
Object-Oriented
Technology

From Diagram to Code with Visual

Paradigm for UML

Curtis HK Tsang

Clarence SW Lau

Ying K Leung

Singapore • Boston • Burr Ridge, IL • Dubuque, IA • Madison, WI • New York

San Francisco • St. Louis • Bangkok • Bogotá • Caracas • Kuala Lumpur

Lisbon • London • Madrid • Mexico City • Milan • Montreal • New Delhi

Santiago • Seoul • Sydney • Taipei • Toronto

Object-Oriented Technology

From Diagram to Code with Visual Paradigm for UML

Copyright © 2005 by McGraw-Hill Education (Asia). All rights reserved.

No part of this publication may be reproduced or distributed in any form or by any

means, or stored in a data base or retrieval system, without the prior written

permission of the publisher.

1 2 3 4 5 6 7 8 9 10 BJE 09 08 07 06 05

When ordering this title, use ISBN 007-124046-2

Printed in Singapore

Contents

Preface vii

Acknowledgments ix

Chapter 1 Introduction 1

Overview 1

What You Will Learn 1

Software Engineering Approaches 2

Visual Modeling 5

Software Development Methods 6

Representation, Process, Techniques and Tool 9

Organization of the Book 13

Summary 14

Chapter 2 Structural Modeling and Analysis 15

Overview 15

What You Will Learn 15

What Is an Object? 16

What Is a Class and What Are Instances? 18

Structural Modeling Techniques 20

Structural Models: Examples 32

Summary of UML Notation for Structural Modeling 34

Structural Analysis Techniques 35

Domain Modeling and Analysis Process 39

Tricks and Tips in Structural Modeling and Analysis 54

Domain Modeling and Analysis with VP-UML 55

Summary 70

Exercise 71

Chapter 3 Use Case Modeling and Analysis 73

Overview 73

What You Will Learn 73

Requirements Elicitation 74

Use Case Modeling Techniques 75

Use Case Models: Examples 80

Use Case Analysis Techniques 81

Use Case Modeling and Analysis Process 94

Tricks and Tips in Using Use Case Analysis 109

Use Case Modeling and Analysis with VP-UML 113

Summary 147

Exercise 147

Chapter 4 Dynamic Modeling and Analysis 148

Overview 148

What You Will Learn 149

Scenario Modeling Techniques: Interaction Diagram 149

Examples of Scenario Modeling 161

Dynamic Modeling Techniques Using Statechart Diagrams 165

Dynamic Modeling Techniques Using Activity Diagrams 168

Dynamic Analysis Techniques 171

Dynamic Modeling and Analysis Process 178

Tricks and Tips in Dynamic Modeling and Analysis 187

Dynamic Modeling and Analysis with VP-UML 194

Summary 221

Exercise 222

Chapter 5 Implementing UML Specification 223

Overview 223

What You Learn 223

Introduction 224

Implementing Class Diagrams 224

Implementing Persistent Classes Using Relational Databases 236

Implementing Activity Diagrams 246

Implementing State Diagrams 247

Implementing Interaction Diagrams 256

Case Study: A Lift Control System 257

Summary 267

Exercises 267

Chapter 6 View Alignment Techniques and

Method Customization 269

Overview 269

What You Will Learn 270

Software Development Methods 270

Why Traditional Software Methods Didn’t Work Miracles 274

Unified Modeling Language versus Software Methods 276

Hurdles in Applying the Object-oriented Approach 277

iv Contents

Current Object-oriented Development Approaches 280

View Alignment Techniques 288

Method Creation or Customization Using View Alignment Techniques 306

Method Creation: A Case Study 312

Summary 334

Exercises 335

Chapter 7 A Case Study: Applying the Activity

Analysis Approach 337

Overview 337

What You Will Learn 337

The Case Study 337

Business Modeling 338

Requirements 341

Analysis 347

Design 352

Applying the Activity Analysis Approach with VP-UML 359

Summary 385

Appendix A Getting Started with VP-UML 386

Installing VP-UML 386

VP-UML Environment 388

Working with Diagrams 390

Creating Diagram Elements 393

Resource-centric Interface 394

Diagram Element Properties 396

Sub-diagrams 397

Code Generation 398

Textual Analysis 403

Report Generation 405

Importing Models or Diagrams 407

Appendix B Basic UML Concepts 411

Relationships between UML Diagrams 417

Appendix C Implementation of the Lift Control

System in Chapter 5 419

References 434

Index 439

Contents v

Acknowledgments

This book is a result of more than two years of hard work by the authors, but

without the support of the technical team of Visual Paradigm International,

it would not have been possible. The encouragement of our colleagues in the

Object Oriented Technology Centre at the Hong Kong Institute of Vocational

Education was also crucial in seeing this project through; particularly, we are

indebted to Angus Chan, Mercus Chan, Thomas Chan, Samson Fu, W.H. Kong,

Martyn Leung, Maurice Leung Antony Ng, C.K. So, Andy Tsoi, Rain Wong and

C.K. Wong. We would also like to thank Bruce Lo (University of Wisconsin),

TH Tse (The University of Hong Kong), Edward Chan (City University of Hong

Kong), Vivienne Farrell (Swinburne University of Technology), Michele Lanza

(University of Bern), and Matthias Taulien (University of Karlsruhe), and

Jacek Starzynski (Warsaw University of Technology) who painstakingly

reviewed earlier drafts of the manuscripts and offered us a lot of valuable

comments and suggestions. We appreciate the assistance of the McGraw-Hill

team in speeding up the publication of this book. Finally, we dedicate this book

to our families for their encouragement, emotional support and sacrifices,

without which this project could not have been completed.

Curtis HK Tsang

Clarence SW Lau

Ying K Leung

Hong Kong

Preface

Computer science and software engineering students nowadays have to take a

subject such as object-oriented analysis and design or object-oriented software

engineering as part of the undergraduate curriculum. However, despite the

wide variety of books in the object-oriented technology area currently available

in the market, there appears to be a lack of a comprehensive textbook which

covers the entire software development process: from modeling and analysis to

implementation, that is from theory to practice. Consequently students often

have fragmented knowledge about this powerful technology, and worst still

some even have very misconceived ideas about it.

This phenomenon may be attributed to a number of factors. First, the UML

has a very rich set of notations; many students do not know how to use them

systematically. Second, the Unified Process does not specify what models are

required in different situations; indeed some models or even workflows may be

optional. Third, books in the market do not provide a complete, practical

coverage of the entire development life cycle, and students have difficulties in

applying the theories learnt to practical situations. Fourth, there is not a

universal method that can be applied to any type of problem. Students, or even

practitioners, tend to blindly follow a “proven” methodology, only to be

frustrated to find that it does not work well at all for their systems.

The most fundamental problem is that many students and practitioners do

not know that there are three key elements in a software development method:

process, notation and techniques and how they should be applied in a

systematic way to reap the benefit of developing systems effectively and

efficiently. Most books that discuss UML focus only on the notations and

perhaps a bit about the Unified Process. A handful of books on UML cover

software tools which only illustrate how the software development process can

be automated. Individual software vendors typically talk about their own tools

in their user manuals, and understandably they tend to be biased toward their

own adopted approach. However, many products are not even compliant with

the UML standards.

This book was primarily motivated by the need for a textbook that covers

the entire software development life cycle to guide students and practitioners

through the steps involved in building large-scale systems. By taking readers

through various stages, from modeling and analysis stage to implementation,

they will appreciate the power of the “from diagram to code” concept using the

Visual Paradigm for UML CASE tool. Each chapter includes a mini-case study

which help readers understand how the knowledge can be applied in practice.

We have also proposed the framework of view alignment techniques (VAT)

which facilitates method customization for different types of applications.

Based on the VAT framework, we then describe the Activity Analysis Approach,

which is particularly suited for the development of interaction-intensive

systems. In this book, the practical aspects of software development are

illustrated through the use of VP-UML, an awarding-winning CASE tool.

This book is an important part of our dream to make the development of

large-scale software systems a straightforward and easy task. We trust the

proposed VAT framework would help practitioners and students create their

own methodology to suit their own needs and take the frustration and fear out

of system development.

viii Preface

1

Chapter

1
Introduction

Overview

One of most important issues in any software project is that the system

delivered is reliable and satisfies the client’s requirements and expectations.

Unfortunately, there are many well-documented reports that a large proportion

of systems delivered simply sit on the shelf, never to be used. This problem is

particularly acute for large systems or when large project teams are involved

in the system development process.

Over the years, many software development methods have been proposed to

alleviate this problem. However, there is a lack of appropriate techniques or

heuristics to guide the designer in using them flexibly and tailoring them for

different situations. Consequently, designers have tended to follow these

development methods rigidly, resulting in a system which may not meet the

requirements of the client.

This chapter highlights some of the common problems in software

development and argues for the object-oriented approach for system analysis

and design. Three components of a software development method will be

described, together with the representation system, process, techniques and the

CASE tool adopted in this book.

What You Will Learn

On completing the study of this chapter, you should be able to:

• describe the advantages of the object-oriented approach to software

development

• discuss the roles of the three key components in software development

2 Object-oriented Technology

• describe at a high level what the Unified Modeling Language (UML),

the Unified Process, View Alignment Techniques and Visual Paradigm for

UML are

• understand the organization of this book

Software Engineering Approaches

Developing reliable software is a labor-intensive and expensive business. There

have been countless documented reports of software project failures,

so software development can be a high-risk venture. The rapid growth of the

software industry over the past few decades has highlighted the need for

disciplined approaches to developing large-scale software systems. Nowadays,

developers adopt well-proven software engineering methodologies and sound

project management practices to ensure that the software built not only meets

the customer’s requirements in terms of functionality but also that it is

delivered on time and within budget.

Because software is invisible, it is inherently difficult to exhaustively

identify bugs that exist in it. Indeed, totally bug-free, complex software systems

can only be a dream of software developers, regardless of how much resource

and effort they are prepared to put in. While we have to accept that such

systems are highly unlikely to be totally bug-free, we must be mindful of the

consequences of software failures. Nowadays, software systems are widely used

to support the smooth-running of governments, commercial organizations and

many aspects of our daily activities. Therefore, software system failures would

invariably affect our lives and can potentially cause a lot of damage, even the

loss of life. Quality is, therefore, a very important issue in the software

industry. The most common way to address this quality issue is the adoption of

well-proven processes for developing software systems.

Whilst quality issues are important, one of the greatest difficulties in

developing large-scale software systems is the fact that, because such projects

involve long development time, system requirements invariably change for a

variety of reasons. Very often, at the start of the project, clients do not have a

clear and concrete idea of what they want. Consequently, when the project is

delivered, the client may realize that the system does not perform to

expectations. Rapid technological change itself can be a problem too. If the

project’s development time is long, technological changes may take place many

times during the development of the project. The project manager is often

caught between having to change the system design to adopt the new

technology with the consequence of blowing the budget and extending the

Chapter 1: Introduction 3

development time, or building a totally irrelevant system that will end up on

the shelf having never been used.

Another difficulty in developing large-scale systems is that the development

typically involves a large team of professionals who are experts in their own

fields, and as such, effective communication between team members is

extremely important. Indeed, poor communication and human factor issues

rather than technical problems have sometimes been cited as one major reason

for project failure.

Software engineering is about the application of a systematic, disciplined,

quantifiable approach to development, operation and maintenance of software.

It is based on sound engineering concepts, and indeed many have likened the

development of the software engineering discipline to that of the building

construction industry where it has changed from a primarily craft-based

activity to a refined industrial process.

Like other engineering disciplines, software engineers build models of the

software system before carrying out the actual implementation. Modeling is a

very important activity in software development since the software engineer

usually spends a lot of time developing models with different levels of

abstraction before the software system is finally designed and implemented.

Models are an effective communication tool, especially in situations where

detailed information is not required. For example, highly abstracted topological

maps are commonly used to represent the train routes of a transportation

system. In software systems, different stakeholders invariably need information

about different aspects of the physical system. For example, a passenger needs

to know the fares and the bus stop locations of a bus route. The bus driver

needs information about the exact route of a particular bus service. The bus

station manager needs to know the timetable of all the buses departing from

and arriving at the bus terminus. To cater for the different needs of these

stakeholders, different models would be created for them, as in the following:

A model for the passenger. It can be represented by a straight line with

circles on it, showing the bus stop names and possibly the associated fares.

A model for the bus driver. It may be a simplified map showing the route

covered by a bus service. Street names and the physical path will also be

included to provide more details to the driver.

A model for the planner of bus routes. It may consist of a detailed road map

with the path of the bus routes. The path of the each bus route is labeled and

shown in different colors.

A model contains one or more views, with each view representing a specific

aspect of the system. For example, the model for the passenger contains the

4 Object-oriented Technology

fare view and the path view. The fare view provides fare information for various

stops along a route, while the path view provides route information including

the associated street names. Models based on different views of a system must

be consistent. For example, the three-dimensional model of a building must be

consistent with different elevations (models) of the same building. Furthermore,

a model should be expressed using a suitable notation (language) that can be

understood by the stakeholders. In the context of software development, a

system can be adequately described by three orthogonal views:

• A functional view that covers the transformation of data within the

software system

• A static view that covers the structure of the system, and the data

associated with it

• A dynamic view that covers the sequence or procedure of a transaction in

the software system

Broadly speaking, there are two general approaches to software

development: the structured approach and the object-oriented approach. The

former has been very fashionable since the 1970s as it was adequately

supported by conventional procedural languages. With the advent of

object-oriented programming languages such as C⫹⫹ and Java since the 1990s,

the object-oriented approach has gained increasing popularity over the years.

The two software development approaches can best be compared in terms

of the way in which the various views of a system are modeled and their

associated processes. The structured approach is centered on the system’s

functional views and uses different models at various stages of the development

process. When development progresses from one stage to the next stage, the

models in the current stage are transformed into the models of the next stage.

There are three major weaknesses with the structured approach.

Firstly, because the structured approach centers on the system’s functional

views, when the functions of the system change, the analysis, the design models

and the implementation of the system have to be changed substantially.

Secondly, in the structured approach, model transformation needs to take

place whenever the models created in the early stages have altered as a result

of changes in the requirements or the correction of previous mistakes. In the

analysis stage, diagram flow diagrams (DFDs) are used to model the system as

a set of functions with data flow between functions. In the design stage, the

system is modeled as structure charts which consist of a hierarchy of functions.

If the functions of the system have to be changed, it is necessary to go through

and rework the whole analysis and design stages again, which involves

significant time and effort.

Chapter 1: Introduction 5

Thirdly, the dynamic view is almost non-existent in the structured

approach. DFDs consist of two views: the functional view and the static view.

The use of graphical user interfaces and the increased complexity of the

software system make the dynamic view increasingly important. The structure

of the software modules is specified by the structure charts that are obtained

from the transformation of the DFDs. However, many dynamic behaviors of the

system cannot be deduced from data dependency between functions. Dynamic

modeling is still difficult to achieve with the structured approach, even with the

introduction of control flow diagrams (CFDs), because the system is not

modeled properly in the dynamic view.

The above weaknesses of the structured approach have made it less

cost-effective compared with the object-oriented approach. The object-oriented

approach models a software system as a collection of collaborating objects.

An object interacts with other objects through messages sent and received by

it, manipulating the object’s data in the process. The object-oriented approach

makes it easier for the software engineer to develop consistent models of a

software system because the same set of models are used throughout the whole

development process. Hence, no effort or time will be wasted in transforming

and updating models at different stages.

Furthermore, the structure of a system developed by the object-oriented

approach is more stable than that by the structured approach. This is because

changes to an object-oriented system are localized in the objects themselves and

hence changes are easier to accomplish than in a system designed by the

structured approach. Consequently, a software system developed by the object-

oriented approach takes less effort to develop and maintain.

Visual Modeling

The human brain is capable of handling and processing only a limited amount

of information at any one time. Models can help reduce complexity by creating

an abstract hierarchical representation of the real-world system. Creating

models through abstraction is a fundamental technique that is used to perceive

the world, and in the context of developing a large-scale software system, it is

an important first step.

When creating models, information is classified into hierarchies based upon

rules that are carefully structured so that they are neither too general nor too

restrictive. Despite the fact that modeling is such a natural process for humans,

the development of an appropriate model for a software system is perhaps the

most difficult aspect of software engineering. This is because there is often

more than just one solution; different observers working independently are

6 Object-oriented Technology

almost guaranteed to arrive at different models. It is, therefore, useful to

develop a systematic process to determine the abstraction that should be

applied at the various levels in order to derive a reasonably consistent model.

If we follow a proven checklist of steps for producing a model, chances are we

will not omit important features or critical requirements.

Visual modeling is about representing the system from a particular

perspective using some standard graphical notations. For example, a system

can be represented by a class diagram from the perspective of static structure.

In a class diagram (see Figure 1.1), an object or a class (type of object) is

represented by a rectangle, and relationships between the objects or classes by

lines connecting objects or classes.

Figure 1.1. Examples of classes from real-life objects

Person Carown

Visual modeling techniques have been widely used, especially in software

development of large-scale systems. In the software development process, visual

modeling can be applied to:

• capture business objects and logic

• analyze and design applications

• manage complexity

• define the software architecture

• model systems independent of the implementation language

As the object-oriented approach matured and became popular over the

years, the Unified Modeling Language (UML), after much debate in the

object-oriented fraternity in the early 1990s, was finally accepted as the visual

modeling language to specify models of a system for software development. The

UML covers all the commonly used models for developing systems using the

object-oriented approach.

Software Development Methods

A software development method, according to Budgen (1994), primarily

comprises three components: (i) a process, (ii) a representation system or a

modeling notation and (iii) techniques, heuristics, steps or procedures (see

Figure 1.2). A design process corresponds to a process of navigation from the

Chapter 1: Introduction 7

problem space to the solution space. Throughout this process of navigation, the

designer is presented with options where he or she has to make a selection or

a decision. The techniques part of a development method assists the designer

by providing some heuristics and guidance for the right selection. Typically,

system artifacts are produced at the end of each task or activity in the process.

The artifacts are represented by a recommended notation that is used to model

both the structure of the initial problem (requirements) and the yet-to-be

realized solution, with one or more viewpoints (models) and different levels of

abstraction.

Figure 1.2. Three components of a method

Representation

How to describe the

design model

(e.g. UML)

Process

What to do to

produce the

design model

(e.g. Unified

Process)

Techniques

How to adapt the

models to particular

types of problems

(e.g. heuristics and

procedures)

Role of Notation

A notation is used as a common language for the stakeholders of a system. In

the context of software development, a notation helps the developer perform the

following activities:

• capturing requirements of the system. The notation used should be

understandable by the users and the developers.

• analyzing the system by developing suitable analysis models. Models are

expressed in an appropriate notation so that the developer can quickly and

easily extract information from them.

8 Object-oriented Technology

• developing the design of the system. Design models are developed and

expressed in an appropriate notation that can be understood by the system

designer and the programmer. The system designer may need to

manipulate the analysis model and make design decisions in the process.

• implementing, testing and deploying of the system. Again, the artifacts of

these activities are expressed in a suitable notation which can be

understood by the system designer, the programmers and system testers.

In order to support the above activities, an ideal notation should:

• facilitate effective communication between team members and the client

• represent the user requirements unambiguously

• provide semantics that are rich enough to capture all important strategic

and tactical decisions

• offer a logical framework for humans to reason the models

• facilitate the use of tools to automate at least part of the model building

process

Role of Process

Developing a system without a well-planned procedure would result in

prolonged development time, inflated cost or even incompletion of the project.

Hence, it is important that developers, especially junior developers, follow some

well-proven process or procedure to develop a system so that a usable system

can be completed within a reasonable budget and time. However, there is no

one single process suitable for all situations. Hence, the chosen process would

only guide developers to apply suitable techniques in developing systems. At

the same time, it should allow experienced developers to organize the

development steps in their own way, thereby promoting creativity and

innovation. Ideally, a process should offer the following features:

• A well-managed iterative and incremental life cycle to provide the necessary

control without affecting creativity

• Embedded methods, procedures and heuristics for developers to carry out

analysis, design and implementation for the whole software development

life cycle (SDLC)

• A guide through the iterative and incremental development process for the

solution of complex problems

• A comprehensive roadmap so that designers can walk through the flexible

multiple pathways of the development process depending on the nature of

the problem

• Identification of less obvious requirements based on what is already known

or modeled

Chapter 1: Introduction 9

Role of Techniques

A software development process typically starts off with capturing the system

requirements from the client and representing them using a suitable modeling

notation such as the UML. As the modeling notation offers a rich set of models,

one common problem encountered by many developers is that they do not know

what models are required to completely specify the design and how these

models can be created in the process.

The main purpose of the techniques part of a method is to provide a set of

guidelines and heuristics to help the developer to systematically develop the

required design models and implementation. The techniques part of a method

should include the following:

• A set of guidelines to produce and verify the design against the original

requirements and specifications.

• A set of heuristics for the designer to ensure consistency in the structure of

a design and also among the design models. This is particularly important

if the design is produced by a team of designers who will need to ensure

that their models are consistent and coherent.

• A system to capture the essential features of the design so as to complement

the designer’s domain knowledge.

Representation, Process, Techniques and Tool

For the rest of this book, the UML is adopted as the representation system,

the Unified Process as the process and the View Alignment Techniques for the

techniques part of the method. The model building process will be

demonstrated using a full feature UML CASE Tool called Visual Paradigm for

UML. The following provides an overview of each of the elements.

Overview of UML

The late 1980s and early 1990s witnessed a plethora of object-oriented analysis

and design methods proposed by various practitioners and researchers. UML

was the end result of many debates and countless arguments. The UML

notation is now accepted by the Object Management Group (OMG) as a

standard way of representing object-oriented analysis and design models. It has

quickly become the de facto standard for building object-oriented software.

This notation combines the best of previous modeling techniques proposed by

the three most respected academic in the object-oriented technology arena,

J. Rumbaugh, G. Booch and, I. Jacobson, sometimes referred to as the Three

Amigos.

10 Object-oriented Technology

The OMG specification states:

“The Unified Modeling Language (UML) is a graphical language for

visualizing, specifying, constructing, and documenting the artifacts of a

software-intensive system. The UML offers a standard way to write a

system’s blueprints, including conceptual things such as business

processes and system functions as well as concrete things such as

programming language statements, database schemas, and reusable

software components.”

By adopting a standard notation, such as the UML, easy and effective

communication can be achieved between fellow system developers and the

domain experts (the users). It is much more precise to use a standard notation

rather than other alternatives, such as natural language or code, to convey

concepts. Natural language is too imprecise and becomes complicated when it

comes to more complex concepts. Code, on the other hand, is precise but too

detailed and involves a lot of effect to implement. A standard notation, such as

the UML, conveys concepts with a certain amount of precision while providing

important details as well.

One of the biggest challenges in system development is to build a system

that meets the users’ requirements at a reasonable cost (in terms of both time

and money). Communication with domain experts is difficult because both

domain experts and system developers use different technical jargon.

UML provides models of different levels of abstraction to suit the needs of

different stakeholders of the system. For example, the use case model can be

used as a common language between the user and the system developer. The

use case model provides a way to specify the functionality of a system by

defining the observable results to the user.

Readers who are not familiar with UML should refer to Appendix B which

provides a more detailed description of the UML notation.

Overview of the Unified Process

The Unified Process is a widely used software development process. In the

Unified Process, a system is built incrementally through a number of iterations,

in which the designer may perform requirements capturing, analysis, design,

implementation and testing tasks. Feedback is sought from system users

throughout the entire process. In early iterations, the designer often focuses

more on requirements capturing and analysis, and in later iterations, on

implementation and testing. In fact, the iterations are divided into four phases:

inception, elaboration, construction and transition, each with a different focus.

Chapter 1: Introduction 11

The work activities of the Unified Process in the same subject area are

categorized as a workflow. The design workflow, for example, includes all the

activities associated with designing the system. Figure 1.3 illustrates some

sample workflows and their relative efforts in different phases of the Unified

Process. Since each phase has a specific emphasis or focus, the relative effort

for a workflow changes over time (the horizontal axis) as system development

progresses.

Figure 1.3. Sample workflows and their relative efforts over time

Prototypes

Subsystems integration

Prototypes

Subsystems integration

Workflow (business modeling)

Sample the

Unified Process

disciplines

Business modeling

Requirements

Analysis

Design

Inception Elaboration Construction Transition

Development phase in the Unified ProcessIteration in elaboration phase

Overview of View Alignment Techniques

The key concept of the View Alignment Techniques (VATs) is based on the idea

that models for different perspectives must contain some elements in common

(linked elements). So we can simply start off with one model and generate a

(partial) model by identifying and using the linked elements. By filling in

(elaborating) the missing information in the partially completed model and

identifying more linked elements, we can create other models for different

perspectives. Through this incremental and iterative process, we can create all

the models required. Having developed all models that describe the different

perspectives of a system, we should be able to form a complete and consistent

picture of the system by appropriately aligning these views (models). Therefore,

not only do we ensure that the models are consistent, but we can also

systematically identify the sequence in which the models should be developed.

In other words, VATs can help designers to customize their method as they

develop the system.

12 Object-oriented Technology

In Chapter 6, this concept will be explained in greater detail and the VATs

will be applied to create a special development method that we call the Activity

Analysis Approach (A3). This approach is particularly suited for interaction-

intensive systems such as typical business information systems.

Overview of Visual Paradigm for UML

CASE tools can significantly help developers to increase their productivity,

particularly if they provide facilities which automate many model building

procedures. Indeed, some CASE tools offer sophisticated facilities, such as

diagram to code and code to diagram, maintaining real-time synchronization

and consistency in both directions.

The visual modeling and CASE tool used throughout this book is called

Visual Paradigm for UML (VP-UML). It is powerful and cross-platform yet easy

to use, thus providing software developers with a convenient development

platform to build applications efficiently and effectively. Its diagram-to-code and

code-to-diagram capabilities enable developers to maintain real-time

synchronization and hence reduce errors and development effort. VP-UML also

facilitates excellent interoperability with other UML CASE tools and most of

the leading integrated development environments (IDEs).

VP-UML, like most leading CASE tools, supports the following functions:

• Facilitate convenient model building whereby models of the system are

easily developed and the editing and documentation tools provided are easy

to use

• Serve as repository. Such that models can be saved and retrieved with ease

• Support navigation so that linkages between models can be maintained and

traversed

• Generate documentation automatically for selected information of the

software development project

• Facilitate project management so that project activities can be planned and

managed with ease

• Facilitate configuration management and version control to handle

documentation and components of different versions of the system

• Check model consistency

• Support model verification and validation

• Provide multi-user support so that multiple developers can work on the

project simultaneously and coherently

• Generate code from models

• Reverse engineering whereby models are generated from code

Chapter 1: Introduction 13

• Provide integration with other tools, for example, the CASE tool can be

integrated with domain specific systems or tools so as to accelerate the

development process

VP-UML is not only compliant with UML and supports all UML diagrams,

but it also offers numerous useful features to help the user to develop software

systems throughout the complete software development life cycle. Its resource-

centric user interface also provides the user with an intuitive, easy-to-learn

environment, and at the same time, helps the user minimize errors when

developing UML models.

Appendix A provides more information about the VP-UML CASE tool.

Organization of the Book

This book consists of seven chapters. This chapter serves to provide the reader

with an overview of the contemporary software engineering approaches and

identify the merits of the object-oriented approach for system development. The

three key components (notation, process and techniques) for system

development methods are discussed and the roles of these three components are

detailed. Furthermore, an overview of the UML, the A3 and VP-UML, which are

used extensively in this book, is presented.

Chapters 2 to 4 discuss three modeling and analysis techniques (structural,

use case and dynamic) and the use of UML diagrams to support them. Each of

these chapters provides a systematic introduction to the fundamental concepts

in UML and consists of primarily three parts: (1) a theory section,

(2) a practical section that complements the theoretical concepts described in

(1) highlighting the process and techniques covered, and (3) a hands-on section

showing how the material in (2) can be effectively supported using the VP-UML

CASE tool. A tricks and tips section is included in each of these three chapters

to provide further insights into how these techniques can be applied in different

situations.

Chapter 5 is concerned with implementation issues associated with

transforming the UML diagrams developed for the system into code using Java.

It also examines important issues in relation to the implementation of class

diagrams using Java and relational database management systems.

Chapter 6 details a novel approach to software development called the View

Alignment Framework (VAF). The VAF consists of a number of specific

techniques, allowing the designer to explore a suitable procedure to model a

system, maintain traceability between models and ensure model consistency.

The VAF provides a means for the designer to customize a software

development methodology to suit a particular situation. This concept is

14 Object-oriented Technology

demonstrated by the proposed A3, which provides excellent supplemental

features missing in the Rational Unified Process.

Chapter 7, the final chapter, consists of a major case study illustrating how

the A3 can be applied to a real-life problem: the development of an electronic

mail order system. The reader will be guided through the entire analysis and

design process in order to appreciate the power of the software development

method described.

The appendix at the end of the book consists of a concise User’s Guide for

the VP-UML CASE tool, that has been used throughout this book. This CASE

tool is included in the CD-ROM accompanying this book. Users can practice on

all the examples given in the book using this CASE tool.

Summary

Software developers use software development methods so that they can build

reliable large-scale systems systematically and effectively.

These methods primarily consist of three key elements: a process,

a representation system, and a set of techniques and heuristics.

In this book, the UML is adopted as the representation system, the Unified

Process as the process and the View Alignment Techniques for the techniques

part.

Modern CASE tools with sophisticated facilities are also available to assist

developers to carry out analysis and visual modeling. The use of a modern

CASE tool together with a development method will significantly increase the

productivity of developers.

In this book, the process of system analysis and model building will be

demonstrated using a powerful CASE tool, VP-UML.

15

Chapter

2
Structural Modeling and Analysis

Overview

Structural modeling is concerned with describing “things” in a system and how

these things are related to each other. A “thing” can be an object, a class, an

interface, a package or a subsystem, which is part of the system being

developed. For example, a class diagram can be used to describe the objects and

classes inside a system and the relationships between them. The software

components of a system in a component diagram can be described by providing

details as to how these software components are deployed in terms of

computing resources, such as a workstation.

Structural modeling is a very important process because it is employed

throughout the entire system development life cycle. At the early analysis

stage, a structural model is developed to describe the objects identified from the

problem domain. As time progresses, the structural model is refined and new

ones created in the process. Early versions of a structural model are usually

incomplete, and as such are refined iteratively and incrementally. System

implementation commences only when the structural model contains sufficient

details.

What You Will Learn

On completing the study of this chapter, you should be able to:

• describe and apply the fundamental object-oriented concepts

• use the standard Unified Modeling Language (UML) notation to represent

classes and their properties

16 Object-oriented Technology

• model the structural aspects of problems with the class model

• perform domain analysis to develop domain class models

What Is an Object?

An object is a self-contained entity with well-defined characteristics (properties

or attributes) and behaviors (operations). For example, the real-life

environment consists of objects such as schools, students, teachers and courses

which are related in one way or another. A student has a name and an address

as its characteristics. Similarly, a subject has a title and a medium of

instruction as its characteristics.

An object generally has many states, but it can only be in one state at a

time. The state of an object is one of the possible conditions in which an object

may exist. The state is represented by the values of the properties (attributes)

of an object. In different states, an object may exhibit different behaviors.

For example, in the awake state, a person may have behaviors such as

standing, walking or running, while in the sleeping state, the person may have

behaviors such as snoring or sleepwalking. For objects such as a human being

or an automobile, a complete description of all the states of these objects can

be very complex. Fortunately, when objects are used to model a system, we

typically focus on all the possible states of the objects that are relevant only to

and are within the scope of that system.

The behavior of an object relates to how an object acts and reacts.

An object’s behaviors are also known as functions or methods. The behavior is

determined by a set of operations that the object can perform. For example,

through the physical interface of the VCR system, functions like play, rewind

and record can be performed, while simultaneously changing the state of the

system.

Types of Objects

Physical and Conceptual Objects

Objects can be broadly classified as physical or conceptual objects, and they are

things that we find around us in the real world. We interact with physical and

conceptual objects all the time. In software development, real-life objects are

naturally mapped onto objects of a software system.

Physical (tangible) objects are visible and touchable things such as a book,

a bus, a computer or a Christmas tree. In an automated teller machine (ATM),

the card reader and the receipt printer are examples of physical objects.

Chapter 2: Structural Modeling and Analysis 17

Conceptual objects are intangibles such as a bank account and a time

schedule. Very often, conceptual objects are thought of as physical objects.

For example, we would normally say we pay the mortgage (conceptual object)

every month, instead of saying we pay the bankbook (where the money is

deposited). We mix conceptual objects and physical objects all the time as they

are well understood within the context. Some of these concepts may only be

understood within a small society or even within a group of domain experts.

The object designer, therefore, needs to talk to the domain experts to gain the

necessary domain knowledge so that they can use the objects, concepts and

terminologies that are well understood by the people working in that domain.

Domain and Implementation Objects

The beauty of object-orientation is that different software engineers are likely

to identify similar sets of domain objects for the same area of application

because of the natural mapping of real-world entities to objects. The objects

identified from the real world are domain objects. Collectively, we call all objects

which are not related to real-world entities as implementation objects.

For example, bank accounts, tellers and customers are domain objects that we

come across daily. On the other hand, the transaction log which provides

information for error recovery is obviously an implementation object.

Domain objects tend to be more stable throughout the development life

cycle as the latter is unlikely to incur a major change in the specification of the

domain objects since these objects form the foundation (architecture) of a

software system. On the other hand, implementation objects are more likely to

change when the requirements are altered. For example, bank accounts,

customers and banks are domain objects in an ATM system. Most software

designers can identify a similar set of domain objects. In contrast, they have

greater flexibility in choosing the implementation objects in order to satisfy the

implementation constraints, such as performance and usability.

Active and Passive Objects

An object can be active or passive. It is necessary to distinguish between active

objects and passive objects because they require different strategies for

implementation. An active object is an object that can change its state. For

example, timers and clocks can change their states without an external

stimulus. Active objects are usually implemented as processes or threads, which

are also referred to as “objects with life.” With a passive object, the state of an

object will not change unless the object receives a message. For example, the

properties of a bank account will not change unless the bank account receives

a message such as set balance (an operation for updating the balance of an

18 Object-oriented Technology

account). Because the majority of objects are passive, sometimes it is

automatically assumed that all objects are strictly passive.

What Is a Class and What Are Instances?

A class is a generic definition for a set of similar objects. It is an abstraction of

a real-world entity that captures and specifies the properties and behaviors

that are essential to the system but hides those that are irrelevant. The class

also determines the structure and capabilities of its instances (objects). Thus, a

class is a template or blueprint for a category of structurally identical items

(objects). Objects are instances of a class. In other words, a class is like a mold

and an instance of a class is like a molded object.

It is very important to understand the differences between classes and

instances in order to get to grips with this chapter. A class has methods and

attributes while object instances have behaviors and states. This concept is

illustrated in Figure 2.1. In this example, bank account is a class. Bank account

is a generic term that covers many different account types. John’s and Robert’s

accounts are instances of the bank account class. Although their accounts are

of a type of bank account and are not generic.

Figure 2.1. UML notation for objects and classes

Object 1 : Bank Account

name John Smith

balance 1,000.0

Object 2 : Bank Account

name Robert Jones

balance 200.0

Bank Account

 name

 balance

 debit(in amount)

 credit(in amount)

The bank account class specifies that a bank account object has name and

balance as its private properties (indicated by a “ ” sign) and public credit and

debit operations (indicated by a “ ” sign). It is noteworthy that the two

instances are in different states. John’s account is in the credit state (positive

balance), while Robert’s account is in the overdrawn state (negative balance).

The state of the objects can be changed by calling the credit or debit operations,

e.g. Robert’s account can be changed to the credit state if a credit operation is

invoked with a parameter of, say, 300.

Chapter 2: Structural Modeling and Analysis 19

Attributes

Things in the real world have properties. An attribute is a property of a class.

Other words for attribute include “property,” “characteristic” and “member

data.” For example, a book can be described in terms of its author, ISBN

(International Serial Book Number), publisher, among others. More properties

can be associated with the class book such as the number of pages, its weight,

physical dimensions and so on. The abstraction of a book is limited to a specific

problem domain so that the number of required properties can be reduced. For

example, information on the weight and dimensions may be required for a

delivery company but totally irrelevant to an information system of a bookstore.

From a human perspective, a property is a characteristic that describes an

object. From a technical perspective, an attribute is a data item where an object

holds its own state information. In summary, attributes have a name and a

value, and attributes may also have a type, e.g. “integer,” “Boolean.”

Operations

Each object can perform a set of functions in order to provide a number of

services in a software system. This is similar to the situation in a company

where each member of staff provides a set of services to other members and

customers. An object calls another object’s service by sending it a message.

A service is defined by one or more operations, and an operation is a function

or a procedure which can access the object’s data. An operation consists of two

parts: a name and argument(s). Thus, every object must define its operations

for each of its services. The collection of operations is the object’s interface.

Other objects only need to know the interface of an object in order to invoke the

operations provided by the object.

An operation is sometimes called a method or a member function. These two

terms are more widely used by programmers than designers. To a programmer,

an operation is like a function (or procedure). The return value is the result that

an operation “brings back” on completion. This is a useful way of allowing other

objects to find out a piece of information about an object. In programming

language, operations are similar to functions in that they have parameters and

return values. For example, the savings account class in an ATM banking

system may have the following operations:

• withdraw(amount)

• deposit(amount)

• getBalance()

20 Object-oriented Technology

Encapsulation: Information Hiding

Objects are like black boxes. Specifically, the underlying implementations of

objects are hidden from those that use them. This is a powerful concept called

information hiding, better known as the encapsulation principle. In object-

oriented systems, it is only the producer (creator, designer or developer) of an

object that knows the details of the internal construction of that object.

The consumers (users) of an object are denied knowledge of the inner workings

of the object and must deal with an object via one of its three distinct interfaces:

• Public interface which is open (visible) to everybody.

• Protected interface which is accessible only by objects that have inherited

the properties and operations of the object. In class-based, object-oriented

systems, only classes can provide an inheritance interface. (Inheritance and

specialization will be discussed later).

• Parameter interface. In the case of parameterized classes, the parameter

interface defines the parameters that must be supplied to create an

instance. For example, a linked list of objects may have a parameter that

specifies the type of object contained in the linked list. When the linked list

is used, the actual type of object can be provided.

Structural Modeling Techniques

In UML, a class is simply represented by a rectangle divided into three

compartments, containing, from top to bottom, the class name, a list of

attributes and a list of operations (see Figure 2.2). Each attribute name may be

followed by optional details such as a type and a default value. Each operation

may be followed by optional details such as an argument list and a result type.

In most cases, the bottom two compartments are omitted, and even when they

are present, they typically do not show every single attribute and operation.

Typically, only those attributes and operations that are relevant to the current

context will be shown in a diagram. We can also specify the accessibility of an

element (an attribute or an operation) by prefixing its name by a “ ,” “ ,” or

“#” sign. The “ ,” “ ,” and “#” signs respectively indicate that an element is

private, public or protected.

Figure 2.2. Classes providing different levels of details

ClassName

ClassName

 attribute

ClassName

 attribute

 operation()

Chapter 2: Structural Modeling and Analysis 21

Figure 2.3 shows how a class is represented in the UML notation. Classes

and objects are distinguished by underlining the object name and optionally

followed by the class name.

Figure 2.3. UML notation for classes

ObjectName: ClassName

ClassName

 attribute1: Type

 attribute2: Type

 operation1(parameter1: Type,…):ReturnType

 operation2(parameter2: Type,…):ReturnType

Figure 2.4 shows two examples of classes. In the first example, the Shape

class has origin and color as attributes, with move and resize as operations. In

the second example, the bank account class has account number and customer

name as attributes and performs get balance and set balance operations.

Figure 2.4. Examples of classes in UML

Shape

 origin

 color

 move()

 resize()

Bank Account

 accountName

 customerName

 getBalance(): float

 setBalance()

Naming Classes

It is common practice to name a class with a noun or a noun phrase, but there

are no firm rules on naming the elements (classes, attributes, etc.) of class

models. The system development team should decide when and where upper

case letters and spaces should be used, and it is important that all members of

the team stick to the team’s decision. When using name phrases, a widely used

convention is to eliminate spaces and concatenate the words with their first

letters in upper case, e.g. SavingsAccount and BankAccount.

Relationships between Classes

Relationships exist among real-life objects. For example, friendship and

partnership are common examples of relationships among people. Similarly,

a relationship specifies the type of link that exists between objects. Through the

22 Object-oriented Technology

links of an object, it is possible to discover the other objects that are related to

it. For example, all the friends of a person John can be determined through the

links to John.

Finding relationships between classes is an important part of

object-oriented modeling because relationships increase the usefulness of a

model. Identifying relationships can help find new classes and eliminate bad

ones. Furthermore, it may lead to the discovery of relevant attributes and

operations.

There are essentially three important types of relationships between

classes: generalization/specialization (“type-of”), aggregation (“part-of”) and

association relationships.

Inheritance

Object-oriented programming languages facilitate inheritance that allows the

implementation of generalization-specialization associations in a very elegant

manner. Attributes and operations common to a group of subclasses are

attached to a superclass and inherited by its subclasses; each subclass may also

include new features (methods or attributes) of its own. Generalization is

sometimes called the “is-a” relationship. For example, checking accounts and

savings accounts can be defined as specializations of bank accounts. Another

way of saying this is that both a checking account and a savings account “is-a”

kind of a bank account; everything that is true for a bank account is also true

for a savings account and a checking account.

Properties of Inheritance

Generalization

The purpose of this property is to distribute the commonalities from the

superclass among a group of similar subclasses. The subclass inherits all the

superclass’s (base class) operations and attributes. That is, whatever the

superclass possesses, the derived class (subclass) does as well. Taking the

BankAccount example from above, if BankAccount (superclass) has an

account_number attribute, the CheckingAccount (subclass) will also have the

same attribute, account_number, as it is a subclass of BankAccount. It would be

unnecessary and inappropriate to show the superclass attributes in the

subclasses. Similarly, suppose there is a bank application for an ATM machine.

If BankAccount has the operation setBalance, then SavingsAccount will

automatically inherit this operation as well. It would be a mistake to duplicate

the attributes and operations in the superclass in its subclasses as well unless

those operations have different implementations of their own. Figure 2.5

illustrates the concept of generalization, with CheckingAccount and

Chapter 2: Structural Modeling and Analysis 23

SavingsAccount inheriting their superclass’s (BankAccount) attributes and

operations.

Figure 2.5. BankAccount and its subclasses

Superclass

Subclass
CheckingAccount

 checkClearing()

SavingsAccount

 interest

 addInterestToBalance()

BankAccount

 accountNumber

 password {encrypted}

 balance {balance 0.0}

 getBalance() : float

 setBalance()

Specialization

Specialization allows subclasses to extend the functionalities of their

superclass. A subclass can introduce new operations and attributes of

its own. For example, in Figure 2.5, SavingsAccount inherits attributes

account_number, password and balance from BankAccount and extends the

functionalities of BankAccount with an additional attribute, interest, and an

additional operation, addInterestToBalance. A SavingsAccount has the attribute

interest that BankAccount does not because not all bank accounts earn interest.

Abstract Classes

An abstract class is used to specify the required behaviors (operations) of a class

without having to provide their actual implementation. An operation without

the implementation (body) is called an abstract operation. A class with one or

more abstract operations is an abstract class. An abstract class cannot be

instantiated because it does not have the required implementation of the

abstract operations. An abstract class can act as a repository of shared

operation signatures (function prototypes) for its subclasses and so those

methods must be implemented by subclasses according to the signatures.

A class (or an operation) can be specified as abstract in the UML by writing its

name in italics, such as for the class Shape. Here, the class Shape is abstract

because we cannot draw a shape; we can only draw its subclasses such as

24 Object-oriented Technology

rectangles, circles, etc. Figure 2.6 shows an example of the abstract class Shape

and its subclasses. The subclasses provide the actual implementations of their

draw operations since Rectangle, Polygon and Circle can be drawn in different

ways. A subclass can override the implementation of an operation inherited

from a superclass by declaring another implementation (body of the operation).

In the example, the draw operation in the Rectangle class overrides the

implementation of the draw operation inherited from the Shape class.

Figure 2.6. Shape as an example of an abstract class

Shape

 origin

 color

 move()

 resize()

 draw()

Circle

 draw()

Polygon

 draw()

Rectangle

 draw()

Polymorphism

Polymorphism is the ability for a variable to hold objects of its own class and

subclasses at runtime. The variable can be used to invoke an operation of the

object held. The actual operation being invoked depends on the actual class of

the object that is referenced by the variable. For example, suppose the variable

“shape” is of type Shape. If shape references a Rectangle object, then

shape.draw() invokes the draw() method of the Rectangle class. Similarly, if

shape references a Polygon object, the draw() method of the Polygon class is

invoked by shape.draw().

Association

Object-oriented systems are made up of objects of many classes. Associations

represent binary relationships among classes. An association is represented by

a line drawn between the associated classes involved with an optional role

name attached to either end. The role name is used to specify the role of an

associated class in the association. If an association connects between two

objects instead of classes, it is called a link. A link is an instance of an

association. For example, Figure 2.7 illustrates the WorkFor relationship

Chapter 2: Structural Modeling and Analysis 25

between the Person and Company classes. The relationship carries the meaning

of “a person works for one company.” Figure 2.7 illustrates that Bill Gates

works for Microsoft and that many people can work for a company.

Figure 2.7. Association and link

Bill Gates:Person
WorkFor

Microsoft:Company

Name of link

Person
WorkFor

Company

Name of association

Employee Employer

11..n

Links provide a convenient way to trace the relationship between objects.

However, do not spend too much time trying to identify all possible

relationships between classes, as the implementation of these association

relationships adds to the overheads in your system. Only specify those

relationships that are necessary for the requirements of the system, and focus

on questions such as: “While you are operating on one object, do you need to

know the information of another object(s)?”

Role

Each end of an association has a role. You may optionally attach a role name

at the end of an association line. A role name uniquely identifies one end of an

association. For example, the role of a person in the WorkFor relationship is

employee and the role of a company is employer (See Figure 2.7). From the

object’s point of view, tracing the association is an operation that yields an

object or a set of related objects at the other end of the association. For example,

the employees of Microsoft can be determined by following the WorkFor

association. During the analysis stage, an association is often considered to be

bi-directional, that is, tracing can be done from either end of the association.

However, during the design stage, only one direction may be needed to

implement the requirements of the system.

Multiplicity

Multiplicity refers to the number of objects associated with a given object. For

the WorkFor association in Figure 2.8, a person works for one and only one

company since the multiplicity on the Company side is 1. On the other hand,

26 Object-oriented Technology

a company may have one or more persons working in it. If the multiplicity is

not explicitly specified, the default value of 1 is assumed.

Figure 2.8. Association and role

Multiplicity

Person
WorkFor

Company
Employee Employer

11..n

Role of company

Qualification

Qualification serves as names or keys that are part of the association and are

used to select objects at the other end of the association. Qualification reduces

the effective multiplicity of the association from one-to-many to one-to-one.

In UML, a qualifier is used to model this association semantic, that is, an

association attribute whose value determines a unique object or a subset of

objects at the other end of the association. For example, a bank is associated

with many customers. The account number (qualifier) specifies a unique person

of a bank (a customer) (see Figure 2.9).

Figure 2.9. (a) Many-to-many association between Person and Bank and (b) reduced

to a one-to-many association

(a)

accountNoPerson
0..1 0..n

(b)

Bank

Person
0..n 0..n

Bank

Reflexive Association and Roles

A reflexive association is an association that relates one object of a class to

another object of the same class. In other words, a class can be associated with

itself. There are two types of reflexive associations, namely, directional and

bi-directional.

Chapter 2: Structural Modeling and Analysis 27

Figure 2.10a a shows an example of a directional reflexive association

where the class Course is associated with itself. Here, a course may be a

prerequisite for another course. Figure 2.10b shows an example of a

bi-directional reflexive association where a parent directory (role: host) contains

zero or more subdirectories (role: accommodated by).

Figure 2.10 (a) A directional reflexive association and (b) a bi-directional reflexive

association

Course

PrerequisiteFor

(a)

0..n

Directory

accommodated by

host

(b)

N-ary Association

Associations are often binary, but higher order associations are also possible.

A relationship involving three classes is referred to as a ternary relationship,

and one involving many classes is referred to as an n-ary relationship. An n-ary

association is represented by a diamond connecting the associated classes.

In Figure 2.11, for example, a Student that takes a Course taught by a

particular Instructor exhibits a ternary relationship.

Figure 2.11. A ternary association

Student Instructor

Course

28 Object-oriented Technology

When modeling association relationships among classes, binary association

is the most preferred form. A higher-order association can always be

decomposed into a corresponding number of binary associations, and it is

possible to convert some of the bi-directional relationships into unidirectional

relationships in our class model during the design phase. For example, we can

represent the ternary association in Figure 2.12 as three binary associations

instead:

• a Student enrolls a Course

• an Instructor teaches a Course

• an Instructor trains a Student

Association Classes

It is sometimes necessary to describe an association by including additional

attributes which do not naturally belong to the objects involved in the

association. In Figure 2.13, for example, the year of the enrollment of a student

in a course does not belong to the student or course classes. In this case,

an association class Enrollment is added to hold the attribute year.

There are situations where an association is complex enough to be a class

in its own right. The association has its own class name and may have

operations just like any other ordinary class. In the example of the association

between a Person and a Company (Figure 2.14), the Position class contains the

attributes of the association between the Person and the Company. The Position

class has attributes of its own that do not naturally belong to Person or

Company. Therefore, it is only natural or beneficial that the information

belonging only to the object is contained in a separate class so as to maximize

the level of module cohesion. It may sometimes be possible to transfer the

attributes from the Position class to the Person or Company class. However, this

move significantly affects the reusability of those classes, as the association

attributes may be meaningful only in a specific context but not others.

For example, in Figure 2.14, the Person class may well be suitable for other

applications that do not need to know the Position information. Furthermore,

if the Position class information in transferred to either the Person or Company

class, it will rule out the possibility that a Person may have more than one

Position with the same or another Company.

Figure 2.12. Three binary associations replacing a ternary association

Enrolled in Taught by

Trained by

Student Course Instructor

Chapter 2: Structural Modeling and Analysis 29

Figure 2.13. An association class

Student Course Instructor

Enrollment

 year

Taught by

Trained by

Enrolled in

Figure 2.14. Using an association class

Position

 title

 startingDate

 salary

Person Company
0..n 0..nWorkFor

Aggregation

Aggregation is a stronger form of association. It represents the has-a or

part-of relationship. In UML, a link is placed between the “whole” and “parts”

classes, with a diamond head (see Figure 2.15) attached to the whole class to

indicate that this association is an aggregation. Multiplicity can be specified at

Figure 2.15. Example of aggregation

0..n

Position

 title

 startingDate

 salary

0..n
Person DepartmentDivisionCompany

1..n 1..n

30 Object-oriented Technology

the end of the association for each of the “part-of” classes to indicate the

quantity of the constituent parts. Typically, aggregations are not named,

and the keywords used to identify aggregations are “consists of,” “contains” or

“is part of.”

Composition

A stronger form of aggregation is called composition, which implies exclusive

ownership of the “part-of” classes by the “whole” class, i.e. a composite object

has exclusive ownership of the parts objects. This means that parts may be

created after a composite is created, but such parts will be explicitly removed

before the destruction of the composite. In UML, a filled diamond (see

Figure 2.16) indicates the composition relationship. In Figure 2.15, it is more

natural (closely resembling scenarios in the real world) for Division(s) and

Department(s) to be created after the Company is set up and they will not exist

if the Company closes down.

Figure 2.16. Example of composition

0..n

Position

 title

 startingDate

 salary

0..n
Person DepartmentDivisionCompany

1..n 1..n

Constraints and Notes

Constraints are an extension of the semantics of a UML element that allow the

inclusion of new rules or the modification of existing ones. It is sometimes

helpful to present an idea about restrictions on attributes and associations for

which there is no specific notation. Simply write them in braces near the class

concerned. Constraints are represented by a label in curly brackets

({constraintName} or {expression}) that are attached to the constrained

element. In the ATM banking example (see Figure 2.17), the password of a

bank account is encrypted and the balance is not less than $0.

You can specify constraints for two associations such as {for}, {or}, {subset},

etc. Such constraints are called complex constraints. The {or} constraint

Chapter 2: Structural Modeling and Analysis 31

indicates that only one of the associations can exist at any given time.

The {subset} constraint indicates that an association is a subset of another.

Figure 2.17. Example of constraints

BankAccount

 accountNumber

 password {encrypted}

 balance {balance 0}

Jockey Club Person

OrdinaryMemberOf

VIPMemberOf

{subset}

Figure 2.18. Complex constraints

{or}

CDROM

NoteBook

DVD

Figure 2.18 shows two examples of complex constraints. In the first

example, the Jockey Club has two kinds of members: ordinary members

and VIP members. The VIPMemberOf association is a subset of the

OrdinaryMemberOf association. In other words, a VIP member is also an

Ordinary member. In the second example, a Notebook computer has either a

CDROM or DVD association but not both.

32 Object-oriented Technology

Figure 2.19. Note annotation

Permanent PartTimeContract

Staff Memer

Check human resource

policy: HR-101

A note, represented by a dog-eared rectangle in UML, is a graphical symbol

for holding constraints or comments attached to an element or a collection of

elements. A note can also be used to link or embed other documents. It is very

useful to add comments to UML models with plain text notes to provide further

explanation or clarification that might not be apparent. In Figure 2.19, a note

is used to provide further details about the source of information of the classes.

Structural Models: Examples

Example 1: A Car

A car consists of different structural components such as the engine, body,

suspension, gearbox, etc. Each component in turn contains its own attributes

and operations. For example, the engine has its capacity, and it can be started

or stopped. Figure 2.20 shows a simplified structural model of a car in a class

diagram.

Example 2: A Sales Order System

In this simple sales order system example, there are three methods of payment:

cash, credit card or check. These three payment methods have the same

attribute (amount), but they have their own individual behaviors and

attributes. Figure 2.21 shows a structural model of this simple sales order

system in a class diagram. The directional associations in the diagram indicate

the direction of navigation from one class to another. For example, the Order

class can access information from the Payment class, but not the other way

round.

Chapter 2: Structural Modeling and Analysis 33

Figure 2.20. Structural model of a car

Engine

capacity : float

numberOfCylinders : int

start()

stop()

accelerate()

Car

registrationNo

model

year

licenseNumber

moveForward()

moveBackward()

stop()

turnRight()

turnLeft()

1 1 1 1

1 n

1 1 1
 Brake

type

apply()

1

n

1
1

Tire

width

airPressure

 Wheel

diameter

 Suspension

springRate

Body

numberOfDoors

GearBox

gearBoxType : string

gearRatio : float[]

currentGear : int

shiftUp()

shiftDown()

1

1

Figure 2.21. Structural model for a sales order system

1..n

Order

id

date

deliveryDateTime

 Customer

name

address

phone

OrderLine

quantity

getSubTotal()

 Product

unitPrice

description

 Payment

amount

 Check

bankID

checkID

CreditCard

cardNumber

verificationCode

expireDate

isValid()

Cash

cashTendered

0..n

1

0..n 1

1

1

34 Object-oriented Technology

Summary of UML Notation for Structural Modeling

UML provides a comprehensive range of components for structural modeling.

Table 2.1 summarizes the more common ones in the UML notation. In this

chapter, we have discussed how to use the class model in structural modeling

from the analysis perspective. Thus, only some of the constructs in Table 2.1 are

introduced.

Table 2.1. Summary of UML notation for structural modeling

Construct Description Syntax

class A set of objects that share the same

attributes, operations, methods,

relationships and semantics

interface A set of operations that characterize

the behavior of an element

component A modular, replaceable and significant

part of a system that packages

implementation and exposes a set of

interfaces

node A runtime physical object that

represents a computational resource

constraint A semantic condition or restriction

association A relationship between two or more

classifiers that involves connections

between their instances

aggregation A special form of association that

specifies a whole–parts relationship

between the aggregate (whole) and the

components (parts)

generalization A taxonomic relationship between a

more general and a more specific

element

Component
Interface

{constraint}

Chapter 2: Structural Modeling and Analysis 35

Table 2.1. (Cont’d)

Construct Description Syntax

dependency A relationship between two modeling

elements, in which a change to one

modeling element (the independent

element) will affect the other modeling

element (the dependent element)

realization A relationship between a specification

and its implementation

Structural Analysis Techniques

In developing object-oriented systems, we often adopt a bottom-up approach

first to develop a set of highly reusable components for assembling our system.

These components should also be suitably placed in a flexible and expandable

system architecture that can only be carried out through a top-down approach.

To do this, a set of highly reusable components is developed first before they are

assembled to form the system. In order to develop a stable system architecture

that can comfortably accommodate the object components, the top-down and

bottom-up approaches are often applied in an inter-play manner throughout the

system development life cycle.

This section shall discuss various domain analysis techniques for object

identification, after which leads you through the classical object identification

process by performing a textual analysis. A set of long-established heuristics are

elaborated, followed by a case study.

How Are Classes Obtained?

Practitioners and methodologists always claim that the object-oriented

approach is far superior to the traditional structured approach. This may well

be true. However, for those new to the object-oriented approach, they often find

object identification a very difficult task, especially because a real-world object

may be considered as either an attribute or an object depending on the context.

For example, a city is a physical object in the real world. In the context of an

address, City is only an attribute of the Person class. In an urban planning

system, City would be a class itself.

36 Object-oriented Technology

How good a class model is can be judged by examining its usability,

extendibility and maintainability. Furthermore, a good class model should be

reusable in other object-oriented system components, so that the fruits of

reusability can be harvested. Reusability is one of the key advantages of the

object-oriented approach.

To tackle the object identification problem, both domain analysis and use

case analysis (see Chapter 4 for details of the use case analysis) should be

performed. Domain analysis starts with the problem statement to produce a

class model (see Figure 2.22). Domain analysis focuses on identifying reusable

objects that are common to most applications of the same problem domain.

Hence, objects specific to the system can also be identified from use case

descriptions. The results of both the domain analysis and use case analysis can

be adopted to produce a robust and versatile class model. This will ensure that

the class model can fulfill the users’ requirements and be reused for other

applications in the same domain.

Figure 2.22. Two ways to perform object identification

Textual

analysis

Problem

statement

Use case

descriptions

Class

model

Keeping the Model Simple

Once you start modeling more than just a handful of classes, be sure that your

abstractions provide a balanced set of responsibilities. What this means is that

any one class should not be too big or too small. Each class should do one thing

well. If the classes are too big, the models will be difficult to change and not

very reusable. If the classes are too small, this will result in too many classes

Chapter 2: Structural Modeling and Analysis 37

in the model, which may be difficult to manage or understand. The “rule of

seven” is often used, which postulates that people’s short-term memory can only

cope with about seven chunks of information at a time.

When there are more than seven classes, draw diagrams for different

contexts. For example, in a retail information system, the classes can be

packaged according to different areas of activities such as sales, inventory

control, purchasing, etc., which in turn are represented in different class

diagrams. It is often necessary to develop the same diagram iteratively and

incrementally. In other words, the initial version of the diagram tends to be

conceptual and should capture the “big picture” of the model. Later iterations

capture additional details and are generally more implementation-oriented.

Expect to revise the model many times before you are happy with it.

Heuristics in Using Structural Analysis

The following list of heuristics can help you perform structural analysis:

• Do not attempt to develop a single giant class diagram. Choose only those

that fit into the context. For example, a class diagram may only represent

one major system functionality (use case) instead of the entire system.

Remember: humans can process about seven chunks of information at one

time.

• Use model management constructs such as subsystems, packages and

software framework to form the system architecture through the top-down

approach.

• Consider both logical and physical aspects, such as grouping by role,

responsibility, deployment and/or hardware platform, when grouping

classes into model management constructs.

• Use data or middleware for communication among major subsystems

whenever possible. Data coupling is easier to maintain than logical coupling

because a change in requirements will only result in a change in data, and

not the program itself. It is, however, not possible for some real-time or time

critical applications since performance may become an important issue.

• Wisely apply design patterns for those architecturally significant classifiers

to make the system architecture flexible and adaptable. This will be

discussed in detail in Chapter 6.

• Apply domain analysis such as textual analysis, Class-Responsibility-

Collaboration (CRC) or legacy and documentation reviews to identify

reusable components using a bottom-up approach, so that the concepts and

terminologies are understood and well accepted by the industry.

38 Object-oriented Technology

• Inter-play what have been found in the top-down approach and the

bottom-up approach to ensure that the resulting artifacts (architecture,

subsystem and components) can comfortably coexist.

• Use packages to organize the domain classes incrementally as development

progresses. Each system functionality (use case) developed in turn will yield

a set of domain classes. The set of domain classes should then be grouped

into appropriate packages so that each package contains a cohesive set of

classes. Organizing the classes into packages can also make it easier to

manage the domain class model as it grows.

• Conduct use case analysis to yield two artifacts: a set of use case instance

scenarios to help us walk through the objects that participate (are required)

in the interaction, and the responsibilities (operations) that are required to

be assigned to each object through the analysis of the messages sent to and

from it. These resulting artifacts (a set of objects and its operations) help

us identify the missing pieces in the structural model.

• Review whether a particular class is becoming too large. If so, consider

reorganizing the class into two or more classes and structure the resulting

classes using relationships.

Conducting Domain Modeling and Analysis

Domain analysis seeks to identify classes and objects that are common to many

applications in a domain. This is partly to avoid wasting time and effort in

reinventing the wheel and to promote reusability of the system components.

Domain analysis involves finding out what other people have done in

implementing other systems and looking at the literature in the field. Bear in

mind that the object-oriented approach is superior to the traditional structured

approach because of system reusability and extendibility, and not because they

are more trendy or popular.

As already stated, the goal of domain analysis is to identify a set of classes

that are common to all applications when dealing with problems of the same

domain. Then, according to their nature, the domain classes and the

application-specific classes are grouped into different packages. In so doing,

the cohesion of the class model is maximized and the coupling between classes

minimized, greatly enhancing the system’s maintainability and extendibility. In

short, the benefit of domain analysis is that domain classes can be reused for

other applications when solving problems in the same domain. Furthermore,

using well-understood terminologies in the domain for naming domain classes

will improve the readability of the documentation.

Chapter 2: Structural Modeling and Analysis 39

Unfortunately, there is no simple or straightforward way to identify a set

of classes for a problem domain. The domain analysis relies heavily on the

designer’s knowledge of the problem domain, intuition, prior experience and

skills. A common way to perform a domain analysis is to prepare a statement

of the problem domain first and then perform a textual analysis to identify the

candidate classes. The problem statement and textual analysis provide a good

starting point for domain analysis. The candidate classes are then refined

iteratively to add the associations, attributes and operations to the domain

class model (see the next section for details).

Domain Modeling and Analysis Process

Overview

Before domain analysis is conducted, we need to understand the problem

domain of the system. We need to find out the general requirements of the

system of the domain by interviewing users and the domain experts of the

system. After interviewing them, a problem statement can be prepared.

The output of the domain analysis is a domain class model describing the

classes and their relationships. The domain class model consists of class

diagrams, a data dictionary describing the classes and their associations, and

definitions of terminologies.

Developing Domain Class Models

The domain analysis starts with the preparation of a problem statement to

provide a generic description of the problems of the domain. The problem

statement is usually prepared after interviewing experts in the domain.

Rumbaugh et al. recommend the following steps for developing a domain class

model (see Figure 2.23):

1. Preparing the problem statement

2. Identifying the objects and classes using textual analysis

3. Developing a data dictionary

4. Identifying associations between classes

5. Identifying attributes of classes and association classes

6. Structuring classes using inheritance

7. Verifying access paths for likely queries

8. Iterating and refining the model

40 Object-oriented Technology

Preparing Problem Statement

Before any analysis work is carried out, it is important to clearly describe the

problem in the context of the domain. A clear and detailed problem statement

helps to reduce misunderstanding and the possibility of significant reworking

at a later stage. Since the objective of domain analysis is to develop a class

model that can be reused in other applications to solve problems in the same

domain, it will be expedient that the problem statement describes the general

requirements of the domain rather than the requirements of a specific

application. The problem description should, therefore, focus on the description

of the objects and their relationships in the domain rather than the specific

procedures of the problem domain, since the procedures for carrying out tasks

would not be the same for every organization. For example, in the problem

Figure 2.23. Domain analysis process

Textual

analysis

Problem

statement

Candidate classes

Customer

Bank

Account

Transaction

Customer Account

Transaction Bank

Initial domain class model

Customer

 name

 address

Account

 balance

Bank

 name

Transaction

 amount

Credit Card Account

 credit limit

Current Account

 overdraft limit

Account

 balance

Customer

 name

 address

Bank

 name

Transaction

 amount

Restructured class model

Withdraw Transaction

Transfer Transaction

 destination account

Classes with attributes

Chapter 2: Structural Modeling and Analysis 41

statement for the banking domain, it should be described that a customer can

have several accounts with a bank but avoid specifying how a person opens a

bank account since each bank has its own procedure in performing the same

operation. As problem statements are written in natural language, they may

have ambiguities and inconsistencies. Therefore, the problem statement is just

one of the many inputs to the domain analysis. Throughout the analysis

process, we need to use our own judgment or that of domain experts to resolve

such ambiguities and inconsistencies.

Online Stock Trading Example

The following problem statement is for an automated online stock trading

system for a stock brokerage firm.

A stock brokerage firm wants to provide an online stock trading service

to enable its clients to make trades via the computer. With this system,

a client must first be registered before he can trade online. The

registration process involves the client providing his ID number,

address and telephone number. A client may open one or more accounts

for stock trading. The stock brokerage firm needs to be registered with

a stock exchange before its clients can trade the stocks listed on the

stock exchange. A stock brokerage firm can be registered with one or

more stock exchanges. The stock brokerage firm may need to pay

monthly charges for using the services provided by the stock exchange.

Once registered, the client can buy and sell stocks. The client can check

the current price, bid price, ask price and traded volume of a stock in

real time. The stock price and traded volume information is provided by

the stock exchange on which the stock is listed and traded. When a

client issues a buy order for an account, the client must specify the

stock code, the number of shares and the maximum price (bid price)

that he is willing to pay for them. A client must have sufficient funds

in his account to settle the transaction when it is completed. When a

client issues a sell order, the client must specify the stock code, the

number of shares and the minimum price (ask price) that he is willing

to sell them. The client must have sufficient number of shares of the

stock in his account before he can issue the sell order.

A client can check the status of execution of his (buy or sell) orders.

The client can issue a buy or sell order before the end of the trading day

42 Object-oriented Technology

of the stock exchange which processed the order. All trade orders will be

forwarded to the stock trading system of the stock exchange for

execution. When an order is completed, the stock trading system of the

stock exchange will return the transaction details of the order to the

online stock trading system. The transaction details of a trade order

may be a list of transactions, each transaction specifying the price and

the number of shares traded. For example, the result of a buy order of

20,000 HSBC (stock code: 0005) shares at HKD 88.00 in the Hong Kong

Stock Exchange may be as follows:

• 4,000 shares at HKD 87.50

• 8,000 shares at HKD 87.75

• 8,000 shares at HKD 88.00

An order will be kept on the system for execution until the order is

completed or the end of a trading day. There are three possible

outcomes for a trade order:

1. The trade order is completed. For a buy order, the total amount for

the buy order will be deducted from the client’s account and the

number of shares of the stock purchased will be deposited into the

account. For a sell order, the number of shares sold will be deducted

from the client’s account and proceeds of the sell order will be

deposited into the client’s account.

2. The trade order is partially completed. The number of shares

actually traded (sell or buy) is less than the number of shares

specified in the order. The number of shares successfully traded in

the order will be used to calculate the amount of the proceeds, and

the client’s account is adjusted accordingly.

3. The trade order is not executed by the end of a trading day.

The order will be canceled.

A stock exchange may require that the number of shares specified

in an order must be in multiples of the lot size of the stock. Each stock

has its own lot size. Common lot sizes are 1, 400, 500, 1,000 and

2,000 shares.

The client can deposit or withdraw cash or stock shares from his

account. Upon the deposit or withdrawal of cash or stock shares,

the account cash or stock balance will be updated accordingly.

Chapter 2: Structural Modeling and Analysis 43

Identifying Objects and Classes

To identify the objects and classes, perform textual analysis to extract all noun

and noun phrases from the problem statement. The objective of this step is to

identify a set of candidate objects which can be further elaborated and refined

in subsequent steps. Therefore, it is not necessary (nor possible) to get it right

the first time. Rather, do not be too selective in choosing classes at this stage

so as to avoid the possibility of excluding some classes. For each extracted noun

or noun phrase, we need to carefully evaluate whether it actually represents an

object of the domain. It is necessary to stress that the object identification

process is not a straightforward task. A noun or noun phrase can be an object

in one domain and not so in another. We need to exercise our own judgment in

the process. Amour and Miller (2001) suggest that from their past experiences,

nouns or noun phrases of the following categories are more likely to represent

objects:

• Tangibles (e.g. classroom, playground)

• Conceptuals (e.g. course, module)

• Events (e.g. test, examination, seminar)

• External organizations (e.g. publisher, supplier)

• Roles played (e.g. student, teacher, principal)

• Other systems (e.g. admission system, grade reporting system)

Table 2.2 shows the nouns and noun phrases extracted from the problem

statement of the online stock trading example.

Table 2.2 Nouns and noun phrases extracted from the problem statement

Stock brokerage firm (concept) Buy order (event)

Monthly charge Stock code (simple value, attribute)

Trade (event) Number of shares (simple value,

attribute)

Trade order (event) Maximum price (simple value, attribute)

Computer (tangible) Transaction (event)

Client (role played) Sell order (event)

ID (simple value, attribute) Trading hours (simple value, attribute)

Address (simple value, attribute) Trading day (simple value, attribute)

44 Object-oriented Technology

Table 2.2 (Cont’d)

Telephone number (simple value, Stock trading system (other systems)

attribute)

Account (concept) Order (event)

Stock Exchange (extenal organization) Execution result (event)

Stock (concept) HSBC (instance of stock)

Current price (simple value, attribute) Hong Kong Stock Exchange (instance of

stock exchange)

Bid price (simple value, attribute) Lot size (simple value, attribute)

Ask price (simple value, attribute) Registration process (not an object)

Traded volume (simple value, attribute)

As the purpose of this step is to identify the classes in the domain, other

issues, such as inheritance and implementation, should be ignored. They will be

dealt with in later steps. For each extracted noun or noun phrase, a category

is assigned to it as shown in parentheses in Table 2.2. The candidate classes are

then consolidated by eliminating inappropriate ones. Rumbaugh et al. (1991)

suggest a set of criteria for eliminating inappropriate classes (see Table 2.3):

Table 2.3. Categories of inappropriate classes

Categories Description

Redundant Classes that mean the same thing. For example, order, trade and

classes trade order mean the same thing. Eliminate trade and order,

and retain trade order. Choose the most descriptive class.

Irrelevant Classes that are not directly related to the problem. For

classes example, monthly charge is not directly related to the system.

Vague classes Classes that are loosely defined.

Attributes Attributes of classes are also represented as nouns or noun

phrases. Therefore, the list of nouns or noun phrases extracted

by textual analysis may contain attributes of classes. For

example, address and telephone number are attributes of the

client.

Chapter 2: Structural Modeling and Analysis 45

Table 2.3. (Cont’d)

Categories Description

Operations The performance of actions is sometimes expressed as nouns or

noun phrases. For example, the registration process is the action

taken by the client to register on the system. It should be

considered an operation of a class, rather than a class.

Roles Role names help to differentiate the responsibilities of the objects

in an interaction. However, they should not be considered as

classes.

Implementation Implementation details of a particular solution are sometimes

constructs written in the problem statement, e.g. array, indexed sequential

file, etc. Candidate classes representing the implementation

details should be removed.

After following the above guidelines, a number of classes may be found to

be inappropriate (see Table 2.4) in the online stock trading example.

Table 2.4. Inappropriate classes

Stock brokerage firm (irrelevant) Stock code (attribute)

Monthly charge (irrelevant) Number of shares (attribute)

Trade (redundant) Maximum price (attribute)

Computer (implementation) Trading hours (attribute)

ID (attribute) Trading day (attribute)

Address (attribute) Order (redundant)

Telephone number (attribute) HSBC (instance of stock)

Current price (attribute) Hong Kong Stock Exchange (instance of

stock exchange)

Bid price (attribute) Lot size (attribute)

Ask price (attribute) Registration process (operation)

Traded volume (attribute)

46 Object-oriented Technology

The revised list of candidate classes is shown in Table 2.5 after removing

the inappropriate classes in Table 2.4.

Table 2.5. Revised list of candidate classes

Trade order (event) Transaction (event)

Client (role played) Sell order (event)

Account (concept) Stock trading system (other systems)

Stock Exchange (external organization) Execution result (event)

Buy order (event) Stock (concept)

Developing Data Dictionary

After the candidate classes have been consolidated, prepare a data dictionary

to record the definition of classes. For each class, write a short description to

define its scope as well as details about the class such as its attributes and

operations. The data dictionary also describes the associations between the

classes and is continuously revised throughout the entire development life cycle

of the system. Table 2.6 shows the data dictionary for the online trading system

example.

Table 2.6. Data dictionary for the candidate classes

Class Definition

Client An individual or a company registered with the stock

brokerage firm for online stock trading services. The class

has attributes address, telephone number and ID. A client

may have one or more accounts.

Account A client can issue trade order on his or her accounts. An

account holds details about the cash and stock balances for

trading.

Stock exchange A financial institution that provides a platform where stock

trading is carried out.

Chapter 2: Structural Modeling and Analysis 47

Table 2.6. (Cont’d)

Class Definition

Stock trading system A platform for the execution of the trade orders of stock.

Trade order A trade order specifies the price, stock code and number of

shares. A trade order can be a buy order or a sell order.

Buy order A buy order specifies the bid price, stock code and number

of shares.

Sell order A sell order specifies the ask price, stock code and number

of shares.

Stock A company listed in a stock exchange. Shares of a company

can be traded only in a multiple of its lot size.

Execution result The result of the execution of a trade order. It contains a

list of transactions.

Transaction The execution of a trade order at a particular price. It also

contains the number of shares traded at that price.

Identifying Associations between Classes

An association is a relationship between objects. For example, John and Peter

are instances of the class person and John is the father of Peter. Association can

be identified by looking for verbs and verb phrases connecting two or more

objects in the problem statement. In the online stock trading system example,

the statement “a client may open one or more accounts for stock trading”

[emphasis added] contains the verb “open” which links the client and the

account. The association between the client and the account may be named as

has since it is an ownership relationship. The association can also be named as

opened by to reflect the action performed by the client. However, the word has

can more accurately describe the nature of the association. Hence, the

association should be named according to its nature rather than according to

the verb or verb phrase linking the classes in the problem statement. Table 2.7

shows the list of verb phrases extracted from the problem statement to identify

the candidate associations.

48 Object-oriented Technology

Table 2.7. Associations identified by extracting verb phrases from the problem

statement

Verb phrase Association

A client may open one or more accounts for stock trading. has

When a client issues a buy order for an account, the client must issued by, buy

specify the stock code, the number of shares and the maximum

price that he is willing to pay for them (the bid price).

When a client issues a sell order for an account, the client must issued by, sell

specify the stock code, the number of shares and the minimum

price that he is willing to sell them at (the ask price).

All trade orders will be forwarded to the stock trading system of executed by

the stock exchange for execution.

When an order is completed, the stock trading system of the stock returned by

exchange will return the transaction details of the order to the

online stock trading system.

The transaction details of a trade order may be a list of consists of

transactions, and each transaction specifies the price and the

number of shares traded.

From the domain knowledge, we have the following associations:

• A stock is listed on a stock exchange

• A stock is traded on a stock trading system of a stock exchange

• The result of a trade order is a list of transactions

• A stock exchange has one or more stock trading systems

Based on the above information, formulate the initial domain class model

for the system as illustrated in Figure 2.24.

Then refine the associations by eliminating unnecessary and inappropriate

associations and by adding additional associations from the knowledge of the

problem domain. Rumbaugh et al. propose the following criteria in Table 2.8 to

determine whether an association should be eliminated.

Chapter 2: Structural Modeling and Analysis 49

Table 2.8. Criteria to eliminate associations

Criteria Description

Associations If a class is eliminated from the domain class model, then all

between associations linking to it should be removed. In some cases,

eliminated classes the dangling links of the classes caused by the removal of a

class may be joined to form a new association.

Irrelevant or Associations that are not directly related to the problem

implementation domain or are only related to the solution of the problem

associations should be eliminated.

Actions The association should define structural relationships between

domain classes, not an event. For example, “the client can

check the status of execution of his (buy or sell) orders”

describes an action performed by the client in an interaction

between the client and the system.

Figure 2.24. Initial domain class model

Account Trade Order

Buy Order Sell Order

buy

executed byhas

sell

Stock Exchange

Client

Stock

listed on

traded on

Stock Trading System

consists of

Execution result

Transaction

issued

by

issued

by

returned by

50 Object-oriented Technology

Table 2.8. (Cont’d)

Criteria Description

Ternary Many associations involving three or more classes can be

associations decomposed into binary associations. For example, “a client

issues a buy order for an account” can be decomposed into two

binary associations: “a client issues an order” and “the order is

associated with the client’s account”.

Derived Remove associations that can be defined in terms of other

associations associations or a condition of the attributes of the classes.

For example, “the stock trading system of the stock exchange

will return the execution result” can be defined in terms of

“a trade order is executed by a stock trading system” or

“the trade order has an execution result”.

Based on these guidelines, the revised domain class model can be refined

as shown in Figure 2.25.

Figure 2.25. Revised domain class model

Account Trade Order

Buy Order Sell Order

executed byhas

Stock Exchange

Client

Stock

listed on

traded on

Stock Trading System

consists of

has

Execution result

Transaction

Chapter 2: Structural Modeling and Analysis 51

Identifying Attributes of Classes and Association Classes

Attributes are properties of a class, such as name, address and telephone

number of the Client class. Look for nouns or noun phrases followed by

possessive phrases, e.g. “address of the client.” Adjectives that appear

immediately before a noun and correspond to a class can also be an enumerated

value of an attribute, e.g. “a canceled buy order.” Attributes are less likely to

be discovered from the problem statement. However, it is not necessary to

identify all attributes in this step because the attributes do not affect the

structure of the domain class model. Instead, this should only be done if they

can be readily identified. At later stages of the development life cycle

(e.g. detailed design phrase), the attributes can be more readily identified.

Structuring Classes Using Inheritance

At this point, most of the classes and associations have been identified, and it

is possible to try to restructure the class diagram using inheritance. Inheritance

provides an effective and convenient way to specify commonality between

classes. Identify inheritance in two opposite directions: top down and

bottom up.

Bottom-up Approach

For the bottom-up approach, we compare the properties of classes to look for

commonality. Usually the names of the classes provide the first hint for the

identification process. Look for classes with similar attributes, operations and

associations with other classes. For example, the Buy Order and Sell Order

classes both have the price and number of shares attributes and both of them

are associated with the Stock class and Account class. Their names also suggest

that they may share similar properties and behaviors.

Also define a superclass to cover classes with a common structure.

For example, the Trade Order class can cover the common structure of the

Buy Order and Sell Order classes. Add an association between the Trade Order

class and the Account class, and between the Trade Order class and the Stock

class. The associations between the Buy Order, Sell Order, Account and Stock

classes should be eliminated as these associations can be derived from

inheritance and the associations of the superclass Trade Order.

Top-down Approach

For the top-down approach, check whether a class has some special cases that

have additional structural or behavioral requirements. Look for noun phrases

consisting of adjectives and class names. For example, the Sell Order and

Buy Order classes are specializations of the Trade Order class. Taxonomies of

52 Object-oriented Technology

real-life objects can also suggest specializations of a class which may not be

included in the problem statement. Think more broadly and use your domain

knowledge in identifying specializations. For example, an Account can be

categorized into two types: Cash Account and Margin Account. The revised

domain class model is shown in Figure 2.26.

Figure 2.26. Revised domain class diagram after restructuring using inheritance
and adding attributes

Stock
ExchangeBuy Order Sell Order

0..n 0..n

listed on

traded on

Stock Trading
System

1

10..n

0..n

executed
by

Account
Trade Order

 date
 price
 number of shares

Client
 ID
 name
 address
 telephone no.

1 0..n0..n0..n

has

Margin
Account

Cash
Account

Execution
result

Stock
 code
 name

Transaction
 price
 number of shares

1 1..n

consists
of

1

1

has

Verifying Access Paths for Likely Queries

One way to verify the correctness and usefulness of the domain class model is

to check whether the domain class diagram can provide correct answers to

queries that are common to other applications in the domain. In the online

stock trading system example, a typical client query would be the current stock

balance of his account. This requires an association between the Account class

and the Stock class to provide the information on the number of shares held in

the account. Although a path from the Account class to the Stock class exists

in the domain class model in Figure 2.26, it would only provide the buy and sell

orders information of the account but not the information on stock balances.

To cope with this additional requirement, an association between the Stock

class and the Account class as illustrated in Figure 2.27 needs to be added.

The domain class model should always provide a correct answer to a typical

query of the system.

Chapter 2: Structural Modeling and Analysis 53

Figure 2.27 Addition of an association between account class and stock class

Stock
ExchangeBuy Order Sell Order

0..n 0..n

listed on

traded on

Stock Trading
System

1

10..n

0..n

executed
by

Account
Trade Order

 date
 price
 number of shares

Client
 ID
 name
 address
 telephone no.

1 0..n0..n0..n

has

Margin
Account

Cash
Account

Execution
result

Stock
 code
 name

Transaction
 price
 number of shares

1 1..n

consists
of

1

1

has

Stock Line

 number of shares

0..n

0..n

Iterating and Refining Model

It is highly unlikely that the correct domain class model can be developed in

one pass. The domain class model needs to be refined several times before it

becomes robust. The development of the domain class model is not a rigid

process, and it is necessary to repeatedly apply the above steps until the

domain class model finally becomes stable. The following checklist can help in

identifying areas of improvement of the domain class model.

• Where a class is without attributes, operations and associations, consider

removing the class.

• Where a class is with many attributes and operations covering a wide area

of requirements, consider splitting the class into two or more classes.

• Where a query cannot be answered by tracing the domain class model,

consider adding additional associations.

• Where there are asymmetries in generalizations and association, consider

adding additional associations and restructuring the classes with

inheritance.

• Where attributes or operations are without a hosting class, consider adding

new classes to hold these attributes and operations.

54 Object-oriented Technology

Tricks and Tips in Structural Modeling and Analysis

Set Focus and Context of Diagram

Make sure the class diagram only deals with the static aspects of the system.

Do not attempt to consolidate everything into one single class diagram. Before

you start to develop the diagram, set the context and the purpose it is to serve

and the scope of the class diagram.

Use Appropriate Names for Classes

The classes can be identified from two sources: domain analysis and use case

analysis. If the classes identified from the use case analysis are similar or

identical to those derived from the domain analysis, that would be a perfect

situation to be in. On the other hand, where inconsistent classes are derived

from these two sources, discuss them with the end users, advising them to use

standard terminologies of the industry, allowing for a dominant player in the

field. If they insist on using their (non-standard) terminologies, it may be

necessary to put the standard ones in the libraries and use subclasses for their

non-standard terminologies specifically for this application.

Organize Diagram Elements

Not only should the classes be structured with various object-oriented

semantics, but also organize their elements spatially to improve readability. For

example, minimize cross lines in the diagram and place the semantically

similar elements close together.

Annotate Diagram Elements

Attach notes to those elements where unclear concepts need to be clarified, and

where necessary, attach external files, documents or links within the notes

(i.e. a http link or a directory path). Some automated CASE tools support such

annotations (e.g. Visual Paradigm for UML), so that resources can be glued into

a navigable visual model.

Refine Structural Model Iteratively and Incrementally

As you progress through the development stages, the structural models can be

enriched from time to time. For example, dynamic models help to identify the

Chapter 2: Structural Modeling and Analysis 55

responsibilities of the classes, or possibly even new classes, implementation

classes and control classes. This concept will be discussed in more details in

Chapter 4 (Dynamic Modeling and Analysis).

Show Only Relevant Associations

If a class is used by a number of use cases or even several applications, the

class may have a number of associations that are related to different contexts.

In the diagram, only show the associations related to the context that you are

concerned with and hide the irrelevant associations. Do not attempt to

consolidate all the associations and classes into a large class model as this

cannot be easily managed by most people.

Domain Modeling and Analysis with VP-UML

In this section, the use of the key features of VP-UML to perform domain

analysis will be demonstrated. The online stock trading system discussed

earlier will be used in this chapter as an example. Simply follow the

instructions on the following pages to create the sample domain class diagram.

Follow the steps below to perform the domain model and analysis:

1. Prepare problem statement for the system being developed

2. Identify objects and classes

3. Develop data dictionary

4. Identify associations between classes

5. Identify attributes of classes and association classes

6. Structure object classes using inheritance

7. Verify access paths for likely queries

8. Iterate and refine the model

Step 1: Prepare Problem Statement

The problem statement is prepared through interviews with domain experts

familiar with the application domain. Here, the application domain is an online

stock trading system for stock brokerage firms. Alternatively, interview

stakeholders of several stock brokerage firms to directly collect the

requirements information. The problem statement should cover only the

general requirements of an online stock trading system.

56 Object-oriented Technology

First, start up the VP-UML Integrated Development Environment and go

through the following steps to enter the problem statement into VP-UML:

1.1. Click on the application toolbar (see Figure 2.28).

1.2. Type in the following problem statement in the text pane, or open it from

a file (see Figure 2.29).

For a stock brokerage firm that wants to provide an online stock

trading service to enable its clients to make trades via the

computer, a client must first be registered before he can trade

online. The registration process involves the client providing his

ID, address and telephone number. A client may open one or more

accounts for stock trading.

The stock brokerage firm needs to be registered with a stock

exchange before its clients can trade the stocks listed on the stock

exchange. A stock brokerage firm can be registered with one or

Figure 2.28. Domain analysis work area

Chapter 2: Structural Modeling and Analysis 57

more stock exchanges. The stock brokerage firm may need to pay

monthly charges for using the services provided by the stock

exchange.

Once registered, the client can begin to buy and sell stocks.

The client can check the current price, bid price, ask price and

traded volume of a stock in real time. The stock price and traded

volume information is provided by the stock exchange on which

the stock is listed and traded. When a client issues a buy order for

an account, the client must specify the stock code, the number of

shares and the maximum price (bid price) that he is willing to pay

for them. A client must have sufficient funds in his account to

settle the transaction when it is completed. When a client issues

a sell order, the client must specify the stock code, the number of

shares and the minimum price (ask price) that he is willing to sell

Figure 2.29. Entering problem statement

58 Object-oriented Technology

them. The client must have sufficient number of shares of the

stock in his account before he can issue the sell order. A client can

check the status of execution of his (buy or sell) orders.

The client can issue a buy or sell order before the end of the

trading hours of a trading day of the stock exchange which

processed the order. All trade orders will be forwarded to the stock

trading system of the stock exchange for execution. When an order

is completed, the stock trading system of the stock exchange will

return the transaction details of the order to the online stock

trading system. The transaction details of a trade order may be a

list of transactions, and each transaction specifies the price and

the number of shares traded. For example, the result of a buy

order of 20,000 HSBC (stock code: 0005) shares at HKD 88.00 in

the Hong Kong Stock Exchange may be as follows:

• 4,000 shares at HKD 87.50

• 8,000 shares at HKD 87.75

• 8,000 shares at HKD 88.00

An order will be kept on the system for execution until the

order is completed or the end of a trading day. There are three

possible outcomes for a trade order:

1. The trade order is completed. For a buy order, the total

amount for the buy order will be deducted from the client’s

account and the number of shares of the stock purchased will

be deposited into the account. For a sell order, the number of

shares sold will be deducted from the client’s account and the

proceeds of the sell order will be deposited into the account.

2. The trade order is partially completed. The number of shares

actually traded (sell or buy) is less than the number of shares

specified in the order. The number of shares successfully

traded in the order will be used to calculate the amount of the

proceeds, and the client’s account is adjusted accordingly.

3. The trade order is not executed by the end of a trading day.

The order is canceled.

A stock exchange may require that the number of shares

specified in an order must be in multiples of the lot size of the

Chapter 2: Structural Modeling and Analysis 59

stock. Each stock has its own lot size. Commonly used lot sizes are

1, 400, 500, 1,000 and 2,000 shares.

The client can deposit or withdraw cash or stock shares from

his account. Upon the deposit or withdrawal of cash or stock

shares, the account cash or stock balance will be updated

accordingly.

Step 2: Identify Objects and Classes

Once the problem statement is entered into the case tool, the next step is to

identify objects and classes in the textual analysis working area.

2.1. Let us highlight the term client as a candidate class (see Figure 2.30) and

drag it to the Candidate Class Container on the top right hand corner.

2.2. Notice that all occurrences of the same class in the problem statement is

highlighted automatically (see Figure 2.31).

2.3. Repeat the above steps to identify the remaining classes:

• Trade Order

• Account

• Stock Exchange

• Buy Order

• Transaction

• Sell Order

• Stock Trading System

• Execution Result

• Stock

Step 3: Develop Data Dictionary

Let us define the candidate classes identified in Step 1. Select the Class

Description cell next to the classes – Client. Enter the following description

in the Class Description cell next to the class (see Figure 2.32). Adjust the

size of the cell to view the whole description.

An individual or a company registered with the stock brokerage firm for the

use of online stock trading services. The class has attributes address, telephone

number and ID. A client can have one or more accounts.

60 Object-oriented Technology

Figure 2.30. Highlighting the word client

Figure 2.31. All occurrences of the word client are highlighted automatically

Chapter 2: Structural Modeling and Analysis 61

Repeat the above steps to complete the dictionary for all remaining

candidate classes.

When the data dictionary has been defined, create the models from the

candidate classes. To create a model, right click on the candidate class and

select Create Class Model (see Figure 2.33). After that is done, the type of the

candidate class will change to Generated Model, and the class model is

created in the Class Repository.

Figure 2.32. Data dictionary

Figure 2.33. Create model from Candidate Class

62 Object-oriented Technology

Figure 2.35. Create a Class Diagram

The candidate classes can be viewed by clicking the Class Browser tab at

the bottom left corner of the screen (see Figure 2.34).

Step 4: Identify Associations between Classes

Having identified the candidate classes, the next step is to identify the

associations among them. By analyzing the verb phrases in the problem

statement, we find that the verb open connects two candidate classes in the

statement “a client may open one or more accounts for stock trading.” This is

a “has a” relationship between Client and Account. So we can create an

association between Client and Account.

4.1. Create a class diagram by right clicking the Class Diagram button on the

toolbar and select Create Class Diagram (see Figure 2.35). A new class

diagram will appear in the diagram pane.

Figure 2.34. Class browser

Chapter 2: Structural Modeling and Analysis 63

4.2. Drag the class Client from the Class Browser and drop it to the Class

Diagram (see Figure 2.36).

Figure 2.36. Creating class using Class Browser

Figure 2.37. Creating Class Client

4.3 The class Client now appears in the Class Diagram (see Figure 2.37).

4.4 Repeat the previous steps to create the class Account in the Class

Diagram.

64 Object-oriented Technology

4.5 To create an association between Client and Account, select the class

Client, then click the association icon from the resource-centric

interface and drag it to the class Account. The association between the

Client and Account classes will then be created (see Figure 2.38).

Figure 2.38. Making an association between the classes Client and Account

4.6 Repeat the above steps to complete all other associations. Figure 2.39

shows the initial class model for the system.

Step 5: Identify Attributes of Classes and Association Classes

At this point, the basic structure of the domain class model is up and running.

The domain class model should be refined by adding attributes to individual

classes. As discussed earlier, attributes can be identified by textual analysis on

nouns, noun phrases or adjectives. Look for nouns or noun phrases followed by

a possessive phrase and a noun and corresponding to a class, e.g. address of the

client. Adjectives appearing immediately before a noun and corresponding to a

class can also be an enumerated value of a class’s attribute, e.g. a canceled sales

order. Follow the instructions below to add attributes to individual classes.

5.1. To create attributes in VP-UML, first select a class. Right click on the

class Client, then select New Attribute (Figure 2.40).

5.2. Type in the attribute in the in-line text editing area and then press

enter (see Figure 2.41).

5.3. Repeat the above steps to enter the attributes of the other classes.

The domain class diagram with attributes is shown in Figure 2.42.

Chapter 2: Structural Modeling and Analysis 65

Figure 2.39. The initial domain class diagram

Figure 2.40. Adding an attribute

66 Object-oriented Technology

Figure 2.41. Editing an attribute name

Figure 2.42. Initial domain class diagram with attributes

Chapter 2: Structural Modeling and Analysis 67

Step 6: Structure Object Classes Using Inheritance

As most classes have now been identified, start to reorganize the classes in

order to further improve reusability and cohesion. We eliminate duplication of

classes by singling out the common attributes and operations into superclasses.

The cohesion within a class can be improved by breaking a “loosely coupled”

class into two or more classes which may be related by inheritance or

association.

6.1. By adopting the top-down approach, we discover that the class Account

has two subtypes, Cash Account and Margin Account. To structure the

Cash Account and Account classes using inheritance, first create the

Cash Account and Margin Account subclasses.

6.2. Select the Account class. Then click on the icon from the resource-

centric interface, and drag and place it on the Cash Account class. The

inheritance relationship between Account and Cash Account is then

specified (see Figure 2.43).

Figure 2.43. Creating inheritance relationship between Margin Account and

Cash Account

6.3. Repeat the above steps to create the inheritance relationship between the

Margin Account and Account classes. The restructured domain class

diagram is shown in Figure 2.44.

68 Object-oriented Technology

Step 7: Verify Access Paths for Likely Queries

Now verify the class diagram to see whether it can support typical queries of

the application domain. Let us consider the following query: How does a client

find out the stock balance of his account?

By examining the class diagram, the query cannot be answered directly as

the class diagram can only show the transactions performed by the client.

Of course the balance of a stock can be determined by all the transactions of

the stock performed by the client. However, it is rather inconvenient and

inefficient as a large number of transactions may be involved. Therefore,

an association is added between Account and Stock. Follow the steps below to

add the required association.

7.1. Follow the instructions given in Step 3 to create an association between

Account and Stock, after which a domain class diagram like Figure 2.45

will be created.

Figure 2.44. Restructured domain class diagram

Chapter 2: Structural Modeling and Analysis 69

Figure 2.45. Adding an association between Account and Stock

7.2. Now create an association class between Account and Stock to keep track

of the balance of a stock in an account. Follow Step 6 to create the class

StockLine. Click on the icon on the diagram palette, then click the

StockLine class and drag it to the association.

7.3. Edit the name of the class in the in-line editing area of the class.

A revised domain class diagram like Figure 2.46 will then be created.

Step 8: Iterate and Refine Model

Repeatedly apply Steps 2 to 7 to refine the domain class model until it becomes

stable.

70 Object-oriented Technology

Summary

A structural model provides a static view of a system, showing its key

components and their relationships. In the UML notation, a structural model

is represented by a class diagram.

In performing structural modeling and analysis, we start off with the

problem statement to identify the domain objects and classes, which in turn can

be used to compile a data dictionary for the system. By determining the

associations between the classes and by identifying the attributes of the classes,

the domain’s class diagram can be created. The diagram can be structured more

concisely for implementation by using inheritance. Finally, access paths for

likely queries are verified and the model can be further refined by repeating

this modeling and analysis procedure.

To illustrate the concepts described in this chapter, the modeling and

analysis of an online stock trading system has been presented, detailing the

steps involved by using the powerful features of the VP-UML CASE tool.

Figure 2.46. Revised domain class diagram after first iteration

Chapter 2: Structural Modeling and Analysis 71

Exercise

Consider the following problem statement:

Problem Statement of an Online Book Store

The Pearl River Book Company is developing an online book store system

through which its customers can buy books and sell their used books.

Public users are those who are not registered customers of the system.

Public users or registered customers can search books by entering

keywords, which may appear in the title, author or book description. The

system displays a list of books that matches the keywords. Each entry of

the book list consists of the book title, author(s), price for a new copy and

price range for used copies. The user can select a book from the list to

display more detailed information about it (availability, price for new

copy, prices for used copies, table of contents, author, ISBN). The user

can add a copy of the book (either new or old) to the shopping cart. The

user can then continue to search for another book. When the user

finishes searching, the user can checkout the books in the shopping cart.

The system asks the user to login to his/her account by entering the

user’s email address and the account password. If the user has not

registered yet, the user can register for a new customer account at that

point. The user enters the email address, home address and password.

The system verifies that the email address has not been used by an

existing customer before confirming the creation of the new customer

account through an email message. The system then asks the user to

select the shipping option (express, priority or ordinary). Different

shipping options have different prices. The user can then select the

payment method (credit card or the user account of the book store). If the

user selects payment by credit card, the user enters the card number,

type and expiry date. The system then sends the credit card information

and the amount charged to the external payment gateway. The amount

is calculated by adding the prices of the selected books and the selected

shipping option. If the credit card transaction is approved, the external

payment gateway sends back an approval code. Otherwise, the systems

will ask the user to reselect the payment method and re-enter the

payment information. If the user selects payment by his/her account with

a sufficient balance, the system charges the amount to the customer

account. Otherwise, the system asks the user to re-reselect the payment

72 Object-oriented Technology

method. Upon completion of payment, the system arranges delivery of

the ordered books. An external shipping agent is responsible for the

delivery of the ordered books. If an order involves new books, the system

sends a shipping request to notify the shipping agent to collect the books

from the book store. New books in the same order are shipped together.

If a used book has been ordered, the system sends a delivery request to

notify the seller of the book and a shipping request to the shipping agent

of the book store. The shipping agent collects the book from the seller and

delivers the book to the buyer. Used books of the same order from the

same seller are shipped together. After the book(s) has/have been

delivered to the buyer, the shipping agent sends a shipping completion

message to the system. Upon receipt of this message, the system updates

the seller’s customer account by adding the price of the used book minus

the commission charge for the service.

A public user or a registered customer wanting to sell a used book

can go through the above process by searching the book and displaying

its information. The user can then post a used copy for sale. The system

will ask the user to enter the price and the general condition of the used

book. Then the system further asks the user to enter the email address

and password of his/her customer account for login purposes. If the user

does not have a customer account, the user can create a new customer

account as described in the previous paragraph.

Incrementally and iteratively develop a domain class model for the online

ticket reservation system by following the steps below:

• Identify objects and classes

• Develop a data dictionary

• Identify associations between classes

• Identify attributes of classes and association classes

• Structure object classes using inheritance

• Verify access paths for likely queries

• Iteratively refine the model

73

Chapter

3
Use Case Modeling and Analysis

Overview

The software development process is time-consuming and labor-intensive.

The seemingly straightforward, but deceptively difficult, part of this process is

to clearly understand and specify the requirements that an application must

satisfy. Because of the reiterative nature of the software development process,

mistakes made in early stages but are only identified at a much later stage will

result in costly reworks and delays.

Use case modeling is an increasingly popular approach for identifying and

defining requirements for all kinds of software applications as it is a formalized

process for capturing system scenarios. While use case modeling is often

associated with and used extensively in projects that utilize the object-oriented

approach, it can also be applied to any project regardless of the underlying

implementation technology or development approach.

This chapter provides a thorough presentation of the use case modeling

approach to software requirements elicitation, including practical, proven

techniques that can be immediately applied to software development projects.

What You Will Learn

On completing the study of this chapter, you should be able to:

• state the components of a use case model

• describe how use case models help address common requirements definition

problems

• apply a step-by-step approach to develop use cases

74 Object-oriented Technology

• document use cases

• incorporate use case modeling into the project life cycle

Requirements Elicitation

A requirement describes a condition or capability to which a system must

conform. Requirements are supposed to represent what the system should do as

opposed to how the system should be built. They are either derived directly

from user needs or stated in a contract, standard, specification or other formally

imposed document.

Requirements elicitation is the process of defining your system. It involves

obtaining a clear understanding of the problem space, such as business

opportunities, user needs or the marketing environment, and then defining an

application or system that solves that problem.

Common Problems in Defining Requirements

Numerous studies showed that over half of software development projects do

not work, the major reason being that they do not do what the users actually

want, suggesting that there is a breakdown in the requirements elicitation

process. DeMarco and Lester (1999) observe that “ill-specified systems are as

common today as they were when we first began to talk about Requirements

Engineering twenty or more years ago.”

Traditionally, requirements specified in software requirements

specifications are simple declarative statements written in a text-based,

natural-language style (e.g. “when the user logs in, the system displays a splash

screen as shown in Figure X”). Developers always use typical scenarios

provided in the specifications to try to understand what the requirements of a

system mean and how a system is supposed to behave. Unfortunately, software

requirements specifications are rarely documented in an effective manner.

Use cases are a useful technique for formalizing this process of capturing

scenarios.

Use Case Modeling for Requirements Elicitation

A use case is a sequence of transactions performed by a system that produces

a measurable result for a particular actor. (An actor represents a role played by

a person or a thing that interacts with a system.) A use case consists of a series

of actions that a user must initiate in the system to carry out some useful work

and to achieve his/her goal. Use cases reflect all of the possible events in the

system in the process of achieving an actor’s goal.

Chapter 3: Use Case Modeling and Analysis 75

As mentioned before, the major difficulty in defining system requirements

is that very often it is not known what the users actually want. A good use case

must represent the point of view of the people who will use or interact with the

system; in other words, use cases must describe the behaviors expected of a

system from a user’s perspective. A complete set of use cases specifies all the

possible ways the system will behave, and therefore defines all the

requirements (behaviors) of the system, binding the scope of the system. A use

case should be considered as a unit of requirement definition or simply a user

goal, such as deposit money or check balance in an automatic teller machine

(ATM) system.

In the requirements elicitation process, it is important to correctly identify

a set of use cases to discover the real user requirements of the system being

developed.

Use Case Modeling Techniques

Use case modeling is the process of describing the behavior of the target system

from an external point of view. A use case describes what a system does rather

than how it does it. Therefore, use case analysis emphasizes on modeling the

externally visible view and not the internal view of the system. Use case

analysis allows the designer to focus on the requirements of the system, rather

than on its implementation.

A use case diagram enables the system designer to discover the

requirements of the target system from the user’s perspective. If the designer

utilizes use case diagrams in the early stages of system development, the target

system is more likely to meet the needs of the user. From both the designer and

user’s perspectives, the system will also be easier to understand. Furthermore,

use case analysis is a very useful tool for the designer to communicate with the

client.

What Is Use Case Model?

A use case model is a diagram or set of diagrams that, together with additional

documentation, show what the proposed software system is designed to do.

A use case diagram consists of three main components:

• Actors

• Use cases and their communications

• Additional documentation such as use case descriptions to elaborate use

cases and problem statements that are initially used for identifying

use cases

76 Object-oriented Technology

In addition, a use case diagram may consist of a system boundary.

Actors

Actors are the entities that interact with the system. They include everything

that needs to exchange information with the system. Actors are, therefore, the

entities external to the system being designed.

An actor may be:

• people

• computer hardware and devices

• external systems

An actor represents a role that a user can play, but not a specific user.

An actor, therefore, represents a group of users taking on a particular role.

For example, both John and Peter may be consultants. At the same time,

John may also be a project manager in the company. Thus, the same person

may be an instance of more than one actor, and conversely, several people can

play the same role of an actor.

The common way to identify use cases is to interview the users who will

directly operate the system. This process can help design a system which suits

their needs. However, other stakeholders of the system, such as the customers

and the policy makers of the business process, may be missed out in the vital

stages of development. Consequently, the system may not satisfy the needs of

all stakeholders. For example, consider a general mail order business consisting

of at least three groups of stakeholders: the customer, the staff member who

operates the system and the manager of the company. These stakeholders may

have different requirements of the system:

• The customer requires that the services provided by the company minimize

his time and effort

• The manager wants to maximize the profits of the company

• The staff member hopes to minimize the stock level, bad debts, etc

Obviously, the stakeholders’ requirements may sometimes contradict.

The development team should hold meetings with all stakeholders to determine

all requirements as well as to resolve those that contradict.

Representing Actors

The stick figure is most widely used to represent actors, and it is used even

when the actors are not human. Another way to represent an actor in the UML

notation is a class icon with the <<actor>> stereotype placed above the class

name inside the upper compartment, as shown in Figure 3.1.

Chapter 3: Use Case Modeling and Analysis 77

Figure 3.1. Equivalent UML representations of an actor:

(a) a stick figure and (b) an actor icon

(b)

<<Actor>>

Customer

Customer

(a)

Types of Actors

Actors can be divided into two common types: primary actors and secondary

actors. Primary actors are the main users or entities for which the system is

designed, deriving benefits form it directly.

The following are some key characteristics of primary actors:

• Primary actors are completely outside the system and drive the system

requirements

• Primary actors use the system to achieve an observable user goal

As such, the designer has less flexibility in specifying the roles of the

primary actors in order to satisfy the requirements of the stakeholders.

Secondary actors are users or entities that supervise, operate and manage

the system.

They play a supporting role to facilitate the primary actors to achieve their

goals. The following are some key characteristics of secondary actors:

• Secondary actors often appear to be more inside the system than outside

• Secondary actors are usually allocated many system requirements that are

not derived directly from the statement of requirements

Hence, the designer can have more freedom in specifying the roles of

these actors.

For an example of the roles played by both actors, a tax return can be

submitted directly by a taxpayer (the primary actor) either through the

Internet or by post. If it is the latter, a data entry operator will enter the data

contained in the tax return form to the system. The data entry operator can be

viewed as the secondary actor, as he/she helps the taxpayer process the tax

return form.

There is a less commonly used group of actors called generalization actors.

Generalization is a key concept in object-orientation and object-oriented

78 Object-oriented Technology

modeling, allowing models to be simplified and made more expressive. The fact

that actors are classes means that actors can be generalized. Through the

generalization process, similarities between different actors can be identified.

The UML icon for generalization is a small hollow arrowhead pointing at

the superclass of the actor. For instance, a generic actor, such as System

Designer, can be inherited by other actors, such as System Analyst and Project

Manager. Figure 3.2 shows that the inheriting actors (System Analyst and

Project Manager) also inherit the Use Cases associated with the inherited Actor

(System Designer).

Figure 3.2. Generalization of actors

System Analyst

System Designer

Project Manager

Actors versus Roles

Cockburn (2001) suggests that the word role should be used instead of the word

actor in use case modeling — the word actor could be misinterpreted leading to

confusion. It may be interpreted as an individual or an official rank or a job title

in an organization. None of these meanings match the required definition.

In the use case model, the precise meaning of “actor” should be a set of roles

that can be played by individuals or other external systems. For example, Peter

is an order processing clerk and Raymond a sales manager. Both of them can

process an order. Hence, Peter and Raymond can be actors of the Process Order

use case. We might say that “a sales manager can perform any use case an

order processing clerk can.” More precisely, Order Handler is defined as the role

of processing an order. As such, both Peter and Raymond can play the role

Chapter 3: Use Case Modeling and Analysis 79

Order Handler. Hence, the same person can play different roles at different

times, and staff members with the same job title may play different roles to suit

the needs of the business requirements.

Use Cases

A use case describes a sequence of actions a system performs to yield an

observable result or value to a particular actor. In other words, use cases are

abstractions of dialog between the actors and the system; they describe

potential interactions without going into the details of each scenario.

In the UML notation, a use case is represented by an oval with a label

describing the actor’s goal. A use case is connected to one or more actors using

communication links represented by straight lines. For example, in interacting

with an ATM system, one of the customer goals is to withdraw money from his/

her account. The representation of this requirement in UML is shown in

Figure 3.3.

Figure 3.3. Actor, use case and communication link

Customer

Withdraw Cash

A good use case should

• describe a sequence of transactions performed by a system that produces a

measurable result (goal) for a particular actor

• describe the behavior expected of a system from a user’s perspective

• enable the system analyst to understand and model a system from a high-

level business viewpoint

• represent the interfaces that a system makes visible to the external entities

and the inter-relationships between the actors and the system

System Boundaries

System boundaries define the scope of the system being developed and are

represented by rectangles in the UML notation. All use cases should reside

within the system boundary. The actors are placed outside of the system

boundary and all the use cases collectively make up the total requirements of

the system.

80 Object-oriented Technology

Figure 3.4. A use case model for an ATM system

ATM Banking System

Withdraw Money

Deposit Money

Check Balance System boundary

Use case

System name

Customer

Actor

Communication

Use Case Models: Examples

Example 1: An Automatic Teller Machine System

An ATM system is typically used by different types of users (actors). One type

of user, the customer, operates the ATM to perform transactions with his/her

account(s) through a computerized banking network. The banking network

consists of a central computer connected to all ATM machines and bank

computers owned by individual banks. Each bank computer is used to process

the transaction requested by its customers.

In this example, Customer one is one group of actors for the ATM system.

They operate the ATM to withdraw and deposit money, check the account

balance, etc. We can represent these observable services as use cases.

Figure 3.4 shows a use case diagram for the ATM system.

Example 2: A Hotel Information System

In this example, consider a simple hotel information system for two groups of

customers: Tour Group customers and Individual customers. Tour Group

customers are those who have made advanced reservations through a tour

operator, while Individual customers make their reservations directly with the

hotel. Both groups of customers can book, cancel, check-in and check-out of a

room by phone or via the Internet.

Based on these requirements, there are four observable services as use

cases: Make Booking, Cancel Booking, Check-in a Room and Check-out a Room.

Figure 3.5 shows the use case model for this simple hotel information system.

Chapter 3: Use Case Modeling and Analysis 81

Figure 3.5. A use case model for hotel information system

Hotel Information System

Make Booking

Cancel Booking

Check-in a Room

Check-out a Room

Customer

Individual

Customer

Booking Process Clerk

Reception Staff

Tour Group

Customer

Use Case Analysis Techniques

Conducting Use Case Analysis

During the use case analysis process, the clients and/or the typical users of the

system are usually interviewed. Describing a system’s use case is a useful and

important exercise because it helps to identify redundant or unclear

functionalities. Often, clients may well assume that certain things are obvious

to the interviewer and are surprised when the interviewer seeks further

clarification at length. Similarly, some issues may be obvious to the designers

but the end users may find them baffling, particularly in relation to technical

issues. Use case analysis helps resolve these potential communication problems

(use case analysis will be introduced later in this chapter).

Use case analysis may be helpful in the following areas:

• Discovering new features (requirements). New use cases often help

generate new requirements as the system is analyzed and as the design

takes shape.

82 Object-oriented Technology

• Communicating with clients. Their notational simplicity makes use case

diagrams a mechanism for early discussions with potential users and

domain experts.

• Generating test cases. The collection of scenarios for a use case may also

provide a suite of test cases and a starting point from which the prototype

user interface is shaped. A scenario captures a specific execution of a use

case. In other words, a use case is a generalized description or template of

a sequence of transactions, while a scenario is an instance of the use case

which describes how the use case will be executed in a specific situation.

Summary of UML Notation for Use Case Modeling

Table 3.1. Summary of UML notation

Construct Description Syntax

Use case A sequence of transactions performed by a

system that produces a measurable result

for a particular actor.

Actor A coherent set of roles that users play

when interacting with these use cases.

System The boundary between the physical system

boundary and the actors who interact with the

physical system.

Association The participation of an actor in a use case,

 i.e. an instance of an actor and instances of

a use case communicating with each other.

Generalization A taxonomic relationship between a general

use case and a more specific use case. The

arrow head points to the general use case.

UseCaseName

ActorName

ApplicationName

Chapter 3: Use Case Modeling and Analysis 83

Table 3.1. (Cont’d)

Construct Description Syntax

Extend A relationship between an extension use case

and a base use case, specifying how the

behavior of the extension use case can be

inserted into the behavior defined for the base

use case. The arrow head points to the base

use case.

Include A relationship between a base use case and

an inclusion use case, specifying how the

behavior for the inclusion use case is

inserted into the behavior defined for the

base use case. The arrow head points to the

inclusion use case.

Structuring Use Cases with Relationships

In the process of developing a use case model, it may be discovered that some

use cases share common behaviors. There are also situations where some use

cases are very similar but with additional behaviors. For example, in

Figure 3.6, Withdraw Money and Deposit Money both require the user to login

to the ATM system. In fact, the login step can also be common to other use cases

as well, such as Check Balance. By identifying this common step in the

descriptions of the two use cases, we can avoid duplicating efforts if a change

in the login process is required. This is done by creating a separate use case

called Login Account which can then be shared by other use cases. Figure 3.7

illustrates the results of factoring out the common behavior of the Withdraw

Money and Deposit Money use cases.

The relationship between Login Account, Withdraw Money and Deposit

Money can be expressed using the <<include>> relationship in UML, as shown

in Figure 3.8.

UML supports three types of relationships for use cases: <<include>>,

<<extend>> and generalization. A UML stereotype is a label written within

guillemets (i.e. << >>) denoting some semantic concept which is outside the

basic definition of UML. Using a UML stereotype, the semantics of UML can

be extended to support specific design methods or the needs of the designer.

This mechanism enriches the UML for specific applications without increasing

the complexity within the basic UML notation itself. <<include>> and

<<extend>>

<<include>>

84 Object-oriented Technology

Figure 3.7. Common behavior of two use cases is extracted, named and referenced

Use case: Withdraw Money

Flow of events:

1. include (login)

…

…

…

Use case: Deposit Money

Flow of events:

1. include (login)

…

…

…

Use case: Login Account

Flow of events:

1. The user inserts an ATM card. The system prompts the user to enter a password.

2. The user enters the password. The system validates the user password.

Figure 3.6. Two use cases with a common behavior

Use case: Withdraw Money

Flow of events:

1. The user inserts an ATM card.

The system prompts the user to

enter a password.

2. The user enters the password.

The system validates the user

password.

…

…

…

Use case: Deposit Money

Flow of events:

1. The user inserts an ATM card.

The system prompts the user to

enter a password.

2. The user enters the password.

The system validates the user

password.

…

…

…

Common behavior

<<extend>> are stereotypes for use case relationships. Each of these

relationships is explained in detail below.

Chapter 3: Use Case Modeling and Analysis 85

The <<include>> Relationship

<<include>> relationships are used when two or more use cases share some

common portion in a flow of events. This common portion is then grouped and

extracted to form an inclusion use case to be shared among two or more use

cases. For example, most use cases in the ATM system example, such as

Withdraw Money, Deposit Money or Check Balance, all share the inclusion use

case Login Account (see Figure 3.8).

The <<extend>> Relationship

<<extend>> relationships are used when two use cases are similar, but one does

a bit more than the other. For example, you may have a use case that captures

the typical case (the base use case) and use extensions to describe variations.

A base use case may, therefore, conditionally invoke an alternative use case.

In other words, the extension use case adds an extra behavior to the base use

case. For example, Withdraw Money has an optional behavior which handles

withdrawal of an excess amount. We capture this optional behavior in an

<<extend>> use case (see Figure 3.9).

Figure 3.8. An <<include>> use case: Login Account

<<include>>

<<include>>
Deposit Money

Login Account

Withdraw Money

Figure 3.9. An <<extend>> use case

User <<extend>>

Process Excess Amount

Withdraw Money

86 Object-oriented Technology

The Generalization Relationship

A child use case can inherit the behaviors, relationships and communication

links of a parent use case. In other words, it is valid to put the child use case

wherever a parent use case appears. The relationship between the child use

case and the parent use case is the generalization relationship. For example,

suppose the ATM system can be used to pay bills. Pay Bill has two child use

cases: Pay Credit Card Bill and Pay Utility Bill (see Figure 3.10).

Figure 3.10. A generalization relationship

Customer Pay Utility Bill

Pay Credit Card Bill

Pay Bill

Base Use Case versus Abstract Use Case

Once a set of use cases of the system has been identified, common behaviors

may be found. By extracting their common behaviors, we can form a base case

(concrete use case) and an abstract use case. The former is basically the main

use case which may be instantiated directly by an actor as it can achieve an

observable user goal by itself. The latter can only be instantiated by a base use

case as it only contains a portion of the common behaviors shared among two

or more use cases. Therefore, it is not a complete goal from the user’s

perspective. For example, in Figure 3.8, a use case such as Login Account is not

a use case but an abstract use case (or an <<include>> use case), because

logging into the system does not achieve a complete user goal. A goal is not

achieved if a user goes to an ATM, logs in to the system and then leaves without

making a transaction. Typical operations a user may want to carry out through

an ATM could be Check Balance, Request Check Book or Deposit Money, etc.

A use case may also exhibit several scenarios: the normal scenario and

possible several alternative scenarios. Similarly, the base use case can be used

to represent the normal scenario, while abstract use cases describe the

alternative scenarios.

Chapter 3: Use Case Modeling and Analysis 87

Figure 3.11 shows a part of a use case model for an ATM system. Withdraw

Money is the base use case as it is the normal scenario for the user to

successfully log in to the system, specify the transaction type and input a valid

amount for withdrawal. Process Excess Amount is an abstract use case (or an

<<extend>> use case) as the user may have enough money in his bank account

for the amount that he wishes to withdraw.

Figure 3.11. Extension point in the base use case

User

Withdraw Money

Extension points

Excess Amount

Process

Excess Amount

<<extend>>

Only base use cases may be invoked directly by an actor, while abstract use

cases can only be instantiated by a base use case. The instantiation of an

abstract use case must return to the calling use case (the base use case) at the

exact point from where the call was made. Abstract use cases are composed of

portions extracted from other use cases. Abstract use cases are similar to

subroutine calls, where the base use case likens to a main program. Thus, the

base use case exhibits a complete behavior to achieve a user goal, while an

abstract use case exhibits a partial behavior of a base use case. In the UML

notation, the relationship between a base use case and an abstract use case is

represented by an <<include>> or <<extend>> stereotype. Figure 3.12

illustrates the base use case, Withdraw Money with an optional behavior

represented by the abstract use case, Process Excess Amount. In the figure, the

base use case also includes the extension point (Excess Amount) where a call

to the abstract use case Process Excess Amount can be made.

Notes: Normally similar behaviors of use cases can only be identified and

extracted after they have been completely defined. A designer can then extract

those parts with a similar logic into separate abstract use cases that are used

by other use cases. Abstract use cases are refinements that are of more interest

to the designer than the user.

It is important to note that structuring use cases is unlike developing a flow

chart (deterministic sequence of flow) or a data flow diagram (functional

decomposition) as it focuses on user goals. Thus, Login Account should not be

88 Object-oriented Technology

Documenting Use Cases

A use case focuses on the external aspects of a system and captures the system’s

functional and behavioral requirements that help users perform their tasks.

It, however, does not describe how the system performs the required functional

and behavioral requirements; in other words, it describes what a system is used

for and who uses it without providing details of how the system performs its

functions. A use case description serves as an agreed description between the

user and the system designer on the flow of events when a use case is invoked.

Formally, Booch (1993) defines that “[a] use case is a description of a set of

sequences of actions, including variants, that a system performs to yield an

observable result of value to an actor.”

Figure 3.12. Use case diagram showing <<include>> and <<extend>> relationships

ATM System

User Deposit

Money

Transfer

Money

Login

Account

Process

Excess Amount

Withdraw

Money

<<include>>

<<include>>

<<include>>

<<extend>>

considered as a base use case. This is a common mistake that some designers

make because they incorrectly assume that the user needs to log in to the

system first before he/she can perform tasks such as Withdraw Money or

Deposit Money. Consequently, they wrongly treat Login Account as a base use

case which instantiates Withdraw Money and Deposit Money as abstract use

cases. In fact, the two base use cases should be Withdraw Money and Deposit

Money as they share a common block in the flow of events (the Login Account

inclusion use case).

Chapter 3: Use Case Modeling and Analysis 89

Figure 3.13 conceptualizes that a use case can be elaborated by a use case

description in a more detailed form in that a use case description is explained

and elaborated through scenarios (a sequence of actions). Each of these

scenarios is simply an instance of the use case. In other words, a use case

instance is only a particular example of a use case (a particular system service).

As defined by Booch, a use case not only consists of a normal scenario,

but possibly its variant scenarios. In such cases, they need to be represented in

<<extend>> use cases, where each should be elaborated by a separate use case

description.

Figure 3.13. Use cases and their scenarios

Customer

Instance

scenario

(successfully

withdraws

$250.00)

ATM System

Withdraw

Money

Deposit

Money

Check

Balance

Process

Excess Limit

Login

Account

<<include>>

Withdraw

Money

<<extend>>

For example, the ATM system may provide the Withdraw Money service to

customers in many different scenarios. A typical scenario may involve the

customer withdrawing money from the machine from which he/she has

requested the transaction. In another scenario, the system may report that the

password keyed in by the customer is incorrect, requiring the customer to

re-enter the password.

Developing Base Use Case Descriptions

As a use case diagram is a communication aid between the software designer(s)

and the end user(s), it is important that descriptions are free of computing

jargons and unfamiliar terminologies. Plain, simple language that the user can

relate or understand should be used. Computer or technical terms that are

related to the implementation of the system should be avoided. Indeed, when

constructing a use case diagram, designers should not be thinking about

computers at all; they should be focusing only on the users and system services.

90 Object-oriented Technology

Because the use case model has to be understood by both the users and the

software developer, the base use case descriptions are written in natural

language. However, most experts recommend a systematic approach by using a

certain template so that useful information about the use case is not

overlooked. The brief descriptions in the use case template are expanded to

include details of the interactions between the actors and the use cases.

Use Case Template

A use case template captures various pieces of information, including the main

path of a successful execution of a use case, as well as all of the alternative

paths contained in it. Table 3.2 shows an example of a use case template.

The natural language description of the behaviors and diagrammatic notations,

such as flow charts or activity diagrams, can be used to complement or

supplement the information contained in the template.

A use case is often described in a standard form, using a template similar

to the following:

Table 3.2. Components of a use case template

Use case name Name of the use case

Use case ID ID of the use case

Super use case The name of the generalized use case to which this use case

belongs

Actor(s) The name of the actor(s) who participate in the use case

Brief description A description showing how this use case adds value to the

organization; that is, what is the purpose or role of this use

case in enabling the actors to do their job

Preconditions The conditions that must be satisfied before this use case

can be invoked

Post-conditions The conditions that will be established as a result of

invoking this use case

Priority The development priority of this use case

Flow of events A step-by-step description of the interactions between the

actor(s) and the system, and the functions that must be

performed in the specified sequence to achieve a user goal

Chapter 3: Use Case Modeling and Analysis 91

Table 3.2. (Cont’d)

Alternative flows Major alternatives or exceptions that may occur in the flow

and exceptions of events

Non-behavioral The non-functional requirements of the system such as

requirements hardware and software platform requirements, performance,

security, etc.

Assumptions All the assumptions made about the use case

Issues All outstanding issues regarding the use case

Source Reference materials relevant to the use case

The components of a use case template written as high-level descriptions in

natural language have to be agreed by both the client and the development

team. Bear in mind that a use case is a high-level communication tool for both

stakeholders. The following provides an explanation of each item in the

template shown in Table 3.2.

• Use case name describes the goal of the actor. Typically, it is in a verb ⫹

noun phrase or verb ⫹ noun format, e.g. Withdraw Money.

• Use case ID is a unique identifier of the use case. It usually has a format

like UC ⫹ number, e.g. UC100. The prefix generally represents the type of

UML element and the number should be allocated systematically for easy

reference.

• Super use case. This field can be blank. If the use case inherits a parent use

case, this entry is the name of the parent use case.

• Actor(s). All the actor(s) participating in the execution of the use case are

listed, such as people, systems, etc.

• Brief description. A concise description is used to define the scope of the use

case and the observable value to the actor.

• Preconditions and post-conditions. Preconditions specify some constraints

that must be satisfied before the use case can be invoked, while post-

conditions serve to ensure that the use case has performed the task

properly after invocation. Both pre- and post-conditions provide important

hints for system test (at the use case level) in the subsequent software

development stage. Let us consider the ATM example again. The Withdraw

Money use case is a normal scenario and its preconditions may be the

following: a valid ATM account, a positive balance, the maximum daily

92 Object-oriented Technology

accumulative withdrawal amount is $2,000. The post-condition may be that

after processing the withdrawal transaction, the account balance must

remain positive and the daily accumulative withdrawal amount must not

exceed $2,000.

Well-specified pre- and post-condition elements of the use case

description can significantly reduce the complexity of the use case. They can

also be used as black-box test cases. Furthermore, the contents of the

pre- and post-conditions can be used for deriving alternative scenarios for

that use case.

• Priority. The priority in the use case template serves to indicate the priority

ranking in the development schedule from the view of the development

team. We usually assign a high ranking to use cases that are

architecturally significant. Similarly, a high priority ranking should also be

assigned to those use cases which are thought to be more difficult or have

many unknown factors or risks associated with them. All high priority use

cases will be analyzed and developed first in the development schedule.

If a use case covers a wide area of the system in terms of hardware

nodes or software subsystems, this use case will be considered

architecturally significant. For example, the Withdraw Money use case will

cover a wide area of the ATM system: card authentication, account login,

account selection, amount input, etc. In terms of hardware nodes,

its execution involves the collaboration of the ATM machine, the central

bank computer and the individual bank’s computers. On the other hand, the

Check Balance use case will definitely be less significant by comparison

with the Withdraw Money use case.

• Flow of events. The flow of events captures the external observable

behaviors of the use case and focuses on describing the interactions between

the user and the system when the use case is invoked. This component of

the use case template describes the main flow of interactions. Alternative

flows and exception handling are also captured in the Alternative Flows and

Exceptions section of the template. Important system actions that lead to

the post-conditions of the use case are also captured. Other unimportant

internal logic of the system should be ignored since the purpose here is to

define the specifications of the system.

• Alternative flows and exceptions describe the execution of the use case

under exceptions that are not covered in the flow of events.

• Non-behavioral requirements describe the requirements other than

functional or behavioral requirements: performance, user interface, etc.

Chapter 3: Use Case Modeling and Analysis 93

• Assumptions about the use case should be recorded. For example,

the password is numeric only, with not more than ten digits.

• Issues. All outstanding issues related to the use case need to be resolved.

For example, should the user interface be customizable for customers of

different banks?

• Source. This field includes references and materials used in developing the

use case such as memos, minutes of meetings, etc.

Prioritizing Use Cases

The use case model is not only useful for requirements specification but also for

planning the work process in different phases of the system development life

cycle. Since the use case model should be understandable by both the system

developer and the user, it is quite natural to plan the development of the

system by scheduling the completion dates of the use cases in the use case

model. Use cases in the use case model are normally developed at different

times. Depending on the scale of the system, some architecturally significant

use cases should be developed first and optional or less important

functionalities of the system are developed later. In large-scale systems

involving multiple software development teams, the development of several use

cases are carried out in parallel. Optimally scheduling the development of use

cases is a difficult task, and there are a number of factors that we need to

consider.

Factors to Consider for Prioritizing Use Cases

The main philosophy behind prioritizing use cases is to reduce the risks and

uncertainties of the project as early as possible, i.e. use cases are ranked

according to their relative significance for successful completion of the system.

For example, if the system involves some technologies unfamiliar to the

development team, the developer should first go through the analysis of all the

use cases involving these technologies to reduce uncertainty. The following

factors typically increase the priority ranking of a use case:

• Architectural significance of the use case

• Use of new and untested technologies

• Problems that require substantial research effort

• Great improvement in efficiency (or revenue) of the business process

• Use cases that support major business processes

94 Object-oriented Technology

The priority ranking of a use case is determined by taking the above factors

into account. Usually, a fuzzy scheme of high–medium–low would be used to

rank use cases. If a more precise ranking is required, each use case can be

assigned with a score for each factor and the total score will be used for

ranking. For better precision in ranking, it is also possible to apply weightings

to the factors in calculating the total score.

Use Case Modeling and Analysis Process

Overview

Before use case modeling and analysis can be conducted, it is necessary to carry

out some background research such as interviewing users for the system

requirements, and studying the business workflow or existing computer

systems of the organization. Figure 3.14 illustrates the relationships between

use case analysis and the other processes of the software development life cycle.

The input to use case analysis can be a problem statement or business model

prepared after interviewing the system users. We can also study the company’s

business workflows and operations associated with the system. The output is a

use case model that describes the total requirements of the system from the

user’s point of view. The use case model consists of use case diagrams, use case

descriptions and instance scenarios of the use cases. A textual analysis carried

out on the use case descriptions can produce an initial class model (a domain

class model) by identifying candidate classes for the system. In addition, the

instance scenarios tell us how the system interacts with the actors in specific

situations. The instance scenarios can be used to find out what objects will be

involved and how these objects will interact in realizing the use cases.

These instance scenarios can also be used as test cases of the system.

Developing Use Case Models

Before the use case analysis is carried out, it is necessary to interview the users

to get a better understanding of the users’ business activities. The results of the

interviews are then summarized in a problem statement or a business model.

The use case analysis is an iterative and incremental process consisting of the

following steps:

Developing an initial use case model involves the following:

• Developing the problem statement

• Identifying the major actors and use cases

Chapter 3: Use Case Modeling and Analysis 95

Figure 3.14. Relationship between use case analysis process and other processes

Problem statement

Use case

analysis

Customer

Use model

Withdraw

Money

Deposit

Money

Check

Balance

ATM System

Develop use case

description

Use case description

Brief

description

Flow of

events

Instance

scenario

(successfully

withdraws

$250.00)

Domain

class

model

Textual

analysis

Behavioral

modeling

(see next

chapter)

<<extend>>

Process

Excess Limit

<<include>>

Login

Account

Structuring use cases

Withdraw

Money

Domain analysis

Business workflow analysis

System1

Grouping use case

into packages

Package1

Package2

[Record
Found]

[Number
Of

Record] [Continue]

[No Record
Found]

[Number Of Record ??]

Select Member Record

Search
Member

Select
Place
Order

Enter
Order

Submit
Order

[Cancelled]

:Order

Test cases

96 Object-oriented Technology

• Creating an initial use case diagram

• Describing briefly the use cases (with initial descriptions)

• Identifying/Refining candidate business (domain) classes using textual

analysis

Refining the use case model includes the following steps:

• Developing base use case descriptions

• Iteratively elaborating on the base use cases descriptions and determining

the <<extend>>, <<include>> and generalization relationships

• Developing instance scenarios

• Prioritizing use cases

The above steps need not be performed in a sequential order. Some steps

may be performed in parallel, while others may be revisited after another step

has been performed. For example, after identifying the candidate classes,

the brief use case description may require revision. In addition, different use

cases may be developed at a different pace. Some use cases may be fully

developed, while others may just have their title designations which will be

further elaborated at a later stage. Hence, the reader should treat these steps

as a checklist of items to be performed to complete the use case model.

Developing Initial Use Case Model

The initial use case model provides an overview of the functionality of the

system. It can serve as the agreed requirements specification of the system.

The initial use case model is very useful for planning the development priorities

of various use cases.

Identifying Major Actors

When identifying the actors of the system, find the answers to the following

questions:

• Who will use the primary function(s) of the system?

• Who will require support from the system to accomplish their daily work?

• Who will use its results and/or supply the data?

• Who will need to maintain, administer and operate the system?

• With what hardware systems must the system interact?

• With what other computer systems must the system interact?

Chapter 3: Use Case Modeling and Analysis 97

Use Case Modeling: Mail Order Case Study

Step 1: Develop Problem Statement

In order to improve the operational efficiency of a mail order company,

the chief executive officer is interested in computerizing the company’s

business process. The major business activities of the company can be

briefly described as follows:

A customer registers as a member by filling in the membership form

and mailing it to the company. A member who has not been active

(no transactions made) for a period of one year will be removed from the

membership list and he/she needs to re-apply for the reinstatement of

the lapsed membership.

A member should inform the company of any change in personal

details such as home address, telephone numbers, etc.

A member can place an order by filling out a sales order form and

faxing it to the company or by phoning the Customer Service Assistant

with the order details.

The Customer Service Assistant first checks for the validity of

membership and enters the sales order information into the system.

The Order Processing Clerk checks the availability of the ordered

items. If they are available, he/she holds them for the order. When all

the ordered items are available, he/she will schedule their delivery.

The Inventory Control Clerk controls and maintains an appropriate

level of stock and is also responsible for acquiring new items.

If there is a problem with an order, the member will phone the

Customer Service Assistant, who will then take appropriate action to

follow up the particular sales order.

Members may return defective goods within 30 days and get their

money back.

The system will record the name of the staff member who handled

the transaction for future follow up action.

98 Object-oriented Technology

Step 2: Identify Major Actors

If you carefully examine the problem statement, it is not difficult to identify the

Customer Service Assistant, Order Processing Clerk and Inventory Clerk as the

major users of the Mail Order System. The following actors of the system are

identified:

• Customer Service Assistant

• Order Processing Clerk

• Inventory Control Clerk

A short paragraph should then be written to describe each of the actors.

Table 3.3 shows the specification of the Order Processing Clerk.

Table 3.3. Specification of Order Processing Clerk actor

Actor Name Order Processing Clerk

Description The Order Processing Clerk is responsible for processing sales

orders, submitting re-order requests, requesting necessary

deposits from members and scheduling the delivery of the goods

to the member.

Guidelines for Identifying Use Cases

Finding use cases is an iterative process. This process normally starts with

interviewing the users (actors) who directly or indirectly interact with the

system. Typically, it starts from bottom up, involving the customer describing

scenarios from their business activities. Each of these descriptions is a possible

use case. These potential use cases can then be elaborated, modified, broken

into smaller use cases or integrated into larger ones.

An important fact to remember is that people are generally not very

forthcoming, and extracting useful information from the users is a skill that

takes years of experience. The following questions may be useful in collecting

information from users:

• What are the main tasks carried out by each actor?

• What data are manipulated and processed by the system?

• What problems is the system going to solve?

• What goals does an actor want to achieve using the system?

• What are the major problems with the current system and how can the

proposed system simplify the work of the user?

Chapter 3: Use Case Modeling and Analysis 99

Guidelines for Naming Use Cases

The name of a use case consists of a verb and a noun or noun phrase in the

following format:

verb ⫹ noun or verb ⫹ noun phrase

The use case name describes an operation which achieves an observable

user goal. For example, Place Order is a use case in an Order Process System,

and Withdraw Money is also a use case for an ATM system (see Figure 3.15).

They are in the verb ⫹ noun format.

Figure 3.15. Examples of use cases

Place Order Withdraw Money

As use case models serve as a communication tool between end users and

system designers, it is often preferable to use high-level and non-technical

naming terminology understood by the layman. Some designers prefer to use

verb ⫹ noun phase for naming their use cases. For example, you may prefer to

name a use case as “select a suitable candidate from the HR database” instead

of “Select Candidate” for a human resources information system.

Step 3: Identify Use Cases

By examining the responsibilities of the actors of the Mail Order

System, the following use cases are identified:

• Check Order Status

• Place Order

• Handle Goods Return

• Update Membership Record

• Archive Membership

• Register New Member

• Process Order

• Schedule Delivery

• Order Goods

• Receive Goods

• Deliver Goods

The complete initial use case model is shown in Figure 3.16.

100 Object-oriented Technology

Figure 3.16. An initial use case model

Order Processing

Customer

Service

Assistant
Inventory

Control

Clerk

Order

Processing

Clerk

Check Order Status

Place Order

Handle Goods Return
Schedule Delivery

Process Order

Membership

Update Membership Record

Archive Membership

Register New Member

Inventory Control

Receive Goods

Order Goods

Deliver Goods

Mail Order System

Step 4: Create Initial Use Case Diagram

In a large software project, the use cases are usually organized into packages,

and sometimes a hierarchical structure of packages may be needed for very

large-scale projects. A package is a place holder which can contain any UML

elements, including packages themselves. By organizing the use cases into

packages, the use case model can be managed more easily. In the case study,

the use cases are divided into three packages. Each package contains a set of

use cases for handling a certain type of business activity.

Step 5: Describe Use Case

Briefly describe each of the use cases with a short paragraph. The brief

description will be further expanded and elaborated when the use case is

analyzed. The following Tables 3.4 and 3.5 give a brief description of the

Schedule Delivery use case and the Check Order Status use case.

Chapter 3: Use Case Modeling and Analysis 101

Table 3.4. Initial use case description of the Schedule Delivery use case

Use Case Schedule Delivery

Use Case ID UC-300

Actor Order Processing Clerk

Description The Order Processing Clerk selects an order from the list of

filled sales orders. The system displays the sales order details,

together with the member’s telephone number and address. The

Order Processing Clerk enters the delivery date and time after

talking with the member over the phone. The system records the

delivery date and time in a dispatch request to the delivery

team.

Table 3.5. Brief description of the Check Order Status use case

Use Case Check Order Status

Use Case ID UC-400

Actor Customer Service Assistant

Description The Customer Service Assistant enters the ID of the member.

The Customer Service Assistant selects a sales order of the

member. The system displays the status of the sales order.

Identify/Refine Candidate Business (Domain) Classes

Having prepared a brief description for each of the use cases, try to identify the

classes of the system. The identified classes will then be used as part of the

vocabulary for writing the expanded use case descriptions.

It is important to note that identification of objects and classes is a

continuous process throughout the whole system development life cycle;

the class model will be iteratively refined in each step of the life cycle.

During the use case analysis process, classes can be identified by

performing a textual analysis on the brief use case descriptions. The nouns and

noun phrases in the use case descriptions are highlighted and evaluated for

102 Object-oriented Technology

possible inclusion as a candidate class. The result of the analysis is a set of

candidate classes with their descriptions. An initial class diagram is drawn to

show the static relationships between the classes. If a domain analysis has been

performed to develop a domain class model, the results of this step will be

combined with the domain class model to produce the initial class model.

This was elaborated on in the previous chapter.

Step 6: Perform Textual Analysis

A textual analysis needs to be performed for each of the use cases based on

their descriptions; this will yield a set of candidate classes in the process.

These classes will then be considered for inclusion in the domain class model

which serves as a preliminary class model for the future development of the

initial class model.

A textual analysis on the Process Order use case is demonstrated in

Table 3.6. All the nouns and noun phrases have been underlined in the brief use

case description.

Table 3.6. Textual analysis on the Schedule Delivery use case

Use Case Schedule Delivery

Use Case ID UC-300

Actor Order Processing Clerk

Description The Order Processing Clerk selects an order from the list of

filled sales orders. The system displays the sales order

details, togehter with the member’s telephone number and

address. The Order Processing Clerk enters the delivery

date and time after talking with the member over the phone.

The system records the delivery date and time in a dispatch

request to the delivery team.

Note: Recall that a use case model often consists of several use cases.

Each of the use cases has its own corresponding use case description, including

its brief description and the flow of events, providing more details. As progress

is made in the development of the project, more and more use cases will be

developed according to the use case schedule. Iteratively and incrementally

refine and enrich the initial class model (Figure 3.17) by performing the textual

analysis for each of the use cases that have been developed.

Chapter 3: Use Case Modeling and Analysis 103

Figure 3.17. Initial class model

submitted by
Purchase OrderMember

handled by

Order Goods

Order Processing

Clerk

Customer Service

Assistant

Inventory Control

Clerk

Purchase Order

Goods Return Order Line Goods Receive

placed by placed by

supplied by

Supplier

Expand Initial Use Case Model

The initial use case model is expanded incrementally in subsequent phases of

the system development life cycle. In each phase, some use cases are selected

and analyzed to produce detailed specifications of the necessary behavioral and

functional requirements. Common behaviors and alternative behaviors of use

cases are identified when the use cases are expanded and analyzed.

These behaviors are extracted to become inclusion, extension and

generalization use cases. These, in turn, help to make the use case model easier

to maintain. The classes identified in the analysis of the use cases are used to

update and refine the class model.

Step 7: Develop Base Use Case Descriptions

Table 3.7 shows a use case description for an order processing system. In this

example, the use case name is Place Order. Along with the name, provide a brief

description of each use case. The precondition can effectively reduce the

complexity of the use case. For example, as a registered member, one must

already have a valid account. Consequently, many alternative situations,

such as invalid account, account on-hold, etc., will not be applicable to valid

members.

104 Object-oriented Technology

Table 3.7. Description for the Place Order use case

Use case name Place Order

Use case ID UC-100

Super Use Case The name of the generalized use case to which this use case

belongs.

Actor(s) Customer Service Assistant

Brief description A Customer Service Assistant places an order and then

submits it for processing.

Preconditions The member must have registered with the system.

Post-conditions The Customer’s order will be directed to the order process

department for processing.

Flow of events 1. The Customer Service Assistant finds the member’s

record by entering the member’s ID or name. The

system displays a list of members that match the

information entered by the Customer Service Assistant.

2. The Customer Service Assistant selects the required

member record. The system displays the details of the

member.

3. The Customer Service Assistant selects “Place Order.”

A new order form and order ID are then generated and

displayed.

4. The Customer Service Assistant selects items from the

catalog and adds them to the order.

5. The Customer Service Assistant submits the order for

processing. The system records the order and forwards

it to the Order Processing Clerk.

Alternative flows At any time the Customer Service Assistant can decide to

and exceptions suspend the ordering process and come back to it later, or

to cancel the order.

Priority High

Non-behavioral The system should be able to handle 20,000 new orders

requirements per day.

Assumptions

Issues Is there any limit on the amount of an order?

Source User Interview Memo 21, 8/9/01

Chapter 3: Use Case Modeling and Analysis 105

Step 8: Structure Use Cases

After elaborating on the use cases, the Place Order, Register New Member and

Archive Membership use cases have a common behavior — they all involve

finding the member record from the system. Hence, the inclusion use case

Find Member Record is created to cover this common behavior. The revised use

case diagram is shown in Figure 3.18.

Figure 3.18. Revised use case model

Inventory

Control

Clerk

Customer

Service

Assistant

Membership

Find Member

Record

Update Membership

Record

Archive

Membership

Register New

Member

Inventory Control

Receive

Goods

Deliver

Goods

Order

Goods

Order Processing

Check Order Status

Place Order

Handle Goods Return

Process Order

Schedule Delivery Order

Processing

Clerk

<<include>>

<<include>>

Mail Order System

The revised descriptions of the Place Order and Find Member Record use

cases are shown in Tables 3.8 and 3.9 respectively.

106 Object-oriented Technology

Table 3.8. Revised description of the Place Order use case

Use case name Place Order

Use case ID UC-100

Super Use Case

Actor(s) Customer Service Assistant

Brief description A Customer Service Assistant places an order and then

submits it for processing.

Preconditions The member must have registered with the system.

Post-conditions The Customer’s order will be directed to the order

processing department for processing.

Flow of events 1. Include (Find Member Record).

2. The Customer Service Assistant selects “Place Order.”

A new order form and order ID are then generated and

displayed.

3. The Customer Service Assistant selects items from the

catalog and adds them to the order.

4. The Customer Service Assistant submits the order for

processing. The system records the order and forwards

it to the Order Processing Clerk.

Alternative flows At any time the Customer Service Assistant can decide to

and exceptions suspend the ordering process and come back to it later, or

decide to cancel the order.

Priority High

Non-behavioral The system should be able to handle 20,000 new orders

requirements per day.

Assumptions

Issues Is there any limit on the amount of an order?

Source User Interview Memo 21, 8/9/01

Chapter 3: Use Case Modeling and Analysis 107

Table 3.9. Description of the Find Member Record use case

Use case name Find Member Record

Use case ID UC-10

Brief description A member record is requested.

Post-conditions A membership record is returned.

Flow of events 1. The Customer Service Assistant finds the member

record by entering the member’s ID or name. The

system displays a list of members that match the

information entered by the Customer Service Assistant.

2. The Customer Service Assistant selects the required

member record. The system then displays the details of

that member.

Alternative flows No member record is found for the customer.

and exceptions

Develop Instance Scenarios

A use case specifies all possible ways of using a system functionality to achieve

a user goal. Sometimes, it is necessary to write some examples (instance

scenarios) to illustrate the execution of a complex use case. Instance scenarios

are easier for the user to understand, and they are very useful for clarifying any

ambiguity in the use case description. The instance scenarios can also serve as

test cases for system testing.

A sample instance scenario of the Place Order use case is shown in

Table 3.10.

Table 3.10. Instance Scenario of Place Order

Parent use case name Place order

Parent use case ID UC-100

Instance name A sales order form is received but the membership

number is missing.

Instance ID UCIS-100-1

108 Object-oriented Technology

Table 3.10. (Cont’d)

Environmental The name (Peter Chan) and signature of the member

conditions and are available in the system.

assumptions

Inputs A sales order form

Instance flow 1. The Customer Service Assistant enters

description “Peter Chan” to find the member record. The

system then displays a list of members that

match the member’s name.

2. The Customer Service Assistant repeatedly selects

a member record. The system displays the

signature of the member when a member record

is selected.

3. The Customer Service Assistant selects “Place

Order.” A new order form and order ID are then

generated and displayed.

4. The Customer Service Assistant selects items from

the catalog and adds them to the order.

5. The Customer Service Assistant submits the order

for processing. The system records the order and

forwards it to the Order Processing Clerk.

Outputs The sales order is placed.

Step 9: Prioritize Use Cases

Table 3.11 shows an informal ranking of some of the use cases of the Mail Order

System.

Table 3.11. Priority ranking of use cases

Priority Rank Use Case Reason

High Process Order Directly improves the efficiency of

the business process and affects the

system architecture.

High Place Order Same as above

Chapter 3: Use Case Modeling and Analysis 109

Table 3.11. (Cont’d)

High Find Member Record Included as part of the Place Order

use case.

Medium Order Goods Ordering goods is less often than

processing orders but still is one of

the major business processes.

Medium Deliver Goods Can improve the control of stock

level of goods.

Low Update membership Small impact on the system

record architecture.

Low Register New Member Same as above.

Tricks and Tips in Using Use Case Analysis

Use Cases as a Communication Tool

It is important to make sure that each use case emphasizes the functions of the

system as seen by the user and that they are understood by both the user and

the system analyst. The use cases can then truly become an effective

communication tool for the domain experts and the system analysts and

designers in the early stage of the development life cycle.

Finding the Right Use Cases

Cockburn (1999) suggests that, in order to find the use cases for a given system,

we must first examine the goals of the system. Use cases provide an observable

value to an actor, and by focusing on how an actor can achieve the goals of a

system, we can identify the correct use cases quicker. The goal of an ATM

system might include Withdraw Money, Deposit Money, Check Balance and

Transfer Money as shown in Figure 3.19.

Correct Focus of Base Use Case

In identifying use cases, it is easy to focus on the process, rather than the

system goal. In the previous ATM example, one might have mistakenly chosen

Login Account and Select Transaction as use cases. Certainly these are all

110 Object-oriented Technology

Figure 3.19. Use cases of an ATM system

Customer

ATM System

Withdraw Money

Deposit Money

Check Balance

Transfer Money

externally observable behaviors of an ATM system, but no customer would ever

set his/her goal as inputting the password, selecting a transaction and then

leaving the ATM. Furthermore, both Input Password and Select Transaction use

cases do not yield an observable value to the user and, therefore, cannot achieve

a user goal.

Good Use Cases Should be Observable

In Figure 3.20, the Verify Password use case is even more erroneous in that the

customers cannot Verify Password themselves! This use case describes an

internal task that the system needs to perform (hence externally unobservable)

and definitely should not be included in the use case model.

Use Cases versus Process Charts

It is very easy to fall into the trap of thinking that use cases are processes and

that data flows in and out along the association lines. Similarly,

the <<include>> and <<extend>> arrows between use cases are often misread

as directions of either data flows or control flows. Actually, nothing flows

between the actors and the use cases. It should be remembered that use case

diagrams are fundamentally different from flow charts, control flows or

structure charts because they do not represent the order or the number of times

that the system actions will be executed.

Chapter 3: Use Case Modeling and Analysis 111

Figure 3.20. Incorrect use cases

Customer

ATM System

Input Password

Verify Password

Select Transaction

Apply Textual Analysis in Different Contexts

When defining use cases in the use case descriptions, use nouns and verbs

consistently in order to identify objects using textual analysis and their

interactions at a later stage. Textual analysis can also be applied to identify

actors and use cases from the problem statement. To identify system actors,

focus on questions such as “Who are the system users?” “What are the external

entities which interact with the system?”. To identify use cases ask, “What

task(s) the system needs to perform to fulfill the user goals?”

When elaborating on a use case by creating the use case description,

focus on what the system needs to perform in a more detailed interactive mode

of description between the user and the system. This includes a brief

description of the use case and the flow of events in the use case description

template. The brief description clarifies what the system aims to do with the

help of the use case concerned. The flow of events helps to identify the external

system behaviors at this stage (use case modeling and analysis) and the

internal behaviors at a later stage (behavioral modeling and analysis). See

Figure 3.21.

Use Bi-directional Communication Associations

The communication association connects the actor(s) and the use case

indicating the bi-directional interactions between the system and the actor(s).

Even though it has been suggested that unidirectional associations can be used

to represent the communications from the initiator to a use case (and most case

112 Object-oriented Technology

Figure 3.22. Bi-directional communication association

UseCaseName

✗

ActorName

UseCaseName

ActorName

tools do not prohibit this), use cases are still considered as a sequence of

transactions (interactions), and as such, it is not necessary to show the

association with an arrow (see Figure 3.22).

Figure 3.21. Application of textual analysis in different contexts

Problem

statement Use case description

Brief

description

Flow of

events

Customer

ATM System

Domain

class

model

Use case

analysis

Deposit Money

Check Balance

Withdraw Money

Textual

analysis

Textual analysis in use

case level yields domain

classes

Textual analysis

in system level

yields use cases

and actors

Structure Use Case Models

As the use cases are elaborated in detail, common behaviors or optional

behaviors can be identified. In order to make the use case model easier to

maintain, it is necessary to extract the common behaviors and the optional

behaviors into inclusion use cases and extension use cases.

Chapter 3: Use Case Modeling and Analysis 113

The use case model can be simplified by factoring out common behaviors

that are required by multiple use cases and thereafter introducing the

<<include>> stereotype. If the base use case is complete and the behavior is

optional, consider using the <<extend>> stereotype. The use case structuring

process also helps to save time and effort in analyzing the use cases. Therefore,

use case structuring should be done in an iterative and incremental manner.

However, remember not to put too much effort into identifying the common

behaviors and optional behaviors since this may defeat the purpose of saving

time and effort. The use case structuring should be carried out when it is

convenient to do so.

Specify Use Cases in Detail ... but Not Too Much

When designing a use case model, it is very easy to get bogged down in

excessive details. Remember that even the flow of events inside the use case

description only serves to show the interaction between the actor(s) and the use

case. In other words, only describe what the system is supposed to do and not

how the system does it. Start with the most observable and general

requirements first. When the users are happy that these are represented

correctly, add details to the use case, where necessary. For example, you may

first consider only the use case name that is the verb ⫹ noun or verb ⫹ noun

phase pattern. Later, elaborate on the use case further by creating the use case

description. When the contents are first filled in the use case template, do not

try to enter everything at the same time. Instead, only fill in the information

with which you feel comfortable. It is perfectly acceptable to leave some

elements blank at the initial stage. As the system progresses up the

development process, it will be possible to identify what the contents of these

blank elements should be.

Fit Use Cases into System Architecture

Packages should be used where appropriate to make the use case diagram more

easily understood. Use cases that form a natural grouping should be organized

into packages. Figure 3.23 shows an example of how packages are used for a

loan processing system.

Use Case Modeling and Analysis with VP-UML

The previous sections in this chapter covered the theories associated with use

case analysis and modeling. Here, the practical aspects of the analysis and

114 Object-oriented Technology

Figure 3.23. Use cases grouped into packages

Apply Loan Approve Loan

Check Loan

Status

Loan processing

Add Customer Bill Customer

Suspend

Customer

Customer information

modeling process will be illustrated with the example Mail Oder System

discussed earlier using the VP-UML case tool. By walking through the process

step by step, you will appreciate how easy it is to perform use case analysis and

modeling.

The Mail Order System example will be used to illustrate the steps in the

use case analysis and modeling process. Before you begin, start the VP-UML

case tool.

Step 1: Prepare the Problem Statement

The problem statement is prepared through interviews with the stakeholders of

the system. Details of the problem statement for the Mail Order System have

been presented earlier. The problem statement can now be entered into the

VP-UML case tool for further work. Simply follow the steps below.

1.1. Enter Textual Analysis working area by clicking on the application

toolbar (see Figure 3.24).

1.2. Type in the problem statement in the text pane. If the problem statement

is already saved as a text file, open it from a file by clicking at the top

left-hand corner of the text pane.

1.3. Edit the following problem statement in the text pane (see Figure 3.25).

Chapter 3: Use Case Modeling and Analysis 115

Figure 3.24. Textual Analysis working area

Figure 3.25. Entering problem statement for Textual Analysis

116 Object-oriented Technology

In order to improve the operational efficiency of a mail order

company, the chief executive officer is interested in computerizing

the company’s business process. The major business activities of

the company can be briefly described as follows:

A customer registers as a member by filling in the membership

form and mailing it to the company. A member who has not been

active (no transactions made) for a period of one year will be

removed from the membership list and he/she needs to re-apply for

the reinstatement of the lapsed membership.

A member should inform the company of any changes of

personal details such as home address, telephone numbers, etc.

A member can place an order by filling out a sales order form

and faxing it to the company or by phoning the Customer Service

Assistant with the order details.

The Customer Service Assistant first checks for the validity of

membership and enters the sales order information into the

system.

The Order Processing Clerk checks the availability of the

ordered items and holds them for the order. When all the ordered

items are available, he/she will schedule their delivery.

The Inventory Control Clerk controls and maintains an

appropriate level of stock and is also responsible for acquiring new

items.

If there is a problem with an order, members will phone the

Customer Service Assistant. The Customer Service Assistant will

take appropriate action to follow up the sales order.

Members may return defective goods within 30 days and get

their money back.

The system will record the name of the staff member who has

initialized an updated transaction to the system.

Note: When preparing the problem statement having interviewed the key users

of the system being developed, only focus on their high-level roles and goals

rather than the detail workflow of the business operations associated with the

system. These workflow will later be identified when you document the

individual use case as flows of events in the detailed use case descriptions.

Chapter 3: Use Case Modeling and Analysis 117

Step 2: Identify Major Actor(s)

Once the problem statement is in the case tool, the next step is to identify

actors in the Textual Analysis working area.

2.1. Highlight the phrase Customer Service Assistant in the problem statement

as a candidate actor and drag it to the Candidate Class Container at

the top right-hand corner. Note that all occurrences of the same actor in

the problem statement are automatically highlighted (see Figure 3.26).

Figure 3.26. Identifying major actors

2.2. Now right click on the newly created candidate class in the Candidate

Class Container. A pop-up menu will appear. Select the Actor option

in the pop-up menu to declare the candidate class as an actor (see

Figure 3.27).

2.3. Note that the icon of the candidate class in the Candidate Class

Container has changed from class to actor and the type of the

candidate class has also changed to Actor in the table below it

(see Figure 3.28).

118 Object-oriented Technology

2.4. To enter the description of an actor, select the Class Description cell next

to the actor Customer Service Assistant in the table in the bottom right

corner. Type in a brief description such as the task(s) performed by the

actor. Where necessary, adjust the size of the cell by dragging its boundary

at the bottom of the cell edge to view the whole description (see

Figure 3.29).

Figure 3.27. Defining actor type

Figure 3.28. Candidate Actor in Candidate Class Container

Chapter 3: Use Case Modeling and Analysis 119

2.5. The candidate actors can be added into the model repository. Elements in

the model repository can be retrieved for later use, e.g. to draw a use case

diagram. To add Customer Service Assistant (candidate actor) into the

model repository, right click on the Customer Service Assistant. A pop-up

menu will appear. Select Create Actor Model in the pop-up menu (see

Figure 3.30).

Figure 3.29. Entering actor description in Class Description

Figure 3.30. Creating an Actor in model repository

120 Object-oriented Technology

2.6. The Customer Service Assistant is now added to the Model Repository

Tree. To see the newly created actor model, click on the Model tab in the

Project Explorer Pane (see Figure 3.31).

2.7. Repeat the above steps to identify and create actor models for the actors:

• Order Processing Clerk

• Inventory Control Clerk

(See Figure 3.32.)

Figure 3.32. Actor models in Model Repository Tree

Figure 3.31. Customer Service Assistant actor in Model Repository Tree

Chapter 3: Use Case Modeling and Analysis 121

Note: When creating a candidate actor in the Candidate Class Container, it

is not a model element until it appears in the Model Repository Tree. Only

then can the actor be shared among various models or diagrams. To place an

actor, which has been defined in the model repository, in the diagram, simply

drag it from the Model Repository Tree to the desired location in the

diagram area and release the mouse button. The actor will be created in the

diagram and automatically inherit the name and the documentation that was

previously defined. This operation can also be applied to create use cases and

classes.

Step 3: Identify Use Cases

Let us identify a candidate use case from the problem statement. Very often we

are not able to find a verb ⫹ noun pattern that directly matches the candidate

use case in the problem statement. In fact, it is necessary to read through the

text carefully to identify a use case. Follow the steps below to create a use case

directly from the Candidate Class Container.

3.1. To hide the actors in the Candidate Class Container, click on the Show

Candidate Actors toggle button in the Textual Analysis toolbar.

However, note that the actor models still exist in the Model Repository

Tree (see Figure 3.33).

Figure 3.33. Hiding Actors in Candidate Class Container

122 Object-oriented Technology

3.2. Right click on the Candidate Class Container. A pop-up menu will

appear. Then select Add Candidate in the pop-up menu; a cascading

menu will appear. Select Use Case in the cascading menu. An input dialog

will appear (see Figure 3.34).

3.3. An input dialog will appear. Enter Place Order in the input dialog (see

Figure 3.35).

Figure 3.34. Creating a candidate use case in Candidate Class Container

Figure 3.35. Naming a new candidate use case

Chapter 3: Use Case Modeling and Analysis 123

3.4. Click OK in the input dialog. A new candidate use case is then created in

the Candidate Class Container (see Figure 3.36).

3.5. Now edit the use case brief description for the candidate use case the same

way as you would edit the actor description (see Figure 3.37).

Figure 3.37. Creating a brief use case description

Figure 3.36. A new candidate use case in Candidate Class Container

124 Object-oriented Technology

3.6. To add a candidate use case into the model repository, right click on the

desired candidate use case in the Candidate Class Container. A pop-up

menu will appear. Select Create Use Case Model (see Figure 3.38).

3.7. A new use case is added to the Model Repository Tree (see Figure 3.39).

Figure 3.39. A new use case in Model Repository Tree

Figure 3.38. Adding a candidate use case to Model Repository

Chapter 3: Use Case Modeling and Analysis 125

3.8. Repeat the above steps to identify all other candidate use cases below (see

Figure 3.40):

• Check Order Status

• Place Order

• Handle Goods Return

• Update Membership Record

• Archive Membership

• Register New Member

• Process Order

• Schedule Delivery

• Order Goods

• Receive Goods

Figure 3.40. Use cases in Model Repository Tree

126 Object-oriented Technology

Step 4: Create Initial Use Case Diagram

Having identified all the use cases, create the use case diagrams with the case

tool following the steps below:

4.1. Click on the Create New Use Case Diagram icon in the toolbar to

create a new use case diagram (see Figure 3.41).

4.2. Click on the Model tab in the Project Explorer. A list of model elements

will be presented (see Figure 3.42).

4.3. Select the Place Order model from the Model Repository Tree and drag

it to the desired location in the diagram pane. A use case is automatically

placed in the diagram with the name Place Order (see Figure 3.43).

Figure 3.41. Creating a new use case diagram

Chapter 3: Use Case Modeling and Analysis 127

Figure 3.43. Creating a use case with Model Repository Tree

Figure 3.42. Models in Model Repository Tree

128 Object-oriented Technology

4.4. Select Customer Service Assistant from the Model Repository Tree

and drag it to the desired location in the diagram pane. An actor is then

placed in the diagram with the name Customer Service Assistant (see

Figure 3.44).

4.5. Drag on the Association -> Use Case resource-centric icon above the

Customer Service Assistant actor to the Place Order use case and then

release the mouse button. A communication link associated between the

actor and use case is created (see Figure 3.45).

Figure 3.44. Creating an Actor with Model Repository Tree

Figure 3.45. Creating an association relationship using resource-centric icon

Chapter 3: Use Case Modeling and Analysis 129

Note: The resource-centric interface saves unnecessary steps to develop the

same diagram. If you do not want to use this powerful feature, click once on

the Use Case Diagram palette, place the mouse pointer in the desired location

in the diagram pane and then click the mouse button again.

An actor symbol is then created in the diagram pane.

Similarly, an alternative way to connect the communication link between

the use case and the actor will be to click the icon once on the Use Case

Diagram palette, and then place the mouse pointer inside the actor icon.

Then drag the communication link from the actor icon into the Place Order use

case icon.

4.6. Repeat the above steps to create the following use cases and their

association relationships with the Customer Service Assistant actor (see

Figure 3.46):

• Check Order Status

• Handle Goods Return

Step 5: Describe Use Cases

The use cases created require further elaboration so that the next phase of the

analysis can be performed. This is carried out by providing a more detailed

description for each of the use cases.

Figure 3.46. Creating more use cases with Model Repository Tree

130 Object-oriented Technology

5.1. Place the mouse pointer within the Place Order use case, right click the

use case Place Order and select Open Specification from the pop-up

menu (see Figure 3.47).

5.2. Select the Description tab (see Figure 3.48). A Specification Dialog

about the files associated to the element will be displayed.

Figure 3.48. Use case specification setup

Figure 3.47. Use case right click pop-up menu

Chapter 3: Use Case Modeling and Analysis 131

5.3. Enter the contents for each of the elements in the use case template (see

Figure 3.49) and click on the OK button to confirm the use case

description.

Step 6: Perform Textual Analysis

Textual analysis is a simple traditional technique for performing domain

analysis (for more on domain analysis, see Chapter 2: Structural Modeling and

Analysis). It is a technique to identify domain knowledge from the text

description and is typically applied to requirements analysis based on the

textual form of information. Many methodologists apply this technique to

identify domain classes and objects as well as operations for the domain classes.

However, textual analysis itself does not prevent us from applying it to identify

other knowledge and concepts such as business workflow analysis or use case

analysis. The only difference in applying this technique to different domains or

levels in our software development process is the need to focus on the right level

and analyze the right concepts that are being identified. For example, textual

analysis can be applied at the beginning of the use case analysis to identify

actors and use cases. In this case, focus on the set of questions that were

suggested earlier: “Who will use the system?” “What is the role of the user?”

Then identify the system’s end users and the tasks expected to be performed by

the system. Before elaborating a use case from the use case description, focus

on the nouns and noun phrases or verbs and verb phrases from the use case

description.

Figure 3.49. Use case specification and template

132 Object-oriented Technology

Now, let us perform a textual analysis on the Schedule Delivery use case.

6.1. Right click the use case Schedule Delivery and then select Create Textual

Analysis from the pop-up menu (see Figure 3.50).

6.2. The Textual Analysis window will appear. Enter the following text in the

text pane (see Figure 3.51).

The Order Processing Clerk selects an order from the list of filled

sales orders. The system displays the sales order details, together

with the member telephone number and address. The Order

Processing Clerk enters the delivery date and time after talking

with the member over the phone. The system records the delivery

date and time of the sales order. The system records the name of

the Order Processing Clerk who has handled the sales order.

Figure 3.50. Launching textual analysis function with a use case

Chapter 3: Use Case Modeling and Analysis 133

6.3. Now highlight the word order as a candidate class, right click on the word

order, select Add Text as Class in the pop-up menu (see Figure 3.52).

Note all occurrences of the same actor in the problem statement are now

automatically highlighted (see Figure 3.52).

Figure 3.51. Identifying domain classes using textual analysis

Figure 3.52. Identifying candidate classes

134 Object-oriented Technology

6.4. A new candidate class is automatically created in the Candidate Class

Container on the right-hand side and all occurrences of the same class in

the problem statement are automatically highlighted (see Figure 3.53).

6.5. Select the Class Description cell next to the class Order. Enter a brief

description about the Order class. Where necessary, adjust the size of the

cell to view the whole description (see Figure 3.54).

Figure 3.54. Inputting class description for Order class

Figure 3.53. All occurrences of candidate class are highlighted

Chapter 3: Use Case Modeling and Analysis 135

6.6. Repeat the above steps to create the following classes (see Figure 3.55):

• Sales Order

• Member

• Delivery

Step 7: Develop Base Use Case Descriptions

You may at times want to customize the use case template to fit the needs for

use case documentations. The use case template can be modified by adding or

deleting the items in the use case description template.

Follow the steps below to add or delete an item in the use case description.

7.1. Right click on the dialog box to reveal the pop-up menu, and then choose

Insert Item or Add Item (see Figure 3.56).

Figure 3.55. Candidate classes in Candidate Class Container

136 Object-oriented Technology

Note: The Add Item option appends an item at the end of the Use Case

Template, while the Insert Item option creates an element after the current

highlighted position of the Use Case Description.

7.2. Rename the new item as Use Case ID (see Figure 3.57).

Figure 3.57. Renaming items in Use Case Template

Figure 3.56. Adding new items to Use Case Template

Chapter 3: Use Case Modeling and Analysis 137

7.3. Create more items in the use case description template and fill the

contents of the Place Order use case description template as shown in

Figure 3.58.

Figure 3.58. The completed use case description

138 Object-oriented Technology

7.4. Repeat the above steps to complete the use case descriptions for the

following use cases:

• Check Order Status

• Handle Goods Return

• Update Membership Record

• Archive Membership

• Register New Member

• Process Order

• Schedule Delivery

• Order Goods

• Receive Goods

• Deliver Goods

Step 8: Structure Use Cases

In this step, use cases shall be grouped into packages. First, create a set of

packages based on the system’s logical structure; additional packages may be

considered later in terms of the physical structure of the system. Consider the

role of the users to structure the use cases into different packages. In the Mail

Order System example, we can identify three packages, namely inventory,

membership, order processing, which are associated with the major roles of the

actors. The ultimate goal is to organize the use cases into packages to maximize

cohesion within the individual packages and minimize coupling among these

packages. The physical structure should not be considered until the system

design stage. At that point, software deployment issues need to be considered

as well. For example, an ATM system would have more issues to be considered

in software deployment, thus the system architecture will play a much more

important role to implement such a system.

8.1. Create a package by first clicking on the Use Case Diagram palette.

8.2. Place the mouse pointer in the design area and click once. A package

symbol will then appear in the design area. Rename the new package as

Inventory Control. Press Ctrl ⫹ Enter to finish the operation (see

Figure 3.59).

8.3. Resize the package symbol so that it can accommodate the use cases (see

Figure 3.60).

8.4. Move each of the use cases by dragging them into the package region

where it belongs or where it is a member (see Figure 3.61).

Chapter 3: Use Case Modeling and Analysis 139

Figure 3.59. Creating a new package

Figure 3.60. Resizing and moving the newly created package

140 Object-oriented Technology

Note: A package can contain other packages, and packages can be nested

within a package at multiple levels. When a package is moved around the

design area, all the UML elements contained inside that package are moved

accordingly, while maintaining their relative positions within the package.

8.5. Repeat the above steps to create packages for the entire use case model.

8.6. Move the elements of the use case diagram by structuring the positions of

the packages, the use case within the package and communication links

between use cases and actors to make the diagram tidy and easier to read

(see Figure 3.62).

8.7. Add the system boundary to the use case model by clicking on the

Use Case Diagram palette and move the mouse pointer to the desired

location on the diagram pane. Move the use cases inside the system

boundary in the same way as you would manipulate a package in the use

case diagram (see Figure 3.63).

Figure 3.61. Structuring use cases into a package

Chapter 3: Use Case Modeling and Analysis 141

Figure 3.62. Structuring the use cases into packages

Figure 3.63. Structuring packages into system boundary

142 Object-oriented Technology

Tip: If a system boundary will eventually be placed in the use case model,

it is better to create the boundary at the beginning before the first use

case is created. This way, use cases are created inside the boundary

without having to move the use cases and actors around to place them

in the right position (see Figure 3.64).

Figure 3.64. Complete use case model structured into packages

Having grouped the use cases into packages according to the actors’

roles and responsibilities, further structure the use cases according to

their common pattern as well as their interactive flow pattern. If some

common behaviors are found in two or more use cases, we can factor them

out by creating an <<include>> use case. On the other hand, if some

alternative scenarios arise due to some special condition(s), we can handle

these by introducing the <<extend>> use case(s). Now, let us structure the

use case model for the Find Member Record <<include>> use case.

8.8. Click on the <<include>> icon at the top of the Handle Goods Return

use case and drag it to a location in the diagram pane where the

<<include>> use case is to be created. When releasing the mouse button,

an <<include>> use case and a communication link between the base use

case and the <<include>> use case will then be created (see Figure 3.65).

Chapter 3: Use Case Modeling and Analysis 143

8.9. Rename the <<include>> use case by typing Find Member Record in the

editable text field of the untitled <<include>> use case (see Figure 3.66).

8.10. Click on the <<include>> resource icon at the top of the Register New

Member use case and drag it out to where the <<include>> use case is to

be created. To create an <<include>> relationship between the Register

New Member use case and Find Member Record use case, drag the

<<include>> resource icon to the Find Member Record <<include>>

use case (see Figure 3.67).

Note: If the <<include>> use case has already been created and you simply

want to connect the base use case with the existing <<include>> use case, then

drop the <<include>> use case into the existing Find Member Record

<<include>> use case. A dependency link between the base use case Register

New Member and the <<include>> Find Member Record use case will then be

created.

Figure 3.65. Creating a new <<include>> use case

144 Object-oriented Technology

Figure 3.66. Naming the new <<include>> use case

Figure 3.67. Structuring use cases with relationships

Chapter 3: Use Case Modeling and Analysis 145

8.11. We can also add a use case description to the Find Member Record

<<include>> use case by:

• customizing the use case description for the Find Member Record

<<include>> use case where necessary

• filling the contents of the <<include>> use case(s) in the same way as

you would edit the base use cases previously (see Figure 3.68).

Step 9: Prioritize Use Cases

We shall prioritize the use cases using the use case schedule.

9.1. Right click on any empty space in the Use Case diagram and select the

open specification item.

9.2. Select the Schedule tab from the pop-up menu (see Figure 3.69).

Figure 3.68. Use case description for the Find Member Record use case

146 Object-oriented Technology

9.3. All the use cases in the Use Case Model are then automatically displayed

in the table. Rank the use cases by choosing the appropriate option in the

Combo Box.

9.4. Provide some justification for each use case in the table for future

reference (see Figure 3.70).

Figure 3.70. Use Case Schedule for the Mail Order System

Figure 3.69. Launching the use case schedule

Chapter 3: Use Case Modeling and Analysis 147

Summary

Use case modeling is the process of describing the behavior of the target system

from an external point of view. Hence, use case analysis emphasizes on

modeling the externally visible behavior and not the internal behavior of the

system. Use case diagrams, which are artifacts of the analysis and modeling

process, are used in the early stages of the system development to capture and

document system requirements.

In performing use case modeling and analysis, a two-stage process is

followed. We first commence with the problem statement to identify the major

actors and use cases of the system so as to create an initial use case diagram.

The description of the behavior of each use case can then be produced, and from

which candidate business classes are identified and refined using textual

analysis.

In the second stage, the use case model is further refined by developing the

base use case descriptions, which are then iteratively elaborated to determine

the <<extend>>, <<include>> and generalization relationships. The instance

scenarios are then developed and use cases prioritized.

To illustrate the concepts described in this chapter, the modeling and

analysis of an online mail order system has been described, detailing the steps

involved by using the powerful features of the VP-UML CASE tool.

Exercise

Consider the problem statement of an online book store in the Exercise of

Chapter 2.

Follow the steps below to develop the use case model of the system:

• Identify the major actors

• Write a description to define the roles of each actor

• Examine the roles of each actor and identify the use cases

• Draw initial use case diagrams

• Write initial descriptions for the use cases

• Perform a textual analysis to identify candidate business (domain) objects

• Develop the base use case descriptions

• Iteratively elaborate the base use case descriptions and determine the

<<extend>>, <<include>> and generalization relationships. Refine the use

case diagram and the use case descriptions to reflect the use case

relationships.

Develop the instance scenarios. For each use case, develop the instance

scenarios to cover all possible paths of execution.

148

Chapter

4
Dynamic Modeling and Analysis

Overview

Class diagrams are used to model the static aspects of a system by showing the

classes and their relationships. However, a class diagram does not provide any

information on the dynamic aspects of the system, for example, how objects

interact with each other during the execution of a use case. Dynamic models

can be used to describe or specify the interactions of objects when a use case

is invoked or the interactions between entities such as actors and subsystems,

as well as the evolution of an object during its lifetime (i.e. object states and

their transitions).

In UML, there are four dynamic models, namely the sequence diagram, the

collaboration diagram, the statechart diagram and the activity diagram, which

represent various aspects of the dynamic behaviors of a system — a use case,

a scenario of a use case (an instance of a use case), an individual object or even

an operation. These four models provide different levels of abstraction of a

system and also give an alternative projection of the system dynamics,

highlighting some particular aspects while de-emphasizing others. In this

chapter, these four dynamic models will be examined in detail. A discussion on

the use of the activity diagram at different levels of abstraction will be

presented in Chapter 6 (View Alignment Techniques and Method

Customization).

Chapter 4: Dynamic Modeling and Analysis 149

What You Will Learn

On completing the study of this chapter, you should be able to:

• model message flows using sequence diagrams

• model message flows using collaboration diagrams

• model lifetime behaviors of an object using statechart diagrams

• model the performance of actions of a procedure or an activity using activity

diagrams

Scenario Modeling Techniques: Interaction Diagram

Scenario modeling describes how the objects in a system interact with each

other in a scenario. A scenario is a sequence of events that occurs during one

particular execution path within a use case of a system. Each event involves the

interaction of objects passing messages between them.

An interaction diagram can be used to model the collaborating objects in

scenarios, showing the objects involved in the scenario and the messages sent

and received by them. These objects may be external or internal of the system

and the messages represent the invocation of operations of the receiving objects.

There are two kinds of interaction diagrams: sequence diagrams and

collaboration diagrams. Both describe the collaboration of objects in a scenario,

but the former emphasizes the time sequencing of messages while the latter

focuses on the structural organization of the objects and the links between

collaborating objects. In essence, the sequence diagram is temporally focused,

and, therefore most suitable for analyzing the order of the interactions between

objects. The collaboration diagram is structurally focused and is most suitable

to analyze the required structural relationship between objects to realize a

scenario.

In the following two sections, the basic UML notations for sequence

diagrams and collaboration diagrams will be explained. We shall also introduce

some basic techniques when using them.

Common UML Interaction Diagram Notation

Object Symbol

Like the class icon, an object icon is represented by a rectangle. Within the

rectangle are the object name and the object label, which is underlined to

distinguish the object icon from a class icon. In Unified Modeling Language

150 Object-oriented Technology

(UML) there are minor variations of the object icon to provide more information

about an object, as shown in Table 4.1.

Table 4.1. Object notations

Naming format Notation

An object of an unspecified class

A named object of a specified class

An unnamed object of a specified class

Object Stereotypes

In general, stereotypes are used to provide a mechanism for extending the

vocabulary of the UML. For example, in UML use case diagrams, it is common

to apply stereotypes such as <<include>> and <<extend>> to the associations

between use cases. There are four commonly used stereotypes for objects in

sequence diagrams and collaboration diagrams, namely <<actor>>,

<<boundary>>, <<control>> and <<entity>>. Sometimes, graphical stereotype

icons are introduced to improve the diagram’s readability. For example, a stick

figure is often used to represent an actor object. Table 4.2 provides some details

on these object categories and their graphical notations.

With such visual cues of these stereotypes in interaction diagrams,

the interaction of objects can be visualized much more easily. The stereotypes

help to identify the object that initiated the interaction (actor objects) and those

that receive messages from the outside world (boundary objects). Furthermore,

they can also identify how these messages are processed and coordinated

(control objects) and which objects keep the data of the system (entity objects).

The classification of these three objects types (entity, boundary and control)

is sometimes referred to as the Model/View/Control (MVC) software model,

which is adopted by software architectures such as Java Swing. The stereotypes

in Table 4.2 are quite suitable for documenting this kind of software structure.

object:object

object X: Class

: Class

Chapter 4: Dynamic Modeling and Analysis 151

Table 4.2. Commonly used stereotypes for objects

Object category Description Graphical notations

Actor object An external entity that

interacts with the system

Entity object An object that models the

data in the system which

often represents an

object in the problem

domain

Boundary object An object that handles

the communication

between actor objects and

the system

Control object An object that models

the flow of control and

functionality that do not

naturally belong to entity

objects or boundary

objects

Messages

Messages are a common means of communication between objects. An object

can send a message to another object to invoke an operation, raise a signal,

create an object or even destroy one. In an interaction diagram, a message is

represented by an arrow. The different types of messages are defined in

Table 4.3.

<<Actor>>

:Object 1

:Object 1

<<Entity>>

:Object 3

:Entity Object

:Boundary Object

<<Boundary>>

:Object 2

<<Control>>

:Object 4 :Control Object

152 Object-oriented Technology

Table 4.3. Types of messages

Message Description Notation

Procedure call or The message sender waits for the

other nested completion of the procedure call of the

flow of control message receiver.

Asynchronous The sender dispatches a message and

communication immediately continues with the next

step of execution.

Return message Message returned from the procedure call.

Message with The message will take a significant

travel delay amount of time to arrive at the receiving

object. (This is only used in sequence

diagrams.)

Sequence Diagrams

An interaction diagram models the behavior of a group of objects that work

together to achieve a user goal. A sequence diagram helps to identify a set of

collaborating objects involved in a scenario of a use case. A sequence diagram

has two dimensions: the vertical dimension and the horizontal dimension,

respectively representing the passage of time and the objects involved in the

interaction. Object icons are placed horizontally at the top of the sequence

diagram, and messages are passed between them. Figure 4.1 shows a sequence

diagram for the login procedure of an Automatic Teller Machine (ATM) system.

By going through the scenarios of a use case, we can discover the system’s

objects. The object identification process typically involves a number of stages.

First, perform a textual analysis on the problem statement to identify a set of

domain objects (as described in Chapter 2). Then analyze the messages that are

passed among these objects. By examining these messages in detail,

the functionality and data associated with each of these objects, such as

operations and attributes, can be discovered.

The initial version of the interaction diagram may consist of messages

represented in natural language such as Place an order, Retrieve product item

details, etc. (see Figure 4.2). The sequence diagram is then iteratively refined

until all the messages are ultimately transformed into function prototypes,

such as placeOrder(date, company, contactPerson), which provide a lot more

Chapter 4: Dynamic Modeling and Analysis 153

:Customer

Figure 4.1. Sequence diagram for login procedure of the ATM system

:System

ask password

enter password

insert card

:Customer

Figure 4.2. A customer placing an order

:Order

placeOrder (date, company, contactPerson)

useful information for implementation. In Figure 4.2, there is an object called

customer who places an order (another object) on behalf of his company.

The customer performs a placeOrder operation with the required

information. The three pieces of information (date, company, contactPerson)

may be references for objects in the domain class model.

Lifelines

Lifelines are dashed vertical lines that indicate the object’s existence over time.

In other words, if the lifeline extends to the bottom of the diagram, the object

will continue to exist during the entire session of interaction. If the object is

154 Object-oriented Technology

positioned at the top of the diagram, it indicates that the object actually exists

before the interaction.

Object Creation and Deletion

By sending a <<create>> message, an object can dynamically create a new

object. In the sequence diagram, the object is created at the position where the

<<create>> message is sent out. Likewise, an object can also be deleted on

receiving a <<destroy>> message from another object. A large cross (X) is placed

at the end of the object’s lifeline to indicate that the object life has been

terminated at that point. Figure 4.3 illustrates how the Receiver object is

created and subsequently destroyed by the Sender object. The Receiver object

is in a lower position in the diagram where the <<create>> message points at

it, and the Sender object is in existence before its interaction with the Receiver.

Figure 4.3. Object creation and destruction

<< create >>

do_Something()

<< destroy >>

:Sender

:Receiver

Activation

An object’s lifeline gives an idea about the duration over which it exists, but it

is not obvious when the object is actively performing a task or when it is

inactive. A tall thin rectangle is used to represent the time during which

an object is active (see Figure 4.3). The top of the rectangle signifies when

the activation starts and the bottom of the rectangle its completion time.

In Figure 4.3, the Receiver object is active when it receives a message from the

Sender object.

Chapter 4: Dynamic Modeling and Analysis 155

Simple and Collective Iteration

Sometimes, a task may be performed repeatedly. In the sequence diagram, such

a task is represented by a name preceded by an asterisk “*”. In Figure 4.4, the

add an item and get product details tasks may be carried out a number of times.

Optionally, place the continuation condition of the iteration in brackets [].

Sometimes, the execution of a block of messages may be repeated, and this is

represented in the sequence diagram by enclosing the group of messages within

a rectangle. In Figure 4.5 the add an item and get product details tasks are

grouped together in a rectangle to indicate that they will be performed

repeatedly. Note that the “*” symbols preceding these two tasks have been

removed.

:Customer

Figure 4.4. Simple iterations in sequence diagram

:Cashier

buy a product

display total

:Product item

:Order
create an order

*add an item

calculate a total

*get product details

156 Object-oriented Technology

Branching

A branch is used to represent conditional action or concurrent action, and it is

rendered by multiple arrows leaving the same point of the object’s lifeline.

Each message may be labeled with a condition. If the conditions of the

messages are mutually exclusive, the branch is a conditional (see Figure 4.6);

otherwise it is concurrent.

Figure 4.7 shows the same set of events as a sequence diagram that is

associated with the process of making a telephone call. This example will be

used to illustrate the concept of branching. Figure 4.8 shows the sequence

diagram for a scenario where a call is successfully made, and the switch

connects the caller and the callee at the same time when the callee lifts the

Figure 4.5. Block iterations in sequence diagram

:Customer

buy a product

display total

create an order

add an item

calculate a total

get product details[Check in all products]

:Cashier :Product item

:Order

Chapter 4: Dynamic Modeling and Analysis 157

Figure 4.6. Conditional case in sequence diagram

:Product item

[enoughQty = true] reduceQty(n)

:Cashier

[enoughQty = false] setStatus ("out of stock")

Figure 4.7. Scenario for making a phone call

• caller lifts receiver

• dial tone begins

• caller dials digits one at a time

• switch makes routing

• ringing tone on callee’s receiver begins

䡩 phone rings on callee’s receiver begins

䡩 callee lifts receiver

• switch makes connection between caller and callee

䡩 switch connects calee

䡩 switch connects caller

receiver. This is shown by a branching at the bottom of the sequence diagram.

The messages in the figure are sometimes labeled with their sequence numbers

which explicitly specify their order chronologically. However, this is not a

common practice because the time order of the messages is evident from the

diagram. It should be noted that sequence numbers are necessary in a

collaboration diagram. The use of sequence numbers in collaboration diagrams

is further explained in the following sections.

158 Object-oriented Technology

Collaboration Diagrams

Collaboration diagrams provide another way to model a scenario. In a

collaboration diagram, each object is represented by an object icon, and links

are used to indicate communication paths on which messages are transmitted.

Messages are presented in the same way as those in a sequence diagram;

in fact, sequence diagrams and collaboration diagrams are semantically

equivalent.

Sequence Number

In a collaboration diagram, each message is presented with a sequence number

that precedes it. The sequential numbering of messages allows us to easily

trace the message in a collaboration diagram. The simplest numbering scheme

:Caller

Figure 4.8. Branching in connecting caller and callee

:Switch

1: caller lifts receiver

6.2: connect caller

4: make route

4.2: phone rings

6.1: connect callee

2: dial tone begins

3: *dial digits

4.1: ringing tone

5: lift receiver

6: connect
caller and callee

:Callee

Chapter 4: Dynamic Modeling and Analysis 159

is 1, 2, 3, …, etc., and for large diagrams, it is more practical and typical to use

a nested numbering scheme such as 1, 1.1, 1.2, … 2, 2.1, 2.2, etc. Figure 4.9

shows a collaboration diagram for the sequence diagram in Figure 4.8.

Figure 4.9. Sequence numbers in collaboration diagram

4: make route

6: connect caller and callee

6.1: connect caller

4.1: ringing tone

2: dial tone begins

3: *dial digits

1: caller lifts receiver

4.2: phone rings

6.2: connect callee

5: lift receiver

:Callee

:Caller :Switch

The time order of the messages in a collaboration diagram is shown

explicitly by sequence numbers. It is generally harder to follow a collaboration

diagram than a sequence diagram due to successive messages situated in

various parts of the collaboration diagram. Furthermore, as objects in

collaboration diagrams do not have a lifeline, it is not readily evident as to

when an object is created or destroyed. However, collaboration diagrams

facilitate the designer with a better understanding of the links between objects,

and consequently, they make the task of implementing the classes easier.

160 Object-oriented Technology

Message with Duration

In many situations, especially in a network environment, a message takes a

considerable amount of time to travel from one node to another. If the delays

are significant, it may be necessary to provide such information in the diagram.

While the vertical axis of the sequence diagram represents time, a message

with duration is represented by a slanting arrow (see Figure 4.10). It is

important to note that the vertical time axis is not drawn to scale in the

sequence diagram and therefore it should not be used to estimate the duration

of a scenario. The Object Constraint Language (OCL) is often used to specify

the upper or lower bound of the delay. For example, Figure 4.11 shows the

equivalent in a collaboration diagram.

Figure 4.10. Message with duration in sequence diagram

:Credit Card Center

transaction request

:Cashier

transaction result

{duration < 5 seconds}

2: transaction result {duration < 5 seconds}

:Cashier
:Credit Card

Center1: transaction request

Figure 4.11. Duration message in collaboration diagram

Chapter 4: Dynamic Modeling and Analysis 161

Examples of Scenario Modeling

Example 1: An Automatic Teller Machine (ATM)

An ATM allows users to perform different tasks with their bank accounts. Each

task may involve a list of operations. Consider the following typical task of

withdrawing cash from an ATM. Figures 4.12 and 4.13 respectively show the

collaboration diagram and the sequence diagram for this (withdraw cash)

scenario.

The ATM prompts the user to insert a card

The user inserts an ATM card

The ATM prompts the user to input the PIN number

The user enters the PIN number

The ATM asks the bank consortium to verify the ATM card number and

PIN number

The bank consortium verifies the ATM card number and PIN number

with the bank

The bank notifies the bank consortium that the PIN is correct

The bank consortium notifies the ATM the PIN is correct

The ATM prompts the user to select a service

The user selects the withdraw cash service

The ATM prompts the user to enter the amount to withdraw

The user enters the amount to withdraw

The ATM asks the bank consortium to process the request. The bank

consortium forwards the request to the bank

The bank confirms the success execution of the request to the bank

consortium which in turn notifies the ATM that the request has been

approved

The ATM displays the success of transaction on screen, ejects card and

then dispenses cash as requested

The ATM shows the main menu to the user for selecting the next service

162 Object-oriented Technology

:User

Figure 4.12. Sequence diagram for withdrawal of cash scenario of the ATM system

1:
insert card

2: enter PIN

4.12: ATM card
4.13: dispense

cash

1.3: verify card

1.8: card
valid

2.2: verify
account

2.7: account OK

4.2: withdraw
request

4.7: withdraw
OK

4.3: withdraw
request

4.6: withdraw
OK

2.3: verify
account

with bank

2.6: account OK

1.7: card valid

1.4: verify card

1.5: verify card

1.6: card valid

2.5: account OK

2.4 verify
account

4.4: withdraw
request

4.5: withdraw OK

:Account:Bank:Consortium:ATM
Controller

:Cash
Dispenser

:Card
Controller

:Display:KeyPad:Card
Reader

1.2: verify card1.1: verify card

1.10: enter PIN request

2.1: enter PIN

2.9: display main menu

2.8: display main menu

3: select withdraw service
3.1: select withdraw service

3.3: enter amount request

4: enter withdraw amount

3.2: ask for amount

4.1: enter withdraw amount

4.9: show withdraw success message

4.8: show withdraw success message

4.11: eject card

4.10: eject card

4.14: cash

4.16: main screen

4.15: show main screen

1.9: enter PIN request

Chapter 4: Dynamic Modeling and Analysis 163

:Cash Dispenser

1: insert card

:User

4.14: cash

:Card Reader

1.1: verify

card

4.12: ATM card

4.11: eject card

:Card Controller

1.2: verify

card
4.10: eject card

:ATM Controller

4.13: dispense cash

:Bank

1.6: card valid

2.5: account

OK

4.5: withdraw

OK

:Consortium

1.8: card valid 2.7: account OK 4.7: withdraw OK

1.3: verify
card

2.2: verify
account

4.2: withdraw
request

1.4: verify card
2.3: verify account

with bank
4.3: withdraw

request

1.7: card valid

2.6: account OK

4.6: withdraw OK

:Display

2: enter PIN 3: select withdraw service 4: enter withdraw amount

:KeyPad

1.10: enter PIN request

2.9: display main menu

3.3: enter amount request

4.9: show withdraw success message

4.16: main screen

4.15: show main screen

4.8: show withdraw success message

3.2: ask for amount

2.8: display main menu

1.9: enter PIN

 request

4.1: enter withdraw

 amount
3.1: select withdraw

 service2.1: enter PIN

1.5: verify card 2.4: verify
account

4.4 withdraw
request

:Account

Figure 4.13. Collaboration diagram for withdrawal of cash scenario of the ATM system

Example 2: A Soft Drink Vending Machine

A soft drink vending machine accepts coins for a variety of products. When the

amount of money deposited into the machine is equal to or greater than the

price of any of its available products, the respective product selection buttons

will be enabled for the user to make a selection. After the user has made a valid

164 Object-oriented Technology

Figure 4.14. Sequence diagram for vending machine

:Customer

1: *insert coins

:Coins
Collector

1.1: amount

:Order
Controller

:Selection
Panel

:Soft Drink
Dispenser

:Change
Dispenser

1.2: verify amount

1.4: available selection

2: select soft drink

2.1: select soft
drink

2.3: soft drink

2.5: change

2.2: dispense soft drink

2.4: dispense change

1.3: show available
selection

Figure 4.15. Collaboration diagram for vending machine

:Customer

:Selection Panel
1.4: available selection

2: select soft drink

:Coins Collector

1: insert coins

:Soft Drink

Dispenser

2.3: soft drink

:Change

Dispenser

2.5: change

:Order Controller

1.3: show available selection

1.1: amount

2.2: dispense soft drink

2.4: dispense change

1.2: verify amount

2.1: select soft drink

selection, the machine will dispense the soft drink, together with the change (if

applicable). Figures 4.14 and 4.15 respectively show the sequence diagram and

collaboration diagram for the vending machine.

Chapter 4: Dynamic Modeling and Analysis 165

Dynamic Modeling Techniques Using

Statechart Diagrams

The behavior of an entity is not only a direct consequence of its inputs, but it

also depends on its preceding state. The history of an entity can best be

modeled by a finite statechart diagram traditionally named automata.

Statechart diagrams (or sometimes referred to as state diagrams) show the

different states of an entity. Statechart diagrams can also show how an entity

responds to various events by changing from one state to another.

What Is a State?

Rumbaugh et al. (1991) define that “[a] state is an abstraction of the attribute

values and links of an object. Sets of values are grouped together into a state

according to properties that affect the gross behavior of the object.” For example,

you have $100,000 in a bank account. The behavior of the withdraw function

would be: balance :⫽ balance ⫺ withdrawAmount, provided that the balance

after the withdrawal is not less than $0. This is true regardless of how many

times you have withdrawn money from the bank. In such situations, the

withdrawals do not affect the abstraction of the attribute values, and hence, the

gross behavior of the object remains unchanged.

However, if the account balance becomes negative after a withdrawal, the

behavior of the withdraw function would be quite different. This is because the

state of the bank account is changed from positive to negative; in technical

jargon, a transition from the positive state to the negative state is fired. The

abstraction of the attribute value is a property of the system, rather than a

globally applicable rule. For example, if the bank changes the business rule to

allow the bank balance to be overdrawn by $2,000, the state of the bank account

will be redefined with the condition that the balance after withdrawal must not

be less than $2,000 in deficit.

There are several characteristics of states:

• A state occupies an interval of time

• A state is often associated with an abstraction of attribute values of an

entity satisfying some condition(s)

• An entity changes its state not only as a direct consequence of the current

input, but as a result of some past history of its inputs

In the UML notation, a state is represented by a rectangle with rounded

corners. A state may have a name which is usually positioned above the

rectangle. Optionally, a state may be subdivided into the name compartment

166 Object-oriented Technology

and the internal transitions compartment (see Figure 4.16). The name

compartment holds the state’s name. The internal transitions compartment

holds internal actions or activities that are performed while the entity is in that

state. The actions or activities are in the format action label/action or

activity. Table 4.4 defines the commonly used actions and activities.

Figure 4.16. Representations of state

State Name

entry / action

exit / action

do / activity

event / action (arguments)

State Name

Table 4.4. Actions and activities

Action or activity Description

entry / action 1; …; action n Upon entry into the state, the specified actions

are performed

exit / action 1; …; action n Upon exit from the state, the specified actions

are performed

do / activity The specified activity is performed continuously

while in this state

event-name(parameters) An internal transition is fired when the specified

[guard-condition] / action event occurs and the specified guard condition is

1; …; action n true. The specified actions are performed when the

transition is fired.

Transitions

A transition from one state to another takes place instantaneously in response

to some external events or internal stimuli. A transition is represented by an

arrowed line from the source state and the target state, usually with guard

conditions and rules governing how and when the transition should take place.

The label on the arrowed line states an event name, a guard condition and a

Chapter 4: Dynamic Modeling and Analysis 167

list of actions. A guard condition is a Boolean expression, and a transition is

fired when the following conditions are satisfied:

• The entity is in the state of the source state

• An event specified in the label occurs

• The guard condition specified in the label is evaluated to be true

When a transition is fired, the actions associated with it are executed.

Composite States and Nested States

Sometimes, an entity needs to be modeled at different levels of abstraction

(details) so that an entity with complex dynamic behaviors can be modeled

more appropriately. For example, it is often difficult to model and analyze an

object with many states using a single statechart diagram. Alternatively, we

may draw a high-level statechart diagram consisting of composite states and

other diagrams to further elaborate the internal states inside individual

composite states. For each composite state, its nested states (internal states or

substates) and their transitions between them can be drawn. In Figure 4.17,

a composite state (superstate) may hold a statechart diagram.

Figure 4.17. Nested statechart diagram

Start State Transition Final State

State Name
entry / action
do / activity
event / action (arguments)

State

Superstate

event (arguments)
[condition] / action

State

Sometimes, it is necessary to model several independent abstractions

of attribute values. For example, an undergraduate student is required

to complete both the final-year project and the core subjects before he

can graduate. This can be represented by concurrent states as shown in

Figure 4.18.

168 Object-oriented Technology

Figure 4.18. Concurrent states

Pass final-year project

Study

Pass required subjects

Dynamic Modeling Techniques Using Activity Diagrams

The statechart diagram is used to model entity’s states and their transitions

in response to events, but it is not quite suitable for modeling a procedure or

an algorithm. This is because we need to translate the actions of the procedures

into transitions and states. For example, it would be rather inconvenient to

model the flow of events of the withdraw money use case in the ATM example

using a statechart diagram.

To overcome this limitation, the activity diagram is introduced in UML.

The activity diagram is specifically designed for modeling performance of

actions of an activity or procedure. It is a variation of a state machine where

a state corresponds to the performance of actions or sub-activities.

The transitions are triggered by the completion of actions or sub-activities.

Action and Sub-activity States

The action state is used to model a single step in the execution of a procedure

or a workflow process, and cannot be further decomposed. In contrast, the

sub-activity state can be further decomposed as it corresponds to another

activity diagram. Figure 4.19 gives examples of action and sub-activity states.

Figure 4.19. Examples of action and sub-activity states

insert ATM card process order

Chapter 4: Dynamic Modeling and Analysis 169

Transition

A transition is represented by an arrow connecting two states (see Figure 4.20).

A transition takes place when the actions or activities of the source state are

completed. Optionally, a transition can be labeled with a guard condition for the

transition to take place.

Figure 4.20. Transitions between states

insert ATM card enter password

Branching

Branching is used to model conditional or optional flows in a procedure or a

workflow. For example, the ATM will prompt the user to re-enter the password

if an incorrect one has been entered (see Figure 4.21). A branch is represented

by a diamond with an incoming transition and multiple outgoing transitions

labeled with guard conditions. The guard conditions must be mutually exclusive

to guarantee that there are no ambiguities.

Figure 4.21. Branching example

insert ATM card enter password select account

[valid password]

[invalid password]

Forks and Joins

Forks and joins are used to model concurrent flows. A fork has one incoming

and multiple outgoing transitions. In contrast, a join has multiple incoming and

one outgoing transition (see Figure 4.22).

170 Object-oriented Technology

Swimlanes

A swimlane is a named partition of an activity diagram. In modeling business

activities, it would be useful to group states which are performed by the same

department or actor in a swimlane. Hence, each swimlane represents a set of

responsibilities of an entity.

Figure 4.23 shows the procedure associated with placing and processing an

order in a mail order company using swimlanes.

Figure 4.22. Example of fork and join

Register course

Pass assignment

Pass examination

Fork Join

Figure 4.23. Activity diagram with swimlanes

Submit order

Check
membership

Place order

Fill order

: Order
[placed]

Customer Customer Service Assistant Order Processing Clerk

Chapter 4: Dynamic Modeling and Analysis 171

Object Flows

It is quite common that an action or sub-activity state passes some information

to another state. Information-passing between states is expressed as object

flows. For example, the Place order state in Figure 4.23 passes the Order, which

has just been created next to the action state Fill order. Note that the state of

the order is also indicated by the state inside the square brackets.

Dynamic Analysis Techniques

In the previous sections, the UML notations were introduced for dynamic

modeling. We shall discuss how dynamic modeling and analysis can be

performed using UML, starting with the use case model.

Techniques for Elaborating Use Cases

System requirements are obtained by performing use case modeling and

analysis through interviewing users, reviewing the existing system and

documentations, etc. Users can only express what they expect of the system.

They help to provide a better understanding of what their requirements are

from an external perspective, but they cannot provide the internal details of the

system.

The requirements of the system are recorded in a use case model.

The interactions between the users and the system are recorded in the flow of

events of the use case description. The user can help confirm whether the use

case descriptions match the requirements of the system. However, the process

in transforming “what the system does” (requirements) to “how the system is

implemented” (implementation) is not quite straightforward.

A use case consists of a main execution path (main scenario) and typically

several alternative execution paths (alternative scenarios). The implementation

of a scenario involves the collaboration of a set of objects. Therefore, we need

to know what objects are involved in a scenario. Since the scenarios of a use

case describe the external behaviors of the system, it is relatively easy to

identify boundary objects that directly interact with the actor(s). However,

it would be more difficult to know which internal objects are required to

perform the actual computation and data manipulation. For example, we can

easily determine that a form and a button are required for the user to input his/

her personal particulars and to submit the data to a management information

system (MIS), but it is more difficult to identify other less apparent internal

objects required to implement the scenario. Therefore, it may not be a good idea

to develop a fully elaborated sequence diagram directly from a use case scenario

172 Object-oriented Technology

in a single step. Instead, we should first develop a high-level sequence diagram

that matches a scenario as closely as possible. Then refine the sequence

diagram by going through the following three steps iteratively and

incrementally.

Step 1: Focus on Modeling External System Behaviors

As the flow of events in the use case description only records the external

behaviors of the system and identifies the user inputs and system responses

from the flow of events of a scenario, it is very straightforward to map the

scenario to a system-level sequence diagram. In fact, this mapping process can

be automated by a UML computer-aided software engineering (CASE) tool.

Step 2: Focus on Communication among the Subsystems

Modeling and analyzing complex systems often involves many objects, even for

the realization of a single use case. To develop a detailed sequence diagram

based on the system-level sequence diagram with sufficient information for a

single, complete implementation generally requires a lot of effort. In order to

manage the complexity associated with large and complex systems, it is

advantageous to package objects into several subsystems. For example, an ATM

system may be organized as a number of subsystems like the ATM, the bank

consortium and the bank. Such an organization also reflects how the real world

hardware and software systems are configured, since the ATM is connected to

the bank consortium’s system which is in turn connected to the systems of the

individual banks.

The environment in which the system operates may impose certain

constraints on the architecture of the system. For example, the hardware

configuration of the ATM system is designed to connect the systems of the

individual banks, the ATMs and the bank consortium’s system. This hardware

architecture suggests three subsystems: the ATM subsystem, bank subsystem

and bank consortium’s subsystem. Hence, the system architecture both in terms

of software and hardware should be considered at an earlier stage to minimize

unnecessary rework.

Being architectural centric is one of the four fundamental design principles

in object-oriented modeling and analysis (the other three are: use case-driven,

iterative and incremental). By architectural centric, we mean that the baseline

architecture of the system should be developed at an early stage. The structure

of the subsystem forms the important part of the architecture. Therefore,

developing a subsystem-level sequence diagram can realize this important

Chapter 4: Dynamic Modeling and Analysis 173

design principle. Figure 4.24 depicts the process of developing subsystem-level

sequence diagrams and lower-level sequence diagrams for individual

subsystems.

Figure 4.24. Decomposing a complex system using a subsystem approach

Use Case

Subsystem-level
sequence diagram

<<actor>> :Subsystem1 :Subsystem2

or

Subsystem1

Subsystem2
Actor

<<actor>> <<boundary>> <<control>> <<entity>> <<bounday>>

MVC-level

sequence diagram

:Subsystem2

174 Object-oriented Technology

To identify subsystems effectively, consider both the logical and physical

structures of the system. For example, it is obvious that the ATM system has

considerable physical structure issues to be taken into account. The ATM

system can be decomposed into near-independent subsystems as the previous

example shows, such as the ATM, the bank consortium and the individual bank.

Each of these subsystems forms a physically cohesive software structure.

However, these subsystems collectively provide a complete set of behaviors of

the entire system. The subsystem-level sequence diagram shows the high-level

interactions among the subsystems and hides the low-level details of

interactions among the internal objects inside the subsystems. Thus, if we are

focusing on this level of detail of the interactions between actors and

subsystems, it is possible to quickly identify the responsibilities of the

subsystems rather than the detailed logic that resides in each individual object.

After having determined the individual subsystems and their

responsibilities, further analyze the behavior of the individual subsystems by

applying use case modeling and scenario analysis techniques recursively.

In doing so, each subsystem is treated as an independent system and all other

subsystems or actor(s) as external entities of the subsystem. We can develop a

use case model for each subsystem and system-level sequence diagrams for the

scenarios of each use case of the use case model.

Step 3: Develop Reusable Model/View/Control (MVC)

Software Framework

By now, the system-level and the subsystem-level sequence diagram would have

been developed. Now develop a detailed sequence diagram in three tiers

involving three types of objects: boundary, control and entity objects. A typical

three-tier sequence diagram is shown in Figure 4.25.

The three-tier model improves the reusability and maintainability of a use

case. Traditionally, programmers develop software systems using popular visual

programming languages such as Visual Basic or Delphi. Many of these systems

are typically implemented using a two-tier model, that is, the programmer first

designs the graphic user interface (GUI) using the form designer provided by

the interactive programming environment and then embeds the control logic

into the event handlers of the GUI widgets such as windows, forms, buttons,

etc. Even though the designer is already applying object-oriented programming

concepts in implementing these GUI and data objects, the system is still very

difficult to maintain or debug when things go wrong. This is because the control

logic belonging to a particular scenario of a use case is invariably scattered all

over the event handlers of the GUI widgets. To locate a bug or modify the

Chapter 4: Dynamic Modeling and Analysis 175

:Actor1

Figure 4.25. Three-tier sequence diagram

<<boundary>>

:Object1

Message6

Message1

<<control>>

:Object2

Message5

Message2

<<entity>>

:Object3

Message3

<<entity>>

:Object4

Message4

implementation of a use case, it is often necessary to go over all the code inside

the event handlers of the GUI widgets. The situation sometimes can be even

more complicated when several use cases share a set of GUI objects.

The event handlers of these shared GUI objects will contain the control logic of

these use cases. If the size of the system is large, much effort will have to be

expanded to maintain such a system.

Representing Use Case Scenarios Using Path Diagrams

In this section, the path diagram is introduced as a visual representation of a

use case scenario, which is usually represented by a textual description.

The path diagram can help us better understand the differences between

several scenarios of the same use case. Consider the use case diagram shown

in Figure 4.26. Since the base use case only has one extend use case, the base

use case has two scenarios: the main scenario and the alternative scenario as

shown in Figure 4.27.

For the use case in Figure 4.27, there is a need to use two separate

sequence diagrams to represent the two scenarios. Always include the common

behaviors of the <<include>> use case in the flow of events of the base use case,

as these common behaviors are essential for the base use case to achieve the

task. The main scenario includes only the logic of the base use case while the

176 Object-oriented Technology

Actor1

Figure 4.26. A simple use case model

Base
Use Case 1

extension points
extension Point 1

Condition
Use Case

<< include >>Base
Use Case 2

common behavior
Use Case

<< include >>

System1

<< extend >>

Figure 4.27. Main scenario and alternative scenario of the base use case

Main Scenario of Base Use Case 1

......

Flow of events

1. Event 1

2. Event 2

3.

4.

5. perform

Common_Behavior_Use_Case

6.

7.

8.

9.

10.

Alternative Scenario of Base Use Case 1

......

Flow of events

1. Event 1

2. Event 2

3.

4.

5. perform

Common_Behavior_Use_Case

6.

7.

8. perform Condition_Use_Case

9.

10.

11.

Chapter 4: Dynamic Modeling and Analysis 177

alternative scenarios include both the behaviors of the main use case and the

<<extend>> use case. In representing the scenarios, use a path diagram. A path

without branching is represented by a straight line. Hence, the main scenario

is represented as such (see Figure 4.28). A conditional branching to an

<<extend>> use case is represented by a loop in the path for the alternative

scenario of the base use case as shown in Figure 4.29. Note that the return

point of the <<extend>> use case is where the branching takes place. Therefore,

it is incorrect to interpret the <<extend>> use case as if it is a conditional flow

in a flowchart (see Figure 4.29). For the <<include>> use case, the branching

is unconditional and hence is still modeled by a straight line.

In summary, to develop a path diagram for a base use case, represent the

main scenario by a straight line and an <<extend>> use case by a loop.

Then attach the loops to the main path (see Figure 4.30). Tracing the path of

the base use case, develop the paths for different diagrams as illustrated in the

lower part of Figure 4.30. Since there are three extended use cases, there are

three alternative scenarios and one main scenario. Each path corresponds to

the branching to one of the extending use cases.

Figure 4.28. Representation of main scenario in path diagram

Main scenario

Figure 4.29. Execution path of an <<extend>> use case

Alternative scenario

Extension point

<< extend >> use case

Wrong! <<extend>> use case should return to the point where it exited

178 Object-oriented Technology

Dynamic Modeling and Analysis Process

Overview

Dynamic modeling and analysis are concerned with understanding the behavior

of the system in actual scenarios when using the system. Dynamic modeling

begins with expressing the use case scenarios (use case instances) and

elaborating using sequence diagrams. The sequence diagrams are then refined

and further developed iteratively and incrementally until they contain enough

details for implementation. During the process, it is also possible to develop

statechart diagrams for objects that have complex internal state transitions.

Figure 4.30. Path diagrams for elaborating a use case

A3

Equivalent path diagram

Base Case

Alternative scenario 1

Alternative scenario 2

Main scenario

Alternative scenario 3

A2

A1

A3

A1 A2

A1

A2

A3

<<extend>>

<<extend>>

<<extend>>

Chapter 4: Dynamic Modeling and Analysis 179

Steps in Developing Dynamic Models

The following steps are recommended for developing dynamic models of a

system (see Figure 4.31):

1. Develop use case scenarios

2. Develop system-level sequence diagrams

3. Develop subsystem-level sequence diagrams (optional for simple systems)

4. Develop subsystem-level statechart diagrams (optional for simple systems)

5. Develop three-tier sequence diagrams

6. Develop three-tier collaboration diagrams (optional)

7. Develop a statechart diagram for each of these active (control) objects

Figure 4.31. Dynamic modeling and analysis process

Use case model

Actor 1

System 1

Use Case2

Use Case1

Use Case3

Use case description

Use Case Description

Use 1

Flow of Events:

1. event 1;

2. event 2;

3.

N. etc.

Refined flow of events

Flow of Events
Actor input System Response
input 1

response 1
input 2

response 2
response 3

input 3

:Actor1

Message1

system

:Actor1

Message2

:Subsystem :Subsystem

Message1

Message2

Message1.1

Subsystem-level

sequence diagram

System-level

sequence diagram

State1 State2

State6 State3

State5 State4

Subsystem-level

state diagram

:Actor1

<<boundary>>

:Object1

Message1

Message2

<<control>>

:Object2

Message1.1

Message1.4

<<entry>>

:Object3

Message1.2

Message1.3

Three-tier

sequence diagram

:Actor1

TeMessage1 TeMessage2

object1

TeMessage4
TeMessage3

object2

Control Object

Boundary Object

object3

TeMessage5TeMessage6

TeMessage7

object4

TeMessage3

TeMessage8object5

object6 object7

TeMessage9

TeMessage1
eMessage10

Entry Object TeMessage2

Three-tier collaboration diagram
State machine for

elaborating the

control object

State1

State2

State4

State3

180 Object-oriented Technology

Step 1: Develop Use Case Scenarios

For each execution path of a use case, write a textual description for the flow

of events of the scenario. Try using path diagrams to identify the representative

scenarios of a use case. For example, the main scenario of the Withdraw Money

use case of the ATM example is shown in Figure 4.32.

Figure 4.32. Flow of events for normal scenario of Withdraw Money use case

Flow of events

1. User inserts card

2. System prompts user to enter PIN

3. User enters PIN

4. System prompts user to select services

5. User selects service — withdraw money

6. System prompts user to enter withdrawal amount

7. User enters withdrawal amount

8. System displays withdrawal successful message, ejects card and dispenses money

9. User collects card and money

Step 2: Develop System-level Sequence Diagrams

When documenting the use case of a use case model, first elaborate it by filling

all the sections in the use case template, including the use case name, the use

case description and the flow of events. In the flow of events section, briefly

describe the steps for the actor to interact with the use case, which include only

its externally observable behaviors. For example, describe the flow of events

like “insert the ATM card” or “input the PIN number,” but do not include

“verify ATM card type” or “verify password” as part of the flow of events as they

cannot be observed by an actor outside the system. Some people suggest that

a detailed sequence diagram can be developed simply from the flow of events.

But this is not easily achievable, especially for large systems, as the designer

needs to deal with too many different issues simultaneously. In this section,

it will be shown how a use case can be elaborated using an iterative and

incremental approach.

Separating Actor Inputs and System Responses

Based on the actor inputs and system responses of the scenario in Figure 4.32,

we can separate them into two columns, clearly showing the initiators of these

events, as illustrated in Figure 4.33.

Chapter 4: Dynamic Modeling and Analysis 181

Creating System-level Sequence Diagrams

The information in Figure 4.32 can readily be mapped onto a system-level

sequence diagram as shown in Figure 4.34.

Figure 4.33. Actor inputs and system responses

Flow of events

Actor input System response

User inserts card

System prompts user to enter PIN

User enters PIN

System prompts user to select services

User selects “withdraw money” service

System prompts user to enter the amount

User enters the withdrawal amount

System displays withdrawal successful

message, ejects card and dispenses money

User collects the card and money

:User

Figure 4.34. System-level sequence diagram

:ATM

System

enter PIN request

PIN code

insert card

select services request

select withdraw service

ask for amount to withdraw

enter amount to withdraw

show withdraw success screen

eject card

dispense cash

182 Object-oriented Technology

Step 3: Develop Subsystem-level Sequence Diagrams (Optional)

Identifying Subsystems

Having developed the system-level sequence diagram for a use case, create a

clear picture of the detailed interactions between the actor(s) and the system.

Up to this point, everything described in the diagram should be observable by

the actor(s) and should not yet include any information on how the problem is

to be solved. For complex systems, it may be expedient to develop

subsystem-level sequence diagrams. Otherwise, it may be possible to work on

the three-tier level sequence diagrams straightaway. However, those new to the

object-oriented technology area should develop the models step-by-step,

iteratively and incrementally. There are good automated tools that can

significantly speed up this process.

The advantage of developing a subsystem-level sequence diagram is that

the overall architectural issues at this development stage can be dealt with by

omitting details such as identifying GUI widgets or entity objects. For the ATM

system example, the problem becomes very simple if the whole system is

deployed in a single piece of computer hardware. However, if deployment issues

are to be accounted for, the system becomes considerably more complicated.

As ATMs are installed in many locations all over the world, issues such as

networking, security and communications protocols between subsystems, etc.,

will have to be addressed. There is a need to consider that ATM card services

may be managed by a bank consortium of which your bank is a member.

Thus, the deployment of the ATM system will be clustered in three major

subsystems: (1) an ATM installed in a large network of ATM machines,

(2) a bank that performs the actual transactions on your account and

(3) the bank consortium then routes your account details to your bank for

processing the transaction.

Creating Subsystem-level Sequence Diagrams

Further elaborate the system-level sequence diagram by providing internal

messages among the subsystems. For each pair of actor inputs and system

responses, decide which message(s) should be sent between the subsystems in

order to achieve the required functionality, by asking the following questions:

• Which subsystem is responsible for providing the interface to the actor?

• What reply is expected from the subsystem that receives a message?

• Can the subsystem handle the message with its own information? or

• Does the subsystem require help from other subsystems?

Chapter 4: Dynamic Modeling and Analysis 183

In the ATM system example, the first pair of messages are “user inserts

card” and “the system prompts user to enter PIN.” We know that the ATM

provides an interface from which the user selects the required service.

Therefore, the insert card message is sent from the user to the ATM. Since the

ATM does not have the required information to validate the card, it sends out

a message to the bank that issued the card through the bank consortium.

The bank sends a reply to the ATM through the bank consortium confirming

that the card is valid. Similarly, we can determine the messages between the

subsystems for other pairs of actor inputs and system responses. The complete

subsystem-level sequence diagram is shown in Figure 4.35.

:User

Figure 4.35. Subsystem-level sequence diagram

<<subsystem>>

:ATM

1.5: select services request

1: insert card

1.4: card valid

1.1: card information

1.2: card information

1.3: card valid

<<subsystem>>

:Bank Consortium

<<subsystem>>

:Bank

Step 4: Develop Subsystem-level Statechart Diagram

With the subsystem-level sequence diagram created in Step 2, develop the

subsystem-level statechart diagram for the scenario. Let us use the ATM as an

example again. When the ATM is idle, it shows the main screen, for example,

the welcome screen. If the user inserts a valid ATM card, it will display a

“wait for input PIN” screen. Figure 4.36 shows the scenario-based statechart

diagram of the ATM system.

184 Object-oriented Technology

Step 5: Develop Three-tier Sequence Diagrams

Identifying Boundary, Control and Entity Objects

Having developed the subsystem-level sequence diagram, identify the boundary,

control and entity objects by analyzing the messages sent between them.

For example, the message insert card sent from the user to the ATM implies

that there should be something to hold the card. So there must be a card reader

object in the ATM, and it must be a boundary object because it communicates

with the user directly.

Let us take this example further. After the user inserts the ATM card, how

will the system know that the card is a valid ATM card and not just a dummy

plastic card? It is reasonable to expect that the system will verify whether the

card is valid or not. So create a Card Controller object inside the ATM which

has the function of verifying the ATM card. The Card Controller must therefore

be a control object, as it processes requests by forwarding them to the relevant

object. The verification of an ATM card is actually done by the card-issuing

bank, and not the Card Controller itself. The Card Controller, therefore, should

not carry much intelligence. Furthermore, this object can be reused in other

types of card-operated systems.

Main screen

Figure 4.36. Scenario-based statechart diagram for ATM

wait for PIN
wait for
account

verification

wait for
selecting
services

wait for
entering
amount

process

transaction

Step 1 Initial state

Step 2

Step 8

Step 7

Step 3

insert card
enter

PIN code

transaction success

Dispense cash
Eject card

Show success message

enter amount

Step 4

Step 5

Step 6

account OK

select withdraw
service

Chapter 4: Dynamic Modeling and Analysis 185

Furthermore, from the withdrawal request message between the bank

consortium and the bank, we know that there should be something for the

bank’s subsystem to store the user account information and perform the

requested transaction. An Account object should therefore be created.

This should be an entity object because it is domain-specific as it implements

the business rule of the bank. This object actually carries out the required task

and is not an agent or a broker.

Once the three types of objects are identified, develop the three-tier sequence

diagram. The three-tier sequence diagram should record the detail interactions

between different types of objects. For example, in Figure 4.37, the insert card

message is sent to the card reader which in turn sends the verify card message

to the Card Controller, and so on.

:User

Figure 4.37. Fragments of three-tier sequence diagram

<<boundary>>

:Card Reader

<<control>>

:Card Controller

<<control>>

:ATM Controller

<<control>>

:Consortium Bank

<<control>>

:Bank

<<entity>>

:Account

insert Card

verify Card

verify Card

verify Card

verify Card

verify Card

Walking through and Refining Three-tier Sequence Diagrams

By walking through and refining the three-tier diagrams for different scenarios,

we may discover more objects and functions to make the system more complete.

Step 6: Develop Three-tier Collaboration Diagram

Having developed the three-tier sequence diagram, proceed to creating a

three-tier collaboration diagram. The three-tier collaboration diagram shows

the linkages between different objects that are useful in the implementation

stage for identifying packages and defining the interfaces between objects.

The three types of objects can be grouped into different packages. Objects of the

186 Object-oriented Technology

same types are grouped and contained in the same package, e.g. a GUI package

may be created to contain all the GUI objects. In some CASE tools, such as

VP-UML, this step is automated, and the sequence diagram can be

automatically converted into a collaboration diagram (see Figure 4.38).

:User

Figure 4.38. Three-tier collaboration diagram

:Cash Dispenser :Card Reader

4.14: cash

4.12: card

:Display

4.16: main screen

4.11: eject card

1.10: enter PIN
request 2.9: show select services

request
3.3: show enter amount
request

4.9: show withdraw
success message

:KeyPad

:Card Controller

:ATM Controller

:Bank

1.1: verify
card

1.2: verify
card

Entity Objects

:Account

:Consortium

1.8: card valid 2.7: account OK 4.7: withdraw OK

2: enter PIN 3: select withdraw service 4: enter withdraw amount

Boundary Objects
1: insert card

4.13: dispenses
cash

4.10: eject card

Control Objects
2.8: display
main menu

3.2: ask for
amount

4.8: withdraw
success

4.15: show
main
screen

1.9: enter PIN
request

4.1: enter
withdraw
amount

3.1: select
withdraw
service

2.1: enter
PIN

4.2 withdraw
request

2.2: verify
account

1.3: verify
card

1.4: verify
card

2.3: verify account
with bank

4.3: withdraw
request

1.7: verify card

2.6: account OK

4.6: withdraw OK

1.6: verify card

2.5: account
OK

4.4 withdraw request2.4: verify account1.5: verify card

4.5: withdraw
OK

Chapter 4: Dynamic Modeling and Analysis 187

Step 7: Develop Statechart Diagrams for Control Objects

It is very important to identify the state change of control objects; it helps to

implement the system more easily as the statechart diagram can be readily

translated into programming code. With the complete set of three-tier sequence

diagrams, we can develop the statechart diagram for each control object

previously identified. Based on the messages between the boundary, entity and

control objects, the internal states of the control objects and their state

transitions can be identified. Figure 4.39 shows a statechart diagram for the

Card Controller object of the ATM system.

Tricks and Tips in Dynamic Modeling and Analysis

Creating Cohesive and Self-sufficient Subsystems

Subsystems may be considered as the next level of abstraction down from the

entire system. Ideally, a subsystem should be a cohesive and independent part

of the complex system so as to benefit from portability, reusability and ease of

maintenance. A cohesive and independent subsystem is loosely coupled with

other subsystems, and data coupling is the most loosely coupled communication

method between entities. The following are some heuristics to achieve loose

coupling between entities and strong cohesion within an individual entity:

• Use a well-defined data format to communicate between subsystems, for

example, data stores such as XML, commonly used data files or

configuration file.

reject [not a valid ATM Card]

Figure 4.39. Statechart diagram of card controller

Check card
type

insert card

Check card
with consortium

OK [is an ATM Card]

reject [the card issuer bank not in

the list of the consortium bank]

OK [the ATM Card is valid]

188 Object-oriented Technology

• Use messaging server or subsystem communication protocols to

communicate between subsystems such as Java Messaging Server (JMS) or

SOAP.

• Use design patterns to reduce coupling and increase cohesion if tighter

coupling between subsystems for efficiency is unavoidable.

Refining Class Diagrams Using MVC-level Scenario Analysis

By putting an instance of a use case through scenario analysis, we may discover

more objects that are necessary to support the execution path to achieve the

user goal. Contrast the object identified in the scenario with those in the

domain class diagram to ensure proper use of terminology. For those newly

identified objects in the sequence diagram, update missing components in the

data dictionary and refine the class model accordingly.

Here is an example of how the results of the sequence diagram can be used

to refine the domain class diagram. Consider the objN in the sequence diagram

in Figure 4.40. There are two incoming messages (message A and message B)

associated with objN. Hence, it is necessary to add two operations (operation A

and operation B) to the class of objN, i.e. Class X.

Note: The high-level messages may be directly translated into a method

(operation) name of the class. Later, these methods will be defined with

function prototypes at the implementation stage. Figure 4.41 shows this in

detail.

Understanding System Reusability for Different Types of Objects

To model the well-known MVC software framework, classify the objects into

three different types called entity, boundary and control which respectively

correspond to the model, view and control of the framework. Entity objects are

concerned with the lower-level basic building blocks of the system. They are

akin to an object library that comes with a development environment.

They perform the most fundamental tasks and usually account for the highest

percentage of the system. Well-designed entity objects should be highly

reusable and not application-specific. Table 4.5 categorizes the reusability of

different types of objects from the general to the application-specific. Obviously,

the more reusable the objects are in the system, the more benefit will be derived

from them in terms of reusability and maintainability. However, boundary

objects (e.g. the GUI) are generally less so reusable, but most of the

development tools provide a GUI builder or a screen painter which significantly

reduces the amount of effort required to create them.

Chapter 4: Dynamic Modeling and Analysis 189

Figure 4.40. Refining class model with scenario analysis

Class name

Class diagram

Class name Class name ClassX

Class name

Association Association Association

Association

Class name Class name

<<actor>> <<boundary>> <<control>>
<<entity>>

objN : ClassX <<control>> <<entity>>

MVC level
sequence diagram

<<entity>>
objN : ClassX

message A

message B

ClassX

Attribute:

Operation:
 operation A
 operation B

Identify class and
operations

message A

message B

Figure 4.41. Message refinement in scenario analysis

<<control>>
<<entity>>

:ClassA Class A

Attribute:

Operation:
 checkID

Class A

Attribute:

Operation:
 checkID(usrName,passwd)

check Customer ID

190 Object-oriented Technology

Table 4.5. Reusability of different types of objects

Type of object Application scope Reusability

Object library General purpose Any application

Entity class Domain specific Within the domain

Control class Application specific Within the application

Boundary class Application specific Within the application

Do Not Create Giant Control Objects

Because control objects are application specific, if they are given too much

intelligence or logic, they will not be reusable for other applications. Bear in

mind that control objects should be treated as a kind of coordinator or broker

which do not actually perform the task themselves. Wherever possible, entity

objects should carry all the intelligence. In short, we should adopt a thin-control

and intelligent-entity approach when designing systems. The following

heuristics provide some guidance in determining the responsibilities to be

assigned to a control object:

• The control sequence of messages in the scenario

• Information about the sessions in relation to the use case scenario,

e.g. session ID, session status, etc.

• Control logic of the runtime session, e.g. transaction management, error

recovery, etc.

Checking Consistency between Use Case and Sequence Diagrams

As each use case is elaborated by a use case description containing the flow of

events element, transform it into a system-level sequence diagram by

determining the actor inputs and system responses. Each of the flow of events

may be optionally placed in the left-hand side of the sequence diagrams for

tracing consistency between the different levels of the sequence diagram.

Figure 4.42 depicts the consistency relationships between these models.

Identifying Objects and Operations through Scenario Analysis

Boundary and control objects can be identified by walking through the flow of

events of a use case scenario. Typically, each entry of the flow of events

Chapter 4: Dynamic Modeling and Analysis 191

involves three steps: (1) the actor inputs some information into the system,

(2) the system performs some action(s) and (3) the system responds to the

actor’s input. The following guidelines can help quickly identify the boundary

and entity objects in a use case scenario:

• Identify boundary objects by asking questions such as

“What input device(s) would be required for the actor(s) to enter the

information?”

“What output device(s) would be required for the system to give a response

to the actor(s)?”

• Identify entity objects by asking questions such as

“What information is required to respond to the actor’s input?”

After the boundary object(s) and entity object(s) have been identified,

add control object(s) to handle requirements that do not naturally belong to the

boundary and entity object(s), e.g. control flow of the use case, exception

handling, etc. For example, earlier in this chapter, Figure 4.32 shows the flow

Figure 4.42. Model consistency between a use case and its sequence diagrams

Use Case Description

Flow of Events
1.
2.
3.
......
N

Actor Input

1. Actor input 1

3. Actor input 2

........

System Response

2. System response 1

4. System response 2

........

:Actor :System

Actor input 1

System response 1

Actor input 2

System response 2

}

}

:Actor :Object1 :ObjectN

Actor input 1

Actor input 2

System response 1

System response 2

{

{

............

192 Object-oriented Technology

of events of the normal scenario of the Withdraw Money use case of the ATM

system example. The flow of events indicates that the actor needs to insert an

ATM card, enter a password, select a transaction, select an account, enter an

amount, collect the cash and get a receipt. The system needs to respond to the

actor by displaying messages on a screen. Hence, the boundary objects can be

identified: card reader, keypad, receipt printer, cash dispenser and screen. On

the other hand, from the messages displayed by the system, we know that the

system needs to verify an ATM card when the actor inserts the card.

To verify the card, the account information is required from the card-issuing

bank. Between the account and the card reader, it is necessary to add control

objects to handle the control logic in the ATM, bank consortium and the bank

system since the ATM can only communicate with the bank via the bank

consortium (see Figure 4.37).

Using Complementary Dynamic Models

Before we can develop the interaction diagrams of the system, we need to

elaborate the use case with scenarios, and to keep track of the connections

between these scenarios since the interaction diagrams for different scenarios

form the complete model for implementation. When the number of scenarios of

a use case increases, it would be rather difficult to keep track of the

relationships between the scenarios. In this case, use an activity diagram to

model the flow of events of a use case. The scenarios should correspond to the

paths in the activity diagram. In other words, all the representative scenarios

can be easily determined by tracing all the possible paths in the activity

diagram. Hence, the activity diagram becomes a placeholder to accommodate all

these scenarios of a use case together consistently. Thus, we can treat the

activity diagram as a steward of a use case by modeling the extension points

of a use case, glueing all its scenarios together.

Figure 4.43 shows that a use case can be elaborated by an activity diagram

together with its abstract use cases (<<include>> and <<extend>>). Bear in

mind that, when using an activity diagram to model a use case with abstract

use cases, it is vital to adhere to the principle of extension points: the abstract

use case will return to the point where it exited from. By zooming into the logic

of the activity diagram, it is evident that the activity diagram is traceable

through the corresponding base and abstract use cases. Each of the paths of an

activity diagram should be further elaborated by a system-level sequence

diagram. In addition to modeling the branching of the base use case to abstract

use cases, we can model other conditional branching, such as cancel operation

Chapter 4: Dynamic Modeling and Analysis 193

A1

A1 A2

A3

A1

A2

A3

Alternative scenario 1

A2

A3

Base Case

<<extend>>

<<extend>>

<<extend>>

Equivalent path diagram

Alternative scenario 2

Main scenario

Alternative scenario 3

State diagram

State1

State2

State4

State3

System-level sequence diagrams

:Actor :System

user input 1

System response 1

<<Actor>> <<Boundary>> <<Control>> <<Entity>>

MVC-level

sequence diagram

Figure 4.43. Various complementary dynamic models

......

equivalent

equivalent

equivalent

equivalent

equivalent

equivalent

Use Case Desccription

Flow of events

1.

2.

3.

......

N

Use case descriptions

Activity diagram

......

or exceptional handling, in an activity diagram. For example, it is useful to be

able to specify that if the Cancel Button of the ATM is pressed at any time,

all the preceding operations will be discarded and the ATM card ejected.

194 Object-oriented Technology

Note: Activity diagrams are not limited to being a steward of a use case, but

they can also be adopted as an approach that drives the whole software

development process at different levels and stages. We have developed a novel

approach called the activity analysis approach, which is a major enhancement

of the use case driven approach. This approach will be discussed in detail in

Chapter 6.

When we go into the details of the subsystem-level sequence diagram,

a statechart diagram is useful to express the complex logic and branching.

By effectively using these dynamic models in such a combination, we can model

the subsystem with sufficient details for implementation.

Dynamic Modeling and Analysis with VP-UML

In this section, the application of the key features of VP-UML to perform

dynamic modeling and analysis will be demonstrated. We shall use the ATM

system discussed earlier in this chapter as an example. Simply start up

VP-UML and follow the instructions in the following pages to create various

diagrams to perform dynamic modeling and analysis.

1. Develop system-level sequence diagrams

2. Develop subsystem-level sequence diagrams (optional for simple systems)

3. Develop subsystem-level statechart diagrams (optional for simple systems)

4. Create a scenario-based statechart diagram

5. Develop three-tier sequence diagrams

6. Develop three-tier collaboration diagrams (optional)

7. Develop a statechart diagram for each control object

Step 1: Develop System-level Sequence Diagrams

By tracing the path of the normal scenario of the Withdraw Money use case of

the ATM system, we can identify the following messages between the user and

the ATM:

• User inserts card

• System prompts user to enter PIN

• User enters PIN

• System prompts user to select services

• User selects withdraw money

• System prompts user to enter the amount

• User enters the amount

Chapter 4: Dynamic Modeling and Analysis 195

• System displays the “withdrawal success” message, ejects card and

dispenses money

• User collects the card and money

Based on these messages, build a system-level sequence diagram for the

scenario by following the instructions below:

1.1. Enter the sequence diagram working area, by clicking on the

application toolbar. A new sequence diagram will be presented in the

diagram pane (see Figure 4.44).

Figure 4.44. Sequence diagram work area

1.2. To create an actor, click on the sequence diagram toolbar. Move the

mouse pointer to the desired location in the work area and click the left

button again. An actor will then be created in the diagram and an inline

editable text box is automatically opened. To rename the actor label, enter

User and click anywhere outside the text box (see Figure 4.45).

196 Object-oriented Technology

1.3. Now, click the icon on the diagram toolbar and follow the steps in

creating the actor User to create the object. Name the object as ATM

System using the ready-to-edit inline editable text box (see Figure 4.46).

Figure 4.45. Creating an actor

Figure 4.46. Creating ATM System

Chapter 4: Dynamic Modeling and Analysis 197

1.4. Then create the messages between User and ATM System by selecting

the icon on the sequence diagram toolbar, click on the lifeline

(dotted line) under User, and then drag it to the lifeline under ATM

System. Enter insert card in the inline editing area of the message and

then press Ctrl-Enter or simply click on the empty area of the diagram

pane to complete this operation (see Figure 4.47).

1.5. Repeat the above steps (1.1–1.4) to create the following messages (see

Figure 4.48):

• System prompts user to enter PIN

• User enters PIN

• System prompts user to select services

• User selects “withdraw money”

• System prompts user to enter the amount

• User enters the amount

• System displays “withdrawal successful” message, ejects card and

dispenses money

• User collects the card and money

Figure 4.47. Creating a message

198 Object-oriented Technology

Step 2: Develop Subsystem-level Sequence Diagrams

The subsystem-level sequence diagram is developed from the system-level

sequence diagram.

2.1. First of all, copy the system-level sequence diagram created in Step 1.

Press Ctrl-A to select all the components in that diagram, then select

Copy from the Edit menu or press Ctrl-C (see Figure 4.49 and

Figure 4.50).

Figure 4.48. System-level sequence diagram for normal scenario of the

Withdraw Money use case

Chapter 4: Dynamic Modeling and Analysis 199

Figure 4.50. Copying diagram content

Figure 4.49. Selecting all elements in diagram

200 Object-oriented Technology

2.2. Create a new sequence diagram as in Step 1.1. Click the newly created

diagram in the project tree on the top left corner of the screen, and then

rename the diagram to Subsystem level (the normal scenario of the

Withdraw Money use case) using the inline editing facility.

2.3. In the blank sequence diagram, right click and select Paste (see

Figure 4.51) the copied contents in it (see Figure 4.52). Now, it is possible

to develop the subsystem-level sequence diagram by modifying this

diagram.

Figure 4.51. Pasting copied contents to the newly created diagram

Figure 4.52. Subsystem-level sequence diagram with contents from

system-level sequence diagram

Chapter 4: Dynamic Modeling and Analysis 201

2.4. From the problem statement of the ATM system example, we found that

there are three subsystems: ATM, bank consortium and bank. Messages

are sent between ATM and bank consortium and also bank consortium

and bank.

The following are typical messages between ATM and bank

consortium:

• ATM asks bank consortium to verify account and password

• Bank consortium returns verified result

• ATM asks bank consortium to process withdrawal request

• Bank consortium returns result of withdrawal request

Typical messages between bank consortium and bank include:

• Bank consortium asks bank to verify the account

• Bank returns verified result to bank consortium

• Bank consortium forwards the withdrawal request to bank

• Bank returns result of the withdrawal request

2.5. Follow Step 1.3 to create the bank consortium and the bank objects (see

Figure 4.53).

Figure 4.53. Creating Bank Consortium and Bank objects

202 Object-oriented Technology

2.6. We find that the message between subsystems may have durations

associated with end-to-end delays between the sender and the receiver.

To create a message with a duration, simply select from the sequence

diagram toolbar instead of the normal message icon (see Figure 4.54 and

Figure 4.55).

Figure 4.54. Creating messages with duration

Chapter 4: Dynamic Modeling and Analysis 203

Step 3: Develop Subsystem-level Statechart Diagrams

With the above normal scenario for the ATM system example, we can develop

a scenario-based statechart diagram with the following states:

• Before user inserts the ATM card

• Waiting for user to enter the PIN code after inserting ATM card

• Waiting for verification of user account

• Waiting for user to select a service

• Waiting for user to enter the amount to withdraw

• Waiting for transaction processing

Let us create the statechart diagram of the ATM.

3.1. First select from the application toolbar. A new statechart diagram

appears (see Figure 4.56).

Figure 4.55. Subsystem-level sequence diagram

204 Object-oriented Technology

3.2. To create an initial state, click on the statechart diagram toolbar,

move the mouse pointer to the desired location in the diagram area for the

initial state and then click once (see Figure 4.57).

Figure 4.56. Statechart diagram work area

Figure 4.57. Creating an initial state

Chapter 4: Dynamic Modeling and Analysis 205

3.3. To create other states, select the icon from the resource-centric

interface surrounding the initial state icon. Click and drag the icon to the

desired location and release the mouse button. You can name the newly

created state by typing Main screen in the ready-to-edit inline editable

text box (see Figure 4.58).

3.4. Repeat the above steps to create the following state:

• Wait for PIN

• Wait for account verification

• Wait for service selection

• Wait for withdraw amount information

• Process transaction

The statechart diagram for the ATM subsystem can be created by

refining the statechart diagram shown in Figure 4.59. As mentioned

before, there are other possible alternatives for the normal invocation of

the Withdraw Money use case, for example,

• Invalid ATM card

• Incorrect PIN number entered

• Account overdrawn

• Customer canceling the action

Figure 4.58. Creating a state

206 Object-oriented Technology

To create the full statechart diagram of the ATM system, simply enrich

the statechart diagram by including the alternative paths listed

earlier. Follow the steps below to create the statechart diagram for the

ATM subsystem.

3.5. Copy and paste the statechart diagram shown in Figure 4.59 into the new

statechart diagram.

Figure 4.59. Statechart diagram for the normal scenario of the ATM

3.6. Add additional states and transitions for the alternative scenarios.

Figure 4.60 shows a more complete statechart diagram of the system.

Chapter 4: Dynamic Modeling and Analysis 207

Step 4: Develop Three-tier Sequence Diagrams

Follow the procedures in Step 1 to create a new three-tier sequence diagram

based on the subsystem-level sequence diagram.

From the message flow between User and ATM System, we can identify

some user interface objects of the system. The “insert card” message implies

that there must be a card reader and perhaps a card controller. The following

are some user interface objects for the system:

• Card reader and card controller

• ATM controller

• Display

• Keypad

• Cash dispenser

Figure 4.60. Complete statement diagram of the ATM system

208 Object-oriented Technology

Also we have identified entity objects like account from the message flow

between bank consortium and bank.

Having created these objects, modify the message accordingly. Below is the

revised message flow of the system.

• User inserts ATM card to card reader

• Card reader sends ATM card information to card controller

• Card controller sends card information to ATM controller

• Card controller asks the Display to show “enter PIN” message

• Display shows “enter PIN” message to user

• User enters PIN via keypad

• Keypad sends entered PIN to ATM controller

• ATM controller asks bank consortium to verify account

• Bank consortium forwards request to bank

• Bank verifies account and then confirms account is valid

• Bank consortium notifies ATM controller that account is valid

• ATM controller asks display to show “select service” message

• Display shows “select service” message to user

• User selects withdrawal service via keypad

• Keypad sends withdrawal service code to ATM controller

• ATM controller asks display to show withdrawal dialog

• Display shows “enter withdrawal amount” dialog to user

• User enters withdrawal amount via keypad

• Keypad sends withdrawal amount to ATM controller

• ATM controller sends a withdrawal request to bank consortium

• Bank consortium forwards request to bank

• Bank processes withdrawal request with account and confirms the

request is valid

• Bank consortium notifies ATM controller that request is valid

• ATM controller asks display to show “withdrawal successful” message

• Display shows “withdrawal successful” message

• ATM controller asks card controller to eject card, and card controller

asks card reader to eject card

• Card reader ejects card to user

• ATM controller asks cash dispenser to dispense cash to user, and cash

dispenser dispenses cash to user

Follow the instructions below to develop the three-tier sequence diagram:

4.1. Follow instructions in Steps 1.3 to 1.4 to create the boundary, entity and

control objects and the messages between them.

Chapter 4: Dynamic Modeling and Analysis 209

4.2. To indicate that an object is an active object, right click on the object and

select the Active (see Figure 4.61 and Figure 4.62).

4.3. To include more details, the return message should be defined in the

Return Message type. To change the message type of the “show PIN

request” message, simply right click on the message, and then select

Return (see Figure 4.63). The message will then be changed into a

Return Type message (see Figure 4.64).

4.4. Repeat the above Step 4.3 to change the following messages to become a

return message:

• Account OK from account to bank

• Account OK from bank to bank consortium

• Account OK from bank consortium to ATM controller

• Withdraw OK from account to bank

• Withdraw OK from bank to bank consortium

• Withdraw OK from bank consortium to ATM controller

The complete three-tier sequence diagram is shown in Figure 4.65.

Step 5: Develop Three-tier Collaboration Diagram

Based on the sequence diagram developed in Step 5, we can now develop a

three-tier collaboration diagram for the corresponding scenario:

5.1. To create the collaboration diagram, click on the application toolbar

(see Figure 4.66).

5.2. To create the layers for different types of objects, click on the

Collaboration Diagram toolbar and place the mouse pointer in the

desired area and then click once. A horizontal swimlane box is then

created and an inline editable text box is automatically opened. Rename

Swimlane, by entering Boundary Objects and then click anywhere outside

the text box to complete the operation (see Figure 4.67).

5.3. Click the button next to the Fill row at the property pane (see

Figure 4.68) to open the Format Fill Color dialog (see Figure 4.69) and

change the color of the swimlane into white (see Figure 4.70).

5.4. Repeat the above steps to create the swimlanes for the control and entity

objects and also an empty swimlane for the actor that does not belong to

the system (see Figure 4.71).

210 Object-oriented Technology

Figure 4.61. Changing object type

Figure 4.62. ATM controller becoming active object

Chapter 4: Dynamic Modeling and Analysis 211

1.4: verify card

1.5: verify card

1.6: card valid
1.7: card valid

1.5: card
valid

2.2: verify
account 2.3: verify

account
with bank

2.4: verify account

Figure 4.64. Changing message type to return

Figure 4.63. Changing message type

212 Object-oriented Technology

Figure 4.65. Three-tier sequence diagram

User

Card
Reader

KeyPad Display Card
Controller

Cash
Dispenser

ATM
Controller

Consortium Bank Account

4.12: ATM card
4.13: dispense

cash

2: enter PIN

1: insert card

1.3: verify card

1.4: verify card

1.5: verify card

2.5: account OK
2.6: account OK

2.7: account OK

2.2: verify
account 2.3: verify

account
with bank

2.4: verify account

1.6: card valid
1.7: card valid

1.8: card valid

4.2: withdraw
request

4.3: withdraw
request 4.4: withdraw

request

4.5: withdraw OK
4.6: withdraw

OK
4.7: withdraw

OK

1.1: verify card

1.10: enter PIN request

1.2: verify card

1.9: enter PIN request

2: enter PIN

2.9: display main menu

2.8: display main menu

3: select withdraw service
3.1: select withdraw service

3.2 ask for amount
3.3: enter amount request

4: enter withdraw amount

4.1: enter withdraw amount

4.8: show withdraw success message

4.9: show withdraw success message

4.10: reject card
4.11: eject card

4.15: show main screen

4.14: cash

4.16: main screen

Chapter 4: Dynamic Modeling and Analysis 213

Figure 4.66. Collaboration diagram working area

Figure 4.67. Boundary object swimlane

214 Object-oriented Technology

Figure 4.69. Format Fill Color dialog

Figure 4.68. Open format Fill Color dialog

Chapter 4: Dynamic Modeling and Analysis 215

Figure 4.71. Collaboration diagram with swimlanes

Figure 4.70. Changing Color of swimlane white

216 Object-oriented Technology

5.5. To create an actor object, click on the Collaboration Diagram

toolbar click once in the top-most swimlane. An actor symbol is then

placed in that swimlane. To create an actor in the design area rather than

inside a swimlane, click once in the design area. Similar to creating the

swimlane, an inline editable text box is automatically opened, which

allows the renaming of the actor by editing the text box (see Figure 4.72).

5.6. Click on and drag the icon surrounding the actor’s resource-centric

interface and release the mouse button next to the actor in the desired

location within the diagram area. The object is then created with a

collaboration link attached to the actor. Type the name of the object in the

inline text area (see Figure 4.73).

5.7. Repeat the above steps to create the following objects (see Figure 4.74):

• Boundary objects:

— Display

— Keypad

— Cash dispenser

— Card reader

• Control objects:

— Card controller

— ATM controller

— Consortium

— Bank

• Entity object:

— Account

5.8. Now create the messages between the objects. Click on the

Collaboration Diagram toolbar and click once on the collaboration link

in which the message is to be created. A Message to symbol is placed next

to the collaboration link. Type in the name of the message in the inline

text area (see Figure 4.75).

5.9. To specify an incoming message from an object (Message from),

click on the Collaboration Diagram toolbar, and repeat the steps

similar to the previous instruction. If the diagram is too large to be

displayed on one screen, use the button to zoom out so that the entire

diagram can be displayed.

5.10. To change the object type to Active, right click on the collaboration object,

then select the Active (see Figures 4.76 and 4.77).

Chapter 4: Dynamic Modeling and Analysis 217

Figure 4.72. Creating an actor

Figure 4.73. Creating objects

218 Object-oriented Technology

Figure 4.75. Creating a To Message

Figure 4.74. Three-tier collaboration diagram

Chapter 4: Dynamic Modeling and Analysis 219

Figure 4.76. Changing object type to Active

Figure 4.77. Changing object type

220 Object-oriented Technology

Boundary Objects

Control Objects

4.11: reject card

Cash Dispens...

Figure 4.78. Three-tier collaboration diagram

Entity Objects

User

4.14: cash

1: insert card

Card Reader

4.13: dispense cash

1.1: verify
card

4.12: ATM card

Card Controller

1.2: verify
card

4.10: reject card

1.6: card valid

2.5: account
OK

4.5: withdraw
OK

Bank

1.5: verify card 2.4: verify
account

4.4 withdraw
request

Account

4.6: withdraw OK

2.6: account OK

1.7: card valid

Consortium
1.3: verify

card
2.2: verify
account

4.2: withdraw
request

1.4: verify card
2.3: verify account

with bank
4.3: withdraw

request

1.8: card valid 2.7: account OK 4.7: withdraw OK

Display KeyPad

4.15: show main screen

4.8: show withdraw success message

3.2: ask for amount

2.8: display main menu

1.9: enter PIN
request

4.1: enter withdraw
amount

2.1: enter PIN

3.1: select withdraw
services

4.16: main screen

4.9: show withdraw success message

3.3: enter amount request
2.9: display main menu

1.10: enter PIN request

2: enter PIN 3: select withdraw 4: enter withdraw amount

ATM Controller

5.11. Repeat the above steps to create all the other messages shown in the

three-tier sequence diagram. The complete three-tier collaboration

diagram is shown in Figure 4.78.

Chapter 4: Dynamic Modeling and Analysis 221

Step 6: Develop a Statechart Diagram for Each Control Object

By analyzing the incoming and outgoing messages of the Card Controller

objects, the following states have been identified:

• Check the validity of the ATM card

• Verify the ATM card with bank consortium that the card issuer bank is in

the service list of the ATM system

Now, create the statechart diagram for the Card Controller objects by

following the procedure in Step 3 to create a statechart diagram as shown in

Figure 4.79.

Figure 4.79. Statechart Diagram of Card Controller

Repeat the above step to create the statechart diagrams for the following

control objects:

• ATM controller

• Bank consortium

Summary

A dynamic model represents the external dynamic behaviors of a system. In

UML a dynamic model can be represented by the sequence diagram, the

collaboration diagram, the statechart diagram or the activity diagram, each of

222 Object-oriented Technology

which exhibits a different aspect of the dynamic behaviors. Sequence diagrams

are temporally focused and suitable for analyzing the order of the interactions

between objects while collaboration diagrams are structurally focused and

suitable for modeling the required structural relationship between objects to

realize a scenario. Statechart diagrams are used to model entity states and

their transitions in response to events, while activity diagrams model

performance of actions of an activity or procedure.

In carrying out dynamic modeling and analysis, a system-level sequence

diagram is constructed by first performing textual analysis on the textual

description for the flow of events of the scenario. The creation of subsystem-

level sequence diagrams may sometimes be necessary for large systems, and

subsystem-level statechart diagrams can then be created. By identifying

boundary, control and entity objects, the three-tier sequence diagram can be

developed. Based upon the three-tier sequence diagram, a three-tier

collaboration diagram is constructed by grouping these objects into different

packages according to their types. Finally, the statechart diagram can be

created for each of the active control objects.

To illustrate the concepts described in this chapter, the modeling and

analysis of an ATM system has been presented, detailing the steps involved by

using the powerful features of the VP-UML CASE tool.

Exercise

You are asked to continue the analysis of the online bookstore system described

in Exercise of Chapter 3.

Follow the steps below to perform dynamic analysis and modeling of the

system by:

1. Developing system-level sequence diagrams for the use case scenarios

2. Developing three-tier sequence diagrams for the use case scenarios

3. Developing three-tier collaboration diagrams (optional) for the use case

scenarios

4. Developing a state chart diagram for each of the control objects.

5. Refining the class diagram that you have developed in Exercise of

Chapter 2 by using the results of Steps 2 to 4 above.

223

Chapter

5
Implementing UML Specification

Overview

The Unified Modeling Language (UML) is the de facto standard for specifying

the high-level structure of a software system. However, the specifications

contained in the UML diagrams generally do not provide sufficient details for

implementation and they have to be manually translated into code. With the

aid of modern CASE tools, it is now possible to generate a framework of

partially complete programming code from these diagrams. The programmer is

required to fill in the necessary details to the framework to complete the coding

process. UML specifications can be conveniently implemented using modern

object-oriented programming languages such as Java.

In this chapter, we will focus on implementation issues for five UML

diagrams, namely, class, state, activity, sequence and collaboration diagrams,

as they encapsulate most of the specification information for system

implementation.

What You Will Learn

On completing the study of this chapter, you should be able to:

• implement a class diagram

• implement a state diagram

• implement an activity diagram

• implement sequence and collaboration diagrams

224 Object-oriented Technology

Introduction

In the Unified Process, the system being developed is analyzed, designed and

implemented incrementally in the inception, elaboration, construction and

transition phases, each serving a specific purpose. In the early phases

(inception or elaboration phase), the developer may want to verify the

requirements or test the core technologies used for development. Therefore, at

such a stage, the design of the system is usually incomplete, and the developer

will only be able to implement some initial partially complete prototypes.

In later phases, as more information about the requirements is available,

the developer can pursue the implementation process more smoothly.

The priority of the use cases may be a helpful guide as far as the order in

which they are implemented is concerned. Consequently, classes required for

realizing higher priority use cases should be designed and implemented first.

A class can be implemented when the attributes and the methods have been

specified, typically by class, interaction, activity and state diagrams. Generally,

entity classes can be specified by class and interaction diagrams. This is

because entity classes are used to maintain data in the problem domain,

and their methods manipulate the data or maintain the association between

other entities. The logic associated with such entity classes is relatively

straightforward.

For complex control classes, state or activity diagrams are usually used in

addition to class and interaction diagrams to manage the control flows of use

cases. For boundary classes that interact with human actors, the user interface

design should be completed first before the boundary classes can be fully

implemented.

Given a use case and the specifications of the required classes,

the developer can then prioritize the implementation of the classes according to

their architectural significance in the system. This is to reduce risks in the

implementation process. For example, if the usability of the system is a high

risk item, it may be necessary to design and first implement the user interface

involving the boundary classes that interact with the human actor.

In this chapter, we will explain in detail the general approach to

implementing the five diagrams. We then present a case study showing how the

complete UML specification of a simplified lift control system is implemented

in Java.

Implementing Class Diagrams

A class diagram shows the objects that are required and the relationships

between them. Since the class diagram provides detailed information about the

Chapter 5: Implementing UML Specification 225

properties and interfaces of the classes, the class diagram can be considered as

the main model and treat the other diagrams as supplementary models.

The supplementary models provide additional information about their

implementation which is specified in the class diagram. For example,

the sequence diagram can be used to describe the sequence of actions performed

when a method of a class is invoked.

A Single Class

A class is a collection of attributes and methods. The members (attribute or

method) of a class can have different levels of visibility (public, protected,

package, private). A sample class is shown in Figure 5.1.

The translation of a single class in a class diagram is carried out in a

number of ways:

• Each attribute of the class is translated into a declaration of data variables

in Java

• Each operation or method is translated into a declaration of a method in

Java

• The levels of visibility of a class member can be specified by the Java

keywords: public, protected and private. No specifier is needed if the

visibility of the class member is a package

For example, the class in Figure 5.1 can be translated into the code in

Figure 5.2. Note that the bodies of the methods are empty. The programmer

needs to fill in the code required for implementing the methods. Very often, the

programmer may need to refer to other models, such as sequence diagrams,

which provide more information about the specification of the methods.

Package

Classes may be organized and grouped as a package for ease of modeling and

maintenance. In Java, classes of the same package are placed in one directory

and the Java keyword package is used to declare its name (see Figure 5.3).

The package name is the path of the directory that contains the classes of the

package. Hence, ClassA in Figure 5.3 is placed in the directory com/abc/library.

In order to use the classes in the package, the developer needs to add the path

of the root directory of the package in the CLASSPATH, which is an

environment variable of the Java runtime and development tool.

226 Object-oriented Technology

Figure 5.2. Java code for SampleClass

class SampleClass {

private int privateAttribute;

protected double protectedAttribute;

long packageAttribute;

public boolean publicAttribute;

public boolean publicMethod(int parameter1) {

…

…

}

private float privateMethod(byte parameter1, float parameter2) {

…

…

}

protected double protectedMethod() {

…

…

}

void packageMethod(short parameter1) {

…

…

}

} Sample Class

Figure 5.1. A sample class with members of different levels of visibility

SampleClass

 privateAttribute : int

#protectedAttribute : double

packageAttribute : long

 publicAttribute : boolean

 privateMethod : float

#protectedMethod : double

packageMethod() : void

 publicMethod() : boolean

Chapter 5: Implementing UML Specification 227

Inheritance

Inheritance is useful for modeling situations where common attributes and

operations are specified and shared in a base class. The shared attributes and

operations can then be modeled by defining inheritance relationships between

the individual classes (subclasses) and the base class. Inheritance also provides

extensibility of the software system. We can build a software system as a

collection of connected software components. Each component only knows the

interfaces of its partner components. In so doing, we can replace any component

with another which has the same interface. With this modular approach to

software development, the software system can be upgraded with new

functionalities by simply adding new components or replacing old ones, without

major modification of existing components of the system.

In UML, there are two forms of inheritance:

• A class inherits an abstract class or a concrete class. The inheritance

relationship is translated into the Java keyword extends (see Figure 5.4)

• A class inherits an interface. In other words, a class declares that it

implements all the methods specified in the interface. The inheritance

relationship is translated into the Java keyword implements (see

Figure 5.5). In the UML notation, inheritance of an interface is represented

by an arrow with a dashed-line and a stereotype <<realize>>.

Figure 5.3. Implementation of package

com

abc

library

ClassA

package

com.abc.library;

class ClassA … . {

…

}

228 Object-oriented Technology

Figure 5.4. Implementation of inheritance between classes

BaseClass

SubClass

class SubClass extends BaseClass

{

…

}

Figure 5.5. Implementation of inheritance between an interface and a class

<<realize>>

<<interface>>

BaseInterface

ConcreteClass

interface BaseInterface {

// declaration of methods

…

}

class ConcreteClass implements

BaseInterface

{

// implementation of

// methods of the

// interface BaseInterface

…

}

Associations

There are several ways to implement an association between classes:

• A private attribute to link one object with another

• A vector to link one object to many objects

• A hashtable to link one object to many objects, while simultaneously

providing search capability

We will discuss the different types of associations next.

Chapter 5: Implementing UML Specification 229

One-to-one Association

A one-to-one association between classes can be easily implemented as an

attribute in each of the associated classes. For example, ClassA and ClassB are

associated classes in Figure 5.6. In runtime, the attribute contains the

reference of the associated object. If the association has additional attributes,

put the association attributes to either class of the association. Figure 5.6

illustrates how a binary one-to-one association is implemented. The attributes

of the association class are declared in ClassA, which is one of the associated

classes.

Figure 5.6. Implementation of one-to-one association

AssociationClass

ClassA

ClassB

class ClassA {

ClassB _b;

// declare attributes

// for the

// association class

…

}

class ClassB {

ClassA _a;

…

}

1

1

One-to-many Association

A one-to-many association can be implemented by an attribute on the many

side and by a vector on the one side (see Figure 5.7). A vector is an expandable

array of objects where each can be accessed by an index. If the association has

additional attributes, the association attributes can be stored on the many side

of the association (see Figure 5.7). In addition to variables for implementing the

association, we also need methods for maintaining the links between the objects

in runtime. Since the class on the one side has a vector to keep all the

references of the associated objects, methods for adding, removing or searching

objects in the vector are needed (see Figure 5.8). Alternatively, the vector can

be replaced by a hashtable or other types of data structures to facilitate faster

object searches. In the class on the many side, an attribute is declared to hold

the reference of an object of the class on the one side (see Figure 5.7).

230 Object-oriented Technology

Figure 5.7. Implementation of a one-to-many association

AssociationClass

ClassA

ClassB

1

0..n

class ClassA {

Vector _b;

…

}

class ClassB {

ClassA _a;

// declare attributes

// for association

// class

}

Figure 5.8. Implementation of the class on the one side

import java.util.Vector;

class ClassA {

Vector _Bs;

public ClassA() {

_Bs new Vector();

…

}

public Enumeration getBs() {

return (_Bs.elements());

}

// link a ClassB object to this object

public void addB(ClassB b) {

_Bs.add(b);

}

// remove the link between ClassB object to this

// object

public void removeB(ClassB b) {

_Bs.remove(b);

}

// other functions for searching objects in the

// vector

…

} // ClassA

Chapter 5: Implementing UML Specification 231

Qualified Associations

A qualified association can be implemented by a hashtable or other types of

data structures which support searching by key values. The hashtable is

declared on the same side as the qualifier, which is used as the key of the

hashtable (see Figure 5.9).

Figure 5.9. Implementation of a one-to-many qualified association

ClassA

qualifier

ClassB

1

0..1

class ClassA {

Hashtable _b;

…

}

class ClassB {

ClassA _a;

// declare attributes

// for association

// class

…

}

AssociationClass

The Java class java.util.Hashtable implements the hashtable.

The hashtable is used to store a collection of objects which are accessible by

keys. To store and retrieve an object by a key, a key object is required. The key

object needs to provide two methods: the hashCode method and the equals

method. A sample implementation of the methods for adding, removing and

searching objects in the hashtable are shown in Figure 5.10. Figure 5.11 shows

the code for the implementation of the key object.

Many-to-many Association

A many-to-many association can be implemented in one of the following ways:

• If the association does not have additional attributes, we can use a vector

or a hashtable on each side

• If the association has attributes, each link between associated objects will

have a separate value for each attribute of the association. An object on one

side may have associations with many objects on the other. Therefore, it is

not possible to embed the association attributes on either side of the

association. A distinct association class for holding the links between the

objects is therefore needed. The association class can also be used to store

additional attributes of the association

232 Object-oriented Technology

Figure 5.10. Sample implementation of qualified association

import java.util.Hashtable;

class ClassA {

private Hashtable _Bs;

public ClassA() {

_Bs new Hashtable();

}

public Enumeration getBs() {

return (_Bs.elements());

}

public void addB(ClassB b, int key) {

_ClassBs.put(new Key (key), b);

}

public void removeClassB(ClassB b) {

_ClassBs.remove(b);

}

public ClassB getClassB(int key) {

return((ClassB) _Bs.get(new Key (key)));

}

} // ClassA

Figure 5.11. Implementation of the Key class

class Key {

int _key;

public ClassB(int key) {

_key key

}

public boolean equals(Object obj) {

if (obj instanceof Key)

return (((Key) obj)._key _key);

else

return(false);

}

public int hashCode() {

return (_key);

}

} // Key

Chapter 5: Implementing UML Specification 233

The first method has already been covered in previous sections, so we shall

illustrate the application of the second with the help of an example (see

Figure 5.12). The example models the relationship between the Person and

School classes. A person can enroll in many schools and a school can have many

students.

Figure 5.12. A many-to-many association

Registration

 student number

Person School
0..n 0..n

Figure 5.13. Association object of the Registration class

Peter Chan
1242

1234

1111

9878

6782

9807

9080

Registration

Alan Tong

John Lee

Venice Tsui

Mary Lui

TWGS

KCTS

LKP

CMT

KKY

Registration

Person School

The association class keeps the links between the objects of the Person class

and the objects of the School class. Each association object has three attributes:

one attribute for the reference to the object of the Person class, one for the

object of the School class and one for the student number. This is illustrated in

Figure 5.13. The implementation of the association class is shown in

Figure 5.14. Each school object or student object keeps links to its associated

objects. The implementation of the School and Student classes are shown in

Figures 5.15 and 5.16 respectively.

234 Object-oriented Technology

Figure 5.14. Implementation of many-to-many association with Registration class

Class Registration {

private Person _student;

private School _school;

private int _studentNo;

private Registration(Person student, School school, int studentNo) {

_school school;

_student student;

_studentNo studentNo;

}

static public void register(Person student, School school, int studentNo) {

Registration reg new Registration(student, school, studentNo);

school.addRegistration(reg);

student.addRegistration(reg);

}

public void deregister() {

this._school.removeRegistration(this);

this._student.removeRegistration(this);

}

public School getSchool() {

return(_school);

}

public Person getStudent() {

return(_student);

}

} // Registration

Aggregation and Composition

Aggregation is a strong form of an association. It is used to model the

relationship between a whole object and its parts. Aggregation can be

implemented as a plain association.

Composition is a special case of aggregation where a whole object owns its

parts for its lifetime, and a part object can exist only when the whole object

exists. Hence, a composition requires that the parts of the whole object are

Chapter 5: Implementing UML Specification 235

Figure 5.15. Implementation of School class

class School {

private String _name;

private Vector _registrations;

public School(String name) {

_name name;

_registrations new Vector();

}

public void setName(String name) {

_name name;

}

public String getName() {

return (_name);

}

public void addRegistration(Registration reg) {

_registrations.add(reg);

}

public void removeRegistration(Registration reg) {

_registrations.remove(reg);

}

public Enumeration getStudents() {

int i;

Vector students new Vector();

for (i 0; i _registrations.size(); i)

students.add (((Registration)

_registrations.elementAt(i)).getStudent());

return (students.elements());

}

} // School

deleted before the whole object can be deleted. We can implement this

destruction behavior in the destructor of the whole object class. Such

techniques can be applied to one-to-many associations to implement

aggregation and composition relationships.

236 Object-oriented Technology

Implementing Persistent Classes Using

Relational Databases

Some objects have a long life span, longer than the invocation of one or more

use cases. Such objects are known as persistent objects. For example, customers

and orders are persistent objects in a mail order system. They need to be stored

Figure 5.16. Implementation of Person class

class Person {

private String _name;

private Vector _registrations;

public Person (String name) {

_name name;

_registrations new Vector();

}

String getName() {

return (_name);

}

void setName(String name) {

_name name;

}

public void addRegistration(Registration reg) {

_registrations.add(reg);

}

public void removeRegistration(Registration reg) {

_registrations.remove(reg);

}

public Enumeration getSchools() {

int i;

Vector schools new Vector();

for (i 0; i _registrations.size(); i)

schools.add (((Registration)

_registrations.elementAt(i)).getSchool());

return (schools.elements());

}

} // Person

Chapter 5: Implementing UML Specification 237

Figure 5.18. SQL statement to create student table

CREATE TABLE Student (

student_number char (30) not null,

name char (30) not null,

address char (30),

PRIMARY KEY (student_number));

CREATE INDEX student_index_name ON Student (name);

in permanent storage media such as a hard disk. Usually, a database system

is used to implement persistent objects, and there are two choices of database

technologies: object-oriented and relational databases. Nowadays, relational

databases are more mature and very popular. If a relational database is used,

the persistent classes need to be mapped onto database tables. We will

illustrate this concept by implementing persistent classes using a relational

database.

A Single Class

A class is mapped onto one or more database tables (see Figures 5.17 and 5.18).

In object-oriented programming languages, objects are identified by reference,

an internal pointer for locating the object in the memory space. When a class

is mapped onto database tables, it is important to be able to uniquely identify

an object in the database. Hence, we need to add an ID attribute to the

database table for implementing an object reference. Normalization of database

tables can be applied after the classes have been mapped onto database tables.

Figure 5.17. Mapping a persistent class onto a database table

Student

 studentNumber

 address

 name

Attribute name

student-number

name

address

Nulls?

N

N

Y

Domain

ID

name

address

Student table

238 Object-oriented Technology

One-to-many Association

A one-to-many association can be implemented in the following two ways:

• Embedding the attributes of the association in the table for the class on the

many side. The table for the many side contains a key of the table for

one side

• Creating a separate table for the association class

The former has the advantage of faster access time for the attributes of the

association and fewer storage overheads. However, it is not applicable to a

many-to-many association with an association class, as each link between

associated objects has a separate pair of key values. An object on one side may

associate with many objects on the other. Therefore, it is not possible to embed

the pairs of key values in the tables for the associated classes. In this case,

we need to implement the association as a separate table. Since it is not

uncommon that the multiplicity of an association changes after the system has

been developed, the first approach should be applied with care.

The latter is a more general approach and can support many-to-many

associations. Hence, it is more applicable if there is a possibility that the

one-to-many association may change to a many-to-many association in the

future. We will discuss this approach below.

Consider a sample association shown in Figure 5.19. The association class

is embedded in the person table as shown in Figure 5.20. Figure 5.21 shows the

SQL statements for the declaration of the Person table.

Many-to-many Association

A many-to-many association can be implemented by creating a separate table

for the association. For example, consider the many-to-many association shown

in Figure 5.22. The association class is mapped onto a table, which has two

attributes (keys) for linking the Person and School objects (see Figure 5.23).

The registration table contains the keys of the Person table and the School

table: person_ID and school_ID. These keys also form the key of the

Registration table.

Qualified Many-to-many Association

A qualified many-to-many association can be implemented by creating a

separate table. The table contains the primary keys of the associated classes

and the qualifier. For example, consider the qualified many-to-many association

Chapter 5: Implementing UML Specification 239

Figure 5.19. A sample one-to-many association

Registration

 student number

0..n 0..1
Person School

Figure 5.20. Merging the Person and the Registration tables

Attribute name

person-ID

school-ID

student-number

student-name

Nulls?

N

Y

Y

N

Domain

ID

ID

String

name

Person table

Figure 5.21. Implementation of one-to-many association using SQL

CREATE TABLE Person (

person_ID char (30) not null,

school_ID char (30) not null,

person_name char (30) not null,

student_number char (30),

PRIMARY KEY (person_ID),

FOREIGN KEY (school_ID) REFERENCES

School (school_ID));

CREATE INDEX Registration_index_person ON Person (person_name);

CREATE INDEX Registration_index_school ON Person (school_ID);

shown in Figure 5.24. The association class is mapped onto a table, which has

two attributes for linking the Person and School objects, with the qualifier as

the attribute.

240 Object-oriented Technology

Figure 5.22. A sample many-to-many association

Registration

 student number

Person School
0..n 0..n

Figure 5.23. Implementation of sample many-to-many association

CREATE TABLE Registration (

person_ID char (30) not null,

school_ID char (30) not null,

student_number char (30),

PRIMARY KEY (person_ID, school_ID),

FOREIGN KEY (person_ID) REFERENCES Person (person_ID),

FOREIGN KEY (school_ID) REFERENCES School (school_ID));

CREATE INDEX Registration_index_person ON Registration (person_ID);

CREATE INDEX Registration_index_school ON Registration (school_ID);

Figure 5.24. Qualified many-to-many association

0..n 0..nPerson School
course

registration

Figure 5.25 Table model of qualified association

Attribute name

person-ID

school-ID

course

Nulls?

N

N

N

Domain

ID

ID

course name

Registration table

Chapter 5: Implementing UML Specification 241

Figure 5.26. SQL implementation of qualified association

CREATE TABLE Registration (

person_ID char (30) not null,

school_ID char (30) not null,

course char (30),

PRIMARY KEY (person_ID, school_ID, course),

FOREIGN KEY (person_ID) REFERENCES Person,

FOREIGN KEY (school_ID) REFERENCES School);

CREATE INDEX Registration_index_person ON Registration (person_ID);

CREATE INDEX Registration_index_school_course ON Registration (school_ID, course);

N-ary Associations

Like a many-to-many association, an N-ary association can be implemented as

a separate table with the primary keys of the associated classes as attributes.

For example, the N-ary association in Figure 5.27 is mapped onto the table

model in Figure 5.28. The Timetable table contains the keys of the Class, Room,

Teacher and Subject tables. These keys also form the key of the Timetable table.

Generalization

There are several methods for mapping a generalization hierarchy of classes:

• Mapping one class to one table

• Replicating attributes in subclasses

• Replicating attributes of all subclasses in the root superclass

We shall illustrate these methods using an example. Figure 5.29 shows a

simple inheritance hierarchy with one superclass and two subclasses. Both the

student and teacher have name as their attribute. The student class has year

as additional attribute, while the teacher has position and expertise as its

additional attributes.

Mapping One Class to One Table

This method directly maps a class in the hierarchy onto a separate table.

The tables of the hierarchy have a common ID (key) as attribute, which is used

to identify an object’s data. An object’s data may be stored in more than one

table. This method is fully extensible for adding new subclasses to the

hierarchy. Furthermore, this method can also support multiple inheritance.

242 Object-oriented Technology

Figure 5.27. An N-ary association

Room

Class Teacher

Timetable

 day

 time
Subject

Figure 5.28. Table model of the N-ary association

Attribute name

class-ID

teacher-ID

Room-ID

Subject-ID

Day

Time

Nulls?

N

N

N

N

Y

Y

Domain

ID

ID

ID

ID

Day

Time

Timetable table

Figure 5.29. A generalization hierarchy

 Teacher

 position

 expertise

 Person

 name

 Student

 year

Chapter 5: Implementing UML Specification 243

Figure 5.31. Table model for Student class

Attribute name

person-ID

year

Nulls?

N

Y

Domain

ID

year

Student table

Figure 5.32. Table model for Teacher class

Attribute name

person-ID

position

expertise

Nulls?

N

Y

Y

Domain

ID

job-position

subject-expertise

Teacher table

However, its disadvantage is that access to an object’s data is relatively slow.

The example generalization hierarchy (see Figure 5.29) is mapped onto three

separate tables: Person, Student and Teacher (see Figures 5.30 to Figure 5.32).

Each table contains the primary key person-ID as the attribute for identifying

the object’s data. Note that the Student (or Teacher) object is stored in two

records: one in the Person table and the other in the Student (or Teacher) table.

To allow easy access to the individual subclasses, we will also create views for

the Student and Teacher classes (see Figure 5.33).

Figure 5.30. Table model for Person class

Attribute name

person-ID

person-name

person-type

Nulls?

N

N

N

Domain

ID

name

person-type

Person table

244 Object-oriented Technology

Replicating Attributes in Subclasses

In this method, we eliminate all superclasses and replicate the superclass

attributes in subclasses. We then map the subclasses onto tables. This method

is useful if we frequently search or access individual subclasses. For example,

the Teacher and Student classes in Figure 5.29 are mapped onto two separate

table models, with the attributes of the Person class replicated in them (see

Figures 5.34 and 5.35). The superclass Person is implemented as a view (see

Figure 5.36).

Figure 5.33. SQL implementation of views for Teacher and Student classes

Create view TeacherView

as select Person.*, Teacher.*,

from Person, Teacher,

where (Person.person-ID Teacher.person-ID);

Create view StudentView

as select Person.*, Student.*,

from Person, Student,

where (Person.person-ID Student.person-ID);

Figure 5.34. Table model for Teacher class

Attribute name

person-ID

person-name

person-type

position

expertise

Nulls?

N

N

N

Y

Y

Domain

ID

name

person-type

job-position

subject-expertise

Teacher table

Replicating Attributes in the Root Superclass

The whole class hierarchy is mapped onto a single table which contains the

attributes of all the classes under the hierarchy. In other words, the root

superclass contains the attributes of all its subclasses. The advantage of this

method is the fast access time. However, a lot of storage resources are wasted

if the subclasses contain many additional attributes. For example, the whole

Chapter 5: Implementing UML Specification 245

Figure 5.37 Table model of a single class representing the whole class hierarchy

Attribute name

person-ID

person-name

person-type

position

expertise

year

Nulls?

N

N

N

Y

Y

Y

Domain

ID

name

person-type

job-position

subject-expertise

year

Person table

Figure 5.35. Table model for Student class

Attribute name

person-ID

person-name

person-type

year

Nulls?

N

N

N

Y

Domain

ID

name

person-type

year

Student table

Figure 5.36. Person class implemented as a view

create view person as

select person-ID, person-name, person-type from Student

union

select person-ID, person-name, person-type from Teacher

class hierarchy in Figure 5.29 is mapped onto a single table in Figure 5.37.

The Person table contains all the attributes that can be found in every class in

the hierarchy. In this case, the attributes of the Person, Student and Teacher

classes.

246 Object-oriented Technology

Implementing Activity Diagrams

An activity diagram is used to represent a sequence of actions performed in a

use case or procedure. It can also be used to model an algorithm, the

computation flow of a control object or a subsystem. In this case, an activity

diagram may be translated as executable program code if the diagram contains

sufficient details. In general, there are two approaches for implementing an

activity diagram:

• Implementing the control flow using the location within a program to hold

the state of an object. Control statements, such as if-then-else and while

statements, are used to implement the necessary branching and looping of

the control flow of the activity diagram

• Implementing the control flow as a state machine

We shall illustrate the application of the former approach in this section

and the latter in the next. The following are the general rules to translate the

elements of an activity diagram into program code:

• Action state. It is translated to statements of actions, such as method calls,

and computational statements.

• Conditional branch. It is translated to an if-then-else statement.

• Concurrent branch. It is translated to threads for each additional control

flow.

• Loop. A loop in the activity diagram is translated to a while-loop statement.

Given an activity diagram, first identify the main execution path for the

normal scenario. Starting from the initial state, identify and record the path

through the activity diagram that corresponds to the expected sequence of

actions. Then identify the alternative execution paths, which branch off from

the main execution path and rejoin the main path at the next action state (see

Figure 5.38). These paths will become the if statements.

Note: If the activity diagram is modeling the control object of a use case, such

execution paths usually correspond to the extension use cases.

Next, identify the alternative paths (the paths that branch off from the

main path). These paths will become if-then-else statements (see Figure 5.38).

Finally, identify loop-back paths that branch off from the main path and rejoin

it at an earlier location (see Figure 5.38). These loop-back paths will become

loop statements.

Chapter 5: Implementing UML Specification 247

Figure 5.38. Translating activity diagram to implementation

Action State 1

Action State 4

Action State 6

Action State 7

Action State 2 Action State 3

Normal path

Path for loop

statement

Action State 5

Path for

if-statement

Path for if-then-

else statement

To illustrate the translation, consider the activity diagram in Figure 5.39

which models the behavior of the control object of a vending machine. In this

figure, the normal execution path includes the action states wait for coin,

wait for selection, dispense soft drink (concurrent action) and dispense change

(concurrent). There are several loop-back paths: path A which is from the

conditional branch to the wait for coin action state, path B from the conditional

branch to the wait for selection action state, path C from the dispense coins to

the wait for coin action state, and path D from the concurrent action state to

the wait for coin action state.

The activity diagram is translated to program code as shown in Figure 5.40.

Implementing State Diagrams

A state diagram is typically used to model the dynamic behavior of a subsystem,

a control object or an entity object. There are two approaches to implement a

state diagram:

248 Object-oriented Technology

Figure 5.39. Activity diagram of controller of simplified vending machine

wait for coins

wait for selection

[select soft drink is available]

[eject coins]
dispense coins

[else]

[amount price]

dispense change

Path C

Path A

[else]

Path B

Path D

dispense soft drink

• Using the location within a program to hold the state

• Using an explicit attribute to hold the state

The first approach is suitable for implementing the state diagram of an

active entity such as an active object or a subsystem. It is because the active

entity already has its own control flow logic through the use of control

statements such as if-then-else and while statements. This approach is similar

to activity diagram implementation that has been described previously.

The second approach is suitable for implementing the state diagram of an

inactive entity. We can implement the state diagram by applying the techniques

below:

• Map the state diagram onto a class

• Add a state attribute for storing the state information

Chapter 5: Implementing UML Specification 249

Figure 5.40. Pseudocode for implementing activity diagram of vending machine

while (true) {

amount 0.0;

while (amount < price) {

wait for a coin;

add coin value to amount;

}

show all available soft drink;

while (selection is not done) {

wait for selection from user;

if selection is “eject coins” {

dispense coins;

set selection to “done”;

}

else if selection is a valid soft drink {

dispense change and dispense soft drink concurrently;

set selection to “done”;

}

}

}

• Map an event to a method and embed all required state transitions and

actions of the event in the method

• For a composite state with sequential substates, it may be necessary to

create a nested (inner) class for implementing the sequential substates.

The parent state machine can then invoke the method of the nested class

to handle transitions within the nested state diagram. Another way to

implement the composite state is to transform the parent state diagram to

eliminate the composite state so that it becomes a flat level state diagram.

• For a composite state with concurrent substates, create a nested class for

implementing each substate. The implementation is similar to that for

nested state diagrams. The composite state is exited when all the

concurrent substates reach their final states.

In other words, the state diagram is implemented by a set of methods to

handle an event. The methods will update the state attributes and perform

appropriate actions when a transition is fired. For each transition, map the

event to become a method, containing the logic for checking the guard

conditions and the associated actions (see Figure 5.41). If an event appears in

several transitions from different states, a switch statement is usually required

to determine which transition should take place.

250 Object-oriented Technology

Example: Implementing a Simple State Diagram

Suppose we want to implement the state diagram of the control object of a

vending machine as a passive object (an object without its own thread). In fact,

we develop the state diagram by translating the activity diagram shown in

Figure 5.39 to an equivalent state diagram (see Figure 5.42) and then simplify

it by eliminating the concurrent substates for dispensing soft drinks and

change. Figure 5.43 shows the implementation of the vending machine’s control

object.

Example: Implementing a State Diagram with Sequential Substates

To illustrate the implementation of sequential substates, modify the previous

example by grouping the dispensing soft drink state and dispensing change

state to a substate as shown in Figure 5.44. Consider the dispensing substate

as another state machine and implement it as an inner class within the parent

state machine (see Figures 5.45 and 5.46).

Figure 5.41. From a transition to its implementation

event_n [guard_condition_w]/actions

state_k

state_m

public void event_n(… .) {

switch (state) {

case state_k: // transit from state_k to state_m

if (guard_condition_w) { // evaluate the guard condition state state_m;

perform the required actions of the transition;

}

break;

case state_v:

…

…

}

}

Chapter 5: Implementing UML Specification 251

ejecting coins

Figure 5.42. State diagram for control object of vending machine

dispensed change/amount 0

inserted coin [amount coinValue price]/show available soft drinks

dispensing soft drink

waiting for selection

pressed eject coins/dispense coins

dispensing change

waiting for coins

pressed a soft drink [soft drink is not available]

pressed a soft drink [soft drink is available]/dispense soft drink

dispensed soft drink/dispense change

inserted coin [amount coinValue price]/

add coin value to amount

dispensed coins/amount 0

252 Object-oriented Technology

Figure 5.43. Mapping an event on to a method of state machine

class VendingMachineControl {

int _state;

float _amount, _price;

static final int WaitingCoin 1;

static final int WaitingSelection 2;

static final int DispensingSoftDrink 3;

static final int DispensingChange 4;

static final int EjectingCoins 5;

public VendingMachineControl(float price) {

_amount 0;

_state WaitingCoin;

_price price;

}

public void insertedCoin(float coinValue) {

if (_state WaitingCoin)

{

_amount coinValue;

if (amount price) { // fire transition

_state WaitingSelection;

show available soft drinks;

}

}

} // insertedCoin

// Declarations of methods for other events

…

…

} // VendingMachineControl

Chapter 5: Implementing UML Specification 253

Figure 5.44 A state diagram with sequential substates

inserted coin [amount coinValue price]/show available soft drinks

dispensing soft drink

ejecting coins waiting for selection

pressed eject coins/dispense coins

dispensing change

waiting for coins

pressed a soft drink [soft drink is available]

pressed a soft drink [soft drink is not available]/dispense soft drink

dispensed soft drink/dispense change

inserted coin [amount coinValue price]/

add coin value to amount

dispensing

dispensed coins/amount 0

dispersed change/amount 0

254 Object-oriented Technology

Figure 5.45. Implementation of dispensing substate

class dispenseControl {

int _state;

static final int DispensingSoftDrink 1;

static final int DispensingChange 2;

static final int Complete 3;

public dispenseControl() {

_state DispensingSoftDrink;

}

public boolean dispensedSoftDrink() {

if (_static DispensingSoftDrink) {

_state DispensingChange;

dispense change;

}

return false;

}

public boolean dispensedChange() {

if (_state DispensingChange) {

_state Complete;

return true;

}

return false;

}

} // class dispenseControl

Chapter 5: Implementing UML Specification 255

Figure 5.46. Implementation of control object of vending machine

class VendingMachineControl {

declaration of state attribute, constants, other attributes;

declaration of inner class dispenseControl;

public VendingMachineControl(float price) {

_amount 0;

_state WaitingCoin;

_price price;

_substate new DispenseControl();

}

public void dispensedSoftDrink() {

if (_state Dispensing) {

boolean isComplete _substate.dispensedSoftDrink();

}

}

public boolean dispensedChange() {

if (_state Dispensing) {

boolean isComplete _substate.dispensedChange();

if (isComplete) {

amount 0;

_state WaitingCoin;

}

}

}

declaration of other methods;

} // VendingMachineControl

256 Object-oriented Technology

Figure 5.47. Mapping messages in sequence diagram to implementation

o1: ClassA

message1

ClassB

{

ClassC o3;

ClassD o4;

method1 (…)

{

o3.method2 (. .);

o4.method3(. .);

}

}

o2: ClassB o3: ClassC o4: ClassD

message2

message3

Implementing Interaction Diagrams

An interaction diagram models the behavior of a group of objects that work

together to achieve a user goal. There are two kinds of interaction diagrams:

sequence and collaboration diagrams. Both diagrams are commonly used to

model a set of collaborating objects involved in a scenario. Sequence diagrams

are most suitable for modeling the sequence of actions performed by the

collaborating objects, while collaboration diagrams are useful for modeling the

structural relationships between the collaborating objects. In fact, sequence and

collaboration diagrams are semantically equivalent. Hence, we will only discuss

the implementation of the sequence diagram here as the implementation

techniques discussed can also be applied to collaboration diagrams.

Sequence Diagrams

In a sequence diagram, the collaborating objects communicate with each other

through messages. A message is an invocation of a method or an actual message

sent from the originating object to the target object. When an object receives a

message, it may in turn send one or more messages to other objects.

We can translate a sequence diagram into code by using the following

techniques:

• Translate a message to an appropriate method call. For example, a creation

message is translated to a call to the constructor of the target object’s class,

i.e. a new statement in Java

• Implement methods for handling incoming messages in the target object’s

class (see Figure 5.47)

Chapter 5: Implementing UML Specification 257

Figure 5.48. Analysis class diagram of lift control system

Lift
Down Button

Floor Number Button

Up Button
Lift Panel UI

Lift Controller

MotorFloor Panel UI

Lift Button

1

1…* 1

1

Door

1

1

1

1

internal external

1

1…*

1…*

1

1…*

• Map conditional branchings to conditional statements such as if-else

statements

• Implement active objects using threads

• Map concurrent branching using concurrent threads

Case Study: A Lift Control System

In previous sections, the basic techniques for implementing individual UML

diagrams were discussed. Now, we will illustrate how all these techniques can

be applied to a real-life problem. The following is a description of a simplified

lift control system.

A lift consists of a door, a motor and a lift controller. The lift controller is

responsible for controlling the lift system (see the class diagram in Figure 5.48).

Passengers interact with the lift system by pressing buttons on individual floors

or on the control panel inside the lift. Normally, the lift stays on the ground

floor (0-th floor) of a building. If a passenger enters the lift and presses the

button for the k-th floor, the lift will rise to the k-th floor. When the lift arrives

at requested floor (say k-th floor), it opens the door for M seconds and then

closes it. The lift then becomes idle.

A passenger on m-th floor calls a lift by pressing the up or down button. The

lift will move to the m-th floor and open the door on arrival. The passenger

requests to go to a particular floor by pressing the corresponding button on the

control panel inside the lift. If there is no passenger interaction on the control

panel within M seconds, then the lift will return to the ground floor.

258 Object-oriented Technology

With the analysis class diagram and the problem statement, we will be able

to develop sequence diagrams to further elaborate the dynamic behaviors of the

system in different scenarios. The sequence diagrams can then be used to

develop the state diagram of the lift controller, which is the control object of the

whole system.

The following is the first scenario of the lift control system.

Scenario 1

A passenger, Peter, walks into the lift lobby on the ground floor of the building.

He presses the UP button and waits for the lift’s arrival. On arrival, the lift

opens, he enters and presses the sixth floor button on the control panel inside

the lift. The lift closes and goes up until it arrives on the sixth floor. The lift

opens and Peter walks out of the lift. The lift waits for a short while

(ten seconds), closes and then goes down to the ground floor. The lift will stay

at the ground floor until further user interaction.

The sequence diagram for the first scenario is shown in Figure 5.49. It is

developed by going through each step of the sequence of transactions of the

scenario. For each step, the actor performs an action and the system responds

accordingly. The actor’s input and system’s response will help to determine

what internal actions are required inside the system. The actor’s input is

received by the boundary object(s). The boundary object will then send a

message to the control object to handle the actor’s input. Then the control object

needs to send one or more messages to the entity object(s) to perform the actual

required actions. Finally, the control object will send message(s) to the

boundary object(s) to respond to the actor. The following is the sequence of

actions for the scenario:

• Peter presses the UP button on the ground floor of the building. The press

button event is sent to the lift controller. Now, consider what the lift system

would do. Since the lift is on the ground floor, the lift controller should open

the door.

• Peter presses the sixth floor button. The press button event is sent to the

lift controller. The lift controller will then wait for timeout, close the door,

controls the motor to go up and wait for the arrival event. When the lift

arrives at the sixth floor, the lift controller will open the door. In the

sequence of actions, the lift controller interacts with the door and the motor

objects.

Chapter 5: Implementing UML Specification 259

Figure 5.49. Sequence diagram for scenario 1

press

request(0,direction)

firstFloor:UpButton sixthFloor:FloorNumberButton :LiftDoor :Motor

open()

open()

timeout()

arrive()

timeout()

press
goToFloor(6)

arrive()

stop()

close()

close()

moveUp()

stop()

open()

open()

close()

close()

moveDown()

:FloorDoor:LiftController

Peter:Passenger

260 Object-oriented Technology

Figure 5.50. A partial state diagram for lift controller

request(floor,direction) [floor 0]arrive()

timeout[getNextFloor() 1 && currentFloor 0}

arrive()

goToFloor(n)

timeout[getNextFloor() currentFloor]

Ground floor

Homing

entry / close doors

do / motor.moveDown()

exit / motor.stop()

moving up

entry / close doors

do / motor.moveUp()

exit / motor.stop()

waiting for floor number

entry / open doors

Based on the sequence diagram in Figure 5.49, develop a partial state

diagram for the lift controller (Figure 5.50). Figure 5.51 illustrates a partial

state diagram for the lift controller from the sequence diagram (Figure 5.49).

Develop the state diagram of the lift controller or other control object by

adopting the following process:

• Since a state represents a duration in time, treat the time between two

consecutive incoming messages to the lift controller as a state.

• If an action takes a significant length of time to complete treat this period

of time as a state. For example, the lift will take a significant length of time

to go up or down. The time spent going up or down can be considered as a

state.

• The controller should be in the state before the scenario takes place.

• The lift controller may transit from one state to another when it receives

incoming messages or events. If the transition is not unconditional, we can

determine the guard condition for the transition from the conditions of the

scenario.

Chapter 5: Implementing UML Specification 261

Figure 5.51. Partial state diagram from sequence diagram for lift controller

:LiftController

request(0, direction)

open()

open()

close()

close()

moveUp()

stop()

open()

open()

close()

close()

moveDown()

goToFloor(6)

stop()

request(floor,direction) [floor 0]arrive()

timeout[getNextFloor() 1 && currentFloor 0}

arrive()
goToFloor(n)

timeout[getNextFloor() currentFloor]

Ground floor

moving up

entry / close doors

do / motor.moveUp()

exit / motor.stop()

waiting for floor number

entry / open doors

Homing

entry / close doors

do / motor.moveDown()

exit / motor.stop()

timeout

arrive()

timeout()

arrive()

262 Object-oriented Technology

For example, the state diagram of the lift controller for Scenario 1 can be

developed accordingly:

• Before any interaction occurs, the lift is on the ground floor with its doors

closed; the lift controller is in the ground floor state before receiving any

messages or events.

• When the lift controller receives the request message from the UP button

on the ground floor, the lift controller opens the door and changes its state

to waiting for floor number, where it waits for the passenger to press the

target floor number. Note that the lift passenger may press the floor

number which he/she is currently on.

• The passenger presses the sixth floor button and the lift controller will not

do anything until the timeout event is received. Here, the lift controller’s

state does not change.

• When the lift controller receives the timeout event, the lift controller closes

the door, moves the motor to the UP direction because the destination floor

is higher then the current floor and then changes its state. Since the action

of going up takes a significant length of time, we name this state as moving

up. The guard condition is that the destination floor number is greater than

the current floor.

• When the lift controller receives the arrival event, the lift stops the motor,

opens the doors and waits for the passenger to press the destination floor

again. Hence, the lift controller changes back to the waiting for floor

number state.

• When there is no request (no passenger), the lift controller receives the

timeout event and the lift controller will move the lift back to the ground

floor. We name this state as homing.

Scenario 2

A passenger, Mary, is on the sixth floor of the building. She presses the DOWN

button at the lift lobby to call for a lift and waits. The lift, which is on the

ground floor, then goes up to the sixth floor. The lift stops at the sixth floor and

opens. Mary walks into the lift and presses the ground floor button on the

control panel in the lift. The lift closes, goes down and stops at the ground floor.

The lift opens. It waits for a short while (ten seconds) and then closes the door.

The sequence diagram for Scenario 2 is shown in Figure 5.52. Based on the

sequence diagram, develop a partial state diagram for the lift controller as

shown in Figure 5.53. Figure 5.54 illustrates how to develop a partial state

diagram for the lift controller from the sequence diagram Figure 5.52.

Chapter 5: Implementing UML Specification 263

Figure 5.52. Sequence diagram for Scenario 2

press

request(6,direction)

sixthFloor:DownButton firstFloor:FloorNumberButton :LiftDoor :FloorDoor :Motor

close()

close()

moveUp()

arrive()

open()

stop()

open()

timeout()

close()

close()

moveDown()

arrive()

stop()

open()

open()

timeout()

close()

close()

:LiftController

press
goToFloor(0)

Mary:Passenger

264 Object-oriented Technology

Figure 5.53. Partial state diagram for Scenario 2

request(floor,direction) [floor 0]

timeout[getNextFloor() 1 && currentFloor 0]/close doors

Ground floor

moving down

entry / close doors

do / motor.moveDown()

exit / motor.stop()

request(floor,direction) [floor 0]

arrive()

timeout[getNextFloor() currentFloor]
goToFloor(n)

arrive()timeout[getNextFloor() currentFloor]

moving up

entry / close doors

do / motor.moveUp()

exit / motor.stop()

waiting for floor number

entry / open doors

Chapter 5: Implementing UML Specification 265

Figure 5.54. Developing a state diagram from sequence diagram for lift controller

stop()

open()

open()

close()

close()

moveUp()

:LiftController

request(6, direction)

goToFloor(0)

stop()

open()

open()

close()

moveDown()

close()

request(floor,direction) [floor 0]

timeout[getNextFloor() 1 && currentFloor 0]/

close doors

arrive()

goToFloor(n)

timeout[getNextFloor() currentFloor]

moving up

entry / close doors

do / motor.moveUp()

exit / motor.stop()

close()

close()

request(floor,direction) [floor 0]

waiting for floor number

entry / open doors

arrive()timeout[getNextFloor() currentFloor]

arrive()

timeout()

arrive()

timeout()

movingdown

entry / close doors

do / motor.moveDown()

exit / motor.stop()

Ground floor

266 Object-oriented Technology

It is possible to develop the complete state diagram of the lift controller by

combining all the state diagrams of different scenarios via the union of their

states and transitions. If there are two transitions with the same source state,

target state and event, combine these transitions to become a single transition

with a guard condition which is the union of guard conditions of the original

transitions. By combining Figures 5.50 and 5.53, we can develop the complete

state diagram of the lift controller (see Figure 5.55).

Based on the sequence diagrams for the scenarios and the state diagram of

the lift controller, the class diagram is refined to provide more information

about the dynamic behavior of the system (see Figure 5.56). Methods are

declared in individual classes to implement the messages received by individual

classes in the sequence diagrams or state diagrams.

The complete source code of the lift control system in Java can be found in

the Appendix.

Figure 5.55. State diagram of lift controller

request(floor,direction) [floor 0]

timeout[getNextFloor() 1 && currentFloor

 0]/close doors

Ground floor

moving down

entry / close doors

do / motor.moveDown()

exit / motor.stop()

request(floor,direction) [floor 0]

arrive()

timeout[getNextFloor() currentFloor]

moving up

entry / close doors

do / motor.moveUp()

exit / motor.stop()

goToFloor(n)

waiting for floor number

entry / open doors

arrive()

timeout[getNextFloor() currentFloor]

Homing

entry / close doors

do / motor.moveDown()

exit / motor.stop()

arrive()

Chapter 5: Implementing UML Specification 267

Figure 5.56. Designing class diagram of lift control system

Motor

 moveUp() : void

 moveDown() : void

 stop() : void

Door

 open() : void

 close() : void

Lift Panel Ul

 showCurrentFloor() : void

Lift Button

 floorNo : int

Lift Controller

 currentFloor : int

 UP : int 1

 DOWN : int 2

 arrive() : void

 getNextFloor() : int

 goToFloor(floorNo:int) : void

 getDirection() : int

 request(floor : int,direction : int) : void

Floor Panel Ul

 showCurrentFloor() : void

Lift

Up ButtonDown Button

Floor Number Button

1 1

1 … *

1

1

1 … * 1

1 … *

1

internal

1

1

external

1 … *

1

1

1

Summary

In this chapter, a number of techniques for the implementation of the more

commonly used UML diagrams in Java were presented. We have described how

to implement an individual class and the different kinds of associations

between classes. Then we illustrated how to implement activity diagrams, state

diagrams, sequence diagrams and collaboration diagrams. We have also shown

how we can develop the state diagram of a control object from the sequence

diagrams using the lift control system case study.

Exercises

Q1. Describe two ways to implement a one-to-many association between two

classes. Discuss their pros and cons.

Q2. Using only two Java classes, write a Java program fragment for the

implementation of the class diagram below. Include all the methods

required for the implementation of the association.

268 Object-oriented Technology

1 inserted coin

1 ejected coin

1

1

JFrame

MainFrame

JButton

ChangeDispenser

 dispense(change : float) : void

1

1

1

SoftdrinkDispenser

 dispense(choice : int, drink : String) : void

1

1

VendingMachineControl

 insertedCoin(coinvalue : int) : void

 ejectCoin() : void

 selectSoftDrink(choice : int) : void

 dispensedSoftDrink() : void

 dispensedChange() : void

SoftDrinkButton

 choice : int

 drink : String

SelectionPanel

 showChoice(drink : int []) : void

 hideChoice() : void

1

1

1

1

JLabel

1

display

amount

1
1

1

2 1

1 … *

1 … *

0..n 0..1
Person

 name : String

 address : String

Company

 name : String

WorkFor

 salary : Float

 position : String

Q3. Complete the implementation of the control class for the vending machine

example as described in this chapter (Figure 5.40). Write a driver program

to test the control class.

Q4. Implement the design the class diagram for the vending machine as shown

below.

269

Chapter

6
View Alignment Techniques and

Method Customization

Overview

Over the years, a variety of software development methods have been proposed

to speed up the process of producing quality software on time and within

budget. While the Unified Process and the UML are now very mature and

widely used for software development, it appears that the missing link in the

entire process is a set of effective heuristics and techniques guide and assist the

designer throughout the software development life cycle. Consequently, there is

a prevailing view that there is no one single universal method for software

development.

This chapter introduces a framework of view alignment techniques that

serve to methodically guide the developer through the software development

life cycle. The view alignment techniques are flexible in that they focus on the

amount of information available to the developer. It will be illustrated how

these techniques can be applied so that the developer using a set of

manipulators can design and customize their own software development

methods. These manipulators will help the designer to elaborate the main

model within the workflow, discover requirements for the next workflow and

ensure model consistency among the workflows.

Based on the view alignment techniques, is then presented a software

development approach called Activity Analysis Approach (A3), which is

particularly suitable for user interaction intensive systems.

270 Object-oriented Technology

What You Will Learn

On completing the study of this chapter, you should be able to:

• appreciate the benefits of using a method for software development

• understand the limitations of current software development methods

• understand the framework of view alignment techniques

• know how to apply the view alignment techniques to customize and create

a method

• use the Activity Analysis Approach effectively to develop workflow-oriented

and activity-intensive software systems

Software Development Methods

Software engineering is concerned with the application of a systematic,

disciplined, quantifiable approach to the development, operation and

maintenance of software, with the aim of producing reliable software systems

on time and within cost estimates. Software engineering is therefore,

particularly applicable to the development of large-scale systems; it covers not

only the technical aspects of building software systems, but also management

issues such as the directing of programming teams, scheduling and budgeting.

Generally speaking, the most important benefit in applying engineering

concepts to building large-scale software systems is that developers can

systematically and predictably arrive at pragmatic, cost-effective and timely

solutions to real-world problems. Berard (1998) suggests that the most valuable

engineering techniques are those that can be:

• described quantitatively as well as qualitatively

• used repeatedly, each time achieving similar results

• taught to others within a reasonable timeframe

• applied by others with a reasonable level of success

• achieving significantly and consistently better results than adopting other

techniques or an ad hoc approach

• applicable to a relatively large percentage of cases

Before software methods came into being, development of new systems

relied on the experience and intuition of the management and technical

personnel. However, the complexity and the scale of modern systems and

computer products have heightened the need for some kind of orderly

development process. Over subsequent years, a variety of software development

methods using specific software production techniques have been proposed to

speed up the time it takes to develop reliable software.

Chapter 6: View Alignment Techniques and Method Customization 271

Such software development methods consist of a complete set of activities

needed to transform users’ requirements into a consistent set of artifacts that

represent a software product. Typically, a software development method

specifies a series of stages that encompass requirements gathering, design,

development, testing, delivery, maintenance and enhancement of a system, and

helps the developer build software systems in a reliable and consistent way. In

general, software development methods allow the building of models from

model elements that constitute the fundamental concepts for representing

systems or phenomena.

Components of Software Development Methods

The term software development method seems to confuse many people, even the

practitioners. For example, some practitioners incorrectly think that the UML

is a software development method, rather than just a standard notation for

representing systems. The UML does not describe the process and heuristics

practitioners use to build software.

Budgen (1994) considers that a software development method primarily

comprises three components: (1) a process, (2) a representation system or a

modeling notation and (3) techniques, heuristics, steps or procedures (see

Figure 6.1).

Figure 6.1. The three components of a method

Representation

How to describe the

design model

(e.g. UML)

Process

What to do to

produce the

design model

(e.g. Unified

Process)

Techniques

How to adapt the

models to particular

types of problems

(e.g. heuristics and

procedures)

272 Object-oriented Technology

A design process corresponds to a process of navigation from the problem

space to the solution space. Throughout this process of navigation, the designer

is presented with options and choices, where he/she has to make a selection or

a decision. The question of techniques of a development method provides some

heuristics and guidance to assist the designer in making the right selection.

Typically, system artifacts are produced at the end of each of the tasks or

activities in the process, represented by a recommended notation.

As such the three components of software development can be more

specifically described as follows:

• Representation. A set of recommended representation (notation) (e.g. UML)

consisting of one or more forms of a notation that can be used to model both

the structure of the initial problem (requirements) and the intended

solution, using one or more viewpoints (models) and different levels of

abstraction.

• Process. A framework from which a comprehensive plan for software

development can be established. This development plan consists of a

specific ordered set of tasks aimed at producing software solutions. Thus, a

process needs to be instantiated or customized (a development plan) for

individual projects, and it should cover the activities of the entire software

development life cycle.

• Techniques. They are heuristics, guidelines and procedures that help

designers develop the software development plan for their project. In other

words, they help customize the process framework for the system being

developed such as defining the order of tasks to be carried out within the

process and selecting the models and their perspectives which are to be

focused on at the optimum level of abstraction. Furthermore, they help the

project manager allocate responsibilities for the members of the

development team.

A typical development plan for a software project includes:

• a list of tasks that need to be carried out

• the order in which these tasks should be carried out

• the deliverables to be produced

• the skills required for each task

In developing a software method, the notation part is the easiest part as

there are de facto standards one example being the UML, which is now widely

used for object-oriented systems. The process part is a little more complex as

it involves the balancing of multiple dimensions of parameters and constraints

such as timeline, people, deliverables, quality, cost, etc., that need to be

Chapter 6: View Alignment Techniques and Method Customization 273

compromised. Finally, the techniques element is the most difficult part as the

actual techniques largely involve experience and domain knowledge, that can

only be built up over a long period of time. Users of a particular method develop

certain know-how so that the method can be used optimally. Furthermore, very

often such know-how or experience is situation-dependent and may not be

clearly formulated and, therefore, cannot be passed on easily or readily.

Benefits of Using Software Development Methods

Why should anyone use software development methods when many software

systems in the past have so far been produced without following any explicit

methods? The answer to this pertinent question is that over the past three

decades, the scale of a typical software system has dramatically increased in

terms of size and complexity. Consequently, software development has become

a labor-intensive, expensive and risky venture. Nowadays, complex projects are

often developed in multiple teams working in parallel, and such teams need

mutual understanding of their roles, responsibilities, and interdependence, as

well as effective communication and coordination among the team and between

the developers and their clients. Without a systematic process to guide the

development, the likelihood of failure will be high. Furthermore, there is also

a need to improve productivity to ensure that the software can be developed on

time and within budget while meeting the expectations of our clients. Budgen

(1994) describes some of the benefits of using the three different components of

a software method:

Representation:

• Modeling notations are typically graphical, allowing both easy

manipulation of models, and effective communication and exchange of

information between the various parties involved in the project. A good

representation strikes a balance between information density and

readability.

• Notations and models help others capture and understand the intentions of

the original designer.

Process:

• A framework helps identify important progress milestones and checkpoints

for conducting design methods, helps record the reasons for decisions and

consequently helps produce the various requirements specification artifacts

and deliverables.

274 Object-oriented Technology

Techniques:

• The use of a method provides the designer with a set of guidelines to

produce the design and to verify it against the original requirements.

• The use of a design method may assist with the formulation and exploration

of the mental models used to capture the essential features of the design.

Method knowledge may, therefore, provide a substitute for domain

knowledge when the latter is inadequate or lacking.

• The techniques offer a set of procedures that should enable the designer to

ensure consistency in the structure of a design and view alignment among

design models. This is particularly important if the design is being

produced by a team of designers who need to ensure that their contributions

fit coherently.

Why Traditional Software Methods Didn’t Work Miracles

In recent years, more and more people have realized that there is no universal

method that can be readily applied to all problems in any circumstances

without the need for customization. DeMarco and Lister coined the term

capital-M Methodology (the universal method) as opposed to methodology.

He points out that to ensure success, the project team should tailor the method

to needs of the individual project rather than attempt to force-fit the project

into the methodology. He is of the view that the designer should use his/her

judgment and commonsense when pursuing a software development method.

Others further suggest that software systems cannot be developed on autopilot

as much thought and careful planning is required. Indeed, Jacobson et al.

(1998) also believe that “there is NO Universal Process! The Unified Process is

designed for flexibility and extensibility.” However, Budgen (1994) highlights the

unfortunate situation that purveyors of some training courses and textbooks on

methods are sometimes guilty of promoting exaggerated expectations about

their courseware. Consequently, many methods are made as prescriptive as

possible and consist of a set of carefully itemized sequences of actions that

should be performed by a designer. This type of universal software method is

an inadequate approximation of the software development process that is

seen time and time again in the IT industry. Indeed, in an article published

on his website http://www.joelsoftware.com/printerfriendly/articles/

fog0000000024.html and entitled “Big Mac vs. The Naked Chef,” Spolsky tried

to explain why some of the biggest IT consulting companies in the world do the

worst development work. He depicts the following “fictitious” story that we have

come across at least once.

Chapter 6: View Alignment Techniques and Method Customization 275

An excerpt from Spolsky’s article

Mike was unhappy. He had hired a huge company of IT consultants to

build The System. The IT consultants he hired were incompetents who

kept talking about The Methodology, and spent millions of dollars and

had failed to produce a single thing.

Luckily, Mike found a Youthful Programmer who was really smart

and talented. The Youthful Programmer built his whole system in one

day for $20 and pizza. Mike was overjoyed. He recommended the

Youthful Programmer to all his friends.

Youthful Programmer starts raking in the money. Soon, he has more

work than he can handle, so he hires a bunch of people to help him.

The good people want too many stock options, so he decides to hire

even younger programmers right out of college and “train them” with a

six-week course.

The trouble is that the “training” doesn’t really produce consistent

results, so Youthful Programmer starts creating rules and procedures

that are meant to make more consistent results. Over the years,

the rule book grows and grows. Soon it’s a six-volume manual called

The Methodology.

After a few dozen years, Youthful Programmer is now a Huge

Incompetent IT Consultant with a capital-M-methodology and a lot of

people who blindly obey the Methodology, even when it doesn’t seem to

be working, because they have no bloody idea whatsoever what else to

do, and they’re not really talented programmers – they’re just

well-meaning Poli Sci majors who attended the six-week course.

And Newly Huge Incompetent IT Consultant starts messing up.

Their customers are unhappy. And another upstart talented

programmer comes and takes away all their business, and the cycle

begins anew …

Spolsky’s story has brought up a number of interesting points which he

sums up as follows:

• You need talent to perform certain tasks really well

• It is hard to scale talent

• One way in which people try to scale talent is by having the talent create

rules for the untalented to follow

• The quality of the resulting product will then become very poor

276 Object-oriented Technology

According to Budgen (1994), a software design process should provide a

form of process that is used to design another process. Thus, the heuristics part

of a development method should provide practical advice on the criteria that

should be considered when making design choices. However, such heuristics can

never be universally applied to all problems. For actual design tasks, the

designer’s choices and decisions will need to be resolved solely on the basis of

the needs of the particular problem at hand. It is often too easy for the designer

to fall into the trap of believing that a design process is itself a recipe.

We are not promoting that development methods should not be used, rather

we are pointing out that they have limitations and that these need to be

recognized.

Unified Modeling Language versus Software Methods

While there is no one universal method that can be used for all problems, recent

literature on methods has tended to focus on the process and representation

parts of the design method, for example, the Unified Modeling Language (UML)

notation and the Unified Process. As mentioned previously, we need all three

key components to constitute the complete software development method. Many

books and courses on object-orientation (OO) only focus on one of the three

components, with very few (or, more often than not, none) covering all three.

The techniques part is either completely missed out or dealt with rather

casually. Some attempt to cover this area under a different guise. For example,

Jacobson (1998) describes “Team-Based Development” as one of the three major

components of a design method (see Figure 6.2(a)). In other words, it is

expected that a team of software engineers would choose and customize a

method for the project concerned. Quatrani (2002) suggests that the “tool” as

the third major component of a method (see Figure 6.2(b)), that is, the (CASE)

tool, will provide sufficient support so that the designer can customize or create

his/her own method.

It is inappropriate to substitute the techniques part by either a tool or

team-based development. Although CASE tools generally provide limited

support for model consistency checking, the decision to select the right model

for a workflow still rests with the designer. Furthermore, beginners in the field

may not be aware of the techniques part of the development process and they

misconceive UML or the Rational Unified Process (RUP) as a development

method. Consequently, they usually find it difficult to apply these particular

concepts.

Chapter 6: View Alignment Techniques and Method Customization 277

Hurdles in Applying the Object-oriented Approach

As mentioned before, a process is a framework or a template, and we need to

be mindful that it is not universal for all problems. Very often, it is necessary

to work out a software development plan by applying techniques at the very

beginning of the project development process. A process should not be followed

blindly, as this will generate useless work and artifacts that are of little added

value. A process, therefore, needs to be adapted to a particular problem domain,

together with the process elements that are likely to be modified, customized,

added or suppressed. These process elements include artifacts, activities,

workers and workflows as well as guidelines and artifact templates.

The UML provides an extremely rich set of notations to represent systems

(see Figure 6.3). Booch et al. (1998) suggest that 80% of software projects use

only about 20% of the UML notations. To the designer, it would be rather

difficult to decide which subset of UML notations should be used for the project

at hand. It is typical for designers to be confronted with many questions

throughout the development life cycle:

• What models are required to represent the system?

• How should the selected models be applied to perform the development

work?

• Which model should be used first, and which model(s) should follow next?

• How can the models of the system be consistent?

Figure 6.2. Three components of a software development method: (a) Jacobson’s

view and (b) Quatrani’s view

Team-Based

Development

Modeling

Language

Unified

Process

Tool

Modeling

Language

Unified

Process

(a) (b)

278 Object-oriented Technology

O
b
je

c
t
D

ia
g
ra

m

D
e
p
lo

y
m

e
n
t
D

ia
g
ra

m

S
e
q
u
e
n
c
e
 D

ia
g
ra

m

C
o
lla

b
o
ra

ti
o
n
 D

ia
g
ra

m

U
s
e
 C

a
s
e
 D

ia
g
ra

m

C
la

s
s
 D

ia
g
ra

m

F
ig

u
re

 6
.3

.
U

M
L

 m
o

d
e

ls

M
o

d
e
ls

C
la

ss
2

⫺
at

tri
bu

te
⫺

at
tri

bu
te

2
⫺

at
tri

bu
te

3

⫹
op

er
at

io
n(

)
⫹

op
er

at
io

n(
)

C
la

ss

⫺
at

tri
bu

te

C
la

ss
7

⫺
at

tri
bu

te

⫹
op

er
at

io
n(

)
⫹

op
er

at
io

n(
)

C
la

ss
3

⫺
at

tri
bu

te
⫺

at
tri

bu
te

2

C
la

ss
4

⫺
at

tri
bu

te

C
la

ss
8

⫺
at

tri
bu

te

⫹
op

er
at

io
n(

)

Ac
to

r

Ac
to

r2

U
se

C
as

e2

U
se

C
as

e3

U
se

C
as

e4

U
se

C
as

e

<<
In

cl
ud

e>
>

Sy
st

em

<<
In

cl
ud

e>
>

A
c
ti
v
it
y
 D

ia
g
ra

m

S
ta

te
 D

ia
g
ra

m

C
o
m

p
o
n
e
n
t
D

ia
g
ra

m

Pa
ck

ag
e

C
om

po
ne

nt

C
om

po
ne

nt
2

Pa
ck

ag
e2

In
sa

nc
e

C
om

po
ne

nt
3

C
om

po
ne

nt
4

C
om

po
ne

nt
6

N
od

e
C

om
po

ne
nt

5

N
od

e2
re

jec
t [

no
t a

 va
lid

 A
TM

 C
ar

d]
Ch

ec
k c

ar
d

typ
e

ins
er

t c
ar

d

Ch
ec

k c
ar

d

wi
th

 co
ns

or
tiu

m

OK
 [is

 a
n A

TM
 C

ar
d]

re
jec

t [
th

e
ca

rd
 is

su
er

 b
an

k n
ot

 in

th
e

lis
t o

f t
he

 co
ns

or
rti

um
 b

an
k]

OK
 [t

he
 A

TM
 C

ar
d

is
va

lid
]

Ac
tio

nS
ta

te
6

Ac
tio

nS
ta

te

Ac
tio

nS
ta

te
2

Ac
tio

nS
ta

te
3

Ac
tio

nS
ta

te
4

Ac
tio

nS
ta

te
5

1:
 m

es
sa

ge

O
bj

ec
t

2:
 m

es
sa

ge

O
bj

ec
t2

3:
 m

es
sa

ge

O
bj

ec
t3

5:
 m

es
sa

ge

O
bj

ec
t4

4:
 m

es
sa

ge

1:
 m

es
sa

ge

:A
ct

or

:O
bj

ec
t4

:O
bj

ec
t3

:O
bj

ec
t2

:O
bj

ec
t 2:

 m
es

sa
ge

3:
 m

es
sa

ge

4:
 m

es
sa

ge
5:

 m
es

sa
ge

6:
 m

es
sa

ge

ob
je

ct
N

am
e2

:0
2

ob
je

ct
N

am
e5

:0
5

ob
je

ct
N

am
e:

04

ob
je

ct
N

am
e3

:0
3

ob
je

ct
N

am
e4

:0
4

Chapter 6: View Alignment Techniques and Method Customization 279

Scenarios in Learning and Using UML

Because of the misconception about software development methods and the lack

of available materials on the techniques part, designers are often confused and

newcomers will find it extremely difficult to adopt the object-oriented approach

for their projects. Furthermore, with the absence of this key component

(techniques) to guide the designer in making the right design decisions, many

find it quite difficult to learn UML and apply it to their projects. We have often

come across the following typical scenarios when designers start out applying

UML to object-oriented projects:

Scenario I

I went to the book store and bought a copy of “UML Distilled.” Having

gone through the whole text, I seem to understand the contents and the

examples, but I still do not know how to apply UML to my project!

But when I learned Java, at least I could use it straightaway, even as

a beginner!

Scenario II

The UML books that I have studied tended to give me fragmented

knowledge about UML. There are so many diagrams and models in

UML. I cannot see how they are related to each other.

Scenario III

Although methodologies like SSADM, SA/D and OMT are not that

great, at least I can follow the steps and apply them to my projects

straightaway. Having read some books and attended a training course

in OOT, I still don’t know how to start my small OO pilot project.

These scenarios have highlighted the problem in which current methods do

not allow the designer to customize or create a method for the problem at hand.

The missing link is the availability of effective techniques that can guide the

designer throughout the software development life cycle.

In the rest of this chapter, there will be an overview of the widely used

Rational approach, highlighting its deficiencies, after which we will outline the

280 Object-oriented Technology

View Alignment Techniques that supplement the techniques part of the method.

A framework of view alignment techniques will be presented to help the

designer to design or customize their own methods. Finally, we will illustrate

the application of the View Alignment Techniques to create a design method

called the Activity Analysis Approach (A3). This approach is specifically

designed for systems whose requirements are workflow-oriented or interaction-

intensive, such as those found in many business systems.

Current Object-oriented Development Approaches

Current object-oriented development approaches do not overcome the hurdles

described in the previous section. As the three major components in software

development methods are representation, process and techniques, we shall

examine these aspects in turn to identify the shortcomings of the current

object-oriented development approaches.

Representation

It is without a doubt that the UML is now the de facto standard graphical

language for representing systems in the software industry. The UML enables

us to specify, visualize and document the artifacts of software-intensive

systems, and it represents a collection of best engineering practices and model

notations that have proven successful for large and complex systems.

Developing a model for a software system prior to its construction is as

essential as having a blueprint for erecting a large building. Good model

notations are crucial for open communication among project teams, ensuring

architectural soundness. As the complexity of systems increases, so does the

importance of a good representation language. There are many factors to

ensure the success of a project and having a rigorous unified modeling language

is one of them. UML is quite easy to learn and well covered in books. There are

also a wide range of learning resources, such as training courses and seminars,

in the market.

The UML defines nine types of diagrams: class (package) diagrams, object

diagrams, use case diagrams, sequence diagrams, collaboration diagrams,

statechart diagrams, activity diagrams, component diagrams and deployment

diagrams. UML notations and diagrams have been dealt with in detail in

previous chapters, thus, this overview will only focus on the other two

components: the process and techniques parts of a software method.

Chapter 6: View Alignment Techniques and Method Customization 281

Unified Process

A software development process describes the activities for developing a system

according to the users’ requirements. The Unified Process is a widely used

software development process, whereby a system is built incrementally through

a number of iterations during which the designer may perform tasks such as

requirements capture, analysis, design, implementation and testing. Feedback

is sought from system users throughout the entire process.

In early iterations, the designer often focuses more on requirements

capturing and analysis. In later iterations, the designer tends to emphasize on

implementation and testing. In fact, the iterations are divided into four phases:

inception, elaboration, construction and transition (see Figure 6.4). Each phase

has a different focus:

• Inception phase. This phase focuses on establishing the business case,

defining the scope of the system and estimating the amount of resources,

including time, required to complete the project.

• Elaboration phase. In this phase, the core architecture of the system is

incrementally developed. Risks are resolved according to priorities and the

scope of the system is refined.

• Construction phase. In this phase, low-risk elements of the system are

incrementally implemented and tested. The system is prepared for

deployment.

• Transition phase. Beta release of the system is deployed to the end users.

Bug fixes and other tasks, such as refining the system, are performed.

Figure 6.4. Four phases of unified process

Iteration Phase

Development Cycle

Increment

The difference

between two

subsequence

releases.

Final Release

System release

for production

use.

Minor Release

Each iteration will

produce a minor

release of the final

product.

Milestone

The complete of

certain prescribed work.

When certain crucial

 decision can be made.

Inception Elaboration Construction Transition

282 Object-oriented Technology

The work activities of the Unified Process in the same subject area are

categorized as a workflow (some authors call it a discipline). The design

workflow, for example, includes all the activities associated with designing the

system. Figure 6.5 illustrates some sample workflows and their relative levels

of effort in different phases of the Unified Process. Since different phases have

different emphasis or focus, the relative effort for a workflow changes over time

(the horizontal axis) as system development progresses.

Figure 6.5. Sample workflows and their relative efforts over time

Prototypes

Subsystems integration

Prototypes

Subsystems integration

Workflow (business modeling)

Sample

Unified Process

disciplines

Business modeling

Requirements

Analysis

Design

Inception Elaboration Construction Transition

Development phase in the Unified ProcessIteration in elaboration phase

In the Unified Process, the concepts of use case-driven, architecture-centric,

iterative and incremental development are equally important. Architecture-

centric development provides a structure to guide the activities in the various

development phases and iterations, whereas use cases define the users’ goals

and drive the work of each iteration. Removing one of the four key design

principles would severely reduce the value of the Unified Process. They are like

the legs of a stool; without one of the legs, the stool will not be stable or may

even fall over.

Techniques

As mentioned earlier, the techniques part is the most difficult component of the

entire software development method. Jacobson (1998) consider that teamwork

is the element that glues the representation and process components together

but offers very little details as to how a method can be customized or created

to solve the problem. Nonetheless, he does provide some hints on which

model(s) should be used in each workflow (see Figure 6.6). Each of these models

Chapter 6: View Alignment Techniques and Method Customization 283

associated with a workflow is elaborated by a sub-figure indicating the types of

diagrams that are likely to be used (see Figures 6.7 and 6.8).

Figure 6.6. Workflow and model association

Use case

model

Analysis

model

Design

model

Deployment

model

Implementation

model

Test

model

Requirements

Analysis

Implementation

Design

Test

Each workflow is associated

with one or more models.

The solid lines in Figures 6.7 to 6.9 show the diagrams that are required

for different models, while the dotted-lines indicate optional diagrams,

depending on the type of problem at hand.

Despite these hints, little clue is provided on the selection of the right model

(UML diagram) to start with and the order in which these models (UML

diagrams) should be developed. For example, adopting Figure 6.6, we can start

off with the requirements workflow, followed by the use case model. We will

then develop the use case and sequence diagrams as shown in Figure 6.7.

Depending on the type of problem, some other models (statechart diagram and

activity diagram) may also be required, but the order in which these models

should be developed has not been clearly spelt out. While opponents of the

capital “M” methodology propose a flexible and extensible method (such as the

RUP), developers have not been provided with sufficient guidelines or

heuristics to systematically carry out system analysis and design. As a result,

some developers may have to spend much time working on models which are

not necessary or, worst still, they may miss something important in the analysis

stage, yielding inconsistent or incomplete models.

284 Object-oriented Technology

Figure 6.7. Possible diagams for representing use case models

Use case

model

Analysis

model

Design model

Implementation

model

Deployment

model

Test model

Use case diagram

Actor

Actor2

UseCase2

UseCase3

UseCase4

UseCase

<<Include>>

System

<<Include>>

Class

diagram

Object

diagram

State diagram

reject [not a valid ATM Card]
Check card

type

insert card

Check card

with consortium

OK [is an ATM Card]

reject [the card issuer bank not in

the list of the consorrtium bank]

OK [the ATM Card is valid]

Activity diagram

Component

diagram

Deployment

diagram

ActionState6 ActionState

ActionState2

ActionState3

ActionState4

ActionState5

Sequence diagram

1: message

:Actor

:Object4:Object3:Object2:Object

2: message

3: message

4: message
5: message

6: message

Collaboration diagram

:Actor3

1: message

:Object

2: message

:Object2

3: message

:Object3

5: message

:Object4

4: message

Chapter 6: View Alignment Techniques and Method Customization 285

objectName2:02

objectName5:05
objectName:04

objectName3:03

objectName4:04

Figure 6.8. Possible diagams for representing analysis and design models

Use case

model

Analysis

model

Design model

Implementation

model

Deployment

model

Test model

Use case

diagram

State diagram

reject [not a valid ATM Card]
Check card

type

insert card

Check card

with consortium

OK [is an ATM Card]

reject [the card issuer bank not in

the list of the consorrtium bank]

OK [the ATM Card is valid]

Component

diagram

Deployment

diagram

Class diagram

Class2

⫺attribute
⫺attribute2
⫺attribute3

⫹operation()
⫹operation()

Class

⫺attribute

Class7

⫺attribute

⫹operation()
⫹operation()

Class3

⫺attribute
⫺attribute2

Class4

⫺attribute

Class8

⫺attribute

⫹operation()

Object diagram

Sequence diagram

1: message

:Actor

:Object4:Object3:Object2:Object

2: message

3: message

4: message
5: message

6: message

Activity diagram

ActionState6 ActionState

ActionState2

ActionState3

ActionState4

ActionState5

Collaboration diagram

:Actor3

1: message

:Object

2: message

:Object2

3: message

:Object3

5: message

:Object4

4: message

286 Object-oriented Technology

Figure 6.9. Possible diagams for representing deployment and implementation models

Package

Component

Component2

Package2

Insance

Component3

Use case

model

Analysis

model

Design model

Implementation

model

Deployment

model

Test model

Class

diagram

Object

diagram

Component diagram

Deployment diagram

State

 diagram

Activity

diagram

Use case

diagram

Component4

Component6

Node Component5

Node2

Sequence diagram

1: message

:Actor

:Object4:Object3:Object2:Object

2: message

3: message

4: message
5: message

6: message

Collaboration diagram

:Actor3

1: message

Object

2: message

Object2

3: message

Object3

5: message

Object4

4: message

Chapter 6: View Alignment Techniques and Method Customization 287

Traceability and Models Consistency

Another frequently asked question in developing models is “How do we ensure

that the models we have created are consistent?” <<trace>> is one of the

often-used stereotypes in Rambaugh, Booch and Jacobson’s The Unified

Software Development Process. (The three are often referred to as the Three

Amigos). The <<trace>> concept may be the answer to the broad question of

models consistency. Here, Jacobson regularly emphasizes the traceability

between a model and its subsequent realization models (see Figure 6.10),

but there is little hint as to how to ensure the traceability among the models.

So it seems that it is entirely up to the designer’s own imagination, and of

course, it always helps if he/she is experienced. The RUP, therefore,

has provided no heuristics for adopting the UML models and very little

assistance to create or customize development methods.

Figure 6.10. Use case realizations in different models

Use case realizations

<<trace>>

Use case

<<trace>>

Use case

Analysis model Design model

Need for Method Customization

There is no universally applicable development method because there is no

single method that caters for different organizational factors. There are many

different factors that would affect design decisions, thus, resulting in the need

for customization of a design method to fit a specific type of problem.

The human factors and cultural differences include the structure and culture of

the organization, the competence, skill and prior experience of each individual

in the software development team. Systems in different application domains

also require different focuses or impose special constraints. For example, the

emphases associated with developing mission critical systems are quite

different from those that build word processors. Likewise, a real-time system

imposes a lot more special requirements than those of batch processing

288 Object-oriented Technology

systems. All these factors may result in the need for customizing or creating

different development methods. Other factors such as life cycle — time to

market, expected life span, planned future releases, etc. — and technological

factors — programing languages, development tools, databases, middleware,

communication and distribution, etc. — augment the need for the designer to

be able to tailor development methods to suit their own needs.

Because the UML has a rich set of models and notations, we should avoid

generating useless models and artifacts that are of little added value to the

project. Furthermore, the consistency and traceability of the models and

artifacts produced must be maintained to minimize errors.

It is quite possible to create a generic software development method

that can be adapted or extended to suit the needs of an organization.

The method could be general and comprehensive enough to be used “as is,”

i.e. out-of-the-box for a similar type of problem. This is quite often the case for

those small-to-medium software development organizations, especially those

that do not have a very strong process culture. However, Kruchten (1998)

suggests that such an organization should be able to modify, adjust, and expand

the software development method to accommodate the specific needs,

characteristics, constraints, history, culture and domain of the organization.

In the next section, the View Alignment Techniques (VATs) are proposed to

enable the designer to customize a software method or, in other words, create

and customize (create an instance of the process) a process (method template)

using the UML standard diagrams for different problems affected by one or

more factors just mentioned. A generic software development method for

interaction-intensive applications A3, which are typical of most business

applications, will also be introduced.

View Alignment Techniques

Humans possess limited, short-term memory and it is well-known that we can

handle only “7 ± 2” chunks of information at a time. We can tackle a complex

problem or system by dividing it into smaller manageable pieces through

modeling and analysis techniques. A model is a simplification of reality, which

is simplified by providing blueprints (models) of a system. Usually, it is

necessary to develop different models in order to completely understand, design

and build a system.

Every system can be described in different ways by different models. Thus,

a good model includes those elements that have a broad effect on the selected

perspective and omits those minor elements that are not relevant to it.

Furthermore, as suggested by Booch et al. (1998), models may encompass a

detailed as well as a more general view of a system from the same perspective.

Chapter 6: View Alignment Techniques and Method Customization 289

In the former case, a model concentrates on a particular perspective of the

system while de-emphasizing other system aspects; the latter case provides

different levels of details from a particular perspective. We can summarize the

characteristics of software models as follows:

• Models can have different levels of abstraction

• A model focuses on one aspect of a problem that the designer is

interested in.

• Elements of a model are often represented in different ways as parts of

other models

The most basic and extremely important principles of software engineering

are composibility and decomposability. We decompose in order to understand

(a problem) and compose in order to build (a system). When we have developed

models that describe the different perspectives of the system, we should

ultimately be able to form a complete and consistent picture of the system.

This is the basic idea of the VATs.

In fact, the basic principles of view alignment techniques are applied in

reality. When we see a physical object from a particular perspective, we project

or imagine what the other views (which may be partially revealed) could be. For

example, given the different elevations of a building’s floor plan, we mentally

create a 3D model of the building. If we extend our imagination further, we

might even picture what the building would look like viewing it from a

particular angle.

VATs are particularly applicable to software modeling and analysis because

they can help discover what models are required to methodically develop life

cycle. The designer can start with a model depending on the readily available

information, and then develop other related models by applying the VATs.

A software model usually emphasizes on a particular aspect (strong view) of the

system, together with one or more aspects (weak views) of the system.

Two models can be linked when a weak view of one model is the strong view

of another. For example, an element may form a part of two or more models and

thus would provide the common view (i.e. static or dynamic) of the system. In

our terminology, such an element is called a linked element. In other words,

elements in one model are often linked to elements in other models. So, instead

of developing the entire model from scratch, we can start with a partial model

generated or derived from the linked elements of other models. In so doing, not

only will the models be consistent but the sequence can be systematically

identified in which the models should be developed. In other words, VATs can

help designers customize their method as they develop the system. We shall use

two examples to illustrate this concept, the first using the structured approach

and the second the object-oriented approach.

290 Object-oriented Technology

Figure 6.11. Models consistency between ERD and DFD

Process 1

Entity 1 Entity 2

Entity 3

Process 3

Data store 1

Data store 2

Process 2

Example 1: Linked Elements between Data Flow Diagrams and

Entity Relationship Diagrams

The data flow diagram (DFD) and the entity relationship diagram (ERD) are

the two commonly used models for the structured analysis and design

approach. The DFD has a strong view of functions and a weak view of data

stores (entity), while the ERD has a strong view of data stores. We can start

with the DFD to model the functional requirements of the system and then

develop the ERD from the results of the DFD (see Figure 6.11) or vice versa.

Consequently, we are not bound by the prescribed steps of a particular method.

There is the freedom to choose the most suitable and convenient model to start

the analysis process and then develop other models as a deeper understanding

of the system is achieved. Indeed, Yourdon (1998) described the heuristics to

ensure the consistency between the ERD and DFD as follows:

“As the ERD and DFD are being developed in parallel, they can be used

to cross-check each other. Thus, stores that have been tentatively defined

in the preliminary DFD can be used to suggest objects in the preliminary

ERD; and objects that have been tentatively identified in the preliminary

ERD can be used to help choose appropriate stores in the preliminary

DFD. Neither model should be considered the dominant model that

controls the other; each is on an equal footing and can provide

invaluable assistance to the other.”

Chapter 6: View Alignment Techniques and Method Customization 291

Example 2: Linked Elements between Sequence and

Class Diagrams

Consider an object O in a sequence diagram that can be linked to a class C in

a class diagram. If O has an incoming message, there will be a corresponding

operation in C (see Figure 6.12). By aligning the linked elements associated

with the models, traceability and consistency can be facilitated among the

models. More importantly we can discover new system components by exploring

the linked elements between models. Aligning the linked elements in different

models is a fundamental principle of the VATs.

Figure 6.12. Linked elements between the sequence and class diagrams

C

⫹operation(formal parameters)

Class diagram

object1 O:C

M(actual parametes)

Sequence diagram

Linked Elements

Principles of View Alignment Techniques

The underlying principles of the VATs are based on the identification of

linkages among models by applying three model manipulators at three different

levels of the development workflow. The three model manipulators are called

Model Elaborator, Model Transitor and View Aligner. The manipulators can be

used to help conduct modeling and analysis throughout the entire development

process. Each of these manipulators can be applied to three different levels

which are within, between and among the workflows, such as business

modeling, requirements, analysis, design and so on. For example, a model

elaborator is usually applied within one of the above workflows and a model

transitor to derive the requirements workflow that is based on the business

modeling workflow. Finally, a view aligner manipulator is used to ensure

models consistency as artifacts have been created in the development iteration.

Manipulators

To identify the linkages between models, use the three types of View Alignment

Manipulators (VAMs). Each of these manipulators corresponds to the process of

identifying the linkages (linked elements) in the three different levels detailed

in Table 6.1. A manipulator includes a process and a set of techniques that is

292 Object-oriented Technology

utilized by the designer to derive a new model by identifying the linked

elements from the fully developed models in a workflow. The three VAMs

perform different functions as follows:

• A model elaborator manipulator is used to elaborate a source model (or

its elements) by providing additional information to produce a more

detailed, sub-level model. The applications of a model elaborator should

normally take place within a workflow (see Figure 6.13). For example, a use

case can be elaborated by an activity diagram and a use case description.

Hence, a model elaborator can be defined to develop an activity diagram

from a use case. Model elaborators provide traceability through the detailed

representation of models in different levels of abstraction.

• A model transitor manipulator is used to discover the requirements of a

target model based on the linked elements identified in the source model.

While the target model and the source model focus on different aspects of

the system, there are some linked elements that share a common view and

exist in both the target and source models. A model transitor is normally

used when a workflow has fully been explored (see Figure 6.13).

Suppose that the development of the requirements workflow is

completed and the use case model including the identification of use cases

is fully created, each already elaborated by a use case description. Now,

you wish to move on to the analysis workflow. At this point, apply a model

transitor to develop a system-level sequence diagram from the flow of

events of the use case description. Model transitors provide traceability and

discovery of requirements through the linked elements.

• A view aligner manipulator is used to establish points of connection

between different models (see Figure 6.13). The connections between

models can help identify the elements that need to be updated in one model

when the linked elements of another have changed. The view aligner is

normally applied iteratively upon the completion of a new workflow.

For example, a view aligner can define the linked elements between a

Model/View/Control (MVC)-level sequence diagram and a design class

diagram. Changes in the linked elements of the MVC sequence diagram,

e.g. the addition of a new incoming message to an object, may trigger

changes in the design class diagram. View aligners provide traceability by

establishing multiple points of connections of the linked elements between

models. They often facilitate discovery of requirements and, more

importantly, enable us to ensure models consistency. View aligners also help

identify model(s) that need to be revisited when some other models have

been updated or changed.

Chapter 6: View Alignment Techniques and Method Customization 293

Table 6.1. Applications of model manipulators

Manipulator Application Function Linked

level in pattern

workflow

Model Elaborator within Fully elaborate High level

the workflow with source model →

models at

different levels of Lower level

abstraction target models

Model Transitor within/between Discover new Linked

requirements elements of

from existing weak view →

models

Linked

elements of

strong view

View Aligner among Ensure models Points of

consistency connection →

among workflows

Linked

elements among

models

The above refinement steps are applicable to the elaboration of a workflow

(model elaborator), the navigation between two adjacent workflows (model

transitor) and the consistency checking of different workflows (view aligner). By

combining these steps with the Unified Process, we have a general architecture

of a software method based on the VATs (see Figure 6.13).

Grammar of Model Manipulators

Model manipulators are used to help refine existing models, develop new ones,

and maintain the consistency among them. A model manipulator can also be

used to perform elaboration, transition and alignment within, between and

amongst the workflows respectively. Since we may need to apply model

manipulators many times in the whole software development process, there is

a need for a precise and concise grammar to represent these linkages of the

model elements that exist in various workflows.

294 Object-oriented Technology

We shall use the Backus-Naur Form (BNF) notation to specify the syntax

of the relationships between models. The grammar for the model manipulators

is specified as follows:

<model relationship> ::= <model manipulator> ‘(’ <parameter list> ‘)’ 

<parameter> <operator> <parameter>

<operator> ::= ‘->’, ‘=>’, ‘ ’

<model manipulator> ::= ‘elaborator’ | ‘transitor’ | ‘aligner’

<parameter list> ::= <parameter> | <parameter> ‘,’ <parameter list>

<parameter> ::= <model>  <model> ‘[’ <version> ‘]’  <model> ‘.’ <element list>

<model> ‘[’ <version> ‘]’ ‘.’ <element list>

<element list> ::= <element>  ‘{’ <elements> ‘}’

Source model

(High-level abstraction)

Strong view in B

Source model

(High-level abstraction)

Strong view in C

Figure 6.13. Three model manipulators for VATs

Apply view aligner

to ensure model

consistency

Detailed target models

(Low-level abstraction)

Apply model elaborator

within a workflow

Workflow III

Linked element

(Strong view in C)

Linked element

(Weak view in B)

Detailed target models

(Low-level abstraction)

Apply model elaborator

within a workflow

Source model

(High-level abstraction)

Strong view in A

Workflow I

Linked element

(Weak view in B)

Detailed target models

(Low-level abstraction)

Apply model elaborator

within a workflow

Workflow II

Linked element

(Strong view in B)

Linked element

(Weak view in C) Apply model transitor

to derive new models

between workflow

Model transitor

View aligner

Chapter 6: View Alignment Techniques and Method Customization 295

<elements> ::= <element>  <element> ‘,’ <elements>

<element> ::= “a part of a model”  <element> ‘.’ <element list>

<model> ::= “a model, a diagram, an entity, or an artifact used for modeling a

system”

<version> ::= “the version”

Note: The following symbols are used to represent the three manipulators:

• ‘->’ for model elaborators

• ‘=>’ for model transitors

• ‘ ’ for view aligners

With this notation, there are two ways to express a model relationship

between models: the long form and the short form. The long form is represented

by a manipulator followed by a set of source and target models in the

relationship. For example, elaborator(use_case_A, use_case_description_B)

means that the second model, a use case description, is an elaboration of the

first model, a use case. The short form is represented by a source model

followed by an operator (‘->’, ‘=>, or ‘ ’) and then a target model. The same

relationship can be represented by use_case_A -> use_case_description_B.

The short form is very useful when we are specifying a series of the

manipulators. For example, use_case_A -> use_case_description_B =>

activity_diagram_C means to use an elaborator to develop the use case

description and then apply a transitor to develop an activity diagram.

The dot notation specifies an element of a model. For example,

use_case_diagram.use_case_A means use_case_A of use_case_diagram. We can

also specify the version of a model by placing the version in a pair of square

bracket next to the model. For example, use_case_diagram[requirement

workflow] means the version of the use case diagram for the requirements

workflow.

Model Elaborator

An elaborator can be considered to be analogous to a sub-diagram that details

the main diagram. For example, the DFD is the sub-diagram of the context

diagram in the traditional structured approach and a use case can be

elaborated by a use case description, an activity diagram, etc. The elaboration

relationship is represented by elaborator(source_model, target_model) or simply

source_model –> target_model, which means that the target model is an

elaboration of the source model. For example, the following relationship

296 Object-oriented Technology

means that use_case_description_B is an elaboration of use_case_A of

use_case_diagram1:

elaborator(use_case_diagram1.use_case_A, use_case_description_B) or

use_case_diagram1.use_case_A –> use_case_description_B

Model Transitor

Apply a separate model transitor when connecting one group of linked elements

in a model to another group of linked elements in another model. The syntax

is similar to the way in which the model elaborator is described. It should be

noted that one linked element in a model may exist in the same form in another.

For example, a message associated with an object in the sequence diagram may

appears exactly in the same form in the collaboration diagram. However,

sometimes a linked element may be presented in a similar form in another. For

example, suppose a new object has been identified from a sequence diagram

when walking through a scenario of a use case. This new object may be

connected as a linked element of a similar form, e.g. a class in the class

diagram. Assume that we are applying a transitor to an input model to generate

an output model. The transition relationship is represented by transitor

(input_model, output_model) in the long form or input_model => output_model

in the short form.

Example: Data Dictionary to a Use Case Diagram. The application of a

transitor to generate a use case diagram from a data dictionary is represented

as follows:

Transitor(data_dictionary.{use_case_list, actor_list}, use_case_diagram) or

data_dictionary.{use_case_list, actor_list} => use_case_diagram

Example: Textual Analysis. The application of a transitor to generate a list

of use cases from a problem statement (use case level) through a textual

analysis is represented by

Transitor(problem_statement[use case level], use_case_list) or

problem_statement[use case level] => use_case_list

Example: Specification of Workflow. Apply a model transitor to identify

linked elements for a use case description that has been developed in the

requirements workflow. Each event in the flow of events of a use case

description can be translated using a model transitor as an action state of an

activity diagram. The model transitor can be represented by

Chapter 6: View Alignment Techniques and Method Customization 297

Transitor(use_case_description[requirement workflow].flow_of_event,

activity_diagram) or

use_case_description[requirement workflow].flow_of_event => activity_

diagram.action_state_list

View Aligner

A view aligner is used after a model transitor. A view aligner establishes the

points of connection that exist between various models residing in different

workflows. For simple cases, it often serves as a means to revisit models that

were previously developed. A view aligner establishes a binary relationship

between two elements and therefore may appear to be very similar to a model

transitor. For example, the data dictionary or class diagram has to be revisited

on many occasions; new classes are often updated when each of the scenarios

(represented by sequence diagrams) of a use case has been walked through.

However, the real significance of a view aligner is its multiple points of linkage

(points of connection) that coexist in various models. This implies that if any of

these linked elements is changed, all the models linked to that element will be

affected. In other words, these linkages are a many-to-many relationship

instead of a binary relationship like the model transitors. The view alignment

relationship is represented by aligner(model_1, …, model_n) in the long form or

model_1 <=> … <=> model_n in the short form, indicating that consistency

between the models is maintained.

Example: Simple View Aligner

sequence_diagram.object_list <=> class diagram.class_list

Example: Points of Connection for Multiple Models

sequence_diagram.object_list <=> collaboration_diagram.object_list <=>

class_diagram.class_list

Architecture of View Alignment Techniques

The overall architecture of the VATs is presented in Figure 6.14. The upper part

of this diagram describes the architecture of the Process Roadmap which

consists of the development workflows from business modeling, requirements,

analysis, design and so on. Each of these workflows contains linked elements

that exist in other workflows.

Suppose a new software project has begun. We would begin at the first

workflow (business modeling) of the first iteration of the inception phase.

298 Object-oriented Technology

Model elaborator

(within workflow)

Model transitor

(between workflow)

View aligner

(among workflow)

Business

modeling and

analysis

Linked

elements

Requirements

Linked

elements

Analysis

Linked

elements

Design

Linked

elements

Implementation

Linked

elements

Model elaboration Model elaboration Model elaboration Model elaboration Model elaboration

Requirement discovery

(linked elements)

Requirement discovery

(linked elements)

Requirement discovery

(linked elements)

Requirement discovery

(linked elements)

View alignments

(Points of connection)

Workflow

Perform

analysis

Output artifact(s)

Linked

elements

Workflow

Perform

analysis

Output artifact(s)

Linked

elements

Model elaboration

Workflow

Output artifact(s)

Linked

elements

Perform

analysis

Input artifact

Input artifact

Points of connection

View alignments

Process roadmap Development workflow

Model transition

Figure 6.14. Architecture of a software method based on VATs

Because of the nature of the workflow, there may only be a limited choice of

models to start with. For example, it does not take an experienced designer to

know that the activity diagram is a suitable model to represent the business

workflow. It is also possible to judge when the workflow has been completely

modeled by applying the model elaborator within the workflow. Because when

this happens, we should be able to identify some linked elements which can

then be used to form a partial (or sometimes even complete) model of the next

Chapter 6: View Alignment Techniques and Method Customization 299

workflow. This is an important heuristic for applying model elaborators, as one

of the major advantages of object-oriented design is the seamless transition

from one model to another. Linked elements allow the discovery of the unknown

requirements for the next workflow, and as such, new models are derived based

on these reference points (linked elements).

To transit from one workflow to the next, we can apply the model transitor

by establishing the linked elements between two consecutive workflows.

The transition from one workflow to the next should be incremental and

seamless. For example, if no linked element exists between the two adjacent

workflows, it implies that there is no connection between them. This is

considered a big leap between two workflows and is not advisable. Many

suggest that a use case diagram can be elaborated to a detailed sequence

diagram or collaboration diagram. This transition is neither incremental nor

seamless, potentially resulting in serious traceability problems in the models.

Finally, the linked elements, which have been used to derive other models

or to transit from one workflow to another, should ultimately be inter-related

among different models by establishing their points of connection through the

view aligner. This will help ensure consistency among all the models in

different workflows.

The lower half of Figure 6.14 shows a detailed view of the Process Roadmap

that describes the three manipulators in greater specifics. The model elaborator

consists of input artifacts that provide useful information for the analysis to be

conducted in the workflow. The resulting artifacts produced by the analysis

consist of the linked elements, which in turn using model transistors, become

the input artifacts of the analysis stage of the next workflow using model

transitors. The more linked elements that are identified, the more requirements

will be discovered for developing other models. Thus, connect the linked

elements between two adjacent workflows first, and then establish the points

of connection for different models residing in different workflows using view

aligners.

Applying View Alignment Techniques

The VATs equip designers with the ability to create new or to customize existing

software development methods. In the case of method creation, VATs can help

the designer to select the suitable models out of the rich set of UML notations

for different workflows in the development process. For customizing an existing

method to suit the specific needs of an organization, the VATs can provide

guidance and hints when the existing method does not seem to work well.

300 Object-oriented Technology

Developing a new software method is in many respects analogous to playing

detective. There are no fixed procedures or heuristics to start the investigation

as each crime generally has its own unique circumstances; all relevant facts

will have to be considered as they are uncovered. Nonetheless, a detective

would logically start from a point or area where he/she can quickly gather clues

or evidence about the crime. The strategy here is to quickly uncover as many

relevant facts as possible. Often, the discovery of one fact may reveal other

leads. Sometimes, however, a detective may get stuck on a lead. It would be

natural for him to move on to other areas and dig deeper. But as more facts and

evidences are unveiled, the detective will try to consolidate these and fit the

bits and pieces together to obtain a global perspective of the situation. If the

detective previously made certain assumptions and contradictory evidence is

later found, he would have to initiate further investigations to ensure all the

facts are consistent and logical.

In applying the VATs, do not adhere to a fixed set of procedures, techniques

or models. Instead, prepare only a rough plan. The VATs can help design or

customize the process as more details of the system are discovered. Typically

start with the most suitable or convenient model where there is a lot of

information about the system; then develop other models by applying the

appropriate manipulators. Ultimately, the VATs will guide us through the

necessary and relevant models of the system. The following seven steps

describe how the VATs should be applied.

1. Configure the process

a. Determine the suitability of the development phases, the number of

iterations and workflows in the development process.

b. Determine the artifacts and deliverables associated with each workflow.

2. Select models for the workflow under development

Find an appropriate starting point for the workflow according to the

sequence defined in the configured Unified Process.

If (you can start with the workflow as defined in each iteration)

Start with the model you feel most comfortable with in the

workflow;

Else if (you find you don’t have much information on the defined

workflow)

You should revisit the configuration of the Unified Process and redo

Step 2.

3. Apply model elaborators

Apply model elaborators to complete the workflow. Normally, if the linked

elements for the models of the next workflow can be found, it signifies that

the current workflow has been completed.

Chapter 6: View Alignment Techniques and Method Customization 301

4. Identify linked elements

If (you can identify the linked elements (discover new requirements) for the

next workflow)

Identify the linked elements and proceed to the next workflow;

Else if (you find it difficult to identify the linked elements for the next

workflow)

Go to Step 2.

5. Apply model transitors

Navigate to the next workflow and select the appropriate models to work

with this workflow. Make use of the linked elements identified from the

models of the last workflow to derive the new models for the current

workflow.

6. Apply view aligners

Identify points of connection of the linked elements between models in the

workflows and make the necessary updates to the models if changes have

occurred in the linked elements.

7. Update linked elements for related models

Repeat Steps 5 and 6 until all the workflows of the iterations have been

completed.

This seven-step procedure for applying the VATs is represented in graphical

form using an activity diagram (see Figure 6.15). Note that the manipulators

may be applied more than once for each workflow. For example, in the

requirements workflow, the use case diagram is the main model, but you can

apply the elaborator twice. In the first application, the model elaborator

elaborates each of the use case in the use case diagram with a use case

description. In the second application, a different model elaborator elaborates

each base use case together with its <<include>> and <<extend>> use cases

using an activity diagram. The first elaborator helps realize a system-level

sequence diagram, while the second one facilitates the analysis of the

requirements of the scenarios needed for that use case.

Likewise, a model transitor and a view aligner may also be applied more

than once when we transit from one workflow to another, as there is possibly

more than one group of linked elements for a model transitor to help identify

and derive new models for the next workflow. Finally, view aligners are used to

establish the points of connection for the relevant models in the workflows.

Step 1: Configure the Unified Process

The predefined workflows in an iteration of the Unified Process are business

modeling, requirements, analysis, design, etc. Some problems may involve only

302 Object-oriented Technology

Figure 6.15. Seven steps for applying view alignment techniques

Step 1:

Configure process

Step 2:

Select appropriate model

Step 2a:

Start a model

for the workflow

Step 3:

Apply model elaborator

Step 4:

Identify linked elements

Step 5:

Apply model transitor to

derive new models

for new workflow

Step 6:

Apply view aligner

Step 7:

Update linked elements

for the related models

Step 2b:

Don’t have much

information on the workflow

Select detailed model

that has linked elements

in next workflow

Discover new requirements?

Proceed to next workflow

Finish with all workflows?

Chapter 6: View Alignment Techniques and Method Customization 303

isolated tasks which do not have many connections with the business

operations. In such situations, the business modeling workflow may be

optionally removed from the development iteration or even the whole process.

Some developers feel comfortable to include the workflow up to the design

stage, while others may prefer to include implementation, testing and so on.

In this step, configure the standard workflows and the number of iterations

involved in each development phase. Do not hesitate to adjust the number of

development phases. The procedure for this step is as follows:

• Consider the nature of the problem; include various factors such as the size

of the company and the resources available

• Consider also the information at hand: the development team’s expertise

and knowledge in different modeling techniques

• Configure the process to include the models to be used for each workflow:

the input artifacts for analysis, the outputs of the workflow including

models, documents, deliverables, test cases, etc.

Step 2: Select Models into Workflows

With the VATs, first consider the amount of information that is readily

available and then select the most convenient model for development.

For systems handling business activities and interaction-intensive applications,

the most readily available information is the business workflow and the

description of the business activities. Thus, the predefined workflows are

suitable for general business applications, and that is why, for such systems,

the business modeling is worked on first and use case modeling is then applied

to the requirements workflow.

For systems that involve very little user interaction, the use case approach

generally provides little help to designers. For example, a language parser,

say, an HTML parser, does not involve much user interaction. The user specifies

a HTML file and waits for the system to perform a series of complicated

operations before returning the result. The grammar and the translation rules

are, therefore, far more important than the use case model for such systems.

So first model the grammar of the language using a graphical representation,

such as a class diagram. For such an algorithm-intensive application, business

workflow modeling or even use case modeling may not be very helpful. Instead,

textual analysis or Class-Responsibility-Collaboration (CRC) may help identify

objects for the object model. These examples demonstrate that there are

multiple points of entry and exit for a particular project. The decision to select

an appropriate entry point to come up with a suitable model for a particular

304 Object-oriented Technology

workflow should be based on the nature of the project as well as other factors

mentioned before. The procedure for this step is as follows:

• Consider the aim and objective of the workflow in the context of how the

information at hand can help select the appropriate models to start with

• Determine the strong view of the main model selected, given the nature of

the workflow being developed

Step 3: Apply Model Elaborator to Complete Workflow

The strong view is usually determined based on the nature of the workflow

being developed. For example, business modeling is often represented by an

activity diagram for modeling a business workflow. It is quite obvious that a use

case diagram is not a good tool to delineate the business process. Rather,

it defines system functionalities, user tasks and the goals associated with it.

Once the strong view model has been determined, consider whether the

requirements of the next workflow can be derived using this strong view model.

The procedure for this step is as follows:

• Determine the strong view of the next workflow. If the linked elements from

the main model can be identified straightaway for the next workflow, then

mark them down to discover the requirements for the models of the next

workflow.

• Otherwise, try to elaborate the main model with sufficient details,

in conjunction with other models in the current workflow. These models

should contain the linked elements for the next workflow when the main

model has been adequately elaborated.

Step 4: Identify Linked Elements

Having completed a (source) model of the workflow, derive the requirements of

the models for the next workflow by identifying the linked elements in the

(source) model(s). If you are readily able to do so, it is likely that the transition

from this workflow to the next will be both traceable and seamless. However,

there are situations where such a transition is not seamless. For example, you

cannot seamlessly derive a sequence diagram of the design workflow from a use

case. Many textbooks suggest that this is possible but without showing how it

can be done. A use case diagram (the main model for the requirements

workflow) does not contain enough details for deriving a sequence diagram. Use

mainly the flow of events in a use case description (a supplementary model for

a use case diagram) to develop a system-level sequence diagram (as mentioned

Chapter 6: View Alignment Techniques and Method Customization 305

earlier in Chapter 4: Dynamic Modeling and Analysis). If you cannot identify

the linked elements in the main model, elaborate it with supplementary

model(s) whereby the gap between the two adjacent workflows can be bridged.

The procedure for this step is as follows:

• Ask “Does the source model need further clarification or details about its

contents?” If so, apply a model elaborator to develop other model(s) within

this workflow.

• Ask “Can you identify linked elements straightaway from the main model?”

If not, supplement the main model with a number of more detailed models

for this workflow, models that contain the linked elements (requirements)

for the models of the next workflow.

Step 5: Apply Model Transitor

The designer can apply the transitor to generate new models from existing

ones. Not only does this reduce the amount of work, but also improves the

consistency between models since the generation of new models from existing

ones guarantees that the linked elements of the common views of these models

are consistent. The procedure for this step is as follows:

• Ask “Does the weak view(s) of the source model in last workflow provide a

set of linked elements to derive models in the next workflow?” If so, apply

a model transitor to develop new model(s) by extracting the linked elements

from the previous workflow.

Step 6: Apply View Aligner

When one or more workflows are completed, revisit the models in the workflows

to check for consistency. For example, the class diagram will be revisited many

times, usually each time the sequence diagrams or collaboration diagrams have

been developed. The objects that appear in the interaction diagrams (sequence

and collaboration) are linked elements corresponding to a number of classes in

a class diagram. Through this process, the class diagram will be enriched as

other models are completed. These relationships are called points of connection.

The procedure for this step is as follows:

• Examine the model elements in both the main and detailed models within

the workflows and establish points of connection between the models in the

workflows.

• Record the points of connection to prepare for the updates and changes that

will take place in the model elements.

306 Object-oriented Technology

Step 7: Update Changes for Related Models in Workflows

As traceability has to be maintained among the models in the workflows, any

changes made in one model may potentially need to be updated in other models

and perhaps involving other workflows. The procedure for this step is as

follows:

• Update the changes made in one model in the other models in other

workflows according to the points of connection that have been identified

earlier in Step 6.

• Branch to Step 4 if there are still other workflows to be completed.

Method Creation or Customization Using View

Alignment Techniques

In the above section, a theoretical treatment of VATs was presented. We shall

now apply these techniques to design a new method for software development.

Instead of creating a very specialized method for a specific problem, we will

provide a generic method that enhances the entire development process. More

importantly this method can achieve much better model traceability,

requirements discovery and models consistency. This generic method is not

universal (we all know that a universal method does not exist). But it requires

little customization for problems of a similar nature. For example, the method

being proposed in the next section, which adopts the A3, is particularly suited

for interaction-intensive systems. The A3 can greatly enhance the use

case-driven approach by applying activity analyses at three different levels,

hence the name.

To develop a new software development method using the VATs, a method

template (see Table 6.2) should be used to structure the design process.

A software development method is, therefore, specified by an instance of the

method template. Once created, the software method can be applied to

problems of a similar nature.

The method template consists of two parts: a method roadmap and a

workflow roadmap (see Table 6.2). The method roadmap in turn consists of two

key components: a general description of the method and a method roadmap

diagram. The former describes the overall process of the software development

method being designed. The latter is a diagram showing all the workflows

within an iteration of the development phase from top to bottom (see

Figure 6.16). In the Unified Process, typically these workflows are business

modeling, requirements, analysis, design, implementation, etc. Each workflow

Chapter 6: View Alignment Techniques and Method Customization 307

to be conducted is represented by a UML package containing one or more

analyses, enclosed by a rounded rectangle. Each of these rounded rectangles

contains an analysis (represented by an ellipse) and an artifact (represented by

a document symbol).

Table 6.2. A process template for method creation/customization

Method [Name of software development method]

Description [A brief description of the software development

method. This may include the aims and objectives

of the development method].

Method roadmap diagram [A description of the high-level diagram that

serves as a process roadmap for describing the

entire development workflow within an iteration

in a particular development phase (e.g. the

requirements capturing workflow in the first

iteration of the elaboration phase) (see

Figure 6.17).]

Workflow [Name of workflow]

Input artifacts or model [The name of artifacts or model elements

elements required for conducting the analysis]

Other sources of [Other sources of information that may be

information required for conducting the analysis.]

Analysis involved [Name of the analysis]

Procedure [The steps involved in conducting the analysis.]

Artifacts produced by the [The output artifacts produced by the

workflow analysis.]

Workflow roadmap [reference to workflow roadmap diagram]

diagram

Revisit from other [Additional steps required for refining the models

workflow that have been developed in the previous

workflow.]

Manipulators [list of manipulators used in the workflow]

308 Object-oriented Technology

Figure 6.16. Generic process for method and workflow roadmap diagrams

Method roadmap diagram

ArtifactAnalysis

Analysis

Analysis Analysis

Business modeling

Analysis AnalysisAnalysis

Analysis

Requirements

Analysis Analysis

ArtifactAnalysis

Design

Analysis Analysis

Workflow roadmap diagram

Artifact

Analysis Analysis Analysis

ArtifactArtifact

.....

.....

.....

.....

Chapter 6: View Alignment Techniques and Method Customization 309

Figure 6.17. Method roadmap diagram for Activity Analysis Approach

Design

Scenario modeling State modeling

Analysis each

flow of events

Develop

subsystems and

system

architecture

Collaboration

diagrams

(flow of event)

Detail sequence

diagrams
<<Generates>> <<trace>>

Detail case

diagrams

(use case context)

State

analysis

State diagrams

(control)

Activity diagram

(path analysis)

Implementation

class diagram
<<trace>>

Business modeling

Business process analysis Domain analysis (workflow level)

Interview

system users

Develop

business

workflow

Workflow

(activity diagram)

Prepare problem

statement

(business

operations)

Problem

statement

(workflow)

Requirement

Use case analysis Domain analysis (use case level)

Find actor and

use cases

Prioritize

use cases

Detail a

use case

Structure the

use case

model

Detail use

case diagram

Use case

descriptions

Use case

schedule

Data

dictionary

Problem

statement

(use case level)

Prepare problem

statement

(use case

level)

Analysis

System modeling Domain analysis (class level)

<<Generates>>
System level

sequence

diagrams

Static modeling

Elaborate use

cases

Use case

scenarios

(activity diagram)

Domain

class

diagram

Perform

domain class

modeling

Data

dictionary

Problem

statement

(class level)

Perform

textual analysis

<<trace>>

310 Object-oriented Technology

The second part of the method template, the workflow template, has three

major components. The first component describes the input artifacts, output

artifacts, the analysis involved and the procedure to be conducted within it. The

second component is the workflow roadmap diagram which describes detailed

activities such as the analysis to be conducted and output artifacts that will be

produced by these analyses. A typical workflow roadmap diagram includes two

adjacent workflows, which together show the connection of the linked elements

between them. As mentioned earlier, a workflow may contain one or more

rounded rectangles in it. Finally, the third component consists of a set of

manipulators in a tabulated form which describes their application in the

current and following workflows.

Method and Workflow Roadmap Diagrams

A high-level method includes all the workflows of a process, from top to bottom

of the diagram according to the sequence of the workflow. Each workflow

consists of a number of analyses represented by rounded rectangles.

The workflow roadmap diagram provides a detailed view of what is inside each

analysis.

Manipulator Descriptions

Manipulator descriptions show a list of manipulators that should be applied in

the workflow. As each type of manipulator may be applied a number of times

in a workflow, specify the link (interface) that takes place in between two model

artifacts. For example, a model elaborator may be used in the requirements

workflow three times as shown in Table 6.3.

Table 6.3. Manipulator descriptions

Manipulator Brief description

Elaborator (use case list, use case Develop a use case diagram from candidate

diagram) use cases

Elaborator (use case, use case Elaborate each use case with a use case

description) description

Elaborator (use case, activity Elaborate each use case with an activity

diagram) diagram

Chapter 6: View Alignment Techniques and Method Customization 311

Class Diagram for Method Template

Figure 6.18 shows the structure of a method template that can be conveniently

represented in a class diagram, showing the artifacts that will be produced

during the development process. A method template has its own name and

consists of two components. The first is the method roadmap which consists of

a description and the method roadmap diagram. The second is the workflow

roadmap which contains the analyses to be conducted within this workflow.

It contains a number of workflow roadmap diagrams, describing all the

workflows included in an iteration within the development process.

Each workflow roadmap diagram contains a list of model manipulators that are

included in the manipulator description form, and each model manipulator is

further described in detail by a model manipulator form.

Figure 6.18. Class diagram for method template

1 … *

1 … *

Method Roadmap Diagram

⫺Description

Method

⫺Name

⫺Description

Workflow

⫺Name

⫺InputArtifacts

⫺OtherSourceofInformation

⫺AnalysisInvolved

⫺Procedure

⫺ArtifactsProducedByTheWorkflow

⫺RevisitFromOtherWorkflow

Manipulator

⫺⌱D

⫺Objectives

⫺InputModels

⫺OutputModels

⫺HeuristicsofTheElaborator

⫺Tasks

1 … *

Method Roadmap Diagram

⫺Description

312 Object-oriented Technology

Method Creation: A Case Study

New software methods seem to emerge every ever so often in the industry.

Some liken them to the latest apparel in the fashion industry in that software

designers and vendors eagerly want to be the first to adopt new methods for

fear of lagging behind. Perhaps this explains why some designers blindly follow

the steps prescribed by some “universal methods,” while not knowing their

weaknesses and limitations.

The use case-driven approach has become very popular and so has been

widely adopted over the past few years. It has also become a core component

of UML. While object-oriented design is much more sophisticated than the

traditional structured approach, practitioners often face the following

difficulties:

• Use cases are used to specify the requirements of a system. While users can

generally describe their business activities and processes, they cannot

specifiy which parts should be computerized and which should remain as

manual procedures. Obviously, there is a gap between the business

activities described by the users and the use case model. It is also necessary

to specify how the manual and computerized procedures should be

integrated. A high-level (activity or workflow) model is required to fill this

gap and to guide designers in identifying the use cases.

• Object identification is not an easy task. This process often frustrates many

especially if they are new to the object-oriented approach. Traditionally, a

textual analysis is performed on the problem statement or the use case

descriptions. The nouns and noun phrases are highlighted and then

evaluated by the developer for inclusion as objects. However, nouns or noun

phrases only provide a list of candidate objects. To decide whether these

candidate objects are objects truly relevant to the systems still requires the

experience and good judgment of the design team.

• Realizing a set of sequence diagrams (containing a collaborative set of

objects) from a use case is another difficult task. A use case may have many

pathways of execution, involving many different scenarios and sequence

diagrams to specify the collaborations between objects. In this process,

there is also the need to identify certain objects for the user interface and

the control flow. However, traditional use case descriptions are not good at

specifying logic and multiple pathways of execution. Thus, managing the

use case and the associated scenarios and sequence diagrams can be

another hard task for the designer.

Chapter 6: View Alignment Techniques and Method Customization 313

In this section, we will introduce a new software method that can greatly

enhance the use case-driven approach. The A3 provides effective solutions to all

the above problems and fills the gaps between different UML models. The aim

of the A3 is to make it easier to identify use cases through the use of the

business workflow analysis. Once the use case diagram is developed, we need

to analyze the internal logic and determine the number of scenarios involved in

each use case. The A3 fills these gaps by guiding the designer through the

process of object identification seamlessly.

Seven Steps of Method Creation Process

The A3 uses UML as the notation, the Unified Process as the process and VATs

for the techniques part. We have named the approach as the A3 because activity

analyses are performed at three different levels: business workflow, use case

and scenario levels (see Figure 6.19):

• Business workflow analysis. The workflows of a company or organization

are represented by swimlane activity diagrams at different levels of

abstraction. At the top level, the workflows between the company and its

business partners are described. At the middle level, activity diagrams for

the workflows between the departments of the company are analyzed.

At the bottom level, the workflows between individual actors are described.

These analyses can help identify the scope of the software system being

developed as well as the relationships between the software system,

the human system and the computer system.

• Use case analysis. The flow of events of a use case can be elaborated by an

activity diagram. An activity diagram is useful for analyzing the control

flow of a use case if the use case has complex conditional branching or

concurrent flows. The activity diagram can be used to determine the

number of possible execution paths of the use case and to generate the

necessary use case scenarios.

• Scenario analysis. Each of the action states which describes a use case in

the activity diagram is elaborated by a collaboration diagram using the

scenario analysis. As each of these action states represents a transaction

(or sequence of transactions) of the use case, the transaction may be

executed differently according to the way the user interacts with the

system; it may be performed fully or not at all. Therefore, a number or

collaboration diagrams may be required to describe each of the possible

paths of the transaction.

314 Object-oriented Technology

Step 1: Configure Process

To design a new method, determine what workflows are to be included in an

iteration within a phase of the development process (the four phases of the

Unified Process are illustrated in Figure 6.4). For the entire development

process, consider adopting either a unified process or simply the spiral software

development life cycle model (SDLC). In addition to the configuration of

Figure 6.19. The Three Levels of Activity Analysis

Actor

Actor2

ActionState6 ActionState

ActionState2

ActionState3

ActionState4

ActionState5

Use case scenarios

(activity diagram)

Level 2: Activity analysis

UseCase2

UseCase3

UseCase4

UseCase

<<include>>

System

<<include>>

Detail use case diagram

Collaboration diagram (workflow)

:Actor3

Level 3: Activity analysis

1: message

:Object

2: message

:Object2

3: message

:Object3

5: message

:Object4

4: message

Level 1: Activity analysis

Activity 1

Activity Activity Activity

Activity 2

•••

Activity

ActivityActivity Activity

Chapter 6: View Alignment Techniques and Method Customization 315

workflows, designers may also determine the prototypes and deliverables for

different checkpoints or milestones.

a. Determine the suitability of the development phases, the number of

iterations and the workflows of the development process

For the A3, keep the case study precise and concise, so only business

modeling, requirements, analysis and design workflows will be included in

the case study as shown in Figure 6.20.

b. Determine the artifacts and deliverables for each workflow

Select the architecturally significant use cases in the use case schedule

to be developed first. At the end of each iteration, a prototype should be

produced for the selected use case(s) with major subsystems integration for

each of the development phases as shown in Figure 6.20.

c. Fill in the initial information for the method being created using the view

alignment method design template (Table 6.4).

Step 2: Select Models for Workflow under Development

In the previous step, business modeling, requirements, analysis and design

workflows were included in each of the development iterations. The first

workflow to start with, in the order of the development iteration, is the business

modeling workflow. Now, we need to select the appropriate models for this

workflow.

Figure 6.20. Process and workflow configuration for A3

Prototypes

Subsystems integration

Prototypes

Subsystems integration

Workflow (business modeling)

Sample

Unified Process

disciplines

Business modeling

Requirements

Analysis

Design

Inception Elaboration Construction Transition

Development phase in the Unified ProcessIteration in elaboration phase

316 Object-oriented Technology

Table 6.4. View alignment method design template for method creation

Method Activity analysis approach (A3)

Description The Activity Analysis Approach enhances the use

case-driven approach in terms of object

identification, model traceability, requiremenets

discovery and models consistency. It is a general

software development process. This approach also

supports multiple project development works of a

company or organization.

Method roadmap diagram The first workflow in an iteration of the Unified

Process is business model and analysis, followed

by requirements capturing, and so on, ending with

the design workflow. This process template should

be extended to cover testing and possibily other

optional workflows. (Figure 6.17)

Select Models for Business Modeling

To understand the business operation and workflows of the company, we need

to conduct interviews with the potential users of the system being developed.

For problems related to a specific domain, it is necessary to interview domain

experts to gain the required domain-specific knowledge. If the system is to be

integrated with legacy systems or conformed to certain standards, these legacy

systems, together with the relevant documentation, must be reviewed at the

very early stages. Thus, there are two objectives the designers need to satisfy.

The first objective is to model the business operation and workflows of the

company and the second to take various factors into consideration, such as

standard terminology, legacy systems, etc., to develop the target solution. If we

only consider the views of the users to the conclusion of the standards,

terminology and general practice in the industry, the target system will

generally be difficult to integrate with other subsystems or to communicate

with the outside world.

Thus, we need to have two analysis here in the business modeling workflow.

Activity diagrams are an excellent analysis tool, while textual analysis is

widely used to reveal static information such as documentation, standards or

user guides of legacy systems. These two analyses are complementary to each

other: use cases identified from the business workflow analysis activity diagram

can be contrasted with those found from the textual analysis. In this case study,

we shall choose the business workflow analysis as the main model (one of the

Chapter 6: View Alignment Techniques and Method Customization 317

entry points) and at the same time, the textual analysis will also be conducted

to examine the domain, standard practice and/or legacy systems (as another

entry point) for developing more standardized and reusable systems.

Business workflow analysis. The business process (workflow) of a company

is analyzed using activity diagrams. The primary goal is to identify the

candidate business activities for automation by software systems. Once this

information is determined, the scope of the software system can then be set out.

Depending on the nature of the business, it is sometimes necessary to

create more than one activity diagram to represent the business workflows of

the company. Determine the activities in the workflows that should or should

not be computerized. Start by analyzing the most important business processes

of the company first. This will help the designers to quickly understand the core

business processes of the company and identify which activities should be

computerized. Where possible, interview the relevant representatives of the

company.

Textual Analysis. The problem statement produced after interviewing end

users and domain experts and the documentation describing the standard

terminologies that need to be conformed with are excellent artifacts for the

designer to prepare the groundwork for use cases identification, fact finding

and the preparation of the data dictionary.

Step 3: Apply Model Elaborator

In this step, we apply the model elaborator to complete the workflow. Normally,

if the linked elements for models of the next workflow are found, it is a strong

signal that analysis of the current workflow is completed. We can then identify

use cases from both the business workflow analysis and textual analysis which

can be used straightaway for the next workflow – requirements. Use the use

case diagram as the main model for the requirements workflow. Thus,

the linked elements are a list of candidate use cases identified from the

business workflow and textual analysis.

However, for very complex problems involving many activities, it might be

necessary to develop a lower-level activity diagram to get a magnified view and

a better understanding of the functions that these activities perform.

Figure 6.21 shows the high-level business activities of a company. Several

business activities (encased in ovals) are identified as needing computerization.

For each of these business activities, elaborate it by a lower-level activity

diagram and then identify the steps that require computerization.

318 Object-oriented Technology

Figure 6.21. Multi-level activity diagram for business modeling

Actor 1

Actor N

Actor 2

Actor Am

Actor A1

Activity Activity Activity Activity

Activity Activity Activity

Activity Activity Activity

Business activities of interest

are marked as the scope of

the system or subsystem

Sub-level business activity

diagram

Chapter 6: View Alignment Techniques and Method Customization 319

Business Modeling Workflow

Table 6.5 provides the description of the input artifacts, output artifacts and the

process of the business modeling and analysis workflow.

Table 6.5. Description of business modeling process

Workflow Business Modeling

Input artifacts or model Problem statement, business workflow and

elements possible sub-level business workflow diagrams for

complex problems

Other sources of Legacy systems, domain knowledge of experts,

information end users, standards and terminologies in the

field

Analysis involved • Domain analysis (workflow)

• Business process analysis

Procedure • Interview users and prepare a problem

statement at the business operation level

• Model business processes using swimlane

activity diagrams

• Determine system scope

Artifacts produced by Activity diagram (workflow)

the workflow

Workflow roadmap See Figure 6.22

diagram

Revisit from other Any changes in business operations should be

workflow updated in the business workflow diagram

Manipulators • Elaborator(Problem_Statement[interview],

Swimlane_Activity_Diagram)

• Elaborator(Swimlane_Activity_Diagram,

Swimline_Activity_Diagram)

320 Object-oriented Technology

Step 4: Identify Linked Elements

At this stage, identify the linked elements (or discover new requirements) for

the next workflow and proceed with the following steps.

The candidate use cases have now been identified from the business

workflow and possibly from the textual analysis. The terminologies and

descriptions used for naming the use cases should be consistent and

documented in the data dictionary later on.

Once the linked elements extracted from the model(s) in this workflow have

been found, use them to derive the model for the next workflow – requirements.

Use case modeling and analysis techniques are widely used for interaction-

intensive applications. The business workflow diagram (activity diagram) can

often be modeled in a swimlane format, where each swimlane of the diagram

may be associated with an actor (or sometimes a department) who is involved

in or participates in that part of the business workflow. Basically, all the crucial

information that is necessary for developing the use case diagram has been

readily extracted from the models within the business modeling workflow.

Thus, the transition from business modeling to requirements is expected to be

seamless and traceable between each workflow. However, not all problem

domains are heavily involved in the business workflow. Thus, we may at times

need to develop several business workflow diagrams for operations that are

quite independent of each other.

It may be more helpful to start with the domain analysis instead of the

business workflow diagram. So, be flexible with the starting point(s) of the

process; do not blindly follow the steps that were previously defined. If the

business modeling workflow does not help in dealing with the type of problem

at hand, reconfigure your workflow in the development process.

Previously, we used the crime-solving analogy to emphasize the importance

of being flexible and always working on the available information. We should

explore all possible entry points to identify linked elements from other views.

In so doing, any missing pieces will become apparent when tracing the relevant

link elements extracted from other models.

Step 5: Apply Model Transitor

Navigate to the next workflow and select appropriate models to work with this

workflow. Make use of the linked elements extracted from the model of the

previous workflow to derive the new models for this workflow.

At the end of the business workflow analysis and the textual analysis,

we will have obtained the two artifacts: a list of candidate use cases and a

Chapter 6: View Alignment Techniques and Method Customization 321

high-level problem statement that describes the business operations and

workflows, and the people participating in them.

At this point, the designer can develop the use case diagram for the

requirements workflow. He/she can then develop the workflow roadmap

diagram for the business modeling workflow (see Figure 6.22).

Step 6: Apply View Aligner

Having completed the first workflow (business modeling), focus on the next one

(requirements). Because there is not a lot of completed models, the view aligner

is not applied at this point.

Step 7: Develop Next Workflow

Having finished the business modeling workflow, we are ready to proceed to the

requirements workflow which is done by repeating Steps 5 to 7 of the process

of applying the VATs (see Figure 6.15) until all the workflows have been

completed.

Summary of Business Workflow

To sum up the analysis involved in the business modeling workflow, we started

off with two models (workflow level activity diagrams and workflow level

problem statements) in parallel. Sometimes, the workflow level activity

diagram is the main model and the workflow level problem statement the

supplementary model. But it is possible it could be the other way round

depending on the available information and the nature of the problem.

Optionally, sub-level activity diagrams may be necessary for some complex

problems. For certain independent business operations, several workflow level

activity diagrams may be required, and model elaborators may be applied

where necessary to create sub-level activity diagrams.

Transiting to Next Workflow: Requirements

The requirements workflow captures the requirements from the users’

perspective. The system requirements are recorded by use case diagrams, use

case descriptions, and actor specifications. Start with the list of business

activities that have been identified for computerization in the business

modeling and analysis workflow and prepare a problem statement (use case

level) for the system. The problem statement will then be used to identify actors

322 echnology
F

ig
u

re
 6

.2
2

.
B

u
s

in
e

s
s

 m
o

d
e

li
n

g
 p

ro
c

e
s

s

D
e
p
a
rt

m
e
n
t1

D
e
p
a
rt

m
e
n
t2

D
e
p
a
rt

m
e
n
t3

B
u

s
in

e
s

s
 m

o
d

e
li

n
g

D
e

v
e

lo
p

 b
u

s
in

e
s
s

w
o

rk
fl
o

w

In
te

rv
ie

w

s
y
s
te

m
 u

s
e

rs

R
e

q
u

ir
e

m
e

n
ts

P
re

p
a

re
 p

ro
b

le
m

 s
ta

te
m

e
n

t

(u
s
e

 c
a

s
e

 l
e

v
e

l)

P
re

p
a

re
 p

ro
b

le
m

 s
ta

te
m

e
n

t

(b
u

s
in

e
s
s
 o

p
e

ra
ti
o

n
s
)

W
o

rk
fl
o

w
 (

a
c
ti
v
it
y
 d

ia
g

ra
m

)

P
ro

b
le

m
 s

ta
te

m
e

n
t

(w
o

rk
fl

o
w

)

…

…

…

…

…

…

…

…

…

…

…
…

…

…

…
…

…

…
…

…

…
…

…

…

…

…

…

…

…
…

…

…

…

…

…
…

…

…

…

…

…

…

…

…

…

…

…
…

…

…

…

…

…
…

…

…

…

…

…
…

…

…
…

…

…
…

…

…

…
…

…

…

W
o
rk

fl
o
w

W
o
rk

fl
o
w

W
o
rk

fl
o
w

W
o
rk

fl
o
w

W
o
rk

fl
o
w

W
o
rk

fl
o
w

W
o
rk

fl
o
w

D
o

m
a

in
 a

n
a

ly
s
is

 (
w

o
rk

fl
o

w
 l
e

v
e

l)

Chapter 6: View Alignment Techniques and Method Customization 323

and use cases. Also, the problem statement can be refined to include details at

the class level for implementation in the next workflow (analysis).

Two analyses are involved in the requirements workflow. The use case

analysis is selected as the main analysis and the domain analysis as the

supplementary analysis. This approach is particularly suitable for interaction-

intensive systems. The use case analysis focuses on information provided by the

end users who will interact with the new system to carry out their tasks.

The domain analysis takes into consideration the terminologies and standards

adopted by the industry and contrasting those used in the organization to

ensure that the system does not deviate too much from the outside world.

This will also improve system reusability and extendibility in the future.

Repeating Steps 4 and 6

In applying the model manipulators, there is an analysis pattern that designers

can follow. In the first workflow (in this case, business modeling), only the

appropriate model for the workflow need to be selected as there is none before

it. Thus, a main model will be selected for the workflow, and some

supplementary models may be needed if the linked elements are difficult to

identify by applying the model elaborator.

When proceeding to the second workflow, use the models created in the

previous workflow to generate partial models for the next workflow which

contain the linked elements extracted by the model transitors. Then derive

supplementary models by using model elaborators which again help bridge the

gap between the workflow currently being developed and the one that follows.

Through this process, more and more workflows are completed, and the

application of view aligners becomes necessary to ensure models consistency.

The analysis patterns can be summarized in Table 6.6.

Table 6.6. Application patterns of manipulators

Development status Workflows Application of

manipulators’ patterns

First workflow Business modeling Elaborators

Second workflow Requirements Transitor → Elaborators

Third workflow and beyond Analysis, design, etc… Transitor → Elaborators

→ Aligners

324 Object-oriented Technology

Workflow for Requirements

We shall skip the details of the steps associated with this (requirements)

workflow since they have been described in detail in Chapter 3 (Use Case

Modeling and Analysis). By repeating Steps 5 and 6, the requirements of the

system are described by use case diagrams and the associated use case

descriptions. Figure 6.23 shows the steps and models involved in the workflow.

Table 6.7 provides a detailed description of the workflow.

Table 6.7. Description of requirements workflow

Workflow: Requirements

Input artifacts or Activity diagram [workflow], problem statement

model elements [workflow]

Other sources of Legacy systems, domain knowledge of experts,

information end users, standards and terminologies in the field

Analysis involved • Domain analysis (use case level)

• Use case analysis

Procedure • Prepare the problem statement at the use case level

• Perform textual analysis to identify major actors

and use cases

• Create use case diagrams

• Describe the use cases

• Structure the use case diagrams with <<include>>,

<<extend>> and generalization relationships

• Develop instance scenarios of the use cases

• Prioritize the use cases

Artifacts produced by Use case model (use cases)

workflow

Workflow roadmap See Figure 6.23

diagram

Revisit from other Any changes in business operations should be

workflows updated in the problem statement at the use case level

Chapter 6: View Alignment Techniques and Method Customization 325

Table 6.7. (Con’t)

Manipulators • Transitor(Activity_Diagram[Business Workflow],

Problem_Statement [use case level])

• Transitor(Problem_Statement [use case level],

Actor_List)

• Transitor(Problem_Statement[use case level],

Use_Case_List)

• Elaborator(Use_Case_List,

Data_Dictionary.Use_Case_List)

• Elaborator(Actor_List, Data_Dictionary.Actor_List)

• Elaborator(Data_Dictionary.Use_Case_List,

Use_Case_Schedule)

• Elaborator(Data_Dictionary.{Use_Case_List,

Actor_List}, Use_Case_Diagram}

• Elaborator(Use_Case, Use_Case_ Description)

Transiting to the Next Workflow: Analysis

The purpose of the analysis workflow is to identify the classes and objects of the

system from the models of the requirements workflow and the ways in which

the users invoke the use cases. Identify the classes and objects of the system

by performing a textual analysis on the problem statement and the use case

descriptions. However, it is generally difficult to ascertain sequence information

from the use case description. The activity diagrams will enable the designers

to do so effectively.

It can be seen that the transition from requirements to analysis is natural,

and that the creation of activity diagrams from use case descriptions is also

straightforward through the use of the linked elements between them. The flow

of events part in the use case description details the external interactions

between the system and the actor. The activity diagrams for concrete use cases

will also cover the flow of events of the <<include>> and <<extend>> use cases.

Repeating Steps 5 and 6

Figure 6.24 shows the roadmap for the analysis workflow which contains three

analyses. The main model is system modeling which realizes each of the use

cases using the second level of A3 (recall that the first level of A3 is the

representation of the business workflow using activity diagrams in the business

modeling workflow). The activity diagram provides the graphical representation

326 Object-oriented Technology
F

ig
u

re
 6

.2
3

.
R

e
q

u
ir

e
m

e
n

ts
 w

o
rk

fl
o

w
 p

ro
c

e
s

s

B
u

s
in

e
s

s
 m

o
d

e
li

n
g

R
e

q
u

ir
e

m
e

n
ts

U
s
e

 c
a

s
e

 a
n

a
ly

s
is

W
o
rk

fl
o
w

W
o
rk

fl
o
w

W
o
rk

fl
o
w

W
o
rk

fl
o
w

W
o
rk

fl
o
w

D
e
p
a
rt

m
e
n
t1

W
o
rk

fl
o
w

W
o
rk

fl
o
w

D
e
p
a
rt

m
e
n
t2

D
e
p
a
rt

m
e
n
t3

W
o

rk
fl
o

w
 (

a
c
ti
v
it
y
 d

ia
g

ra
m

)

D
a
ta

 d
ic

ti
o

n
a
ry

A
c
to

r
R

o
le

…
…

…
…

U
s
e
 c

a
s
e

G
o
a
l

…
…

…
…

…
…

U
s
e
 c

a
s
e
 s

c
h

e
d

u
le

U
s
e
 c

a
s
e

R
a
n
k

U
C

0
1

h
ig

h

U
C

0
2

m
e
d
iu

m

U
s
e
 c

a
s
e
 d

e
s
c
ri

p
ti

o
n

N
a
m

e
K

 …

D
e
s
c
ri
p
ti
o
n

K
…

P
re

c
o
n
d
it
io

n
K

…

P
o
s
tc

o
n
d
it
io

n
K

…

F
lo

w
 o

f
e
v
e
n
t

K
…

R
e
m

a
rk

s
K

…

Ac
to

r

Ac
to

r2

U
se

C
as

e2

U
se

C
as

e3

U
se

C
as

e4

U
se

C
as

e

<<
In

cl
ud

e>
>

Sy
st

em

<<
In

cl
ud

e>
>

D
e
ta

il
 u

s
e
 c

a
s
e
 d

ia
g

ra
m

F
in

d
 a

c
to

r
a
n
d

u
s
e
 c

a
s
e
s

A
n

a
ly

s
is

P
ri
o
ri
ti
z
e

u
s
e
 c

a
s
e
s

D
e
ta

il
a
 u

s
e
 c

a
s
e

S
tr

u
c
tu

re
 t
h
e

u
s
e
 c

a
s
e
 m

o
d
e
l

D
o

m
a

in
 a

n
a

ly
s
is

 (
u

s
e

 c
a

s
e

 l
e

v
e

l)

P
ro

b
le

m
 s

ta
te

m
e

n
t

(w
o

rk
fl

o
w

)

…

…

…

…

…

…

…

…

…

…

…

…

…

…

…
…

…

…
…

…

…

…

…

…

…

…

…

…

…
…

…

…

…

…

…

…

…

…

…

…

…

…

…

…

…

…

…
…

…

…

…

…

…

…

…

…

…
…

…

…

…

…

…

…

…

…

 P
re

p
a
re

 p
ro

b
le

m
 s

ta
te

m
e
n
t

(u
s
e
 c

a
s
e
 l
e
v
e
l)

E
la

b
o
ra

te
 u

s
e

c
a
s
e

E
la

b
o
ra

te
 u

s
e

c
a
s
e

E
la

b
o
ra

te
 u

s
e

c
a
s
e

327
F

ig
u

re
 6

.2
4

.
A

n
a

ly
s

is
 w

o
rk

fl
o

w
 p

ro
c

e
s

s

R
e

q
u

ir
e

m
e

n
t

A
n

a
ly

s
is

S
y
s
te

m
 m

o
d

e
lin

g

P
e
rf

o
rm

 d
o
m

a
in

c
la

s
s
 m

o
d
e
lin

g

D
o

m
a

in
 a

n
a

ly
s
is

 (
u

s
e

 c
a

s
e

 l
e

v
e

l)

P
ro

b
le

m
 s

ta
te

m
e

n
t

(w
o

rk
fl

o
w

)

…

…

…

…

…

…

…

…

…

…

…
…

…

…

…
…

…

…

…

…

…

…

…

…

…

…

…

…

…
…

…

…

…

…

…

…

…
…

…

…
…

…

…

…

…
…

…

…

…

…

…
…

…

…

…

…

…
…

…

…
…

…

…

…

…

…

U
s
e
 c

a
s
e
 d

e
s
c
ri

p
ti

o
n

N
a
m

e
K

 …

D
e
s
c
ri
p
ti
o
n

K
…

P
re

c
o
n
d
it
io

n
K

…

P
o
s
tc

o
n
d
it
io

n
K

…

F
lo

w
 o

f
e
v
e
n
t

K
…

R
e
m

a
rk

s
K

…

P
ro

b
le

m
 s

ta
te

m
e

n
t

(w
o

rk
fl

o
w

)

…

…

…

…

…

…

…

…

…

…

…
…

…

…

…
…

…

…

…

…

…

…

…

…

…

…

…

…

…
…

…

…

…

…

…

…

…

…

…

…

…

…

…

…

…

…

…
…

…

…

…

…

…

…

…

…

…
…

…

…

…

…

…

…
…

Ac
tio

nS
ta

te
6

Ac
tio

nS
ta

te

Ac
tio

nS
ta

te
2

Ac
tio

nS
ta

te
3

Ac
tio

nS
ta

te
4

Ac
tio

nS
ta

te
5

E
la

b
o
ra

te
 u

s
e

c
a
s
e

U
s
e
 c

a
s
e
 s

c
e
n
a
ri
o
s

(a
c
ti
v
it
y
 d

ia
g
ra

m
)

A
n
a
ly

s
is

 e
a
c
h

fl
o
w

 o
f
e
v
e
n
ts

K …

u
s
e
r

in
p
u
t
1

:U
s
e
r

:S
y
s
te

m

s
y
s
te

m
 r

e
s
p
o
n
s
e
 1

u
s
e
r

in
p
u
t
2

s
y
s
te

m
 r

e
s
p
o
n
s
e
 2

S
y
s
te

m
-l
e
v
e
l
s
e
q
u
e
n
c
e
 d

ia
g
ra

m

<
<

G
e
n
e
ra

te
s
>

>

D
a
ta

 D
ic

ti
o

n
a
ry

A
c
to

r
R

o
le

…
…

…
…

U
s
e
 C

a
s
e

G
o
a
l

…
…

…
…

…
…

P
e
rf

o
rm

 t
e
x
tu

a
l

a
n
a
ly

s
is

S
ta

ti
c
 m

o
d

e
lin

g

A
n
a
ly

s
is

 c
la

s
s
 d

ia
g
ra

m

C
la

ss

C
la

ss

C
la

ss

C
la

ss
C

la
ss

C
la

ss

C
la

ss

D
e

s
ig

n

328 Object-oriented Technology

of a use case which is structured into the base use case and its associated

abstract use cases. The use case level problem statement is used to perform

textual analysis to identify candidate domain classes. These classes will,

in turn, be structured into an analysis class diagram through static analysis.

The purpose of the analysis class diagram is to provide an alternative way,

in addition to the use case approach, to identify important objects for the

application. This is because the use case approach is focused on the

requirements obtained from end users, and does not consider the overall

terminologies and standards currently used in the industry.

The current analysis workflow is third in line. The analysis pattern

requires the application of first, the model transitors, then the model

elaborators (if necessary) and finally the view aligners. Let us follow this

analysis pattern in the application of the model manipulators for the analysis

workflow. First apply the model transitor for the use case description by

connecting the linked elements (flow of events) with the main model (activity

diagram). Each action state in the activity diagram corresponds to an event in

the flow of events of the use case description. The main flow of the activity

diagram corresponds to a base use case, and each <<extend>> or <<include>>

use case is represented by a group of action states in the activity diagram. For

the <<extend>> use case, a decision branching is necessary.

Each message in the system-level sequence diagram or flow of events in a

use case description corresponds to a collaboration diagram which is the third

level of the activity analysis for the A3 development method. By applying the

model transitor, the flow of events in the use case description are turned into

an activity diagram. At this point, analyze the number of scenarios there should

be for the use case and then develop corresponding system-level sequence

diagrams by using the model elaborators. Therefore, the messages in the

system-level sequence diagram (linked elements) enable us to discover the

requirements for the next workflow – design.

Although the application of the view aligner is optional here, it can be

argued that any changes or updates in the data dictionary obtained in the

domain analysis should be reflected in the related models using the view

aligner. Likewise, the view aligner should be applied to ensure the extension

points in the use case diagram are consistent with the corresponding branching

in the activity diagram. Table 6.8 provides a detailed description of the analysis

workflow.

Chapter 6: View Alignment Techniques and Method Customization 329

Table 6.8. Description of analysis workflow

Workflow Analysis

Input artifacts or model Problem statement[use case level], use case model

elements

Other sources of Legacy systems, domain knowledge of experts,

information end users, standards and terminologies used in

the field

Analysis involved • Domain analysis (class level)

• Static modeling

• System modeling

Procedure • Perform domain analysis of the problem

statement to develop a domain class model

• Perform textual analysis of the use case

description to identify system-specific classes

and combine the results with the domain class

model

• Elaborate a use case with system-level

sequence diagrams

• For use cases with complex control flows,

elaborate the use cases with activity diagrams

first

Workflow Analysis

Artifacts produced by System-level sequence diagrams, analysis class

workflow model

Workflow roadmap See Figure 6.25

diagram

Revisit from other Any changes in the problem statement or use case

workflows model should be updated in the analysis class

model and the system-level sequence diagrams

330 Object-oriented Technology

Table 6.8. (Con’t)

Manipulators • Transitor(Problem_Statement,

Class_Diagram[domain])

• Transitor(Use_Case_Description,

Class_Diagram[analysis])

• Aligner(Class_Diagram[domain],

Class_Diagram[analysis])

• Transitor(Use_Case_Description.

Flow_of_Events, Activity_ Diagram)

• Aligner(Activity_Diagram,

Use_Case_Diagram.Use_Case.Extension_Point_List)

• Elaborator(Activity_Diagram.Path,:

System_Level_Sequence_Diagram)

Transiting to Next Workflow: Design

The aim of the design workflow is to conduct behavioral modeling and analysis

so that we can progress from the stage of getting a detailed understanding of

what the problem is, to the stage of discovering how the problem is going to be

solved. For example, up to this point, we have the use case model of the problem

under development and each use case may be elaborated by an activity diagram

which, in turn, describes the possible scenarios. Each of these scenarios can be

represented by a system-level sequence diagram. Remember that these

diagrams describe only the external interactions between the users and the

system and not anything related to the internal logic of the system.

At this point, proceed from a detailed description of the system’s external

behavior to the design of the system’s internal logic. An effective method should

help the designer make gradual progress from one workflow to another.

The third level of the A3 leads the designer through this important transition

from the “What to do” stage to the “How to do” stage by applying the scenario

analysis in the design workflow.

Repeating Steps 4 to 6

The design workflow contains two analyses: the scenario analysis and the state

analysis. The first step of the scenario analysis concerns the design of the

realization of each action state in the activity diagram (representing a use case)

using a collaboration diagram. The collection of all these collaboration diagrams

representing action states forms a detailed Model/View/Control (MVC)-level

sequence diagram. The control object or subsystem will, in turn,

be represented by a state diagram. To ensure models traceability and

331
F

ig
u

re
 6

.2
5

.
P

ro
c

e
s

s
 o

f
d

e
s

ig
n

 w
o

rk
fl

o
w

A
n

a
ly

s
is

D
e

s
ig

n

S
c
e

n
a

ri
o

 m
o

d
e

lin
g

S
ta

te
 M

o
d

e
lin

g

A
n
a
ly

s
is

 e
a
c
h

fl
o
w

 o
f
e
v
e
n
ts

<
<

G
e
n
e
ra

te
s
>

>

A
n
a
ly

s
is

 c
la

s
s
 d

ia
g
ra

m

C
la

ss

C
la

ss

C
la

ss

C
la

ss
C

la
ss

C
la

ss

C
la

ss

C
o
lla

b
o
ra

ti
o
n
 d

ia
g
ra

m

(w
o
rk

fl
o
w

)

D
e
v
e
lo

p
 s

u
b
s
y
s
te

m
s
 a

n
d

s
y
s
e
tm

 a
rc

h
it
e
c
tu

re

1:
 m

es
sa

ge

:A
ct

or

:O
bj

ec
t4

:O
bj

ec
t3

:O
bj

ec
t2

:O
bj

ec
t 2:

 m
es

sa
ge

3:
 m

es
sa

ge

4:
 m

es
sa

ge
5:

 m
es

sa
ge

6:
 m

es
sa

ge

D
e
ta

il
s
e
q
u
e
n
c
e
 d

ia
g
ra

m
s

C
la

ss
2

⫺
at

tri
bu

te
⫺

at
tri

bu
te

2
⫺

at
tri

bu
te

3

⫹
op

er
at

io
n(

)
⫹

op
er

at
io

n(
)

C
la

ss

⫺
at

tri
bu

te

C
la

ss
7

⫺
at

tri
bu

te

⫹
op

er
at

io
n(

)
⫹

op
er

at
io

n(
)

C
la

ss
3

⫺
at

tri
bu

te
⫺

at
tri

bu
te

2

C
la

ss
4

⫺
at

tri
bu

te

C
la

ss
8

⫺
at

tri
bu

te

⫹
op

er
at

io
n(

)

D
e
ta

il
c
la

s
s
 d

ia
g
ra

m

(u
s
e
 c

a
s
e
 c

o
n
te

x
t)

<
<

tr
a
c
e
>

>

K …

u
s
e
r

in
p
u
t
1

U
s
e
r

S
y
s
te

m

s
y
s
te

m
 r

e
s
p
o
n
s
e
 1

u
s
e
r

in
p
u
t
2

s
y
s
te

m
 r

e
s
p
o
n
s
e
 2

S
y
s
te

m
-l
e
v
e
l
s
e
q
u
e
n
c
e
 d

ia
g
ra

m

Ac
tio

nS
ta

te
6

Ac
tio

nS
ta

te

Ac
tio

nS
ta

te
2

Ac
tio

nS
ta

te
3

Ac
tio

nS
ta

te
4

Ac
tio

nS
ta

te
5

re
jec

t [
no

t a
 va

lid
 A

TM
 C

ar
d]

Ch
ec

k c
ar

d

typ
e

ins
er

t c
ar

d

Ch
ec

k c
ar

d

wi
th

 co
ns

or
tiu

m

OK
 [is

 a
n A

TM
 C

ar
d]

re
jec

t [
th

e
ca

rd
 is

su
er

 b
an

k n
ot

 in

th
e

lis
t o

f t
he

 co
ns

or
rti

um
 b

an
k]

OK
 [t

he
 A

TM
 C

ar
d

is
va

lid
]

S
ta

te
 a

n
a
ly

s
is

S
ta

te
 d

ia
g
ra

m
s

(C
o
n
tr

o
l)

Pa
ck

ag
e2

C
la

ss
10

⫹
op

er
at

io
n(

)

C
la

ss

⫺
at

tri
bu

te

⫹
op

er
at

io
n(

)

C
la

ss
2

⫺
at

tri
bu

te
⫺

at
tri

bu
te

2
⫺

at
tri

bu
te

3

⫹
op

er
at

io
n(

)
⫹

op
er

at
io

n(
)

C
la

ss
11

⫹
op

er
at

io
n(

)

C
la

ss
8

⫺
at

tri
bu

te

⫹
op

er
at

io
n(

)

C
la

ss

⫺
at

tri
bu

te

C
la

ss
7

⫺
at

tri
bu

te

⫹
op

er
at

io
n(

)
⫹

op
er

at
io

n(
)

C
la

ss
3

⫺
at

tri
bu

te
⫺

at
tri

bu
te

2

C
la

ss
4

⫺
at

tri
bu

te

Pa
ck

ag
e

Im
pl

em
en

ta
tio

n
cl

as
s

di
ag

ra
m

<<
tra

ce
>>

<<
tra

ce
>>

:A
ct

or
3

1:
 m

es
sa

ge

O
bj

ec
t

2:
 m

es
sa

ge

O
bj

ec
t2

3:
 m

es
sa

ge

O
bj

ec
t3

5:
 m

es
sa

ge

O
bj

ec
t4

4:
 m

es
sa

ge

332 Object-oriented Technology

consistency, applications of view aligners are necessary. For example, revisiting

the activity diagram (use case level) enables us to refine the precondition,

post-condition and use case lifetime invariances after the state diagram of a

control object has been created. Updates of the class diagram after the

completion of each scenario of a use case also call for the application of view

aligners. As the number of classes grows, they can be grouped into packages,

while the system architecture should be revised where necessary for ease of

management (see Table 6.9).

Table 6.9. Description for design workflow

Workflow Design

Input artifacts or System-level sequence diagram, analysis class

model elements diagram

Other sources of
—

information

Analysis involved • Flow of events analysis

• Development of subsystem or system

architecture

Procedure • Elaborate the flow of events using

collaboration diagrams (flow of events)

• Generate MVC-level sequence diagrams from

the collaboration diagrams (flow of events)

• Revise the class diagrams

• Perform state analysis on the control objects

• Revise activity diagrams through path

analysis

• Revise the class diagrams

Workflow Design

Artifacts produced Detailed sequence diagrams, design class

by workflow diagrams, state diagrams

Workflow roadmap See Figure 6.25

diagram

Revisit from other Whenever changes in analysis workflow require

workflows changes in the corresponding models of the design

workflow

Chapter 6: View Alignment Techniques and Method Customization 333

Table 6.9. (Con’t)

Manipulators • Elaborator(Activity_Diagram,

Collaboration_Diagram_List)

• Elaborator(Activity_Diagram.Path,

Sequence_Diagram[Design])

• Aligner(Sequence_Diagram, Class_Diagram)

• Transitor(Sequence_Diagram, State_Diagram)

• Aligner(State_Diagram, Class_Diagram)

• Aligner(State_Diagram, Activity_Diagram)

• Aligner(State_Diagram, Class_Diagram)

Figure 6.24 shows the overview of the process roadmap and description for

the design workflow. The high-level architecture for the business operation will

be identified after we have analyzed the business workflow. We subsequently

identify use cases and group them into appropriate packages. The lower system

architectures will be also fine-tuned in this development workflow such

as the identification of subsystems and their components, and their

implementation in the form of software frameworks and design patterns.

In the design workflow, there are two major analysis blocks. The first

analysis block is concerned with the realization of use cases through scenario

analysis in which each of the events in the flow of events are fully elaborated

by a collaboration diagram. These collaboration diagrams are in turn used to

form a detailed sequence diagram representing a scenario of a use case.

The second analysis block deals with the detailed logic of a control object or a

subsystem by performing a state analysis. We also need to revisit the activity

diagram to refine the use case’s conditional branchings between the scenarios.

The following section explains these two analyses in detail.

Manipulators for Scenario Modeling

Scenario modeling is about modeling or analyzing the internal behaviors of a

system. A use case can be considered as a sequence of “transactions,” where

each transaction corresponds to a pair of input and response messages between

the primary actor and the system. Each pair of input and response messages

is elaborated by an MVC collaboration diagram, providing details about the

object collaboration inside the system. The set of collaboration diagrams of a

system-level sequence diagram can then be used to generate an MVC-level

sequence diagram using a CASE tool.

334 Object-oriented Technology

Manipulators for State Modeling

After the behavioral analysis, the detailed scenarios of the use cases are

examined and both the dynamic and static requirements identified. In the

implementation workflow, we aim to develop the detailed control logic for the

subsystems and control objects, and refine the high-level branching

requirements at the use case level (see Chapter 4).

In the MVC software framework, the control objects act as the mediator for

communicating between the boundary and entity objects. The subsystems and

control objects are usually active objects. They contain more complex dynamic

behaviors that need to be modeled. State diagrams are developed to represent

the logic of these control components.

In developing the state diagrams for the control object of a use case (or a

single transaction of a use case), we also model all the possible execution paths

of the use case (or the transaction), including the cases in which the transaction

is canceled or incorrectly carried out. Remember that a use case (or a

transaction) is performed either fully or not at all. In order to maintain

atomicity of a use case, additional branchings may need to be added in the

activity diagram of the use case.

We have now completed all the workflows that were configured in the

development process including business modeling, requirements, analysis and

design. We now have all the information available to develop the method

roadmap diagram and to complete the method template.

Method Roadmap Diagram

Figure 6.17 illustrates the A3 in a single iteration of the Unified Process.

In Chapters 2 to 5, we presented the detailed procedure and the tips and tricks

in applying the A3 software development method, a method that is suited for

interaction-intensive applications. In the above example, it was demonstrated

that the A3 software development method covers all the important workflows

right up to analysis and design. Readers can apply what they have learned in

this example for the implementation and testing of workflows as well.

Summary

A software development method consists of three key components: process,

representation and techniques. Over the past few years, the Unified Process

has emerged as the de facto standard and the UML has now become a

well-recognized standard for representing software systems. However, it is

quite evident that the techniques part is the weakest link of the software

Chapter 6: View Alignment Techniques and Method Customization 335

development method. We have proposed a framework of VATs to address this

problem.

The VATs consist of three manipulators, and their heuristics guide the

designer through a customization process which closely follows the Unified

Process. The major advantage of these techniques is that they provide the

developer with a set of procedures to follow from one model to the next,

based on the amount of information available at hand. This allows the

developer to create and customize a software method for a particular problem.

As mentioned before, there are no universal software development methods

that are applicable to all problems. The heuristics and techniques component of

a software development method can only be built up over a long period of time

through experience. The VATs is effective in assisting the designer to accelerate

the learning curve and acquire the necessary skills and knowledge to perform

analysis and design tasks in a structured and systematic way. Designers may

adopt these techniques for most business applications with only minor

modifications. As they gain more experience with VATs, they will be able to

customize or even tailor them to suit the needs of their organizations.

The beauty of VATs is that they provide the model manipulators, enabling

designers to start the process and select the right models for different

workflows. Furthermore, designers can also tell when the workflows are

completed and how to proceed on to the next workflow, etc. But more

importantly, designers should never blindly follow steps that are prescribed by

the methodologists or textbooks.

Based on the framework of VATs, this chapter has presented the process of

new software development using the A3. This method is particularly suited for

those user interaction-intensive systems which are typical in many business

applications. We will illustrate how this method is applied for a business

application in the next chapter.

Exercises

Q1. Briefly explain the uses of the elaborator, transitor and view aligner

manipulators in a workflow.

Q2. For each pair of the following models, identify the linked elements

between them:

• Sequence diagram and class diagram

• State diagram and sequence diagram

• Use case diagram and activity diagram

336 Object-oriented Technology

• Activity diagram and state diagram

• Collaboration diagram and class diagram

Q3. Briefly explain why the manipulators are usually applied to a workflow in

the following sequence: transitor, elaborator, and then view aligner.

337

Chapter

7
A Case Study: Applying the
Activity Analysis Approach

Overview

In the previous chapter, we introduced the Activity Analysis Approach (A3) as

a generic method for developing activity-based systems such as business

systems. In this chapter, we will demonstrate the application of the A3 to a

real-life problem: a mail order system. We shall show in detail all the necessary

steps involved to perform system analysis and design using the A3.

What You Will Learn

On completing the study of this chapter, you should be able to:

• understand each step of the A3

• apply the A3 to system development

The Case Study

This case study describes the development of a mail order system by applying

the Activity Analysis Approach (A3). Throughout this case study, we will show

the main steps and the artifacts produced in the A3 in one iteration of the

development process. Typically, due to the complexity of modern systems,

several iterations are necessary to elicit and model all the requirements

specified.

It should be noted that the example used in this chapter shows how the A3

process may be applied to a typical activity-based system in one specific way.

338 Object-oriented Technology

In practice, steps of A3 workflows are often repeated in iterations of the

development process as the target system is being developed incrementally.

This chapter is organized into different sections of A3 workflows, with each

section of workflows further subdivided into smaller subsections.

Business Modeling

Figure 6.17 in Chapter 6 shows a detailed roadmap for the A3, showing four

distinct workflows: business modeling, requirements, analysis and design.

In the business modeling workflow, the process begins with a high-level

problem statement which enables us to develop the different activity diagrams

to model the operation of the organization. In the requirements workflow,

these high-level activity diagrams are used to identify the scope of the system

and to develop the use case models of the target system. In the analysis

workflow, the use case descriptions are analyzed to create domain class

diagrams and system-level sequence diagrams. Finally, in the design workflow,

low-level collaboration, state and sequence diagrams are developed to model the

realization of the use cases.

Domain Analysis (Workflow)

The business modeling starts by gathering information about the business

processes of an organization. The goal is to identify those candidate activities

that are targets for computerization. The developer can collect the information

through the following ways:

• Interviewing users

• Distributing questionnaires to be completed

• Documenting the business procedures

• Interviewing domain experts

• Looking at the standards and terminologies in the business domain

Interviewing staff members of the organization is an effective way of

collecting valuable information. Start with the managers of various

departments and then the front line staff members within these departments

to gain an overview of the business activities and from that, the organizational

requirements.

System analysts can use problem statements to document these

requirements for later use in the analysis workflow. The following is a

preliminary problem statement at the workflow level of a mail order system:

Chapter 7: A Case Study: Applying the Activity Analysis Approach 339

Problem statement 7.1. Problem statement [workflow] for the

mail order system

In order to improve the operational efficiency of a mail order company,

the chief executive officer is interested in computerizing the company’s

business process. The major business activities of the company can be

briefly described as follows:

• The company aims to provide high quality mail order services to all

registered members of the company.

• An individual or a company registers as a member by completing

the registration form and sending it to the customer service

department.

• A member orders items by filling an order form and sending it to the

customer service department. The customer service department

verifies the membership and forwards the order to the sales

department. If the order can be processed through existing stock,

the sales department processes the order and issues delivery notes

to the inventory department. Otherwise, the sales department

issues a purchase order to the supplier. When all items are

available, the inventory department delivers the items to the

member, and the accounts department issues an invoice to the

member.

• When the accounts department receives an invoice from a supplier,

it verifies that the items in the purchase order have been received,

and issues payment to the supplier.

Business Process Analysis

After having collected the required information, apply the Elaborator

(Problem_Statement[workflow], Swimlane_Activity_Diagram) manipulator to

develop an activity diagram (see Figure 7.1). The purpose of this manipulator

is to model the business workflow by a swimlane activity diagram. The

swimlane activity diagram can help visualize the business activities of the

company and hence identify the business activities for computerization.

The activity diagram can be created by representing the steps of a business

procedure as action states and the flow of the business procedure as arrows

between action states. For example, the procedure for registering a new

340 Object-oriented Technology

Figure 7.1. Activity diagram showing business workflow of mail order company

Customer Customer Service
Department

Sales Department Inventory Department Accounts Department

fill order form

fill registration
form

register member

place order process order

order goods

[enough stock]

[else]

deliver goods issue invoice

receive invoice

receive goods

issue payment

customer involves two steps: (1) the customer fills a registration form and

(2) the customer service department registers the customer.

Determining System Scope

By interviewing the manager of the accounts department, it is discovered that

the business activities are currently covered by an existing accounting system.

Figure 7.1 illustrates the high-level business activities of the company.

The developer can then discuss with the stakeholders of the system and decide

on the business activities that are required to be computerized. Let us assume

that the developer and the stakeholders have agreed to computerize the

business activities related to membership, sales, ordering, and inventory

control of the mail order company. We can now proceed with the requirements

workflow (the next workflow of the A3).

Chapter 7: A Case Study: Applying the Activity Analysis Approach 341

Requirements

In this workflow, start with a set of activities that require computerization and

prepare a more detailed (use case level) problem statement. Then conduct a

textual analysis on this problem statement to identify the actors and use cases.

By elaborating the use cases with more details, the use case descriptions can

be used as the input to the analysis workflow.

Domain Analysis (Use Case Level)

After determining the scope of the system, prepare a (use case level) problem

statement to describe the required activities. In the previous section,

we decided to computerize the activities related to membership maintenance,

order processing and inventory control. The problem statement should give

enough details to identify the responsibilities of individual users and to describe

the procedure to follow in order for them to perform their tasks. The following

is a use case-level problem statement of the business activities:

Problem statement 7.2: Problem statement [use case level] for

the Mail Order System

• A customer registers as a member by completing the membership

form and mailing it back to the company. A member who has not

been active (i.e. no transactions) for a period of one year will be

removed from the membership list and needs to re-apply for

reinstatement of the lapsed membership.

• A member informs the company of any changes in personal details,

such as home address, telephone numbers, etc.

• A member makes an order by filling out a sales order form and then

faxing it to the company. Alternatively, the Customer Service

Assistant handles the order over the phone.

• The Customer Service Assistant always checks the validity of the

membership before entering the sales order information into the

system.

• The Order Processing Clerk checks the availability of the ordered

items and holds them for the order. If all the items are available,

the Order Processing Clerk schedules delivery.

• The Inventory Control Clerk controls and maintains an appropriate

level of stock and is also responsible for reordering new items.

342 Object-oriented Technology

• If there is a problem with an order, members phone the Customer

Service Assistant who takes appropriate action to follow up the

sales order.

• Members may return defective goods within 30 days and get their

money back.

• Each task carried out by the system has the name and ID of the

staff member concerned recorded into the system.

Use Case Analysis

The detailed processes, steps and heuristics of use case analysis are already

discussed in Chapter 3. Here, the process of performing the use case analysis

will be demonstrated in the A3.

Finding Actor and Use Cases

Apply the Transitor(Problem_Statement[use case level] Actor_List) manipulator

to identify all the actors. To identify the actors of the system, consider the

business activities that are being computerized. In this case study, the business

activities relating to membership, sales, ordering and inventory control are

covered by the system. So the following actors can be identified:

• Customer Service Assistant (membership registration, placement of order)

• Order Processing Clerk (process order)

• Inventory Control Clerk (inventory control)

Each actor is then described by an actor specification. Figures 7.2 to 7.4

detail the specification of these actors.

Figure 7.2. Specification of the Customer Service Assistant actor

Actor Name Customer Service Assistant

Description The Customer Service Assistant is responsible for the

maintenance of membership records, handling of goods returns,

creating sales orders, monitoring sales order status and

validating membership status

Chapter 7: A Case Study: Applying the Activity Analysis Approach 343

Figure 7.3. Specification of the Order Processing Clerk actor

Actor Name Order Processing Clerk

Description The Order Processing Clerk is responsible for processing sales

orders, submitting reorder requests, requesting necessary deposits

from members and scheduling the delivery of the goods to the

member

Figure 7.4. Specification of the Inventory Control Clerk actor

Actor Name Inventory Control Clerk

Description The Inventory Control Clerk is responsible for ordering and

reordering of goods. The Inventory Control Clerk uses the system

to update the stock level when goods are received

Apply the Transitor(Problem_Statement[use case level], Use_Case_List)

manipulator to identify all use cases. The goals of the actors are described in

the (use case level) problem statement. For example, the Customer Service

Assistant is responsible for checking order status, placing order, registering new

member, updating membership, archiving membership and handling goods

return. The following are the use cases of the mail order system:

• Check Order Status

• Place Order

• Handle Goods Return

• Update Membership Record

• Archive Membership

• Register New Member

• Process Order

• Schedule Delivery

• Order Goods

• Receive Goods

Then develop the use case diagram by applying the

Elaborator(Data_Dictionary.{Use_Case_List, Actor_List}, Use_Case_Diagram)

manipulator (see Figure 7.5). It should be noted that the mail order system can

be naturally partitioned into subsystems, which handle different groups of

requirements. These requirements are then partitioned into suitable packages.

344 Object-oriented Technology

Figure 7.5. Initial use case diagram

Customer Service Assistant

Inventory Control Clerk

Order Processing Clerk

Check order
status

Place order

Handle goods
return

Order Processing

Process order

Schedule
delivery

Membership

Update membership
record

Archive membership

Register new
member

Inventory control

Order goods

Receive goods

Deliver goods

Prioritizing Use Cases

The use cases are prioritized according to their relative importance in the

system. The developer evaluates the risks and the significance of the use cases

to the stakeholders of the system. The developer and stakeholders of the system

meet to decide on the priority of the use cases. Table 7.1 shows the priority of

each of the system use cases which, it is assumed, is agreed by the developer

and the stakeholders.

Table 7.1. Ranking of use cases

Priority rank Use case Reason

High Process order Directly improves the efficiency

of the business process and

affects the system architecture

Chapter 7: A Case Study: Applying the Activity Analysis Approach 345

Table 7.1. (Cont’d)

Priority rank Use case Reason

High Place order Same as above

High Check order status Improve efficiency and quality of

customer service

Medium Order goods Ordering goods is less often

than processing orders but is

still one of the major business

processes

Medium Deliver goods Improve the control of stock

level of goods

Medium Schedule delivery Improve the efficiency of the

goods delivery team

Medium Receive goods Improve the control of stock

level of goods

Medium Handle goods return Improve the control of stock

level of goods

Low Update membership record Small impact on system

architecture

Low Register new member Same as above

Low Archive membership Same as above

Describing Use Cases

Having captured the requirements of the system by creating the initial use

cases, elaborate the use cases to provide further details. Apply the

Elaborator(Use_Case, Use_Case_Description) manipulator to develop the use

case description. The purpose of this manipulator is to give a detailed

description of the use cases which can then be used for constructing other

diagrams such as the interaction diagrams, state diagrams, class diagrams, etc.

Table 7.2 shows the use case description of the Process Order use case.

346 Object-oriented Technology

Table 7.2. Use case description for process order use case

Use case name Process Order

Use case ID UC-200

Primary actor(s) Order Processing Clerk

Secondary actor(s)

Brief description The order processing clerk selects a sales order from the
system. He/she then checks each line item in the sales
order for the availability of stock before finding the stock
for each line item. The system records the name of the
order processing clerk who handles the sales order.

Preconditions The sales order is stored in the system.

Post-conditions The sales order status is changed to “filled” and the stock
items are held for the sale.

Flow of events 1. The Order Processing Clerk selects a sales order. The
system displays the items and quantity of the order.

2. The Order Processing Clerk checks the availability of
each item.

3. The Order Processing Clerk holds the stock items for
the sales order. The system changes the order status
to “filled”.

Alternative flows If an item is not available from stock, the sales order
and exceptions status of the item is changed to “hold.” If the number of

reorder items exceeds the reorder limit of the member,
the clerk prints out a “request deposit” letter to the
member, and the sales order is marked as “deposit
pending.” When the deposit is received or if the reorder
amount does not exceed the reorder limit of the member,
the system then forwards a reorder request to the
inventory control clerk. The sales order status is changed
to “filled” when the stock items are received, and the
system notifies the order processing clerk.

Non-behavioral The system should be able to handle 2,000 sales orders
requirements per day.

Assumptions

Issues Can the available items be delivered first?

Source User Interview Memo 21, 8/9/01

Chapter 7: A Case Study: Applying the Activity Analysis Approach 347

Structuring Use Case Model

After elaborating the use cases, Place Order, Register New Member and Archive

Membership share a common behavior in that they all involve finding the

member record from the system. Hence, the <<include>> relationship is created

with the Find Member Record use case. The revised use case diagram is shown

in Figure 7.6. Now, move on to the next workflow: analysis.

Figure 7.6. Revised use case diagram

Customer Service Assistant

Place order

Order Processing

Membership

Update membership
record

Archive
membership

Register new
member

Inventory Control Clerk

Inventory Control

Order goods

Order Processing Clerk

Find member
record

<<include>>

Handle goods
return

Check order
status

Process order

Schedule
delivery

<<include>>

Receive goods

<<include>>

Deliver goods

Analysis

The analysis workflow develops the domain class model and starts the dynamic

modeling. First, develop the domain class model by applying the

Transitor(problem statement, domain class model) manipulator. Using this

manipulator, it is possible to construct the class model for the system (static

modeling) and analyze the dynamic behaviors of the use cases (system

modeling).

Domain Analysis (Class Level)

Apply the Transitor(Problem_Statement[use case level], Class_Diagram

[domain]) manipulator to obtain the domain class model (see Figure 7.7).

348 Object-oriented Technology

Order Processing Clerk

Figure 7.7. Domain class model

Customer Server Assistant

Member Order Goods

Goods
Return

Order Line

placed by

handled by

submitted by

Inventory Control Clerk

Purchase Order

Supplier
Goods

Receive

placed by

supplied by

Static Modeling

The domain class model provides us with the classes that are common to most

mail order systems. Since the use case descriptions contain the specific

requirements of the system, apply the Transitor(Use_Case_Description,

Class_Diagram[analysis]) manipulator to identify the objects of the system.

The purpose of this manipulator is to perform a textual analysis on the use case

description to identify entity objects and create a class diagram. The resulting

class diagram generated is combined with the domain class model to create the

analysis class diagram of the system (see Figure 7.8).

System Modeling

System modeling helps us understand the dynamic aspects of the system.

First apply the Elaborator(Use_Case_Description.Flow_of_Events,

Activity_Diagram) manipulator to analyze the dynamic behavior of a use case

and then elaborate each action state of the activity diagram by a set of

collaboration diagrams for the action state.

Elaborating Use Cases

From the use case description, the Process Order use case involves many

complex activities. Therefore, the Elaborator(Use_Case_Description.

Flow_of_Events, Activity_Diagram) manipulator is applied to develop an

activity diagram to further analyze the use case (see Figure 7.9). This

manipulator creates an activity diagram representing the activities described in

the flow of events of the use case description of the Process Order use case.

Chapter 7: A Case Study: Applying the Activity Analysis Approach 349

Figure 7.9. Activity diagram for elaborating Process Order use case

Select a

sales order

: Order

[filled]

[all items available]

Hold items

[some item not available] [reorder amount <= reorder limit]

[reorder amount <= reorder limit]

: Order

[placed]

Submit reorder requests

: Order

[hold]

Request deposit
: Order

[deposit pending]

Order Processing Clerk

Figure 7.8. Analysis class diagram

1
handled by

submitted by

Member

Customer Service Assistant

Goods Deivery Order1 1

0...*

0...1 1Deposit Request Reorder Request

Goods

1

0...*0...*

Order Line

Goods Return

1...*

0

0...* 1...*

1
1...*

1...* 0...*

Purchase Order Line

1...*

1

Reorder Request Line

Goods Receive

1...*

1

Purchase Order

1

0...* 0...*

placed by

0...*

0...*

Supplier

supplied

Inventory Control Clerk

placed by
1

350 Object-oriented Technology

The activity diagram generated can be used to establish all the scenarios of

the use case and hence the system-level sequence diagrams. For example,

Tables 7.3 to 7.5 contain the normal scenarios of execution, followed by two

alternative scenarios of the Process Order use case. Note that each scenario

corresponds to a different path in the activity diagram.

Table 7.3. Normal scenario of the Process Order use case

Parent use case name Process Order

Parent use case ID UC-200

Instance name A deposit is required before the sales order can be

processed

Instance ID UCIS-200-1

Environmental conditions All items of the order are available

and assumptions

Inputs A sales order of available items

Instance flow description • The Order Processing Clerk selects a sales

order.

The system displays the items and quantities

of the order

• The Order Processing Clerk checks the

availability of each item. The system confirms

all items are available

• The Order Processing Clerk holds all items of

the order. The system updates the status of

the sales order to “filled”

Outputs The sales order is filled

Table 7.4. Alternative scenario of Process Order use case

Parent use case name Process Order

Parent use case ID UC-200

Instance name An item needs to be reordered

Chapter 7: A Case Study: Applying the Activity Analysis Approach 351

Table 7.4. (Cont’d)

Instance ID UCIS-200-2

Environmental conditions Some stock items are not available and the value

and assumptions of the items needed to be reordered exceeds the

preset reorder limit of the member

Inputs A sales order of a stock item costs $1,000 and the

preset reordering limit of the member is $2,000

Instance flow description • The Order Processing Clerk selects a sales

order. The system displays the items and

quantities of the order

• The Order Processing Clerk checks the

availability of each item

• An item which costs $1,000 is not available.

The Order Processing Clerk submits a reorder

request

• The sales order is marked as “deposit

pending”

Outputs The sales order is marked as “hold” and a reorder

request is submitted

Table 7.5. Another alternative scenario of Process Order use case

Parent use case name Process Order

Parent use case ID UC-200

Instance name A deposit is required before the sales order can be

processed

Instance ID UCIS-200-3

Environmental conditions Some stock items are not available, and the value

and assumptions of the items needed to be reordered exceeds the

preset reorder limit of the member

Inputs A sales order of a stock item costs $5,000 and the

preset reordering limit of the member is $2,000

352 Object-oriented Technology

Table 7.5. (Cont’d)

Instance flow description • The Order Processing Clerk selects a sales

order. The system displays the items and

quantity of the order

• The Order Processing Clerk checks the

availability of each item

• An item which costs $5,000 is not available.

The system prints a deposit request letter to

the member

• The sales order is marked as “deposit

pending”

Outputs The sales order is marked as “deposit pending”

and a request deposit letter is sent to the member

Design

The purpose of the design workflow is to analyze and design how object

collaboration is to be achieved for the performance of the use cases.

First elaborate each of the action states in the activity diagram (representing

a use case) using a collaboration diagram. Since each use case scenario

corresponds to a path in the activity diagram, generate the MVC (Model/View/

Control)-level sequence diagram for the scenario by translating the

collaboration diagrams corresponding to the action states of the path in the

activity diagram. The generation of the MVC-level sequence diagram can be

achieved using a modern CASE tool that provides traceability and consistency

checks among the activity diagrams and automatically maintains MVC-level

interaction diagrams synchronization with minimal effort. For objects with

complex dynamic behaviors, especially control objects or subsystems,

model them by state diagrams. In the process, apply the view aligners to revise

the activity diagram (use case level) and class diagram to maintain consistency

among models. As the number of classes in the class diagram grows, consider

grouping related classes into packages for ease of management.

Elaborating Flow of Events

For each action state of the activity diagram representing a use case,

create MVC-level collaboration diagram. In other words, apply

Elaborator(Activity_Diagram, Collaboration_Diagram_List) to obtain a list of

Chapter 7: A Case Study: Applying the Activity Analysis Approach 353

Figure 7.12 Collaboration diagram of submit reorder requests action state

Submit reorder
requests 8: confirm

: Ul OrderDetail

: Ul ReorderButton

1: press()
: ProcessOrderControl

2: fillOrder(order ID)

7: changeStatus(“hold”)

3: setStatus(“hold”)
: Order

6: updateUsedReorderAmount(Amount)

: Member

: Reorder Request

4: create() 5: additem(item, qty)

: Order Processing Clerk

Request
deposit

Figure 7.13 Collaboration diagram of request deposit action state

7: confirm

: Ul OrderDetail

: Ul RequestDepositButton

1: press()

: ProcessOrderControl

2: fillOrder(order ID)

3: updateStatus(“deposit pending”)

: Order

4: getMemberDetail(member ID)

: Member

6: changeStatus(“deposit pending”) 5: printRequestLetter()
: Order Processing Clerk

collaboration diagrams for the action states of an activity diagram.

For example, the action states of the activity diagram in Figure 7.9 are realized

by the collaboration diagrams in Figures 7.10 to 7.13.

Figure 7.10. Collaboration diagram of select a sales order action state

Select a sales
order : Order Processing Clerk

1: press() 2: selectOrder (id)

8: order

: Ul OrderList

: Ul OrderDetail

7: displayOrder ()

: ProcessOrderControl

3: getDetail ()

5: getAvailableQuantity ()

: Order

4: getOrderLine ()

: Order Line

: Goods

: Member

6: getRecorderLimit ()

Hold items
6: confirm

: Ul OrderDetail

: Ul FillButton

1: press() 2: fillOrder(order ID)

: ProcessOrderControl

5: changeStatus(“filled”)

3: setStatus(“filled”)

4: updateQuantity(quantity)

: Order

: Goods

Figure 7.11 Collaboration diagram of hold items action state

: Order Processing Clerk

354 Object-oriented Technology

Generating MVC-level Sequence Diagrams

Having created the collaboration diagrams for the action states of the activity

diagram, apply Elaborator(Activity_Diagram.Path, Sequence_Diagram[Design])

to generate MVC-level sequence diagrams by tracing paths in the activity

diagram and translating the collaboration diagrams of the action states in the

path into an MVC-level sequence diagram. For example, Figure 7.14 shows the

paths for the normal, first alternative and alternative scenarios of the Process

Order use case. Figures 7.15 to 7.17 show the various MVC-level sequence

diagrams for the scenarios. For the normal scenario, the action states select a

sales order and hold items are executed. As illustrated in Figure 7.15, each

action state corresponds to a pair of actor input and system response and a

sequence of internal messages between the boundary objects, control objects

and entity objects. For other scenarios, we can also find the corresponding

sequence of messages between objects for each of the action states involved in

individual scenarios.

Figure 7.14. Activity diagram for elaborating Process Order use case

[all items available]

Hold items

[some item not available] [reorder amount > reorder limit]

[reorder amount >= reorder limit]

Select a
 sales order

Order

[Placed]
Normal scenario

Extended scenario
request reorder

Extended scenario
request deposit

Submit reorder
requests

Request
deposit

Order

[Filled]

Order

[Deposit

Pending]

Chapter 7: A Case Study: Applying the Activity Analysis Approach 355

: Order Processing Clerk

Figure 7.16. MVC-level sequence diagram for alternative scenario

Select a
sales order

:Ul OrderList :Ul OrderDetail :Ul FillButton :ProcessOrderControl :Order :OrderLine :Goods :Member

1: select Order

8: order

9: press ()

14: confirm

2: selectOrder(orderID)

7: displayOrder()

10: fillOrder(orderID)

3: getOrder()

4: getOrderline()

6: getReorderLimit()

11: setStatus(“filled”)

12: create

Submit reorder
requests

:ReorderRequest

13: addition(item, qty)

13: changeStatus(“filled”)

5: getAvailableQuantity()

14: updateUsedReoderAmount(amount)

Figure 7.15. MVC-level sequence diagram for normal scenario of process order

Select a
sales order

Hold items

:Ul OrderList :Ul OrderDetail :Ul FillButton :ProcessOrderControl :Order :OrderLine :Goods :Member

1: select Order

8: order

9: press()

14: confirm

2: selectOrder(orderID)

10: fillOrder(orderID)

13: changeStatus(“filled”)

3: getOrder()

6: getReorderLimit()

11: setStatus(“filled”)

7: displayOrder()

12: updateQuantity(qty)

5: getAvailableQuantity()

4: getOrderline()

: Order Processing Clerk

356 Object-oriented Technology

: Order Processing Clerk

Figure 7.17. MVC-level sequence diagram for another alternative scenario

Select a
sales order

:Ul OrderList :Ul OrderDetail :Ul RequestDepositButton :Order :OrderLine :Goods :Member

1: select Order

8: order

9: press ()

15: confirm

2: selectOrder(orderID)

7: displayOrder()

10: requestDeposit(orderID)

3: getOrder()

4: getOrderline()

5: getAvailableQuantity()

6: getReorderLimit()

Request
deposit

:ProcessOrderControl

14: updateStatus(“deposit pending”)

11: setStatus(“deposit pending”)

12: getMemberDetail(memberID)

13: printRequestLetter()

Revising Class Diagrams

After having drawn the sequence diagram for the Process Order use case, apply

Aligner(Sequence_Diagram, Class_Diagram) to refine the class diagram by

adding the operations and attributes identified in the sequence diagrams.

The revised class diagram (see Figure 7.18) can help us perform the analysis

for other use cases.

Performing State Analysis on Control Object(s)

In the MVC-level sequence diagram, the control object glues all other objects

together, handles the control flow and deals with all other transaction-related

requirements. Consequently, a control object is usually complex enough to be

modeled by a state diagram. For example, as the Process Order use case has

several scenarios, the control object has different paths in its state diagram.

As discussed in Chapter 4, we can create the state diagram of the control object

by consolidating the required states and transitions from the sequence

diagrams of the use case, i.e. apply Transitor(Sequence_Diagram,

State_Diagram). Alternatively, we can translate the activity diagram of the use

case to obtain a rough state diagram for the control object, because the activity

diagram provides information about the control flow of the use case.

For example, the activity diagram of the Process Order use case (see

Figure 7.9), together with the collaboration diagrams, can be used to construct

the state diagram for the control object ProcessOrderControl (see Figure 7.19).

Chapter 7: A Case Study: Applying the Activity Analysis Approach 357

Revising Class Diagram(s)

After developing the state diagram of the control objects, revise the class

diagrams according to the operations and attributes identified in the state

diagrams (apply Aligner(State_Diagram, Class_Diagram)). Figure 7.20 shows

the design class diagram. The design class diagram now provides design

information for the classes required for the implementation of the Process Order

use case. Hence, the implementation work for the Process Order use case can

proceed. For other use cases, the work flows of the A3 can be repeated to develop

the design of the classes required for the implementation of the use cases.

The design class diagram will then be incrementally refined by going through

the development process iteratively.

Figure 7.18. Revised class diagram

Order Processing Clerk

1
handled by

Member

- name
- address

+ getReorderLimit()
+ updateReorderLimit()
+ getName()
+ getAddress()

submitted by 1

0. .*0...*

Order Line
 - quantity

Goods Return

Reorder Request Line

Purchase Order Line

1...*

0
1...*

1
Goods Receive

Purchase Order

1...*

1

0...* 1

0...* 0...*

1

1

Supplier

Inventory Control Clerk

placed by

Goods
 - quantity

 + getAvailableQuantity()
 + updateQuantity()

supplied
1...*

Order

 - date
 - status
 - deposit

 + getUnfilledOrders()
 + getOrderDetails()
 + setStatus()

0...*

1

0...*

0...* 1...*

0...1 1 Reorder Request
 - date

 + additem()

Deposit Request

Customer Service Assistant

placed
by
1

1 1

0...*

Goods Delivery

358 Object-oriented Technology

Figure 7.19. State diagram for ProcessOrderControl class

Wait for Order

Wait for Action[all items available]

Waiting for fill order

Waiting for reorder

fillOrder(orderID)/

setStatus(“filled”);

updateQuantity(qty);

changeStatus(“filled”)

reorder(orderID)/

setStatus(“hold”);

createReorderRequest;

additem(item,qty);

updateUserReorderAmount(amount);

changeStatus(“hold”)

selectOrder(orderID)/

getOrder();

getOrderLine();

getAvailableQuantity();

getReorderLimit();

displayOrder()

[some item not available &&
reorder amount > reorder limit]

[some item not available &&
reorder amount <= reorder limit]

Waiting for request deposit

requestDeposit(orderID)/

setStatus(“deposit pending”);

getMemberDetail(memberID);

printRequestLetter();

updateStatus(“deposit pending”)

At this point, the A3 has been applied in a single iteration of the

development process, the requirements of the Process Order use case analyzed

and the relevant design of implementation completed. The implementation of

the Process Order use case can then be carried out by using the implementation

techniques described in Chapter 6. After the prototype implementation of the

Process Order use case has been demonstrated to the target users for their

feedback, another iteration of the development process may be carried out.

These steps in the A3 can then be repeated for other use cases of the system.

Chapter 7: A Case Study: Applying the Activity Analysis Approach 359

Applying the Activity Analysis Approach with VP-UML

In the remaining part of this chapter, it will be shown that the VP-UML CASE

tool can be used to carry out the steps for applying the A3 in analyzing and

designing the mail order system. We shall follow closely the A3 development

workflows which have been discussed in detail earlier in this chapter.

All the steps associated with the use of the VP-UML CASE tool will be

presented in a box.

Business Modeling

The first workflow is concerned with modeling the business operation which

consists of three major activities: performing domain analysis (workflow) and

business process analysis and determining the system scope.

Domain Analysis (Workflow)

After interviewing the users and collecting the required information about the

business process, the business activities of the company are recorded as a

workflow-level problem statement. The VP-UML CASE tool can then be used to

document this analysis through its textual analysis screen.

ProcessOrderControl

Figure 7.20. Revised design class diagram

+selectOrder(orderID : int): Order
+ fillOrder(orrderID: int): void
+ requestDeposit(orderID: int): void
+ reorder(orderID: int): void

ordercontrol

Order Processing Clerk

Order

-date : Date
-status : String
-deposit : float
-id : int
-member : Member

+getUnfilledOrders(): Order[]
+getOrderLines(): OrderLine[]
+set: Status(state:String): void
+getMember(): Member

Customer Service Assistant Deposit request

-amount : float
-date : Date

placed by

1

0...*
0...*

1

handled by

1 0...1

0...*

0...1

1

Reorder request

 - date : Date

 - additem(item: Goods): void

0...*

Reorder Request Line

 - quantity: int

1...*

1

0...*

1...*

1...*

Goods

 -quantity: int

 +getAvailableQuantity() : int
 +updateQuantity(quantity : int): void

Purchase Order Line

inventorycontrol

1

1...* 0...*

Inventory Control Clerk

1

0...1

Purchase Order

1

1...*

0...*

1

Goods ReceiveSupplier
Goods Return

1

1

Goods delivery 0 1...*

Order Line

 -quanttity : int

 +getQuantity() : int
 +getGoods() : Goods

has

0...*

membership

1

Member

 -name : String
 -address : String

 +getReorderLimit(): float
 +updateReorderLimit(): void
 +getName() : String
 +getAddress() : String

360 Object-oriented Technology

• Create a new Textual Analysis to document the workflow-level

problem statement (Problem Statement 7.1)

1. Click the Create Textual Analysis button on the toolbar.

2. Type the problem statement into the textual analysis working

area (see Figure 7.21)

Figure 7.21. Problem statement [workflow]

Business Process Analysis

Having created the workflow-level problem statement, perform the business

process analysis. Apply the Elaborator(Problem_Statement[workflow],

Swimlane_Activity_Diagram) manipulator to manually create a swimlane

activity diagram, which helps visualize the business activities. The activity

diagram as shown in Figure 7.1 can be created as follows:

Chapter 7: A Case Study: Applying the Activity Analysis Approach 361

• Create the activity diagram

1. Click the New Activity Diagram button on the toolbar.

2. Create the initial states using the palette on the left of the

diagram pane.

3. Use the resource-centric interface to create the transitions and

action states.

• Create swimlanes to partition the activities in the working area (see

Figure 7.22).

1. Click the new swinlane button using the palette on the left

of the diagram pane.

Figure 7.22. Business workflow activity diagram

Determining System Scope

This is primarily a manual process because the decision-making process

involves the developer and the stakeholders and, therefore, does not involve the

use of the CASE tool.

362 Object-oriented Technology

Requirements

The workflow consists of two activities: domain analysis (use case level) and use

case analysis, both supported by the VP-UML CASE tool.

Domain Analysis (Use Case Level)

Based on the business workflow, the developer and the stakeholders of the

system can then discuss and decide on the scope of the system, i.e. the business

activities in Figure 7.22, that require computerization. After determining the

scope of the system, a use case level problem statement (Problem

Statement 7.2) can be prepared on which a textual analysis will be performed.

• Create a new textual analysis to enter the problem statement in

Problem Statement 7.2.

1. Click the Create Textual Analysis button on the toolbar.

2. Type the use case level problem statement into the textual

analysis working area (see Figure 7.23)

Figure 7.23. Problem statement (use case)

Chapter 7: A Case Study: Applying the Activity Analysis Approach 363

From the problem statement, we know that Customer Service Assistant,

Order Processing Clerk and Inventory Control Clerk are the users of the system.

Therefore, they will become the actors in the use case diagram.

• Identify use case actors and candidate classes

1. Select the name of each actor from the use case-level problem

statement and drag it to the candidate class pane in the top

right-hand corner of the display. The candidate class will be

created automatically in the data dictionary pane in the

bottom right-hand corner.

2. Right click the candidate class and select the type from the

pop-up menu.

3. Repeat the above step for all the use cases (see Figure 7.24).

Figure 7.24. Candidate actors and use cases

364 Object-oriented Technology

Use Case Analysis

Finding Actors and Use Cases

To complete the data dictionary created, manually fill in the description for

each of actor and use case.

• Maximize the working space of the data dictionary situated in the

lower right-hand corner of the display

1. Click the data dictionary view button on the textual

analysis toolbar to switch to Data Dictionary View (see

Figure 7.25).

Figure 7.25. Data dictionary view

Chapter 7: A Case Study: Applying the Activity Analysis Approach 365

• Fill in the description of the candidate objects

1. Double click the class description column to fill in the

description for each of the candidate actors and use cases.

The entries in the occurrence column will be automatically

generated by the system (see Figure 7.26).

The name of the candidate object does not need to be identical to the one

used in the text of the problem statement. The name of the candidate class can

be modified by editing the Candidate Class column.

• Create a model from the candidate objects after filling the

description for each of the candidate objects

1. Change the textual analysis working area into Candidate

Class View by clicking on the button on the palette left of

the textual analysis working area.

2. Create the model from each candidate object by right clicking on

the candidate object.

3. Select the model depending on the type specified earlier.

Figure 7.26. Completing the description of candidate actors

366 Object-oriented Technology

The type of the candidate object will automatically change to Generated

Model under the Type column in the data dictionary, indicating that model has

been created (see Figure 7.27).

We are now ready to create the use case diagram. First start with the

system boundary which contains the use cases in that system scope. Rename

the boundary to Mail Order System.

The mail order system can be partitioned into several systems to handle

different areas of requirements. We can use packages to partition the system

into more specific components as shown in Figure 7.5. Reuse the model created

from textual analysis to draw the use case diagram.

Figure 7.27. All candidates are created into models

Chapter 7: A Case Study: Applying the Activity Analysis Approach 367

• Create a new use case diagram and the system boundary

1. Click the new use case diagram button in the toolbar.

2. Click the system boundary button in the palette and then

in the diagram area.

3. Rename the system boundary as Mail Order System.

• Change the Project Explorer to model tree view

1. Select the model tree view tab in the Project Explorer.

• Draw the use case diagram by reusing the model created earlier and

then group the use cases into packages

1. Drag the model required from the Model Tree to the diagram

area.

2. Repeat the drag-and-drop steps to create all the use cases and

actors in the diagram.

3. Click the new package button on the palette and then the

diagram area.

4. Drag the selected use cases into the package. Repeat this step

until all the packages are created.

5. Create the communication link between the actors and use

cases by using the resource-centric interface (see Figure 7.28).

Figure 7.28. Complete use case diagram

368 Object-oriented Technology

Prioritizing Use Cases

Use the Use Case Scheduling feature to prioritize the use cases as detailed

in Table 7.1.

• Specify the priority ranking of each use case

1. Right click the use case diagram and select Use Case

Scheduling from the pop-up menu (see Figure 7.29).

2. Double click the Rank cell of the use case to open the pull-down

menu, and select a rank from the menu.

3. Double click the Justification cell to provide a justification for

the rank where necessary.

Figure 7.29. Prioritizing use cases

Chapter 7: A Case Study: Applying the Activity Analysis Approach 369

Describing Use Cases

The use case description feature is designed to help document the

use case.

• Specify the use case description of each use case

1. Right click a use case in the use case diagram and select

Open Specification from the menu.

2. Click the Use Case Description tab and fill in the use case

description.

3. Repeat the above steps for all use cases (see Figure 7.30).

4. Press OK when all the use case descriptions have been entered.

The Add Item button allows you to add a new item to the use case

description. When this button is activated, a dialog will ask you to enter the

name of the new item. The complete use case description is shown in

Figure 7.30.

Figure 7.30. Full description of a use case

370 Object-oriented Technology

Structuring Use Case Model

After elaborating all the use cases, revise the use case diagram. Copy

the diagram elements in the existing diagram and create new ones by

modifying them.

• Revise the use case diagram

1. Press Ctrl-A to select all the elements in the diagram, then right

click on the selected elements and choose Copy → Copy

within VP-UML from the pop-up menu (see Figure 7.31).

2. Create a new use case diagram.

3. Paste the selected diagram elements to the new diagram by

right clicking the working area and then selecting Paste from

the pop-up menu (see Figure 7.32).

4. Draw the <<include>> relationships between the use cases

where appropriate, using the resource-centric interface (see

Figure 7.33).

Figure 7.31. Copying diagram elements within VP-UML

Chapter 7: A Case Study: Applying the Activity Analysis Approach 371

Figure 7.33. Revised use case diagram

Figure 7.32. Pasting diagram elements to new diagram

372 Object-oriented Technology

Now that we have completed the requirements workflow, we can proceed on

to the next workflow: Analysis.

Analysis

Domain Analysis (Class Level)

By applying the Transitor(Problem_Statement[use case level],

Class_Diagram[domain]) manipulator, construct the domain class model.

• Construct the domain class model

1. Click the button from the toolbar to create a class diagram

and rename it Domain Class Model.

2. Click the Class Repository tab in the Project Explorer and

drag the classes from the class repository to the diagram area

(see Figure 7.34).

3. Using the resource-centric interface, create the Order

Processing Clerk, Customer Service Assistant and Inventory

Control Clerk classes explicitly because they are not in the class

repository.

4. Create the associations and the association class (Order Line)

where appropriate using the resource-centric interface (see

Figure 7.35).

Figure 7.34. Creating class model in the diagram from class repository

Chapter 7: A Case Study: Applying the Activity Analysis Approach 373

Static Modeling

By applying the Transitor(Use_Case_Description, Class_Diagram[analysis])

manipulator, create the analysis class diagram.

• Perform textual analysis on the use case descriptions to identify the

entity objects

1. Double click the tree node Revised Use Case Diagram in the

diagram tree to open the diagram.

2. Right click a use case and select textual analysis from the

pop-up menu (see Figure 7.36).

3. Perform textual analysis to identify objects from the use case

description. Create class models for classes that have been

added to the model repository.

4. Repeat the above steps for other use cases.

• Create the analysis class diagram from the use case descriptions

1. Create a new class diagram and rename it Analysis Class

Diagram.

2. Copy the models in the domain class diagram to the Analysis

Class Diagram.

3. Add classes and related associations identified from the textual

analysis to the use case descriptions to complete the analysis

diagram (see Figure 7.37).

Figure 7.35. Created association class

374 Object-oriented Technology

Figure 7.36. Creating use case-level textual analysis

Figure 7.37. Analysis class diagram

Chapter 7: A Case Study: Applying the Activity Analysis Approach 375

• Define the navigability and multiplicity of the associations where

appropriate

1. Right click an association and select the role and check or

uncheck the navigability button.

2. Right click an association, select the role → Multiplicity and

then choose the appropriate multiplicity value. For multiplicity

values not listed in the submenu, click the Other … button and

then fill in the multiplicity value in the dialog. Click OK when

finished (see Figure 7.38).

Figure 7.38. Complete analysis class diagram

376 Object-oriented Technology

System Modeling

Elaborating Use Cases

We can elaborate the use case from the use case description and then construct

an activity diagram. Figure 7.39 shows an example of the completed activity

diagram of the Process Order use case.

• Create an activity diagram for each use case

1. Create a new activity diagram by clicking the new activity

diagram button on the toolbar.

2. Construct the activity diagram using the resource-centric

interface.

3. Repeat Steps 1 and 2 for all use cases to create the complete

activity diagram.

Figure 7.39. Activity diagram for elaborating the Process Order use case

Chapter 7: A Case Study: Applying the Activity Analysis Approach 377

Design

Elaborating Flow of Events

We shall develop an MVC-level collaboration diagram for each of the action

states. Figure 7.40 shows an example of the sales order action state.

• Create a collaboration diagram for each action state

1. Right click an action state and select Subdiagrams

→Collaboration Diagram → Create Collaboration

Diagram from the pop-up menu.

2. Construct an MVC-level collaboration diagram using the

resource-centric interface.

3. Repeat Steps 1 and 2 for all action states.

Figure 7.40. Collaboration diagram for select a sales order action state

378 Object-oriented Technology

Generating MVC-level Sequence Diagrams

After creating the collaboration diagrams for each action state, generate the

MVC-level sequence diagrams with VP-UML. Figures 7.41–7.46 show the

sequence diagrams generated by selecting different paths of the activity

diagram.

1. Right click on the Activity Diagram and select Scenario → Create

New Scenario from the pop up menu (see Figure 7.41).

2. Fill in the scenario name in the Create Scenario dialog box (see

Figure 7.42).

3. Select the path to create the sequence diagram from the Path

combo box (see Figure 7.43).

4. Press OK.

Figure 7.41. Creating new scenario

Chapter 7: A Case Study: Applying the Activity Analysis Approach 379

Figure 7.43. Selecting a path in the activity diagram

Figure 7.42. Naming the scenario

380 Object-oriented Technology

Figure 7.44. Generated sequence diagram for normal scenario

: Order Processing Clerk

:Ul.OrderList

1: select Order(orderID)

9: order

10: press ()

15: confirm

2: select Order (orderID)

8: displayOrder

3: getOrder()
4: getOrderline()

6:orderDetail

12: setStatus(“filled”)

14: changeStatus(“filled”)

:Ul.OrderDetail :Ul.fillButton

7: enable

:ProcessOrderControl :Order

11: fillOrder(orrderID)

:OrderLine :Goods

6: orderDetail

13: updateQuantity(quantity)

Figure 7.45. Generated sequence diagram for first alternative path

:Ul.OrderList

13: ask section

14: press()

21: confirm

3: getOrder()

9: limit

16: setStatus(“hold”)

17: create

15: reorder(orderID)

:Ul.OrderDetail :UlfillButton: Order Processing Clerk

10: disable

:Ul.ReorderButton :ProcessOrderControl

11: enable

:Order :OrderLine :Goods :Member

8: getReorderLimit()

7: qty

6: getAvailableQuantity()

:getOrderLine()

5: orderLine

18: additem()

:ReorderRequest

2: select Order (orderID)

12: displayOrder

20: changeStatus(“hold”)

19: updateUseReorderAmount(amount)

1: select Order (orderID)

Chapter 7: A Case Study: Applying the Activity Analysis Approach 381

Figure 7.46. Generated sequence diagram for second alternaive path

:Ul.OrderList

1: select Order(orderID)

14: order

15: press()

22: confirm

2: select Order (orderID)

3: getOrder()

10: limit

16: requestDeposit(orderID)

21: updateStatus(“deposit pending”)

:Ul.OrderDetail :UlfillButton

: Order Processing Clerk

12: enable

:Order

8: qty

4:getOrderLine()

5: orderLine

13: display(Order)

:UlRequestDepositButton :ProcessOrderControl :OrderLine :OrderLine

6: order detail

:Member

11: disable

7: getAvailableQuantity()

9: getReorderLimit()

17: setStatus(“deposit pending”)

18: getMemberDetail()

19: member detail

20: permitRequestLetter()

Revising Class Diagrams

Based on the generated sequence diagrams, now revise the class diagrams by

adding the necessary attributes and operations. The revised class diagram is

shown in Figure 7.47.

• Fill in the attributes and operations for each class

1. Right click on a class in the class diagram and select

New Attribute button from the pop-up menu.

2. Enter the details of the attribute directly in the label.

3. Right click on a class in the class diagram and select

New Operation button from the pop-up menu.

4. Enter the details of the operation directly in the label.

5. Repeat Steps 1 to 4 for all the classes (see Figure 7.47).

382 Object-oriented Technology

Performing State Analysis on Control Objects

Create a new state diagram to perform state analysis on the control objects.

• Create state diagrams for the control objects

1. Create a new state diagram by clicking the New State

Diagram button on the toolbar.

2. Construct the state diagram for the control object. (see

Figure 7.48 for the Process Order Control class).

3. Right click on a transition and select Open Specification from

the pop-up menu.

Figure 7.47. Revised class diagram

Chapter 7: A Case Study: Applying the Activity Analysis Approach 383

4. Click the edit button in the Trigger block to open the

specification dialog of the trigger event and fill in the trigger

details. Click OK when finished.

5. Click the edit button in the Effect block to open the

specification dialog of the effect action and fill in the effect

details. Click OK when finished.

6. Click the edit button in the Guard block to open the

specification dialog of the guard and fill in the details. Click OK

when finished (see Figure 7.49).

7. Repeat Steps 1 to 6 for all the control objects.

Figure 7.48. State diagram of ProcessOrderControl class

384 Object-oriented Technology

Revising Class Diagram(s)

Now modify the analysis class diagram to obtain the design class diagram

(Figure 7.50).

• Create the revised design class diagram

1. Create a new class diagram and rename it Revised Design Class

Diagram.

2. Copy the models in the analysis class diagram to the Revised

Design Class Diagram.

3. Click the new package button on the palette and then the

diagram area.

4. Drag the selected classes into the package.

5. Repeat Steps 3 and 4 to create the other packages.

Figure 7.49. Complete state diagram

Chapter 7: A Case Study: Applying the Activity Analysis Approach 385

membership

Member

 -name : String
 -address : String

 +getReorderLimit(): float
 +updateReorderLimit(): ...
 +getName(): String
 +getAddress(): String

Figure 7.50. Revised design class diagram

Order Processing Clerk

Order Processing Clerk

 + selectOrder(orderID: Int): Order
 + fillOrder(orderID: int): void
 + requestDepositorderID: int): void
 + reorder(orderID: int): void

0...*

1

0...*

Order

 - date : Date
 - status : String
 - deposit : float
 - id : int
 - member : Member
 + getUnfilledOrders(): Order()
 + getOrderDetails()
 +getStatus(state : String) : void
 + getMember() : Member

Goods Delivery

1
1

Customer Service Assistant

Goods Return

Order Line

 -quantity : int

 +getQuantity(): int
 +getGoods(): Goods

0 1...*

0...*

0...*

0...1
1

Reorder request

 - date : Date

 +additem(Item : Goods) : void
1

0...*

1...*

Deposit Request

 -amount : float
 -date : Date

ordercontrol

Goods

 -quantity : int

 +getAvailableQuanttity() ; int
 +updateQuantity(quantity : int) : void

Reorder Request Line

 - quantity : int

Purchase Order Line

1...*

1...* 0...*
Purchase Order

Goods ReceiveSupplier

Inventory Control Clerk

1

0...*

1...* 1

0...* 1
1...*

inventorycontrol

supplied

placed by

1

1

0...*

submitted by

placed by

handled by

Summary

We have shown how the A3 can be applied to perform the analysis and design

of the mail order system in a single iteration of the development process.

We have also demonstrated how these steps can be processed by VP-UML,

a powerful UML CASE tool. With VP-UML, new diagrams or models can be

created from existing model elements in the model repository or by

transforming existing diagrams. VP-UML greatly improves the consistency

between UML models and enhances developers’ productivity because many

manual steps are automated. The reverse engineering capability of this CASE

tool provides real-time synchronization between code and models which

significantly minimizes errors during the whole development life cycle.

The UML, together with the A3 and a powerful CASE tool like VP-UML,

offers an effective and efficient combination for software development.

386

Appendix

A
Getting Started with VP-UML

Visual Paradigm for the Unified Modeling Language (VP-UML) is a very

powerful CASE tool that has been used extensively in this book to explain

various important concepts in object-oriented technology. This appendix serves

to provide quick hints and guidance on some of the basic features of VP-UML,

enabling you to operate it effectively with little training or effort. Given the

complexity of this CASE tool, it is obviously not possible to cover with detailed

explanations every aspect of VP-UML in this short appendix. Interested readers

can find out more about VP-UML from the online User’s Guide of VP-UML,

which is included in the accompanying CD-ROM.

VP-UML has the look and feel of many contemporary software packages

and, indeed, readers who have used packages like JBuilder and Microsoft

products, should have the basic background knowledge in operating VP-UML.

In this appendix, we will first describe the installation process for the

VP-UML software, followed by its operating environment and most commonly

used features.

Installing VP-UML

System Configuration

Hardware Requirements

In terms of hardware, VP-UML runs on the IBM PC family of computers and

their compatibles, with a Pentium III 400 MHz (or higher) processor and 64 MB

Appendix A 387

of RAM. However, 128 MB of RAM is highly recommended, especially when

developing complex diagrams where significant improvement in performance is

noticeable with an increase in primary storage capacity.

The required free hard disk space to install the product is listed in

Table A.1 (the actual required disk space may vary depending on the operating

system):

Table A.1. Estimated required disk space to install VP-UML

Edition Required disk space

VP-UML Community Edition 220 MB

VP-UML Standard Edition 220 MB

VP-UML Professional Edition 300 MB

Software Requirements

In terms of operating systems, VP-UML runs on Windows (98, ME, NT, 2000

or XP) and all other Java-enabled platforms.

System Installation

There are two types of installers available: the Windows installer (see

Figure A.1) and the “No Install” installer.

The Windows installer installs VP-UML into the system and also registers

VP-UML project files (with file extension “vpp”) with the operating system so

that it can be opened using VP-UML by double clicking the project file.

Optionally shortcuts can be created on the Desktop or Start Menu for quick

access to the application.

The “No Install” installer is a zip file containing all the required files for

running VP-UML. Just extract the zip file to a directory. A folder will be created

and all the files will be extracted into that folder.

Running VP-UML

When installing VP-UML using the Windows installer, just go to the directory

where VP-UML has been installed and execute “Visual Paradigm for UML

<Edition Name>.exe”. If you have chosen to create program shortcuts during

installation, just double click or click the shortcut on the Desktop or Start Menu

to run VP-UML.

388 Appendix A

When installing VP-UML using the “No Install” installer, open the folder

where the files have been extracted and execute the program executable for the

platform in use. For Windows, the executable is named “Visual Paradigm for

UML.exe”. For Unix or Linux, the executable is named runVPUML.sh; you will

have to use the “chmod 711” command to change the access permission of the

executable before it can be executed.

VP-UML Environment

The VP-UML environment provides an intuitive means to carry out object-

oriented system analysis and design, where UML diagrams can be created

through simple drag and drop operations. It consists of a collection of menus,

toolbars and windows that make up the development workspace, allowing the

creation of different types of diagrams in a totally visual and interactive

environment. A description of each of these interface components is presented

in Table A.2.

Figure A.1. Windows installer

Appendix A 389

When executing the VP-UML program, a window similar to the one shown

in Figure A.2 will appear.

Table A.2. User interface components in VP-UML environment

Component Description

Menu Bar The menu bar at the top of the window allows you to select

and perform various operations in VP-UML

Toolbar Below the menu bar, there is a list of buttons presented as

groups of icons, which enable the designer to carry out various

diagram editing operations

Project explorer The project explorer contains three views:

• Diagram tree view: Shows all the diagrams within the

project

• Model tree view: Shows all the model elements within

the project

• Class repository view: Shows all the classes within the

project

Properties pane There are four pages associated with the properties pane:

• Property: Allows the designer to edit the properties of the

current diagram or selected diagram elements

• Preview: Shows the overall view of the current diagram.

Any part of the diagram can be accessed by dragging the

rectangle

• Documentation: Allows the user to enter the description

for the current diagram or a selected diagram element

• Element viewer: Displays a detailed view of a selected

diagram element

Diagram pane This workspace allows the editing of multiple diagrams at the

same time. The full view of the active diagram is displayed in

the preview pane of the properties pane. The designer can

zoom in to get a close-up view of the active diagram or zoom

out to get an overall veiw of the diagram.

Diagram toolbar The diagram toolbar contains the buttons of the diagram

elements available for developing the active diagram

390 Appendix A

Working with Diagrams

Creating a Diagram

To create a new diagram, click the File button on the menu bar to select New

Diagram. A submenu will appear and then select the diagram type to be created

from the submenu (see Figure A.3).

Opening a Diagram

To open a diagram, simply double click on the diagram tree node in the project

explorer.

Figure A.2. VP-UML Environment

Project

Explorer

Diagram

Toolbar

Properties

Pane

Diagram

Pane

Menu Bar

Toolbar

Appendix A 391

Renaming a Diagram

To rename a diagram, right click on the diagram in the project explorer.

A pop-up menu will then appear. Select Rename … (see Figure A.4) to rename

the diagram.

Deleting a Diagram

To delete a diagram, right click on the diagram in the project explorer.

A pop-up menu will appear. Then select Delete.

Diagram Properties

To edit the properties of a diagram, either right click on the diagram to set the

properties using its pop-up menu, or use the properties table from the

properties pane (see Figure A.5).

Figure A.3. Creating a diagram

392 Appendix A

Figure A.4. Renaming a diagram

Figure A.5. Editing properties of a diagram using properties table

Appendix A 393

Creating Diagram Elements

Creating Shapes

To create a shape, simply click on the shape button on the diagram toolbar (see

Figure A.6), and then click once on the diagram.

Figure A.6. Creating shapes using buttons on diagram toolbar

Creating Connectors

To create a connector, click the connector button on the diagram toolbar,

then the source shape, and drag the connector to the destination shape.

A blue-rounded rectangle surrounding the destination shape will appear when

a valid connection can be made (see Figure A.7). Release the mouse button.

Creating Self-connections

Some of the shapes can have a connection to itself, for example,

the self-message of a sequence object. To create a self-connection, simply click

the self-connector button on the diagram toolbar and then click once on the

shape.

394 Appendix A

Resource-centric Interface

What is Resource-centric Interface?

A user interface based on the resource-centric approach is adopted in VP-UML

to enable UML diagrams to be constructed intuitively with minimal effort.

With this novel interface, only valid editing resources are grouped around a

graphical entity, totally eliminating invalid operations during diagram

construction.

Using Resource-centric Interface

A resource is usually used to create a shape from another shape, and connect

them with a connector. For example, if you drag the resource “Association →

Use Case” from an actor to the white space in the diagram, a new use case will

be created, connecting the actor with an association (see Figure A.8).

Figure A.7. Creating a connector

Figure A.8. Creating a use case from an actor using resource-centric-interface

Appendix A 395

We can also use the resource-centric interface to create a connection

between existing shapes. For example, if an actor and a use case have been

created, drag the resource “Association → Use Case” from the actor to the use

case to connect them with an association relationship (see Figure A.9).

Figure A.9. Using resource-centric interface to connect existing shapes

If we try to use the resource-centric interface to perform an invalid

connection between shapes, for example, dragging the “Association → Actor”

resource from an actor to a use case, a stop sign will be displayed, indicating

that the current action is invalid (see Figure A.10).

Figure A.10. Stop sign indicating an invalid action with selected resource

Enabling or Disabling Resource-centric Interface Feature

To enable or disable the resource-centric interface feature, click on the View

menu to select or deselect the resource-centric checkbox.

Showing Extra Resources in Resource-centric Interface

By default, the resource-centric interface displays the most commonly used

resources of a diagram element. We can choose to view those less commonly

used resources by clicking the View menu and select Show Extra Resources.

Figure A.11 shows a class element with “Show Extra Resources” turned off

and on.

396 Appendix A

Diagram Element Properties

Diagram Element Pop-up Menu

Set the properties of a diagram element using its pop-up menu. To invoke the

pop-up menu, simply right click on the diagram element.

Properties Table

We can also set the properties of a diagram element directly in the properties

table (see Figure A.12).

Figure A.11. Class element with “Show Extra Resources” (a) turned off and

(b) turned on

(a) (b)

Figure A.12. Setting properties of a diagram element using properties table

Appendix A 397

Open Specification Dialog Box

To open the specification dialog box of a diagram element, simply right click on

the diagram element and select Open Specification … from the pop-up menu.

The open specification dialog box allows the configuration of the detail model

data of the diagram element (see Figure A.13).

Sub-diagrams

Creating or Removing Sub-diagrams

For diagram elements that allow sub-diagrams, sub-diagrams using its open

specification dialog box can be created or removed. Just select the

Diagram page and click the Add button to select the sub-diagram to create it

(see Figure A.14). Or remove selected sub-diagrams by clicking the Remove

button.

Viewing or Opening Sub-diagrams

To view the sub-diagrams owned by a diagram element, right click on the

diagram element and select Sub Diagrams from its pop-up menu.

Figure A.13. Open specification dialog box

398 Appendix A

Then select the diagram type (for example, Activity Diagram). A list of

sub-diagrams (if there is any) will be displayed upon selection.

To open a sub-diagram, simply click on the menu item of the

sub-diagram (see Figure A.15).

Code Generation

Real-time Code Generation

Creating Class Diagrams with Real-time Code Generation

To create a class diagram with real-time code generation, simply right click

on the Class Diagram tree node in the project explorer and select Create

Class Diagram with Real-Time Code Generation from the pop-up menu

(see Figure A.16).

Figure A.14. Creating a sub-diagram

Appendix A 399

Figure A.15. Opening a sub-diagram

Figure A.16. Creating class diagram with real-time code generation

400 Appendix A

Viewing or Editing Generated Code

The code pane at the bottom of the class diagram shows the generated code (see

Figure A.17). You can edit the code directly in the code pane. Any changes made

in the code will be automatically reflected in the class diagram.

Selecting Classes for Code Generation

Before performing code generation, make sure to select the class for which the

code is generated.

To select classes for code generation:

1. Click on Code from the menu bar, then the code menu appears.

2. Click on Java from the code menu and then select Option … . The Code

Engine Set Configuration dialog box will be displayed.

Figure A.17. Viewing or editing generated code using code pane

Appendix A 401

3. Select the Code Generation page.

4. Select the classes from Available Classes for Code Engineering pane

and then click the Add Selected Classes from Available Classes to

Classes to Generate button to select them for code generation (see

Figure A.18).

Figure A.18. Selecting classes for code generation

Performing Code Generation

To perform code generation, click on Code from the menu bar. When the code

menu appears, click on Java from the code menu and then select Generate

Code (see Figure A.19).

Java Code Syntax Checking

To perform Java code syntax checking, click Code from the menu bar. When the

code menu appears, click Java from the code menu, and then select Code

Generation Syntax Check (see Figure A.20).

402 Appendix A

Figure A.19. Performing code generation

Figure A.20. Performing Java code syntax checking

All the classes that are selected for code generation will be checked to

determine if they conflict with the Java language syntax, and the appropriate

messages will be directed to the message pane (see Figure A.21).

Code Reverse Engineering

VP-UML provides code reverse engineering from source code to model. Simply

click Code from the menu bar. When the code menu appears, click Java from

the code menu and then select Reverse Code to perform code reverse

engineering. The new model elements created in the reverse engineering

process will be added to the model repository.

Appendix A 403

Code Generation Options

To configure code generation options, click Code from the menu bar. When the

code menu appears, click Java from the code menu, and then select

Option … . The Code Engine Set Configuration dialog box will be displayed

(see Figure A.22). Various code generation options, such as output directory and

coding style, can be configured here.

Textual Analysis

What Is Textual Analysis?

Textual analysis is a process to analyze the system domain. It facilitates the

identification of candidate classes from a problem statement.

Performing Textual Analysis

VP-UML allows us to perform textual analysis to identify candidate classes and

add them to the model repository. To create a new textual analysis, click File

from the menu bar. When the file menu appears, click New Diagram from the

tools menu, and then select New Textual Analysis from the cascading menu

(see Figure A.23).

Figure A.21. Result of Java code syntax checking

404 Appendix A

Figure A.22. Code Engine Set Configuration dialog box

Figure A.23. Creating a new textual analysis

Appendix A 405

Defining Problem Statement

To define the problem statement, either type the content directly in the text

area, or click on the Import Text File button to import a text file containing

the problem statement (see Figure A.24).

Identifying Candidate Classes

To identify and define candidate classes, either select the keyword from the text

area and drag it to the candidate class pane (a class will be created in the model

repository), or right click the selected text and select the type of model element

that we want to define from the pop-up menu (see Figure A.25).

Report Generation

Professional-looking reports may be generated in HTML or PDF format.

Generating Reports in HTML Format

To generate a report in HTML format, click Tools from the menu bar. When the

tools menu appears, click Report from the tools menu and then select

HTML … . The General HTML dialog box will appear (see Figure A.26) where

various report generation settings can be configured.

Figure A.24. Importing text file containing problem statement

406 Appendix A

Figure A.25. Defining a candidate class

Figure A.26. Generate HTML dialog box

Appendix A 407

Generating Reports in PDF Format

To generate a report in PDF format, click Tools from the menu bar. When the

tools menu appears, click Report from the tools menu and then select

PDF … . The Generate PDF dialog box will appear (see Figure A.27) where

various report generation settings can be configured. Figure A.28 shows a

sample PDF report.

Importing Models or Diagrams

VP-UML supports the importing of models or diagrams from two file formats:

Rational Rose project files or XMI files.

Importing Rational Rose Project Files

To import a Rational Rose project file, click Tools from the menu bar. When the

file menu appears, click the Import from Rose … button. The Import Rose

Option dialog box will appear (see Figure A.29), where we can select both the

Rose file to import as well as the import mode. Figure A.30 shows a Rational

Rose diagram and the imported version in VP-UML.

Importing XMI File

To import an XMI file, click Tools from the menu bar. When the file

menu appears, click the Import from XMI … button. The Import XMI dialog

box (see Figure A.31) will then appear where the path of the imported XMI file

can be specified.

Figure A.32 shows the diagram in Together before exporting to an XMI file,

while Figure A.33 shows the same diagram imported into VP-UML.

408 Appendix A

Figure A.27. Generate PDF dialog box

Figure A.28. Sample PDF report generated by VP-UML

Appendix A 409

Figure A.30. (a) Rational Rose diagram and (b) the same diagram in VP-UML

(a)

NewClass

NewClass2

NewUseCase

NewUseCase2

NewUseCase3

(b)

<<Actor>>

NewClass

<<Actor>>

NewClass2

NewUseCase

NewUseCase2

NewUseCase3

Figure A.29. Import Rose Option dialog box

Figure A.31. Import XMI dialog box

410 Appendix A

Figure A.32. Diagram in Together before exporting to XMI file

Figure A.33. Diagram in Together as it appears in VP-UML

411

Appendix

B
Basic UML Concepts

As mentioned in earlier sections, a system can be described by three orthogonal

views: the functional view, the static view and the dynamic view. In addition to

these views, UML provides another view for model management and extension

mechanisms for the inclusion of new notation to UML models.

A model usually contains more than one view so that the software engineer

can understand the relationships between the entities from different

perspectives. A UML model consists of one or more diagrams and related

documentations, such as a data dictionary, which provides a detailed

description of the entities in the diagrams. A UML diagram contains model

elements which are notations used to represent common object-oriented

concepts and their relations. UML defines the following model elements:

• Structural elements. These are the basic elements of diagrams.

The elements include classes, interfaces, collaborations, use cases, active

classes, components and nodes.

• Behavioral elements. These elements are the dynamic parts of UML

models. They can be used to describe dynamic behaviors of structural

elements. These elements include the interaction and state machine

diagrams.

• Grouping elements. These elements are the organizational parts of UML

models. They include package and subsystem.

• Relationships. These elements are used to define relationships between

model elements. They include dependency, association, generalization and

realization.

• General elements. They provide extra comments, information or semantics

about a model element.

412 Appendix B

• Extension elements. UML also defines extensibility mechanisms to adapt or

extend the UML to a specific method or process, organization or user by

using the extension elements such as stereotypes, tagged values and

constraints.

The UML specifies a variety of diagrams to capture the static, dynamic and

behavioral aspects of a system:

• Use case diagram. The use case diagram captures the requirements of the

system being developed. The diagram describes the visible functions (use

cases) as seen from the user’s perspective. The user can invoke the use

cases to achieve his/her goal. Each use case has a description written in

natural language so that both the user and the developer of the system can

understand. For example, the four use cases (Make a Call, Make a

Three-party Conference Call, Register New Subscriber and Check Bill) of a

telephone billing system are illustrated in Figure B.1.

Figure B.1. Use case diagram of telephone billing system

Subscriber
<<extend>>

Make a call

Make a three-party conference

Register new subscriber

Check bill
Operator

Telephone Billing System

• Class diagram. The class model is used to describe the types of objects and

their relationships by providing a static and structural view of a system in

terms of its classes and relationships. It is, therefore, the backbone of

nearly all object-oriented methods. A class diagram does not express specific

relationships between objects, but it describes the potential links from one

object to other objects. For example, the types of objects and their

relationships of the telephone billing system are illustrated in Figure B.2.

Appendix B 413

• Interaction diagram. There are two types of interaction diagrams: the

sequence diagram and the collaboration diagram. Both diagrams are used

to describe the internal behaviors of the system and how the objects

collaborate to realize the execution of a use case. The sequence diagram and

the collaboration diagram have equivalent expressive power; a sequence

diagram can be represented by a collaboration diagram with equivalent

semantics and vice versa. The sequence diagram focuses on the temporal

order of operations of objects, while the collaboration diagram focuses on

the static relationships. Figure B.3 is a sequence diagram showing the

sequence of operations of a successful scenario of the Make a Call use case

of the telephone billing system example. Figure B.4 shows a collaboration

diagram with the equivalent semantics.

• Activity diagram. The activity diagram is used to model workflow and

computational flow. Activity diagrams are organized according to actions

and represent the internal behavior of a method or a use case.

They describe the sequencing of activities, supporting both conditional and

parallel behaviors. The activity diagram is usually used to elaborate the

execution flow of a use case that has complex behaviors. Figure B.5 shows

the activity diagram that illustrates the Make a Call use case of the

telephone billing system example.

• State diagram. State diagrams, sometimes referred to as statechart

diagrams, are a common technique to describe the dynamic behavior of a

system. They represent state machines from the perspective of states and

transitions, describing all the possible states that a particular object can get

Figure B.2. Class diagram for telephone billing system

Subscriber

name

address

Telephone Line

telephone no.

Individual

ID

Organization

business registration no.

Call

callee number

date

start time

end time

1
Operator

0..n

1..n

1

0..n

1

414 Appendix B

Figure B.3. Sequence diagram for Make a Call use case

:Subscriber

dial number

request number

lift telephone receiver

replace telephone receiver

dial number

start call

end call

create

set end time

:Telephone Line :Call Control :Call

into and how the object’s state changes as a result of events that affect the

object. In most object-oriented techniques, state diagrams are drawn for a

single class to show the lifetime behavior of a single object. Figure B.6

shows the life cycle of the Subscriber object of the telephone billing system

example.

Appendix B 415

Figure B.4. Collaboration diagram for Make a Call use case

1. lift telephone receiver

3. dial number

7. replace telephone receiver

:Subscriber

:Telephone Line :Call Control :Call

2. request number 8. end call

4. dial number

5. start call 6. create

9. set end time

Figure B.5. Activity diagram for elaboration of Make a Call use case elaboration

[answered]

lift telephone receiver

wait for dial tone

dial number

talk

replace telephone receiver

[busy or no one answers]

Figure B.6. State diagram for Subscriber class

normal overdue suspended

[re-activated]
[paid]

[payment overdue]
[payment overdue ⬎ 3 months]

416 Appendix B

• Package diagram. A package contains UML diagrams and may contain

other packages. Related diagrams are usually grouped in a single package.

For example, the Java AWT package contains all the first generation GUI

implementation of Java. A package diagram describes the relationships

between different packages. Figure B.7 shows a package diagram where the

TelephoneBillingApplication package depends on the Telephone and the

Billing packages.

• Deployment diagram. The deployment diagram is used to describe the

runtime mapping of software components to the hardware resources

(nodes). A software component is a replaceable part of the system with

well-defined interfaces. Figure B.8 shows a deployment diagram illustrating

the deployment of various components for the telephone billing system.

The following models are commonly used by software engineers in various

stages of the system development life cycle:

• The use case model describes the boundary and interaction between the

system and users. It corresponds in some respects to a requirements model.

The use case model contains use case diagrams, use case descriptions and,

optionally, activity diagrams.

• The behavioral model describes the dynamic aspects of the system. It is

often used during the analysis and design stages. A behavioral model can

describe the internal behavior of a single object, the sequence of

interactions between the user and the system in a use case, and

interactions between objects. A behavioral model can contain activity

diagrams, state diagrams, interaction diagrams and related

documentations.

• The class model describes the static aspects of the system. It is used to

specify the classes and objects that make up the system. A class model

contains class diagrams and a data dictionary for defining the elements in

the model.

• The physical component model describes the software (and sometimes

hardware) components that makes up the system. The physical component

model contains component diagrams and related documentations.

• The physical deployment model describes the physical architecture and the

deployment of components on that hardware architecture. The physical

deployment model contains deployment diagrams and related

documentations.

Appendix B 417

Figure B.7. Package diagram

TelephoneBillingApplication

Telephone

Billing

Figure B.8. Deployment diagram

:BillingDBServer

:ServerPC

:TelephoneBillingGUI

:OperatorPC :TelephoneSwitchInterfacePC

:CallControl

Relationships between UML Diagrams

Software development projects usually start with the modeling of use cases.

The software developer interviews users and captures the requirements of the

system using use case diagrams. The use case diagram describes the types of

users (the actors), the roles and responsibilities of the actors and the visible

functions of the systems (use cases). Then the software developer can identify

the objects in the system by performing a textual analysis of the use case

descriptions, and the identified objects are recorded in a class diagram. The use

418 Appendix B

case can be further elaborated by an activity diagram which shows more

detailed workflow and computational flow. The sequence diagram or

collaboration diagram is then developed to describe how the objects collaborate

to realize the execution of the use case. The operations and attributes identified

in the sequence diagrams and collaboration diagrams are summarized in the

class diagram. Figure B.9 illustrates the relationships between these UML

models.

Figure B.9. Relationships between UML models

elaborated byActivity

Diagram

Interaction

Diagram

State

Diagram

Use

Case

Class

Diagram

Realized by Realized by Textual Analysis

described byuse

summarize

419

Appendix

C
Implementation of the Lift Control

System in Chapter 5

The following source code is a solution to the lift control system example

described in Chapter 5.

// LiftController.java

import javax.swing.*;

import java.awt.*;

import java.awt.event.*;

import java.util.*;

public class LiftController {

public final int DIRECTION_UP = 0;

public final int DIRECTION_DOWN = 1;

final int GROUND_FLOOR = 0;

final int MOVING_UP = 1;

final int MOVING_DOWN = 2;

final int WAITING_FOR_FLOOR_NUMBER = 3;

final int HOMING = 4;

final int DOOR_TIME_OUT = 3000; // the time for timeout

final int SPEED = 3000; // the speed of the lift

private int _state;

private int _currentFloor; // the current floor of the lift

private int _nextFloor; // the target floor of the lift

private Vector _floors; // the vector for keeping the floors pressed by

the passenger in the lift

private javax.swing.Timer _doorTimer;

private javax.swing.Timer _motorTimer;

// the following attributes are required for the implementation of the

associations with other classes

private Motor _motor;

420 Appendix C

private Door _internalDoor;

private Door[] _floorDoors;

private LiftPanelUI _liftPanelUI;

private FloorPanelUI[] _floorPanels;

// for displaying state information

private JLabel _stateDisplay;

// attributes for associations

public LiftController() {

_currentFloor = 0;

_state = GROUND_FLOOR;

_floors = new Vector();

ActionListener _taskPerformer = new ActionListener() {

public void actionPerformed(ActionEvent evt) {

javax.swing.Timer t = (javax.swing.Timer) evt.getSource();

t.stop();

timeout();

}

};

_doorTimer = new javax.swing.Timer(DOOR_TIME_OUT, _taskPerformer);

_taskPerformer = new ActionListener() {

public void actionPerformed(ActionEvent evt) {

javax.swing.Timer t = (javax.swing.Timer) evt.getSource();

t.stop();

arrive();

}

};

_motorTimer = new javax.swing.Timer(SPEED, _taskPerformer);

}

public void request(int floor, int direction) {

System.out.println(“request: “ + floor);

if (_state == GROUND_FLOOR) {

if (floor > 0) {

System.out.println(“Close Door”);

_internalDoor.close();

_floorDoors[_currentFloor].close();

_state = MOVING_UP;

System.out.println(“Moving Up”);

_motor.moveUp();

_motorTimer.setDelay(floor * SPEED);

_motorTimer.restart();

} else {

_state = this.WAITING_FOR_FLOOR_NUMBER;

System.out.println(“Open Door”);

_internalDoor.open();

Appendix C 421

_floorDoors[_currentFloor].open();

_doorTimer.restart();

}

_nextFloor = floor;

}

showState();

showCurrentFloor();

}

public void timeout() {

System.out.println(“Door timeout”);

if (_state == this.WAITING_FOR_FLOOR_NUMBER) {

_nextFloor = getNextFloor();

while (_nextFloor == _currentFloor)

_nextFloor = getNextFloor();

if (_nextFloor == -1) { // go back to ground floor

if (_currentFloor > 0) {

System.out.println(“Close Door”);

_internalDoor.close();

_floorDoors[_currentFloor].close();

_state = HOMING;

System.out.println(“Moving Down”);

_motor.moveDown();

_motorTimer.setDelay(_currentFloor * SPEED);

_motorTimer.restart();

} else {

System.out.println(“Close Door”);

_internalDoor.close();

_floorDoors[_currentFloor].close();

 _state = GROUND_FLOOR;

}

} else if (_nextFloor > _currentFloor) {

System.out.println(“Closing Door”);

_internalDoor.close();

_floorDoors[_currentFloor].close();

_state = MOVING_UP;

System.out.println(“Moving Up”);

_motor.moveUp();

_motorTimer.setDelay((_nextFloor - _currentFloor) * SPEED);

_motorTimer.restart();

} else if (_nextFloor < _currentFloor) {

System.out.println(“Closing Door”);

_internalDoor.close();

_floorDoors[_currentFloor].close();

_state = MOVING_DOWN;

System.out.println(“Moving Down”);

_motor.moveDown();

422 Appendix C

_motorTimer.setDelay((_currentFloor - _nextFloor) * SPEED);

_motorTimer.restart();

}

}

showState();

showCurrentFloor();

}

public void arrive() {

if (_state == MOVING_UP || _state == MOVING_DOWN) {

System.out.println(“Stop Motor”);

_motor.stop();

_currentFloor = _nextFloor;

_state = this.WAITING_FOR_FLOOR_NUMBER;

System.out.println(“Open Door”);

_internalDoor.open();

_floorDoors[_currentFloor].open();

_doorTimer.restart();

} else if (_state == HOMING) {

_motor.stop();

_state = this.GROUND_FLOOR;

_currentFloor = 0;

}

showState();

showCurrentFloor();

System.out.println(“Lift Arrived at “ + _currentFloor + “/F”);

}

public void gotoFloor(int floor) {

System.out.println(“Pressed “ + floor + “/F button”);

if (_state == this.WAITING_FOR_FLOOR_NUMBER) {

_floors.add(new Integer(floor));

}

}

private int getNextFloor() {

if (_floors.isEmpty())

return -1;

else {

int nextFloor = ((Integer) _floors.remove(0)).intValue();

return nextFloor;

}

}

Appendix C 423

public void setMotor(Motor motor) {

_motor = motor;

}

public void setInternalDoor(Door door) {

_internalDoor = door;

}

public void setFloorDoors(Door[] doors) {

_floorDoors = doors;

}

public void setLiftPanelUI(LiftPanelUI panel) {

_liftPanelUI = panel;

}

public void setStateDisplay(JLabel display) {

_stateDisplay = display;

showState(); // initialize the display

}

public void setFloorPanels(FloorPanelUI[] panels) {

_floorPanels = panels;

showCurrentFloor(); // initialize the displays

}

void showState() {

switch (_state) {

case GROUND_FLOOR:

_stateDisplay.setText(“Ground Floor”);

break;

case MOVING_UP:

_stateDisplay.setText(“Moving Up”);

break;

case MOVING_DOWN:

_stateDisplay.setText(“Moving Down”);

break;

case WAITING_FOR_FLOOR_NUMBER:

_stateDisplay.setText(“Waiting”);

break;

case HOMING:

_stateDisplay.setText(“Homing”);

}

}

void showCurrentFloor() {

_liftPanelUI.showCurrentFloor(_currentFloor);

424 Appendix C

for (int i=0; i < _floorPanels.length; i++) {

if (_floorPanels[i] != null) {

if (_state == MOVING_UP || _state == MOVING_DOWN || _state ==

HOMING)

if (_nextFloor < 0)

_floorPanels[i].showCurrentFloor(“Moving to “ + 0 + “/F”);

else

_floorPanels[i].showCurrentFloor(“Moving to “ + _nextFloor +

“/F”);

else

_floorPanels[i].showCurrentFloor(_currentFloor + “/F”);

}

}

}

}

// Lift.java

public class Lift {

private LiftController _liftController;

private Motor _motor;

private Door _internalDoor;

private Door[] _floorDoors;

private LiftController _control;

public Lift(int numOfFloor) {

_motor = new Motor();

// create the doors

_internalDoor = new Door();

_floorDoors = new Door[numOfFloor];

for (int i=0; i < numOfFloor; i++)

_floorDoors[i] = new Door();

// create the lift panel

_control = new LiftController();

_control.setMotor(_motor);

_control.setInternalDoor(_internalDoor);

_control.setFloorDoors(_floorDoors);

}

public LiftController getLiftController() {

return _control;

}

public Door getInternalDoor() {

return _internalDoor;

}

public Door[] getFloorDoors() {

return _floorDoors;

Appendix C 425

}

public Motor getMotor() {

return _motor;

}

}

// Door.java

import javax.swing.*;

public class Door {

private JLabel _doorDisplay;

public Door() {

}

public void setDisplay(JLabel display) {

_doorDisplay = display;

}

public void open() {

if (_doorDisplay != null)

_doorDisplay.setText(“Open”);

}

public void close() {

if (_doorDisplay != null)

_doorDisplay.setText(“Close”);

}

}

// Motor.java

import javax.swing.*;

public class Motor {

private JLabel _motorStatus;

public Motor() {

}

public void setDisplay(JLabel display) {

_motorStatus = display;

}

public void moveUp() {

if (_motorStatus != null)

_motorStatus.setText(“Moving Up”);

}

public void moveDown() {

if (_motorStatus != null)

_motorStatus.setText(“Moving Down”);

}

public void stop() {

_motorStatus.setText(“Stop”);

426 Appendix C

}

}

// LiftButton.java

import java.awt.*;

import java.awt.event.*;

import javax.swing.*;

public class LiftButton {

protected int _floorNo;

protected LiftController _control;

protected JButton _button;

public LiftButton(int floor) {

_button = null;

_control = null;

_floorNo = floor;

}

public void setButton(JButton button) {

_button = button;

}

public void setControl(LiftController control) {

_control = control;

}

}

// FloorNumberButton.java

import java.awt.event.*;

import javax.swing.*;

public class FloorNumberButton extends LiftButton {

public FloorNumberButton(int floor) {

super(floor);

}

public void setButton(JButton button) {

super.setButton(button);

_button.addActionListener(new ActionListener() {

public void actionPerformed(ActionEvent evt) {

_control.gotoFloor(_floorNo);

}

});

}

}

// DownButton.java

import java.awt.event.*;

import javax.swing.*;

public class DownButton extends LiftButton {

public DownButton(int floor) {

super(floor);

}

public void setButton(JButton button) {

Appendix C 427

super.setButton(button);

_button.addActionListener(new ActionListener() {

public void actionPerformed(ActionEvent evt) {

_control.request(_floorNo, _control.DIRECTION_DOWN);

}

});

}

}

// UpButton.java

import java.awt.event.*;

import javax.swing.*;

public class UpButton extends LiftButton {

public UpButton(int floor) {

super(floor);

}

public void setButton(JButton button) {

super.setButton(button);

_button.addActionListener(new ActionListener() {

public void actionPerformed(ActionEvent evt) {

_control.request(_floorNo, _control.DIRECTION_UP);

}

});

}

}

// LiftPanelUI.java

import javax.swing.*;

public class LiftPanelUI {

FloorNumberButton _buttons[];

LiftController _liftController;

JLabel _currentFloorDisplay;

public LiftPanelUI(int numOfButtons) {

_buttons = new FloorNumberButton[numOfButtons];

for (int i = 0; i < numOfButtons; i++)

_buttons[i] = new FloorNumberButton(i);

}

public FloorNumberButton[] getButtons() {

return _buttons;

}

public void setLiftController(LiftController control) {

_liftController = control;

for (int i = 0; i < _buttons.length; i++)

_buttons[i].setControl(control);

}

public void setButtonDisplay(JButton[] buttons) {

for (int i = 0; i < _buttons.length; i++)

428 Appendix C

_buttons[i].setButton(buttons[i]);

}

public void showCurrentFloor(int floor) {

_currentFloorDisplay.setText(floor+”/F”);

}

public void setCurrentFloorDisplay(JLabel display) {

_currentFloorDisplay = display;

showCurrentFloor(0); // initialize display to “0/F”

}

}

// FloorPanelUI.java

import javax.swing.*;

public class FloorPanelUI {

LiftButton _downButton, _upButton;

LiftController _liftController;

JLabel _floorDisplay;

public FloorPanelUI(int floor) {

_downButton = new DownButton(floor);

_upButton = new UpButton(floor);

}

public void setLiftController(LiftController control) {

_liftController = control;

_downButton.setControl(control);

_upButton.setControl(control);

}

public void setDownButtonDisplay(JButton b) {

_downButton.setButton(b);

}

public void setUpButtonDisplay(JButton b) {

_upButton.setButton(b);

}

// Main.java

public class Main {

public static void main(String args[]) throws Exception {

Lift lift = new Lift(7);

LiftController liftController = lift.getLiftController();

LiftPanelUI liftPanel = new LiftPanelUI(7);

liftController.setLiftPanelUI(liftPanel);

liftPanel.setLiftController(liftController);

LiftFrame liftFrame = new LiftFrame();

// link the Floor Number Button to the actual JButton

liftPanel.setButtonDisplay(liftFrame.getButtons());

liftPanel.setLiftController(liftController);

// link the door to the display

lift.getInternalDoor().setDisplay(liftFrame.getDoorDisplay());

Appendix C 429

// link the motor to the display

lift.getMotor().setDisplay(liftFrame.getMotorDisplay());

liftController.setMotor(lift.getMotor());

// link the LiftPanelUI to the current floor display

liftPanel.setCurrentFloorDisplay(liftFrame.getCurrentFloorDisplay());

// link the liftController to the state display

liftController.setStateDisplay(liftFrame.getStateDisplay());

liftFrame.setBounds(0,0,400,400);

liftFrame.show();

// create the floor panel for G/F

FloorFrame floorFrame = new FloorFrame(0);

FloorPanelUI floorPanel = new FloorPanelUI(0);

// link the down button to the actual JButton

floorPanel.setDownButtonDisplay(floorFrame.getDownButton());

// link the up button to the actual JButton

floorPanel.setUpButtonDisplay(floorFrame.getUpButton());

// link the floor current floor display to the actual display

floorPanel.setFloorDisplay(floorFrame.getFloorDisplay());

// link the floor door to the actual display

lift.getFloorDoors()[0].setDisplay(floorFrame.getDoorDisplay());

// link the floor panel UI to the controller

floorPanel.setLiftController(liftController);

floorFrame.setBounds(500, 400, 400, 400);

// create the floor panel for 6/F

FloorFrame floorFrame6 = new FloorFrame(6);

FloorPanelUI floorPanel6 = new FloorPanelUI(6);

// link the down button to the actual JButton

floorPanel6.setDownButtonDisplay(floorFrame6.getDownButton());

// link the up button to the actual JButton

floorPanel6.setUpButtonDisplay(floorFrame6.getUpButton());

// link the floor current floor display to the actual display

floorPanel6.setFloorDisplay(floorFrame6.getFloorDisplay());

// link the floor door to the actual display

lift.getFloorDoors()[6].setDisplay(floorFrame6.getDoorDisplay());

// link the floor panel UI to the controller

floorPanel6.setLiftController(liftController);

// link the controller to the floor panels

FloorPanelUI[] panels = new FloorPanelUI[7];

panels[0] = floorPanel;

panels[6] = floorPanel6;

liftController.setFloorPanels(panels);

floorFrame6.setBounds(500, 0, 400, 400);

floorFrame.show();

floorFrame6.show();

}

}

430 Appendix C

// LiftFrame.java

import javax.swing.*;

import java.awt.*;

import java.awt.event.*;

public class LiftFrame extends JFrame {

JButton _fifthFloor = new JButton();

JButton _sixFloor = new JButton();

JButton _fourthFloor = new JButton();

JButton _thirdFloor = new JButton();

JButton _secondFloor = new JButton();

JButton _firstFloor = new JButton();

JButton _groundFloor = new JButton();

JPanel _buttonPanel = new JPanel();

GridLayout _buttonLayout = new GridLayout();

JLabel _stateLabel = new JLabel();

JLabel _currentFloorDisplay = new JLabel();

JLabel _motorDisplay = new JLabel();

JLabel _doorLabel = new JLabel();

JLabel _motorLabel = new JLabel();

JLabel _stateDisplay = new JLabel();

JLabel _doorDisplay = new JLabel();

JLabel _currentFloorLabel = new JLabel();

JPanel _displayPanel = new JPanel();

GridLayout _displayLayout = new GridLayout();

JButton[] _buttons;

public LiftFrame() throws HeadlessException {

super(“Lift”);

_buttons = new JButton[7];

_buttons[0] = _groundFloor;

_buttons[1] = _firstFloor;

_buttons[2] = _secondFloor;

_buttons[3] = _thirdFloor;

_buttons[4] = _fourthFloor;

_buttons[5] = _fifthFloor;

_buttons[6] = _sixFloor;

try {

initUI ();

}

catch(Exception e) {

e.printStackTrace();

}

}

public JButton[] getButtons() {

return _buttons;

}

public JLabel getMotorDisplay() {

Appendix C 431

return this._motorDisplay;

}

public JLabel getDoorDisplay() {

return this._doorDisplay;

}

public JLabel getCurrentFloorDisplay() {

return _currentFloorDisplay;

}

public JLabel getStateDisplay() {

return _stateDisplay;

}

private void initUI() throws Exception {

this.getContentPane().setLayout(null);

_sixFloor.setText(“6/F”);

_fifthFloor.setText(“5/F”);

_fourthFloor.setText(“4/F”);

_thirdFloor.setText(“3/F”);

_secondFloor.setText(“2/F”);

_firstFloor.setText(“1/F”);

_groundFloor.setText(“G/F”);

_buttonPanel.setBounds(new Rectangle(10, 20, 57, 262));

_buttonPanel.setLayout(_buttonLayout);

_buttonLayout.setColumns(1);

_buttonLayout.setRows(0);

_stateLabel.setText(“State”);

_currentFloorDisplay.setBackground(Color.blue);

_currentFloorDisplay.setForeground(Color.red);

_currentFloorDisplay.setText(“”);

_motorDisplay.setBackground(Color.blue);

_motorDisplay.setForeground(Color.red);

_motorDisplay.setText(“Stop”);

_doorLabel.setText(“Door”);

_motorLabel.setText(“Motor”);

_stateDisplay.setForeground(Color.red);

_stateDisplay.setAlignmentY((float) 0.5);

_stateDisplay.setText(“”);

_stateDisplay.setBackground(Color.blue);

_doorDisplay.setText(“Close”);

_doorDisplay.setForeground(Color.red);

_doorDisplay.setBackground(Color.blue);

_currentFloorLabel.setText(“Current Floor”);

_displayPanel.setDebugGraphicsOptions(0);

_displayPanel.setBounds(new Rectangle(82, 21, 297, 255));

_displayPanel.setLayout(_displayLayout);

_displayLayout.setColumns(2);

_displayLayout.setHgap(0);

_displayLayout.setRows(4);

432 Appendix C

this.getContentPane().add(_buttonPanel, null);

_buttonPanel.add(_sixFloor, null);

_buttonPanel.add(_fifthFloor, null);

_buttonPanel.add(_fourthFloor, null);

_buttonPanel.add(_thirdFloor, null);

_buttonPanel.add(_secondFloor, null);

_buttonPanel.add(_firstFloor, null);

_buttonPanel.add(_groundFloor, null);

this.getContentPane().add(_displayPanel, null);

_displayPanel.add(_currentFloorLabel, null);

_displayPanel.add(_currentFloorDisplay, null);

_displayPanel.add(_stateLabel, null);

_displayPanel.add(_stateDisplay, null);

_displayPanel.add(_motorLabel, null);

_displayPanel.add(_motorDisplay, null);

_displayPanel.add(_doorLabel, null);

_displayPanel.add(_doorDisplay, null);

}

}

// FloorFrame.java

import javax.swing.*;

import java.awt.*;

public class FloorFrame extends JFrame {

JPanel _buttonPanel = new JPanel();

GridLayout _buttonLayout = new GridLayout();

JButton _upButton = new JButton();

JButton _downButton = new JButton();

JPanel _displayPanel = new JPanel();

GridLayout _displayLayout = new GridLayout();

JLabel _floorLabel = new JLabel();

JLabel _floorDisplay = new JLabel();

JLabel _doorLabel = new JLabel();

JLabel _doorDisplay = new JLabel();

public FloorFrame(int floor) throws HeadlessException {

super(floor + “/F Floor Panel”);

try {

InitUI();

}

catch(Exception e) {

e.printStackTrace();

}

}

private void initUI() throws Exception {

this.getContentPane().setLayout(null);

_buttonPanel.setBounds(new Rectangle(28, 27, 90, 239));

_buttonPanel.setLayout(_buttonLayout);

Appendix C 433

_buttonLayout.setColumns(1);

_buttonLayout.setHgap(0);

_buttonLayout.setRows(2);

_upButton.setText(“Up”);

_downButton.setText(“Down”);

_displayPanel.setBounds(new Rectangle(153, 32, 231, 232));

_displayPanel.setLayout(_displayLayout);

_displayLayout.setColumns(2);

_displayLayout.setRows(2);

_floorLabel.setText(“Floor”);

_doorLabel.setText(“Floor Door”);

_doorDisplay.setForeground(Color.red);

_doorDisplay.setText(“Close”);

_floorDisplay.setForeground(Color.red);

_floorDisplay.setText(“”);

this.getContentPane().add(_buttonPanel, null);

_buttonPanel.add(_upButton, null);

_buttonPanel.add(_downButton, null);

this.getContentPane().add(_displayPanel, null);

_displayPanel.add(_floorLabel, null);

_displayPanel.add(_floorDisplay, null);

_displayPanel.add(_doorLabel, null);

_displayPanel.add(_doorDisplay, null);

}

public JLabel getDoorDisplay() {

return _doorDisplay;

}

public JLabel getFloorDisplay() {

return _floorDisplay;

}

public JButton getDownButton() {

return _downButton;

}

public JButton getUpButton() {

return _upButton;

}

}

434

References

Arlow, J., & Neustadt, I. (2001). UML and the Unified Process: Practical object-

oriented analysis and design. Boston, MA: Addison-Wesley.

Armour, F., & Miller, G. (2000). Advanced use case modeling: Software systems.
New York: Addison-Wesley.

Bellin, D., & Simone, S.S. (1997). The CRC card book. Boston, MA: Addison-
Wesley.

BergstrÖm, S., & Råberg, L. (2003). Adopting the Rational Unified Process:

Success with the RUP. Boston, MA: Addison-Wesley.

Bernard, E.V. (1998). Basic object-oriented concepts. The Object Agency, Inc.
from http://www.toa.com/pub/oobasics/oobasics.htm

Bittner, K., & Spence, I. (2003). Use case modeling. Boston, MA: Addison-
Wesley.

Booch, G. (1993). Object-oriented analysis and design with Applications (2nd
edition). Redwood City, CA: Addison-Wesley.

Booch, G., Rumbaugh, J., & Jacobson, I. (1998). The Unified Modeling

Language user guide. Indianapolis, IN: Addison-Wesley.

Budgen, D. (2003). Software design (2nd edition). Harlow, Essex, England:
Addison-Wesley.

Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., & Stal, M. (1996).
Pattern-oriented software architecture: A system of pattern. New York: John
Wiley & Sons.

Coad, P., & Nicola, J. (1993). Object-oriented programming. Upper Saddle River,
NJ: Prentice Hall PTR.

Coad, P., North, D., & Mayfield, M. (1996). Object models: Strategies, patterns,

and applications (2nd edition). New York: Prentice Hall PTR.

Coad, P., & Yourdon, E. (1990). Object oriented analysis (2nd edition). Upper
Saddle River, NJ: Prentice Hall PTR.

Cockburn, A. (1997). Humans and technology. Structuring use cases

with goals, from http://alistair.cockburn.us/crystal/articles/sucwg/
structuringucswithgoals.htm

References 435

Cockburn, A. (2000). Surviving object-oriented projects: A manager’s guide.
Boston, MA: Addison-Wesley.

Cockburn, A. (2000). Writing effective use cases. New York: Addison-Wesley.

Cook, S., & Daniels, J.D. (1994). Designing object systems: Object-oriented

modeling with syntropy. Upper Saddle River, NJ: Prentice Hall.

DeMarco, T., & Lister, T. (1999). Peopleware: Productive projects and teams (2nd
Edition). New York: Dorset House.

Fowler, M. (1996). Analysis patterns: Reusable object models. Upper Saddle
River, NJ: Addison-Wesley.

Fowler, M., Beck, K., Brant, J., Opdyke, W., & Roberts, D. (1999). Refactoring:

Improving the design of existing code. Upper Saddle River, NJ: Addison-
Wesley.

Fowler, M., & Scott, K. (1999). UML distilled: A brief guide to the Standard

Object Modeling Language (2nd edition). Boston, MA: Addison-Wesley.

Gamma, E., Helm, R., Johnson, R., & Vlissides, J. (1995). Design patterns:

Elements of reusable object-oriented software. Upper Saddle River,
NJ: Addison-Wesley.

Hofmeister, C., Nord, R., & Soni, D. (1999). Applied software architecture.
Upper Saddle River, NJ: Addison-Wesley.

Jacobson, I. (1999). IBM Rational. Applying UML in the Unified Process,

Seminar Slide. http://www.jeckle.de/flies/uniproc.pdf

Jacobson, I., Booch, G., & Rumbaugh, J. (1999). The Unified Software

Development Process. Indianapolis, IN: Addison-Wesley.

Jacobson, I., Christerson, M., Jonsson, P., & Overgaard, G. (1992). Object-

oriented software engineering: A use case driven approach. Reading,
MA: Addison-Wesley.

Jacobson, I., Griss, M., & Jonsson, P. (1997). Software reuse: Architecture,

process, and organization for business success. New York: Addison-Wesley.

Kotonya G., & Sommerville, I. (1998). Requirements engineering: Processes and

techniques. New York: John Wiley & Sons.

Kroll, P., & Kruchten, P. (2003). The Rational Unified Process made easy:

A practitioner’s guide to Rational Unified Process. Boston, MA: Addison-
Wesley.

Krutchten, P. (2000). The Rational Unified Process: An introduction (2nd
edition). Boston, MA: Addison-Wesley.

436 References

Larman, C. (2001). Applying UML and patterns: An introduction to object-

oriented analysis and design and the Unified Process (2nd edition). Upper
Saddle River, NJ: Prentice Hall PTR.

Leffingwell, D., & Widrig, D. (1999). Managing software requirements: A unified

approach. Upper Saddle River, NJ: Addison-Wesley.

Marshall, C. (1999). Enterprise modeling with UML: Designing successful

software through business analysis. Reading, MA: Addison-Wesley.

Martin, R.C. (1995). Designing object oriented C++ applications using the Booch

Method. Upper Saddle River, NJ: Prentice Hall.

Martin, R.C. (2002). Agile software development, principles, patterns, and

practices. Upper Saddle River, NJ: Prentice Hall.

McConnell, S.C. (1997). Software project survival guide. Redmond,
WA: Microsoft Press.

Meyer, B. (2000). Object-oriented software construction (2nd edition). Upper
Saddle River, NJ: Prentice Hall PTR.

Oestereich, B. (2002). Developing software with UML: Object-oriented analysis

and design in practice. Harlow, Essex, England: Addison-Wesley.

OMG. Unified Modeling Language Specification, Version 1.5 (formal/03-03-01).
(2003). http://www.omg.org/cgi-bin/doc?formal/03-03-01

Page-Jones, M. (1999). Fundamentals of object-oriented design in UML. Boston,
MA: Addison-Wesley.

Pollice, G., Augustine, L., Lowe, C., & Madhur, J. (2003). Software development

for small teams: A RUP-centric approach. Boston, MA: Addison-Wesley.

Quatrani, T. (1999). Visual modeling with Rational Rose 2000 and UML. Upper
Saddle River, NJ: Addison-Wesley.

Riel, A.J. (1996). Object-oriented design heuristics. Boston, MA: Addison-Wesley.

Rosenberg, D., & Kendall, S. (1999). Use case driven object modeling with UML:

A practical approach. Boston, MA: Addison-Wesley.

Rumbaugh, J. (1997). OMT Insights: Perspective on modeling from the Journal

of Object-Oriented Programming. New York: Signature Sounds Recording.

Rumbaugh, J., Blaha, M.R., Lorensen, W., Eddy, F., & Premerlani, W. (1991).
Object-oriented modeling and design. Upper Saddle River, NJ:
Prentice Hall.

Rumbaugh, J., Jacobson, I., & Booch, G. (1998). The Unified Modeling

Language reference manual. Reading, MA: Addison-Wesley.

References 437

Schneider, G., & Winters, J.P. (2001). Applying use cases: A practical guide (2nd
edition). Upper Saddle River, NJ: Addison-Wesley.

Shlaer, S., & Mellor, S.J. (1988). Object-oriented systems analysis: Modeling the

world in data. Upper Saddle River, NJ: Pearson Education.

Shlaer, S., & Mellor, S.J. (1992). Object lifecycles: Modeling the world in state.
Englewood Cliffs, NJ: Pearson Education.

Shlaer, S., & Mellor, S.J. (1997). Recursive design of an application-independent

architecture. IEEE Software.

Sommerville, I., & Sawyer, P. (1997). Requirements engineering: A good practice

guide. New York: John Wiley & Sons

Spolsky, J. (2001). Big Macs vs. The Naked Chef. http://
www.joelonsoftware.com/printerFriendly/articles/fog0000000024.html.2001.

Stevens, P., & Pooley, R.J. (2000). Using UML: Software engineering with

objects and components. Addison-Wesley.

Tkach, D., Fang, W., & So, A. (1996). Visual modeling technique: Object

technology using Visual Programming. Menlo Park: Addison-Wesley.

Unhelkar, B. (2002). Process quality assurance for UML-based projects. Boston,
MA: Addison-Wesley.

Vlissides, J.M., Coplien, J.O., & Kerth, N.L. (1996). Pattern languages of

Program Design 2. Boston, MA: Addison-Wesley.

Walden, K., & Nerson, J-M. (1995). Seamless object-oriented software

architecture: Analysis and design of reliable systems. Upper Saddle River,
NJ: Prentice Hall.

Warmer, J., & Kleppe, A. (1998). The Object Constraint Language: Precise

modeling with UML. Reading, MA: Addison-Wesley.

Wirfs-Brock, R., & McKean, A. (2002). Object design: Roles, responsibilities, and

collaborations. Boston, MA: Addison-Wesley.

Wirfs-Brock, R., Wilkerson, B., & Wiener, L. (1990). Designing object-oriented

software. Upper Saddle River, NJ: Prentice Hall PTR.

Yourdon, E. (1988). Modern structured analysis. Englewood Cliffs, NJ: Prentice
Hall PTR.

439

A

Abstract classes, 23–24, f24

Abstract operation, 23

Activity Analysis Approach (A3), 12,

269, 306, f309, 313, f314, f315,

334, 337–338, 385

Activity diagrams, 149, 168, f170,

192, 194, 224, f248, 280, 298,

313, 316, 325, 328, 339, f340,

350, 359, 411, 418

Implementation of, 246–247,

f247

Swimlane, 170, f170, 313, 339

Actors, 75, 76, 82

Class icon, 76

vs. Roles, 78–79

Stick figure, 76

UML representation of an actor,

76, f77

See also Primary actors and

Secondary actors

Aggregation (part-of) class

relationships, 22, 29–30, f29, 34,

234

See also Composition

Analysis class diagram, 328

Analysis workflow process, 325,

f327, t329–330, 338, 347–352,

372, 373, 375, 376

Architectural-centric development

concept, 172, 282

Artifacts, 38

Association classes, 28, f29, 51

Associations, 22, 24, 34, 47, 82, 228

Index

Elimination of, t49–50

Hashtable, 228, 232

Identification of, 47

Link, 24, 25, f25

Many-to-many association, 26,

f26, 231, 238, f241

Multiplicity, 25–26, 29–30

One-to-many association, 229,

f230, f231, 238, f239

One-to-one association, 26, f26,

229, f229, f230

Private attribute, 228, 229

Qualified association, 26, 231,

f232, 238–239, f240

Role, 25, f26

Vector, 228, 229

See also Binary association;

N-ary association; Reflexive

association; and Ternary

association

B

Base use case description, 89–90,

103, 135

Behavioral model, 416

Binary association, 27, 28, f28

Boolean expression, 167

Branch, 156–157, f158, 169, f169,

177, 334

Conditional branching, 177,

192–193

Business modeling workflow, 291,

301, 304, f310, 313, 316–317,

f318, t319, 338–340, 359–361

Workflow diagram, 320

440 Index

C

Capital-M methodology, 274

Class, 18, f20, 21, 32, f32, 34,

35–36

Attributes list, 20, 44

Class name, 20, 21

Implementation constructs, 45

vs. Instances, 18

Irrelevant, 44

Model management constructs,

38

Operations list, 20, 45

Redundant, 44

Relationships between classes,

21–22

Roles, 45

Vague, 44

Class diagram, 15, 37, 102, 148,

188, f189, 224, 291, f291, 305,

311, f311, 412, 418

Implementation of, 224–225

Class model, 416

Collaboration diagram, 148, 149,

158, 159, f159, 160, f160, 256,

280, 313, 333, 418

Three-tier model, 185–186, f186

Component diagrams, 280

Composition, 30, f30, 234–235

Constraints, 30–31, 34, 172

Complex, 30, f31

Control Flow Diagrams (CFD), 5

D

Data coupling, 37

Data dictionary, 39, 46

Data flow diagrams (DFD), 4, 87,

290, f290

Dependency, 35

Deployment diagram, 280, 416,

f417

Design workflow process, 6, 8, 272,

276, 330, f331, 332, t332–333,

333, 338, 352–358, 377, 378,

381, 382, 383, 384

Benefits of using, 273

Features of, 8

Role of, 8

Scenarios analysis, 330

State analysis, 330

Domain classes, 38, 39

Identifying and refining, 53

Domain class models, 39

Diagrams, 52, f52

Steps in developing, 39, f41,

f49

Domain modeling and analysis, 36,

39, 55, 102, 323

Application-specific classes, 38

Benefits of, 38

Class-Responsibility-

Collaboration (CRC), 38,

303

Goal of, 38, 40

Problem statement, 39, 40–41,

338, 341

with PV-UML, 55–69

Dynamic analysis techniques, 171

Dynamic model, 148, 192, f193

Steps in developing, 179,

180–187

Dynamic modeling and analysis,

148, 172, 178, f179

with PV-UML, 194–221

Dynamic modeling techniques, 165,

168

E

Encapsulation, 20

Entity relationship diagrams, 290

Index 441

<<extend>> relationship, 83, 85,

192

F

Fork and join, 169, f170

Functions, 19

G

Generalization actor, 77–78, f78

UML notation icon, 78

Generalization/specialization

(type-of) class relationships, 22,

35, 82, 86, f86, 241, f242,

243–245,

Graphic user interface (GUI), 174,

175

I

Implementation workflow process,

334

<<include>> relationship, 83, 85,

192

Incremental development principle,

282

Information hiding, see

Encapsulation

Inheritance, 22, 51, 227, f228

Generalization, 22–23

Specialization, 23

UML notation icon, 227

Instances, 18

vs. Class, 18

Integrated development

environments (IDEs), 12

Interaction diagram, 149, 151, 152,

224, 411

Implementation of, 256

UML notation, 149

See also Collaboration diagram

and Sequence diagram

“Is-a” relationship, see Inheritance:

Generalization

Iterative development principle,

282

L

Lifelines, 153–154

Logical coupling, 37

M

Manipulator descriptions, 310, t310

Member function, see Operations

Messages, 151, 152, t152, 158, 160,

f160, 188, 256

Method, see Operations

Method creation/customization,

287–288, 299, 306–311

Method template, 306, 311

Method roadmap, 306, t307,

310, 311

Method roadmap diagrams,

f309, 334

Workflow roadmap, 306, t307,

311

Workflow roadmap diagrams,

t307, f308, 310, 311

Model manipulator, 293

Backus-Naur Form (BNF)

notation, 294

Grammar of, 293–295

Model/View/Control (MVC) software

model, 150, 188, 330, 334, 350,

356

N

N-ary association, 27, 241, f242

Node, 34

Notation, 7, 10

Role of, 7–8

Notes, 32, f32

442 Index

O

Object Constraint Language (OCL),

160

Object diagram, 16, 21, 171, 280

Active objects, 17, 18, 154

Block iteration, f156

Boundary, 174, 184, 188, 190,

191

Collective iteration of, 155

Conceptual objects, 16, 17

Control, 174, 184, 188, 190,

191, 330, 333

Creation of, 154, f154

Deletion of, 154, f154

Domain objects, 17

Elimination of objects/classes,

44, 154

Entity, 174, 184, 188, 191

Function, 29

Identification of objects/classes,

35, f37, 43–44, 51, f51, 152

Implementation objects, 17

Links, 22, 36

Passive objects, 17

Physical objects, 16

Simple iteration, 155, f155

Object flow, 171

Object icon, 150, t151

Object Management Group (OMG),

9

Specification of, 10

Object-oriented approach of

software development, 4, 5, 6,

35, 54, 312

Obstacles in applying, 277, 279,

312

Object-oriented databases, 237

Object-oriented software/system, 9,

20, 22, 24

Bottom-up approach, 35, 38, 51

Top-down approach, 35, 38, 51

Object’s interface, 19, 20, 34

Parameter, 20

Protected, 20

Public, 20

Object stereotype, 83, 150, t151

Actor, 151

Boundary, 151

Control, 151, 356

Entity, 151

Operations, 19

Arguments, 19

Collection of, 19

Name, 19

Return value, 19

P

Package diagrams, 38, 100, 115,

f115, 141, 225, f227, 280, 416,

f417

See also Class diagrams

Path diagrams, 175, 177, f177,

f178

Physical component model, 416

Physical deployment model, 416

Polymorphism, 24

Primary actor, 77

Properties, 19

Attributes, 19, 51

R

Realization, 35

Reflexive association, 26

Bi-directional, 26, f27, 111–112,

f112

Directional, 26, f27

Relational databases, 237

Report generation, 405

Index 443

HTML format, 405

PDF format, 407

Representation system/modeling

notation, 6, 271, 272, 280

Benefits of using, 273

Requirement elicitations, 74, 75

Requirement of system, 75, 171

Problems in defining, 74, 76

Requirements workflow, 324,

t324–325, f326, 338, 341–347,

362–370

S

Scenario modeling, 161, 163–164,

333

Scenario modeling techniques, 150,

174, 313

Scenarios, 86, 89, f89, 94, 107, 149,

171, 175, 177, 191, 192

Development of, 108, 180

Secondary actor, 77

Sequence diagram, 148, 149, 152,

f153, 155, f155, 156, f156, f157,

f160, 172, 174, 180, f181, 182,

f183, 190, f191, 256–257, 280,

291, f291, 418

Three-tier model, 174, f175,

184, 185, f185

Sequence number, 158–159, f160

Service, 19

Single class, 225, f226, 237

Software development lifecycle

(SDLC), 8, 314

Software development methods, 1,

6–7, f11, 271, 272–273,

274–276, 306, 334–335

Benefits of, 273

Components of, 271, f271, 334

Jacobson’s view, 274, 276, f277,

282, 287

Quatrani’s view, 276, f277

vs. UML, 276

See also Design process;

Representation system/

modeling notation; and

Techniques

Software engineering, 2, 3, 271

Approaches, 2, 4

Composibility principle of, 289

Decomposability principle of,

289

Failures, 2

Modeling activity, 3

Problems, 1, 2–3

Quality, 2

Technological changes, 2

Software models, 3–4, 5, 7, 9, 11,

277, 289

Abstractions, 5, 36

Characteristics of, 289

Checklist of steps, 9

Component, 34, 35

Creation of, 5–6

Linked elements, 11, 289, 290,

299, 304–305, 320

Rule of seven, 37

Software project, 1

Software system development, 1,

4–5, 74, 273, 417

Challenges, 10

Process, 280

See also Software engineering

Statechart diagrams, 148, 165–166,

168, 187, f187, 224, 280

Development of subsytem–level

statechart diagram, 183

State diagram, 334, 356, 411–412

of Action, 168, f168, 313

Characteristics, 165

of Composite, 167

444 Index

of Concurrent, 167, f168

Definition of, 165

Implementation of, 247–250

of Nested, 167, f167

Representations of, f166

of Sub-activity, 168, f168

UML notation icon, 165–166

Structural analysis techniques, 35

Heuristics, 37–38

Structural modeling and analysis,

15, 54–55

Component diagram, 15

Structural modeling techniques, 20

Structured approach of software

development, 4, 7, 35

Weaknesses, 4–5

Subclasses, 23

Subsystem, 172, f173, 174, f183,

188–189, 330, 333

Development of, 180, 182–183

Identification of, 182

System analysis and design, 351

Object-oriented approach, 1

System boundaries, 76, 79, 82, 142

T

Techniques, heuristics, steps/

procedures, 7, 271, 272,

282–283

Benefits of using, 274

Role of, 9

Ternary association, 27, f27

Textual analysis, 37, 39, 43, 94,

102, 111, f112, 131, 316, 317,

403

<<trace>> concept, 287

Transitions, 166–167, 169, f169

U

UML diagrams, 223, 411, 412

Unified Modeling Language (UML),

6, 9, 10, 14, 20, 23, 29, 30, 34,

148, 149, 150, 223, 227, 271,

280, 334, 385, 411

Behavioral elements, 411

CASE Tool, 9, 13, 14, 54, 223,

276, 350

Classes in, f21

Extension elements, 412

General elements, 411

Grouping elements, 411

Relationship elements, 411

Structural elements, 411

UML models, f278

UML Notation, 9, f18, 21, f21,

34, t34–35, 76, t82, 87

Use case relationships, 83,

417–418, f418

Unified Process, 9, 14, 224,

281–282, 301, 303, 306, 335

Construction phase, 281, f281

Elaboration phase, 281, f281

Inception phase, 281, f281

Overview of, 10–11

Rational Unified Process

(RUP), 287

Transition phase, 281, f281

Workflow, 11, f11, 282, f282,

306

Use case description, 75, 88, 94,

111, 113, 172, 304, 325, 328,

345, t346

Use case diagrams, 75, f87, 89, 94,

110, 113, 280, 304, 412, 417

Creation of initial use case

diagram, 100

Use case-driven development

concept, 282, 312

Use case model, 10, 73, 75, 90, 94,

98, 102, 171, f176, 416

Index 445

Developing initial use case

models, 96

Examples of, 80

Identifying major actors, 96

Initial use case model, 103

Refining use case models, 96

Use case modeling and analysis,

36, 38, 73, 75, 77, 81–82, 94,

f95, 101, 171, 174, 303, 313,

320, 323, 342–347

Communication link, 75, f78

Components, 75

with VP-UML, 113–114

Use cases, 73, 75, 79, 85, 86, 88,

93, 107, 110, 112, 113, 171, 190,

f191, 316, 333, 334

Abstract use case, 86, 87, 192

Base use case (concrete use

case), 83, 85, 86, 87,

109–110

as Communication tool, 109

Extension use case, 83, 85, f85,

103

Generalization use case, 103

Identification of, 76, 96, 98

Inclusion use case, 83, f84, 103,

143

Naming of use cases, 99

Prioritization of, 93–94, 344,

t344–345

vs. Process charts, 110

Structuring of, 83, 87, 112–113

UML notation icon, 79

Use case template, 90, 135

Components of, t90–91

V

View Alignment Manipulators

(VAMs), 291–292

Model elaborator manipulator,

291, 292, t293, f294,

295–297, 304

Model transistor manipulator,

291, 292, t293, f294,

296–297, 305, 346

View aligner manipulator, 291,

292, t293, f294, 297, 305,

328, 350

View Alignment Techniques (VATs),

9, 269, 288–289, 335

Application of, 299–305, f302

Architecture of, 297–299, f298

Key concept, 11

Method design template, t316

Overview of, 11

Principles of, 291

Process Roadmap/template,

297, t307

Visual modeling, 6, 12

Techniques, 6

Visual Paradigm for UML

(VP-UML), 9, 12, 385

Code generation, 398, 400–403

Creating diagram elements,

393

Diagram element properties,

396–397

Environment, 388–389, t389

Hardware requirements,

386–387

Importing models/diagrams,

407

Overview of, 12–13

Resource-centric interface,

394–395

Software requirements, 387

Sub-diagrams, 397–398

System installation, 387–388

Working with diagrams,

390–391

	Title Page
	Copyright
	Contents
	Acknowledgments
	Preface
	Chapter 1 Introduction
	Overview
	What You Will Learn
	Software Engineering Approaches
	Visual Modeling
	Software Development Methods
	Representation, Process, Techniques and Tool
	Organization of the Book
	Summary

	Chapter 2 Structural Modeling and Analysis
	Overview
	What You Will Learn
	What Is an Object?
	What Is a Class and What Are Instances?
	Structural Modeling Techniques
	Structural Models: Examples
	Summary of UML Notation for Structural Modeling
	Structural Analysis Techniques
	Domain Modeling and Analysis Process
	Tricks and Tips in Structural Modeling and Analysis
	Domain Modeling and Analysis with VP-UML
	Summary
	Exercise

	Chapter 3 Use Case Modeling and Analysis
	Overview
	What You Will Learn
	Requirements Elicitation
	Use Case Modeling Techniques
	Use Case Models: Examples
	Use Case Analysis Techniques
	Use Case Modeling and Analysis Process
	Tricks and Tips in Using Use Case Analysis
	Use Case Modeling and Analysis with VP-UML
	Summary
	Exercise

	Chapter 4 Dynamic Modeling and Analysis
	Overview
	What You Will Learn
	Scenario Modeling Techniques: Interaction Diagram
	Examples of Scenario Modeling
	Dynamic Modeling Techniques Using Statechart Diagrams
	Dynamic Modeling Techniques Using Activity Diagrams
	Dynamic Analysis Techniques
	Dynamic Modeling and Analysis Process
	Tricks and Tips in Dynamic Modeling and Analysis
	Dynamic Modeling and Analysis with VP-UML
	Summary
	Exercise

	Chapter 5 Implementing UML Specification
	Overview
	What You Learn
	Introduction
	Implementing Class Diagrams
	Implementing Persistent Classes Using Relational Databases
	Implementing Activity Diagrams
	Implementing State Diagrams
	Implementing Interaction Diagrams
	Case Study: A Lift Control System
	Summary
	Exercises

	Chapter 6 View Alignment Techniques and Method Customization
	Overview
	What You Will Learn
	Software Development Methods
	Why Traditional Software Methods Didn’t Work Miracles
	Unified Modeling Language versus Software Methods
	Hurdles in Applying the Object-oriented Approach
	Current Object-oriented Development Approaches
	View Alignment Techniques
	Method Creation or Customization Using View Alignment Techniques
	Method Creation: A Case Study
	Summary
	Exercises

	Chapter 7 A Case Study: Applying the Activity Analysis Approach
	Overview
	What You Will Learn
	The Case Study
	Business Modeling
	Requirements
	Analysis
	Design
	Applying the Activity Analysis Approach with VP-UML
	Summary

	Appendix A Getting Started with VP-UML
	Installing VP-UML
	VP-UML Environment
	Working with Diagrams
	Creating Diagram Elements
	Resource-centric Interface
	Diagram Element Properties
	Sub-diagrams
	Code Generation
	Textual Analysis
	Report Generation
	Importing Models or Diagrams

	Appendix B Basic UML Concepts
	Relationships between UML Diagrams

	Appendix C Implementation of the Lift Control System in Chapter 5
	References
	Index

