Similarly, the error in the interval (x2, x4) is -
1

90

5
2h y
iv .

Hence, the total error is

 
E h y y= - + +( )1

90

5
0 2
iv iv



Let yiv(x) be the largest value of y y y n0 2 2 2
iv iv iv, , ..., -  where x0 < x < x2n.

                    

E nh y

x x
h y nh x xn

n

< -

< -
-

= -

1

90

180
2

5

2 0 4
2 0

iv

iv

( )

( )
( ) [ ]

x

x ∵
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example 1
Consider the following values:

x 10 11 12 13 14 15 16

y 1.02 0.94 0.89 0.79 0.71 0.62 0.55

Find y xd
10

16

Ú  by Simpson’s 1/3 rule.

Solution

        a = 10, b = 16, h = 1

By Simpson’s 1/3 rule,

 

y x
h

y y y y y y yd = +( ) + + +( ) + +( )ÈÎ ˘̊

= + +

Ú 3
4 2

1

3
1 02 0 55

0 6 1 3 5 2 4

10

16

( . . ) 44 0 94 0 79 0 62 2 0 89 0 71

4 7233

( . . . ) ( . . )

.

+ + + +[ ]
=

example 2
A rocket is launched from the ground. Its acceleration is registered 

 during the first 80 seconds and is given as follows:

t (s) 0 10 20 30 40 50 60 70 80

a (m/s2) 30 31.63 33.34 35.47 37.75 40.33 43.25 46.69 50.67

By Simpson’s 1/3 rule, find the velocity at t = 80 s.

Solution

        a = 0, b = 80, h = 10

By Simpson’s 1/3 rule,

   Velocity = a td

0

80

Ú

   = 
h

3
[(y0 + y8) + 4(y1 + y3 + y5 + y7) + 2(y2 + y4 + y6)]

              = 
10

3
 [(30 + 50.67) + 4(31.63 + 35.47 + 40.33 + 46.69)

                        + 2(33.34 + 37.75 + 43.25)]
            = 3086.1 m/s
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example 3
A river is 80 metres wide. The depth ‘d’ in metres at a distance x metres 

from one bank is given by the following table. Calculate the area of 

cross section of the river using Simpson’s 1/3 rule. [Summer 2015]

x 0 10 20 30 40 50 60 70 80

y 0 4 7 9 12 15 14 8 7

Solution

     a = 0, b = 80, h = 10

 

A y x= Ú d

0

80

By Simpson’s 1/3 rule,

  

y x
h

y y y y y y y y yd

0

80

0 8 1 3 5 7 2 4 6
3

4 2

10

3
0 7

Ú = +( ) + + + +( ) + + +( )ÈÎ ˘̊

= +( ) + 44 4 9 15 8 2 7 12 14

723 33 2

+ + +( ) + + +( )ÈÎ ˘̊

= . m

example 4

Evaluate 
1

1
1

0

6

+
=Ú

x
x taking hd  using Simpson’s 1/3 rule. Hence, 

obtain an approximate value of log 7. [Winter 2013]

Solution 

    a = 0, b = 6, h = 1

 

n
b a

h

y f x
x

=
-

=
-

=

= =
+

6 0

1
6

1

1
( )

x 0 1 2 3 4 5 6

f (x) 1 0.5 0.3333 0.25 0.2 0.1667 0.1429

y0 y1 y2 y3 y4 y5 y6
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By Simpson’s 1/3 rule,

 

1

1 3
4 2

1

3
1 0 1429

0 6 1 3 5 2 4

0

6

+
= +( ) + + +( ) + +( )ÈÎ ˘̊

= + +

Ú x
x

h
y y y y y y yd

( . ) 44 0 5 0 25 0 1667 2 0 3333 0 2

1 9588

( . . . ) ( . . )

.

+ + + +[ ]
=  ...(1)

By direct integration,

   

1

1
1 7

0

6

0

6

+
= + =Ú x

x xd log ( ) log
 ...(2)

From Eqs (1) and (2),

    log 7 = 1.9588

example 5

Evaluate 
dx

x4 5
0

5

+Ú  by using Simpson’s 1/3 rule, taking 10 equal parts. 

Hence, find the approximate value of  loge5.

Solution

    a = 0, b = 5, n = 10

 

h
b a

n

y f x
x

=
-

=
-

=

= =
+

5 0

10
0 5

1

4 5

.

( )

x 0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

f (x) 0.2 0.1428 0.1111 0.0910 0.0769 0.0667 0.0588 0.0526 0.0476 0.0435 0.04

y0 y1 y2 y3 y4 y5 y6 y7 y8 y9 y10

By Simpson’s 1/3 rule,

  

dx

x

h
y y y y y y y y y y y

4 5 3
4 2

0

5

0 10 1 3 5 7 9 2 4 6 8+
= +( ) + + + + +( ) + + + +( )ÈÎ ˘̊

=

Ú
00 5

3
0 2 0 04 4 0 1428 0 0910 0 0667 0 0526 0 0435

2 0

.
( . . ) ( . . . . . )

(

+ + + + + +[
+ .. . . . )

. ...( )

1111 0 0769 0 0588 0 0476

0 4026 1

+ + + ]
=
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By the direct method,

  

dx

x

xe

e e

e

e

4 5

4 5

4

1

4
25 5

1

4

25

5

1

4
5

0

5

0

5

+
=

+

= -

=

=

Ú
log ( )

(log log )

log

log  …(2)

Equating Eqs (1) and (2),

    

1

4
5 0 4026

5 1 6104

log .

log .

e

e

=

=

example 6

Evaluate the integral ( )1 2

3

2

2

6

+
-
Ú x xd  by Simpson’s 1/3 rule with taking 

6 sub-intervals. Use four digits after the decimal point for calculations.

 [Winter 2012]

Solution 

    a = –2, b = 6, n = 6

h
b a

n

y f x x

=
-

=
- -

=

= = +

6 2

6

4

3

1 2

3

2

( )

( ) ( )

x –2 -
2

3

2

3
2

10

3

14

3
6

f (x) 11.1803 1.7360 1.7360 11.1803 42.1479 108.7094 225.0622

y0 y1 y2 y3 y4 y5 y6
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By Simpson’s 1/3 rule,

( )

( .

1
3

4 2

4

9
11 18

2

3

2

2

6

0 6 1 3 5 2 4+ = +( ) + + +( ) + +( )ÈÎ ˘̊

=

-
Ú x x

h
y y y y y y yd

003 225 0622 4 1 7360 11 1803 108 7094

2 1 7360 42 1479

+ + + +[
+ +

. ) ( . . . )

( . . ))

.

]
= 360 2280

example 7

Using Simpson’s 1/3 rule, find e x
x-Ú

2

0

0 6

d
.

 by taking n = 6.

 [Summer 2015]

Solution

    a = 0, b = 0.6, n = 6

h
b a

n

y f x e
x

=
-

=
-

=

= = -

0 6 0

6
0 1

2

.
.

( )

x 0 0.1 0.2 0.3 0.4 0.5 0.6

f (x) 1 0.99 0.9608 0.9139 0.8521 0.7788 0.6977

y0 y1 y2 y3 y4 y5 y6

By Simpson’s 1/3 rule,

 

e x
h

y y y y y y y
x- = +( ) + + +( ) + +( )ÈÎ ˘̊

= +

Ú
2

3
4 2

0 1

3
1 0 69

0 6 1 3 5 2 4

0

0 6

d

.

.
( . 777 4 0 99 0 9139 0 7788 2 0 9608 0 8521) ( . . . ) ( . . )+ + + + +[ ]

= 0.5351

example 8

Estimate cos2

0

3

x xdÚ  by using Simpson’s 1/3 rule with 6 intervals.
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Solution

     a = 0, b = 3, n = 6

 

h
b a

n

y f x x

=
-

=
-

=

= =

3 0

6
0 5

2

.

( ) cos

x 0 0.5 1.0 1.5 2.0 2.5 3.0

f(x) 1 0.9999 0.9996 0.9993 0.9988 0.9981 0.9973

y0 y1 y2 y3 y4 y5 y6

By Simpson’s 1/3 rule,

 

cos

.
( .

2

0

3

0 6 1 3 5 2 4
3

4 2

0 5

3
1 0 997

x x
h

y y y y y y ydÚ = +( ) + + +( ) + +( )ÈÎ ˘̊

= + 33 4 0 9999 0 9993 0 9981 2 0 9996 0 9988

2 9978

) ( . . . ) ( . . )

.

+ + + + +[ ]
=

example 9

Compute the integral sin x xd
0

2

p

Ú  for n = 6 with an accuracy to five 

decimal places using Simpson’s 1/3 rule.

Solution

 

a b n

h
b a

n

y f x x

= = =

=
-

=
-

=

= =

0
2

6

2
0

6 12

, ,

( )

p

p
p

sin

x 0
p

12

p

6

p

4

p

3

5

12

p p

2

f(x) 0 0.5087 0.7071 0.8409 0.9306 0.9828 1.0

y0 y1 y2 y3 y4 y5 y6
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By Simpson’s 1/3 rule,

sin

( ) (

x x
h

y y y y y y yd

0

2

0 6 1 3 5 2 4
3

4 2

36
0 1 4 0

p

p

Ú = +( ) + + +( ) + +( )ÈÎ ˘̊

= + + .. . . ) ( . . )

.

5087 0 8409 0 9828 2 0 7071 0 9306

1 1873

+ + + +[ ]
=

example 10
The speed v metres per second, of a car, t seconds after it starts, is 

shown in the following table:

t 0 12 24 36 48 60 72 84 96 108 120

v 0 3.60 10.08 18.90 21.60 18.54 10.26 4.50 4.5 5.4 9.0

Using Simpson’s 1/3 rule, find the distance travelled by the car in 

2 minutes.

Solution

Let s (metres) distance be travelled in t (seconds).

    

d

d

d

d

s

t
v

ds v t

s v t

=

=

=

Ú Ú
Ú

The distance travelled in 2 minutes, i.e., 120 seconds is

    

s v t= Ú d

0

120

Also,     h = 12 seconds

By Simpson’s 1/3 rule,

          

v t
h

y y y y y y y y y y yd = +( ) + + + + +( ) + + + +( )ÈÎ ˘̊

=

Ú 3
4 2

1

0 10 1 3 5 7 9 2 4 6 8

0

120

22

3
0 9 0 4 3 60 18 90 18 54 4 50 5 4

2 10 08 21 60 10

( . ) ( . . . . . )

( . . .

+ + + + + +[
+ + + 226 4 5

1222 56

+ ]
=

. )

. metres
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6.5 sImpson’s 3/8 rule

By the Newton–Cotes quadrature formula,

f x x hn y
n

y
n n

y
n n

y

x

x nh

( )
( ) ( )

d

0

0

0 0
2

0

2
3

0
2

2 3

12

2

24

+

Ú = + D +
-

D +
-

D +
È

Î
Í 

ÍÍ

˘

˚
˙
˙

 …(6.14)

Putting n = 3 in Eq. (6.14) and ignoring the differences of order higher than 3,

   

f x x h y y y y

h
y y y

x

x h

( )d

0

0 3

0 0
2

0
3

0

0 1

3
3

2

3

4

1

8

3

8
3 3

+

Ú = + D + D + DÈ

ÎÍ
˘

˚̇

= + + 22 3+( )y

Similarly,        f x x
h

y y y y

f x x

x h

x h

x n h

x nh

( )

( )

( )

d

d

0

0

0

0

3

6

3 4 5 6

3

3

8
3 3

+

+

+ -

+

Ú

Ú

= + + +( )



== + + +( )- - -
3

8
3 33 2 1

h
y y y yn n n n

Adding all these integrals,

f x x
h

y y y y y y y y y y

x

x nh

n n( )d

0

0
3

8
2 30 3 6 3 1 2 4 5

+

-Ú = +( ) + + + +( ) + + + + + +  nn

h
X T R

-( )ÈÎ ˘̊

= + +[ ]

1

3

8
2 3

where X = extreme terms, T = multiple of three terms, R = remaining terms

This is known as Simpson’s 3/8 rule.

note To apply this rule, the number of sub-intervals must be a multiple of 3.

errors in simpson’s 3/8 rule

Expanding y = f (x) in the neighbourhood of x = x0 by Taylor’s series,

   y x y x x y
x x

y
x x

y
x x

y( ) ( )
( )

!

( )

!

( )

!
= + - ¢ +

-
¢¢ +

-
¢¢¢+

-
0 0 0

0
2

0
0

3

0
0

4

0
2 3 4

iiv +  ...(6.15)

where ¢ = ¢ =y y x x x0 0
[ ( )] and, so on.
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y x y x x y
x x

y
x x

y
x x

x

x

d

0

3

0 0 0
0

2

0
0

3

0
0

4

2 3Ú = + - ¢ +
-

¢¢ +
-

¢¢¢ +
-

( )
( )

!

( )

!

( )

44

2 3

0

3

0
0

2

0
0

3

0
0

!

( )

!

( )

!

( )

y

y x
x x

y
x x

y
x x

x

x

0
iv +

È

Î
Í

˘

˚
˙

= +
-

¢ +
-

¢¢ +
-

Ú 

44

0
0

5

0

0 3 0
3 0

2

0
3

4 5

2

0

3

!

( )

!

( )
( )

!

(

¢¢¢ +
-

+

= - +
-

¢ +
-

y
x x

y

y x x
x x

y
x

x

x

iv


xx
y

x x
y

x x
y

h y
h

y

0
3

0
3 0

4

0

3 0
5

0

0

2

0

3 4

5

3
9

2

)

!

( )

!

( )

!

!

¢¢ +
-

¢¢¢

+
-

+

= + ¢

iv


++ ¢¢ + ¢¢¢ + +
27

3

81

4

243

5
6 16

3

0

4

0

5

0

h
y

h
y

h
y

! ! !
...( . )iv



where x3 – x0 = 3h

Also, y x
h

y y y y x x A

x

x

d Area in the interval= + + + = =Ú
3

8
3 30 1 2 3 0 3 1

0

3

( ) ( , )  ...(6.17)

Putting x = x1 in Eq. (6.15),

 y x y y hy
h

y
h

y
h

y( )
! ! !

1 1 0 0

2

0

3

0

4

0
2 3 4

= = + ¢ + ¢¢ + ¢¢¢+ +iv
  ...(6.18)

Putting x = x2 in Eq. (6.16),

 y x y y hy
h

y
h

y
h

y( )
! ! !

2 2 0 0

2

0

3

0

4

02
4

2

8

3

16

4
= = + ¢ + ¢¢ + ¢¢¢+ +iv

  ...(6.19)

Putting x = x3 in Eq. (6.17),

 y x y y h y
h

y
h

y
h

y( )
! ! !

3 3 0 0

2

0

3

0

4

03
9

2

27

3

81

4
= = + ¢ + ¢¢ + ¢¢¢+ +iv

  ...(6.20)

Substituting Eqs (6.18), (6.19) and (6.20) in Eq. (6.17),

 A h y
h

y
h

y
h

y
h

y1 0

2

0

3

0

4

0

5

3
9

2

27

3

81

4

33

16
= + ¢ + ¢¢ + ¢¢¢+ +

! ! !

iv
  ...(6.21)

Subtracting Eq. (6.21) from Eq. (6.16),

 

3

0

5 iv
1 0

5 iv
0

81 33
d

40 16

3

80

x

x

y x A h y

h y

Ê ˆ- = - +Á ˜Ë ¯

= - +

Ú 



Hence, the error in the interval (x0, x3), neglecting higher powers of h, is 5 iv
0

3
.

80
h y-

Similarly, the error in the interval (x3, x6) is 5 iv
3

3
.

80
h y-
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Hence, the total error is

 
E h y y y n= - + + +( )-

3

80

5
0 3 3 3
iv iv iv



Let yiv(x) be the largest value of 
iv iv iv
0 3 3, , ..., ny y y -  where 0 3 .nx xx< <

               

5 iv

4 iv3 0
3 0

3
( )

80

( )
( ) 3

80

n
n

E nh y

x x
h y nh x x

x

x

< -

-
< - = -È ˘Î ˚∵

example 1

Evaluate 

3

0

1
d 6

1
x with n

x
=

+Ú  by using Simpson’s 3/8 rule and, hence, 

calculate log 2. [Summer 2014]

Solution

       a = 0, b = 3, n = 6

 

3 0
0.5

6

1
( )

1

b a
h

n

y f x
x

- -
= = =

= =
+

x 0 0.5 1 1.5 2 2.5 3

f (x) 1 0.6667 0.5 0.4 0.3333 0.2857 0.25

y0 y1 y2 y3 y4 y5 y6

By Simpson’s 3/8 rule,

 

1

1

3

8
2 3

3 0 5

8
1 0

0

3

0 6 3 1 2 4 5+
= +( ) + ( ) + + + +( )ÈÎ ˘̊

= +

Ú x
x

h
y y y y y y yd

( . )
( .225 2 0 4 3 0 6667 0 5 0 3333 0 2857

1 3888 1

) ( . ) ( . . . . )

. ...( )

+ + + + +[ ]
=

By direct integration,

 

3
3

0
0

2

1
d log(1 )

1

log 4

log(2)

2 log 2

x x
x

= +
+

=

=
=

Ú

 ...(2)
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From Eqs (1) and (2),

 2 log 2 = 1.3888

 log 2 = 0.6944

example 2

Evaluate 
sin

d

2

0
5 4

x

x
x

+Ú
cos

p

 by using Simpson’s 3/8 rule.

Solution

       a = 0, b = p
Dividing the interval into six equal parts, i.e., n = 6,

       

h
b a

n

y f x
x

x

=
-

=
-

=

= =
+

p p0

6 6

5 4

2

( )
sin

cos

x 0
p

6

p

3

p

2

2

3

p 5

6

p
p

f (x) 0 0.02954 0.10714 0.2 0.25 0.16277 0

y0 y1 y2 y3 y4 y5 y6

By Simpson’s 3/8 rule,

     

sin

cos

2

0 6 3 1 2 4 5
5 4

3

8
2 3

3

8 6

0

x

x
x

h
y y y y y y y

+
= +( ) + ( ) + + + +( )ÈÎ ˘̊

=

Ú d

p

pÊÊ
ËÁ

ˆ
¯̃

+ + + + + +[ ]

=

( ) ( . ) ( . . . . )

(

0 0 2 0 2 3 0 02954 0 10714 0 25 0 16277

16

p
22 04835

0 40219

. )

.=

example 3

Find 1
1

2

2

0

2

-Ú sin t td

p

 using one of the methods of numerical 

integration.
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Solution

Dividing the interval 0
2

,
pÈ

ÎÍ
˘

˚̇
 into six equal parts and applying Simpson’s 3/8 rule,

 

a b n

h
b a

n

y f t t

= = =

=
-

=
-

=

= = -

0
2

6

2
0

6 12

1
1

2

2

, ,

( ) sin

p

p
p

t 0
p

12

p

6

p

4

p

3

5

12

p p

2

f (x) 1 0.9831 0.9354 0.8660 0.7906 0.7304 0.7071

y0 y1 y2 y3 y4 y5 y6

By Simpson’s 3/8 rule,

1
1

2

3

8
2 3

3

8 12

2

0

2

0 6 3 1 2 4 5- = +( ) + ( ) + + + +( )ÈÎ ˘̊

= Ê

Ú sin t t
h

y y y y y y yd

p

p

ËËÁ
ˆ
¯̃

+ +[
+ + + +

( . ) ( . )

( . . . . )

1 0 7071 2 0 8660

3 0 9831 0 9354 0 7906 0 7304 ]]
= 1 3496.

example 4

Find e
sinq

p

qd

0

2

Ú  by Simpson’s 3/8 rule, dividing the interval 0
12

,
pÈ

ÎÍ
˘
˚̇

 into 

six equal parts.

Solution

        

a b n

h
b a

n

y f e

= = =

=
-

=
-

=

= =

0
2

6

2
0

6 12

, ,

( ) sin

p

p
p

q q
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q 0
p

12

p

6

p

4

p

3

5

12

p p

2

f (q ) 1 1.2953 1.6487 2.0281 2.3773 2.6247 2.7182

y0 y1 y2 y3 y4 y5 y6

By Simpson’s 3/8 rule,

 

e
h

y y y y y y y
sinq

p

qd = +( ) + ( ) + + + +( )ÈÎ ˘̊Ú
3

8
2 30 6 3 1 2 4 5

0

2

 

= Ê
ËÁ

ˆ
¯̃

+ +[
+ + + +

3

8 12
1 2 7182 2 2 0281

3 1 2953 1 6487 2 3773 2

p
( . ) ( . )

( . . . .. )

.

6247

3 1012

]
=

example 5

By Simpson’s 3/8 rule, evaluate 
sin x

x
0

1

Ú  taking h =
1

6
.

Solution

   

a b h

n
b a

h

y f x
x

x

= = =

=
-

=
-

=

= =

0 1
1

6

1 0

1

6

6

, ,

( )
sin

 
lim

sin

x

x

xÆ
=

0
1

x 0
1

6

1

3

1

2

2

3

5

6
1

f (x) 1 0.9954 0.9816 0.9589 0.9276 0.8882 0.8415

y0 y1 y2 y3 y4 y5 y6

By Simpson’s 3/8 rule,

 

sin x

x
x

h
y y y y y y y

0

1

0 6 3 1 2 4 5

3

8
2 3Ú = +( ) + ( ) + + + +( )ÈÎ ˘̊ d
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= Ê
ËÁ

ˆ
¯̃

+ +[
+ + + +

3

8

1

6
1 0 8415 2 0 9589

3 0 9954 0 9816 0 9276 0

( . ) ( . )

( . . . .88882

0 9461

)

.

]
=  

example 6
The velocity of a train which starts from rest is given by the following 

table, the time being reckoned in minutes from the start and speed in 

km/h.

Time 3 6 9 12 15 18

Velocity 22 29 31 20 4 0

Estimate approximately the distance covered in 18 minutes by Simpson’s 

3/8 rule.

Solution

Let s km distance be covered in t minutes.

 

d

d

s

t
v=

 
d ds v t=Ú Ú

 
s v t= Ú d

The distance covered in 18 minutes is

 

s v t= Ú d

0

18

Since the train starts from rest, at t = 0, v = 0  \  y0 = 0

Time (t) 0 3 6 9 12 15 18

Velocity (v) 0 22 29 31 20 4 0

y0 y1 y2 y3 y4 y5 y6

Also, h = 3 minutes = =
3

60

1

20
 hours

By Simpson’s 3/8 rule,

  

v t
h

y y y y y y yd

0

18

0 6 3 1 2 4 5

3

8
2 3Ú = +( ) + ( ) + + + +( )ÈÎ ˘̊
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          = Ê
ËÁ

ˆ
¯̃ [ ]3

8

1

20
(0 + 0) + 2(31) + 3(22 + 29 + 20 + 4)

          = 5.38125

example 7
Find the volume of a solid of revolution formed by rotating about the 

x-axis the area bounded by the lines x = 0, x = 1.5, y = 0, and the curve 

passing through the following points:

x 0.00 0.25 0.50 0.75 1.00 1.25 1.50

y 1.00 0.9826 0.9589 0.9089 0.8415 0.7624 0.7589

Solution

Volume is given by

 V y x= Úp 2
d

x 0.00 0.25 0.50 0.75 1.00 1.25 1.50

y
2 1.00 0.9655 0.9195 0.8261 0.7081 0.5812 0.5759

y0 y1 y2 y3 y4 y5 y6

 h = 0.25

By Simpson’s 3/8 rule,

 y x
h

y y y y y y y
2

0 6 3 1 2 4 5

3

8
2 3dÚ = +( ) + ( ) + + + +( )ÈÎ ˘̊

 

= + +[
+ + + +

3 0 25

8
1 00 0 5759 2 0 8261

3 0 9655 0 9195 0 7081 0

( . )
( . . ) ( . )

( . . . .. )

.

5812

1 1954

]
=

        

Volume d=

=
=

Úp
p

y x
2

1 1954

3 7555

( . )

.

 

 

example 8

Evaluate log
.

x
4

5 2

Ú  using the trapezoidal rule and Simpson’s 3/8 rule, 

take h = 0.2.
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Solution

 

a b h

n
b a

h

y f x x

= = =

=
-

=
-

=

= =

4 5 2 0 2

5 2 4

0 2
6

, . , .

.

.

( ) log

x 4 4.2 4.4 4.6 4.8 5.0 5.2

f (x) 1.3863 1.4351 1.4816 1.5261 1.5686 1.6094 1.6487

y0 y1 y2 y3 y4 y5 y6

By the trapezoidal rule,

log d x x
h

y y y y y y y

4

5 2

0 6 1 2 3 4 5
2

2

.

Ú = +( ) + + + + +( )ÈÎ ˘̊

= +[
+ + + + +

0 2

2
1 3863 1 6487

2 1 4351 1 4816 1 5261 1 5686 1 6094

.
( . . )

( . . . . . ))

.

]
= 1 8277  

By Simpson’s 3/8 rule,

 

log

( . )
( .

.

dx
h

y y y y y y y

4

5 2

0 6 3 1 2 4 5

3

8
2 3

3 0 2

8
1 3

Ú = +( ) + ( ) + + + +( )ÈÎ ˘̊

= 8863 1 6487 2 1 5261

3 1 4351 1 4816 1 5686 1 6094

1

+ +[
+ + + + ]

=

. ) ( . )

( . . . . )

.88278

example 9

Evaluate 
dx

1

1

62
0

1

+
=Ú

x
taking h  using Simpson’s 3/8 rule and the 

trapezoidal rule.

Solution

  
a b h= = =0 1

1

6
, ,
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n
b a

h

y f x
x

=
-

=
-

=

= =
+

1 0

1

6

6

1

1 2
( )

x 0
1

6

1

3

1

2

2

3

5

6
1

f (x)
1

36

37

9

10

4

5

9

13

36

61

1

2

y0 y1 y2 y3 y4 y5 y6

By Simpson’s 3/8 rule,

 

dx

x

h
y y y y y y y

1

3

8
2 3

3

8

1

6
1

2 0 6 3 1 2 4 5

0

1

+
= +( ) + ( ) + + + +( )ÈÎ ˘̊

= Ê
ËÁ

ˆ
¯̃ +

Ú

11

2
2

4

5
3

36

37

9

10

9

13

36

61

0 7854

Ê
ËÁ

ˆ
¯̃ + Ê

ËÁ
ˆ
¯̃ + + + +Ê

ËÁ
ˆ
¯̃

È

Î
Í

˘

˚
˙

= .

By the trapezoidal rule,

 

dx

x

h
y y y y y y y

1 2
2

1

12
1

1

2
2

3

2 0 6 1 2 3 4 5

0

1

+
= +( ) + + + + +( )ÈÎ ˘̊

= +Ê
ËÁ

ˆ
¯̃ +

Ú

66

37

9

10

4

5

9

13

36

61

0 7842

+ + + +Ê
ËÁ

ˆ
¯̃

È

Î
Í

˘

˚
˙

= .

example 10

Evaluate 
dx

x1 2
0

6

+
Ú  by using (i) trapezoidal rule, (ii) Simpson’s 1/3 rule, 

(iii) Simpson’s 3/8 rule. [Summer 2014]

Solution

  a = 0, b = 6

Dividing the interval into six equal parts, i.e., n = 6,
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h
b a

n

y f x
x

=
-

=
-

=

= =
+

6 0

6
1

1

1 2
( )

x 0 1 2 3 4 5 6

f (x) 1 0.5 0.2 0.1 0.0588 0.0385 0.027

y0 y1 y2 y3 y4 y5 y6

 (i) By the trapezoidal rule,

   

dx

x

h
y y y y y y y

1 2
2

1

2
1 0 027 2 0 5

2
0

6

0 6 1 2 3 4 5+
= +( ) + + + + +( )ÈÎ ˘̊

= +( ) +

Ú

. . ++ + + +( )ÈÎ ˘̊

=

0 2 0 1 0 0588 0 0385

1 4108

. . . .

.

 (ii) By Simpson’s 1/3 rule,

 

dx

x

h
y y y y y y y

1 3
4 2

1

3
1 0 027 4

2
0

6

0 6 1 3 5 2 4+
= +( ) + + +( ) + +( )ÈÎ ˘̊

= + +

Ú

( . ) (( . . . ) ( . . )

.

0 5 0 1 0 0385 2 0 2 0 0588

1 3662

+ + + +[ ]
=

 (iii) By Simpson’s 3/8 rule,

 

dx

x

h
y y y y y y y

1

3

8
2 3

3

8
1 0 027

2
0

6

0 6 3 1 2 4 5+
= +( ) + ( ) + + + +( )ÈÎ ˘̊

= + +

Ú

( . ) 22 0 1 3 0 5 0 2 0 0588 0 0385

1 3571

( . ) ( . . . . )

.

+ + + +[ ]
=

exercIse 6.1

 1. Evaluate 
dx

x1 2

1

2

+Ú  taking h = 0.2, using trapezoidal rule.

 [ans.: 0.3228]

 2. Evaluate the value of 1 8 3

0

0 3

-Ú x

.

 dx using Simpson’s 3/8 rule.

 [ans.: 0.2916]
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 3. Evaluate e xxsin d
0

2

p

Ú  by Simpson’s 3/8 rule.

 [ans.: 3.1044]

 4. Evaluate 
dx

x1
0

1

+Ú  by using (i) trapezoidal rule, (ii) Simpson’s 1/3 rule, and 

(iii) Simpson’s 3/8 rule. Take h = 0.25.

 [ans.: (i) 0.6970 (ii) 0.6932 (iii) 0.6932]

 5. Calculate sinx x d
0

2

p

Ú  by dividing the interval into ten equal parts, using 

the trapezoidal rule and Simpson’s 1/3 rule. [ans.: 0.9981, 1.0006]

 6. Find the value of log2
1

3  from 
x

x

2

3

0

1

1+Ú  using Simpson’s 1/3 rule with 

h = 0.25. [ans.: 0.2311]

 7. Compute the value of (sin log )
.

.

x x e xx- +Ú  d
0 2

1 4

 taking h = 0.2 and using the 

trapezoidal rule, and Simpson’s rule. [ans.: 4.0715, 4.0521]

 8. Evaluate x e xx

0 5

0 7

.

.

Ú - d  using Simpson’s 3/8 rule.

 [ans.: 0.0841]

 9. Evaluate 
dx

x x3

0

1

1+ +Ú  using Simpson’s 1/3 rule, taking h = 0.25.

 [ans.: 0.6305]

 10. A curve is drawn to pass through the points given by the following 

table:

x 1 1.5 2 2.5 3 3.5 4

y 2 2.4 2.7 2.8 3 2.6 2.1

  Obtain the area bounded by the curve, the x-axis, and the lines x = 1 and 

x = 4 by any method.

 [ans.: 7.7833]
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6.6 GaussIan Quadrature Formulae

An n-point Gaussian quadrature formula is a quadrature formula constructed to give an 

exact result for polynomials of degree 2n – 1 or less by a suitable choice of the points 

xi and weights wi for i = 1, 2, ..., n. Gauss quadrature formula can be expressed as

 

1

11

( ) d ( )
n

i i

i

f x x w f x
=-

= ÂÚ  ...(6.22)

6.6.1 one-point Gaussian Quadrature Formula

Consider a function f (x) over the interval [–1, 1] with sampling point x1 and weight w1. 

The one-point Gaussian quadrature formula is

 

1

1 1

1

( ) d ( )f x x w f x

-

=Ú  ...(6.23)

This formula will be exact for polynomials of degrees up to 2n – 1 = 2(1) – 1 = 1, i.e., 

it is exact for f (x) = 1 and x.

Substituting f (x) in Eq. (6.23) successively,

 

1

1

1

1

11

1

1 d

2

x w

x w

w

-

-

=

=

=

Ú

 ...(6.24)

 

1

1 1

1

1
2

1 1

1

1 1

d

2

0

x x w x

x
w x

w x

-

-

=

=

=

Ú

 ...(6.25)

Solving Eqs (6.24) and (6.25),

 w1 = 2

 x1 = 0

Hence, 

1

1

( )d 2 (0)f x x f

-

=Ú  ...(6.26)

Equation (6.26) is known as one-point Gaussian quadrature formula. This formula is 

exact for polynomials up to degree one.
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6.6.2 two-point Gaussian Quadrature Formula

Consider a function f (x) over the interval [–1, 1] with sampling points x1, x2 and 

weights w1, w2 respectively. The two-point Gaussian quadrature formula is

 

1

1 1 2 2

1

( ) d ( ) ( )f x x w f x w f x

-

= +Ú  ...(6.27)

This formula will be exact for polynomials of degrees up to 2n – 1 = 2(2) – 1 = 3, i.e., 

it is exact for f (x) = 1, x, x
2 and x3.

Substituting f(x) in Eq. (6.27), successively,

1

1 2

1

1

1 21

1 2

1 d

2

x w w

x w w

w w

-

-

= +

= +

= +

Ú

 ...(6.28)

1

1 1 2 2

1

1
2

1 1 2 2

1

1 1 2 2

d

2

0

x x w x w x

x
w x w x

w x w x

-

-

= +

= +

= +

Ú

 ...(6.29)

1
2 2 2

1 1 2 2

1

1
3

2 2
1 1 2 2

1

2 2
1 1 2 2

d

3

2

3

x x w x w x

x
w x w x

w x w x

-

-

= +

= +

= +

Ú

 ...(6.30)

1
3 3 3

1 1 2 2

1

1
4

3 3
1 1 2 2

1

3 3
1 1 2 2

d

4

0

x x w x w x

x
w x w x

w x w x

-

-

= +

= +

= +

Ú

 ...(6.31)
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Solving Eqs (6.28), (6.29), (6.30), and (6.31),

 

1 2

1 2

1

1 1
,

3 3

w w

x x

= =

= - =

Hence,  

1

1

1 1
( ) d

3 3
f x x f f

-

Ê ˆ Ê ˆ= - +Á ˜ Á ˜Ë ¯ Ë ¯Ú  ...(6.32)

Equation (6.32) is known as the two-point Gaussian quadrature formula. This formula 

is exact for polynomials up to degree three.

6.6.3 three-point Gaussian Quadrature Formula

Consider a function f(x) over the interval [–1, 1] with sampling points x1, x2, x3 and 

weights w1, w2, w3 respectively. The three-point Gaussian Quadrature formula is

 

1

1 1 2 2 3 3

1

( ) d ( ) ( ) ( )f x x w f x w f x w f x

-

= + +Ú  ...(6.33)

This formula will be exact for polynomials of degrees up to 2n – 1 = 2 (3) – 1 = 5, i.e., 

it is exact for f (x) = 1, x, x2, x3, x4 and x5.

Substituting f (x) in Eq. (6.33) successively,

1

1 2 3

1

1

1 2 31

1 2 3

1 d

0

x w w w

x w w w

w w w

-

-

= + +

= + +

= + +

Ú

 ...(6.34)

1

1 1 2 2 3 3

1

1
2

1 1 2 2 3 3

1

1 1 2 2 3 3

d

2

0

x x w x w x w x

x
w x w x w x

w x w x w x

-

-

= + +

= + +

= + +

Ú

 ...(6.35)

1
2 2 2 2

1 1 2 2 3 3

1

1
3

2 2 2
1 1 2 2 3 3

1

2 2 2
1 1 2 2 3 3

d

3

2

3

x x w x w x w x

x
w x w x w x

w x w x w x

-

-

= + +

= + +

= + +

Ú

 ...(6.36)
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1
3 3 3 3

1 1 2 2 3 3

1

1
4

3 3 3
1 1 2 2 3 3

1

3 3 3
1 1 2 2 3 3

d

4

0

x x w x w x w x

x
w x w x w x

w x w x w x

-

-

= + +

= + +

= + +

Ú

 ...(6.37)

1
4 4 4 4

1 1 2 2 3 3

1

1
5

4 4 4
1 1 2 2 3 3

1

4 4 4
1 1 2 2 3 3

d

5

2

5

x x w x w x w x

x
w x w x w x

w x w x w x

-

-

= + +

= + +

= + +

Ú

 ...(6.38)

1
5 5 5 5

1 1 2 2 3 3

1

1
6

5 5 5
1 1 2 2 3 3

1

5 5 5
1 1 2 2 3 3

d

6

0

x x w x w x w x

x
w x w x w x

w x w x w x

-

-

= + +

= + +

= + +

Ú

 ...(6.39)

Solving Eqs (6.34), (6.35), (6.36), (6.37), (6.38), and (6.39),

 

1 2 3

1 2 3

5 8 5
, ,

9 9 9

3 3
, 0,

5 5

w w w

x x x

= = =

= - = =

Hence, 

1

1

5 3 8 5 3
( ) d (0)

9 5 9 9 5
f x x f f f

-

Ê ˆ Ê ˆ
= - + +Á ˜ Á ˜Ë ¯ Ë ¯Ú  ...(6.40)

Equation (6.40) is known as the three-point Gaussian quadrature formula. This formula 

is exact for polynomials up to degree 5.

example 1

Evaluate 

1

2
1

d

1

x

x- +
Ú  by one-point, two-point, and three-point Gaussian 

formulae.
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Solution

 
2

1
( )

1
f x

x
=

+

By the one-point Gaussian formula,

 

( )
1

2
1

d
2 0

1

1
2

1 0

2

x
f

x-

=
+

Ê ˆ= Á ˜Ë ¯+
=

Ú

By the two-point Gaussian formula,

 

1

2
1

d 1 1

1 3 3

1 1

1 1
1 1

3 3

1.5

x
f f

x-

Ê ˆ Ê ˆ= - +Á ˜ Á ˜Ë ¯ Ë ¯+

= +
+ +

=

Ú

By the three-point Gaussian formula,

 

1

2
1

d 5 3 8 5 3
(0)

9 5 9 9 51

5 1 8 1 5 1

3 39 9 1 0 9
1 1

5 5

1.5833

x
f f f

x-

Ê ˆ Ê ˆ
= - + +Á ˜ Á ˜Ë ¯ Ë ¯+

Ê ˆ Ê ˆ Ê ˆ= + +Á ˜Á ˜ Á ˜Ë ¯++ +Á ˜ Á ˜Ë ¯ Ë ¯

=

Ú

example 2

Evaluate 

1

0

d

1

t

t+Ú  by one-point, two-point, and three-point Gaussian 

formula.

Solution

Let                  
2 2

b a b a
t x

- +
= +

Here, a = 0, b = 1
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1 1 1
( 1)

2 2 2

1
d d

2

t x x

t x

= + = +

=

When t = 0, x = –1

When t = 1, x = 1

 

1 1

0 1

1

1

d 1 d

11 2
1 ( 1)

2

d

3

t x

t
x

x

x

-

-

=
+ + +

=
+

Ú Ú

Ú

 
1

( )
3

f x
x

=
+

By the one-point Gaussian formula,

 

1 1

0 1

d d

1 3

2 (0)

1
2

0 3

0.6667

t x

t x

f

-

=
+ +

=

Ê ˆ= Á ˜Ë ¯+
=

Ú Ú

By the two-point Gaussian formula,

 

1 1

0 1

d d

1 3

1 1

3 3

1 1

1 1
3 3

3 3

0.6923

t x

t x

f f

-

=
+ +

Ê ˆ Ê ˆ= - +Á ˜ Á ˜Ë ¯ Ë ¯

= +
- + +

=

Ú Ú

By the three-point Gaussian formula,

       

1 1

0 1

d d

1 3

5 3 8 5 3
(0)

9 5 9 9 5

t x

t x

f f f

-

=
+ +

Ê ˆ Ê ˆ
= - + +Á ˜ Á ˜Ë ¯ Ë ¯

Ú Ú
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5 1 8 1 5 1

9 9 0 3 93 3
3 3

5 5

0.6931

Ê ˆ Ê ˆ Ê ˆ= + +Á ˜Á ˜ Á ˜Ë ¯+
Á ˜ Á ˜- + +
Ë ¯ Ë ¯

=

example 3

Evaluate the integral 

36
2 2

2

(1 ) dx x
-

+Ú  by the Gaussian formula for n = 3.

 [Winter 2012]

Solution

Let               
2 2

b a b a
x t

- +
= +

Here, a = –2, b = 6

 

4 2

d 4d

x t

x t

= +
=

When x = –2, t = –1

When  x = 6, t = 1

 

336 1
2 2 22

2 1

31
2 2

1

3

2 2

(1 ) d 1 (4 2) 4 d

4 (16 16 5) d

( ) (16 16 5)

x x t t

t t t

f t t t

- -

-

È ˘+ = + +Î ˚

= + +

= + +

Ú Ú

Ú

By the three-point Gaussian formula,

3 36 1
2 22 2

2 1

3 3
32 2
2

(1 ) d 4 (16 16 5) d

5 3 8 5 3
4 (0)

9 5 9 9 5

5 3 3 8 5 3 3
4 16 16 5 (5) 16 16 5

9 5 5 9 9 5 5

358.6928

x x t t t

f f f

- -

+ = + +

È ˘Ê ˆ Ê ˆ
= - + +Í ˙Á ˜ Á ˜Ë ¯ Ë ¯Í ˙Î ˚

È ˘
Ï ¸ Ï ¸Ê ˆ Ê ˆÍ ˙Ê ˆ Ê ˆÔ Ô Ô Ô= + - + + + + +Í ˙Ì ˝ Ì ˝Á ˜ Á ˜Á ˜ Á ˜Ë ¯ Ë ¯Ë ¯ Ë ¯Ô Ô Ô ÔÍ ˙Ó ˛ Ó ˛Î ˚

=

Ú Ú
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example 4

Evaluate 
2

1

0

dx
e x

-Ú  by using the Gaussian quadrature formula with 

n = 3. [Winter 2014, Summer 2015]

Solution

Let             
2 2

b a b a
x t

- +
= +

Here, a = 0, b = 1

 

1 1 1
( 1)

2 2 2

1
d d

2

x t t

x t

= + = +

=

When  x = 0, t = –1

When  x = 1, t = 1

 

2
2

2

11 1
( 1)

4

0 1

1
( 1)

4

1
d d

2

( )

t
x

t

e x e t

f x e

- +-

-

- +

=

=

Ú Ú

By the three-point Gaussian quadrature formula,

 

2
2

2 2

2

11 1
( 1)

4

0 1

1 3 1 311 1(0 1)
4 5 4 54

1
d d

2

1 5 3 8 5 3
(0)

2 9 5 9 9 5

1 5 8 5

2 9 9 9

0.746815

t
x

e x e t

f f f

e e e

- +-

-

Ê ˆ Ê ˆ
- - + - +- +Á ˜ Á ˜Ë ¯ Ë ¯

=

È ˘Ê ˆ Ê ˆ
= - + +Í ˙Á ˜ Á ˜Ë ¯ Ë ¯Í ˙Î ˚

È ˘
Í ˙

= + +Í ˙Î ˚
=

Ú Ú

example 5

Evaluate 
2

0

sin dt t

p

Ú  by the two-point Gaussian formula.
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Solution

Let          
2 2

b a b a
t x

- +
= +

Here, a = 0, b = 
2

p

 

( 1)
4 4 4

d d
4

t x x

t x

p p p

p

= + = +

=

When  t = 0, x = –1

When  t = 
2

p
, x = 1

 

12

0 1

sin d sin ( 1)d
4 4

( ) sin ( 1)
4

t t x x

f x x

p

p p

p

-

= +

= +

Ú Ú

By the two-point Gaussian formula,

 

12

0 1

sin d sin ( 1)d
4 4

1 1

4 3 3

1 1
sin 1 sin 1

4 4 43 3

0.99847

t t x x

f f

p

p p

p

p p p

-

= +

È ˘Ê ˆ Ê ˆ= - +Í ˙Á ˜ Á ˜Ë ¯ Ë ¯Î ˚
È ˘Ê ˆ Ê ˆ= - + + +Í ˙Á ˜ Á ˜Ë ¯ Ë ¯Î ˚

=

Ú Ú

exercIse 6.2

evaluate the following integrals by using Gaussian quadrature formulae:

 1. Ú
1

0

dxe x        (2 points)

 [ans.: 2.342696]

 2. 
-

Ú
1

4
0

d

1

x

x
    (2 points)

 [ans.: 1.311028]
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 3. 

p

q

q-
Ú
2

2
0

d

1 sin
      (2 points)

 [ans.: 1.226]

 4. 

p

+Ú
2

0

log(1 ) dx x     (2 points)

 [ans.: 0.858]

 5. Ú
3

2

0

cos dx x x      (3 points)

 [ans.: —4.936]

 6. Ú
2

1

dxe x              (3 points)

 [ans.: 4.67077]

points to remember

Newton–Cotes Quadrature Formula

f x x hn y
n

y
n n

y
n n

y

x

x nh

( )
( ) ( )

d

0

0

0 0
2

0

2
3

0
2

2 3

12

2

24

+

Ú = + D +
-

D +
-

D +
È

Î
Í 

ÍÍ

˘

˚
˙
˙

Trapezoidal Rule

 

f x x
h

y y y y y

x

x nh

n n( )d

0

0

2
20 1 2 1

+

-Ú = +( ) + + + +( )ÈÎ ˘̊

Simpson’s 1/3 Rule

 

f x x
h

y y y y y y y y

x

x nh

n n n( )d

0

0

3
4 20 1 3 1 2 4 2

+

- -Ú = +( ) + + + +( ) + + + +( )ÈÎ   ˘̊̆

Simpson’s 3/8 Rule

f x x
h

y y y y y

y y y y

x

x nh

n n( )d

0

0
3

8
2

3

0 3 6 3

1 2 4 5

+

-Ú = +( ) + + + +( )ÈÎ

+ + + + +



++( )˘̊-yn 1
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Gaussian Quadrature Formulae

1

11

( ) d ( )
n

i i

i

f x x w f x
=-

= ÂÚ

1. One-point Gaussian Quadrature Formula

  

1

1

( )d 2 (0)f x x f

-

=Ú

2. Two-Point Gaussian Quadrature Formula

  

1

1

1 1
( ) d

3 3
f x x f f

-

Ê ˆ Ê ˆ= - +Á ˜ Á ˜Ë ¯ Ë ¯Ú

3. Three-Point Gaussian Quadrature Formula

  

1

1

5 3 8 5 3
( ) d (0)

9 5 9 9 5
f x x f f f

-

Ê ˆ Ê ˆ
= - + +Á ˜ Á ˜Ë ¯ Ë ¯Ú





7.1 IntroductIon

Many problems in science and engineering can be reduced to the problem of solving 

differential equations satisfying certain given conditions. The analytical method of 

solutions of differential equations can be applied to solve only a selected class of 

differential equations. In many physical and engineering problems, these methods 

cannot be used and, hence, numerical methods are used to solve such differential 

equations.

Consider the first-order differential equations

 

d
( , )

d

y
f x y

x
=

with the initial condition y(x0) = y0

A number of numerical methods yield solutions either as a power series in x from 

which the values of y can be found by direct substitution, or as a set of values of 

x and y. Picard’s and Taylor’s series methods belong to the former class of solutions, 

whereas those of Euler, Runge–Kutta, Milne, etc., belong to the latter class. In these 

later methods, the values of y are calculated in short steps for equal intervals of x and 

C H A P T E R

Ordinary Differential 
Equations

7

chapter outline

7.1 Introduction

7.2 Taylor’s Series Method

7.3 Euler’s Method

7.4 Modified Euler’s Method

7.5 Runge–Kutta Methods

7.6 Milne’s Predictor-Corrector Method
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are, therefore, termed step-by-step methods. In the Euler and Runge–Kutta methods, 

the interval length h should be kept small and, hence, these methods can be applied 

for tabulating y over a limited range only. If, however, the function values are desired 

over a wide range, the Milne method may be used. These later methods require starting 

values which are found by Picard’s or Taylor series or Runge–Kutta methods.

7.2 taylor’s serIes Method

Consider the differential equation

 
d

d

y

x
f x y= ( , )  ...(7.1)

with the initial condition y(x0) = y0.

If y(x) is the exact solution of Eq. (7.1) then the Taylor’s series for y(x) around x = x0 

is given by

 

2 3
0 0

1 0 0 0 0 0

( ) ( )
( ) ( )

2! 3!

x x x x
y y x y x x y y y

- -
= = + - + + +¢ ¢¢ ¢¢¢   ...(7.2)

Putting x – x0 = h in Eq. (7.2),

 

2 3

1 0 0 0 0
2! 3!

h h
y y hy y y= + + + +¢ ¢¢ ¢¢¢   ...(7.3)

Similarly, Taylor series for y(x) around x = x1 is given by

 

2 3

2 1 1 1 1
2! 3!

h h
y y hy y y= + + + +¢ ¢¢ ¢¢¢   ...(7.4)

Proceeding in the same way,

 

2 3

1
2! 3!

n n n n n

h h
y y hy y y+ = + + + +¢ ¢¢ ¢¢¢ 

example 1

Solve 
d

d

y
x y

x
= +  by the Taylor’s series method. Start from x = 1, y = 0, 

and carry to x = 1.2 with h = 0.1.  [Summer 2015]

Solution

 

d
( , )

d

y
f x y x y

x
= = +

 (i) Given: x0 = 1, y0 = 0, h = 0.1, x1 = x0 + h = 1 + 0.1 = 1.1

   

0

0

1 0 1

1 1 1 2

y x y y

y y y

= + = + =¢ ¢

= + = + =¢¢ ¢ ¢¢
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0

iv iv
0

2

2

y y y

y y y

= =¢¢¢ ¢¢ ¢¢¢

= =¢¢¢

  By Taylor’s series,

   

2 3 4
iv

1 1 0 0 0 0 0

2 3 4

1

( )
2! 3! 4!

(0.1) (0.1) (0.1)
(1.1) 0 0.1(1) (2) (2) (2)

2! 3! 4!

0.1103

h h h
y y x y hy y y y

y y

= = + + + + +¢ ¢¢ ¢¢¢

= = + + + + +

=





 (ii) Now, x1 = 1.1, y1 = 0.1103, h = 0.1, x2 = x1 + h = 1.1 + 0.1 = 1.2

   

1

1

1

iv
1

1.1 0.1103 1.2103

1 1.2103 2.2103

2.2103

2.2103

y

y

y

y

= + =¢

= + =¢¢

=¢¢¢

=

  By Taylor’s series,

   

2 3 4
iv

2 2 1 1 1 1 1

2

2

3 4

( )
2! 3! 4!

(0.1)
(1.2) 0.1103 0.1(1.2103) (2.2103)

2!

(0.1) (0.1)
(2.2103) (2.2103)

3! 4!

0.2428

h h h
y y x y hy y y y

y y

= = + + + + +¢ ¢¢ ¢¢¢

= = + +

+ + +

=





example 2

Solve 
d

2 3
d

xy
y e

x
= +  with initial conditions x0 = 0, y0 = 1 by the Taylor’s 

series method. Find the approximate value of y for x = 0.1 and x = 0.2.

Solution

 

d
( , ) 2 3

d

xy
f x y y e

x
= = +

 (i) Given: x0 = 0, y0 = 1, x1 = 0.1, h = x1 – x0 = 0.1 – 0 = 0.1

   

0
0

0
0

0
0

iv iv 0
0

2 3 2(1) 3 5

2 3 2(5) 3 13

2 3 2(13) 3 29

2 3 2(29) 3 61

x

x

x

x

y y e y e

y y e y e

y y e y e

y y e y e

= + = + =¢ ¢

= + = + =¢¢ ¢ ¢¢

= + = + =¢¢¢ ¢¢ ¢¢¢

= + = + =¢¢¢
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  By Taylor’s series,

 

2 3 4
iv

1 1 0 0 0 0 0

2 3 4

1

( )
2! 3! 4!

(0.1) (0.1) (0.1)
(0.1) 1 0.1(5) (13) (29) (61)

2! 3! 4!

1.5700

h h h
y y x y hy y y y

y y

= = + + + + +¢ ¢¢ ¢¢¢

= = + + + + +

=





 (ii) Now, 1 1 2 2 10.1, 1.5700, 0.2, 0.2 0.1 0.1x y x h x x= = = = - = - =

  

0.1
1

0.1
1

0.1
1

iv 0.1
1

2 3 4
iv

2 2 1 1 1 1 1

2

2

2(1.5700) 3 6.4555

2(6.4555) 3 16.2265

2(16.2265) 3 35.7685

2(35.7685) 3 74.8525

( )
2! 3! 4!

(0.1)
(0.2) 1.5700 0.1(6.4555) (16.

2!

y e

y e

y e

y e

h h h
y y x y hy y y y

y y

= + =¢

= + =¢¢

= + =¢¢¢

= + =

= = + + + + +¢ ¢¢ ¢¢¢

= = + +



3 4

2265)

(0.1) (0.1)
(35.7685) (74.8525)

3! 4!

2.303

+ + +

=



example 3

Solve 
2d

1
d

y
y

x
= +  with initial conditions x0 = 0, y0 = 0 by the Taylor’s 

series method. Find the approximate value of y for x = 0.2 and x = 0.4.

Solution

 

2d
( , ) 1

d

y
f x y y

x
= = +

 (i) Given: 0 0 1 1 00, 0, 0.2, 0.2 0 0.2x y x h x x= = = = - = - =

   

2
0

0

2 2
0

iv iv
0

1 1 0 1

2 0

2 2( ) 0 2(1) 2

2 2 4 2 6 0

y y y

y yy y

y yy y y

y y y yy y y yy y y y

= + = + =¢ ¢

= =¢¢ ¢ ¢¢

= + = + =¢¢¢ ¢¢ ¢ ¢¢¢

= + + = + =¢ ¢¢ ¢¢¢ ¢ ¢¢ ¢¢¢ ¢ ¢¢
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  By Taylor’s series,

 

2 3 4
iv

1 1 0 0 0 0 0

3

1

( )
2! 3! 4!

(0.2)
(0.2) 0 0.2(1) 0 (2) 0

3!

0.2027

h h h
y y x y hy y y y

y y

= = + + + + +¢ ¢¢ ¢¢¢

= = + + + + +

=





 (ii) Now, 1 1 2 2 10.2, 0.2027, 0.4, 0.4 0.2 0.2x y x h x x= = = = - = - =

    

2
1

1

2
1

iv
1

1 (0.2027) 1.0411

2(0.2027) (1.0411) 0.4221

2 (0.2027) (0.4221) 2(1.0411) 2.3389

2(0.2027)(2.3389) 6(1.0411)(0.4221) 3.5849

y

y

y

y

= + =¢

= =¢¢

= + =¢¢¢

= + =

  By Taylor’s series,

 

2 3 4
iv

2 2 1 1 1 1 1

2 3

2

4

( )
2! 3! 4!

(0.2) (0.2)
(0.4) 0.2027 0.2(1.0411) (0.4221) (2.3389)

2! 3!

(0.2)
(3.5849)

4!

0.4227

h h h
y y x y hy y y y

y y

= = + + + + +¢ ¢¢ ¢¢¢

= = + + +

+ +

=





example 4

Use the Taylor’s series method to solve 
2d

1, (0) 1.
d

y
x y y

x
= - =  Also 

find y(0.03).

Solution

 

2d
( , ) 1

d

y
f x y x y

x
= = -

Given:  x0 = 0, y0 = 1, x = 0.03, h = x – x0 = 0.03 – 0 = 0.03

 

2
0

2
0

2
0

iv 2 iv
0

1 0 1 1

2 0

2 4 2(1) 0 0 2

6 6 6( 1) 0 0 6

y x y y

y xy x y y

y y xy x y y

y y xy x y y

= - = - = -¢ ¢

= + =¢¢ ¢ ¢¢

= + + = + + =¢¢¢ ¢ ¢¢ ¢¢¢

= + + = - + + = -¢ ¢¢ ¢¢¢
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By Taylor’s series.

 

2 3 4
iv

0 0 0 0 0

3 4

( )
2! 3! 4!

(0.03) (0.03)
(0.03) 1 0.03( 1) 0 (2) ( 6)

3! 4!

0.970009

h h h
y x y hy y y y

y

= + + + + +¢ ¢¢ ¢¢¢

= + - + + + - +

=





example 5
Using the Taylor’s series method, find correct to four decimal places, 

the value of y(0.1), given 2 2d

d

y
x y

x
= +  and y(0) = 1.

Solution

 

2 2d
( , )

d

y
f x y x y

x
= = +

Given: x0 = 0, y0 = 1, x = 0.1, h = x – x0 = 0.1 – 0 = 0.1

 

2 2
0

0

2 2
0

iv iv
0

0 1 1

2 2 2(0) 2(1)(1) 2

2 2 2( ) 2 2(1)(2) 2(1) 8

6 2 6(1)(2) 2(1)(8) 28

y x y y

y x yy y

y yy y y

y y y yy y

= + = + =¢ ¢

= + = + =¢¢ ¢ ¢¢

= + + = + + =¢¢¢ ¢¢ ¢ ¢¢¢

= + = + =¢ ¢¢ ¢¢¢

By Taylor’s series,

 

2 3 4
iv

0 0 0 0 0

2 3 4

( )
2! 3! 4!

(0.1) (0.1) (0.1)
(0.1) 1 0.1(1) (2) (8) (28)

2! 3! 4!

1.1115

h h h
y x y hy y y y

y

= + + + + +¢ ¢¢ ¢¢¢

= + + + + +

=





example 6
Using the Taylor’s series method, find y(1.1) correct to four decimal 

places given that 
1

3
d

,
d

y
xy

x
=  y(1) = 1, h = 0.1.

Solution

 

1

3
d

( , )
d

y
f x y xy

x
= =
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Given: x0 = 1, y0 = 1, h = 0.1, x = x0 + h = 1 + 0.1 = 1.1

 

1 1

3 3
0

2 1 1 1 2 1

23 3 3 3 3 3
0

4 1 2 4 1

2 23 3 3 3 3
0

2

3

1(1) 1

1 1 1 4
(1)(1) (1)

3 3 3 3

1 1 2 1 1 1 2
(1) (1) (1) (1)(1)

3 3 3 3 3 3 3

1
(1) (1)

3

1 2 1 8

9 3 3 9

y xy y

y xy y y x y y y

y x y y xy y y y

- - -

- - - - -

-

= = =¢ ¢

= + = + = + =¢¢ ¢ ¢¢

Ê ˆ Ê ˆ
= - + + = - +¢¢¢ ¢ ¢ ¢¢¢Á ˜ Á ˜Ë ¯ Ë ¯

+

= - + + =

By Taylor’s series,

 

2 3

0 0 0 0

2 3

( )
2! 3!

(0.1) 4 (0.1) 8
(1.1) 1 0.1(1)

2! 3 3! 9

1.1068

h h
y x y hy y y

y

= + + + +¢ ¢¢ ¢¢¢

Ê ˆ Ê ˆ
= + + + +Á ˜ Á ˜Ë ¯ Ë ¯

=





example 7
Evaluate y(0.1) correct to four decimal places using the Taylor’s series 

method if 2d
, (0) 1.

d

y
y x y

x
= + =

 [Summer 2015]

Solution

 

2d
( , )

d

y
f x y y x

x
= = +

Given: x0 = 0, y0 = 1, x = 0.1, h = x – x0 = 0.1 – 0 = 0.1

  

2 2
0

0

2 2
0

iv iv
0

(1) 0 1

2 1 2(1)(1) 1 3

2 2( ) 2(1)(3) 2(1) 8

2 2 4 2 6 2(1)(8) 6(1)(3) 34

y y x y

y yy y

y yy y y

y yy y y y y yy y y y

= + = + =¢ ¢

= + = + =¢¢ ¢ ¢¢

= + = + =¢¢¢ ¢¢ ¢ ¢¢¢

= + + = + = + =¢¢¢ ¢ ¢¢ ¢ ¢¢ ¢¢¢ ¢ ¢¢
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By Taylor’s series,

 

2 3 4
iv

0 0 0 0

2 3 4

( )
2! 3! 4!

(0.1) (0.1) (0.1)
y(0.1) 1 0.1(1) (3) (8) (34)

2! 3! 4!

1.1165

h h h
y x y hy y y y= + + + + +¢ ¢¢ ¢¢¢

= + + + + +

=





exercIse 7.1

solve the following differential equations:

 1. = + = = =2 2

0 0

d
with 0, 0 at 0.4

d

y
x y x y x

x
 [ans.: 0.0215]

 2. = - = =
0 0

d
with 0, 2

d

y
y xy x y

x

 

È ˘
+ - - +Í ˙Î ˚



3 42
2 2

3 6

x x
xans.:

 3. = - = = =2

0 0

d
with 0, 1at 0.1

d

y
x y x y x

x
 [ans.: 0.9138]

 4. = + = =
0 0

d
sin cos with 0, 0

d

y
y x x x y

x

 

È ˘
+ + +Í ˙Î ˚



3 51 1

6 120
x x xans.:

 5. = - = = =
0 0

d
1 with 1, 2 at 1.02

d

y
xy x y x

x
 [ans.: 2.0206]

 6. = = = =
+ 0 02 2

d 1
with 4, 4 at 4.1

d

y
x y x

x x y
 [ans.: 4.0031]

 7. = + = = =
0 0

d 1
3 with 0, 1at 0.1

d 2

y
x y x y x

x
 [ans.: 1.0065]

 8. = + = =2d
3 with (0) 1at 0.1

d

y
x y y x

x
 [ans.: 1.1272]

 9. = - = =2d
with (0) 1at 0.1

d

xy
e y y x

x
 [ans.: 1.005]



7.3 Euler’s Method        7.9

 10. = - = =
0 0

d
with 0, 1

d

y
xy x y

x

 

È ˘
- + - +Í ˙Î ˚



2 4 6

1
2 8 48

x x x
ans.:

7.3 euler’s Method

Consider the differential equation

 

d
( , )

d

y
f x y

x
=

with the initial condition y(x0) = y0.

The solution of the differential 

equation is represented by the curve 

as shown in Fig. 7.1. The point 

P0(x0, y0) lies on the curve.

At x = x0,    
0

0 0

d
( , )

d x x

y
f x y

x =
=

The equation of the tangent to the 

curve at the point (x0, y0) is given by

  

0

0 0

0 0 0

0 0 0 0

d
( )

d

( , ) ( )

( , ) ( )

x x

y
y y x x

x

f x y x x

y y f x y x x

=

Ê ˆ
- = -Á ˜

Ë ¯

= -

= + -

If the point x1 is very close to x0, the curve is approximated by the tangent line in the 

interval (x0, x1). Hence, the value of y on the curve is approximately equal to the value 

of y on the tangent at the point (x0, y0) corresponding to x = x1.

\  1 0 0 0 1 0

0 0 0 1 0

( , ) ( )

( , ) where

y y f x y x x

y h f x y h x x

= + -

= + = -

At x = x1, 
1

1 1

d
( , )

d x x

y
f x y

x =
=

Again the curve is approximated by the tangent line through the point (x1, y1).

 2 1 1 1( , )y y h f x y= +

Hence,  1 ( , )n n n ny y h f x y+ = +

This formula is known as Euler’s formula. In this method, the actual curve is approxi-

mated by a sequence of short straight lines. As the step size h increases, the straight 

line deviates much from the actual curve.

Hence, accuracy cannot be obtained.

Fig. 7.1
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example 1

Using Euler’s method, find y(0.2) given 
d 2

, (0) 1
d

y x
y y

x y
= - =  with 

h = 0.1.

Solution 

 

d 2
( , )

d

y x
f x y y

x y
= = -

Given:     x0 = 0, y0 = 1, h = 0.1, x = 0.2

  

0

1

0.2 0
2

0.1

0.1

x x
n

h

x

- -
= = =

=

 

1 0 0 0

2 1 1 1

( , )

1 0.1 (0, 1)

2(0)
1 0.1 1

1

1.1

( , )

1.1 0.1 (0.1, 1.1)

2(0.1)
1.1 0.1 1.1

1.1

1.1918

y y h f x y

f

y y h f x y

f

= +

= +

È ˘
= + -Í ˙Î ˚
=
= +

= +

È ˘
= + -Í ˙Î ˚
=

Hence,     y2 = y(0.2) = 1.1918

example 2

Find the value of y for 
d

, (0) 1
d

y
x y y

x
= + =  when x = 0.1, 0.2 with step 

size h = 0.05. [Summer 2015]

Solution 

     

d
( , )

d

y
f x y x y

x
= = +

Given:     x0 = 0, y0 = 1, h = 0.05, x = 0.2
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0 0.2 0
4

0.05

x x
n

h

- -
= = =

       x1 = 0.05, x2 = 0.1, x3 = 0.15

 

1 0 0 0

2 1 1 1

3 2 2 2

( , )

1 0.05 (0, 1)

1 0.05(0 1)

1.05

( , )

1.05 0.05 (0.05, 1.05)

1.05 0.05(0.05 1.05)

1.105

( , )

1.105 0.05 (0.1, 1.105)

1.105 0.05(0.1 1.105)

1.16525

y y h f x y

f

y y h f x y

f

y y h f x y

f

= +

= +
= + +
=
= +

= +
= + +
=
= +

= +
= + +
=

 

4 3 3 3( , )

1.16525 0.05 (0.15, 1.16525)

1.16525 0.05(0.15 1.16525)

1.231

y y h f x y

f

= +

= +
= + +
=

Hence,     y2 = y(0.1) = 1.105

       y4 = y(0.2) = 1.231

example 3

Solve the initial-value problem 
d

, (1) 1
d

y
x y y

x
= =  and, hence, find  

y(1.5) by taking h = 0.1 using Euler’s method. [Summer 2015]

Solution

      

d
( , )

d

y
f x y x y

x
= =

Given:              x0 = 1, y0 = 1, h = 0.1, x = 1.5

  

0

1 2 3 4

1.5 1
5

0.1

1.1, 1.2, 1.3, 1.4

x x
n

h

x x x x

- -
= = =

= = = =
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1 0 0 0

2 1 1 1

3 2 2 2

( , )

1 0.1 (1,1)

1 0.1(1 1)

1.1

( , )

1.1 0.1 (1.1, 1.1)

1.1 0.1(1.1 1.1)

1.2154

( , )

1.2154 0.1 (1.2, 1.2154)

1.2154 0.1(1.2 1.2154)

1.3477

y y h f x y

f

y y h f x y

f

y y h f x y

f

= +

= +

= +
=
= +

= +

= +
=
= +

= +

= +
=

 

4 3 3 3

5 4 4 4

( , )

1.3477 0.1 (1.3, 1.3477)

1.3477 0.1(1.3 1.3477)

1.4986

( , )

1.4986 0.1 (1.4, 1.4986)

1.4986 0.1(1.4 1.4986)

1.67

y y h f x y

f

y y h f x y

f

= +

= +

= +
=
= +

= +

= +
=

Hence,     y5 = y(0.5) = 1.67

example 4
Using Euler’s method, find the approximate value of y at x = 1.5 taking 

h = 0.1. Given 
d

d

y y x

x xy

-
=  and y(1) = 2.

Solution

    

d
( , )

d

y y x
f x y

x xy

-
= =

Given:   x0 = 1, y0 = 2, h = 0.1, x = 1.5

  

0

1 2 3 4

1.5 1
5

0.1

1.1, 1.2, 1.3, 1.4

x x
n

h

x x x x

- -
= = =

= = = =
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1 0 0 0

2 1 1 1

3 2 2 2

( , )

2 0.1 (1, 2)

2 1
2 0.1

1(2)

2.0707

( , )

2.0707 0.1( (1.1, 2.0707)

2.0707 1.1
2.0707 0.1

1.1(2.0707)

2.1350

( , )

2.1350 0.1 (1.2, 2.1350)

2.1350 1.2
2.1350 0.1

1.

y y h f x y

f

y y h f x y

f

y y h f x y

f

= +

= +

-È ˘
= + Í ˙

Î ˚
=
= +

= +

-È ˘
= + Í ˙

Î ˚
=
= +

= +

-
= +

2(2.1350)

2.1934

È ˘
Í ˙
Î ˚

=

 

4 3 3 3

5 4 4, 4

( , )

2.1934 0.1 (1.3, 2.1934)

2.1934 1.3
2.1934 0.1

1.3(2.1934)

2.2463

( )

2.2463 0.1 (1.4, 2.2463)

2.2463 1.4
2.2463 0.1

1.4(2.2463)

2.2940

y y h f x y

f

y y h f x y

f

= +

= +

-È ˘
= + Í ˙

Î ˚
=
= +

= +

-È ˘
= + Í ˙

Î ˚
=

Hence,     y5 = y(1.5) = 2.2940

example 5
Using Euler’s method, find the approximate value of y at  

x = 1 taking h = 0.2. Given 2 2d

d

y
x y

x
= +  and  y (0) = 1.

Solution

 

2 2d
( , )

d

y
f x y x y

x
= = +
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Given:   x0 = 0, y0 = 1, h = 0.2, x = 1

  

0

1 2 3 4

1 0
5

0.2

0.2, 0.4, 0.6, 0.8

x x
n

h

x x x x

- -
= = =

= = = =

 

1 0 0 0

2 2

2 1 1 1

2 2

3 2 2 2

2 2

4 3 3 3

( , )

1 0.2 (0, 1)

1 0.2[(0) (1) ]

1.2

( , )

1.2 0.2 (0.2, 1.2)

1.2 0.2 (0.2) (1.2)

1.496

( , )

1.496 0.2 (0.4, 1.496)

1.496 0.2 (0.4) (1.496)

1.9756

( , )

y y h f x y

f

y y h f x y

f

y y h f x y

f

y y h f x y

= +

= +

= + +
=
= +

= +

È ˘= + +Î ˚
=
= +

= +

È ˘= + +Î ˚
=
= +

2 2

5 4 4 4

2 2

1.9756 0.2 (0.6, 1.9756)

1.9756 0.2 (0.6) (1.9756)

2.8282

( , )

2.8282 0.2 (0.8, 2.8282)

2.8282 0.2 (0.8) (2.8282)

4.5559

f

y y h f x y

f

= +

È ˘= + +Î ˚
=
= +

= +

È ˘= + +Î ˚
=

Hence,     y5 = y(1) = 4.5559

example 6

Given 
d

d

y y x

x y x

-
=

+
 with the initial condition y = 1 at x = 0. Find y at 

x = 0.1 in five steps.

Solution

    

d
( , )

d

y y x
f x y

x y x

-
= =

+
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Given:   x0 = 0, y0 = 1, n = 5, x = 0.1

  

0

1 2 3 4

0.1 0
0.02

5

0.02, 0.04, 0.06, 0.08

x x
h

n

x x x x

- -
= = =

= = = =

 

1 0 0 0

2 1 1 1

3 2 2 2

( , )

1 0.02 (0, 1)

1 0
1 0.02

1 0

1.02

( , )

1.02 0.02 (0.02, 1.02)

1.02 0.02
1.02 0.02

1.02 0.02

1.0392

( , )

1.0392 0.02 (0.04, 1.0392)

1.0392 0.04
1.0392 0.02

1.0392

y y h f x y

f

y y h f x y

f

y y h f x y

f

= +

= +

-Ê ˆ
= + Á ˜Ë ¯+
=
= +

= +

-Ê ˆ
= + Á ˜Ë ¯+
=
= +

= +

-
= +

4 3 3 3

0.04

1.0577

( , )

1.0577 0.02 (0.06, 1.0577)

1.0577 0.06
1.0577 0.02

1.0577 0.06

1.0756

y y h f x y

f

Ê ˆ
Á ˜Ë ¯+

=
= +

= +

-Ê ˆ
= + Á ˜Ë ¯+
=

 

5 4 4 4( , )

1.0756 0.02 (0.08, 1.0756)

1.0756 0.08
1.0756 0.02

1.0756 0.08

1.0928

y y h f x y

f

= +

= +

-Ê ˆ
= + Á ˜Ë ¯+
=

Hence,     y5 = y(0.1) = 1.0928

exercIse 7.2

solve the following differential equations using euler’s method:

 1. = = = =
d

with (0) 2, 0.2 at 1
d

y
xy y h x

x
 [ans.: 2.9186]
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 2. 
-

= =
d

with (1) 2
d

y y x
y

x x
 at x = 2 taking h = 0.2

 [ans.: 2.6137]

 3. = - =2d
with (1) 1

d

y y
y y

x x
 taking h = 0.1 at x = 1.3 and x = 1.5

 [ans.: 1.0268, 1.0889]

 4. = + =2d
with (0) 1

d

y
x y y

x
 taking h = 0.1 at x = 0.2

 [ans.: 1.231]

 5. = - =
d

1 2 with (0) 0
d

y
xy y

x
 taking h = 0.2 at x = 0.6

 [ans.: 0.5226]

 6. = + =
d

with (2) 4
d

y
x y y

x
 taking h = 0.2 at x = 3

 [ans.: 8.7839]

 7. = + + =
d

with (0) 1
d

y
x y xy y

x
 taking h = 0.025 at x = 0.1

 [ans.: 1.1117]

 8. = - =2d
1 with (0) 0

d

y
y y

x
 taking h = 0.2 at x = 1

 [ans.: 0.8007]

7.4 ModIFIed euler’s Method

The Euler’s method is very easy to implement but it cannot give accurate solutions. A 

very small step size is required to get any meaningful result. Since the starting point 

of each sub-interval is used to find the slope of the solution curve, the solution would 

be correct only if the function is linear. In the modified Euler’s method, the arithmetic 

average of the slopes is used to approximate the solution curve.

In the modified Euler’s method, y(0)
1  is first calculated from the Euler’s method.

 
(0)
1 0 0 0( , )y y h f x y= +

This value is improved by making use of average slopes at (x0, y0) and (x1, y1
(0)). The 

first approximation to y1 is written as

  

(1) (0)
1 0 0 0 1 1( , ) ( , )

2

h
y y f x y f x yÈ ˘= + +Î ˚

This value of y1
(1) is further improved by the equation

 

(2) (1)
1 0 0 0 1 1( , ) ( , )

2

h
y y f x y f x yÈ ˘= + +Î ˚

which is the second approximation to y1.
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In general,

 

( 1) ( )
1 0 0 0 1 1( , ) ( , ) , 0, 1, 2,...

2

n nh
y y f x y f x y n

+ È ˘= + + =Î ˚

where y1
(n) is the nth approximation to y1.

The procedure will be terminated depending on the accuracy required. If two consecu-

tive values of y1
(k) and y1

(k + 1) are equal, y1 = y1
(k).

Now, y2
(0) is calculated from the Euler’s method.

 
(0)
2 1 1 1( , )y y h f x y= +

Better approximation to y2 is obtained as

  

(1) (0)
2 1 1 1 2 2( , ) ( , )

2

h
y y f x y f x yÈ ˘= + +Î ˚

This procedure is repeated till two approximation to y2 are equal. Proceeding in the 

same manner, other values, i.e., y3, y4, etc., can be calculated.

example 1
Determine the value of y when x = 0.1 correct up to four decimal places 

by taking h = 0.05. Given that y(0) = 1 and 
2d

d

y
x y

x
= + .

Solution

     

2d
( , )

d

y
f x y x y

x
= = +

(i) Given:  x0 = 0, y0 = 1, h = 0.05, x1 = 0.05

 

0 0

(0)
1 0 0 0

( , ) 0 1 1

( , ) 1 0.05(1) 1.05

f x y

y y h f x y

= + =

= + = + =

First approximation to y1

  

[ ]

(1) (0)
1 0 0 0 1 1

2

( , ) ( , )
2

0.05
1 1 (0.05, 1.05)

2

0.05
1 1 {(0.05) 1.05}

2

1.0513

h
y y f x y f x y

f

È ˘= + +Î ˚

= + +

È ˘= + + +Î ˚

=
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Second approximation to y1

  

[ ]

(2) (1)
1 0 0 0 1 1

2

( , ) ( , )
2

0.05
1 1 (0.05, 1.0513)

2

0.05
1 1 {(0.05) 1.0513}

2

1.0513

h
y y f x y f x y

f

È ˘= + +Î ˚

= + +

È ˘= + + +Î ˚

=

Since the values of y1
(1) and y1

(2) are equal,

  y1 = y(0.05) = 1.0513

(ii) Now,   x1 = 0.05, y1 = 1.0513, h = 0.05, x2 = 0.1

 

2
1 1

(0)
2 1 1 1

( , ) (0.05) 1.0513 1.0538

( , ) 1.0513 0.05(1.0538) 1.1040

f x y

y y h f x y

= + =

= + = + =

First approximation to y2

 

[ ]

(1) (0)
2 1 1 1 2 2

2

( , ) ( , )
2

0.05
1.0513 1.0538 (0.1, 1.1040)

2

0.05
1.0513 1.0538 {(0.1) 1.1040}

2

1.1055

h
y y f x y f x y

f

È ˘= + +Î ˚

= + +

È ˘= + + +Î ˚

=

Second approximation to y2

 

[ ]

(2) (1)
2 1 1 1 2 2

2

( , ) ( , )
2

0.05
1.0513 1.0538 (0.1, 1.1055)

2

0.05
1.0513 1.0538 {(0.1) 1.1055}

2

1.1055

h
y y f x y f x y

f

È ˘= + +Î ˚

= + +

È ˘= + + +Î ˚

=

Since the values of y2
(1) and y2

(2) are equal,

   y2 = y(0.1) = 1.1055

example 2

Using the modified Euler’s method, solve 
d

1
d

y
y

x
= -  with the initial 

condition y(0) = 0 at x = 0.1, 0.2.
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Solution

     

d
( , ) 1

d

y
f x y y

x
= = -

(i) Given: x0 = 0, y0 = 0, h = x1 – x0 = 0.1, x1 = 0.1

 

0 0

(0)
1 0 0 0

( , ) 1 0 1

( , ) 0 0.1(1) 0.1

f x y

y y h f x y

= - =

= + = + =

First approximation to y1

  

[ ]

[ ]

(1) (0)
1 0 0 0 1 1( , ) ( , )

2

0.1
0 1 (0.1, 0.1)

2

0.1
0 1 (1 0.1)

2

0.095

h
y y f x y f x y

f

È ˘= + +Î ˚

= + +

= + + -

=

Second approximation to y1

 

[ ]

[ ]

(2) (1)
1 0 0 0 1 1( , ) ( , )

2

0.1
0 1 (0.1, 0.095)

2

0.1
0 1 (1 0.095)

2

0.0953

h
y y f x y f x y

f

È ˘= + +Î ˚

= + +

= + + -

=

Third approximation to y1

 

[ ]

[ ]

(3) (2)
1 0 0 0 1 1( , ) ( , )

2

0.1
0 1 (0.1, 0.0953)

2

0.1
0 1 (1 0.0953)

2

0.0952

h
y y f x y f x y

f

È ˘= + +Î ˚

= + +

= + + -

=

Fourth approximation to y1

 

[ ]

[ ]

(4) (3)
1 0 0 0 1 1( , ) ( , )

2

0.1
0 1 (0.1, 0.0952)

2

0.1
0 1 (1 0.0952)

2

0.0952

h
y y f x y f x y

f

È ˘= + +Î ˚

= + +

= + + -

=
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Since the values of y1
(3) and y1

(4) are equal,

   y1 = y(0.1) = 0.0952

(ii) Now,    x1 = 0.1, y1 = 0.0952, h = 0.1, x2 = 0.2

 f (x1, y1) = 1 – 0.0952 = 0.9048

 
(0)
2 1 1 1( , ) 0.0952 0.1(0.9048) 0.1857y y h f x y= + = + =

First approximation to y2

 

[ ]

[ ]

(1) (0)
2 1 1 1 2 2( , ) ( , )

2

0.1
0.0952 0.9048 (0.2, 0.1857)

2

0.1
0.0952 0.9048 (1 0.1857)

2

0.1812

h
y y f x y f x y

f

È ˘= + +Î ˚

= + +

= + + -

=
Second approximation to y2

 

[ ]

[ ]

(2) (1)
2 1 1 1 2 2( , ) ( , )

2

0.1
0.0952 0.9048 (0.2, 0.1812)

2

0.1
0.0952 0.9048 (1 0.1812)

2

0.1814

h
y y f x y f x y

f

È ˘= + +Î ˚

= + +

= + + -

=

Third approximation to y2

 

[ ]

[ ]

(3) (2)
2 1 1 1 2 2( , ) ( , )

2

0.1
0.0952 0.9048 (0.2, 0.1814)

2

0.1
0.952 0.9048 (1 0.1814)

2

0.1814

h
y y f x y f x y

f

È ˘= + +Î ˚

= + +

= + + -

=

Since the values of y2
(2) and y2

(3) are equal,

   y2 = y(0.2) = 0.1814

example 3
Apply the modified Euler’s method to solve the initial-value problem 

y¢ = x + y with y(0) = 0 choosing h = 0.2 and compute y for x = 0.2, 

x = 0.4. [Winter 2014]
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Solution

     

d
( , )

d

y
f x y x y

x
= = +

(i) Given:   x0 = 0, y0 = 0, h = 0.2, x1 = 0.2

 

0 0

(0)
1 0 0 0

( , ) 0 0 0

( , ) 0 0.2(0) 0

f x y

y y h f x y

= + =

= + = + =

First approximation to y1

  

[ ]

[ ]

(1) (0)
1 0 0 0 1 1( , ) ( , )

2

0.2
0 0 (0.2, 0)

2

0.2
0 0 (0.2 0)

2

0.02

h
y y f x y f x y

f

È ˘= + +Î ˚

= + +

= + + +

=

Second approximation to y1

 

[ ]

[ ]

(2) (1)
1 0 0 0 1 1( , ) ( , )

2

0.2
0 0 (0.2, 0.02)

2

0.2
0 0 (0.2 0.02)

2

0.022

h
y y f x y f x y

f

È ˘= + +Î ˚

= + +

= + + +

=

Third approximation to y1

 

[ ]

[ ]

(3) (2)
1 0 0 0 1 1( , ) ( , )

2

0.2
0 0 (0.2, 0.022)

2

0.2
0 0 (0.2 0.022)

2

0.0222

h
y y f x y f x y

f

È ˘= + +Î ˚

= + +

= + + +

=

Fourth approximation to y1

 

[ ]

[ ]

(4) (3)
1 0 0 0 1 1( , ) ( , )

2

0.2
0 0 (0.2, 0.0222)

2

0.2
0 0 (0.2 0.0222)

2

0.0222

h
y y f x y f x y

f

È ˘= + +Î ˚

= + +

= + + +

=
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Since the values of y1
(3) and y1

(4) are equal,

 y1 = y(0.2) = 0.0222

(ii) Now, x1 = 0.2, y1 = 0.0222, h = 0.2, x2 = 0.4

 

1 1

(0)
2 1 1 1

( , ) 0.2 0.0222 0.2222

0.2
( , ) 0.0222 (0.2222) 0.0444

2

f x y

y y h f x y

= + =

= + = + =

First approximation to y2

  

[ ]

[ ]

(1) (0)
2 1 1 1 2 2( , ) ( , )

2

0.2
0.0222 0.2222 (0.4, 0.0444)

2

0.2
0.0222 0.2222 (0.4 0.0444)

2

0.0889

h
y y f x y f x y

f

È ˘= + +Î ˚

= + +

= + + +

=

Second approximation to y2

 

[ ]

[ ]

(2) (1)
2 1 1 1 2 2( , ) ( , )

2

0.2
0.0222 0.2222 (0.4, 0.0889)

2

0.2
0.0222 0.2222 (0.4 0.0889)

2

0.0933

h
y y f x y f x y

f

È ˘= + +Î ˚

= + +

= + + +

=

Third approximation to y2

 

[ ]

[ ]

(3) (2)
2 1 1 1 2 2( , ) ( , )

2

0.2
0.0222 0.2222 (0.4, 0.0933)

2

0.2
0.0222 0.2222 (0.4 0.0933)

2

0.0938

h
y y f x y f x y

f

È ˘= + +Î ˚

= + +

= + + +

=

Fourth approximation to y2

 

[ ]

[ ]

(4) (3)
2 1 1 1 2 2( , ) ( , )

2

0.2
0.0222 0.2222 (0.4, 0.0938)

2

0.2
0.0222 0.2222 (0.4 0.0938)

2

0.0938

h
y y f x y f x y

f

È ˘= + +Î ˚

= + +

= + + +

=
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Since the value of y2
(3)  and y2

(4)  are equal,

   y2 = y(0.4) = 0.0938

example 4
Use modified Euler’s method to find the value of y satisfying the equation 

d
log( )

d

y
x y

x
= +  for x = 1.2 and x = 1.4, correct up to four decimal places 

by taking h = 0.2. Given that y(1) = 2.

Solution

     

d
( , ) log( )

d

y
f x y x y

x
= = +

(i) Given:   x0 = 1, y0 = 2, h = 0.2, x1 = 1.2

 

0 0

(0)
1 0 0 0

( , ) log(1 2) 1.0986

( , ) 2 0.2(1.0986) 2.2197

f x y

y y h f x y

= + =

= + = + =

First approximation to y1

  

[ ]

[ ]

(1) (0)
1 0 0 0 1 1( , ) ( , )

2

0.2
2 1.0986 (1.2, 2.2197)

2

0.2
2 1.0986 log(1.2 2.2197)

2

2.2328

h
y y f x y f x y

f

È ˘= + +Î ˚

= + +

= + + +

=

Second approximation to y1

 
[ ]

(2) (1)
1 0 0 0 1 1( , ) ( , )

2

0.2
2 1.0986 (1.2, 2.2328)

2

h
y y f x y f x y

f

È ˘= + +Î ˚

= + +

    

[ ]0.2
2 1.0986 log(1.2 2.2328)

2

2.2332

= + + +

=

Third approximation to y1

 
[ ]

(3) (2)
1 0 0 0 1 1( , ) ( , )

2

0.2
2 1.0986 (1.2, 2.2332)

2

h
y y f x y f x y

f

È ˘= + +Î ˚

= + +
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[ ]0.2
2 1.0986 log(1.2 2.2332)

2

2.2332

= + + +

=

Since the values of y1
(2) and y1

(3) are equal,

    y1 = y(1.2) = 2.2332

(ii) Now,   x1 = 1.2, y1 = 2.2332, h = 0.2, x2 = 1.4

 

1 1

(0)
2 1 1 1

( , ) log(1.2 2.2332) 1.2335

( , ) 2.2332 0.2(1.2335) 2.4799

f x y

y y h f x y

= + =

= + = + =

First approximation to y2

  

[ ]

[ ]

(1) (0)
2 1 1 1 2 2( , ) ( , )

2

0.2
2.2332 1.2335 (1.4, 2.4799)

2

0.2
2.2332 1.2335 log(1.4 2.4799)

2

2.4291

h
y y f x y f x y

f

È ˘= + +Î ˚

= + +

= + + +

=

Second approximation to y2

 

[ ]

[ ]

(2) (1)
2 1 1 1 2 2( , ) ( , )

2

0.2
2.2332 1.2335 (1.4, 2.4921)

2

0.2
2.2332 1.2335 log(1.4 2.4921)

2

2.4924

h
y y f x y f x y

f

È ˘= + +Î ˚

= + +

= + + +

=

Third approximation to y2

 
[ ]

(3) (2)
2 1 1 1 2 2( , ) ( , )

2

0.2
2.2332 1.2335 (1.4, 2.4924)

2

h
y y f x y f x y

f

È ˘= + +Î ˚

= + +

    

[ ]0.2
2.2332 1.2335 log(1.4 2.4924)

2

2.4924

= + + +

=

Since the values of y2
(2) and y2

(3) are equal,

 y2 = y(1.4) = 2.4924
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example 5

Solve 
d

2
d

y
xy

x
= +  with x0 = 1.2, y0 = 1.6403 by Euler’s modified 

method for x = 1.6, correct up to four decimal places by taking h = 0.2.

Solution

       

d
( , ) 2

d

y
f x y xy

x
= = +

(i) Given:   x0 = 1.2, y0 = 1.6403, h = 0.2, x1 = 1.4

 

0 0

(0)
1 0 0 0

( , ) 2 (1.2) (1.6403) 3.4030

( , ) 1.6403 0.2(3.4030) 2.3209

f x y

y y h f x y

= + =

= + = + =

First approximation to y1

  

y y
h

f x y f x y

f

1
1

0 0 0 1 1
0

2

1 6403
0 2

2
3 4030 1

( ) ( )( , ) ( , )

.
.

. ( .

= + +ÈÎ ˘̊

= + + 44 2 3209

1 6403
0 2

2
3 4030 2 1 4 2 3209

2 360

, . )

.
.

. ( . )( . )

.

[ ]

= + + +{ }È
Î

˘
˚

= 99

Second approximation to y1

 

y y
h

f x y f x y

f

1
2

0 0 0 1 1
1

2

1 6403
0 2

2
3 4030 1

( ) ( )( , ) ( , )

.
.

. ( .

= + +ÈÎ ˘̊

= + + 44 2 3609

1 6403
0 2

2
3 4030 2 1 4 2 3609

2 362

, . )

.
.

. ( . )( . )

.

[ ]

= + + +{ }È
Î

˘
˚

= 44

Third approximation to y1

 

y y
h

f x y f x y

f

1
3

0 0 0 1 1
2

2

1 6403
0 2

2
3 4030 1

( ) ( )( , ) ( , )

.
.

. ( .

= + +ÈÎ ˘̊

= + + 44 2 3624

1 6403
0 2

2
3 4030 2 1 4 2 3624

2 362

, . )

.
.

. ( . )( . )

.

[ ]

= + + +{ }È
Î

˘
˚

= 55
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Fourth approximation to y1

 

y y
h

f x y f x y

f

1
4

0 0 0 1 1
3

2

1 6403
0 2

2
3 4030 1

( ) ( )( , ) ( , )

.
.

. ( .

= + +ÈÎ ˘̊

= + + 44 2 3625

1 6403
0 2

2
3 4030 2 1 4 2 3625

2 362

, . )

.
.

. ( . )( . )

.

[ ]

= + + +{ }È
Î

˘
˚

= 55

Since the values of y1
(3) and y1

(4) are equal,

    y1 = y(1.4) = 2.3625

(ii) Now,     x1 = 1.4, y1 = 2.3625, h = 0.2, x2 = 1.6

 

1 1

(0)
2 1 1 1

( , ) 2 (1.4) (2.3625) 3.8187

( , ) 2.3625 0.2(3.8187) 3.1262

f x y

y y h f x y

= + =

= + = + =

First approximation to y2

  

y y
h

f x y f x y

f

2
1

1 1 1 2 2
0

2

2 3625
0 2

2
3 8187 1

( ) ( )( , ) ( , )

.
.

. ( .

= + +ÈÎ ˘̊

= + + 66 3 1262

2 3625
0 2

2
3 8187 2 1 6 3 1262

3 168

, . )

.
.

. ( . )( . )

.

[ ]

= + + +{ }È
Î

˘
˚

= 00

Second approximation to y2

 

y y
h

f x y f x y

f

2
2

1 1 1 2 2
1

2

2 3625
0 2

2
3 8187 1

( ) ( )( , ) ( , )

.
.

. ( .

= + +ÈÎ ˘̊

= + + 66 3 1680

2 3625
0 2

2
3 8187 2 1 6 3 1680

3 169

, . )

.
.

. ( . ) . )

.

[ ]

= + + + +{ }È
Î

˘
˚

= 55

Third approximation to y2

 

y y
h

f x y f x y

f

2
3

1 1 1 2 2
2

2

2 3625
0 2

2
3 8187 1

( ) ( )( , ) ( , )

.
.

. ( .

= + +ÈÎ ˘̊

= + + 66 3 1695

2 3625
0 2

2
3 8187 2 1 6 3 1695

3 169

, . )

.
.

. ( . )( . )

.

[ ]

= + + +{ }È
Î

˘
˚

= 66



7.4  Modified Euler’s Method        7.27

Fourth approximation to y2

 

y y
h

f x y f x y

f

2
4

1 1 1 2 2
3

2

2 3625
0 2

2
3 8187 1

( ) ( )( , ) ( , )

.
.

. ( .

= + +ÈÎ ˘̊

= + + 66 3 1696

2 3625
0 2

2
3 8187 2 1 6 3 1696

3 169

, . )

.
.

. ( . )( . )

.

[ ]

= + + +{ }È
Î

˘
˚

= 66

Since the values of y2
(3) and y2

(4) are equal,

 y2 = y(1.6) = 3.1696

exercIse 7.3

Solve the following differential equations by the modified Euler’s 

method:

 1. = + = =
0 0

d
3 with 0, 1

d

y
x y x y

x
 taking h = 0.05 at x = 0.1

 [ans.: 1.3548]

 2. = - = =2

0 0

d
with 0, 1

d

y
x y x y

x
 taking h = 0.05 at x = 0.1

 [ans.: 0.9137]

 3. = + = =
0 0

d
with 0, 1

d

y
x y x y

x
 taking h = 0.05 at x = 0.1

 [ans.: 1.1104]

 4. = - = =2d
with (0) 2 for 0.2

d

y
xy y x

x
 by taking h = 0.1

 [ans.: 1.9238]

 5. = + = =
d

1 with (1) 2 for 1.2
d

y y
y x

x x
 [ans.: 2.6182]

 6. = + = =
d

with (0) 1for 0.2
d

y
x y y x

x
 

 [ans.: 1.2309]

 7. = - = =2d
with (1) 1for 1.1

d

y y
y y x

x x
 taking h = 0.05

 [ans.: 1.0073]

 8. = - = =
d

with (0) 2 for 0.2
d

y
y x y x

x
 [ans.: 2.4222]



7.28 Chapter 7 Ordinary Differential Equations

7.5 runge—Kutta Methods

Runge–Kutta methods do not require the determination of higher order derivatives. 

These methods require only the function values at different points on the sub-

interval. The main advantage of Runge–Kutta methods is the self-starting feature and, 

consequently, the ease of programming. One disadvantage of Runge–Kutta methods 

is the requirement that the function must be evaluated at different values of x and y in 

every step of the function. This repeated determination of the function may result in a 

less efficient method with respect to computing time than other methods of comparable 

accuracy in which previously determined values of the dependent variable are used in 

the subsequent steps.

7.5.1 First-order runge—Kutta Method

Consider the differential equation

   

d
( , )

d

y
f x y

x
=

with the initial condition y(x0) = y0

By Euler’s method,

 1 ( , )n n n ny y h f x y+ = +

Expanding LHS by Taylor’s series,

 

2

1
2!

n n n n

h
y y h y y+ = + + +¢ ¢¢ 

Euler’s method is known as the first-order Runge–Kutta method.

7.5.2 second-order runge—Kutta Method (heun Method)

The second order Rungta-Kutta method is given by the equations 

 

1

2 1

1 2

1

( , )

( , )

1
( )

2

n n

n n

n n

k h f x y

k h f x h y k

k k k

y y k+

=

= + +

= +

= +

7.5.3 third-order runge—Kutta Method

The third-order Runge–Kutta method is given by the equations

  

1

1
2

( , )

,
2 2

n n

n n

k h f x y

kh
k h f x y

=

Ê ˆ
= + +Á ˜Ë ¯
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3 2 1

1 2 3

1

( , 2 )

1
( 4 )

6

n n

n n

k h f x h y k k

k k k k

y y k+

= + + -

= + +

= +

7.5.4 Fourth-order runge—Kutta Method

This method is mostly used and is often referred to as the Runge–Kutta method only 

without reference of the order. The fourth-order Runge–Kutta method is given by the 

equations

   

1

1
2

2
3

( , )

,
2 2

,
2 2

n n

n n

n n

k h f x y

kh
k h f x y

kh
k h f x y

=

Ê ˆ
= + +Á ˜Ë ¯

Ê ˆ
= + +Á ˜Ë ¯

 

4 3

1 2 3 4

1

( , )

1
( 2 2 )

6

n n

n n

k h f x h y k

k k k k k

y y k+

= + +

= + + +

= +

example 1

Given that y = 1.3 when x = 1 and 
d

3 .
d

y
x y

x
= +  Use the second-order 

Runge–Kutta method (i.e., Heun method) to approximate y when x = 1.2. 

Use a step size of 0.1. [Winter 2012]

Solution

 

d
( , ) 3

d

y
f x y x y

x
= = +

(i) Given: x0 = 1, y0 = 1.3, h = 0.1, n = 0

 

[ ]

1 0 0

2 0 0 1

( , )

0.1 (1, 1.3)

0.1 3(1) 1.3

0.43

( , )

0.1 (1 0.1, 1.3 0.43)

k h f x y

f

k h f x h y k

f

=

=

= +

=
= + +

= + +
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[ ]

1 2

1 0

0.1 (1.1, 1.73)

0.1 3(1.1) 1.73

0.503

1
( )

2

1
(0.43 0.503)

2

0.4665

1.3 0.4665

1.7665

f

k k k

y y k

=

= +

=

= +

= +

=
= +

= +
=

(ii) Now, x1 = 1.1, y1 = 1.7665, h = 0.1, n = 1

  k1 = h f (x1, y1)

    = 0.1 f (1.1, 1.7665)

    = 0.1 [3(1.1) + 1.7665]

    = 0.5067

 

[ ]

2 1 1 1

1 2

2 1

( , )

0.1 (1.1 0.1, 1.7665 05067)

0.1 (1.2, 2.2732)

0.1 3(1.2) 2.2732)

0.5873

1
( )

2

1
(0.5067 0.5873)

2

0.5470

1.7665 0.5470

2.3135

k h f x h y k

f

f

k k k

y y k

= + +

= + +
=

= +

=

= +

= +

=
= +

= +
=

Hence,    y2 = y(1.2) = 2.3135

example 2
Use the second-order Runge–Kutta method to find an approximate value 

of y given that 
2d

d

y
x y

x
= -  and y(0) = 1 at x = 0.2 taking h = 0.1.
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Solution

    

2d
( , )

d

y
f x y x y

x
= = -

(i) Given:  x0 = 0, y0 = 1, h = 0.1, n = 0

  

1 0 0

2

( , )

0.1 (0, 1)

0.1 0 (1)

0.1

k h f x y

f

=

=

È ˘= -Î ˚
= -

 

2 0 0 1

2

1 2

( , )

0.1 [0 0.1, 1 ( 0.1)]

0.1 (0.1, 0.9)

0.1 0.1 (0.9)

0.071

1
( )

2

1
( 0.1 0.071)

2

0.0855

k h f x h y k

f

f

k k k

= + +

= + + -
=

È ˘= -Î ˚
= -

= +

= - -

= -

  

1 0

1 0.0855

0.9145

y y k= +

= -
=

(ii) Now,    x1 = 0.1, y1 = 0.9145, h = 0.1, n = 1

 

[ ]

1 1 1

2

2 1 1 1

2

( , )

0.1 (0.1, 0.9145)

0.1 0.1 (0.9145)

0.0736

( , )

0.1 0.1 0.1, 0.9145 0.0736

0.1 (0.2, 0.8408)

0.1 0.2 (0.8408)

0.0507

k h f x y

f

k h f x h y k

f

f

=

=

È ˘= -Î ˚
= -
= + +

= + -

=

È ˘= -Î ˚
= -
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1 2

2 1

1
( )

2

1
( 0.0736 0.0507)

2

0.0622

0.9145 0.0622

0.8523

k k k

y y k

= +

= - -

= -
= +

= -
=

Hence, y2 = y(0.2) = 0.8523

example 3
Obtain the values of y at x = 0.1, 0.2 using the Runge–Kutta method of 

third order for the differential equation 
d

0, (0) 1
d

y
y y

x
+ = = .

Solution

    

d
( , )

d

y
f x y y

x
= = -

(i) Given:  x0 = 0, y0 = 1, h = 0.1, n = 0

  

=

=
= -
= -

1 0 0( , )

0.1 (0, 1)

0.1 ( 1)

0.1

k h f x y

f

 

[ ]

Ê ˆ
= + +Á ˜Ë ¯

Ê ˆ
= + -Á ˜Ë ¯

=
= -
= -
= + + -

= + + - +

=
= -
= -

1
2 0 0

3 0 0 2 1

,
2 2

0.1 0.1
0.1 0 , 1

2 2

0.1 (0.05, 0.95)

0.1( 0.95)

0.095

( , 2 )

0.1 0 0.1, 1 2( 0.095) 0.1

0.1 (0.1, 0.91)

0.1( 0.91)

0.091

kh
k h f x y

f

f

k h f x h y k k

f

f
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[ ]

= + +

= - + - -

= -
= +

= -
=

1 2 3

1 0

1
( 4 )

6

1
0.1 4( 0.095) 0.091

6

0.0952

1 0.0952

0.9048

k k k k

y y k

Hence,  y1 = y(0.1) = 0.9048

(ii) Now, x1 = 0.1, y1 = 0.9048, h = 0.1, n = 1

 

=

=
= -
= -

Ê ˆ
= + +Á ˜Ë ¯

1 1 1

1
2 1 1

( , )

0.1 (0.1, 0.9048)

0.1( 0.9048)

0.0905

,
2 2

k h f x y

f

kh
k h f x y

 

[ ]

Ê ˆ
= + -Á ˜Ë ¯

=
= -
= -
= + + -

= + + - +

=
= -
= -

= + +

= - + -

3 1 1 2 1

1 2 3

0.1 0.0905
0.1 0.1 , 0.9048

2 2

0.1 (0.15, 0.8596)

0.1( 0.8596)

0.086

( , 2 )

0.1 0.1 0.1, 0.9048 2( 0.086) 0.0905

0.1 (0.2, 0.8233)

0.1 ( 0.8233)

0.0823

1
( 4 )

6

1
0.0905 4( 0.08

6

f

f

k h f x h y k k

f

f

k k k k

[ ]-

= -
= +

= -
=

2 1

6) 0.0823

0.0861

0.9048 0.0861

0.8187

y y k

Hence,  y2 = y(0.2) = 0.8187
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example 4
Apply the third-order Runge–Kutta method to the initial-value problem 

2d
, (0) 1

d

y
x y y

x
= - =  over the interval (0, 0.2) taking h = 0.1.

Solution

 

2d
( , )

d

y
f x y x y

x
= = -

(i) Given:  x0 = 0, y0 = 1, h = 0.1, n = 0

  

=

=
= -
= -

Ê ˆ
= + +Á ˜Ë ¯

Ê ˆ
= + -Á ˜Ë ¯

=

1 0 0

1
2 0 0

( , )

0.1 (0, 1)

0.1(0 1)

0.1

,
2 2

0.1 0.1
0.1 0 , 1

2 2

0.1 (0.05, 0.95)

k h f x y

f

kh
k h f x y

f

f

 

[ ]

[ ]

È ˘= -Î ˚
= -
= + + -

= + + - +

=

È ˘= -Î ˚
= -

= + +

= - + - -

= -
= +

= -
=

2

3 0 0 2 1

2

1 2 3

1 0

0.1 (0.05) 0.95

0.0948

( , 2 )

0.1 0 0.1, 1 2( 0.0948) 0.1

0.1 (0.1, 0.9104)

0.1 (0.1) 0.9104

0.09

1
( 4 )

6

1
0.1 4( 0.0948) 0.09

6

0.0949

1 0.0949

0.9051

k h f x h y k k

f

f

k k k k

y y k
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(ii) Now, x1 = 0.1, y1 = 0.9051, h = 0.1, n = 1

 

=

=

È ˘= -Î ˚
= -

Ê ˆ
= + +Á ˜Ë ¯

Ê ˆ
= + -Á ˜Ë ¯

=

È ˘= -Î ˚
= -
= + + -

= +

1 1 1

2

1
2 1 1

2

3 1 1 2 1

( , )

0.1 (0.1, 0.9051)

0.1 (0.1) 0.9051

0.0895

,
2 2

0.1 0.0895
0.1 0.1 , 0.9051

2 2

0.1 (0.15, 0.8604)

0.1 (0.15) 0.8604

0.0838

( , 2 )

0.1 0.1 0.1, 0.9

k h f x y

f

kh
k h f x y

f

f

k h f x h y k k

f [ ]+ - +

=

È ˘= -Î ˚
= -

2

051 2( 0.0838) 0.0895

0.1 (0.2, 0.827)

0.1 (0.2) 0.827

0.0787

f

 

[ ]

= + +

= - + - -

= -
= +

= -
=

1 2 3

2 1

1
( 4 )

6

1
0.0895 4( 0.0838) 0.0787

6

0.0839

0.9051 0.0839

0.8212

k k k k

y y k

example 5

Solve the differential equation 
d

,
d

y
x y

x
= +  with the fourth-order Runge–

Kutta method, where y(0) = 1, with x = 0 to x = 0.2 with h = 0.1.

 [Winter 2012]

Solution

 

d
( , )

d

y
f x y x y

x
= = +
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(i) Given: x0 = 0, y0 = 1, h = 0.1, n = 0

 

=

=
= +
=

Ê ˆ
= + +Á ˜Ë ¯

Ê ˆ
= + +Á ˜Ë ¯

=
= +
=

Ê ˆ
= + +Á ˜Ë ¯

Ê ˆ
= + +Á ˜Ë ¯

=
= +
=

1 0 0

1
2 0 0

2
3 0 0

( , )

0.1 (0, 1)

0.1 (0 1)

0.1

,
2 2

0.1 0.1
0.1 0 ,1

2 2

0.1 (0.05, 1.05)

0.1 (0.05 1.05)

0.11

,
2 2

0.1 0.11
0.1 0 , 1

2 2

0.1 (0.05, 1.055)

0.1(0.05 1.055)

k h f x y

f

kh
k h f x y

f

f

kh
k h f x y

f

f

0.1105

 

= + +

= + +
=
= +
=

4 0 0 3( , )

0.1 (0 0.1, 1 0.1105)

0.1 (0.1, 1.1105)

0.1(0.1 1.1105)

0.1211

k h f x h y k

f

f

  

[ ]

1 2 3 4

1
( 2 2 )

6

1
0.1 2(0.11) 2(0.1105) 0.1211

6

0.1103

k k k k k= + + +

= + + +

=

  

= +

= +
=

1 0

1 0.1103

1.1103

y y k

(ii) Now, x1 = 0.1, y1 = 1.1103, h = 0.1, n = 1

  

=

=
= +
=

1 1 1( , )

0.1 (0.1, 1.1103)

0.1(0.1 1.1103)

0.1210

k h f x y

f
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Ê ˆ
= + +Á ˜Ë ¯

Ê ˆ
= + +Á ˜Ë ¯

=
= +
=

Ê ˆ
= + +Á ˜Ë ¯

Ê ˆ
= + +Á ˜Ë ¯

=
= +
=

1
2 1 1

2
3 1 1

4

,
2 2

0.1 0.1210
0.1 0.1 , 1.1103

2 2

0.1 (0.15, 1.1708)

0.1 (0.15 1.1708)

0.1321

,
2 2

0.1 0.1321
0.1 0.1 , 1.1103

2 2

0.1 (0.15, 1.1764)

0.1 (0.15 1.1764)

0.1326

kh
k h f x y

f

f

kh
k h f x y

f

f

k

[ ]

= + +

= + +
=
= +
=

= + + +

= + + +

=
= +

= +
=

1 1 3

1 2 3 4

2 1

( , )

0.1 (0.1 0.1, 1.1103 0.1326)

0.1 (0.2, 1.2429)

0.1(0.2 1.2429)

0.1443

1
( 2 2 )

6

1
0.1210 2(0.1321) 2(0.1326) 0.1443

6

0.1325

1.1103 0.1325

1.2428

h f x h y k

f

f

k k k k k

y y k

example 6

Using the Runge–Kutta method of fourth-order, solve 
2 2d

10 ,
d

y
x y

x
= +  

y(0) = 1 at x = 0.1 and x = 0.2 taking h = 0.1. [Summer 2015]

Solution

    

2 2
2 2d

( , ) 0.1( )
d 10

y x y
f x y x y

x

+
= = = +
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(i) Given:   x0 = 0, y0 = 1, h = 0.1, n = 0

  

1 0 0

1
2 0 0

2 2

2
3 0 0

( , )

0.1 (0, 1)

0.1(0.1)(0 1)

0.01

,
2 2

0.1 0.01
0.1 0 , 1

2 2

0.1 (0.05, 1.005)

0.1(0.1) (0.05) (1.005)

0.0101

,
2 2

0.1 0.0101
0.1 0 , 1

2 2

0.1 (0.

k h f x y

f

kh
k h f x y

f

f

kh
k h f x y

f

f

=

=
= +
=

Ê ˆ
= + +Á ˜Ë ¯

Ê ˆ
= + +Á ˜Ë ¯

=

È ˘= +Î ˚
=

Ê ˆ
= + +Á ˜Ë ¯

Ê ˆ
= + +Á ˜Ë ¯

=
2 2

05, 1.0051)

0.1(0.1) (0.05) (1.0051)

0.0101

È ˘= +Î ˚
=

 

[ ]

= + +

= + +
=

È ˘= +Î ˚
=

= + + +

= + + +

=
= +

= +
=

4 0 0 3

2 2

1 2 3 4

1 0

( , )

0.1 (0 0.1, 1 0.0101)

0.1 (0.1, 1.0101)

0.1(0.1) (0.1) (1.0101)

0.0103

1
( 2 2 )

6

1
0.01 2(0.0101) 2(0.0101) 0.0103

6

0.0101

1 0.0101

1.0101

k h f x h y k

f

f

k k k k k

y y k
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(ii) Now, x1 = 0.1, y1 = 1.0101, h = 0.1, n = 1

 

=

=

È ˘= +Î ˚
=

Ê ˆ
= + +Á ˜Ë ¯

Ê ˆ
= + +Á ˜Ë ¯

=

È ˘= +Î ˚
=

Ê ˆ
= + +Á ˜Ë ¯

=

1 1 1

2 2

1
2 1 1

2 2

2
3 1 1

( , )

(0.1, 1.0101)

0.1(0.1) (0.1) (1.0101)

0.0103

,
2 2

0.1 0.0103
0.1 0.1 , 1.0101

2 2

0.1 (0.15, 1.0153)

0.1(0.1) (0.15) (1.0153)

0.0105

,
2 2

0

k h f x y

h f

kh
k h f x y

f

f

kh
k h f x y

Ê ˆ
+ +Á ˜Ë ¯

=

È ˘= +Î ˚
=
= + +

= + +
=

È ˘= +Î ˚
=

2 2

4 1 1 3

2 2

0.1 0.0105
.1 0.1 , 1.0101

2 2

0.1 (0.15, 1.0154)

0.1(0.1) (0.15) (1.0154)

0.0105

( , )

0.1 (0.1 0.1, 1.0101 0.0105)

0.1 (0.2, 1.0206)

0.1 (0.1) (0.2) (1.0206)

0.0108

f

f

k h f x h y k

f

f

 

[ ]

= + + +

= + + +

=
= +

= +
=

1 2 3 4

2 1

1
( 2 2 )

6

1
0.0103 2(0.0105) 2(0.0105) 0.0108

6

0.0105

1.0101 0.0105

1.0206

k k k k k

y y k
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example 7
Use the fourth order Runge–Kutta method to find the value of y at x = 1, 

given that 
d

, (0) 1
d

y y x
y

x y x

-
= =

+
 with h = 0.5. [Summer 2015]

Solution

    

d
( , )

d

y y x
f x y

x y x

-
= =

+

(i) Given:   x0 = 0, y0 = 1, h = 0.5, n = 0

 

=

=

-Ê ˆ
= Á ˜Ë ¯+
=

Ê ˆ
= + +Á ˜Ë ¯

Ê ˆ
= + +Á ˜Ë ¯

=

-Ê ˆ
= Á ˜Ë ¯+
=

Ê ˆ
= + +Á ˜Ë ¯

Ê ˆ
= + +Á ˜Ë ¯

=

1 0 0

1
2 0 0

2
3 0 0

( , )

0.5 (0, 1)

1 0
0.5

1 0

0.5

,
2 2

0.5 0.5
0.5 0 , 1

2 2

0.5 (0.25, 1.25)

1.25 0.25
0.5

1.25 0.25

0.3333

,
2 2

0.5 0.3333
0.5 0 , 1

2 2

0.5 (0.25

k h f x y

f

kh
k h f x y

f

f

kh
k h f x y

f

f

-Ê ˆ
= Á ˜Ë ¯+
=
= + +

= + +
=

-Ê ˆ
= Á ˜Ë ¯+
=

4 0 0 3

, 1.1667)

1.1667 0.25
0.5

1.1667 0.25

0.3235

( , )

0.5 (0 0.5, 1 0.3235)

0.5(0.5, 1.3235)

1.3235 0.5
0.5

1.3235 0.5

0.2258

k h f x h y k

f
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[ ]

= + + +

= + + +

=
= +

= +
=

1 2 3 4

1 0

1
( 2 2 )

6

1
0.5 2(0.3333) 2(0.3235) 0.2258

6

0.3399

1 0.3399

1.3399

k k k k k

y y k

(ii) Now, x1 = 0.5, y1 = 1.3399, h = 0.5, n = 1

 

=

=

-Ê ˆ
= Á ˜Ë ¯+
=

Ê ˆ
= + +Á ˜Ë ¯

Ê ˆ
= + +Á ˜Ë ¯

=

-Ê ˆ
= Á ˜Ë ¯+
=

Ê ˆ
= + +Á ˜Ë ¯

1 1 1

1
2 1 1

2
3 1 1

( , )

0.5 (0.5, 1.3399)

1.3399 0.5
0.5

1.3399 0.5

0.2282

,
2 2

0.5 0.2282
0.5 0.5 , 1.3399

2 2

0.5 (0.75, 1.454)

1.454 0.75
0.5

1.454 0.75

0.1597

,
2 2

k h f x y

f

kh
k h f x y

f

f

kh
k h f x y

Ê ˆ
= + +Á ˜Ë ¯

=

-Ê ˆ
= Á ˜Ë ¯+
=
= + +

= + +
=

-Ê ˆ
= Á ˜Ë ¯+
=

4 1 1 3

0.5 0.1597
0.5 0.5 , 1.3399

2 2

0.5 (0.75, 1.4198)

1.4198 0.75
0.5

1.4198 0.75

0.1543

( , )

0.5 (0.5 0.5, 1.3399 0.1543)

0.5 (1, 1.4942)

1.4942 1
0.5

1.4942 1

0.0991

f

f

k h f x h y k

f

f
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[ ]

= + + +

= + + +

=
= +

= +
=

1 2 3 4

2 1

1
( 2 2 )

6

1
0.2282 2(0.1597) 2(0.1543) 0.0991

6

0.1592

1.3399 0.1592

1.4991

k k k k k

y y k

Hence,    y2 = y(1) = 1.4991

example 8
Using the fourth order Runge–Kutta method, find y at x = 0.1 for 

differential equation 
d

3 2 , (0) 0
d

xy
e y y

x
= + =  by taking h = 0.1.

 [Summer 2015]

Solution

    

d
( , ) 3 2

d

xy
f x y e y

x
= = +

(i) Given:   x0 = 0, y0 = 0, h = 0.1, n = 0

  

=

=

= +
=

Ê ˆ
= + +Á ˜Ë ¯

Ê ˆ
= + +Á ˜Ë ¯

=

È ˘= +Î ˚
=

Ê ˆ
= + +Á ˜Ë ¯

Ê ˆ
= + +Á ˜Ë ¯

=

1 0 0

0

1
2 0 0

0.05

2
3 0 0

( , )

0.1 (0, 0)

0.1(3 0)

0.3

,
2 2

0.1 0.3
0.1 0 , 0

2 2

0.1 (0.05, 0.15)

0.1 3 2(0.15)

0.3454

,
2 2

0.1 0.3454
0.1 0 , 0

2 2

0.1 (0.05, 0.1727)

k h f x y

f

e

kh
k h f x y

f

f

e

kh
k h f x y

f

f
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[ ]

È ˘= +Î ˚
=
= + +

= + +
=

È ˘= +Î ˚
=

= + + +

= + + +

=
= +

= +
=

0.05

4 0 0 3

0.1

1 2 3 4

1 0

0.1 3 2(0.1727)

0.3499

( , )

0.1 (0 0.1, 0 0.3499)

0.1 (0.1, 0.3499)

0.1 3 2(0.3499)

0.4015

1
( 2 2 )

6

1
0.3 2(0.3454) 2(0.3499) 0.4015

6

0.3487

0 0.3487

0.3487

e

k h f x h y k

f

f

e

k k k k k

y y k

Hence,    y2 = y(0.1) = 0.3487

example 9
Determine y(0.1) and y(0.2) correct to four decimal places from  

d
2 , (0) 1

d

y
x y y

x
= + =  with h = 0.1.

Solution

    

d
( , ) 2

d

y
f x y x y

x
= = +

(i) Given:   x0 = 0, y0 = 1, h = 0.1, n = 0

   

[ ]

=

=

= +

=

Ê ˆ
= + +Á ˜Ë ¯

Ê ˆ
= + +Á ˜Ë ¯

=

1 0 0

1
2 0 0

( , )

0.1 (0, 1)

0.1 2(0) 1

0.1

,
2 2

0.1 0.1
0.1 0 , 1

2 2

0.1 (0.05, 1.05)

k h f x y

f

kh
k h f x y

f

f
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[ ]

[ ]

[ ]

= +

=

Ê ˆ
= + +Á ˜Ë ¯

Ê ˆ
= + +Á ˜Ë ¯

=

= +

=
= + +

= + +
=

= +

=

=

2
3 0 0

4 0 0 3

0.1 2(0.05) 1.05

0.115

,
2 2

0.1 0.115
0.1 0 , 1

2 2

0.1 (0.05, 1.0575)

0.1 2(0.05) 1.0575

0.11575

( , )

0.1 (0 0.1, 1 0.11575)

0.1 (0.1, 1.11575)

0.1 2(0.1) 1.11575

0.13158

kh
k h f x y

f

f

k h f x h y k

f

f

k

[ ]

+ + +

= + + +

=
= +

= +
=

1 2 3 4

1 0

1
( 2 2 )

6

1
0.1 2(0.115) 2(0.11575) 0.13158

6

0.1155

1 0.1155

1.1155

k k k k

y y k

Hence,    y1 = y(0.1) = 1.1155

(ii) Given:    x1 = 0.1, y1 = 1.1155, h = 0.1, n = 1

 

[ ]

[ ]

=

=

= +

=

Ê ˆ
= + +Á ˜Ë ¯

Ê ˆ
= + +Á ˜Ë ¯

=

= +

=

1 1 1

1
2 1 1

( , )

0.1 (0.1, 1.1155)

0.1 2(0.1) 1.1155

0.13165

,
2 2

0.1 0.13165
0.1 0.1 , 1.1155

2 2

0.1 (0.15, 1.1813)

0.1 2(0.15) 1.1813

0.14813

k h f x y

f

kh
k h f x y

f

f
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[ ]

[ ]

Ê ˆ
= + +Á ˜Ë ¯

Ê ˆ
= + +Á ˜Ë ¯

=

= +

=
= + +

= + +
=

= +

=

= + +

2
3 1 1

4 1 1 3

1 2

,
2 2

0.1 0.14813
0.1 0.1 , 1.1155

2 2

0.1 (0.15, 1.18965)

0.1 2(0.15) 1.18965

0.149

( , )

0.1 (0.1 0.1, 1.1155 0.149)

0.1 (0.2, 1.2645)

0.1 2(0.2) 1.2645

0.16645

1
[ 2 2

6

kh
k h f x y

f

f

k h x h y k

f

f

k k k +

= + + +

=
= +

= +
=

3 4

2 1

)

1
[0.13165 2(0.14813) 2(0.149) 0.16645]

6

0.1487

1.1155 0.1487

1.2642

k k

y y k

Hence,    y2 = y(0.2) = 1.2642

example 10
Apply the Runge–Kutta method of fourth order to find an approximate 

value of y at x = 0.6 
d

, (0.4) 0.41
d

y
x y y

x
= + =  in two steps.

Solution

    

d
( , )

d

y
f x y x y

x
= = +

(i) Given:   x0 = 0.4, y0 = 0.41, h = 0.1, n = 0

 

=

=

= +
=

1 0 0( , )

0.1 (0.4, 0.41)

0.1 0.4 0.41

0.09

k hf x y

f
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1
2 0 0

2
3 0 0

4 0 0

,
2 2

0.1 0.09
0.1 0.4 ,0.41

2 2

0.1 (0.45, 0.455)

0.1 0.45 0.455

0.0951

,
2 2

0.1 0.0951
0.1 0.4 , 0.41

2 2

0.1 (0.45, 0.4576)

0.1 0.45 0.4576

0.0953

( ,

kh
k hf x y

f

f

kh
k hf x y

f

f

k hf x h y

Ê ˆ
= + +Á ˜Ë ¯

Ê ˆ
= + +Á ˜Ë ¯

=

= +
=

Ê ˆ
= + +Á ˜Ë ¯

Ê ˆ
= + +Á ˜Ë ¯

=

= +
=
= + +

[ ]

3

1 2 3 4

1 0

)

0.1 (0.4 0.1, 0.41 0.0953)

0.1 (0.5, 0.5053)

0.1 0.5 0.5053

0.1003

1
( 2 2 )

6

1
0.09 2(0.0951) 2(0.0953) 0.1003

6

0.0952

0.41 0.0952

0.5052

k

f

f

k k k k k

y y k

= + +
=

= +
=

= + + +

= + + +

=
= +

= +
=

(ii) Now,      x1 = 0.5, y1 = 0.5052, h = 0.1, n = 1

 

=

=

= +
=

Ê ˆ
= + +Á ˜Ë ¯

Ê ˆ
= + +Á ˜Ë ¯

1 1 1

1
2 1 1

( , )

0.1 (0.5, 0.5052)

0.1 0.5 0.5052

0.1003

,
2 2

0.1 0.1003
0.1 0.5 , 0.5052

2 2

k h f x y

f

kh
k h f x y

f
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=

= +

=

Ê ˆ
= + +Á ˜Ë ¯

Ê ˆ
= + +Á ˜Ë ¯

=

= +
=
= + +

= + +
=

=

2
3 1 1

4 1 1 3

0.1 (0.55, 0.5554)

0.1 0.55 0.5554

0.1051

,
2 2

0.1 0.1051
0.1 0.5 , 0.5052

2 2

0.1 (0.55, 0.5578)

0.1 0.55 0.5578

0.1053

( , )

0.1 (0.5 0.1, 0.5052 0.1053)

0.1 (0.6, 0.6105)

f

kh
k h f x y

f

f

k h f x h y k

f

f

[ ]

+
=

= + + +

= + + +

=
= +

= +
=

1 2 3 4

2 1

0.1 0.6 0.6105

0.1100

1
( 2 2 )

6

1
0.1003 2(0.1051) 2(0.1053) 0.1100

6

0.1052

0.5052 0.1052

0.6104

k k k k k

y y k

Hence,    y2 = y(0.6) = 0.6104

example 11

Solve the differential equation 1 1

d 1
, 0, 1

d

y
x y

x x y
= = =

+
 for the interval 

(0, 1) choosing h = 0.5 by the Runge–Kutta method of fourth order.

Solution

    

d 1
( , )

d

y
f x y

x x y
= =

+
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(i) Given:  x0 = 0, y0 = 1, h = 0.5, n = 0

 

=

=

Ê ˆ
= Á ˜Ë ¯+
=

Ê ˆ
= + +Á ˜Ë ¯

Ê ˆ
= + +Á ˜Ë ¯

=

Ê ˆ
= Á ˜Ë ¯+
=

Ê ˆ
= + +Á ˜Ë ¯

Ê ˆ
= + +Á ˜Ë ¯

=

=

1 0 0

1
2 0 0

2
3 0 0

( , )

0.5 (0, 1)

1
0.5

0 1

0.5

,
2 2

0.5 0.5
0.5 0 , 1

2 2

0.5 (0.25, 1.25)

1
0.5

0.25 1.25

0.3333

,
2 2

0.5 0.3333
0.5 0 , 1

2 2

0.5 (0.25, 1.1666)

0

k h f x y

f

kh
k h f x y

f

f

kh
k h f x y

f

f

Ê ˆ
Á ˜Ë ¯+

=
= + +

= + +
=

Ê ˆ
= Á ˜Ë ¯+
=

4 0 0 2

1
.5

0.25 1.1666

0.3529

( , )

0.5 (0 0.5, 1 0.3529)

0.5 (0.5, 1.3529)

1
0.5

0.5 1.3529

0.2698

k h f x h y k

f

f

  

[ ]

= + + +

= + + +

=
= +

= +
=

1 2 3 4

1 0

1
( 2 2 )

6

1
0.5 2(0.3333) 2(0.3529) 0.2698

6

0.3570

1 0.3570

1.3570

k k k k k

y y k
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(ii) Now,   x1 = 0.5, y1 = 1.3570, h = 0.5, n = 1

 

1 1 1

1
2 1 1

2
3 1 1

( , )

0.5 (0.5, 1.3570)

1
0.5

0.5 1.3570

0.2692

,
2 2

0.5 0.2692
0.5 0.5 , 1.3570

2 2

0.5 (0.75, 1.4916)

1
0.5

0.75 1.4916

0.2230

,
2 2

0.5
0.5 0.5 , 1.

2

k h f x y

f

kh
k h f x y

f

f

kh
k h f x y

f

=

=

Ê ˆ
= Á ˜Ë ¯+
=

Ê ˆ
= + +Á ˜Ë ¯

Ê ˆ
= + +Á ˜Ë ¯

=

Ê ˆ
= Á ˜Ë ¯+
=

Ê ˆ
= + +Á ˜Ë ¯

= +

4 1 1 3

0.2230
3570

2

0.5 (0.75, 1.4685)

1
0.5

0.75 1.4685

0.2253

( , )

0.5 (0.5 0.5, 1.3570 0.2253)

0.5 (1, 1.5823)

1
0.5

1 1.5823

0.1936

f

k h f x h y k

f

f

Ê ˆ
+Á ˜Ë ¯

=

Ê ˆ
= Á ˜Ë ¯+
=
= + +

= + +
=

Ê ˆ
= Á ˜Ë ¯+
=

 

[ ]

1 2 3 4

2 1

1
( 2 2 )

6

1
0.2692 2(0.2230) 2(0.2253) 0.1936

6

0.2265

1.3570 0.2265

1.5835

k k k k k

y y k

= + + +

= + + +

=
= +

= +
=
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example 12
Apply the Runge–Kutta method of fourth order to find an approximate 

value of y at x = 0.2 if 
2d
,

d

y
x y

x
= +  given that y = 1 when x = 0 in steps 

of h = 0.1. [Summer 2014]

Solution

    

2d
( , )

d

y
f x y x y

x
= = +

(i) Given:  x0 = 0, y0 = 1, h = 0.1, n = 0

 

=

=

= +
=

Ê ˆ
= + +Á ˜Ë ¯

Ê ˆ
= + +Á ˜Ë ¯

=

È ˘= +Î ˚
=

Ê ˆ
= + +Á ˜Ë ¯

Ê ˆ
= + +Á ˜Ë ¯

=

1 0 0

2

1
2 0 0

2

2
3 0 0

( , )

0.1 (0, 1)

0.1(0 1 )

0.1

,
2 2

0.1 0.1
0.1 0 , 1

2 2

0.1 (0.05, 1.05)

0.1 0.05 (1.05)

0.1152

,
2 2

0.1 0.1152
0.1 0 , 1

2 2

0.1 (0.05, 1.0576)

k h f x y

f

kh
k h f x y

f

f

kh
k h f x y

f

f

 

È ˘= +Î ˚
=
= + +

= + +
=

È ˘= +Î ˚
=

2

4 0 0 3

2

0.1 0.05 (1.0576)

0.1168

( , )

0.1 (0 0.1, 1 0.1168)

0.1 (0.1, 1.1168)

0.1 0.1 (1.1168)

0.1347

k h f x h y k

f

f
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[ ]

= + + +

= + + +

=
= +

= +
=

1 2 3 4

1 0

1
( 2 2 )

6

1
0.1 2(0.1152) 2(0.1168) 0.1347

6

0.1164

1 0.1164

1.1164

k k k k k

y y k

(ii) Now, x1 = 0.1, y1 = 1.1164, h = 0.1, n = 1

 

=

=

È ˘= +Î ˚
=

Ê ˆ
= + +Á ˜Ë ¯

Ê ˆ
= + +Á ˜Ë ¯

=

È ˘= +Î ˚
=

Ê ˆ
= + +Á ˜Ë ¯

= +

1 1 1

2

1
2 1 1

2

2
3 1 1

( , )

0.1 (0.1, 1.1164)

0.1 0.1 (1.1164)

0.1346

,
2 2

0.1 0.1346
0.1 0.1 , 1.1164

2 2

0.1 (0.15, 1.1837)

0.1 0.15 (1.1837)

0.1551

,
2 2

0.1
0.1 0.1 , 1.

2

k h f x y

f

kh
k h f x y

f

f

kh
k h f x y

f
Ê ˆ

+Á ˜Ë ¯

=

È ˘= +Î ˚
=
= + +

= + +
=

È ˘= +Î ˚
=

2

4 1 1 3

2

0.1551
1164

2

0.1 (0.15, 1.1939)

0.1 0.15 (1.1939)

0.1575

( , )

0.1 (0.1 0.1, 1.1164 0.1575)

0.1 (0.2, 1.2739)

0.1 0.2 (1.2739)

0.1822

f

k h f x h y k

f

f
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[ ]

= + + +

= + + +

=
= +

= +
=

1 2 3 4

2 1

1
( 2 2 )

6

1
0.1346 2(0.1551) 2(0.1575) 0.1822

6

0.157

1.1164 0.157

1.2734

k k k k k

y y k

Hence,     y2 = y(0.2) = 1.2734

exercIse 7.4

solve the following differential equations by the runge—Kutta method:

 1. 
0 0

d
with 0, 1at 0.2

d

y
x y x y x

x
= + = = =

 [ans.: 1.2424]

 2. = = = =
d

with (1) 2 at 1.2, 1.4
d

y
xy y x x

x
 [ans.: 2.4921, 3.2311]

 3. 2 2

0 0

d
with 1, 1.5, 0.1at 1.2

d

y
x y x y h x

x
= + = = = =

 [ans.: 2.5043]

 4. 
-

= = = =
+

2 2

2 2

d
with (0) 1, at 0.2 and 0.4

d

y y x
y x x

x y x

 [ans.: 1.8310, 2.0214]

 5. 
0 0

d
with 0, 1at 0.2

d

y y x
x y x

x y x

-
= = = =

+
 [ans.: 1.1678]

 6. 2

0 0

d
1 with 0, 0 at 0.2, 0.4 and 0.6

d

y
y x y x

x
= + = = =

 [ans.: 0.2027, 0.4228, 0.6891]

 7. 2

0 0

d
with 2, 1for 2.2 taking 0.2

d

y
xy x y x h

x
= = = = =

 [ans.: —1.7241]

 8. 2

0 0

d
with 0, 1at 0.2 taking 0.1

d

y
x y x y x h

x
= - = = = =

 [ans.: 0.8512]
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 9. 
-

= = = =
0 0

d
with 1, 1at 1.1

d

y x y
x y x

x xy

 [ans.: 1.0045]

 10. 

2

0 02

d 2
with 0, 1at 0.1, 0.2, 0.3, and 0.4

d

y y x
x y x

x y x

-
= = = =

+
 [ans.: 1.0911, 1.1677, 1.2352, 1.2902]

7.6 MIlne’s PredIctor-corrector Method

Consider the differential equation

 

d
( , )

d

y
f x y

x
=

with the initial condition y(x0) = y0.

By Taylor’s series method,

 

1 0

2 0

3 0

( )

( 2 )

( 3 )

y y x h

y y x h

y y x h

= +

= +

= +

Also,

 

0 0 0

1 0 1

2 0 2

3 0 3

( , )

( , )

( 2 , )

( 3 , )

f f x y

f f x h y

f f x h y

f f x h y

=

= +

= +

= +

By Newton’s forward interpolation formula,

   

2 3
0 0 0 0

( 1) ( 1)( 2)
( , )

2! 3!

n n n n n
f x y f n f f f

- - -
= + D + D + D +

Now, 

0

0

0

0

4

4 0

4

2 3
0 0 0 0 0

( , ) d

( 1) ( 1)( 2)
d

2! 3!

x h

x

x h

x

y y f x y x

n n n n n
y f n f f f x

+

+

= +

- - -Ê ˆ
= + + D + D + D +Á ˜Ë ¯

Ú

Ú 

Putting x = x0 + nh, dx = hdn

When x = x0,   n = 0

When x = x0 + 4h  n = 4

4
2 3

4 0 0 0 0 0

0

( 1) ( 1)( 2)
d

2! 3!

n n n n n
y y h f n f f f n

- - -Ê ˆ
= + + D + D + D +Á ˜Ë ¯Ú 
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4
2 3 2 4

2 3 2 3
0 0 0 0 0

0

2 3
0 0 0 0 0

2 3
0 0 0 0 0

1 1

2 2 3 2 6 4

1 64 1
4 8 8 (64 64 16)

2 3 6

20 8
4 8

3 3

n n n n
y h f n f f n n f

y h f f f f

y h f f f f

Ê ˆ Ê ˆ
= + + D + - D + - + D +Á ˜ Á ˜

Ë ¯ Ë ¯

È ˘Ê ˆ
= + + D + - D + - + D +Í ˙Á ˜Ë ¯Î ˚

È ˘
= + + D + D + D +Í ˙Î ˚







Neglecting fourth and higher order differences and expressing Df0, D
2
f0 and D3

f0 in 

terms of the function values,

y y h f f f f f f f f f fp4 0 0 1 0 2 1 0 3 2 1 04 8
20

3
2

8

3
3 3= + + -( ) + - +( ) + - + -( )È

ÎÍ
˘

˚̇̇

= + - + -
Ê
ËÁ

ˆ
¯̃

+ - +
Ê
ËÁ

ˆ
¯̃

+ -
Ê
ËÁ

ˆ
¯̃

+y h f f f0 0 1 24 8
20

3

8

3
8

40

3
8

20

3
8

8

3
ff

y h f f f

y
h

f f f

3

0 1 2 3

0 1 2 3

8

3

4

3

8

3

4

3
2 2

È

Î
Í

˘

˚
˙

= + - +
Ê
ËÁ

ˆ
¯̃

= + - +( )

This equation is known as predictor.

In general,

 
y y

h
f f fn p n n n n( )+ - - -= + - +( )1 3 2 1

4

3
2 2

From y4, a first approximation to f4 = f (x0 + 4h, y4) is obtained.

A better value of y4 is obtained by Simpson’s rule.

 
4 2 2 3 4( 4 )

3
c

h
y y f f f= + + +

This equation is known as corrector.

In general,

 
y y

h
f f fn c n n n n( )+ - - += + + +( )1 1 1 1

3
4

Then an improved value of f4 is calculated using y4c and again the corrector is applied 

to find a still better value of y4c. This step is repeated till two consecutive values of y4c 

are same.

Once y4 and f4 are obtained to the desired degree of accuracy, the next value of y is 

obtained from predictor-corrector equations.

This method is known as Milne’s predictor-corrector method.
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example 1

Given 2 2d 1
(1 )

d 2

y
x y

x
= +  and y(0) = 1, y(0.1) = 1.06, y(0.2) = 1.12, 

y(0.3) = 1.21, evaluate y(0.4).

Solution

 

0 1 2 3 4

0 1 2 3

0, 0.1, 0.2, 0.3, 0.4

1, 1.06, 1.12, 1.21, 0.1

x x x x x

y y y y h

= = = = =

= = = = =

 

2 2

2 2 2 2
1 1 1

2 2 2 2
2 2 2

2 2 2 2
3 3 3

d 1
( , ) (1 )

d 2

1 1
(1 ) 1 (0.1) (1.06) 0.5674

2 2

1 1
(1 ) 1 (0.2) (1.12) 0.6523

2 2

1 1
(1 ) 1 (0.3) (1.21) 0.7979

2 2

y
f x y x y

x

f x y

f x y

f x y

= = +

È ˘= + = + =Î ˚

È ˘= + = + =Î ˚

È ˘= + = + =Î ˚

By Milne’s predictor method,

 

[ ]

4 0 1 2 3

2 2
4 4 4

2 2

4
(2 2 )

3

4(0.1)
1 2(0.5674) 0.6523 2(0.7979)

3

1.2771

1
(1 )

2

1
1 (0.4) (1.2771)

2

0.9460

p

p

h
y y f f f

f x y

= + - +

= + - +

=

= +

È ˘= +Î ˚

=
By Milne’s corrector method,

 
[ ]

4 2 2 3 4( 4 )
3

0.1
1.12 0.6523 4(0.7979 0.9460 1.2797

3

c

h
y y f f f= + + +

= + + + =

Again, 2 2
4 4 4

2 2

1
(1 )

2

1
1 (0.4) (0.2797)

2

0.9498

cf x y= +

È ˘= +Î ˚

=
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By Milne’s corrector method,

     

[ ]

4 2 2 3 4( 4 )
3

0.1
1.12 0.6523 4(0.7979) 0.9498

3

1.2798

c

h
y y f f f= + + +

= + + +

=
\  y(0.4) = 1.2798

example 2
Find y(4.4) given 5xy¢ + y

2 – 2 = 0 with y(4) = 1, y(4.1) = 1.0049, 

y(4.2) = 1.0097, y(4.3) = 1.0143.

Solution

 

0 1 2 3 4

0 1 2 3

4, 4.1, 4.2, 4.3, 4.4

1, 1.0049, 1.0097, 1.0143, 0.1

x x x x x

y y y y h

= = = = =

= = = = =

 

2

2 2
1

1
1

2 2
2

2
2

2 2
3

3
3

d 2
( , )

d 5

2 2 (1.0049)
0.0483

5 5(4.1)

2 2 (1.0097)
0.0467

5 5(4.2)

2 2 (1.0143)
0.0452

5 5(4.3)

y y
f x y

x x

y
f

x

y
f

x

y
f

x

-
= =

- -
= = =

- -
= = =

- -
= = =

By Milne’s predictor method,

 

[ ]

4 0 1 2 3

2 2
4

4
4

4
(2 2 )

3

4(0.1)
1 2(0.0483) 0.0467 2(0.0452)

3

1.0187

2 2 (1.0187)
0.0437

5 5(4.4)

p

p

h
y y f f f

y
f

x

= + - +

= + - +

=

- -
= = =

By Milne’s corrector method,

 

[ ]

4 2 2 3 4( 4 )
3

0.1
1.0097 0.0467 4(0.0452) 0.0437)

3

1.0187

c

h
y y f f f= + + +

= + + +

=
\ y(4.4) = 1.0187
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example 3
Given y¢ = x(x2

 + y
2) e

–x
, y(0) = 1, find y at 0.1, 0.2, and 0.3 by Taylor’s 

series method and compute y(0.4) by Milne’s method.

Solution

 

2 2d
( , ) ( )

d

xy
f x y x x y e

x

-= = +

 (i) Given: x0 = 0,  y0 = 1,  h = 0.1,  x1 = x0 + h = 0 + 0.1 = 0.1

         

2 2
0

3 2 2 2

3 2 2 2
0

3 2 2 2 2 2

02

( ) 0

( )( ) 3 (2 )

( 3 2 ) 1

3 2 3
2

2 6 2 2 ( ) 2

x

x x

v

x

y x x y e y

y x xy e x y x y e

e x xy x y xyy y

x xy x y xyy x y
y e y

xyy x yy x y xyy

-

- -

-

-

= + =¢ ¢

È ˘= + - + + +¢¢ Î ˚

= - - + + + =¢ ¢¢

È ˘- - + + + + +¢
= - = -¢¢¢ ¢¢¢Í ˙

+ - - - -¢ ¢ ¢ ¢Í ˙Î ˚

  By Taylor’s series,

 

2 3

1 1 0 0 0 0

2 3

1

( )
2! 3!

(0.1) (0.1)
(0.1) 1 0.1(0) (1) ( 2)

2 6

1.0047

h h
y y x y hy y y

y y

= = + + + +¢ ¢¢ ¢¢¢

= = + + + - +

=





 (ii) Given: x1 = 0.1, y1 = 1.0047, h = 0.1, x2 = x1 + h = 0.1 + 0.1 = 0.2

      

1

1

1

0.0922

0.849

1.247

y

y

y

=¢

=¢¢

= -¢¢¢

  By Taylor’s series,

   

2 3

2 2 1 1 1 1

2 3

2

( )
2! 3!

(0.1) (0.1)
(0.2) 1.0047 0.1(0.0922) (0.849) ( 1.247)

2! 3!

1.018

h h
y y x y hy y y

y y

= = + + + +¢ ¢¢ ¢¢¢

= = + + + - +

=





 (iii) Given: x2 = 0.2, y2 = 1.018, h = 0.1, x3 = x2 + h = 0.2 + 0.1 = 0.3

     

2

2

2

0.176

0.77

0.819

y

y

y

=¢

=¢¢

=¢¢¢
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  By Taylor’s series,

 

2 3

3 3 2 2 2 2

2 3

3

( )
2! 3!

(0.1) (0.1)
(0.3) 1.018 0.1(0.176) (0.77) (0.819)

2! 3!

1.04

h h
y y x y hy y y

y y

= = + + + +¢ ¢¢ ¢¢¢

= = + + + +

=





For Milne’s method,

 

0 0

1 1 1

2 2 2

3 3 3

0 1

0.1 1.0047 0.092

0.2 1.018 0.176

0.3 1.04 0.26

x y

x y f

x y f

x y f

= =

= = =

= = =

= = =

By Milne’s predictor method,

 

y y
h

f f fp4 0 1 2 3

4

3
2 2

1
4 0 1

3
2 0 092 0 176 2 0 26

1

= + - +

= + - +[ ]
=

( )

( . )
( . ) . ( . )

..

. , .

. ( . ) ( . )

09

0 4 1 09

0 4 0 4 1 09

4 4

4 4 4
2

4
2

2 2

4

x y

f x x y e

p

p
x

= =

= +( )
= +ÈÎ

-

˘̊̆

=

-
e

0 4

0 3615

.

.

By Milne’s corrector method,

 

[ ]

4 2 2 3 4( 4 )
3

0.1
1.018 0.176 4(0.26) 0.3615

3

1.071

c

h
y y f f f= + + +

= + + +

=
\ y(0.4) = 1.071

example 4
Determine the value of y(0.4) using the predictor-corrector method, 

given 
2d
, (0) 1.

d

y
xy y y

x
= + =  Use Taylor series to get the values of 

y(0.1), y(0.2), y(0.3). Take h = 0.1. [Summer 2013, 2015]
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Solution

 

2d
( , )

d

y
f x y xy y

x
= = +

 (i) Given:   x0 = 0, y0 = 1,  h = 0.1, x1 = x0 + h = 0 + 0.1 = 0.1

 

2 2
0

0

2 2
0

0 (1) 1

2 0 1 2(1)(1) 3

2 2 2( ) 0 2(1) 2(1)(3) 2(1) 10

y xy y y

y xy y yy y

y xy y yy y y

= + = + =¢ ¢

= + + = + + =¢¢ ¢ ¢ ¢¢

= + + + = + + + =¢¢¢ ¢¢ ¢ ¢¢ ¢ ¢¢¢

  By Taylor’s series,

 

2 3

1 1 0 0 0 0

2 3

1

( )
2! 3!

(0.1) (0.1)
(0.1) 1 0.1(1) (3) (10)

2! 3!

1.1167

h h
y y x y hy y y

y y

= = + + + +¢ ¢¢ ¢¢¢

= = + + + +

=





 (ii) Given:   x1 = 0.1,  y1 = 1.1167,  h = 0.1,  x2 = x1 + h = 0.1 + 0.1 = 0.2

 

2
1

1

2
1

0.1(1.1167) (1.1167) 1.3587

0.1(1.3587) 1.1167 2(1.1167)(1.3587) 4.2871

0.1(4.2871) 2(1.3587) 2(1.1167)(4.2871) 2(1.3587)

16.4131

y

y

y

= + =¢

= + + =¢¢

= + + +¢¢¢

=
  By Taylor’s series,

 

2 3

2 2 1 1 1 1

2 3

2

( )
2! 3!

(0.1) (0.1)
(0.2) 1.1167 0.1(1.3587) (4.2871) (16.4131)

2! 3!

1.2767

h h
y y x y hy y y

y y

= = + + + +¢ ¢¢ ¢¢¢

= = + + +

=



 (iii) Given:   x2 = 0.2,  y2 = 1.2767,  h = 0.1,  x3 = x2 + h = 0.2 + 0.1 = 0.3

 

2
2

2

2
2

0.2(1.2767) (1.2767) 1.8853

0.2(1.8853) 1.2767 2(1.2767)(1.8853) 6.4677

0.2(6.4677) 2(1.8853) 2(1.2767)(6.4677) 2(1.8853)

28.6875

y

y

y

= + =¢

= + + =¢¢

= + + +¢¢¢

=
  By Taylor’s series,

2 3

3 3 2 2 2 2

2 3

3

( )
2! 3!

(0.1) (0.1)
(0.3) 1.2767 0.1(1.8853) (6.4677) (28.6875)

2! 3!

1.5023

h h
y y x y hy y y

y y

= = + + + +¢ ¢¢ ¢¢¢

= = + + + +

=
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For Milne’s method,

    

0 0

2
1 1 1

2
2 2 2

2
3 3 3

0 1

0.1 1.1167 (0.1)(1.1167) (1.1167) 1.3587

0.2 1.2767 (0.2)(1.2767) (1.2767) 1.8853

0.3 1.5023 (0.3)(1.5023) (1.5023) 2.7076

x y

x y f

x y f

x y f

= =

= = = + =

= = = + =

= = = + =

By Milne’s predictor method,

 

[ ]

4 0 1 2 3

4 4

2
4

4
(2 2 )

3

4(0.1)
1 2(1.3587) 1.8853 2(2.7076)

3

1.833

0.4, 1.833

(0.4)(1.833) (1.833) 4.093

p

p

h
y y f f f

x y

f

= + - +

= + - +

=
= =

= + =

By Milne’s corrector method,

 

[ ]

4 2 2 3 4( 4 )
3

0.1
1.2767 1.8853 4(2.7076) 4.093

3

1.83699

c

h
y y f f f= + + +

= + + +

=
\ y(0.4) = 1.83699

example 5
Using Taylor’s series method, compute the approximate values of y 

at x = 0.2, 0.4, and 0.6 for the differential equation 
2d

d

y
x y

x
= -  with 

the initial condition y(0) = 0. Now, apply Milne’s predictor-corrector 

method to find y at x = 0.8. [Winter 2012]

Solution

 

2d
( , )

d

y
f x y x y

x
= = -

 (i) Given:  x0 = 0, y0 = 0, h = 0.2, x1 = x0 + h = 0 + 0.2 = 0.2

 

2
0

0

2 2
0

0

1 2 1 2(0)( 1) 1

2 2( ) 2(0)(3) 2(0) 0

y x y y

y yy y

y yy y y

= - =¢ ¢

= - = - - =¢¢ ¢ ¢¢

= - - = - - =¢¢¢ ¢¢ ¢ ¢¢¢
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  By Taylor’s series,

 

2 3

1 1 0 0 0 0

2 3

1

( )
2! 3!

(0.2) (0.2)
(0.2) 0 0.2(0) (1) (0)

2! 3!

0.02

h h
y y x y hy y y

y y

= = + + + +¢ ¢¢ ¢¢¢

= = + + + +

=





 (ii) Given:   x1 = 0.2, y1 = 0.02, h = 0.2, x2 = x1 + h = 0.2 + 0.2 = 0.4

 

2
1

1

2
1

0.2 (0.02) 0.1996

1 2(0.02)(0.1996) 0.9920

2(0.02)(0.9920) 2(0.1996) 0.1194

y

y

y

= - =¢

= - =¢¢

= - - = -¢¢¢

  By Taylor’s series,

2 3

2 2 1 1 1 1

2 3

2

( )
2! 3!

(0.2) (0.2)
(0.4) 0.02 0.2(0.1996) (0.9920) ( 0.1194)

2! 3!

0.0796

h h
y y x y hy y y

y y

= = + + + +¢ ¢¢ ¢¢¢

= = + + + - +

=





 (iii) Given:   x2 = 0.4, y2 = 0.0796, h = 0.2, x3 = x2 + h = 0.4 + 0.2 = 0.6

 

2
2

2

2
2

0.4 (0.0796) 0.3937

1 2(0.0796)(0.3937) 0.9373

2(0.0796)(0.9373) 2(0.3937) 0.4592

y

y

y

= - =¢

= - =¢¢

= - - = -¢¢¢

  By Taylor’s series,
2 3

3 3 2 2 2 2

2 3

( )
2! 3!

(0.2) (0.2)
0.0796 0.2(0.3937) (0.9373) ( 0.4592)

2! 3!

0.1765

h h
y y x y hy y y= = + + + +¢ ¢¢ ¢¢¢

= + + + - +

=





For Milne’s method,

 

0 0

2
1 1 1

2
2 2 2

2
3 3 3

0 0

0.2 0.02 0.2 (0.02) 0.7996

0.4 0.0796 0.4 (0.0796) 0.3937

0.6 0.1765 0.6 (0.1765) 0.5688

x y

x y f

x y f

x y f

= =

= = = - =

= = = - =

= = = - =



7.62 Chapter 7 Ordinary Differential Equations

By Milne’s predictor method,

 

[ ]

4 0 1 2 3

4
(2 2 )

3

4(0.2)
0 2(0.1996) 0.3937 2(0.5688)

3

0.3048

p

h
y y f f f= + - +

= + - +

=

 

4 4

2
4

0.8, 0.3048

0.8 (0.3048) 0.7071

px y

f

= =

= - =

By Milne’s corrector method,

 

[ ]

4 2 2 3 4( 4 )
3

0.2
0.0796 0.3937 4(0.5688) 0.7071

3

0.3047

 (0.8) = 0.3047

c

h
y y f f f

y

= + + +

= + + +

=
\

exercIse 7.4

 1.  Find y(2) if y(x) is the solution of = +
d 1

( )
d 2

y
x y

x
 given y(0) = 2, 

y(0.5) = 2.636, y(1) = 3.595 and y(1.5) = 4.968.

 [ans.: 6.8732]

 2.  Find y(0.8) given y¢ = y – x2, y(0) = 1, y(0.2) = 1.12186, y(0.4) = 1.46820, 

y(0.6) = 1.73790.

 [ans.: 2.01105]

 3.  Given y¢ = x2 – y, y(0) = 1, y(0.1) = 0.9052, y(0.2) = 0.8213, find y(0.3) 

by Taylor series. Also, find y(0.4) and y(0.5).

 [ans.: 0.6897, 0.6435]

 4.  If = -
d

2 ,
d

xy
e y

x
 y(0) = 2, y(0.1) = 2.010, y(0.2) = 2.040, y(0.3) = 2.090, 

find y(0.4) and y(0.5).

 [ans.: 2.1621, 2.546]

 5.  Given =¢
+
1

,y
x y

 y(0) = 2, y(0.2) = 2.0933, y(0.4) = 2.1755, y(0.6) = 2.2493, 

find y(0.8).

 [ans.: 2.3164]
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Points to remember

Taylor’s Series Method

 

2 3

1
2! 3!

n n n n n

h h
y y hy y y+ = + + + +¢ ¢¢ ¢¢¢ 

Euler’s Method

 + = +1 ( , )n n n ny y h f x y

Modified Euler’s Method

 
= +(0)

1 0 0 0( , )y y h f x y

 

(1) (0)
1 0 0 0 1 1( , ) ( , )

2

h
y y f x y f x yÈ ˘= + +Î ˚

 

(2) (1)
1 0 0 0 1 1( , ) ( , )

2

h
y y f x y f x yÈ ˘= + +Î ˚

 

+ È ˘= + + =Î ˚
( 1) ( )
1 0 0 0 1 1( , ) ( , ) , 0, 1, 2,...

2

n nh
y y f x y f x y n

 
= +(0)

2 1 1 1( , )y y h f x y

  

È ˘= + +Î ˚
(1) (0)
2 1 1 1 2 2( , ) ( , )

2

h
y y f x y f x y

Runge–Kutta Methods

1. First-Order Runge–Kutta Method

 
+ = + + +¢ ¢¢ 

2

1
2!

n n n n

h
y y h y y

2. Second-Order Runge–Kutta Method (Heun Method)

 

1

2 1

1 2

1

( , )

( , )

1
( )

2

n n

n n

n n

k h f x y

k h f x h y k

k k k

y y k+

=

= + +

= +

= +
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3. Third-Order Runge–Kutta Method

  

=

Ê ˆ
= + +Á ˜Ë ¯

1

1
2

( , )

,
2 2

n n

n n

k h f x y

kh
k h f x y

 +

= + + -

= + +

= +

3 2 1

1 2 3

1

( , 2 )

1
( 4 )

6

n n

n n

k h f x h y k k

k k k k

y y k

4. Fourth-Order Runge–Kutta Method

   

1

1
2

2
3

4 3

1 2 3 4

1

( , )

,
2 2

,
2 2

( , )

1
( 2 2 )

6

n n

n n

n n

n n

n n

k h f x y

kh
k h f x y

kh
k h f x y

k h f x h y k

k k k k k

y y k+

=

Ê ˆ
= + +Á ˜Ë ¯

Ê ˆ
= + +Á ˜Ë ¯

= + +

= + + +

= +

Milne’s Predictor-Corrector Method

 
y y

h
f f fn p n n n n( )+ - - -= + - +( )1 3 2 1

4

3
2 2

 
y y

h
f f fn c n n n n( )+ - - += + + +( )1 1 1 1

3
4



8.1 IntroductIon

Statistics is the science which deals with the collection, presentation, analysis, and 

interpretation  of numerical data. Statistics should possess the following characteristics:

 (i) Statistics are aggregates of facts.

 (ii) Statistics are affected by a large number of causes.

 (iii) Statistics are always numerically expressed.

 (iv) Statistics should be enumerated or estimated.

 (v) Statistics should be collected in a systematic manner.

 (vi) Statistics should be collected for a pre-determined purpose.

 (vii) Statistics should be placed in relation to each other.

C H A P T E R

Statistical Methods
8

chapter outline

8.1 Introduction

8.2 Data Analysis

8.3 Classification of Data
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The use of statistical methods help in presenting a complex mass of data in a simplified 

form so as to facilitate the process of comparison of characteristics in two or more 

situations. Statistics also provide important techniques for the study of relationship 

between two or more characteristics (or variables) in forecasting, testing of hypothesis, 

quality control, decision making, etc.

8.2 data analysIs

The collection and analysis of data constitute the main stages of execution of any 

statistical investigation. The procedure for collection of data depends upon various 

considerations such as objective, scope, nature of investigation, etc. Data may be 

collected for each and every unit of the whole lot (population), which will ensure greater 

accuracy. Data may also be collected for a sample of population and conclusions that 

can be drawn on the basis of this sample are taken to hold for the population.

8.3 classIfIcatIon of data

The collected data are a complex and unorganized mass of figures which is very 

difficult to analyze and interpret. Therefore, it becomes necessary to organize the data 

so that it is easier to grasp its broad features. In order to analyze the data, it is essential 

that the data are arranged in a definite form. This task is accomplished by the process 

of classification. The main objectives of any classification are

 (i) To present the data in a condensed form.

 (ii) To bring out the relationship between variables.

 (iii) To prepare data for tabulation and analysis.

 (iv) To highlight the effect of one variable by eliminating the effect of others.

Consider the raw data relating to marks obtained in mathematics by a group of 60 

students:

38, 11, 40, 0, 26, 15, 5, 40, 31, 12, 35, 0, 7, 20, 5, 28, 8, 21, 7, 28, 48, 45, 42, 17, 2, 38, 

41, 18, 16, 16, 0, 19, 10, 7, 5, 1, 17, 22, 35, 44, 28, 46, 9, 16, 29, 34, 31, 27, 4, 12, 35, 

39, 41, 8, 6, 13, 14, 17, 19, 20.

This data can be grouped and shown in tabular form as follows:

Class interval Frequency Cumulative frequency

0–6 10 10

7–13 11 21

14–20 13 34

21–27 4 38

28–34 7 45

35–41 10 55

42–48 5 60
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Thus, the 60 values have been put into only 7 groups, called the classes. The width 

of the class is called the class interval and the number in that interval is called the 

frequency. The mid-point or the mid-value of the class is called the class mark.

8.4 frequency dIstrIbutIon

A table in which the frequencies and the associated values of a variable are written 

side by side, is known as a frequency distribution. A frequency distribution can be 

discrete or continuous depending upon whether the variable is discrete or continuous. 

A frequency distribution has the following parameters:

 (i) Number of class intervals

 (ii) Width of a class interval

 (iii) Mid-value of a class

 (iv) Cumulative frequency

8.4.1 class Intervals

The class intervals can be exclusive or inclusive. In the exclusive class interval, the 

upper limit of a class is taken to be equal to the lower limit of the next class. To keep 

various class intervals as mutually exclusive, the observations with magnitude greater 

than or equal to lower limit but less than the upper limit of a class are included in it. 

For example, if the lower limit of a class is 20 and its upper limit is 30 then this class, 

written as 20–30, includes all the observations which are greater than or equal to 20 but 

less than 30. The observations with magnitude 30 will be included in the next class.

Class intervals Frequency

0–10 5

10–20 17

20–30 25

30–40 12

40–50 8

In the inclusive class interval, all the observations with magnitude greater than or equal 

to lower limit and less than or equal to upper limit of a class are included in it.

Class intervals Frequency

0–9 12

10–19 9

20–29 18

30–39 35

40–49 20
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Inclusive class intervals can be converted into exclusive class intervals by the following 

procedures:

 (i) Find the difference between the lower limit of the second class and the upper 

limit of the first class.

 (ii) Divide the difference by 2.

 (iii) Subtract the value so obtained from all the lower limits and add the value to all 

the uppper limits.

In the above example, the lower limit of the second class is 10 and the upper limit 

of the first class is 9. Hence, 
10 9

0.5
2

-
=  is subtracted from all the lower limits and 

added to all the upper limits as follows:

Class intervals Frequency

– 0.5–9.5 12

9.5–19.5 9

19.5–29.5 18

29.5–39.5 35

39.5–49.5 20

8.4.2 Mid-value of a class

In exclusive types of class intervals, the mid-value of a class is defined as the arithmetic 

mean of its lower and upper limits.

8.4.3 cumulative frequency

There are two types of cumulative frequency distributions:

 (i) Less than cumulative frequency:  Less than cumulative frequency for any value 

of the variable/class is obtained by adding successively the frequencies of all the 

previous classes, including the frequency of the class, against which the total 

are written provided the values are written in ascending order of magnitude.

 (ii) More (or greater) than cumulative frequency:  More than cumulative frequency 

for any value of the variable/class is obtained by adding successively the 

frequencies of all the succeeding classes, including the frequency of the class, 

against which the total are written provided values are written in ascending 

order of magnitude.

8.5 GraphIcal representatIon

A frequency distribution is conveniently represented by means of a graph. Graphs are  

good visual aids. It makes the raw data readily intelligible and leaves a more lasting 

impression on the mind of the observer. But it does not give accurate measurements 
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of the variable as are given by the table. Some important types of graphs are given 

below:

1. histogram A histogram is drawn by erecting rectangles over the class intervals, 

such that the areas of the rectangles are proportional to the class frequencies. If the 

class intervals are of equal size, the height of the rectangles will be proportional to 

the class frequencies. For drawing a histogram, all the class intervals are marked off 

along the x-axis on a suitable scale and frequencies are marked off along the y-axis 

on a suitable scale. If, however, the classes are of unequal width then the height of 

the rectangle will be proportional to the ratio of the frequencies to the width of the 

classes. The diagram of continuous rectangles so obtained is called a histogram. If 

the grouped frequency distribution is not continuous, first it is to be converted into a 

continuous distribution and then the histogram is drawn. The frequency distribution 

and corresponding histogram are shown below:

Class intervals Frequency

30–42 7

42–54 4

54–66 8

66–78 9

78–90 5

90–102 5

102–114 2
 

fig. 8.1

2. frequency polygon A frequency polygon for an ungrouped frequency 

distribution is obtained by joining points 

plotted with the variable values as 

abscissae and the frequencies as the 

ordinates. For a grouped frequency 

distribution, the abscissae of the points 

are mid-values of the class intervals. For 

equal class intervals, the frequency 

polygon can be obtained by joining the 

middle points of the upper sides of the 

adjacent rectangles of the histogram by 

straight lines. If the class intervals are of 

small width, the polygon can be obtained 

by drawing a smooth curve through the 

vertices of the frequency polygon and is 

called the frequency curve.
fig. 8.2
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3. cumulative frequency curve or ogive A cumulative frequency curve or 

ogive is obtained by plotting cumulative frequencies above or below a given value. 

Since a cumulative frequency distribution can be of ‘less than’ or ‘more than’ type and 

accordingly there are two types of ogives—‘less than’ ogive or ‘more than’ ogive.

A ‘less than’ ogive is obtained by plotting the points with the upper limits of the classes 

as abscissae and the corresponding less than cumulative frequency as ordinates and 

joining these points by a freehand smooth curve. A ‘more than’ ogive is obtained by 

plotting the points with the lower limits of the classes as abscissae and the corresponding 

more than cumulative frequency as ordinates and joining these points by a freehand 

smooth curve.

An ogive is used to determine certain positional averages like median, quartiles, 

deciles, percentiles, etc. Various frequency distributions can be compared on the basis 

of their ogives.

example 1
Draw a histogram and frequency curve for the following data:

Profit  

(` in thousands)
0–15 15–30 30–45 45–60 60–75 75–90 90–105 105–120 120–135

No.  of 

companies
3 7 18 25 20 12 6 5 2

Solution

Histogram and Frequency curve

fig. 8.3
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example 2
Draw a histogram and a frequency polygon for the following data:

Output  

(units per 

worker)

500–509 510–519 520–529 530–539 540–549 550–559 560–569

No. of 

workers
8 18 23 37 47 26 16

Solution

The data is presented in the form of inclusive class intervals. It can be converted into 

exclusive class intervals. The difference between the lower limit of the second class 

interval and the upper limit of the first class interval is 510 – 509 = 1. The new classes 

will be formed by subtracting 
1

2
 from the lower limit and adding 

1

2
 to the upper 

limit.

Class intervals
No. of workers 

(frequency)

499.5–509.5 8

509.5–519.5 18

519.5–529.5 23

529.5–539.5 37

539.5–549.5 47

549.5–559.5 26

559.5–569.5 16

fig. 8.4
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example 3
Construct a histogram and a frequency polygon for the following 

frequency distribution:

Marks (mid-value) 100 120 140 160 180 200

No. of students 5 6 4 6 4 5

Solution

The given data of mid-points is first converted into class interval form. The difference 

between two mid-values is 20. Hence, 
20

2
 is subtracted from each mid-value to get 

the lower limit and 
20

2
 is added to each mid-value to get the upper limit of a class 

interval. 

fig. 8.5

example 4
The following are the scores of two groups of a class in a test of reading 

ability:

Scores Group A Group B

50–52 4 2

47–49 10 3

44–46 15 4

41–43 18 8

38–40 20 12

35–37 12 17

32–34 13 22

Class intervals No. of students

90–110 5

110–130 6

130–150 4

150–170 6

170–190 4

190–210 5
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Construct a frequency polygon for each group on the same axes.

Solution

For both the groups, i.e., group A and group B, the two hypothetical intervals with 

zero frequencies, one at the beginning and the other at the end with frequencies zero 

(53–55) and (29–31) are created.

Table for Group A

Scores Class marks Frequency Points

53–55 54 0 (54, 0)

50–52 51 4 (51, 4)

47–49 48 10 (48, 10)

44–46 45 15 (45, 15)

41–43 42 18 (42, 18)

38–40 39 20 (39, 20)

35–37 36 12 (36, 12)

32–34 33 13 (33, 13)

29–31 30 0 (30, 0)

Table for Group B

Scores Class marks Frequency Points

53–55 54 0 (54, 0)

50–52 51 2 (51, 2)

47–49 48 3 (48, 3)

44–46 45 4 (45, 4)

41–43 42 8 (42, 8)

38–40 39 12 (39, 12)

35–37 36 17 (36, 17)

32–34 33 22 (33, 22)

29–31 30 0 (30, 0)
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fig. 8.6

example 5
Draw ‘less than’ and ‘more than’ ogive distributions of monthly salary 

of 250 families.

Income  

intervals
0–500 500–1000 1000–1500 1500–2000 2000–2500 2500–3000 3000–3500 3500–4000

No. of 

families
50 80 40 25 25 15 10 5

Solution

‘Less than’ and ‘More than’ Frequency Distributions

Income intervals No. of families

Less than 

cumulative 

frequency

More than 

cumulative 

frequency

     0–500 50 50 250

  500–1000 80 130 200

1000–1500 40 170 120

1500–2000 25 195 80

2000–2500 25 220 55

2500–3000 15 235 30

3000–3500 10 245 5

3500–4000 5 250 5

A ‘less than’ ogive is obtained by plotting the points (500, 50), (1000, 130), (1500, 

170), (2000, 195), (2500, 220), (3000, 235), (3500, 245), (4000, 250) and joining them 

by a freehand curve.
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A ‘more than’ ogive is obtained by plotting the points (0, 250), (500, 200), (1000, 

120), (1500, 80), (2000, 55), (2500, 30), (3000, 15), (3500, 5) and joining them by a 

freehand curve.

fig. 8.7

example 6
Draw the ‘less than’ ogive for the following distribution:

Age (in years) 0–9 10–19 20–29 30–39 40–49 50–59 60–69

No. of persons 5 15 20 25 15 12 8

Solution

The given frequency distribution is not continuous. It is first converted into continuous 

or exclusive class intervals.

Age (in years) Class intervals No. of persons
Cumulative 

frequency

0–9 –0.5–9.5 5 5

10–19   9.5–19.5 15 20

20–29 19.5–29.5 20 40

30–39 29.5–39.5 25 65

40–49 39.5–49.5 15 80

50–59 49.5–59.5 12 92

60–69 59.5–69.5 8 100

A ‘less than’ ogive is obtained by plotting points (9.5, 5), (19.5, 20), (29.5, 40), (39.5, 65), 

(49.5, 80), (59.5, 92), (69.5, 100) and joining them by a freehand smooth curve.
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fig. 8.8

example 7
Convert the following distribution into a more than frequency 

distribution:

Weekly wages less than (`) 20 40 60 80 100

No. of workers 41 92 156 194 201

For the data given, draw ‘less than’ and ‘more than’ ogives.

Solution

‘Less than’ and ‘more than’ frequency distribution.

Weekly wages (`) No. of workers f

Less than 

cumulative 

frequency

More than 

cumulative 

frequency

0–20 41 41 201

20–40 92–41 = 51 92 160

40–60 156–92 = 64 156 109

60–80 194–156 = 38 194 45

80–100 201–194 = 7 201 7

A ‘less than’ ogive is obtained by plotting the points (20, 41), (40, 92), (60, 156), (80, 

194), (100, 201) and joining them by a freehand curve.

A ‘more than’ ogive is obtained by plotting the points (0, 201), (20, 160), (40, 109), 

(60, 45), (80, 7) and joining them by a freehand curve.
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fig. 8.9

exercIse 8.1

 1.  The following are the monthly rents in rupees of 40 shops. Tabulate the 

data by grouping in intervals of ` 8.

    38, 42, 49, 35, 82, 35, 77, 60, 50, 75, 84, 75, 63, 40, 70, 42, 36, 65, 

51, 48, 74, 47, 50, 55, 64, 67, 72, 77, 82, 51, 31, 38, 43, 75, 67, 70, 

43, 64, 84, 71.

 2.  The following table shows the distribution of the number of students 

per teacher in 750 colleges:

Students 1 4 7 10 13 16 19 22 25 28

Frequency 7 46 165 195 189 89 28 19 9 3

 3. Draw a histogram for the following data:

Age (in years) 2–5 5–11 11–12 12–14 14–15 15–16

No. of boys 6 6 2 5 1 3

 4. Draw the histogram and frequency polygon for the following data:

Monthly wages

(` in thousands)
11–13 13–15 15–17 17–19 19–21 21–23 23–25

No. of workers 6 53 85 56 21 16 8

 5.  Draw the histogram and frequency polygon for the following 

distribution:

Class interval 0–99 100–199 200–299 300–399 400–499 500–599 600–699 700–799

Frequency 10 54 184 264 246 40 1 1
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 6.    Represent the following distribution by (i) histogram and (ii) frequency 

polygon:

Scores Frequency

30–39 1

40–49 3

50–59 14

60–69 20

70–79 22

80–89 12

90–99 2

 7.   Represent the following distribution by an ogive:

Marks No. of students Marks No. of students

0–10 5 50–60 4

10–20 13 60–70 1

20–30 12 70–80 3

30–40 11 80–90 1

40–50 8 90–100 2

   8.  The following table gives the distribution of monthly income of 600 

middle-class families in a certain city:

Monthly income in ` Frequency Monthly income in ` Frequency

Below 76 69 300–375 58

76–150 167 375–450 25

150–225 207 450 and over 10

225–300 65

     Draw ‘less than’ and ‘more than’ ogive for the above data.

   9. Draw an ogive by less than method for the following data:

No. of rooms 1 2 3 4 5 6 7 8 9 10

No. of houses 4 9 22 28 24 12 8 6 5 2

 10. Draw histogram, frequency polygon and ogive for the following data:

Marks Frequency Marks Frequency

0–10 4 40–50 20

10–20 10 50–60 18

20–30 16 60–70 8

30–40 22 70–80 2
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8.6 Measures of central tendency

Summarization of data is a necessary function of any statistical analysis. The data 

is summarized in the form of tables and frequency distributions. In order to bring 

the characteristics of the data, these tables and frequency distributions need to be 

summarized further. A measure of central tendency or an average is very essential and 

an important summary measure in any statistical analysis.

An average is a single value which can be taken as a representative of the whole 

distribution. There are five types of measures of central tendency or averages which 

are commonly used.

 (i) Arithmetic mean

 (ii) Median

 (iii) Mode

 (iv) Geometric mean

 (v) Harmonic mean

A good measure of average must have the following characteristics:

 (i) It should be rigidly defined so that different persons obtain the same value for 

a given set of data.

 (ii) It should be easy to understand and easy to calculate.

 (iii) It should be based on all the observations of the data.

 (iv) It should be easily subjected to further mathematical calculations.

 (v) It should not be much affected by the fluctuations of sampling.

 (vi) It should not be unduly affected by extreme observations.

 (vii) It should be easy to interpret.

8.7 arIthMetIc Mean

The arithmetic mean of a set of observations is their sum divided by the number of 

observations. Let x1, x2,..., xn be n observations. Then their average or arithmetic mean 

is given by

 

=+ + +
= = =

Â Â1 2 1

n

i

n i

x
xx x x

x
n n n

For example, the marks obtained by 10 students in Class XII in a physics examination 

are 25, 30, 21, 55, 40, 45, 17, 48, 35, 42. The arithmetic mean of the marks is given 

by

 

25 30 21 55 40 45 17 48 35 42 358
35.8

10 10

x
x

n

+ + + + + + + + +
= = = =Â

If n observations consist of n distinct values denoted by x1, x2, ..., xn of the observed 

variable x occurring with frequencies f1, f2, ..., fn respectively then the arithmetic mean 

is given by
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8.7.1 arithmetic Mean of Grouped data

In case of a grouped or continuous frequency distribution, the arithmetic mean is given 

by

 

1

1

1
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=
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and x is taken as the mid-value of the corresponding class.

example 1

Find the arithmetic mean from the following frequency distribution:

x 5 6 7 8 9 10 11 12 13 14

f 25 45 90 165 112 96 81 26 18 12

Solution

x f fx

5 25 125

6 45 270

7 90 630

8 165 1320

9 112 1008

10 96 960

11 81 891

12 26 312

13 18 234

14 12 168

Â f = 670 Â fx = 5918
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670

5918
8.83

670

N f

fx
x

N

= =

= = =

Â
Â

example 2

Find the arithmetic mean of the marks from the following data:

Marks 0–10 10–20 20–30 30–40 40–50 50–60

Number of students 12 18 27 20 15 8

Solution

Marks
Number of 

students (f)
Mid-value (x) fx

0–10 12 5 60

10–20 18 15 270

20–30 27 25 675

30–40 20 35 700

40–50 15 45 675

50–60 8 55 440

Âf = 100 Âfx = 2820

 

100

2820
28.20

100

N f

fx
x

N

= =

= = =

Â
Â

8.7.2 arithmetic Mean from assumed Mean

If the values of x and (or) f are large, the calculation of mean becomes quite time-

consuming and tedious. In such cases, the provisional mean ‘a’ is taken as that value of 

x (mid-value of the class interval) which corresponds to the highest frequency or which 

comes near the middle value of the frequency distribution. This number is called the 

assumed mean.

Let      d = x – a

 

( )fd f x a fx af

fd fx a f

fx aN

= - = -

= -

= -

Â Â Â
Â
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Dividing both the sides by n,

    

fd fx
a

N N

x a

fd
x a

N

= -

= -

\ = +

Â Â

Â

example 1

Ten coins were tossed together and the number of tails resulting from 

them were observed. The operation was performed 1050 times and the 

frequencies thus obtained for different numbers of tail (x) are shown in 

the following table. Calculate the arithmetic mean.

x 0 1 2 3 4 5 6 7 8 9 10

f 2 8 43 133 207 260 213 120 54 9 1

Solution

Let a = 5 be the assumed mean.

  d = x – a = x – 5

x f d = x – 5 fd

0 2 –5 –10

1 8 –4 –32

2 43 –3 –129

3 133 –2 –266

4 207 –1 –207

5 260 0 0

6 213 1 213

7 120 2 240

8 54 3 162

9 9 4 36

10 1 5 5

Âf = 1050 Âfd = 12

 

1050N f

fd
x a

N

= =

= +

Â
Â
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12
5

1050

5.0114

= +

=

example 2

Calculate the mean for the following frequency distribution

Class 0–8 8–16 16–24 24–32 32–40 40–48

Frequency 8 7 16 24 15 7

Solution

Let a = 28 be the assumed mean.

 d = x – a = x – 28

Class Frequency Mid-value (x) d = x – 28 fd

0–8 8 4 –24 –192

8–16 7 12 –16 –112

16–24 16 20 –8 –128

24–32 24 28 0 0

32–40 15 36 8 120

40–48 7 44 16 112

Âf = 77 Âfd = –200

 

77

( 200)
28

77

25 403

N f

fd
x a

N

= =

= +

-
= +

= ◊

Â
Â

8.7.3 arithmetic Mean by the step-deviation Method
When the class intervals in a grouped data are equal, calculation can be simplified by 

the step-deviation method. In such cases, deviation of the variate x from the assumed 

mean a (i.e., d = x – a) are divided by the common factor h which is equal to the width 

of the class interval.

Let  
x a

d
h

-
=

 

fd fd
x a h a h

Nf
= + = +Â Â

Â
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where a is the assumed mean

  
x a

d
h

-
=  is the deviation of any variate x from a

  h is the width of the class interval

  N is the number of observations

example 1

Calculate the arithmetic mean of the following marks obtained by 

students in mathematics:

Marks (x) 5 10 15 20 25 30 35 40 45 50

Number of students (f) 20 43 75 67 72 45 39 9 8 6

Solution

Let a = 30 be the assumed mean and h = 5 be the width of the class interval.

 

30

5

x a x
d

h

- -
= =

x f
30

5

x
d

-
= fd

5 20 –5 –100

10 43 –4 –172

15 75 –3 –225

20 67 –2 –134

25 72 –1 –72

30 45 0 0

35 39 1 39

40 9 2 18

45 8 3 24

50 6 4 24

Âf = 384 Âfd = –598

 

384

598
30 5

384

22.214

N f

fd
x a h

N

= =

= +

-Ê ˆ= + Á ˜Ë ¯

=

Â
Â
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example 2

The following table gives the distribution of companies according to 

size of capital. Find the mean size of the capital of a company.

Capital (` in lacs) <5 <10 <15 <20 <25 <30

No. of companies 20 27 29 38 48 53

Solution

This is a ‘less than’ type of frequency distribution. This will be first converted into 

class intervals. Let a = 12.5 be the assumed mean and h = 5 be the width of the class 

interval.

 

12.5

5

x a x
d

h

- -
= =

Class 

intervals
Frequency f Mid-value x

12.5

5

x
d

-
= fd

0–5 20 2.5 –2 –40

5–10 7 7.5 –1 –7

10–15 2 12.5 0 0

15–20 9 17.5 1 9

20–25 10 22.5 2 20

25–30 5 27.5 3 15

Âf = 53 Âfd = –3

 

53

3
12.5 5

53

12.22 lacs

N f

fd
x a h

N

= =

= +

-Ê ˆ= + Á ˜Ë ¯

=

Â
Â
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example 3

Following is the distribution of marks obtained by 60 students in a 

mathematics test:

Marks Number of students

More than 0 60

More than 10 56

More than 20 40

More than 30 20

More than 40 10

More than 50 3

Calculate the arithmetic mean.

Solution

This is a ‘more than’ type of frequency distribution. This will be first converted into 

class intervals. Let a = 35 be the assumed mean and h = 10 be the width of the class 

interval.

35

10

x a x
d

h

- -
= =

Marks
No. of 

students f
Mid-value x

35

10

x
d

-
= fd

0–10 4 5 –3 –12

10–20 16 15 –2 –32

20–30 20 25 –1 –20

30–40 10 35 0 0

40–50 7 45 1 7

50–60 3 55 2 6

Âf = 60 Âfd = –51

60

51
35 10

60

26.5

N f

fd
x a h

N

= =

= +

-Ê ˆ= + Á ˜Ë ¯

=

Â
Â
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exercIse 8.2

 1.  Find the mean of the following marks obtained by students of a class:

Marks 15 20 25 30 35 40

No. of students 9 7 12 14 15 6

 
[ ]25.58ans.:

 2.  The following table gives the distribution of total household expenditure 

(in rupees) of manual workers in a city:

Expenditure 

(in `)
100–

150

150–

200

200–

250

250–

300

300–

350

350–

400

400–

450

450–

500

Frequency 24 40 33 28 30 22 16 7

    Find the average expenditure (in `) per household.

 
[ ]266.25ans.: `

 3.  Calculate the mean for the following data:

Heights 

(in cm)
135–

140

140–

145

145–

150

150–

155

155–

160

160–

165

165–

170

170–

175

No. of boys 4 9 18 28 24 10 5 2

 
[ ]153.45 cmans.:

 4.  The weights in kilograms of 60 workers in a factory are given below. 

Find the mean weight of a worker.

Weight (in kg) 60 61 62 63 64 65

No. of workers 5 8 14 16 10 7

 
[ ]62.65 kgans.:

 5.  Calculate the mean from the following data:

Marks less than/up to 10 20 30 40 50 60

No. of students 10 30 60 110 150 180

 
[ ]35ans.:

 6.  Calculate the mean from the following data:

Marks more than 0 10 20 30 40 50 60

No. of students 180 170 150 120 70 30 0

 
[ ]35ans.:
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 7.  Calculate the mean from the following data:

Marks 1–5 6–10 11–15 16–20 21–25 26–30 31–35 36–40 41–45

No. of 

students

7 10 16 30 24 17 10 5 1

 
[ ]20.33ans.:

8.8 MedIan

Median is the central value of the variable when the values are arranged in ascending 

or descending order of magnitude. It divides the distribution into two equal parts. 

When the observations are arranged in the order of their size, median is the value of 

that item which has equal number of observations on either side.

In case of ungrouped data, if the number of observations is odd then the median is the 

middle value after the values have been arranged in ascending or descending order of 

magnitude. If the number of observations is even, there are two middle terms and the 

median is obtained by taking the arithmetic mean of the middle terms.

examples

 (i) The median of the values 20, 15, 25, 28, 18, 16, 30, i.e., 15, 16, 18, 20, 25, 28, 

30 is 20 because n = 7, i.e., odd and the median is the middle value, i.e., 20.

 (ii) The median of the values 8, 20, 50, 25, 15, 30, i.e., 8, 15, 20, 25, 30, 50 is the 

arithmetic mean of the middle terms, i.e., 
20 25

22.5
2

+
=  because n = 6, i.e., 

even.

In case of discrete frequency distribution, the median is obtained by considering the 

cumulative frequencies. The steps for calculating the median are given below:

 (i) Arrange the values of the variables in ascending or descending order of 

magnitudes.

 (ii) Find 
2

N
, where N = Âf

 (iii) Find the cumulative frequency just greater than 
2

N
 and determine the 

corresponding value of the variable.

 (iv) The corresponding value of x is the median.

example 1

The following table represents the marks obtained by a batch of 12 

students in certain class tests in physics and chemistry.

Marks (Physics) 53 54 32 30 60 46 28 25 48 72 33 65

Marks (Chemistry) 55 41 48 49 27 25 23 20 28 60 43 67

Indicate the subject in which the level of achievement is higher.
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Solution

The level of achievement is higher in that subject for which the median marks are 

more.

Arranging the marks in two subjects in ascending order,

Marks (Physics) 25 28 30 32 33 46 48 53 54 60 65 72

Marks (Chemistry) 20 23 25 27 28 41 43 48 49 55 60 67

Since the number of students is 12, the median is the arithmetic mean of the middle 

terms.

Median marks in physics = 
46 48

47
2

+
=

Median marks in chemistry = 
41 43

42
2

+
=

Since the median marks in physics are greater than the median marks in chemistry, the 

level of achievement is higher in physics.

example 2

Obtain the median for the following frequency distribution.

x 0 1 2 3 4 5 6 7

f 7 14 18 36 51 54 52 18

Solution

x f Cumulative frequency

0 7 7

1 14 21

2 18 39

3 36 75

4 51 126

5 54 180

6 52 232

7 18 250

   N = 250

 

250
125

2 2

N
= =

The cumulative frequency just greater than 
2

N
 = 125 is 126 and the value of x 

corresponding to 126 is 4. Hence, the median is 4.
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Median for continuous frequency distribution

In case of continuous frequency distribution (less than frequency distribution), the 

class corresponding to the cumulative frequency just greater than ,
2

N
 is called the 

median class, and the value of the median is given by

 Median = 
2

h N
l c

f

Ê ˆ+ -Á ˜Ë ¯

where l is the lower limit of the median class

 f is the frequency of the median class

 h is the width of the median class

 c is the cumulative frequency of the class preceding the median class

 N is sum of frequencies, i.e., N = Âf

In case of ‘more than’ or ‘greater than’ type of frequency distributions, the value of the 

median is given by

 Median = 
2

h N
u c

f

Ê ˆ- -Á ˜Ë ¯

where u is the upper limit of the median class

 f is the frequency of the median class

 h is the width of the median class

 c is the cumulative frequency of the class succeeding the median class

example 1

The following table gives the weekly expenditures of 100 workers. Find 

the median weekly expenditure.

Weekly expenditure 

(in `)

0–10 10–20 20–30 30–40 40–50

Number of workers 14 23 27 21 15

Solution

Weekly expenditure (in `) Number of workers (f) Cumulative frequency

0–10 14 14

10–20 23 37

20–30 27 64

30–40 21 85

40–50 15 100

   N = 100
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100
50

2 2

N
= =

The cumulative frequency just greater than 
2

N
 = 50 is 64 and the corresponding class 

20–30 is the median class.

Here, 50, 20, 10, 27, 37
2

N
l h f c= = = = =

Median  = 
2

h N
l c

f

Ê ˆ+ -Á ˜Ë ¯

 

10
20 (50 37)

27

24.815

= + -

=

example 2

From the following data, calculate the median:

Marks (Less than) 5 10 15 20 25 30 35 40 45

No. of students 29 224 465 582 634 644 650 653 655

 [Summer 2015]

Solution

This is a ‘less than’ type of frequency distribution. This will be first converted into 

class intervals.

Class intervals Frequency Less than CF

0–5 29 29

5–10 195 224

10–15 241 465

15–20 117 582

20–25 52 634

25–30 10 644

30–35 6 650

35–40 3 653

40–45 2 655

  N = 655

Since 
655

327.5,
2 2

N
= =  the median class is 10–15.
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Here, l = 10, h = 5, f = 241, c = 224

Median
2

5
10 (327.5 224)

241

12.147

h N
l c

f

Ê ˆ= + -Á ˜Ë ¯

= + -

=

example 3

Find the mean of the following data:

Age greater than (in years) 0 10 20 30 40 50 60 70

No. of persons 230 218 200 165 123 73 28 8

Solution

This is a ‘greater than’ type of frequency distribution. This will be first converted into 

class intervals.

Class intervals Frequency Greater than CF

0–10 12 230

10–20 18 218

20–30 35 200

30–40 42 165

40–50 50 123

50–60 45 73

60–70 20 28

70 and above 8 8

  N = 230

Since 
230

115,
2 2

N
= =  the median class is 40–50.

Here, u = 50,  h = 10,   f = 50,   c = 73

Median
2

10
50 (115 73)

50

41.6 years

h N
u c

f

Ê ˆ= - -Á ˜Ë ¯

= - -

=
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example 4

The following table gives the marks obtained by 50 students in 

mathematics. Find the median.

Marks 10–14 15–19 20–24 25–29 30–34 35–39 40–44 45–49

No. of students 4 6 10 5 7 3 9 6

Solution

Since the class intervals are inclusive, it is necessary to convert them into exclusive 

series.

Marks No. of students Cumulative frequency

9.5–14.5 4 4

14.5–19.5 6 10

19.5–24.5 10 20

24.5–29.5 5 25

29.5–34.5 7 32

34.5–39.5 3 35

39.5–44.5 9 44

44.5–49.5 6 50

 N = 50

Since   
50

25,
2 2

N
= =  the median class is 24.5–29.5.

Here, l = 24.5,  h = 5,  f = 5,  c = 20

Median
2

5
24.5 (25 20)

5

29.5

h N
l c

f

Ê ˆ= + -Á ˜Ë ¯

= + -

=

example 5

Find the median of the following distribution:

Mid-values 1500 2500 3500 4500 5500 6500 7500

Frequency 27 32 65 78 58 32 8
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Solution

The difference between two mid-values is 1000. On subtracting and adding half of 

this, i.e., 500 to each of the mid-values, the lower and upper limits of the respective 

class intervals are obtained.

Class intervals Frequency Cumulative frequency

1000–2000 27 27

2000–3000 32 59

3000–4000 65 124

4000–5000 78 202

5000–6000 58 260

6000–7000 32 292

7000–8000 8 300

 N = 300

Since 150,
2

N
=  the median class is 4000–5000.

Here, l = 4000,  h = 1000,  f = 78,  c = 124

Median
2

1000
4000 (150 124)

78

4333.33

h N
l c

f

Ê ˆ= + -Á ˜Ë ¯

= + -

=

exercIse 8.3

 1.  The heights (in cm) of 15 students of Class XII are 152, 147, 156, 

149, 151, 159, 148, 160, 153, 154, 150, 143, 155, 157, 161. Find the 

median.

 
[ ]153 cmans.:

 2.  The median of the following observations are arranged in the ascending 

order: 11, 12, 14, 18, x + 2, x + 4, 30, 32, 35, 41 is 24. Find x.

 
[ ]21ans.:

 3.  Find the median of the following frequency distribution:

x 10 11 12 13 14 15 16

f 8 15 25 20 12 10 5

 
[ ]12ans.:
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 4.  Find the median of the following frequency distribution:

Wages (in `) 20–30 30–40 40–50 50–60 60–70

No. of workers 3 5 20 10 5

 
[ ]46.75ans.:

 5.  Calculate the median of the following data:

x 3–4 4–5 5–6 6–7 7–8 8–9 9–10 10–11

f 3 7 12 16 22 20 13 7

 
[ ]7.55ans.:

 6.  The weekly wages of 1000 workers of a factory are shown in the 

following table:

Weekly wages 

(less than)
425 475 525 575 625 675 725 775 825 875

No. of workers 2 10 43 123 293 506 719 864 955 1000

 [ ]673.59ans.:

 7.  Calculate the mean of the following distribution of marks obtained by 

50 students in advanced engineering mathematics.

Marks more than 0 10 20 30 40 50

No. of students 50 46 40 20 10 3

 [ ]27.5ans.:

 8.  Calculate the median from the following data:

Mid-values 115 125 135 145 155 165 175 185 195

Frequency 6 25 48 72 116 60 38 22 3

 [ ]153.79ans.:

8.9 Mode

Mode is the value which occurs most frequently in a set of observations and around 

which the other items of the set are heavily distributed. In other words, mode is the 

value of the variable which is most frequent or predominant in the series. In case of a 

discrete frequency distribution, mode is the value of x corresponding to the maximum 

frequency.
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examples

 (i) In the series 6, 5, 3, 4, 3, 7, 8, 5, 9, 5, 4, the value 5 occurs most frequently. 

Hence, the mode is 5.

 (ii) Consider the following frequency distribution:

x 1 2 3 4 5 6 7 8

f 4 9 16 25 22 15 7 3

  The value of x corresponding to the maximum frequency, viz., 25, is 4. Hence, 

the mode is 4.

For an asymmetrical frequency distribution, the difference between the mean and the 

mode is approximately three times the difference between the mean and the median.

 Mean – Mode = 3 (Mean – Median)

  Mode = 3 Median – 2 Mean

This is known as the empirical formula for calculation of the mode.

Mode for a continuous frequency distribution

In case of a continuous frequency distribution, the class in which the mode lies is 

called the modal class and the value of the mode is given by

 

1

1 2

Mode
2

m

m

f f
l h

f f f

-Ê ˆ
= + Á ˜- -Ë ¯

where l is the lower limit of the modal class

 h is the width of the modal class

 fm is the frequency of the modal class

 f1 is the frequency of the class preceding the modal class

 f2 is the frequency of the class succeeding the modal class

This method of finding the mode is called the method of interpolation. This formula is 

applicable only to a unimodal frequency distribution.

example 1

Find the mode for the following data:

Profit per shop 0–100 100–200 200–300 300–400 400–500 500–600

No. of shops 12 18 27 20 17 6

Solution

Since the maximum frequency is 27, which lies in the class 200–300, the modal class 

is 200–300.

Here, l = 200,  h = 100,   fm = 27,   f1 = 18,  f2 = 20
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1

1 2

Mode
2

27 18
200 100

2(27) 18 20

256.25

m

m

f f
l h

f f f

-Ê ˆ
= + Á ˜- -Ë ¯

-È ˘= + Í ˙- -Î ˚
=

example 2

The frequency distribution of marks obtained by 60 students of a class 

in a college is given by

Marks 30–34 35–39 40–44 45–49 50–54 55–59 60–64

Frequency 3 5 12 18 14 6 2

Find the mode of the distribution.

Solution

The class intervals are first converted into a continuous exclusive series as shown in 

the following table:

Marks Frequency

29.5–34.5 3

34.5–39.5 5

39.5–44.5 12

44.5–49.5 18

49.5–54.5 14

54.5–59.5 6

59.5–64.5 2

Since the maximum frequency is 18 which lies in the interval 44.5–49.5, the modal 

class is 44.5–49.5.

Here, l = 44.5,  h = 5,  fm = 18,  f1 = 12,  f2 = 14

1

1 2

Mode
2

18 12
44.5 5

2(18) 12 14

47.5

m

m

f f
l h

f f f

-Ê ˆ
= + Á ˜- -Ë ¯

-È ˘= + Í ˙- -Î ˚
=
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example 3

Find the mode for the following distribution:

Class intervals 0–10 10–20 20–30 30–40 40–50

Frequency 45 20 14 7 3

Solution

Since the highest frequency occurs in the first class interval, the interpolation formula 

is not applicable. Thus, empirical formula is used for calculation of mode.

Class intervals Frequency CF Mid-value
25

10

x
d

-
= fd

0–10 45 45 5 –2 –90

10–20 20 65 15 –1 –20

20–30 14 79 25 0 0

30–40 7 86 35 1 7

40–50 3 89 45 2 6

Âf = 89 Âfd = –97

 N = Â f = 89

Since 
89

44.5,
2 2

N
= =  the median class is 0–10.

Here, l = 0,  h = 10,  f = 45,  c = 0

   

Median
2

10
0 (44.5 0)

45

9.89

Mean

97
25 10

89

14.1

h N
l c

f

fd
a h

N

Ê ˆ= + -Á ˜Ë ¯

= + -

=

= +

-Ê ˆ= + Á ˜Ë ¯

=

Â

Hence, mode 3Median 2 Mean

3(9.89) 2(14.1)

1.47

= -
= -
=
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exercIse 8.4

 1.  Calculate the mode for the following distribution:

x 6 12 18 24 30 36

f 12 24 36 38 37 6

 
[ ]24ans.:

 2.  Calculate the mode for the following distribution:

x 10 20 30 40 50 60 70

f 17 22 31 39 27 15 13

 
[ ]40ans.:

 3.  Calculate the mode for the following distribution:

Class interval 0–4 4–8 8–12 12–16

Frequency 4 8 5 6

 
[ ]6.28ans.:

 4.  Calculate the mode of the following distribution:

x 0–5 5–10 10–15 15–20 20–25 25–30 30–35 35–40 40–45

f 20 24 32 28 20 16 37 10 18

 
[ ]13.33ans.:

 5.  Calculate the mode for the following data:

Class 10–20 20–30 30–40 40–50 50–60 60–70 70–80

f 24 42 56 66 108 130 154

 [ ]71.348ans.:

 6.  Find the mode of the following distribution:

Class 55–64 65–74 75–84 85–94 95–104 105–114 115–124 125–134 135–144

f 1 2 9 22 33 22 8 2 1

 [ ]99.5ans.:
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 7.  Calculate the modal marks from the following distribution of marks of 

100 students of a class:

Marks (more than) 90 80 70 60 50 40 30 20 10

No. of students 0 4 15 33 53 76 92 98 100

 [ ]47ans.:

8.10 standard devIatIon

Standard deviation is the positive square root of the arithmetic mean of the squares 

of the deviations of the given values from their arithmetic mean. It is denoted by the 

Greek letter s. Let X be a random variable which takes on values, viz., x1, x2, ..., xn. 
The standard deviation of these n observations is given by

 

2( )x x

n
s

-
= Â

where 
x

x
n

= Â
 is the arithmetic mean of these observations.

This equation can be modified further.

 

2 2( 2 )x x x x

n
s

- +
= Â

  

2 2

22

22

2 1

2 1

Mean of squares Square of mean

x x x x

n

x x x x n
n

n n n n n

x x

n n

- +
=

Ê ˆ
È ˘= - + ◊ =Á ˜ Î ˚Ë ¯

Ê ˆ
= - Á ˜Ë ¯

= -

Â Â Â

Â Â Â Â Â

Â Â

∵

In case of a frequency distribution consisting of n observations x1, x2, ..., xn with 

respective frequencies f1, f2, ..., fn, the standard deviation is given by

 

2( )f x x

N
s

-
= Â
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This equation can also be modified.

2 2

2

2

22

22

( 2 )

2

2 and

f x xx x

N

fx x fx f
x

N N N

fx fx fx fx fx
f N x

N N N N N

fx fx

N N

s
- +

=

= - +

Ê ˆ È ˘
= - + = =Í ˙Á ˜Ë ¯ Î ˚

Ê ˆ
= - Á ˜Ë ¯

Â

Â Â Â

Â Â Â Â ÂÂ

Â Â

∵

8.10.1 variance

The variance is the square of the standard deviation and is denoted by s2. The method 

for calculating variance is same as that given for the standard deviation.

example 1

Calculate the standard deviation of the weights of ten persons.

Weight (in kg) 45 49 55 50 41 44 60 58 53 55

Solution

     n = 10

   Âx = 45 + 49 + 55 + 50 + 41 + 44 + 60 + 58 + 53 + 55 = 510

 Âx
2 = 452 + 492 + 552 + 502 + 412 + 442 + 602 + 582 + 532 + 552 = 26366

   

22

2
26366 510

10 10

5.967

x x

n n
s

Ê ˆ
= - Á ˜Ë ¯

Ê ˆ= - Á ˜Ë ¯

=

Â Â

Aliter:

   

510
51

10

x
x

n
= = =Â
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x x x- 2( )x x-

45 –6 36

49 –2 4

55 4 16

50 –1 1

41 –10 100

44 –7 49

60 9 81

58 7 49

53 2 4

55 4 16

2( ) 356x x- =Â

 

2( )

356

10

5.967

x x

n
s

-
=

=

=

Â

example 2
Calculate the standard deviation of the following data:

x 10 11 12 13 14 15 16 17 18

f 2 7 10 12 15 11 10 6 3

Solution

x f fx x
2

fx
2

10 2 20 100 200

11 7 77 121 847

12 10 120 144 1440

13 12 156 169 2028

14 15 210 196 2940

15 11 165 225 2475

16 10 160 256 2560

17 6 102 289 1734

18 3 54 324 972

Âf = 76 Âfx = 1064 Âfx
2 = 15196
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22

2

76

15196 1064

76 76

1.987

N f

fx fx

N N
s

= =

Ê ˆ
= - Á ˜Ë ¯

Ê ˆ= - Á ˜Ë ¯

=

Â

Â Â

Aliter:

 

76

1064
14

76

N f

fx
x

N

= =

= = =

Â
Â

x f x x- 2( )x x- 2( )f x x-

10 2 –4 16 32

11 7 –3 9 63

12 10 –2 4 40

13 12 –1 1 12

14 15 0 0 0

15 11 1 1 11

16 10 2 4 40

17 6 3 9 54

18 3 4 16 48

2( ) 300f x x- =Â

 

2( )

300

76

1.987

f x x

N
s

-
=

=

=

Â

8.10.2 standard deviation from the assumed Mean

If the values of x and f are large, the calculation of fx, fx2 becomes tedious. In such a 

case, the assumed mean a is taken to simplify the calculation.

Let a be the assumed mean.

 d = x – a

 x = a + d
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( )fx f a d Na fd= + = +Â Â Â

Dividing both the sides by N,

 

2

2

( )

( )

x

d

fx fd
a

N N

x a d

x x d d

f x x

N

f d d

N

s

s

= +

= +

- = -

-
=

-
=

=

Â Â

Â

Â

Hence, the standard deviation is independent of change of origin.

\    

22

x

fd fd

N N
s

Ê ˆ
= - Á ˜Ë ¯

Â Â

example 1

Find the standard deviation from the following data:

Size of the item 10 11 12 13 14 15 16

Frequency 2 7 11 15 10 4 1

Solution

Let a = 13 be the assumed mean.

 d = x – a = x – 13

Size of item (x) Frequency (f) d = x – a d
2

fd fd
2

10 2 –3 9 –6 18

11 7 –2 4 –14 28

12 11 –1 1 –11 11

13 15 0 0 0 0

14 10 1 1 10 10

15 4 2 4 8 16

16 1 3 9 3 9

Âf = 50 Âfd = –10 Âfd
2 = 92
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22

2

50

92 10

50 50

1.342

N f

fd fd

N N
s

= =

Ê ˆ
= - Á ˜Ë ¯

-Ê ˆ= - Á ˜Ë ¯

=

Â

Â Â

8.10.3 standard deviation by step-deviation Method

Let a be the assumed mean and h be the width of the class interval.

   
( )

x a
d

N

x a hd

fx f a hd Na h fd

-
=

= +

= + = +Â Â Â
Dividing both the sides by N,

 

2

2 2

2

( )

( )

( )

( )

x

d

fx fd
a h

N N

x a hd

x x h d d

f x x

N

f h d d

N

f d d
h

N

h

s

s

= +

= +

- = -

-
=

-
=

-
=

=

Â Â

Â

Â

Â

Hence, the standard deviation is independent of change of origin but not of scale.

\    

22

x

fd fd
h

N N
s

Ê ˆ
= - Á ˜Ë ¯

Â Â
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example 1

Find the standard deviation for the following distribution:

Marks 10–20 20–30 30–40 40–50 50–60 60–70 70–80

Number of students 5 12 15 20 10 4 2

Solution

Let  a = 45 be the assumed mean and h = 10 be the width of the class interval.

  

45

10

x a x
d

h

- -
= =

Marks
Number of 

students  f

Mid-value 

x

45

10

x
d

-
= d

2
fd fd

2

10–20 5 15 –3 9 –15 45

20–30 12 25 –2 4 –24 48

30–40 15 35 –1 1 –15 15

40–50 20 45 0 0 0 0

50–60 10 55 1 1 10 10

60–70 4 65 2 4 8 16

70–80 2 75 3 9 6 18

Âf = 68 Âfd = –30 Âfd
2 = 152

 

N f

h
fd

N

fd

N

= =

= -
Ê

Ë
Á

ˆ

¯
˜

= -
-Ê

ËÁ
ˆ
¯̃

=

Â

Â Â

68

10
152

68

30

68

14 285

2 2

2

s

.
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example 2

Find the mean and standard deviation of the following distribution:

Age (in years) No. of persons

less than 20 0

less than 25 170

less than 30 280

less than 35 360

less than 40 405

less than 45 445

less than 50 480

Solution

This is a ‘less than’ type of frequency distribution. This is first converted into an 

exclusive series. Let a = 32.5 be the assumed mean and h = 5 be the width of the class 

interval.

 

32.5

5

x a x
d

h

- -
= =

Class 

intervals

No. of 

persons  f
Mid-value  x

32.5

5

x
d

-
= fd fd

2

20–25 170 22.5 –2 –340 680

25–30 110 27.5 –1 –110 110

30–35 80 32.5 0 0 0

35–40 45 37.5 1 45 45

40–45 40 42.5 2 80 160

45–50 35 47.5 3 105 315

Âf = 480 Âfd = –220 Âfd
2 = 1310

 

480

220
32.5 5

480

30.21 years

N f

fd
x a h

N

= =

= +

-Ê ˆ= + Á ˜Ë ¯

=

Â
Â
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22

2
1310 220

5
480 480

7.94 years

fd fd
h

N N
s

Ê ˆ
= - Á ˜Ë ¯

-Ê ˆ= - Á ˜Ë ¯

=

Â Â

8.10.4 Coefficient of Variation

The standard deviation is an absolute measure of dispersion. The coefficient of 

variation is a relative measure of dispersion and is denoted by CV.

 
CV 100

x

s
= ¥

where s is the standard deviation and x– is the mean of the given series. The coefficient 

of variation has great practical significance and is the best measure of comparing the 

variability of two series. The series or groups for which the coefficient of variation is 

greater is said to be more variable or less consistent. On the other hand, the series for 

which the variation is lesser is said to be less variable or more consistent.

example 1

The arithmetic mean of the runs scored by three batsmen Amit, Sumeet, 

and Nayan in the series are 50, 48, and 12 respectively. The standard 

deviations of their runs are 15, 12, and 2 respectively. Who is the more 

consistent of the three?

Solution

Let 1 2 3, ,x x x  be the arithmetic means and s1, s2, s3 be the standard deviations of the 

runs scored by Amit, Sumeet, and Nayan.

 

1 2 3 1 2 3

1
1

1

2
2

2

50, 48, 12, 15, 12, 2

CV 100

15
100

50

30%

CV 100

12
100

48

25%

x x x

x

x

s s s

s

s

= = = = = =

= ¥

= ¥

=

= ¥

= ¥

=
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3
3

3

CV 100

2
100

12

16.67%

x

s
= ¥

= ¥

=

Since the coefficient of variation of Nayan is least, he is the most consistent.

example 2

The runs scored by two batsmen A and B in 9 consecutive matches are 

given below:

A 85 20 62 28 74 5 69 4 13

B 72 4 15 30 59 15 49 27 26

Which of the batsmen is more consistent?

Solution

   n = 9

For the batsman A,

 

2 2 2 2 2 2 2 2 2 2

22

2

85 20 62 28 74 5 69 4 13 360

85 20 62 28 74 5 69 4 13 22700

22700 360

9 9

30.37

360
40

9

A

A

A A

A

A

A

x

x

x x

n n

x
x

n

s

= + + + + + + + + =

= + + + + + + + + =

Ê ˆ
= - Á ˜Ë ¯

Ê ˆ= - Á ˜Ë ¯

=

= = =

Â
Â

Â Â

Â

 

CV 100

30.37
100

40

75.925%

A
A

Ax

s
= ¥

= ¥

=
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For the batsman B,

  
2 2 2 2 2 2 2 2 2 2

72 4 15 30 59 15 49 27 26 297

72 4 15 30 59 15 49 27 26 13837

B

B

x

x

= + + + + + + + + =

= + + + + + + + + =

Â
Â

     

22

2
13837 297

9 9

21.18

297
33

9

B B

B

B

B

x x

n n

x
x

n

s
Ê ˆ

= - Á ˜Ë ¯

Ê ˆ= - Á ˜Ë ¯

=

= = =

Â Â

Â

   

CV 100

21.18
100

33

64.18%

B
B

Bx

s
= ¥

= ¥

=

Since CVB < CVA, the batsman B is more consistent.

example 3

Two automatic filling machines A and B are used to fill a mixture of 

cement concrete in a beam. A random sample of beams on each machine 

showed the following information:

Machine A 32 28 47 63 71 39 10 60 96 14

Machine B 19 31 48 53 67 90 10 62 40 80

Find the standard deviation of each machine and also comment on the 

performances of the two machines.

 [Summer 2015]

Solution

 

10

460
46

10

500
50

10

n

x
x

n

y
y

n

=

= = =

= = =

Â

Â
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Machine A Machine B

x x x- 2( )x x- y y y- 2( )y y-

32 –14 196 19 –31 961

28 –18 324 31 –19 361

47 1 1 48 –2 4

63 17 289 53 3 9

71 25 625 67 17 289

39 –7 49 90 40 1600

10 –36 1296 10 –40 1600

60 14 196 62 12 144

96 50 2500 40 –10 100

14 –32 1024 80 30 900

Âx = 460 2( ) 6500x xS - = Ây = 500 2( ) 5968y yS - =

   

2

2

( )

6500

10

25.495

( )

5968

10

24.429

CV 100

25.495
100

46

55.423%

A

B

A
A

x x

n

y y

n

x

s

s

s

-
=

=

=

-
=

=

=

= ¥

= ¥

=

Â

Â

 

CV 100

24.429
100

50

48.858%

B
B

y

s
= ¥

= ¥

=

Since CVB < CVA, there is less variability in the performance of the machine B.
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exercIse 8.5

 1.  Find the standard deviation of 10 persons whose income in rupees is 

given below:

  312, 292, 227, 235, 269, 255, 333, 348, 321, 299

 
[ ]39.24ans.:

 2.  Calculate the standard deviation from the following data:

Heights in cm 150 155 160 165 170 175 180

No. of students 15 24 32 33 24 16 6

 
[ ]8.038 cmans.:

 3.  Find the standard deviation of the following data:

Size of items 10 11 12 13 14 15 16

Frequency 2 7 11 15 10 4 1

 
[ ]1.342ans.:

 4.  Calculate the standard deviation for the following frequency 

distribution:

Class interval 0–4 4–8 8–12 12–16

Frequency 4 8 2 1

 
[ ]3.27ans.:

 5.  Calculate the standard deviation of the following series:

Marks 0–10 10–20 20–30 30–40 40–50

Frequency 10 8 15 8 4

 
[ ]12.37ans.:

 6.  Calculate the SD for the following distributions of 300 telephone calls 

according to their durations in seconds:

Duration 

(in seconds)
0–30 30–60 60–90 90–120 120–150 150–180 180–210

No. of calls 9 17 43 82 81 44 24

 
[ ]42.51ans.:
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 7.  Calculate the standard deviation from the following data:

Age less than (in years) 10 20 30 40 50 60 70 80

No. of persons 15 30 53 75 100 110 115 125

 
[ ]19.75ans.:

 8.  Find the standard deviation from the following data:

Mid-value 30 35 40 45 50 55 60 65 70 75 80

Frequency 1 2 4 7 9 13 17 12 7 6 3

 [ ]11.04ans.:

 9.  Two cricketers scored the following runs in ten innings. Find who is a 

better run-getter and who is a more consistent player.

A 42 17 83 59 72 76 64 45 40 32

B 28 70 31 0 59 108 82 14 3 95

 
[ ]is a better run-getter and is more consistent.A Bans.:

 10.  Two workers on the same job show the following results over a long 

period of time:

Worker A Worker B

Mean time (in minutes) 30 25

Standard deviation (in minutes) 6 4

 [ ]is more consistentBans.:

8.11 MoMents

Moment is the arithmetic mean of the various powers of the deviations of items from 

their assumed mean or actual mean. If the deviations of the items are taken from the 

arithmetic mean of the distribution, it is known as central moment. If the mean of the 

first power of deviations are taken, the first moment about the mean is obtained and 

is denoted by m1. The mean of the second power of the deviations gives the second 

moment about the mean and is denoted by m2. Similarly, the mean of the cubes of 

deviations gives third moment about the mean and is denoted by m3. The mean of 

the fourth power of the deviations from the mean gives the fourth moment about the 

mean and is denoted by m4. Thus, the mean of the rth power of deviations gives the rth 

moment about mean or rth central moment and is denoted by mr.
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8.11.1 central Moments or Moments about actual Mean

Let x1, x2,..., xn be n observations with arithmetic mean x
–
. The various moments about 

actual mean are given by by the following:

First moment about the mean m1 = 
( )x x

n

-Â

Second moment about the mean m2 = 

2( )x x

n

-Â

Third moment about the mean m3 = 

3( )x x

n

-Â

Fourth moment about the mean m4 = 

4( )x x

n

-Â

In general,

  r
th moment about the mean mr = 

( )r
x x

n

-Â

In case of a frequency distribution consisting of n observations x1, x2,..., xn with 

respective frequencies f1, f2,..., fn having arithmetic mean x
–
,

             
N f= Â

              

fx
x

N
= Â

The various moments about the actual mean are given by the following:

First moment about the mean m1 = 
( )f x x

N

-Â

Second moment about the mean m2 = 

2( )f x x

N

-Â

Third moment about the mean m3 = 

3( )f x x

N

-Â

Fourth moment about the mean m4 = 

4( )f x x

N

-Â

In general,

  r
th moment about the mean mr = 

( )r
f x x

N

-Â

8.11.2 properties of central Moments

 (i) The first moment about the mean is always zero, i.e., m1 = 0.
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 (ii) The second moment about the mean measures variance, i.e.,

    
2

2 2or SDm s s m= = = ±

 (iii) The third moment about the mean measures skewness.

  If m3 > 0, the distribution is positively skewed.

  If m3 < 0, the distribution is negatively skewed.

  If m3 = 0, the distribution is symmetrical.

    Skewness 
2
3

1 3
2

m
b

m
=

 (iv) The fourth moment about the mean measures kurtosis. It gives information on 

the peakedness or height of the peak of a frequency distribution, i.e., whether 

it is more peaked or more flat topped than a normal curve.

    Kurtosis 4
2 2

2

m
b

m
=

 (v) In a symmetric distribution, all odd moments are zero, i.e., m1 = m3 = m5 = ... 

= m2r+1 = 0.

8.11.3 raw Moments or Moments about arbitrary origin

When the actual mean of a distribution is a fraction, it is tedious to calculate central 

moments. In such cases, moments about an arbitrary origin ‘a’ is calculated and then 

these moments are converted into the moments about actual mean. The moments 

about the arbitrary origin are known as raw moments and are denoted by m¢r. Thus, 

m¢1 denotes the first moment about an arbitrary origin, m¢2 denotes the second moment 

about an arbitrary origin and so on.

The various raw moments are given by the following:

First moment about the arbitrary origin m¢1 = 
( )x a

n

-Â

Second moment about the arbitrary origin m¢2 = 

2( )x a

n

-Â

Third moment about the arbitrary origin m¢3 = 

3( )x a

n

-Â

Fourth moment about the arbitrary origin m¢4 = 

4( )x a

n

-Â

In general,

  r
th moment about the arbitrary origin m¢r  = 

( )r
x a

n

-Â
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In case of frequency distribution consisting of n observations x1, x2, ..., xn with 

respective frequencies f1, f2, ..., fn having the arbitrary origin a,

N f

d x a

=

= -
Â

The various moments about the arbitrary origin are given by the following:

First moment about the arbitrary origin m¢1 = 
fd

N

Â

Second moment about the arbitrary origin m¢2 = 

2
fd

N

Â

Third moment about the arbitrary origin m¢3 = 

3
fd

N

Â

Fourth moment about the arbitrary origin m¢4 = 

4
fd

N

Â

In general,

  r
th moment about the arbitrary origin m¢r = 

r
fd

N

Â

In case of frequency distribution with ‘a’ as arbitrary origin and h as width of the class 

interval,

N f

x a
d

h

=

-
=

Â

The various moments about the arbitrary origin are given by the following:

First moment about the arbitrary origin m¢1 = 
fd

h
N

Â

Second moment about the arbitrary origin m¢2 = 

2
fd

h
N

Â

Third moment about the arbitrary origin m¢3 = 

3

3
fd

h
N

Â

Fourth moment about the arbitrary origin m¢4 = 

4

4
fd

h
N

Â

In general,

  r
th moment about the arbitrary origin m¢r = 

r

r
fd

h
N

Â
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8.11.4  relation between central Moments and 
raw Moments

The moments about the actual mean, i.e., central moments and moments about the 

arbitrary origin, i.e., raw moments are related with each other by the following equations:

First central moment m1 = 1 1 0m m- =¢ ¢

Second central moment m2 = ¢ - ¢( )m m2 1

2

Third central moment m3 = 3
3 2 1 13 2( )m m m m- +¢ ¢ ¢ ¢

Fourth central moment  m4 = ¢ - ¢ ¢ + ¢ ¢( ) - ¢( )m m m m m m4 3 1 2 1

2

1

4
4 6 3

Similarly, the raw moments can be expressed in terms of central moments.

First raw moment  m¢1 = x
–
 – a

Second raw moment m¢2 = m2 + (m¢1)
2

Third raw moment m¢3 = m3 + 3m2 m¢1 + (m¢1)
3

Fourth raw moment m¢4 = m4 + 4m3 m¢1 + 6m2(m¢1)
2 + (m¢1)

4

8.11.5 Moments about Zero

The moments about zero are denoted by v1, v2, v3, v4, etc. The various moments about 

zero are given by the following:

First moment about zero v1 = 
fx

N

Â

Second moment about zero v2 = 
fx

N

2Â

Third moment about zero v3 = 
fx

N

3Â

Fourth moment about zero v4 = 
fx

N

4Â

In general,

  r
th moment about zero vr = 

fx

N

rÂ

8.11.6  relation between Moments about Zero and 
central Moments

The moments about zero and central moments are related by the following equations:

First moment about zero v1 = a + m¢1 = x
–
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Second moment about zero v2 = m2 + (v1)
2

Third moment about zero v3 = m3 + 3v1v2 – 2(v1)
3

Fourth moment about zero v4 = m4 + 4v1v3 – 6(v1)
2
v2 + 3(v1)

4

example 1
Find the first four moments for the set of numbers 2, 4, 6, 8.

Solution

   

4

2 4 6 8 20
5

4 4

n

x

=
+ + +

= = =

x x – x
–

(x – x
–
)2 (x – x

–
)3 (x – x

–
)4

2 –3 9 –27 81

4 –1 1 –1 1

6 1 1 1 1

8 3 9 27 81

Âx = 20 Â(x – x
–
) = 0 Â(x – x

–
)2 = 20 Â(x – x

–
)3 = 0 Â(x – x

–
)4 = 164

Moments about the actual mean:

 

m

m

m

m

1

2

2

3

3

4

4

0

4
0

20

4
5

0

4
0

=
-

= =

=
-

= =

=
-

= =

=
-

Â

Â

Â

Â

( )

( )

( )

( )

x x

n

x x

n

x x

n

x x

nn
= =

164

4
41

example 2
Calculate the first four moments from the following data:

x 0 1 2 3 4 5 6 7 8

f 5 10 15 20 25 20 15 10 5

Also, calculate the values of b1 and b2.
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Solution

 

N f

x
fx

N

= =

= = =

Â
Â

125

500

125
4

x f fx x – x
–

f (x – x
–
) f (x – x

–
)2

f (x – x
–
)3

f (x – x
–
)4

0 5 0 –4 20 80 –320 1280

1 10 10 –3 –30 90 –270 810

2 15 30 –2 –30 60 –120 240

3 20 60 –1 –20 20 –20 20

4 25 100 0 0 0 0 0

5 20 100 1 20 20 20 20

6 15 90 2 30 60 120 240

7 10 70 3 30 90 270 810

8 5 40 4 20 80 320 1280

Âf 

= 125

Âfx 

= 500

Âf (x – x
–
) 

= 0

Âf (x – x
–
)2 

= 500
Âf (x – x

–
)3 = 0

Âf (x – x
–
)4 = 

4700

Moments about the actual mean:

 

m

m

m

1

2

2

3

3

0

125
0

500

125
4

0

125
0

=
-

= =

=
-

= =

=
-

= =

Â

Â

Â

f x x

N

f x x

N

f x x

N

( )

( )

( )

mm

b
m

m

b
m

m

4

4

1
3
2

2
3

2
4

2
2

4700

125
37 6

0

64
0

37 6

16
2

=
-

= =

= = =

= = =

Â f x x

N

( )
.

.
..35

example 3
Calculate the first four moments of the following distribution about the 

mean:
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x 0 1 2 3 4 5 6 7 8

f 1 8 28 56 70 56 28 8 1

Also, evaluate b1 and b2.

Solution

Let a = 4 be the arbitrary origin.

x f x – a f (x – a) f (x – a)2
f (x – a)3

f (x – a)4

0 1 –4 –4 16 –64 256

1 8 –3 –24 72 –216 648

2 28 –2 –56 112 –224 448

3 56 –1 –56 56 –56 56

4 70 0 0 0 0 0

5 56 1 56 56 56 56

6 28 2 56 112 224 448

7 8 3 24 72 216 648

8 1 4 4 16 64 256

Âf 

= 256

Âf(x – a) 

= 0

Âf(x – a)2 

= 512

Âf(x – a)3 

= 0

Âf(x – a)4 

= 2816

 N S f = 256

Moments about the arbitrary origin:

 

1

2

2

3

3

4

4

( ) 0
0

256

( ) 512
2

256

( ) 0
0

256

( ) 2816
11

256

f x a

N

f x a

N

f x a

N

f x a

N

m

m

m

m

-
= = =¢

-
= = =¢

-
= = =¢

-
= = =¢

Â

Â

Â

Â

Moments about the actual mean:

 

m

m m m

1

2 2 1

2

0

2 0

2

=

= ¢ - ¢( )
= -
=
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( )

( ) ( )

3

3 3 2 1 1

3

2 4

4 4 3 1 2 1 1

2 4

2
3

1 3
2

4
2 2 2

2

3 2

0 3(2)(0) 2(0)

0

4 6 3

11 4(0)(0) 6(2)(0) 3(0)

11

0

11
2.75

(2)

m m m m m

m m m m m m m

m
b

m

m
b

m

= - +¢ ¢ ¢ ¢

= - +
=

= - + -¢ ¢ ¢ ¢ ¢ ¢

= - + -
=

= =

= = =

example 4
Find the first four moments of the following data about the assumed 

mean 25 and actual mean:

Class limit 0–10 10–20 20–30 30–40

Frequency 1 3 4 2

Solution

Let a = 25 be the assumed mean and h = 10 be the width of the class limits.

 
d

x a

h

x
=

-
=

- 25

10

Class 

limit 

Frequency 

f

Mid-value 

x

25

10

x
d

-
= fd fd

2
fd

3
fd

4

0–10 1 5 –2 –2 4 –8 16

10–20 3 15 –1 –3 3 –3 3

20–30 4 25 0 0 0 0 0

30–40 2 35 1 2 2 2 2

Âf = 10 Âfd = –3 Âfd
 2 = 9 Âfd

3 = –9 Âfd
4 = 21

 N = S f = 10
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Moments about the assumed mean:

 

1

2
2

2

3
3

3

4
4

4

3
10 3

10

9
100 90

10

9
1000 900

10

21
10000 21000

10

fd
h

N

fd
h

N

fd
h

N

fd
h

N

m

m

m

m

-Ê ˆ
= = = -¢ Á ˜Ë ¯

Ê ˆ
= = =¢ Á ˜Ë ¯

-Ê ˆ
= = = -¢ Á ˜Ë ¯

Ê ˆ
= = =¢ Á ˜Ë ¯

Â

Â

Â

Â

Moments about the actual mean:

 

m

m m m

m m m m m

1

2 2 1

2

2

3 3 2 1 1

3

0

90 3

81

3 2

900 3

=

= ¢ - ¢( )
= - -
=

= ¢ - ¢ ¢ + ¢( )
= - -

( )

(( )( ) ( )90 3 2 3

144

3- + -
= -

 

m m m m m m m4 4 3 1 2 1

2

1

4
4 6 3

21000 4 900 3 6 90

= ¢ - ¢ ¢ + ¢ ¢( ) - ¢( )
= - - - +( )( ) ( )(-- - -
=

3 3 3

14817

2 4) ( )

example 5
Find the first four central moments of the following distribution:

Class-limits 100–104.9 105–109.9 110–114.9 115–119.9 120–124.9

Frequency 7 13 25 25 30

Solution

Let a = 112.45 be the arbitrary origin and h = 5 be the width of class limits.

 
d

x a

N

x
=

-
=

-112 45

5

.
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Class 

limits

Frequency 

f

Mid-value 

x
d

x
=

-112 45

5

.
fd fd

2
fd

3
fd

4

100–104.9 7 102.45 –2 –14 28 –56 112

105–109.9 13 107.45 –1 –13 13 –13 13

110–114.9 25 112.45 0 0 0 0 0

115–119.9 25 117.45 1 25 25 25 25

120–124.9 30 122.45 2 60 120 240 480

Âf 

= 100

Dfd 

= 58

Âfd
2 = 

186

Âfd
3 = 

196

Âfd 
4 = 

630

 N = S f = 100

Moments about the arbitrary origin:

 

¢ = =
Ê
ËÁ

ˆ
¯̃ =

¢ = =
Ê
ËÁ

ˆ
¯̃ =

¢

Â

Â

m

m

1

2
2

2

5
58

100
2 9

25
186

100
46 5

h
fd

N

h
fd

N

.

.

mm

m

3
3

3

4
4

4

125
196

100
245

625
630

100

= =
Ê
ËÁ

ˆ
¯̃ =

¢ = =
Ê
ËÁ

ˆ
¯̃

Â

Â

h
fd

N

h
fd

N
== 3937 5.

Moments about the actual mean:

 

m

m m m

m m m m m

1

2 2 1

2

2

3 3 2 1 1

3

0

46 5 2 9

38 09

3 2

=

= ¢ - ¢( )
= -
=

= ¢ - ¢ ¢ + ¢( )
=

. ( . )

.

2245 3 46 5 2 9 2 2 9

110 772

3- +
= -

( . )( . ) ( . )

.

 

m m m m m m m4 4 3 1 2 1

2

1

4
4 6 3

3937 5 4 245 2 9 6 46

= ¢ - ¢ ¢ + ¢ ¢( ) - ¢( )
= - +. ( )( . ) ( .55 2 9 3 2 9

3229 7057

2 4)( . ) ( . )

.

-
=

example 6
The first four moments of distribution about x = 2 are 1, 2.5, 5.5, and 16. 

Calculate the four moments about x– and about zero.
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Solution

 1 2 3 41, 2.5, 5.5, 16m m m m= = = =¢ ¢ ¢ ¢

Moments about the mean:

 

m

m m m

m m m m m

1

2 2 1

2

2

3 3 2 1 1

3

0

2 5 1

1 5

3 2

5 5 3

=

= ¢ - ¢( )
= -
=

= ¢ - ¢ + ¢( )
= -

. ( )

.

. (22 5 1 2 1

0

4 6 3

16 4 5 5

3

4 4 3 1 2 1

2

1

4

. )( ) ( )

( .

+
=

= ¢ - ¢ ¢ + ¢ ¢( ) - ¢( )
= -

m m m m m m m

))( ) ( . )( ) ( )1 6 2 5 1 3 1

6

2 4+ -
=

Moments about zero:

 

¢ =

- =
- =

=

m1 1

1

2 1

3

x a

x

x

 

v x

v v

v v v v

1

2 2 1

2

2

3 3 1 2 1

3

3

1 5 3

10 5

3 2

0 3 3 1

= =

= + ( )
= +
=

= + - ( )
= +

m

m

. ( )

.

( )( 00 5 2 3

40 5

4 6 3

6 4 3 40 5 6 3

3

4 4 1 3 1
2

2 1

4

. ) ( )

.

( )( . ) (

-
=

= + - + ( )
= + -

v v v v v vm

)) ( . ) ( )2 410 5 3 3

168

+
=

example 7
The first three moments of a distribution about the value 2 of the 

variables are 1, 16, and –40. Show that the mean = 3, variance = 15 

and m3 = –86.
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Solution

 1 2 2 32, 1, 16, 16, 40a m m m m= = = = = -¢ ¢ ¢ ¢

 

1

1 2

3

x a

x

x

m = -¢

= -
\ =

     Mean = 3

     

m m m2 2 1

2

216 1

15

= ¢ - ¢( )
= -
=

( )

          Variance = m2 = 15

     

m m m m m3 3 2 1 1

3

3

3 2

40 3 16 1 2 1

86

= ¢ - ¢ ¢ + ¢( )
= - - +
= -

( )( ) ( )

exercIse 8.6

 1.   Calculate the first  four moments about the mean from the following 

data:

x 1 2 3 4 5

f 2 3 5 4 1

 [ans.: 0, 1.262, 0.722, 3.795]

 2.   Calculate the first four moments about the mean and also the value of 

b2 from the following table:

x 0 1 2 3 4 5 6 7 8

f 1 8 28 156 170 56 28 8 1

 [ans.: 0, 1.294, 0.642, 0.582, 3.93]

 3.   Calculate the first four moments about mean from the following data:

Class interval 0–10 10–20 20–30 30–40 40–50

Frequency 2 2 3 2 1

 [ans.: 0, 156, 144, 49392]

 4.   The  first  four  moments  of  a  distribution  about  the  value  4  of  the 

variables are 1, 4, 10, and 45. Show that the mean = 5, variance = 3, 

and m3 = 0.
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 5.   The first  four central moments of a distribution are 0, 2.5, 0.7, and 

18.75. Calculate b1 and b2.

 [ans.: 0.031, 3]

 6.  The values of m1, m2, m3 and m4 are 0, 9.2, 3.6, and 1.22 respectively. 

Find skewness and kurtosis of the distribution.

 [ans.: 0.129, 1.4]

 7.   The first four moments about the working mean 28.5 of a distribution 

are 0.294, 7.144, 14.409, and 454.98. Calculate the moments about the 

mean. Also, evaluate b1 and b2.

 [ans.: 28.794, 7.058, 36.151, 408.738, 3.717, 8.205]

8.12 randoM varIables

A random variable X is a real-valued function of the elements of the sample space of a 

random experiment. In other words, a variable which takes the real values, depending 

on the outcome of a random experiment, is called a random variable, e.g.,

 (i) When a fair coin is tossed, S = {H, T}. If X is the random variable denoting the 

number of heads, 

 X(H) = 1 and X(T) = 0

  Hence, the random variable X can take values 0 and 1.

 (ii) When two fair coins are tossed, S = {HH, HT, TH, TT}. If X is the random 

variable denoting the number of heads,

   X(HH) = 2, X(HT) = 1, X(TH) = 1, X(TT) = 0.

  Hence, the random variable X can take values 0, 1, and 2.

 (iii) When a fair die is tossed, S = {1, 2, 3, 4, 5, 6}.

  If X is the random variable denoting the square of the number obtained, 

  X(1) = 1, X(2) = 4, X(3) = 9, X(4) = 16, X(5) = 25, X(6) = 36

  Hence, the random variable X can take values 1, 4, 9, 16, 25, and 36.

types of random variables

There are two types of random variables:

 (i) Discrete random variables

 (ii) Continuous random variables

1. discrete random variables A random variable X is said to be discrete if it 

takes either finite or countably infinite values. Thus, a discrete random variable takes 

only isolated values, e.g.,

 (i) Number of children in a family

 (ii) Number of cars sold by different companies in a year

 (iii) Number of days of rainfall in a city

 (iv) Number of stars in the sky

 (v) Profit made by an investor in a day
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2. continuous random variables A random variable X is said to be continuous 

if it takes any values in a given interval. Thus, a continuous random variable takes 

uncountably infinite values, e.g.,

 (i) Height of a person in cm

 (ii) Weight of a bag in kg

 (iii) Temperature of a city in degree Celsius

 (iv) Life of an electric bulb in hours

 (v) Volume of a gas in cc

example 1
Identify the random variables as either discrete or continuous in each 

of the following cases:

 (i) A page in a book can have at most 300 words

  X = Number of misprints on a page

 (ii) Number of students present in a class of 50 students

 (iii) A player goes to the gymnasium regularly

  X = Reduction in his weight in a month

 (iv)  Number of attempts required by a candidate to clear the IAS 

examination

 (v) Height of a skyscraper

Solution

 (i) X = Number of misprints on a page 

  The page may have no misprint or 1 misprint or 2 misprint … or 300 misprints. 

Thus, X takes values 0, 1, 2, …, 300. Hence, X is a discrete random variable.

 (ii) Let X be the random variable denoting the number of students present in a 

class. X takes values 0, 1, 2, …, 50. Hence, X is a discrete random variable.

 (iii) Reduction in weight cannot take isolated values 0, 1, 2, etc., but it takes any 

continuous value.

  Hence, X is a continuous random variable.

 (iv) Let X be a random variable denoting the number of attempts required by a 

candidate. Thus, X takes values 1, 2, 3, …. Hence, X is a discrete random 

variable.

 (v) Since height can have any fractional value, it is a continuous random variable.

8.13 dIscrete probabIlIty dIstrIbutIon

Probability distribution of a random variable is the set of its possible values 

together with their respective probabilities. Let X be a discrete random variable 

which takes the values x1, x2, … xn. The probability of each possible outcome xi is 
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pi = p(xi) = P(X = xi) for i = 1, 2, …, n. The number p(xi), i = 1,2, …. must satisfy the 

following conditions:

 (i) p(xi) ≥ 0 for all values of i 

 (ii)  
1

( ) 1i

i

p x
•

=

=Â
The function p(xi) is called the probability function or probability mass function or 

probability density function of the random variable X. The set of pairs {x, p(xi)}, 

i = 1, 2, …, n is called the probability distribution of the random variable which can be 

displayed in the form of a table as shown below:

X = xi x1 x2 x3 … xi … xn

p(xi) = P(X = xi) p(x1) p(x2) p(x3) … p(xi) … p(xn)

8.14 dIscrete dIstrIbutIon functIon

Let X be a discrete random variable which takes the values x1, x2, … such that 

x1 < x2 < … with probabilities p(x1), p(x2) … such that p(xi) ≥ 0 for all values of i and 

1

( ) 1.
x

i

i

p x
=

=Â

The distribution function F(x) of the discrete random variable X is defined by

  1

( ) ( ) ( )
x

i

i

F x P X x p x
=

= £ = Â

where x is any integer. The function F(x) is also called the cumulative distribution 

function. The set of pairs {xi, F(x)}, i = 1, 2, … is called the cumulative probability 

distribution.

X x1 x2 ...

F(x) p(x1) p(x1) + p(x2) ...

example 1
A fair die is tossed once. If the random variable is getting an even 

number, find the probability distribution of X.

Solution

When a fair die is tossed,

  S = {1, 2, 3, 4, 5, 6}

Let X be the random variable of getting an even number. Hence, X can take the values 

0 and 1.
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  P(X = 0) = P(1, 3, 5) = 
3 1

6 2
=

  P(X = 1) = P(2, 4, 6) = 
3 1

6 2
=

Hence, the probability distribution of X is

X = x 0 1

P(X = 1)
1

2

1

2

Also,  
1 1

( ) 1
2 2

P X x= = + =Â

example 2
Find the probability distribution of the number of heads when three 

coins are tossed.

Solution

When three coins are tossed,

 S = {HHH, HHT, HTH, THH, HTT, THT, TTH, TTT}

Let X be the random variable of getting heads in tossing of three coins. Hence, X can 

take the values 0, 1, 2, 3.

 P(X = 0) = P(no head) = P(TTT) = 
1

8

 P(X = 1) = P(one head) = P(HTT, THT, TTH) = 
3

8

 P(X = 2) = P(two heads) = P(HHT, THH, HTH) = 
3

8

 P(X = 3) = P(three heads) = P(HHH) = 
1

8

Hence, the probability distribution of X is

X = x 0 1 2 3

P(X = x)
1

8

3

8

3

8

1

8

Also, 
1 3 3 1

( ) 1
8 8 8 8

P X x= = + + + =Â
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example 3
State with reasons whether the following represent the probability mass 

function of a random variable:

 (i) 

X = x 0 1 2 3

P(X = x) 0.4 0.3 0.2 0.1

 (ii)

X = x 0 1 2 3

P(X = x)
1

2

1

3

1

6

1

4

(iii)

X = x 0 1 2 3

P(X = x)
1

2
-

1

2

1

4

3

4

Solution

 (i) Here, 0 £ P(X = x) £ 1 is satisfied for all values of X.

  ÂP(X = x) = P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3)

  = 0.4 + 0.3 + 0.2 + 0.1

  = 1

  Since  ÂP(X = x) = 1, it represents the probability mass function.

 (ii)  Here, 0 £ P(X = x) £ 1 is satisfied for all values of X.

  ÂP(X = x) =  P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3)

  = 
1 1 1 1

2 3 6 4
+ + +

  = 
5

1
4

>

  Since Â(P(X = x) > 1,  it does not represent a probability mass function.

 (iii) Here, 0 £ P(X = x) £ 1 is not satisfied for all the values of X as 

P(X = 0) = 
1

.
2

-

  Hence, P(X = x) does not represent a probability mass function.
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example 4
Verify whether the following functions can be regarded as probability 

mass functions for the given values of X:

 (i) 
1

( ) for 0,1, 2, 3, 4
5

0 , otherwise

P X x x= = =

=

 (ii) P(X = x) 
2

, 1, 2, 3, 4, 5
5

0 , otherwise

x
x

-
= =

=

(iii) P(X  = x) 
2

, 0,1, 2, 3, 4
30

0 , otherwise

x
x= =

=

Solution

   (i) P(X = 0) = P(X = 1) = P(X = 2) = P(X = 3) = P(X = 4) = 
1

5
 P(X = x) ≥ 0 for all values of x

 ÂP(X = x) = P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3) + P(X = 4)

    = 
1 1 1 1 1

5 5 5 5 5
+ + + +

    = 1

  Hence, P(X = x) is a probability mass function.

  (ii) P(X = 1) = 
1 2 1

0
5 5

-
= - <

  Hence, P(X = x) is not a probability mass function.

  (iii) P(X = 0) = 0

 P(X = 1) = 
1

30

 P(X = 2) = 
4

30

 P(X = 3) = 
9

30

 P(X = 4) = 
16

30

 P(X = x) ≥ 0 for all values of x
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 ÂP(X = x) = P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3) + P(X = 4)

   = 
1 4 9 16

0
30 30 30 30

+ + + +

   = 1

  Hence, P(X = x) is a probability mass function.

example 5
A random variable X has the probability mass function given by

X 1 2 3 4

P(X = x) 0.1 0.2 0.5 0.2

Find (i) P(2 £ x < 4),  (ii) P(X > 2),  (iii) P(X is odd), and (iv) P(X is 

even).

Solution

 (i) P(2 £ X < 4) = P(X = 2) + P(X = 3)

  = 0.2 + 0.5

  = 0.7

 (ii)  P(X > 2) = P(X = 3) + P(X = 4)

  = 0.5 + 0.2

  = 0.7

 (iii) P(X is odd) = P(X = 1) + P(X = 3)

  = 0.1 + 0.5

  = 0.6

 (iv) P(X is even) = P(X = 2) + P(X = 4)

  = 0.2 + 0.2

  = 0.4

example 6
If the random variable X takes the value 1, 2, 3, and 4 such that 

2P(X = 1) = 3P(X = 2) = P(X = 3) = 5P(X = 4). Find the probability 

distribution.

Solution

Let 2P(X = 1) = 3P(X = 2) = P(X = 3) = 5P(X = 4) = k

 P(X = 1) = 
2

k
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 P(X = 2) = 
3

k

 P(X = 3) = k

 P(X = 4) = 
5

k

Since Â(P(X = x) = 1,

  
1

2 3 5

k k k
k+ + + =

  

30

61
k =

Hence, the probability distribution is

X 1 2 3 4

P(X = x)
15

61

10

61

30

61

6

61

example 7
A random variable X has the following probability distribution:

X 0 1 2 3 4 5 6 7

P(X = x) a 4a 3a 7a 8a 10a 6a 9a

 (i) Find the value of a. 

 (ii) Find P(X < 3). 

(iii) Find the smallest value of m for which P(X £ m) ≥ 0.6.

Solution

 (i) Since P(X = x) is a probability distribution function,

  Â(P(X = x) = 1

  P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3)  + P(X = 4) + P(X = 5) + P(X = 6) 

+ P(X = 7) = 1

  a + 4a + 3a + 7a + 8a + 10a + 6a + 9a = 1

   

1

48
a =

 (ii) P(X < 3) = P(X = 0) + P(X = 1) + P(X = 2)

  = a + 4a + 3a

  = 8a
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1
8

48

Ê ˆ= Á ˜Ë ¯

     = 
1

6

 (iii) P(X £ 4) = P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3) + P(X = 4)

  = a + 4a + 3a + 7a + 8a

  = 23a

  = 
1

23
48

Ê ˆ
Á ˜Ë ¯

  = 0.575

 P(X £ 5) = P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3) + P(X = 4) + P(X = 5)

  = a + 4a + 3a + 7a + 8a + 10a

  = 33a

  = 
1

33
48

Ê ˆ
Á ˜Ë ¯

  = 0.69

  Hence, the smallest value of m for which P(X £ m) ≥ 0.6 is 5. 

example 8
The probability mass function of a random variable X is zero 

except at the points X = 0, 1, 2. At these points, it has the values 

P(X = 0) = 3c
3
, P(X = 1) = 4c – 10c

2, P(X = 2) = 5c – 1. 

Find (i) c, (ii) P(X < 1), (iii) P(1 < X £ 2), and (iv) P(0 < X £ 2).

Solution

 (i) Since P(X = x) is a probability mass function,

 Â(P(X = x) = 1

 P(X = 0) + P(X = 1) + P(X = 2) = 1

   3c
3 + 4c – 10c

2 + 5c – 1 = 1

      3c
3 – 10c

2 + 9c – 2 = 0

    (3c – 1) (c – 2) (c – 1) = 0

     

1
, 2, 1

3
c =

  But c < 1, otherwise given probabilities will be greater than one or less than 

zero.

 \ 
1

3
c =
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  Hence, the probability distribution is

X 0 1 2

P(X = x)
1

9

2

9

2

3

 (ii) P(X < 1) = P(X = 0) = 
1

9

 (iii) P(1 < X £ 2) = P(X = 2) = 
2

3

 (iv) P(0 < X £ 2) = P(X = 1) + P(X = 2)

  = 
2 2

9 3
+

  = 
8

9

example 9
From a lot of 10 items containing 3 defectives, a sample of 4 items is 

drawn at random. Let the random variable X denote the number of 

defective items in the sample. Find the probability distribution of X.

Solution

The random variable X can take the value 0, 1, 2, or 3.

Total number of items = 10

Number of good items = 7

Number of defective items = 3

 P(X = 0) = P(no defective) = 

7
4

10
4

1

6

C

C
=

 P(X = 1) = P(one defective and three good items) = 
3 7

1 3

10
4

1

2

C C

C
=

 P(X = 2) = P(two defectives and two good items) = 
3 7

2 2

10
4

3

10

C C

C
=

 P(X = 3) = P(three defectives and one good item) = 

3 7
3 1

10
4

1

30

C C

C
=
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Hence, the probability distribution of the random variable is

X 0 1 2 3

P(X = x)
1

6

1

2

3

10

1

30

example 10
Construct the distribution function of the discrete random variable X 

whose probability distribution is as given below:

X 1 2 3 4 5 6 7

P(X = x) 0.1 0.15 0.25 0.2 0.15 0.1 0.05

Solution

Distribution function of X

 X P(X = x) F(x)

1 0.1 0.1

2 0.15 0.25

3 0.25 0.5

4 0.2 0.7

5 0.15 0.85

6 0.1 0.95

7 0.05 1

example 11

A random variable X has the probability function given below:

X 0 1 2

P(X = x) k 2k 3k

Find (i) k, (ii) P(X < 2), P(X £ 2), P(0 < X < 2), and (iii) the distribution 

function.

Solution

 (i) Since P(X = x) is a probability density function,

 Â(P(X = x) = 1

   k + 2k + 3k = 1

        6k = 1
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       k = 
1

6

   Hence, the probability distribution is

X 0 1 2

P(X = x)
1

6

2

6

3

6

 (ii)  P(X < 2) = P(X = 0) + P(X = 1) = 
1 2 1

6 6 2
+ =

 P(X £ 2) = P(X = 0) + P(X = 1) + P(X = 2) = 
1 2 3

1
6 6 6

+ + =

 P(0 < X < 2) = P(X = 1) = 
1

3
 (iii) Distribution function

X P(X = x) F(x)

0
1

6

1

6

1
2

6

1

2

2
3

6
1

example 12
A random variable X takes the values –3, –2, –1, 0, 1, 2, 3, such that

P(X = 0) = P(X > 0) = P(X < 0),

P(X = –3) = P(X = –2) = P(X = –1) = P(X = 1) = P(X = 2) = P(X = 3).

Obtain the probability distribution and the distribution function of X.

Solution

Let P(X = 0) = P(X > 0) = P(X < 0) = k1

Since ÂP(X = x) = 1

 k1 + k1 + k1 = 1

 \    
1

1

3
k =
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 P(X = 0) = P(X > 0) = P(X < 0) = 
1

3

Let  P(X = 1) = P(X = 2) = P(X = 3) = k2

 P(X > 0) = P(X = 1) + P(X = 2) + P(X = 3)

 
1

3
 = k2 + k2 + k2

\ k2 = 
1

9

 P(X = 1) = P(X = 2) = P(X = 3) = 
1

9

Similarly, P(X = –3) = P(X = –2) = P(X = –1) = 
1

9

Probability distribution and distribution function

X P(X = x) F(x)

–3
1

9

1

9

–2
1

9

2

9

–1
1

9

3

9

0
1

3

6

9

1
1

9

7

9

2
1

9

8

9

3
1

9
1
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example 13
A discrete random variable X has the following distribution function:

 

0 1

1
1 4

3

1
( ) 4 6

2

5
6 10

6

1 10

x

x

F x x

x

x

<Ï
Ô
Ô £ <
Ô
ÔÔ= £ <Ì
Ô
Ô

£ <Ô
Ô

≥ÔÓ
Find  (i) P(2 < X £ 6), (ii) P(X = 5), (iii) P(X = 4), (iv) P(X £ 6), and 

(v) P(X = 6).

Solution

 (i) P(2 < X £ 6) = F(6) – F(2) = 
5 1 3 1

6 3 6 2
- = =

 (ii) P(X = 5) = P(X £ 5) – P(X < 5) = F(5) – P(X < 5) = 
1 1

0
2 2

- =

 (iii) P(X = 4) = P(X £ 4) – P(X < 4) = F(4) – P(X < 4) = 
1 1 1

2 3 6
- =

 (iv) P(X £ 6) = F(6) = 
5

6

 (v) P(X = 6) = P(X £ 6) – P(X < 6) = F(6) – P(X < 6) = 
5 1 1

6 2 3
- =

exercIse 8.7

 1.  Verify whether the following functions can be considered probability 

mass functions:

   (i) P(X = x) = 
+

=
2 1

, 0,1, 2, 3
18

x
x  [ans.: Yes)

  (ii) P(X = x) = 
-

=
2 2

, 1, 2, 3
8

x
x  [ans.: No]

    (iii) P(X = x) = 
+

=
2 1

, 0,1, 2, 3
18

x
x  [ans.: No]
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 2. The probability density function of a random variable X is

X 0 1 2 3 4 5 6

P(X = x) k 3k 5k 7k 9k 11k 13k

    Find P(X < 4) and P(3 < X £ 6).

 

È ˘
Í ˙Î ˚

16 33
,

49 49
ans.:

 3. A random variable X has the following probability distribution:

X 1 2 3 4 5 6 7

P(X = x) k 2k 3k k2 k2 + k 2k2 4k2

   Find (i) k, (ii) P(X < 5), (iii) P(X > 5), and (iv) P(0 £ X £ 5)

 

È ˘
Í ˙Î ˚

1 49 3 29
(ii) (iii) (iv)

8 64 32 32
ans.:

 4.  A discrete random variable X has the following probability 

distribution:

X –2 –1 0 1 2 3

P(X = x) 0.1 k 0.2 2k 0.3 3k

   Find (i) k, (ii) P(X ≥ 2), and (iii) P(–2 < X < 2).

 

È ˘
Í ˙Î ˚

1 1 2
(ii) (iii)

15 2 5
ans.:

 5.  Given the following probability function of a discrete random variable 

X:

X 0 1 2 3 4 5 6 7

P(X = x) 0 c 2c 2c 3c c2 2c2 7c2 + c

    Find (i) c, (ii) P(X ≥ 6), (iii) P(X < 6), and (iv) find k if P(X £ k) > 
1

,
2

 

where k is a positive integer.

 [ans.: (i) 0.1 (ii) 0.19 (iii) 0.81 (iv) 4]

 6.  A random variable X assumes four values with probabilities 

+ - + -1 3 1 1 2 1 4
, , and .

4 4 4 4

x x x x
 For what value of x do these values 

represent the probability distribution of X?

 

È ˘
- £ £Í ˙Î ˚

1 1

3 4
Xans.:
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 7. Let X denote the number of heads in a single toss of 4 fair coins.

   Determine (i) P(X < 2), and (ii) P(1 < X £ 3).

 

È ˘
Í ˙Î ˚

5 5
(i) (ii)

16 8
ans.:

 8.  If 3 cars are selected from a lot of 6 cars containing 2 defective cars, 

find the probability distribution of the number of defective cars.

 

X 0 1 2

P(X = x)
1

5

3

5

2

5

ans.:

 9.  Five defective bolts are accidentally mixed with 20  good ones. Find the 

probability distribution of the number of defective bolts, if four bolts 

are drawn at random from this lot.

 

ans.:

X 0 1 2 3 4

P(X = x)
969

2530

1140

2530

380

2530

40

2530

1

2530

 10.  Two dice are rolled at once. Find the probability distribution of the 

sum of the numbers on them.

ans.:

X 2 3 4 5 6 7 8 9 10 11 12

P(X = x)
1

36

2

36

3

36

4

36

5

36

6

36

5

36

4

36

3

36

2

36

1

36

 11.  A random variable X takes three values 0, 1, and 2 with probabilities 

1 1 1
, , and

3 6 2
 respectively. Obtain the distribution function of X.

 

È ˘
= = =Í ˙Î ˚

1 1
(0) , (1) , (2) 1

3 2
F F Fans.:

 12. A random variable X has the following probability function: 

x 0 1 2 3 4

P(X = x) k 3k 5k 7k 9k
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   Find (i) the value of k, (ii) P(X < 3), P(X ≥ 3), P(0 < X < 4), and

   (iii) distribution function of X.

 

È ˘
Í ˙
Í ˙
Í ˙= = = =Í ˙Î ˚

1 9 16 3
(i) , (ii) , ,

25 25 25 5

1 4 9 16
(iii) (0) = , (1) . (2) , (3) , (4) 1

25 25 25 25
F F F F F

ans.:

 13. A random variable X has the probability function 

X –2 –1 0 1 2 3

P(X = x) 0.1 k 0.2 2k 0.3 k

    Find (i) k, (ii) P(X £ 1), (iii) P(–2 < X < 1), and (iv) obtain the distribution 

function of X.

 [ans.: (i) 0.1 (ii) 0.6  (iii) 0.3]

 14.  The following is the distribution function F(x) of a discrete random 

variable X:

X –3 –2 –1 0 1 2 3

P(X = x) 0.08 0.2 0.4 0.65 0.8 0.9 1

    Find (i) the probability distribution of X, (ii) P(–2 £ X £ 1), and 

(iii) P(X ≥ 1).

 
(ii)  0.72   (ii)  0.35

ans.: (i)
X –3 –2 –1 0 1 2 3

P(X = x) 0.08 0.12 0.2 0.25 0.15 0.1 0.1

8.15  Measures of central tendency for a dIscrete 
probabIlIty dIstrIbutIon

The behaviour of  a random variable is completely characterized by the distribution 

function F(x) or density function p(x). Instead of a function, a more compact description 

can be made by single numbers such as mean, median, mode, variance, and standard 

deviation known as measures of central tendency of the random variable X.

1. Mean The mean or average value (m) of the probability distribution of a discrete 

random variable X is called expectation and is denoted by E(X).

 1

( ) ( ) ( )i i

i

E X x p x x p xm
•

=

= = =Â Â
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where p(x) is the probability density function of the discrete random variable X. 

Expectation of any function f(x) of a random variable X is given by

 

[ ]
1

( ) ( ) ( ) ( ) ( )i i

i

E x x p x x p xf f f
•

=

= =Â Â

Some important results on expectation:

 (i) E(X + k) = E(X) + k

 (ii) E(aX ± b) = aE(X) ± b

 (iii) E(X + Y) = E(X) + E(Y) provided E(X) and E(Y) exists

 (iv) E(XY) = E(X) E(Y) if X and Y are two independent random variables

2. variance Variance characterizes the variability in the distributions since two 

distributions with same mean can still have different dispersion of data about their means. 

Variance of the probability distribution of a discrete random variable X is given by

 Var(X) = s2 = E(X – m)2

 = E(X2 – 2Xm + m2)

 = E(X2) – E(2Xm) + E(m2)

 = E(X2) – 2m E(X) + m2  [∵ E(constant) = (constant)]

 = E(X2) – 2mm + m2

 = E(X2) – m2

 = E(X2) – [E(X)]2

Some important results on variance:

 (i) Var (k) = 0

 (ii) Var (kX) = k2 Var (X)

 (iii) Var (X + k) = Var (X)

 (iv) Var (aX + b) = a2 Var(X)

3. standard deviation Standard deviation is the positive square root of the 

variance.

   SD = s = 2 2

1

( )i i

i

x p x m
•

=

-Â

  = 2 2( )E X m-

  = 2 2( ) [ ( )]E X E X-
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example 1
A random variable X has the following distribution:

X 1 2 3 4 5 6

P(X = x)
1

36

3

36

5

36

7

36

9

36

11

36

Find (i) mean, (ii) variance, and (iii) P(1 < X < 6).

Solution

 (i)                Mean = m = Sxp(x)

   

1 3 5 7 9 11
1 2 3 4 5 6

36 36 36 36 36 36

Ê ˆ Ê ˆ Ê ˆ Ê ˆ Ê ˆ Ê ˆ= + + + + +Á ˜ Á ˜ Á ˜ Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯ Ë ¯ Ë ¯ Ë ¯

   

161

36
=

   = 4.47

 (ii) Variance = s2 = Sx
2
p(x) – m2

 = 

( )2

1 3 5 7 9
1 4 9 16 25

36 36 36 36 36

11
36 4.47

36

Ê ˆ Ê ˆ Ê ˆ Ê ˆ Ê ˆ+ + + +Á ˜ Á ˜ Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯ Ë ¯ Ë ¯

Ê ˆ+ -Á ˜Ë ¯

 = 
791

19.98
36

-

 = 1.99

 (iii) P(1 < X < 6) = P(X = 2) + P(X = 3) + P(X = 4) + P(X = 5)

   = 
3 5 7 9

36 36 36 36
+ + +

   = 
24

36

   = 0.67

example 2
The probability distribution of a random variable X is given below. Find 

(i) E(X), (ii) Var(X), (iii) E(2X – 3), and (iv) Var (2X – 3)

X –2 –1 0 1 2

P(X = x) 0.2 0.1 0.3 0.3 0.1
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Solution

 (i)          E(X) = ( )x p xS
  = –2(0.2) – 1(0.1) + 0 + (0.3) + 2(0.1)

  = 0

 (ii)       Var(X) = 2 2( ) [ ( )]x p x E X-S
  = 4(0.2) + 1(0.1) + 0 + 1(0.3) + 4(0.1) – 0

  = 1.6

 (iii)  E(2X – 3) = 2E(X) – 3

  = 2(0) – 3

  = –3

 (iv)  Var (2X – 3) = (2)2 Var (X)

   = 4(1.6)

   = 6.4

example 3
The mean and standard deviation of a random variable X are 5 and 4 

respectively. Find E(X2) and standard deviation of (5 – 3X).

Solution

 E(X) = m  = 5

 SD = s = 4

 \  Var(X) = s2 = 16

      Var(X) = E(X2) – [E(X)]2

        16 = E(X2) – (5)2

 \      E(X2) = 41

   Var (5 – 3X) = Var (5) – (–3)2 Var (X)

 = 0 + 9(16)

 = 144

 SD (5 – 3X) = Var (5 3 )X-

 = 144

 = 12

example 4
A machine produces an average of 500 items during the first week of the 

month and on average of 400 items during the last week of the month, 

the probability for these being 0.68 and 0.32 respectively. Determine the 

expected value of the production.

 [Summer 2015]
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Solution

Let X be the random variable which denotes the items produced by the machine. The 

probability distribution is

X 500 400

P(X = x) 0.68 0.32

Expected value of the production E(X) = ( )x p xÂ
   = 500(0.68) + 400(0.32)

   = 468

example 5
The monthly demand for Allwyn watches is known to have the following 

probability distribution:

Demand (x) 1 2 3 4 5 6 7 8

Probability p(x) 0.08 0.12 0.19 0.24 0.16 0.10 0.07 0.04

Find the expected demand for watches. Also, compute the variance.

Solution

     

( ) ( )

1(0.08) 2(0.12) 3(0.19) 4(0.24) 5(0.16)

6(0.10) 7(0.07) 8(0.04)

4.06

E X x p x= S
= + + + +

+ + +
=

 

2 2

2 2

2

Var( ) ( ) [ ( )]

( ) [ ( )]

1(0.08) 4(0.12) 9(0.19) 16(0.24) 25(0.16)

36(0.10) 49(0.07) 64(0.04) (4.06)

19.7 16.48

3.21

X E X E X

x p x E X

= -

= S -
= + + + +

+ + + -
= -
=

example 6
A discrete random variable has the probability mass function given 

below:

X –2 –1 0 1 2 3

P(X = x) 0.2 k 0.1 2k 0.1 2k

Find k, mean, and variance.
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Solution

Since  P(X = x) is a probability mass function,

 

( ) 1

0.2 0.1 2 0.1 2 1

5 0.4 1

5 0.6

0.6 3

5 25

P X x

k k k

k

k

k

= =

+ + + + + =
+ =

=

= =

Â

Hence, the probability distribution is

X –2 –1 0 1 2 3

P(X = x)
2

10

3

25

1

10

6

25

1

10

6

25

Mean = ( ) ( )

2 3 6 1 6
( 2) ( 1) 0 1 2 3

10 25 25 10 25

6

25

E X x p x=

Ê ˆ Ê ˆ Ê ˆ Ê ˆ Ê ˆ= - + - + + + +Á ˜ Á ˜ Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯ Ë ¯ Ë ¯

=

Â

Variance = [ ]
[ ]

22

22

Var( ) ( ) ( )

( ) ( )

X E X E X

x p x E X

= -

= -Â

     

2
2 3 6 1 6 6

4 1 0 1 4 9
10 25 25 10 25 25

73 36

250 625

293

625

Ê ˆ Ê ˆ Ê ˆ Ê ˆ Ê ˆ Ê ˆ= + + + + + -Á ˜ Á ˜ Á ˜ Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯ Ë ¯ Ë ¯ Ë ¯

= -

=

example 7
A random variable X has the following probability function:

x 0 1 2 3 4 5 6 7

p(x) 0 k 2k 2k 3k k
2 2k

2 7k
2 + k

(i) Determine k. (ii) Evaluate P(X < 6), P(X ≥ 6), P(0 < X < 5), and 

P(0 £  X £ 4). (iii) Determine the distribution function of X. (iv) Find the 

mean. (v) Find the variance.
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Solution

 (i) Since p(x) is a probability mass function,

 

p x

k k k k k k k k

k k

k k

( )

( ) ( )

Â =

+ + + + + + + + =

+ - =
- + =

1

0 2 2 3 2 7 1

10 9 1 1

10 1 1

2 2 2

2

00

1

10
1

1

10
0 1 0 1

k k

k p x k

= = -

= = ≥ π -[ ]

or

. ( ) ,∵

  Hence, the probability function is

X 0 1 2 3 4 5 6 7

P(X = x) 0 0.1 0.2 0.2 0.3 0.01 0.02 0.17

(ii) ( 6) ( 0) ( 1) ( 2) ( 3) ( 4) ( 5)

0 0.1 0.2 0.2 0.3 0.01

0.81

( 6) 1 ( 6)

1 0.81

0.19

P X P X P X P X P X P X P X

P X P X

< = = + = + = + = + = + =
= + + + + +
=

≥ = - <
= -
=

 

(0 5) ( 1) ( 2) ( 3) ( 4)

0.1 0.2 0.2 0.3

0.8

(0 4) ( 0) ( 1) ( 2) ( 3) ( 4)

0 0.1 0.2 0.2 0.3

0.8

P X P X P X P X P X

P X P X P X P X P X P X

< < = = + = + = + =
= + + +
=

£ £ = = + = + = + = + =
= + + + +
=

 (iii) Distribution function of X

x p(x) F(x)

0 0 0

1 0.1 0.1

2 0.2 0.3

3 0.2 0.5

4 0.3 0.8

5 0.01 0.81

6 0.02 0.83

7 0.17 1
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 (iv) ( )

0 1(0.1) 2(0.2) 3(0.2) 4(0.3) 5(0.01) 6(0.02) 7(0.17)

3.66

xp xm =

= + + + + + + +
=

Â

 (v) 
2 2 2

2

Var( ) ( )

0 1(0.1) 4(0.2) 9(0.2) 16(0.3) 25(0.01) 36(0.02)

49(0.17) (3.66)

3.4044

X x p xs m= = -

= + + + + + +

+ -
=

Â

example 8
A fair die is tossed. Let the random variable X denote twice the number 

appearing on the die. Write the probability distribution of X. Calculate 

mean and variance.

Solution

Let X be the random variable which denotes twice the number appearing on the die.

 (i) Probability distribution of X

x 2 4 6 8 10 12

p(x)
1

6

1

6

1

6

1

6

1

6

1

6

 (ii) Mean = m ( )

1 1 1 1 1 1
2 4 6 8 10 12

6 6 6 6 6 6

7

x p x=

Ê ˆ Ê ˆ Ê ˆ Ê ˆ Ê ˆ Ê ˆ= + + + + +Á ˜ Á ˜ Á ˜ Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯ Ë ¯ Ë ¯ Ë ¯

=

Â

 (iii) Variance = s2 2 2

2

( )

1 1 1 1 1 1
4 16 36 64 100 144 (7)

6 6 6 6 6 6

11.67

x p x m= -

Ê ˆ Ê ˆ Ê ˆ Ê ˆ Ê ˆ Ê ˆ= + + + + + -Á ˜ Á ˜ Á ˜ Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯ Ë ¯ Ë ¯ Ë ¯

=

Â

example 9
Two unbiased dice are thrown at random. Find the probability distribution 

of the sum of the numbers on them. Also, find the mean and variance.

Solution

Let X be the random variable which denotes the sum of the numbers on two 

unbiased dice. The random variable X can take values 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12. 
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The probability distribution is

X 2 3 4 5 6 7 8 9 10 11 12

P(X = x)
1

36

2

36

3

36

4

36

5

36

6

36

5

36

4

36

3

36

2

36

1

36

Mean = m = S x p(x)

   

1 2 3 4 5 6 5
2 3 4 5 6 7 8

36 36 36 36 36 36 36

4 3 2 1
9 10 11 12

36 36 36 36

252

36

7

Ê ˆ Ê ˆ Ê ˆ Ê ˆ Ê ˆ Ê ˆ Ê ˆ= + + + + + +Á ˜ Á ˜ Á ˜ Á ˜ Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯ Ë ¯ Ë ¯ Ë ¯ Ë ¯

Ê ˆ Ê ˆ Ê ˆ Ê ˆ+ + + +Á ˜ Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯ Ë ¯

=

=

Variance = s2 2 2

2

( )

1 2 3 4 5
4 9 16 25 36

36 36 36 36 36

6 5 4 3
49 64 81 100

36 36 36 36

2 1
121 144 (7)

36 36

x p x m= -

Ê ˆ Ê ˆ Ê ˆ Ê ˆ Ê ˆ= + + + +Á ˜ Á ˜ Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯ Ë ¯ Ë ¯

Ê ˆ Ê ˆ Ê ˆ Ê ˆ+ + + +Á ˜ Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯ Ë ¯

Ê ˆ Ê ˆ+ + -Á ˜ Á ˜Ë ¯ Ë ¯

Â

    

1974
49

36

5.83

= -

=

example 10
A sample of 3 items is selected at random from a box containing 10 

items of which 4 are defective. Find the expected number of defective 

items.

Solution

Let X be the random variable which denotes the defective items.

Total number of items = 10

Number of good items = 6

Number of defective items = 4
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6
3

10
3

6 4
2 1

10
3

6 4
1 2

10
3

4
3

10
3

1
( 0) (no defective item)

6

1
( 1) (one defective item)

2

3
( 2) (two defective items)

10

1
( 3) (three defective items)

30

C
P X P

C

C C
P X P

C

C C
P X P

C

C
P X P

C

= = = =

= = = =

= = = =

= = = =

Hence, the probability distribution is

X 0 1 2 3

P(X = x)
1

6

1

2

3

10

1

30

Expected number of defective items ( ) ( )

1 3 1
0 1 2 3

2 10 30

1.2

E X x p x= =

Ê ˆ Ê ˆ Ê ˆ= + + +Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯

=

Â

example 11
A player tosses two fair coins. He wins ` 100 if a head appears and 

` 200 if two heads appear. On the other hand, he loses ` 500 if no 

head appears. Determine the expected value of the game. Is the game 

favourable to the players?

Solution

Let X be the random  variable which denotes the number of heads appearing in tosses 

of two fair coins.

 

1

2

3

{HH, HT, TH, TT}

1
( ) ( 0) (no heads)

4

2 1
( ) ( 1) (one head)

4 2

1
( ) ( 2) (two heads)

4

S

p x P X P

p x P X P

p x P X P

=

= = = =

= = = = =

= = = =

Amount to be lost if no head appears    = x1 = – ` 500
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Amount to be won if one head appears = x2 = ` 100

Amount to be won if two heads appear = x3 = ` 200

Expected value of the game = m 

1 1 2 2 3 3

( )

( ) ( ) ( )

1 1 1
500 100 200

4 2 4

25

x p x

x p x x p x x p x

=

= + +

Ê ˆ Ê ˆ Ê ˆ= - + +Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯

= -

Â

`

Hence, the game is not favourable to the player.

example 12
Amit plays a game of tossing a die. If a number less than 3 appears, he 

gets ` a, otherwise he has to pay ` 10. If the game is fair, find a.

Solution

Let X be the random variable which denotes tossing of a die.

Probability of getting a number less than 3, i.e., 1 or 2 = 1

2 1
( )

6 3
p x = =

Probability of getting number more than or equal to 3, i.e., 3, 4, 5, or 6 2

4 2
( )

6 3
p x= = =

Amount to be received for number less than 3 = x1 = ` a

Amount to be paid for numbers more than or equal to 3 = x2 = ` –10

 

1 1 2 2

( ) ( )

( ) ( )

1 2
( 10)

3 3

E X x p x

x p x x p x

a

=

= +

Ê ˆ Ê ˆ= + -Á ˜ Á ˜Ë ¯ Ë ¯

Â

    

20

3 3

a
= -

For a pair game, E(x) = 0.

     

20
0

3 3

20

a

a

- =

=
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example 13
A man draws 2 balls from a bag containing 3 white and 5 black balls. 

If he is to receive ` 14 for every white ball which he draws and ` 7 for 

every black ball, what is his expectation?

Solution

Let X be the random variable which denotes the balls drawn from a bag. 2 balls drawn 

may be either (i) both white, or (ii) both black, or (iii) one white and one black.

Probability of drawing 2 white balls = 

3
2

1 8
2

3
( )

28

C
p x

C
= =

Probability of drawing 2 black balls = 

5
2

2 8
2

10
( )

28

C
p x

C
= =

Probability of drawing 1 white and 1 black ball = 

3 5
1 1

3 8
2

15
( )

28

C C
p x

C
= =

Amount to be received for 2 white balls = x1 = ` 14 × 2 = ` 28

Amount to be received for 2 black balls = x2 = ` 7 × 2 = ` 14

Amount to be received for 1 white and 1 black ball = x3 = ` 14 + ` 7 = ` 21

Expectation = 

1 1 2 2 3 3

( ) ( )

( ) ( ) ( )

3 10 15
28 14 21

28 28 28

19.25

E X x p x

x p x x p x x p x

=

= + +

Ê ˆ Ê ˆ Ê ˆ= + +Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯

=

Â

`

example 14
The probability that there is at least one error in an account statement 

prepared by A is 0.2 and for B and C, they are 0.25 and 0.4 respectively. 

A, B, and C prepared 10, 16, and 20 statements respectively. Find the 

expected number of correct statements in all.

Solution

Let p(x1), p(x2) and p(x3) be the probabilities of the events that there is no error in the 

account statements prepared by A, B, and C respectively.

 

1( ) 1 (Probability of at least one error in the account

statement prepared by )

1 0.2

0.8

p x

A

= -

= -
=
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Similarly,  p(x2) = 1 – 0.25 =  0.75

  p(x3) = 1 – 0.4 = 0.6

Also,  x1 = 10,  x2 = 16,  x3 = 20

Expected number of correct statements = 

1 1 2 2 3 3

( ) ( )

( ) ( ) ( )

10(0.8) 16(0.75) 20(0.6)

32

E X x p x

x p x x p x x p x

=

= + +

= + +
=

Â

example 15
A man has the choice of running either a hot-snack stall or an ice-cream 

stall at a seaside resort during the summer season. If it is a fairly cool 

summer, he should make ` 5000 by running the hot-snack stall, but if 

the summer is quite hot, he can only expect to make ` 1000. On the 

other hand, if he operates the ice-cream stall, his profit is estimated at 

` 6500, if the summer is hot, but only ` 1000 if it is cool. There is a 40 

percent chance of the summer being hot. Should he opt for running the 

hot-snack stall or the ice-cream stall?

Solution

Let X and Y be the random variables which denote the income from the hot-snack and 

ice-cream stalls respectively.

Probability of hot summer = p1 = 40% = 0.4

Probability of cool summer = p2 = 1 – p1 = 1 – 0.4 = 0.6

 x1 = 1000,  x2 = 5000,  y1 = 6500,  y2 = 1000

Expected income from hot-snack stall 

1 1 2 2

( )

1000(0.4) 5000(0.6)

3400

E X

x p x p

=
= +

= +
= `

Expected income from ice-cream stall 

1 1 2 2

( )

6500 (0.4) 1000(0.6)

3200

E Y

y p y p

=
= +

= +
= `

Hence, he should opt for running the hot-snack stall.
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exercIse 8.8

 1. The probability distribution of a random variable X is given by

X –2 –1 0 1 2 3

P(X = x) 0.1 k 0.2 2k 0.3 k

    Find k, the mean, and variance.

 
È ˘Î ˚0.1, 0.8, 2.16ans.:

 2. Find the mean and variance of the following distribution:

X 4 5 6 8

P(X = x) 0.1 0.3 0.4 0.2

 
È ˘Î ˚5.9,1.49ans.:

 3. Find the value of k from the following data:

X 0 10 15

P(X = x)
- 6

5

k 2

k

14

5k

       Also, find the distribution function and expectation of X.

 

ans.:  8,

X 0 10 15

F(X)
2

5

13

20
1

, 31

4

 4. For the following distribution,

X –3 –2 –1 0 1 2

P(X = x) 0.01 0.1 0.2 0.3 0.2 0.15

       find (i) P(X ≥ 1), (ii) P(X < 0), (iii) E(X), and (iv) Var(X)

 
È ˘Î ˚(i) 0.35 (ii) 0.35 (iii) 0.05 (iv) 1.8475ans.:

 5. A random variable X has the following probability function:

X 0 1 2 3 4 5 6 7 8

P(X = x)
45

k

15

k

9

k

5

k 2

45

k 6

45

k 7

45

k 8

45

k 4

45

k
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    Determine (i) k, (ii) mean, (iii) variance, and (iv) SD.

 
È ˘Î ˚(i) 1(ii) 0.4622 (iii) 4.9971(iv) 2.24ans.:

 6.   A fair coin is tossed until a head or five tails appear. Find (i) discrete 
probability distribution, and (ii) mean of the distribution.

 

ans.: (i)

X 1 2 3 4 5

P(X = x)
1

2

1

4

1

8

1

16

1

16

(ii)  1.9

 7.  Let X denote the minimum of two numbers that appear when a pair 

of fair dice is thrown once. Determine (i) probability distribution, 

(ii) expectation, and (iii) variance.

 

ans.: (i)

(ii)  2.5278  (iii)  1.9713

X 1 2 3 4 5 6

P(X = x)
11

36

9

36

7

36

5

36

3

36

1

36

 8. For the following probability distribution,

X –3 –2 –1 0 1 2 3

P(X = x) 0.001 0.01 0.1 ? 0.1 0.01 0.001

       find (i) missing probability, (ii) mean, and (iii) variance.

 
È ˘Î ˚(i) 0.778 (ii) 0.2 (iii) 0.258ans.:

 9.  A discrete random variable can take all integer values from 1 to k 

each with the probability of 
1

.
k

 Show that its mean and variance are 

+ +21 1
and

2 2

k k
 respectively.

 10.  An urn contains 6 white and 4 black balls; 3 balls are drawn without 

replacement. What is the expected number of black balls that will be 

obtained?

 

È ˘
Í ˙Î ˚

6

5
ans.:

 11.  A six-faced die is tossed. If a prime number occurs, Anil wins that 

number of rupees but if a non-prime number occurs, he loses that 
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number of rupees. Determine whether the game is favourable to the 

player.

 
È ˘Î ˚The game is favourable to Anil.ans.:

 12.  A man runs an ice-cream parlour at a holiday resort. If the summer is 

mild, he can sell 2500 cups of ice cream; if it is hot, he can sell 4000 

cups; if it is very hot, he can sell 5000 cups. It is known that for any 

year, the probability of summer to be mild is 
1

7
 and to be hot is 

4
.

7
 A 

cup of ice cream costs ` 2 and is sold for ` 3.50. What is his expected 

profit?

 
È ˘Î ˚` 6107.14ans.:

 13.  A player tosses two fair coins. He wins ` 1 or ` 2 as 1 tail or 1 head 

appears. On the other hand, he loses ` 5 if no head appears. Find the 

expected gain or loss of the player.

 
È ˘Î ˚`Loss of 0.25ans.:

 14.  A bag contains 2 white balls and 3 black balls. Four persons A, B, C, D in 

the order named each draws one ball and does not replace it. The first 

to draw a white ball receives ` 20. Determine their expectations.

 
È ˘Î ˚` ` ` `8, 6, 4, 2ans.:

points to remember

Arithmetic Mean

The arithmetic mean of a set of observations is their sum divided by the number of 

observations. If x1, x2,..., xn be n observations then their average or arithmetic mean 

is given by

 

1 2 1

n

i

n i

x
xx x x

x
n n n

=+ + +
= = =

Â Â

If n observations consist of n distinct values denoted by x1, x2, ..., xn of the observed 

variable x occurring with frequencies f1, f2, ..., fn respectively then the arithmetic 

mean is given by

 

11 1 2 2 1

1 2

1

n n

i i i i
in n i

n
n

i

i

f x f x
fxf x f x f x

x
f f f N N

f

= =

=

+ + +
= = = =

+ + +

Â Â Â

Â
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1. Arithmetic Mean of Grouped Data

In case of a grouped or continuous frequency distribution, the arithmetic mean is 

given by

 

1

1

1

, where

n

i i n
i

in
i

i

i

f x
fx

x N f
N

f

=

=

=

= = =
Â Â Â
Â

and x is taken as the mid-value of the corresponding class.

2. Arithmetic Mean from Assumed Mean

 

fd
x a

N
= + Â

3. Arithmetic Mean by the Step-Deviation Method

 

fd
x a h

N
= + Â

4. Weighted Arithmetic Mean

Weighted arithmetic mean = 1 1 2 2

1 2

n n

n

w x w x w x

w w w

+ + +
+ + +





    
w

wx
x

w
= Â

Â
When the assumed mean is used for calculation,

        
w

wd
x a

w
= + Â

Â
When the step-deviation method is used for calculation,

        
w

wd
x a h

w
= + Â

Â

Combined Arithmetic Mean

If 1 2, , ..., kx x x  are the means of k series of sizes n1, n2,..., nk respectively then the 

mean x– of the composite series is given by

 

1 1 2 2

1 2

1

1

k k

k

k

i i

i

k

i

i

n x n x n x
x

n n n

n x

n

=

=

+ + +
=

+ + +

=
Â

Â
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Median
Median is the central value of the variable when the values are arranged in ascending 

or descending order of magnitude.

In case of ungrouped data, if the number of observations is odd then the median is the 

middle value after the values have been arranged in ascending or descending order 

of magnitude. If the number of observations is even, there are two middle terms and 

the median is obtained by taking the arithmetic mean of the middle terms.

In case of discrete frequency distribution, the median is obtained by considering the 

cumulative frequencies. The steps for calculating the median are given below:

 (i) Arrange the values of the variables in ascending or descending order of mag-

nitudes.

 (ii) Find 
2

N
, where N = Âf

 (iii) Find the cumulative frequency just greater than 
2

N
 and determine the cor-

responding value of the variable.

 (iv) The corresponding value of x is the median.

Median for Continuous Frequency Distribution

In case of a continuous frequency distribution (less than frequency distribution), the 

class corresponding to the cumulative frequency just greater than ,
2

N
 is called the 

median class, and the value of the median is given by

 Median = 
2

h N
l c

f

Ê ˆ+ -Á ˜Ë ¯

In case of ‘more than’ or ‘greater than’ type of frequency distributions, the value of 

the median is given by

 Median = 
2

h N
u c

f

Ê ˆ- -Á ˜Ë ¯

where u is the upper limit of the median class

 f is the frequency of the median class

 h is the width of the median class

 c is the cumulative frequency of the class succeeding the median class

Mode
Mode is the value which occurs most frequently in a set of observations and around 

which the other items of the set are heavily distributed.

Mode for a Continuous Frequency Distribution

In case of a continuous frequency distribution, the class in which the mode lies is 

called the modal class and the value of the mode is given by

 

1

1 2

Mode
2

m

m

f f
l h

f f f

-Ê ˆ
= + Á ˜- -Ë ¯
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where l is the lower limit of the modal class

 h is the width of the modal class

 fm is the frequency of the modal class

 f1 is the frequency of the class preceding the modal class

 f2 is the frequency of the class succeeding the modal class

Harmonic Mean

The harmonic mean of a number of observations, none of which is zero, is the 

reciprocal of the arithmetic mean of the reciprocals of the given values.

 

1
HM

1 1

n x

=
Ê ˆ
Á ˜Ë ¯Â

     1 2

1 1 1

n

n

x x x

=
+ + +

In case of a frequency distribution consisting of n observations x1, x2, ..., xn with 

respective frequencies f1, f2, ..., fn, the harmonic mean is given by

 

1 2

1 2

1 2

HM n

n

n

f f f

ff f

x x x

f

f

x

+ + +
=

+ + +

=
Ê ˆ
Á ˜Ë ¯

Â
Â





If x1, x2, ..., xn are n observations with weights w1, w2, ..., wn respectively, their 

weighted harmonic mean is given by

 

HM
w

w

x

=
Ê ˆ
Á ˜Ë ¯

Â
Â

Relation between Arithmetic Mean, Geometric Mean, and Harmonic Mean

 AM ≥ GM ≥ HM

For two observations x1 and x2 of a series,

 GM AM HM= ◊

Standard Deviation
Standard deviation is the positive square root of the arithmetic mean of the squares 

of the deviations of the given values from their arithmetic mean.
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2( )x x

n
s

-
= Â

 

22
x x

n n
s

Ê ˆ
= - Á ˜Ë ¯

Â Â

In case of a frequency distribution consisting of n observations x1, x2, ..., xn with 

respective frequencies f1, f2, ..., fn, the standard deviation is given by

 

22
fx fx

N N
s

Ê ˆ
= - Á ˜Ë ¯

Â Â

1. Standard Deviation from the Assumed Mean

 

22
fd fd

N N
s

Ê ˆ
= - Á ˜Ë ¯

Â Â

2. Standard Deviation by Step-Deviation Method

 

22
fd fd

h
N N

s
Ê ˆ

= - Á ˜Ë ¯
Â Â

3. Variance

The variance is the square of the standard deviation and is denoted by s2. The 

method for calculating variance is same as that given for the standard deviation.

4. Coefficient of Variation

The standard deviation is an absolute measure of dispersion. The coefficient of 

variation is a relative measure of dispersion and is denoted by CV.

 
CV 100

x

s
= ¥

Random Variables

A random variable X is a real-valued function of the elements of the sample space 

of a random experiment. In other words, a variable which takes the real values, 

depending on the outcome of a random experiment is called a random variable,

1. Discrete Random Variables A random variable X is said to be discrete if it 

takes either finite or countably infinite values.

2. Continuous Random Variables A random variable X is said to be continuous 

if it takes any values in a given interval.
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Discrete Probability Distribution

Probability distribution of a random variable is the set of its possible values together 

with their respective probabilities.

Discrete Distribution Function

 1

( ) ( ) ( )
x

i

i

F x P X x p x
=

= £ = Â

Measures of Central Tendency for Discrete Probability Distribution

1. Mean

 1

( ) ( ) ( )i i

i

E X x p x x p xm
•

=

= = =Â Â

2. Variance

 Var(X) = s2 = E(X – m)2

 = E(X2) – [E(X)]2

3. Standard Deviation

   SD = s = 2 2

1

( )i i

i

x p x m
•

=

-Â

  = 2 2( )E X m-

  = 2 2( ) [ ( )]E X E X-



9.1 IntroductIon

Correlation and regression are the most commonly used techniques for investigating the 

relationship between two quantitative variables. Correlation refers to the relationship 

of two or more variables. It measures the closeness of the relationship between the 

variables. Regression establishes a functional relationship between the variables. In 

correlation, both the variables x and y are random variables, whereas in regression, x is 

a random variable and y is a fixed variable. The coefficient of correlation is a relative 

measure whereas the regression coefficient is an absolute figure.

C H A P T E R

Correlation and 
Regression

9

chapter outline
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9.13 Lines of Regression
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9.16 Properties of Lines of Regression (Linear Regression)
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9.2 correlatIon

Correlation is the relationship that exists between two or more variables. Two variables 

are said to be correlated if a change in one variable affects a change in the other variable. 

Such a data connecting two variables is called bivariate data. Thus, correlation is a 

statistical analysis which measures and analyses the degree or extent to which two 

variables fluctuate with reference to each other. Some examples of such a relationship 

are as follows:

 1. Relationship between heights and weights.

 2. Relationship between price and demand of commodity.

 3. Relationship between rainfall and yield of crops.

 4. Relationship between age of husband and age of wife.

9.3 types of correlatIons

Correlation is classified into four types:

 1. Positive and negative correlations

 2. Simple and multiple correlations

 3. Partial and total correlations

 4. Linear and nonlinear correlations

9.3.1 positive and negative correlations

Depending on the variation in the variables, correlation may be positive or negative.

1. positive correlation If both the variables vary in the same direction, the 

correlation is said to be positive. In other words, if the value of one variable increases, 

the value of the other variable also increases, or, if value of one variable decreases, the 

value of the other variable decreases, e.g., the correlation between heights and weights 

of group of persons is a positive correlation.

Height (cm) 150 152 155 160 162 165

Weight (kg) 60 62 64 65 67 69

2. negative correlation If both the variables vary in the opposite direction, 

correlation is said to be negative. In other words, if the value of one variable increases, 

the value of the other variable decreases, or, if the value of one variable decreases, 

the value of the other variable increases, e.g., the correlation between the price and 

demand of a commodity is a negative correlation.

Price (` per unit) 10 8 6 5 4 1

Demand (units) 100 200 300 400 500 600
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9.3.2 simple and Multiple correlations

Depending upon the study of the number of variables, correlation may be simple or 

multiple.

1. simple correlation When only two variables are studied, the relationship is 

described as simple correlation, e.g., the quantity of money and price level, demand 

and price, etc.

2. Multiple correlation When more than two variables are studied, the relationship 

is described as multiple correlation, e.g., relationship of price, demand, and supply of 

a commodity.

9.3.3 partial and total correlations

Multiple correlation may be either partial or total.

1. partial correlation When more than two variables are studied excluding some 

other variables, the relationship is termed as partial correlation.

2. total correlation When more than two variables are studied without excluding 

any variables, the relationship is termed total correlation.

9.3.4 linear and nonlinear correlations

Depending upon the ratio of change between two variables, the correlation may be 

linear or nonlinear.

1. linear correlation If the ratio of change between two variables is constant, the 

correlation is said to be linear. If such variables are plotted on a graph paper, a straight 

line is obtained, e.g.,

Milk (l) 5 10 15 20 25 30

Curg (kg) 2 4 6 8 10 12

2. nonlinear correlation If the ratio of change between two variables is not 

constant, the correlation is said to nonlinear. The graph of a nonlinear or curvilinear 

relationship will be a curve, e.g.,

Advertising expenses (` in lacs) 3 6 9 12 15

Sales (` in lacs) 10 12 15 15 16

9.4 Methods of studyIng correlatIon

There are two different methods of studying correlation, (1) Graphic methods  

(2) Mathematical methods.

Graphic methods are (a) scatter diagram, and (b) simple graph.
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Mathematical methods are (a) Karl Pearson’s coefficient of correlation, and 

(b) Spearman’s rank coefficient of correlation.

9.5 scatter dIagraM

The scatter diagram is a diagrammatic representation 

of bivariate data to find the correlation between two 

variables. There are various correlationships between 

two variables represented by the following scatter 

diagrams.

1. perfect positive correlation If all the plotted 

points lie on a straight line rising from the lower 

left-hand corner to the upper right-hand corner, the 

correlation is said to be perfectly positive (Fig. 9.1).

2. perfect negative correlation If all the 

plotted points lie on a straight line falling from the 

upper-left hand corner to the lower right-hand corner, 

the correlation is said to be perfectly negative 

(Fig. 9.2).

3. high degree of positive correlation If all 

the plotted points lie in the narrow strip, rising from 

the lower left-hand corner to the upper right-hand 

corner, it indicates a high degree of positive correlation 

(Fig. 9.3).

4. high degree of negative correlation If all 

the plotted points lie in a narrow strip, falling from 

the upper left-hand corner to the lower right-hand 

corner, it indicates the existence of a high degree of 

negative correlation (Fig. 9.4).

5. no correlation If all the plotted points lie on a 

straight line parallel to the x-axis or y-axis or in a 

haphazard manner, it indicates the absence of any 

relationship between the variables (Fig. 9.5).

Merits of a Scatter Diagram

 1. It is simple and nonmathematical method to find 

out the correlation between the variables.

fig. 9.1

fig. 9.2

fig. 9.3

fig. 9.4

fig. 9.5
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 2. It gives an indication of the degree of linear correlation between the 

variables.

 3. It is easy to understand.

 4. It is not influenced by the size of extreme items.

9.6 sIMple graph

A simple graph is a diagrammatic representation of bivariate data to find the correlation 

between two variables. The values of the two variables are plotted on a graph paper. 

Two curves are obtained, one for the variable x and the other for the variable y. If both 

the curves move in the same direction, the correlation is said to be positive. If both 

the curves move in the opposite direction, the correlation is said to be negative. This 

method is used in the case of a time series. It does not reveal the extent to which the 

variables are related.

9.7 Karl pearson’s coeffIcIent of correlatIon

The coefficient of correlation is the measure of correlation between two random vari-

ables X and Y, and is denoted by r.

  

cov( , )

X Y

X Y
r

s s
=

where cov (X, Y) is covariance of variables X and Y,

 sX is the standard deviation of variable X,

and sY is the standard deviation of variable Y.

This expression is known as Karl Pearson’s coefficient of correlation or Karl Pearson’s 

product-moment coefficient of correlation.

 

2

2

1
cov( , ) ( ) ( )

( )

( )

X

Y

X Y x x y y
n

x x

n

y y

n

s

s

= - -

-
=

-
=

Â

Â

Â

\     
2 2

( ) ( )

( ) ( )

x x y y
r

x x y y

- -
=

- -

Â
Â Â

The above expression can be further modified.
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Expanding the terms,

 

( ) ( )2 2 2 2

2 2 2 2

2 2

2 2

( )

2 2

1

2 1 2 1

2 2
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r
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9.8 propertIes of coeffIcIent of correlatIon

1. The coefficient of correlation lies between —1 and 1, i.e., —1 £ r £ 1.

Proof Let andx y  be the mean of x and y series and sx and sy be their respective 

standard deviations.

Let 

2

2 2

2 2

sum of squares of real quantities
0

cannot be negative

( ) ( ) 2 ( ) ( )
0

x y

x yx y

x x y y

x x y y x x y y

s s

s ss s

È ˘- -Ê ˆ
± ≥ Í ˙Á ˜Ë ¯ Î ˚

- - - -
+ ± ≥

Â

Â Â Â

∵

i.e., 

2 0

2 2 0

2 (1 ) 0

1 0

1 0 or 1 0

1 or 1

n n nr

n nr

n r

r

r r

r r

+ ± ≥
± ≥
± ≥
± ≥
+ ≥ - ≥

≥ - £

Hence, the coefficient of correlation lies between –1 and 1, i.e., –1 £ r £ 1.



9.8  Properties of Coefficient of Correlation        9.7

2.  Correlation coefficient is independent of change of origin and change 

of scale.

Proof Let ,

,

x y

x y

x a y b
d d

h k

x a hd y b kd

- -
= =

= + = +

where a, b, h (>0) and k(>0) are constants.
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x x x x

y y y y

x a hd x a h d x x h d d
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= + fi = + fi - = -

= + fi = + fi - = -
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Â
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( ) ( )
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x y

xy

x x y y

x x y y

x x y y

x x y y

d d

x x y y
r

x x y y

h d d k d d

h d d k d d

d d d d

d d d d

r

Hence, the correlation coefficient is independent of change of origin and change of 

scale.

note Since correlation coefficient is independent of change of origin and change 

of scale,

 

( ) ( )22

2 2

x y

x y

yx

x y
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3. Two independent variables are uncorrelated.

Proof If random variables X and Y are independent,

 
( ) ( ) 0 or cov( , ) 0x x y y X Y- - = =Â

        \      r = 0

Thus, if X and Y are independent variables, they are uncorrelated.

note The converse of the above property is not true, i.e., two uncorrelated variables 

may not be independent.
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example 1

Calculate the correlation coefficient between x and y using the following 

data:

x 2 4 5 6 8 11

y 18 12 10 8 7 5

Solution

 n = 6

x y x
2

y
2

xy

2 18 4 324 36

4 12 16 144 48

5 10 25 100 50

6 8 36 64 48

8 7 64 49 56

11 5 121 25 55

Âx = 36 Ây = 60 Âx
2 = 266 Ây 2 = 706 Âxy = 293

 

r

xy
x y

n

x
x

n
y

y

n

=
-

-
( )

-
( )

=
-

-

ÂÂÂ

Â Â ÂÂ2

2

2

2

2

293
36 60

6

266
36

6
706

( )( )

( )
--

= -

( )

.

60

6

0 9203

2

example 2

Calculate the coefficient of correlation from the following data:

x 12 9 8 10 11 13 7

y 14 8 6 9 11 12 3
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Solution

 n = 7

x y x
2

y
2

xy

12 14 144 196 168

9 8 81 64 72

8 6 64 36 48

10 9 100 81 90

11 11 121 121 121

13 12 169 144 156

7 3 49 9 21

Âx = 70 Ây = 63 Âx
2 = 728 Ây 2 = 651 Âxy = 676

 

r

x y
x y

n

x
x

n
y

y

n

=
-

-
( )

-
( )

=
-

-

ÂÂÂ

ÂÂ ÂÂ2

2

2

2

2

676
70 63

7

728
70

7
651

( ) ( )

( )
--

=

( )

.

63

7

0 949

2

example 3

Calculate the coefficient of correlation for the following data:

x 9 8 7 6 5 4 3 2 1

y 15 16 14 13 11 12 10 8 9



9.10 Chapter 9 Correlation and Regression

Solution

 n = 9

x y x
2

y
2

xy

9 15 81 225 135

8 16 64 256 128

7 14 49 196 98

6 13 36 169 78

5 11 25 121 55

4 12 16 144 48

3 10 9 100 30

2 8 4 64 16

1 9 1 81 9

Âx = 45 Ây = 108 Âx
2 = 285 Ây 2 = 1356 Âxy = 597

 

r

x y
x y

n

x
x

n
y

y

n

=
-

-
( )

-
( )

=
-

-

ÂÂÂ

ÂÂ ÂÂ2

2

2

2

2

597
45 108

9

285
45

9
13

( )( )

( )
556

108

9

0 95

2

-

=

( )

.

example 4

Calculate the correlation coefficient between the following data:

x 5 9 13 17 21

y 12 20 25 33 35



9.8  Properties of Coefficient of Correlation        9.11

Solution

 n = 5

 

65
13

5

125
25

5

x
x

n

y
y

n

= = =

= = =

Â

Â

x y -x x -y y - 2( )x x - 2( )y y - -( )( )x x y y

5 12 –8 –13 64 169 104

9 20 –4 –5 16 25 20

13 25 0 0 0   0 0

17 33  4 8 16 64 32

21 35  8 10 64 100 80

Âx = 65 Ây = 125
( )

0

x xÂ -
=

( )

0

y yÂ -
=

2( )

160

x xÂ -
=

2( )

358

y yÂ -
=

( )( )

236

x x y yÂ - -
=

 

2 2

( )( )

( ) ( )

236

160 358

0.986

x x y y
r

x x y y

- -
=

- -

=

=

Â
Â Â

example 5

Calculate the correlation coefficient between for the following values of 

demand and the corresponding price of a commodity:

Demand in quintals 65 66 67 67 68 69 70 72

Price in rupees per kg 67 68 65 68 72 72 69 71



9.12 Chapter 9 Correlation and Regression

Solution

Let the demand in quintal be denoted by x and the price in rupees per kg be denoted 

by y.

 

8

544
68

8

552
69

8

n

x
x

n

y
y

n

=

= = =

= = =

Â

Â

x y -x x -y y - 2( )x x - 2( )y y - -( )( )x x y y

65 67 –3 –2 9 4 6

66 68 –2 –1 4 1 2

67 65 –1 –4 1 16 4

67 68 –1 –1 1 1 1

68 72 0 3 0 9 0

69 72 1 3 1 9 3

70 69 2 0 4 0 0

72 71 4 2 16 4 8

Âx = 544 Ây = 552
( )

0

x xÂ -
=

( )

0

y yÂ -
=

2( )

36

x xÂ -
=

2( )

44

y yÂ -
=

( )( )

24

x x y yÂ - -
=

 

2 2

( )( )

( ) ( )

24

36 44

0.603

x x y y
r

x x y y

- -
=

- -

=

=

Â
Â Â

example 6

Calculate the coefficient of correlation for the following pairs of 

x and y:

x 17 19 21 26 20 28 26 27

y 23 27 25 26 27 25 30 33
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Solution

Let a = 23 and b = 27 be the assumed means of x and y series respectively.

 

= - = -

= - = -

=

23

27

8

x

y

d x a x

d y b y

n

x y dx dy dx
2

dy
2

dx dy

17 23 –6 –4 36 16 24

19 27 –4 0 16 0 0

21 25 –2 –2 4 4 4

26 26 3 –1 9 1 –3

20 27 –3 0 9 0 0

28 25 5 –2 25 4 –10

26 30 3 3 9 9 9

27 33 4 6 16 36 24

Âdx = 0 Âdy = 0 Âdx
2 = 124 Âdy

2 = 70 Âdx dy = 48

 

r

d d
d d

n

d
dx

n
d

d

n

x y

x y

x y

y

=
-

-
( )

-
( )

=
-

- -
=

ÂÂÂ

ÂÂ
Â

Â2

2

2

2

48 0

124 0 70 0

0 51. 55

example 7

Calculate the correlation coefficient from the following data:

x 23 27 28 29 30 31 33 35 36 39

y 18 22 23 24 25 26 28 29 30 32

Solution

Let a = 30 and b = 25 be the assumed means of x and y series respectively.
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= - = -

= - = -

=

30

25

10

x

y

d x a x

d y b x

n

x y dx dy dx
2

dy
2

dx dy

23 18 –7 –7 49 49 49

27 22 –3 –3 9 9 9

28 23 –2 –2 4 4 4

29 24 –1 –1 1 1 1

30 25 0 0 0 0 0

31 26 1 1 1 1 1

33 28 3 3 9 9 9

35 29 5 4 25 16 20

36 30 6 5 36 25 30

39 32 9 7 81 49 63

Âdx = 11 Âdy = 7 Âdx
2 = 215 Âdy

2 = 163 Âdx dy = 186

 

r

d d
d d

n

d
d

n
d

d

n

x y

x y

x

x

y

y

=
-

-
( )

-
( )

=
-

-

ÂÂÂ

ÂÂ
Â

Â2

2

2

2

186
11 7

10

215

( )( )

(111

10
163

7

10

0 996

2 2) ( )

.

-

=

example 8

Calculate the coefficient of correlation between the ages of cars and 

annual maintenance costs.

Age of cars (year) 2 4 6 7 8 10 12

Annual maintenance cost 

(`)
1600 1500 1800 1900 1700 2100 2000
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Solution
Let the ages of cars in years be denoted by x and annual maintenance costs in rupees 

be denoted by y.

Let a = 7 and b = 1800 be the assumed means of x and y series respectively.

Let h = 1,  k = 100

 

7
7

1

1800

100

7

x

y

x a x
d x

h

y b y
d

k

n

- -
= = = -

- -
= =

=

x y dx dy dx
2

dy
2

dxdy

2 1600 –5 –2 25 4 10

4 1500 –3 3 9 9 9

6 1800 –1 0 1 0 0

7 1900 0 1 0 1 0

8 1700 1 –1 1 1 –1

10 2100 3 3 9 9 9

12 2000 5 2 25 4 10

Âdx = 0 Âdy = 0 Âdx
2 = 70 Âdy

2 = 28 Âdx dy = 37

 

r

d d
d d

n

d
d

n
d

d

n

x y

x y

x

x

y

y

=
-

-
( )

-
( )

=
-

- -
=

Â Â Â

ÂÂ
Â

Â2

2

2

2

37 0

70 0 28 0

0 836.

example 9

Calculate Karl Pearson’s coefficient of correlation for the data given 

below:

x 10 14 18 22 26 30

y 18 12 24 6 30 36
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Solution

Let a = 22 and b = 24 be the assumed means of x and y series respectively.

Let h = 4, k = 6

 

- -
= =

- -
= =

=

22

4

24

6

6

x

y

x a x
d

h

y b y
d

k

n

x y dx dy dx
2

dy
2

dx dy

10 18 –3 –1 9 1 3

14 12 –2 –2 4 4 4

18 24 –1 0 1 0 0

22 6 0 –3 0 9 0

26 30 1 1 1 1 1

30 36 2 2 4 4 4

Âdx = –3 Âdy = –3 Âdx
2 = 19 Âdy

2 = 19 Âdx dy = 12

 

r

d d
d d

n

d
d

n
d

d

n

x y

x y

x

x

y

y

=
-

-
( )

-
( )

=
-
- -

-
-

ÂÂÂ

ÂÂ
Â

Â2

2

2

2

12
3 3

6

19
3

( )( )

( )) ( )

.

2 2

6
19

3

6

0 6

-
-

=

example 10
The coefficient of correlation between two variables X and Y is 0.48. The 

covariance is 36. The variance of X is 16. Find the standard deviation 

of Y.

Solution

 r = 0.48,  cov(X, Y) = 36,  sX
2 = 16

\ sX = 4
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cov ( , )

36
0.48

4

18.75

X Y

Y

Y

X Y
r

s s

s

s

=

=

\ =

example 11

Given n = 10, sX = 5.4, sY = 6.2, and sum of the product of deviations 

from the mean of x and y is 66. Find the correlation coefficient.

Solution

 

 = 10,  = 5.4,  = 6.2

( )( ) 66

X Yn

x x y y

s s

- - =Â

\ 

2

2

2

( )

( )
5.4

10

( ) 291.6

X

x x

n

x x

x x

s
-

=

-
=

- =

Â

Â

Â

\ 

2

2

2

2 2

( )

( )
6.2

10

( ) 384.4

( )( )

( ) ( )

66

291.6 384.4

0.197

Y

y y

n

y y

y y

x x y y
r

x x y y

s
-

=

-
=

- =

- -
=

- -

=

=

Â

Â

Â
Â

Â Â

example 12

From the following information, calculate the value of n.

 
2 24, 4, 44, 44, 40, 1x y x y xy r= = = = = - = -Â Â Â Â Â
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Solution

\ 

r

xy
x y

n

x
x

n
y

y

n

n

n

=
-

-
( )

-
( )

- =
- -

- -

ÂÂÂ

ÂÂ ÂÂ2

2

2

2

2
1

40
4 4

44
4

44
4

( )( )

( ) ( ))2

8

n

n =

example 13

From the following data, find the number of items n.

 
20.5, ( )( ) 120, 8, ( ) 90Yr x x y y x xs= - - = = - =Â Â

Solution

\ 

2

2

2

2 2

( )

( )
8

( ) 64

( )( )

( ) ( )

120
0.5

90 64

10

Y

y y

n

y y

n

y y n

x x y y
r

x x y y

n

n

s
-

=

-
=

- =

- -
=

- -

=

=

Â

Â

Â
Â

Â Â

example 14

Calculate the correlation coefficient between x and y from the following 

data:

 

2

2

10, 140, 150, ( 10) 180

( 15) 215, ( 10) ( 15) 60

n x y x

y x y

= = = - =

- = - - =

Â Â Â
Â Â
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Solution

 

2 2

2 2

( 10) 180

( 15) 215

( 10) ( 15) 60

10

15

10

x

y

x y

d x

d y

d d x y

a

b

n

= - =

= - =

= - - =

=
=
=

Â Â
Â Â

Â Â

     

= = =

= = =

= +

= +

Â

Â

Â

Â

140
14

10

150
15

10

14 10
10

x

x

x
x

n

y
y

n

d
x a

n

d

40

15 15
10

0

x

y

y

y

d

d
y b

n

d

d

\ =

= +

= +

\ =

Â
Â

Â

Â

    

r

d d
d d

n

d
d

n
d

d

n

x y

x y

x

x

y

y

=
-

-
( )

-
( )

=
-

-

ÂÂÂ

ÂÂ
Â

Â2

2

2

2

60
40 0

10

180
4

( )( )

( 00

10
215

0

10

0 915

2)

.

-

=

example 15

A computer operator while calculating the coefficient between two 

variates x and y for 25 pairs of observations obtained the following 

constants:
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2

2

25, 125, 650, 100,

460, 508

n x x y

y xy

= = = =

= =

Â Â Â
Â Â

It was later discovered at the time of checking that he had copied down 

two pairs as (6, 14) and (8, 6) while the correct pairs were (8,12) and 

(6, 8). Obtain the correct value of the correlation coefficient.

Solution

   n = 25

Corrected Incorrect (Sum of incorrect ) (Sum of correct )

125 (6 8) (8 6)

125

x x x x= - +

= - + + +
=

Â Â

Similarly,

 

2 2 2 2 2

2 2 2 2 2

Corrected 100 (14 6) (12 8) 100

Corrected 650 (6 8 ) (8 6 ) 650

Corrected 460 (14 6 ) (12 8 ) 436

Corrected 508 (84 48) (96 48) 520

y

x

y

xy

= - + + + =

= - + + + =

= - + + + =

= - + + + =

Â
Â
Â
Â

Correct value of correlation coefficient

       

r

xy
x y

n

x
x

n
y

y

n

=
-

-
( )

-
( )

=
-

-

ÂÂÂ

ÂÂ ÂÂ2

2

2

2

2

520
125 100

25

650
125

( )( )

( )

225
436

100

25

0 67

2

-

=

( )

.

exercIse 9.1

 1. Draw a scatter diagram to represent the following data:

x 2 4 5 6 8 11

y 18 12 10 8 7 5

  Calculate the coefficient of correlation between x and y.

 [ans.: —0.92]
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 2.  Find the coefficient of correlation between x and y for the following 

data:

x 10 12 18 24 23 27

y 13 18 12 25 30 10

 [ans.: 0.223]

 3.  From the following information relating to the stock exchange quotations 

for two shares A and B, ascertain by using Pearson’s coefficient of 

correlation how shares A and B are correlated in their prices?

Price share (A) ` 160 164 172 182 166 170 178

Price share (B) ` 292 280 260 234 266 254 230

 [ans.: —0.96]

 4.  Find the correlation coefficient between the income and expenditure 

of a wage earner.

Month Jan Feb Mar Apr May Jun Jul

Income 46 54 56 56 58 60 62

Expenditure 36 40 44 54 42 58 54

 [ans.: 0.769]

 5.  From the following data, examine whether the input of oil and output 

of electricity can be said to be correlated.

Input of oil 6.9 8.2 7.8 4.8 9.6 8.0 7.7

Output of electricity 1.9 3.5 6.5 1.3 5.5 3.5 2.2

 [ans.: 0.696]

 6. For the following data, show that cov (x, x2) = 0.

x —3 —2 —1 0 1 2 3

x2 9 4 1 0 1 4 9

 7.  Find the coefficient of correlation between x and y for the following 

data:

x 62 64 65 69 70 71 72 74

y 126 125 139 145 165 152 180 208

 [ans.: 0.9032]

 8.  The following data gave the growth of employment in lacs in the 

organized sector in India between 1988 and 1995:

Year 1988 1989 1990 1991 1992 1993 1994 1995

Public sector 98 101 104 107 113 120 125 128

Private sector 65 65 67 68 68 69 68 68
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   Find the correlation coefficient between the employment in public and 

private sectors.

 [ans.: 0.77]

 9.  Calculate Karl Pearson’s coefficient of correlation from the following 

data, using 20 as the working mean for price and 70 as working mean 

for demand.

Price 14 16 17 18 19 20 21 22 23

Demand 84 78 70 75 66 67 62 58 60

 [ans.: —0.954]

 10. A sample of 25 pairs of values x and y lead to the following results:

  
= = = = =Â Â Â Â Â2 2127, 100, 760, 449, 500x y x y xy

  Later on, it was found that two pairs of values were taken as (8, 14) 

and (8, 6) instead of the correct values (8, 12) and (6, 8). Find the 

corrected coefficient between x and y.

 [ans.: —0.31]

9.9 ranK correlatIon

Let a group of n individuals be arranged in order of merit with respect to some 

characteristics. The same group would give a different order (rank) for different 

characteristics. Considering the orders corresponding to two characteristics A and B, 

the correlation between these n pairs of ranks is called the rank correlation in the 

characteristics A and B for that group of individuals.

9.9.1 Spearman’s Rank Correlation Coefficient

Let x, y be the ranks of the ith individuals in two characteristics A and B respectively 

where i = 1, 2, ..., n. Assuming that no two individuals have the same rank either for x 

or y, each of the variables x and y take the values 1, 2, ..., n.

     

1 2 3 ( 1) 1

2 2

n n n n
x y

n n

+ + + + + +
= = = =



 

2 2 2

2 2

2 2 2

2 2

2

2 2 2

( ) ( 2 )

2 1

2 and 1

1
(1 2 )

2

x x x x x x

x x x x

x nx nx x nx n

x n x

n
n n

- = - +

= - +

È ˘= - + = =Î ˚

= -

+Ê ˆ
= + + + - Á ˜Ë ¯

Â Â
Â Â Â
Â Â Â
Â

∵
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2

3

( 1)(2 1) ( 1)

6 4

1
( )

12

n n n n n

n n

+ + +
= -

= -

Similarly, 2 31
( ) ( )

12
y y n n- = -Â

If d denotes the difference between the ranks of the i
th individuals in the two 

variables,

 
[ ]( ) ( )d x y x x y y x y= - = - - - =∵

Squaring and summing over i from 1 to n,

 

[ ]22

2 2

2 2 2

3 2

( ) ( )

( ) ( ) 2 ( ) ( )

1
( ) ( ) ( ) ( )

2

1 1
( )

12 2

d x x y y

x x y y x x y y

x x y y x x y y d

n n d

= - - -

= - + - - - -

È ˘- - = - + - -Î ˚

= - -

Â Â
Â Â Â

Â Â Â Â

Â
Hence, the coefficient of correlation between these variables is

        

2 2

3 2

3

2

3

2

2

( )( )

( ) ( )

1 1
( )

12 2
1

( )
12

6
1

6
1

( 1)

x x y y
r

x x y y

n n d

n n

d

n n

d

n n

- -
=

- -

- -
=

-

= -
-

= -
-

Â
Â Â

Â

Â

Â

This is called Spearman’s rank correlation coefficient and is denoted by r.

note ( ) ( ) 0d x y x y n x y= - = - = - =Â Â Â Â

example 1

Ten participants in a contest are ranked by two judges as follows:

x 1 3 7 5 4 6 2 10 9 8

y 3 1 4 5 6 9 7 8 10 2

Calculate the rank correlation coefficient.
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Solution

   n = 10

Rank by first 

Judge x

Rank by second 

Judge y
d = x – y d

2

1 3 –2 4

3 1 2 4

7 4 3 9

5 5 0 0

4 6 –2 4

6 9 –3 9

2 7 –5 25

10 8 2 4

9 10 –1 1

8 2 6 36

Âd = 0 Âd
2 = 96

 

2

2

2

6

( 1)

6(96)
1

10 (10) 1

0.418

d
r

n n
=1-

-

= -
È ˘-Î ˚

=

Â

example 2

Ten competitors in a musical test were ranked by the three judges A, B, 

and C in the following order:

Rank by A 1 6 5 10 3 2 4 9 7 8

Rank by B 3 5 8 4 7 10 2 1 6 9

Rank by C 6 4 9 8 1 2 3 10 5 7

Using the rank correlation method, find which pair of judges has the 

nearest approach to common liking in music. [Summer 2015]

Solution

 n = 10
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Rank 

by A 

x

Rank 

by B 

y

Rank 

by C 

z

d1 = 

x – y

d2 = 

y – z

d3 =  

z – x
d1

2
d2

2
d3

2

1 3 6 –2 –3 5 4 9 25

6 5 4 1 1 –2 1 1 4

5 8 9 –3 –1 4 9 1 16

10 4 8 6 –4 –2 36 16 4

3 7 1 –4 6 –2 16 36 4

2 10 2 –8 8 0 64 64 0

4 2 3 2 –1 –1 4 1 1

9 1 10 8 –9 1 64 81 1

7 6 5 1 1 –2 1 1 4

8 9 7 –1 2 –1 1 4 1

Âd1 = 0 Âd2 = 0 Âd3 = 0 Âd1
2 = 200 Âd2

2 = 214 Âd3
2 = 60

   

2
1

2

2

2
2

2

2

2
3

2

2

6
( , ) 1

( 1)

6(200)
1

10 (10) 1

0.21

6
( , ) 1

( 1)

6(214)
1

10 (10) 1

0.296

6
( , ) 1

( 1)

6(60)
1

10 (10) 1

0.64

d
r x y

n n

d
r y z

n n

d
r z x

n n

= -
-

= -
È ˘-Î ˚

= -

= -
-

= -
È ˘-Î ˚

= -

= -
-

= -
È ˘-Î ˚

=

Â

Â

Â

Since r (z, x) is maximum, the pair of judges A and C has the nearest common 

approach.

example 3

Ten students got the following percentage of marks in mathematics and 

physics:
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Mathematics (x) 8 36 98 25 75 82 92 62 65 35

Physics (y) 84 51 91 60 68 62 86 58 35 49

Find the rank correlation coefficient.

Solution
 n = 10

x y
Rank in 

mathematics x

Rank in 

physics y
d = x – y d

2

8 84 10 3 7 49

36 51 7 8 –1 1

98 91 1 1 0 0

25 60 9 6 3 9

75 68 4 4 0 0

82 62 3 5 –2 4

92 86 2 2 0 0

62 58 6 7 –1 1

65 35 5 10 –5 25

35 49 8 9 –1 1

Âd = 0 Âd
2 = 90

   

2

2

2

6
1

( 1)

6(90)
1

10 (10) 1

0.455

d
r

n n
= -

-

= -
È ˘-Î ˚

=

Â

example 4

The coefficient of rank correlation of the marks obtained by 10 students 

in physics and chemistry was found to be 0.5. It was later discovered 

that the difference in ranks in the two subjects obtained by one of the 

students was wrongly taken as 3 instead of 7. Find the rank coefficient 

of the rank correlation.

Solution
 n = 10
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\ 

2

2

2

2

6
1

( 1)

6
0.5 1

10(100 1)

82.5

d
r

n n

d

d

= -
-

= -
-

=

Â

Â

Â

 

2 2 2

2

2 2

Correct Incorrect (Incorrect rank difference)

(Correct rank difference)

82.5 (3) (7)

122.5

d d= -

+

= - +
=

Â Â

Correct coefficient of rank correlation 
6(122.5)

1
10(100 1)

0.26

r = -
-

=

9.9.2 tied ranks

If there is a tie between two or more individuals ranks, the rank is divided among equal 

individuals, e.g., if two items have fourth rank, the 4th and 5th rank is divided between 

them equally and is given as th4 5
4.5

2

+
=  rank to each of them. If three items have 

the same 4th rank, each of them is given th4 5 6
5

3

+ +
=  rank. As a result of this, the 

following adjustment or correction is made in the rank correlation formula. If m is the 

number of item having equal ranks then the factor 31
( )

12
m m-  is added to 2 .dÂ  If 

there are more than one cases of this type, this factor is added corresponding to each 

case.

 

2 3 3
1 1 2 2

2

1 1
6 ( ) ( )

12 12
1

( 1)

d m m m m

r
n n

È ˘+ - + - +Í ˙Î ˚= -
-

Â 

 

example 1

Obtain the rank correlation coefficient from the following data:

x 10 12 18 18 15 40

y 12 18 25 25 50 25

Solution

 Here, n = 6
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x y Rank x Rank y d = x – y d
2

10 12 1 1 0 0

12 18 2 2 0 0

18 25 4.5 4 0.5 0.25

18 25 4.5 4 0.5 0.25

15 50 3 6 –3 9

40 25 6 4 2 4

Âd
2 = 13.5

There are two items in the x series having equal values at the rank 4. Each is given the 

rank 4.5. Similarly, there are three items in the y series at the rank 3. Each of them is 

given the rank 4.

  

1 2

2 3 3
1 1 2 2

2

2

2, 3

1 1
6 ( ) ( )

12 12
1

( 1)

1 1
6 13.50 (8 2) (27 3)

12 12
1

6 (6) 1

0.5429

m m

d m m m m

r
n n

= =

È ˘+ - + -Í ˙Î ˚= -
-

È ˘+ - + -Í ˙Î ˚= -
È ˘-Î ˚

=

Â

exercIse 9.2

 1.  Compute Spearman’s rank correlation coefficient from the following 

data:

x 18 20 34 52 12

y 39 23 35 18 46

 [ans.: —0.9]

 2.  Two judges gave the following ranks to a series of eight one-act plays 

in a drama competition. Examine the relationship between their 

judgements.

Judge A 8 7 6 3 2 1 5 4

Judge B 7 5 4 1 3 2 6 8

 [ans.: 0.62]

 3.  From the following data, calculate Spearman’s rank correlation between 

x and y.
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x 36 56 20 42 33 44 50 15 60

y 50 35 70 58 75 60 45 80 38

 [ans.: 0.92]

 4.  Ten competitors in a voice test are ranked by three judges in the 

following order:

Rank by First Judge 6 10 2 9 8 1 5 3 4 7

Rank by Second Judge 5 4 10 1 9 3 8 7 2 6

Rank by Third Judge 4 8 2 10 7 6 9 1 3 6

  Use the method of rank correlation to gauge which pairs of judges has 

the nearest approach to common liking in voice.

 [ans.: The first and third judge]

 5.  The following table gives the scores obtained by 11 students in English 

and Tamil translation. Find the rank correlation coefficient.

Scores in English 40 46 54 60 70 80 82 85 85 90 95

Scores in Tamil 45 45 50 43 40 75 55 72 65 42 70

 [ans.: 0.36]

 6.  Calculate Spearman’s coefficient of rank correlation for the following 

data:

x 53 98 95 81 75 71 59 55

y 47 25 32 37 30 40 39 45

 [ans.: —0.905]

 7.  Following are the scores of ten students in a class and their IQ:

Score 35 40 25 55 85 90 65 55 45 50

IQ 100 100 110 140 150 130 100 120 140 110

   Calculate the rank correlation coefficient between the score IQ. 

 [ans.: 0.47]

9.10 regressIon

Regression is defined as a method of estimating the value of one variable when that 

of the other is known and the variables are correlated. Regression analysis is used to 

predict or estimate one variable in terms of the other variable. It is a highly valuable tool 

for prediction purpose in economics and business. It is useful in statistical estimation 

of demand curves, supply curves, production function, cost function, consumption 

function, etc.
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9.11 types of regressIon

Regression is classified into two types:

 1. Simple and multiple regressions

 2. Linear and nonlinear regressions

9.11.1 simple and Multiple regressions

Depending upon the study of the number of variables, regression may be simple or 

multiple.

1. simple regression The regression analysis for studying only two variables at a 

time is known as simple regression.

2. Multiple regression The regression analysis for studying more than two 

variables at a time is known as multiple regression.

9.11.2 linear and nonlinear regressions

Depending upon the regression curve, regression may be linear or nonlinear.

1. linear regression If the regression curve is a straight line, the regression is 

said to be linear.

2. nonlinear regression If the regression curve is not a straight line i.e., not a 

first-degree equation in the variables x and y, the regression is said to be nonlinear 

or curvilinear. In this case, the regression equation will have a functional relation 

between the variables x and y involving terms in x and y of the degree higher than one, 

i.e., involving terms of the type x2, y2, x3, y3, xy, etc.

9.12 Methods of studyIng regressIon

There are two methods of studying correlation:

 (i) Method of scatter diagram

 (ii) Method of least squares

9.12.1 Method of scatter diagram

It is the simplest method of obtaining the lines of regression. The data are plotted 

on a graph paper by taking the independent variable on the x-axis and the dependent 

variable on the y-axis. Each of these points are generally scattered in a narrow strip. If 

the correlation is perfect, i.e., if r is equal to one, positive, or negative, the points will 

lie on a line which is the line of regression.
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9.12.2 Method of least squares

This is a mathematical method which gives an objective treatment to find a line of 

regression. It is used for obtaining the equation of a curve which fits best to a given set of 

observations. It is based on the assumption that the sum of squares of differences between 

the estimated values and the actual observed values of the observations is minimum.

9.13 lInes of regressIon

If the variables, which are highly correlated, are plotted on a graph then the points lie 

in a narrow strip. If all the points in the scatter diagram cluster around a straight line, 

the line is called the line of regression. The line of regression is the line of best fit and 

is obtained by the principle of least squares.

line of regression of y on x

It is the line which gives the best estimate for the values of y for any given values of x. 

The regression equation of y on x is given by

 

( )
y

x

y y r x x
s

s
- = -

It is also written as

 y = a + bx

line of regression of x on y

It is the line which gives the best estimate for the values of x for any given values of y. 

The regression equation for x on y is given by

 

( )x

y

x x r y y
s

s
- = -

It is also written as

 x = a + by

where andx y  are means of x series and y series respectively, sx and sy are standard 

deviations of x series and y series respectively, r is the correlation coefficient between 

x and y.

9.14 regressIon coeffIcIents

The slope b of the line of regression of y on x is also called the coefficient of regression 

of y on x. It represents the increment in the value of y corresponding to a unit change 

in the value of x.

 byx = Regression coefficient of y on x

   

y

x

r
s

s
=
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Similarly, the slope b of the line of regression of x on y is called the coefficient of 

regression of x on y. It represents the increment in the value of x corresponding to a 

unit change in the value of y.

 bxy = Regression coefficient of x on y

   

x

y

r
s

s
=

Expressions for Regression Coefficients

 (i) We know that

   

2 2

2

2

2

( ) ( )

( ) ( )
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( )

( ) ( )

( )

x

y

y

yx
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x x y y
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x x y y
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y y

n

b r

x x y y
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s
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s
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=
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-
=
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=

=
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2

( )( )

( )

x
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y

b r

x x y y

y y

s

s
=
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=

-
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 (ii) We know that
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   b r

xy
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n
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n
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=
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 (iii) We know that
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d d
d d
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9.15 propertIes of regressIon coeffIcIents

1.   The coefficient of correlation is the geometric mean of the coefficients of 

regression, i.e., 
yx xyr = b b .

Proof We know that

 

2

y

yx
x

x
xy

y

y x
yx xy

x y

yx xy

b r

b r

b b r r

r

r b b

s

s

s

s

s s

s s

=

=

= ◊

=

=

2.   If one of the regression coefficients is greater than one, the other must be less 

than one.

Proof Let byx > 1

We know that

 

2 21 and

1

1

yx xy

yx xy

yx
xy

r r b b

b b

b
b

£ =

£

£

Hence, if byx < 1, bxy > 1

3.   The arithmetic mean of regression coefficients is greater than or equal to the 

coefficient of correlation.

Proof We have to prove that

i.e.,  

1
( )

2

1

2

yx xy

y x

x y

b b r

r r r
s s

s s

+ ≥

Ê ˆ
+ ≥Á ˜

Ë ¯

i.e.,      2
y x

x y

s s

s s
+ ≥

i.e.,   2 2 2 0y x x ys s s s+ - ≥
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i.e., 2( ) 0y xs s- ≥

which is always true, since the square of a real quantity is 1 ≥ 0.

4.  Regression Coefficients are independent of the change of origin but not of 

scale.

Proof Let ,

,

x y

x y

x a y b
d d

h k

x a hd y b kd

- -
= =

= + = +

where a, b, h (> 0) and k(> 0) are constants.

    

2 2 2 2

2 2

1 1
, ,

x y x yd d xy d x d yr r
h k

s s s s= = =

    

x

x y x y

y

d

d d d d
d

x
xy

y

x
xy

y

xy

b r

k
r

h

k
r

h

k
b

h

s

s

s

s

s

s

=

=

=

=

Similarly,       
y xd d yx

h
b b

k
=

5.   Both regression coefficients will have the same sign i.e., either both are positive 

or both are negative.

6.   The sign of correlation is same as that of the regression coefficients, i.e., r > 0 if 

bxy > 0 and byx > 0; and r < 0 if bxy < 0 and byx < 0.

9.16  propertIes of lInes of regressIon  
(lInear regressIon)

 1. The two regression lines x on y and y on x always intersect at their means 

( , )x y .

 2. Since r2 = byx bxy, i.e., ,yx xyr b b=  therefore, r, byx, bxy all have the same 

sign.

 3. If r = 0, the regression coefficients are zero.

 4. The regression lines become identical if r = ±1. It follows from the regression 

equations that andx x y y= = . If r = 0, these lines are perpendicular to each 

other.
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example 1

The regression lines of a sample are x + 6y = 6 and 3x + 2y = 10. Find 

(i) sample means and ,x y  and

(ii) the coefficient of correlation between x and y.

(iii) Also estimate y when x = 12.

Solution

 (i) The regression lines pass through the point ( , )x y .

 6 6x y+ =  ...(1)

 3 2 10x y+ =  ...(2)

  Solving Eqs (1) and (2),

 

1
3,

2
x y= =

 (ii) Let the line x + 6y = 6 be the line of regression of y on x.

  \ 

6 6

1
1

6

1

6
yx

y x

y x

b

= - +

= - +

= -

  Let the line 3x + 2y = 10 be the line of regression of x on y.

 \ 

3 2 10

2 10

3 3

2

3
xy

x y

x y

b

= - +

= - +

= -

   

1 2 1

6 3 3
yx xyr b b

Ê ˆ Ê ˆ
= = - - =Á ˜ Á ˜Ë ¯ Ë ¯

  Since byx and bxy are negative, r is negative.

  

1

3
r = -

  Estimated value of y when x = 12 is

  

1
(12) 1 1

6
y = - + = -
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example 2
If the two lines of regression are 4x – 5y + 30 = 0 and 20x – 9y – 107 = 0, 

which of these are lines of regression of x on y and y on x? Find rxy and 

sy when sx = 3.

Solution

For the line 4x – 5y + 30 = 0,

      –5y = – 4x – 30

       y = 0.8 x + 6

  \   byx = 0.8

For the line 20x – 9y – 107 = 0

        20x = 9y + 107

         x = 0.45y + 5.35

  \      bxy = 0.45

Both byx and bxy are positive.

Hence, line 4x – 5y + 30 = 0 is the line of regression of y one x and line

20x – 9y – 107 = 0 is the line of regression of x on y.

          

(0.8)(0.45) 0.6

0.8 0.6
3

4

yx xy

y

yx
x

y

y

r b b

b r
s

s

s

s

= = =

=

Ê ˆ
= Á ˜Ë ¯

\ =

example 3

The following data regarding the heights (y) and weights (x) of 100 

college students are given:

 

2

2

15000, 2272500, 6800

463025, 1022250

x x y

y xy

= = =

= =

Â Â Â
Â Â

Find the coefficient of correlation between height and weight and also 

the equation of regression of height and weight.

Solution

  n = 100
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b
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(0.1)(3.6) 0.6yx xyr b b= = =

   

15000
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100

6800
68

100

x
x

n

y
y

n

= = =

= = =

Â

Â

The equation of the line of regression of y on x is

 

( )

68 0.1( 150)

0.1 53

yxy y b x x

y x

y x

- = -

- = -
= +

The equation of the line of regression of x on y is

 

( )

150 3.6( 68)

3.6 94.8

xyx x b y y

x y

x y

- = -

- = -
= -
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example 4

For a bivariate data, the mean value of x is 20 and the mean value of y is 

45. The regression coefficient of y on x is 4 and that of x on y is 
1

.
9

Find

(i)     the coefficient of correlation, and

(ii)    the standard deviation of x if the standard deviation of y is 12.

(iii)   Also write down the equations of regression lines.

Solution

 

1
20, 45, 4,

9
yx xyx y b b= = = =

  (i) 
1 2

(4) 0.667
9 3

yx xyr b b
Ê ˆ

= = = =Á ˜Ë ¯

 (ii) 

2 12
4

3

2

y

yx
x

x

x

b r
s

s

s

s

=

Ê ˆ
= Á ˜Ë ¯

\ =
 (iii) The equation of the regression line of y on x is

  

( )

45 4( 20)

4 35

yxy y b x x

y x

y x

- = -

- = -
= -

  The equation of the regression line of x on y is

  

( )

1
20 ( 45)

9

1
15

9

xyx x b y y

x y

x y

- = -

- = -

= +

example 5

From the following results, obtain the two regression equations and 

estimate the yield when the rainfall is 29 cm and the rainfall, when the 

yield is 600 kg:
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Yield in kg Rainfall in cm

Mean 508.4 26.7

SD 36.8 4.6

The coefficient of correlation between yield and rainfall is 0.52.

Solution

 Let rainfall in cm be denoted by x and yield in kg be denoted by y.

 
26.7, 508.4, 4.6, 36.8, 0.52x yx y rs s= = = = =

 

36.8
0.52

4.6

4.16

4.6
0.52

36.8

0.065

y

yx
x

x
xy

y

b r

b r

s

s

s

s

=

Ê ˆ
= Á ˜Ë ¯

=

=

Ê ˆ
= Á ˜Ë ¯

=

The equation of the line of regression of y on x is

 

( )

508.4 4.16( 26.7)

4.16 397.328

yxy y b x x

y x

y x

- = -

- = -
= +

The equation of the line of regression of x on y is

 

( )

26.7 0.065( 508.4)

0.065 6.346

xyx x b y y

x y

x y

- = -

- = -
= -

Estimated yield when the rainfall is 29 cm is

 y = 4.16 (29) + 397.328 = 517.968 kg

Estimated rainfall when the yield is 600 kg is

 x = 0.065 (600) – 6.346 = 32.654 cm

example 6

Find the regression coefficients byx and bxy and hence, find the correlation 

coefficient between x and y for the following data:



9.16 Properties of Lines of Regression (Linear Regression)         9.41

x 4 2 3 4 2

y 2 3 2 4 4

Solution

 n = 5

x y x
2

y
2

xy

4 2 16 4 8

2 3 4 9 6

3 2 9 4 6

4 4 16 16 16

2 4 4 16 8

Sx = 15 Sy = 15 Sx
2 = 49 Sy

2 = 49 Sxy = 44

 

( )22

2

(15)(15)
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5
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5
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x y
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x
x

n
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-

-
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-
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5

(15)
49

5

0.25
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x y
xy
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y
y

n

-
=

-

-
=

-

= -

Â ÂÂ

ÂÂ

 
( 0.25)( 0.25) 0.25yx xyr b b= = - - =
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Since byx and bxy are negative, r is negative.

 r = – 0.25

example 7

The following data give the experience of machine operators and their 

performance rating as given by the number of good parts turned out per 

100 pieces.

Operator 1 2 3 4 5 6

Performance rating (x) 23 43 53 63 73 83

Experience (y) 5 6 7 8 9 10

Calculate the regression line of performance rating on experience and 

also estimate the probable performance if an operator has 11 years of 

experience. [Summer 2015]

Solution

     n = 6

x y y
2

x y

23 5 25 115

43 6 36 258

53 7 49 371

63 8 64 504

73 9 81 657

83 10 100 830

Âx = 338 Ây = 45 Ây
2 = 355 Âxy = 2735

   

b

xy
x y

n

y
y

n

xy =
-

-
( )

=
-

-

=

ÂÂÂ

ÂÂ 2

2

2

2735
338 45

6

355
45

6

11 429

( )( )

( )

.
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338
56.33

6

45
7.5

6

x
x

n

y
y

n

= = =

= = =

Â

Â

The equation of regression line of x on y is

        

( )

56.33 11.429( 7.5)

11.429 29.3875

xyx x b y y

x y

x y

- = -

- = -
= -

Estimated performance if y = 11 is

    x = 11.429(11) – 29.3875 = 96.3315

example 8
The number of bacterial cells (y) per unit volume in a culture at different 

hours (x) is given below:

x 0 1 2 3 4 5 6 7 8 9

y 43 46 82 98 123 167 199 213 245 272

Fit lines of regression of y on x and x on y. Also, estimate the number of 

bacterial cells after 15 hours.

Solution

 n = 10

x y x
2

xy y
2 

0 43 0 0 1849

1 46 1 46 2116

2 82 4 164 6724

3 98 9 294 9604

4 123 16 492 15129

5 167 25 835 27889

6 199 36 1194 39601

7 213 49 1491 45369

8 245 64 1960 60025

9 272 81 2448 73984

Âx = 45 Ây = 1488 Âx
2 = 285 Âxy = 8924 Ây

2 = 282290
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45

10

27 00

( )( )

( )

. 661

 

b

xy
x y

n

y
y

n

xy =
-

-
( )

=
-

-

=

ÂÂÂ

ÂÂ 2

2

2

8924
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45
4.5

10

1488
148.8

10

x
x

n

y
y

n

= = =

= = =

Â

Â

The equation of the line of regression of y on x is

 

( )

148.8 27.0061 ( 4.5)

27.0061 27.2726

yxy y b x x

y x

y x

- = -

- = -
= +

The equation of the line of regression of x on y is

 

( )

4.5 0.0366( 148.8)

0.366 0.9461

xyx x b y y

x y

x y

- = -

- = -
= -

At  x = 15 hours,

 y = 27.0061 (15) + 27.2726 = 432.3641
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example 9

Find the regression coefficient of y on x for the following data:

x 1 2 3 4 5

y 160 180 140 180 200

Solution

 

=

= = =Â
5

15
3

5

n

x
x

n

 
= = =Â 860

172
5

y
y

n

x y -x x -y y - 2( )x x - -( )( )x x y y

1 160 –2 –12 4 24

2 180 –1 8 1 –8

3 140 0 –32 0 0

4 180 1 8 1 8

5 200 2 28 4 56

Âx = 15 Ây = 860 ( ) 0x x- =Â ( ) 0y y- =Â 2( ) 10x x- =Â ( )( ) 80x x y y- - =Â

 

2

( )( )

( )

80

10

8

yx

x x y y
b

x x

- -
=

-

=

=

Â
Â

example 10

Calculate the two regression coefficients from the data and find 

correlation coefficient.

x 7 4 8 6 5

y 6 5 9 8 2
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Solution

 

=
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x y -x x -y y - 2( )x x - 2( )y y - -( )( )x x y y

7 6 1 0 1 0 0

4 5 –2 –1 4 1 2

8 9 2 3 4 9 6

6 8 0 2 0 4 0

5 2 –1 –4 1 16 4
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x x-
=
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=
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=
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=
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b
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=

-

=
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= = =

Â
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example 11
Obtain the two regression lines from the following data and hence, find 

the correlation coefficient.

x 6 2 10 4 8

y 9 11 5 8 7

 [Summer 2015]
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Solution
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The equation of regression line of y on x is

 

( )

8 0.65( 6)

0.65 11.9

yxy y b x x

y x

y x

- = -

- = - -
= - +

The equation of regression line of x on y is

 

( )

6 1.3( 8)

1.3 16.4

( 0.65) ( 1.3) 0.9192

xy

yx xy

x x b y y

x y

x y

r b b

- = -

- = - -
= - +

= = - - =
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Since byx and bxy are negative, r is negative.

        r = –0.9192.

example 12

Calculate the regression coefficients and find the two lines of regression 

from the following data:

x 57 58 59 59 60 61 62 64

y 67 68 65 68 72 72 69 71

Find the value of y when x = 66.

Solution

 

=

= = =

= = =

Â

Â

8

480
60

8

552
69

8

n

x
x

n

y
y

n

x y -x x -y y - 2( )x x - 2( )y y - -( )( )x x y y

57 67 –3 –2 9 4 6

58 68 –2 –1 4 1 2

59 65 –1 –4 1 16 4

59 68 –1 –1 1 1 1

60 72 0 3 0 9 0

61 72 1 3 1 9 3

62 69 2 0 4 0 0

64 71 4 2 16 4 8
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2

( )( )
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24

44

0.545
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x x y y
b

y y
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=

-

=

=

Â
Â

The equation of regression line of y on x is

 

( )

69 0.667( 60)

0.667 28.98

yxy y b x x

y x

y x

- = -

- = -
= +

The equation of regression line of x on y is

 

( )

60 0.545( 69)

0.545 22.395

xyx x b y y

x y

x y

- = -

- = -
= +

Value of y when x = 66 is

   y = 0.667 (66) + 28.98 = 73.002

example 13

The following data represents rainfall (x) and yield of paddy per hectare 

(y) in a particular area. Find the linear regression of x on y.

x 113 102 95 120 140 130 125

y 1.8 1.5 1.3 1.9 1.1 2.0 1.7

Solution

Let a = 120 and b = 1.8 be the assumed means of x and y series respectively.

 

= - = -

= - = -

=

120

1.8

7

x

y

d x a x

d y b y

n
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x y dx dy dy
2

dxdy

113 1.8 –7 0 0 0

102 1.5 –18 –0.3 0.09 5.4

95 1.3 –25 –0.5 0.25 12.5

120 1.9 0 0.1 0.01 0

140 1.1 20 –0.7 0.49 –14

130 2.0 10 0.2 0.04 2.0

125 1.7 5 –0.1 0.01 –0.5

Âx = 825 Ây = 11.3 Âdx = –15 Âdy = –1.3 Âdy
2 = 0.89 Âdxdy = 5.4
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The equation of the regression line of x on y is

 

( )

117.86 4.03 ( 1.614)

4.03 111.36

xyx x b y y

x y

x y

- = -

- = -
= +

example 14

Find the two lines of regression from the following data:

Age of husband (x) 25 22 28 26 35 20 22 40 20 18

Age of wife (y) 18 15 20 17 22 14 16 21 15 14
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Hence, estimate (i) the age of the husband when the age of the wife is 19, 

and (ii) the age of the wife when the age of the husband is 30.

Solution

Let a = 26 and b = 17 be the assumed means of x and y series respectively.
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= - = -

=

26

17

10

x

y

d x a x

d y b y

n

x y dx dy dx
2

dy
2

dxdy

25 18 –1 1 1 1 –1

22 15 –4 –2 16 4 8

28 20 2 3 4 9 6

26 17 0 0 0 0 0

35 22 9 5 81 25 45

20 14 –6 –3 36 9 18

22 16 –4 –1 16 1 4

40 21 14 4 196 16 56

20 15 –6 –2 36 4 12

18 14 –8 –3 64 9 24

Âx = 256 Ây = 172 Âdx = –4 Âdy = 2 Âdx
2 = 450 Âdy

2 = 78 Âdxdy = 172
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The equation of the regression line of y on x is

 

( )

17.2 0.385( 25.6)

0.385 7.344

yxy y b x x

y x

y x

- = -

- = -
= +

The equation of the regression line of x on y is

 

( )

25.6 2.227( 17.2)

2.227 12.704

xyx x b y y

x y

x y

- = -

- = -
= -

Estimated age of the husband when the age of the wife is 19 is

    x = 2.227 (19) – 12.704 = 29.601 or 30 nearly

Age of the husband = 30 years

Estimated age of the wife when the age of the husband is 30 is

    y = 0.385 (30) + 7.344 = 18.894 or 19 nearly

Age of the wife = 19 years

example 15
From the following data, obtain the two regression lines and correlation 

coefficient.

Sales (x) 100 98 78 85 110 93 80

Purchase (y) 85 90 70 72 95 81 74
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Solution

Let a = 93 and b = 81 be the assumed means of x and y series respectively.

 dx = x – a = x – 93

 dy = y – b = y – 91

  n = 7

x y dx dy dx
2

dy
2

dx
 
dy

100 85 7 4 49 16 28

98 90 5 9 25 81 45

78 70 –15 –11 225 121 165

85 72 –8 –9 64 81 72

110 95 17 14 289 196 238

93 81 0 0 0 0 0

80 74 –13 –7 169 49 91

Âx = 644 Ây = 567 Âdx = –7 Âdy = 0 Âdx
2 = 821 Âdy

2 = 544 Âdxdy = 639
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The equation of regression line of y on x is
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81 0.785( 92)

0.785 8.78
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y x

y x
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The equation of regression line of x on y is
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92 1.1746( 81)

1.1746 3.1426

(0.785)(1.1746) 0.9602
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exercIse 9.3

 1.  The following are the lines of regression 4y = x + 38 and 9y = x + 288. 

Estimate y when x = 99 and x when y = 30. Also, find the means of x and 

y.

 [ans.: = = = =43, 82, 162, 50y x x y ]

 2.  The equations of the two lines of regression are x = 19.13 — 0.87 y and 

y = 11.64 – 0.50 x. Find (i) the means of x and y, and (ii) the coefficient 

of correlation between x and y.

 [ans.: = = = - = - =15.79, 3.74, (ii) 0.66, 0.5, 0.87
yx xy

x y r b b ]

 3.  Given var(x) = 25. The equations of the two lines of regression are 

5x — y = 22 and 64 x — 45 y = 24. Find (i) andx y , (ii) r, and (iii) sy.

 [ans.: s= = = =6, 8, (ii) 1.87 (iii) 0.2
y

x y r ]

 4.  In a partially destroyed laboratory record of analysis of correlation data 

the following results are legible. Variance = 9, the equations of the 

lines of regression 4x — 5y + 33 = 0, 20 x — 9 y — 107 = 0. Find (i) the 

mean values of x and y, (ii) the standard deviation of y, and (iii) the 

coefficient of correlation between x and y

 [ans.: (i) s= = = =13, 17, (ii) 4, (iii) 0.6
y

x y r ]
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 5.  From a sample of 200 pairs of observation, the following quantities 

were calculated:

      
= = = = =Â Â Â Â Â2 211.34, 20.78, 12.16, 84.96, 22.13x y x y xy

      From the above data, show how to compute the coefficients of the 

equation y = a + bx.

 [ans.: = =0.0005, 1.82a b ]

 6.  In the estimation of regression equations of two variables x and y, the 

following results were obtained:

      

= = = S( - = S - =
S - - =

2 290, 70, 10, ) 6360, ( ) 2860

( ) ( ) 3900

x y n x x y y

x x y y

      Obtain the two lines of regression.

 [ans.: x = 1.361 y — 5.27, y = 0.613 x + 14.812]

 7.  Find the likely production corresponding to a rainfall of 40 cm from the 

following data:

Rainfall (in cm) Output (in quintals)

mean 30 50

SD 5 10

r = 0.8

 [ans.: 66 quintals]

 8.  The following table gives the age of a car of a certain make and annual 

maintenance cost. Obtain the equation of the line of regression of cost 

on age.

Age of a car 2 4 6 8

Maintenance 1 2 2.5 3

 [ans.: x = 0.325 y + 0.5]

 9.  Obtain the equation of the line of regression of y on x from the following 

data and estimate y for x = 73.

x 70 72 74 76 78 80

y 163 170 179 188 196 220

 [ans.: y = 5.31 x — 212.57, y = 175.37]

 10.  The heights in cm of fathers (x) and of the eldest sons (y) are given 

below:

x 165 160 170 163 173 158 178 168 173 170 175 180

y 173 168 173 165 175 168 173 165 180 170 173 178
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    Estimate the height of the eldest son if the height of the father is 

172 cm and the height of the father if the height of the eldest son is 

173 cm. Also, find the coefficient of correlation between the heights of 

fathers and sons.

 [ans.: (i) y = 1.016 x — 5.123 (ii) x = 0.476 y + 98.98

 (iii) 169.97, 173.45 (iv) r = 0.696] 

 11.  Find (i) the lines of regression, and (ii) coefficient of correlation for 

the following data: 

x 65 66 67 67 68 69 70 72

y 67 68 65 66 72 72 69 71

 [ans.: (i) y = 19.64 + 0.72 x, x = 33.29 + 0.5 y, (ii) r = 0.604]

 12.  Find the line of regression for the following data and estimate y 

corresponding to x = 15.5.

x 10 12 13 16 17 20 25

y 19 22 24 27 29 33 37

 [ans.: y = 1.21x + 7.71, y = 26.465]

 13.  The following data give the heights in inches (x) and weights in lbs (y) 

of a random sample of 10 students:

x 61 68 68 64 65 70 63 62 64 67

y 112 123 130 115 110 125 100 113 116 126

 Estimate the weight of a student of height 59 inches.

 [ans.: 126.4 lbs]

 14.  Find the regression equations of y on x from the data given below 

taking deviations from actual mean of x and y.

Price in rupees (x) 10 12 13 12 16 15

Demand (y) 40 38 43 45 37 43

 Estimate the demand when the price is `20.

 [ans.: y = —0.25 x + 44.25, y = 39.25]
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Lines of Regression

Line of Regression of y on x
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y = a + bx
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x = a + by
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Regression Coefficients
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10.1 IntroductIon

A series of observations on a variable, recorded after successive intervals of time, is 

called a time-series. A time-series is an arrangement of statistical data in accordance 

to the time of occurrence in a chronological order. The data on the population of 

India is a time-series data where time interval between two successive figures is 

10 years. Similarly, figures of national income, agricultural and industrial production, 

etc., are available on yearly basis. Time-series analysis is done primarily for the 

purpose of making forcasts for the future and also for the purpose of evaluating past 

performances. The analysis of time-series plays an important role in the study of all 

economic, business, and natural and social sciences. Thus, time-series analysis is 

helpful in studying any phenomenon whose values are arranged chronologicallly over 

successive intervals of time.

10.2 objectIves of tIme-serIes

1. Analysis It helps in the analysis of past behaviour of data. Analysis of past data 

gives information about various factors which affects the data.

C H A P T E R

Trend Analysis
10

chapter outline

10.1 Introduction

10.2 Objectives of Time-Series

10.3 Components of a Time-Series

10.4 Measurement of Trend

10.5 Freehand or Graphic Method

10.6 Method of Semi-Averages

10.7 Method of Moving Averages

10.8 Method of Least Squares

10.9 Measurement of Seasonal Variations

10.10 Method of Ratio to Moving Average
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2. forcasting It helps to make forcasts for the future. The analysis of past data is 

the basis of forecasting the future behaviour of the variable under study.

 3. evaluation It helps in the evaluation of current achievements. The review and 

evaluation of progress made on the basis of a plan are done on the basis of time-series 

data.

4. comparison It helps in making comparative studies. Once the data is arranged 

chronologically, the comparison can be done. It provides a scientific basis for making 

comparisons by studying the effects of various components of a time-series.

10.3 components of A tIme-serIes

There are four components of a time-series:

 1. Secular trend, or trend

 2. Seasonal variations

 3. Cyclical variations

 4. Irregular variations

10.3.1 secular trend

Secular trend, or simply trend, is the general tendency of the data to increase or 

decrease or stegnate over a long period of time. Most of the business and economic 

time-series would reveal a tendency to increase or to decrease over a number of years. 

An upward tendency is usually upward in time-series relating to population, production 

and sales, prices, incomes, and money in circulation, while a downward tendency is 

noticed in the data of deaths and epidemics as a result of advancement in medical 

sciences, illiteracy, etc. Thus, a trend is either upward or downward. Hence, secular 

trend is that irreversible movement which continues, in general, in the same direction 

for a considerable period of time. Further, it is not necessary that increase or decrease 

should be in the same direction throughout the given period.

10.3.2 seasonal variations

Seasonal variations refer to such movements in a time-series which repeat themselves 

periodically in every season. These variations repeat themselves in less than one year. 

Seasonal variations are usually measured in an interval. The main causes of seasonal 

variations are climatic conditions, customs, and traditions. The changes in climatic 

conditions affect the value of a time-series variable. For example, the sale of woolen 

garments is generally at its peak in the months of November–December. The customs 

and traditions of people also give rise to the seasonal variations in time-series. For 

example, the sale of garments and ornaments may be highest during the marriage 

season and Diwali. Both the causes are often repeated after a gap of less than or equal 

to one year.
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10.3.3 cyclical variations

Cyclical variations are the oscillatory movements in a time-series with the period of 

oscillation greater than one year. These variations in a time-series are due to ups and 

downs recurring after a period greater than one year. Normally, the period of cyclical 

variations lies between 3 to 10 years.

The main objectives of measuring cyclical variations are:

 (i) To analyse the behaviour of cyclical variations in the past

 (ii) To predict the effect of cyclical variations for future business policies

10.3.4 Irregular variations

Irregular variations do not exhibit any regular pattern of movements and there is no 

regular period or time of their occurrence. These variations are caused by random 

factors such as strikes, floods, fire, war, famines, etc. These are accidental changes 

which are purely random, unforseen, and unpredictable. Normally, they are short-term 

variations but sometimes their effect may be so intense that the value of trend may get 

permanently affected.

10.4 meAsurement of trend

The following methods are used to measure the trend:

 1. Freehand or graphic method

 2. Method of semi-averages

 3. Method of moving  averages

 4. Method of least squares

10.5 freehAnd or GrAphIc method

This is the simplest method of studying the trends. The given series data are plotted 

on a graph paper by taking time on the x-axis and the other variable on the y-axis. A 

smooth line or curve, drawn through the plotted points, gives the trend of the given 

data. It is a very simple method of estimating the trend which requires no mathematical 

calculations. It is a flexible method as compared to rigid mathematical trends and 

can be used to describe all types of trends. The strongest objection to this method 

is that it is highly subjective in nature. The values of trends, obtained by different 

persons would be different and, hence, not reliable. Predictions made on the basis of 

this method are of little value.
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example 1
Determine the trend of the following time-series by the graphical 

method:

Years 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988

Sales 

(in thousand)
60 80 70 100 80 120 110 140 130 160 150

Solution

fig. 10.1

example 2
Determine the trend of the following times-series data by the freehand 

curve method:

Years 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991

Values 128 164 194 142 156 224 230 262 176 260
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Solution

fig. 10.2

10.6 method of semI-AverAGes

In this method, semi-averages are calculated to find out the trend values. Semi-averages 

are the averages of the two halves of a series, i.e., the whole times series is classified 

into two equal parts with respect to time. Each semi-average is paired with the centre 

of time period of its part. The two pairs are then plotted on a graph paper and the points 

are joined by a straight line to find the trend. In case of odd number of observations the 

two equal parts are obtained by excluding the middle-most observation.

It is a simple method of measuring trends. It is an objective method because any two 

persons will get the same trend line from a set of figures. This method assumes the 

presence of linear trend which would not be true in many cases. The trend values 

obtained by this method and the predicted values for the future are not precise and 

reliable.

example 1

Fit a trend line to the following data by the method of semi-averages:

Years 1982 1983 1984 1985 1986 1987 1988 1989 1990

Output 

(in tons)
30 40 35 55 45 50 64 50 60
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Solution

Since the data are given for nine years, the middle year is excluded for the 

calculation.

Average output of the first four years = 
30 40 35 55

50
4

+ + +
=

Average output of the last four years = 
50 64 50 60

56
4

+ + +
=

The semi-average of first four years, i.e., 40 is plotted against the mid-point of the first 

four years, i.e., 1983.5 and the semi-average of the last four years, i.e., 56, is plotted 

against the mid-point of the last four years, i.e., 1988.5. By joining these two points, a 

trend line is obtained (Fig. 10.3).

fig. 10.3

example 2
Draw a trend line by the method semi-averages.

Years 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991

Sales 

(in thousands)
210 200 215 205 220 235 210 235 225 245

Solution

Since the data are given for ten years, there are two halves of 5 years each.

Average sales of the first five years = 
210 200 215 205 220

210
5

+ + + +
=

Average sales of the second five years = 
235 210 235 245

230
5

+ + +
=
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The semi-average of first five years, i.e., 210 is plotted against the mid-point of the 

first five years, i.e., 1984. The semi-average of the second five years, i.e., 230 is plotted 

against the mid-point of the second five years, i.e., 1989. By joining these two points, 

a trend line is obtained (Fig. 10.4).

fig. 10.4

10.7 method of movInG AverAGes

The method of moving averages is a simple method for reducing fluctuations and 

obtaining trend values with a fair degree of accuracy. In this method, the arithmetic 

mean of the values for a certain span of time is taken and then it is placed at the 

centre of the time span. The average value of a number of years is taken as the trend 

value for the middle point of the period of moving averages. The process of averaging 

smoothens the curve and reduces the fluctuations. The period of moving averages can 

be 3-yearly moving averages, 4-yearly moving averages, 5-yearly moving averages, 

7-yearly moving averages, etc.

Let Y1, Y2, ..., Yn be the n values of a time-series for successive time periods 1, 2, 

..., n respectively. The calculation of 3-yearly moving averages and 4-yearly moving 

averages are shown in the following tables:
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Time 

period 

Values of 

Y

3-yearly 

moving 

average

Time 

period 

Values of 

Y

4-yearly moving 

averages

Centred 

values

1 Y1 – 1 Y1 _ _

2 Y2
1 2 3

3

Y Y Y+ +
2 Y2 – –

1 2 3 4
1

4

Y Y Y Y
A

+ + +
=

3 Y3 
2 3 4

3

Y Y Y+ +
3 Y3

1 2

2

A A+

2 3 4 5
2

4

Y Y Y Y
A

+ + +
=

4 Y4
3 4 5

3

Y Y Y+ +
4 Y4

2 3

2

A A+

3 4 5 6
3

4

Y Y Y Y
A

+ + +
=

5 Y5
4 5 6

3

Y Y Y+ +
5 Y5

      

n Yn – 6 Yn – –

In case of 3-yearly moving averages, it is not possible to get the moving averages for 

the first and the last period. Similarly, larger the period of the moving average, more 

will be the information loss at the end of a time-series.

When the period of moving average is even, the computed average will correspond to 

the middle of the two middle-most periods. These values should be centred by taking 

the arithmetic mean of the two successive averages. Hence, in case of even period of 

moving averages, the trend values are obtained after centering the averages.
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example 1
Calculate the 3-yearly moving averages of the following data:

Years 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989

Sales 

(millions of rupees)
3 4 8 6 7 11 9 10 14 12

Solution

3-yearly Moving Average

Year
Sales 

(millions of rupees)

3-yearly moving 

total

3-yearly moving 

average (trend value)

1980 3 – –

1981 4 15 5

1982 8 18 6

1983 6 21 7

1984 7 24 8

1985 11 27 9

1986 9 30 10

1987 10 33 11

1988 14 36 12

1989 12 – –

example 2
Calculate the 5-yearly moving averages of the number of students 

passing from a college from the following data:

Year Number of students Year Number of students

2003 332 2008 405

2004 317 2009 410

2005 357 2010 427

2006 392 2011 405

2007 402 2012 438

 [Winter 2012]
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Solution

5-yearly Moving Averages

Year Number of students Five-early moving total
Five-yearly moving 

average (Trend value)

2003 332 – –

2004 317 – –

2005 357 1800 360

2006 392 1873 374.6

2007 402 1966 393.2

2008 405 2036 407.2

2009 410 2049 409.8

2010 427 2085 417

2011 405 – –

2012 438 – –

example 3
Calculate the 7-yearly moving averages for the following data showing 

the number of students of an engineering college clearing GATE:

Year Number of students Year Number of students

1999 23 2007 9

2000 26 2008 13

2001 28 2009 11

2002 32 2010 14

2003 20 2011 12

2004 12 2012 9

2005 12 2013 3

2006 10 2014 1

 [Summer 2014, Winter 2014]



10.7 Method of Moving Averages        10.11

Solution

7-yearly Moving Average

Year Number of students
Seven-yearly moving 

total

Seven-yearly moving 

average (Trend value)

1999 23 – –

2000 26 – –

2001 28 – –

2002 32 153 21.86

2003 20 140 20

2004 12 123 17.57

2005 12 108 15.43

2006 10 87 12.43

2007 9 81 11.57

2008 13 81 11.57

2009 11 78 11.14

2010 14 71 10.14

2011 12 63 9

2012 9 – –

2013 3 – –

2014 1 – –

example 4
Assume a four-yearly cycle and calculate the trend by the method of 

moving averages from the following data relating to the production in 

pen drives in India:

Year 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009

Production 

(million kgs)
464 515 518 467 502 540 557 571 586 612

 [Summer 2015]
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Solution

Four-yearly Moving Average

Year
Production 

(million kgs)

Four Yearly 

Moving total

Four Yearly 

Moving Average

Centred Value 

(Trend value)

2000 465 – – –

2001 515 – – –

1965 491.25

2002 518 495.875

2002 500.5

2003 467 503.625

2027 506.75

2004 502 511.625

2066 516.5

2005 540 529.5

2170 542.5

2006 557 553

2254 563.5

2007 571 572.5

2326 581.5

2008 586 – – –

2009 612 – – –

example 5
Compute the 4-yearly moving averages from the following data:

Year 1991 1992 1993 1994 1995 1996 1997 1998

Annual sales 

(` in crores)
36 43 43 34 44 54 34 24
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Solution

4-yearly Moving Average

Year
Annual sales (` 

in crores)

4-yearly moving 

total

4-yearly moving 

average

4-yearly centred 

moving averages 

(Trend value)

1991 36 – – –

1992 43 – – –

156 39

1993 43 40

164 41

1994 34 42.375

175 43.75

1995 44 42.625

166 41.50

1996 54 40.25

156 39

1997 34 – – –

1998 24 – – –

Weighted moving Average

The weighted moving average is obtained on dividing the weighted moving totals by 

the sum of weights. Let x1, x2, ..., xn occur with weights w1, w2, ..., wn respectively.

 Weighted moving average = i i

i

W x Wx

W W
=

Â Â
Â

A weighted moving average with appropriate weights is used when the moving 

averages are strongly affected by extreme values.

example 1
Find the trend for the following series using 3-year weighted moving 

averages with weights 1, 2, 1:

Year 1991 1992 1993 1994 1995 1996 1997

Values 2 4 5 7 8 10 13

Solution

Total weights = 1 + 2 + 1 = 4
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Year Values 3-yearly weighted moving total
3-yearly weighted moving 

average

1991 2 – –

1992 4 (2 × 1) + (4 × 2) + (5 × 1) = 15 15 ÷ 4 = 3.75

1993 5 (4 × 1) + (5 × 2) + (7 × 1) = 21 21 ÷ 4 = 5.25

1994 7 (5 × 1) + (7 × 2) + (8 × 1) = 27 27 ÷ 4 = 6.75

1995 8 (7 × 1) + (8 × 2) + (10 × 1) = 33 33 ÷ 4 = 8.25

1996 10 (8 × 1) + (10 × 2) + (13 × 1) = 41 41 ÷ 4 = 10.25

1997 13 – –

example 2
Calculate 5-year weighted moving averages for the following data using 

weights 1, 1, 3, 2, 1 respectively.

Year 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000

Coded sales 40 33 72 81 76 68 91 87 98 97

Solution

Total weights = 1 + 1 + 3 + 2 + 1 = 8

Year Sales 5-yearly weighted moving total
5-yearly weighted moving 

average

1 40 – –

2 33 – –

3 72
(40 × 1) + (33 × 1) + (72 × 3) + 

(81 × 2) + (76 × 1) = 527
527 ÷ 8 = 65.875

4 81
(33 × 1) + (72 × 1) + (81 × 3) + 

(76 × 2) + (68 × 1) = 568
568 ÷ 8 = 71

5 76
(72 ×1) + (81 ×1) + (76 × 3) + 

(68 × 2) + (91 × 1) = 630
630 ÷ 8 = 78.75

6 68
(81 × 1) + (76 × 1) + (68 × 3) + 

(91 × 2) + (87 × 1) = 630
630 ÷ 8 = 78.75

7 91
(76 × 1) + (68 × 1) + (91 × 3) + 

(87 × 2) + (98 × 1) = 689
689 ÷ 8 = 86.125

8 87
(68 × 1) + (91 × 1) + (87 × 3) + 

(98 × 2) + (97 × 1) = 713
713 ÷ 8 = 89.125

9 98 – –

10 97 – –
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example 3
Consider the following data and show that a 4-year centred moving 

average is equivalent to a 5-year weighted moving average with weights 

1, 2, 2, 2, 1 respectively.

Year 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993

Annual sales 7 6 1 5 3 7 2 6 4 8 3

Solution

Total weights = 1 + 2 + 2 + 2 + 1 = 8

5-year Weighted Moving Averages

Year
Annual 

sales
5-year weighted moving total

5-year weighted 

moving average

1983 7 – –

1984 6 – –

1985 1 (7 × 1) + (6 × 2) + (1 × 2) + (5 × 2) + (3 × 1) = 34 34 ÷ 8 = 4.25

1986 5 (6 × 1) + (1 × 2) + (5 × 2) + (3 × 2) + (7 × 1) = 31 31 ÷ 8 = 3.875

1987 3 (1 × 1) + (5 × 2) + (3 × 2) + (7 × 2) + (2 × 1) = 33 33 ÷ 8 = 4.125

1988 7 (5 × 1) + (3 × 2) + (7 × 2) + (2 × 2) + (6 × 1) = 35 35 ÷ 8 = 4.375

1989 2 (3 × 1) + (7 × 2) + (2 × 2) + (6 × 2) + (4 × 1) = 37 37 ÷ 8 = 4.625

1990 6 (7 × 1) + (2 × 2) + (6 × 2) + (4 × 2) + (8 × 1) = 39 39 ÷ 8 = 4.875

1991 4 (2 × 1) + (6 × 2) + (4 × 2) + (8 × 2) + (3 × 1) = 41 41 ÷ 8 = 5.125

1992 8 – –

1993 3 – –
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4-year Centred Moving Averages

Year Annual sales
4-years moving 

total

4-years moving 

average

4-years centered 

moving average

1983 7 – – –

1984 6 – – –

19 4.75

1985 1 4.25

15 3.75

1986 5 3.875

16 4

1987 3 4.125

17 4.25

1988 7 4.375

18 4.5

1989 2 4.625

19 4.75

1990 6 4.875

20 5

1991 4 5.125

21 5.25

1992 8 – – –

1993 3 – – –

From the two tables, it is clear that a 4-year centred moving average is equivalent to a 

5-year moving average with weights 1, 2, 2, 2, 1, respectively.

10.8 method of LeAst squAres

This is the best method for obtaining the trend values. This method provides a line of 

best fit in a series. The line of best fit is a line from which the sum of the deviations of 

various points on its either side is zero and the sum of the squares of these deviations 

are minimum as compared to the sum of the squares of the deviations obtained by 

using other lines.

10.8.1 fitting of Linear trend

When the data is given for finding the trend, the straight-line trend equation fitted to 

the data is

 Y = a + bX
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where Y represents the estimated values of the trend, X represents the deviations in time 

period; and a and b are constants. The values of two constants a and b are estimated by 

solving two normal equations.

 
2

Y na b X

XY a X b X

= +

= +

Â Â

Â Â Â

where n represents the number of years for which data is given. The variable X can be 

measured from any point of time as the origin. It is better to take the mid-point of time 

as the origin which gives SX = 0.

When SX = 0, the two normal equations are

 

2

2

and

Y na

Y
a

n

XY b X

XY
b

X

=

\ =

=

\ =

Â

Â

Â Â

Â

Â

The constant a gives Y-intercept and the constant b gives the slope of the line which 

indicates the change in Y for each unit change in X.

10.8.2  fitting a straight-line trend for even number 
of Years

If the number of years is even, there is no middle years. In this case, the mid-point 

which is taken as the origin, lies midway between the two middle years. For example, if 

the two middle years are 1997 and 1998, the midpoint lies midway between 1 January, 

1997 and 1 January, 1998, which is 1 July, 1997. To avoid fractions, the unit of X is 

taken as 
1

2
 year.

example 1
Find the equation of a straight line which best fits the following data:

Year 2000 2001 2002 2003 2004

Sales (in ` thousand) 35 56 79 80 40

Compute the trend values for all the years from 2000 to 2004.
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Solution

Let the  origin = 2002

    unit = 1 year

Let the straight-line trend equation fitted to the data be

 Y = a + bX

The normal equations are

 Y na b X= +Â Â  ...(1)

 
2

XY a X b X= +Â Â Â  ...(2)

Here, n = 5

Year x Sales Y X = x – 2002 X
2

X Y

2000 35 –2 4 –70

2001 56 –1 1 –56

2002 79 0 0 0

2003 80 1 1 80

2004 40 2 4 80

ÂY = 290 ÂX = 0 ÂX
2 = 10 ÂXY = 34

Substituting these values in Eqs (1) and (2),

 290 = 5a

\ a = 58

and 34 = 10 b

\ b = 3.4

Hence, the required equation of the straight-line trend is

         Y = 58 + 3.4 X

Trend values for the years from 2000 to 2004

Year x X Trend values Y

2000 –2 58 + 3.4(–2) = 51.2

2001 –1 58 + 3.4(–1) = 54.6

2002 0 58 + 3.4(0) = 58

2003 1 58 + 3.4(1) = 61.4

2004 2 58 + 3.4(2) = 64.8
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example 2
Using 1991 as the origin, obtain a linear trend equation by the method 

of least squares:

Year 1987 1989 1990 1991 1992 1993 1996

Value 140 144 160 152 168 176 180

Find the trend value for the missing year 1988.

Solution 

Let the origin = 1991

    unit = 1 year

Let the straight line trend equation fitted to the data be

 Y = a + bX

The normal equations are

 Y na b X= +Â Â  ...(1)

 
2

XY a X b X= +Â Â Â  ...(2)

Here, n = 7

Year x Value Y X = x – 1991 X
2

XY

1987 140 – 4 16 – 560

1989 144 – 2 4 – 28

1990 160 –1 1 –160

1991 152 0 0 0

1992 168 1 1 168

1993 176 2 4 352

1996 180 5 25 90

ÂY = 1120 ÂX = 1 ÂX
2 = 51 ÂXY = 412

Substituting these values in Eqs (1) and (2),

 1120 = 7a + b ...(3)

 412 = a + 51b ...(4)

Solving Eqs (3) and (4),

 a = 159.29

 b = 4.96

Hence, the required equation of the straight-line trend is

 Y = 159.29 + 4.96 X
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Estimated value for 1988

 X = 1988 – 1991 = –3

 Y = 159.29 + 4.96(–3) = 144.41

example 3
The sales of a company in millions of rupees for the years 1994–2001 

are given below:

Year 1994 1995 1996 1997 1998 1999 2000 2001

Sales 550 560 555 585 540 525 545 585

Find the linear trend equation. Estimate the sales for the year 1993. 

Find the slope of the straight-line trend.

 [Summer 2015]

Solution

Let the origin = 1 July 1997

 unit = 
1

year
2

Let the straight-line trend equation fitted to the data be

 Y = a + bX

The normal equations are

 Y na b X= +Â Â  ...(1)

 2
XY a X b X= +Â Â Â  ...(2)

Here, n = 8

Year x Sales Y d = x – 1997.5 X = 2d X
2

XY

1994 550 –3.5 –7 49 –3850

1995 560 –2.5 –5 25 –2800

1996 555 –1.5 –3 9 –1665

1997 585 –0.5 –1 1 –585

1998 540 0.5 1 1 540

1999 525 1.5 3 9 1575

2000 545 2.5 5 25 2725

2001 585 3.5 7 49 4095

ÂY = 4445 ÂX = 0 ÂX
2 = 168 ÂXY = 35
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Substituting these values in Eqs (1) and (2),

 4445 = 8a

\ a = 555.625

and 35 = 168 b

\ b = 0.2083

Hence, the required equation of the straight-line trend is 

 Y = 555.625 + 0.2083 X

Estimate of Y when x = 1993

 d = 1993 – 1997.5 = – 4.5, X = –9

 Y1993 = 555.625 + 0.2083 (– 9) = 553.7503

Slope of the straight-line trend = b = 0.2083.

example 4
Fit a straight-line trend equation by the method of least squares and 

estimate the trend values.

Year 1981 1982 1983 1984 1985 1986 1987 1988

Value 80 90 92 83 94 99 92 104

Solution

Let the origin = 1 July 1984

    unit = 
1

year
2

Let the straight-line trend equation fitted to the data be

 Y = a + bX

The normal equations are

 Y na b X= +Â Â  ...(1)

 2
XY a X b X= +Â Â Â  ...(2)

Here,  n = 8
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Year x Value Y d = x –1984.5 X = 2d X
2

X Y

1981 80 –3.5 –7 49 –560

1982 90 –2.5 –5 25 –450

1983 92 –1.5 –3 9 –276

1984 83 –0.5 –1 1 –89

1985 94 0.5 1 1 94

1986 99 1.5 3 9 297

1987 92 2.5 5 25 460

1988 104 3.5 7 49 728

ÂY = 734 ÂX = 0 ÂX
2 = 168 ÂXY = 210

Substituting these values in Eqs (1) and (2),

 734 = 8a

\ a = 91.75

and 210 = 168 b

\ b = 1.25

Hence, the required equation of the straight-line trend is

 Y = 91.75 + 1.25 X

Trend Values

Year X Trend values

1981 –7 91.75 + 1.25(–7) = 83

1982 –5 91.75 + 1.5(–5) = 85.5

1983 –3 91.75 + 1.5(–3) = 88

1984 –1 91.75 + 1.25(–1) = 90.5

1985 1 91.75 + 1.25(1) = 93

1986 3 91.75 + 1.25(3) = 95.5

1987 5 91.75 + 1.25(5) = 98

1988 7 91.75 + 1.25(7) = 100.5
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10.9 meAsurement of seAsonAL vArIAtIons

The following methods are used to measure seasonal variations:

 1. Method of simple averages

 2. Method of ratio to trend

 3. Method of ratio to moving average

 4. Method of link relative

Out of the above methods, we will study the method of ratio to moving average.

10.10 method of rAtIo to movInG AverAGe

This method is also known as percentage of moving averages method. This method is 

most widely used for measuring seasonal variations/fluctuations. The steps involved in 

the computation of seasonal indices are as follows:

 (i) Obtain the centred 12 months (4 quarters) moving average values for the given 

series.

 (ii) Express each original value of the time-series as a percentage of the trend 

value.

 (iii) Arrange these percentages seasonwise for all the years and then calculate the 

average of these percentages. The resultant percentages would be seasonal 

indices.

 (iv) Obtain the adjusted seasonal index using the following formula:

Adjusted Seasonal Index = 
Average Seasonal Index × 400

[For quarterly data]
Total of Average of Seasonal Index

Adjusted Seasonal Index = 
Average Seasonal Index × 100

[For monthly data]
Total of Average of Seasonal Index

example 1
Calculate seasonal indices by the ratio-to-moving average method from 

the following data:

Year I Quarter II Quarter III Quarter IV Quarter

1991 68 62 61 63

1992 65 58 66 61

1993 68 63 63 67
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Solution

Calculation of Ratio to Moving Averages

Year Quarter Values

4-Quarters 

moving 

total

4-Quarters 

moving 

total 

centered

4-quarters 

moving average 

centered 

 (Col 5 ÷ 8)

Given 

values as 

percentage 

of centered 

moving 

averages

1991 I 68 – – – –

II 62 – _ –

254

III 61 505 63.125 96.63

251

IV 63 498 62.25 101.20

247

1992 I 65 499 62.375 104.21

252

II 58 502 62.75 92.43

250

III 66 503 62.875 104.97

253

IV 61 511 63.875 95.5

258

1993 I 68 513 64.125 106.04

255

II 63 516 64.5 97.67

261

III 63 _ _ – –

IV 67 _ _ – –
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Calculation of Seasonal Indices

Year I II III IV

1991 – – 96.63 101.20

1992 104.21 92.43 104.97 95.5

1993 106.04 97.67 – –

Total 210.25 190.1 201.6 196.7

Average Seasonal Index 105.125 95.05 100.8 98.35

Adjusted Seasonal Index 105.3 95.21 100.97 98.52

The adjustment of seasonal index is required because the total of averages of seasonal 

index, i.e., 105.125 + 95.05 + 100.8 + 98.35 = 399.325 which is less than 400.

 Correction factor = 
400

399.325

Adjusted seasonal index for Quarter I = 
105.125 400

105.3
399.325

¥
=

Adjusted seasonal index for Quarter II = 
95.05 400

95.21
399.325

¥
=

Adjusted seasonal index for Quarter III = 
100.8 400

100.97
399.325

¥
=

Adjusted seasonal index for Quarter IV = 
98.35 400

98.52
399.325

¥
=

example 2
Obtain seasonal fluctuations from the following data using the moving-

average method:

Quarterly output of commodity (tons)

Year I II III IV

1984 65 58 56 61

1985 68 63 63 67

1986 70 59 56 52

1987 60 55 51 58
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Solution

Calculation of Ratio to Moving Averages

Year Quarter Output
4-Quarter 

moving total

4-Quarter 

moving 

total 

centered 

4-Quarter 

moving 

average 

centered 

(Col. 5 ÷ 8)

Given output as 

percentage of 

centered of moving 

average

1984 I 65 – – – –

II 58 – – –

240

III 56 483 60.375 92.75

243

IV 61 491 61.375 99.39

248

1985 I 68 503 62.875 108.15

255

II 63 516 64.5 97.67

261

III 63 524 65.5 96.18

263

IV 67 522 65.25 102.68

259

1986 I 70 511 63.875 109.59

252

II 59 489 61.125 96.52

237

III 56 464 58 96.55

227

IV 52 450 56.25 92.44

223

1987 I 60 441 55.125 108.84

218

II 55 442 55.25 99.55

224

III 51 – – – –

IV 58 – – – –



10.10 Method of Ratio to Moving Average        10.27

Calculation of Seasonal Indices

Year I II III IV

1984 – – 92.75 99.39

1985 108.15 97.67 96.18 102.68

1986 109.59 96.52 96.55 92.44

1987 108.84 99.55 – –

Total 326.58 293.74 285.48 294.51

Average Seasonal Index 108.86 97.91 95.16 98.17

Adjusted Seasonal Index 108.83 97.89 95.14 98.15

The adjustment of seasonal index is required because the total of averages of seasonal 

index, i.e., 108.86 + 97.91 + 95.16 + 98.17 = 400.1 which is more than 400.

 Correction factor = 
400

400.1

Adjusted seasonal index for Quarter I = 
108.86 400

108.83
400.1

¥
=

Adjusted seasonal index for Quarter II = 
97.91 400

97.89
400.1

¥
=

Adjusted seasonal index for Quarter III = 
95.16 400

95.14
400.1

¥
=

Adjusted seasonal index for Quarter IV = 
98.17 400

98.15
400.1

¥
=

exercIse  10.1

 1. Calculate the 3-yearly moving averages of the following data:

    (i) Year 1998 1999 2000 2001 2002 2003 2004 2005

Values 3 5 7 10 12 14 15 16

 [Ans.: 5, 7.33, 9.67, 12, 13.67, 15]

(ii) Year 2006 2007 2008 2009 2010 2011 2012

Values 2 4 5 7 8 10 13

 [Ans.: 3.67, 5.33, 6.67, 8.33, 10.33]
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 2. Calculate 5-yearly moving averages of the following data:

    (i) Year 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998

Sales 57 62 54 68 63 74 60 71 68 66

 [Ans.: 60.8, 64.2, 63.8, 67.2, 67.2, 67.8]

   (ii) Year 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010

No. of students 332 317 357 392 402 405 410 427 405 438

 [Ans.: 360, 374.6, 393.2, 407.2, 409.8, 417.0]

(iii) Year 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002

Output 4 5 6 7 9 6 5 7 8 7 6 8 9 10 7 9

 [Ans.: 6.2, 6.6, 6.6, 6.8, 7, 6.6, 6.6, 7.2, 7.6, 8, 8, 8.6]

 3. The following table shows the average monthly production of coal in 

millions of tonnes for the year 2005:

Year 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

Production (in 

million tonnes)
50 36.5 43 44.5 38.9 38.1 32.6 41.7 41.1 33.8

  Determine the trend values using the 4-yearly moving-average 

method.

 [Ans.: 42.1, 40.9, 39.8, 38.15, 38.14, 37.85]

 4. Calculate trend values from the following data relating to the production 

of tea in India by the moving-average method, on the assumption of a 

4-yearly cycle:

Year 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006

Production 464 515 518 467 502 540 557 571 586 612

 [Ans.: 495.8, 503.6, 511.6, 529.5, 553, 572.5]

 5. From the following data, calculate the trend values using the four-

yearly moving-average method:

Year 1989 1990 1991 1992 1993 1994 1995 1996 1997

Values 506 620 1036 673 588 696 1116 738 663

 [Ans.: 708.75, 729.25, 748.25, 768.25, 784.5]
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 6. Find the 3-yearly weighted moving average with weights 1, 4, 1 for the 

following series:

Year 2001 2002 2003 2004 2005 2006 2007

Values 2 6 1 5 3 7 2

 [Ans.: 4.5, 3.5, 4, 4, 5.5]

 7. For the following data, verify that the 5-year weighted moving average 

with weights 1, 2, 3, 3, 1 respectively is equivalent to the 4-year 

centred moving average.

Year 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000

Sales 

(in lakhs)
5 3 7 6 4 8 9 10 8 9

 8. For the following series, verify that the 6-yearly centred moving 

average is equivalent to a 7-yearly weighted moving average with 

weights 1, 2, 2, 2, 2, 2, 1.

Year 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990

Sales 

(in thousands)
2 4 3 6 7 9 4 6 7 8 10

 9. Fit a linear trend equation to the following data. Hence, estimate the 

value of sales for year 2007.

Year 2001 2002 2003 2004 2005

Sales (in lakhs) 100 120 140 160 180

 [Ans.: Y = 140 + 20X, 220 lakhs]

 10. The following table shows the figures of production of a commodity 

during the years 1989–1996 in the state of Punjab:

Year 1989 1990 1991 1992 1993 1994 1995 1996

Production 

(in thousand tonnes)
38 40 65 72 69 60 87 95

  Use the method of least squares to fit a straight line to the data.

 [Ans.: Y = 65.75 + 3.667 X]
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 11. Fit a straight-line trend equation by the method of least squares to the 

following data:

Year 1980 1981 1982 1983 1984 1985 1986 1987

Value 380 400 650 720 690 600 870 930

 [Ans.: Y = 655 + 35.838]

 12. Fit a straight-line trend to the data and estimate the profit for the year 

1997.

Year 1990 1991 1992 1993 1994 1995 1996

Profit (in lakhs) 60 72 75 65 80 85 95

 [Ans.: Y = 76 + 4.857 X, ` 95.428 lakhs]

 13. Obtain the seasonal trend by the ratio-to-moving-average method from 

the following data:

Quarters

Year I II III IV

2002 40 35 38 40

2003 42 37 39 38

2004 41 35 38 42

 [Ans.: 38.5, 39, 39.375, 39.25, 38.775, 38.5, 38.125, 38.5]

 14. Compute seasonal fluctuations from the following time-series using the 

moving-average method:

Year 2002 2003 2004 2005

Quarter

I 75 86 90 100

II 60 65 72 78

III 54 63 66 72

IV 59 80 85 93

 [Ans.: 122.36, 92.43, 84.70, 100.51]
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points to remember

Time-series
A series of observations on a variable, recorded after successive intervals of time, is 

called a time-series. A time-series is an arrangement of statistical data in accordance 

to the time of occurrence in a chronological order.

Components of a Time-Series
 1. Secular trend, or trend

 2. Seasonal variations

 3. Cyclical variations

 4. Irregular variations

1. Secular Trend Secular trend, or simply trend, is the general tendency of the 

data to increase or decrease or stegnate over a long period of time.

2. Seasonal Variations Seasonal variations refer to such movements in a time-

series which repeat themselves periodically in every season. These variations repeat 

themselves in less than one year.

3. Cyclical Variations Cyclical variations are the oscillatory movements in a 

time-series with the period of oscillation greater than one year.

4. Irregular Variations Irregular variations do not exhibit any regular pattern 

of movements and there is no regular period or time of their occurrence. These 

variations are caused by random factors such as strikes, floods, fire, war, famines, 

etc. 

Measurement of Trend
 1. Freehand or graphic method

 2. Method of semi-averages

 3. Method of moving  averages

 4. Method of least squares

Method of Moving Averages

In this method, the arithmetic mean of the values for a certain span of time is taken 

and then it is placed at the centre of the time span. The average value of a number 

of years is taken as the trend value for the middle point of the period of moving 

averages.

Measurement of Seasonal Variations
 1. Method of simple averages

 2. Method of ratio to trend

 3. Method of ratio to moving average

 4. Method of link relative
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Taylor’s series method  7.2
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