
 Operating Systems:
A Spiral Approach

 Ramez Elmasri, Professor
University of Texas, Arlington

 A. Gil Carrick , Lecturer
Formerly of the University of Texas, Arlington

 David Levine, Senior Lecturer
University of Texas, Arlington

OPERATING SYSTEMS: A SPIRAL APPROACH

Published by McGraw-Hill, a business unit of The McGraw-Hill Companies, Inc., 1221 Avenue of the

Americas, New York, NY 10020. Copyright © 2010 by The McGraw-Hill Companies, Inc. All rights

reserved. No part of this publication may be reproduced or distributed in any form or by any means,

or stored in a database or retrieval system, without the prior written consent of The McGraw-Hill

Companies, Inc., including, but not limited to, in any network or other electronic storage or transmission,

or broadcast for distance learning.

Some ancillaries, including electronic and print components, may not be available to customers outside the

United States.

This book is printed on acid-free paper.

1 2 3 4 5 6 7 8 9 0 DOC/DOC 0 9

ISBN 978–0–07–244981–5

MHID 0–07–244981–0

Global Publisher: Raghothaman Srinivasan

Director of Development: Kristine Tibbetts

Senior Marketing Manager: Curt Reynolds

Project Manager: Joyce Watters

Senior Production Supervisor: Kara Kudronowicz

Senior Media Project Manager: Jodi K. Banowetz

Associate Design Coordinator: Brenda A. Rolwes

Cover Designer: Studio Montage, St. Louis, Missouri

(USE) Cover Image: © Getty Images

Compositor: Laserwords Private Limited

Typeface: 10/12 Times Roman

Printer: R. R. Donnelley Crawfordsville, IN

Library of Congress Cataloging-in-Publication Data

Elmasri, Ramez.

 Operating systems : a spiral approach / Ramez Elmasri, A. Gil Carrick, David Levine. —1st ed.

 p. cm.

 Includes index.

 ISBN 978–0–07–244981–5 — ISBN 0–07–244981–0 (hard copy : alk. paper)

 1. Operating systems (Computers)—Textbooks. I. Carrick, A. Gil. II. Levine, David (David E.) III. Title.

 QA76.76.O63E4865 2010

 005.4'3—dc22

2008051735

www.mhhe.com

Dedication

“To peace, knowledge, and freedom.”

 —Ramez Elmasri

 “To Judith, whose limited patience was strongly tested.”

— Gil Carrick

“To close family and friends.”

—David Levine

iv

Table of Contents

 Preface viii

 Par t 1

 Operating Systems Overview

and Background 1

Chapter 1

 Getting Started 3

 1.1 Introduction 4

 1.2 What Are Operating Systems

All about? 5

 1.3 User versus System View of an OS 6

 1.4 Some OS Terms, Basic Concepts,

and Illustrations 10

 1.5 A Small Historical Diversion 15

 1.6 Summary 17

 Chapter 2

 Operating System Concepts, Components,
and Architectures 19

 2.1 Introduction: What Does the OS

Do? 20

 2.2 Resources Managed by the OS

and Major OS Modules 22

 2.3 The Process Concept

and OS Process Information 25

 2.4 Functional Classes of OSs 29

 2.5 Architectural Approaches to Building

an OS 33

 2.6 Some OS Implementation Techniques

and Issues 35

 2.7 Minimalist versus Maximalist Approaches

to OS Functionality

and Backward Compatibility 40

 2.8 Summary 42

 Par t 2

 Building Operating Systems

Incrementally: A Breadth-Oriented

Spiral Approach 45

 Chapter 3

 A Simple, Single-Process
Operating System 47

 3.1 Introduction: Monitors and CP/M 48

 3.2 Characteristics of a Simple PC System 50

 3.3 Input/Output Management 52

 3.4 Disk Management and the File System 54

 3.5 Process and Memory Management 58

 3.6 Summary 63

Chapter 4

 A Single-User Multitasking
Operating System 67

 4.1 Introduction: A Simple Multitasking

System 69

 4.2 The Palm OS Environment

and System Layout 71

 4.3 Process Scheduling 73

 4.4 Memory Management 75

 4.5 File Support 80

 4.6 Basic Input and Output 82

 Table of Contents v

 4.7 Display Management 82

 4.8 Event-Driven Programs 84

 4.9 Summary 86

Chapter 5

 A Single-User Multitasking/Multithreading
Operating System 89

 5.1 Introduction 89

 5.2 The Origin of the Macintosh Computer 90

 5.3 The Macintosh OS—System 1 91

 5.4 System 2 96

 5.5 System 3 98

 5.6 System 4 98

 5.7 System 5 100

 5.8 System 6 101

 5.9 System 7 101

 5.10 System 8 105

 5.11 System 9 107

 5.12 Mac OS X 109

 5.13 Summary 111

Chapter 6

 A Multiple-User Operating

System 113

 6.1 Introduction 113

 6.2 The Multiuser OS Environment 121

 6.3 Processes and Threads 123

 6.4 Summary 125

Chapter 7

 Parallel and Distributed Computing, Clusters,

and Grids 127

 7.1 Introduction 127

 7.2 Key Concepts 128

 7.3 Parallel and Distributed Processing 128

 7.4 Distributed System Architectures 132

 7.5 How Operating System Concepts Differ

in SMPs, Clusters, and Grids 138

 7.6 Examples 142

 7.7 Summary 147

 Par t 3

 CPU and Memory

Management 149

Chapter 8

 Process Management: Concepts, Threads,

and Scheduling 151

 8.1 Introduction to Processes 152

 8.2 Process Descriptor–Process

Control Block 152

 8.3 Process States and Transitions 154

 8.4 Process Scheduling 156

 8.5 One Good Process Deserves Another 164

 8.6 Threads 166

 8.7 Case Studies 173

 8.7 Summary 178

Chapter 9

 More Process Management: Interprocess
Communication, Synchronization,

and Deadlocks 181

 9.1 Why Have Cooperating Processes? 182

 9.2 Interprocess Communication 184

 9.3 Synchronization 190

 9.4 Deadlocks 197

 9.5 Summary 206

Chapter 10

 Basic Memory Management 209

 10.1 Introduction: Why Manage

Primary Memory? 209

 10.2 Binding Model: Steps

in Development Cycle 210

 10.3 A Single Process 211

 10.4 Multiple Processes with a Fixed Number

of Processes 216

 10.5 Multiple Processes with a Variable Number

of Processes 218

 10.6 Summary 223

Chapter 11

 Advanced Memory Management 225

 11.1 Why Do We Need Hardware Help? 225

 11.2 Paging 226

 11.3 Segmentation 233

 11.4 Segmentation with Paging 236

 11.5 Demand Paging 238

 11.6 Special Memory Management Topics 248

 11.7 Summary 252

 Par t 4

 A Depth-Oriented Presentation of OS

Concepts: Files Systems

and Input/Output 255

Chapter 12

 File Systems—Basics 257

 12.1 Introduction 258

 12.2 Directories 259

 12.3 Access Methods 265

 12.4 Free Space Tracking 269

 12.5 File Allocation 273

 12.6 Summary 280

Chapter 13

 File Systems—Examples

and More Features 283

 13.1 Introduction 283

 13.2 Case Studies 284

 13.3 Mounting 288

 13.4 Multiple File Systems and Redirection 290

 13.5 Memory Mapped Files 292

 13.6 File System Utilities 293

 13.7 Log-Based File Systems 294

 13.8 Summary 295

Chapter 14

 Disk Scheduling

and Input/Output Management 297

 14.1 Introduction 297

 14.2 Device Characteristics 298

 14.3 I/O Technology 299

 14.4 Physical Disk Organization 302

 14.5 Logical Disk Organization 305

 14.6 RAID 309

 14.7 Disk Operation Scheduling 314

 14.8 DMA and Disk Hardware Features 322

 14.9 Summary 325

 Par t 5

 Networks, Distributed Systems,

and Security 329

Chapter 15

 Introduction to Computer Networks 331

 15.1 Why Do We Want

to Network Computers? 332

 15.2 The Basics 333

 15.3 Application Layer Protocols 338

 15.4 TCP/IP 341

 15.5 The Data Link Layer 345

 15.6 WANs 350

 15.7 The Physical Layer 352

 15.8 Network Management 354

 15.9 Summary 356

Chapter 16

 Protection and Security 359

 16.1 Introduction: Problems and

Threats 360

 16.2 OS Protection 366

vi Table of Contents

 16.3 Policies, Mechanisms, and Techniques 370

 16.4 Communication Security 373

 16.5 Security Administration 380

 16.6 Summary 381

Chapter 17

 Distributed Operating Systems 385

 17.1 Introduction 386

 17.2 Distributed Application Models 388

 17.3 Abstractions: Processes, Threads,

and Machines 391

 17.4 Naming 394

 17.5 Other Distributed Models 396

 17.6 Synchronization 400

 17.7 Fault Tolerance 406

 17.8 Summary 409

 Par t 6

 Case Studies 413

Chapter 18

 Windows NT™ through Vista™ 415

 18.1 Introduction: Windows NT

Family History 416

 18.2 The User OS Environment 421

 18.3 Process Scheduling 423

 18.4 Memory Management 425

 18.5 File Support 428

 18.6 Basic Input and Output 436

 18.7 GUI Programming 439

 18.8 Networking 440

 18.9 Symmetric Multiprocessing 441

 18.10 Startup Speed of XP 441

 18.11 Summary 442

Chapter 19

 Linux: A Case Study 445

 19.1 Introduction 446

 19.2 Process Scheduling 447

 19.3 Memory Management 451

 19.4 File Support 452

 19.5 Basic Input and Output 454

 19.6 GUI Programming 458

 19.7 Networking 460

 19.8 Security 462

 19.9 Symmetric Multiprocessing 463

 19.10 Other Linux Variants 463

 19.11 Summary 466

Chapter 20

 Palm OS: A Class Case Study 469

 20.1 Overview 469

 20.2 The Multi-Process OS Environment 470

 20.3 Palm Process Scheduling 471

 20.4 Palm Memory Management 471

 20.5 File Support 472

 20.6 Input/Output Subsystems 472

 20.7 GUI Programming 473

 20.8 Network Programming 473

 20.9 Programming Environments 475

 20.10 Similar Systems

and Current Developments 476

 20.11 Summary 480

 Appendix

 Overview of Computer System
and Architecture Concepts

 A.1 Typical Computer System
Components 484

 A.2 The Processor or Central
Processing Unit 485

 A.3 The Memory Unit and
Storage Hierarchies 496

 A.4 Input and Output 502

 A.5 The Network 504

 A.6 A More Detailed Picture 507

 A.7 Summary 507

 Index 511

 Table of Contents vii

viii

 Preface

 WHY WE WROTE YET ANOTHER OPERATING SYSTEMS BOOK

 We have long felt that the traditional approach to teaching about Operating Systems

(OSs) was not the best approach. The purpose of this book is to support a different

approach to this task. When studying any complex domain of knowledge, the order

in which one learns the hierarchy of principles, laws, ideas, and concepts can make

the process easier or more diffi cult. The most common technique is to partition the

subject into major topics and then study each one in great detail. For OSs, this has

traditionally meant that after a brief introduction to some terms and an overview, a

student studied isolated topics in depth—processes and process management, then

memory management, then fi le systems, and so on. We can call this a depth-oriented

approach or a vertical approach. After learning a great mass of unrelated details in

these isolated topic areas, the student then examined case studies, examples of real

OSs, and fi nally saw how the different topics fi t together to make a real OS.

 We believe that a better model is that followed by children when learning a

language: learn a few words, a little grammar, a little sentence structure, and then

cycle (or spiral) through; more words, more grammar, more sentence structure. By

continuing to spiral through the same sequence, the complexity of the language is

mastered. We can call this a breadth-oriented or spiral approach.

 We have taken this approach to the subject of OSs. The fi rst few chapters give

some basic background and defi nitions. We then begin to describe a very simple

OS in a simple system—early PCs—and evolve toward more complex systems with

more features: fi rst limited background tasks (such as simultaneous printing), then

multitasking, and so on. In each case we try to show how the increasing requirements

caused each system to be designed the way it was. This is not specifi cally a his-

torical order of OS development. Rather, we choose a representative system at each

complexity level in order to see how the different OS components interact with and

infl uence one another. It is our belief that this approach will give the student a greater

appreciation of how the various features of each level of OS were put together.

 Part of the motivation for this approach has to do with why Computing Science

students are told they must study OSs at all. It is highly unlikely that many of these

students will work on the development of OSs. However, virtually every system that

they do work on will run on top of an OS, though perhaps a very few will work on

embedded systems with no OS. For the rest of them, the OS will stand between the

applications and the hardware, and failure to thoroughly understand the nature of the

OS will mean that these applications will be underperforming at best and hazardous

at worst. We believe that our approach will lead students to a better understanding of

the entire architecture of modern OSs than does the traditional approach.

 THE ORGANIZATION OF THE BOOK

 In Part 1 of the book we give some general background information. This infor-

mation will cover basic principles of OSs and show several different views of an

OS. It will also include an overview of typical computer hardware that an OS

controls. Another chapter addresses such basic concepts as processes, multipro-

gramming, time sharing, resource management, and different approaches to OS

architecture.

 Then in Part 2 of the book, we will cover fi ve types of operating systems in

increasing order of complexity, our spiral approach, as follows:

 1. A simple single-process OS (CPM)

 2. A more complex OS (Palm OS), which allows simple system multitasking

 3. An OS with full multitasking for a single user (Apple Mac OS, pre-OS X)

 4. An OS that supports multiple users (Linux)

 5. A distributed OS (mostly Globus)

 In each case we have selected an OS that is typical of the class on which to base

the discussion so as to make it more concrete. This selection was made with an eye

to practicality. We fi rst discuss simple systems in terms of process, memory, fi le,

and I/O management, and then (slowly) move to more complex systems, gradu-

ally introducing such concepts as multitasking, time sharing, networking, security,

and other issues. Occasionally we will also mention other well-known OSs that

are examples of a class, such as MS-DOS in Chapter 3 and the Symbian OS in

Chapter 4.

 In Parts 3–5 of the book, we move to an in-depth approach of covering each OS

topic in more detail: from processes to memory management to fi le systems. We also

discuss many recent issues in operating systems: threading, object orientation, secu-

rity, and approaches to parallel and distributed systems. In these chapters we revisit

the sample systems discussed in Part 2 and explain the mechanisms in more detail,

especially for the modern OSs.

 In Part 6 we look more closely at several OSs in what are typically called case

studies. Now that we know more about the details, we look at some systems in more

depth and see how some features were implemented. In two cases we are revisiting

more closely OSs that were covered in Part 2.

 An appendix covers basic computer hardware architecture for those institutions

that do not require such a course as a prerequisite for an Operating Systems course. It

can also be used as a reference for those who need to review a specifi c topic.

 THE STYLE OF THE BOOK

 We use a conversational style to avoid boring the students with excessive

pedantry.
 We avoid the use of excessive formalisms. A more formal presentation is pro-

vided where needed. This choice stems from our belief that most students will

not develop OSs, but rather will use them to support applications.

 Preface ix

 We use the normal, accepted terms but also discuss alternative terms when

no accepted standard terminology exists or where other terms were used

historically.
 We discuss algorithmic solutions as opposed to listing actual code since stu-

dents at different schools will have been exposed to different languages.
 For each OS that is treated separately, whether in the spiral section or in the case

studies, we include some history of the industry at the time, and sometimes the

key companies or individuals involved. This follows from our basic belief that a

student can understand OSs better if they are placed in a meaningful context.
 We cover modern OSs found in devices not conventionally regarded as com-

puters since the students use these devices every day and have an operational

familiarity with them.
 Frequent fi gures are incorporated as an aid to those who learn best visually

rather than by reading sequences of words.
 Each chapter ends with a set of questions that a student can use to assess the

level of understanding of the material in the chapter.
 Projects are outlined for many chapters, which can be used by the instructor to

ground the students’ understanding in reality.

x Preface

xi

 We have been teaching OS classes for quite a few years using other materials. We

have developed this text because we felt the need for a different methodology. We all

have served on the faculty of the Department of Computer Science and Engineering

at the University of Texas at Arlington (UTA).

 Ramez Elmasri is a Professor at the University of Texas at Arlington. He received

his BS in Electrical Engineering from Alexandria University, Egypt, in 1972, and

his MS and PhD degrees in Computer Science at Stanford University in 1980. His

current research interests are in sensor networks and RFID, mediators for bioinfor-

matics data, query personalization, and systems integration. He is the lead co-author

of the textbook “Fundamentals of Database Systems,” now in its 5th Edition. His

previous research covered various aspects of databases, conceptual modeling, and

distributed systems.

 A. Gil Carrick was formerly a Lecturer at UTA and is now retired from teaching.

He received his BS in Electronics Technology from the University of Houston in

1970 and his MSCS in 2000 from the University of Texas at Arlington. He is a mem-

ber of Upsilon Pi Epsilon, the Computer Science Honor Society. His career spans the

information technology industry: end-user organizations, hardware manufacturers,

software publishers, third-party maintenance, universities, and R&D fi rms. He has

written for professional journals and edited IT books, primarily in the networking

fi eld. In his career he has used all the operating systems discussed in this text and

many others besides.

 David Levine has been teaching courses in operating systems, software engineer-

ing, networking, and computer architecture. His research interests include mobile

computing, mobile objects, and distributed computing and he has presented the

results of this research in recent publications and several international conferences.

He enjoys discussing Operating Systems, talking about current research with stu-

dents and reading about new OS advances.

 HOW TO USE THIS BOOK—FOR INSTRUCTORS

 This text is intended to be used for a one-semester undergraduate course in Operating

Systems, probably in the junior or senior year. The fi rst part of the book is designed

to consolidate basic background information necessary for the following chapters.

Chapter 1 sets the discussion and gives some historical perspective. The instructor can

 The Authors

skim this chapter and decide what to include. The appendix is a brief look at fairly

modern hardware architectures. If a course in hardware is not a prerequisite for this

course, then this appendix could be included. Chapter 2 defi nes some simple terms

used in OSs and offers some more perspective on the larger topic of OS design. Again,

an instructor can review this chapter and select different parts to include or exclude.

 Part 2 begins the spiral approach. We believe this is a signifi cant portion of the

book. Here the student is gradually introduced to a series of OSs with more complex

goals. These increasingly more complex goals lead to increasingly more complex

OSs. Only two of these chapters are not normal topics in OS texts—Chapter 4 on a

single-user multitasking operating system and Chapter 7 on a distributed operating

system. They could be left out at the instructor’s discretion, but more and more stu-

dents will be working in such environments as users and as programmers.

 Part 3 begins the in-depth chapters. Each chapter is fairly independent of the

others, though Chapters 12 and 13 are strongly related. Beginning with Chapter 14

the individual chapters can probably be left out if the topic is the major subject of

another course that the students will be required to take.

 Notes about the bibliographies: The chapters in Part 3 all include a bibliography

section. The reference papers that are cited are widely regarded as being seminal

papers or good summaries. They may cover material that is not covered in the text. If

an instructor or a student is looking for material to provide a better understanding of

a given topic, then they are suggested reading.

 HOW TO USE THIS BOOK—FOR STUDENTS

 For students the most important thing about using this text is to understand how one

learns best. There are many pathways to get information into the brain. The book

itself directly addresses two of these pathways. There is obviously the text for those

who learn best through reading the words and the illustrations for those who are

more visually oriented. When you attend the lectures you will hear the instructor

talk about the material. This is for those who learn best through hearing words. At

the same time, the instructor will probably use visual aids such as the PowerPoint

slides that are available for the text. Again, this is to the benefi t of those who learn

best by reading the words and seeing the illustrations. Some students learn best from

mechanical skills, so the process of outlining the material or making study notes

works well for those students.

 Also presented in the book at the end of each chapter are questions about the

material. These questions are designed such that a student who has a reasonable

grasp of the material should be able to answer the question.

 As new information is presented to the brain it takes a certain amount of time

to link with other information already there. But the brain gets much information

during the day that is not signifi cant and therefore it does not retain it. Only when

presented with the same or similar material again a short time later will the brain

retain a signifi cant amount of the information. The more different mechanisms that

are used and the more times the information is repeated, the stronger the retention

of the material. So the best method is to use all these methods combined, focusing

xii The Authors

on what works best for you. What we have found works well for most students is the

following sequence:

 Print the slides to be covered in the next section, with several slides per page.
 Read the assigned material in the text. Note questions on the slide printouts.
 Come to class and listen to the instructor, amplifying any notes, especially things

the instructor says that are not in the text. (Those points are favorite issues for

the instructor and they tend to show up on exams.)
 Ask questions about things that are unclear.
 When it is time to review the material for an exam, go over the slides. If there

are points that are unclear, go back to the text to fi ll them in. If any questions

remain, then contact the instructor or teaching assistants.
 The review questions can be studied at any time the student fi nds convenient.

 AVAILABLE RESOURCES FOR INSTRUCTORS

 The text is supported by a website with separate sections for instructors and students.

 Supplements to the text will be made from time to time as the need presents

itself.
 A set of suggested projects will be available for instructors. Most of these proj-

ects will have been used by the authors. They should be suffi ciently rich and

OS independent that they can be readily adapted to fi t any situation. They are

not based on any specifi c package that the instructor, students, or assistants will

have to master in order to work the labs.
 PowerPoint slides are provided for the students to use, as described earlier.

Instructors are encouraged to modify these presentations to fi t their needs.

Acknowledgement of their source is requested.
 Review question answers are provided for the instructors in order that they not

be embarrassed by not knowing some arcane point the authors thought was

important.
 A current list of errata will be maintained on the website.
 Reference to web resources are provided for many chapters, but the web is

very volatile. The website for the book will contain an up-to-date set of web

references.

 ACKNOWLEDGMENTS

 This text has actually been developing for longer than we would like to remember.

The people at McGraw-Hill have been exceptionally patient with us. In particular,

we would like to thank the following folks with McGraw-Hill: Melinda Bilecki,

Kay Brimeyer, Brenda Rolwes, Kara Kudronowicz, Faye Schilling, and Raghu

S rinivasan. We would also like to thank Alan Apt and Emily Lupash, who were our

editors when we started working on the book. Finally, we also thank Erika Jordan

and Laura Patchkofsky with Pine Tree Composition.

 The Authors xiii

 The chapter on Windows Vista was reviewed by Dave Probert of Microsoft. He

provided valuable feedback on some items we had only been able to speculate on

and brought several problems to our attention. His participation was arranged by

Arkady Retik, also with Microsoft Corporation. Two chapters were reviewed by our

fellow faculty members at University of Texas, Arlington. These included Yonghe

Liu who reviewed the chapter on networking and Matthew Wright who reviewed the

chapter on protection and security. Another faculty member, Bahram Khalili, used

drafts of the text in his OS class. Naturally any remaining problems are our respon-

sibility and not theirs.

 We have used drafts of these materials in our teaching for several years and we

wish to thank all our students for their feedback. In particular we wish to thank the

following students: Zaher Naarane, Phil Renner, William Peacock, Wes Parish, Kyle

D. Witt, David M. Connelly, and Scott Purdy.

 REMAINING ERRORS

 One diffi culty with working on a project with multiple authors is that with the best

of intentions, one of the writers can alter a bit of text that he himself did not write,

thinking that he is clearing up some minor point, but actually altering the meaning in

some subtle but important way. Accordingly, you may fi nd minor errors in the text.

Naturally these errors were not the fault of the original author, who doubtless wrote

the original text correctly, but were introduced by another well-meaning author who

was not as familiar with the material.

 Still, such errors may be present, and we must deal with them. So, if you do

fi nd errors, we would be very happy to know about them. We will publish any errata,

fi x them in the next edition, determine who is to blame, and deal with the offending

authors appropriately.

xiv The Authors

1

 In this part:

 Chapter 1: Getting Started 3

 Chapter 2: Operating System Concepts, Components,

and Architectures 19

 T
his part of the book contains two chapters. Chapter 1 gives a basic explanation

about what an Operating System (or OS for short) is. It explains how the OS

provides services to users and programmers. These services make it possible

to utilize a computer without having to deal with the low-level, arcane details, but

rather, being allowed to concentrate on the problem(s) to be solved. Such problems

may be anything, including not only the things we normally consider computing

activities, but also activities such as playing games, dynamically generating art, and

monitoring the performance of an automobile engine.

 Chapter 2 provides an initial high-level look at OS concepts, components, and

architecture. General terms are introduced that a student will need to know in order to

study the series of increasingly more complex OSs that are presented in Part 2.

 Operating Systems Overview

and Background

 Part Part 1 1

2

3

 Chapter Chapter 1 1
 Getting Started

 In this chapter:

 1.1 Introduction 4

 1.2 What Are Operating Systems All About? 5

 1.3 User versus System View of an OS 6

 1.4 Some OS Terms, Basic Concepts, and Illustrations 10

 1.5 A Small Historical Diversion 15

 1.6 Summary 17

 O
perating systems are at the heart of every computer. The Operating System

(or OS for short) provides services to users and programmers that make it

possible to utilize a computer without having to deal with the low-level, dif-

ficult-to-use hardware commands. It provides relatively uniform interfaces to access

the extremely wide variety of devices that a computer interacts with, from input/

output devices such as printers and digital cameras, to wired and wireless network

components that allow computers to communicate. It allows users to create, manage,

and organize different types of files. In addition, most modern OSs provide graphical

user interfaces (GUIs) to allow a relatively easy-to-use interface for computer users.

 In this opening chapter, we start in Section 1.1 with a brief introduction to

show how important an Operating System is and how they are used not only in

computers but also in many types of electronic devices that we all use in our

daily routines. Section 1.2 is a more technical look at why even simple devices

contain an Operating System. Then in Section 1.3 we discuss the different views

of what an Operating System does by looking at the Operating System from two

perspectives: the user’s perspective and the system’s perspective. We also discuss

the requirements that each type of user has for the Operating System. Section 1.3

next gives a few simple examples to illustrate some sequences of functions that

an Operating System goes through to perform seemingly simple user requests.

In Section 1.4 we present some basic terminology and concepts, and give some

figures to illustrate typical components for a simple Operating System. We give a

brief historical perspective in Section 1.5 and conclude with a chapter summary

in Section 1.6 .

4 Part 1 Operating Systems Overview and Background

 1.1 INTRODUCTION

 For many years, OSs were viewed by most people as uninteresting—except for

OS programmers and computer “nerds.” Because of a number of high-profile cases,

OSs have occasionally become front-page news in recent years. Suddenly, the OS

is seen by some as controlling all computing. There are very strongly felt opinions

about what constitutes good versus bad OSs. There is also quite a bit of disagree-

ment about what functionality should be provided by the OS. While many people

(and some courts!) believe that one company dominates the OS market, others say

that the OS is increasingly unimportant—the Internet browser is the OS. In fact,

there is a very wide variety of types of OSs, and OSs exist at some level on every

conceivable computing device, including some that may surprise many people.

 For example, handheld personal digital assistants (PDA s) have very capable,

complex, and flexible OSs. Most electronic devices that have some intelligence

have complex, yet easy-to-use OSs and system software to control them. The OS

that was once thought of as the arcane world of process management and memory

management techniques is now occasionally a conversation topic in cafés, bars,

and computer stores. Many people now seem to be experts—or at least have an

opinion—on OSs.

(Perhaps) Surprising places to find an OS:

Personal digital assistants

Cable TV controller boxes

Electronic games

Copiers

Fax machines

Remote controls

Cellular telephones

Automobile engines

Digital cameras

 While we also have our opinions, we try to get behind the hype—generated

by marketing and salespeople as well as millions of opinionated users—in order

to explain the real systems. We also throw in our own opinions when needed and

explain why we hold these beliefs. We give many examples of currently used sys-

tems to demonstrate concepts and show what is good and bad about the various sys-

tems. We try to avoid the so-called religious issues, such as: Which is the better OS:

 Windows or Mac-OS? Or are UNIX and its variations such as Linux better than

both? Instead, we point out how these systems came about and what they provide to

users and programmers.

 Chapter 1 Getting Started 5

 Increasingly, certain parts of the OS—particularly those handling user and

application program interaction—are visible to users and programmers and often

may be critical in marketing a computer or electronic—or even mechanical—

device. Buyers are becoming very critical and have higher expectations of what the

OS should provide them. More than ever before, the system must not only provide

new features and be easier to use but it must also support those old features and

applications that we are used to. Of course, as we add new devices—video devices

and disks, high fidelity sound, and wireless networking, for example—we want the

system to easily adapt to and handle those devices. In fact, a good OS architecture

should even allow the connection of new devices that were not yet available and

may not even have been thought of when the OS was created!

 1.2 WHAT ARE OPERATING SYSTEMS ALL ABOUT?

 In this section, we give a simple example—a simple handheld game system—to

illustrate some of the basic functionalities that an OS should provide.

 Think about a handheld electronic game system, one that is very cheap but has a

small screen, a few buttons, and several games. Although this game system might not

require an OS, it probably has one. The main reason is to consolidate the common

functions needed by the various games installed on the game system.

 The games typically have some common parts. For example, each game needs to

get some input from the buttons, and to display something on the screen. While those

actions sound easy, they do require some not-so-simple software programming. Get-

ting the input from a button—that sounds easy. Well, except that the user may push two

buttons at once—what then? It is also likely that a cheap game does not use sophis-

ticated and expensive buttons, so there is electronic noise that may distort the signal

coming in—how should the games deal with that? The easy solution is to handle each

of these common issues in one, single place. For example, all button pushes can be read

in, have any noise cleaned up, and so forth in a single software routine. Having a single

 read-the-button software routine has the advantage of providing a consistent user inter-

face—all games treat button input in the same way. It also allows the routine to occupy

space in only one place in system memory instead of occupying space in each individ-

ual game. And where should that read-the-button software routine be placed? It should

be in the OS—where every game that needs to read a button can call this routine.

 The OS should also handle unexpected events. For example, a user may quit a

game in the middle (when losing) and start another game. No reboot of the game sys-

tem should be necessary. The user’s need to switch from game to game (task to task)

is natural and expected. In fact, users (5-year-olds) may push buttons at unexpected

times and the screen should continue to be updated (refreshed) while the game is being

played—even while waiting for a button to be pushed. This is called asynchronicity,

which can be defined informally as the occurrence of events at random or unexpected

times—a very important feature in even simple systems like a handheld game.

 Several important OS concepts are part of this game system: When a game is

started, some part of its software may be loaded into memory, whereas other parts

6 Part 1 Operating Systems Overview and Background

may have been preloaded in ROM (read-only memory) or fixed memory 1 ; dynamic

memory is reserved for use by the game and is initialized; timers may be set. All on

a cheap (but fun) game! What more does one expect from an OS?

 1.3 USER VERSUS SYSTEM VIEW OF AN OS

 You have probably heard the old adage; “There are two sides to every question.”

(Maybe that should be “two or more sides.”) The idea is that trying to look at some

question from different perspectives often helps our understanding. One of the impor-

tant methods to learning something new is to view it from different perspectives. For

an OS, the two most important perspectives are the user view and the system view.

 The user view pertains to how users or programs—programs are the main users

of the OS—utilize the OS; for example, how a program reads a keystroke. The sys-

tem view pertains to how the OS software actually does the required action—how it

gets keystrokes, separates out special ones like shift, and makes them available to the

user or program. We present OS facilities, concepts, and techniques from both user

and system points of view throughout the book. First, we elaborate on the different

types of users and their views of the OS.

 1.3.1 Users’ views and types of users

 The term user is often too vague—especially for persons whose role in computing

is so critical—so it is important to first describe the various types of users. Trying to

pin down the role of a user of an OS is not simple. There are various types of users.

We primarily want to distinguish among end users, application programmers, system

programmers and system administrators. Table 1.1 lists some of the most important

concerns about what the OS should provide for each of the three main types of users.

Of course, there is some overlap among these concerns. We are merely trying to

show how those viewpoints sometimes diverge. Further complicating the issue is

that sometimes users fit into several of the roles or even all of them. Such users often

find themselves having conflicting needs.

 Application Users (or End Users) —this group includes all of us, people who

use (or run) application or system programs. When we use a word processor, a web

browser, an email system, or a multimedia viewer, we are a user of that application.

As users, we expect a quick, reliable response (to keystrokes or mouse movement),

a consistent user view (each type of command—such as scrolling or quitting an

application—should be done in a similar manner), and other features that depend on

each specific type of OS. Other needs are listed in Table 1.1 . In general, this group of

users is most often called simply users, or sometimes end users.

 Application Programmers —this group includes the people who write appli-

cation programs, such as word processors or email systems. Programmers are very

demanding of the OS: “How do I read and write to a file?”, “How do I get a user’s

keystroke?”, and “How do I display this box?” are typical questions programmers

1 We define these terms in Chapters 2 and 3.

 Chapter 1 Getting Started 7

ask when learning to use a new OS. The facilities that the OS provide are the pro-

grammers’ view of the OS. Sometimes they are called system calls or an API (appli-

cation program interface). They may also appear as language library functions or

sometimes just as packages of classes. Programmers also want the software they

develop to be easily ported to other platforms.

 Systems Programmers —these are the people who write software—either pro-

grams or components—that is closely tied to the OS. A utility that shows the status

of the computer’s network connection or an installable driver for a piece of hardware

are examples of systems programs. Systems programmers need to have a detailed

understanding of the internal functioning of the OS. In many cases, systems pro-

grams need to access special OS data structures or privileged system calls. While OS

designers sometimes are concerned with portability to other platforms, often they

are not—they are charged with developing a specific set of functions for a specific

platform and portability is not a concern.

TABLE 1.1 Concerns of Various User Classes

End Users Easy to use and learn

Adapts to user’s style of doing things

Lively response to input

Provides lots of visual cues

Free of unpleasant surprises (e.g., deleting a file without warning)

Uniform ways to do the same thing (e.g., moving an icon or scrolling down a

window—in different places)

Alternative ways to do one thing (e.g., some users like to use the mouse,

others like to use the keyboard)

Application Programmers Easy to access low-level OS calls by programs (e.g., reading keystrokes,

drawing to the screen, getting mouse position)

Provide a consistent programmer view of the system

Easy to use higher-level OS facilities and services (e.g., creating new

windows, or reading from and writing to the network)

Portability to other platforms

Systems Programmers Easy to create correct programs

Easy to debug incorrect programs

Easy to maintain programs

Easy to expand existing programs

System Managers and

Administrators

Easy addition or removal of devices such as disks, scanners, multimedia

accessories, and network connections

Provide OS security services to protect the users, system, and data files

Easy to upgrade to new OS versions

Easy to create and manage user accounts

Average response is good and predictable

System is affordable

8 Part 1 Operating Systems Overview and Background

 System Administrators —this group includes the people who manage computer

facilities, and hence are responsible for installing and upgrading the OS, as well as

other systems programs and utilities. They are also responsible for creating and man-

aging user accounts, and for protecting the system. They need to have a detailed

understanding of how the OS is installed and upgraded, and how it interacts with

other programs and utilities. They must also understand the security and authoriza-

tion features of the OS in order to protect their system and users effectively.

 1.3.2 System view

 The system view refers to how the OS actually provides services. In other words, it

refers to the internal workings of the OS. This is a less common view. Often only a

few people, the OS designers and implementers, understand or care about the inter-

nal workings of an OS. Indeed this information is often considered secret by com-

panies that produce and sell OSs commercially. Sometimes the overall workings of

major parts of the system—management of files, running of programs, or handling

of memory—may be described to help programmers understand the use of those

subsystems. In some cases, the whole source code for an OS is available. Such sys-

tems are known as open source systems. 2

 The majority of this book is concerned with the how —how does the system run

a program, create a file, or display a graphic. To understand the actual “how”—the

internal details—we describe algorithms and competing methods for implement-

ing OS functions. We now illustrate the system view (or views) with two examples:

tracking mouse and cursor movement, and managing file operations. Although these

examples may seem a bit complex, they serve to illustrate how the OS is involved in

practically all actions that are performed by a computer user.

 1.3.3 An example: moving a mouse (and mouse cursor)

 While the movement of a mouse pointer (or cursor) on a screen by moving the

mouse (or some other pointing device such as a pad or trackball) seems straightfor-

ward, it illustrates the many views of an OS. Figure 1.1 illustrates this process. When

the pointing device is moved, it generates a hardware event called an interrupt,

which the OS handles. The OS notes the movements of the mouse in terms of some

hardware-specific units—that is, rather than millimeters or inches the readings are in

number of pulses generated. This is the low-level system view. The actual software

reading the mouse movements is part of the OS, and is called a mouse device driver.

This device driver reads the low-level mouse movement information and another

part of the OS interprets it so that it can be converted into a higher-level system

view, such as screen coordinates reflecting the mouse movements.

 On the “other side” or view is the question, What does the user see? The user’s

view is that the cursor will smoothly move on the screen and that as the mouse moves

greater distances faster, the screen movement will appear faster too. In between these

2 The Linux OS is a well-known example of an open source operating system.

 Chapter 1 Getting Started 9

views is the application programmers’ view, How do I get the mouse movement

information in order to use it and display it in my application? Another issue is how

this information on mouse movements is presented to the application programmer.

This is the higher-level system view mentioned earlier.

 And to complete these views a bit let us return to the system’s view, Which

application gets this mouse movement if there are multiple open windows? The

mouse movements may need to be queued up if there are multiple movements

before the application retrieves them. The movements may even be lost if the OS

is busy doing other things—for example, loading a Web page through a network

connection—and cannot receive the device driver’s input in a timely manner.

 1.3.4 Another (bigger) example: Files

 Sometimes the most critical end user’s view of an OS is the file system—in particu-

lar, file names. Can file names contain spaces? How long can they be? Are upper-

and lowercase letters allowed? Are they treated as different or the same characters?

How about non-English characters or punctuation? An OS may even be called good

or bad simply because long file names are not used or the difference between upper-

and lowercase characters is not distinguished.

 In the application programmer’s view, the file system is a frequently used,

critical part of the system. It provides commands for creating a new file, using an

existing file, reading or appending data to a file, and other file operations. There

may even be several different types of files provided by the system. The system

Application
Program

Device
Drivers

Interrupt
Routines

Memory

Mouse
Controller

Video
Controller

Bus

Cursor
motion

Mouse
motion

 FIGURE 1.1
 The cursor tracking

mouse motion.

10 Part 1 Operating Systems Overview and Background

view of the file system is so large it is usually divided into subparts: file naming and

name manipulation (directory services), file services such as locating and mapping

a file name to its data (file allocation and storage), trying to keep parts of open files

in main memory to speed up access to its data (file buffering and caching), and the

actual management of the storage devices (disk scheduling).

 For example, suppose that a user types the name of a file to be copied from a CD

to a hard disk. The program may first need to see whether that file exists on the CD,

and if it would overwrite a file with that name on the hard disk. The OS then needs to

create an entry for the file in the hard disk directory, find space on the hard disk for

storing the data, and find and get the data from the CD, which has been recorded in

pieces (sectors) that will be copied. And all this should be done in a few seconds or

even a fraction of a second! See Table 1.2 .

 1.4 SOME OS TERMS, BASIC CONCEPTS, AND ILLUSTRATIONS

 We now list and define some important OS concepts and terms. Then we give some

diagrams to illustrate these concepts.

 1.4.1 Basic terminology

 Operating System (or just System). Although we can give different definitions

based on the different views of an OS, the following informal definition is a good

starting point: The OS is a collection of one or more software modules that manages

and controls the resources of a computer or other computing or electronic device,

and gives users and programs an interface to utilize these resources. The managed

resources include memory, processor, files, input or output devices, and so on.

 Device. A device is a piece of hardware connected to the main computer system

hardware. Hard disks, DVDs, and video monitors are typical devices managed by

an OS. Many devices have a special electronic (hardware) interface, called a device

controller, which helps connect a device or a group of similar devices to a computer

TABLE 1.2 The Steps in Copying a File from a CD to a Hard Disk

Check for file on CD

Check for file on hard disk—confirm overwrite

Create file name in hard disk directory

Find space for file on hard disk

Read data sectors from CD

Write data sectors to hard disk

Update hard disk directory

Update hard drive space information

Do all this in seconds (or less!)

 Chapter 1 Getting Started 11

system. Examples include hard disk controllers and video monitor controllers. There

are many types of hard disk controllers that usually follow industry standards such

as SCSI, SATA, and other common but cryptic acronyms. Device controllers are the

hardware glue that connects devices to the main computer system hardware, usually

through a bus.

 Device driver. A device driver is a software routine that is part of the OS, and is used

to communicate with and control a device through its device controller.

 Kernel. This term usually refers to that part of the OS that implements basic func-

tionality and is always present in memory. In some cases the entire OS is created as

one monolithic entity and this entire unit is called the kernel.

 Service. Services are functions that the OS kernel provides to users, mostly through

APIs via OS calls. These services can be conveniently grouped into categories based

on their functionality, for example, file manipulation services (create, read, copy),

memory allocation services (get, free), or miscellaneous services (get system time).

The key to a programmer’s understanding a system is to understand the OS services

it provides.

 Utility. These are programs that are not part of the OS core (or kernel), but work

closely with the kernel to provide ease of use or access to system information. A

 shell or command interpreter is an example of a utility. The shell utility provides

a user interface to many system services. For example, user requests such as listing

file names in a directory, running a program, or exiting (logging out), may all be

handled by the shell. The shell may invoke other utilities to actually do the work; for

example, directory file listing is sometimes a utility program itself.

 1.4.2 How about some pictures?

 Figure 1.2 is a simplified view of a small personal computer showing some basic

devices connected to the computer memory and CPU (processor). The OS program

(or kernel) will include various device drivers that handle the peripherals (devices) of

the system under CPU control. For example, part of the contents of memory may be

transferred to the video controller to be displayed on the monitor, or the contents of a

part of the disk (a sector) may be transferred to the disk controller and eventually to

memory (for a disk read operation).

 Figure 1.3 is a simplistic view of part of an OS. The OS controls (or manages)

the system resources: it controls the disks, keyboards, video monitor, and other

devices. It controls allocation of memory and use of the CPU by deciding which pro-

gram gets to run. It provides services to the shell and other programs through the use

of system calls. It also provides an abstraction of the hardware by hiding complex

details of hardware devices from programs.

 Figure 1.3 , a common one used to illustrate OSs, is a logical view, not a physi-

cal one. For example, the OS kernel physically resides inside the memory unit and

it is running (executing) on the CPU. Thus, the arrows between the kernel—which

is software—and the devices—which are hardware—represent a logical control, not

physical.

12 Part 1 Operating Systems Overview and Background

Shell
(Command
Interpreter)

Utilities

Devices
(disks, keyboards)

Memory CPU

Other
Programs
(browsers,

games, word
processing)

Operating System Kernel

FIGURE 1.3

A simplistic view

of the OS software

in relationship to

hardware.

BusBus

CPUCPU

MemoryMemory
Keyboard
Controller
Keyboard
Controller

Video
Controller

Video
Controller

Disk
Controller

Disk
Controller

Hard
Disk
Hard
Disk

Video
Monitor
Video
Monitor

KeyboardKeyboard

FIGURE 1.2

Hardware: A very

simplistic view of

a small personal

computer.

(Note: This picture is too
simple. In reality there
are often multiple buses,
say between video and
memory. We will get to
more detailed pictures in
the Appendix.)

 Figure 1.4 represents a layered view of the OS, where the outermost circle rep-

resents the utilities/applications layer that accesses the OS kernel layer, which in turn

manages access to the hardware layer.

 1.4.3 Closer to reality: A personal computer OS

 Figure 1.5 shows more detail of a simple OS for a personal computer or PC. The OS

has two additional components that were not shown in Figure 1.3 : device drivers

 Chapter 1 Getting Started 13

and a BIOS (Basic Input/Output System). The BIOS abstracts the hardware—that

is, the BIOS manages common devices, such as keyboards, basic video, and the sys-

tem clock. This allows the main or higher-level part of the OS to deal with all devices

of the same type—for example, all keyboards—in the same way. Thus, the OS kernel

does not change whether a keyboard has 88 keys, 112 keys, or some other number,

or even in cases where keys may not appear where they might on different keyboards

because of different language characters or accent keys. Device drivers also provide

a similar abstraction to similar devices. For example, a DVD device driver can be

supplied by a device manufacturer to provide an abstract or common view of the

DVD device to the OS, so that the OS does not have to vary with every idiosyncrasy

of DVD drives, regardless of the manufacturer.

 The next section elaborates further on why it is important to provide abstraction

layers when designing an OS.

Hardware

OS Kernel

Applications+
Utilities+Shell

FIGURE 1.4

A layered view

of an OS.

Shell
(Command
Interpreter)

Utilities

Operating System Kernel

Device Drivers

Device
(disks, keyboards) Memory CPU

BIOS
(interface to hardware)

Other
Programs
(browsers,

games, word
processing)

FIGURE 1.5

The PC (small

system) model

of an OS.

14 Part 1 Operating Systems Overview and Background

 1.4.4 Why the abstraction layers?

 Good question. Early in the days of personal computers, computer hobbyists had

fun assembling and building the hardware and getting simple programs to work,

usually written in assembly language or machine language. This was a good learn-

ing tool for some, but programming was very tedious. But people wanted to enjoy

the experience of writing more interesting and therefore larger and more complex

programs. So better tools were needed. These tools include easy-to-use editors and

compilers or interpreters for high-level languages. For end users, the desire was

to use the computer as a business or productivity tool. These users needed word

processing, spreadsheets, and communication software. Certainly there were many

very dissimilar computer hardware systems being built. But there were also a num-

ber of similar, but not identical, computers, built by many manufacturers. These

systems might either have the same CPU from the same CPU manufacturer, or use

a compatible CPU that had the same instruction set. However, they may have video

devices that were quite different. For example, one system might have a terminal-

like device attached to a serial port, whereas another might have a built-in video

controller with many capabilities for advanced graphics. Keyboards would typically

differ in function keys or “arrow” or cursor movement keys, with other keys being

added or missing.

 In order for programmers to be able to create programs that would run on these

different systems with minor or no changes required to the program when moving it

to a different system, the OS provided the same interface to the hardware for all the

different devices supported by that OS. For instance, a program could read a key-

stroke from a keyboard regardless of what type of keyboard it was by a system call

to read a key. The OS would take care of translating the keys which were in different

places on different keyboards or which were coded differently.

 To avoid the complexity and cost of having different versions of the OS for dif-

ferent keyboards, different video monitors, different disks, and so forth, the OS was

split into a part that was adapted to the different hardware devices (the BIOS and

device drivers) and a part that remained the same for all hardware (shown as the ker-

nel in Figure 1.5). This technique of dividing complicated work into several layers,

or levels, is an established software technique used in large and complex software

systems including OSs. Thus, adapting an OS to a new compatible computer system

with different devices involved changing (or writing) a BIOS but using the same

module for the rest of the kernel and the same programs and utilities. This was a very

attractive idea for everyone—users, manufacturers, and OS writers.

 A problem arose when a computer peripheral manufacturer (e.g., a video card

manufacturer) designed a new device and wanted to sell it to users so they could

upgrade their computer to newer hardware designs. Often the existing BIOS in

the computer was installed in ROM (read only memory) and would be difficult

and expensive to replace. The solution to this problem was the creation of a modi-

fiable BIOS by allowing device drivers to be loadable at the time the OS was

loaded into memory. Having BIOS code that could be replaced when the system

was booted allows adding new features to the computer or replacing features in

the BIOS with new software and perhaps supporting new functions on existing

hardware.

 Chapter 1 Getting Started 15

 1.5 A SMALL HISTORICAL DIVERSION

 We close this chapter with a historical perspective on how OSs were developed, and

the different views about what type of functionality should be included in an OS. We

give a more detailed historical timeline of OS development at the end of Chapter 3,

after we have introduced some additional concepts.

 1.5.1 Origins of operating systems

 Before personal computers there were of course many larger computers. Early on

these machines were very large and very expensive, but by modern standards primi-

tive, and there were few programmers. Programs were limited in their capabilities

because main memory was quite small, the CPU processors were very slow, and only

a few simple input and output devices existed. A typical early computer system may

have had a few thousand words 3 of main memory, a processor that executed several

thousand instructions per second, and a Teletype 4 device for input/output. The lim-

ited capabilities of these early computers required very careful and well-thought-out

programs which were mostly written in the basic machine code of the computer,

machine language or assembly language.

 These programs were amazing in that in a few hundred or thousand machine

instructions they accomplished a tremendous amount of work. But they all faced

similar needs: How can a program print some output? How can a program get loaded

into memory to begin execution? These needs—the need to load programs into

memory, to run a program, to get input and produce output—were the impetus for

creating early OSs. At those early times the few programmers on a system knew each

other and would share routines (program code) that had been debugged to simplify

the job of programming. These shared routines (e.g., “print the value in register A on

the Teletype”) would eventually be combined into a library that could be combined

(linked) with an application program to form a complete running program.

 These early computers were single-user systems. That is to say that only one

user—and one program—could run at any one time. Typically programmers would

reserve the use of the computer in small blocks of time—perhaps increments of

10–15 minutes. A programmer would use this time to run or debug a program.

Because computers were expensive and computer time was very valuable, often big-

ger blocks of time were available only in the middle of the night or early in the morn-

ing when things were quieter, few managers were around, and one could get much

more done than in the daytime. This tradition, started in the early days of computing,

is one of the few that has lasted until today!

 The programs, once written and assembled, were linked or bound with utility

routines for input, output, mathematical functions, 5 printout formatting, and other

3 A word was typically six characters, but differed from system to system.
4 A Teletype is an electromechanical printer and keyboard, built for telegraphy, that could print or type at
a speed of a dozen or so characters per second.
5 Early computer hardware often did not have instructions for complex mathematical and even arithmetic
operations—for example, long division—so these operations were implemented in software utility routines.

16 Part 1 Operating Systems Overview and Background

common tasks, into an executable program ready to be loaded into memory and run.

The program might be stored on punched paper tape or punched cards. The computer

hardware would know how to start reading from the input device, but it would only

load the first card or the first block of the tape. So that block had to include a small

routine that would be able to load the rest of the application into memory. This short

routine is called a loader. The loader would in turn read the programmer’s execut-

able program and put it and the needed utility routines into memory at a specified

location, usually either the first memory address or some special fixed location. Then

it would transfer execution—by a branch or “subroutine” call—to the program it

had loaded. The loadable program tape or card deck might look as illustrated in

 Figure 1.6 . 6 The END delimiter tells that loader that there are no more routines to be

loaded since there might be data records following the routines.

 As programmers had time to develop more utility routines, the loader grew more

sophisticated. Loaders were soon able to load programs that had been translated

(compiled) from higher-level programming languages. As the size of loaders, util-

ity routines, and users’ programs grew, the card decks or paper tapes became very

large (and it became unfortunately common to drop a card deck or tear a paper tape).

These loaders and utility routines would become the beginnings of early OSs, which

were then often called monitors.

 1.5.2 What should an Operating System do (or what should

it support)?

 From the early days of computing until today there has been a fierce debate—

ranging from polite discussion to a political or almost religious argument—about

what an OS should do. The two extreme views of this debate could be called the

maximalist view and the minimalist view. The maximalist view argues that the OS

should include as much functionality as possible, whereas the minimalist view is that

only the most basic functionality should be part of the OS. From the early systems,

the question started: “Should all the routines for input and output be included in my

program? I don’t even read from the card reader.” Including too many routines—any

that are not necessary—makes the memory available for my program smaller, and

it is too small to begin with. How can one get just what one needs? Mathematical

routines such as programs for performing floating-point arithmetic could be done

once in the OS rather than separately included in each user’s program. But then

every program incurred the overhead of the extra memory occupied by these routines

in the OS, even programs like accounting applications that did not use floating point

arithmetic.

6 This type of loader is often known as a bootstrap loader.

Bootstrap
Loader

Application
Program

Library
Routines

I/O
Routines

END
Delimiter

FIGURE 1.6

An application

program with a

loader and OS-like

utilities.

 Chapter 1 Getting Started 17

 In more recent times the debate concerning what to include in an OS continues.

For example, a user-friendly OS interface is now commonly considered to have

a pointing device—such as a mouse, trackball, or pad—and some type of screen

windowing with pull-down menus. Whether that interface should be a part of the

OS—thus giving all applications a similar “look and feel,” or part of the shell—to

allow each user to decide the particular look they want is one of the current issues of

the debate about what the OS should include.

 To be fair, like many hotly contested issues, both maximalist and minimal-

ist sides have a point. The historical trends are not clear. Newer OSs have been in

some cases smaller, simpler, and more configurable and in other cases exactly the

opposite—larger, more functional, and more constraining. This issue of what func-

tionality should go where (in the OS kernel or not) has created different design

possibilities for OSs, as we discuss further in Chapter 2.

1.6 SUMMARY

 In this chapter, we first introduced some of the

basic functionality of operating systems. We gave

a few simple examples to illustrate why OSs are

so important. Then we discussed the different

views of what an OS does by looking at the OS

from two perspectives: the user’s perspective and

the system’s perspective. We then presented some

basic terminology and concepts, and provided some

figures to illustrate typical components of simple

OSs. Next we began to look at a few architectures

that are commonly used to actually create OSs and

discussed the very idea of abstraction that is so

fundamental to the successful design of OSs. We

concluded with a brief historical perspective on the

origins of OSs.

 The next chapter gives an overview of the major

components of an OS and discusses the architecture

alternatives in more detail.

 REVIEW QUESTIONS

 1.1 Give a one-sentence definition of an OS.

 1.2 Since most of us are not going to be writing an OS,

why do we need to know anything about them?

 1.3 Give three reasons why a simple device such as a

handheld electronic game probably contains an OS.

 1.4 What is the primary difference between a user

view of an OS and a system view?

 1.5 What are the four different classes of users that

were discussed, and what aspects of an OS are

they mostly interested in?

 1.6 The chapter discussed how the different users are

supported from the system view. Two examples

were presented, moving a mouse and file systems.

Consider another aspect of an OS and discuss how

the system view works to support the three differ-

ent classes of users.

 1.7 Should OSs be proprietary so that the manufactur-

ers will be able to make enough profit to continue

their development or should the internals and spec-

ifications of OSs be open for all users to know? *7

 1.8 With respect to the study of OSs, how is a control-

ler best defined?

 1.9 What is the general principle of abstraction?

 1.10 What are some of the reasons why we want

abstraction in an OS?

 1.11 Distinguish between an OS and a kernel.

 1.12 Describe briefly the origins of OSs on the early

large mainframe systems.

 1.13 Should the characteristics of a windowing inter-

face—the factors that determine its look and

feel—be a part of the OS kernel or part of the

command shell?

* Note to instructors: Don’t use this question as part of the class
unless you have nothing else to talk about for the day.

19

 ChapterChapter 2 2
 Operating System
Concepts, Components,
and Architectures

 In this chapter:

 2.1 Introduction: What Does the OS Do? 20

 2.2 Resources Managed by the OS and Major OS Modules 22

 2.3 The Process Concept and OS Process Information 25

 2.4 Functional Classes of OSs 29

 2.5 Architectural Approaches to Building an OS 33

 2.6 Some OS Implementation Techniques and Issues 35

 2.7 Minimalist versus Maximalist Approaches to OS Functionality

and Backward Compatibility 40

 2.8 Summary 42

 I
n this chapter, we discuss in general what the operating system does, and give

an overview of OS concepts and components so that a student has some overall

perspective about OSs. We also discuss some common techniques employed in

nearly all OSs.

 To gain some understanding of how the OS is involved in practically all system

operations, we start in Section 2.1 with a simple user scenario and describe some

of the actions within the scenario that are undertaken by the OS. In Section 2.2 we

give an overview of the main types of system resources that the OS manages. These

resources include the processor (CPU), main memory, I/O devices, and files. We

then give an overview of the major OS modules, and the services that each module

provides. These include the process management and CPU scheduling module, the

memory management module, the file system module, and the I/O management

and disk scheduling module. These may or may not be implemented as separate

modules in any particular OS, but looking at each of these separately makes it

easier to explain OS concepts.

20 Part 1 Operating Systems Overview and Background

 Then in Section 2.3 we define the concept of a process, which is central to what

the OS does, and describe the states of a process and some of the information that

the OS maintains about each process. A process (sometimes called job or task) 1 is

basically an executing program, and the OS manages system resources on behalf of

the processes. In Section 2.4 we discuss the characteristics of different types of OSs,

from systems that can run or execute a single process at a time, to those that manage

concurrently executing processes, to time sharing and distributed systems.

 In Section 2.5 we present some of the different architectural approaches that

have been taken for OS construction. These include monolithic OS, microkernels,

and layered architectures. We then describe some implementation techniques that

are used repeatedly by various OS modules in Section 2.6 . These include the queues

that are maintained by multitasking OSs to keep track of the jobs that are waiting

to acquire resources or to have certain services performed. For example, processes

could be waiting for disk I/O or CPU time or printing services. We also describe

interrupts and how they are handled in some detail, object-oriented OS design, and

virtual machines. Section 2.7 gives a philosophical discussion concerning what func-

tionality should be part of an OS. Finally, in Section 2.8 we summarize this chapter.

 2.1 INTRODUCTION: WHAT DOES THE OS DO?

 In this section, we go over a small example scenario, in order to see how the OS is

involved in nearly every aspect of computing. Consider the following simple user

scenario:

 A user wants to type a small note to himself. 2 Coming into work this morning he

heard a radio advertisement that his favorite music group is coming to town, and he

wants to have a reminder to buy tickets and invite some friends. So he starts a sched-

uling program (or possibly a text editor or a word processing program), types in his

reminder, saves the document, and exits. The user could have used a PDA (personal

digital assistant), a Windows-based system (e.g., Mac, MS Windows or Linux with a

GUI-based text editor), or simply a text-based command shell such as UNIX. Let’s

assume he is using a GUI-based text editor to write a separate note and save it as a

file. Regardless of the type of system used, this scenario caused the OS to create,

manage, and terminate software components to accomplish the work. When the user

started the editor or some other program he created a process (also called task or

 job). 3 A process is basically a program in execution. A process may be waiting to

run, currently running, waiting for something to happen, or finishing. Some of the

events that a process may be waiting for include a keystroke from the user, or some

data to be read from a disk drive or to be supplied by another program.

 Before a process can be started, the executable program file (binary) that will be

run must be brought into main memory. This is usually loaded from a disk or some

 1 The terms job and task are used to refer to the same concepts in some of the literature, and to different
concepts in other literature. We discuss this as needed in the footnotes.

 2 For grammatical simplicity, this text will assume the user is a male.

 3 Starting a program is sometimes called instantiating, executing, loading, or running the program.

 Chapter 2 Operating System Concepts, Components, and Architectures 21

electronic memory such as a flash drive. Several major OS activities are needed to

accomplish this. First, a portion of main memory is needed to hold the program’s

executable code. Additional memory is needed for the program’s data, variables, and

temporary storage. In our example, the data would be the entry that the user is creat-

ing in the memo file. These activities to allocate memory are part of the memory

management that the OS must do. Often several programs may be in memory at the

same time. The OS memory manager module controls which processes are placed

into memory, where they are placed, and how much memory each is given. Process

management —deciding which process gets to run, for how long, and perhaps at

what priority (or level of importance)—is another key management activity of the

OS, usually handled in part by the OS CPU scheduler.

 Once the editor process is running, it needs to accept some keystrokes and

display what has been typed on the screen. Even if the device is a PDA with no

keyboard, characters are input and accepted by the OS in some manner. Acquiring

keystrokes or characters and displaying those characters on the screen are done in a

series of steps through the I/O and device management component of the OS.

 When our user hits a key, he enters a character that must be read by the sys-

tem. The device—in this case a keyboard—inputs the information about the raw key

action. This information—the row and column of the key’s position on the keyboard

and whether it was pressed or released—is stored in a temporary buffer. In a PDA

or PC, there may be a special keyboard controller chip that saves the key action

information and then sends an interrupt to the processor. The processor may have its

own keyboard device controller in addition to the controller chip on the keyboard.

The interrupt causes the CPU to stop the process that is running. This may be done

immediately if the CPU is doing lower priority work, or it may be done later if the

CPU had been doing higher priority work. Then an interrupt service routine is started

by the OS to handle the keyboard action. The interrupt service routine is a part of the

interrupt handling and device control in the OS. This processing is repeated for each

character typed. The character must be sent to the editor process and displayed on

the screen—another action that goes through the OS. In this case, an output opera-

tion to the video monitor is performed.

 When our user finishes typing his note, he saves his note as a file. This may involve

moving a pointing device such as a mouse to point to the file menu on the screen. The

mouse movement and clicking are handled first by a device controller—which tracks

the mouse coordinates and sends them to the OS. The mouse tracking icon (e.g., an

arrow) must be moved and displayed on the monitor display screen—another output

to the screen. When the mouse button is clicked, the controller sends that informa-

tion to the OS, which forwards the coordinates where the clicking occurred to the

windowing system that is managing the user interface. The windowing system will

have information concerning which window is currently active and the positions of

various buttons and other icons within that window. Using this information, it will

match the coordinates of the cursor when the user clicked the mouse button to the

particular screen button icon (or symbol) that was “clicked.” The windowing system

that handles user interaction is usually quite complex. It is considered by some to be

a systems program, separate from the OS, and by others to be an integral part of the

OS (see Section 2.7 for a discussion on what is and is not part of the OS).

22 Part 1 Operating Systems Overview and Background

 Continuing with our scenario, our user may now choose a directory called “personal

notes” within which he wants to store his file. This brings into play the file management

component of the OS. When the user selects the directory (e.g., by double-clicking on a

folder icon), this causes the OS file manager to take several actions. First, it must open

the directory by retrieving the directory information from the OS internal tables. The

directory information includes the names of files (and possibly other directories) stored

under this directory as well as where the directory is stored on disk. The user must then

type a file name such as “concert _remind,” and the file system will check to make sure

that no existing file in that directory has the same name. It may then invoke the disk

space allocation module to find an area of free space on disk to store the file. Finally, the

OS file manager will create a file entry in the directory to contain the information about

the new file such as its name, file type, and disk location.

 As we can see from this very simple example, the OS is involved in practically

every aspect of user and program interaction—from low-level actions such as pro-

cessing keyboard strokes and mouse movements, to resource allocation algorithms

such as allocating memory space and processor time, to higher-level actions such as

managing file names and directories. We describe how the OS handles all these vari-

ous tasks throughout this book.

 2.2 RESOURCES MANAGED BY THE OS AND MAJOR
OS MODULES

 A major role of an OS is the management of the system resources, so this section

covers the main types of resources that the OS manages. Then it covers a conceptual

view of a typical OS, showing the major OS modules, the resources that each module

manages, and the services and functions that each module provides.

 2.2.1 Types of resources managed by an OS

 This section first addresses some of the major resources managed by a typical OS.

These resources are CPUs (processors), main memory and caches, secondary stor-

age, and I/O devices at the lowest level, and file system and user interface at a higher

level. The OS also manages network access and provides security to protect the vari-

ous resources it is managing.

 CPU

The OS needs to schedule which process to run on each CPU at any point in time.

In older single-process systems, this is very simple because only one process will be

memory resident so the OS would mainly be responsible for starting the memory-

resident process by giving it control of the CPU. However, even in such a simple sys-

tem, the OS must do other tasks such as setting up any memory protection registers

and switching to user execution mode before giving the process control of the CPU.

 In multitasking systems, managing the CPU resource is quite complex since

multiple processes will be memory resident. It may be further complicated by having

multiple CPUs in the system. The OS will maintain various queues of processes. The

queue most relevant to CPU scheduling is called the ready queue, which contains all

 Chapter 2 Operating System Concepts, Components, and Architectures 23

processes that are ready to execute. If processes have different priorities a separate

ready queue may exist for each priority level. Each process is typically given control

of the CPU for a maximum period of time, called a time quantum. If the time quan-

tum expires before the process finishes execution, a timer interrupt would initiate

an OS process called context switching that would switch CPU control to another

process. We discuss how the OS manages the CPU resource and CPU scheduling

algorithms in detail in Chapter 9.

 Main memory and caches

The OS needs to assign memory space to a process before it can execute. The execut-

able code of a program will typically be stored on hard disk (or some other secondary

storage medium). When a user or program wants to execute a disk-resident program,

the OS must locate the program code file on disk and it must allocate enough mem-

ory space to hold an initial part of the program. Since many programs are quite large,

the OS might load only part of the program from the disk. One of the main memory

management functions is to allocate initial memory space to a process, and perhaps

to load additional parts of the program from disk as the process needs them. If all

memory space is full, the memory management module of the OS must swap out

some of the memory-resident information so it can load additional portions needed

by the process. We discuss memory management techniques in Chapters 10 and 11.

 Secondary storage

Another important resource managed by the OS is secondary storage, which is typi-

cally hard disk. Most program code files and data files are stored on hard disk until

there is a request to load some parts of them into main memory. Whenever a process

requires data or code that are not in memory, a request is sent to the disk schedul-

ing module of the OS. The OS would typically suspend the requesting process until

the required data are read into memory. In a multitasking system, there could be

many requests to read (load into memory) and write (store to disk) disk data. The

OS typically maintains one or more queues for the disk read and write requests, and

uses various algorithms to optimize the servicing of these requests. We discuss disk

scheduling in Chapter 14 as part of our discussion of I/O management.

 I/O devices

The OS must also control and manage the various input and output devices con-

nected to a computer system. 4 The OS will include modules called device drivers

that control access to these devices. Since there are many different types of I/O

devices and users often add new I/O devices to their systems, modern OSs have the

capability to detect new hardware and install the appropriate device drivers dynami-

cally. A device driver handles low-level interaction with the device controllers, and

presents a higher-level view of the I/O devices to the rest of the OS. That way, the OS

can handle similar devices in an abstract, uniform way. We discuss I/O management

in Chapter 12.

 4 It is not uncommon to consider disk management as part of I/O management since both disks and I/O
devices either input (read) or output (write) bytes to/from main memory.

24 Part 1 Operating Systems Overview and Background

 File systems

The resources discussed so far are considered low level because they are all hardware

resources. The OS also manages higher-level resources that are created through software.

One of the main such resources is the file system. The file system is an OS module that

provides a higher-level interface that allows users and programs to create, delete, mod-

ify, open, close, and apply other operations to various types of files. The simplest type of

file is just a sequence of bytes. More complex file structures are possible—for example,

structuring file contents into records. The file system allows users to give names to files,

to organize the files into directories, to protect files, and to access those files using the

various file operations. We discuss file management in more detail in Chapter 12.

 User interfaces

Many modern OSs include another high-level component to handle user interaction.

This includes the functionality for creating and managing windows on a computer

screen to allow users to interact with the system. By having such a component in the

OS, the user can access various resources in a uniform way. For example, access to the

directory of the file system or to Internet documents would be handled through a uni-

form interface. 5 We discuss user interfaces in various chapters throughout the book.

 Network access

Another resource that the OS manages is network access to allow users and programs

on one computer to access other services and devices on a computer network. An OS

can provide both low- and high-level functionality for network access. An example

of low-level functionality is the capability given to a program to create network ports

and to connect to a port on another machine. An example of high-level functionality

is the capability to access a remote file. We will discuss networks and distributed

systems in Chapters 15 and 17.

 Providing protection and security

The OS also provides mechanisms to protect the various resources from unauthor-

ized access, as well as security techniques to allow the system administrators to

enforce their security policies. The simplest type of security is access authorization

through passwords, but generally this is not sufficient. We will discuss security and

protection in Chapter 16.

 2.2.2 Major modules of an OS

 Figure 2.1 is an illustration of some of the major modules of an OS at an abstract level.

Not surprisingly, many of these modules correspond closely to the resources that are

being managed. Other modules provide common support functions used by several

other modules. The modules provide functions that are accessed by system users and

programs as well as by the other OS modules. Some functionality is restricted so that

it can only be accessed in privileged mode by other OS modules—for example, device

5 As we mentioned earlier, user interfaces are sometimes considered to be part of the systems programs
rather than an integral part of the OS.

 Chapter 2 Operating System Concepts, Components, and Architectures 25

driver functions are often restricted to OS access. Other functionality is available to

OS modules, users, and application programs—for example, file system functions.

 In Figure 2.1 , we do not show how the OS modules interact with one another.

This is because the types of interactions depend on the particular architecture used

to implement the OS. For example, in a layered architecture, the modules would be

separated into layers. Generally, modules at one level would call the functions pro-

vided by the modules at either the same level or at lower levels. On the other hand,

in an object-oriented architecture, each module would be implemented as one or

more objects with services, and any object can invoke the services provided by other

objects. In a monolithic architecture, all modules would be implemented as one

giant program. We discuss the most common OS architectures in a later section.

 2.3 THE PROCESS CONCEPT AND OS PROCESS INFORMATION

 We now introduce the concept of a process, as it is central to presenting OS concepts.

First, we define what a process is, and describe the various states that a process can

go through and the types of events that cause process state transitions. Next, we dis-

cuss the types of information that an OS must maintain on each process in order to

manage processes and resources. We also introduce the concept of a PCB (process

control block), the data structure that the OS maintains to keep track of each process.

Finally, we categorize various types of processes.

 2.3.1 Process definition and process states

 A process is a running or executing program. To be a process, a program needs to

have been started by the OS. However, a process is not necessarily running all the

time during its existence—for example, it may be waiting for I/O (say, a key to be

pressed) or it may be waiting for the OS to assign it some resource (say, a block of

RAM). Every process has a particular sequence of execution, and hence a program

counter that specifies the location of the next instruction to be executed. It will also

have various resources allocated to it by the OS. For example, it will need some

 memory space in which to store all or part of its program code and data (such as

Device
Drivers

Higher-Level
Modules

CPU
Scheduling

Memory/Cache
Management

I/O
Management

Disk
Scheduling

Network
Management

Lower-Level
Modules

Process
Management

File
Management

GUI
Management

Security and
Protection

FIGURE 2.1 The major OS modules.

26 Part 1 Operating Systems Overview and Background

program variables). It will almost certainly be accessing files, so it will probably

have some open files associated with it. A process has also been called a job 6 or a

 task, and we use these terms interchangeably.

 Once a process is created, it may be in one of several states: running (if it has

control of the CPU), ready to run (if other processes currently are using all of the

CPUs), waiting (for some event to occur), and so on. The typical states that a pro-

cess can go through are illustrated in Figure 2.2 , which is called a state transition

diagram. The nodes (shown as hexagons) in Figure 2.2 represent process states,

and the directed edges (arrows) represent state transitions. We now discuss these

states, and the events that cause state transitions. 7

 State transition 0 (zero) creates a new process, which can be caused by one of

the following events:

 1. A running OS process may create or spawn a new process. For example, when

an interactive user logs onto a computer system, the OS process that handles

logins typically creates a new process to handle user interaction and commands.

The OS may also create new processes to handle some OS functions such as an

interrupt handler or error handler process.

 6 The term job historically referred to a sequence of control that may invoke various tasks using a
language called JCL, or Job Control Language. This interpretation is primarily used in older batch
systems.

 7 This state diagram is typical, but for any particular OS there may be other states that the OS designers
want to distinguish among, so one might see fewer or more states internally and in the documentation.

0 - Program
loaded

New

1 - Process
initialized

Ready4 - Got what
it needed

2 - Gets
CPU time

Run

3 - Needs
something

5 - Interrupted

6 - Finished
or aborted

Exit
7 - Exits
system

Wait

FIGURE 2.2

Simplified diagram

of process states

and transitions.

 Chapter 2 Operating System Concepts, Components, and Architectures 27

 2. A user process may also create another process by calling the OS function for

new process creation. For example, a Web browser might create a new process

to run an external “plug-in” module to handle a particular type of multimedia

content accessed on a website.

 3. When a job is started by the OS as a scheduled event (e.g., a “cron” job on a

UNIX system), the OS creates a process to execute that job.

 As a new process is being created, it is in the new state. The OS must build the table

that will hold information about the process (see Section 2.2.2), allocate necessary

resources (e.g., memory to hold the program), locate the program executable file and

any initial data needed by the process, and execute the appropriate routines to load

the initial parts of the process into memory. State transition 1 in Figure 2.2 shows

that the OS moves a process from the new state to the ready state, which indicates

that the process is now ready to execute. Note that before this transition can occur

the OS must be ready to add a new process—for example, some OSs may have a

maximum number of allowed processes at a given time and hence would not permit

a new process to be added if the maximum is already reached. In a large mainframe

system or cluster system there might also be resource requirements that the job must

have available before it can run—perhaps a specific I/O device or a certain number

of CPUs. After all this initialization has occurred, the process can be moved to the

ready state.

 Even after a process is in the ready state, it does not start executing until the

OS gives it control of the CPU. This is state transition 2 in Figure 2.2 . The process

is now executing, and is in the running state. If there is more than one process in

the ready state, the part of the OS that chooses one of those to execute is called

the CPU scheduler or process scheduler. We discuss process scheduling in detail in

Chapter 9.

 If a process executes until its end or has an error or exception that causes the

OS to abort it, these events—a process reaching its end or having a fatal error—will

cause state transition 6 in Figure 2.2 . This leads a process to the terminated state, at

which point the OS will do cleanup operations on the process—for example, delete

the process information and data structures and free up the process memory and

other resources. When this cleanup is completed, this indicates state transition 7 in

 Figure 2.2 , which causes the process to exit the system.

 Two other state transitions may occur when a process is in its running state—

transitions 3 and 5 in Figure 2.2 . State transition 3 occurs if the process requires

some resource that is not available or if it needs some I/O to occur—for example,

waiting for a keystroke or reading from a file—before it can continue processing.

This leads a process to the wait or blocked state. A process remains in the wait

state until the resource it needs is allocated to it or its I/O request is completed, at

which point state transition 4 occurs to move the process from the wait state back

to the ready state. On the other hand, state transition 5 from running state directly

to ready state typically occurs when the OS decides to suspend the process because

it has more urgent processes to run. This may be because of a timer or some other

kind of interrupt, which can occur for various reasons. The most common reason is

to allocate the CPU to another process because of the CPU scheduling algorithm, as

we describe in Chapter 8.

28 Part 1 Operating Systems Overview and Background

 2.3.2 Process information maintained by the OS

 To keep track of a process, the OS typically assigns to it a unique process identifier

(or process ID). It also creates a data structure called a process control block (or

 PCB) to keep track of the process information, such as the process ID, resources it

is using or requesting, its priority, its access rights to various system resources or

files, and so on. The PCB will also include references to other OS data structures that

include information on how to locate the memory space and open files being utilized

by the process. For processes not in the running state, the PCB will save informa-

tion on the hardware processor state for the process, such as the values stored in the

program counter register and other processor registers. This information is needed

to restart the process when it moves back to the running state. Figure 2.3 illustrates

some of the information that is typically kept in a process control block.

 The information on open files that the process is using is typically kept in a

separate OS data structure, which is created and used by the OS file manager module

(see Chapter 12). The information on which areas of memory are occupied by the

process is usually kept in page tables or limit registers that are created and used by

the OS memory management module (see Chapters 10 and 11). Both these tables are

referenced from the PCB data structure. Additional information, such as the process

priority level, and a reference to the security or protection levels of the process (see

Chapter 16) will also be included in the PCB.

 2.3.3 Types of processes and execution modes

 We can categorize processes into several types:

 1. User or application processes. These are processes that are executing applica-

tion programs on behalf of a user. Examples include a process that is running an

accounting program or a database transaction or a computer game.

Unique process identifier

Process priority information

Processor state
(CPU register contents,

current instruction location)

Pointer to data structure to access process
memory (typically page tables or limit registers)

Pointer to data structure to access process
files (usually called open files table)

Other process information

Process security and authorization information

FIGURE 2.3

Information the

OS maintains in

a process control

block.

 Chapter 2 Operating System Concepts, Components, and Architectures 29

 2. Systems program processes. These are other application programs that perform

a common system service rather than a specific end-user service. Such programs

often interact closely with the OS and need special information about interfaces

and system structures such as the layout of a relocatable program module or an

executable program file. Examples include programming language compilers

and program development environments. Other programs such as Internet brows-

ers, windowing user interfaces, and OS shell programs are considered by some to

be in this category, and by others to be part of the OS itself (see Section 2.7).

 3. OS processes. These are also known as daemons and are processes that are exe-

cuting OS services and functions. Examples include memory management, pro-

cess scheduling, device control, interrupt handling, file services, and network

services.

 Almost all processors have two execution modes for processes: privileged mode

and nonprivileged or regular (user) mode. OS kernel processes typically execute

in privileged mode —also known as supervisor mode, kernel mode, or monitor

mode —allowing them to execute all types of hardware operations and to access all

of memory and I/O devices. Other processes execute in user mode, which prohibits

them from executing some commands such as low-level I/O commands. User mode

also brings in the hardware memory protection mechanism, so that a process can

only access memory within its predefined memory space. This protects the rest of

memory—used by the OS and other processes—from erroneous or malicious access

to their memory space that may damage their data or program code.

 2.4 FUNCTIONAL CLASSES OF OSs

 There are many different types of OSs. Some OSs are quite restricted and provide lim-

ited services and functions, whereas other OSs are very complex, and provide many

services and a wide range of functionality. We now give a brief overview of five types

of OSs: single-user, multitasking, time-sharing, distributed, and real-time systems.

 2.4.1 Single-user single-tasking OS

 A single-user single-tasking OS runs a single process at a time. The first OSs were

of this type, as were OSs for early personal computers such as CP/M and earlier ver-

sions of MS-DOS. Similar OSs may be found today in systems with limited resources

such as embedded systems. Such an OS is not as complex as the other OSs we discuss

below. However, there are still a lot of details and issues that it must handle. The main

services it provides would be handling I/O and starting and terminating programs.

Memory management would be fairly simple since only the OS and one process

reside in memory at any particular time. There would be no need for CPU schedul-

ing. Following our spiral approach, we describe the basic services and functionality

provided by a single-user OS in Chapter 3. We use primarily CP/M as an example to

illustrate how these concepts were implemented in a real system. We also mention

MS-DOS from time to time since it dominated the OS market for quite some time.

30 Part 1 Operating Systems Overview and Background

 2.4.2 Multitasking OS

 The next level in OS complexity is a multitasking or multiprogramming OS.

Such an OS will control multiple processes running concurrently. Hence, it must

have a CPU scheduling component to choose which of the ready processes to run

next. The majority of modern-day computers support multitasking. One of the ini-

tial reasons for creating multitasking OSs was to improve processor utilization by

keeping the CPU busy while I/O is performed. In a single-tasking system, if the

single running process requests I/O and needed to wait for the operation to com-

plete, then the CPU would remain idle until the I/O request was completed. By hav-

ing several processes ready to execute in memory, the CPU can switch to running

another process while I/O is performed. Changing from running one process to run-

ning another is known as context switching. But there is a high cost for a context

switch. The entire CPU state must be saved so that it can be restored when the pro-

cess is later restarted. Basically, when a running process—say process A—requests

I/O that can be handled by an I/O controller, the OS CPU scheduler module would

check to see if there are any processes in the ready state. If there are, one of the

ready processes—say, process B—will be selected based on the CPU scheduling

algorithm. The OS will save the processor state of process A (in A’s PCB) and load

the processor state of process B (from B’s PCB) into the appropriate CPU registers.

The OS will then give control of the CPU to process B, which moves to the running

state, while process A moves to the waiting (or blocked) state until the I/O opera-

tion is complete.

 Multitasking is now available in most computer OSs, including personal com-

puters. Even though a PC typically has a single interactive user, that user can

create multiple tasks. For example, if there are multiple windows on the display

screen, each is often handled by a separate task or process. In addition, other tasks

may be running in the background. Some early multitasking OSs could handle

only batch jobs—which were loaded on disk in bulk through card readers or other

old-fashioned I/O devices. Many current systems handle both batch jobs and inter-

active jobs. Interactive jobs are processes that handle a user interacting directly

with the computer through mouse, keyboard, video monitor display, and other

interactive I/O devices.

 We can further distinguish between two types of multitasking OSs: those that

usually interact with a single user and those that support multiple interactive users.

Single-user multitasking systems include most modern PCs that support windowing.

In such systems it is common that one user is interacting with the system but that the

user may have several tasks started simultaneously. For example, the user may have

an email program, a text editor, and a Web browser, all open at the same time, each in

a separate window. The task that has the current user focus is called the foreground

task, while the others are called background tasks. The other type of multitasking

system handles multiple interactive users concurrently, and hence is called a time-

sharing OS. We discuss these next.

 In our spiral approach part we describe two examples of single-user multitasking

OSs: an OS for a handheld Palm Pilot device in Chapter 4 and the Mac OS from Apple

in Chapter 5.

 Chapter 2 Operating System Concepts, Components, and Architectures 31

 2.4.3 Time-sharing OS and servers

 A multiuser or time-sharing OS also supports multitasking, but a large number of the

tasks (processes) running are handling users interacting with the machine. These were

called time-sharing systems because the computer time was “shared” by the many

interactive concurrent users. In terms of OS internals, the main difference between

interactive and batch processes is in their response requirements. Interactive jobs typi-

cally support many short interactions, and require that the system respond rapidly to

each interaction. But quick response to interactive users’ requirements calls for a high

level of context switching and this introduces a lot of nonproductive overhead. Batch

jobs, on the other hand, have no live user so rapid response is not a requirement.

Therefore, less context switching is needed and more time is spent on productive

computing. A time-sharing OS will support both interactive and batch jobs and will

typically give higher priorities for interactive jobs. Early time-sharing systems in the

1960s and 1970s, such as IBM’s OS 360 TSO 8 and Honeywell’s MULTICS, sup-

ported large numbers of interactive users, which were all logged in to the same system

through dumb monitors and terminals. This was because terminals cost many orders

of magnitudes less than the computer system itself in those days.

 As the price of hardware and processors was being dramatically reduced, the

need for time sharing declined. In modern computing the new generation of systems

that can be considered to be the successors of interactive time-sharing systems are

the systems that are used in file, database, and Web servers. File servers and data-

base servers handle requests for file and database access from tens to thousands of

users. Instead of being located at dumb terminals attached to processes running on

the server, the users are working at PCs or workstations and the service requests are

coming to the server through the network. Large database servers are often called

 transaction processing systems, because they handle very many user transactions

per second. Web servers handle requests for Web documents, and often retrieve

some of the document information from database servers. Database and Web servers

require OSs that can handle hundreds of concurrent processes.

 2.4.4 Network and distributed OS

 Most computers today are either permanently connected to a network, or are equipped

so that they can be connected and disconnected from some type of network. This

allows information and resource sharing among multiple machines, and requires that

the OS provide additional functionality for these network connections. This addi-

tional functionality can be categorized into two main levels:

 1. Low-level network access services. The OS will typically include additional

functionality to set up network connections, and to send and receive messages

between the connected machines.

 2. Higher-level services. Users want to be able to connect to other machines to

browse through information, download files (text, pictures, songs) or programs of

 8 OS 360 TSO stands for Operating System 360 Time Sharing Option.

32 Part 1 Operating Systems Overview and Background

various types, or access databases. This is typically done through Web browsers

or specialized services, such as telnet for logging on to remote machines or ftp

for file transfer. As we mentioned earlier, these services are considered by some

to be independent systems programs and by others to be part of the OS.

 The standard network protocols actually provide several levels of service, from the

basic hardware level to the user interaction level, as we will see in Chapter 15. Sepa-

rately from the network connection, a distributed OS can provide a wide spectrum of

capabilities. A very basic distributed OS, sometimes called a network OS, provides

the capability to connect from a machine where the user is logged in—called the

 client —to a remote machine—called the server, and to access the remote server.

However, the client user must know the name or address of the specific machine

they want to access. Most current systems provide at least this level of service. For

example, telnet and ftp services fall in this category.

 At the other end of the spectrum, a completely general distributed OS may

allow a user logged in at a client machine to transparently access all possible services

and files they are authorized to access without even knowing where they reside. The

OS itself will keep directory information to locate any desired file or service, and to

connect to the appropriate machine. This is known as location transparency. The

files and services may be physically replicated on multiple systems so the OS would

choose the copy that is most easily or most efficiently accessible—known as repli-

cation transparency. 9 The OS could also do dynamic load balancing to choose a

machine that is not heavily loaded when choosing a server. Such OSs would obvi-

ously be very complicated, and hence do not yet exist except in the realm of special-

purpose systems or research prototypes!

 Between the two ends of the spectrum, one can consider many types of distrib-

uted OSs that can provide more than the minimum capabilities but less than the full

wish list of capabilities.

 2.4.5 Real-time OS

 Real-time OSs are multitasking systems that have the additional requirement of time

deadlines for completing some or all of their tasks. Two types of deadlines are:

 1. Hard deadlines. A task with a hard deadline of, say, n milliseconds must be

completed within n milliseconds of submission; otherwise, it would be useless

and there may be very bad consequences for missing the deadline. Examples of

such tasks include industrial control tasks in a steel mill or an oil refinery, or a

task in a weapons guidance system.

 2. Soft deadlines. A process with a soft deadline of n milliseconds should be

completed within n milliseconds of submission; however, the deadline may

be missed without catastrophic consequences. An example could be a task to

update the display in a virtual reality game as the user moves about.

 Hard real-time OSs have scheduling algorithms that take into account the deadline

of each process and its estimated running time when deciding which process to run

 9 There are many additional transparency levels that a distributed OS can achieve; see Chapter 17.

 Chapter 2 Operating System Concepts, Components, and Architectures 33

next. These OSs are mainly used in embedded systems that are found in devices such

as aircraft or process control systems, where a software process that makes a crucial

decision must be completed within its specified deadline. Soft real-time systems, on

the other hand, only need to give high priority to the tasks that have been designated

as real-time tasks. So most current OSs—for example, Windows 2000 or Solaris—

provide soft real-time support.

 Unfortunately, most of the techniques that have evolved to give smooth average

response in most OSs are based on statistical decision making. These techniques will

not work in a hard real-time system. Such systems require unique algorithms for

scheduling time-critical events. As a result, we will not spend much time discussing

such systems. They are best treated separately.

 2.5 ARCHITECTURAL APPROACHES TO BUILDING AN OS

 2.5.1 Monolithic single-kernel OS approach

 The first OSs were written as a single program. This approach to building the OS is

called the kernel or monolithic kernel approach, and was illustrated in Figure 1.3.

As the monolithic kernel OS included more functionality its size grew, in some cases

from a few thousand bytes to many millions of bytes. With limited and expensive

memory, the OS size overhead (the percentage of main memory occupied by the OS)

was considered too large. This bloated OS not only occupied memory, but like most

large programs, the OS was less efficient than a more minimal system, had more

bugs, and was difficult to maintain, either to add features or to fix bugs. This led OS

designers to develop OSs based on a more modular, layered design.

 2.5.2 Layered OS approach

 The modular approach that was developed was a layered architecture. The OS

would be divided into modules that were limited to a specific function such as pro-

cessor scheduling or memory management. The modules were grouped into layers

of increasing abstraction—each layer provides a more abstract view of the system

and relies on the services of the layers below it. The layered approach would hide

the peculiarities and details of handling hardware devices, and provide a common

abstract view to the rest of the OS. Thus, when new devices entered the market-

place, new device drivers could be added to the kernel without drastically affecting

the other OS modules, which provide memory management, processor schedul-

ing, and the file system interface. This is illustrated in a very rudimentary way in

 Figure 2.4 .

 This approach can be extended to implement an OS with several layers. One

variation would allow modules at layer n to call only the modules in the next lower

layer n-1. Another variation would allow modules at layer n to call modules at any of

the lower layers (n-1, n-2, and so on). A further variation would allow level n modules

to interact with other level n modules, in addition to lower-level modules. Because

of the difficulty of separating complex OS functionality into multiple layers, usually

34 Part 1 Operating Systems Overview and Background

only two or three layers are used in practice. We examine more specific instances

of layered designs in later chapters. Most modern OSs are built on a layered archi-

tecture. However some OS programmers felt that the layered approach was not suf-

ficient, and that OS design should return to a minimum amount of code in the kernel

and the concept of microkernel.

 2.5.3 Microkernel OS approach

 The microkernel approach is illustrated in Figure 2.5 . Here only basic functional-

ity, usually the interfaces to the various types of device drivers, is included in the

microkernel. Specifically, the only code in these modules is code that must run in

 supervisor mode because it actually uses privileged resources such as protected

instructions or accesses memory not in the kernel space. The remainder of the OS

functions are still part of the resident OS, but they run in user mode rather than

protected mode. Code running in protected mode literally can do anything, so an

error in this code can do more damage than code running in user mode. So the

theory of the microkernel is that the benefits to this approach arise partly from the

fact that the amount of code that is running in supervisor mode is smaller, making

them more robust. It also makes them easier to inspect for flaws. Also, the extra

design effort required makes it more probable that the implementation will be cor-

rect. Finally, it is easier to port a small microkernel to a new platform than it is to

port a large, layered, but monolithic kernel. On the other hand, a microkernel must

make use of interrupts to make the necessary calls from the user mode portions

of the OS to the supervisor mode portions. These interrupts will often necessitate

context switches. Critics of the microkernel approach say that this makes a micro-

kernel OS run more slowly. (It should be noted that this issue is not resolved in the

OS community.)

Shell
(Command
Interpreter)

Utilities

User Programs
(browsers, games,
word processing)

Memory
Management

Processor
Scheduling

Device Drivers

Devices
(disks,

keyboards)
CPU Memory

File
System

API

Kernel

FIGURE 2.4

Layered model of

an Operating System.

 Chapter 2 Operating System Concepts, Components, and Architectures 35

 2.6 SOME OS IMPLEMENTATION TECHNIQUES AND ISSUES

 As we discussed in Sections 2.2 and 2.5 , an OS is a complex software system with

many modules and components. As with any such system, there will be many data

structures and algorithms implemented within a typical OS. In this section, we dis-

cuss a few implementation techniques that are part of most or all OSs. These subjects

include the normal method used for handling interrupts, queues and data structure

used in many OS components, an object-oriented approach to OS implementation,

and the topic of Virtual Machines.

 2.6.1 Interrupt handling using interrupt vectors

 As we have already mentioned several times, an interrupt is a mechanism used by

an OS to signal to the system that some high-priority event has occurred that requires

immediate attention. Many interrupt events are associated with I/O. Some of these

typical interrupt events are signaling that a disk block read or write has been com-

pleted, signaling that a mouse button has been clicked, or signaling that a keyboard

button has been pressed. As we can see, most of these interrupts correspond to some

hardware action. The hardware associates with each interrupt event a particular inter-

rupt number. The interrupting controller typically places this interrupt number in an

interrupt register when the corresponding event occurs. Depending on the particular

type of interrupt event, the OS has to take certain actions. The question that comes up

is, How can the OS efficiently determine which particular interrupt event has occurred,

and how does it start up the appropriate process that services that interrupt?

 The normal technique for interrupt handling uses a data structure called an inter-

rupt vector (see Figure 2.6). The vector has one entry for each interrupt number.

That entry contains the memory address of the interrupt service routine for that type

of interrupt. The interrupt number placed in the interrupt register is used as an index

into the interrupt vector. The interrupt vector entry is picked up by the hardware as

Shell
(Command)
Interpreter)

User
Mode

API

Kernel
Mode

Utilities
User Programs

(browsers, games,
word processing)

Memory
Management

Processor
Scheduling

Microkernel

File
System

Devices
(disks,

keyboards)
CPU Memory

FIGURE 2.5

Microkernel model

of an Operating

System.

36 Part 1 Operating Systems Overview and Background

an address and the hardware effectively calls the appropriate interrupt routine as a

subroutine. When the interrupt routine is finished it will simply return from the call,

resuming the process that was interrupted.

 In a small embedded system with only a few I/O devices the hardware may not

provide an interrupt system. The alternative is known as a status-driven system. In

such a system the application (or the OS) is mostly a large loop. It will check the

status of each device in turn to see whether it needs servicing.

 2.6.2 System calls

 Application programs normally need to use data and services managed by the OS.

For example, OSs typically manage all the hardware devices on the system, such as

sound cards, and applications are not allowed to access them directly. Also, applica-

tions may need to communicate between one another and the OS has to act as an

intermediary.

 Any normal application needs such abilities and the way it asks the OS for ser-

vices is by using a system call. A system call is much like any other function call.

First, the application will load certain registers with information describing the ser-

vice required and then will execute a system call instruction. However, instead of

directly calling a section of code that will do the function, the system call instruction

will usually cause an interrupt, which the OS will handle. The OS will perform the

requested service and then return control to the application. This mechanism also

allows the OS to implement some security by first checking to see if the application

is allowed to access the resource in the requested way.

 Generally, application development systems provide a library that loads as part

of application programs. This library handles the details of passing information to

the kernel and executing the system call instruction. Having this function provided

by the library reduces the strength of the connection between the operating system

and the application and make the application more portable.

Interrupt register

Index into interrupt vector

Interrupt vector

Address of interrupt service routine 1

Address of interrupt service routine 2

Address of interrupt service routine 3

Address of interrupt service routine N

FIGURE 2.6

An interrupt vector

for handling

interrupts.

 Chapter 2 Operating System Concepts, Components, and Architectures 37

 2.6.3 Queues and tables

 An OS manages many data structures to accomplish its tasks. Two of the common

data structures used are tables and queues. Tables are used to store information about

various objects that the OS manages. For example, the PCB, described in Section

2.2 , is an example of a table that the OS maintains to keep track of the informa-

tion associated with each process. Another frequently found table is the page table,

which is used to keep track of the address space of a process when the hardware sup-

ports paged memory (see Chapter 11). The OS will maintain one PCB and one page

table for each process. Another typical table is the open files table, which keeps an

entry for each file open in the system.

 The OS also maintains a number of queues to keep track of information that is

ordered in some way. Each resource that can be shared by multiple processes would

need a queue to hold service requests for that resource. For example, since multiple

processes may need to read and write disk pages, the OS maintains a disk schedul-

ing queue that has a list of processes waiting for disk I/O. Requests for printer ser-

vices may be maintained in a printer queue. A list of processes that are ready to run

can be maintained in a ready process queue.

 Many of these “queues” are not strictly speaking queues at all since a queue is

always managed on a first-in-first-out (FIFO) basis. But the scheduling algorithm

that utilizes the queue determines the order of entries in a queue. For example, if the

policy of choosing which process to run next were a priority policy, the scheduler

for the ready process queue would implement that policy. In the FIFO case each

new entry is placed at the end of the queue. When the CPU needs to execute a new

process, it would remove an entry from the beginning of the queue for processing. As

we will see, there are various ways for organizing queues depending on the particu-

lar requirements for each type of queue.

 Each entry in a queue must contain all the information that the OS needs to

determine the action that must be taken. For example, each ready queue entry may

contain a pointer to the PCB of a ready process. By accessing the PCB through the

pointer, the OS can retrieve the needed process information.

 2.6.4 Object-oriented approach

 One approach to OS development is to use the principles and practices developed

for object-oriented software engineering and apply them to OS design and imple-

mentation. In this approach, each OS module would be designed as a collection of

 objects and each object will include methods that are provided as services to other

parts of the OS or to application programs. Building the OS with objects provides the

many advantages of object-oriented software engineering, such as encapsulation of

object data structures, separating an interface from its implementation, extensibility

and ease of reuse of objects, and many other advantages. In simpler terms, the key

feature of an object is that the internal structure of an object is hidden and any access

to the data contained in an object is through the methods of the object. This makes

it less likely that an application can misuse an object and cause problems for other

modules.

38 Part 1 Operating Systems Overview and Background

 There have been several attempts at making an OS that is object oriented, most

notably the NEXTSTEP OS from NeXT and BeOS from Be Inc. A few research

projects have created—most notably Choices, Athene, Syllable, TAJ, and JNode—

an OS written in Java. But it seems that there is no major OS that is truly based on

objects. Usually a kernel module is written in C or assembler and a library provides

an API of object-oriented interfaces that can be invoked in most high-level languages

that provide support for objects. Windows NT is typical of such OSs. Data structures

that are internal to a single module are not objects.

 2.6.5 Virtual machines

 Yet another approach to OS design is the technique of using a software emulator for

abstracting or virtualizing a total system (devices, CPU, and memory). This concept

is referred to as a virtual machine (VM). One prime reason for VMs is that it allows

the different emulation environments to be protected from one another so that a crash

in one program does not crash others. The system design being abstracted can be

either an actual hardware design or an idealized application virtual machine.

 Hardware virtual machines

In this approach, a program or kernel subsystem will provide a software emulation of

an actual hardware machine. There are two different sorts of such emulation, one in

which the host hardware system itself is being emulated and another where another

CPU is being emulated. The latter sort was traditionally developed by a manufac-

turer to assist the migration of customers from an older system to a newer one by

providing a program that would emulate the older system. Various emulation pack-

ages were created by IBM, for example, to help customers migrating from the 1401

systems, then in common use, to the 360 series. In such cases the emulation is usu-

ally done by an application program running in user mode.

 Emulation of the host machine is often used to allow multiple OS kernels to

run simultaneously, as illustrated in Figure 2.7 . In such cases the emulation is done

by the kernel of a special host OS. This model allows one or more OS kernels

to run on top of a virtual machine layer as guest OSs. The VM layer creates an

interface that abstracts the hardware, so that each kernel believes that it alone is

running on the hardware. Kernels may be from different OSs or may be different

instances of the same OS. 10 One of the prime difficulties in the VM model is to cre-

ate a VM that accurately emulates the hardware—so that kernels may run on a VM

the same way they ran directly on the real hardware (only slower, because they are

actually sharing the hardware with other kernels). One of the first, if not the first,

such emulation packages was created by IBM for a modified version of the 360

model 40 and was known as CP-40. It ran multiple instances of client operating

systems—particularly CMS, the Cambridge Monitor System. That early package

has been reimplemented several times and the current version, z/VM, runs on their

z9 series of mainframes.

 10 In fact, the VM concept was created in part (by IBM) to allow OS programmers to test a kernel, since
even if the kernel being debugged crashed, other kernels would continue to run.

 Chapter 2 Operating System Concepts, Components, and Architectures 39

 VM systems are becoming quite common now. As one can easily imagine, having

one OS run on top of another OS is not terribly efficient. So contemporary VM OSs

are usually running a slightly modified version of the guest OS that is aware that it is

running in a VM environment and does things in a slightly different way so that the

VM emulation can be more efficient. In addition, newer CPUs often have additional

instructions and other features that assist in virtualization.

 Application virtual machines

It is now common to apply the term virtual machine (VM) to any software that

creates an abstraction of a machine. Sometimes the machine being emulated is not

an actual CPU but rather is an idealized machine specification designed to support

either a specific language or a broad class of languages. Such systems are some-

times known as application virtual machines. One early such design was known

as the p-code system and was designed by the University of California San Diego

to support their Pascal system. A VM that is currently very popular is the Java vir-

tual machine (JVM), which creates an abstract machine that runs Java programs.

Sometimes the JVM runs as a separate package that enables the execution of Java

programs. In other cases the VM emulation may be internal to another program

such as a Web browser. In such cases the Java programs are more restricted in what

they are allowed to do. Another such package is the Common Language Runtime

(CLR) created by Microsoft for support of their .net architecture. In this case the

abstract machine was designed for supporting a broad class of languages rather than

a single language.

 Since emulation of a virtual machine can be somewhat inefficient, code created

to run in an application virtual machine can usually also be compiled into native

Devices
(disks, keyboards)

MemoryCPU

Virtual Machine

Shell,
Utilities,

or
Programs

Shell,
Utilities,

or
Programs

Shell,
Utilities,

or
Programs

Kernel 1 Kernel 2 Kernel 3

FIGURE 2.7

A hardware virtual

machine.

40 Part 1 Operating Systems Overview and Background

machine code so that it will run faster. This technique is known as just-in-time

 compilation, or JIT. The binary code produced by JIT compilation is normally dis-

carded after execution but it can also be saved permanently for later reuse.

 2.7 MINIMALIST VERSUS MAXIMALIST APPROACHES
TO OS FUNCTIONALITY AND BACKWARD COMPATIBILITY

 We conclude this chapter with a discussion on what functionality should be included

in the OS. In other words, what exactly should the OS do? That is a big question.

Let us take a somewhat philosophical look at it. At one end of the spectrum is the

 minimalist philosophy—only those things that really must go into the kernel (or

microkernel) are included in the OS. Other components may be added into library

routines or as “user” programs (not part of the kernel, but usually not written by the

user). At the other end of the spectrum is the maximalist philosophy—to put most

of the commonly used services in the OS. For example, if a maximalist philosophy

were adopted, a service such as screen window management would be included in

the OS kernel, since almost everyone uses this service.

 Minimalists argue that their approach allows each user to choose what they

want. For example, a user may pick from a large group of window managers, and in

fact may pick two or more if desired. This makes it easier to select components and

build the desired configuration. A user may even write new components. Minimalists

also argue that this approach makes the OS modules easy to design and program,

and easier to debug. They often say that the resulting system is more “elegant” or

“cleaner.”

 Maximalists will counterargue that user choice in some fundamental areas is a

problem—it is too flexible. They say a common “look and feel” for common appli-

cations functions such as scroll bars, menus, and moving a cursor allow for a more

consistent usage and more satisfied users. This makes it easier for users to know the

basics of how applications work and creates consistency among applications. They

contend that common functions such as drawing on a screen, moving a mouse, and

menus, are used by almost every application program and should be accomplished in

one place efficiently and consistently—the OS. They will claim that some functions

may be done more efficiently in the OS and other functions—for example, security

features— must be done in the kernel.

 In reality very few OSs really are minimalist or maximalist—as in most argu-

ments the choice is made by a big dose of the “real world” injected into the dis-

cussion. For example, if we examine OSs for handheld small computers (personal

digital assistants), many of these real-world issues affect the design choices. These

issues include very limited memory, and hence making as many functions available

in the OS as possible in order to use less memory in the applications by sharing

routines. Another issue was to make a common look and feel, but to include only the

most commonly needed routines so that not everyone needs to pay the price of extra

memory use for infrequently used services.

 Chapter 2 Operating System Concepts, Components, and Architectures 41

 2.7.1 Backward compatibility

 One last issue, that of backward compatibility, is the price of success. This issue

has caused more difficulty for OS system designers and implementers than can pos-

sibly be imagined. 11 Backward compatibility is the ability to run old application

programs on newer versions of the OS. This ability is a selling point of almost every

new version of any OS—in fact, even new OSs that have no previous versions may

claim to be able to run applications done for other (popular) OSs without change—

 transparently. Note that this means that the executable program (the binary code)

must run unchanged on the new system.

 Some systems claim that the new system is “source code compatible”—that the

source code for the application must be recompiled, but not necessarily changed, to

move from old to new system. This does not help someone who purchased a program

and has only the executable! Not only does this require that every new version of the

OS contain all services in the previous versions—they must work the same way, even

though newer services doing the same or similar things may be more efficient and

more secure. One of the most horrible problems is that even bugs—those that may

have been discovered—must remain since some applications may have taken advan-

tage (used features!) of those bugs. For example, a famous bug in Microsoft DOS

that allowed one to truncate the size of a file—make a file size shrink —has remained

for decades in many versions of the OS—even through Windows—because in the

original “buggy” version, there was no other way to truncate files. It had been fixed

in a version soon afterward, but to allow compatibility with already existing execut-

able, it was fixed as an extension—a new service. The old service remained “buggy.”

(Compatibility issues are sometimes hidden under the famous statement: “It’s not a

bug—it’s a feature!”)

 2.7.2 User optimization versus hardware optimization

 One final point: Personal computers have stood the traditional goals of OSs on their

head. Until PCs came along, one of the chief goals of an OS was to optimize the

utilization of a bunch of very expensive hardware. This meant using every bit of

expensive memory (leading to the infamous Y2K bug), every instruction cycle of the

slow CPU, and every sector of the limited-capacity, expensive disk drive. Once the

level of integration of the circuitry made it fairly cheap to produce a personal com-

puter, the most expensive part of the total system became the unit sitting in front of

the monitor, not the unit sitting behind it. This means that the OS needs to be very

responsive to the keyboard and to update the screen displays as fast and as smoothly

as possible, even if that means using the CPU in a less efficient manner. GUIs are a

good example. They would most likely be much less common if we were still using

only mainframe systems that cost a million dollars each.

 11 After all, how difficult is it just to leave old code in the system?

42 Part 1 Operating Systems Overview and Background

 BIBLIOGRAPHY

 Bach, M. J., The Design of the UNIX Operating System.

Englewood Cliffs, NJ: Prentice Hall, 1986.

 Beck, M. et al., Linux Kernel Programming,

3rd ed., Reading, MA: Addison-Wesley, 2002.

 Hayes, J. P., Computer Architecture and Organization.

New York: McGraw-Hill, 1978.

 Lewis, R., and B. Fishman, Mac OS in a Nutshell.

Sebastopol, CA: O’Reilly Media, 2000.

 Russinovich, M. E., and D. A. Solomon, Microsoft

Windows Internals, 4th ed. Redmond, WA: Microsoft

Press, 2005.

 WEB RESOURCES

 http://developer.apple.com/technotes/

 http://www-03.ibm.com/systems/z/os/zos/index.html

(IBM mainframe OSs)

 http://www.academicresourcecenter.net/curriculum/

pfv.aspx?ID=7387 (Microsoft ® Windows ® Internals,

Fourth Edition: Microsoft Windows Server ™ 2003,

Windows XP, and Windows 2000 by Russinovich,

M.E., and D.A. Solomon)

 http://www.linux.org (the home of Linux kernel

development)

 http://www.kernel.org (a repository of historic kernel

sources)

 http://www.osdata.com (Operating System technical

comparison)

 http://www.tldp.org (The Linux Documentation Project)

 REVIEW QUESTIONS

 2.1 What are some of the types of resources that an

OS must manage?

 2.2 What is the difference between a program and a

process?

 2.3 What are the states that a process can be in?

 2.4 How many processes can be in the run state at the

same time?

 2.5 What sort of events can cause a transition from the

run state to the terminate state?

 2.6 Name at least a few things that a process might be

waiting on.

 2.7 Some information stored in a PCB is not always

kept current. What are some examples of such

information?

 2.8 SUMMARY

 In this chapter, we started with a simple user scenario

and described some of the actions within the sce-

nario that are undertaken by the OS. We then gave an

overview of the main types of system resources that

the OS manages, and discussed the major OS mod-

ules. Then we defined the process concept, which is

central to what the OS does, and described the states

of a process and some of the information that the OS

maintains about each process. We then discussed the

characteristics of different types of OSs, from sys-

tems that can execute a single process at a time to

those that manage concurrently executing processes

to time-sharing and distributed systems.

 Following that, we presented some of the different

architectural approaches that have been taken for con-

structing an OS. These include monolithic OS, micro-

kernels, and layered architectures. We discussed some

of the common data structures that an OS maintains,

namely interrupt vectors and queues, object-oriented

systems, and virtual machines. Finally, we concluded

with a philosophical discussion on the minimalist ver-

sus maximalist approaches to OS functionality.

 Chapter 2 Operating System Concepts, Components, and Architectures 43

 2.8 Give examples of the three types of processes:

user, system, and OS.

 2.9 The chapter discussed five different overall design

types for OSs. What design types do these exam-

ples belong in?

 a. OSs in handheld computers and PDAs

 b. UNIX

 c. Novell Netware

 d. VCRs

 e. Automobile engine

 2.10 If we are writing applications, what are some of

the reasons that we need an OS to manage the

hardware for us?

 2.11 What are some of the reasons why we divide an

OS into separate modules?

 2.12 What is a “microkernel” OS?

 2.13 Generally speaking, object-oriented programming

is less efficient than procedural programming.

Why would we want to use a less efficient tool to

make an OS?

 2.14 When an OS gets an interrupt from a device, what

mechanism does it usually use to select the code

to handle the interrupt?

 2.15 How does an application ask the OS to do

something?

 2.16 True or false? The evolution of OSs has resulted

in the present state in which most modern OSs are

virtual machine OSs.

 2.17 What are the two modern software virtual machine

architectures?

 2.18 Do you feel that an OS should include many

common system functions or that it should con-

tain only a minimum level of functions, leaving

as much as possible to be in additional layers and

libraries? Justify your answer.

 2.19 What is the most standard OS API that applica-

tions can be designed around?

45

 Part Part
 Building Operating Systems

Incrementally: A Breadth-Oriented

Spiral Approach

2 2

 In this part:

 Chapter 3: A Simple, Single-Process Operating System 47

 Chapter 4: A Single-User Multitasking Operating System 67

 Chapter 5: A Single-User Multitasking/Multithreading Operating

System 89

 Chapter 6: A Multiuser Operating System 113

 Chapter 7: Parallel and Distributed Computing, Clusters,

and Grids 127

 P
art 2 of this book is the part that makes the book different from others. Other

books tend to treat a series of separate topics concerning different aspects of

typical OS in depth, but isolated from one another. Instead, this part of the

book presents a series of chapters that treat selected operating systems to show how

operating systems were forced to evolve as the underlying hardware evolved and the

expectations and demands of users grew. The systems that were selected all run on a

personal computer of some sort. This choice was deliberate. It was based partly on

the belief that such computers will be familiar to most students, perhaps having seen

many of these machines and OSs before. They are also the systems that students are

most likely to have access to, at least the more modern systems. At the same time,

the evolution of the OSs for personal computers paralleled that of OSs for larger

machines. As a result, examples exist of personal computer OSs that range from the

most primitive to the most complex. Many of these OSs are also available on larger

machines, including some of the largest mainframes available today.

 Part 2 consists of five chapters. Chapter 3 discusses an early personal computer

OS, CP/M. This is a single-user, single-tasking OS with no graphical user interface,

46

or GUI. It supported only a flat file system. As such, it was very similar to many of

the early mainframe OSs such as IBSYS for the IBM 709x series. We show all of the

basic mechanisms required of the OS in these simple systems. These mechanisms

include separation of the kernel from the OS and file system support.

 In Chapter 4 we look at an OS that introduces two additional concepts: the idea

of running multiple programs at the same time and the use of a GUI. The OS that is

covered is the Palm OS, used in many PDAs and cellular phones. These two addi-

tional requirements necessitate additional OS mechanisms to support them, most

notably the idea of CPU abstraction and a process control block. PDAs and cell

phone systems usually do not have secondary storage devices, but they still have the

concept of a file system because the metaphor is so familiar to application program-

mers. They do have a GUI, but the use of the screen is limited by its very small size.

We discuss the impact these two restrictions had on the design of the OS.

 The OS series discussed in Chapter 5 introduces additional requirements. It is

the Macintosh OS series, and it was designed from the start with secondary storage

in mind. The evolution of this family is interesting in that it is in itself an example

of a spiral evolution. The only feature that the MAC OS initially offered that was

not discussed in the Palm OS was that the MAC OS GUI could have overlapping

windows. It was still a single-user system and had a flat file system, just as did CP/M

and the Palm OS. However, as the MAC OS evolved, Apple added many new fea-

tures such as multitasking, a hierarchical file system, multiple users (though not con-

currently), multiple CPUs, and eventually a virtual memory system. Each of these

mechanisms is discussed in turn, and the virtual memory topic leads naturally into

the next chapter.

 Chapter 6 covers Linux as an example of an OS that has been ported to many

different hardware platforms ranging from embedded systems to real-time systems

to supercomputers. The main distinction made here for Linux is that it was designed

with the assumption of multiple users at multiple terminals. In order to provide this

functionality an OS must provide more protection mechanisms in the OS, and espe-

cially in the file system. Linux is also an example of an open source OS, and this

distinction is explored in this chapter as well. A later portion of the book covers

Linux in greater detail.

 Chapter 7 explores the issues that arise when an OS is designed that spans mul-

tiple computer systems. Often, such systems cross administrative domains. Almost

certainly the policies and interests of the institutions involved are not the same.

Indeed, they may even conflict with one another. Still, the institutions involved have

found some common interests that compel them to establish systems that cross such

boundaries, and GLOBUS is used in this chapter to illustrate some of the issues

involved. Other systems are discussed as well.

47

 Chapter Chapter

 A Simple, Single-Process
Operating System

In this chapter:

 3.1 Introduction: Monitors and CP/M 48

 3.2 Characteristics of a Simple PC System 50

 3.3 Input/Output Management 52

 3.4 Disk Management and the File System 54

 3.5 Process and Memory Management 58

 3.6 Summary 63

 W
e now start the “spiral” part of the book, where each chapter discusses a type

of operating system based on a particular real OS. We start with a real but

simple OS with limited capability and discuss progressively more complex

OSs in the following chapters. We base most of our presentation in this chapter on the

features of an early personal computer operating system—CP/M—and the hardware

commonly used to run this system. We discuss how these OSs were designed as well

as the rationale behind the design. Although these systems were single-process, lim-

ited functionality systems, they provided sufficient power for hundreds of applications

to be written for millions of personal computers. Thus, they provide a good practical

example of a simple operating system. The issues discussed in this chapter—such

as I/O management, the file system, and memory and process management—are

expanded upon in subsequent chapters as more complex operating systems are intro-

duced. However, we start here with a basis: real but simple functionality.

 This chapter is organized as follows. Section 3.1 describes the predecessors

of simple operating systems, called monitors, and discusses how they evolved into

early operating systems because of the need for standardization. In Section 3.2 ,

we describe the characteristics of the early PC systems for which this type of OS

was used. Then we discuss how input/output was managed in such an early OS in

 Section 3.3 , followed by description of the file system in Section 3.4 , and process

and memory management in Section 3.5 .

 The systems of this era were quite limited—they ran only one user application at

a time. Process management was initially limited to loading and starting a particular

application program. Late in the life of CP/M a background printing function was

 3 3

48 Part 2 Building Operating Systems Incrementally: A Breadth-Oriented Spiral Approach

added. This facility was the beginning of the concept of multiprocessing as it is car-

ried out in more modern OSs. Memory management in the OS was limited to which

part of memory to use for the OS, the interrupt vector, the user program, the program

data, and so on. But because memory was quite limited, large programs often did not

fit completely into memory or were limited in the amount of data they could handle.

It was necessary for an application programmer to break down such programs into

sections, and to replace one section in memory with another as needed. This memory

management technique, known as overlays, is discussed in Section 3.5 . Again, these

techniques foreshadow the more complex memory management techniques found in

a modern OS.

 3.1 INTRODUCTION: MONITORS AND CP/M

 We start this section with a discussion on why a need emerged for a PC operating

system. The predecessors of these OSs were called monitors, 1 and had very limited

capabilities. There was no standard for monitors—each manufacturer of early PC

systems used to write their own monitor program, which had unique commands and

conventions. This variety meant that early application programs had to be rewritten

for each monitor.

 3.1.1 Introduction to monitors: The predecessors of simple OSs

 When personal computing was young and single-chip microprocessors made it pos-

sible to build small, relatively inexpensive computers, there was a software crisis.

The advent of cheap microprocessors allowed small startup companies to sell kits for

home hobbyists who wanted to build their own computer. These kits typically con-

tained a circuit board, a microprocessor, some memory, and some additional device

controller chips. The additional chips were for controlling various input and output

devices—for example, cassette tapes, floppy disks, external video terminals, and

printers. There were a large number of companies selling PC kits. At first they were,

by any standard, very limited. In early systems of this type, memory size was one

to four kilobytes—or sometimes even less. Application programs were written in

machine language or assembly language. There was typically no operating system.

Instead, there was a small monitor program usually stored in ROM —read-only

memory—that would allow an application to do simple, common tasks, such as:

 ɀ output a character to a device such as a video display or Teletype

 ɀ get a character from the keyboard device

 ɀ save the contents of all or part of memory to a cassette tape or floppy disk

 ɀ restore memory from a saved image on tape or disk

 ɀ print a character to the printer

 The monitor did only these basic tasks and not much else.

1 We are talking about a software module that is a precursor to an OS, not a video display terminal,
sometimes also called a monitor and often used on computers.

 Chapter 3 A Simple, Single-Process Operating System 49

 An application program could print a character (e.g., a “1”) on the console —a

video display or Teletype—by calling the monitor using the following steps:

 1. Put the character in a specific register as specified by the monitor (assume that

this is register E). In this case, the value 31 Hex (the ASCII value of “1”) is

placed in register E.

 2. Select a particular monitor function, in this case, the “print a character” func-

tion, which has value 2. Place the number corresponding to the selected monitor

function in register C.

 3. Finally, a call to the monitor is executed through Interrupt 5. This would cause

the monitor to execute the print function called for by the function code stored

in register C using the character stored in register E.

 4. After the monitor outputs the character, it returns a status code in register A that

indicates OK or not OK. Not OK indicated some exceptional condition such as

a device that is not responding or illegal values for some of the parameters to the

function. The application should look at the status code in register A to determine

an appropriate action in case of errors. Typical early applications did not always

check for errors because there was little they could do for most errors anyway.

 3.1.2 Why CP/M? What was the software crisis?

 There were many companies building computer kits, and each had to provide the

software for a small monitor. These monitors were not large in terms of memory

requirements—a few hundred or a few thousand bytes. Typically, a monitor pro-

vided only a dozen functions or so, but these functions required time and expertise

to develop, debug, and build. Even worse, there was no standard monitor or interface

to a monitor. Each manufacturer simply implemented whatever functions they imag-

ined that programmers wanted. For example, passing parameters to functions might

use registers in one monitor. In another monitor, the parameters might be passed in

memory locations. They might use some combination of both methods in a third

monitor. This created a problem for application programming. How could a pro-

gram be written that was portable —that is, it would run on different manufacturer’s

computers? 2 Because of the different monitor programs, application programs would

need to be specially written for each manufacturer’s computers. This situation led to

the development of CP/M (Control Program/Monitor). Created for microcomput-

ers based on the Intel 8080/8085 CPU circuits, it was initially the product of one

person, Gary Kildall of Digital Research, Inc.

 3.1.3 Components of CP/M

 CP/M (Control Program/Monitor) was written to allow software developers, users,

and manufacturers to have one single, simple, standard interface. The hardware devices

would be isolated from the operating system by a layer of software: the BIOS (Basic

Input/Output System). This BIOS would be similar to a monitor but with standard

2 Since the early application programs were written in machine language, the CPUs had to be identical,
or at least compatible—that is, one CPU’s instruction set had to be a superset of the other.

50 Part 2 Building Operating Systems Incrementally: A Breadth-Oriented Spiral Approach

specified functions and interfaces. Each manufacturer would adapt the BIOS to the set

of devices included with their particular machine. 3 The interface to the BIOS, how-

ever, was the same, no matter how the underlying devices might work. Porting CP/M

to a new system consisted mostly of writing the BIOS routines for the hardware.

 The core of the operating system was called the BDOS (Basic Disk Operating

System). It was what we call the kernel today. It would be independent of the hardware

and would call the more primitive services in the BIOS. The BDOS software would be

the same for any system that CP/M was to run on. This kind of standardized interface

that provides general system functions but hides the messy hardware details is called

an abstraction. We refer to the technique of abstraction many times in this book.

 The last part of the OS was a user interface to the operating system called the

 CCP (console command processor). The other commands that the CCP executed

were mostly programs on the disk. These three components of a CP/M operating

system were quite small. Each component was 2,000–4,000 bytes in size and all of

CP/M fit on a few sectors of a floppy disk for booting the computer.

 The existence of a de facto standard in CP/M encouraged software writers

to develop application software for personal computers built by a wide variety of

manufacturers. The software could support many input and output devices—such

as different capacity floppy disks, hard disks, and video terminals. Applications did

not need to be custom written for each type of computer. There were hundreds of

programs written within a very short time. For programmers there were text editors,

compilers for many programming languages, and debuggers. There were word pro-

cessors, accounting packages, simple file systems, games, and many other programs

written that created a booming market for personal computers. And since the operat-

ing system was well designed, with a clearly specified interface at each layer, there

were several replacements for the CCP that offered different interfaces.

 When IBM decided to enter the personal computing market, the decision was

initially made to use the well-established CP/M standard. Since the CPU for the IBM

PC (Intel 8088) was not exactly compatible to the CP/M-80—which was based on

Intel 8080 and Zilog Z-80 processors—some small modifications were made. The

IBM hardware was well known and specific, so the BIOS could take advantage of

those characteristics. 4

 In the following sections, we take the liberty of abstracting the hardware of early

IBM PCs and CP/M computers. Our purpose is not to teach CP/M, but rather to use

it as an example to illustrate the features and functionality of a simple OS.

 3.2 CHARACTERISTICS OF A SIMPLE PC SYSTEM

 Early PC systems consisted of a main circuit board—the motherboard of the PC.

The motherboard had a microprocessor chip (CPU), some random access memory

(RAM), a ROM memory that contained the BIOS, and several other integrated

3 It was also possible for a hobbyist user to do this adaptation, since instructions and examples came with
the software. Even something as simple as adding memory to a system required recreating the BIOS.
4 In the end, IBM adopted the MS/DOS operating system—developed by Microsoft—for their PC.

 Chapter 3 A Simple, Single-Process Operating System 51

Keyboard

Main
Memory

(RAM and
ROM)

Video
Monitor
Display

Video
Controller

Keyboard
Controller

System Bus (on Motherboard)

Hard
Disk

Controller

Printer Floppy Disk Drive Hard Disk Drive

CPU
(Processor)

Expansion
Card

Floppy
Disk

Controller

FIGURE 3.1

Hardware

components

in an early PC

system.

 circuits (ICs) that interfaced these chips together. The motherboard had some slots

to insert additional expansion circuit boards—called cards in early PC terminol-

ogy. These cards included a video controller that was connected to a video moni-

tor by plugging the monitor’s cable into the video controller card. Other expansion

cards could include additional RAM and floppy disk and hard disk controllers. User

input/output was through a video monitor and keyboard. The keyboard was plugged

directly into the motherboard, which had a keyboard controller chip built in. There

was also a simple clock or timer chip on the motherboard.

 A simple system schematic view of the typical hardware components in an early

PC computer system is illustrated in Figure 3.1 . Some of the characteristics of this

type of system that had major effects on the design of the operating system were the

following:

 1. Main memory was quite limited in size. This led to the OS design decision that

a single application program would be loaded into memory at a time. Because

the CP/M OS was quite small, it would be permanently placed in memory. This

includes the loader, interrupt handler, and device drivers. If an application pro-

gram did not fit into the remaining available memory, the application would

have to be written so that it is divided into sections that individually fit in mem-

ory. When a new section is needed, a memory management technique known

as overlays could be used by the application to replace the old section with the

new one.

 2. Disk format was standardized. The disk block size and format was fixed for

both floppy and hard disks in early PCs. This led to a standardized file system

design that was based on the standard disk format.

52 Part 2 Building Operating Systems Incrementally: A Breadth-Oriented Spiral Approach

 3. Interrupt handling was mainly for I/O devices. Since one application would

be running at a time, there was no need for switching between applications. No

CPU scheduling was needed in the OS. The main types of interrupts were for

handling I/O devices.

 3.3 INPUT/OUTPUT MANAGEMENT

 I/O handling was limited in early OSs since the types of I/O devices were quite lim-

ited compared to the wide variety available nowadays. Most application programs

for early PCs needed the following I/O services:

 1. Read characters from the keyboard.

 2. Write characters to the video screen.

 3. Print a character to the printer.

 4. Utilize the disk file system to create a new file, read and write to the file, and

close a file.

 One problem for many programs was the lack of flexibility in handling keyboard

input and screen output. Because there were many different companies making com-

puter hardware that worked differently, the OS tried to provide a standard way of

dealing with these differences.

 Another problem was performance: executing some I/O commands by direct calls

to the BIOS or the hardware was often much faster and more flexible than calling the

appropriate OS command. This led to a tradeoff between portability —if application

designers used only OS calls to perform I/O—versus the flexibility and higher speed

that was possible if application designers used direct calls to BIOS and hardware func-

tions. As an example, we discuss these tradeoffs with respect to the two most common

I/O devices in early systems: keyboard for input and video monitor for output.

 3.3.1 Keyboard input—Portability versus flexibility

 Keyboards came in many types. They might have 65 to 95 keys placed in different

places on the keyboard. The data transferred from the keyboard might be serialized

or parallel and characters might be represented by seven or eight bits. How could this

be standardized? The BIOS was customized for each type of keyboard, but would

provide the same set of BIOS interface functions to the rest of the OS. The BDOS

would then use those BIOS functions to create a simple OS interface for the key-

board. These functions—OS system calls—for the keyboard were: (1) read a charac-

ter from the keyboard and (2) check if a key has been pressed. For many applications

this was adequate. If an application used these standard functions for its keyboard

input, it would be portable to any computer system.

 But some applications needed additional flexibility. For example, a word pro-

cessor may want to use “modified” keys—a “control ⫹ S” might save the file, and

a “control ⫹ C” might pop up a command list menu. These special keystrokes or

keystroke combinations created a problem because they were not recognized by the

BDOS and hence could not be passed on to an application. Even worse, some com-

binations like “control ⫹ C” might be interpreted by the BIOS or BDOS and cause

 Chapter 3 A Simple, Single-Process Operating System 53

some OS action such as a reboot. In this case, it would obviously not pass the key-

stroke combination to the application.

 Applications that wanted additional flexibility to handle the keyboard so that

combinations of keystrokes had meaning to the application bypassed the BDOS.

This was trivial to do. It might mean simply reading keys from the BIOS rather than

the BDOS, or even reading keys directly from the keyboard hardware (actually the

keyboard interface chip). It was easy to bypass the operating system (BDOS) because

in early systems there was no memory protection. Any application could address any

part of memory. It was just as easy to use BIOS calls as to use BDOS calls, and the

BDOS call would not do what was needed by the application. The problem with this

approach is that programs would not be portable anymore, especially if the applica-

tion went directly to the hardware.

 3.3.2 Video monitor output—Portability versus functionality

and performance

 The screen—or video monitor —posed even more significant problems. First, the

functions available through the BDOS and BIOS interface functions was rather lim-

ited. There were many features of video systems that could not be used directly

by the simple OS system calls. For example, one could not use color, write mul-

tiple “pages” of video memory to simulate motion by rapidly displaying a series of

images, or move the cursor independently of writing to the screen. Second, and even

more critical, screen output using BDOS was very slow. Many applications would

write characters directly to the screen memory and access the video controller hard-

ware directly. Many applications would also move the cursor using BIOS calls. The

main reason for bypassing BDOS was to improve application performance.

 Writing directly to video memory provided not only more functionality but was

also much faster than going through an OS system call. Depending on the program-

ming language used, it could be 100 times faster or even more! Bypassing the OS to

display characters created the same type of portability problems that bypassing the

keyboard did. But the performance benefits were so significant that many applica-

tion programs ignored portability to improve performance. This was especially true

of game programs, which always tried to wring every possible ounce of performance

out of the hardware. Games have always driven the rapid progress of PC hardware

development.

 For example, to put a white-colored “ ⫹ ” on a black screen background required

a call to a single machine instruction: “Move 0F800, 2B07.” Writing text directly

to video memory was relatively straightforward. Video memory began at location

0F800 Hex, which corresponded to the first visible character on the upper left corner

of the screen. It was followed by the video attributes of that character. In the case of

a color adapter this was 8 bits of information: 3 bits of color information for the fore-

ground 5 ; 3 bits of background color; one bit for “high intensity foreground” (bright);

and the last bit for blinking the character. So the character “ ⫹ ” (“2B” ASCII) was

written to the screen at location upper left corner (F800) and was set to a foreground

5 Color was specified using 1 bit each for red, green, and blue; white is all 3 bits as 1’s.

54 Part 2 Building Operating Systems Incrementally: A Breadth-Oriented Spiral Approach

Disk
rotation

Track 76 Center hole

Read/write arm
movement direction

Read/write
head

Current track
Index hole

Track 0

FIGURE 3.2

A floppy disk

for early PCs.

of white (“7”) on a black (“0”) background. A black character on a white background

would simply have the attribute “70.”

 3.4 DISK MANAGEMENT AND THE FILE SYSTEM

 Since so many applications bypassed the keyboard and video OS system calls, what

did the OS really provide? One of the main services that such an early OS provided

was a standard and portable file system. About 75% of OS system calls were disk file

related. In this section, we discuss the file system for CP/M but first we describe the

disk system that is the basis for the file system.

 3.4.1 The Disk System

 In early PC systems, there was a standard for the hardware disk devices for use with

the file system—the 8-inch floppy, illustrated in Figure 3.2 . This floppy had a hole

in the middle where the floppy disk drive would position it on a spindle. The spindle

is connected to a disk drive motor that would spin the disk at 360 revolutions per

minute. The standard disk had 77 tracks numbered from track 0 at the outside track

furthest from the hole to track 76 at the innermost track. Tracks were concentric

circles—each track began and ended equidistant from the center hole. A track con-

tained 26 sectors (sometimes called blocks), the first sector numbered 1 and the last

sector 26. 6 Each sector contained 128 bytes of data, plus some control information,

such as which sector number it was. Floppy disks were two-sided, with the sides

numbered, not surprisingly, 0 and 1. There was a small hole called the index hole

near the center hole that was used by the disk controller to find out where the first

sector of each track was. Since all tracks had 26 sectors, the tracks were longer on

the outside and shorter on the inside, but each track held the same amount of data. 7

6 Tracks started at 0, but sectors started at 1.
7 This is no longer true in modern hard disks.

 Chapter 3 A Simple, Single-Process Operating System 55

 The disk system was comprised of the disk drive and disk controller. The disk

drive held and rotated the disk media (a floppy disk), which actually contained the

stored data. The disk controller was usually built on to the computer’s motherboard

or on a circuit card plugged into the motherboard. Disk drives can move a disk

head —which contains read and write magnetic sensors—from track to track. To

read any individual sector on a track, the drive must wait for the sector to rotate

under the disk head.

 A disk controller can take commands to read or write a sector or multiple sectors

on a given track and on a given side of the disk. When the disk drive head movement

motor moved the head it might sometimes miss (go to the wrong track). The con-

troller would notice this (each sector of each track has the track number on it) and

would reposition the disk head correctly. Sometimes sectors may be incorrectly read

and again the disk controller would notice this and try to read again. The controller

would also reorient itself to start looking for sectors on tracks starting after the index

hole rotates around. All of these activities are invisible to the OS or even the BIOS.

They are implemented either at the hardware level of the disk controller itself or on

the software controlling the specialized processor on the disk controller. This soft-

ware embedded in ROMs on controllers is often known as firmware.

 Such a standard disk for early PC systems contained: 77 (tracks) * 26 (sec-

tors per track) * 128 (bytes per sector) * 2 (sides) ⫽ 512,512 bytes of raw data

(500 Kbytes), after being formatted by the OS. Disk formatting is the process of

writing control information on the disk to divide the disk tracks into sectors. This

standard disk was used as the basis for implementing the OS file system for PCs,

which we discuss in the next section.

 3.4.2 The File System

 The OS had a simple file system built on top of the BIOS to store user and system files.

A part of the system files that can be stored on a disk contain the binary OS code itself.

In addition, each disk has a directory that stores information about all files stored on

the disk, their sizes, the physical disk locations (sectors) where they are stored, and so

on. The files stored on disk may contain any of the following types of data:

 ɀ application-produced data (documents, spreadsheets, source code)

 ɀ application program executables (binary code)

 ɀ directory information (the names of the files, date created, location—where it is

stored on the disk)

 ɀ the binary executable of the operating system (the OS executable, used to load

or “boot” the OS)

 To accommodate the different types of information stored on a disk, each physical

disk is divided into three areas for a BIOS file system, as shown in Figure 3.3 :

 ɀ a reserved area, where the OS executable is placed (also called the disk boot

area)

 ɀ the file directory area containing entries with information about each file stored

on disk

56 Part 2 Building Operating Systems Incrementally: A Breadth-Oriented Spiral Approach

Disk Boot Area

File Directory Area

Data Storage Area

Track 0

Track 76

FIGURE 3.3

Typical CP/M file

system layout.

 ɀ the data storage area for data and program files, which occupies the remainder

of the disk and is the largest part of the disk.

 The BIOS has a built-in table that gives the size of each of these areas. We now dis-

cuss the contents of each of these areas in more detail.

 Disk boot area

 The simplest part of the file system is this reserved area, which holds the OS binary

for booting the PC. This area is not visible from the file system—it has no directory

entry and no name. The loadable image of the BIOS, BDOS, and CCP are written

in this area, sector-by-sector, track-by-track, starting at track 0, sector 1. These are

not part of any “file.” They simply occupy the first few tracks of a disk. The BIOS is

usually 2 KB, the BDOS is 3.5 KB, and the CCP is 2 KB, so together the OS binaries

occupy the first three tracks.

 When the computer is turned on or rebooted a small program in ROM is run that

copies the OS executable image from disk to memory and then starts executing this

program—the Operating System. This is called booting or OS loading. 8

 File directory area

 The size of the directory area is fixed and is recorded in a table in the BIOS. For a

floppy disk the directory holds up to 64 entries of 32 bytes each. 9 A disk directory

entry layout is shown in Figure 3.4 . Each entry in a directory contains the following:

 1. A user number. This is actually a group number from 0 to 15, which allows mul-

tiple users or groups to share a disk and collect their files into a group. Notice

that there are actually no subdirectories—all files are in one directory. Group

numbers provide an illusion of having single-level subdirectories. In effect these

are virtual subdirectories.

 2. A file name and file type. These may be considered as one item, which is 1–8

characters of file name and 0–3 characters of file type—often called 8.3 file

8 In modern PCs, a similar booting is usually done from the hard disk rather than a floppy. The hard disk
is usually preloaded with an OS by the PC manufacturer.
9 For hard disks, it is of course much larger.

 Chapter 3 A Simple, Single-Process Operating System 57

User Number - 1

File Name - 8

File Type - 3

Extent Counter - 2

Reserved - 1

Number of records - 1

Allocation - 16

FIGURE 3.4

CP/M file directory

entry.

names. If the actual file names are smaller than 8.3 they are padded with spaces.

Not all characters are allowed in file names. A period is used to separate the file

name and type (e.g., MYFILE.DOC) but is not stored in the directory, so using

periods or spaces is not allowed. While utility programs that come with the OS

do not allow illegal names, the OS calls that an application program uses to cre-

ate, open, or rename a file do not actually check the names, so an application can

create files that may not be accessible to other programs.

 3. An extent counter. An extent is the portion of a file controlled by one directory

entry. If a file takes up more blocks than can be pointed to by one directory entry

it is given additional directory entries. The extent is set to zero for the first part

of the file and then is sequentially numbered for each of the remaining parts of

the file. Large files will have multiple directory entries with the same file name

but different file extent numbers and a different group of allocation pointers in

each entry. Since files may be deleted and their directory entries reused, the

extents may not be in order in the directory.

 4. The number of records. This is actually the number of 128-byte records used in

this extent. If the count is 080x, this extent is full and there may be another one

on the disk. File lengths are rounded up to the nearest 128 bytes, so applications

had to know how much data was really in the last record. This lead to the con-

vention of a Control-Z character to mark the end of a text file.

 5. An allocation map. This is a group of numbers of (or pointers to) the disk blocks

that contain the data for the file. There are eight pointers of 16 bits each. Each

value points to a sector on the disk that contains part of the file. If the file is so

small that it contains fewer than eight sectors, then the unused pointers are set to

zero. If the file is too large and eight sectors are not enough to contain the file’s

data, then an additional extent is allocated and another directory entry filled in.

On some systems there were 16 pointers of eight bytes each. Such inconsisten-

cies were one of the main problems that restricted the growth of CP/M.

 Data storage area

 The data storage area contains the data blocks for the files. For the system to

access a file, the user or application program would provide the file name and the

58 Part 2 Building Operating Systems Incrementally: A Breadth-Oriented Spiral Approach

file system would search the disk directory to determine if a file with that name

was stored on the disk. If the file name was found, the directory entry would have

the addresses of the sectors where the file was stored, so the file data could be

accessed.

 Note: Actually, the disk structure is just a bit more complicated. If you count

up the total number of file pointers as described above, in all files, 64 (directory

entries) * 8 (file pointers per entry) gives 512 sectors, but there are more sectors

(77 * 26 ⫽ 2002) on a floppy disk! This would not allow one to use most of the

floppy space. So, in reality, rather than pointing to an individual sector, sectors are

grouped together into allocation blocks, which are consecutive sectors grouped

together. The size of these allocation blocks is determined by the size of the disk, but

in typical early floppies it is eight sectors, or 1024 bytes. So in reality each directory

entry points to up to eight allocation blocks of 1024 bytes each.

 Here are a few observations about and limitations of this file system structure:

 ɀ There are no dates or times in the directory.

 ɀ There is no explicit file size entry, so the file size must be calculated roughly

from the number of pointers in its directory entry and possible extents.

 ɀ There is only a single directory with no subdirectories, but group numbers give

the illusion of a one-level subdirectory.

 ɀ A file must be stored entirely on one disk.

 ɀ If the directory is full, so is the disk. The directory is a fixed size, so only 64 files

or fewer can be stored on a floppy disk.

 An Observation: One of the biggest complaints against CP/M was the 8.3 file names,

something that should have been relatively easy to fix. Directory entries, where

file names are stored, are 32 bytes long. They could have easily been lengthened to

48- or 64-byte directory entries, allowing 23.3 or even 40.3 names. But the original

design was simple, and the designer did not want to use too much disk space for the

directory. The design compromise was made to minimize the disk space (and mem-

ory space) for each directory entry. This was particularly important for floppy disks

where the file contents and directory entries together were a few hundred kilobytes.

 3.5 PROCESS AND MEMORY MANAGEMENT

 In the more complex OSs that we will study later, the topics of process and memory

management are covered first since processes correspond to what a user wants to get

done, so they are of primary importance. But in this simple OS, process manage-

ment and memory management are rather limited, since only one program at a time

is executing. And the issues of hardware abstraction and file systems were therefore

more significant.

 Still, even with this limited functionality, there are several process and memory

issues that the OS must handle. First, we discuss the typical flow during program

execution. Then we discuss command processing. Finally, we discuss memory man-

agement and an overlay technique that can be used when the program to be created

is larger than the main memory space available.

 Chapter 3 A Simple, Single-Process Operating System 59

 3.5.1 Creating and executing an application program

 An application program is usually written by typing the program language instruc-

tions into a text editor. It is then compiled or assembled (or both) and finally linked

together with library routines using a link editor. This results in a program image

file that is ready to be loaded into memory and run. The program image has been

given many names, for example program executable, program binary, or run-

nable program. After a few rounds of debugging this program is ready for use.

 In order for a program to begin running, its executable binary code file must be

loaded into memory. This loading process is usually done by the CCP. The CCP is

itself an application program that provides a few built-in functions —for example,

the “DIR” command gives a directory listing of all files, and the “ERA” command

erases a file or a group of files. CCP accomplishes its work by making only BDOS

calls—it never calls the BIOS or hardware directly. This makes the BDOS more

easily portable to a new hardware system. When a name is entered to the CCP, it

first looks to see if it is the name of a built-in command. If so, then that command is

executed. If the name is not that of a built-in command, then the CCP tries to find an

executable program file on the disk with that name. If one exists, then the contents of

that file are loaded into memory and the program starts running. There was a special

code in the program header that would identify the file as being an executable pro-

gram. Alternatively the command the user entered might name a text file that was a

string of commands that the CCP should read and execute one at a time. These were

called subfiles in CP/M after the standard extension “.sub,” which was the second

part of the file name. Command files of this sort are commonly known as scripts or

 batch files.

 In CP/M, normal application programs are always loaded into RAM beginning

at address 0100 Hex. Having a fixed load address for all programs makes it easy for

compilers and linkers to create executables, since the program starting address will

be known in advance.

 Programs typically need additional memory for static data—for example,

predefined fixed-size data such as static strings. In addition, a stack is needed for

dynamic data—for example, temporary variables. The predefined static data are

loaded into memory following the loading of the program binary file. Additional

memory following static data is reserved for other data. Figure 3.5 illustrates the

general memory map for the various parts of an executing program.

 The stack is initially placed at the highest location in memory that is just below

the OS code. The stack grows in memory toward lower memory addresses (see

 Figure 3.5). After loading is complete, the OS calls the first instruction of the pro-

gram as though it were calling a subroutine. The program executes until it has fin-

ished its work, at which time control simply returns to the CCP program that loaded

it. The CCP might still be in memory, but if it is not then it is simply reloaded from

the disk. As a program executes it may use all available memory anytime it wants to

except for reserved memory containing the OS or parts of the OS.

 The process executes from start to finish. If it requires I/O, the CPU will remain

idle until the required I/O is completed. For example, the process may wait for user

input from the keyboard. For large programs that do not fit entirely in memory, the

60 Part 2 Building Operating Systems Incrementally: A Breadth-Oriented Spiral Approach

program code is typically divided into several segments that are brought into memory

separately. When one segment calls a function whose code is not in memory, a tech-

nique called memory overlay is used to bring in the new code segment in place of

the other code segment currently in memory. Implementing overlays was left up to

the application program, though it usually had some assistance from the application

libraries. We discuss this technique further in Section 3.5.3 .

 3.5.2 Command processing via the CCP

 In our simple OS the CCP is a program pretty much like any other. The CCP is per-

haps better structured than some programs since it only uses OS system calls and

never bypasses the OS. In other OSs, the component similar to the CCP is sometimes

called a shell or command interpreter. A user can directly invoke CCP commands

by typing a CCP command or the name of an executable program file. Still another

name for this kind of command interpreter is command line interface, since each

command is entered on a screen line and is submitted to the command interpreter

when the user presses the <carriage return> or <enter> key. The CCP was linked to

load in high memory just under the BDOS. When a program was finished running, it

would exit by returning control to the BDOS, which would check to see if the CCP

was still intact in the memory. If it was, then the BDOS would return control to the

CCP without reloading it.

 Many users prefer additional functions or a different “look and feel,” menus

or graphics, for instance. It was fairly common to replace the CCP with a shell

more suited to a one’s likes. In many OSs one has a choice of several different

shells. Writing a command processor or shell is a fun exercise. But like many

programs, as you and others use it, it will need new and more complex func-

tions added, such as recalling past commands or the ability to chain commands

together.

Interrupt Vector
Low memory

High memory

Program Header

Program Executable

Fixed Data
(Heap)

Program Stack

BDOS

FIGURE 3.5

Typical memory

contents when

executing

a program.

 Chapter 3 A Simple, Single-Process Operating System 61

 3.5.3 Memory management

 As we discussed in Section 3.5.1 , the basic handling of memory by the CP/M OS is

quite simple. All programs are loaded at a fixed address in memory. Programs are

divided into two parts: (1) the program executable code and (2) fixed (static) data—

such as constant values in the program, character strings, and so forth.

 The software that copies these two parts into memory from disk is called a

 loader, and is a part of the CCP command processor. A program also needs some

 stack space to store temporary variables, pass parameters to called subroutines, and

return data from those routines. The stack was placed at the highest location in mem-

ory, immediately below the OS itself. This allowed the stack to “grow” downward in

memory and not “collide” with the program data—unless no more memory is avail-

able. Figure 3.5 illustrates this memory structure.

 But CP/M had no provision for detecting a collision between the stack and fixed

data. Such an occurrence would usually either crash the program or produce strange

results because the CPU had no memory management registers for memory protec-

tion. Such memory overwriting bugs were difficult to find and fix and occurred fre-

quently on CP/M systems.

 For programs written in some high-level programming languages—for instance,

Pascal or C—there is a large pool of memory that can be dynamically allocated and

returned called the heap. The heap was set aside by the loader, but managed by rou-

tines in the high-level language runtime libraries. Not all programs used a heap. If

there was one, it would be located in memory between the fixed data and the stack.

 A program header was located in memory immediately preceding the exe-

cutable binary code. The program header contained pointers to memory addresses

where the stack is located and where the fixed data is located. It also contained a

pointer to strings passed as parameters to the program when the user typed the com-

mand and supplied arguments to the program. For example, if a user entered a com-

mand to run a text editor, the command line would probably also include the name

of the file to be edited.

 Why was the OS located in the highest part of memory rather than in low mem-

ory? Because CP/M systems did not all have the same amount of memory. Some

computers might have 32 KB of memory, others 48 or 64 KB. So the operating

system would be generated (configured) to occupy the highest locations in mem-

ory, leaving a fixed address—always 100 Hex—to load programs. If the OS became

larger it would start at a lower address in memory, but not force any program to

change addresses, although a user program would have less memory remaining in

which to run. This meant that when the OS was upgraded to a new version it was not

necessary to relink all the application programs.

 3.5.4 Overlays

 The maximum size of memory in a CP/M system was constrained by the amount of

memory that the CPU could address. Initially, this was 64 KB but some later versions

of the CPU allowed more memory and some computers had additional hardware

added to provide “banks” of memory that could be mapped into memory spaces by

program control. What happened if a program would not fit in the available space?

This problem had been an issue since the earliest days of computers.

62 Part 2 Building Operating Systems Incrementally: A Breadth-Oriented Spiral Approach

 Of course, programs that manipulated large amounts of data could keep some

of the data on disk, rather than in memory, bringing in only what was needed at a

given time. But what could be done about programs whose binary code was large?

Those programs could similarly bring in only those parts of the program needed for

some part of the processing. These parts or programs would “overlay” each other

in the same locations in memory and were called overlays. Programs that had large

amounts of code would be divided into a main part of the program and other pro-

gram sections. The main part of the program would always reside in memory. Those

sections of the program that were only needed sometimes would be brought into

memory as overlays that replaced other sections. Typical candidates for overlays

were some large computations or error-handling routines.

 The programmer would have to identify those parts of the program that should

be grouped together into an overlay. When designing overlays, it is important to avoid

one overlay calling into a different overlay that would take the place of the first one

in memory. The actual loading of overlays was done by the programming language

runtime library, which used CP/M system calls to load an overlay. The program-

mer would indicate to the compiler which parts of a program—which functions and

procedures—would be in each overlay, and the compiler produced the loadable over-

lay code. Figure 3.6 illustrates these concepts. Here, a program has one main part and

three overlays. Only one of the overlays would be in memory at any particular time.

 An example of a program that might use overlays is an assembler. The source

program is typically read twice. During the first pass the assembler is building a

symbol table and allocating space for both code and data. Then the source program

is reread and the actual code generation takes place. Now the assembler has suf-

ficient information to generate the instructions and fill in the addresses they refer-

ence. Clearly these two passes over the source program do not reference one another

directly and can thus overlay one another. In this case there are often at least two other

Low memory

Interrupt Vector

Program Header

Main Program Executable

Fixed Data
(Heap)

Program Stack

BDOS

Overlay
1

Overlay
2

Overlay
3

High memory

FIGURE 3.6

Overlays in memory

when executing

a program.

 Chapter 3 A Simple, Single-Process Operating System 63

possible overlays. One would be an initialization phase that takes in the user control

options, opens the input file, allocates the symbol table, and so on. A second might

be providing additional printed output about the file such as a listing of the generated

code with the user comments. While that full assembler might run in a large machine

without overlays, smaller machines might not be able to run it. In addition, the size of

the source program that can be handled is limited by the storage space for the symbol

table, so that an overlaid assembler can handle much larger programs.

 3.5.5 Processes and basic multitasking

 Even in early systems with limited memory and slow processors, users wanted to do

some work in parallel. One very common request was the ability to print a file in a

 background process while editing (or playing a game) in a foreground process.

This processing of printing while allowing another foreground program to run was

a very widely requested feature. Printers were slow, and starting a print job and then

leaving your computer printing and walking away for 30 minutes or an hour was

very boring, and wasteful of a most valuable resource—a person’s time. This was

especially true if something went wrong and the user returned 30 minutes later to

find that the printer was waiting for user attention.

 CP/M’s solution was a background printing process. A small program was

loaded into memory at the highest location of memory, immediately below the OS.

This program initialized itself and then returned control to the CCP, allowing another

program to run. When a user wanted to print in the background, the name of the file

to print was passed to the background print handler. This would print a little bit of

the file—a line or two—whenever it got control. The background process would

typically get control any time a foreground process did a system call, or possibly by

setting a timer and causing an interrupt of the foreground process.

 Background printing gave the appearance of the computer doing two things at

once, something called multitasking. The background print handler would allow only

printing in the background, and nothing else. Users liked the idea of doing work in

parallel, especially input and output that was very slow, like printing on early print-

ers. We will see that all newer OSs, even those on very small devices, have some sort

of multitasking facility.

 3.6 SUMMARY

 In this chapter, we presented the typical components

of a simple OS with limited capability. We based our

presentation on the features of an early personal com-

puter operating system, CP/M, and the basic hard-

ware of early PC systems. We started by describing

the predecessors of simple operating systems, called

monitors, and discussed how they evolved into early

operating systems because of the need for standard-

ization. We then described the characteristics of the

early PC systems for which this type of OS was

used. Next, we discussed how input/output was man-

aged in such an early OS. We saw that application

programs often ignored the use of standardized I/O

functions provided by the OS to achieve better per-

formance and more flexibility.

 We then continued with a description of the file

system in such a simple OS, and the standard disk

devices that the file system was based on. We then

64 Part 2 Building Operating Systems Incrementally: A Breadth-Oriented Spiral Approach

moved on to discuss process and memory manage-

ment. We saw that a program binary was always

loaded starting at a fixed predefined memory location

because only one program was in memory at a time.

Other parts of memory stored the OS binaries and fixed

program data. A stack area was reserved for storing

dynamic data. We discussed the techniques of overlays

for large programs that could not fit in memory. Over-

lays allowed programmers to divide a program into

sections that would replace one another in memory

when needed. Finally, we discussed an early example

of multitasking—that of background printing.

 BIBLIOGRAPHY

 Barbier, K., CP/M Solutions. Englewood Cliffs, NJ:

Prentice-Hall, 1985.

 Barbier, K., CP/M Techniques. Englewood Cliffs, NJ:

Prentice-Hall, 1984.

 Cortesi, D. E., Inside CP/M: A Guide for Users and

Programmers with CP/M-86 and MP/M2.

Austin, TX: Holt, Rinehart and Winston, 1982.

 Dwyer, T. A., and M. Critchfield, CP/M and the Personal

Computer. Reading, MA: Addison-Wesley, 1983.

 WEB RESOURCES

 http://www.digitalresearch.biz/ (the creators of CP/M)

 http://www.seasip.demon.co.uk/Cpm/ (outsider archive site)

 http://www.osdata.com (Operating System technical

comparison)

 http://www.pcworld.com/article/id,18693-page,

3-c,harddrives/article.html (hard disk characteristics)

 REVIEW QUESTIONS

 3.1 What kinds of limited functions did early PC

monitor programs provide?

 3.2 What kind of error checking was done on the argu-

ments to the calls to the monitor program? What

was the likely result?

 3.3 In the PC era there were a multitude of small

startup hardware vendors and all of their users

were clamoring for software. What was the char-

acteristic of early monitors in this environment

that led to the development of a real OS?

 3.4 What was the overriding characteristic of the

hardware systems that CP/M and MS-DOS were

designed to run on and what were some of the

design decisions that were made as a result?

 3.5 The basic I/O needs of early programs were fairly

modest. Some applications, however, had some-

what more complex needs. In many cases the

functions provided by the monitor were much

slower than equivalent functions that were in the

BIOS code. What did the application program-

mers do when the functions the OS provided

hid the functions that the application needed or

were so slow that the performance of the appli-

cation was unacceptable? What problems did that

cause?

 3.6 Besides the keyboard and video, what was the

other major I/O system that was very important in

the early OSs?

 3.7 To the command interpreter, most of the com-

mands that a user types are executed by finding a

program on the disk with that name and running it.

A few commands are not mapped to programs on

the disk. Where do they reside?

 3.8 On a floppy disk (or a hard disk) the heads on all

of the surfaces will be in the same relative position

over the surfaces measured in from the outside

of the disk. As the disk rotates a certain portion

of a surface will pass under each head. What is

that portion of the surface called? That portion is

divided up into smaller pieces. Those pieces are

the smallest addressable portion of the disk. What

are these pieces called?

 Chapter 3 A Simple, Single-Process Operating System 65

 3.9 CP/M divided the contents of a floppy disk into

three parts. What were these three parts?

 3.10 Why does the CP/M OS reside in high memory

instead of low memory?

 3.11 True or false? Overlays are an obsolete technique

used when system memories were very small and

are no longer used in modern systems.

 3.12 While CP/M did not allow true application mul-

tiprocessing, it did allow one sort of background

processing. What was that?

67

 Chapter Chapter 4 4
 A Single-User Multitasking
Operating System

In this chapter:

 4.1 Introduction: A Simple Multitasking System 69

 4.2 The Palm OS Environment and System Layout 71

 4.3 Process Scheduling 73

 4.4 Memory Management 75

 4.5 File Support 80

 4.6 Basic Input and Output 82

 4.7 Display Management 82

 4.8 Event-Driven Programs 84

 4.9 Summary 86

 I
n this chapter we discuss a more complex class of operating systems than the one

discussed in Chapter 3, and one that is considerably more modern. We look at the

Palm Operating System™ 1 developed by Palm, Inc. The CP/M system, which was

covered in the previous chapter, originally supported only one program (or process)

at a time. Toward the end of its major period of use it was extended to include func-

tions such as background printing. In contrast, the Palm OS was designed from the

outset to support the execution of several processes at the same time.

 We start this chapter in Section 4.1 with an overview of Palm OS and some

background about the underpinnings of the kernel. There are several other OSs in

1 The OS functions described in this chapter cover releases of the Palm OS prior to release 5. Release 5
is a different OS and supports a different CPU. We feel that there will continue to be a class of devices
and corresponding OSs that will function at approximately the level described, so we have not changed
the material to correspond to the later versions. The functions covered in this chapter are probably more
representative of the functions that students will find in similar low-end OSs for some time to come. For
example, as nanotechnology evolves, it is quite likely that such machines will often contain computer
systems that will require an OS and there will be no secondary storage. Furthermore, it currently seems
likely that rotating data storage devices may soon be a thing of the past, and that most new computers
will have vast amounts of primary storage and some removable tertiary storage but no secondary storage.
Thus, all OSs might function like this OS at some point.

68 Part 2 Building Operating Systems Incrementally: A Breadth-Oriented Spiral Approach

this class, most notably EPOC by Symbian™ and scaled-down versions of Linux

and Windows NT. The latter is called the Windows Mobile (formerly the Pocket PC)

OS. At the end of the chapter we look at these other OSs and also some more recent

developments in this highly dynamic field. The Palm OS was developed for small

handheld devices called personal digital assistants (PDA s) or personal informa-

tion managers (PIM s) that are typically used by a single user to keep track of per-

sonal schedules, contacts, and to-do lists or to access email or the World Wide Web

while on the move. These OSs are now used in cellular phones that have much of the

same functionality as a PDA. The Palm OS usually runs only a few applications at a

time, and can concurrently run some OS processes in parallel with the small number

of applications. Thus, it supports a limited number of concurrently executing tasks.

It provides more features than the single-tasking type of OS described in Chapter 3.

It also serves to illustrate a modern version of a simple OS.

 In Section 4.2 we discuss some unusual hardware characteristics of the hand-

held computers that use the Palm OS. These special characteristics force the choices

of some of the decisions made in the Palm OS design. In the CP/M world we saw

at the very end the introduction of multiple programs in memory at the same time,

providing such functions as pop-up windows and background printing. The Palm OS

has much more complex multiprogramming, so in Section 4.3 we discuss the sched-

uling of application processes and OS tasks in the Palm OS.

 When multiple programs are running in a system at the same time, memory

management becomes more complex. A program can no longer assume that it can

use all the memory there is. The OS must take on the responsibility of allocating sec-

tions of memory to applications as they ask for it. It must therefore track the memory

used by each application and recover it when the application ends. Therefore, Sec-

tion 4.4 moves on to discuss memory management. Section 4.5 covers the organiza-

tion of files in the Palm OS, and Section 4.6 covers the basic I/O functions that the

Palm OS provides.

 Early PDAs were text based to a large extent, though many had special icons or

small portions of the screen that had graphics capabilities. Now such devices always

have graphics-oriented displays. CP/M was a text-based OS, so in this chapter we

also introduce some simple characteristics of a graphical user interface, or GUI. All

modern OSs include support for a GUI, though they are not always intrinsic to the

OS itself. Programs on a CP/M system assumed that they were in total control of

the system, so they were designed to interact in a certain way. Programs that work

in a GUI have to cope with events that occur asynchronously to the main flow of

the program. So this chapter also introduces event-oriented programming. Section

4.7 describes the display subsystem and Section 4.8 first discusses event-oriented

programming and then describes the design of a typical Palm OS application. We

conclude with a chapter summary in Section 4.9.

 Later in the book we cover a few more advanced features of the Palm OS and

similar systems. Chapter 20 discusses several interesting subsystems in the Palm

OS and explains the nature of the cross-development systems needed to develop

programs for such a limited environment. It also covers some of the developments in

later releases of the Palm OS.

 Chapter 4 A Single-User Multitasking Operating System 69

 4.1 INTRODUCTION: A SIMPLE MULTITASKING SYSTEM

 The Palm OS was developed by Palm, Inc. for use with their small handheld comput-

ers. A typical unit is shown in Figure 4.1 . This platform has become very popular.

Several hardware manufacturers have produced devices that conform to this tech-

nology, including Handspring, Sony, and IBM. The same OS is also used in several

cellular telephones, including the Treo and the Samsung 500. The environment in

which Palm OS runs has several characteristics that are unusual compared to most

general-purpose computers or PCs. These characteristics forced some unusual deci-

sions to be made when developing the OS. However, these characteristics are typical

in many systems that will be seen more and more in the future, so that far from being

a distraction, these characteristics will actually be quite important to current and

future OS architects. These characteristics also limit the design goals of the OS so

that it is only a little more complex than the single-process OSs covered in Chapter

3. They are summarized in Table 4.1 .

 The first of these unusual characteristics arises from the fact that these handheld

computers are grown-up versions of the PDAs that preceded them. They are designed

to give top priority to servicing the interface with the user—so much so that the OS

is actually built on top of a real-time kernel that Palm, Inc. licensed from another

vendor. 2 For example, this real-time kernel allows the system to support the use of a

stylus to “write” on a small section of the liquid crystal display (LCD) screen. The

screen is touch sensitive, and touching the screen (preferably with the stylus) will

cause an interrupt that will give the coordinates of the touched screen location to a

2 That system is the AMX™ Multitasking Executive from KADAK Products Limited.

Screen

Calculator

Search

Menu

Contacts

Calendar

To Do

Note Pad

Graffiti Area

Navigation Buttons

FIGURE 4.1

A Palm Pilot.

70 Part 2 Building Operating Systems Incrementally: A Breadth-Oriented Spiral Approach

routine that will track the movement of the stylus across the screen. The OS attempts

to read and interpret the handwriting in real time—this is known in the Palm OS as

 Graffiti input. 3 While the OS is handling this real-time task, it also allows a few

applications to be running on the machine at the same time. Having multiple applica-

tions as well as the real-time kernel running concurrently necessitates a multitask-

ing or multiprogramming system design.

 The Palm OS is designed for supporting applications such as the following:

 ɀ Reading email

 ɀ Keeping track of contacts in an address book

 ɀ Keeping records of expenses

 ɀ Enhancing to-do lists with alarm reminders

 ɀ Playing simple games such as Sudoku

 ɀ Accessing information through the WWW

It is not intended to support multiple users at a time or to be a Web server. Accord-

ingly, the real-time and multitasking characteristics of the OS are not exposed to the

application programmer through the application programming interfaces (APIs).

 Another unusual aspect of these systems is that in general there is no secondary

storage—all of system memory is primary storage (electronic main memory). The

limited memory and CPU performance in these handheld systems lead to special

designs for memory management and some special treatment for basic input and

output operations. Some of these devices come with plug-in capability. This allows

various types of cards or modules to be attached to the device. These cards can

be memory cards preloaded with specific applications, global positioning systems

(GPS) navigational devices, digital cameras, or even hard disks. The basic hardware,

however, has no secondary storage, so the design of the OS must reflect this. Support

for secondary storage has been grafted onto the main system design, as we discuss

in more detail later.

 The Palm OS supports a GUI to display output to the user. There are special

considerations for programming this interface because of its small screen size. In

particular, there is usually only a single window (form) visible on the screen at any

point. There may be smaller dialog or alert boxes that are displayed in front of that

single window. Finally, these systems support several mechanisms for accepting

3 In 2003 PalmSource, Inc. lost a suit over the use of the original Graffiti software. The software now
used is known as Graffiti 2. We use the simpler term as a generic name for the function.

TABLE 4.1 Unusual Characteristics of the Palm OS

Real-time OS tasks but non-real-time applications

All solid state memory

Low power to conserve batteries

Single-window GUI

Multiple text input options

Expansion through plug-ins

 Chapter 4 A Single-User Multitasking Operating System 71

user text input but they try to hide the differences between these mechanisms from

the applications.

 4.2 THE PALM OS ENVIRONMENT AND SYSTEM LAYOUT

 There are several characteristics of Palm devices that had to be taken into consider-

ation when designing the Palm OS. These were:

 ɀ Basic memory is volatile RAM

 ɀ Typically no secondary storage

 ɀ Small screen size

 ɀ Keyboard is not standard

 ɀ CPU is slow to reduce battery drain

 4.2.1 Basic memory is volatile RAM

 There are several unusual characteristics about the handheld computers that the

Palm OS is designed to support. First, the devices are battery powered, and the

design of the hardware and the OS reflect this. If the system is unused for a few min-

utes it will put itself into a sleep mode that uses very little power. The CPU is still

running so the OS can sense when the user presses buttons, but it is running very

slowly and in a small loop where it is waiting for interrupts. Power to the memory

is actually never turned off. Even when the CPU and the OS are shut down the

memory is still powered on. The hardware has a small current flow to maintain the

contents of memory. (It is also possible to add memory modules to the system that

contain read-only memory [ROM] or programmable read-only memory [PROM],

sometimes called flash memory, but the basic design assumes that all main memory

is volatile.)

 4.2.2 No secondary storage

 The second unusual characteristic about these handheld systems is that in the

original design they do not have any secondary storage—no disk, CD, DVD, or

tape drives. All data and programs are kept in a single address space. Some of this

memory is ROM on modules (cards) that can be removed from the computer. This

allows programs and databases to be loaded onto these modules and inserted into

the machines as desired. Whether on a removable card or built in to the machine, all

of memory is visible all the time so that all programs and all databases are always

directly accessible. Some vendors of Palm OS–compatible hardware have added

a separate class of memory that is accessed through I/O commands just as a sec-

ondary storage device is. This memory is not part of the main address space and

thus requires special OS commands to access it. This class of memory is removable

and is intended to be used to move information from one system to another. It is

designed to emulate a disk drive so that it is physically compatible with other hard-

ware systems as well.

72 Part 2 Building Operating Systems Incrementally: A Breadth-Oriented Spiral Approach

 4.2.3 Small screen size

 The next feature is the nature of the LCD that presents the GUI to the user. Its system

function is similar to CRT (cathode ray tube) or LCD screens used in other current

systems, such as PCs utilizing OSs with GUI implementations. The fundamental dif-

ference is the size of the screen. Since these devices are literally designed to fit in a

user’s hand, the screen display is limited. With most other GUIs there can be multiple

windows open on the screen at the same time. Often these windows overlap such that

parts of some windows are hidden by other windows that are “in front” of them. It is

usually possible to “maximize” one window so that it fills (almost) the whole screen.

 In contrast to other GUIs, an application window in the Palm OS will fill the

whole screen. The application may still use pull-down menus and dialog boxes but

there will usually be no other application windows partially hidden behind the win-

dow of the running application.

 4.2.4 No keyboard

 One final interesting aspect of PDA handheld systems is that they initially did not

have a keyboard. There are some attachable keyboards available, and some later

models do have an actual keyboard, but this is not the way the system is normally

assumed to obtain user input. The usual mode of input is through Graffiti input, as

discussed in Section 4.1. This is generally acceptable, as most applications for PDAs

do not expect large amounts of input.

 Figure 4.2 shows an overall layout of the Palm OS. Immediately above the hard-

ware is a software layer known as the hardware abstraction layer (HAL). Its function

Hardware

Hardware Abstraction Layer

Kernel

System Services

Serial Manager

Resource ManagerSound Manager

Modem ManagerFeature Manager

Event ManagerGraffiti Manager

System Libraries (TCP/IP, Float Math)

Application Libraries

Application
FIGURE 4.2

Palm OS

architecture.

 Chapter 4 A Single-User Multitasking Operating System 73

is to isolate the rest of the software from the specifics of the hardware devices. This

allows the developers of the OS kernel to build an OS that can easily be moved to

another hardware platform. The kernel of the OS lies on top of the HAL. Many ser-

vices provided by the OS are not part of the kernel, but lie above it. On top of the

System Services area (which is always there) would come optional system library

routines; on top of that would come application library routines, and, finally, the

applications themselves.

 4.3 PROCESS SCHEDULING

 In the Palm OS multitasking environment, one needs to distinguish between

OS processes and application processes. In this section, we discuss some pro-

cesses of each type, and describe how the Palm OS handles and schedules these

processes.

 4.3.1 Processing Graffiti input—A real-time OS task

 As was mentioned in the first chapter, there are many tasks that can best be done

in the OS. There are several reasons for putting functions in the OS. Often it is

because they are used by many applications. Putting the function in the OS simpli-

fies development for the application programmers, guarantees that all applications

will function similarly, and decreases the likelihood of having bugs in that part of the

applications. The prime example of such a task in the Palm OS is the Graffiti input

function. The display of the Palm OS systems is an LCD panel that is touch sensi-

tive. Users generally input data into the Palm by drawing characters on this screen.

This is such a specialized task that it is done by the OS. Two OS tasks are involved:

 stylus tracking and character recognition.

 In order to track the path of a stylus across the face of the Graffiti area of the

LCD screen, the CPU must rapidly and repeatedly check the current location of

the stylus. This tracking is a real-time task because the system needs to be able to

guarantee that it can check the position of the stylus frequently and quickly enough

to track the movement of the stylus. This task is further complicated because the

CPUs in these devices are running more slowly than those in PCs or workstations.

The tracking task will recognize when the stylus changes direction and will divide

the path into small vectors, which it will pass to the character recognition task.

Once the position vectors of the stylus are analyzed and discovered, then the char-

acter can be recognized. Again, this is done by the OS. Every application developer

does not want to have to write a handwriting recognizer. Indeed, this is one of the

advances in PDA technology that the Palm OS brought to the market. This is a

task that can be approached more leisurely than the tracking of the stylus. As the

characters are recognized, the recognition task will give them to the application,

which must display them back to the user in appropriate places on the LCD screen

so that the user will get feedback about the characters input—just as with keyboard

input on a PC.

74 Part 2 Building Operating Systems Incrementally: A Breadth-Oriented Spiral Approach

 4.3.2 Application processes—One focus at a time

 In most systems a user can be running several applications at the same time. In the

Palm OS only one user application will be visibly running at a time. Most Palm appli-

cations, however, do not have an “exit” function that the user can invoke. When the

user selects a new application, any application that was running will be hidden from the

user by the OS. So in the Palm OS, only one application will be running at a time that

is in focus —that is, in control of the screen window, accepting and displaying input.

However, other applications may run at times but do not have the focus. One example

of such activity is a text search function. If the user does a text search, the Palm OS will

sequentially call every application that has indicated to the OS that it will provide a text

search function for its own database files. Each application will be asked to search its

database for the search string that the user has input. These applications, however, will

not gain control of the screen, and will only report their results to the OS.

 Another example of a task that is running but does not have the focus of the

screen is found in the Sync application. This application synchronizes database files

on the handheld unit with those on a PC. The PC is running a corresponding syn-

chronization program and the two systems communicate using some type of serial

communication link. This connection might be an infrared or Bluetooth™ link or

a USB cable. While this application will normally have the focus, there is no user

input while the synchronization is running. However, the user might want to stop the

synchronization before it finishes. One way to make this happen would be for the

sync application to be in a loop, sending a block of data and then checking the screen

for a stylus tap. However, this would slow the serial communication and would delay

the response to the tap. Instead, the Palm Sync application uses two tasks: a real-time

task to respond to screen taps via an interrupt and a synchronization application that

can devote all its time to the communication task.

 4.3.3 Typical user applications

 Most Palm OS applications primarily involve a database and GUI interface and are

designed for organizing information. Typical applications include to-do lists, address

and contact information, appointment calendars, and various alarms. As such, they

do not directly involve real-time tasks. As was previously described, the OS uses

real-time tasks for stylus input. The applications themselves merely input and dis-

play information about things such as the user’s appointments. Normal user applica-

tions, therefore, do not need to start extra tasks, as does the Sync system application.

The main part of each application is a loop called the event loop. The OS “launches”

the application. The application checks to see if this is the first time it has been run.

If so, it will initialize any databases it maintains. It then enters the loop in which it

waits for events. Most events are activities such as the recognition of a character by

the Graffiti input or the selection of an item in a menu list.

 There are a few unusual system events such as a notification to all applications

that the system is about to enter sleep mode. Another frequent type of event is the

“appStopEvent.” As was mentioned before, when the user selects another application

to run, that application will become the active application and the OS will force the

 Chapter 4 A Single-User Multitasking Operating System 75

currently running application to stop. In a different environment another OS would

not want to stop an application merely because it did not have the focus. Too much I/O

and CPU processing would be required to restart the application if the user switched

back to it. On Palm handheld systems, however, there is no need to do such tasks as

allocate memory to the program, read the executable module from a disk drive, and

open its files, since both the program and the files are already in main memory at all

times. If the user reselects an application that has been stopped, all the application

does is realize that its files are already initialized and go into its loop of checking the

queue of events that it needs to process. For a typical application that is merely wait-

ing for the user to select some action from a menu or via the GUI, stopping may not

mean much. But a game where a user is playing against the computer probably will

pause its actions if the user switches to another application, for example.

 4.3.4 Will the real scheduler please stand up?

 As far as the actual process scheduler used by the Palm OS, it is a preemptive mul-

titasking scheduler. This means that it is prepared to run many tasks, shifting among

them as needed in order to service the needs of the system. Different types of tasks

have various priorities and the OS scheduler will dynamically determine which task

is the most important and will interrupt a less important task to run a more important

one. Interrupting one task to run another is called preemption. The CPU is being

taken away from the less important task so the more important task can run first.

Various types of OS CPU schedulers will be discussed in more detail in Chapter 9.

 4.4 MEMORY MANAGEMENT

 Because there are many processes in a Palm system that are sharing the primary

memory, the OS must provide lots of memory management functions. The first job

is to see that the various processes don’t access any locations outside their assigned

memory. It must also keep track of memory that is not currently in use.

 4.4.1 Memory fundamentals

 Memory access in the Palm system uses 32-bit addresses, allowing for a 4 GB total

address space. The actual physical memory is on one or more cards and the view of

memory that the application sees reflects this. Each card has a minimum 256 MB

portion of the logical address space. The cards are normally replaceable so the

amount of memory in a system can be upgraded. While initial hardware designs sup-

ported only one memory card, newer systems allow for more. Memory cards may

contain three different types of memory:

 ɀ Read-only memory (ROM)

 ɀ Programmable read-only memory (PROM; also called flash memory) or

 nonvolatile RAM (NVRAM)

 ɀ Random access memory (RAM)

76 Part 2 Building Operating Systems Incrementally: A Breadth-Oriented Spiral Approach

All cards contain at least some RAM; the presence of the other two types of mem-

ory on a card depends on the card. The OS and the entire initial set of applications

were initially contained in ROM but are now usually in PROM so that they can be

upgraded. Additional applications can also be installed in the PROM or RAM.

 Logically, the RAM is divided into two sections: (1) one section of the RAM

is treated as being volatile and is called dynamic RAM and (2) the other section of

RAM is treated as being nonvolatile 4 (NVRAM) and is called storage RAM.

 If there is PROM on the card it is always considered to be storage RAM since

it really is nonvolatile. The dynamic RAM is used like conventional RAM as it is

in most computer systems. The contents of the entire RAM are preserved when the

system is turned off (i.e., turned to low-power sleep mode). However, when the sys-

tem is turned on (or booted) the contents of the dynamic part of the RAM are reset

by the OS. The storage portion of the RAM is used in the same way a disk drive is

used in most systems—to contain persistent data that is intended for retention for

a long time (i.e., files or databases). Storage RAM can also contain extensions (and

presumably fixes) to the OS as well as additional applications.

 Since the cards are replaceable, there needs to be a mechanism for preserving

the data contained in the storage RAM. The method is to use the Sync application

to synchronize the contents of the storage RAM with a PC, replace the memory

card, and then resynchronize the Palm with the PC. When used this way the PC is

a backup device for the memory card contents. Alternatively, we can consider the

Palm to be a mobile device that caches copies of part of the user’s files and data-

bases that normally reside on the PC.

 4.4.2 Allocating memory

 Memory is managed by the Palm OS as a heap 5 —that is to say that pieces of the

memory are allocated and tracked by the OS and accessed within the heap as the

application program runs and finally is released by the programs and returned to

the available pool of memory by the OS. Those pieces are known in the Palm OS as

memory chunks. There are a minimum of three heaps, one for each type of memory:

ROM, dynamic RAM, and storage RAM. In newer versions of the Palm OS some

of these blocks of memory may be broken into more than one heap. Within each

heap, the OS allocates chunks of memory when an application makes a request. The

chunks can be of any nonzero size up to slightly less than 64 KB in increments of

2 bytes. Memory chunks can be returned to the OS in any order and can be made

smaller or larger through OS service calls.

 Memory chunks are randomly allocated and freed and they may change size.

If they are made larger then they may have to move to another place in the heap.

Ultimately this process will lead to a condition known as external fragmentation.

This term describes a condition where there are free chunks available for use and the

total amount of free memory is sufficient to satisfy a new request but the largest free

4 Nonvolatile memory does not lose its contents in case of power failure.
5 A heap is a structure in which memory is allocated as needed in no particular sequence or order.

 Chapter 4 A Single-User Multitasking Operating System 77

chunk is too small to satisfy the request, so the memory request cannot be directly

satisfied. This is illustrated in Figure 4.3 .

 When this happens, the OS will attempt to move the currently used chunks so

that the free space is contiguous. This kind of reorganization of fragmented space is

known as compaction. There is a potential problem with this memory reorganiza-

tion: an application has been allocated these chunks of memory and has pointers to

them. If the OS is going to move the data then the application must still be able to

access the data.

 To allow for this moving of chunks in memory, the occupied chunks are accessed

in a controlled manner. First, the data are accessed indirectly by the code rather than

being accessed directly. That way the OS can move the data in the heap and the pro-

cess will still be able to access it through the pointer. Each chunk in a heap is pointed

to by an entry in a table called the master pointer table (MPT). The MPT is itself a

chunk of RAM at the start of the heap. When a chunk is allocated, the application is

not given a direct pointer to the chunk. Instead, it is returned a master chunk pointer

(MCP). This pointer is actually the offset in the MPT of the pointer to that chunk, as

illustrated in Figure 4.4 .

 The second aspect of the controlled access to memory is that an application

must lock a chunk prior to using it. When the application wants to use the data

in a chunk of memory it calls the OS to lock the MCP of that chunk. The OS will

maintain a count of the locks for each chunk and will increase the lock count for that

chunk by 1 (the maximum is 16) and return to the application the current physical

address of the chunk. The application can now access the chunk as it needs to. The

application unlocks the chunk when it is finished using it and the OS will decrement

Although there are 96 bytes of
free space in this heap we can’t
allocate a chunk any larger than
16 bytes because the free space
is fragmented.

HEAP Space

unused 16-byte chunk

chunk for variable D

unused 16-byte chunk

chunk for variable C

unused 16-byte chunk

chunk for variable E

unused 16-byte chunk

chunk for variable B

unused 16-byte chunk

chunk for variable A

unused 16-byte chunk

FIGURE 4.3

External

fragmentation.

78 Part 2 Building Operating Systems Incrementally: A Breadth-Oriented Spiral Approach

the lock count. When the OS needs to do compaction it will not move chunks that

are locked by an application, as the lock means that the application is currently using

the data.

 Each MPT that controls one specific heap segment also contains a pointer to a

possible next MPT. If the first MPT fills up, then a second MPT will be allocated

from the heap and the first MPT will point to the second. Figures 4.5 and 4.6 illus-

trate these concepts. 6

 4.4.3 Nonmoveable chunks

 Some memory chunks cannot be moved—for example, program code. Nonmoveable

chunks are allocated from the high order end of the heap (higher memory addresses)

while moveable chunks are allocated from the front (lower memory addresses). Non-

moveable chunks do not need an entry in the MPT since the only purpose of the

MPT is to allow chunks to be moved during compaction. For consistency, even ROM

is accessed through a chunk table. This allows an application to be debugged in

RAM and then be moved to ROM without any changes. Since the code in the ROM

is nonmoveable by definition, there will be no MCPs in the MPT for the heap in

the ROM.

6 This mechanism looks quite complex, and it is complex. However, it is typical of the memory access
control mechanisms used in many OSs today, so it is worth looking at it in detail.

0

HEAP Space

5

The application
program’s “Pointer”

for variable A is
actually the offset of

the MPT entry for
variable A.

1

2

3

4

5 MPT entry for variable A

6

…

Offset in MPT

rest of MPT (& heap)
…

Chunk for variable A

…

FIGURE 4.4

Master pointer table.

 Chapter 4 A Single-User Multitasking Operating System 79

 4.4.4 Free space tracking

 When the heap is initially created by the OS, the storage management software will

create the empty MPT. As was mentioned, moveable chunks are allocated from the

front of the heap and nonmoveable chunks are allocated from the end. The area

between the two is considered to be free memory. When applications have chunks

HEAP Space before
Garbage collection

The memory
manager moves
chunks that are not
currently locked to
combine unused
chunks into larger
chunks. Chunk B
was not moved
because it was
locked.

HEAP Space after
Garbage collection

chunk for variable E

chunk for variable D

chunk for variable A

chunk for variable C

unused 48-byte chunk

chunk for variable B

unused 48-byte chunk

unused 16-byte chunk

chunk for variable D

unused 16-byte chunk

chunk for variable C

unused 16-byte chunk

chunk for variable E

unused 16-byte chunk

chunk for variable B

unused 16-byte chunk

chunk for variable A

unused 16-byte chunk

FIGURE 4.5

Garbage collection.

First MPT

chunk for variable D

unused 16-byte chunk

Second MPT

chunk for variable A

unused 16-byte chunk

HEAP Space

...

...

FIGURE 4.6

MPT chaining.

80 Part 2 Building Operating Systems Incrementally: A Breadth-Oriented Spiral Approach

that are no longer needed they call the OS to free the chunk. The freed chunks are

marked as being free and will be allocated again to any application if needed. If a

request for a smaller amount of memory is made, a larger chunk will be split into two

pieces, one allocated to the data and one marked free (unused). This fragments the

heap. But how does the OS decide which of the free chunks to divide? Does it pick

the smallest one that will fit? Does it pick the first one it finds that is big enough?

These strategies, respectively called “first fit” and “best fit,” as well as other strate-

gies are discussed further in Chapter 10.

 4.5 FILE SUPPORT

 In a more traditional OS the file system will call the OS to read individual file records

from secondary storage into main memory. The application will operate on the data

in main memory, and if needed, the application will write the data back to secondary

storage, again by calling the OS. In the Palm design there normally is no secondary

storage. All data is kept in the storage portion of main memory, either flash memory

or RAM. Since most programmers are strongly oriented to the concepts of files and

records, this orientation is maintained in the Palm OS. The storage RAM is used as

a kind of secondary storage. As was mentioned earlier, the contents of storage RAM

are never erased, even when the system is turned “off.”

 4.5.1 Databases and records

 Data are saved in records. For example, a record might correspond to the contact

information for one contact in an address book. Each record is saved in a memory

chunk. The chunks are aggregated into collections called databases. (These data-

bases are what are called “files” in most OSs. They are not what we normally mean

when we use the word “database,” a system that automatically indexes data, among

other things.) Each database has a header. This header contains some basic informa-

tion about the database and a list of records in the database. This list is actually a list

of unique IDs for the records. If the initial chunk that contains the list of record IDs

becomes full, then another header chunk will be allocated and the first header will

point to the second. The IDs are only unique within the address space of a single

memory card, so all the records for a given database have to reside within a single

memory card. While the record ID is simply an integer with no relation to the data,

it is also possible to create a key field in each database record that can be searched

for by a program.

 On some (non-Palm) systems with limited data storage the data can be com-

pressed to save space. Because the CPU power in the Palm OS platforms is also

modest, the information is not usually stored in compressed form. When secondary

storage is on a rotating memory such as a disk there is a time lapse (latency) between

the time when an application asks for a record and the time when the hardware can

access the data. That time can normally be traded against the time required to do the

compression and decompression. Since there normally is no rotating memory in the

 Chapter 4 A Single-User Multitasking Operating System 81

Palm OS platform there is no time to be gained, so any time used for compression

would be visible to the user. As a result, compression is not normally used with the

Palm OS.

 4.5.2 Resource objects

 In a GUI there are elements that appear on the screen such as buttons, text boxes,

slider controls, and so on. The Palm OS defines the various elements of a GUI inter-

face as objects called resources. These resources are not objects in the traditional

sense; instead, they are merely data structures. Each resource has a specific structure

so that the OS can handle it in certain default ways. For example, if an application

wants to display a confirmation alert for a record deletion it merely defines the alert

and calls the OS to display it. Figure 4.7 shows such an alert box. When the alert is

displayed, the OS does all the work of saving the window under which the alert will

be displayed and updating the window on the form so that the user sees the alert.

After the user confirms the alert the OS will restore the saved window to the form

and tell the application which button on the alert box the user selected. The applica-

tion can always override the default action and cause some special action to happen.

The resources are saved in chunks just as with database records and are tagged by the

OS so that it knows what kind of resource each object represents.

 4.5.3 Secondary storage

 We mentioned that there typically was no secondary storage on the Palm OS plat-

form. From the standpoint of most applications that is true. However, other develop-

ments in the area of small handheld devices have led to a requirement for a more

general storage mechanism. As of Palm OS release 4.0, support is included for a dif-

ferent category of memory device. These devices are assumed to have an organiza-

tion that is more typical of common secondary storage devices. One popular model

comes initialized with a file system that mimics that found on a DOS disk drive. The

intended use of these modules is that they would be written to by another device,

such as a PC, and then inserted into the Palm OS hardware device for later access.

A user can store many files on a PC and load individual files onto memory modules

that can later be inserted in a Palm system for access. In order that the PC need not

have special software to access regular Palm memory modules, a file organization

that is already supported by many OSs was used. Because of the ubiquitous nature of

the Microsoft OSs, virtually all OSs today support those file formats for removable

secondary storage devices.

Appointment Delete

Do you really want to

delete this appointment?
?

OK CANCEL

FIGURE 4.7

An Alert box form.

82 Part 2 Building Operating Systems Incrementally: A Breadth-Oriented Spiral Approach

 4.6 BASIC INPUT AND OUTPUT

 4.6.1 Hiding hardware details

 The Palm OS was designed so that to a programmer the system looked like a con-

ventional computer system as much as possible. A good example of this is in the

handling of user input. It is normal for an OS to hide many of the details of user

keyboard input. Generally there are at least two levels of abstraction:

 1. Some programs want to see every keystroke. A good example would be a screen-

oriented text editor like the UNIX text editor program vi. Such application pro-

grams interpret every keystroke so that they can implement very powerful editing

commands with only a few keystrokes. This is known as a raw interface.

 2. A second level of abstraction is available for applications that only want to read

an entire line of input. The OS will provide various editing operations of the line

as the user enters it. These might include character or string insertion or dele-

tion, duplication of the previous line, backspace and strikeover, and so on. The

program only sees completed input lines. This is known as a cooked interface.

 Programmers used to writing in C will know the cooked keyboard interface is exposed

as the function stdin (standard input). C libraries also usually provide a cooked style

of interface for printer output called stdout (standard output) and a similar output

interface for reporting errors called stderr (standard error). Originally, these output

streams were designed to be directed to a hardcopy printer, but later implementations

usually directed the stdout to the terminal screen instead of a real printer. The Palm

OS is similar. It provides all three of these interfaces. The unusual thing about the

handheld hardware, of course, is that it normally has no keyboard. This point serves

to reinforce the utility of these abstractions. The user may be using the stylus to select

character icons from a display on the handheld screen that looks like a keyboard or to

write free form characters in the Graffiti area. The OS hides all those details and allows

a program written in C to use stdin, ignore those hidden details, and accept an entire

line of input without worrying about the details of how it was actually entered. When

an actual keyboard is attached to a handheld unit it will allow the user to enter com-

mands through the keys and the application program will never know the difference.

 4.7 DISPLAY MANAGEMENT

 4.7.1 The hardware

 The standard display is a touch-sensitive LCD panel with a resolution of 160 ⫻ 160

 pixels (picture elements or dots). A high-resolution display may have up to 480 ⫻ 320

pixels. The original models were only black on white but later models could display

a four-level grayscale. Newer models are capable of displaying color with 2, 4, 64,

256, or 65 K colors. As with early PCs, the screen is refreshed directly from memory

rather than being a device that must be written to with I/O instructions. As the actual

displays vary, it is strongly recommended that applications access the display by

using standard system calls and leave the hardware details to the OS. This is a typical

 Chapter 4 A Single-User Multitasking Operating System 83

abstraction that an OS makes so that applications do not have to deal with hardware

details and are thus more portable.

 4.7.2 Top-level GUI elements

 The Palm OS has a GUI that is based on the concept of forms. These forms are similar

to what is called a window in other GUI OSs, but they normally fill the entire screen.

A form is typically a view of some portion of an application’s data. For example, an

address book application might have one form to view the list of addressees, another

for editing a single address, and so on. The OS also supports an element called a

window, but in this case the term window refers to an object that can be operated on

by the system’s drawing features. There may be windows that are not forms. These

are used to create dialog boxes, for example. All forms are windows. In most cases

the application will not draw directly on the windows. All manipulation will be done

as a result of the definition of GUI elements —such as buttons or menus—or as a

result of system calls made by the application. For example, the OS knows how to

draw a button and how to handle a tap on the button by the user. The application only

needs to define the label on the button, tell the OS where to place the button on the

form, and what numeric code to provide the application when the user touches the

screen over the button. This is presented to the application as an event. The applica-

tion will only use the low-level drawing facilities if it wants to provide animation,

for example, or if it wants to define its own additional GUI elements that the OS

does not provide. These application-specific GUI elements are known in the Palm

OS as gadgets or objects. (In other OSs they are often called widgets.) They are not

“objects” as that term is used in programming. They are merely date structures that

may have certain subroutines associated with events such as the completion of a field

or the “tapping” of a button on a form on the screen.

 4.7.3 Special form types

 There are two special types of forms that do not fill the entire screen. The first of

these is an alert box. A typical alert box might be a confirmation of a record dele-

tion as was shown in Figure 4.7 . The alert box is displayed by an application. The

application requires that this box holds the focus until the user acknowledges the

box. This is called a modal form. In some cases there is a single button the user must

touch to acknowledge the box. In the case shown in Figure 4.7 there are two but-

tons and the user selects one of them by touching them with the stylus. Then the OS

removes the box from the screen. The other special thing about this form is that the

application does not have to create the form specifically—it merely fills in a struc-

ture that defines the text that appears in the box and on the buttons and asks the OS to

create the box. The OS will handle all the events such as the taps on the buttons.

 The second type of special form is a progress dialog. This form is similar to

the alert box but is more dynamic. It is intended for use when an application is

doing some lengthy processing such as a file transfer. There is a separate call that the

application can make that will change the text that is currently being displayed. This

is normally an indicator about the progress of the application. If the application is

sending a 100 KB, file and has sent 50 KB, it might draw a bar that is 50% colored.

84 Part 2 Building Operating Systems Incrementally: A Breadth-Oriented Spiral Approach

This gives the user an indication of the time left to finish the operation. There is nor-

mally a button that the user can press, for example, to cancel the operation. Watching

for a click on this button is one of the real-time tasks that the OS can do for an appli-

cation without interrupting the application flow and still provide a timely response

to the button. This relieves the application from having to check for the button click

in its processing loop.

 4.7.4 Lower-level GUI controls

 The Palm OS GUI controls are not traditional objects. Having no methods or proper-

ties, they are merely data structures. For a given type of control there are various OS

calls that can be made that will cause them to be displayed. When the user touches one

of the controls on the screen there will be an event generated that will be passed to the

application. The application will receive the event and execute the appropriate code.

 Table 4.2 shows the controls that the Palm OS supports and some examples or

other details about the control.

 4.8 EVENT-DRIVEN PROGRAMS

 Under the Palm OS, most applications are written to be interactive. They do not gen-

erally process batches of data like a payroll application on a mainframe or respond to

complete individual requests like a server. Instead, they focus on the user’s immediate

interactive inputs. These applications are therefore organized in a special way. When

a Palm application runs it first initializes its files (if any) and then goes into a loop in

which it checks for events that are being given to it by the OS. An example is shown

in Figure 4.8 .

TABLE 4.2 Palm OS Controls

System-Defined Controls

Control Details

Button Invokes a function (e.g., “Display”)

Push button “Radio buttons”

Selector trigger Opens a specialized dialog box (e.g., for date input)

Increment arrow Varies a value in an associated control

Checkbox True/false–On/off

Pop-up list Invoked by a pop-up trigger

Pop-up trigger Opens pop-up list (downward pointing triangle ▼)

List A pull-down list (e.g., in a menu)

Menu Access less frequently used functions

Text box Basic data entry box

Scroll bar When the data overflows the display area of a form

 Chapter 4 A Single-User Multitasking Operating System 85

 If there are no events for it to process then it tells the OS that it wants to WAIT

for more events. When another event occurs the OS will pass the information to the

application as a return from one of the calls to check for various classes of events.

The user has started the application for some specific task—perhaps to look up a

phone number in the contact file. Until the user gives the program a specific task

the program does not have anything to do so it merely waits. The user will use the

menus and other controls in the form to tell the application what to do. Perhaps

a name is being keyed into a text box. As each character is keyed the applica-

tion will get an event signal and will update the display to reflect the name that is

being keyed.

 For many of the controls defined in a form, the application is able to specify

actions to be taken such that the OS can do much of the work without the involve-

ment of the application. For example, the OS knows how to automatically increment

a value in a control with an increment arrow. For other buttons the application may

need to do special processing. Each control that the application defines may result in

event codes being passed to the application when that control is touched. Consider,

for example, the confirmation dialog shown in Figure 4.7 . When this control is dis-

played and the user touches one of the buttons, the application will be sent an event.

The value sent to the application will identify which control the event was from and

which button was tapped.

 Because the operation of the touch screen is asynchronous with the application

(i.e., screen events can happen at any time while the program is running), several

events can happen faster than the application can process them. The OS therefore has

to maintain a queue of the events that have happened but that have not been given to

the application yet. This queue is maintained in priority order so that more important

events can be processed first by the application.

 A few such events are system-related events. For example, events are sent to the

application when the power is being turned off (i.e., the system is going into the low-

power sleep mode). In this case the application will suspend any other operations

such as communication to another system.

static void EventLoop(void)
{

UInt16 error;
 EventType event;
 do

 {
EvtGetEvent(&event, evtWaitForever);
PreprocessEvent(&event);
if(! SysHandleEvent (&event))

 if(! MenuHandleEvent(NULL,&event,&error))
 if(! ApplicationHandleEvent(&event))
 FrmDispatchEvent(&event);
 #ifEMULATION_LEVEL != EMULATION_NONE
 ECApptDBValidate (ApptDB);
 #endif
 }

while (event.eType != appStopEvent);
}

FIGURE 4.8

An event-driven

program main

loop.

86 Part 2 Building Operating Systems Incrementally: A Breadth-Oriented Spiral Approach

 4.9 SUMMARY

 In this chapter, we discussed the features and concepts

of a simple modern OS—the Palm Operating Sys-

tem™ developed by Palm, Inc. This OS was devel-

oped for small handheld devices. Although this is a

single-user system, it can concurrently run some OS

processes and a small number of applications. Thus,

it supports a limited number of concurrently execut-

ing tasks, making it a simple multitasking system.

 We started this chapter with an overview of the

Palm OS and discussed some of the unusual hard-

ware characteristics of the handheld computers

that use the Palm OS. These special characteristics

force the choices of some of the decisions made in

the Palm OS design. Then we discussed the nature

of multitasking and how an OS works to schedule

application processes and OS tasks. We then dis-

cussed memory management, and the different types

of memory storage supported by the OS. Because the

Palm platform does not normally have a hard disk, it

uses a part of memory called storage RAM to keep

persistent data. When power is turned off and the

system is in sleep mode, storage RAM maintains its

contents. We discussed how memory is divided into

chunks, and how the OS locates different chunks in

memory tables and uses compaction to manage the

free memory.

 Then came an overview of the organization of

files in the Palm OS, followed by coverage of the

basic I/O functions that the Palm OS provides. These

include the Graffiti input system that allows users to

input freehand text. We next described the display

subsystem and simple GUI programming, followed

by a brief discussion of event-oriented programming,

a paradigm used in most Palm applications. Next, we

described the design of a typical Palm OS application.

 In the next chapter we move on to an OS more

complex than the Palm OS. It generally handles mul-

tiple programs running concurrently at the applica-

tion level. It is correspondingly more complex and

contains more system overhead.

 BIBLIOGRAPHY

 AMX/FS File System User’s Guide. Vancouver, BC,

Canada: KADAK Products Ltd., 1995.

 AMX User’s Guide. Vancouver, BC, Canada: KADAK

Products Ltd., 1996.

 Exploring Palm OS: Palm OS File Formats, Document

Number 3120-002. Sunnyvale, CA: PalmSource,

Inc., 2004.

 Exploring Palm OS: System Management, Document

Number 3110-002. Sunnyvale, CA: PalmSource,

Inc., 2004.

 Palm OS® Programmer’s API Reference, Document

Number 3003-004. Sunnyvale, CA: Palm,

Inc., 2001.

 Palm OS Programmer’s Companion, Volume 1,

Document Number 3120-002. Sunnyvale, CA:

Palm, Inc., 2001.

 Palm OS Programmer’s Companion, Volume 2,

Communications, Document Number 3005-002.

Sunnyvale, CA: Palm, Inc., 2001.

 Rhodes, N., & J. McKeehan, Palm Programming:

The Developer’s Guide, 1st ed., Sebastopol, CA:

O’Reilly & Associates, Inc., 2000.

 SONY Clié, Personal Entertainment Organizer. Sony

Corporation, 2001.

 WEB RESOURCES

 http://www.accessdevnet.com (ACCESS Linux Platform

Development Suite)

 http://www.freewarepalm.com (free Palm software)

 http://oasis.palm.com/dev/palmos40-docs/

memory%20architecture.html

 http://www.palm.com (Palm home page)

 http://www.pocketgear.com/en_US/html/index.jsp

(software for mobile devices)

 http://en.wikipedia.org/wiki/Graffiti_2 (article on Graffiti 2)

 Chapter 4 A Single-User Multitasking Operating System 87

 REVIEW QUESTIONS

 4.1 Since the Palm processor can only have one pro-

gram on the display at a time, why does the sys-

tem need a multiprocessing OS?

 4.2 Outside of a slow processor and fairly small

memories compared to modern systems, what is

the most unusual part of the basic hardware design

that the OS is based on?

 4.3 Is the Palm OS a microkernel or a monolithic

kernel?

 4.4 What does the Palm OS use a real-time kernel for?

 4.5 What is the basic logic flow of most applications?

 4.6 Why is memory allocated to a process accessed

indirectly through the MPT?

 4.7 How does the OS track free memory?

 4.8 As is typical in much of information system tech-

nology, the developers of the Palm OS overloaded

a perfectly good term with a different meaning.

What does the Palm OS documentation mean

when it refers to a “database?”

 4.9 Considering that the Palm platforms do not have

much memory, why do they typically not use

compression on the databases?

 4.10 The Palm OS gives the programmer several

abstractions for I/O so that the application pro-

grammer did not have to worry about the hard-

ware details. What were some of the abstractions

that were mentioned?

 4.11 True or false? The screens are memory mapped

rather than handled by I/O instructions so most

applications directly move data to the screen area

in memory.

 4.12 Briefly describe event-driven programming.

 4.13 How does an application programmer draw the

forms that he wants to display on the screen?

89

 ChapterChapter 5 5
 A Single-User Multitasking/
Multithreading Operating
System

In this chapter:

 5.1 Introduction 89

 5.2 The Origin of the Macintosh Computer 90

 5.3 The Macintosh OS—System 1 91

 5.4 System 2 96

 5.5 System 3 98

 5.6 System 4 98

 5.7 System 5 100

 5.8 System 6 101

 5.9 System 7 101

 5.10 System 8 105

 5.11 System 9 107

 5.12 Mac OS X 109

 5.13 Summary 111

5.1 INTRODUCTION

 The Mac OS represents an interesting level in our spiral evolution of OSs because it

has gone through a series of evolutions itself. It was initially intended to be an OS

for an affordable personal computer that had a GUI. At the time this was revolution-

ary. There had been other systems that used a GUI, but they were considerably more

expensive. But other than the GUI, in most ways the first release of the Mac OS was

less sophisticated than the Palm OS that was discussed in Chapter 4. However, as

time went by, pressure from other systems caused an evolution in the Mac hardware

and the Mac OS, and at the end of its line it was roughly as powerful as the multiuser

90 Part 2 Building Operating Systems Incrementally: A Breadth-Oriented Spiral Approach

Linux OS that we will discuss in the next chapter. The difference was that Linux

was designed from the outset to support multiple concurrent users, and this made

some significant differences in its structure and design. So we discuss the Mac OS

as an intermediate step between the Palm OS, which was intended for a very sparse

environment with only a single user, multitasking but no user multithreading, limited

screen space, and no secondary storage, and Linux, an OS intended for a multiuser,

multitasking, multithreading environment with large secondary and tertiary storage

and a GUI that supported large screens with overlapping windows.

 Because the Mac OS went through several profound changes during its history

we use a different approach in this chapter than we did in the other spiral chapters.

 We start this chapter in Section 5.1 with an overview of the Mac OS and some

background about the underpinnings of the original kernel. After this short introduc-

tion we follow the releases of the Mac OS in Sections 5.3 through 5.12 and describe

the additional features in each release. This is because the Mac OS began with such

humble origins, being little better than CP/M in most features, and ultimately evolving

into a full-featured, modern OS capable of supporting multiple users and multiple pro-

cesses as completely as the Linux system discussed in the next chapter. Following the

evolution of the Mac OS is in itself a bit of a mini-spiral approach. We stop short of the

Mac OS X release in favor of describing an alternate system in the next chapter, Linux.

We will say only enough about it to position it with regard to the other major PC OSs

on the market today. We conclude this chapter in Section 5.13 with a summary.

 5.2 THE ORIGIN OF THE MACINTOSH COMPUTER

 In 1973 a revolutionary computer system called the ALTO was designed at the

Xerox Palo Alto Research Center—aka Xerox PARC. This computer was never

sold, but over 200 were given to universities and other research institutions. They

cost about $32,000 1 each to build, and included revolutionary technology such as

a forerunner of the GUI interface we know today, a type of Ethernet and a mouse,

among other things. A later system, the Xerox Star, contained many of the same

features. It retailed for $16,600. 2 This was still too costly for a computer intended to

be used by only one person and the system was not a commercial success. However,

these systems were seen by some other visionary pioneers of the personal computer

business, and they began a drive to produce affordable systems that incorporated

these ideas. Among those pioneers was Steven Jobs, whose Apple Computer sys-

tems had been among the first commercially successful personal computers.

 Apple first developed the Apple Lisa, which retailed for $10,000. 3 Like the

Xerox Star, it was also a commercial failure. But Apple persevered, and eventually

introduced the Macintosh personal computer in 1984, 4 which retailed for $2,500, in the

1 $157,000 in 2007 dollars.
2 $42,000 in 2007 dollars.
3 Almost $21,000 in 2007 dollars.
4 Over $5,000 in 2007 dollars.

 Chapter 5 A Single-User Multitasking/Multithreading Operating System 91

same range as an IBM PC. The Mac seemed more affordable than the Lisa to average

people, and the GUI interface made it a very usable system, so it was an immediate

success. The Macintosh hardware used the Motorola 68000 family of CPUs.

 5.3 THE MACINTOSH OS—SYSTEM 1

 The initial release of the Mac OS was known as System 1. System 1 had several

characteristics that were typical of OSs of the time. It also had a few unique features

because of its GUI.

 5.3.1 The GUI

 System 1 had a desktop, windows, icons, a mouse, menus, and scrollbars. See

 Figure 5.1 . The desktop had a trash can icon that could be used to delete items

by dragging and dropping them on the icon. These are all metaphors and features

we take for granted today, but they were fairly revolutionary for the time. Unlike

the Palm OS, the OS design assumed that the screen was large enough to hold

more than one window or to show the desktop with a window that did not take up

the entire screen. The screens were only black and white and only had a resolu-

tion of 520 ⫻ 342 pixels, so the graphics were very limited. Nonetheless, it was

a GUI and many users found it friendlier than a command-line interface, espe-

cially novice users. Compare this with the command-line prompt in CP/M, which

merely said:

A>

 And awaited input from the user with no hint of what to do.

FIGURE 5.1

The Mac OS GUI.

Source: All of the MAC
OS screen shots in this
chapter were made with
the Mini vMac emulator.
It is available at http://
minivmac.sourceforge
.net/.

92 Part 2 Building Operating Systems Incrementally: A Breadth-Oriented Spiral Approach

 The GUI is probably the most significant thing about the Mac OS, not because it

was so original or so well done, but because of what it did not have to support. In the

rest of the world the OSs typically evolved from legacy systems that originally had

command-line interfaces (as with DEC, UNIX, IBM, etc.). The applications were

standalone programs invoked through entry of one-line commands on an interface

called a command line. These interfaces simulated the way a typewriter attached to

a computer worked. So they were designed around keyboard use and had little or no

mouse support. Each application team was free to use whatever key they wished for

any given function. So to invoke a spelling check, a word processor might use the

F7 key while a spreadsheet program might use the F12 key. Even worse, there was

no dominant package in most application areas, so the WordPerfect word processing

program might use one key to print and a competitor program like WordStar might

use a different key for the same function. For each individual application there were

keyboard templates available that showed what every function key did, when used

alone or when used with any combination of Shift, CTRL, and ALT keys!

 With the Mac there were no legacy applications. From the outset there was a

key sequence assigned to the Print function and a new application had no reason to

deviate from that assignment. As a result, Apple was able to truthfully advertise the

ease of learning to use software on a Mac. For example, suppose a user had mastered

a word processing application on a MAC. If that user understood how a spreadsheet

tool worked, then that user would be able to easily use a spreadsheet program on the

MAC because all the standard functions would be invoked just as they were on the

word processing program. Even today this problem persists in Windows and Linux

applications. The point is that one should not underestimate the impact of a require-

ment for backward compatibility—something the Mac did not have.

 5.3.2 Single Tasking

 In order to deliver an affordable product, the early Macintosh had to run with very

limited memory since it was still quite expensive. As a result, Apple’s developers

decided to forego the multitasking Apple had used with the Lisa. Even though an

application window probably did not take up the entire screen, the Mac OS did not

initially allow more than one program to run at the same time, even for background

printing. To allow some parallel functionality, the OS included Desk Accessories,

which included functions such as a Calculator, Alarm Clock, system Control Panel,

and Notepad, but these were carefully limited so that they would not use too much

RAM. They were implemented as “device drivers” rather than separate programs,

and could open a single window. Figure 5.2 shows how primitive these were by

today’s standards. Figure 5.3 shows the Control Panel, which allowed the user to

change many system settings. The system had an application called finder that was

used to find files in the system. The finder window was the command processor that

in most OSs was a command-line console. So it was also the mechanism for running

other programs. The finder window is visible in Figure 5.1 . The System 1 version of

finder was referred to as a single application finder. Since only one application pro-

gram was running at a time (not counting the Desk Accessories), there was no need

for protecting one program from reading or changing another program in memory,

 Chapter 5 A Single-User Multitasking/Multithreading Operating System 93

FIGURE 5.2

The Calculator

desktop accessory.

FIGURE 5.3

The Control Panel.

so the OS had no such scheme. System 1 also did not even protect the OS from the

applications. This was also true of most other OSs available at the time.

 5.3.3 Secondary storage

 As with the CP/M system discussed in Chapter 3, programs were kept on a single

floppy disk drive and loaded into RAM only when they were to be executed. The

disk system that was available on the early Macs was only 400 Kbytes. This is a

small enough space that it was fairly easy to find files, so all files were kept in a

single directory. Still, the developers of the OS realized that the idea of grouping like

files together was useful, so the system showed folders on the disk. As with CP/M,

however, these folders were only a simulation. Each file directory entry could be

marked with a folder name, and the system would allow the user to look inside the

folder, essentially listing all the files marked with that folder name. As a result, it was

also not possible to nest folders within folders.

94 Part 2 Building Operating Systems Incrementally: A Breadth-Oriented Spiral Approach

 5.3.4 Memory management

 The Mac OS has a single address space, as seen in Figure 5.4 . 5 This architecture

is said to be “flat,” which means that at any time any instruction can directly ref-

erence all of memory. Other designs of the era used a more complex scheme that

allowed large amounts of RAM but limited the addressing such that a program could

only address segments of 64 KB with any instruction. The 68000 CPU has 24-bit

addresses, allowing for 16 MB of RAM. There is no memory protection, so any

program can modify anything in memory, including the OS itself. In addition, the

application code runs in supervisor mode so there is no instruction protection to

limit what the application can do. The size of the address space is determined when

the OS boots. The lowest part of RAM is occupied by a system partition. This area

contains some system global values, which applications should not access directly.

Rather, they should use the OS APIs to read and manipulate any system data. But

with no memory protection or instruction protection, there is nothing to prevent an

application from taking a shortcut and accessing such information directly. In the

early days of personal computers, application writers would often take such short-

cuts and tried to justify their actions in the name of performance.

 An application partition is allocated from the top of memory downward. The

layout of an application partition is seen in Figure 5.5 . At the top is a fixed size data-

block called the A5world, which contains the application’s static data and some

metadata about the application. The name arose because the Mac OS loaded the A5

register of the CPU with a pointer to this area so that the application would know

where it was located in memory and could access its global data by addressing rela-

tive to the A5 register. Below this is the stack, with the “top” of the stack growing

downward. The heap grows from the bottom of the application partition upward and

5 The initial releases of the Mac OS did not support multiple processes. That came later.

Application
partition

System
partition

High Memory

A5world

Stack

Heap

System Heap

System Global Variables

Unallocated

FIGURE 5.4

System 1 memory

layout.

 Chapter 5 A Single-User Multitasking/Multithreading Operating System 95

Heap

A5world CurrentA5

ApplLimit

ApplZone

Stack

High Memory

CurStackBase

FIGURE 5.5

Application memory

partition.

includes code segments. So one problem that the OS has to manage is to make sure

that these two areas do not run into one another.

 An upper limit on the size of the heap is set for an application when it starts.

Growth of the heap is controlled by the memory allocation routines, so they always

check to make sure that a requested allocation will not exceed the limit. But the stack is

automatically maintained by the hardware. As subroutines and functions are called and

return, data are pushed onto and popped off of the stack. Since many applications call

multiple levels of subroutines, sometimes recursively, this stack tends to grow as the

program runs. But there is no hardware protection against the stack’s extending below

the limit. Instead, a stack sniffer subsystem runs during the interval of the monitor

vertical retrace (about 60 times a second) that checks the stack level against the limit.

 A big problem for the designers of the Macintosh was how to make optimum

use of the 128 KB of RAM. In some ways this was a large amount of memory.

Other personal computers of the same era had 16 or 64 KB of RAM. But the Mac

was intended to have a GUI, and such interfaces take a good deal of RAM. As was

mentioned above, the developers decided to limit the Mac to run only one program at

a time. Their main concern appears to have been memory fragmentation—repeated

allocation and deallocation of memory leads to many small, isolated areas of mem-

ory, which cannot be used because they are too small, even though the total free

memory may be enough to satisfy a particular request. In order to avoid fragmenta-

tion of heap memory the Mac OS supports relocatable memory blocks. These are

accessed indirectly via a pointer into a nonrelocatable master pointer block. The

Palm OS discussed in the last chapter uses a similar mechanism. The relocatable

blocks are compacted from time to time in a garbage collection process. Relocatable

blocks can also be marked purgeable, which means the system may free them dur-

ing compaction if the free memory space falls below a predetermined limit. Pointers

were initially only 24 bits long, but were stored in a 32-bit field for anticipated future

growth in the processors. So the top 8 bits (of the 32) were often used for flags mark-

ing blocks as relocatable, temporary, purgeable, and so on.

 The OS implemented two areas with this scheme: the system heap used

by the OS, and the application heap. As long as only one program was run, the

96 Part 2 Building Operating Systems Incrementally: A Breadth-Oriented Spiral Approach

 system worked well. Since the application heap was erased when the program quit,

 fragmentation was minimized. Unfortunately, as was mentioned above, the OS pro-

vided no memory protection, and crashes caused by application program errors

manipulating the system heap were not uncommon.

 5.3.5 ROM

 Most personal computers used only a small amount of ROM to contain code for

Power-On Self-Test (POST) and some Basic Input/Output System (BIOS) routines,

typically about 8 KB. The Mac OS ROM was significantly bigger (roughly 64 KB)

and held much of the actual OS itself. The initial purpose of having so much code in

ROM was to avoid filling the limited storage available on a floppy disk, given that

the early Macs had no hard disk. It also helped the system to boot faster since that

code did not have to be read from the floppy drive. Only the 1991 Mac Classic model

was bootable using the ROM alone. This architecture also helped to ensure that only

Apple computers and licensed clones could run the Mac OS.

 5.3.6 Incremental releases

 As with most OSs, between major releases there are incremental releases. These

releases are often given fractional numbers. They are released for various reasons:

speedup of some specific function such as the loading of the OS, bug fixes, and

occasionally some new feature or application that is scheduled for some later major

release that is falling behind schedule. In the Mac OS System 1 there was one such

release, 1.1, that did a bit of all of these.

 5.4 SYSTEM 2

 System 2 was theoretically a major release, but there were no features that were

significant from a theoretical point of view. The Finder was somewhat faster. Cer-

tain icon/commands were eliminated, and icons for creating a New Folder and for

Shutdown of the system were added. Floppy disks could now be ejected merely by

dragging their icons to the Trash, instead of selecting the Eject Disk command and

then dragging the icon to the Trash. A Choose Printer desk accessory was added,

which allowed a user to select a default printer. This utility would later become the

 Chooser, a utility for accessing shared resources, such as printers, modems, and disk

volumes hosted on other systems and made available through a network.

 5.4.1 GUI

 Users of the Mac liked the GUI and the ability to cut and paste information from one

application to another. But this meant cutting the data from one program, stopping

that program, starting the new program, and then pasting the data into it—an opera-

tion that usually took minutes. Each new Macintosh model included more RAM

than the previous models, and the Macintosh 512K (aka the Fat Mac), contained

four times the RAM of the original Mac. This was enough to support some form of

 Chapter 5 A Single-User Multitasking/Multithreading Operating System 97

multitasking. It was first implemented in the Switcher program. Switcher allowed a

user to start several programs. The user could then switch between these applications

by clicking an icon on the menu bar. The current application would horizontally slide

out of view, and the next one would slide in. When a user switched to one of the

running programs it was said to “ have the focus. ” The user could thus cut and paste

between applications in seconds instead of minutes.

 5.4.2 Multitasking

 Switcher created a number of fixed slots in RAM into which applications were

loaded. The Switcher program allocated a separate heap for each application that the

user started, subject, obviously, to the availability of RAM. When the user toggled

from one process to another the Switcher could perform a context switch and fix the

OS memory management data so that the OS would begin working with the new

application. Since there was no memory or instruction protection the Switcher could

tweak the OS memory structures to affect a switch. However, this was very limited

multitasking, somewhat like the Palm OS in that there was still only one process run-

ning at any one time. The user could switch from one process to another, but while

a process did not have the focus, that process was not actually running. Despite its

awkwardness, this approach worked with the existing system’s memory manage-

ment scheme, as programs did not need to be changed to work with Switcher. The

changes were also transparent to the OS kernel. A typical memory layout with mul-

tiple processes in the system is shown in Figure 5.6 .

Application 1
partition

Application 2
partition

System
partition

High Memory

A5world

Stack

Heap

A5world

Stack

Heap

System Heap

System Global Variables

Unallocated

FIGURE 5.6

System 2 “Switcher”

memory layout.

98 Part 2 Building Operating Systems Incrementally: A Breadth-Oriented Spiral Approach

 5.5 SYSTEM 3

 5.5.1 Hierarchical File System

 Disk drives were getting bigger and users tended to fill them up then as they do now,

wanting to have quick access to all their information. This meant that the number of

files was growing much larger, so it was getting hard for a user to keep track of files.

So a new file system design was released known as the Hierarchical File System

(HFS). It replaced the old Macintosh File System (MFS). Folders were now actual

subdirectories instead of just tags in the directory entries, and folders could contain

other folders. It was so much more useful that it came to be called the Mac OS

Standard File System (to distinguish it from a later extended version). The directory

entries contained timestamps showing when the file was created and when it was last

modified, the file type and creator codes, a file name of up to 32 characters, and other

file metadata. (The creator code told the OS what application had created the file.)

The free space was tracked by a bitmap and the directories are stored as B-trees.

These ideas will be further explained in Chapters 12 and 13.

 There were a few bug fix releases until the next real advance in the OS

capabilities.

 5.5.2 Networks

 Local area networks (LANs) were becoming extremely popular. They allowed shared

access to expensive devices such as large disk drives, high-end laser printers, modem

pools, and other exotic devices such as microfilm output. They also facilitated com-

munication through shared files and directories on central servers. So with System 3.3

Apple added support for AppleShare, a proprietary file-sharing protocol. The protocol

stack also included proprietary technology at other layers: AppleTalk at the network

layer and LocalTalk at the data link and physical layers. Now the Chooser utility took

on much more importance than just selecting the default printer. LaserWriter printers

could be directly connected to the network and shared by several users. The Macin-

tosh began to be viewed as a powerful desktop publishing system and these printers

were a large factor in that view and in the general success of the Mac product line.

 5.6 SYSTEM 4

 System 4 was introduced with the Macintosh SE and Macintosh II. At this stage in the

development of OS technology, new releases were often required just to support new

models of a computer. System 4.1 added support for disk drives larger than 32 MB.

 Different references disagree about when the Mac OS supported a version of

finder that could launch multiple applications. Most likely this is because the nam-

ing of the releases was somewhat confusing. The main software had one number,

the finder had another, and the MultiFinder (to be discussed shortly) had another.

For example, one reference 6 lists System Software 5.0 (System 4.2, Finder 6.0, and

6 http://en.wikipedia.org/wiki/Mac_OS_history

 Chapter 5 A Single-User Multitasking/Multithreading Operating System 99

FIGURE 5.7

MultiFinder.

MultiFinder 1.0), while another reference 7 states that System 5 was never released.

In addition, because MultiFinder was new and Apple was not certain that all existing

programs could operate correctly under it, Finder continued to be distributed with

the OS, compounding the release naming issue.

 5.6.1 MultiFinder

 The consensus seems to be, however, that System 4.2 implemented MultiFinder—

users could switch between Finder, which supported only one program at a time, and

MultiFinder, which could support multiple programs. See Figure 5.7 . MultiFinder

extended the OS significantly. Unlike Switcher, which merely switched the OS from

running one application to running another, MultiFinder allowed each program to

keep running, giving each application CPU time. Unlike OSs, which we will study

later, the Mac OS did not set hard limits on how long a process could continue

running without switching to another process. The technique used in the Mac OS

is known as cooperative multitasking. With this technique a process can run as

long as it wants to. If the process makes a call to the OS that the OS cannot service

immediately, such as a disk read, then it will make the process wait—a mechanism

known as blocking. When a process makes such a blocking call, then the OS will

add the blocked process to a queue of processes that are waiting for something and

will switch to running another process. If a process makes no blocking calls then

it can run as long as it likes. In order for all processes to give a quick response to

user requests, they all need some CPU time. So if one process runs for too long it

7 http://www.macos.utah.edu/documentation/operating_systems Ⲑ mac_os_x.html

100 Part 2 Building Operating Systems Incrementally: A Breadth-Oriented Spiral Approach

can make the performance of the system seem uneven. In order to keep this from

happening, all processes are supposed to make a special system call fairly often that

tells the OS that the process is not through but that it is voluntarily relinquishing

control and is ready to run again. This allows other processes to have a fair share of

the CPU time. Of course, some vendors want their software to appear to be the best

responding, so they don’t call that routine often enough. In other cases a software

error may cause a program to go into a loop and never yield control or make a block-

ing call. In these cases the system will essentially freeze.

 5.6.2 The GUI under MultiFinder

 MultiFinder provided a way for windows from different applications to coexist by

using a layering model. Now that there could be multiple running applications, they

might each have multiple windows open on the desktop at the same time. When a

program got the focus, all of its windows were brought forward together in one layer.

This was necessary for compatibility with existing windowing APIs.

 5.6.3 RAM management with MultiFinder

 MultiFinder also provided a way for applications to communicate their memory

requirements to the OS, so that MultiFinder could allocate RAM to each program

according to its need. Unfortunately, the amount specified would not be enough for

some tasks, so the user was given an interface to override this number. This strongly

went against the Apple theory that users should be kept away from such technical

information. In this case their theory was correct, since users often had no idea how

much memory a program might really need. One program was often given much

more memory than it really needed and another program was given much too little.

As a result, the starved application would perform poorly. When multiple applica-

tions are running, the management of RAM is usually much more complex than

when a single application is running. But when MultiFinder was being developed,

a key consideration was that programs that ran under the single Finder should work

without change under MultiFinder. So the memory architecture is very similar, just

slightly more complicated. With one application running the architecture looks like

that in Figure 5.1 . When several applications are running the architecture looks like

that in Figure 5.3 . As execution shifts from one application to another the OS will

change the contents of certain system variables to reflect the sizes and locations of

the application partition and its pieces for the new application. This change is known

as a context switch. As we will see later, with modern OSs a context switch is often

much more complicated than this.

 5.7 SYSTEM 5

 As was stated above, some references say that System 5 was never released and oth-

ers say it was released only for a short time. In either case there is nothing significant

about it for the purposes of studying OS evolution.

 Chapter 5 A Single-User Multitasking/Multithreading Operating System 101

 5.8 SYSTEM 6

 In the eyes of many observers, System 6 was the first true upgrade of the Mac OS. 8

RAM was getting cheaper and larger and users always wanted more of it. So System

6 began the migration to supporting the Mac in the true 32-bit memory addressing

modes that had appeared with the Motorola 68020 CPU. These 32-bit addresses

allowed the Mac OS to address up to 4 GB of RAM. Earlier versions of the Mac

OS had used the lower 24 bits for addressing, and the upper 8 bits for flags, which

indicated, for example, that the block pointed to was marked as “locked,” “purge-

able,” or as a “resource.” This had been an effective solution for earlier hardware

with limited RAM, but became a liability later. Apple referred to code that used the

24 ⫹ 8-bit addressing model as being not 32-bit clean, and suggested that develop-

ers remove such code from their applications. As was noted before, much of the Mac

OS was in ROM. Unfortunately, much of that ROM code was not 32-bit clean, and

so older Macs could not be migrated to this new mode. The new mode required new

versions of the hardware. The change to 32-bit addressing mode made for a lot of

compatibility issues that linger even into today’s versions of the Mac OS. The OS

maintains the capability of running applications in a 24-bit mode, though it is much

slower than the 32-bit mode. So Apple was now feeling the pinch of supporting

legacy applications.

 In the early part of the PC era, developers still saw the RAM in a system as

a very tight resource and would go to great lengths to save a byte or two here and

there. As time went by it was often found that such savings had a very negative

impact later. Indeed, the Y2K bug (Year 2000) 9 was another example of this sort

of problem caused by the desire save a few bytes of RAM by shortening the format

of the year part of dates to the last two bytes. The end of the century was 20 years

away and developers assumed that the systems they were developing would not still

be in use by then anyway. When the last year of the century rolled around, systems

that had stored dates as only two digits would make incorrect conclusions, calculat-

ing that a date in the year “00” (i.e., 2000) came before a date with the year “99”

(i.e., 1999.) The Mac OS was apparently designed from the start to avoid the Y2K

problem, though Apple never officially certified any system release before System 7

as being Y2K compliant.

 5.9 SYSTEM 7

 System 7 was the biggest change to the system software up to that time. It continued the

migration of the Mac OS to full 32-bit addressing and improved its handling of color

graphics, networking, and multitasking, and it introduced a form of virtual memory.

 Many features that had been available as options in earlier versions of the Mac

OS were integrated into System 7. This release dropped the single program version

8 http://en.wikipedia.org/wiki/Mac_OS_history
9 http://en.wikipedia.org/wiki/Y2k

102 Part 2 Building Operating Systems Incrementally: A Breadth-Oriented Spiral Approach

of Finder, eliminating the Finder versus MultiFinder issue. Cooperative multitasking

thus became the normal mode of operation of the system. Networking via Apple-

Talk and file sharing via AppleShare were built into the operating system, instead of

being optional.

 5.9.1 The GUI

 System 7 had several usability improvements, many in the area of the GUI. A menu

was added to the right end of the menu bar called the Application menu. It showed

a list of running programs and allowed users to switch among them. Next to the

Application menu was the Help menu. Users could now drag and drop—a block of

text could be dragged from one program to another with the mouse instead of hav-

ing to copy and paste. System 7’s Finder finally utilized color features and made

some interface elements look more three-dimensional. Other usability features were

also added to the OS in the System 7 releases. WorldScript provided system-level

support for languages besides English. Technologies such as AppleScript, a macro

language for task automation; ColorSync, color management utilities; QuickTime

multimedia software; and TrueType font management were also released. Over

time, many of the features that we associate with modern GUIs were added to the

Mac OS. For the most part we will not detail these features in each release. We will

only note that the GUI was evolving in a piecemeal fashion and was becoming more

usable over time.

 5.9.2 Virtual memory

 Sometimes a user wanted to run more programs than would fit into RAM at the

same time. Or perhaps the program was used with a data file that was very large.

For example, a word processor might normally fit fine in a small space if it was just

being used to write interoffice memos. But if it was used to edit a large report it might

require a great deal more RAM. When performance is poor because more memory is

required but a larger memory is not available or is too expensive, then one solution

is called virtual memory, or VM. VM is a technique that uses some space on a hard

disk drive to simulate a larger primary memory. It requires extra memory manage-

ment hardware support to work. Briefly, memory is divided into blocks known as

 pages. When a program starts running, only the first page of the program is brought

into RAM. When the running program references a part of the program that is not yet

in memory the hardware will cause an interrupt called a page fault, and the OS will

read the missing page into RAM from the disk drive. This technique is discussed in

greater detail in Chapter 11.

 As was mentioned, special hardware is required in a computer system for the

OS to be able to support VM. The computer must have a special memory manage-

ment unit (MMU), which is capable of translating the logical addresses that are

generated by the program running in the CPU and translating them into a physical

address so that the pages of the program can be located anywhere in RAM. Apple’s

68040- and 68030-based machines have a VM-capable MMU built into the CPU and

can thus support VM with no additional hardware. A Macintosh II (68020-based)

 Chapter 5 A Single-User Multitasking/Multithreading Operating System 103

could have a special MMU coprocessor on its main logic board in place of the stan-

dard address management unit (AMU). 10 This MMU would also support VM.

 VM was first implemented in the Mac OS with System 7. However, the virtual

memory support was very preliminary and performed very poorly in many circum-

stances. The design of the OS Memory Manager used RAM in such a way that it

caused excessive page faults under VM. 11 VM features that are commonly found

in VM implementations of other OSs today—such as protected address spaces,

memory mapped files, page locking, shared memory, and so on—were not present.

Many of these were provided in later releases of the Mac OS. As Apple gained better

understanding of the workings of VM and modified the behavior of certain portions

of the OS, the system performance when running VM also improved.

 5.9.3 A new CPU

 Sometime around 1990 Apple formed an alliance with IBM and Motorola to develop

a new processor family based on a combination of the IBM RS6000 architecture, the

Motorola 68000, and the Intel PC line. It would be known as the PowerPC family,

and it would determine Apple’s hardware direction until 2006. The initial Mac with

the PowerPC CPU was the Power Macintosh 6100, or the Performa 6100 series.

Support for this processor family came in System 7.1.2. It required changes in the

design of the Mac OS. This architecture was a RISC design, unlike the CISC design

used in the Motorola 68000 family, so it represented a radical change in the code

used by the CPU. It would have taken far too long to completely port an OS based on

the 68000 architecture to a RISC architecture, so the design of the PowerPC archi-

tecture allowed it to emulate the 68000 CPUs.

 A small piece of code dubbed a nanokernel managed the PowerPC CPU. It

executed in supervisor mode and supplied low-level interfaces for hardware man-

agement to the rest of the system. The API for this nanokernel was restricted to

system software and debuggers. A 68000 emulator was started by the nanokernel

at system startup time. It only emulated a 68000 user-mode instruction set with-

out emulating the MMU. This allowed for more universal compatibility. The OS

was thus able to begin to run on the PowerPC-based systems almost immediately.

However, emulation of the execution of a 68000 CPU on a PowerPC is significantly

slower than execution of native PowerPC code. Programs could be compiled and

linked to produce executable modules that contained both native 68000 code and

native PowerPC code. This allowed a single version of the program to run on both

older machines and newer machines. Such dual-mode programs were known as fat

binaries. Switching between the two modes was done by a set of library routines

called the Code Fragment Manager. Over time, more and more of the OS was

modified to include native PowerPC code as well as code that could still run on the

68000 family of systems.

 The architecture of Apple computers was always proprietary. This had several

side effects, some good and some bad. The main Apple system bus in the Macs was

10 http://developer.apple.com/documentation/mac/Memory/Memory-152.html#HEADING152-0
11 http://developer.apple.com/technotes/tn/tn1094.html

104 Part 2 Building Operating Systems Incrementally: A Breadth-Oriented Spiral Approach

called NuBus. Since it was proprietary, Apple could exercise firm control over all

hardware development. Thus, controllers were more likely to work on a Mac than

on an ISA bus machine, and the drivers were more likely to work as well. On the

other hand, it meant that there was less competition in this market, and users thus

paid a higher price for hardware and software than they might have otherwise.

Also, fewer vendors could afford to hire extra staff to develop hardware for addi-

tional buses. Around 1990 work began at Intel on a standardized bus called the

Peripheral Component Interconnect bus or PCI. By 1993 the full specification was

available, card vendors started creating I/O cards for this new bus, and system man-

ufacturers began including them on the new motherboard designs. Apple found that

this put them at a competitive disadvantage. Since the volumes vendors could sell

in the PCI bus market were significantly greater than in the Apple NuBus market,

the prices Apple had to pay for interface controllers was much higher, and this

both cut into their hardware margins and made the price of their systems less com-

petitive. Apple Computer therefore incorporated the PCI in the Power Macintosh

computers it introduced in 1995. The System 7.5.2 release supported these new

machines and thus had to incorporate new drivers and chip set support for the PCI

bus and controllers.

 5.9.4 Input/output enhancements

 The Macs existed in a world that was being dominated by Intel-based PCs running

Microsoft software. As a result, there was considerable pressure to provide bridges

to that world. Certainly the networking support was evolving in that direction, and

many Microsoft-oriented protocols were added to the Mac OS support. Another

example was that System 7.1 introduced software called PC Exchange that could

access MS-DOS formatted floppies. Earlier releases only supported Apple floppy

disk formats. While floppies for the IBM PC and the Apple Mac were physically

identical, they are used differently in two ways. First, the low-level formatting is

different. New floppy disks in most cases do not have any predetermined number or

size of sectors. A process called low-level formatting writes headers on the tracks

that later will tell the hardware where each sector starts, what the track and sector

numbers are for the sector, and how long it is. Different systems can use different

numbers and sizes of sectors, and early on there were many competing formats, both

with regard to the sizes of the media and the low-level formats. Today the sizes and

formats have been fairly well standardized, but in the early 1990s there were still

several competing standards. Once the low-level formatting is done the user can have

the OS “format” the floppy at a higher level, creating an empty file system on the

disk. In the case of the IBM and Apple systems the file systems were different as

well as the low-level formatting. Adding to the Mac OS the ability to read and write

MS-DOS floppies made Macs much more acceptable in the office world where easy

exchange of files among users was a necessity.

 By this time laptop systems were in frequent use, and they often included a PC

Card slot. These were called PCMCIA slots at that time but were since renamed.

PC Card slots allowed the insertion of a device that was not built in to the original

laptop. Typical examples were network cards, controllers for external disk drives,

 Chapter 5 A Single-User Multitasking/Multithreading Operating System 105

disk drives themselves, and RAM cards. A RAM card could not be addressed as pri-

mary memory because the PCMCIA slot was on the I/O bus. So a common technique

for dealing with such a card was to treat it as a special type of disk drive and create

a file system on it. Because the floppy format was about the right size, these were

often created with an MS-DOS-compatible file system since they could then also be

used to move data from IBM-compatible PCs to Macs since the Mac OS could read

these devices as well.

 Because of general enhancements to the OS and the fat binaries for use with

the PowerPC, the System 7 release was the first version of the Mac OS where a

full installation was too large to fit on a 1.44 MB floppy disk. As a result, System

7.5 and later would not run from a floppy drive but required a hard disk on the

computer.

 5.10 SYSTEM 8

 By this time Apple was adding Macs to their product line that were intended to be

used as servers. In some cases these new systems had multiple CPUs. System 8

therefore added support for these new Mac multiple-CPU models. These machines

would experience better performance in a server role. Support in modern OSs for

such systems is called symmetric multiprocessing, or SMP. In such situations the

OS runs on any CPU that is available. 12 This can pose special problems for the OS

because it can literally be running on two or more CPUs at the same time. This

means that it must take special precautions to prevent having two running instances

manipulating any one data element at the same time. Since the Mac OS is primarily

a single-user system, we will defer a more in-depth discussion of SMP to the next

chapter on Linux, a system designed from the outset to support multiple users and

run many other services.

 Personal Web Sharing was also introduced in System 8. This facility allowed

users to host Web pages on their computers.

 5.10.1 Hierarchical File System Plus

 As time went by, hard drives were getting larger and larger. Unfortunately, the file

systems that were designed earlier for smaller drives used smaller pointers to save

valuable space both on the disk and in RAM. These pointers could not address all

the sectors on larger drives, so mechanisms were invented to extend the early file

systems to larger drives. The first technique was to allocate multiple blocks instead

of single sectors. For example, the Hierarchical File System that had been intro-

duced with System 3 used a 16-bit pointer in its data structures. This meant that

only 65,536 sectors could be directly addressed. With the standard sector size of

12 In asymmetric multiprocessing the OS runs on only one of the CPUs while applications run on
any CPU. While simpler than SMP, this technique is rarely used today since it limits the total system
performance.

106 Part 2 Building Operating Systems Incrementally: A Breadth-Oriented Spiral Approach

512 bytes, this meant that drives larger than 32 MB could not be supported. So

HFS allowed allocation to be based on blocks of multiple sectors instead of single

sectors. If the allocation was done on a basis of two sectors, then the same 16-bit

pointer could address a 64 MB drive. This could be increased to any number of sec-

tors that was a power of two. As with many techniques that Apple introduced into

the Mac OS, this was not a new technique. It had been used in the earlier CP/M

system. Allocation of larger blocks had some drawbacks. For example, on a 1 GB

disk, even a 1-byte file would take up 16K of disk space. If many short files were

used this became very inefficient, so a new file system had to be designed to address

the larger drives efficiently. System 8.1 therefore included an improved version of

the HFS called Hierarchical File System Plus, or HFS ⫹ . It used a 32-bit pointer

and was capable of directly addressing a 4 GB drive. Using an allocation block of

32 sectors, it could support drives up to 128 GB. HFS ⫹ also allowed file names to

be 255 bytes long.

 5.10.2 Other hardware changes

 Hardware continued to evolve in the computer field generally and in the Mac prod-

ucts specifically. System 8.1 was the last version to support 68K Macs since Motor-

ola was putting all development efforts into the PowerPC line. System 8.6 added

enhanced power management and improved support for new device classes such as

USB and FireWire.

 In order to allow a single application to use more than one CPU, System 8.6

introduced the idea of allowing an application to split itself into multiple indepen-

dent threads (called tasks in the Mac OS), which the OS then schedules to run on

multiple processors. We discuss this technique in-depth in Chapter 8. Apple modi-

fied the nanokernel to support this multithreading. It also added support for priori-

ties to be associated with tasks. This allowed the application to designate some tasks

as being more important than others. If a task had been waiting on some event that

was finished and that task had a priority that was higher than the currently running

task, the OS would preempt the CPU by stopping the running task and starting the

higher priority task. We saw this feature in the Palm OS in the previous chapter.

There was still no process preemption—the system still used cooperative multitask-

ing between processes.

 5.10.3 Unicode support

 In System 8.5 Apple begain supporting an new mechanism for displaying other

languages than English using a standard called Unicode —a worldwide character-

encoding standard. Compared to older mechanisms for handling character and

string data, Unicode simplifies making software work with other languages, a pro-

cess called localization. By using Unicode to represent character and string data,

a programmer can facilitate data exchange using a single binary file for every

possible character code. Unicode supports numerous scripts used by languages

around the world. It also covers many technical symbols and special characters.

 Chapter 5 A Single-User Multitasking/Multithreading Operating System 107

Unicode can represent the vast majority of characters in computer use. It provides

the following:

 • Allows any combination of characters from any combination of languages in

one document

 • Standardizes script behavior

 • Provides a standard algorithm for bidirectional text

 • Defines mappings to legacy standards

 • Defines semantics for each character

 • Defines several different encodings of the character set, including UTF-7,

UTF-8, UTF-16, and UTF-32

There are many different ways that Unicode can be used, and today most OSs sup-

port Unicode at one level or another. A more comprehensive discussion can be found

at the website of the Unicode Consortium: http://www.unicode.org.

 5.11 SYSTEM 9

 By this point the development of the Mac OS had become very convoluted. Several

major attempts at creating a new OS were started and either abandoned or sold off to

companies that had partnered in their development. One major event was the acquisi-

tion of the NeXT Computer, and with it the NextStep OS. This OS would eventually

evolve into the next release of the Mac OS, System X. In the meantime, releases of

the Mac OS had to continue, so over the next several years some important features

that were either invented or improved for one of the cancelled OS projects were

added to the Mac OS. It was a steady progression from Mac OS 8. The version num-

ber was increased from 8 to 9 to pave the way for the transition to System X. It was

felt that a gap in the numbers might have discouraged some users from migrating

from the classic Mac OS to OS X. System 9 was released in 1999, and Apple called

it the “best Internet operating system ever.” The rise of the Internet began to impact

the OS in several ways.

 5.11.1 Multiple users

 Originally it was assumed that a personal computer was used by a single person, and

the Mac OS reflected that orientation. There was initially no such thing as a login.

The design assumed that there was a single user of the system and that if security

was an issue then physical access to the machine was limited to that one person.

Many forces combined to gradually weaken that assumption. In the workplace it was

common to have machines that were shared by users who only needed access for

short intervals. At home the younger members of the family had always wanted to

use the computer to play games, but now they began to value access to the Internet

and needed to use software for various assignments, whether writing, researching, or

using special applications. They also used it for access to social connections, rang-

ing from multiplayer games to instant messaging to chatrooms. Whether at home or

in the business world, each of these persons had distinct preferences in the setup of

108 Part 2 Building Operating Systems Incrementally: A Breadth-Oriented Spiral Approach

the system. These included many options on the GUI, a home page for the browser,

and so on. They also frequently wanted to have files on the system that others did

not have access to—a personal diary, perhaps. So support for multiple users was

added in System 9. This required each user to login to the system before using it.

This feature lets several people share a Mac while sheltering their private files and

 supporting separate system and application preferences. It is set up and maintained

through a Multiple Users control panel, which lets one user create accounts for oth-

ers, allowing them either normal or limited access to applications, printers, or the

CD-ROM drive. The multiple users feature does not offer the same level of security

found in more modern OSs or in Mac OS X. These OSs have file system-level secu-

rity while System 9 does not. A knowledgeable user can access protected files by

booting off a different volume, for example. Still, the multiple users feature solved a

lot of the long-standing problems Mac users had when sharing a machine.

 Being able to limit the rights of certain users is a sound practice. Unfortunately,

many users are not very experienced with computers and allowing them unrestricted

access can mean that they can easily cause problems with the system. In the mini-

mum case they change things so that they do not work right. In the worse case

they can wipe out an entire system, including much valuable data. Good practice

says that even knowledgeable users should not normally run with unrestricted rights.

Instead, they should use a special administrative login when they need to perform

system maintenance.

 Passwords are a perennial problem in computer system administration. Having

many passwords and logins for different applications leads users to unsecure prac-

tices such as writing them on Post-it notes and leaving them on the monitor. Sys-

tem 9 implemented a mechanism known as Keychain Access. This feature managed

users’ multiple IDs and passwords and stored them securely. Once a user unlocked

the Keychain by typing in the password, every application that was Keychain-aware

could get the correct application username and password from the Keychain data-

base without having to ask the user.

 Since the file protection was not quite secure, System 9 also added a capability

for file encryption. While the encryption scheme is very robust, it was proprietary to

the Mac OS, so files encrypted in this way could only be decrypted by machines that

were also running Mac OS 9. If recipients on Windows or UNIX machines needed to

decrypt these files, then a cross-platform encryption program was still needed. But if

file protection was not secure enough in a specific multiuser situation, the encryption

added a measure of security.

 5.11.2 Networking

 By the late 1990s the Internet had become such a success that TCP/IP had become

a requirement for all personal computers. Apple had provided support for TCP/IP

since System 7, but only for certain functions. System administrators prefer to have

a minimum number of different protocols to administer. Since AppleTalk did not

provide any major features that were not also available in TCP/IP, there was con-

siderable pressure on Apple to support TCP/IP for all networking functions. So,

under System 9, file sharing was modified to support the TCP/IP protocol. Since

 Chapter 5 A Single-User Multitasking/Multithreading Operating System 109

AppleTalk was not supported over the Internet, users previously could not easily

access files at work on their Mac remotely through the Internet unless they resorted

to complex, difficult techniques. Adding support for file sharing over TCP/IP meant

that Mac users could work more easily from home over their standard Internet

connection.

 In addition, a new software update function allowed users to obtain Mac OS

software updates over the Internet, and would notify users of updates as they became

available. This greatly simplified the work of system administrators.

 5.11.3 APIs

 When System 9 was being developed, OS X was already well underway. As we will

see shortly, OS X is essentially a different OS. However, Apple did not want it to

be perceived that way. Accordingly, it was essential that many old applications be

executable on the new OS. We have already discussed the emulation that was needed

during the transition from the 68000 to the PowerPC. It was similarly possible to

execute most older APIs under the new OS, but it was far preferable if an old appli-

cation could be modified to support the APIs that would be available in OS X. So,

Apple created a new API for System 9 that would be forward-compatible with OS X

but still included support for most older API functions. This new API was known as

the Carbon API. It included support for about 70% of the legacy Mac OS APIs.

 5.11.4 Video

 One of the driving forces behind the development of powerful advanced video fea-

tures for personal computers is computer games. While other applications such as

desktop publishing can also benefit from the features, there are many more people

who play games than use systems to do desktop publishing. Naturally, the hard-

ware vendors want to develop products for the larger markets. Apple computers

are no exception, and there are many games available for Macs. One of the fea-

tures for which support was added in System 9 was support for video cards that

had built-in hardware support for accelerated rendering of 3D objects and for soft-

ware APIs for technologies such as OpenGL, which allowed an improved video and

gaming experience.

 5.12 MAC OS X

 OS X may be one of the most revolutionary changes in the history of OSs, and not

just because Apple changed the release naming from System 10 to OS X. In OS X

Apple completely discarded the System 9 kernel and replaced it with another one.

Microsoft’s Windows 3.x had been very successful since its release in 1990. They

had followed that with the release of another successful OS in 1993, Windows NT.

NT was an advanced OS designed for high-end applications and included features

such as preemptive multitasking, the ability to run applications written for several

110 Part 2 Building Operating Systems Incrementally: A Breadth-Oriented Spiral Approach

legacy OSs, multiple CPU support, and a new file system. Apple needed an OS that

would be competitive with these Microsoft products. As was mentioned before,

they partnered with various firms in several OS projects, but none provided the

OS they needed. They also considered building a new OS on top of a kernel from

Solaris (Sun Microsystems), BeOS (Be), and reportedly even NT (Microsoft). They

ultimately settled on a microkernel based on the Mach kernel and the FreeBSD

implementation of UNIX, which were the basis for NextStep, an object-oriented

operating system developed by NeXT Computer Inc. For performance reasons

some of the FreeBSD code was merged with the Mach kernel so that the result is

not a true microkernel. The exact evolution of OS X is hard to trace and not very

relevant to this text. Much information is available on the WWW for those inter-

ested in the varying opinions.

 Changes were made in OS 9 software to allow it to be booted in the classic

environment within OS X. So the Classic Environment is an OS X application that

provides a compatibility layer that can run a version of the System 9 OS, allowing

applications that have not been ported to the new APIs to run on OS X. It is fairly

seamless, but classic applications keep their original OS 8/9 appearance and do not

look like OS X applications.

 5.12.1 New features

 So OS X is actually a different OS that supports the APIs formerly used in the Clas-

sic versions of Mac OS. Many of the capabilities of OS X came from the UNIX util-

ity packages. In the next chapter we look at another UNIX variant in depth. For now

we simply mention some of the features that OS X brought to the Mac world:

 ɀ A new memory management system allowed more programs to run at once

and supported full memory protection that kept programs from crashing one

another

 ɀ A command line (part of UNIX terminal emulation)

 ɀ Preemptive multitasking among processes instead of only among threads

 ɀ Support for UNIX file system formats

 ɀ The Apache Web server

 ɀ Full support for symmetric multiprocessing

 5.12.2 A new CPU, again

 Since the greater capabilities of OS X put higher demands on system resources, this

release officially required at least a PowerPC G3 processor.

 In June 2005 Apple computers announced that they would be converting the

Mac product line from PowerPC processors to Intel products. In January 2006 Apple

released the first Macintosh computers with Intel processors. The Classic (emula-

tion) Environment does not work in the x86 version of OS X. Most well-written

“classic” applications function properly under this environment, but compatibility

is only assured if the software did not interact directly with the hardware at all and

interfaced solely with the operating system APIs.

 Chapter 5 A Single-User Multitasking/Multithreading Operating System 111

 5.13 SUMMARY

 In this chapter, we discussed the features and con-

cepts of a more complex modern OS—the Mac

OS developed by Apple Computer, Inc. This OS

was developed to bring to market an inexpensive

personal computer with a GUI. It is the Macintosh

OS™ (or Mac OS) developed by Apple Computer,

Inc. It generally supported only a single user. Later

releases allowed many processes that execute at the

same time and the ability for user applications to

start multiple threads. We began this chapter with an

overview of the Mac OS in Section 5.1. We used a

different approach in this chapter and followed the

releases of the Mac OS, describing the major new

features in each release. This is because the Mac OS

began as a quite simple system, offering no more

functionality than CP/M except for the GUI, and

even that was very primitive compared to what we

think of today.

 Ultimately the Mac OS evolved into a modern,

full-featured OS that can supporting multiple users

and multiple processes. We ended this saga with only

brief mention of that Mac OS X release. Instead, in

the next chapter we describe an alternate multiuser

system, Linux.

 BIBLIOGRAPHY

 Apple Computer, Inside Macintosh series. Pearson

Professional Education, 1992.

 Danuloff, C., The System 7 Book: Getting the Most from

Your New Macintosh Operating System. Chapel Hill,

NC: Ventana Press, 1992.

 Lewis, R., and B. Fishman, Mac OS in a Nutshell, 1st ed.

Sebastopol, CA: O’Reilly Media, 2000.

 WEB RESOURCES

 http://applemuseum.bott.org (an outsider’s view of Mac

OS history)

 http://developer.apple.com/documentation/ (contains links

for all the Inside Macintosh series, downloadable in

PDF format)

 http://developer.apple.com/technotes/

 http://www.apple-history.com (an outsider’s view of Mac

OS history)

 http://www.macos.utah.edu/documentation/(operating_

systems/mac_os_x.html

 http://www.online-literature.com/orwell/1984/ (the book

behind the 1984 TV ad)

 http://rolli.ch/MacPlus (links to vMac, a Mac emulator)

 http://en.wikipedia.org/wiki/Mac_OS_history (an

outsider’s view of Mac OS history)

 http://en.wikipedia.org/wiki/NuBus (the original

Mac bus)

 http://en.wikipedia.org/wiki/Y2k (an explanation of the

“Y2K bug”)

 http://www.parc.xerox.com/about/history/default.html

 http://en.wikipedia.org/wiki/Mach_kernel (the kernel in

Mac OS X)

 REVIEW QUESTIONS

 5.1 Which was the first system with a GUI?

 a. Xerox Star

 b. UNIX X Windows

 c. Xerox Alto

 d. Apple Lisa

 e. None of the above was the first system with a

GUI.

112 Part 2 Building Operating Systems Incrementally: A Breadth-Oriented Spiral Approach

 5.2 True or false? The Apple Macintosh was intro-

duced somewhat after the IBM PC and was

slightly less expensive than the IBM system.

 5.3 Which CPU did the Macintosh systems use?

 a. The Motorola 68000 family

 b. The Motorola PowerPC family

 c. The Intel 80x86 family

 d. None of the above

 e. All of the above

 5.4 What was the great advantage that the Macintosh

systems had over most other personal computer

OSs?

 5.5 The Apple Lisa was a precursor of the Mac and

could run multiple applications at the same time.

How many applications could the original Macin-

tosh run at one time? Why was that?

 5.6 True or false? The original Mac did not support

memory protection, which would keep an applica-

tion from corrupting the OS or its data.

 5.7 How many folder (directory) levels did the origi-

nal Mac OS support?

 5.8 How large were the portions of the memory that

the 68000 could address at one time?

 a. 16 KB

 b. 64 KB

 c. 128 KB

 d. 1 MB

 e. The 68000 could access all of memory at any

time

 5.9 True or false? In the Mac OS the kernel runs in

supervisor mode and the applications run in user

mode.

 5.10 What was the difficulty with the way the appli-

cation stack and heap were implemented in the

Mac OS?

 5.11 What did the Mac OS do to avoid the problem in

the previous question?

 5.12 What is the problem caused by the way that heap

memory is managed? How did the Mac OS deal

with it?

 5.13 How does the Mac OS solution to the heap man-

agement problem differ from the Palm OS?

 5.14 Unlike most other PC OSs, the Mac OS put much

of the OS in ROM. Why was that?

 5.15 With early releases of the Mac OS, a cut-and-paste

operation typically took minutes instead of sec-

onds. What new feature of the OS changed this?

 5.16 Did the change mentioned in question 5.15 make

the Mac OS a multitasking OS?

 5.17 What major change was introduced with the Hier-

archical File System?

 5.18 What did MultiFinder do?

 a. It allowed the user to search a file for multiple

strings.

 b. It allowed multiple users to log on to the

system.

 c. It allowed the user to search the network for

other users.

 d. It searched the Internet much like Google does

today.

 e. None of the above describes MultiFinder.

 5.19 What interesting new feature was made available

with System 5?

 5.20 System 6 supported new models of the Mac that

used 32-bit addressing. What problem did that

cause?

 5.21 What was a “fat binary” for?

 5.22 True or false? Virtual memory uses software to

simulate missing blocks of memory.

 5.23 What is the primary use of multithreading?

 5.24 Quite a few enhancements made it into the various

System 9 releases. Name three.

 5.25 Why did we not say much about Mac OS X?

113

 Chapter Chapter

 A Multiple-User Operating
System

 In this chapter:

 6.1 Introduction 113

 6.2 The Multiuser OS Environment 121

 6.3 Processes and Threads 123

 6.4 Summary 125

 I
n this chapter, we discuss an operating system that is still more capable than the

Mac OS discussed in the previous chapter, at least as far as the versions of the

Mac OS prior to OS X. This is the Linux™ Operating System. The intent of this

chapter is not to discuss the Linux OS in all aspects, but rather to focus on those

points where the multiuser requirement of the OS lead to the inclusion of some addi-

tional features. We return to Linux in Chapter 19 in a more complete case study that

examines the decisions made about the individual mechanisms for supporting the

major system modules.

 We start this chapter in Section 6.1 with an overview of Linux and some back-

ground about its history. In Section 6.2 we discuss the nature of a multiuser OS and

how this design decision impacts the features of an OS. Next is Section 6.3 where we

discuss the scheduling of processes and tasks in Linux. We have seen some of these

features in other OSs, but Linux is the first OS we have studied that started out with

a full implementation of all the concepts of both processes and threads. We conclude

with a chapter summary in Section 6.4.

6.1 INTRODUCTION

 The design of Linux is based on UNIX, an earlier OS that was originally developed

primarily for supporting several users at remote terminals, usually display screens

and keyboards with a serial data cable. These terminals were connected to a central-

ized computer system, perhaps even over a modem and phone line. UNIX was origi-

nally created to give a large computer development environment feeling to a much

less expensive mini-computer. (It was also developed as something of a hobby for its

 6 6

114 Part 2 Building Operating Systems Incrementally: A Breadth-Oriented Spiral Approach

two creators, who have won very prestigious computing awards for the concept of

UNIX.) There are also versions of Linux that are intended for many other situations.

Among these would be systems designed to:

 ɀ support a single user at the console of a personal computer

 ɀ act as servers for various remotely accessed functions such as file, print, and

directory services

 ɀ serve as platforms for other higher-level services such as database management

systems, Hypertext Transport Protocol (HTTP, or Web) servers, and File Trans-

fer Protocol (ftp) servers

 ɀ act as routers in networks

 ɀ control real-time systems, and

 ɀ be embedded in equipment where there is no direct human user.

 6.1.1 The history of a multiuser OS

 Linux was inspired by UNIX™, so it makes sense to discuss briefly the origins of

UNIX before addressing Linux. In 1969, Ken Thompson of Bell Laboratories began

experimenting on creating a multiuser, multitasking operating system using a cast-

off PDP-7 mini-computer. He teamed up with Dennis Ritchie and they and the other

members of their small research group produced the first versions of UNIX, then

called Unics as a dig at the Multics project on which they had both worked. (Multics

was a giant project with over a hundred people working on it whereas a handful of

programmers created UNIX.) Early versions of UNIX were written in assembly lan-

guage, but the third version was written in a programming language called C, which

was crafted by Ritchie expressly as a programming language for writing operating

systems. C was designed as a fairly low-level, simple language that allows the pro-

grammer to ignore many hardware details in most cases, but still write programs in

such a way that the compiler can take advantage of special hardware features. UNIX

was a proprietary product of AT&T, the parent company of Bell Labs, where it was

developed. AT&T made very reasonable charges for licenses to UNIX for academic

use. UNIX version 6 (around 1976) was free for universities and version 7 cost

$100. This included all the source code, freely modifiable. However, government

labs and commercial entities had to pay $21,000. This was not an unreasonable price

at the time for an operating system for a machine that cost hundreds of thousands

or millions of dollars. And for universities the academic license was an irresistible

deal since they had eager students who could port it to other machines or “improve”

it as they saw fit. This was especially true of the utility programs that are typically

distributed with an OS—such things as text editors, for example.

 The allure of UNIX, a simple, consistent, small (it ran in a few kilobytes of

memory and the source code was only several thousand lines of mostly C), and yet

very flexible OS was compelling. Several companies and research groups wrote

UNIX “work-a-likes,” they worked like UNIX with the same OS system calls and

OS utilities, but the source code was completely rewritten (to avoid AT&T property,

and avoid needing to license anything from AT&T).

 In 1991, Linus Torvalds, a University of Helsinki (Finland) computer science

student, was familiar with UNIX from his classwork and was looking for a UNIX-like

 Chapter 6 A Multiple-User Operating System 115

OS to use at home. One of the few free options (it came with a textbook) was MINIX,

a limited UNIX-like system written by Andrew Tanenbaum for educational purposes.

There were other free OSs that were UNIX-like, but most weren’t mature or stable yet,

or required higher-end hardware than most users had at home. While Torvalds used

MINIX, he felt that there were many features missing, so he decided to rewrite MINIX.

He initially kept the file system design but later replaced it with his own. MINIX ran

on a very basic 8088 CPU and floppy disks, allowing it to run on very inexpensive

hardware systems. But it did not take advantage of the power of newer processors and

hard disks. Torvalds used an Intel 386-based PC and started to add features and eventu-

ally wrote a new OS, initially using the C compiler on MINIX to do the development.

Before long, Linux had become a “real” OS. The resulting Linux kernel contains no

UNIX or MINIX code. Rather, it is a complete rewrite based on UNIX interfaces and

utilities. Linux is actually only the kernel of an OS. It is built with, and uses a lot of,

the GNU (GNU’s Not UNIX™) software produced by members of the Free Software

Foundation in Cambridge, Massachusetts, for the utilities and applications that must

come with a complete OS. Indeed, the bulk of the OS outside the kernel is also part

of the GNU project. So, one of the more interesting, important features of the Linux

system is that it is not proprietary to a single company. All of the OSs that we have

discussed to this point are (or were) owned by a company. They consider the source

code to be a trade secret and generally do not release it to the public. Linux and the

GNU software are “open source” projects. 1 The source code is available for free, and

users are encouraged to correct bugs and to enhance the code. There is a wide-ranging

debate as to whether the proprietary process produces better, more robust OSs than

the open source process or vice versa.

 Although it is accurate to say that Linux provides a free version of an OS that

supports UNIX operations, this is not as clear or useful a statement as it might appear

to be on the surface. For one thing, (in part because of the almost free price for the

source code for UNIX to universities), the history of UNIX development has been

replete with variants. Many programmers who were porting it to another environ-

ment could not resist the temptation to “improve” something or to add some favor-

ite feature. Not until the late 1980s was a fairly standard UNIX API created by an

independent IEEE committee. This standard is known as POSIX. Unfortunately the

IEEE charged substantial fees for access to this standard, with the result that the

developers of the free variants of UNIX-like OSs were usually not able to afford to

have their products certified by the IEEE as being POSIX compliant. Later work

has produced another specification that is more accessible to small companies or to

unpaid developers, the Single UNIX Specification (SUS).

 When Linux was first made available, a would-be Linux user needed to be some-

thing of a UNIX expert, knowing what libraries and executables were needed to suc-

cessfully get Linux to boot and run as well as the details concerning configuration and

placement of some of the files in the system. Many potential users just wanted the sys-

tem to use for their work, hobbies, or research and were not interested in working on

the kernel or in becoming an expert on building the system from scratch. Linux source

1 There are many variations on the concept of “open source” licenses. The adherents of the various
versions are generally adamant about the variations. We are using the term in a loose, generic sense.

116 Part 2 Building Operating Systems Incrementally: A Breadth-Oriented Spiral Approach

code is free, and at the same time, anyone can make a copy of the system and sell the

copy. As a result, individuals, universities, and companies began creating distribu-

tions of Linux. A Linux distribution usually includes compiled versions of the Linux

kernel and GNU system libraries and utility programs. Many distributions provide an

install procedure like that provided with other OSs that will customize the OS for a

given machine. The distributions were originally just a convenience, but today they

have become the usual installation method even for UNIX or Linux gurus because

of the savings in time and the decreased probability of overlooking some small but

important detail in building the system from the source. Now, most distributions of

Linux are certified as compliant with SUS. There are many different distributions of

Linux designed for special purposes, such as booting from a device other than a hard

drive, using Linux as a server, or supporting different languages as the default.

 The management of a Linux system is an interesting topic in itself. One of the

key features of Linux is the numbering of the various releases. The major release

number is the first integer. The preliminary versions that Torvalds first released were

release 0. The current release is 2. The next part of the number is odd for develop-

ment releases (sometimes called “hacker” releases) and even for production releases

(sometimes called “user” releases). So, for example, the current production release

of Linux is 2.6 and the current development release is 2.7. Another integer is added

to distinguish various patch levels.

 Linux has really outgrown its very humble beginnings. It started as an OS kernel

that was only available on single processor Intel 386 CPUs (or better) systems. Now

it is available on almost every hardware platform available, including, in many cases,

platforms where the hardware vendor also offers a proprietary OS, sometimes even a

version of UNIX. (Naturally, some of the implementations are better than others.) For

example, IBM has adopted Linux with considerable enthusiasm. They have ported it

to all four of their E-series systems lines. This strategy takes advantage of the porta-

bility of applications using Linux. IBM now makes a greater portion of their income

from writing, installing, and supporting applications than they do from selling hard-

ware or OSs. They quite likely often found themselves in the position of creating an

application on one of their four hardware product lines and then having to port the

application to other platforms for other customers. With Linux and Java™ they can

create applications one time and easily move them to other platforms, including all

the installation and support procedures using Linux packages, scripts, and so on.

 6.1.2 Basic organization of Linux

 Linux uses a monolithic kernel. This means that the entire kernel is loaded into a single

program that contains all the modules of the OS. Every module has direct access to any

function, object, or data structure in the kernel. This means that monolithic OSs are often

faster than microkernel OSs. The risks in this approach are several. First, all the OS code

runs in supervisor mode so that any bug can theoretically cause more drastic problems.

Also, porting to new architectures is harder because the machine-specific portions are

not necessarily as well isolated. In addition, if the designers are not careful, the source

code can quickly become very complex because it is not absolutely essential to have

clean, well-defined interfaces between the various modules as it is with a microkernel.

 Chapter 6 A Multiple-User Operating System 117

Also, adding support for new devices is more difficult with a monolithic kernel. Often

it requires compiling the new driver and relinking and reloading the kernel. This obvi-

ously means that the OS has to be stopped and restarted—something not appreciated in

a multiuser system or a server offering many network services or serving many users or

both. But modern Linux versions have overcome many of these problems, as we will see

shortly. The organization of the Linux kernel is shown in Figure 6.1 .

 As was discussed earlier, another type of organization for an OS is to be built on a

 microkernel. Such an organization is shown in Figure 6.2 . Again, this means that the

code in the kernel has been minimized to include only that part of the code that abso-

lutely must be in the kernel in order to execute privileged instructions. These portions

typically include process management, basic memory management, and interprocess

communication. The remainder of the functions that we normally think of as being

part of the resident OS may be run in user mode. This organization has some benefits

and some costs. It is easier to produce a kernel that is robust, and it is easier to port it

to a new platform. The major cost of this organization is that it often introduces more

overhead—the interrupt handling and context switching often make the OS run slower

than a monolithic kernel. MINIX was designed and created as a microkernel system.

 6.1.3 Dynamically loadable modules

 Linux was initially envisioned to be a small, simple project. For this reason it did not

seem to be important to go to the trouble of creating a microkernel OS. At one time in

the early development of Linux, Tanenbaum actually sent an email to Linus Torvalds

that dismissed Linux as being “obsolete” because of the monolithic kernel approach.

At that time, many in the computing science community viewed the microkernel

I/O
Systems

Support
Layers

Process
Management

Device
Drivers

Devices

Process Scheduler and
Hardware-Specific Code

CPU

Memory
Manager

RAM
Memory

Management

Application
Programs

Kernel

FIGURE 6.1 The Linux system architecture.

118 Part 2 Building Operating Systems Incrementally: A Breadth-Oriented Spiral Approach

approach as a preferred approach for the reasons previously listed. As Linux became a

viable OS alternative, Torvalds and the Linux community came up with an interesting

approach to modify or augment a purely monolithic kernel. The key idea was intro-

duced in version 2.0 of Linux. This version supports dynamically loadable modules,

or DLMs. This concept allows the basic kernel to contain a minimum amount of func-

tionality and be embellished by modules that can be loaded (and unloaded) after the

system has started running. Many of the functions that are basic to Linux are devel-

oped as DLMs because they may not be needed in every installation. These include

such functions as file systems, specific device drivers, SCSI high-level drivers (disk,

tape, CD-ROM), network drivers, line printer drivers, and serial (tty) drivers.

 In order to support DLMs, the core kernel has to have well-defined interfaces.

This removes one of the significant objections to the monolithic approach. When a

module is loaded it calls an OS function to “register” itself with the kernel. The exact

function to be called depends on the type of module being loaded. An illustrative set

of such calls is listed in Table 6.1 .

 One of the interesting effects about the DLM interface is that it allows software

developers to create enhancements to the Linux system for which they do not want

to provide the source code (which is necessary to be in accordance with the various

open source licenses). This allows Linux to remain an open source project but still

incorporate functions that are kept as proprietary by the developers.

I/O
Systems

Process
Management

Device
Drivers

Process
Scheduler

Memory
Manager

Hardware-
Specific Code

Kernel

Device

CPU

RAM
Memory

Management

Application
Programs

FIGURE 6.2

A microkernel system

architecture.

 Chapter 6 A Multiple-User Operating System 119

 Another point about DLMs is that they need to be linked with the core kernel

functions and data structures. (That is, they need to be findable by the kernel and

they need to be able to access parts of the kernel in return.) This is accomplished

by having a symbol table loaded as part of the kernel. This table is called ksym.

Any function or data structure that is to be exposed in the kernel will need to have a

definition in this symbol table. A module being loaded will call a function that will

search the symbol table and resolve any references in the module being loaded. This

may sound as if it would slow down the system, but modules are generally loaded

once and then remain a part of the system. Even if they are added and removed

repeatedly, such as for a removable USB device, perhaps it is usually at intervals that

are long compared to the CPU speed.

 It is also likely that a module that is being loaded by the kernel will want to expose

its own functions and data structures. A simple function, EXPORT_SYMBOL, allows

the loading module to add entries to the symbol table.

 6.1.4 Interrupt handlers

 As was previously mentioned, device management in Linux is interrupt driven. Hard-

ware interrupts are a mechanism by which the hardware can notify the OS of asynchro-

nous events. A primary example would be the arrival of a packet at a network adapter.

When the adapter has received a packet it will generate an interrupt so that the OS can

stop what it is doing and take care of this packet that has just arrived. Sometimes the

amount of processing required to take care of the packet can be quite lengthy. In addi-

tion, the complete processing of the packet may be much less important than what else

the system was doing at the time. However, there is a minimum amount of work that

does need to be done by the kernel immediately. At the very least the OS will prob-

ably need to assign a new buffer for any additional packet that might arrive. While this

work is being done it is typical that either all interrupt levels are disabled or that the

current interrupt level and any lower priority level interrupts are disabled. Naturally it

TABLE 6.1 Dynamic Module Registration Functions

Purpose Dynamic Registration Function

Modules init-module

Symbol tables register_symtab

Console drivers tty_register_driver

Transport protocols inet_add_protocol

Network protocols dev_add_pack

Link protocols register_netdev

Serial interfaces register_serial

File systems register_filesystem

Binary formats register_binfmt

Block devices register_blkdev

Character devices register_chrdev

120 Part 2 Building Operating Systems Incrementally: A Breadth-Oriented Spiral Approach

is not a good idea to leave the interrupts disabled for very long or some external events

will be missed. Therefore, an interrupt handler in Linux followed a well-known, popu-

lar top-half and bottom-half organization. The top-half consisted of those things that

needed to happen immediately and the bottom-half were those things that could be

done at a more leisurely pace. The top-half would record sufficient information so that

the bottom-half could finish the work later. In later releases of Linux the structure of

a bottom-half was redesigned and given a new name—a tasklet. The primary reason

for the redesign is that tasklets can run on more than one processor in an environment

with multiple CPUs, whereas bottom-halves could only be run by one CPU at a time.

Existing bottom-halves were mostly redesigned to conform to this change.

 6.1.5 File system directory tree

 Linux, like UNIX, has a strong orientation around the file system. Many things

appear in the file system tree that are not files at all. This is shown in Figure 6.3 . The

root of the directory tree is shown at the top level. Neither the proc nor the dev direc-

tories are actually directories. Rather, they represent the running processes and the

hardware (or virtual) devices on the system. References to these names will cause

the Linux OS to invoke other functions that will return appropriate information about

these elements when they are accessed. These are discussed further in Chapter 19.

The other interesting directories that can be seen in Figure 6.3 are the subdirectories

under the /home directory. These are directories for individual users. When a user

logs on to the Linux system the OS will set the current working directory to be the

home directory for that user.

home mnt proc usr

hda sda alice bob bin lib

boot dev

bin etc lib root tmp var

l

FIGURE 6.3 A partial Linux directory tree.

 Chapter 6 A Multiple-User Operating System 121

 6.2 THE MULTIUSER OS ENVIRONMENT

 Since Linux is modeled after UNIX and UNIX is a multiuser system, Linux is a

multiuser system. Assuming that there are multiple users on the system introduces

from the start a problem that we have not had to worry about too much until now—

information security. When only one person can use a computer, the OS typically

does not need to concern itself with the right of the user to access any files on the

computer. It is assumed that any user of that computer can access any file and that

file security is provided by limiting access to the machine or by using utility pro-

grams, external to the OS, to safeguard files by encrypting them. Multiple users on

the system at the same time require that the OS provides a facility to protect each

user’s files from all other users. This will mean that the OS will need to know who

the user is. This, of course, means that the user will need to log on to the computer

with a user ID (identifier) and a password. Of course, sometimes users will want to

share files, so the OS will need mechanisms to allow some files to be shared. All

multiuser systems also function as servers and may have multiple users logged on

remotely. These OSs therefore also have security features, which are discussed in

a later chapter. Of course, as we saw with the Mac OS, as computers are added to

a network, even single-user systems will need to provide mechanisms for protect-

ing various assets, so user logon and such is now a common feature in most OSs if

only for network access. The server version of the Linux OS allows multiple users

to access files and other resources on the system remotely. This was not the main

thrust of this OS, but the ability to run many services and many user applications at

the same time meant that it also had to provide support for such advanced features

as multiprogramming and multithreading. Supporting multiple users does not intro-

duce any new requirements in this area, but Linux does take a different approach to

this subject, especially considering its UNIX origins.

 6.2.1 File permissions

 Linux supports the same model of file protection and sharing that other UNIX-like

systems support. With respect to any particular file, Linux regards all users as being

a member of one of three sets. The first set has only one member. This set is the file

owner. Initially when a file is created the owner is the person who created the file.

The second set is one that is predefined by the system administrator, or sysadmin

as that person is commonly called. This set is normally a bunch of users that share

some common interest in a set of files. Perhaps it is a project team that is working to

develop the documentation for a new product or is using the same source code and

wishes to share it among the team members. The sysadmin designates a new group

by name and assigns users to be members of the group. The third set is “everybody.”

In this case, it refers to every user who is not a member of one of the other two sets.

For members of each set, three types of access can be allowed for a specific file:

reading, writing, and executing.

 The file owner can set the permissions on a file by using a utility called

 chmod. This typically obscure Linux command stands for “change mode.” This

122 Part 2 Building Operating Systems Incrementally: A Breadth-Oriented Spiral Approach

utility takes two arguments, a file name and a “mode” that specifies the changes

to be made to the file mode. Traditionally, this mode is a three-digit number.

The digits of the number are limited to octal digits—that is, they can range from

0 to 7. Each octal digit can be considered to be three bits. These three bits are used

to allow the various operations—read, write, and execute, respectively—and the

three digits relate to one of the three sets—owner, group, and everybody, respec-

tively. The ls command, which lists the contents of a directory, can list these

mode settings for a file or directory. Consider the following entry printed by the

ls command:

 -rwxr-x--x gil develop spellcheck

This entry describes an executable file named “spellcheck.” The first part of the line

is the settings of the permissions. The leading “-” has other uses. The initial mode

of “rwx” applies to the owner of the file, in this case “gil.” The group for the file is

“develop” and its mode is “r-x” and the mode for everyone else is “--x.” This means

that user gil has all rights to the file, even the right to modify or remove it. The other

members of the group “develop” can read it and execute it (if it is an executable

script or program) but not write it, and everyone else can only execute it. The chmod

command to set these permissions would be:

 chmod 751 spellcheck

The 7 corresponds to binary 111, all rights on, and the 5 corresponds to 101, or read

and execute only.

 If we wanted to allow the group “develop” to modify this file we would have

used another command, chgrp, for “change group.” We would enter:

 chgrp develop spellcheck

The rather cryptic chmod command use has been enhanced in Linux and other cur-

rent UNIX-like systems to support more symbolic arguments. For example, the

command

 chmod g ⫹ w spellcheck

would add the write permission to the permissions for the group assigned to the file.

 6.2.2 File control blocks

 Since there are multiple processes running for multiple users, two or more users

might be working with some of the same files. But they might be processing in dif-

ferent parts of the file. As we see in Figure 6.4 , the structures are in two pieces to

support this use with a minimum duplication of information. As we can see, there is

a systemwide open file table. It is in the kernel and it contains metadata about the

file that is the same for all users—where is the first block, how long is it, and so on.

Each process has a per-process open file table as well. Each entry contains an index

into the systemwide open file table and information about the use of the file by this

process such as the current pointer.

 Chapter 6 A Multiple-User Operating System 123

 6.3 PROCESSES AND THREADS

 6.3.1 Linux tasks

 We have not yet fully discussed the idea of threads. This is just as well, since Linux

does not distinguish between processes and threads, but it is common for writers to

use those terms when writing about Linux because they are otherwise in common use.

Linux documentation uses the term tasks. Under UNIX, when a process (called the

parent process) wants to start another process (called the child process), it first issues

the system call “fork.” This will create the child process as a copy of the parent pro-

cess. (We will see later that there are ways the system can make this happen without

actually copying all of the program.) With Linux, however, the corresponding system

call is clone. Like all OSs, Linux maintains several different segments of memory

for every process. These will be described in more detail later. The clone system call

specifies a set of flags that tells the OS which of these segments are to be shared

between the parent process and the child process. The flags are shown in Table 6.2 .

 In order to support programs written for other UNIX systems, Linux must also

support the standard UNIX calls for forking a process. Unfortunately, the clone func-

tion provided by Linux does not provide identical functionality. Several data struc-

tures used for supporting tasks are not automatically shared between the parent and

Process
A

Process
B

Record

Record

Index W

Index X

Count

Count

Count

Inode Data W

Inode Data X

Inode Data Y

Record

Record

Index X

Index Y

Systemwide
Open File Table

Per-Process
Open File Table

.

.

.

FIGURE 6.4

Linux file control

blocks.

TABLE 6.2 Linux Clone Call Flags

CLONE_VM Share memory

CLONE_FILES Share file descriptors

CLONE_SIGHAND Share signal handlers

CLONE_VFORK Allow child to signal parent on exit

CLONE_PID Share PID

CLONE_FS Share the file system

124 Part 2 Building Operating Systems Incrementally: A Breadth-Oriented Spiral Approach

child tasks by the clone system call, including access rights. Libraries that intend to

support POSIX compliance must then provide this service themselves.

 6.3.2 Preemptive multitasking

 When a single user is running multiple programs, only one of those programs will be

interactive. In this case there will be no problem if that application takes more than

a fair share of the CPU time because the user will not care if other programs pause

now and again while some lengthy processing takes place in the interactive program.

But in a multiuser system a program running for one user should not be able to seize

the CPU and run indefinitely. Accordingly, as with the later versions of the Mac OS,

Linux is a preemptive multitasking system. This means that when the OS starts run-

ning a process it will set a timer so that the OS will be interrupted if the process runs

too long without making a blocking system call. If the timer expires then the running

process will be put back into the queue of processes that are ready to run (i.e., the CPU

is preempted from that process). This prevents a single process from getting control

of the CPU and keeping any other process from running. This may be due to a bug in

the application that has caused it to go into an endless loop. Often, the process just has

a lot of work to do. Note that the resources consumed by the preemption itself are not

being used to do actually useful work—it is not something that is being done on behalf

of any user process. However, it gives a smoother overall response to the user, and is

generally perceived to be better, even though it is slightly less efficient than not pre-

empting would be. In general, all modern OSs use preemption, except for some parts

of hard real-time OSs. We discuss these questions more thoroughly in Chapter 8.

 6.3.3 Symmetric multiprocessing

 Multiprocessing systems are those that run multiple CPUs in a single system. This

architecture has been common on systems where not enough CPU power was avail-

able to run the entire processing load. Given the alternative of adding a complete

second system, which often had to be synchronized with the first system, multipro-

cessing is a capable and less expensive option. One reason it is less expensive is that

a single system can share many expensive hardware components such as power sup-

plies, primary and secondary storage, and the main system bus.

 Figure 6.5 shows the architecture of a typical multiprocessor system. This is

a simplified diagram—for example, modern systems have several different buses.

Note that the main memory and I/O architecture are shared among all the CPUs. On

a single CPU system we can only be executing one program at any given instant.

On a system with multiple CPUs there can literally be two or more processes (or

threads) running at the same time.

 Beginning around 2004, integrated circuit design engineers decided that it would

be more cost effective to embed multiple CPUs in one chip rather than to continue

to make each individual CPU faster and faster. These circuits are known as tightly

coupled multiprocessors, chip-level multiprocessors (CMP), or multicore processors

(MCP). They are even more tightly coupled than the previously available MP sys-

tems, which incorporated multiple individual CPU chips. MCP circuits often share

a single L2 cache, for example. This means that most systems as large as a personal

 Chapter 6 A Multiple-User Operating System 125

computer will be multiprocessor systems, though single CPU systems will still be

common in embedded systems for the foreseeable future.

 There are two different approaches that an OS can take to supporting multiple

CPUs. The first approach is called asymmetric multiprocessing. In this approach

the OS runs on only one designated CPU. The other CPUs run only applications.

This design has the advantage that the OS itself can ignore some of the complications

involved in having the same process run on two CPUs at the same time. Although

simple, this approach is not commonly used because of performance bottlenecks

due to running the OS only on one processor. Instead, most modern OSs support

multiple CPUs with a different approach, symmetric multiprocessing (SMP). In

this approach the OS is treated like every other process in that it can be running on

any CPU. A running program obviously will be modifying its state (data). It is easy

to see that having two (or more) CPUs running the same code that is modifying the

same data has to be thought about very carefully. Multiple instances of the OS run-

ning on different CPUs must be prevented from changing the same data structure at

the same time. We look at this topic more closely in Chapter 9. Because the individ-

ual CPUs may each be caching the same data, the hardware must do a lot of work to

ensure that all the caches contain the same information. The techniques involved in

this synchronization have so much overhead that most current systems will not scale

up beyond a fairly small number of processors—say, 64 or so.

 Since the 2.0 release Linux has supported SMP.

Main System Bus

CPU 4

Local Cache

CPU 3

Local Cache

CPU 2

Local Cache

CPU 1

Local Cache

Main

Memory

I/O

Controllers

. . .

FIGURE 6.5

A simplified

multiprocessor

system architecture.

 6.4 SUMMARY

 In this chapter, we discussed the features and con-

cepts of a multiuser OS, Linux. This chapter is fairly

brief because it only addresses the additional features

found in Linux because it is a multiuser OS. Chapter

19 is a more traditional case study of the Linux OS

modules.

 We started this chapter with an overview of

Linux and a bit of the history of its evolution. We then

moved to a brief discussion of the characteristics of a

multiuser OS. Next, we discussed the support of files

in Linux. We then gave an overview of the scheduling

of processes and tasks in Linux.

 In the next chapter of the book we discuss

an example of distributed OSs—one that runs on

multiple systems at the same time and attempts to

make the many systems appear to the user as a single

environment. The subsequent chapters begin an in-

depth look at the various components of OSs.

126 Part 2 Building Operating Systems Incrementally: A Breadth-Oriented Spiral Approach

 BIBLIOGRAPHY

 Beck, M., et al., Linux Kernel Programming, 3rd ed.

Reading, MA: Addison-Wesley, 2002.

 Bovet, D. P., and M. Cesate, Understanding the Linux

Kernel, 2nd ed. Sebastopol, CA: O’Reilly &

Associates, Inc., 2003.

 Gorman, M., Understanding the Linux Virtual Memory

Manager. Upper Saddle River, NJ: Prentice Hall,

2004.

 Love, R. Linux Kernel Development. Indianapolis, IN:

Sams Publishing, 2004.

 Stevens, R., Advanced Programming in the UNIX

Environment. Boston: Addison-Wesley, 1992.

 Stevens, R., Unix Network Programming. Upper Saddle

River, NJ: Prentice Hall, 1990.

 Yaghmour, K., Building Embedded Systems. Sebastopol,

CA: O’Reilly & Associates, Inc., 2003.

 WEB RESOURCES

 http://www.linux.org (the home of Linux kernel

development)

 http://www.kernel.org (a repository of historic kernel

sources)

 http://www.tldp.org (the Linux Documentation

Project)

 REVIEW QUESTIONS

 6.1 Why is a “distribution” important in Linux?

 6.2 Why is SUS important to Linux?

 6.3 Why would a large organization probably not want

to use release 2.7 as a standard installation for all

of their Linux systems?

 6.4 True or false? Linux is only the kernel of an OS

and relies on other groups to provide the needed

utility programs to make it a usable OS.

 6.5 True or false? Linux is a microkernel OS.

 6.6 Modern OSs are used in a wide variety of environ-

ments. There are an incredible variety of devices

and controllers that have been interfaced to Linux

and a wide assortment of different file systems,

disk schedulers, and so on, most of which are not

needed on any given installation. How does an OS

like Linux avoid becoming overloaded with mod-

ules that are not needed in most situations?

 6.7 Why are interrupt handlers in Linux divided into a

top half and a bottom half?

 6.8 Describe briefly how the Linux clone mecha-

nism differs from traditional UNIX processes and

threads.

 6.9 True or false? Linux is a nonpreemptive multitask-

ing OS.

127

 Chapter Chapter

 Parallel and Distributed
Computing, Clusters,

and Grids

In this chapter:

 7.1 Introduction 127

 7.2 Key Concepts 128

 7.3 Parallel and Distributed Processing 128

 7.4 Distributed System Architectures 132

 7.5 How Operating System Concepts Differ in SMPs, Clusters, and Grids 138

 7.6 Examples 142

 7.7 Summary 147

7.1 INTRODUCTION

 So far we have been discussing the designs of Operating Systems that run on a single

machine. But many systems are now designed for processing in situations where

many processors are used together. In this chapter we discuss computing on more

than one CPU and how we can manage such systems. There are several common

configurations for multiple CPU systems, and many unusual ones.

 We start by introducing a few key concepts encountered in distributed process-

ing. Then, after covering these concepts, in Section 7.3 we introduce some theory

about computation and programming in parallel environments. Next, Section 7.4

covers the common architectures found in distributed systems. OSs designed to

run in such environments have special concerns that do not arise in uniprocessing

situations, so in Section 7.5 we cover these OS issues. These topics include such

questions as what needs to be managed, how does resource management differ from

uniprocessor systems, and what interfaces are presented to programmers and users.

In Section 7.6 we discuss some real systems that fit into this chapter and we close

with a summary in Section 7.7.

 7 7

128 Part 2 Building Operating Systems Incrementally: A Breadth-Oriented Spiral Approach

 7.2 KEY CONCEPTS

 Moore’s law recognized that computers will become more capable year after year. It

predicts that CPUs double in transistor count every 18 to 24 months. Usually there has

been a corresponding increase in CPU speed. Memory and disk capacities double at an

even faster rate as well. Moore’s law has been a fairly accurate rule-of-thumb for more

than three decades. In the last few years CPU speed has increased by exploiting paral-

lelism inside the CPU chip; such techniques as pipelining, multiple execution units in

the CPU, and multicore integrated circuits have featured in the relentless pursuit of

CPU speed. At the same time, they have all appeared transparent to the programmer. 1

 Unfortunately, there is a rapidly approaching limit—the speed of light, at 3 · 10 8

meters per second. This means that at a clock speed of 3 Gigahertz (GHz) a signal

can travel only 10 centimeters in a vacuum between clock cycles, and significantly

less distance in the silicon material that makes up an integrated circuit. Since CPUs

are typically more than a centimeter across, this limits how much a CPU can do in

one clock cycle. Yet CPUs have been getting faster clocks and faster processing

every year. This forces computer architects to make CPUs do work in parallel (on

the chip) yet hide those implementation details from programmers and users (who

don’t want to redesign and rewrite programs for each new CPU chip). We would

like to exploit parallelism in our computing problems on a higher level (parallel

computing or clusters) as well, but this requires some modifications to the programs

and enhancements to the OSs and the middleware. We describe those issues and

how one may take advantage of these hardware facilities through OSs and other

(middleware) software.

 7.3 PARALLEL AND DISTRIBUTED PROCESSING

 It is common to use the term “parallel” to refer to work being done in multiple places

simultaneously. We have used the term parallel for that meaning, so far. There are several

possible ways that we can configure multiple processors to provide parallelism. In this

section we briefly describe the differences. Later we discuss each one in greater detail.

 More precisely, we now describe parallel processing (or parallel computing)

to refer to multiple processors sharing one big pool of memory and other resources

(disks and printers, for example). This type of computer architecture is usually called

 multiprocessing (MP). Today, most MP systems run under an OS that uses sym-

metric multiprocessing (SMP), as was discussed in Chapter 6 on Linux. While MP

computers may have any number of CPUs sharing common memory, there are gen-

eral guidelines to most MPs:

 ɀ CPUs share one common pool of memory, and any CPU may read or write any

memory location (even if it is being used by another CPU).

 ɀ All CPUs are of the same type and speed.

1 In this case “transparent” only means that a program that will run correctly without them will still run
correctly with them. It does not mean that a skillful programmer might not want to take advantage of
these features when extra performance is needed and the extra work is warranted.

 Chapter 7 Parallel and Distributed Computing, Clusters, and Grids 129

 ɀ All other computer resources (disks, networking, and printers) are shared among

all the CPUs.

 ɀ There is usually only one copy of the OS running, and it knows about all of the

CPUs and shared resources. (It is much less common to have multiple OSs run-

ning or to have the OS running on only one CPU.)

 ɀ Programs must be specially written or modified to take advantage of running on

multiple CPUs.

 ɀ MPs may have two, four, or more (usually a power of two), but currently two-

or four-processor (CPU) MPs offer the best performance per dollar, even better

than single-processor CPUs; and more than eight-processor MPs are expensive.

Many rack-mounted systems are two- or four-processor MPs. For hardware rea-

sons these rarely run over 64 CPUs in a single system. 2

On the other hand, distributed computer systems:

 ɀ don’t share memory;

 ɀ often have their own resources (such as disk drives);

 ɀ communicate with each other through a network;

 ɀ may not use the same hardware; and

 ɀ run a separate copy of the OS on each machine.

While sending a message (or sharing data) between computers in a distributed sys-

tem may only take a few microseconds, it is usually at least a hundred times slower

than sharing memory on an MP system. There are several different classes of distrib-

uted systems as well, and each class has unique performance characteristics.

 Clusters are a special class of distributed system. A cluster is comprised of indi-

vidual computing nodes. These nodes may be single processors or MP systems. They

are managed and protected from each other by special software and are connected

over a dedicated LAN that is separate from other LANs connecting the cluster to

other resources. Usually the cluster shares a single connection outside the cluster,

commonly to the Internet. Normally each cluster node has identical software and

hardware to all other nodes in the cluster. It is possible, though less common, to build

clusters from nonidentical nodes. Clusters are usually administered by a single group

of people (or person) and all login user names and passwords are identical for each

node in the cluster. This means that a user can run jobs on one or more nodes with a

single user name and password. Nodes in clusters typically share storage resources

utilizing SAN (storage area network) and NAS (network attached storage) sys-

tems. These are essentially marketing terms for a pool of disks operating as a single

networked resource using protocols such as NFS (network file system). Clusters

typically have multinode job schedulers running through designated “head nodes,”

which allow jobs, queues, and workflows to be managed. One such scheduler, PBS,

or portable batch system, is discussed later in Section 7.6.6.

 Grids (grid computer systems) are comprised of multiple workstations or clusters

with different administrators. As a result, they do not share resources directly, do not

2 Some hardware configurations exist with a few thousand CPUs sharing memory. However the
architecture is not a completely shared memory. These systems are referred to as Non-Uniform Memory
Access (NUMA) systems, and not the sort we are discussing here.

130 Part 2 Building Operating Systems Incrementally: A Breadth-Oriented Spiral Approach

share common logins, and may have totally different hardware and software configu-

rations. But the administrators of the individual clusters have agreed to allow some

jobs belonging to users of other clusters or computer systems to run on their clusters.

 Other common shared, distributed configurations include peer-to-peer (P2P)

systems, clusters of workstations (COWS), and volunteer computing systems (such

as the BOINC system used for SETI@Home, physics, and biology processing,

among many other projects). While such configurations are often more difficult for

a developer to utilize, they may offer potentially hundreds of thousands of nodes,

spread throughout the world.

 In the following sections we discuss the utilization and potentials of these con-

figurations for processing large computational work, sharing data and processing,

gathering results, and monitoring progress of work being done.

 7.3.1 Just to start, a little bit of theory

 Work to be done may be described in workflows. These workflows specify the pro-

cessing steps that need to be done, the inputs and outputs of these steps, and the

dependencies between the elements. Often a directed acyclic graph (dag) describes

this process, as is shown in Figure 7.1 . The nodes A, B, C, and D are shown as

boxes and represent units of processing work to be done. The edges are shown as

arrows and represent the dependencies between the processing nodes. We have omit-

ted describing inputs or outputs of the processing.

 This workflow graph shows the flow of this job: first step A must process some

data. After step A has completed, either step B or step C may run. Since there are no

dependencies of steps B and C on each other, they may run at the same time. After

both steps B and C have completed, then step D may run. For example, step A reads

some data then passes a part of the data to step B and a part to step C. Then steps B

and C each process their part and pass their results to step D, which processes their

results. Let’s say that step A takes 10 minutes to run, step B takes 60 minutes, step C

takes 60 minutes, and step D takes 20 minutes. If these were done on a single com-

puter they would take: 10 ⫹ 60 ⫹ 60 ⫹ 20 minutes ⫽ 150 minutes. On two comput-

ers (ignoring overhead such as communication) this flow should take 10 ⫹ 60 ⫹ 20

minutes (steps A ⫹ B ⫹ D side) on one processing node, and 60 minutes on the

other node (step C). The total work done in either case is 150 minutes but the two-

computer solution reduces the “wall-clock” time (observed time) to 90 minutes, an

hour faster. Notice that running step D on the second computer would not help to

D

C

B

A

FIGURE 7.1

A workflow graph.

 Chapter 7 Parallel and Distributed Computing, Clusters, and Grids 131

complete this work faster since we still have to wait on steps B and C. Nor would

having three or four nodes improve performance because of our flow dependencies.

Suppose we had special computers that can run steps B and C faster. How much ben-

efit do we gain? If we could speed up the runtime of B and C by a factor of two, each

taking only 30 minutes, we would complete the flow in 10 ⫹ 30 ⫹ 20 ⫽ 60 minutes.

This is often called Amdahl’s law: the speed up of a portion of the work makes only

that part faster, not the entire flow. Thus, even a 10 times faster processing in B and

C only speeds up:

(10 + 60 + 20) minutes (old)

(10 + 6 + 20) minutes (new) = 2.5 times

Not bad (2.5 times faster), but not 10 times faster (the speed increase of B and C).

Amdahl’s law will make it very difficult for a practical system to approach the ideal

of parallel computing: linear speedup. Linear speedup would mean that work done

on a 10-node system happens 10 times faster than on a one-node system, and on a

50-node system it would be 50-times faster. Sometimes there can be a superlinear

speedup! On 10 nodes, processing is more than 10 times faster! This is very unusual,

and is normally due to caching effects in memory. When 10 processors are running,

then we also have 10 times as much cache memory involved and this can drastically

speed up the processing.

 Workflows are usually composed of two structures, as seen in Figure 7.2 .

 Pipeline flows indicate dependencies, but sweep flows may be done simultane-

ously in parallel. Most workflows are combinations of these patterns. One valuable

insight is the condition where some part of a pipeline may actually allow partial

processing, where a stage in the pipeline (a processing node) may process data one

record at a time and then pass those results to the next stage, which may begin pro-

cessing of that record immediately, while the previous stage of the pipeline processes

the next record, in parallel.

 In workflows there are several items that would be interesting to measure:

 ɀ Work time—total time spent on all nodes to process the work.

 ɀ Wall time (or clock time)—elapsed time, start to finish.

A Pipeline Flow

A Sweep Flow

FIGURE 7.2

Pipeline flows

and sweep flows.

132 Part 2 Building Operating Systems Incrementally: A Breadth-Oriented Spiral Approach

 ɀ Utilization (resource utilization)—percentage of time each node (or the average

of all nodes) is busy.

 ɀ Throughput—number of jobs or workflow processes run per hour (or day).

 7.4 DISTRIBUTED SYSTEM ARCHITECTURES

 7.4.1 Overview of execution environments

 There are significant differences between the various distributed system architec-

tures and single processor, multitasking systems. While each of the architectures

allows us to run jobs in parallel, the effort that we must expend to utilize any one

particular architecture, as compared to the others, varies quite a bit. So this section

discusses each of these possible architectures in a bit more detail so that we can bet-

ter understand some of the problems that can occur.

 As we have seen in previous discussions, as we take advantage of more advanced

features, we need to be a bit cautious about side effects and interactions between

different features. For example, recall that the ability to run several processes con-

currently allows more efficient use of computer resources. But it also introduces

the difficulties of interprocess communication that arise because we build so much

separation and protection between processes. Then we need locking and unlocking

to avoid conflicts that arise when sharing resources, and then we need to worry about

the deadlocks that can arise from the use of locks.

 7.4.2 Symmetric multiprocessing systems

 SMP systems share memory, and applications that process large amounts of data and

pass data between stages or share tables can benefit substantially from being run on

such architecture. There are parallel versions of many common programs (software

tools). As you might recall, in SMP systems there is a single copy of the OS running

and it may run on any CPU available. It must manage process scheduling for each

CPU, memory allocation (there is only one shared physical memory space), and

other resources (disks, terminals, and so forth). So, how does one utilize an SMP

system to do work in parallel? Such a system is seen in Figure 7.3 .

 There are two main techniques that are used to take advantage of the power of an

SMP system: multiprocessing and multithreading. (The distinction between these two

techniques is discussed in Chapter 8.) If this seems familiar, these are the same facili-

ties offered by most modern OSs such as with Linux and the Mac OS, as we discussed

previously. The key concept to the use of an SMP system is that it is very similar to a

traditional uniprocessor computer but with more main memory and more CPUs.

 From a programmer’s view, harnessing the power of multiple CPUs may be

done by simply dividing the system into many separate programs, which run as sepa-

rate processes. Usually this means running at least as many processes as there are

CPUs in the system. Usually we run more processes than there are CPUs in order to

allow some to run when others are blocked and waiting. A program or a workflow

(a group of programs/processes) that has been written to create many processes that

 Chapter 7 Parallel and Distributed Computing, Clusters, and Grids 133

run simultaneously will run on a single processor computer. But they will also run

just as well on an SMP system without any change, only faster. (In some unusual

cases—such as a situation where almost all of the processes are blocked waiting for

input—there won’t be any speedup benefit.) While this method of parallelism is a

common one, there are difficulties in having multiple processes share data such as

the race conditions previously mentioned. Interprocess communication and synchro-

nization work well, but incur overhead that may be avoidable by other methods. If

work can be partitioned into sets that don’t require much interprocess communica-

tion and synchronization (such as do several types of sweep workflows, described

previously), multiple process models work very well.

 So then what does the OS need to do to manage multiprocessing or multithreading

on an SMP as opposed to what it had to do on a uniprocessor? It turns out that there is

not a great deal of difference. Since memory is shared in one big pool, memory man-

agement is the same as on uniprocessor computers. CPU scheduling is more complex

than with uniprocessor systems because the additional CPUs must be handled sepa-

rately. Time-slicing scheduling is commonly used in SMP systems, just as in uniproces-

sor systems, so that part of the design is not much different. But the scheduler does have

to consider where to schedule processes since work may be sent to different CPUs. This

is not much more difficult than scheduling one CPU. However, one recent advancement

in CPU architecture may complicate the scheduling. Recall that most CPUs have cache

memory on the chip that contain copies of portions of main memory, but whose access

is much faster. If the scheduler randomly assigns processes and threads to processors,

the benefits of caching will be impaired. The system will still work correctly, but it will

run much more slowly than if the data were in the cache for the correct CPU. Sophis-

ticated SMP schedulers try to keep a process (or multiple threads from one process)

running on the same CPU once they have started. This is called CPU preference or

 processor affinity. This technique also allows a programmer or administrator to pro-

vide a suggestion to the scheduler to run a process or thread on a specific CPU.

 The other problem that SMP OSs face is that there may be multiple copies of

the OS running at the same time. These copies may try to update the same data at the

same time. Therefore, SMP OSs must make use of locking mechanisms to prevent

CPU 1

CPU 3 CPU 4

CPU 2Memory

FIGURE 7.3

A multiprocessing

system.

134 Part 2 Building Operating Systems Incrementally: A Breadth-Oriented Spiral Approach

different executing copies from interfering with one another. This issue is discussed

more fully in Chapter 9.

 7.4.3 Clusters

 Cluster systems are more loosely coupled than SMP systems. They usually have

essentially identical system software on each node as well as several options for

sharing and communicating between processes. An example is seen in Figure 7.4 ,

where there are two groups of two systems with close coupling between the odd-

numbered systems and even-numbered systems and additional coupling between the

two groups. In addition, each system has local memory and local storage. Clusters

are normally administered by a single authority such as a corporation or university.

They rely on middleware, software that facilitates interfaces between systems but is

not part of the OS—it is in the “middle” between the OS and applications. Middle-

ware attempts to provide abstractions that facilitate distributed processing in ways

that are independent of the underlying OSs involved. They are said to be platform

agnostic. This allows us to connect existing systems together, among other things,

and let the middleware sort out the differences. But middleware can be used in clus-

ters that are homogeneous as well.

 Commonly found middleware packages include MPI/PVM, CORBA, DCOM,

 .net remoting, and Java/ RMI (remote method invocation). MPI/PVM (message

passing interface, parallel virtual machines) offers a language-independent

manner for a process to send or receive messages, data, and parameters to or from

other processes on other nodes in the cluster, even if the processes are written

in different programming languages. CORBA (Common Object Request Bro-

ker Architecture) is similar but allows one object to invoke methods on another

CPU 3

CPU 1 CPU 2

CPU 4

Memory Memory

Memory Memory

FIGURE 7.4

A clustered

multiprocessing

system.

 Chapter 7 Parallel and Distributed Computing, Clusters, and Grids 135

object that resides on a different computer. RMI is similar to CORBA but is spe-

cific to the Java language. DCOM (Distributed Component Object Model) is a

method for invoking methods on remote objects that was created by Microsoft. It

is considered to be a binary mechanism rather than a language-oriented mecha-

nism like CORBA or RMI. This means that it finds its target interface via what

amounts to a branch table on the remote object. Due to the widespread presence of

the Microsoft OSs, DCOM has been implemented on most other OSs as well. It is

an older mechanism that is not favored for new development but is still supported

because it is in such widespread use. Newer development is directed to the .net

remoting methods.

 These middleware packages allow processes that do not directly share memory

to pass information between themselves—ideal for a cluster. But these middleware

mechanisms are actually better suited to general distributed computing than they

are to cluster computing. When programs are designed to exploit the parallelism

in computing clusters, they can make use of other specific cluster interfaces for

the OS. These are discussed later, for example, the use of PBS cluster scheduling

commands.

 7.4.4 Computing grids

 Grids are even more loosely coupled than clusters. They are loose aggregates of indi-

vidual nodes or clusters administered by different institutions. The primary advan-

tage of grid computing is that each node can be an inexpensive computer, and by

combining them into a grid they can produce computing power similar to a multi-

processor supercomputer at lower cost due to the economy of producing commodity

hardware compared to the higher cost of building a small number of single-purpose

supercomputers. The greatest disadvantage is that the nodes do not have high-speed,

low latency interconnections. So this arrangement is best for applications in which

many parallel computations take place independently.

 Nodes in a grid don’t usually share user logins and passwords and the nodes

typically have different configurations. They normally run the same OS, however.

Neither multithreading nor MPI, RMI, or similar middleware mechanisms will be

effective in distributing work, sharing data, or monitoring work progress in grid

systems because the systems are so loosely connected. A consortium of industry,

academic, and other interested parties have contributed to a freely available Globus

Toolkit that is widely used to administer computing grids. This package is a set of

utilities, interfaces, and protocols that allow cluster administrators to share some of

their resources as a part of a grid.

 Since the nodes are administered separately, security is a large concern with

a grid system. For security reasons, rather than creating temporary user logins for

jobs, “tickets” are issued by ticket granting agencies. Many different administrative

authorities will be concerned with the administration of a given grid. Any source that

the various administrators can agree to trust can be a ticket granting agency. Transfer-

ring data and programs among nodes in a grid, reserving local space, and retrieving

results are done by Globus commands and interfaces. Coordinating between sites

(clusters) is somewhat more difficult than on a single cluster, and very little software

136 Part 2 Building Operating Systems Incrementally: A Breadth-Oriented Spiral Approach

has been made grid-enabled. There are many other systems designed to facilitate grid

computing besides Globus.

 7.4.5 Volunteer computing

 Individual people worldwide control millions of computers that sit idle for a large per-

centage of the time. Even when working at their assigned tasks most personal comput-

ers have many unused CPU cycles caused by the need to wait for I/O task completion.

For many years, utilizing this otherwise wasted computation time on these computers

has been a desire of several large projects. Many individual systems have been devel-

oped to take advantage of this otherwise wasted computer processing capacity. These

systems needed to handle several problems, including allowing individuals to register

their computers in the system, getting jobs to those computers, allowing those jobs to

be suspended when other, more important work needs to be done on the computer,

returning results to the originator, and keeping track of the “credit” each user or group

of users has amassed. Eventually the Condor Project at the University of Wiscon-

sin and BOINC at Berkeley developed common infrastructures to allow many dif-

ferent projects to be run in such a mode without the need for each project to develop

the infrastructure from scratch. While both offer the possibility of aggregating many

otherwise unused computer resources, they have important differences.

 Most volunteer computing projects are based on parameter sweep flows in which

large amounts of data are broken up into small sets and sent to volunteers’ comput-

ers. These computers all run the same science program to analyze their particular set

of data, then send the results back. The amount of work to be done in one sweep is

usually a few hours and the data initially sent to the volunteer and results sent back

to the server is usually not too large (several hundred kilobytes to several megabytes)

so that volunteers are not overly burdened. Also, if a job is abnormally terminated for

some reason, not too much work is lost.

 BOINC

 If the computing work of a project can be partitioned into reasonable-size chunks and

the potential of using millions of volunteer computers will facilitate the project, then

the BOINC infrastructure will be attractive. BOINC provides the common infrastruc-

ture and allows a project to submit its computing application to be run by millions of

user computers, which have CPU cycles that are not currently being used.

 Following on the success of early volunteer computing systems, BOINC (Berkeley

Open Infrastructure for Network Computing) created an infrastructure for any software

system to be distributed to millions of volunteer computers. BOINC is composed of

a server system that sends out work and receives results. It may be configured to use

any volunteer computer or to prefer computers where the software has already been

installed and is running Linux or Windows. The BOINC client part is sent to volun-

teer client computers and it then downloads the actual science applications. When

users register with BOINC they can select which science projects they want to par-

ticipate in and what portion of the spare cycles should go to each project. The BOINC

client software then takes care of the rest of the problems. It schedules when the

science applications will run. This might be any time when the computer is idle for

 Chapter 7 Parallel and Distributed Computing, Clusters, and Grids 137

a certain time or it might run all the time in the background using idle CPU cycles.

The BOINC client will keep the version of the science applications current, check-

ing with the server, and handle communication with the server, sending results back.

Most BOINC science applications have a screen saver graphic display that shows the

work being done in graphs, charts, and animated graphics. Currently BOINC supports

several particle physics experiments, climate prediction, protein structure, epidemiol-

ogy and medical disease projects, cancer research, and SETI@home. In early 2008

BOINC had over 2.5 million active computers worldwide, providing a bit more than

800 TFLOPS. Of course these numbers will continue to increase.

 Condor

 The Condor system is a different approach that allows an administrator to create a

local cluster of idle workstations to do distributed processing without the limitations

or constraints of a cluster and without going to the trouble of setting up a cluster in

hardware and software or organizing a grid. It provides an infrastructure similar to

BOINC but each project administers its own single project and a private set of nodes.

These nodes are probably owned by a single institution.

 Condor is an ongoing project at the University of Wisconsin that allows users of

computers to register them as being available and to describe a computer’s capabili-

ties: what type of processor(s) it has (Pentium, PowerPC, Athlon, etc.), how much

memory and disk space, what software libraries are installed, and other character-

istics. Someone who wants to run a program or a group of programs (a workflow)

describes the requirements of those programs in a similar manner. These descrip-

tions are called ClassAds (like classified advertisements) and are used by Condor to

matchmake (i.e., to find the best matches between providers and requestors). Condor

allows computers to describe preferences about when they should do this work. For

example, a system might be allowed to do the work in the background, or when no

one has pressed a keyboard key for a few minutes. After many years of development,

Condor has become very popular and widespread and is a very stable system that

requires only a simple procedure to install on computers wishing to provide service.

 Common problems

 Volunteer computing systems must cope with several problems of the computers

used:

 They are heterogeneous, so the software must adapt readily.

 They join and leave the system unpredictably.

 Their availability is irregular.

 The systems should not interfere with normal system use.

In addition, volunteer computing systems must deal with a few problems concern-

ing reliable results, stemming from the fact that volunteers are often anonymous and

therefore unaccountable:

 Some volunteer computers may malfunction and return incorrect results.

 Volunteer computers may have their speed set too fast in order to gain extra

credit and therefore more often malfunction.

138 Part 2 Building Operating Systems Incrementally: A Breadth-Oriented Spiral Approach

 Volunteers may intentionally return incorrect results.

 Volunteers may claim excessive credit for results.

One common approach to all of these problems is to have each batch of data pro-

cessed on at least two computers. The results and the credit are accepted only if they

agree fairly closely. Another technique used is checksumming or performing a CRC

(cyclic redundancy check) on the results. These are mathematical functions com-

puted over the result data that detect transmission errors or tampering.

 7.5 HOW OPERATING SYSTEM CONCEPTS DIFFER IN SMPS,
CLUSTERS, AND GRIDS

 In this section, we discuss several of the OS concepts that we have described in

previous chapters and how they differ from the uniprocessor systems discussed

there. In some cases, the concepts and implementations in parallel systems are

almost identical to single CPU systems; in a few cases, the differences are note-

worthy and important.

 7.5.1 Process synchronization and communication

 Recall that processes often share work with other processes. Sharing work usu-

ally also implies sharing data. This distribution of work and partitioning or shar-

ing data requires coordination between processes. Even in simple cases where

there is not very much interaction between these executable elements, one needs

to exercise caution in those small parts of the program code where data (even a

single number) may be shared between processes running on different systems.

The problem we are trying to avoid is caused by two processes that are trying

to change a single data item at the same time. This is called a race condition.

Traditionally, interprocess communication is done using shared memory or mes-

sage queues. Synchronizing concurrent access to data is done using semaphores

or similar locking mechanisms in those critical sections of the processes involved

where they actually manipulate the data. These mechanisms are based on shared

memory and special CPU instructions. They will be elaborated on in Chapter 9.

On some distributed architectures these mechanisms are not available and other

mechanisms must be used. Perhaps a simple example best illustrates the question

of how systems can accomplish synchronization and communication in distrib-

uted architectures.

 7.5.2 An example

 Suppose we have a very long list of information about many people. For example,

it might include telephone numbers, names, email addresses, and some value such

as the family income for the last year. We would like to sort this list into ascending

order by phone number and calculate the average income at the same time. This is

 Chapter 7 Parallel and Distributed Computing, Clusters, and Grids 139

an ideal problem for the architectures discussed in this chapter. (In fact, this problem

may be too ideal since it can be structured as a highly parallel application and thus

yields a speedup factor that may be atypical for distributed computing.)

 The obvious method to solve this problem is to partition the list into smaller,

separate lists. If we had eight processors to divide the work among we could have

each processor sort and calculate the average on one eighth of the data, and then we

could merge the result. This is a sweep flow, as was described earlier. The merge step

at the end is a pipeline, as is the partitioning of the data at the beginning of the work

flow. While each processor is sorting and averaging its own part of the list there is

no interaction between processes. But at the time of merging the resulting lists and

calculating the average there will be data sharing.

 It would be more efficient if we could start processing (merging) results before

all the results have been calculated. But this might create a race condition where

some of the processors started trying to merge the results before all the processors

had produced their first output. Furthermore, even if all eight processors were the

same type and speed it would be very unusual that they completed their work at the

same time. We could try to balance this by giving more work—more numbers in

their list—to faster processors. If a processor was twice as fast as the others we could

give it twice as many numbers to work with. But, this doesn’t work since it takes

more than twice as long to sort this longer list, because sorting is not a linear time

function. Predicting the running time of parallel processes is important, but usually

difficult—and not very precise.

 7.5.3 But it gets difficult

 Now our simple example is getting complex—merging the results of sorted lists, as

they become available, and calculating the average (a few adds, maybe scaled with

multiplications, and a divide) shared data—and before we can use the result of a

sweep process we need to know if it has finished. On a single CPU computer this is

not difficult. We can communicate using shared memory and signal completion by

setting flags in the data to indicate completion.

 7.5.4 The SMP case

 How would this be done on a SMP system? Fortunately, it can be done exactly the

same way as on a single CPU computer. SMPs share memory among all the CPUs,

so most of the common techniques used to communicate among processes work the

same way as in a uniprocessor system. We discuss the issues involved in SMP OSs

further in Chapter 9.

 7.5.5 The cluster case

 How are sharing and locking done on a cluster of computers? This architecture

is somewhat more difficult than with a single CPU or an SMP system. Sharing

memory is not possible (it may be simulated, but that is quite slow). Messages must

be sent between processor nodes via a local area network. Work is partitioned and

140 Part 2 Building Operating Systems Incrementally: A Breadth-Oriented Spiral Approach

distributed. Since data is not shared in memory between processors, it must be sent

to each processor node separately. If the data is originating in a file, there may be

file sharing across nodes, minimizing the impact of this distribution.

 It is common to try to partition the processing of problems for a cluster so

that there is almost no interaction between processes until the end of each process

because communication between systems in a cluster is much slower than in an SMP

system. For this reason, usually the rewriting and restructuring of a work flow for

a cluster requires more programming and design than for an SMP system or single

CPU and it does not end up doing as much work in parallel. But, the tradeoff is that

the per-processing node cost in a cluster is much lower.

 7.5.6 The grid case

 How are locking and sharing done on a system with a grid architecture? This is the

most difficult case. Sharing memory is not physically possible between clusters in

a grid and is very difficult to simulate. Messages must be sent between nodes or

between clusters via a network that may be protected by firewalls. The nodes may be

very far apart and thus have very high communication latency. The work is therefore

partitioned and distributed. Since data is not shared in memory between processors

it must be sent to each cluster through a network, primarily the Internet, which is

often slow, but perhaps over the Internet2, which is usually a bit better performing.

Results must similarly travel back over the same network. Even if the data is stored

in a file, the files being shared must still be copied to another cluster, where they may

be shared between nodes in that cluster.

 Why is this effort worthwhile? Why do we use grids for computation? We

use them because grids also share, but instead of only sharing memory, they share

whole clusters of computers between users. Rather than being limited to using only

the perhaps few hundred or so nodes available in a local cluster, a researcher may

be able to use 50 clusters of computers, ranging from 10 to 400 nodes in each

cluster. This high-level sharing may allow the use of many thousands of nodes

for a short time. Since one is using someone else’s cluster, then one may not be

able to use it for too long, maybe only a few thousand hours. But one should also

share one’s own local cluster, so things should balance out in the long run. Users

of grids therefore form virtual organizations. These organizations agree to pool

and share resources such as their clusters. Such organizations are very dynamic. A

virtual organization may form to computationally analyze one problem. It might be

one task, such as a bioinformatics work flow that takes 100,000 compute hours in

total, but is done by two dozen (24) clusters creating a small grid, and done over

the weekend. Then the virtual organization disbands until the next big problem.

This problem might take more than 10 years if done on a single computer similar to

nodes on the cluster, or half a year on a typical local cluster such as that described

later in this chapter.

 For very large data sets, for example, the output of the LHC (Large Hadron Col-

lider, a large-particle accelerator at CERN, in Europe) physics experiment, the analysis

work will take many millions of compute hours, so the virtual organizations will be

around for quite a while. These organizations depend on Moore’s law, that computers

 Chapter 7 Parallel and Distributed Computing, Clusters, and Grids 141

and capacities will increase, year-by-year, so that in later years, processing will speed

up, and possibly the researchers will discover new principles of science that would oth-

erwise never be found.

 7.5.7 File-sharing techniques

 Large-scale computation users typically need lots of files. Files contain raw data

values, parameters, intermediate and final results, and other information. It is not

unusual that some of these files are very large, perhaps many gigabytes each. Clusters

with many terabytes of storage (in a few cases, a hundred terabytes) are common, and

the previously mentioned LHC will need petabytes of storage.

 File sharing for SMPs is relatively easy since the processes also share the file

system. Of course, the processes that share files may need to coordinate using locks or

similar mechanisms. In most SMPs there is a primary file system (or a few) managed

by the OS. Since the OS handles file operations it can coordinate among multiple

processes that are creating, reading, writing, and performing other file operations.

 In clusters, there are multiple instances of identical OSs running on the differ-

ent processors and they manage the sharing of files. This may be done by creating

special file-sharing nodes, which allow files that they control to be manipulated by

any (or many) nodes in the cluster. These nodes support an interface that provides

essentially the same functions as those provided by a local OS in a single node or

SMP system. Since it is possible to have race conditions on files in a cluster, file

sharing nodes usually also provide locking commands to lock all or part of a file to

allow error-free data sharing.

 Grids do not share parts of files, nor do they allow locking between clusters.

They do allow entire files to be copied, and some grid tools may simulate cluster-like

file sharing. Ensuring that all nodes in multiple clusters have a consistent, identical

view of every shared file is very challenging and is an active area of grid research.

Even more difficult is the management of files that are almost the same between

clusters, but have been changed a little, and yet still have the same name.

 7.5.8 Using remote services

 Applications often need to access remote services. These may include remote sub-

routines or function, methods on objects, or separate processes. The topic of remote

services has been a very popular topic in parallel and distributed computing for many

decades. This refers to how remote services are started and invoked remotely, how

parameters are passed, and how results are returned.

 On SMP systems services outside a particular process are most typically invoked

through remote procedure calls (RPCs) or remote method invocations (RMIs). This is

the same mechanism as discussed previously for interprocess management. Systems

running on clusters employ middleware that enhances RPC calls or RMI invocations

to be similar to the same calls in SMP or multiprocessing uniprocessor systems. Grid

systems present challenges due to the difficulty of sharing (particularly of sharing

data) and the issues of security. Naturally, most cluster administrators are very wary

of allowing direct contact with a node in the cluster they are allowing remote access

to. Grid systems have potentially long network delays, so usually grid services are

142 Part 2 Building Operating Systems Incrementally: A Breadth-Oriented Spiral Approach

provided by batch-like, noninteractive servers. New grid service models, for example,

the new Globus model discussed in Section 7.4.4, do provide Web services as a model

and provide security through certificates.

 With a long history and many opinions and implementations of remote servers

and services, this area will be contentious and important for many years to come.

 7.5.9 Handling failures

 Lastly, we come to the somewhat unpleasant question of what happens when some-

thing goes wrong?

 As more components, more computers, and more software are aggregated into

a larger system, the chances that something will go wrong increases, maybe just

something minor. This is why SMP systems, clusters, and grids must all recognize

and deal with the eventuality of failure.

 What can fail? The first thing that comes to mind is a hardware failure—a disk goes

bad, maybe a chip fries, and a computer stops working. This will result in a node fail-

ing or not responding and losing the work it was doing. Network failures are probably

more likely than node failures. A cable might come loose or a switch or router might

fail. A network or server might suffer a denial of service (DOS) attack. (We discuss

such attacks in Chapter 16.) Even more commonly a network or router will get very

overloaded and drop traffic. In general, network failures will mimic node failures.

 But software may also cause failures. For example, the wrong version of a pro-

gram or the wrong version of a runtime library may be loaded on a system. This is a

very common problem. Unfortunately, software bugs may cause failures that are not

detected until long after the failure actually occurred.

 Software must be written to account for failures. For example, middleware can

use timeouts to check that a remote procedure call or other server request is responded

to within a reasonable amount of time. And if the service does not respond within the

time limit another call is made, perhaps to a different server. If the original request

response shows up later, then the result is simply thrown away.

 Monitoring systems can watch network traffic, trying to detect failures. They

can also watch individual node or cluster performance for failures due to hardware

or misconfigured software. There are tradeoffs to be made here. For example, too

little monitoring will cause failures to be unnoticed and unmanaged for a long time

but too much monitoring creates a substantial overhead in computing resources and

network bandwidth.

 7.6 EXAMPLES

 7.6.1 Scientific computing on clusters and grids

 In the last few years several significant, computationally intensive natural science

projects have used large computational clusters and grids. In this section, we discuss

a few such projects. The continually declining price of commodity computers, disk

storage systems, high-speed networking equipment, and network bandwidth and

 Chapter 7 Parallel and Distributed Computing, Clusters, and Grids 143

software to control the distribution of work and data have very recently reached the

point where such systems are affordable by most research communities. As a result,

many new projects have only achieved results in the last year and others have not yet

reached such milestones. The following projects are not the largest or perhaps the

most significant; rather, they are a representative sample of different approaches and

technologies employed to accomplish intense computational work.

 7.6.2 The human genome DNA assembly

 In the early 1990s, J. Craig Venter suggested using a whole genome shotgun assem-

bly approach for large genomes. (It is not possible with current technology to simply

read each nucleotide, one at a time, in very long pieces of DNA.) A genome assem-

bly starts with ripping a DNA strand into many short pieces. These pieces are then

“read” by sequencing machines in strings of up to 900 bases at a time. The four

bases are adenine, guanine, cytosine, and thymine, normally shown as A, G, C, and

T. A genome assembly algorithm works by taking all the pieces and aligning them to

one another, and detecting all places where two of the short strings overlap. An exam-

ple is shown in Figure 7.5 , where several overlaps of short segments of the original

string can be seen. This method has become very popular, due, in large part, to the

availability of computer clusters to assemble the large number of overlapping frag-

ments. While smaller genomes had already been sequenced by Venter using shotgun

assembly, assembling the human genome needed much greater computing resources

and very sophisticated software. This approach scans a slightly more than 3 billion

base pair human genome that has been broken into more than 50 million overlap-

ping pieces. Since the chemical process for breaking up and reading sequences is not

perfect, the algorithmic looks for near matches to align ends.

 The processing done in this work on the human genome assembly initially took

about 20,000 CPU hours. But it was done on a cluster of 40 four-processor SMP sys-

tems in a few days. This system, which at the time cost $40 million, would now cost,

for an equivalent amount of processing power, a few hundred thousand dollars.

 The major alternative approach, used by the public Human Genome Project, was

to assemble ever-longer sequences, growing pieces into longer, known sequences. This

hierarchical approach also requires significant computational resources. A custom writ-

ten program, GigAssembler, was developed that ran on a 100-node Linux cluster. In

both approaches, the computational needs were large enough to require using compu-

tational clusters. These were cases where there really was no other reasonable choice.

Original string

1st sample–A XXXACGATCGTCGAGTCATCGTXXXXXXXXXXX

1st sample–B XXXXXXXXXXXXXXXXXXXXXXTAGCGTAXXXX

2nd sample–A XXXACGATGXXXXXXXXXXXXXXXXXXXXXXXX

2nd sample–B XXXXXXXXXCTCGAGTCATCGTTAGCGTAXXXX

XXXACGATCGTCGAGTCATCGTTAGCGTAXXXX FIGURE 7.5

Genome assembly.

144 Part 2 Building Operating Systems Incrementally: A Breadth-Oriented Spiral Approach

 7.6.3 IBM Computational Biology Center and cluster computing

 IBM has been active in parallel and distributed computing for many years, and has

taken a leadership role in developing very large-scale computer clusters and soft-

ware infrastructure and biological applications to use those systems. Blue Gene/L

is a 131,000-processor cluster, with multiple network pathways to each node. This

system, which was co-designed by Lawrence Livermore Labs, is used for science

research. About half of the 500 largest computational clusters in the world are IBM

computers. The Blue Gene series of computers, all very large clusters, use relatively

modest-speed CPUs and employ a modified version of Linux as the OS.

 The Computational Biology Center has several large projects of interest, includ-

ing bioinformatics, medical informatics, and functional genomics research. One of

these projects, a biomolecular simulator called Blue Matter, simulates modest-size

systems (10,000–100,000 atoms) for long time scales (hundreds of nanoseconds to

a few microseconds). Using 4,096 processors on Blue Gene/L, a 43,000 atom mem-

brane protein system ran for a simulated time of one microsecond in a wall clock

time of slightly less than two months.

 7.6.4 Volunteer computing clusters

 The goal of using processor cycles that would otherwise be wasted has appealed to

many people for years. SETI@home, a project that searched for extraterrestrial intel-

ligence, utilized years of data collected from radio telescopes that had been stored in

repositories but for which no computing resources had been available to analyze this

data. SETI@home has been remarkably successful from a computing view. More

than 5 million participants have contributed over 2 million years of aggregate com-

puting time over the years. In early 2008 it was estimated that at any given time all of

the computers in the SETI@home system together provide 370 TFLOPS (370 · 10 12

floating point operations per second). As a comparison, Blue Gene/L can reach the

peak performance of 478.2 TFLOPS, with about one-sixth the number of processors

as SETI. But note that the SETI computers are connected over home networks and

phone lines, composed of a mixture of older and newer machines, and sometimes

do other real work for their users. While no conclusive signs of extraterrestrial intel-

ligence have been found, there have been several interesting findings that may war-

rant further investigation. One concern voiced in a recent astronomy publication is

that the digital signals collected at radio telescopes and sent over the Internet might

expose the earth’s Internet to extraterrestrial viruses. While this would confirm extra-

terrestrial intelligence, no extraterrestrial viruses have yet been detected on earth.

SETI@home is considered to be the largest grid/cluster computation in history.

 Folding@home is an effort to simulate protein folding and misfolding; it was

created by the Pande Group at Stanford. It has simulated folding in the 5- to 10-

microsecond range, which is a time scale thousands of times longer than was previ-

ously thought possible. It is the second largest volunteer project (after SETI@home).

On September 16, 2007, the Folding@home project officially attained a perfor-

mance level higher than one petaflops. It has been used lately for analyzing protein

misfolding, which is thought to be applicable to diseases such as bovine spongiform

encephalopathy (BSE), or mad cow disease.

 Chapter 7 Parallel and Distributed Computing, Clusters, and Grids 145

 7.6.5 A typical computer cluster

 Here we describe a typical computer cluster with 98 two-processor computers. It

happens to exist, but it is intended merely as a typical example of such a cluster and

some samples of commands one might use in such an environment. Each node has

a local disk and two processors inside the computer, and each computer’s two pro-

cessors share two gigabytes of memory. The 98 computers communicate with each

other and with the Internet via a one-gigabit per second switched Ethernet LAN.

There are also several NAS disk arrays using redundant array of independent

disks (RAID) technology. (This technology is explained in Chapter 14). Together

they comprise 100 terabytes of storage. The cluster also has five “head” nodes con-

nected to firewalls that allow an external user to connect to the cluster or to several

dedicated database servers. It also has a few Web servers outside of the firewall for

general status and information about the system.

 Each computer node is running a separate but identical copy of Linux as the

OS, and each node has common software installed such as OS utilities, high-level

language compilers, libraries, and several science applications. Individual computa-

tional nodes and storage are isolated from the Internet. Access is granted through the

aforementioned head nodes. The head nodes run clustering software that allows a user

to log in to the head node and run multiple parallel jobs by using PBS (portable batch

system—now called TORQUE, but almost always still referred to as PBS). Head

nodes also do monitoring and some other accounting work, but are designed to be

used primarily as portals for running an actual workflow on multiple compute nodes.

 7.6.6 Utilizing a Globus cluster

 The Linux OS on the cluster has good support of the two-processor nodes and for

managing scheduling on the two CPUs. These OSs don’t know that they are part of a

cluster. Rather than modifying the OS, the cluster work management is done by mid-

dleware, running on top of the OS. The middleware scheduler called PBS is freeware,

as is the Linux OS underneath it. While PBS is a sophisticated system with many

interfaces, a user can make effective use of it while knowing only a few commands.

 First, one has to tell PBS what kind of CPU resources are needed. One can

specify individual parameters on separate lines, like this:

 #PBS -M dave@mymailer.uta.edu

 #PBS -l nodes⫽10:ppn⫽2

 #PBS -l cput⫽02:00:00

 #PBS -l mem⫽213mb

 #PBS -l walltime⫽00:20:00

Or combine the last four lines, like this:

 #PBS -l

 nodes⫽10:ppn⫽2,cput⫽2:00:00,mem⫽213mb,walltime⫽00:20:00

This PBS command requests 10 nodes, two processors per node, and 213 MB of

memory. It requests a total of two hours of CPU time to run in 20 minutes of wall

146 Part 2 Building Operating Systems Incrementally: A Breadth-Oriented Spiral Approach

clock time to run all of the workflow that users will submit. The M parameter tells

the system who the user is.

 In order to see the results of a program’s execution a user will need to tell the

system where the normal output and error output streams should go. Here they are

redirected to files, so they can be retrieved later:

 #PBS -o outputfile

 #PBS -e errorfile

Since the job may take some time to finish (weeks or even months, in some cases,

even on large grids), a user can ask for an email to be sent when the job begins to run,

and another when it terminates or aborts.

 #PBS -m bae

And finally, the OS needs to know where the program is that is to be run:

 cd /temp/my_working_dir

 echo "I am running on host 'hostname'"

 execute my_program

 rm ./junk

 exit

Specifically a user asks the OS to run some programs, probably with different files

as input data, clean up any leftover temporary files, and exit. Note that frequently the

user will put all of these commands into a shell script file and then run it.

 A user submitting jobs using PBS needs to keep in mind that it is a batch-oriented

system. Most modern OSs are primarily interactive—when an icon is clicked to tell the

OS to run a job, it tries to start it immediately. In a batch system the job may not be able

to run immediately because the resources asked for are not available at the time. So the

jobs may be placed in a queue for later execution. There are a number of commands

that a user can use to manage the jobs and queues available. Here are a few of them:

 #qalter Alter a batch job

 #qdel Delete a batch job

 #qhold Hold a batch job

 #qmove Move a batch job to another queue

 #qrls Release held jobs

 #qrerun Rerun a batch job

 #qselect Select a specific subset of jobs

 #qstat Show status of batch jobs

For those users who are not comfortable with command-line interfaces there is also

a GUI version of PBS called XPBS.

 7.6.7 Portals and Web interfaces

 After an application is working on a cluster, it might be desirable to make it avail-

able to others, either within a group or to a wider community. Or a user might simply

want an easy-to-use interface to an application. In the past, creating a windowing

 Chapter 7 Parallel and Distributed Computing, Clusters, and Grids 147

interface was an option, and many applications still do this. But it is now possible to

make a grid workflow or application Web-enabled.

 Portals are server computers that allow users to access data, applications, infor-

mation, and to share results. A local portal allows anyone to login, look at ongoing

research, match interests to faculty researchers, and apply for an account. Account

holders may access local applications, get datasets, chat with whoever is online, and

share data and opinions.

 7.7 SUMMARY

 Prior to this chapter we discussed the designs of OSs

that run on a single machine. Modern systems often

are designed for applications where many proces-

sors are used together. In this chapter we discussed

computing on more than one CPU and some of the

difficulties that arise in constructing and using such

systems. We covered several common designs for

multiple CPU systems, and a few unusual designs

as well. After an introduction and definitions of a

few key concepts, we discussed a bit of the theory of

parallel computing and the issues of computational

models and programming. Then we discussed some

common architectures for distributed systems. OSs

designed to run in such environments have special

considerations that do not arise in uniprocessing sit-

uations, so we covered some extra issues OSs face in

distributed systems. These topics included such ques-

tions as what facets need to be managed, how does

multiprocessor system resource management differ

from uniprocessor systems, and what interfaces are

presented to programmers and users. Finally, we dis-

cussed some real applications that are implemented

as distributed systems, including a look at a typical

cluster installation in a grid.

 In the next part of the book we begin looking at

individual topics in Operating Systems in more depth.

 BIBLIOGRAPHY

 Dubois, M., and F. A. Briggs, “Synchronization,

Coherence, and Event Ordering in Multiprocessors,”

 Computer, Vol. 21, No. 2, February 1988, pp. 9–21.

 Geer, D., “For Programmers, Multicore Chips Mean

Multiple Challenges,” Computer, Volume 40, Issue

9, September 2007, pp 17–19.

 WEB RESOURCES

 http://www.globus.org (Home page for the Globus

Alliance)

 http://www.globustoolkit.org (Open source software

toolkit used for building grids)

http://boinc.berkeley.edu/ (BOINC home page - SETI

project, among others)

 REVIEW QUESTIONS

 7.1 Moore’s law says that computers are getting faster

and faster all the time. Why do we then go to the

trouble of building cluster systems and other exotic

designs that require a programmer to work hard to

exploit any possible parallelism in a design?

 7.2 True or false? SMP systems and clusters (almost)

always use the same CPU in every node but grid

systems can use different CPUs in each node.

148 Part 2 Building Operating Systems Incrementally: A Breadth-Oriented Spiral Approach

 7.3 Which is true about the nodes in a cluster system?

 a. They share a single memory.

 b. They have no local peripherals.

 c. They communicate over a separate dedicated

LAN.

 d. A dedicated node runs the OS.

 e. None of the above is true about the nodes in a

cluster system.

 7.4 True or false? A pipeline flow is an example of a

workflow where there is parallelism that can be

exploited.

 7.5 What does Amdahl’s law say about the speedup of

a workflow?

 7.6 What common technique used in uniprocessor

systems allows a programmer to exploit parallel-

ism on SMP systems?

 a. memory mapped files

 b. multithreading

 c. critical sections

 d. semaphores

 e. none of the above

 7.7 What common hardware technique requires an

SMP scheduler to make some special provisions

for scheduling processes?

 7.8 What is the term used to describe the mechanisms

that are commonly used to exploit parallelism in dis-

tributed applications running on cluster systems?

 7.9 Which of these techniques used in SMP systems

or in clusters are also used to distribute processing

in grid systems?

 a. multithreading

 b. RMI

 c. virtual systems

 d. CORBA

 e. none of the above

 7.10 In uniprocessor systems we have to use criti-

cal sections to protect shared memory when it is

being accessed by multiple processes. Why do we

not usually need to use such mechanisms on clus-

ters and grids?

 7.11 What mechanism is suggested to mitigate most

failures in distributed systems?

 7.12 How does work get distributed on a multiprocess-

ing computer system?

 7.13 How does work get distributed on a cluster com-

puting system?

 7.14 How does work get distributed on a volunteer

computing system?

 7.15 How does work get distributed in a Globus

system?

149

PartPart 33
CPU and Memory Management

In this part:

Chapter 8: Process Management: Concepts, Threads,

and Scheduling 151

Chapter 9: More Process Management: Interprocess Communication,

Synchronization, and Deadlocks 181

Chapter 10: Basic Memory Management 209

Chapter 11: Advanced Memory Management 225

 P
arts 3–5 of this book are similar to the bulk of most OS textbooks. They pro-

vide in-depth treatment of individual aspects of OSs. In particular, Part 3 treats

some of the more fundamental topics that all modern OSs have to deal with:

process and thread management and memory management. Together these constitute

two of the major portions of an OS.

There are four chapters in this part of the text. The first two deal with processes

and threads and how they communicate and otherwise interact. Chapter 8 defines a

process and discusses the algorithms and data structures that have evolved to manage

and schedule processes. It also defines the concept of threads and how they are used

and implemented.

When high performance systems are developed that place great demands on an

OS, it is usually necessary to break them into separate parts and allow them to run

separately. Chapter 9 discusses the reasons why we often end up with systems com-

prised of multiple process or threads. Multiple processes will need to communicate

to coordinate their work. So this chapter discusses mechanisms for such communi-

cation. It then points out some of the pitfalls involved in such communication and

introduces the notions of synchronization and the deadlocks that may result.

The last two chapters in this part of the book deal with issues of memory man-

agement. Chapter 10 deals with memory management in simple systems. In part

this is historical, but today it is clear that miniaturization of computer hardware will

mean that we will continue to find computers in environments where resources are

scarce, and these simple techniques will continue to be applicable in the foreseeable

future.

150

Chapter 11 deals with how memory is managed in larger systems. The two

main techniques that have evolved are paging and segmentation. This chapter first

explains how these work and then goes on to explain the notion of effective memory

access time and the effect that paged or segmented memory would have. It then

introduces the idea of a translation lookaside buffer and how it mitigates this prob-

lem. It next explains the notion of virtual memory and discusses some algorithms for

the management of virtual memory.

151

 Chapter Chapter 8 8
 Process Management:
Concepts, Threads,
and Scheduling

 In this chapter:

 8.1 Introduction to Processes 152

 8.2 Process Descriptor–Process Control Block 152

 8.3 Process States and Transitions 154

 8.4 Process Scheduling 156

 8.5 One Good Process Deserves Another 164

 8.6 Threads 166

 8.7 Case Studies 173

 8.8 Summary 178

 I
n this chapter we talk about processes and threads. A fundamental function of an

OS is the execution of a program and an executing program is known as a process.

A program is a static thing. In most OSs a program is stored in a file on secondary

storage. Eventually an OS is instructed to run a program, usually by a user, but some-

times by another process, perhaps one running on another system. The OS brings

that program into primary storage and begins to execute it. That running entity is

known as a process. Note that we may run many copies of the same program at

the same time on one system. For example, it is possible to start several copies of a

program development environment running at the same time. Each running copy of

the program would be a separate process. Other terms often used for a process are a

job or a task.

 In the first section we define a process and speak about the abstraction of a

machine that the process runs on. An OS must keep track of much information about

each running process, especially when that process is not actually executing on a

CPU. In Section 8.2 we explain the main control structure that OSs use to store this

data for a process, a process control block. As a process executes it will be in vari-

ous states such as ready to run, running, waiting, and so on. Various events cause the

152 Part 3 CPU and Memory Management

process to transition from one such state to another. Section 8.3 discusses the various

states that a process can be in and the events that can cause the transitions between

the states. When systems are running multiple processes the OS must decide which

process will run next. Section 8.4 addresses the various algorithms for scheduling the

execution of processes. In order for a complex application to accomplish many things

at once it is sometimes desirable for the process to start another process to do some

of the work, so Section 8.5 explains how one process can start another process.

 Switching between processes turns out to have substantial impact on the perfor-

mance of an OS and the programs it is running. As a result, another mechanism was

developed that will allow a single process to accomplish more things at the same

time using the mechanism of threads. Section 8.6 covers this topic. In Section 8.7

we discuss some real implementations of threads in some different OSs. Threads are

also available in some high-level languages and in a standard thread API available on

many OSs, so we discuss those in this section as well. In Section 8.8 we close with a

summarization of the chapter.

 8.1 INTRODUCTION TO PROCESSES

 As a process runs it will change its state. Most obviously it will be changing the

program counter (or instruction address register) as it runs and as it calls subroutines

or functions or invokes methods, loops, and so on. It will also be changing the con-

tents of the CPU registers, the system status register, and the stack pointer, at least

on most machines. These items (and more discussed later) are collectively known as

the process state. If we were only running one process on a system then there would

be nothing much more to say about the process state. But these days we are not nor-

mally running only one process. We are rapidly switching between many processes

in an effort to keep the hardware very busy and responsive to the user(s).

 While we want the system to be able to run many processes at the same time, we

want this switching among processes to be transparent to the processes themselves

(i.e., a process does not need to know whether or when it will be suspended and

another process run). We are creating a “virtual CPU” in the sense that every process

can act as if it were the only process running. Since we are doing all this switching

between processes, when we stop one process to start another we will have to save

the state of the process we are stopping and restore the previous state of the process

we are starting. (This assumes that the process we are starting is not a new process.)

We will create a structure in memory where we will save the information describing

the state of the process we are stopping. We will call this structure a process control

block (PCB). Some OSs call this structure a process descriptor.

 8.2 PROCESS DESCRIPTOR—PROCESS CONTROL BLOCK

 As was just described, when a process is stopped by the OS for any reason, the state

of the CPU at that time is saved in the PCB. There are many other pieces of infor-

mation in the PCB as well. A typical PCB is shown in Figure 8.1 . Different OSs

 Chapter 8 Process Management: Concepts, Threads, and Scheduling 153

will keep different information in the PCB, but here are some things that are fairly

common:

 ɀ Program name

 ɀ Process ID, a number assigned by the OS to identify the process

 ɀ Parent process ID or a pointer to the parent process PCB

 ɀ Pointer to a list of child PCBs

 ɀ Pointer to the “next” PCB, probably in a queue

 ɀ Accounting information

 ɀ Pointer to a table of open files

 ɀ CPU state information

 ɀ Instruction counter

 ɀ Stack pointer(s)

 ɀ System status register

 ɀ Other system registers

 ɀ Event descriptor, valid if the process is waiting for something

 ɀ Process state information (see next section)

 ɀ Process owner (user)

 ɀ Memory management information

 ɀ Pointer to a message queue

 ɀ Pointer to an event queue

 It is important to understand that while a process is actually running, the CPU state

information is not updated. It is saved only when the process is stopped for some

reason. Note that the term “state” is overloaded. We have been talking about the

“state” of the CPU and said that we saved that information in the part of the PCB

called the “CPU state information” when we stopped a process. You may have

noticed that the PCB also has another entry called “process state information.” This

is something different, and it is coming up next.

process id

next PCB

Parent PCB

Child PCB list

Open File Table

CPU state

Process state

MMU information

. . .

FIGURE 8.1

A process control

block.

154 Part 3 CPU and Memory Management

 8.3 PROCESS STATES AND TRANSITIONS

 The designers of OSs have to document the external view of their systems so that

programmers will know how to write programs for them and users will know how

to run the programs. Some of the things that need to be discussed can be described

in several ways. An example is the concept of “states” that a process can be in. The

most obvious state for a process is that it is running. But only one process can be

running at any time on each CPU, so what are the other processes doing? Some of

them are ready to run and some of them are waiting for something else to happen

before they continue.

 Different designers (and authors) will use different models to explain the manag-

ing of processes by an OS. In Chapter 2 we introduced this five-state model with dif-

ferent state and transition labels, but it is also common to see a three-state model that

eliminates the new and exit states. The five-state model is shown again in Figure 8.2 .

It is convenient to describe these states with a state diagram. The states (or nodes)

are indicated by the hexagons. The arrows (or transitions) are the events that cause

the transition from one state to another state. The five states are seen as New, Ready,

Run, Wait, and Exit. These states often have different names in other references.

 The New state represents a process that the OS is currently preparing to run but

that is not yet ready. When the user tells the command processor module to run a

program it goes through the transition marked “0–Program Loaded” and is put in the

New state. First, the OS has to create a new PCB, assign a process id, and fill in all

0–Program
Loaded

4–Got What
It Needed

3–Needs
Something

6–Finished
or Aborted

7–Exits
System

5–Interrupted
2–Gets

CPU Time

1–Process
Initialized

New

Ready

Run

Exit

Wait

FIGURE 8.2

A five-state process

model.

 Chapter 8 Process Management: Concepts, Threads, and Scheduling 155

the other PCB parameters. Then it usually has to reserve memory, read the program

in from secondary storage, and so forth. Especially on a multiple CPU system we

don’t want an instance of the OS running on another CPU trying to dispatch this pro-

cess, so until it is actually ready to run it is marked as being in the New state.

 When a process is ready to run it is put in the Ready state. This is seen as

transition “1–Process Initialized.” Eventually it will be selected by the OS as the

next process to run. Then it will be dispatched (i.e., it will be put into the Run

state). This transition is indicated by the arrow labeled “2–Gets CPU Time.” As a

process is running it may decide to wait for something else to happen before it con-

tinues. A very common cause is that the process has requested a synchronous I/O

operation (like a normal high-level language Read operation) and wants to wait until

the operation is complete and thus it is moved to the Wait state, sometimes known

as the Suspended state. This transition is labeled “3–Needs Something.” We will

later see that there are many different kinds of events that a process can wait for.

When a process is in the Wait state, sooner or later the event that the process is wait-

ing for may occur. (Of course, that event might never occur, for example, a process

that is waiting for possible errors or for an incoming request for a service that is

rarely used.) As an example of this transition, perhaps the I/O that a process had

requested has finished. This transition is labeled “4–Got What It Needed” and the

OS puts the process into the Ready state. The next transition in this model is labeled

“5–I nterrupted.” The OS may elect to interrupt a running process for several reasons,

but not all OSs do so. The first instance is a time-slicing system where each process

in turn is given a short amount of time to execute. If it has not done something in that

time to cause it to go into wait state then the OS will take it out of Run state and put

it into the Ready state and allow another process to run. A second instance would

be where a process with a high priority has been waiting for an event and the event

occurs. If the process that is running has a lower priority than the process that was

waiting, then the OS may stop the lower priority process, put it back in the Ready

state, and put the higher priority process into Run state. But not all OSs use priority

scheduling.

 The Exit state is reserved for processes that are being ended by the OS. There

may be many reasons for a process to reach this state. This transition is labeled

“6–Finished or Aborted.” Finishing is obvious. Abort is fairly clear. Either the pro-

cess or the OS has detected a problem and the process is being stopped before more

damage occurs. But there are also other reasons why a process might leave the run

state and go to the exit state. As one example: A parent process to this process may

decide that this child process is no longer needed and ask the OS to kill it. For most

purposes we don’t want to clutter up this model so we leave these more rare transi-

tions out of the figure.

 The Exit state is rather peculiar in that processes don’t stay in it very long, but

these processes are not running, ready, or waiting, so we could reasonably talk about

this state as being something distinct from those other states. The OS will need to

do some housekeeping for this process such as freeing up resources that the process

may have acquired and not yet returned, ensuring files are closed, and tearing down

the PCB for the process. Until the resources are fully recovered we don’t want this

process being selected to run, so we leave it in this state as we work.

156 Part 3 CPU and Memory Management

 Other OS documentation includes even more complex models. In at least one

case 1 the model used by the designers has nine states and many transitions. While

the designers of this system may have felt it was necessary to explain to application

programmers some special facets of the system, this level of complexity is not seen

in most documentation.

 Note that except for the Run state, there can normally be many processes in any

given state. So, we should not be surprised to find that for most OSs there is an elab-

orate mechanism for tracking all the processes that are in any of the other states. The

Ready state will consist of at least one structure. Often we speak of it as the Ready

queue, but technically we often use it in other ways than a strict queue would oper-

ate. In fact, it might be several linked lists. We discuss this more in the next section.

The Run state contains only one process unless we have a multiple CPU system. In

that case the processes running on the various CPUs might be linked on a separate

list, but it is probably sufficient that they merely be removed from the list(s) of the

Ready state. For the Wait state there may be many queues. In this case they some-

times are operated in a FCFS manner so it is legitimate to call them queues. In other

cases we will do more advanced scheduling of operations and the word “queue”

might not actually apply. However, the term is well entrenched in OS literature, so

we will stick with it, realizing that it might not always be technically correct.

 8.4 PROCESS SCHEDULING

 As was just discussed, a process may leave the Run state for several reasons. When

it does, it may go immediately into the Ready state, for example, if it was interrupted

for reaching the limit of its time quantum. If a process is waiting on some event, per-

haps an I/O completion, and the event happens, then we will need to put the process

into the Ready state so it can get to the Run state and handle the event. When we put

a process into the Ready state, we need to decide when it should run in relation to the

processes that are already in the Ready state. This decision is made by an OS module

called the short-term scheduler. There are a number of ways the OS can make this

decision. We might want to design our OS so that we can plug in various short-term

scheduler modules to suit the needs of the system users and administrators. First, we

describe the algorithms and then we discuss some of the pluses and minuses of them

in various situations.

 8.4.1 FCFS scheduling

 The simplest method, and one historically used by many OSs, is simply to run a

first-in, first-out schedule with an ordinary queue. This is called the FCFS, or first

come, first served algorithm. It has several advantages. It is easy to implement. It is

well understood by designers, users, administrators, and even teachers. Finally, it is

by definition the fairest (i.e., it does not favor any one process over another in any

 1 UNIX SVR4. See Bach, M. J., The Design of the UNIX Operating System. Englewood Cliffs,
NJ: Prentice Hall, 1986. No. 1, January 1988.

 Chapter 8 Process Management: Concepts, Threads, and Scheduling 157

circumstance). FCFS is often enhanced by allowing a running process to make a

system call that yields control to the next process in the Ready state. This is known

as cooperative multitasking. It was typical of a generation of OSs that included the

pre-X Mac OS, Microsoft Windows, and many others. Of course, the running pro-

cess might have a bug or might be trying to make itself have better user response by

using more CPU time that it ought, so it was not an ideal solution.

 8.4.2 Priority scheduling

 There are some circumstances when we might not want to use a FCFS algorithm. For

one thing, we may have some processes that are much more important than others. In

a modern OS we want to process keystrokes and mouse operations promptly so that

the waiting time of the interactive user is minimized. We will want the process that is

managing the window that has the focus of the OS to be fairly responsive—perhaps we

are browsing a website. We are less interested in the performance of other processes

that might be running but that don’t currently have the focus—perhaps our email reader

is checking our mail servers to see if we have any mail. We are even less interested in

the performance of some other processes—perhaps the SPOOLING system is printing

a document that we downloaded some time ago. In such cases we might use a priority

scheduling algorithm. In a priority algorithm we will associate a priority with each pro-

cess. Our keystroke and mouse handler might be the highest priority, the window with

the focus the next higher priority, windows without the focus the next, and background

processes like the SPOOLING system still lower. There normally is a process in most

OSs called something like the idle process that runs in a loop when no other process is

ready to run. (Note that the “highest priority” might be the lowest number, not the high-

est number. The choice might depend on the instruction set of the computer or might

just be an arbitrary decision on the part of the developer. As long as the scheduler is con-

sistent it is perfectly normal to have the lowest number represent the highest priority.)

 Whenever we allow some jobs to have priority over other jobs there is a special

problem that we have to worry about. It is possible that higher-priority processes keep

postponing a low-priority process to the point that the lower-priority process never

gets to run. This problem is known as starvation. There are several ways we can deal

with this potential problem. Collectively these are known as aging. Generally we

will monitor those processes that are being postponed, and whenever we postpone

a process too many times we simply raise its priority temporarily. Eventually it will

reach a high enough priority that it will run one time. Then we will let the priority

drop back to where it was originally. Eventually even fairly low-priority processes

will finish, but higher-priority jobs will still be given the majority of the time.

 8.4.3 Guaranteed scheduling

 FCFS scheduling gives each process a fair chance to run, but if a process does many

blocking calls then it will not receive a fair amount of CPU time if other processes

are running that do fewer blocking calls. It is possible to guarantee that if n processes

are running then each process will get 1/ n th of the CPU time. In guaranteed sched-

uling the OS needs to track the total amount of CPU time per process and the total

158 Part 3 CPU and Memory Management

clock time. Then it calculates the ratio of the CPU time the process actually used to

the amount of time each the process is entitled to and runs the process with the low-

est ratio. This is sometimes called fair-share scheduling. In essence, this is a type

of priority scheduling.

 8.4.4 SRTF scheduling

 Even large batch-oriented mainframes can have priorities among the jobs. Typically

programmers developing new jobs will want fast job turnaround so that they can get

their work done. Other jobs can run overnight. Nevertheless, some jobs are more

important than others. Everyone wants the payroll to be on time! When timesharing

is also incorporated in the system, typically the interactive window-based jobs all run

at a higher priority than the batch jobs. One way to make this happen is to use an algo-

rithm called shortest runtime first (sometimes called shortest remaining time first;

 SRTF) or shortest job next (SJN). This algorithm is fairly self describing. It merely

selects the job to run next that will run for the shortest amount of time. Incidentally,

this algorithm will produce the shortest possible turnaround times for all jobs.

 Recall that when processes are running they will normally compute for a short

time and then do an I/O operation. The interactive time-sharing jobs typically run for

short amounts of time between I/O operations. Large batch jobs may run much lon-

ger before doing an I/O operation. So, one way we can give a higher priority to the

interactive jobs is to base the priority on the amount of time that the process will run

in its next CPU burst before doing an I/O operation. However, most computers don’t

come with the “mind reader” option installed, so we usually don’t know how long

the next CPU burst of a process will be. However, we can track the past performance

of each process and guess that it will behave in the next CPU burst much as it has in

the past few bursts. To make this guess we will use an exponentially decaying func-

tion. We will use the following variables:

T
i
will be the actual time taken by this processs in the i’th time interval.

will be the tim
i

E ee we estimated in the i’th time interval.

There is a parameter in this formula that will be used to tune the performance: .

It is the percentage of the guess that we want to be based on the last actual CPU time

taken by the process. Its value is therefore between 0 and 1. The rest of the guess will

be based on the last guess we made. The formula will be:

E E
i i 1 i 1

() ((1))= ⫹ ⫺ * *T
⫺⫺ ⫺⫺

 is often initially set to .5, so that half of the guess for this time slot is based on

the last actual time and half (1⫺) is based on the last guess. Each time we make

another guess, the effect of both the past guess and the time actually taken is reduced

by half. This is why the function is described as exponentially decaying. If we raise

the value of , then more of the next guess will be based on the actual CPU perfor-

mance. This will make our estimate respond more quickly to changes in the CPU

use, but we will tend to overcorrect for small fluctuations. If we lower the value of

 Chapter 8 Process Management: Concepts, Threads, and Scheduling 159

then we will do the opposite—we will respond to changes more slowly but will not

overreact to short fluctuations.

 We will use this guess to select the processes to run next, choosing the pro-

cess we guess will use the smallest amount of CPU time before it does an I/O

operation. We will leave for later those processes that we think will take longer.

In this way the SRTF algorithm is a variation on the Priority algorithm. We are

merely setting the priority of the process based on our guess of the length of the

next CPU burst.

 8.4.5 Highest response ratio next

 Highest response ratio next (HRRN) scheduling is similar to Shortest job next, in

which the priority of each job is dependent on its estimated runtime. But HRRN also

includes the amount of time the process has spent waiting. A process gets higher

priority if it waits longer. This variation is used mainly because it lessens the likeli-

hood of starvation.

Priority (time waiting estimated runtime) e⫽ ⫹ / sstimated runtime.

 8.4.6 Preemption

 In each of these algorithms we have assumed that when a process has the CPU we

will let it run as long as it wants to—typically it goes to Wait state for an I/O opera-

tion. However, what if we were running the priority algorithm and currently had

a process running that was of fairly low priority? Assume another process with a

higher priority has been waiting on an I/O event that finishes. Since we know that

this process has higher priority than the one that is running we can stop the one that

is running and start the higher-priority process. Taking a resource away from a pro-

cess is called preemption. In this particular case the resource we are preempting is

the CPU itself.

 We can apply this idea of preemption in each of the algorithms we have stud-

ied so far. In most cases we will give a new name to the algorithm when we are

allowing preemption. If we allow preemption in the FCFS algorithm it becomes the

 round-robin algorithm. In this case the preemption is not based on priority but on

a time quantum. We allow each process a specific amount of time to run without

doing any I/O. If it exceeds that time then we preempt the CPU and put that process

at the back of the run queue.

 If we apply preemption to the shortest runtime first algorithm then it becomes

the shortest remaining time first algorithm. When we preempt a running process

for a higher-priority process we note in the PCB the amount of time remaining in our

guess of the runtime of that process. When we restart it later we don’t make a new

guess—we just use the time that was remaining when the process got preempted.

 In the priority algorithm we can apply preemption when a higher-priority pro-

cess enters the Ready state. We don’t give this modified algorithm a special name. It

is simply referred to as priority with preemption.

160 Part 3 CPU and Memory Management

 8.4.7 Multilevel queues

 Modern OSs use a more complex scheduling algorithm called multilevel queu-

ing. As the name implies, instead of a single queue we will use several queues. A

new job will be placed in one of the queues. The individual queues can all use the

same scheduling algorithm or they can use different algorithms. If the algorithms

are all doing timeslicing then the queues may each have a different time quantum

assigned. The queues will have different priorities, and the highest-priority queue

is serviced first. A question that must be decided is the mechanism used to share

the CPU between the queues. There are basically two approaches. First, we could

make the mechanism a strict priority mechanism. That is to say that as long as there

are processes in the higher-priority queues, those are run first. Of course, with this

mechanism we would have to worry about starvation. An alternative approach is to

share the CPU among the queues. For example, we might dedicate 50% to the first

queue (as long as there were jobs in the queue to be run), 30% to the second, and

20% to the third. Since the lower-priority queues are always getting some service

they will not starve.

 Most modern OSs add a feedback mechanism to the multilevel queues. The

initial assumption is that a new process is interactive so it is put in a high-priority

queue. If the process runs for more than the allowed time quantum for this queue

without doing any blocking OS call, then the OS assumes it is not really an interac-

tive process, so it moves it to the next lower-priority queue. This queue may also

have a longer time quantum. Remember that context switches are not productive

work and they slow the execution of the processes down temporarily for hardware

reasons that we will cover later. So if the process is not finishing its time quantum on

the fast queue, we may want to give it more time at the lower queue. Typically there

are at least three such queues. So if a process running in the second queue still does

not do any blocking call in the time quantum for this queue it is moved to a lower

queue, perhaps with a still larger time quantum.

 Of course, all processes will have some intervals in which they are doing more

computing than in others. So a process that is basically interactive may have short

periods where it is doing a lot of computing and sinks to a lower queue. Thus, we

will want to have some mechanism that will allow a process to rise back to a higher

queue. This might be as simple as elevating a process to a higher queue anytime it

does a blocking call without finishing the time quantum at the current level. This

might be too reactive, however, and we might find it necessary to wait until a process

does not finish its quantum several times in succession.

 8.4.8 Selecting the best algorithm

 With so many algorithms, how do we compare them? There are a number of mea-

sures of system performance that have been used to compare scheduling algorithms.

A few of these include:

 ɀ throughput—jobs run per hour or per minute

 ɀ average turnaround time—time from start to end of the job

 ɀ average response time—time from submission to start of output

 Chapter 8 Process Management: Concepts, Threads, and Scheduling 161

 ɀ CPU utilization—the percent of time the CPU is running real jobs (not switching

between processes or doing other overhead; of more interest in big systems)

 ɀ average wait time—the time that processes spend in the ready queue

 The first three depend on the job mix, so they are difficult to compare fairly and

accurately. CPU utilization is interesting and is easy to measure, but in personal

computer systems we really don’t care about it. These CPUs are reasonably cheap

and we are more concerned with optimizing perceived user performance. The aver-

age wait time is the measure that makes the most sense in most circumstances. We

want to make sure that the most computing is getting done with the least amount of

wasted time. Average waiting time seems to reflect that most accurately.

 The easiest way to compare the average waiting time of the various algorithms is to

use a method known as discrete modeling. We take a sample set of processes and their

runtimes and we simulate by hand the execution of each process on that sample data. We

then calculate the waiting time of the nonrunning processes and compare the values.

 First, consider this set of processes:

Process ID Arrival Time Runtime

1 0 20

2 2 2

3 2 2

For our purposes, it does not matter what the time units are, so let’s just say they are

microseconds. Also, note that we show P2 and P3 both arrived at time 2. With only

one CPU they can’t really both arrive at time 2 since the computer can only do one

thing at a time. But our clock isn’t very fast, so for the purposes of this algorithm

they both arrive at time 2. For each set of data we produce a timeline showing the

processes running on the CPU. For this set of data, using the FCFS algorithm, we

would see the following timeline:

0
| P1 | P2 | P3 |
|___|____|____|

20 22 24

Now let us compute the average waiting time. P1 arrives at T0, so it starts imme-

diately. P2 arrives at T2, but does not start running until T20 when P1 finishes, so it

waited for 18. P3 also arrived at T2 but did not start until P2 was over at T22, so it

waited for 20. So the average waiting time was (0 ⫹ 18 ⫹ 20) / 3 ⫽ 38/3 ⫽ 12.67.

 Now suppose that the same three processes arrived in a slightly different order:

Process ID Arrival Time Runtime

1 0 2

2 2 2

3 2 20

162 Part 3 CPU and Memory Management

The timeline looks like this:

P1 P2 P3
0 4 242

This time the short processes came first. P1 and P2 had no wait and P3 only

waited 2. Thus, the average waiting time was

() / / . .0 0 2 3 2 3 0 67⫹ ⫹ ⫽ ⫽

This small difference in arrival times illustrates a major problem with the FCFS

algorithm. It is called the convoy effect or “ head of line blocking ”—a short job

arriving just after a long job will have to wait a long time before it gets to run. This

will give a system running this algorithm a highly variable average wait time.

 Let’s look at the first set of data again, but this time we assign priorities to the

arriving jobs ⫺ lowest number ⫽ highest priority:

Process ID Arrival Time Runtime Priority

1 0 20 4

2 2 2 2

3 2 2 1

Now our timeline will look like this:

0 242 4 6
P1P2P3P4

Now P1 starts immediately, but at T2 it gets preempted by P3, which has the

highest priority, so P3 starts immediately. P2 has to wait for 2, then P1 starts again at

T6 after waiting 4. So now the average waiting time is:

() / .4 2 0 3 2⫹ ⫹ ⫽

This is not quite as good as FCFS, when the processes happened to arrive in the

optimum order, but it certainly is better than what happened when they arrived in

the wrong order. In this case the lower-priority job happened to be the longest job.

When we are running SRTF, the process with the shortest estimated runtime gets the

highest priority. This is just what happens in SRTF, so this simulation applies to that

specific case of priority scheduling as well.

 Chapter 8 Process Management: Concepts, Threads, and Scheduling 163

 Next let us look at another example for SRTF. Suppose we had the following set

of processes and that we were not allowing preemption:

Process ID Arrival Time Runtime

1 0 12

2 2 4

3 3 1

4 4 2

The timeline would look like this:

0 12 13 15 19

P1 P3 P4 P2

and our average waiting time would be:

() / . .0 13 9 9 4 7 75⫹ ⫹ ⫹ ⫽

Now suppose that we allow preemption. Our timeline would look like this:

190 2 9

P1P1
6

P2
4

P4

3

P3P2

Notice that the total execution time of the processes themselves was the same as

without preemption. But now our average waiting time would be:

() / . .7 3 0 0 4 2 5⫹ ⫹ ⫹ ⫽

Clearly, we would prefer this result—but at what price? We know that every-

thing has a price. Observe that in the case without preemption we only did three

context switches and in the case with preemption we did five context switches. We

should recall that the time taken to do a context switch is not time that the system is

doing productive work. It is all overhead that we spend to make the average waiting

time smaller so many things appear to happen faster, especially the high-priority

things. Later we will see that context switches are even more expensive than just

the time it takes to save and restore the CPU state of the processes and the time

we spend running the chosen scheduling algorithm. Switching contexts also slows

down the hardware for a short time—in some cases quite dramatically. As a result,

we want to do as few context switches as possible. We have to take a hard look at

the typical decrease in the average waiting time and balance that against the con-

text switch overhead (hardware system dependent) and the resulting slowdown of

the processes.

164 Part 3 CPU and Memory Management

 8.4.9 A long-term scheduler

 Some OSs also have another scheduler module called a long-term scheduler. In a

PC OS with a GUI there normally is not such a scheduler. When the user clicks on an

icon, a process associated with that icon starts running. In large computer systems with

batch-oriented job streams (perhaps in addition to interactive processing) the system

does not automatically start all the jobs that are submitted. Instead, they are put in a

queue for starting later. It is the job of the long-term scheduler to decide how many jobs

to try to run at the same time and which jobs to run when. The first aspect of this deci-

sion is that there will be some minimum number of jobs that we want to have running

at the same time. We will start executing at least this minimum number of jobs, assum-

ing that there are more to run than we can run at one time. One aspect of this decision

has to do with the level of CPU utilization. If all of the jobs that are running are pri-

marily jobs heavily using I/O, the long-term scheduler will try to find some jobs that it

thinks will raise the level of CPU utilization. To some extent this information may be

conveyed by accounting information submitted with the job. In other cases the sched-

uler will just pick one, probably on a FCFS basis. In Chapter 11 we discuss a problem

that this approach may cause when memory becomes too full. The long-term scheduler

can use most any of the short-term scheduling algorithms instead of FCFS. Since the

long-term scheduler runs only once for each process that is started, it does not need to

be extremely fast and can spend more resources selecting the next job carefully.

 8.4.10 Processor affinity

 We have mentioned several times that there is considerable overhead involved when a

CPU switches from one process to another. Because of memory caching that the hard-

ware is doing, the execution of the new process will be slowed dramatically for some

period of time until the cache buffers switch from the old process to the new process.

We may have some processes in a system that we consider to be much more important

than the other processes. Perhaps our system is being set up to be a dedicated database

server, for example. We might want that database program to have the very highest

priority. As a result, in a multiprocessor system it is often possible for the OS to main-

tain a processor affinity for a given process. This affinity is value that the OS will use

to indicate a preference for this process to run on some particular CPU whenever pos-

sible. In some instances a system administrator may indicate that a particular process

is to be closely coupled to a particular CPU. In other cases the OS will merely try to

run a process on the same CPU it ran on the last time it ran. In some OSs it is possible

to dedicate a CPU to a process so that only that process will run on that CPU.

 8.5 ONE GOOD PROCESS DESERVES ANOTHER

 When a user signals to the Command Interpreter to start a new process, there has

to be a way for that Command Interpreter process to start the user’s process. The

Command Interpreter uses a normal supervisor call to start another process. This

supervisor call is known as a fork. The process that makes the call is called a parent

 Chapter 8 Process Management: Concepts, Threads, and Scheduling 165

process and the process that is started as a result is called a child process. The entire

mechanism is referred to as “forking a child,” or sometimes as “spawning a child.”

So it is clear that the Command Interpreter needs to be able to start another process,

but why would a user application need to do so? The first reason is for performance.

If a process has many tasks to do that can be started at the same time, then it can

start additional processes to perform some of those tasks and the OS can keep all the

processes running at the same time. This is especially true if the system has multiple

CPUs. There are other reasons why an application might be broken into several pro-

cesses. In the next chapter we discuss these at some length.

 But there are several complications that arise when we let one process start

another. For one thing, if the parent process ends for any reason, do we let any child

process continue running or do we end it as well? Most OSs will automatically end

any child process if the parent process ends. Some do not. In most modern OSs we

can have our choice. A child process who’s parent process has ended is known as an

 orphan process.

 Another question has to do with the ownership of resources. If a parent process

has a file open, can the child process access the file? Yet another question has to do

with the program that is running in the child process. In most cases of a fork call, the

child process is an exact copy of the parent process in another block of memory. Note

that both the parent process and the child process will next execute the instruction

following the fork call. An interesting question is, How does each of the processes

know which instance is the parent and which is the child? In general, the return code

from the fork call is set to zero for the child process and a positive nonzero number

(the child process ID) for the parent process. The following code is an example of a

typical fork system call:

int main(void) {

 pid_t pid = fork();

 if (pid == 0) {/* If pid=0, we are in the child process.*/

 do_something(from_the_child);

 }

 exit(0);

 }

 else if (pid > 0){/* If pid is positive we are in the

 parent process and pid is the child process id.*/

 do_something_else(from_the_parent);

 }

 exit(0);

 }

 Else {/* If pid is negative then there was an error;

 E.g., the number of running processes reached

 the maximum. */

 fprintf(stderr, “Can’t fork, error %d\n”, errno);

 exit(1);

 }

}

166 Part 3 CPU and Memory Management

 Usually having another instance of the parent process run is not what we really want.

This is obviously the case with the Command Interpreter. We don’t want another

copy of the Command Interpreter. We want it to run some other program. Generally,

what we really want is another program running in a child process. So after the fork

call, another call is made to load a new program into the memory space allocated for

the child process. This is usually an exec system call.

 Of course, if what we really want is for another program to run, then the initial

step of copying the parent process into another block of memory is a waste of many

resources. So some OSs provide a different call known as a shell command. This

command creates a new process but never copies the parent process to the child

space—it loads the desired program immediately. Some OSs offer both a fork/exec

pair and a shell command and others only offer one or the other. In some systems a

high-level language library will offer a shell command, but if the OS does not have

a corresponding function call then the library may have to use a fork/exec sequence

to do the work.

 One last question has to do with the actions of the parent process while the

child process runs. In a manner analogous to I/O, which can be either synchronous

or asynchronous, when a parent process forks a child process it can elect to continue

execution itself in parallel with the execution of the child process or it can elect to

wait until the child process is finished. A parent process might initially elect to con-

tinue but later need to wait until a child process has finished its work. In such a case

there is usually a separate wait system call that a process can make to put itself into

a Wait state until the child process finishes.

 8.6 THREADS

 8.6.1 What is a thread?

 Suppose that we picture the logical address space of a process as the vertical axis on

a graph. As time goes by we keep moving to the right at intervals and making a mark

everywhere the instruction counter has been in that interval. We might end up with

something like Figure 8.3 . We could instead imagine that we unwound a thread and

placed it on the graph instead of marking the space with a pencil. This is an analogy

that gave rise to the phrase “ thread of execution. ”

 Now suppose that we stopped this process, and saved all the data that represented

the CPU state in a table (we might call it a thread control block, or TCB). Then further

suppose we started the process over from the beginning. Again we let it run for a time,

then stopped it and saved the CPU state in another TCB. We could now go back and

restore the saved CPU state of the first thread and resume its execution. How would this

be different from running multiple processes? There are several ways that using mul-

tiple threads can be better than using multiple processes. For one thing, we only have

one copy of the program and data in memory, so we have more memory to use for other

things. For another thing, there is a much smaller overhead to switch between threads

than to switch between processes since we are only saving the CPU state. Generally

this means saving only a few registers (including the instruction pointer) and the pointer

to the stack space. On some computers this can be done with a single instruction. We

are not saving accounting data, OS scheduling information, execution statistics, etc. In

 Chapter 8 Process Management: Concepts, Threads, and Scheduling 167

addition, as we have previously discussed, there are hardware performance problems

we will cause when we switch the CPU between one process and another. We want to

avoid the heavy overhead of a process context switch whenever we can.

 Finally, when multiple processes are being used to implement a system, they

have a difficult time communicating. This is natural. The OS designers have gone

to a great deal of trouble to isolate processes from one another so that one process

can’t change the contents of memory in another process, intentionally or not. Many

different mechanisms have been invented to allow cooperating processes to commu-

nicate. We look at several of them in the next chapter. However, threads don’t have

this problem. By definition, all the threads created by a single process are running in

the same address space and share both the code and the data. Therefore interthread

communication is trivial—all threads simply access the same variables. The main

difficulty is keeping the individual threads from manipulating the same data at the

same time. This problem is discussed in depth in the next chapter.

 Actually, when we start a second thread we don’t really start it at the beginning

of the process. Recall that we just said that the various threads share a single copy of

the program code and the data that the process owns. Normally, one of the first things

a process does is to initialize data tables. Since the first thread has already done this

setup we don’t want the second thread to redo it. More to the point, the startup of a

second thread is not something that the OS does on its own. It is initiated by the run-

ning process in order to let the system do more work on behalf of the process with-

out incurring that heavy overhead of a full process context switch. For this reason,

a thread is sometimes called a lightweight process. As a process is running it will

reach a point where there is some additional work that can be done in parallel with

the work the main thread is doing, so the process (parent thread) will start a child

thread to do that extra work. In Figure 8.4 , we see an example of two threads in a

single process. The first thread is shown as a solid line. At some point it calls the OS

to start a second thread, shown here as a dotted line. Eventually, the OS switches back

Low Memory

Time

High Memory

FIGURE 8.3

Tracing the

instruction counter

in a process.

168 Part 3 CPU and Memory Management

to the first thread again. Both of these switches were done without the overhead of

a context switch between processes. And if the system has multiple CPUs or a CPU

that is capable of running multiple threads at the same time, then both of the threads

can literally run at the same time.

 One example of how threads work can be seen in a word processing program.

As this is being written a check shows that the word processor has 18 threads run-

ning. Some are fairly obvious, but it is hard to come up with 18:

 ɀ foreground keystroke handling

 ɀ display updating

 ɀ spelling checker

 ɀ grammar checker

 ɀ repagination

 ɀ “smart tag” recognition

 ɀ periodic file save

 Another example is commonly seen in server applications such as a Web server.

One thread will wait for incoming HTTP requests. For each incoming request a new

thread is started. The thread will do (at least these) several steps:

 ɀ Parse the incoming request

 ɀ Look up the requested file

 ɀ Read the page

 ɀ Format it for output

 ɀ Request the transmission of the page

 ɀ Exit

Low Memory

First thread
resumes

Second thread
created here

Time

High Memory

TCB 1

TCB 2

Thread 1

Thread 2

FIGURE 8.4

Multiple threads

in a process sharing

all code and data.

 Chapter 8 Process Management: Concepts, Threads, and Scheduling 169

 This sequence keeps the handling of each request in a separate thread of execution

and makes the program logic much simpler than having a single process keep track

of the state of hundreds or thousands of individual requests.

 8.6.2 User-level threads versus kernel-level threads

 Historically, the use of multiple processes came before the idea of threads. When

programmers realized that switching between processes used so many resources and

slowed things down so much they begin to develop the concept of threads. However,

the OSs of the time did not have threads built in to them. So the original develop-

ment of threads was done as a set of library subroutines. Of course, this meant that

the entire thread package ran in user mode and the OS was unaware that an applica-

tion was trying to keep multiple activities running in parallel. Accordingly, if any of

the threads in a process made a system call that would block for some reason, the

entire application, including all the threads of that application, would be blocked at

the same time. Such a thread package is referred to as a user-level thread package

because it runs entirely in user mode. Designing programs that utilize such user

thread libraries must therefore be done very carefully so that one thread does not put

the entire process to sleep.

 Eventually, however, OS designers decided that threads were such a good idea

that they would incorporate the thread functions into the kernel. Now the OS was

aware that the application was using threads. In many circumstances the OS did not

need to block an entire process if a single thread did a blocking call to the OS. Such

thread packages are called kernel-level threads. Also, since the OS is aware of the

individual threads, it is possible for the threads to execute on separate CPUs in a

multi-CPU system. This is a major advantage for kernel-level threads, especially in

an era when a multicore CPU system will soon be the normal case for average work-

stations rather than something found only in powerful servers.

 In general, kernel threads are much easier to use than user threads because the

programmer does not have to avoid blocking calls. This makes the programming

model much easier. For example, consider writing a Web server using threads. The

application sits in a loop, waiting for requests in HTTP commands to come in from

the network. When a request comes in to return a page, the main application thread

starts a separate thread to handle the request and goes back to waiting for more

requests. Now the child thread has a very simple task, as we outlined before. It parses

the HTTP request, looks up the page on the disk, reads the page in a series of reads,

formats the page into HTTP messages, sends the answer back (assuming the page

was found), and exits. This makes each thread very straightforward since it does not

have to be designed to cope with multiple requests at the same time. The alternative

would be for the main application to issue asynchronous calls for each of the I/O

operations. While this is certainly possible, it is a much more complex model and it

is difficult to take advantage of a multiprocessor system.

 A later development is a user-level thread package that is designed to give

some of the advantages of the simplicity of programming one gets with kernel-level

threads without relying on kernel-level thread support. Such packages are called

170 Part 3 CPU and Memory Management

 green threads. Green thread libraries capture blocking system calls and turns them

into nonblocking calls. They then handle scheduling of the various user threads. This

model allows a program to run unmodified in either mode by loading with the kernel-

level thread library or with the green user thread library. However, there are some

disadvantages to this approach. First, if the system is a multi-CPU system, the indi-

vidual threads will not take advantage of the multiple CPUs because the kernel is not

aware of them. As we have mentioned, the trend in processors is that most systems

already include multiple CPUs. Second, kernel-level threads can be scheduled pre-

emptively, so a thread that takes too long to do its job cannot dominate the system.

Green threads do not offer this level of control.

 8.6.3 Thread support models

 When OSs began to offer kernel thread packages, the application programmers were

not anxious to rewrite their applications just to use kernel threads. So the OS design-

ers would take the existing user thread libraries and rewrite them so that they would

use the mechanisms provided by the kernel threads. There are three common meth-

ods for making the user library routines utilize kernel threads. The main question

that distinguishes them is the method of mapping the user threads to kernel threads.

The three methods are one-to-one, many-to-one, and many-to-many. One-to-one

mapping is fairly simple. When the application calls the library routine to create a

new thread, the library routine calls the kernel thread mechanism to create a new ker-

nel thread. Figure 8.5 shows a schematic diagram of the one-to-one thread mapping

model. This model has the advantages of being fast and very simple to develop and

for the user to understand. Although other models appear to give the user more con-

trol, they are significantly more complex to use and therefore more prone to errors.

Most OS vendors are moving away from the more complex models on the grounds

that the advantages of finer control are outweighed by the disadvantages.

 The second mapping model is called many-to-one. Recall that the user library

that is being modified will block the entire process when any thread in the applica-

tion makes a blocking call to the OS. In that case, this model will do exactly the same

thing. Only one kernel thread is created and all the user threads will be mapped onto

that same kernel thread. Figure 8.6 shows the many-to-one thread mapping model.

Kernel
Thread

1

Kernel
Thread

2

Kernel
Thread

3

User
Thread

1

User
Thread

2

User
Thread

3

FIGURE 8.5

The one-to-one

thread mapping

model.

 Chapter 8 Process Management: Concepts, Threads, and Scheduling 171

This model is less desirable than the one-to-one model because it does not offer

the advantages of kernel threads. It is used only when an operating system has no

kernel thread support. The single “kernel thread” in this case is the running process

itself.

 The last model is called many-to-many. In this model the programmer will tell

the system something about how many user threads and kernel threads will be needed

and how they should be mapped. The basic idea is to have a group of kernel threads

available and dynamically assign user threads to them as they are needed. It may also

be possible to have multiple groups of user and kernel threads and to specify that some

user threads are bound to a single kernel thread. Figure 8.7 illustrates the many-to-

many thread mapping model. As was mentioned before, this model theoretically gives

the user finer control over the behavior of the entire system, but it is more difficult to

use correctly and is losing favor since modern systems have such large memories and

speedy processing that the performance gain perceived by the user is very slight and

not worth the programming problems that come with using the more complex model.

 Although threads are easier to create and destroy than processes, there is still

some overhead involved in creating them. As a result, some thread packages will

create a group of thread structures when the procedure first calls the thread package.

This group is called a thread pool. When the parent thread calls for a new thread,

one structure is taken from the pool, initialized for the specific thread, and used.

When that thread exits the structure is returned to the pool.

Kernel
Thread

1

User
Thread

2

User
Thread

3

User
Thread

1

FIGURE 8.6

The many-to-one

thread mapping

model.

User
Thread

1

User
Thread

2

User
Thread

3

Kernel
Thread

1

Kernel
Thread

2

Kernel
Thread

3

FIGURE 8.7

The many-to-many

thread mapping

model.

172 Part 3 CPU and Memory Management

 One problem with threads is that not all library subroutines are prepared to be

called multiple times without completing one call before another call starts. (This is

called “ reentrancy. ”) This is specifically a problem when a process is running on

a system with multiple CPUs. Suppose a library routine is called by a thread and it

uses a static local variable during its work. Now another thread of the same process

running on another CPU calls the same library routine and it tries to use the same

static local variable. It is easy to see that there will be a problem here. The library

routine should be able to handle this situation by always allocating local variables

on the stack. Libraries that are coded in this way are called thread-safe, and most

modern libraries are thread-safe.

 8.6.4 Simultaneous multithreading

 In simultaneous multithreading (SMT), instructions from more than one process can

be executing in a single CPU at one time. The hardware essentially creates a second

“logical” CPU. This CPU is not a completely distinct CPU since it shares many

resources between two logical CPUs. The term “multithreading” is somewhat mis-

leading since the executing threads can be from distinct processes. The largest gains

come when one process tries to access data that is not in the cache. Without the SMT

the CPU would be idle until the data are ready. Other small gains can come when

parts of the CPU are not being used by one process and can be used by the other.

 The main additions to the CPU are the ability to load instructions from more than

one thread (or process) during a cycle and a duplicate set of registers to hold data from

each thread. A second addition concerns some memory management hardware that we

have not looked at yet. On most machines there is a memory addressing cache called

the translation lookaside buffer, or TLB. The problem here is that each TLB entry must

contain data that identifies which logical CPU each entry is for because the two logical

address spaces could not otherwise be distinguished by the hardware. The greatest gain

from the SMT architecture will come when both of the CPUs are running threads from

a single process since they will be able to share the resources more effectively. Chip

design complexity generally limits the number of logical CPUs to two. Measuring the

effectiveness of SMT can be difficult. In some cases an increase of performance of

30% or more can be seen, but in a few cases the performance actually decreases. The

most common implementation of SMT today is Intel’s Hyper-Threading™.

 8.6.5 Processes versus threads

 Threads and processes are both methods of adding parallelization to an application.

Processes are independent entities, each containing its own state information and

address space. They only interact with one other via interprocess communication

mechanisms through the OS. Applications are typically divided into processes dur-

ing the design phase. A single controlling process invokes the other processes when

it makes sense to logically separate significant application functionality. In other

words, processes are a design concept.

 By contrast, a thread is a coding technique that doesn’t affect the architecture of

an application. A single process often contains multiple threads. All the threads in a

 Chapter 8 Process Management: Concepts, Threads, and Scheduling 173

process share the same state and same memory space and they implicitly communicate

with each other directly by manipulating the shared data.

 Threads typically are created for a short-term use that is usually thought of as

a serial task that does not have to be executed in sequence but rather can be run in

parallel. They are then deconstructed when no longer required. The scope of a thread

is within a specific code module so that we can introduce threading into a process

without affecting the overall application design.

 8.7 CASE STUDIES

 We have discussed processes and threads using an ideal model that is intended to

explain their various features. In the real OS world, no OS works exactly as we have

described. In addition, although the model may be very close to reality, the terminol-

ogy used by the OS documentation may differ from our model. In this section we

cover a few modern systems and show how they differ from our idealized model and

discuss their terminology a bit.

 8.7.1 POSIX threads

 We have previously explained about the POSIX standards that attempt to bring some

uniformity to the UNIX APIs that had proliferated so wildly. One of these standards

has to do with threads. This standard is so well known that it goes by the special

name Pthreads. Beyond UNIX, however, POSIX libraries are available on many

OSs because of the large number of programs that have been implemented with these

API system calls. You may recall that even the Windows NT family has a library

that supports some POSIX API system calls at the source level. Because of this

wide availability POSIX threads have a real niche: They provide a very high level

of portability for an application. The standard is so well known that there is even an

implementation of them in an IBM Fortran compiler! 2 It is important to remember,

however, that POSIX is not a package, it is a standard. Each implementer is free to

implement the services in any way seen fit.

 Any implementation of POSIX threads can be written as purely a user thread

package. But if the OS supports kernel threads, then the POSIX thread package is

usually implemented using either the one-to-one or many-to-many models. This

shows the downside of the POSIX thread standard when developing an applica-

tion to run with the POSIX API. If the system is to be run on a package where

the implementation will utilize user-level threads, then a single blocking call in any

thread will block the entire process. But if the package will support kernel-level

threads, then the OS can run multiple threads for a single process at the same time.

Therefore, if an application programmer really wants to take full advantage of mul-

tithreading regardless of the particular package to be used, then the program must

be written with asynchronous I/O operations to avoid blocking the entire process.

As a result, if the program is running in an environment where the implementation

is using kernel-level threads and will not block an entire process because one thread

2 www-4.ibm.com/software/ad/fortran

174 Part 3 CPU and Memory Management

issues a blocking call, the effort that was spent developing the program with the

asynchronous calls has been wasted. This is the price that the developers had to pay

to gain the portability of POSIX.

 There are over 60 functions available in the Pthreads standard. Only 22 of these

have to do with the basic functioning of the threads themselves. The other two-thirds

are related to synchronization and interprocess communication. We address these

additional topics in the next chapter.

 8.7.2 Windows NT

 None of the OSs that we are discussing implements threads and processes exactly

according to the way we have been describing them. Windows NT is the first such

example. NT does implement processes, but it does not schedule processes. Instead,

it implements a thread for every process, even if the application never indicates that

it wants to use threads. NT schedules the threads instead of the processes. In this

way the kernel only has to worry about one sort of scheduled entity, a thread. Some

information is kept in a process control block and some is kept in a thread control

block. If the application never calls a thread package to create any more threads, then

only the first thread is used.

 The scheduling mechanism in NT is a multilevel feedback queue. It uses 32

queues. See Figure 8.8 . The top 16 queues are considered to be “real-time” queues.

Normal applications run in the bottom 16 queues. NT will always service all the

threads that are in the ready state at a higher-level queue before it will service a thread

in a lower-level queue. In addition, NT is preemptive. If a thread has been waiting

for an event and the event happens, then if the thread that is currently running is of a

lower priority than the thread that had just become ready, then the running thread will

be preempted and the thread that just became ready will be run. As threads run, if they

finish their time quantum without doing any blocking I/O operation, then they will be

31

Real-time
(fixed)

I
D
L
E

N
O
R
M
–

N
O
R
M

H
I
G
H+

N
O
R
M

Critical

Normal
(Dynamic)

30

29

28

27

26

25

24

23

22

21

20

19

18

17

16

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

0

Worker
Threads

FIGURE 8.8

NT thread priority

relationships.

 Chapter 8 Process Management: Concepts, Threads, and Scheduling 175

demoted to the next lower level. The assumption is that the thread is acting more like

a background task than a foreground task—it is computationally intensive—so we

will run it less often. Similarly, threads that do not complete their time quantum will

eventually be promoted to a higher-level queue. When a thread is created it will have

associated with it a maximum priority level and a minimum priority level. The thread

will not be promoted or demoted past the associated priority limits.

 Since the main intent of a personal computer with a GUI is to enable a user to

get work done more efficiently, the threads associated with the GUI usually run at a

higher priority than threads that are running the processing aspects of an application.

In addition, one window will always be the window that has the focus. Any threads

that are associated with the window that has the focus will be temporarily promoted

several queue levels and will have their time quantum multiplied by three. This pro-

motion will help to ensure that the user’s actions are responded to quickly and that

the threads are able to complete their task without being preempted.

 The lowest priority is reserved for a job that is called the system idle task. This

thread will run only when no other thread in the system is ready to run. In many cases

on a personal workstation this thread will often consume about 98% of the available

CPU time. Our personal computers are often much faster in this respect than we need

them to be for many tasks that we do. This vast amount of available CPU cycles is

beginning to be tapped in such applications as SETI 3 and GIMPS. 4 These programs

use the idle CPU cycles on volunteer computers to processes batches of data for

large-scale scientific experiments. The data are downloaded and updated over the

Internet. These systems are similar to grid computing, a technique that attempts to

tap these unused CPU cycles in the desktop computers in a campus environment to

run some programs that are computationally intensive. This concept was discussed

in Chapter 7 and is explained further in Chapter 17.

 Windows NT can also be used as a server. In general, the code is the same for

the server version of the software as it is for a personal workstation. The main differ-

ences are in the values assigned to the system tuning parameters. One example is that

the time quanta for the various queues are six times longer than the same queues in

the workstation version. You should recall that switching program contexts is consid-

ered overhead rather than useful work, so we want to avoid it when we don’t need it.

In a workstation the entire focus is on the user and there are many idle CPU cycles

anyway, so we will pay the extra penalty to make the OS more responsive to those

inputs. In a server environment we are more concerned with overall throughput to

many service requests and we have less idle CPU time so we increase the time quan-

tum and as a result we spend less time in the context switches.

 8.7.3 Solaris

 The Solaris OS threading support has been a staple for OS discussions for some time

because the architecture was quite complex and offered the programmer a choice

of models to use to achieve the best possible balance between a user-level thread

3 http://setiathome.berkely.edu/
4 http://www.mersenne.org/

176 Part 3 CPU and Memory Management

implementation and a kernel-level thread implementation. The basic model used by

Solaris has been a many-to-many model. Solaris created a structure called a “light-

weight process,” or LWP. A LWP was the unit that was set to run on a processor by

the operating system. User-level threads were bound to LWPs. An application pro-

grammer had considerable flexibility on how the threads were bound to the LWPs.

Threads could be created in groups. On the one hand, the program could ask for a

single thread to be bound to a single LWP. Thus, the programmer could approximate

the one-to-one model, although the library routines would be somewhat slower than

a library created for a pure one-to-one model because it also supported more com-

plex mappings. For example, the program could ask for M threads and N LWPs to be

in one group. In a group, if a particular thread made a blocking call, then the LWP

that was bound to that thread would be blocked. But other LWPs in that group would

not automatically be blocked, and user threads in that group could be dynamically

assigned to the LWPs whenever one was ready to run. Additionally, for really high

performance applications, a “processor affinity” could be specified, as was men-

tioned earlier in this chapter. This mechanism allowed only the LWPs bound to that

application to be run on that CPU (or CPUs).

 However, beginning with Solaris release 8 this elaborate mechanism was being

phased out. The OS designers at Sun determined that all this mechanism is not worth

the trouble. Probably as a reflection of the continuing decrease in the cost of memory,

this complex model is being gradually withdrawn. A new alternative thread library

called the T2 library has been created. It supports only the one-to-one model. The

older library was still supported in Solaris 8. However, as of Solaris release 9 the

T2 model became the standard library and the older model is being phased out. Sun

expects the increased simplicity of the library to result in faster operation in most

cases and in fewer bugs and support issues. The model should be simpler for the

programmers and system administrators as well.

 8.7.4 Linux

 The approach Linux takes to procedures and threads is also different from our basic

model. Official Linux literature does not use either of those terms (though many

writers do). Instead, they speak of tasks. A task is equivalent to what we have been

calling a procedure. Linux supports the fork system call with the same effect as most

UNIX systems, but it uses a memory management technique called copy-on-write

to create the child task. This technique allows the child task to be created with very

little overhead. Copy-on-write will be discussed further in Chapter 11. Differences

arise in Linux when a primary task starts another task with the clone system call.

Here is the syntax for the clone system call:

#include <sched.h>
int clone(int (*fn)(void *), void *child_stack, int flags,

void *args);

The first difference is that with a fork system call both the parent task and the child

task will continue execution with the next instruction after the call. In the clone sys-

tem call, a function name (*fn) is passed as an argument to the system call. The par-

ent task returns and continues at the next instruction after the fork, but the child task

 Chapter 8 Process Management: Concepts, Threads, and Scheduling 177

will instead call the function that was passed as an argument. When that function

exits the child task ends and the value of the function is returned to the parent task as

a return code. This is similar to the way that thread calls work in other OSs.

 The other major difference with the clone call has to do with the information

shared between the parent and child tasks. Normally, all threads running in a single

task (or process) share the code segment, data segment, and other resources such as

open files, but each thread has its own thread control block to save the CPU state and

its own stack (possibly two stacks, one for user mode and one for kernel mode). Under

Linux, when a task clones a child task it provides a bit mask that specifies which ele-

ments the child task will share with the parent. Some of the flags available to the clone

call are:

 ɀ CLONE_VM—share the entire memory space

 ɀ CLONE_FILES—share file descriptors

 ɀ CLONE_SIGHAND—share signal handlers

 ɀ CLONE_PID—share PID (Process ID)

 ɀ CLONE_FS—share file system

 As an example of how these flags might make things different, if the child and par-

ent task do not share the same file system, then if the child task executes a chdir

call, changing the current working directory, the current directory for the parent task

will not change. If the two tasks share the same file system then both tasks will see

the change. The clone call can be used to create a new task such that the new task

is equivalent to a new process in most OSs. This is done simply by sharing nothing

between the parent task and the child task. Starting a task that is the equivalent to a

thread in most OSs involves sharing everything except the process ID.

clone (CLONE_VM| CLONE_FS| CLONE_FILES| CLONE_SIGHAND, 0);

 Before executing the clone system call, the parent process will allocate the stack

space for the child task. It will pass to the clone call a pointer to the stack space that

was set up for the child (* child_stack). It will have to decide how much space is

required for the operations the child process will perform. Typically this will be set

the same as for the parent process. The last parameter to the clone call is a pointer to

the arguments that will pass to the function that the child process will execute.

 8.7.5 Java

 The Java programming language and runtime environment is an interesting example

of threads because Java is a language rather than an OS. Java supports threads at

the language level rather than through subroutine calls, as is done with other pro-

gramming languages. Java, of course, is implemented on many different OSs. Java

threads originally had the same problem as do POSIX threads—there was no way of

knowing whether the program would be executing with kernel-level threads or with

user-level threads. So Sun has implemented two thread libraries for Java, including

a “green” library that can be implemented without kernel-level thread support but

still provides the same nonblocking model as is provided with kernel-level threads.

Depending on the OS these libraries might be based on kernel-level threads or might

be based on user-level threads.

178 Part 3 CPU and Memory Management

 8.8 SUMMARY

 In this chapter, we defined the state of a process and

how that state is captured in the contents of a process

control block. We then defined various models for

the states of a process in the system and the events

that cause transitions from one state to another. We

then covered the various algorithms that are used

to schedule processes in OSs and discussed how

to evaluate them using deterministic modeling. We

wrapped up the discussion of processes with a brief

discussion of process forking.

 Next, we defined a thread and discussed the

differences between processes and threads. Then

we explained the difference between user-level

threads and kernel-level threads. Next, we showed

various ways that user-level threads could be

mapped onto kernel-level threads. Finally, we cov-

ered the implementation of threads in modern OSs

and discussed a couple of special cases of thread

mechanisms.

 In the next chapter of the book we discuss how

processes can communicate and cooperate and some

of the problems involved in these areas. They are

not as simple as they might seem at first.

 BIBLIOGRAPHY

 Abbot, C., “Intervention Schedules for Real-Time

Programming,” IEEE Transactions on Software

Engineering, Vol. SE-10, No. 3, May 1984,

pp. 268–274.

 Bach, M. J., The Design of the UNIX Operating System.

Englewood Cliffs, NJ: Prentice Hall, 1986.

 Brinch Hansen, P., “The Nucleus of a Multiprogramming

System,” Communications of the ACM, Vol. 13,

No. 4, April 1970, pp. 238–241.

 Henry, G. J., “The Fair Share Scheduler,” Bell Systems

Technical Journal, Vol. 63, No. 8, Part 2, October

1984, pp. 1845–1857.

 Jensen, E. D., C. D. Locke, and H. Tokuda, “A Time-

Driven Scheduling Model for Real-Time Operating

Systems,” Proceedings of the IEEE Real-Time

Systems Symposium, December 3–6, 1985,

pp. 112–122.

 Kay, J., and P. Lauder, “A Fair Share Scheduler,”

 Communications of the ACM, Vol. 31,

No. 1, January 1988, pp. 44–55.

 Liu, C. L., and J. W. Layland, “Scheduling Algorithms

for Multiprogramming in a Hard-Real-Time

Environment,” Journal of the ACM, Vol. 20,

No. 1, January 1973, pp. 46–61.

 Woodside, C. M., “Controllability of Computer

Performance Tradeoffs Obtained Using Controlled-

Share Queue Schedulers,” IEEE Transactions on

Software Engineering, Vol. SE-12, No. 10, October

1986, pp. 1041–1048.

 REVIEW QUESTIONS

 8.1 What is a PCB?

 a. A class of toxic chemical compounds

 b. A process control block

 c. A program counter boundary

 d. A partially completed buffer

 e. None of the above

 WEB RESOURCES

 http://web.cs.mun.ca/~paul/cs3725/material/web/notes/

node19.html (Allocation of processes to a processor)

 http://www-4.ibm.com/software/ad/fortran (IBM Fortran

compilers)

 Chapter 8 Process Management: Concepts, Threads, and Scheduling 179

 8.2 In the context of processes, the word “state” is

overloaded. Distinguish between the two mean-

ings of this word with respect to processes.

 8.3 How many unique OS states can a process be in?

 8.4 How many queues are there in the ready state?

 8.5 How many queues are there in the wait state?

 8.6 Why do we care if a process scheduler is fair?

 8.7 The SRTF process scheduling algorithm is opti-

mum, so why do we not use it as it was described

initially?

 8.8 Since FCFS process scheduling is so fair, what is

the problem with it?

 8.9 Why do systems with GUIs generally not have a

long-term scheduler?

 8.10 What is the purpose of processor affinity?

 8.11 What does a process do to start another process?

 8.12 Distinguish between a process and a thread.

 8.13 Why do we usually say that kernel-level threads

are better than user-level threads?

 8.14 User-level thread packages were developed before

kernel-level thread packages. When kernel-level

threads were made available, users did not want

to throw out or rewrite their multithreaded appli-

cations. So the user-level thread packages were

recoded to work with kernel-level threads. What

were the three models we spoke of that were used

to map user-level threads to kernel-level threads?

 8.15 What do we mean when we say that a library is

“thread safe”?

 8.16 True or false? Simultaneous multithreading refers

to having multiple processes create threads at the

same time.

 8.17 POSIX threads would appear to be ideal in the

sense that they are ubiquitous. What is the major

drawback to POSIX threads?

 8.18 What is unique about Windows NT process

scheduling?

 8.19 What is unique about Linux process scheduling?

 8.20 Solaris provided an elaborate mechanism for

mapping user-level threads to “lightweight” pro-

cesses. Why was this done?

 8.21 What is unusual about Java threads?

181

 Chapter Chapter 9 9
 More Process
Management: Interprocess
Communication,
Synchronization,
and Deadlocks

In this chapter:

 9.1 Why Have Cooperating Processes? 182

 9.2 Interprocess Communication 184

 9.3 Synchronization 190

 9.4 Deadlocks 197

 9.5 Summary 206

 I
n this chapter we continue the in-depth discussion of processes and threads. We

discuss techniques for designing applications that are divided into multiple parts

in order to keep the system busier working on behalf of the application. When

we break applications into multiple parts, the parts will need to cooperate, and to do

that they will need to communicate with one another. Since we spent considerable

time explaining how and why an OS isolated processes, we now need to explain the

mechanisms that have evolved to allow them to communicate.

 OSs devote a great deal of their resources to ensuring that processes are inde-

pendent of one another. More formally, an independent process cannot affect or

be affected by the execution of another process. On the other hand, we sometimes

need for two or more processes to cooperate with one another. Again, formally, a

cooperating process is one that can affect or be affected by the execution of another

process. When we try to develop systems we may need to allow for the system to

include multiple cooperating processes. Sometimes we will need for parts of the pro-

cess to run on different machines, and sometimes they will run on the same machine.

182 Part 3 CPU and Memory Management

In any case, the parts will need to do several things in order to cooperate successfully

with one another to do the job. They will certainly need to communicate with one

another. For example, one process might be taking in sales orders. It may then pass

those orders to another process, which will enter a transaction to ship the merchan-

dise. Processes may also need to synchronize their actions so that they do not inter-

fere with one another by trying to update the same piece of information at the same

time. As the processes run they may need to ask the OS to give them exclusive access

to a resource for some time. It turns out that this can lead to a special kind of problem

called a deadlock that the OS will need to worry about.

 This chapter will talk mostly about separate processes, but much of the material

also applies to multiple threads. In particular, threads share memory and will have

many of the synchronization and deadlock issues addressed in this chapter. They will

generally not use the message-passing mechanisms often used between processes.

 In Section 9.1, we discuss the motivating factors behind this idea—why do we

sometimes have to divide applications even though we might not necessarily desire

to do so? Next, Section 9.2 describes various mechanisms used by cooperating pro-

cesses to communicate among themselves. In Section 9.3, we explore the need for

processes to synchronize their activities and discuss some mechanisms for doing so.

In Section 9.4, we discuss a potential problem called a deadlock that can arise when

processes seek to have exclusive access to resources. We conclude with a chapter

summary in Section 9.5.

 9.1 WHY HAVE COOPERATING PROCESSES?

 Before we get into the details of how processes can communicate, it makes sense

to ask why we might want to divide our system into multiple processes. There are a

number of reasons why we may want to develop systems where the application runs

in several pieces:

 Performance. When we design a system we may have more work to be done

than can be done on one inexpensive processor. It may be more economical to put in

several inexpensive processors and run some portion of the process on each machine

than it would be to buy a bigger system that could do the entire task itself. If the sys-

tem will need to service a large number of users it might not be possible to service

them all with a single system.

 Scaling. When we first develop an application we do not necessarily know how

big the system load will get. What we think of as a small service might become an

overnight sensation and require that it serve many more users than we originally

thought it would. A good example is the Google ™ search engine. Whatever the

dreams of the originators of this service, it is very doubtful that they ever imagined

that by the year 2004 they would have 65,000 servers running the application. This

reason is obviously closely related to the performance problem, but it is different.

 Purchased components. We may want our system to include some function

such as a Web server. It is unlikely that we would find it economical to develop our

own Web server. We would most likely use an existing Web server program and fit it

into our system somehow—perhaps by writing parts of the system that dynamically

create pages that the purchased server displays.

 Chapter 9 More Process Management: Interprocess Communication, Synchronization, and Deadlocks 183

 Third-party service. Our system might make use of a service that is provided

by another organization. A typical example is to enter a credit card charge. Again, it

is unlikely that we could develop a system to do this function as cheaply as buying

the service unless we have a very high volume of transactions to process.

 Components in multiple systems. We might be building a number of different

systems that do similar jobs. Rather than build similar parts of many systems and

be required to maintain them separately, we can build the common components to

run as a separate process and have the various systems feed transactions to the com-

mon components. For example, these days a company selling directly to the public

will likely have a website that allows customers to place orders online. It might also

have retail counters in the stores, a telemarketing group that takes orders over the

telephone in response to infomercials run on TV, and a mail-order catalog group that

enters orders as well. Each of these systems might accept orders in a different way

and use the common services of other processes to first verify and later charge cus-

tomer credit cards, to order shipping from the warehouse, to monitor inventory, and

to place orders with suppliers when goods appear to be running low. These common

components may be run as separate processes.

 Reliability. When systems are built in one piece and are all on one computer,

then a significant failure in that computer will terminate the entire system. If systems

are built in a modular fashion then there can be multiple instances of each module.

Returning to the Google design, if one system out of 10,000 fails, then the sys-

tem will continue to run. There might be a few users whose searches were already

allocated to the failing server. They may have to click the “reload” button, but will

probably be totally unaware that a server at the host site has been lost. In the case

of Google, they have even split the servers among several different sites, so that a

physical disaster such as a fire or flood will not take out the entire system.

 Physical location of information. Even a small company will sometimes end

up with multiple facilities. Often this situation arises because one company buys

another. Whatever the reason, we may end up with multiple warehouses, for exam-

ple, and for most transactions we will want to have an inventory system at the site.

For other purposes, we will want to have parts of the system at a central location.

Due to volume discounts, for example, we will want a single centralized purchasing

function. If we have designed the various warehouse inventory systems so that they

feed inventory requests to the purchasing system, then we can view this as a single

system, parts of which are at various physical locations.

 Enable application. There are a very few applications that have such massive

computational requirements that they literally could not be done on existing computer

systems. Sometimes this is partly a question of economics—a big enough machine

could be built but the organization wanting to solve the problem could not afford it.

Sometimes we would only have to wait a few years. Roughly speaking, the power

of available processors doubles every 18 months. With the continuous application of

this law we might have a big enough machine soon. An example of such a system is

that employed by SETI (Search for Extra-Terrestrial Intelligence). This is a system

that takes large volumes of data recorded by a large radio telescope and searches it

for patterns that might indicate an intelligent origin to the data. The amount of data

is so massive that in order to get it processed by the machines available today they

divide it up into smaller data sets and distribute those data sets to various interested

184 Part 3 CPU and Memory Management

users who have volunteered to let the idle time on their computer system be used to

process this data via the mechanism of a screen saver. Regardless of your opinion

of the scientific merits of this endeavor, it was certainly one of the first systems to

employ this technique. When viewed as a single, loosely coupled system, it currently

represents the world’s single largest computer system. Without this “divide and con-

quer” approach, they literally could not have processed this data.

 9.2 INTERPROCESS COMMUNICATION

 For one or more of these reasons, people have been building systems of multiple

cooperating processes for some time now, and the number of such systems is grow-

ing rapidly, both in absolute numbers and as a percentage of new applications. Obvi-

ously, if we are going to have a system that is comprised of multiple processes, those

processes will have to communicate to get the work done. However, we have spent

a great deal of time and effort making sure that two processes running on the same

system can’t interfere with one another. Therefore, we need to develop mechanisms

to allow processes to communicate. As developers began to recognize this need,

those of them in different environments saw the problem in different terms. They

also had different tools to work with. IBM mainframe customers using SNA and

SDLC saw things differently from PC users using Novell Netware, and they saw

things differently from UNIX or VAX users with XNS or DECNet or TCP/IP. As

a result, there are dozens of different mechanisms that exist for processes to com-

municate with one another. There are two fairly different types of mechanisms for

IPC. On the one hand, there are message passing mechanisms. They operate much

as the term specifies—one process sends a message to another process using some

facility of the OS. Message passing is generally done between processes. On the

other hand, is the use of shared memory. With such a mechanism two or more tasks

share access to one block of memory. Sharing of memory space is implicit between

threads of a single process, but it can also be done among processes. Before discuss-

ing these classes of mechanisms we will first abstract the common features of all the

mechanisms so that when you are faced with a different mechanism you will have

an organized structure with which to identify the important characteristics. Then we

look at a few of the more common mechanisms.

 9.2.1 Attributes of communication mechanisms

 The services available for processes to use for communication can be characterized

by several different attributes:

 Number of processes that can use a single channel at one time

 One-way or bidirectional connections

 Buffering strategy (none, 1, N, infinite)

 Connection oriented or connectionless

 Naming strategy (name, one way or two way, mailbox, port)

 Multicast, broadcast, unicast

 Chapter 9 More Process Management: Interprocess Communication, Synchronization, and Deadlocks 185

 Multiple or single connections possible

 Streaming or message oriented

 Heterogeneous or homogeneous only

 Synchronous or asynchronous

 Persistent or transient

 Number of processes supported. In most cases there are only two processes

involved in a specific interprocess communication. But in some cases there can be

many processes involved in communicating among themselves at the same time. For

example, many processes might be able to simultaneously share a connection to a

single process that would write records to a log file.

 One-way or bidirectional. While it might be somewhat unusual for cooperating

processes to have communication that was only one way, it is not unusual to have com-

munication channels that are one way. What normally happens with one-way channels

is that two channels may be set up between two processes, but the channels are going

in opposite directions. This type of mechanism is usually found where the communi-

cation is much heavier in one direction than in the other. For example, one process is

sending transactions to a second process and the second process is only sending back

acknowledgments. We might need many large buffers on the first channel but many

fewer or much smaller buffers or lower bandwidth on the return channel.

 Buffering strategy. There are four different cases of handling the buffers in

a communication channel based on the number of buffers available: none, one, N,

and infinite. The first case is where there is no buffer to which both processes have

access. Both processes must be accessing the channel at the same time so that one

process can send the message to the other process. The second case is that there

is only one buffer with both processes having shared access to it. In this case, the

sending process will put a message in the buffer and then tell the OS it is available.

The OS will tell the receiving process that the message is there and it will take the

message out of the buffer. It will then tell the OS that the sender can send another.

The case of one buffer might appear to be just one possible instance of the case of N

buffers, but in the case of one buffer we can use simple mechanisms to synchronize

the processes. The processes always know which buffer to use, and the processes

only need to coordinate whether the buffer is now available for the sender to insert

a message into it or not. In the case of N buffers we have much more informa-

tion to coordinate. The communication channel mechanism for each process must

know where the buffers are and which ones contain messages and which do not. We

discuss these problems further in Section 9.3.9. The last case is where the channel

mechanism has some external memory that it can use to expand the buffer space by

essentially an infinite amount. An example might be a spooling system that uses a

disk file to hold a message stream until a printer is available on which to print it. For

practical purposes the sending process can consider the buffer to be infinite.

 Connection oriented or connectionless. A communication channel can be

connection oriented or connectionless. Sometimes communicating processes need

to establish a complex conversation. In this case they will be likely to establish a

connection that they will use for the duration of their interaction. A good analogy is

a telephone call where one person calls another. The terminology comes from a time

186 Part 3 CPU and Memory Management

when connections were made between devices using an actual physical connection.

Today the connection is likely to be a logical or virtual connection. Sometimes,

however, one process simply has information to send and does not care what other

processes might be listening. An example might be an application where a server in

a company is broadcasting stock purchase information so that clients can receive it

if they want. An analogy might be to a radio broadcast. There might be millions of

listeners or none.

 Naming strategy. When two processes are going to communicate with one

another, they will need some mechanism to identify one another. This is called the

naming strategy. In the strictest case, both processes must explicitly name each other.

The name is most often the name of the executable file used to run the program, but

names can be associated with running processes in other ways—in some systems the

process id number might be used as a name. This specific naming mechanism has

the advantage of having the least margin for error, but also requires the most effort

to maintain. It is generally only useful when the same developers are responsible

for both processes and there is only one sender and one receiver. In a somewhat

looser model, the message sender must specify the name of the receiving process,

but the receiver is willing to accept transmissions from any sending process. The

third model is that both processes agree on some other reference that they will both

use. Examples include mailbox numbers and TCP/IP ports.

 Another attribute of interprocess communication is whether the messages are

sent as a unicast, a multicast, or a broadcast. Unicast messages are sent only to the

receiver, so if many processes are cooperating, then many messages may need to be

sent for all processes to receive the message. Unicast messages are private, however.

Broadcast messages are sent so that every process (in a given environment) can hear

them. An example might be a time server that periodically sends clock update mes-

sages so that any process can read them. Unfortunately, broadcast messages must

be received and processed by all processes, whether the process is interested in the

message or not, so it may waste resources. Some messages might need to be received

by all processes—a system shutdown request, for example. Multicast messages are

intended only for a group of receivers. Sometimes this is for security reasons, so

that membership in the group might be restricted. Sometimes multicast groups are

created only to save resources for those processes not interested in the messages—a

stock ticker application might be a good example.

 Multiple or single connections possible. Most of the time it is sufficient to

allow only one connection between two processes. Sometimes it is desirable to have

separate channels for data messages and control messages. FTP is an example of a

standard that uses two connections in this manner. There can also be multiple paral-

lel data connections. An example of multiple connections is the mechanism used in

some Web browser/server connections using the HTTP version 1 protocol. In this

protocol a single channel could retrieve only one object from the server and then the

server would close the connection. In order to speed up the process, a browser could

retrieve a main page and parse it to find the other elements needed to display the

page. It then could open as many connections as there were objects to retrieve. (In

practice the client usually opened only some limited number at one time in order to

keep from bogging down the server.)

 Chapter 9 More Process Management: Interprocess Communication, Synchronization, and Deadlocks 187

 Streaming or message oriented. For some applications it is important that the

communication link supports the idea of discrete messages. The sending application

will send a block of data and that same block will be presented to the receiving appli-

cation in the same manner—as a discrete message. The blocks may be of fixed or

variable length, depending on the implementation. Other applications do not identify

blocks in the data. Instead, the communication is viewed as a stream of data flowing

from the sender to the receiver. As easy example is a telnet client. Each keystroke

that the user types on the keyboard is sent from the client to the server without regard

to the content. Certain keystrokes may take priority over others (e.g., CTL/C), and

the protocol may bundle many keystrokes together for transmission in order to mini-

mize transmission overhead, but generally the keystrokes are sent as a continuous

flow of information.

 Heterogeneous or homogeneous only. Some communication systems assume

that the sender and receiver of the messages are operating on the same type of hard-

ware and the same OS. The strongest case is when the assumption is that the two

communicating processes are running on the same machine. Other communication

systems do not make this assumption. In this case they may try to cope with a set of

problems that have to do with the representation of information. Different systems

store information in different formats. Often this is due to hardware considerations.

One example is the storage of integers. On Intel 80 X 86 series hardware the most

significant byte (MSB) of the number is stored in a higher memory address. On most

other hardware the MSB is in a lower memory address. (This is known as the “little

endian/big endian” problem, a reference to Gulliver’s Travels.) If a system is send-

ing messages between platforms that may implement integers in different formats

then that system may want to solve that problem in a universal way. For example, a

subroutine called with Remote Procedure Calls (RPCs) may need to perform arith-

metic operations on the arguments, so the sender and receiver will need to solve this

problem in a way that is transparent to the applications. On the other hand, the FTP

protocol simply moves files. Any reformatting of the contents is not the concern of

the communication mechanism. However, FTP may need to consider the differences

in file naming conventions. The name of a file on a sending system might not be a

legal name on the receiving system. Some examples of formatting questions concern

not the hardware but the language of the implementation. For example, strings may

be stored one way in C and another way in BASIC, so systems that have components

written in different languages may have to convert data between these formats. (Of

course, this can be true of a single program running on a single CPU as well as for

multiple processes.) One other problem that might be encountered is that a param-

eter to a message might be a memory address—possibly a pointer to an error routine.

Obviously, if such a parameter were passed directly to a process running on another

platform it would be meaningless. If we are going to pass memory addresses as

parameters we will have to invent some other mechanism for supporting them.

 Synchronous or asynchronous. When a program reads a record from a file in

most high-level languages the model that is normally used for this function is that

when the next instruction is executed the read has been completed. This model of

I/O is known as synchronous I/O or blocking I/O. If a process has other tasks to

attend to while the reading is being done then it may choose to issue the read as an

188 Part 3 CPU and Memory Management

 asynchronous or nonblocking read. In this case the read instruction will return to

the program immediately and the read will take place independently. Eventually

the program will want to find out if the read has finished. The means to do that

depend on the language and the OS. Communication channels are similar. A pro-

cess might want to check a channel for messages but continue on if no messages

are available. So with some communication mechanisms a receiving process can

issue an asynchronous read of the channel, and if there is no information to read,

the OS will return from the call with an indication that no data was transferred,

and the process will not wait. Similarly, an asynchronous write might be rejected if

there were no buffer space available to receive the message.

 Persistent or transient. In the simplest case both the sending and receiving

processes must be running at the same time for them to exchange messages. If one of

the processes is unavailable then the system cannot function. This sort of mechanism

is called transient. In other systems the OS will retain messages that are intended

for a process that is not running now or deliver messages from processes that are no

longer running. Such communication services are said to be persistent.

 9.2.2 Examples of IPC systems

 In the simplest case, a sending process may need to pass only a minimum amount of

information, a single bit, to indicate that some event has occurred. In this case they

can make use of the synchronization mechanisms described in the next section. Most

of the time, however, processes need to send more information than a single bit, so

they will use more elaborate schemes to send entire messages.

 One widely used method of message exchange between processes is the use of

 pipes. A pipe is essentially a circular buffer (or queue) that one process will put data

into and the other will take data out of. The two processes can make use of system

calls to put and get the data. This mechanism lets the processes avoid having to worry

about synchronization issues. (We will discuss the nature of this problem shortly.)

The OS will watch for a full buffer or an empty buffer, but the calling routine needs

to be aware that the call might not succeed. For example, if the buffer is full then a

sending routine that tries to put data into the buffer will be blocked. Usually a receiv-

ing routine can call a nonblocking system routine to try to read data from the buffer.

If data is available then it will be returned. If no data is in the buffer then the call

will return immediately, but there will be a return code indication that no message

was read. Usually there is also a blocking type read as well. A receiver might use a

blocking read if it had nothing else to do except wait for incoming information. Pipes

first appeared in UNIX, and in UNIX and Linux the pipes are byte streams rather

than discrete messages and the pipes are one-way channels. In the Windows imple-

mentation the pipes can be byte streams, but they can alternatively be used to send

messages, and the pipes are bidirectional.

 Another issue with pipes is the question of how they are set up in the first place.

In some cases the sending and receiving processes must name each other explicitly.

This is generally undesirable because it is more difficult to maintain than other meth-

ods. Alternatively, the receiver might not care who is sending but the sender must

name the receiver explicitly. An application that is writing messages to a log file

 Chapter 9 More Process Management: Interprocess Communication, Synchronization, and Deadlocks 189

might offer this service to many clients at the same time. It will receive an indication

of which client sent the message and can log that information as well. A final method

is for the sender to provide some other reference rather than the name of the receiv-

ing process. This is sometimes called a mailbox. In this case the sender is looking

for a service that can be provided by many different processes. It does not care which

process is providing the service. An example of such a mechanism is named pipes.

 The mechanism of sockets has been in use for quite a while now, so one of the

benefits of it is that it has many compatible implementations—they are available on

every OS. Sockets are designed to run over a standard networking layer. Most often

this layer is TCP or UDP over IP, but other implementations exist. The client (send-

ing) host names the server (receiving) host and also names a specific socket (some-

times called a port) on the receiving host. These are only logical designations and

not references to hardware ports. In many cases, this socket will be a well-known

number. Well-known sockets (below 1024) are assigned by standards bodies for pro-

tocols that are also standardized. A higher range of socket numbers is reserved for

applications that are not standardized. The client will be assigned a socket number

for its use when it tries to connect to the server. Unlike the simpler one-way buffer-

ing mechanism used for pipes, sockets support a much more elaborate model. Once

the client and server have connected, the protocol they use is determined by the

application. Either the client or the server can send a message at any time. For some

applications the application layer protocol is standardized, but new applications can

design any sort of protocol that is needed. Applications can also use existing proto-

cols for different purposes. For example, it is common for applications to support

the HTTP protocol because many firewalls are set to pass this protocol. The server

normally establishes a socket by making a series of OS calls and then waits for

incoming connections to the socket. If the server is offering a complex service such

as FTP, it is common for the server to start a separate thread to handle each client.

If the service is very simple, such as a quote-of-the-day service, then the server may

just send a message and break the connection.

 Another advantage of the socket design is that the server and the client can be

located on the same machine. This is especially handy when developing new appli-

cations. It also means that the same program can serve both local and remote clients

without any changes in either program. It is a very clean model without some of the

complications of other mechanisms. Of course, it does mean that for local clients

a lot of work is being done that is not strictly necessary. If performance is an issue

and the system will always run with the client and server on the same machine, then

more efficient mechanisms should be used.

 One kind of persistent communication system is called message queuing. Such

systems create named queues of messages. A process wishing to write messages to

the queue calls the OS with the message and the name of a queue to put the mes-

sage in. A process wishing to read messages from the queue will call the OS with an

empty buffer and the name of the queue. The processes may or may not be running

at the same time. Other processes or system utilities are normally used to create

and destroy the message queues. The queues are normally maintained in secondary

storage is order to ensure this persistence, so there is a large amount of overhead to

using them.

190 Part 3 CPU and Memory Management

 9.2.3 Examples of shared memory systems

 In many OSs it is possible for two (or more) processes running on the same machine

to ask the OS to allow them to share access to a block of memory, a technique known

as shared memory. Usually this is done by having one process call the OS and asking

for a segment of memory (of some specified length) to be allocated and given a name.

Other processes wishing to share this memory will have to know the same name.

They will then give the OS the name and ask for access to the segment. The memory

address settings of both processes will be altered so that they can have access to the

shared block of memory. The exact mechanism is discussed in Chapter 11. Some

applications are very simple and will not need complex synchronization to make sure

that the two processes do not interfere with one another. Other systems may require

more elaborate synchronization mechanisms to control access to the data in the shared

memory block. This topic will be elaborated upon in the next section. You should

recall that while separate processes must use such an elaborate mechanism to share

memory, threads within a single process always share their memory by definition.

 A special case of shared memory is sometimes provided in the form of memory

mapped files. This is a slight modification of the shared memory technique. In this

case the initiating procedure calls the OS and gives it the name of a file on secondary

storage. The OS will locate the file and will allocate space in the calling process to

contain the entire file. However, the file will not immediately be loaded into mem-

ory. As parts of the shared file are accessed for the first time the hardware will signal

the OS and it will load the appropriate portion of the file into the memory and then

resume running the process. This mechanism is described more fully in Chapter 11.

 9.3 SYNCHRONIZATION

 9.3.1 The problem

 Now that we have an understanding of why processes need to communicate and

some of the mechanisms they can use to do so, we need to turn our attention to a

problem that can occur when two processes want to share a piece of data in memory.

Consider the following example where two processes, A and B, are using a buffer

to communicate and are attempting to update a shared record counter, X, which ini-

tially has the value 8. Process A has put a record into a buffer and is trying to incre-

ment the counter by adding 1 to X. Process B has taken a record out of the buffer, so

it is trying to decrement the counter by subtracting 1 from X. So process A has an

instruction X ⫽ X ⫹ 1 and process B has an instruction X ⫽ X - 1. After these two

instructions execute we would expect X to still contain the value 8. However, there

is a small potential problem.

 The high-level language instructions we have shown are normally broken into

three separate machine instructions: a Load to a register, an Add or Subtract, and

a Store back into memory. Consider the execution shown in Figure 9.1 . Process A

loads the value of X into register A, so register A contains an 8. Process A is now

interrupted because its time slice has finished. The registers are saved in the PCB for

process A. Now process B gets a time slice. It loads the value of X into register A,

 Chapter 9 More Process Management: Interprocess Communication, Synchronization, and Deadlocks 191

so register A is not changed. Process B subtracts 1 from register A, yielding a 7, and

stores it in the memory location for X, leaving X at a 7. It continues on. Eventually

process A gets another time slice. The registers for process A are restored from its

PCB, so register A now contains an 8 again. It adds 1 to Register A, giving a value

of 9, which it stores in the memory location for X, leaving X at a 9. This result is not

exactly what we were expecting. To make matters even worse, this problem is timing

dependent. There is a very small window in which this problem will occur. Almost

all the time these two processes will share this variable very nicely, assuming this

was the only modification they were making to the variable. This kind of problem

is quite hard to debug because it is intermittent. It is called a race condition. A race

condition, or race hazard, is a defect in a design whereby the output of the system

is dependent on the sequence or timing of other events. This problem can also occur

in a multiprocessor system when process A is running on one CPU and process B is

running on another CPU. Regardless of the cause of the problem, we need a solution.

Although multiple CPU systems have been uncommon outside of high-end servers,

the focus of the current generation of CPU chips is to have multiple CPUs within a

single chip. As a result, this sort of problem will become more common.

 9.3.2 Atomic operations

 The trick we need is to make those operations atomic. This word means that the oper-

ation we are doing is indivisible—specifically, it cannot be interrupted by another

process that wants to update the same information. One possible solution might be to

compile that instruction into a single uninterruptible instruction. For example, some

Point
X

Process BProcess A

Store Register A into X

Add 1 to Register A

Process A
Continues

Process B
Continues

Subtract 1 from Register A

RA=8

RA=7

Store Register A into X X=7

Load X into Register A

X=8

RA=8

RA=9

X=9

Load X into Register A

FIGURE 9.1

Two processes

updating a shared

variable.

192 Part 3 CPU and Memory Management

machines can add 1 to (or subtract 1 from) a variable in memory without loading the

variable into a register. However, when we are writing our program in a higher-level

language we want to not worry about such hardware details. We would like to be

able to move our program to a different machine that perhaps didn’t have such an

instruction. So we have to use a more general solution.

 9.3.3 Locks and critical sections

 Sometimes our processes will be sharing a single variable and sometimes they will

be sharing a more elaborate structure. Sometimes we will be doing a single operation

and sometimes we will be doing more complex operations. Sometimes we will have

only two processes trying to share a single resource and sometimes we will have many.

Sometimes we will be trying to share a resource for which there are multiple instances

and sometimes there will only be one instance of the resource. The general technique we

will use is to use a special kind of variable called a lock to control access to the shared

variable. A lock is also sometimes called a mutex since it can be used to provide mutu-

ally exclusive access to the item the lock is protecting. When we look at a process that is

using a lock we can think of the program as having four parts, as seen in Figure 9.2 .

 A critical section is a part of the process that is manipulating information that

may also be manipulated by another process. The entry section is code that locks

the shared information—it first ensures that no other process is currently in its criti-

cal section and then locks the lock so that no other process sharing this information

can now enter its critical section. The exit section is code that releases the lock after

this process has finished with this critical section. The remainder section is the rest

of the process. Note that this process can contain other critical sections and locks.

This description is merely a structured way of looking at the parts of a single locking

operation. The effect of this structure is that we have made the operations we are per-

forming on the shared information atomic. No other process that wants to manipu-

late this shared information can interrupt this critical section. This structure does not

keep process A from being interrupted. It does mean that if process A is interrupted,

any other process that tries to enter its critical section (for this variable) will be made

to wait until process A finishes its exit section.

 9.3.4 Hardware locking instructions

 There are many ways that the entry and exit section can be coded. In a very simple

embedded OS or in the kernel of an OS we may use special machine instructions to

lock and unlock the locks. These instructions are themselves atomic instructions.

There are only a few common variants. One is a Test and Set instruction. This

Main() {

entry section /* make sure the lock is free */

critical section /* manipulate the shared data */

exit section /* show the lock is free */

remainder section /* everything else */

}

FIGURE 9.2

The parts of a

process manipulating

shared memory.

 Chapter 9 More Process Management: Interprocess Communication, Synchronization, and Deadlocks 193

instruction will set a variable in memory to a nonzero value (i.e., lock it) and will

also return a result that tells us whether the lock was already set before we executed

this instruction. If the lock was already set then we did not gain access to the lock, so

we just retry the operation:

 while (TestAndSet(MyLock)) ;

Note that the scope of the while statement is null (the ;), so this loop does nothing but

wait until the lock is not set when the instruction is executed. This type of coding is

sometimes called a spin-lock or busy-waiting. Another common atomic instruction

is a Swap instruction. It exchanges the values of two variables in a single step. This

instruction is slightly more powerful than the Test and Set instruction in the sense that it

can put any value into the lock variable. Other than that, the instructions are equivalent.

Another similar instruction is called fetch-and-add. It fetches an integer used as a lock

from memory and at the same time adds one to the value and writes it back to the same

location. An XADD instruction that works this way has been used in the Intel proces-

sors since the 80486 CPUs. The choice of which of these atomic instructions to imple-

ment is a function of hardware design issues. With the first two of these instructions the

exit section of our process is merely to set the lock variable to false (zero). Storing a

zero into a memory location is normally an atomic instruction on any hardware.

 9.3.5 Semaphores and waiting

 If a process actually contained that while loop that we showed with the Test and Set

instruction, it would be wasting CPU cycles while it was waiting. As a result, in most

cases an application will not use these instructions to implement an entry section.

Instead, it will issue OS system calls for both the entry and exit sections. Normally

the variable used in these calls is declared to be a semaphore. Semaphores can be

more complex than the simple locks we have been describing. A lock is always a

binary condition but semaphores are often more general. So the simple semaphores

are called binary semaphores, and only support locking.

 While different OSs and languages use many different names for these routines,

generally the system call for the entry section is simply:

 wait (MySemaphore)

and the call for the exit section is:

 signal (MySemaphore)

When we call the wait routine, if the locked resource is not available, then instead

of putting our process into a loop the OS will take our task out of run state and put

it into wait state. The process will be waiting for the lock to be released. This will

happen when the task that currently has the lock falls through its exit section and

executes a signal system call on the lock we are waiting for. The OS will take our

task out of wait state and put it in ready state. At the same time, it will give our task

the lock so that no other task can get it. As was mentioned earlier, there can be any

number of tasks waiting on the same lock, so the OS may need to have a queue for

all the tasks waiting for each semaphore.

194 Part 3 CPU and Memory Management

 9.3.6 Counting semaphores

 But in the more general case a count is associated with each semaphore, which is a

positive integer. Such semaphores are sometimes called counting semaphores. They

are normally used to control access to a group of similar resources such as the records

in a buffer. The count associated with a counting semaphore is initialized to the num-

ber of available resources. The code in the application for using counting semaphores

is normally the same as for binary semaphores. When a process wants to access an

instance of the resource it calls the wait routine as shown. If the count associated

with the semaphore is zero then no instances of the resource are available and the

requesting process is blocked. If the count is greater than zero then more instances of

the resource are available. The count will be decremented to show that an instance is

in use. When the process calls the signal routine the associated count will be incre-

mented, and any waiting processes will be dispatched with the available resource.

 Counting semaphores can also be used to synchronize access to files where pro-

cesses will do many reads and only a few writes. Many readers can be allowed at the

same time, but we may not want to allow readers to be active when a process is try-

ing to write to the file. So we can allow multiple readers with a counting semaphore

and only allow a writer to access when the count of readers reaches zero. Once a

writer tries to access the lock we will not allow any more readers to get the lock until

the writer has gotten the lock and finished its work.

 9.3.7 Synchronization and pipeline architectures

 When multiple CPUs are present in a single system and the CPUs have a pipeline

architecture it is possible for a CPU to execute instructions out of order. This can

cause timing problems with synchronization instructions such as the test and set. As

a result, a mechanism is usually provided that allows an application (or the OS) to

issue a command that forces the CPU to execute a particular sequence of instructions

in the order they are in the program, thus avoiding the problem.

 9.3.8 Synchronization in SMP systems

 We mentioned in earlier chapters that the trend is for computer systems to include

multiple CPUs, in particular multicore processors where multiple CPUs are incor-

porated into a single integrated circuit. Such systems require OSs that can manage

the resources of the multiple CPUs. The preferred solution is known as symmetric

multiprocessing, or SMP. In this architecture the OS is designed so that it can run

on any of the CPUs. (An alternative architecture is known as asymmetric multipro-

cessing where one CPU runs the OS and the others only run applications. This archi-

tecture is seldom seen today.)

 The multiple execution streams of the OS running on separate CPUs can attempt

to reference the same data at the same time. In order to avoid this an SMP OS will use

locks. We had said that user programs did not use spin locks since they would waste

valuable CPU cycles for an unknown amount of time. Within an OS, however, we pre-

sumably know that we will hold a lock only for a very brief, predetermined amount of

time. Also, we can’t very reasonably make an OS call to a wait routine since we are

 Chapter 9 More Process Management: Interprocess Communication, Synchronization, and Deadlocks 195

already in the kernel! As a result, OS kernel code normally uses a hardware spin lock

mechanism in spite of the waste of CPU cycles.

 This brings up an interesting hardware problem though. Suppose that one of the

several processors wishes to write a value into memory. To protect that critical sec-

tion it uses a lock. The semaphores are in the shared memory, and each CPU may

also have the value of the semaphore in its cache. You can see the problem—now

there are many processors that are using those same atomic instructions, potentially

at the same time. This requires that CPUs that share memory in SMPs be a little

smarter about sharing. One common way to do this is for every CPU to watch for

manipulation of shared memory by snooping the memory bus. This is more work

for the CPU hardware, but it is worth the effort—the potential for speedup by using

multiple CPUs is quite large. The cache hardware must also be smarter because each

CPU might have a copy of the semaphore in its cache and if one CPU changes the

value of the semaphore then all the other copies must be updated as well. These are

very important problems for CPU architects, and are very widely argued about.

 9.3.9 Priority inversion

 Priority inversion describes a situation that can arise when a lower-priority task

holds a shared resource that is required by a task running with a higher priority. This

inversion causes blocking of the high-priority task until the resource is released. This

effectively inverts the priorities of the two tasks. If some other medium priority task

not using the shared resource tries to run it will take precedence over both the low-

and high-priority tasks. Priority inversion often does not cause great harm. The delay

of the high-priority task goes unnoticed and eventually the low-priority task releases

the shared resource. However, priority inversion can cause serious problems. If the

high-priority task is delayed long enough it might lead to triggering of a timer and

the resetting of the OS. The Mars Pathfinder mission had a priority inversion prob-

lem that caused it to reset itself several times. At the very least priority inversion

can make a system seem unreasonably slow. Low-priority tasks usually have a low

priority because it is not important for them to finish in any particular time frame so

long as their job gets done eventually. A high-priority task probably has strict time

constraints. It might be working with the user interface or on a soft real-time task.

Thus, priority inversion can lead to reduced system responsiveness.

 9.3.10 A classical problem

 There is a problem that occurs quite often in OSs called the producer–consumer

problem or the bounded-buffer problem. It is an example of a multiprocess syn-

chronization problem. It concerns at least two processes, one of which is a producer

of data and another of which is a consumer of the data, and they all share a common,

fixed-size buffer. The job of a producer process is to continuously generate blocks of

data and put them into the buffer. At the same time, a consumer process is consuming

the data by taking it from the buffer a block at a time. But a producer should not try

and add data to the buffer if it’s full and a consumer should not try to remove data from

an empty buffer. One solution to this problem is shown in the following procedures. It

196 Part 3 CPU and Memory Management

works for multiple consumers and multiple producers but we will discuss it as though

there were only one of each.

 The solution for the producer is to block if the buffer is full. Each time the con-

sumer removes an item from the buffer, it signals the producer who starts to fill the

buffer again. In the same way, the consumer blocks if it finds the buffer is empty.

Each time the producer puts data into the buffer, it signals the consumer. The counting

semaphore full is the number of buffers that are currently full, the semaphore empty

is the number of empty buffers, and mutex is for establishing mutual exclusion.

 semaphore mutex ⫽ 1

semaphore full ⫽ 0

semaphore empty ⫽ BUFFER_SIZE

procedure producer() {

 while (true) {

 item ⫽ produceItem()

 wait(empty)

 wait(mutex)

 putItemIntoBuffer(item)

 signal(mutex)

 signal(full)

 }

}

procedure consumer() {

 while (true) {

 wait(full)

 wait(mutex)

 item ⫽ removeItemFromBuffer()

 signal(mutex)

 signal(empty)

 consumeItem(item)

 }

}

 9.3.11 Monitors

 Although it does not look that difficult on the surface, the use of locks and sema-

phores is a very error-prone part of programming. In order to make locking and

unlocking more robust, some high-level languages have introduced a mechanism for

expressing synchronization requirements. This mechanism is known as a monitor.

Monitors are not OS constructs so much as they are a way to package OS constructs

in a less error-prone way. A monitor is an item with built-in mutual exclusion and

thread synchronization capabilities. These features are defined by programming lan-

guages so that the compiler can generate the correct code to implement the moni-

tor. Though they take different forms in different languages, there are some general

things we can say about monitors.

 Chapter 9 More Process Management: Interprocess Communication, Synchronization, and Deadlocks 197

 A monitor is associated with an item in the language such as a procedure or a

class. A mutex will be associated with the procedure. Only one thread of an associ-

ated process can be executing with the monitor at any given time. A monitor proce-

dure tries to access the lock before doing anything else, and holds it until it either

finishes or waits for a condition. When a procedure finishes, it releases the lock so

no deadlocks can take place.

 Monitors may also have condition variables. These allow a thread to wait if

conditions are not right for it to continue executing with the monitor. In this case the

thread will be blocked and another thread will be given the lock and allowed to exe-

cute. The other thread may change the state of the monitor. If conditions are now right

for the waiting thread to continue, the running thread can signal the waiting thread.

This will move the waiting thread back to the ready queue so that it can resume

execution with the monitor when it becomes free. The following code uses condition

variables to use a communication channel that can store only one message at a time:

 monitor channel {

 condition can_send

 condition can_receive

 char contents

 boolean full : = false

 function send (char message) {

 while full then wait (can_receive)

 contents : = message

 full : = true

 signal (can_send)

 }

 function receive () {

 var char received

 while not full then wait (can_send)

 received : = contents

 full := false

 signal (can_receive)

 return received

 }

 }

 9.4 DEADLOCKS

 9.4.1 What is a deadlock?

 A very simple case

 Suppose that we have two processes, A and B, which are attempting to share two

different resources, 1 and 2. Process A locks resource 1 and then locks resource 2. It

does its work and then releases the resources. Process B locks resource 2 and then

198 Part 3 CPU and Memory Management

locks resource 1. It does its work and then releases the resources. These events are

shown schematically in Figure 9.3 .

 Now consider what happens if process A gets interrupted at Point X—perhaps

it has used up its time quantum and the operating system takes it out of the run state

and puts it back in the ready queue. Process A has already locked resource 1. Now

process B starts. It locks resource 2 and then tries to lock resource 1. Since process

A is holding a lock on resource 1, the OS puts process B into the wait state and some

other process is started. Eventually process A comes to the head of the ready queue

and is restarted by the dispatcher. It runs briefly and tries to lock resource 2. Since

process B is holding a lock on resource 2, process A is put into the wait state and

these two processes are now in a deadlock. Neither process will ever finish because

each is holding a resource that the other is waiting for.

 This simple example easily shows two of the necessary conditions for a dead-

lock to occur. The first is that there must be resources involved that are not shar-

able. This is called mutual exclusion. In the case of locks, this is clear from the

definition—only one process can hold a lock at any one time. In the case of some

resources it is not as clear, as will be discussed later. The second condition necessary

for a deadlock is that it must be possible for a process to hold one resource while it

waits for another. This is called hold-and-wait. Again, in the case of locks we can

see that normally a process can get as many locks as it needs without releasing any

that it holds.

 Some more elaborate examples

 A favorite example in the computer science literature is the “Dining Philosophers”

problem. In this problem, shown in Figure 9.4 , there is a table at which there are three

philosophers who alternatively eat or think. After thinking for a while, a philosopher

will want to eat. The meal being served is rice, and it requires two chopsticks to eat.

Between each two philosophers is a chopstick. When it is time to eat, a philosopher

picks up one chopstick on the left and one chopstick on the right and begins to eat.

It should be clear that this setting can easily lead to a deadlock. Suppose that more

or less simultaneously, each philosopher decides to eat. Each reaches out to the left

and picks up a chopstick. Each philosopher then gets interrupted and has to wait for

a while (as in the simple example).

Lock
Resource

1

Lock
Resource

1

Lock
Resource

2

Lock
Resource

2

Process A

Process B

Process A
Continues

Process B
Continues

Point
X

FIGURE 9.3

Two processes

sharing two

resources.

 Chapter 9 More Process Management: Interprocess Communication, Synchronization, and Deadlocks 199

 When it resumes processing (trying to eat), it tries to pick up the chopstick to

the right, but finds that chopstick already in use, so it waits on the right chopstick.

Eventually we make it all around the table and each philosopher is holding one chop-

stick and waiting for another. The difference between this example and the first is

that in this case there are more than two processes (philosophers) and more than

two resources (chopsticks). Each process is holding one resource and is waiting for

another resource. This condition is known as circular wait. It was present in the

first example but the circle was harder to see because there were only two processes.

Each process then had a resource that was needed by the other. As is seen in the

dining philosophers problem, all that is needed is that there is some sequence of

processes, each holding a resource wanted by another, and ultimately one process in

this sequence that is holding a resource wanted by the first process. There is a simple

method of avoiding this situation, which we discuss later in the chapter.

 An often cited example of a deadlock in the real world is a gridlock in traffic

on city streets. For example, Figure 9.5 shows a simple traffic gridlock. (To keep it

simple we have shown one-way streets.) In this case you see a number of different

processes (cars), each wanting to use a resource that the car in front of it is already

using. In this case the resource is a position on the street. It is clear that there is

mutual exclusion—no two cars can be in the same position at the same time. There is

also circular wait—it is obvious from the picture. Consider, however, the car identi-

fied as A. Although this car is also waiting, it is not a part of the deadlock because no

other car is waiting on the resource it holds.

 In many analyses of deadlocks a fourth condition is stated—that preemption not

be allowed. Preemption would mean that we could take away from a process some

resource that it is currently holding, thus breaking the deadlock. In our analysis, pre-

emption is a solution to a deadlock. Adding a “condition” of no preemption is merely

a way of saying that one possible solution to the deadlock problem is not used. It is not

really a necessary condition for a deadlock. We discuss this further later in the chapter.

FIGURE 9.4

The “Dining

Philosophers”

problem.

200 Part 3 CPU and Memory Management

 Resource-allocation graphs

 A tool often used to explain deadlocks is called a resource-allocation graph. These

graphs show processes and resources and which processes are waiting for or hold-

ing instances of each resource. An example is shown in Figure 9.6 . Each node in the

graph represents either a process (shown here as a triangle) or a resource (shown as

an oval box). A directed edge is drawn from process B to resource 2 to show that B

is waiting for 2, and from 1 to A to show that A holds 1. If there is a deadlock then

there will be a loop in the graph and it will be obvious from the diagram. In a com-

puter system there is usually more than one instance of a resource. In this case it is

traditional to represent each instance of a resource in the graph as a single dot inside

the resource node. In such a case a loop in the diagram does not necessarily mean

that there is a deadlock because there may still be free instances of each resource

available. Unfortunately, OSs don’t understand pictures, so this technique is not as

useful to them as it is to a human analyst. A programmer can simulate a graph, how-

ever, and write a program to do a search with a graph in mind, but that is not quite

the same thing.

A

FIGURE 9.5

A deadlock in city

traffic.

R-1
P-A

R-2
P-B

Process A is
holding

Resource 1

Process B is
waiting for
Resource 2

FIGURE 9.6

A resource allocation

graph.

 Chapter 9 More Process Management: Interprocess Communication, Synchronization, and Deadlocks 201

 9.4.2 What can we do about deadlocks?

 There are basically four approaches to solving the deadlock problem. First, we can

 prevent deadlocks from ever happening by making sure that one of the necessary

conditions does not exist. Second, we can allow all three conditions to occur, but

 avoid deadlocks by making sure that we do not allocate resources in such a way that

they will ever happen. Third, we can allow deadlocks to happen, detect that they

have happened, and perhaps do something about them. Finally, we can ignore them.

 9.4.3 Prevention

 Preventing deadlocks would involve making sure that one or more of the three neces-

sary conditions for deadlock cannot occur. We address these three conditions in turn.

 Mutual Exclusion

 In a computer system some resources are very clearly not sharable. If one process

is printing the payroll checks on a printer it will not work well for another process

to begin to print an email message on the same printer. (We can simulate simultane-

ous access to a printer by spooling the output. We discuss this further later in this

section.) Similarly, if one process is writing records to a tape drive it will not be

practical for another process to start using the same tape drive. Other resources are

clearly sharable. For example, a network interface card is very likely to be shared

by several applications at the same time. A server might be running several different

services over the same network adapter—perhaps a Web server, a file server, and

an FTP server. Requests can come in randomly from other hosts in the network and

responses can be queued up by the server processes. One might argue that the mes-

sages are not going out together—that the line is not really being used “at the same

time.” However, the point is that no process will ever have to wait for the network to

send data. Assuming enough memory space is available for buffers, no process will

ever enter a deadlock because it is waiting to send data to the network. (It may have

to wait for a response, but that is not the same thing.) Similarly, access to files on a

disk drive is sharable at the software level. Two processes can have files open on a

hard drive and can read from and write to those files on a single drive without wait-

ing for the other process to completely finish with its file processing.

 Some resources are less clear. Consider RAM, for example. One could argue

that RAM is sharable since many processes can be using parts of it at the same

time. However, processes generally are given exclusive access to blocks of RAM

and are not allowed to access blocks allocated to other processes. So in that sense

RAM is really not sharable. However, there are many instances where processes do

share memory, so memory is very difficult to categorize in this regard. With most

OSs access to a single file may be sharable. If we have a spelling dictionary on a

timesharing system each user can be checking spelling on different documents at

the same time. However, if the system is an inventory system and we have several

processes trying to allocate inventory to customers at the same time, the applications

need to lock the files (or at least parts of the files) so that we do not try to ship the

last widget to three different customers. So files are not intrinsically either sharable

or nonsharable. It depends on the use being made of them.

202 Part 3 CPU and Memory Management

 Even with nonsharable devices like printers we can use some mechanisms to

make most uses of a printer a sharable event. The solution is to use spooling. Rather

than write data directly to the printer, the OS will take the data from the application

and temporarily store it in a disk file. Later, when it knows that the printer is avail-

able, has the right forms mounted, and so on, it can actually print the data on the

printer. Since we have removed the mutual exclusion involving printers, we have

removed them from the list of resources that can cause a deadlock. On the other

hand, a deadlock of a sort can occur even with spooling. When an OS is spooling the

printer output for several applications it is temporarily writing the output to disk. It is

entirely possible that the disk space allocated to the spooling fills up. This can once

again leave the system exposed to a possible deadlocked state.

 But the bottom line is that since some resources are intrinsically nonsharable,

removing mutual exclusion is not a generally applicable solution.

 Hold and wait

 There are two ways we can avoid the hold-and-wait condition necessary for a dead-

lock to occur. We can require that a process must request all resources it will ever

need when it starts. For a few simple batch systems this might be possible, but for

most modern applications it is not feasible. There are simply too many combinations

of possible events to make prediction of all requirements practical. Furthermore, in

many cases the 80/20 rule applies—in 80 percent of the cases we will only need a

few resources. In only 20 percent of the cases will we need a big allotment of extra

RAM. If we have to ask for the worst case in advance then most of the time we will

be tying up resources that we will not need.

 The second option is to require that any process that is asking for a resource

must first release all resources it is holding before it asks for any other resources. So,

in our first example, when process B wants to ask for resource 1 it must first release

resource 2 and then ask for resources 1 and 2 at the same time. This set of resources

can’t be allocated because process A has resource 1, so process B will now wait, but

it will no longer be holding resource 2. Process A will eventually get its next time

slice and it will release resource 1 and attempt to allocate resources 1 and 2 at the

same time. Since it currently has the CPU it will be allowed to lock both resources

and will continue. When it is finished with these two resources and releases both of

them, then process B will eventually be put into the ready state and will be granted

both resources and continue. Thus we have prevented a deadlock. However, if an

application was using a nonsharable resource, how could it release it? Furthermore,

this constant releasing and relocking is just too inefficient to use except in the most

trivial circumstances. So, as with mutual exclusion, eliminating hold and wait is gen-

erally not a useful solution to the problem of deadlocks.

 Circular wait

 The last condition of a deadlock is a circular wait. There is a very simple method of

preventing deadlock by not allowing this condition. The solution is to establish an

ordering of all the resources in a system. (There is no real significance to this order-

ing except that it works best if the ordering matches the order in which programs are

 Chapter 9 More Process Management: Interprocess Communication, Synchronization, and Deadlocks 203

most likely to lock the resource.) The next requirement is that all processes must lock

resources in the same order. This will prevent the circular wait condition. Consider

once again the first example. If process A and process B both try to lock resource

1 before they try to lock resource 2, then a deadlock between these two will never

arise. When the second process tries to lock resource 1 it will be forced to wait. This

works just as well if multiple processes and multiple resources are involved.

 Unfortunately, as a general-purpose solution for deadlock avoidance in OSs,

resource ordering is not a practical solution. OS utility programs, third-party soft-

ware, and end user applications all would have to be written with some such standard

in mind and no such standard exists. However, for a development team working on

a large system with multiple concurrently running subsystems, ordering of locks on

resources is a useful technique to avoid creating deadlocks within the application

system itself. So this is an important technique to be aware of, even if it is not a gen-

eral solution to the deadlock problem.

 9.4.4 Avoidance

 So far all our examples of resources have shown a single instance of each resource.

A simple lock can only have one user at a time, a printer can only have one user, and

so on. With other resources there can be many instances of the resource. The most

obvious example is RAM—there are always many blocks of RAM to be allocated.

Similarly, we might have multiple tape drives on which a tape can be mounted. On

a large mainframe we may even have multiple identical printers and not really care

which one we get to use. In studying the avoidance mechanisms, we consider the

more general case where resources can have multiple instances.

 There are two mechanisms for deadlock avoidance. Each of these mechanisms

requires that before a process runs it must provide the OS with a maximum number

of instances of each resource that it will ask for under any circumstances. It might

say that it will only need 543 KB of RAM, one printer, and three tape drives. There

are then two ways the OS can use this number. The first is to use the numbers to

decide whether to run the job at all. When the OS is going to start a job it can look

at the resources it has available right now and see if it can satisfy the maximum

demand that the application might ask for. It might have the printer and three tape

drives it can allocate to the program, but only 506 KB of RAM. If the OS can’t

ensure that it will be able to grant the maximum number of all the resources that

the job might request, then it does not run the job. In this way the OS will avoid

putting itself into a situation where a deadlock can occur. This is certainly safe but

is not a very optimum solution since the job might often run without asking for the

worst case of its resources. This is equivalent to requiring that the process ask for all

resources in advance.

 The second solution is harder, but more nearly optimum. In this case the OS

will start the job without checking the maximum resource allocations, but when the

program asks for any resource the OS will determine whether it knows it will be able

to grant that request and still be able to finish all the other jobs it has running. If the

system can’t safely grant the request that the process has made then it will put that

process into a wait state. A state where the OS knows it can finish running all the

204 Part 3 CPU and Memory Management

currently running jobs even if all the jobs request the maximum amount of all

resources they have said they might use is known as a safe state.

 In the example shown in Figure 9.7 , the OS is monitoring four resources,

A–D. For these resources it currently has unallocated (Available) 1, 5, 2, and 0

instances, respectively. We show these lists of resource counts without commas

for simplicity. There are five processes, 0–4. When these processes started running

they each gave a maximum number of instances of each of the four resources they

might ask for. These are listed in the column titled Max. That is, process 1 said that

at a maximum it would need 1 instance of resource A, 7 of B, 5 of C, and no Ds.

Each process is currently holding some number of instances of each resource, as

listed in the column titled Alloc. As we can see, process 2 currently has allocated

1 A, 3 Bs, 5 Cs, and 4 Ds. The OS can determine that process 1 could not ask for

any more As because it is already allocated as many as it said it would ever need.

If it asked for more we could terminate the job. It could ask for 7 Bs and 5 Cs but

no Ds. These are shown in the column titled Need. The OS can check to see if it

will be possible to finish this set of jobs without a deadlock occurring. We notice

that process 1 will be not be able to finish because it can ask for 7 more Bs and

we only have 5. But process 0 will be able to finish since it can’t ask for anything

more. When it finishes we will recover the resources allocated to the process—in

this case 0 0 1 2. This will leave us with 1 5 3 2. This is shown in the column titled

Work. Now process 1 still can’t finish, but process 2 can finish because its need

is less than our working resources. When it finishes we will recover its resources,

giving us 2 8 8 6. Now process 1 can finish, giving us 3 8 8 6. Similarly, process 3

and 4 can also finish. Since we know that all the processes can finish we know that

the system is in a safe state.

 So in order to avoid deadlocks the OS must check each request by a process for

a resource allocation to make sure that if it grants the request the system will still

be in a safe state. Note that an unsafe state does not mean that we have a deadlock

or that we will definitely have a deadlock. It only means that we might eventually

have a deadlock. By never allowing the system to enter an unsafe state we will avoid

deadlocks. However, we will once again be using the system in a suboptimum man-

ner because we may be making processes wait when they could have successfully

run without a deadlock. The algorithm we just informally described is known as the

Banker’s Algorithm. It was used in an OS known as THE Operating System. How-

ever, for many systems it is impossible to know in advance what every process will

request, so deadlock avoidance is not used in current OSs.

For resources (A, B, C, D): Available: 1 5 2 0

NeedMaxAllocProc
P0 can finish
enough of every thing

P1 can't finish
not enough Bs

0 0 0 1 2 0 0 1 2 0 0 0 0
1 1 0 0 0 1 7 5 0 0 7 5 0
2 1 3 5 4 2 3 5 6 1 0 0 2
3 0 6 3 2 0 6 5 2 0 0 2 0
4 0 0 1 4 0 6 5 6 0 6 4 2

Work

1 5 2 0
1 5 3 2
2 8 8 6
3 8 8 6

. . .

FIGURE 9.7

Showing a safe state.

 Chapter 9 More Process Management: Interprocess Communication, Synchronization, and Deadlocks 205

 9.4.5 Detection

 Our next approach to the deadlock problem is simply to let deadlocks happen, when

a deadlock happens, discover that it happened, and then try to recover from the

deadlock. The main advantage of this approach is that it is optimum in the sense

that it lets all processes try to run and never makes processes wait just to avoid a

possible deadlock.

 If we were actually concerned about detecting resource allocation conflicts with

multiple instances of each resource we could utilize an algorithm similar to the Bank-

er’s Algorithm. Instead of maximum resources yet requested, we would be looking

at the resources currently requested but not yet allocated. If we were not able to find

a “safe state” then we would know that the processes that were unable to finish were

involved in a deadlock. However, no real OS today incorporates such an algorithm.

Instead, they leave it up to the applications to worry about deadlocks since these are

the sorts of deadlocks that are actually encountered. The OS provides an API call that

allows the application to examine the list of all waiting tasks. The application can

then examine all the waits to see if there is a loop in them. This examination is actu-

ally done by a debugger program that is running a user application. If the debugger

finds a loop then the programmers can examine the data and fix the problem.

 9.4.6 Preemption and other real-world solutions

 Some resources are used in such a way that once a process starts using them the pro-

cess needs to finish what it is doing before we can use the resource. Good examples

are writing a file to a tape drive or to a printer (without spooling). Other resources are

different—RAM, for example. If two processes are running and each demands more

RAM than the system can supply, we can temporarily suspend one of the processes,

save all the information it currently has in RAM to secondary storage, and let the

second process have all the RAM. When the second process finishes we restore the

first process into RAM, give it the extra RAM it wanted, and let it continue. This

technique is known as preemption. In Figure 9.5 , we could apply preemption by

having a police officer ask the driver of the car in the lower left corner of the figure

to back it up, preempting its position on the street.

 The next question is then which job(s) should be preempted. The best choice is

usually the one that has the minimum cost—the one with the smallest current RAM

use that is large enough to satisfy the current request, for example. If preempting the

largest process does not free enough resources for the remaining jobs to finish, then

the preemption may need to be repeated with the next smaller process.

 If all the processes involved in a deadlock are waiting on resources that can-

not be preempted, we may have no choice but to abort some or all of the processes.

As unusual as it may seem, the normal choice is to abort all the processes in the

deadlock. Deadlocks are usually a rare event—so rare that it is probably not worth

spending the time to develop more complex algorithms. Plus, the available data on

which to develop such algorithms is sparse. A better choice would be to successively

abort the lowest cost processes until the deadlock disappears. The deadlock detection

algorithm should be run after each attempt.

206 Part 3 CPU and Memory Management

 As was mentioned, the most often used solution is to ignore the problem.

Unfortunately, the deadlocked processes may consume some large amount of

resources. Probably other processes will eventually begin to stop and wait because

of the deadlocks held by the originally deadlocked processes. Eventually, the sys-

tem may stop running any processes. Hopefully, the system operator will notice

this problem and will begin to solve it, probably by aborting jobs until the system

resumes operation.

 In the future it seems likely that OSs will incorporate more mechanisms for

coping with deadlocks. Although the algorithms for detection do require some CPU

and memory resources, deadlocks are very mysterious to users—the system they are

using just appears to hang and they have no idea what to do to fix it or to avoid it in

the future. Computer hardware continues to get more powerful and RAM less expen-

sive. Deadlock detection is being implemented for debuggers and we surmise that

they will find their way into the kernel as a background function in the future.

 9.5 SUMMARY

 In this chapter, we discussed the nature of systems

that are comprised of multiple cooperating pro-

cesses. We started this chapter with an examination

of the reasons why systems are often built this way,

a trend that seems to be increasing. We looked at

the mechanisms that processes use to communicate

with one another. We then studied the problems that

arise when each of two processes is trying to access

data that the other process is (or may be) accessing

at the same time. We described some tools that have

been developed to allow processes to synchronize

their activities so that these issues can be avoided.

Finally, we discussed another class of problems

called deadlocks that can arise when multiple pro-

cesses use the synchronization mechanisms to lock

resources. We described four theoretical mecha-

nisms for keeping deadlocks from bringing our

systems to a halt.

 In the next chapter we cover management of

primary system memory.

 BIBLIOGRAPHY

 Ben-Ari, M., Principles of Concurrent Programming.

Englewood Cliffs, NJ: Prentice Hall, 1982.

 Bernstein, A. J., “Output Guards and Nondeterminism

in Communicating Sequential Processes,” ACM

Transactions on Programming Languages and

Systems, Vol. 2, No. 2, 1980, pp. 234–238.

 Brinch Hansen, P., “Structured Multiprogramming,”

 Communications of the ACM, Vol. 15, No. 7, July

1972, pp. 574–578.

 Brinch Hansen, P., Operating Systems Principles.

Englewood Cliffs, NJ: Prentice Hall, 1973.

 Coffman, E. G., Jr., M. J. Elphick, and A. Shoshani,

“System Deadlocks,” Computing Surveys, Vol. 3,

No. 2, June 1971, pp. 67–78.

 Courtois, P. J., F. Heymans, and D. L. Parnas,

“Concurrent Control with Readers and Writers,”

 Communications of the ACM, Vol. 14, No. 10,

October 1971, pp. 667–668.

 Dijkstra, E. W., “Co-operating Sequential Processes,” in

F. Genuys (Ed.), Programming Languages. London:

Academic Press, 1965, pp. 43–112.

 Dijkstra, E. W. EWD 126: The Multiprogramming System

for the EL X8 THE (manuscript), 14 June 1965.

 Dijkstra, E. W., “Solution of a Problem in Concurrent

Programming Control,” Communications of the

ACM, Vol. 8, No. 5, September 1965, p. 569.

 Chapter 9 More Process Management: Interprocess Communication, Synchronization, and Deadlocks 207

 Dijkstra, E. W., “Hierarchical Ordering of Sequential

Processes,” Acta Informatica, Vol. 1, 1971,

pp. 115–138.

 Eisenberg, M. A., and M. R. McGuire, “Further

Comments on Dijkstra’s Concurrent Programming

Control Problem,” Communications of the ACM,

Vol. 15, No. 11, November 1972, p. 999.

 Habermann, A. N., “Prevention of System Deadlocks,”

 Communications of the ACM, Vol. 12, No. 7, July

1969, pp. 373–377, 385.

 Havender, J. W., “Avoiding Deadlock in Multitasking

Systems,” IBM Systems Journal, Vol. 7, No. 2, 1968,

pp. 74–84.

 Hoare, C. A. R., “Towards a Theory of Parallel

Programming,” in C. A. R. Hoare (Ed.), Operating

Systems Techniques. New York: Academic Press,

1972, pp. 61–71.

 Holt, R. C., “Some Deadlock Properties of Computer

Systems,” ACM Computing Surveys, Vol. 4, No. 3,

September 1972, pp. 179–196.

 Howard, J. H., “Mixed Solutions for the Deadlock

Problem,” Communications of the ACM, Vol. 16,

No. 7, July 1973, pp. 427–430.

 Isloor, S. S., and T. A. Marsland, “The Deadlock Problem:

An Overview,” IEEE Computer, Vol. 13, No. 9,

September 1980, pp. 58–78.

 Kessels, J. L. W., “An Alternative to Event Queues for

Synchronization in Monitors,” Communications of

the ACM, Vol. 20, No. 7, July 1977, pp. 500–503.

 Knuth, D., “Additional Comments on a Problem in

Concurrent Programming Control,” Communications

of the ACM, Vol. 9, No. 5, May 1966, pp. 321–322.

 Lamport, L., “A New Solution to Dijkstra’s Concurrent

Programming Problem,” Communications of the

ACM, Vol. 17, No. 8, August 1974, pp. 453–455.

 Lamport, L., “Synchronization of Independent Processes,”

 Acta Informatica, Vol. 7, No. 1, 1976, pp. 15–34.

 Lamport, L., “Concurrent Reading and Writing,”

 Communications of the ACM, Vol. 20, No. 11,

November 1977, pp. 806–811.

 Lamport, L., “The Mutual Exclusion Problem: Part I—A

Theory of Interprocess Communication,” Journal of

the ACM, Vol. 33, No. 2, 1986, pp. 313–326.

 Lamport, L., “The Mutual Exclusion Problem: Part II—

Statement and Solutions,” Journal of the ACM,

Vol. 33, No. 2, 1986, pp. 327–348.

 Lampson, B. W., and D. D. Redell, “Experience with

Processes and Monitors in MESA,” Communications

of the ACM, Vol. 23, No. 2, February 1980,

pp. 105–117.

 Levine, G. N., “Defining Deadlock,” Operating Systems

Review, Vol. 37, No. 1, pp. 54–64.

 Newton, G., “Deadlock Prevention, Detection, and

Resolution: An Annotated Bibliography,” ACM

Operating Systems Review, Vol. 13, No. 2, April

1979, pp. 33–44.

 Patil, S. S., “Limitations and Capabilities of Dijkstra’s

Semaphore Primitives for Coordination among

Processes,” M.I.T. Project MAC Computation

Structures Group Memo 57, February 1971.

 Peterson, G. L., “Myths About the Mutual Exclusion

Problem,” Information Processing Letters, Vol. 12,

No. 3, June 1981, pp. 115–116.

 Raynal, M., Algorithms for Mutual Exclusion. Cambridge,

MA: MIT Press, 1986.

 Zobel, D., “The Deadlock Problem: A Classifying

Bibliography,” Operating Systems Review, Vol. 17,

No. 4, October 1983, pp. 6–16.

 WEB RESOURCES

 http://boinc.berkeley.edu (SETI and BOINC)

 http://research.microsoft.com/~mbj/Mars_Pathfinder/

Mars_Pathfinder.html

http://www.softpedia.com/get/Others/Home-Education/

Deadlock-Avoidance-Simulation.shtml

http://webscripts.softpedia.com/script/

Development-Scripts-js/Complete-applications/

Banker-s-Algorithm-Demonstration-15119.html

208 Part 3 CPU and Memory Management

 REVIEW QUESTIONS

 9.1 We listed eight reasons why it is sometimes desir-

able to have a system separated into different pro-

cesses, sometimes running on different machines.

For each of these reasons, give a different exam-

ple than was given in the text.

 a. Performance -

 b. Scaling -

 c. Purchased components -

 d. Third-party service -

 e. Components of multiple systems -

 f. Reliability -

 g. Physical location of information -

 h. Enable application -

 9.2 For each attribute of interprocess communication

mechanisms there were various alternatives for

that attribute. Discuss some good and bad points

for the alternatives for the following attributes:

 a. Multiple or single connections possible -

 b. Naming strategy -

 c. Connection oriented or connectionless -

 d. Persistent or transient -

 e. Number of processes -

 9.3 True or false? Pipes are an example of a blocking

communication mechanism.

 9.4 True or false? Sockets are an example of a persis-

tent communication mechanism.

 9.5 What is the big problem with shared memory IPC

mechanisms?

 9.6 Why are synchronization problems so difficult to

debug?

 9.7 What is the special feature of all the hard-

ware locking instructions that we discussed for

synchronization?

 9.8 Why do applications not use spin-locks? What do

they do instead?

 9.9 What are the normal names of the locking and

unlocking system calls?

 a. Lock and unlock

 b. Set and clear

 c. Wait and signal

 d. Enter and exit

 e. None of the above

 9.10 There are special semaphores called counting sema-

phores. What kinds of things are they used for?

 9.11 True or false? When running on SMP systems,

applications must take special precautions to

make sure that the values of any locks are seen by

all CPUs.

 9.12 Briefly describe the concept of priority inversion.

 9.13 What caused the development of monitors in

high-level languages?

 9.14 There are three conditions for a deadlock. What

are they?

 9.15 We said that for a deadlock to happen there had

to be a sequence of processes, each holding a

resource and waiting on another resource that

was held by another process, with the last pro-

cess waiting on a resource held by the first pro-

cess. How many processes does it take to create a

deadlock?

 9.16 Some devices are not sharable, but we have found

a way to make a virtual device that allows us to

pretend that we are sharing them. What is that

mechanism?

 9.17 Ordering of locks on resources can eliminate cir-

cular waits and thus eliminate deadlocks. When is

this technique applicable and when is it not?

 9.18 We discussed two different types of avoidance. In

general, what’s wrong with avoidance?

 9.19 The algorithms for deadlock detection are well

known and not too hard to write. So why do we

not use them more often?

 9.20 What is the case where preemption is easy to do

and works well?

 Problems possibly requiring further reading:

 9.21 Modern OSs use several different kinds of sema-

phores for different purposes. Pick a modern OS

and name some of the different types of semaphores

they support with a brief explanation of each.

 9.22 There are several classic problems involved in syn-

chronization. We described two. What were they

and what other classic problems can you find?

209

 Chapter Chapter 10 10
 Basic Memory
Management

In this chapter

 10.1 Introduction: Why Manage Primary Memory? 209

 10.2 Binding Model: Steps in the Development Cycle 210

 10.3 A Single Process 211

 10.4 Multiple Processes with a Fixed Number of Processes 216

 10.5 Multiple Processes with a Variable Number of Processes 218

 10.6 Summary 223

10.1 INTRODUCTION: WHY MANAGE PRIMARY MEMORY?

 In the last two chapters we discussed one of the main jobs that an OS has to do: man-

aging processes running on the CPU. In this chapter we discuss the second main job

of the OS: managing primary memory. As with all system resources, the OS attempts

to manage the primary memory of the system. Usually primary memory is random

access memory (RAM) made of electronic circuits. 1 The basic goal of memory man-

agement is to allow as many processes to be running as possible. The OS provides

API functions to allow us to allocate, access, and return memory. When memory is

allocated to processes, the OS must keep track of which parts of the memory are

free, which parts are allocated, and to which processes they are allocated. The OS

sometimes may also preempt memory from processes. In this case it must be pre-

pared to save the current contents of the primary memory on secondary memory, to

track where the contents are stored for each part of each process, and to restore the

contents of primary memory when the preempted process is resumed.

1 Systems have been built with other types of primary memory. Early systems used acoustic waves in
tanks of mercury or rotating drums, for example. For some years almost all computer systems used the
polarity of magnetization in iron oxide cores to store bits. The phrase “core dump”—a printout of the
contents of the memory allocated to a program that had crashed—comes from this era. This memory had
the property that it retained its contents even when the power was turned off. This strikes us as a peculiar
property today since we normally presume that primary memories are volatile.

210 Part 3 CPU and Memory Management

 In most situations the OS will try to manage memory in ways that are transparent

to the application. However, we note later in the next chapter that in some cases the

transparency is not complete. Naive use of memory services can sometimes cause prob-

lems for a large system that is trying to optimize performance. Indeed, one of the main

reasons we study OSs is to gain the information and understanding necessary to get past

such problems.

 Having discussed why we want to manage memory, in Section 10.2 we show the

traditional model of the cycle of developing and running a process and the steps in

the binding of a reference to an item in a program to the physical memory location

where that item is stored. We later use these steps to explain the various memory

management mechanisms. We then discuss memory management in progressively

more complex situations, starting with a single process in Section 10.3 and discuss-

ing such aspects as relocation and overlays. We then move to situations where mul-

tiple processes are involved, again discussing gradually more complex mechanisms,

including operating with a fixed number of processes in Section 10.4 and with a vari-

able number of processes in Section 10.5. We end with a summary of the chapter.

 10.2 BINDING MODEL: STEPS IN THE DEVELOPMENT CYCLE

 First, let us describe the standard model of the steps of building an application, loading

it into memory, and running it. In the later sections of the chapter we use this model to

explain the common features of how an OS manages the way a process uses memory.

 There are really five steps in the sequence of events that result in a process in

execution in memory. First, we write (or code) the program. Usually this is done

with some symbolic language, either a lower-level assembly language or a higher-

level problem-oriented language. Second, we use a translator program (usually an

assembler or a compiler but occasionally an interpreter) to translate this symbolic

program into a sequence of instructions for the target machine, creating an “object

module.” Normally this object module is not ready to run yet. In the third step, we

 link that module with similar modules that were created separately. Those modules

might be other modules we created. They may also be library modules that we pur-

chased or that came with the OS. Fourth, we load the program into memory, and

fifth we actually run the program.

 A word of caution about the names of these steps: Historically there have been

many different software packages designed to assist a programmer in implementing

a program. Because different systems were used to solve different problems in dif-

ferent environments, the capabilities of some of these steps have sometimes been

combined into a single model. The function we described as combining the modules

together is most often called linking and the function of bringing the process into

memory is usually called loading. Sometimes, however, these functions have been

done in one step. In other literature you may see either word used to describe either

step or to a combination of both of these steps at one time.

 Let us suppose that we are creating a process that consists of two modules. We

have a main procedure that we call a subroutine named XYZ that we have written

earlier. As we go through progressively more complex models, the idea we focus on

 Chapter 10 Basic Memory Management 211

is a question of binding. Binding is the process of determining where in the physical

memory the subroutine should go and making the reference in the main routine point

to the subroutine. However, binding occurs with all references to items that are not a

part of our main program, not just with subroutines, but including data items as well.

 10.3 A SINGLE PROCESS

 10.3.1 Binding at coding time

 In a very simple environment like an embedded system with a very tiny BIOS, we

might manually decide where each piece of the program was going to go. We might

put the main module at location 100 and the subroutine XYZ at location 500. If we

coded the main module in assembly language we might include assembler directive

like ORG 100 and in the subroutine we might include an ORG 500. These direc-

tives cause the assembler to generate code that absolutely references these memory

addresses. In our main module we would know that the subroutine XYZ was going

to be at address 500, so instead of issuing a call to XYZ we could actually issue the

call to location 500. In this case we have made the binding decision during the cod-

ing step and have told the assembler of this through the ORG directives. As unlikely

as this might seem to us today, it is by no means an extreme example of early bind-

ing. Here are three extreme examples:

 When computers were first developed, and again when minicomputers and personal

computers were first developed, the first systems had very little software and few

peripherals. Programmers not only assigned the addresses manually, they wrote the

programs in machine language and even entered them into the memory manually

by manipulating switches and buttons on the front panel of the machines. In some

machines there were peripheral devices that used a fixed memory address as a buffer

so that the programmer did not even have a choice. Needless to say, having pro-

grammers allocate memory manually was error-prone and time-consuming. It was a

phase that didn’t last long.

 The IBM 650 had a primary memory that was a rotating drum. The instructions

took a variable amount of time to execute. While the instruction was executing, of

course, the drum continued to rotate. As a result, each instruction included a field

that gave the address of the next instruction. The programmer had to try to optimize

the program by placing the next instruction in the location that would be coming up

next under the drum’s read head when the current instruction finished. Obviously

that phase didn’t last long either. An assembler called SOAP, Symbolic Optimizing

Assembler Program, was developed at Columbia University. Its main job was the

optimum placement of the instructions on the drum.

 When programs were routinely punched into cards and no magnetic tapes or

rotating memories were available, it was a fairly complex process to load the assem-

bler program into memory, feed in the source program, obtain an object module

punched into cards, load the linker program into memory, feed that object module to

the linker, punch out an executable program, and finally load the object program into

the computer and run it. As a result, it was common to patch executable programs

that had been punched into cards. The assembler listings included the machine lan-

guage that was output for each instruction. This allowed the programmer to find the

212 Part 3 CPU and Memory Management

card containing an incorrect instruction, load it into a keypunch, and fix the program

by changing the machine language. Unfortunately, that practice did continue for

some time, and it was also error-prone. Programmers would insert multiple patches

in a card deck. Eventually the number of patches would become unwieldy, so the

programmer would go back to the source deck, make all the changes to the source

program, and do the reassembly. Unfortunately, it was all too easy to miss one of

the changes to the source, so it was not uncommon to find oneself fixing bugs in the

source code that one had already fixed with a patch.

 10.3.2 Binding at linking time

 In the environment of CP/M, all programs were supposed to start at location 100, so

we might include the ORG 100 statement in the main module. However, we prob-

ably did not care where subroutine XYZ ended up, so in our main routine we use the

symbolic name XYZ. When the assembler outputs our object module, it includes all

of our instructions and data, but it also includes information that will tell the linker

program that we have some references that it needs to fix up, or link. After the linker

processes our main routine it will have a list of names that it needs to resolve. It

will then begin to process other modules we told it to include. As it includes these

modules in the load step, it will find in those modules the names that were defined

in them. In this case, “XYZ” will be defined in one of the modules that we tell the

linker to process. When the linker figures out where the module XYZ will reside

in our address space, it will go back and link (or bind) the references in the main

module to the addresses in the subroutine module. Now we have made the binding

decision at link time rather than at coding time. Notice that when we put off the bind-

ing until a later step we gain somewhat in flexibility. If we decided at coding time

to put module XYZ at location 500 and we later found that we needed to move it to

some other location, we have to go to a lot of trouble to change all the references to

that address. Letting the linker decide where to put the module makes it easier. How-

ever, we pay a little for the increased flexibility. In this case we are carrying around

extra information in the object modules that define the names and the references to

the names, and we spend a little extra time in the link step while it does the binding.

As computers have gotten bigger and faster, however, this extra time and space has

become such a small price to pay that we most likely don’t even give it a thought.

 10.3.3 A single process

 In the CP/M environment, the OS resided at the top of memory. Application programs

started at location 100 to avoid the interrupt vector in low memory, and grew upward.

Unfortunately, as the operating system grew (and it always does) it might eventually

get so big that an upgraded OS might be using the memory that was needed by a

program that had been running fine before the upgrade. It would now crash and it was

probably not obvious what the problem was. MS-DOS, therefore, took a different

tack: The OS was loaded into low RAM and the program was loaded above it. When

the application tried to load, if there was enough memory left over, then the program

would load and run. If not, then at least the failure was clearly defined. Initially, when

one created an application program under MS-DOS, one linked the program to run

 Chapter 10 Basic Memory Management 213

on a specific release of the OS. This step defined the address of the service routines in

the OS and the address at which the application should begin loading. Unfortunately,

this meant that when a release of MS-DOS came out that changed the absolute size of

the resident OS, all applications had to be relinked to run on the new release.

 Many mainframe OSs had similar architecture, but they employed additional hard-

ware to protect themselves. In Figure 10.1 we see a typical early OS architecture for

a mainframe that ran only a single process. The executable program would be created

to reside at a particular address that was above the OS kernel. In addition, a base reg-

ister would be loaded with an address below which the executable program could not

address. If the program did reference memory below this address, an interrupt would

be generated and the program would be terminated. Such systems still had the problem

that if the OS grew then the programs had to be linked with new addresses. The solu-

tion to this problem was to change the function of the base register somewhat.

 10.3.4 Dynamic relocation

 This change in function also resulted in a change in name. What had been called a

base register was now called a relocation register, as shown in Figure 10.2 . The

value loaded into the register was no longer a limit. Instead, the executable program

was created to act as though it were located at address 0, and the value in the reloca-

tion register was added to every memory reference made by the program. Now the

program did not have to be relinked every time the OS changed since every memory

reference is automatically relocated as the program runs.

Application
Program

Resident
Monitor

high memory

low memory

Base Register

FIGURE 10.1

A single-process OS.

Application
Program

Application
Program

Resident
Monitor

high memory

low memory

Physical address
10000

Logical
address 0

Relocation
Register

FIGURE 10.2

A single-process

OS with relocation

hardware.

214 Part 3 CPU and Memory Management

 10.3.5 Physical RAM space versus logical RAM space

 This new relocation function introduces an important concept: the difference between

the logical address space and the physical address space. Originally when we com-

piled a program we created a program that was to be loaded into RAM at the address

that was assigned to it either in the translation step or the linking step. The execut-

able program was compiled to reference a range of addresses that corresponded one

to one with the actual physical memory addresses. Though it was not clear at this

point in the evolution of the hardware, there were actually two different address

spaces in use. The first address space is the set of addresses that the CPU would gen-

erate as the program executed. This address space is called a logical address space.

We loaded the executable program into the primary memory. The set of addresses

used to access this memory is known as the physical address space. When we intro-

duced the relocation register it became clear that the program’s logical address space

and its physical address space were different. We see this illustrated in Figure 10.2 .

The executable program on the disk was created so that it generated addresses with

a low address of zero. But when it was located into memory it was actually loaded

into physical memory address 10000. The memory address hardware dynamically

relocated the logical addresses generated by the program as it ran, and by adding the

value in the relocation register it mapped the logical address space into the physical

address space. Figure 10.3 shows a more specific example of the process. The appli-

cation as it is running in the CPU generates a memory reference. This might be the

address of the next instruction in the program, a subroutine call, a reference to a data

item, or many other things. In this case the reference is to address 456 in the logical

address space of the program. The OS, however, has loaded the relocation register

with the physical address of the start of the program, in this case 10000. The memory

hardware adds the value in the relocation register to the logical address and generates

the physical address of 10456.

 10.3.6 Programs larger than memory

 As time has gone by, RAM has gotten much cheaper. But at one point primary mem-

ory was a very large part of the total price of a system. As a result, most early sys-

tems had fairly small primary memories. It was quite common to have a mainframe,

minicomputer, or early microprocessor with a primary memory measured in Kilo-

words or Kilobytes rather than Gigabytes. Programmers spent a lot of time trying

CPU

10000

10456

456

Relocation
Register

Physical address

Logical addressFIGURE 10.3

The memory

address hardware

dynamically maps

the logical address

space into the

physical address

space.

 Chapter 10 Basic Memory Management 215

to squeeze more function or more information into very small memories. It was this

pressure that lead to the Y2K problem, for example. Since it was going to be 30 years

or so before years started with anything but “19,” why waste memory on storing

those two extra digits in every date? Today we may still have to deal with embedded

systems that have limited primary memory. But typically this is now done for rea-

sons of space or power requirements, not because of the price of the memory.

 10.3.7 Overlays

 Programmers often needed to add functions to programs that ran in these small

memories. It was (and still is) fairly common to have a program that has three parts:

an initialization phase, a main computation loop, and some final reporting phase.

Programmers realized that these parts of a program didn’t need to be in memory at

the same time, so they decided to let these parts of the program overlay one another

in memory. Figure 10.4 shows such a program. The main portion of the program is

just a series of calls to subroutines that implement the three phases, perhaps “init,”

“main-loop,” and “wrap-up.” OS function calls would be added to the program to

load the appropriate subroutine before the call was made. The main portion was

always in memory and the other phases were brought in before they were called. In

elaborate interactive systems this could get to be a bit tricky. A simple program like

an assembler or compiler might easily fit into memory without using overlays, but

having it broken into phases allowed the translator to process larger source programs

in a given memory space.

 10.3.8 Swapping

 As the price of main memory began to fall relative to the rest of the machine, the

administrators of the machine looked at what was going on and realized that with

only one program running they were not getting very good utilization of their very

expensive system. Some programs would do a little I/O and compute for a long time

and others would mainly do I/O with very little CPU execution because the program

“init”

“init”

“main-loop”

“wrap-up”

Call “load” (“init”)
Call “init”

Call “load” (“main-loop”)
Call “main-loop”

Call “load” (“wrap-up”)
Call “wrap-up”

Resident
Monitor

Application
Program Main

portion

FIGURE 10.4

A program with

overlays.

216 Part 3 CPU and Memory Management

was always waiting on the I/O to complete. Some techniques like SPOOLing grew

out of this situation. In a single-process batch system the OS could read in the cards

that contained the next programs to be run and the associated data and store them on

the disk. This reading would be overlapped with the execution of the current job. As

the job tried to print its output the print lines would be stored in a disk file and the

actual printing would be overlapped with the processing of the following jobs.

 But in the long run it was realized that even SPOOLing was not enough—there

was still much waste in lost CPU cycles and lost I/O time. It began to look like the

solution was to run several programs at the same time. Hopefully, some would be

computing while others were doing I/O and the whole machine would stay busier.

This was quite desirable when the machines cost a million dollars. By this point in the

history of computing most systems had a secondary memory comprised of magnetic

disks or drums. The first technique was to keep several programs running by swap-

ping them out. This worked as shown in Figure 10.5 . The figure shows program A

running in the main memory. This program calls for a line to be printed on the printer,

an operation that will take hundredths of a second at least. In this time we can do a

lot of disk I/O and a lot of computing, so we would swap program A out by writing

the contents of the primary memory to the disk and swap in program B. We would let

it run until it issued an I/O to a slow device and then we would swap it back out and

bring back in program A. Swapping is sometimes called roll-out/roll-in. Obviously

the time to wait on the I/O operation must be greater than the time for the swap, but

with direct memory access hardware swapping a contiguous block of memory can be

very fast and places little overhead on the CPU.

 10.4 MULTIPLE PROCESSES WITH A FIXED NUMBER
OF PROCESSES

 Even the technique of swapping was not enough however, and the owners of these

expensive machines wanted to get more work done for the money they were spend-

ing. So the OS designers began to search for better ways to organize the processing.

Program A

Resident
Monitor

Application
Program

Program A

Program B

Program C

FIGURE 10.5

An OS with

swapping.

 Chapter 10 Basic Memory Management 217

Primary memory was continuing to get cheaper, so they began thinking about ways

to keep multiple programs in primary memory and run more than one by alternat-

ing between them without swapping them out—swapping being an operation that

requires lots of resources. Eventually they realized that the relocation register could

run a program anywhere, not only at the top of the resident OS. So they moved to an

OS memory organization like that shown in Figure 10.6a . At first the base register

had been used to keep applications from harming the OS. Then the use of this regis-

ter was changed to a relocation register, primarily to solve the problem of the growth

of the OS. Now when the OS is running multiple programs and one program does an

I/O operation to some slow device, the OS simply puts the memory address of the

second program in the relocation register and starts to run the second program. This

situation is shown in Figure 10.6b . (It does more than that, but here we are focused

just on the memory aspects.)

 At this point we progressed to where there were other applications running in the

primary memory, so it was necessary to fix things so that the applications couldn’t

harm one another. The solution was to add a limit register that would establish an

upper bound beyond which a program could not address, just as it couldn’t address

below the relocation register setting. One might expect that this would be simply

another register that contained the high address, but for reasons we address later it

is almost universally true that this register instead contains the size of the program

rather than the high address. The hardware adds this address to the relocation address

on the fly to establish the upper bound. As with the lower bound, if the program tries

to access memory beyond the limit set by the limit register, the hardware will gener-

ate an addressing error interrupt and the OS will abort the application. So when the

OS shifts from running one program to another it must now set both the relocation

register and the limit register.

 10.4.1 Internal fragmentation

 When this type of OS is installed the administrator will decide how much memory to

set aside for each program area, or partition. The OS will not change the size of these

partitions as the system runs. With the earlier OS models a program might not use all

of the memory. If it didn’t use it all then we didn’t worry about it. Now the OS is try-

ing to put more programs into the same memory. If we have set aside 100 KB for each

partition and we want to run a program that only needs 6 KB, then we are wasting the

rest of the space in that partition. This unused space is called internal fragmentation

Application
Program 2

high memory

low memory

(a) Application 1 running (b) Application 2 running

Relocation Register

Limit Register
Application
Program 1

Resident
Monitor

Application
Program 2

Application
Program 1

Resident
Monitor

FIGURE 10.6

A multiple-process

OS with a fixed

number of

processes.

218 Part 3 CPU and Memory Management

and is shown in Figure 10.7 . We might set up a small partition or two to run small

quick jobs and a larger partition or two for our big applications. This would tend to

minimize the space wasted due to internal fragmentation. If the administrator is clever

about setting up the partition sizes, then the programs that are running will come close

to filling primary memory and we will have a better chance of keeping that expensive

hardware fully utilized.

 10.4.2 Time Sharing

 Another case where swapping is utilized is in systems that are designed to support

many users at terminals in a mode called time sharing. When users are interactively

editing programs and testing them, the vast majority of the time that process is wait-

ing on the user at the terminal. In this case the system can swap out the process

while the user is thinking or keying. In the case that was described in Section 10.3

there was only one partition and thus only one process actually executing. Any other

processes could be swapped out to secondary storage. In the case of time sharing

it is more likely that we will have several partitions, perhaps even many partitions.

We might keep in memory only the ones that are not waiting for the user to finish

entering a line and are either running, ready to run, or waiting on something other

than terminal I/O. The fixed size of the partitions wastes memory, of course. Recall

the internal fragmentation that we just discussed. In that case we only had fragmen-

tation of a single partition. Now we have internal fragmentation in every partition.

We would like to be able to use those fragments. If we saved enough memory then

maybe we could run another program and keep the CPU busier. Although these tech-

niques worked well enough for the time, modern time-sharing systems generally use

techniques described in the next chapter.

 10.5 MULTIPLE PROCESSES WITH A VARIABLE NUMBER
OF PROCESSES

 A partial solution to that internal fragmentation is to not make the partitions fixed

in size or in number. Instead, we use as much memory as we need to run a pro-

gram. We require that a programmer estimate in advance of running the program the

Application
Program 1

Top of
Application
Program 1

Internal
Fragmentation

Resident
Monitor

Partition 1

Partition 2

FIGURE 10.7

Internal

fragmentation.

 Chapter 10 Basic Memory Management 219

maximum amount of primary memory that the program will need. When we start

the program we allocate that much memory to the program. If the program tries to

use more memory than the programmer said it would, then the OS will end it with

an error. When a program ends the OS will again make that memory available to

run another program. This space is normally referred to as a hole, or sometimes an

 external fragment —a block of memory that we are currently not using at all. In

 Figure 10.8a we see a situation where the system is currently running four applica-

tions. In Figure 10.8b we see that applications two and four have ended, so the holes

where they were running are now available for use in running other programs. The

OS usually keeps a list of the holes available. In Figure 10.8c we see that the OS has

started application 5 in a part of the hole left where application 2 was running. There

is now a smaller hole left over.

 Now suppose that the OS has another program to run and there are many holes

available to choose from. Which hole should the OS choose? As with most of the

algorithm classes we study in this book, the first algorithm is simply to scan through

the list of holes and use the first one we find that is big enough to run the program.

This algorithm is called first fit. It has the advantage of being simple. But this may

not be the best choice. Another algorithm is to use the hole that is the smallest that

will fit the program we want to run. This algorithm is called best fit. It has an intui-

tive appeal—we waste the smallest amount of primary memory. Unfortunately, this

algorithm requires that we either scan the entire list or keep the list in order by size.

Either requires extra processing.

 But what if our average program needs 10 MB, we have a program to run that

needs 8 MB, and we have holes of 12 MB and 18 MB? If we use the 12 MB hole

then we will have a leftover hole of 4 MB and on average we will not be able to use

it. If we use a part of the 18 MB hole then we will have a 10 MB hole left and we

will be able to use it, on average. So the next algorithm says that we should use the

hole that is the worst fit on the grounds that it leaves the biggest (and therefore most

useful) hole. Again, this algorithm requires that we either scan the entire list or keep

it in order by size.

Application
Program 1

Application
Program 2

Application
Program 3

Application
Program 4

Resident
Monitor

(a) 4 jobs running

Application
Program 1

Application
Program 3

unused unused

unused

Resident
Monitor

(b) Jobs 2 and 4 ended

Application
Program 1

Application
Program 5

Application
Program 3

Resident
Monitor

(c) Jobs 5 goes in a hole

unused

FIGURE 10.8

A multiple-process

OS with a variable

number of

processes.

220 Part 3 CPU and Memory Management

 A slight variation on the first fit algorithm is called next fit. In this variation we

do not start each search from the front of the list. We do not keep the list sorted, and

we always start the next search from where the last one left off. The first fit algorithm

will tend to break up the holes at the front of the list the most, so we will end up with

a bunch of small holes that we keep looking through but can seldom use. The next fit

variation will tend to distribute this fragmentation through the list. In practice, worst

fit turns out to be worst. Either best fit or next fit are better, and next fit is very easy

to implement.

 Now suppose that we have two holes that are each 5 MB and we have a process

to run that says it may need 8 MB. We have 10 MB of free memory blocks in the two

holes, enough free memory in total to run this process. But the free memory is not

in one piece so we can’t run the program. This situation is known as external frag-

mentation. Recall that our processes are relocatable—they can run anywhere in the

physical memory because the memory hardware relocates their logical addressing

space dynamically as they run. So, it is possible to move a program in memory even

after it has started running. Normally, the process is suspended, moved to another

location and restarted. The OS only has to change the value that is placed in the

relocation register to point to the start of the new location of the application in physi-

cal memory. For example, in Figure 10.9a , if the two holes (marked “unused”) were

together big enough to run application 6, the OS could stop application 3, move it

to the space just above application 5, and put that address in the relocation register

whenever application 3 was restarted, It could then start application 6 running in

the resulting larger hole. This result is shown in Figure 10.9b This process is called

 compaction. Naturally, the situation is usually much more complex than this simple

case, and often several programs have to be relocated to find a hole large enough to

run the program we want to run. One can appreciate that when the OS is moving pro-

grams around in memory, no work is being done on behalf of the applications. The

OS is choosing to spend the CPU and memory bandwidth for the purpose of running

more jobs in parallel.

unused

Application
Program 1

Application
Program 5

Application
Program 3

Resident
Monitor

(a) There is enough RAM for Application 6
but the holes are not contiguous

unused

unused

Application
Program 1

Application
Program 5

Application
Program 3Relocation

Register

Resident
Monitor

(b) Application 3 is relocated to
bring the two holes together

FIGURE 10.9

Compaction.

 Chapter 10 Basic Memory Management 221

 Now we can appreciate why the relocation hardware uses a length for an upper

bound instead of using the upper end of the program. If it used the upper address then

when we relocated a program we would also have to recompute the upper bound.

This is not an overwhelmingly complicated calculation, and it does not need to be

done all that often, but if the hardware can work just as well the other way then we

are lucky not to have to do it.

 One complication in this process can be that the I/O hardware may not utilize

the relocation hardware. In other words, I/O is done using physical addresses rather

than logical addresses. This means that if a process has I/O pending, then we cannot

move it in memory. So processes that start I/O may have to be marked temporarily

as unmovable.

 We also may still suffer from internal fragmentation. This comes about because

our holes can keep getting smaller and smaller. It is not efficient for the OS to keep

track of very small chunks of memory, so there is some minimum amount of mem-

ory that the OS will try to manage. It is common for this minimum to be in the range

of 256 bytes to 4 KB. When the program starts it will be allocated a block of memory

that is an integral multiple of this minimum piece. On the average, any program will

not need half of its last piece, so it will go to waste—internal fragmentation.

 10.5.1 Dynamic loading

 With overlays we do not load the entire program into primary memory at one time.

Instead, the programmer explicitly decides when to load the overlays and when

to call the routines that are in the overlay. It is also possible for the system to do

something similar. When the OS loads a program into main memory it might load

into memory only the main body of the program. To access various subroutines

it might make use of a table that shows which routines are already loaded into

memory and which are not. Many programs follow roughly the “80-20” rule—80%

of the code of a program is for situations that only happen 20% of the time. So if

we don’t load the subroutines when the program first starts we might never need to

load them at all. Therefore, the program starts somewhat faster. If the program later

calls the routine then we can load it at that time and we will have paid very little

penalty for waiting—a small bit of RAM for the table and a few extra instructions

executed whenever we first call the routine.

 10.5.2 Dynamic link libraries

 We can, however, postpone the binding even a step further. We can put off even

linking the subroutine with the main module. In this case the library routine itself

does not become a part of the executable program. Instead, we leave intact the sym-

bolic reference to the library routine that was produced by the compiler. As with

dynamic loading, if the routine is never referenced, then not only did we not bother

to load it into memory, we didn’t even bind the symbol to a logical address. We

leave the subroutines in special libraries that are usually called dynamic link librar-

ies, or DLLs. In Linux and most other UNIX variants such libraries are referred to

222 Part 3 CPU and Memory Management

as shared object libraries or dynamic libraries and normally have “.so” as a part of

their name. When a subroutine in such a library is referenced, then the OS will load

the routine into memory and bind the link at program execution time.

 Notice that we get several other benefits from this mechanism at the same time:

 ɀ Since the subroutines are not a part of the executable program, the program is

smaller so it take up less space on the disk drive and loads faster into RAM.

 ɀ Normally, we will have many programs that use the same library modules. Some

library modules are so commonly used that they will be referred to by literally

thousands of programs on the hard drive. Having only one copy of the code can

save us a lot of disk space.

 ɀ If a bug is fixed in one of the library modules it is only necessary to fix the one

library routing and load it onto the system. This will automatically fix that bug

in every program that references that DLL.

This last feature is a great boon to application software developers because it

means that if a fix is made to a system library by the OS manufacturer, the appli-

cation developer does not have to reload their application with the new libraries

and redistribute the executable programs to every customer who is running that

platform. If the customer calls with a complaint related to a DLL provided by

another vendor, the application developer merely explains that the problem is in

the system libraries and that a fix is available in release x.y.z.1.5 of the library

module, which is downloadable from the library vendor’s website at . . . If the

application vendor is really lucky, the customer finds the problem in some other

application first and the fixed library is downloaded before the customer ever has

a problem with their application.

 Unfortunately, there is a problem with dynamic libraries. When the developer

of a software package is using a particular set of functions in a DLL, their code

may also depend on bug fixes in a particular version of the library. They will

want to make sure that the set of functions and bug fixes they are using is in the

version of the library that is available on any system the package is installed on.

So the package installation can include a version that is at least as late as the one

the vendor developed with. Unfortunately, the target system may already include

a later version that was installed by another package that depends on functions

or bug fixes in that version. Installing an older version would cause the already

installed package to fail. The vendor of the package that suddenly quits work-

ing may be quite surprised to get the resulting request for support and will be

understandably annoyed when the problem is finally resolved and time has been

wasted solving a problem that is not related to anything their company did. Of

course, the installation software is supposed to check to see that any DLL being

installed is a newer version than the one already installed. Unfortunately, this is

not always done or may be done incorrectly. This problem is colloquially called

 DLL Hell. Newer OS releases allow an application to specify a version number

for a dynamic link library, so this problem is being minimized by allowing a sys-

tem to carry multiple versions of a single library. This takes up some additional

space, but nowhere near as much as was consumed by having the library as a part

of every application that used it.

 Chapter 10 Basic Memory Management 223

 10.6 SUMMARY

 In this chapter we discussed many ways that primary

memory can be managed by the OS. We began with

a discussion of why an OS manages memory, that

purpose being to run programs that are larger than

the primary memory of the machine and to allow

as many programs to be running as possible. We

then discussed the software development cycle as

an aid to understanding the various possible times

for address binding. Next, we looked at progres-

sively more complex memory models, beginning

with a single process and covering fixed and vari-

able multiprocessing contiguous memory organiza-

tions. Through this discussion we also focused on

the hardware required to support these OS tech-

niques. We ended with a section that covered the

advantages and disadvantages of dynamic loading

of routines.

 In the next chapter we discuss some modern

approaches to solving the problems of memory

management through paging and segmentation.

 BIBLIOGRAPHY

 Daley, R. C., and J. B. Dennis, “Virtual Memory,

Processes and Sharing in Multics,” CACM, Vol. 11,

No. 5, May 1968, pp. 306–312.

 Dennis, J. B., “Segmentation and the Design of

Multiprogrammed Computer Systems,” Journal of

the ACM, Vol. 12, No. 4, October 1965, pp. 589–602.

 Kilburn, T., D. J. Howarth, R. B. Payne, and

F. H. Sumner, “The Manchester University Atlas

Operating System, Part I: Internal Organization,”

 Computer Journal, Vol. 4, No. 3, October 1961,

pp. 222–225.

 Knuth, D. E., The Art of Computer Programming:

Fundamental Algorithms, Vol. 1, 2nd ed. Reading,

MA: Addison-Wesley, 1973.

 Organick, E. I., The Multics System: An Examination

of Its Structure. Cambridge, MA: MIT Press, 1972.

The bibliography for this chapter overlaps considerably

with the next chapter.

 REVIEW QUESTIONS

 10.1 What is the fundamental reason an OS has to be

concerned with managing primary memory?

 10.2 What are the five steps leading from the creation

of a program to its execution in memory?

 10.3 What is meant by the term “binding”?

 10.4 In which of the five steps listed in Question 10.2

can binding be done?

 10.5 What is the difference between a logical address-

ing space and a physical addressing space?

 10.6 Attempting to run several jobs at the same time

we created a few fixed partitions. We ran into a

problem of internal fragmentation. Describe this

problem.

 10.7 An alternative to fixed partitions was to allow

variable partitions. This minimized the internal

fragmentation but created a new problem—that

of external fragmentation. Describe this problem.

 10.8 What did we do about that external fragmentation?

 10.9 When running variable partitions we might have

several holes that were big enough to run the next

job we wanted to run. We listed four algorithms

for selecting the hole to use from among those

large enough to run the process. Name and briefly

describe those algorithms.

 10.10 Describe the difference between dynamic loading

and dynamic linking.

 10.11 Dynamic linking has one huge advantage and a

number of smaller ones. Name the huge one and a

couple of the little ones.

225

 Advanced Memory
Management

In this chapter:

 11.1 Why Do We Need Hardware Help? 225

 11.2 Paging 226

 11.3 Segmentation 233

 11.4 Segmentation with Paging 236

 11.5 Demand Paging 238

 11.6 Special Memory Management Topics 248

 11.7 Summary 252

 T
his chapter continues the discussion of memory management techniques. In

particular, it covers the more advanced techniques used in modern systems.

The first section discusses the issues that arise from the mechanisms covered

in the last chapter and why the newer techniques were developed.

 Section 11.2 describes the action of paging hardware and how it further sepa-

rates the logical and physical addressing spaces. Section 11.3 discusses an alter-

native hardware mechanism known as segmentation and Section 11.4 shows how

paging and segmentation can be used together. In Section 11.5 we move on to the

subject of demand paging—bringing pages into memory only when they are to be

accessed—and some of the problems that arise with this technique. Section 11.6

then covers a few special advanced memory techniques and Section 11.7 summa-

rizes the chapter.

11.1 WHY DO WE NEED HARDWARE HELP?

 Multiprocessing with contiguous memory allocation causes external fragmentation,

wasting memory and CPU resources when we are not able to run programs even

though sufficient RAM is available to run them. In the last chapter we saw that we

can mitigate this problem somewhat, but the solution requires running compaction

routines, an unproductive use of the CPU and memory. In order to do away with

 11 11 Chapter Chapter

226 Part 3 CPU and Memory Management

this problem we need to further separate the memory address space that a program

sees (the logical address) from the address space used by the hardware (the physical

address) in such a way that all the parts of a program do not have to be in contiguous

memory. Making this separation requires hardware assistance. There are several dif-

ferent approaches to this problem and these approaches are covered in the following

sections.

 11.2 PAGING

 Earlier we discussed the idea of the separation of the logical addressing space from

the physical addressing space. We changed the memory management unit (MMU)

to make this work. Instead of using the base register to check an address we used it

to relocate an address. This allowed us to put any program anywhere in memory—

dynamic relocation. However, we found that allowing variable-sized programs to

come and go in memory caused us to have external fragmentation of the memory

and to spend valuable CPU time doing compaction. Unfortunately, compaction is not

“useful work” in the sense that it is not anything the user is trying to do. It is merely

a task that the OS does to make things work better in an overall sense. Eventually

another solution was developed—we divide the memory into fixed-size blocks and

instead of allocating to an application the entire space it needs in one large segment,

we allocate enough of the smaller blocks to give the program what it needs. How-

ever, the blocks we allocate do not need to be contiguous—they can be anywhere in

memory because we ask the MMU to dynamically relocate each block separately.

This technique is known as paging. This means that we have to make our memory

management unit a lot more complex.

 We will divide our physical address space into blocks of uniform size, which

we call frames. We will conceptually divide the logical addressing space into

blocks called pages, which are the same size as the frames. Commonly these

blocks are 512 bytes to 8 KB long. For byte addressable machines the number of

bytes in a block is always a power of 2. Today a common page size is 4 KB, but

the increasing size of RAM and hard drives means that in the future we are more

likely to see larger page sizes. Figure 11.1 shows the process of relocating each

address reference.

 We see that the CPU generates a memory address. In general, the program ignores

the fact that the memory is handled in separate pages, so these addresses are regarded

as just a binary number in the range of the logical address space. This address might

be the address of the next sequential instruction, a jump to a subroutine, a reference

to a data item or to the stack. The purpose of the reference does not matter. As before,

we call this the logical address. However, the MMU will regard the address as being

composed of two parts, shown here as the page number, p and the displacement,

 d. The displacement is the address of the specific byte within the frame. If our frame

size is 4 KB then our displacement field is the exact size needed to address every byte

in a frame, or 12 bits. When we relocate a logical address to a physical address we

will still be addressing the same displacement in the frame as we were in the page.

So we will not change the displacement part of the logical address. The rest of the

 Chapter 11 Advanced Memory Management 227

logical address is the page number. What we need to relocate is the page, so we will

look in a page table of relocation addresses for the frames. We will have a register

that holds the memory address of the page table for the running process. This register

is called the page table address register. The memory control unit will add the page

number from the logical address generated by the process running in the CPU to the

value in the page table address register. The value stored in that location of the page

table will be the relocation address of the particular frame we are trying to access. In

this case it is shown as the value f. The value of f is combined with the displacement

we already had to address the particular byte in physical memory.

 Figure 11.2 shows a more complete page table. We are ignoring the displace-

ment portion of the address and considering only how the pages map to the frames.

Here we see the logical address space for a process that is running. It is divided into

pages that are labeled A–H. The third page is labeled C, for example. If the CPU gen-

erates a reference to this page, then the memory management unit will translate this

address by looking in the third entry in the page table for the process. Here we see

CPU

Page Table
Address Register

p

p

d f

f

d

Page Table
per Process

Logical
Address

Physical
Address

Memory FIGURE 11.1

Paged memory

access.

Logical
Address
Space

Page Table
per Process

Physical
Address
Space

A B C D E F G H

3 5 7 1 4 2 6 8

D F A E B G C H

FIGURE 11.2

Mapping logical

addresses to

physical addresses.

228 Part 3 CPU and Memory Management

that this entry contains the number of frame 7. So the memory management unit will

look into frame 7 to find the information we are accessing. Of course, in a real sys-

tem the frames would be spread out and mixed in with frames from other processes.

 11.2.1 Dual memory accesses required

 As we have described this mechanism, however, we have a problem. For each refer-

ence to memory we have to make a second reference to memory to find the page

table entry to use as the relocation factor for this page. This will make our process

run at half speed when accessing memory, an obviously unacceptable penalty. As

with many other things in computer systems, our solution is for the memory man-

agement unit to cache the last few relocation factors so we can use them again

without having to look them up in memory. This caching is done with a special

kind of hardware device called a translation lookaside buffer, or TLB. The TLB

is a type of circuit that goes by several names. It is sometimes called a content

addressable memory (CAM) or associative memory. The essence of this circuitry

is that when it tries to check to see if it has a page number in it, all the entries

are searched in parallel. This means that the entries in the TLB do not have to be

kept in any order since they are all compared at the same time. If the page we are

trying to access has been accessed lately then it will be in the TLB and it will be

returned very quickly—maybe 100 times faster than if we had to access the page

table in main memory. The TLB is obviously a complex circuit. As a result, they are

typically rather small. On current machines they are rarely over about 1,000 entries

and usually much fewer. However, that is normally enough for most processes to

find the information in the cache most of the time. The use of a TLB is shown in

 Figure 11.3 .

CPU p

p

p

d

TLB

f

f

f

d

Page Table
in RAM

Logical
Address

Physical
Address Memory

FIGURE 11.3

The translation

lookaside buffer.

 Chapter 11 Advanced Memory Management 229

 11.2.2 Effective memory access times

 There is a formula by which we can estimate the impact of the TLB on the execution

speed of the computer. We will calculate the effective access time, or EAT. The for-

mulas use the speed of a TLB lookup, which we will call E and the speed of a main

memory reference, which we will call M. Some percent of the time we will find the

page number we are referencing in the TLB. We will call this percentage A. This per-

centage is often called the hit ratio. Obviously, the percentage that we will not find

the referenced page in the TLB (a TLB miss) will be 1-A. For example, if we get a

hit 80% of the time then we are going to get a miss 20% of the time. When we find

the page number in the TLB, then the memory reference will take E ⫹ M time ⫺ E to

search the TLB and M to make the normal memory reference. When we do not find

the page number in the TLB, then the total memory reference will take 2 * M—two

memory references, one to get the frame number out of the page table and one for the

normal memory reference. The EAT will then be:

EAT A (E M) (1 A) (2 M)⫽ ⫹ ⫹ ⫺ ∗ .

 For example, suppose our TLB lookup time (E) was 5 nanoseconds, our memory

access time (M) was 100 nanoseconds, and our hit ratio (A) was 80%. Then the

effective memory access time would be .8(100 ⫹ 5) ⫹ (1 ⫺ .8) * (2 * 100), or 124

nanoseconds. This is a slowdown of 25%.

 Depending on the hardware design, the TLB lookup may take place while the

first memory reference is being started. If the TLB lookup is not successful, then the

main memory reference will continue. In this case, the formula just given applies.

But other hardware may not start the main memory reference until the TLB lookup

has failed. In this case, the equation for EAT becomes:

EAT A (E M) (1 A) (E 2 M)⫽ ⫹ ⫹ ⫺ ⫹ ∗ .

 The larger we make the TLB the higher the hit ratio will be. For example, using the

same numbers as before but with a hit ratio of 90%, the EAT will be .9(100 ⫹ 5) ⫹

(1 ⫺ .9) * (2 * 100), or 114.5 nanoseconds. This is a slowdown of less than 15%.

Unfortunately, this is a hardware design decision, not a software question or even a

decision the purchaser of the system can make. Unlike RAM, for example, TLBs are

generally not upgradeable, being an integral part of the memory management unit

itself and normally embedded in the CPU chip.

 Note that each process has the same logical addressing space—it starts at 0 and

goes up to the size of the program. On most systems the TLB hardware does not

concern itself with which process is running. As a process runs, the TLB will fill

up with frame numbers that correspond to the page numbers of the running process.

When we switch to another process the OS must tell the hardware to forget all the

current frame numbers since the new process will have different frame numbers that

will need to be mapped to the same page numbers that the previous process had used.

Therefore, after we do a context switch to the new process, for the first few mem-

ory references we will not get any TLB hits, so our process will run at half speed

on memory reference instructions. This is one reason why we don’t want to switch

230 Part 3 CPU and Memory Management

processes any more often than we have to and why switching threads is faster than

switching processes. A few hardware designs do have address space identifiers, or

 ASIDs, stored in the cache with the frame numbers. These designs do not require

that the TLB be flushed. They will still get many TLB misses and will therefore run

more slowly for a short time until the TLB is repopulated. This sort of TLB is very

useful with CPUs that are running multiple processes in parallel.

 11.2.3 Memory access control

 When we were accessing main memory with one relocation register for the entire

program we also had a limit register that prohibited a process from accessing out-

side the memory area assigned to it. With paging hardware we will need a similar

mechanism. There is no problem with the individual pages themselves since they are

normally of a fixed size. However, we will need some mechanism for limiting the

access to the page table. There are basically two approaches to this problem. Both

depend on the hardware, so the decision is not up to the OS designer, but we will

discuss them so that you will be aware of them. The first approach is to use a fixed

page table size. In this case, we will need a valid bit in each page table word to indi-

cate whether a page table address is valid. So, for example, if we had a fixed page

table size of 10 entries and the process only took three pages in the logical address

space, we would fill in the first three entries with the addresses of the corresponding

memory page numbers and set the valid bit “on” for those three entries. For the rest

of the entries in that page table we would set the valid bit to “off” because they do

not hold a reference to a valid page. When the memory management unit accessed

any entry in the page table it would generate a memory addressing error if the entry

had a valid bit that was set to off.

 The other approach to memory address control is to use a page table with a

variable size. In this case, we will have a page table length register. With a single

relocation register we had a length register that specified the length of the process in

main memory. A page table length register will work just as it sounds like it would. It

holds the address of the largest valid page number for a process. If an address gener-

ated by the CPU when the process is running contains a page number bigger than the

number in the page table length register, then the hardware will generate an address-

ing error interrupt because the process has generated a reference to a page that is not

in the logical address space of the process. These days most systems use a valid bit

for reasons that we will see later.

 Page access protection

 In addition to limiting memory addressing, paging allows the OS to restrict the kinds

of access that may be made to the various pages. The hardware can be set up to

allow only read access to a page, for example, or only execute access. In order to

make effective use of this the compilers (and assemblers) must be able to force the

linker to place portions of the executable file on a page boundary. In this way, the

data portions of the module can be marked as read–write but not execute. Similarly,

the program code can be marked as execute only. There are some problems with this

 Chapter 11 Advanced Memory Management 231

sort of mechanism that need to be addressed. For example, it might appear that the

stack should not allow execution of items on the stack. But it is common for Java

virtual machines to compile Java program byte codes into instructions on the stack

and execute them there.

 11.2.4 Large page tables

 In modern machines with modern OSs and modern compilers the programs are get-

ting very large. This means that the page tables are also very large. Also, it turns out

that in many cases the page tables are sparse, meaning that they may have large parts

of the table that are in the logical address space but do not point to a valid frame.

Later, we discuss some of the reasons why this happens. In any case, it became

increasingly difficult to manage the memory allocated to the page tables themselves.

Several different approaches were taken to deal with these large, sparse tables.

 The first technique was to make a multilevel page table. Figure 11.4 shows a

two-level page table—essentially we page the page table. As with the single-level

tables we have been discussing, the MMU will consider the logical address gener-

ated by the CPU as being made up of several parts—in this case, three. As before,

we have the page displacement, which will be carried over and used as the frame

displacement. Now we view the page number as being made up of two parts, here

shown as p1 and p2. P1 will be used by the hardware to access into the top-level page

table, just as before. However, the number stored in this entry will not be a frame

number, but another memory address, that of a second-level page table. The remain-

ing bits of the page number, here shown as p2, will be used to access within the

selected second-level page table. This entry will be the frame number for the page

number represented in the original address by p1 and p2 together. This frame number

CPU

Page Table
Address Register

p2

f

f

d

First-Level
Page Table

Logical
Address

Physical
Address

Memory

p1

Second-Level
Page Table

p1 p2 d

FIGURE 11.4

A two-level page

table.

232 Part 3 CPU and Memory Management

will be used with the original displacement to access the desired memory location in

physical memory. The DEC VAX systems used a two-level paging architecture.

 Two-level page tables turned out to be such a useful technique that the process

has been extended. Modern processors normally have three- or four-level page table

architectures. Note that this could potentially really cause problems with our EAT.

In the worst case, with a four-level page table we can take five memory accesses to

reach a single byte in memory because each of the page table references may not be

in the TLB. Thus our equation for the EAT becomes something like:

EAT A (E M) (1 A) (5 M)⫽ ⫹ ⫹ ⫺ ∗ .

 Fortunately, most of the time our TLB will hold those final physical memory refer-

ences and on the average we will pay a performance penalty only slightly greater

than with a single-level page table.

 It is worth noting that this technique has the effect of creating a virtual page

table. Since the address spaces are so large, the page table is generally very sparse—

there are large parts of it that are not really used. In such cases those portions of the

lower-level page tables do not need to be allocated and filled in until they are actu-

ally needed. This can save considerable table space and the resources necessary to

access it.

 11.2.5 Inverted page table

 A slightly different approach to the problem of external memory was to turn the

problem around. The idea was to map the physical frames into the logical pages. Fig-

ure 11.5 shows an inverted page table approach to process page mapping. The table

is kept in order by the physical frame number. The table itself is searched to find a

reference. Since there is only one table, the page numbers from the various processes

CPU p d

ii p

p

f d

Logical
Address

Process ID
Search

Physical
Address

Memory

f

f

i

FIGURE 11.5

Inverted page table.

 Chapter 11 Advanced Memory Management 233

are not sufficient to specify the mapping. For instance, every process will have a

page number 0. A process identifier must therefore be stored with the page number.

The time to search an inverted page table will often be slower than for a normal page

table. The OS can speed up this search by using a hash function to access the table.

This method will require a chaining scheme to resolve collisions since some pro-

cesses may have page number/process ID combinations that hash to the same value.

So even more than with a normal page table, we rely heavily on the TLB lookup to

resolve most of our lookups. Inverted page tables take much less RAM than normal

page tables.

 11.2.6 Page tables with multiple page sizes

 In later systems it has become common to have more than one page table size. In the

Intel Pentium architecture, for example, the normal page size is 4096 bytes, but there

is another possible page size of 4 MB. The reason for this is so that the kernel of

the OS can be mapped in the page table with the process without taking up so much

RAM in the page table. Most of the kernel pages will be the same in every process;

they will never move around and cause fragmentation and they will always be there,

so there is no need to divide them into small pages as there is with processes that

are of unknown size and duration. In addition, as we will see shortly, in the applica-

tion part of the logical space of a process the pages will sometimes not even be in

memory. This is usually not the case with the kernel, though some OSs page portions

of the kernel. Therefore, having only one or a few pages to map the kernel through

is a big advantage since it can be set up and manipulated more easily and only takes

one TLB entry to map the entire kernel.

 In some of the later UltraSPARC ® processors the software can select multiple

page sizes for different parts of the application. We will see in the section on seg-

mentation with paging how this works.

 11.2.7 A historical footnote

 While modern systems normally use these techniques in the context of running mul-

tiple processes concurrently, historically there were a few systems that used paging

while only running a single process. Programs could refer to portions of the program

that were not yet in memory much as if they were calling overlays, as discussed

in the last chapter. This had the advantage of allowing the running process to be

much larger than the physical memory. In the era of smaller memories this was a big

advantage, but it is not utilized much in current systems. Modern OSs use demand

paging, discussed in a later section.

 11.3 SEGMENTATION

 At about the same time that paging was being devised, a different track of develop-

ment evolved that was designed mostly to help solve the same problems that paging

addressed, but a few others besides. This technique is called segmentation. It arose

234 Part 3 CPU and Memory Management

out of the observation that we can consider a program as being made up of several

distinct parts. We usually have a main routine and we often have subroutines and

functions that are recognized by the compiler as being separate items. Sometimes we

even compile the subroutines and functions separately and put them into libraries.

We have areas where we keep the stack, static data items, constant information, file

buffers, communication buffers, and so on. Each of these areas can be created and

controlled separately. Figure 11.6 shows a collection of segments of a program that

make up a process after being loaded into primary memory.

 Each of these parts can be considered to be separate from the other parts and

can have a separate logical addressing space. For example, since there is a sepa-

rate addressing space for the data, we would consider that the first data item was

at address 0 in the data segment address space. We now need for the hardware to

relocate all references to addresses in each segment in the same way it relocated ref-

erences to the entire process with a relocation register. So we will use a mechanism

that is much like a page table, with a couple of small differences. Figure 11.7 shows

a sample segment table. We will still consider the logical address to be broken into

two parts, but they will be a segment number (s) and a displacement (d). With pag-

ing we had quite a few pages of a fairly small size so the displacement was a small

number of bits and the page number was much larger. With segmentation we have a

relatively small number of segments, each of which can be fairly large by itself, so

the segment number will usually be a smaller number of bits and the displacement

within the segment will be a larger size. In addition, while the entries in a page table

contained a frame number, the entries in the segment table will contain memory

addresses. The programmer does not normally exert any overt control over the seg-

mentation. The compilers will generate separate segments for the major portions of

the module being compiled—the program code, the stack, the heap, global variables,

and so on—and place symbolic references to them in the object modules. The linker

will assign actual segment numbers to be used when combining the object modules

into the executable binary program and for the OS to use when dynamically loading

library modules.

Code
Segment

Original Program

Main Memory

Subroutine A

Subroutine B

Data
Segment

Stack
Segment

Heap
Segment

Heap
Segment

Stack
Segment

Code
Segment

Data
Segment

Language
Library

FIGURE 11.6

Segmenting

a process.

 Chapter 11 Advanced Memory Management 235

 In Figure 11.7 we see a memory reference to the segment containing Subroutine

A. The hardware will use the segment table entry specified by the number in the seg-

ment part of the address. It will take the segment table address pointer found in that

entry of the segment table and it will add it to the displacement part of the logical

address. The paging hardware simply replaced the page number with a frame num-

ber. This worked because frames and pages were always the same size so they were

also always located on block boundaries. Since segments are of variable size they

can also be located anywhere, so we will use the segment table pointer plus the dis-

placement to get the physical memory address. Note that use of segmentation causes

an extra memory reference for each access, just as it did with paging. So systems

with segmentation will also use a TLB to speed up access.

 Since segments can be anywhere and are not all the same size, this is not an opti-

mum solution to avoid external fragmentation. We will still have to keep track of mem-

ory holes. We will still not allocate tiny pieces of memory. Instead, we will have some

minimum granularity—perhaps 1024 bytes. We will therefore have some internal frag-

mentation. But now the range of sizes of the holes will be smaller than the range we had

to consider when keeping track of entire processes because we are breaking each pro-

cess up into (potentially many) segments. Therefore, we will have less of a problem with

external fragmentation than we did with memory management for entire processes.

 Since the segments are of variable size, we must provide a way for the system to

check the addresses so that we can make sure the process is not addressing outside

the limits of the segment. The limit for each segment is stored in the segment table

along with the pointer to the segment. Since the segments have different purposes we

can also increase the protection we are providing to the system by limiting the kinds

of accesses we make to the various segments, much as we discussed with paging.

It is common to have a set of bit flags with each segment that controls the kinds of

access we can make. For example, a segment of data constants can be marked as read

only. The program pages can be marked as execute only. Stacks and data pages will

allow read and write but not execute.

CPU

Memory
Physical
Address

Logical
Address

Data
Segment

Code
Segment

Stack
Segment

Subroutine A

Subroutine B

Subroutine A

stack

code

data

Subroutine B

s d

s

FIGURE 11.7

Segment table

and segments

in main memory.

236 Part 3 CPU and Memory Management

 In some OSs it is possible for processes to share segments. For example, we

might have several users running a program editor at the same time. We could cre-

ate a process per user and map the code segments in their respective segment tables

so that they all pointed to the same parts of physical memory. If we had common

runtime libraries for standard languages, we could also map segments to point to the

same physical memory segments, even for different programs. Managing the seg-

ment numbers across multiple processes can be quite a chore for the OS.

 Programmers who are writing in high-level languages will not normally be aware

that segmentation is being used by an OS until their program generates a segmenta-

tion fault, most often by overflowing the segment used for the stack. The compilers

and the linker will generally take care of assigning the segment numbers for the vari-

ous pieces by calling OS routines that manage the segment numbers. Programmers

working in fairly low-level languages will need to be aware of segmentation and how

the OS is using it and they can control the segmentation if need be. The Windows

NT family does not use segmentation because it is not needed on many hardware

designs and not available on others and using it would make the software less por-

table. Linux uses segmentation only in a limited way, which we discuss in the next

section. Most UNIX-derivative OSs use segmentation with paging, also discussed in

the next section.

 11.4 SEGMENTATION WITH PAGING

 There is a fundamental difference between paging and segmentation. Paging is trans-

parent to the running process. An application program that was created to run in an

OS where the process is mapped into a single large partition could run unchanged on

a system that used a paged memory architecture. Segmentation, on the other hand,

requires that programs somehow be structured so that they are divided into logi-

cal parts with different address spaces. An interesting aspect of this is that with the

proper hardware design we can run a segmented program architecture in combina-

tion with a paged memory architecture. In the documentation for various OSs the

segments may be known as regions or memory areas. The segmentation works as

we have described it, but the address that is generated is not used as a physical mem-

ory address. Instead, it is now treated as a logical address and run through a paging

mechanism. This allows us to have both the fine control over the types of references

as with segmentation and the fixed page sizes of paging, which result in no external

fragmentation.

 There are two generally different ways that segmentation and paging can be

combined. The first design originated with the Multics project. 1 In this design we

will have a page table for each segment of a process rather than a single page table

for the process. This design is shown in Figure 11.8 . First, the segment portion of

the address is looked up in a segment table. This lookup returns a pointer to a page

table that maps the page numbers within the segment to frame numbers in physical

memory.

1 http://www.multicians.org/fjcc1.html

 Chapter 11 Advanced Memory Management 237

 The second design is used in more modern systems. In this design there is still

a segment table, but instead of pointing to separate page tables for each segment,

the addresses in the segment table lie within a linear address space, which is then

mapped into the physical memory in the same manner that a paged system works.

This design is seen in Figure 11.9 . In this case a segment table entry describes a por-

tion of the linear address space, which can be viewed as the page table for the seg-

ment. But as far as the hardware is concerned, it is just a part of a single-page table.

CPU s

s

p

p d

data

code

stack

Subr. A

Subr. B

Page Table
per Segment

Segment Table
per Process f

Logical
Address

Physical
Address

Memory
FIGURE 11.8

Segmentation

with paging.

CPU

s

p

d

Page Table
per Process

Segment Table
per Process

f

Logical
Address

Physical
Address

Memory

ps df

data

code

stack

Subr. A

Subr. B

FIGURE 11.9

Segmentation

with linear

addressing.

238 Part 3 CPU and Memory Management

 Most modern OSs use this latter mechanism in one form or another, but they

limit the use of the segments. Linux, for example, uses the segments only for the

kernel, except for one segment that it uses for the running process. The segments

are used to restrict addressing and control access. So, for example, two segments are

used to map the same kernel address space. One is used for the execution of the pro-

gram, so it is set to allow execution but not reading or writing. The other is used for

access to data, so it allows reading and writing but not execution. Another is used for

accessing a runtime stack. This allows the hardware mechanism to check for stack

overflow efficiently and dynamically.

 11.5 DEMAND PAGING

 So far we have assumed that when a program is brought into memory that the entire

program is brought in and a frame of physical memory is allocated for every page

in the logical addressing space. However, it was eventually realized that this was not

necessary. As programs run they do not really access addresses randomly through-

out their logical address space. The instructions in the code segment are accessed

sequentially to a large extent, so for about a thousand instructions we might be

accessing a single page in the code portion of the logical address space. Or the

program may go into a loop, sometimes for quite a while, and stay in a single code

page. To be sure, we will frequently call library routines, which may in turn call

other library routines. The program steps through an array or scans through a string

or searches through an incoming message. When we divide the execution of a pro-

gram into small time slots and look at the pages accessed by the memory references

in that time slot we will normally find that only a few pages are accessed by the

process in any given time slot. This phenomenon is quite important in OS design. It

is called locality of reference. We use the same idea in caching and in many of our

other OS algorithms.

 The trick that was developed to take advantage of this phenomenon is called

 demand paging. The idea is that we slightly modify the meaning of the valid bit

in the page table. The hardware associated with the use of the bit will not change.

All the bit indicates is that there is no frame allocated for this page. In our previous

design this meant that this page was outside the logical address space for the pro-

gram. Now it may still indicate that, but it may only indicate that no physical frame

is currently mapped to this page. When we load the first page we will set its valid bit

to true to indicate that it is in memory. We will mark the valid bit of every other page

to show that that page is not in memory. Then we will start the program running. In

theory, we could begin the execution of a program without bringing in to physical

memory any pages. The OS could simply branch to the process in memory and let

the page fault mechanism bring in even the first page of the program. This is known

as lazy loading. Even if we load the first page of the program, it will soon reference

data in another page that is not yet in memory. Figure 11.10 shows an example of

such a page table. This reference will fetch the page table entry and the setting of

the valid bit will cause a “memory addressing error” interrupt. The memory manage-

ment subsystem will look at the reference to see if the reference is to a page that

 Chapter 11 Advanced Memory Management 239

really is in the logical address space of the program, but that has not been brought

into memory yet. If the reference is to a page that is not really in the logical address

space of the process, then the program has made an error and an addressing excep-

tion is raised, most likely aborting the process.

 If the address that caused a fault is in the logical address space of the process,

then the page simply is not currently mapped into physical memory, either because it

has never been brought in or because it has been taken out. This condition is known as

a page fault. The memory management subsystem will now request a read of the page

from secondary storage and the OS will put the program into wait state until it has

finished. Once the block has been read in, the OS will update the page table to point

to the new frame, mark the entry valid, and restart the process that generated the page

fault at the instruction that caused the fault. Note that this mechanism is still transpar-

ent to the application. In other words, the application programmer does not normally

need to be aware that this process is going on, much less do anything about it.

 In some cases this would allow us to run programs that were so large they would

not fit into memory at all. The “80/20 rule” usually holds—80% of a program is

written to take care of things that only happen 20% of the time. In many cases, there-

fore, much of that 80% of the program will never be loaded into memory. As an extra

benefit, this will allow our programs to start faster, because if a page is never refer-

enced we never load it into memory at all. As well, in an environment where we are

trying to run many programs, perhaps for many users, with a given amount of physi-

cal memory, on the average we will be able to run more programs at the same time.

 11.5.1 EAT with demand paging

 You may recall that when we first looked at the paging mechanism we saw how

the use of a page table by itself would double the effective access time of memory.

This necessitated the introduction of the TLB to cache the frame numbers for the

page references in the working set. Now consider what happens when we access a

page that is not in memory. Our effective access time will have four components, as

shown in Table 11.1. (The speeds shown are simply approximate relative speeds, not

specific expected values.)

A

2 1

0 0

7 1

0 0

0 0

0 0

0 0

0 0

B

C

D

E

End of
Logical
Space

Logical
Address
Space

Page Table
in RAM

Physical
Address
Space

Valid bit1

2

3

4

5

6

7

8

1

2

3

4

5

6

7

8

A

C

FIGURE 11.10

A page table

showing pages not

in physical memory.

240 Part 3 CPU and Memory Management

 As the table shows, the disk I/O vastly overwhelms the memory speeds. This

domination will lead to several mechanisms that may seem at first to be overly

complex that are developed merely to avoid doing a single-disk I/O for demand

paging.

 11.5.2 The working set and page replacement

 So far we have assumed that there are enough pages free in memory to bring in any

page we need when a process references it. Unfortunately, we normally will soon run

out of free pages. At that point we need to get rid of some pages that are in memory.

Frequently this will not cause us any problem at all. As a program runs it will be

referencing some set of pages—a page in the main process, perhaps a few pages of

library routines, buffers for the input and the output, doubtless a few pages of data.

This group of pages that a process is referencing in a short period is called the work-

ing set. We typically measure the working set over some fixed interval known as a

 sliding window.

 For example, suppose a process had a logical address space containing seven

pages identified as 1 through 7, and had the sequence of references to those pages

as follows:

 1 2 1 5 7 1 6 3 7 1 6 4 2 7

 We will track the working set by looking at the last four references. As this sequence

of references unfolds the working set will change, as seen in Table 11.2 . As the pro-

cess runs, the working set typically changes from time to time. It is normal to find

that a process will have in memory several pages that it is no longer referencing. In

the table we can see that page 5 is no longer referenced after step 4, so we could get

rid of it. What we would like to be able to do is to identify those pages and remove

them from memory when we no longer need them. (Removing pages that we think

may not be needed anymore is called page replacement.) Unfortunately, we can’t

really do that. Just because we have not referenced a page in a while does not mean

that the very next instruction won’t reference that page. In the table we saw that page

2 was not referenced between steps 2 and 13, so we no longer saw it as being in the

working set since we were only looking at a four-step window. Fortunately, remov-

ing a page from memory that is needed later doesn’t break anything. It is just not

quite as efficient. The next reference to the page will cause a page fault and the page

will be fetched again.

TABLE 11.1 Demand Paging Effective Address Time

Component Relative Speed

TLB lookup 1 nanosecond

Memory access 100 nanoseconds

Disk write (dirty page) 20 milliseconds

Disk read 20 milliseconds

 Chapter 11 Advanced Memory Management 241

 There is a very simple page replacement strategy, first in, first out, or FIFO.

The OS keeps a queue of the page numbers as they are brought in for each process

and simply ejects the oldest one. This algorithm is a low-overhead algorithm, which

requires little overhead from the OS. While FIFO is cheap and easy to understand

and implement, it performs poorly and erratically so it is rarely used today. This

algorithm experiences Belady’s anomaly. It was used in the VAX/VMS OS.

 Theoretically, there is a optimal page replacement algorithm (also known as

OPT). It would work as follows: when a page needs to be replaced, the OS replaces

the page whose next use will be the furthest in the future. For example, a page that is

not going to be used until 200 milliseconds from now will be chosen over a page that

is going to be used in 10 milliseconds. This algorithm can’t be used in general because

it is impossible to know how long it will be before a page is going to be used except in

very limited circumstances. If it were implementable it would be the best we could do,

so it is worth discussing. Assuming that we had only three free frames to work with, if

we used this algorithm with the reference string shown previously, we would generate

nine page faults, including the page faults required to bring in the first three pages.

 There are several other mechanisms we can use to select a page to replace. One

possibility is to try to figure out which page has not been referenced for the longest

time. As is commonly said, this page is the least recently used (LRU) page. We

will make the assumption that this page is the most likely not to be used again, and

we will take it out of memory. If we tried to actually save the time of the last refer-

ence to every page, we would end up making at least one extra memory reference

for every real memory reference. So real OSs do not implement an LRU algorithm.

However, with the help of some hardware features we can identify pages that have

not been used for some time. The simplest of the algorithms that use this feature is

TABLE 11.2 Tracking a Working Set

Event Number Working Set

1 1

2 1 2

3 1 2

4 1 2 5

5 1 2 5 7

6 1 2 5 7

7 1 5 6 7

8 1 3 6 7

9 1 3 6 7

10 1 3 6 7

11 1 3 6 7

12 1 4 6 7

13 1 2 4 6

14 2 4 6 7

242 Part 3 CPU and Memory Management

known as the clock algorithm. 2 At a fairly low cost (in terms of additional memory

references) the hardware can ensure that a bit in a page table entry is set when a page

is referenced. This bit is often called a page reference bit, or sometimes an access

bit or use bit. (See Figure 11.11 .) When a page is referenced (via the page table), the

hardware will check this bit. If it is already set, then nothing needs to happen. If it is

not yet set, it will be turned on, perhaps costing one extra memory cycle. Occasion-

ally, the OS can clear these bits for the pages that are currently in memory. We clear

the bits for all the pages in a page table and we let the process run for a while. The

hardware will set the bits on for all the pages that are referenced. When we need to

find a page to take out of RAM we will search through the table and find a page with

a valid bit set on and a reference bit that is cleared. This page will be a good candi-

date for replacement.

 We can also enhance this mechanism a little bit. For each page we can keep a

byte or more of information about the past history of the setting of this bit, called

(somewhat misleadingly) a reference count. This mechanism is sometimes known

as aging. When we periodically clear the reference bits, we first shift the reference

count right one bit and shift the latest value of the page reference bit into the high-

order position of the reference count. If a page was referenced in the last cycle, this

count will therefore have a high value. As refresh cycles go by in which this page

is not referenced, the shift operation will effectively keep dividing the count by two

each time, so the number will get smaller and smaller. Figure 11.12 shows a refer-

ence count for a page. In the last two refresh cycles the bit shifted into the high-order

position was a zero, so this number is getting smaller each time. When we need to

replace a page we pick the page with the smallest reference count. This gives us a

much better idea of the recent history of the usage of a page than a single bit that

shows only that it has or has not been referenced in the last time interval.

 11.5.3 Dirty pages

 When part of a program is loaded into a page and we replace it with something else,

we don’t need to save it anywhere because we can go back to the original program

and get the page if it is referenced again. This is one of many reasons why programs

are not supposed to ever modify themselves while they are running. However, if a

page contains data and some of the contents of the page have been changed since the

page was brought into memory, then we can’t just replace the page—we must save

2 This unfortunate term has no reference to the system clock. It refers to the idea that when the OS
reaches the end of the page reference list it simply starts over, much as a clock sweeps past 12 and goes
back to 1.

Page reference bit

Valid bit

1 0

FIGURE 11.11

The page reference

and valid bits.

 Chapter 11 Advanced Memory Management 243

the data currently in the page in case it is referenced again. We refer to pages that

have been modified as dirty pages. We will write those dirty pages out to secondary

storage in a special place. This place is variously called a swap file or a backing

store. This swap file therefore acts as an extension of the primary memory of the

system. This is the origin of the term virtual memory. The swap file can be many

times larger than the primary memory. In some OSs this file is literally a file in the

normal file space and in others it is in a special block of disk space that lies outside

the regular file system. In either case it is accessed in such a special way by the OS

that accesses to it do not go through the normal file system interface, but use raw

mode I/O routines. With some OSs there is only one such file. With others it is pos-

sible to place separate swap files on separate drives to increase performance.

 11.5.4 More page replacement algorithms

 Modern OSs use a variety of algorithms to try to optimize page replacement. One such

algorithm is called the second chance algorithm. It is a modification of the clock

algorithm, which looks through the page table in the manner that we first described,

looking for a page that has not been referenced. However, as it checks each page,

if it finds the reference bit set, then it clears it. In this way it updates the reference

bits to reflect a later time than the latest reference refresh cycle. As it moves through

the page table, if it does not find any pages that are free on the first pass, then it will

find some on the second pass. In some OSs this searching for pages is done by a

background process rather than by the page replacement process. If the free memory

space in the system is very low, then the OS will run the background process more

often and for a longer time than if there is plenty of memory available. It will run less

often and for a shorter time if the free memory is not an immediate cause for concern.

 Background operations are chores that are done when there are no high-priority pro-

cesses in the ready state. Instructions that are executed in a background task are thus

not executed at the expense of any user process, so they are more or less free.

 It is worth noting that replacing a dirty page is twice as expensive as replacing

a read-only page or a clean page. This is because the OS must make two accesses

to the disk and the disk is roughly 1–10,000 times slower than the primary memory.

Therefore, we can afford to burn lots of CPU cycles trying to figure out which is the

“best” page to replace given what is known at the time. One way we can see such

an expenditure of processing resources to save I/O is to enhance the second chance

Page reference bit

Reference count

Shift right every time
the reference bit is cleared

Valid bit

1 0 0 0 1 1 1 1 1 1

FIGURE 11.12

A page table entry

and associated

reference count.

244 Part 3 CPU and Memory Management

algorithm by using the dirty bit in conjunction with the reference bit. This algorithm

is sometimes known as the enhanced second chance algorithm and sometimes as

the not recently used (NRU) or not used recently (NUR) algorithm. In this case

we will divide the pages into four classes according to the settings of these two bits:

(1) clean and unreferenced, (2) dirty but unreferenced (the referenced bit has been

cleared since the page was modified), (3) clean but referenced, and (4) dirty and

referenced. We first look through the page table for entries in the first class to find

a page that is unreferenced and clean. We can use this page immediately. If we do

not find a page in this class then we look through the table again for class two, and

so forth. By the fourth pass we are assured to find a page, but we usually will have

found a better one before then.

 One question that arises in demand paging systems is how to choose the process

the OS should take a replacement page from. There are two possibilities. Either the

OS can select the page only from the process that caused the fault (local replace-

ment) or it can select the page from any process (global replacement). We would

like for programmers to write programs that use the fewest resources. If a program-

mer writes a program that generates fewer page faults, then his programs should run

faster. With local replacement a poorly performing program will hurt itself the most.

With global replacement a poorly written program can hurt other processes by hav-

ing too large a working space and therefore generating too many page faults. As a

result, a program that is well designed and generates fewer page faults can be penal-

ized by another, less well designed program that generates many page faults. Hav-

ing a background process that runs the second chance algorithm to identify suspect

pages works well with global replacement. UNIX and related systems generally use

global replacement and the Windows NT family uses local replacement.

 Page replacement algorithms are an area where much research is ongoing because

of the very dynamic nature of both RAM and hard disks. As the sizes, speeds, and

costs are changing, the tradeoffs change and different algorithms become useful.

 11.5.5 How many pages for each process?

 When an OS is being designed with demand paging, we are not going to let pro-

grams grow indefinitely in RAM. For one thing, as we saw in the discussion on the

working set concept, eventually there will be pages in memory that the program

will not reference again. There will be others that it will not need for some time,

but that we could profitably let another process use for now, reloading them again

when we need them. So the question arises of how many pages each process should

be allowed to use. Different schemes are commonly used to set this limit. To begin

with, there is some minimum set below which we don’t want a program to fall. For

example, a common type of instruction on some machines is a memory-to-memory

operation. In this case, the instruction itself may span across a page boundary so

that we need two pages just to access the instruction. Both the source and the target

operands may also span a page boundary, so that on this type of machine there is an

absolute lower limit of six pages for a single process. Even in this situation a pro-

gram will likely have a working set that is larger than that. But what is a reasonable

upper limit?

 Chapter 11 Advanced Memory Management 245

 We could study running programs on a prototype system and set some arbitrary

limit. But, if there are not enough processes running to fill up all of the available

memory with pages, then we will produce page faults when we don’t need to. So

setting an arbitrary limit is not a good idea. We can make the system a little more

dynamic by simply dividing the number of available pages by the number of pro-

cesses that are running. This mechanism is known as equal allocation. But this is

not usually reasonable either. If one of the processes was a GUI calculator and the

other was a Web server, then we would probably reasonably infer that the Web server

would use extra pages to more benefit. One simple method of guessing which pro-

grams could use more pages is to compare the sizes of the programs. The Web server

program on the disk might be 100 times larger than the calculator program, so it

would be reasonable to allocate 100 times as many pages to the Web server as to the

calculator. This mechanism is known as proportional allocation. But it is still not a

perfect solution. Consider a word processor that can open either a small memo file

or an entire book. Clearly, opening an entire book would probably effectively utilize

more pages than opening a small memo file. What we would like to do is have a

mechanism that allocates pages to a process in proportion to its use of the pages.

 11.5.6 Automatic page limit balancing

 Most modern operating systems use just such a mechanism. Most of these mecha-

nisms are variations on the page fault frequency (PFF) algorithm. They depend

on the idea that the page fault rate of a process is a good indicator of whether it has

the right number of pages. If it has too few pages, then the page fault rate will go up

rapidly. If a process is not generating any page faults, then it may also have pages in

RAM that it doesn’t need. This mechanism sets an upper and lower limit on the page

fault rate. Figure 11.13 shows this mechanism at work. If the page fault rate of a

process falls below the lower limit, then the OS will subtract one from the maximum

frame count for that process. If the page fault rate exceeds the upper limit, then the

OS will add one to the count. This mechanism will tend to keep all the processes in

the system running at a similar page fault rate and will allocate only as many frames

to a process as it needs to stay in this range.

 11.5.7 Thrashing

 Assume for a moment that we have set a hard upper limit on how many pages a process

can use—let’s call that limit N. Suppose further that the design of this process is such

that it has reached a phase in its execution where its working set is more than the N page

limit. Finally, assume that we are using only local page replacement so that when the

process creates a page fault we will replace one of the pages that this process already

has mapped. This process will constantly be creating new page faults and will spend

most of its time waiting on the disk I/O. As a consequence it is going to get little real

work done and the system will see an excessive amount of disk I/O. This phenomenon

is called thrashing. In this case a single process is thrashing. Thrashing does not depend

on those restrictions we imagined here. If the sum of the working sets of all the running

processes is greater than the real main memory, then the whole system is going to spend

246 Part 3 CPU and Memory Management

more time replacing pages than it will spend running processes and we will say that the

system is thrashing. When it happens it can be difficult to stop because the very act of

executing operations to stop some processes that might not be essential will itself cause

more code to be brought into memory and may actually make the situation worse.

 11.5.8 Page locking

 Primary memory is commonly used as a buffer for input and output operations. If

a buffer page has an I/O operation pending, then it is probably not currently being

changed by the application, so it might end up being selected by the paging mecha-

nism for reuse—clearly with disastrous results. In order to prevent such an unfortu-

nate event, an OS that is doing demand paging must allow an application (usually

a device driver) to lock a page so that the paging mechanism will not select it. The

following calls from the POSIX specification are typical for these functions:

 int mlock (const void * addr, size_t len)

This routine asks the OS to lock a range of pages from the logical address space of

the calling process. The range of pages to be locked starts at address addr and is

 len bytes long. Only whole pages can be locked, so the range actually includes any

pages that contain any part of the specified address range. If the function returns suc-

cessfully then each of the pages is bound to a physical frame and is marked to stay

that way. This means that a call to this function may cause page-ins if some of the

pages in the range are not currently resident and the function will block to wait for

them. If the function succeeds, the return value is zero. Otherwise, it is ⫺1 and the

global errno variable is set accordingly.

 int munlock (const void * addr, size_t len)

Max.

Frames
allocated

0

0 Page fault frequency Max.

Above page fault
rate maximum—add

frames

Page fault
rate

Below page fault rate
minimum—remove frames

FIGURE 11.13

Automatic page limit

balancing.

 Chapter 11 Advanced Memory Management 247

The munlock routine asks the OS to unlock a range of pages of the calling process.

It is the inverse of mlock.

 11.5.9 Clean page mechanisms

 As was mentioned, it is important to use a page for replacement that is clean rather

than a dirty page so that the dirty page does not have to be written to the swap file.

In addition, because the disk is 1–10,000 times slower than main memory, we can

spend many instructions trying to avoid one disk I/O operation. Alternatively, we

can try to do some of the disk operations in the background rather than when we are

waiting for a page to be loaded.

 We can lessen the impact of the use of a dirty page by keeping available for use

a pool of free frames that are clean. When the page replacement algorithm selects a

dirty page as the victim for replacement, the OS can use one of the clean frames from

the pool. Then in the background the contents of the dirty page can be written out to

the disk. When it is clean then the frame can be placed in the pool.

 Another task that can be done in the background is to clean pages that are dirty.

A background task can look for pages that have not been referenced lately (and thus

are likely candidates for replacement) but that are dirty. A background write opera-

tion can be started for those pages so that when they are selected for replacement

they will be clean. Of course, the page may become dirty again while the process

runs, but we are doing this work in the background at the lowest priority so we are

not wasting I/O or CPU cycles that could be spent doing something else.

 11.5.10 Program design and page fault rates

 In general, we say that virtual memory and demand paging are transparent to an

application program, However, there are a few observations about how program

design can affect the rate of page faults. Consider, for example, searching a large

table. Assume that the table is large enough that it covers many pages and that it is to

be searched many times for different items. With a binary search we will hit the mid-

dle page every time we start a search. Then we will likely hit one of two other pages,

either in the first half or the second half. These three pages at least will probably stay

in memory most of the time so we will rarely get a page fault on these pages. With

a hash table search, however, almost every lookup will cause a different page to be

read in since the basic intent of hash tables is to randomly address the entire table in

hopes of hitting the desired entry with the first reference. So very large hash tables

do not work well with virtual memory systems.

 Next, consider a portion of a program that does a matrix multiplication: 3

 for(i ⫽ 0;i<500;i ⫹ ⫹)

 for(j ⫽ 0;j<500;j ⫹ ⫹)

 for(k ⫽ 0;k<500;k ⫹ ⫹)

 x[i][j] ⫽ x[i][j] ⫹ y[i][k]*z[k][j];

3 Patterson, David A. and John L. Hennessy, Computer Organization and Design: The Hardware/

Software Interface, Morgan Kaufmann, 2004, p. 617.

248 Part 3 CPU and Memory Management

 When this code was run with arrays of double precision floating point numbers on a

Silicon Graphics system with a MIPS R4000 processor and a 1 MB cache, the run-

ning time was 77.2 seconds.

 We can make a small change to vary the order of the loops so that the innermost

loop is stepping through the memory in the same page like this:

 for(k ⫽ 0;k<500;k ⫹ ⫹)

 for(j ⫽ 0;j<500;j ⫹ ⫹)

 for(i ⫽ 0;i<500;i ⫹ ⫹)

 x[i][j] ⫽ x[i][j] ⫹ y[i][k]*z[k][j];

The problem with the first example is that the array is stored in memory so that

adjacent row elements (the first subscript) are contiguous. Since the variable that is

controlling the innermost loop is not the row subscript, then each reference will be

to a different page. When we change the loops as in the second example, then each

iteration is referencing the same page and the runtime decreases to 44.2 seconds due

to the lower number of page faults.

 So it is true that in general the action of virtual memory and demand paging

are transparent to applications in the sense that the programmer does not have to

pay a great deal of attention to the mechanism—this code will work correctly in

either format. But as we have just seen, this doesn’t mean that they have no effect

in every case.

 11.6 SPECIAL MEMORY MANAGEMENT TOPICS

 11.6.1 Sharing memory among processes

 Both segmentation and paging allow for portions of memory to be shared between

processes. This can result in large savings in memory. For example, on a mainframe

supporting many users it might be common for many users to be running a word pro-

cessing program at the same time. With paging the page tables for many processes

can both point to the same frames in memory so that only one copy of the program

code is actually resident. Similarly, with segmentation the segment tables for many

processes can point to the same physical memory segment. While this can be handy,

it can also cause problems. If the portions of memory that are being shared are data

segments, then the individual processes will be changing some of the pages. This

may or may not be desired. Several processes might be using shared memory to

communicate among themselves. In this case, we would want each process to see all

the changes to the pages, so they should be looking at the same frames in physical

memory. But consider the case where one process forks itself. Initially, it would be

ideal to share the entire physical address space between the two processes. But as

they run, changes made by one process should not be seen by the other process. In

order to allow this to happen, an OS can use a mechanism known as copy on write.

Initially, the two processes will be mapped to the same physical frames. But the page

(or segment) tables will be set as read only. If either process tries to write to a shared

portion of the memory, then an interrupt will occur. When this happens the memory

 Chapter 11 Advanced Memory Management 249

management subsystem will make a separate copy of the shared portion for each

process and remove the write protection flag from the table, allowing each process to

see only its own version of the data.

 Solaris supports access to a shared memory block (Solaris calls it a segment)

using the shmget() routine. One process creates a shared block with the first call. The

block is described by a control structure with a unique ID that points to an area of

physical memory. The identifier of the block is called the shmid.

 Here is the call used to access a shared memory block in Solaris:

 int shmget (key_t key, size_t size, int shmflg);

 The key argument is either of type key_t or is IPC_PRIVATE. It is the numeric key

to be assigned to the returned shared memory block. The size argument is the size

in bytes of the requested block. The shmflg argument specifies the starting access

permissions and creation control flags.

 If the call succeeds, it returns an ID to identify the shared memory block. This

call can also be used to get the ID of an existing shared block by another process.

The following code illustrates shmget():

 key_t key; /* key to be passed to shmget() */

int shmflg; /* shmflg to be passed to shmget() */

int shmid; /* return value from shmget() */

int size; /* size to be passed to shmget() */

shm_id ⫽ shmget(IPC_PRIVATE, size, shmflg);

if (shm_id<0) {

 printf(“shmget error\n”);

 exit(1);

}

 Server and clients can be created with a fork call or can be unrelated. For a child

process, if a shared memory block is requested and attached prior to forking the

child, then the server may want to use IPC_PRIVATE since the child has a copy of

the server’s address space, which includes the attached shared block. However, if the

server and clients are separate processes, using IPC_PRIVATE is not a good idea

since the clients will not know the key.

 11.6.2 Memory mapped files

 Most modern OSs allow a special mode of memory sharing referred to as memory

mapped files. In this mode a process will ask the OS to open a file and associate all

or part of the data in the file with a region of the logical address space of the process.

Then the process can refer to the information in that space as an array or through

memory pointers. There are two main advantages of such a system. The first is that

the process does not have to use I/O statements to access the data—the demand pag-

ing system takes care of accessing the right data from the file. The second advantage

is that two or more processes can ask the OS for access to the same file at the same

time. The same memory frames will be mapped into the logical address spaces of

250 Part 3 CPU and Memory Management

both processes, allowing them to share access to the memory. This mechanism there-

fore provides a simple mechanism for sharing data between two processes. Of course,

the processes may need to use synchronization techniques to avoid interfering with

one another. In addition, if the real purpose of the “shared file” is to provide a shared

memory region between two or more processes, the shared file does not actually need

to reside on the file system as a file.

 As an example, here is how memory mapped objects (including files) can be

created under the Windows Win32 libraries:

 HANDLE WINAPI CreateFileMapping(

 _in HANDLE hFile,

 _in_opt LPSECURITY_ATTRIBUTES lpAttributes,

 __in DWORD flProtect,

 __in DWORD dwMaximumSizeHigh,

 __in DWORD dwMaximumSizeLow,

 _in_opt LPCTSTR lpName

);

 The meanings of some of the parameters are:

 ɀ hFile—A handle to the file from which to create a mapping object. If hFile is

⫺1, the call must also give a size for the object in the dwMaximumSizeHigh

and dwMaximumSizeLow parameters and a temporary file is created in the sys-

tem paging file instead of mapping to a file system file.

 ɀ A pointer to a security descriptor structure for the object that contains access

control lists (ACL) and other security information.

 ɀ flProtect—Protection to be applied to the object

 ɀ PAGE_READONLY

 ɀ PAGE_READWRITE

 ɀ PAGE_WRITECOPY (copy on write)

 ɀ PAGE_EXECUTE_READ

 ɀ PAGE_EXECUTE_READWRITE

 ɀ PAGE_EXECUTE_WRITECOPY

 ɀ Etc.

 ɀ dwMaximumSizeHigh—High-order DWORD of max size of the object.

 ɀ dwMaximumSizeLow—Low-order DWORD of max size of the object.

 ɀ lpName—The name of the file to be mapped.

 11.6.3 Windows XP prefetch files

 Various OSs have developed some interesting tricks to optimize the use of demand

paging. One interesting technique used in Windows XP is designed to speed up the

loading and initialization of programs. The idea is that when a program is loading

it will go through the same sequence of instructions each time. Therefore, it will

generate the same sequence of page faults. Furthermore, it will tend to generate

these faults in clusters. For example, as the code executes it will pass through a

contiguous sequence of pages in the code. As it does so it will be generating other

 Chapter 11 Advanced Memory Management 251

page faults as it calls subroutines and references data in other pages. As a result,

the disk drive gets a workout seeking back and forth to fetch these pages in random

order. XP (and sometimes other OSs as well) uses a better technique. The first time

a program starts, the OS will keep track of all the page faults it makes in the first

few minutes. It will record those page faults in a file called a prefetch file. Later,

in the background it will sort that file so that subsequently when the program is

launched the OS can fetch all the code pages that will be used as the program ini-

tializes. It can fetch all the needed pages of the main program in a few large read

operations. Then it will move to another place on the disk to fetch all the subrou-

tine code, then move to another place to fetch those data pages that will be used,

and so forth. This technique will save a lot of page fault interrupts. It will also save

a lot of disk head movement and rotational delays as larger chunks of disk storage

are read in single operations.

 11.6.4 Symbian memory management

 The Symbian OS was created for use in cell phones. This OS has a unique way of

utilizing the paging hardware found in modern CPUs. The problem they faced was

this: In a cell phone it is presumed that there is no secondary storage—no disk drive.

As was discussed in Chapter 4 on the Palm OS, all the programs that are stored in

the phone are always in primary memory. Therefore, primary memory is even more

scarce than in most systems, especially given the need to maintain a low power bud-

get in cell phones. But the processor architecture used in the phone includes paging

hardware since most system environments do include secondary storage. In most

OSs there are three functions that the memory management hardware is supposed to

perform: (1) dynamic relocation of the program, (2) restriction of addressing to the

space reserved for a given program, and (3) allowing for random dynamic loading

of any page from secondary storage into primary storage. In the Symbian OS the

dynamic loading function is not needed. In addition, storing a page table for each

program would take up valuable RAM. So the problem faced by the Symbian devel-

opers was how to use the hardware most efficiently to do the two jobs that remained.

The solution adopted by the Symbian OS developers was to use a single-page table

for all the processes in the system.

 The single-page table is modified when a context change is needed and a pro-

gram is about to be put into run state. Figure 11.14 shows how this change is made.

In Figure 11.14a we see the page table when process B is running. The page table

has a normal mapping for the frames of both process A and process B and for their

respective thread data pages. But there is also a reserved section of the page table

that always points to the frames for the process that is currently executing. When it

is time to make a context switch and start executing process A, the OS will copy the

page table entries for process A into the page table entries reserved for the running

process. This is shown in Figure 11.14b where we see that the page table has been

changed to run process A. The result is that pointers to the frames of the running pro-

cess always appear in two places in the page table, once where it actually resides and

once where the running process appears. This allows the paging hardware to support

252 Part 3 CPU and Memory Management

the dynamic relocation function needed to simplify code generation and still restrict

program access to its own memory areas without consuming extra RAM for a page

table per process.

Logical Physical

Thread A2 Data

Thread A1 Data

Process A

Thread B1 Data

Process B

Thread B1 Data

Process B

(a) Process B is running (b) Process A is running

29

21

9

43

17

43

17

Logical Physical

Thread A2 Data

Thread A1 Data

Process A

Thread B1 Data

Process B

Thread A2 Data

Thread A1 Data

Process A

29

21

9

43

17

21

29

9

The running process is
always mapped here.

FIGURE 11.14

Symbian memory

page table.

 11.7 SUMMARY

 In this chapter we discussed the designs of memory

management through paging and segmentation sys-

tems and their hardware requirements as well as a

combination of segmentation and paging. We then

discussed demand paging memory management.

We examined the effect of demand paging and some

problems that arose in its implementation. Through-

out this discussion we also focused on the hardware

required to support these OS techniques. We ended

with a section that covered some subtopics related

to advanced memory management.

 BIBLIOGRAPHY

 Belady, L. A., “A Study of Replacement Algorithms for

Virtual Storage Computers,” IBM Systems Journal,

Vol. 5, No. 2, 1966, pp. 78–101.

 Belady, L. A., and C. J. Kuehner, “Dynamic Space

Sharing in Computer Systems,” Communications of

the ACM, Vol. 12, No. 5, May 1969, pp. 282–288.

 Carr, R. W., and J. L. Hennessy, “WSClock—A

Simple and Effective Algorithm for Virtual

Memory Management,” Proceedings of the Eighth

Symposium on Operating Systems Principles,

Vol. 15, No. 5, December 1981, pp. 87–95.

 Denning, P. J., “The Working Set Model for Program

Behavior,” Communications of the ACM, Vol. 11,

No. 5, May 1968, pp. 323–333.

 Denning, P. J., “Virtual Memory,” ACM Computing

Surveys, Vol. 2, No. 3, September 1970, pp. 153–189.

 Denning, P. J., “Working Sets Past and Present,” IEEE

Transactions on Software Engineering, Vol. SE-6,

No. 1, January 1980, pp. 64–84.

 Mattson, R. L., J. Gecsie, D. R. Slutz, and I. L. Traiger,

“Evaluation Techniques for Storage Hierarchies,” IBM

Systems Journal, Vol. 9, No. 2, 1970, pp. 78–117.

 Chapter 11 Advanced Memory Management 253

 Prieve, B. G., and R. S. Fabry, “VMIN—An Optimal

Variable Space Page Replacement Algorithm,”

 Communications of the ACM, Vol. 19, No. 5, May

1976, pp. 295–297.

 Stephenson, C. J., “Fast Fits: New Methods for

Dynamic Storage Allocation,” Proceedings of

the Ninth Symposium on Operating Systems

Principles, ACM, Vol. 17, No. 5, October 1983,

pp. 30–32.

 The bibliography for this chapter overlaps considerably

with the previous chapter.

 WEB RESOURCE

 http://www.symbian.com (Symbian OS)

 REVIEW QUESTIONS

 11.1 What hardware development solved the problem

of external fragmentation?

 11.2 While the paging hardware is translating a logical

page address to a physical frame address, what

happens to the displacement part of the address?

 11.3 When we first looked at translating memory refer-

ences through a table that was also in memory,

what was the effect on the effective access time of

memory? What did we do about it?

 11.4 Using page tables, we need some way to know

where the end of the logical address space is in

the table. We discussed two different techniques

for doing this. What mechanisms did the two

techniques use? Under what circumstance is one

technique preferred over another?

 11.5 Eventually, page tables started to grow very big

and sparse. What technique was employed to

solve this problem?

 11.6 An alternative to paging is segmentation. Briefly

describe this technique.

 11.7 What is the basic idea behind demand paging?

 11.8 When running demand paging, how does the OS

know a page is needed by a process?

 11.9 What is the “working set” of a process?

 11.10 Why do we worry about page replacement algo-

rithms so much?

 11.11 Why do we prefer not to replace dirty pages when

a page fault occurs?

 11.12 When an OS is selecting a page to replace in

a demand paging system, what is the differ-

ence between local replacement and global

replacement?

 11.13 What is the minimum number of pages that a pro-

cess needs to run?

 11.14 If a process frequently starts thrashing, what

should the architect of the process do to improve

the situation?

 11.15 What kind of background operations can an OS

do to improve demand paging performance?

 11.16 Hash tables are very poor performing structures

as far as demand paging goes. We mentioned that

binary lookups were probably pretty good. What

other basic system structure gives very good

demand paging performance?

 11.17 What is the purpose of a prefetch file in Windows

XP?

 11.18 How are memory mapped files used by multiple

processes?

 11.19 The Symbian OS uses the paging memory hard-

ware in a very special way. Why is that?

255

In this part:

Chapter 12: File Systems—Basics 257

Chapter 13: File Systems—Examples and More Features 283

Chapter 14: Disk Scheduling and Input/Output Management 297

 N
ot all operating systems have file systems, but any of those devices we would

normally think of as a computer certainly would have one. Indeed, many of

the devices that we might not think of as a computer may have file systems as

well, including many gaming systems, cell phones, music players, and personal digi-

tal assistants. This part of the text covers those aspects of an OS that are concerned

with the management of secondary storage and the file systems found thereon.

Chapter 12 discusses the layout of typical hard drives and explains the basic

concerns that a file system has. The topics covered here start with the concepts of

directories and how they are laid out in modern file systems. Then the chapter dis-

cusses the concept of file access methods, including sequential, random, and indexed

access. Next, it covers the tracking of free space within a file system and the layout

(allocation) of the files themselves.

Chapter 13 first covers several modern file systems as case studies to show how

the individual mechanisms discussed in Chapter 12 are used in real OSs. It then cov-

ers advanced file system features often found in modern OSs but not so fundamen-

tal to the normal application. These topics include virtual file systems/redirection,

memory mapped files, file system utilities, and log-based file systems.

Chapter 14 moves to a lower level that is normally isolated from the file system.

It discusses the entire input/output management subsection present in any OS. It

discusses various classes of I/O devices, including those used for secondary storage.

This chapter is included in this part of the text since secondary storage management

is such a dominant use of the I/O subsystem. Other aspects of I/O are treated sepa-

rately in the chapters on networking, for example.

A Depth-Oriented Presentation

of OS Concepts: File Systems

and Input/Output

PartPart 44

256

257

 Chapter Chapter 12 12
 File Systems—Basics

In this chapter:

 12.1 Introduction 258

 12.2 Directories 259

 12.3 Access Methods 265

 12.4 Free Space Tracking 269

 12.5 File Allocation 273

 12.6 Summary 280

 F
iles are one of the most important abstractions an OS can provide. The con-

cept of files predates computers, so they are a metaphor that everyone under-

stands. Programmers do not want to think about disk drives, tapes, or any

other media. They want to think about the data they are processing, and they think

of the data as a collection. In a computer, that collection is abstracted as a file. Pro-

grams need data to work on. We usually keep that data on secondary storage devices

because primary storage is too expensive to keep all the data we need to have access

to. Today, these devices are almost always rotating magnetic disk drives. As appli-

cation programmers we do not want to be concerned with the details of operation

of the thousands of different types of disk drives. We want to think of our data in

terms of some abstraction. Usually, we think in terms of a file as being a collection

of records or bytes. Therefore, a major function of most OSs is to provide for the

abstraction of a file on secondary storage. The contents of a file are usually meaning-

ful only to application programs. By this we mean that the OS is typically not aware

of the internal structure of the files. There are a few exceptions such as the execut-

able (binary) programs that the OS can run and the object modules that are used to

make those files. Such files have structures that are defined by the OS itself. These

structures will be known by all the linker or loader utilities that are used to make the

executable files and the compilers and assemblers that are used to produce the object

modules from source program files.

 In Section 12.1 we introduce the concept of file systems and how they fit in

an OS. Modern computers typically contain hundreds of thousands of files. It must

be possible to organize the files so that things can be found. Next, we discuss the

mechanisms used for supporting directories in file systems. Different applications

have different needs in terms of how they access the data in files. Sometimes the

258 Part 4 A Depth-Oriented Presentation of OS Concepts: File Systems and Input/Output

data can be processed sequentially. Sometimes the transactions are random. Some-

times a special key number makes it easy to find a record. Other times we need to

access records based on their content. Section 12.3 describes various methods that

applications can use for accessing the data in files. File systems on random-access

media need to keep track of what parts of the media contain data and what parts are

free to use. So next we explore the need for tracking the space in a file system that is

not currently allocated to a file, and the different structures used to track that space.

In Section 12.5 we present the topic of the structure of the files themselves and dis-

cuss the tradeoffs of the various methods. We conclude with a chapter summary in

Section 12.6.

 12.1 INTRODUCTION

 File systems generally have layered designs, with each layer providing services to

the layer above it. Every OS has a unique partitioning of the functions across these

layers. Two things are true about all file systems: the top layer API is an abstraction

of the concept of files and the bottom layer interacts directly with the hardware. As

an example, a Linux file system organization is shown in Figure 12.1 with the layers

flowing left to right. We discuss file abstraction in this chapter and the bottom layers

in the next chapter.

Device
Control

A
p
p
li

ca
ti

o
n
 P

ro
g
ra

m
s

Virtual
File

System

Block
Device
Driver

Remote
Server

Cache
Manager

Network
Protocols

Network
Interface

Character
Device Drivers

Sockets

File
Systems

FIGURE 12.1

Linux file and I/O

systems.

 Chapter 12 File Systems—Basics 259

 12.2 DIRECTORIES

 Before a program can use a file, it will need to find the file. The OS will need to

provide some sort of an index to the files that the program can search. We call

these indexes directories. (Since more people have begun using computers who

are not very knowledgeable about them, another term has also come into common

usage for these structures: folders.) Directories will obviously have to store the

name of the file, but they will also store other data about the file as well. In some

OSs there may be a lot of other information kept for each file, but in others there

is only a small amount. This other information about a file that is not part of the

file data is referred to as file metadata. Some of these other items are almost uni-

versal and others are found only rarely. Clearly, we will need a disk address that

points to the start of the file data. Usually, we also want to know the size of the file.

 Table 12.1 shows some examples of metadata we might find for a file on various

operating systems. It is unlikely that any OS will have all of these items—in some

cases they represent different ways of accomplishing the same ends. In some OSs

this information is stored in the directory entry for a file. In other OSs it is stored

in a separate structure—most notably, UNIX-derivative OSs use an external table

called an inode.

 12.2.1 Logical structure

 There are many different logical structures that can be used to store a directory struc-

ture for a file system. We look at several common structures in this section.

 Single level

 How we logically organize the directory on a disk depends to some extent on the

size of the disk. As was discussed in Chapter 4, early disk drives were fairly small (a

few hundred thousand bytes) and the number of files was therefore small. In order

to make maximum use of the limited space, the names were kept short (6–8 charac-

ters was fairly common) and the pointers to the blocks on the disk were kept small.

There was normally only a single directory for the entire disk. In Figure 12.2 , we

show such a single-level directory structure. As we mentioned in earlier chapters,

some OSs with a single-level directory structure attempted to give the appearance of

TABLE 12.1 Some Possible Directory Information Items

File Name Archived?

 Starting Block Protection (can be very complex)

Maximum File Size Encryption Information

Current File Size Compression Information

 Last Block Owner ID

Date & Time Created File Allocation Type

Date & Time Last Written Date & Time Last Accessed

260 Part 4 A Depth-Oriented Presentation of OS Concepts: File Systems and Input/Output

a two-level structure by associating a group name with files so that a user could look

at the directory and see only the files for a specific group.

 Tree structure

 Disk storage capacities have grown dramatically over time. Current disk drive tech-

nology is such that drives with the capacity of several hundred billion bytes (GB)

are standard equipment on a typical new personal computer. It is normal for such

a disk to have hundreds of thousands of files on it. An average user would have no

specific knowledge about many of them. A single directory would not work on such

large drives. So a key development in the organization of the logical structure of disk

directories was to allow for multiple directories. The main trick is simply to allow

directories to refer to other directories in addition to referring to files. If we limit

such references to link only to directories with no other link to them (including the

starting directory), the resulting structure is a tree structure with the starting direc-

tory as the root of the tree. See Figure 12.3 .

 With such a hierarchical directory organization we can divide the files up into

different categories. On machines that are used by more than one user, we can

Filename Length Start

MSDOS.SYS 14 0000404

IO.SYS 12 0000303

AUTOEXEC.BAT 2 0000505

CONFIG.SYS 1 0000506

COMMAND.COM 50 0000600

FIGURE 12.2

A single-level

directory.

W A Q

T V A

S R N

S R N

S R N

S R N

File
“N”

FIGURE 12.3

A tree directory

structure.

 Chapter 12 File Systems—Basics 261

give each user a “home” directory, which will contain all their data files in sub-

directories. The various subdirectories can also be dedicated to different types of

files—perhaps one for utility programs, one for games, one for email, and so on.

This process can be continued to arbitrary depths. Email, for example, could be

further divided into directories related to work, school, family, friends, and technol-

ogy. The school directory could be further divided into directories for each class,

and so forth.

 A side effect of this organization is that we can have many files with the same

file name just by keeping them in separate directories. This would allow a group of

people working in different home directories to use identical file names. Figure 12.3

shows the unlikely but perfectly legal case that many subdirectories contain the same

set of file names. However, there was a price to pay for this feature—the names of

files can no longer be uniquely specified by a single name. In order to unambigu-

ously refer to a file we will have to give the entire path of the directories leading to

the file. It is common to separate the subdirectory names with some delimiter that

cannot be used as part of a file name. The characters / and \ are the most often used

characters. So in Figure 12.3 , in order to unambiguously name the one file shown,

we would have to give the name “ \W\T\N. ”

 Acyclic graph directories

 Unfortunately, the real world can’t be accurately modeled by a tree structure. For

example, a canary is a bird. If we had a digital picture of a canary and we were

studying biology, then we might put it in a directory with cats and other animals.

It also flies, so if we were studying engineering we might put it in a directory with

airplanes and other things that fly. It also is yellow, so if we were artists we might

put it in a directory with butter and lemons and other things that are yellow. But if

we were studying biomedical engineering and working on color vision systems, we

might be at a loss as to how to classify this file. With only a tree structured directory

we are often in a quandary as to how we should classify some file. Furthermore,

sometimes we later can’t remember which folder we decided to put the canary pic-

ture in. A solution that is sometimes employed to help with this dilemma is to allow

directories to form directed acyclic graphs (DAG s). The way to accomplish this

is to use a special kind of directory entry called an alias. An alias is an entry that

does not point directly to a file, but rather points to another directory entry. (The

alias could actually point to the file, but there are some problems that arise with this

mechanism, which we discuss later. The distinction between the two mechanisms

is not relevant here.)

 Unfortunately, moving from a tree structure to a DAG introduces some prob-

lems that must be considered. The simplest example is a one that would occur when

a program tries to sum up all the space in all the files on a system. If the aliases are

not considered, then the program might come up with the wrong total if some files

are referenced more than once. Another large problem is how the system should

decide that a file can actually be deleted. Consider the case in Figure 12.4 . Here we

see three directories. The top directory has two entries pointing to subdirectories,

 W and Q. It also has a directory entry pointing to a file, A. The subdirectory W

contains an entry that also points to file A. Suppose the user deletes file A while

262 Part 4 A Depth-Oriented Presentation of OS Concepts: File Systems and Input/Output

in subdirectory W. The OS shouldn’t actually remove the file because of the other

reference to it in the top directory.

 There are two mechanisms that are sometimes used to resolve this issue. The

first is to distinguish between the primary reference to a file and any aliases to a

file. The OS will also include a reference count in the primary directory entry. When

an alias is added for a file, the reference count is incremented. Then if an alias is

deleted, the primary reference count is decremented, and if the count goes to zero

then the file can actually be deleted. There remains the issue of what happens when

the primary reference is deleted but aliases remain. The second technique is to make

all aliases symbolic references, including any path information. This is what we

meant earlier when we said that the alias should point to the directory entry for the

file instead of to the file itself. In this case, if the lower reference in the figure was the

primary reference, then the second directory entry would actually contain “ \W\A”

rather than a pointer to the file on the disk.

 12.2.2 Physical structure

 In older systems there was considerable attention given to the speed of searching

directories. As a result, older systems sometimes used techniques such as hashing to

speed up directory searches. However, over the last 20 years or so CPU and memory

speeds have speeded up by a factor of at least 10 faster than disk drives have speeded

up. Therefore, most modern OSs don’t worry about such matters, and directories

are not sorted in any particular order. The search is simply sequential. In most cases

people tend to keep directories fairly small—under 100 entries or so.

 12.2.3 Operations on directories

 The OS must support several different operations on directories. One might think

that these would only be the operations that are supported on files, since directories

are essentially files. However, there are a few differences. For one thing, because

of the potentially catastrophic consequences of having an error in the file system,

most OSs do not allow an application program to write into a directory. Instead, the

application must call special routines to create a new file or directory or do any other

such operations on directories. Table 12.2 shows a number of operations that an OS

might support on directories.

W A Q

T V A

S R N

FIGURE 12.4

Two directory entries

pointing to one file.

 Chapter 12 File Systems—Basics 263

 The first operation listed is to change the working directory. As was mentioned,

each subdirectory can contain files with the same local name as other subdirectories,

so that a path name is required to unambiguously name a file. When we are enter-

ing names into a command line to run a program, we don’t want to have to keep

typing path names all the time, so OSs use the concept of a working directory. The

idea is that the user will take some action that specifies a specific directory to be

the current working directory, or sometimes just the working directory. One way

the working directory can be determined is to log in to the system. Systems support-

ing such logins will usually assign the user’s home directory to be the current work-

ing directory at login time. A reference to a file name that does not include any path

information is called an unqualified name. Any commands that make reference to

an unqualified name will imply that the file is in the current working directory. So,

in Figure 12.5 , if directory W were the current working directory, then a reference

to file S would be assumed to be a reference to the file in that directory. In order to

refer to the file S in the subdirectory T of directory W, the program would have to

specify a path to that directory as a part of the name. In this case it could say either

“ \W\T\S ” or “ .\T\S. ” The first reference is an absolute pathname. It begins with the

delimiter that separates directory names in the path so it is interpreted as starting at

the root of the tree. The second reference is called a relative pathname. The “ . ” is a

special name that specifies the current working directory. So this pathname says that

TABLE 12.2 Operations OSs Must Support on Directories

Change Working Directory

Create Directory

Delete Directory

List Directory

Create File

Delete File

Search for a File

Rename a File

Completely Walk the Directory Tree

W S Q

T S A

S R N

S R N

S R N

FIGURE 12.5

Paths in a directory

structure.

264 Part 4 A Depth-Oriented Presentation of OS Concepts: File Systems and Input/Output

the path starts in the current working directory and goes to the subdirectory T, where

it will then find the file name S.

 The other common mechanism for changing the current working directory is a

Change Directory command—usually something like cd or chdir. This command

can specify an absolute path or a relative path. Often, shorthand notation can be

used, for example, so that cd .. will change the working directory to the parent direc-

tory of the current directory. On Linux and other UNIX-like systems the cd com-

mand with no arguments will place the current working directory at the user’s home

directory.

 The commands to create and remove directories are fairly straightforward.

Again, these functions exist since we don’t usually let applications write in direc-

tories. Rather, we demand that they use special OS calls to do these functions.

Special utility programs mkdir and rmdir exist to allow the user to request these

operations through the command interpreter. Normally, the OS might not provide

a built-in function to list the contents of a file, but directories are very special

files, so the OS must provide a function to list the contents of a directory for an

application. Again, utility programs (dir or ls) are provided to make this func-

tion accessible to a user through the command-line interface. However, when an

application program needs to create a new file, it must have a way to ask the OS

to do that. Similarly, a program may want to delete a file that is no longer needed.

There is generally no simple utility to create a new file because such a file would

be empty. Usually a file is created as a byproduct of some other action. The clos-

est thing to a utility would be a file copy command (cp or copy). Under Linux

one can copy the special pseudo file /dev/zero to a file name to create a file of

binary zeros. Of course, files are often created with text editor utilities like vi or

 notepad. Other applications create their own files such as .doc files or .xls files

under Microsoft Office. File deletion is usually exposed to the user with a utility

that will delete files like del or rm. Deleting directories is also a special utility

with a name like rmdir. Searching a directory for a file is often something an

application needs to do. This is not for the purpose of opening the file for input.

The OS (or the language library modules) will do that. Rather, it is for when the

application wants to create a new file. It will first need to check to make sure that

such a name is not already in use in the current directory. (Some language librar-

ies might do that as well.)

 12.2.4 File system metadata

 We mentioned before that directory entries contain information about files that

is not a part of the file itself and that this information was called file metadata.

There is also other information in the file system that is not about specific files and

thus is not part of the directory entries. For example, where is the first directory

located in the file system? We will see later that there will be other structures that

will tell us things such as how to find free disk blocks. The details will vary with

the particular file system, but there are always these other structures, and they are

very important to the integrity of the file system. They are collectively known as

 file system metadata.

 Chapter 12 File Systems—Basics 265

 12.3 ACCESS METHODS

 An OS presents an application program with an API that represents the abstraction of a

file. The API has to include semantics on how the application tells the OS which portion

of the file it wants to access. Different applications need different modes of access.

 12.3.1 Sequential access

 Initially, computer applications were designed to process information in batches that

were sequenced by some key information such as a part number or customer num-

ber. Such applications needed to process files sequentially. At one time these files

were literally sorted decks of punched cards and later were sorted blocks of data on

a magnetic tape. The system might have an input file of transactions such as time

cards and a master file such as the payroll records, both of which might be in order

by the employee number. The application would start reading at the front of each file

and would incrementally read each file, keeping them synchronized by the key field,

in this case the employee number. For decks of cards the records were a fixed size.

For magnetic tape they could be any convenient size up to some maximum that the

hardware or the OS would dictate. For sequential processing on disk storage the OS

(or a software library) has to have some definition of what the record size is for each

file and it then has to keep track of the current position (or current record pointer)

for each application that has the file open. This is seen in Figure 12.6 . (Note that

different processes accessing the same file probably would have different current

record pointers.) For normal sequential processing the OS will increment the current

record pointer for each read or write. There is usually a command in the API to reset

the current record pointer to the start of the file. This operation would be analogous

FIGURE 12.6

Sequential file with

current record

pointer.

Current Record Pointer

for process 104

Current Record Pointer

for process 85

Sequential file

266 Part 4 A Depth-Oriented Presentation of OS Concepts: File Systems and Input/Output

to rewinding a tape to the starting position. Since the disk blocks are a fixed size and

may not exactly match the record length requirements of the application, it is fairly

common for the OS to combine more than one logical record into a physical data

block. Blocking is covered more fully in the next chapter.

 12.3.2 Random access

 As disk drives got much cheaper, secondary storage migrated from being stored on

magnetic tapes to being stored on disk drives. Once the data was mostly kept online

it became possible to process each transaction as it occurred rather than accumulat-

ing them to be processed in sequential batches. Transaction processing is generally

preferable to batch processing because it allows management to track the status of

an enterprise more nearly in real time. However, this meant that the application had

to access the master file data in random order rather than purely sequential order. So

the file APIs were extended to include another model: random access. In this model

the application will tell the OS which record in the file it needs and the OS will move

directly to that record and access it for reading or writing. Usually this will require

some simple mapping of a key value to the record number. For example, a small com-

pany might simply assign the employee numbers sequentially and use the employee

number as the record number. In some OSs this addressing is expressed as a record

number and in others it is expressed as a byte offset from the start of the file.

 Note that sequential access is still possible on random access files. When the

application accesses a record randomly this will leave the current record pointer

positioned at the next record. The application can now issue a read next operation

and the OS will return the next record and increment the current record pointer. We

can see this in Figure 12.7 , where the employee number for employee 34 is used to

Record for employee

34 is in record 34.

Random file

FIGURE 12.7

A random access

method file.

 Chapter 12 File Systems—Basics 267

access that record in the file. If the application does a read next operation it will get

the next record.

 In order to start accessing at any point in a random access file, the OS usually

provides a seek command, which will position the current record pointer at the first

record that has a key value greater than or equal to a given key value. When OSs only

ran one process at a time this command would actually position the disk head to this

position in the file (i.e., it would seek the physical location of the data). Now it is a

logical positioning only.

 12.3.3 Higher-level access methods

 Most OSs provide at least these two different access methods. A few OSs provide one

or more higher-level access methods. We describe two such mechanisms in the rest of

this section. Most of these higher-level access methods are also subsumed in database

systems and are sometimes provided as library modules as support for high-level lan-

guages. Having the access methods provided by the OS means that less development

work needs to be done to support many high-level languages as long as the semantics

of the APIs are similar enough for the OS access method to support them.

 Indexed access

 Random access often will not work as well for a larger company employee file as it

did for a smaller company. After a while many employees will retire, leave the com-

pany, get fired, and so on. The result would be that there would be many records in the

master file that would not represent a current employee. For such situations the OS

might provide an access method called an indexed access method. A fairly common

term for such access methods is ISAM, or indexed sequential access method.

 How such access methods work can be seen in Figure 12.8 . The figure shows

a data file for a retail store. It has three areas: the primary data area where the data

records are kept; the primary key area, which is an index to the main key field in the

record; and a secondary key area, which is an index to a different variable. As records

are added to the file they are written sequentially to the primary data area. However,

for each record written to the primary data area an additional record is written to the

primary key area and another record is written to the secondary key area. (Note that

ABC0

Index
SKU

No.

MFG

No.

Other

Info.

1

2

3

4

5

6

7

CBA

XYZ JKL

MNO CBA

ABQ ABQ

RST UVW

Unused

Primary Data Area

ABC

SKU

No.

Index

No.

0

ABQ 3

MNO 2

RST 4

XYZ 1

Unused

Primary Key Area

ABQ

MFG

No.

Index

No.

3

CBA 0

CBA 2

JKL 1

UVW 4

Unused

Secondary Key Area

.

FIGURE 12.8

An indexed access

method file.

268 Part 4 A Depth-Oriented Presentation of OS Concepts: File Systems and Input/Output

there might not be a secondary key area or there might be several of them.) Each record

in any of the key areas is stored in order by the value of the associated key field. In the

figure there are two key fields that have been used to index the data: the SKU number

(the stocking number of the retail store) and the manufacturer’s item number. So when

record 0 was written into the primary data area a record was written to the primary

key area that showed that SKU number ABC was found in data record 0 and another

record was written to the secondary key area showing that manufacturer’s number

CBA was in data record 0. When the second record was written into the primary data

area, then similar records were written into the key areas. However, when the third data

record was added, the record that was added to the primary key area caused a problem

since it was not in order, so we had to sort this area by the value of the key. There are a

number of techniques for building the key areas that avoid actual sorting of the entire

file, including binary trees (or B-trees), hashing, and multilevel indexing.

 Notice that the keys do not have to be a single field. An index might be created

that concatenated a last name and a first name, for example. Also notice that the

key fields may or may not allow duplicate keys. We see in Figure 12.8 that a single

manufacturer’s part number is stocked in the store with two different SKU numbers.

In a more likely scenario, in our employee file we might have two Bill Smiths, but

we should not have two employees with the same Social Security number. Such an

access method is close to being a database system but is somewhat simpler.

 The three “areas” that we discussed in Figure 12.8 could be portions of a single

file or they could be stored as separate files. Having them as separate files might

make it simpler to add an index on another key after the file was initially created.

The risk of having separate files is that it becomes very easy when backing up and

restoring files to end up with files that did not go together. Of course, we would

likely have a utility program that verified and possibly rebuilt the secondary index

files, but on a large file this could take some time, and we might not realize immedi-

ately that there was a problem such that we should run that utility.

 Hashed access

 Another higher-level access method sometimes provided by OSs is a hashed access

method. Hashing a key field can be used to create a random key value for use in

accessing a random access file when the key values are not all used. Of course, gen-

erating hash keys probably will create record numbers that collide for different val-

ues of the source key, so a mechanism must be provided to resolve these collisions.

While not as common as indexed sequential access methods, a hashed file access

method is still a useful tool for an OS to provide.

 12.3.4 Raw access

 For some applications the services provided by the file system would be counter-

productive. This can happen when an application has high performance require-

ments and the patterns of accessing the files it uses are well known to the developers

of the application. The services designed for most applications are provided for

an “average” or “typical” application where the file processing demands are not

unusual. In such cases the OS will sometimes provide a raw access method. In

 Chapter 12 File Systems—Basics 269

this case the OS does not provide any file structure, but reserves an area of the disk

wherein the application can provide its own structure. Examples of applications

where such raw access are useful include the paging store for the OS itself and

database systems.

 12.4 FREE SPACE TRACKING

 The OS will be storing files and directories in blocks on the disk. In order to do that

it will have to keep track of which blocks have not been used yet. There are gener-

ally two ways to keep track of this free space: linked lists and bitmaps. Initially, file

systems kept track of the smallest chunk of space that could be accessed on a disk

drive—a sector. As disk drives got larger, the size of the pointers to the sectors on the

disk got larger. For example, modern disk drives are now extending into the terabyte

range. Anything larger than a 2 terabyte drive would require a pointer greater than

4 bytes. Naturally, the file systems initially designed for floppy disks did not use

pointers that big. So when the disk drives outgrew the pointers in the file systems,

one easy solution was to allocate more than one sector at a time. Simply allocat-

ing two sectors together would double the reach of the pointer. The process was

extended, and in some cases file systems have allocated up to 64 sectors at a time,

though sizes of 4 KB are more typical. The resulting structure is referred to as a

 block, or sometimes as a cluster. This seemed good, but one problem with the mech-

anism was that it wasted space if the data stored on the disk included many small

files. Most script (or batch) files, for example, are just a few lines of text. Few would

fill a single sector, much less 64 sectors! Since this technique of allocating multiple

sectors at a time is still very common, we will generally speak of allocating a block

in this chapter rather than allocating a sector.

 12.4.1 Linked list free space tracking

 One way to keep track of the free space is to put all the free blocks in a list.

 Figure 12.9 shows blocks on a disk drive. The OS must keep track of the first block

on the list. Each free block will then contain a pointer to the next free block. Notice

that the list is not in any order. We might initially start with an ordered list, but when

an application frees up a block we will want to be able to put it in the list at the front

so that we do not have to change any other sector on the disk to point to this newly

freed block. We will take the pointer to the block currently at the head of the list and

put it in the newly freed block. We will write the sector of the block that actually

contains the next free block pointer to disk and we will record the newly freed block

as the first block in the list.

 One good aspect of this mechanism is that the only “extra” space it requires to

keep track of the free space is the single pointer to the head of the list. All the rest

of the pointers are kept in the free space itself. A bad aspect of this mechanism is

that it is normally very difficult to allocate contiguous blocks of space. So if appli-

cations might want to have contiguous blocks of data on the disk drive, this is not

270 Part 4 A Depth-Oriented Presentation of OS Concepts: File Systems and Input/Output

a good mechanism to use. Another problem with this mechanism is that to get the

address of the next free block, the OS has to read the free block because it contains

the pointer to the next one. In the next section we discuss some ways to get around

this problem.

 12.4.2 Improved linked lists

 What linked lists need in order to work better is to have some way for us to not

have to read each sector before we use it in order to find the next available free

sector. There are several ways to do this. Two common ways include grouping and

indexing. With indexing we merely store a bunch of free space pointers in a single

block. Suppose a block was only a sector, 512 bytes, and our pointers were 32 bits,

or 4 bytes. Then one block could store 128 pointers. So the block at the head of the

chain, instead of just pointing to the next free block, would point at the next 128 free

blocks. This first block would be called an index block. An example is shown in

 Figure 12.10 . We could use all the blocks pointed to by the first index block and then

use the index block itself. The last block pointed to should be another index block.

As we use each data block we need to write the index block back to the disk so it will

stay current, but a slight optimization there would be to take out several block point-

ers at the same time and rewrite the block, temporarily holding those block pointers

in RAM. This is called preallocation. It is a technique that can be used with many of

the free space tracking mechanisms in order to minimize the updating of the data on

the disk. Of course, there is some possibility that the system might go down and the

information on the disk would show that those blocks were in use when they were

not. Having the system go down is a fairly low-probability event. If it does go down,

14

0

6

12

18

24

30

36

15

26 27 25 20

24

16 28

Block
Number

Free Space
Head = 8

Unused

Used

= end of list

FIGURE 12.9

A free space chain.

 Chapter 12 File Systems—Basics 271

the few blocks we lose track of is normally a small part of the available space. There

will be no loss of data in the files or metadata. Also, we will have file system check-

ing utilities that will recover the lost blocks at the cost of scanning the file system.

Therefore, we will not worry about the possible loss of consistency in the metadata.

 Another mechanism that can improve linked list free space tracking is group-

ing. In this technique the OS will take every opportunity to determine that two or

more blocks in the chain are adjacent. This can easily happen if blocks can be allo-

cated to files in multiples rather than only one at a time. In this case, the first block

in that group will contain not only a pointer to the next free block, but also an indica-

tion of how many of the following blocks in the list are adjacent to one another. Such

a mechanism is shown in Figure 12.11 . This will allow the allocation mechanism to

sometimes allocate contiguous blocks more easily. But also, this first block can be

read and then the rest of the blocks of the group handed out without having to read

the disk again.

 12.4.3 Bitmap free space tracking

 Another approach to free space tracking is to have a bitmap in which each block in

the file system is represented by a single bit in a long string. If the bit is set one way,

then the block is free. If it is set the other way, then it is in use. Whether the “1” bit

indicates that the block is free or it indicates that the block is in use depends mostly on

the instruction set of the computer. We will clarify this shortly. Recall that one prob-

lem with the linked list mechanism is the difficulty in allocating multiple contiguous

blocks. With a bitmap this is much simpler than it was with the linked list mechanisms.

It is merely necessary to find a string of contiguous bits of the required size. It is this

Free Space

Head = 8

0

6

12

18

24

30

36

Block
Number

Unused

Used

= end of list

14
15
16
20
24
25
26
27
28

FIGURE 12.10

An indexed free

space chain.

272 Part 4 A Depth-Oriented Presentation of OS Concepts: File Systems and Input/Output

scan for a contiguous block that we will want to execute efficiently. The instruction set

of the computer may be such that it is much more efficient to find a string of 0’s than

a string of 1’s. Or it may be the other way around. These would be the only consider-

ations that would make it important whether a “1” bit meant a free block or a block in

use. An example of a bitmap used for free space tracking is seen in Figure 12.12 .

 Notice that using a bitmap to keep track of the available free space costs us more

memory than does the linked list mechanism. We need to keep in memory a portion

of the bitmap. Most likely we will keep an entire block because it will be easier to

read it that way. With the linked list we only kept one pointer—maybe a few more if

we were preallocating the blocks. However, the cost of memory is already very low

now and is continually declining so this is probably not a significant factor. We do

need to update the disk copy of the bitmap as we allocate the blocks. But we can still

use the preallocation technique discussed with the linked list tracking mechanism. It

is very important that we update the map before we actually begin to use the space. If

we don’t then we run the risk of having a block allocated to more than one file. This

does not work well.

 Not only does the bitmap take more RAM space, it also takes more disk space.

The bitmap has to be in a dedicated spot on the disk. That location cannot be used for

data storage. In the linked list mechanism the pointers were stored in the free blocks

themselves. Once again, however, disk space is relatively inexpensive and the price

is constantly declining, so this is also probably not a significant factor today, though

it certainly was at one time.

 There is one more common mechanism for tracking free space, but it is a byprod-

uct of the mechanism used to link the blocks of the file together in the FAT structure,

so we will discuss it under that heading.

14

0

6

12

18

24

30

36

24

15–17

20

24–28

Block
Number

Free Space
Head = 8

Unused

Used

= end of list

FIGURE 12.11

A grouped free space

chain.

 Chapter 12 File Systems—Basics 273

 12.5 FILE ALLOCATION

 The other major design decision about file systems is how the files themselves

should be organized on the disk drive. The abstraction(s) that the OS presents to the

user through the API will partly determine the types of organization that the OS can

use. There are basically three mechanisms for allocating the space to a file. These

are contiguous, linked, and indexed mechanisms. Note that it is not necessary that

an OS use only one of these mechanisms. Some OSs support multiple types of file

allocation. All that is necessary are to have APIs that support both types of allocation

requests and to keep track of the free space correctly.

 12.5.1 Contiguous allocation

 Contiguous allocation means that the blocks allocated to a file have numbers in a

sequence strictly increasing by 1. For example, in Figure 12.13 , we see File B occu-

pying contiguous blocks 1000–1799. Such blocks do not necessarily start on a track

boundary. They are merely adjacent in the numbering scheme. This method of file

space allocation has some distinct advantages. For one thing, very little information

is needed to find all of the data. All that is required are the sector address of the first

block and the length of the file in blocks. This allocation method makes random

access to the data very simple. The exact mechanism varies depending on the OS API

and the block size being allocated. With some OSs, for example, the API requires

0

6

12

18

24

30

36

Block
Number

Unused

Used

111111110000001110000000111100000000001100

Bitmap – 1 bit = block is used FIGURE 12.12

Using a bitmap for

free space tracking.

274 Part 4 A Depth-Oriented Presentation of OS Concepts: File Systems and Input/Output

that the application pass a byte number of an offset in the file at which the read is

to start and a length of data to read—normally a multiple of the sector size. In this

case the access method merely divides the byte offset by the block size and adds it to

the starting sector address of the first block in the file. Sequential access is trivial, of

course. As was mentioned above, if the space tracking mechanism is a bitmap, then

allocating contiguous space is fairly trivial. All that is necessary is to find a contigu-

ous string of bits in the bitmap that indicate free blocks. With a linked list free space

tracking mechanism it would be highly impractical, though not technically impos-

sible. The grouping mechanism we described might help somewhat in this regard.

 One problem with contiguous allocation is that once a file has been allocated it

can be difficult to make it any larger because it is likely that some other file will be

allocated right after the file we want to make larger. For example, in Figure 12.13 ,

File A could not be made larger without moving File B. In order to avoid this prob-

lem, programmers will tend to allocate more storage for the file than is currently

required by the data. That way, the file can grow for some time before it needs to

be made larger. For example, the programmer might know that the system now has

100 records and typically will add another two records per month. The file is then

allocated with space for 130 records and can operate for somewhat more than 2 years

without filling up and needing to be reallocated. We call this programmer fragmen-

tation. Unfortunately, this is wasteful of storage. If there is sufficient free space on

the disk drive to allocate another copy of the file, then the operation is fairly simple,

but it can be time-consuming if the file is large. If there is not sufficient space for

the new copy, then the file must be unloaded to a tertiary storage device, the old file

deleted, other files moved around to make enough contiguous space for the new file,

the new file allocated, and the data loaded into the new file.

 The awkwardness of this procedure led to a variation on the contiguous allocation

mechanism—the use of extents. In this scheme a file is not limited to a single contigu-

ous allocation. The initial allocation is a contiguous block, but if it fills up, instead of

making a new copy, a secondary allocation is made, not necessarily contiguous to the

initial allocation. This secondary extent is also contiguous, but is typically smaller than

the initial (primary) allocation. Additional secondary extents can be allocated, usually

Name Start

Directory

Size

File A 0

File B 1000

File C 2020

1000

800

1200

unused

Block FFFFF

Block 00000

File C

unused

File B

File A

FIGURE 12.13

Contiguous file

allocation.

 Chapter 12 File Systems—Basics 275

up to some small limit—16 or so. The calculation of random file addresses is now a bit

more complicated. With a single contiguous file we took the record or byte offset and

calculated a displacement from the front of the file. Now we need to have a table of

starting logical and physical addresses and sizes for the various extents. We calculate

the offset and then we look at the table. We find the extent that contains the offset and

then we calculate the offset from the start of that extent. This is still fairly trivial com-

pared to the speed of a hard drive. Extents are not a particularly new scheme, having

been used, for example, at least as far back as OS/360 by IBM in the late 1960s.

 There are several instances of waste in the contiguous allocation scheme. The

first instance is caused by the fact that the smallest portion of the space that we can

access is a sector. We usually compound that problem by tracking the allocation in

blocks rather than in sectors. So, we might be allocating blocks of four sectors, but in

most cases we will not need all of that allocation. Sometimes we will fill up the last

block exactly, but sometimes we will only need one byte of the last block. On aver-

age we will use only half of it. This unused space caused by the allocation granularity

is called internal fragmentation. We had exactly the same problem in Chapter 10

in which we discussed primary memory allocation. Unless we have very many files

that are very short, internal fragmentation on disk drives is not usually of much con-

sequence given the size and cost of disk drives today.

 Of greater consequence is the problem of external fragmentation. Again, this

problem was discussed in Chapter 10 on primary memory management. The prob-

lem arises when we come near to filling up the disk. As we allocate and free contigu-

ous files we will tend to chop up the free space because we keep taking a contiguous

free space out of bigger free spaces. Eventually, the leftover holes become too small

for the next allocation we want to make, even though there is sufficient free space

for the allocation. In Figure 12.13 , for example, based on the sizes shown, we prob-

ably have space for about 2,000 blocks, but the space is broken into two pieces, so

we could not allocate a file that big, even though we have enough free space to do it.

The solution to the problem is somewhat ugly. It is known as defragmentation. The

basic idea is to move some of the files into holes where they will fit, leaving larger

holes for the files we want to allocate. The technique was described more fully in

Chapter 10, so we will not rehash it here. The third sort of “fragmentation” is the

 programmer fragmentation we discussed where the programmer allocates more

space to the file than is really needed. This, however, is more of a social problem

than a technical problem, but it comes about because of the difficulty of making a

contiguous file bigger, so it needs to be mentioned.

 12.5.2 Linked allocation

 The second common file allocation mechanism is a linked list. This mechanism is just

like a linked list structure in primary memory, but here the linked elements are always

the same size—one disk block. Each block will contain the starting sector address of the

next block in the file. So, one downside of the linked mechanism is that a part of each

block is spent on this link. In the worst case we have a single sector of probably 512 bytes

with a pointer of probably 4 bytes, so the waste is less than 1%. If the blocks are bigger

than one sector, then the overhead is even less. Figure 12.14 shows such a structure.

276 Part 4 A Depth-Oriented Presentation of OS Concepts: File Systems and Input/Output

 There is another downside to the linked list allocation mechanism: it is some-

what difficult to do random access methods on such files. It is not impossible,

however. Consider the files shown in Figure 12.13 . All that would be necessary to

provide random access to this file is to enlarge on the idea of the extents discussed in

the section on contiguous allocation. We merely need a table in RAM that contains

a pointer to the start of each disk block allocated to the file. Though this table might

be large in the case of a very long file, and it could take some time to follow the

entire chain to build the table, it is probably a practical mechanism in most cases.

If the file is not going to be open for very long, then the space and time required to

build and store the table might be too expensive. If there is going to be a good deal

of random access on the file and the file is not too big, then it would be practical.

In addition, we would not necessarily need to follow the entire chain when the file

was first opened. We might follow the chain and fill in the table only as references

to records caused us to need to access a part of the file where we had not yet read

the pointers.

 In Figure 12.14 , we see a directory entry that describes a linked file. It contains

a pointer to the first block of the file and the length of the file in blocks. It also con-

tains a pointer to the last block of the list. On first examination it might not seem

necessary to store the pointer to the end of the file, and actually it isn’t, because we

could always follow the pointers in the list to find the end, but it is there for two

practical reasons. The first is that sometimes we want to open the file in an “append”

mode—we just want to add to the end of the file. Log files are a good example of

such action. It will always be faster to be able to go directly to the end of the list. The

Name Start

Directory

File A 12

File B 3

File C 31

Size

4

3

10

End

21

11

40

4 11
0

6

12

18

24

30

36

13 20

32 33 34 35 36

37 38 39 40

21

Block
Number

FIGURE 12.14 A linked list file allocation method.

 Chapter 12 File Systems—Basics 277

second reason has to do with redundancy. It is always good to have some redundancy

in the file system metadata. Then when problems arise, the utility programs that we

will run to repair the file system have a better indication of what might be the correct

course of action.

 On the good side, with linked files we will have no programmer fragmentation.

Since it is trivial to extend a linked file, there is no pressure to overallocate the initial

file space.

 In the section on contiguous file allocation we discussed the need for space com-

pression when there was sufficient free space available to satisfy an allocation request

but the available space was not contiguous. We mentioned that defragmentation was

a name sometimes used for this process. Perhaps somewhat surprisingly, linked files

also suffer from a related structural problem, and the defragmentation term is proba-

bly better applied to this problem. A linked file structure can be viewed as an extreme

case of a structure using contiguous extents, where the extents are a single block

long. The problem that happens with linked files is that as the file grows, the “next

available” block can be anywhere on the disk. As a result, the linked list can tend to

bounce back and forth on the disk, depending on which block was available when the

file was lengthened. An example of such extreme allocation is shown in Figure 12.15 .

Processing such a file with a program that is doing much I/O and very little process-

ing can be very costly. Rearranging all the files so that the blocks allocated to each

file are in order and are contiguous is known as defragmentation. It can significantly

speed up the processing of the files. As was mentioned earlier, some systems sup-

port both contiguous file allocation and linked allocation. Many modern OSs support

Name Start

Directory

File A 8

File B ...

File C

Size

10

End

27
14

0

6

12

18

24

30

36

15 16 28

24

26 27 20

Block
Number

25

= end of list

FIGURE 12.15 A fragmented file.

278 Part 4 A Depth-Oriented Presentation of OS Concepts: File Systems and Input/Output

both types, and the result is that they have both the external fragmentation problem

and the random chain problem. In such systems defragmentation can assist with both

problems.

 12.5.3 Indexed allocation

 Just as there is an indexed method for keeping track of the free space, there is a

similar mechanism for keeping track of the structure of a file. In the simplest terms,

the indexed file structure is somewhat like a linked list except that we allocate a

separate index block to hold the pointers rather than placing the pointers in each data

block. Figure 12.16 shows a number of blocks in a file that are pointed to by an index

block rather than being individually chained. As with the indexed free space tracking

mechanism, in the simplest implementation we are limited to a single index block.

This restriction will limit the file size, since the blocks are a fixed size and therefore

the index can only hold pointers to a maximum number of blocks. There are two

ways we can expand this mechanism to remove this limit. We can use multiple levels

of indexes, similar to the way we did with RAM page tables, or we can link the index

blocks themselves into a list.

 Multilevel indexes

 With multilevel indexes we will again use one block to contain pointers, much as

with the simple index structure. But in this case the first index block will not contain

pointers to data blocks. Instead, it will contain pointers to second-level index blocks.

0

6

12

18

24

30

36

Block
Number

8
14
15
16
28
20
24
26
25
27
...

Name Index

6

...

Directory

File A

File B

File C

FIGURE 12.16 File stored with an indexed structure.

 Chapter 12 File Systems—Basics 279

With a two-layer index structure those index blocks will contain pointers to data

blocks. If an index block contained 100 pointers, then when we introduced a two-

layer structure we would multiply that by 100. We would then be able to address a

file containing 10,000 blocks. If this was not sufficient we could introduce another

layer of indexes, each time multiplying the original space by 100. The next level

would allow for 1 million blocks. Notice that we do not necessarily need to read

the entire set of index blocks into memory when the file is first opened. We can

wait until the application tries to access the portion of the file covered by an index

to read it. This is especially useful for very large files opened and read briefly—for

example, looking up a word in a dictionary. Figure 12.17 shows a multilevel indexed

file organization.

 Linked index block lists

 As with free space linked lists, we can simply link index blocks together in a chain.

Each index block will thus contain one fewer pointers to data blocks because we

need one pointer to access the next index block, but this is unlikely to be a signifi-

cant factor for most block and disk sizes. Figure 12.18 shows a file organized with a

linked index structure. If a file is being accessed randomly, then this mechanism will

require that we follow the linked chain when the file is opened and read the index

blocks into main memory. Of course, we can postpone reading all the blocks until

we need them. If the file is being accessed sequentially we can just read each index

block when we are nearing the last pointer in the previous block.

8
14
15
16
...

Top-Level Index Block

7
43
12
18
...

27
44
19
88
...

Second-Level Index Blocks

Data Blocks

Name Index

6

...

Directory

File A

File B

File C

. . .

. . .

FIGURE 12.17

A multilevel indexed

file.

280 Part 4 A Depth-Oriented Presentation of OS Concepts: File Systems and Input/Output

8
14
15
16
...

First Index Block

43
12
18
...

Second Index Block

Data Blocks

= end of list

Data Blocks

Name Index

6

...

Directory

File A

File B

File C

. . .

. . .

FIGURE 12.18

A linked indexed file.

 12.6 SUMMARY

 Files are an important abstraction for an OS to pro-

vide. Files were in use long before there were com-

puters, so they are something everyone knows about.

Programmers do not want to think about hardware;

they want to think about a collection of data. In a com-

puter system that collection is a file. In this chapter

we discussed the nature of file systems. We then

introduced the idea of OS file systems. Modern com-

puter systems have many files. It needs to be pos-

sible to organize the files so that we can find things.

We discussed directories in file systems. Different

a pplications need different methods of accessing

data, so we described various methods that applica-

tions can be offered for accessing the data in files.

File systems need to keep track of what parts of the

total space is currently free. We explored different

structures used to track that space. We then presented

the topic of the structure of the files themselves and

discussed the tradeoffs of the various methods.

 In the next chapter we are covering a few case

studies of file systems in well-known OSs and a few

other miscellaneous topics about OS file systems.

 BIBLIOGRAPHY

 Beck, M., et al., Linux Kernel Programming, 3rd ed.,

Reading, MA: Addison-Wesley, 2002.

 Bovet, D. P., and M. Cesate, Understanding the Linux

Kernel, 2nd ed., Sebastopol, CA: O’Reilly &

Associates, Inc., 2003.

 Golden, D., and M. Pechura, “The Structure

of Microcomputer File Systems,” Communications

of the ACM, Vol. 29, No. 3, March 1986,

pp. 222–230.

 Chapter 12 File Systems—Basics 281

 Koch, P. D. L., “Disk File Allocation Based on the Buddy

System,” ACM Transactions on Computer Systems,

Vol. 5, No. 4, November 1987, pp. 352–370.

 Larson, P., and A. Kajla, “File Organization:

Implementation of a Method Guaranteeing Retrieval

in One Access,” Communications of the ACM,

Vol. 27, No. 7, July 1984, pp. 670–677.

 Livadas, P. E., File Structures, Theory and Practice.

Englewood Cliffs, NJ: Prentice Hall, 1990.

 McKusick, M. K., W. N. Joy, S. J. Leffler, and R. S.

Fabry, “A Fast File System for UNIX,” ACM

Transactions on Computer Systems, Vol. 2, No. 3,

August 1984, pp. 181–197.

 Nelson, M. N., B. B. Welch, and J. K. Ousterhout,

“Caching in the Sprite Network File System,” ACM

Transactions on Computer Systems, Vol. 6, No. 1,

February 1988, pp. 134–154.

 Organick, E. I., The Multics System: An Examination

of Its Structure. Cambridge, MA: MIT Press, 1972.

 Rosenblum, M., and J. K. Ousterhout, “The Design and

Implementation of a Log-Structured File System,”

 ACM Transactions on Computer Systems, Vol. 10,

No. 1, 1992, pp. 26–52.

 Russinovich, M. E., and D. A. Solomon, Microsoft

Windows Internals, 4th ed., Redmond, WA:

Microsoft Press, 2005.

 WEB RESOURCE

 http://developer.apple.com/documentation/Performance/

Conceptual/FileSystem/Articles/MacOSXAndFiles

.html

 http://labs.google.com/papers/gfs.html (the Google File

System)

 http://www.linux.org

 http://pages.prodigy.net/michaln/history/ (OS/2 history)

 http://technet.microsoft.com/en-us/sysinternals/default.

aspx (Sysinternals originally an outside technical

reference, later bought by Microsoft)

 http://en.wikipedia.org/wiki/File_system

 http://en.wikipedia.org/wiki/CP/M

 REVIEW QUESTIONS

 12.1 We mentioned several items that might be in a

file directory. Some are fairly rare. What few

items are most likely in every OS directory

structure?

 12.2 What is the main problem with single-level direc-

tory structures for today’s systems?

 12.3 Since hierarchical directory structures allow for

the existence of multiple files with the same name,

how do we have to refer to them to uniquely spec-

ify them?

 12.4 What kind of problem motivates the use of

aliases?

 12.5 How are directories organized internally to opti-

mize searching time?

 12.6 Why does an OS typically provide special calls

for accessing directory entries?

 12.7 What is the effect of the working directory on a

command such as erase <filename>?

 12.8 If a file is being processed via a sequential access

method, what happens to the current record

pointer on a read?

 12.9 True or false? An application using random access

can’t just ask the OS for the next record. It must

always specify the record number.

 12.10 True or false? For indexed sequential access, the

primary key field must contain unique key values

for each record.

 12.11 What services does raw access provide?

 12.12 What are the two BASIC mechanisms for free

space tracking in file systems?

 12.13 There are two broad “improvements” to one of

our free space tracking mechanisms, and one of

those improvements had a variant as well. These

improvements were aimed at mitigating a sig-

nificant performance issue associated with one

of those tracking mechanisms. Which mechanism

was this and what was the issue that we were con-

cerned about?

 12.14 The variant mentioned in the previous question

was a technique that could also be applied in

other free space mechanisms and their improve-

ments. What was that technique?

282 Part 4 A Depth-Oriented Presentation of OS Concepts: File Systems and Input/Output

 12.15 What are the three basic mechanisms for file space

allocation in file systems?

 12.16 One of the file space allocation mechanisms is the

most convenient for random access files. Which

mechanism is that?

 12.17 That same allocation mechanism makes it difficult

to increase the size of files. This problem caused

a secondary problem. What was the secondary

problem?

 12.18 That same allocation mechanism makes it difficult

to increase the size of files. We described a varia-

tion on that basic mechanism that would allow the

size to be increased. What was the variation?

 12.19 What is internal fragmentation and why is it no

longer much of a problem in most cases?

 12.20 What is external fragmentation and why is it a big-

ger problem than internal fragmentation for some

systems?

 12.21 We referred to a problem of “programmer frag-

mentation” and said that one of the file allocation

mechanisms did not have this problem. Which

mechanism and why not?

 12.22 That same mechanism has a serious drawback.

What is it?

 12.23 Briefly describe what defragmentation does for

linked files.

 12.24 The simplest indexed file allocation method limits

the size of files because of the limited number of

pointers that can be stored in a single index block.

What two mechanisms were discussed for extend-

ing this limit?

 12.25 Which of those mechanisms would probably work

better for random file access?

283

 Chapter Chapter 13 13
 File Systems—Examples
and More Features

 In this chapter:

 13.1 Introduction 283

 13.2 Case Studies 284

 13.3 Mounting 288

 13.4 Multiple File Systems and Redirection 290

 13.5 Memory Mapped Files 292

 13.6 File System Utilities 293

 13.7 Log-Based File Systems 294

 13.8 Summary 295

 13.1 INTRODUCTION

 In Chapter 12 we introduced the concept of file systems and how they fit in an OS. We covered

many possible alternative mechanisms for storing the files and tracking free space. Designers

of real file systems have to make choices about the mechanisms they will include. We will

see that modern OSs use all of the techniques we have described, but none of them uses these

techniques in exactly the ways we have described.

 In Section 13.2 we take a look at several case studies of how modern OS file

systems have been designed. We then discuss several other topics related to file sys-

tems and file processing. This begins in Section 13.3, where we address the concept

of mounting a file system and making the information therein available to the appli-

cations. We continue with special topics in Section 13.4 on the reasons behind virtual

file systems and related concepts and in Section 13.5 on the purpose of memory

mapped files. OSs typically provide a number of utility programs to make standard

manipulations of file system information. Section 13.6 addresses some of these

utility programs. Section 13.7 discusses the important concept of transactional or

log-based file system techniques, which make for more reliable file systems. We

conclude with a chapter summary in Section 13.8.

284 Part 4 A Depth-Oriented Presentation of OS Concepts: File Systems and Input/Output

 13.2 CASE STUDIES

 Often, real OSs use some combination of the basic techniques described in Chapter 12.

We have already mentioned, for example, that some OSs allow both contiguous file allo-

cation and chained file allocation. In the following sections we look a little more closely

at some modern file systems and how they are implemented.

 13.2.1 FAT

 The first file system we look at more closely is a modification of a linked system.

Instead of having each data block contain the pointer to the next data block, those

pointers will be stored in a separate table. This system was used in the original

Microsoft DOS and is known by the name given to the area used to store this table,

the file allocation table, or FAT. In this case the FAT is not kept in the area that

would be used for data storage. It is in a separate area of the disk just after the

boot block. This table will contain space for one disk pointer for each block in the

data area. If a block is not allocated to a file, then this pointer will be zero. If this

block is a part of a file, then this pointer will normally contain the pointer to the

next block in the file. If this block is the last one in the file, then it will contain a

special pointer value that indicates that it is the end of the list. Figure 13.1 shows

how a FAT might look with two files in it. We have indicated the end of file mark

as FFFFFFFF.

 There are some very interesting things to notice about the FAT mechanism. First,

there is no separate mechanism to keep track of free space. The free space blocks

have a zero pointer in the FAT. Second, it is very easy to allocate contiguous space

for a file. Just as with a bitmap free space mechanism, all that is necessary to find a

contiguous group of free blocks is to scan the FAT and find a contiguous string of

zero pointers. It is also easy to allocate single sectors to support allocation of single

blocks for chained file access.

 The original FAT file system design was created for floppy disk drives, so the

pointers were quite small. It later came to be called the FAT12 file system. It was

used on early small hard disks, but the disks quickly grew so large that even allocat-

ing large blocks instead of individual sectors could not cover the entire space. So

a new file system was designed that was much like FAT12 but used bigger point-

ers. This system was called the FAT16 file system. This was a fairly reasonable

size to base a file system design around because the computers of that era had a

16-bit word size. This size was still fairly limiting and the FAT16 design was later

replaced by the FAT32 system. A summary of these three file systems is given in

 Table 13.1 .

 13.2.2 NTFS

 NTFS is the native file system for the Windows NT family. It is a variation on a

two-level indexed structure. NTFS uses a master file table (MFT) to store all the

metadata about files and directories. In the MFT it creates a file record for each file

and a folder record for each folder, even for the MFT itself. These records are 1 KB

 Chapter 13 File Systems—Examples and More Features 285

Block Number

0

6

12

18

24

30

36

File M

File A

Unused

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

1

2

3

FFFFFFFF

0

0

0

0

14

0

0

0

0

0

15

16

28

0

0

0

24

0

0

0

26

27

25

FFFFFFFF

20

0

Directory

Name

8 27

0 3

... ...

Start End

File A

File M

File C

FIGURE 13.1 A file in a FAT file system.

TABLE 13.1 Comparison of Various FAT File Systems

Attribute FAT12 FAT16 FAT32

Used for Floppies and

very small hard

drives

Small to midsize

hard drives

Medium to very

large hard drives

Size of each FAT

entry

12 bits 16 bits 28 bits

Maximum number

of clusters

4,096 65,526 > 260,000,000

Block size used 0.5 KB to 4 KB 2 KB to 32 KB 4 KB to 32 KB

Maximum volume

size in bytes

16,736,256 2,147,133,200 About 241

286 Part 4 A Depth-Oriented Presentation of OS Concepts: File Systems and Input/Output

each 1 and they include all the attributes of the file. NT considers the data in a file or

a directory to be one of the attributes for the file. If all of the attributes fit in the MFT

record, then no separate space is allocated. This means that a small file or directory

(about 900 bytes) will be stored entirely within the MFT record. Figure 13.2 shows

an MFT record for a small file or folder. If the data attribute does not fit into the

MFT record, then one or more blocks will be allocated to hold the data and an index

to the blocks will be built in the MFT record. Each file typically has only one MFT

file record. However, if a file has many attributes or is very fragmented it might need

more than one record. In this case the first record for the file, called the base file

record, stores the location of the other file records required by the file.

 Folder (or directory) records contain index information. Small folder records

reside entirely within the MFT structure, while large directories are organized into

B-tree structures with pointers to external clusters that contain directory entries that

cannot be contained within the MFT structure. The benefit of B-tree structures is

evident when NTFS holds files in a very large folder. The B-tree structure groups

similar file names into a block so that it need search only the group that contains the

file. This will minimize the disk accesses needed to find a file. Some other points

about NTFS:

 ɀ It uses a bitmap to track free space.

 ɀ It supports variable block (cluster) sizes in the later releases.

 ɀ It supports compression of the entire file system, directories, subtrees, or

individual files.

 ɀ It supports file encryption of the entire file system, directories, subtrees, or

individual files.

 ɀ It supports software RAID 1 and RAID 5 (see Chapter 14, Section 14.6).

 ɀ It maintains a separate map of bad clusters that it will not use.

 ɀ It will not write to disk (large) portions of a file that contain only binary zeroes

(nulls).

 ɀ It is a transactional (log-based) file system (see Section 13.7).

 13.2.3 UNIX and Linux

 UNIX and many UNIX derivatives such as Linux support many different file sys-

tems, but the ext file system is fairly standard. It uses a version of a multilevel index

scheme to hold the metadata about a file. This data is stored in a table on the disk

called an inode. Each entry in a UNIX directory contains only the name of the item,

and a numerical reference to the location of the item. The reference is called an

 i-number or inode number, and is an index to a table known as the i-list. Details

 1 The details of the NTFS system are actually proprietary. The figures used here are generally accepted,
but might not always be exactly right.

Standard
Information

File or
Directory Name

Data or Index
Unused
Space

FIGURE 13.2

NTFS MFT record for

small file or directory.

 Chapter 13 File Systems—Examples and More Features 287

of the i-list location and format and the contents of the inodes depend somewhat on

the specific variant and version of UNIX, but typical inode information is shown in

 Table 13.2 . Of interest here is what is and what is not in the inode. One thing that

is not in the inode is the file name. UNIX allows files to have aliases, meaning that

more than one directory entry can point to the same file. Among other things, there

is no requirement that different references to the file use the same name. Therefore,

the file name is stored in the directory and the directory entry points to the inode

for all other metadata about the file. One of the entries in the inode is the number of

directory entries that point to this file. When a directory entry is deleted for a file,

the count of the references will be decremented, but the file itself will not be deleted

until the reference count goes to zero.

 The UNIX file system inode structure is a hybrid variation of an indexed struc-

ture. There are a number of pointers that point directly to data blocks. That number

varies, but is typically 10–13. The inode is brought into primary memory when the

file is opened, so if the file is fairly small, then the pointers to the first few blocks

are already available. If the file is large enough that it requires more blocks than can

be pointed to by these direct pointers, then the next pointer is a pointer to a single

index block. If the system is using 4 KB blocks, then this block might contain 1,024

pointers to additional blocks. If all of this space is used up, then the next entry is to a

double index block. This index block will contain pointers not to data blocks, but to

other index blocks. So this index block will address 1,024 index blocks, which will

altogether address over 1 million data blocks. If that is not enough, the next entry

in the inode is a pointer to a triple index block structure. Using the 4 KB blocks

described, this structure can address over 4 Terabytes of file space.

TABLE 13.2 Typical UNIX inode Contents

File type

Access permissions—read, write, etc.

Count of directories that reference the file

Owner

Group (owner)

Date and time created

Date and time last accessed

Date and time last modified

Size

Data block pointer 1

Data block pointer 2

. . .

Data block pointer 10 (sometimes 13)

Single index block pointer

Double index block pointer

Triple index block pointer

288 Part 4 A Depth-Oriented Presentation of OS Concepts: File Systems and Input/Output

 When a UNIX file system is initialized, the i-list is built to be a size appropriate

for the size of the disk partition and the block size used. A number of empty inodes

will be created and distributed evenly across the partition. As blocks are allocated to

a file they will be selected from those available that are close to the inode. This pro-

cess helps to keep all the blocks allocated to a file near each other. As long as other

processes are not accessing too many other files on other parts of the drive, this will

have the effect of minimizing the seek time required to access the file.

 13.3 MOUNTING

 Sometimes we have to deal with computer science terms that have multiple mean-

ings, known as overloading. One such term is mounting. Actually, the two meanings

for this term are related, but at first glance they appear to refer to different opera-

tions. The first meaning concerns what must be done when a disk drive partition con-

taining a file system is going to be accessed by the OS. The second meaning refers to

a process used to give a user a means of specifying files on a remote directory.

 13.3.1 Local file system mounting

 Before an OS can allow a user to access a particular file system, it will need to do

certain things. The metadata that describes the partition must be read, some part of

the free space mechanism must be read into RAM—perhaps some blocks preallo-

cated, the directory that represents the root of the directory tree must be read in, and

so on. This process is called mounting. When the OS is installed there will be some

partitions that it is told to access, and normally those partitions will be mounted

whenever the OS is booted. These partitions are normally the ones that are on local

hard drives. There are differences between OSs, however, with respect to remov-

able media, OSs treat them in one of three ways: (1) implicit mount when the media

is inserted in the drive, (2) implicit mount when the media is first accessed, or (3)

explicit mount command must be given.

 UNIX and most of its variants have traditionally used the last mechanism. Until

the user gives a specific mount command the removable medium cannot be accessed.

Since floppy disks formatted for MS-DOS were so pervasive, this actually had a good

side effect since it allowed the user to specify which file system format a floppy disk

contained: UNIX, MS-DOS, or Mac. Later versions of Linux and UNIX have begun

experimenting with implicit mounting when the media is inserted. The term used

for this is automounting. MS-DOS and the Windows products have always used

implicit mounting when an attempt is first made to access the media. Historically the

Mac OS automatically mounted a removable media whenever it was inserted into the

drive. Since Mac OS X is based on UNIX, it now mounts as UNIX does.

 A different situation exists in the area of CDs. Fairly early in the days of CD

development a large number of vendors convened and decided on a common for-

mat for data and audio CDs. This format ultimately was designated an international

standard, ISO-9660. This common format means that there is no reason to postpone

the mounting as was done with UNIX, so CDs are normally mounted immediately

 Chapter 13 File Systems—Examples and More Features 289

on insertion. This allows the OS to detect the format of the CD (i.e., audio, data, or

mixed) and to have a default option to execute when such a CD is inserted. This

means that if a user so chooses, inserting an audio CD will launch a CD audio player

application of the user’s choice to play the CD. Similarly, a data CD can contain

instructions on what is to be done with the CD on common OSs. Many will auto-

matically run a script file that depends on the OS to start the software on the CD.

 13.3.2 Mounting remote file systems

 A similar process must also take place when an OS is requested to provide access to a

file system on a remote computer, but the details are vastly different. The remote file

system might be an entire file system that is made available to users, but more likely

it is some portion of a file system rather than the whole thing. A large difficulty that

must be overcome is that the platform that the remote file system is running on may

be entirely different from the local file system. Data representation may be different,

file naming conventions may be different, directory structures may be different, and

so forth. In order to overcome these differences we have to have well-established rules

about how the information is to be presented and the protocols to be used for exchang-

ing the information. In most cases the rules and protocols are de facto rules that are

established by one platform vendor to allow their systems to interoperate. Other ven-

dors will create packages to access these systems from other platforms. Sometimes

these rules become open standards, as with network file system (NFS; see Section

13.4.2), and sometimes they are reverse engineered by other vendors. Whatever the

case, the remote system will do the accessing of the directories but the information

must be mapped into the context of the client OS. For example, if the client is a Win-

dows system, then the metaphor of the remote file system is that of a “drive letter.”

Initially, these letters were used in DOS to indicate real drives on a system. Remote

file systems use the same convention, assigning any drive letter that is not used for a

local resource. In contrast, UNIX sees all file systems as a tree structure, including

pseudo-directories like proc and dev. So mapping a remote file system in UNIX-like

systems simply involves adding (or replacing) a directory node in the file system tree

structure with a node that identifies itself as pointing to a remote resource.

 From a programmer’s point of view, remote mounting of file systems is a pow-

erful tool. Generally speaking, the program is not aware of any difference between

a local file and a remote file. Without making any modifications to programs at all

they are capable of operating over a network. Unfortunately, this is not always a wise

thing to do. Consider the case of a database software program accessing a database

file that is remotely mounted across a network. When searching the indexes for data,

the database program will end up reading and writing large amounts of data across

the network. In a fast LAN with light traffic the performance might be acceptable,

but if the connection is a WAN or there is considerable network traffic, then it might

not be a good idea. In this case it would be far better to run the database program on

the remote machine and send SQL commands across the network, getting back only

the final answers. Even better would be to use commands previously stored on the

remote server. Of course, it is not always possible to anticipate all queries so they can

be stored in advance on the server. Sometimes ad hoc queries are necessary.

290 Part 4 A Depth-Oriented Presentation of OS Concepts: File Systems and Input/Output

 Letting a node in a file system become a reference to a remote file system causes

a slight problem. Path names now become more difficult to parse. Without these

remote reference nodes in the file system tree, parsing a path name was fairly simple.

Given a path like /fred/work/expenses, as the OS parsed down the string, each “/”

represented a move to another directory in the local file system. But with nodes

possibly representing remote file systems in the tree, the file system must check at

each level to see whether the node was a local directory or a remote file system and

perform the appropriate lookup.

 Another problem with remote mounting is that two different clients may mount

a given remote directory at different points in their local file system. In Windows

systems two users might assign the same remote file system to a different drive letter.

In UNIX-like systems they might mount the same remote file system at a different

logical node in their local file system. Then if a process on one user’s machine passed

a path name to a process on the other user’s machine the second machine would not

be able to find the file because the path is different. Administrators can mitigate this

problem by defining standardized mounting scripts that run at user login time and

provide more consistent path naming for all users for commonly accessed resources.

 13.4 MULTIPLE FILE SYSTEMS AND REDIRECTION

 As in many other instances, an OS will present to the API an abstraction of a file.

The program should not be aware of what the file system is like. There are likely to

be performance differences if the wrong file system is used for an application, but

the coding of the application should not be affected. That is really a system engi-

neering issue. If the application is designed for accessing a file randomly and the

file system supports random access, then the application should be unaware of any

other differences. In most systems it will be necessary for the OS to support several

different file systems. If for no other reason, it is necessary because different file

systems are best suited for different media. For CDs there is normally only ISO-9660

to consider, although a few very early CDs were created in proprietary formats. For

floppy disks it is almost a given that the OS will need to be able to read and write

FAT12 floppy formatted disks derived from MS-DOS. But Mac and UNIX formats

are widely used as well. Even with hard drives it will sometimes be desirable to

support a format other than the native format of the OS. This often happens when a

system is upgraded to a new OS or a new version of the same OS. Even if the OS is

the same, the new version may have a new wonderful file system that comes with

it. When the upgrade is first performed, however, the file system will still be the old

format. Usually a separate step is then needed to convert the old file system format

to the new format. Not infrequently a system needs to contain two different OSs and

be booted into different ones depending on the current need. Today it is even becom-

ing common to see a virtual OS running two different client OSs at the same time

and supporting different file systems on different drives. It may still be desirable to

access all of the file systems on the disc drives regardless of the OS currently in use.

For all of these reasons OSs will need to support a number of different file system

formats.

 Chapter 13 File Systems—Examples and More Features 291

 13.4.1 Virtual file systems

 UNIX developers created a mechanism exactly for the purpose of transparently sup-

porting multiple file systems on the same system at the same time. It is called the

 virtual file system, or VFS. VFS was a separate layer added to UNIX on top of the

file system module. Actually, it was loaded in a system with multiple file system

modules supporting different file systems. VFS supported the same API as the exist-

ing file systems so that applications would not have to change. Figure 13.3 shows

the interface between applications and the file system both before (a) and after (b)

VFS was introduced. When a request was passed to the VFS layer it would examine

the request by looking at the nodes in the file system tree and determine which file

system module was the correct module for this file system. It would then pass the

request to that module. When the file system module was finished with the request

it would return control to the VFS module, which would then return control to the

application that had called it.

 13.4.2 Network file system

 VFS was also used to redirect file system requests to remotely mounted drives using

the NFS protocol developed by Sun Microsystems. This process was alluded to

under the topic of remote mounting earlier. Figure 13.4 shows how this mechanism

works. The client system is shown on the top of the figure. The application makes

file requests through the standard file API. The VFS system realizes that this is a

request for access to an NFS file that is being served on another system. That system

is the NFS server shown at the bottom of the figure. The VFS layer on the client

machine therefore sends the request to the NFS client system. It uses a remote pro-

cedure call mechanism to solve the problems of heterogeneous OS environments.

This is discussed further in Chapter 17. The client system sends the request across

the network to the NFS daemon that is running in the NFS server system. The NFS

daemon takes the request and sends it to the VFS layer on the server system. The file

Application

File API

File System File System A File System B

File System C

Application

File API

File API

Virtual File System

(a) Before VFS (b) After VFS

FIGURE 13.3

Introducing the VFS

layer.

292 Part 4 A Depth-Oriented Presentation of OS Concepts: File Systems and Input/Output

is accessed as requested as though the client were local, and the data are sent back to

the application running on the client system.

 The requests made by the application are redirected by the NFS client software

to the system running the NFS server, so we say that the model being used is a redi-

rector. This is a common technique, being used in other OSs as well. NFS is nearly

completely transparent to a client application. But before the files can be accessed by

the client application, the directories on the NFS server must be mounted so that the

application can find the file. This step is not transparent, because the user (or the appli-

cation) must designate the server. In UNIX-derivative OSs this is done with a mount

command. The mount command will specify the name of the remote system and a

directory on that system as well as a local directory. The remote directory will thereaf-

ter appear to be a part of the directory tree in the local file system and to all operations

of any applications it will be transparent that these files are actually remote.

 13.5 MEMORY MAPPED FILES

 An alternative file access mechanism is found in many OSs, memory mapped files,

discussed earlier in Chapter 11 on advanced memory techniques. This mechanism is

very different from the standard metaphor of a file. Because it is so different it has

some characteristics that make it very useful in certain situations. When an application

process uses a memory mapped file it tells the OS the name of a file to map and the

OS creates a byte-by-byte mapping of the addressing space for the file into the l ogical

Virtual
File

System

File
System

A

NFS
Client

File
System

B

File
System

Application

NFS Client System

Virtual
File

System

File
System

A

File
System

C

File
System

B

NFS
Server

Daemon

NFS Server

FIGURE 13.4

NFS through VFS.

 Chapter 13 File Systems—Examples and More Features 293

addressing space of the process. So the first interesting characteristic of a memory

mapped file is that all of the mechanisms of the file system are not used to address

the space. Instead, the application treats the memory mapped file as a large array and

uses subscripting or pointer arithmetic to address the file. The virtual memory manager

then keeps track of which portions of the file space are needed in physical memory,

tracks changed pages, and writes them to the disk as required. These mechanisms use

hardware support and are therefore much more efficient than the mechanisms of a file

system. As you may recall, because of potential interactions with paging, normal file

processing either locks pages into RAM and thereby inhibits the performance of the

paging system or copies the I/O buffers into the kernel space before doing the I/O.

Mapping the file onto the paging mechanism avoids these problems. Applications are

also freed from having to do any memory allocation.

 The second interesting characteristic of a memory mapped file is that multiple

processes are allowed to memory map the same file at the same time. (Interestingly,

because of the virtual memory hardware they do not have to map the file into the

same logical memory address.) This creates a very efficient method for interprocess

communication. In fact, the “file” does not actually have to exist. Both processes

can name a temporary file purely for the purpose of interprocess communication.

However, the memory mapped mechanism does not do any synchronization. If there

is a possibility of conflicting operations being performed by multiple processes, then

some external synchronization mechanism must be used to protect the critical sec-

tions of the processes. Another limit of the memory mapped file mechanism is that

the mapped files cannot easily grow in size. It is sometimes possible, but requires

careful remapping of the area. A third limitation is that there is no provision for

doing asynchronous I/O. Since the paging hardware is doing the reading and writing

transparently to the application, the I/O is blocking. When a page fault occurs the

process will be blocked and will not be aware of it. One final precaution is that if the

file is larger than the available logical addressing space, then the mapping must be

carefully positioned over the file address space.

 13.6 FILE SYSTEM UTILITIES

 All OSs come with a handful of utility programs and included among these are

always a group of programs for working with the file system. Some are designed to

use while the OS is running. They include mundane things like making a new direc-

tory and deleting a file. These programs are often run from a command-line inter-

face. Table 13.3 lists some common file system utility programs for DOS/Windows

and UNIX-like systems. Later versions of most OSs use mostly a GUI interface and

the commands do not have a name that most users are aware of. Note that some of

the commands do not exist in all versions of DOS/Windows or in UNIX/Linux.

 Those utilities are primarily things that a user decides to do. Other utilities

are necessary as well that do things that may be important to the users but are not

done to satisfy any real need of the user. Rather, they do things to the file system to

confirm their integrity or improve the performance. Under DOS and Windows there

were two verification utilities known as scandisk and checkdisk. UNIX-like systems

294 Part 4 A Depth-Oriented Presentation of OS Concepts: File Systems and Input/Output

have a similar utility known as fsck. Besides verifying the consistency and integrity of

the file system, these utilities will optionally attempt to repair faults that they find. Win-

dows also has a utility known as defrag, which reorganizes the files in a file system to

improve the performance of the system. This problem was discussed earlier in the sec-

tion on linked file allocation. The backers of UNIX-like systems claim that the designs

of their file system preclude the need for defragmentation utilities. The fact that such

utilities are not being marketed suggests that this claim is at least fairly accurate.

 Some things that look like utilities are actually built-in commands in the OS com-

mand interface. For example, under DOS or Windows there are no executable files

that execute the commands dir, del, time, type, and so on. These functions map very

closely to supervisor calls in the OS API, so that the command interpreter (command

.com in the DOS case) has these functions built-in and no external module is needed.

This saves both disk space and time to load an external program into memory.

 13.7 LOG-BASED FILE SYSTEMS

 System failures are fairly rare, but they do happen. That is why those file system

verification utilities were created. When an OS closes normally it will record an indi-

cation of a normal shutdown to the file system. When the OS boots it will check to

see if the system was shut down normally or if it crashed. Traditionally, if the system

had crashed, then before mounting the file system the OS will run the file system

integrity checker. If a system that crashes is being used by only one individual, then

the likelihood that anything was actually happening at the time of the failure will be

low. Even in a fairly busy server there is not a high risk of loss. Any server failure is

likely to cause problems for more people than a crash on a single-user system. Still,

TABLE 13.3 Some File Commands

Purpose of Utility DOS/Windows UNIX/Linux

Change file permissions attrib chmod

Combine files backup tar

List files in a directory dir ls

Copy a file copy cp

Delete a file del rm

Delete a file system subtree deltree rm –R; rmdir

Edit a text file edit vi

Format format fdformat/ mkfs

Move or Rename a file move/rename mv

List a file type less

Change the working directory cd cd; chdir

View a file one page at a time more more

Create or edit disk partitions Fdisk cfdisk, parted, etc.

Make a new directory md, mkdir mkdir

 Chapter 13 File Systems—Examples and More Features 295

the single user would rather not lose anything in any circumstances. OS developers

searched for a way to make file systems more resistant to failures.

 When a block has been added to a file and the file is closed, then several things

may have to happen. We will certainly have to write out records containing the data

block. We may have to find the next free block, update the free space information

to show this block was used, update any directory entry for the file to show the last

time the file was written, and so on. We want all this information to be updated in

an atomic fashion—either all of it should reach the hard disk or none of it should.

In applications we call this transaction processing. OS file systems that operate in

such a manner are called log-based, log-structured, transactional, or journaling

file systems. In such systems, anytime metadata is to be updated, the system will

first write a record to a log file that describes all the updates that are going to be

made. Whenever the system starts it will check the log file to see if there was a trans-

action pending. If so, the system checks to see if all the steps of the transaction were

successfully applied. If not, then the system will attempt to finish the transaction. If

it can, then all is fine and we have dodged a bullet. If the transaction can’t be finished

for some reason, then the transaction will be aborted. We will have lost that last

block of data that was to be written to the file, but the file system is safe from further

corruption. Running with a file system with corrupt metadata would be disastrous.

 Of course, nothing is free, and the price we pay for the security of a log-based

file system is a performance hit. Since we take the time to write the transaction log

every time before we write the metadata, we will see decreased performance in the

system. Also, the transaction that is logged does not necessarily include the actual

user data, though some OSs do include application data in the transactions. On the

other hand, if a system has many files, then when it crashes we would have to do a

complete file system scan to verify the integrity of the metadata before resuming sys-

tem operation, and on a large server this could literally take hours. So it is normally

preferable to slow the system response a bit in order to maintain integrity continu-

ously. This is especially true in a single-user system where there is often lots of spare

CPU and disk time for this task while the user is typing or thinking. As a result, most

file systems developed in the last few years are transaction based. This includes JFS

for OS/2, HFS Plus for the Mac OS, NTFS for the Windows NT family, and many

systems for Linux, including Ext3, ReiserFS, XFS, and JFS.

 13.8 SUMMARY

 In Chapter 12 we covered the concepts of file sys-

tems and how they fit in an OS, including many pos-

sible alternative designs. Real-file systems reflect

design choices about mechanisms included in them.

We looked at several case studies of modern OS file

systems. These brief overviews showed how some

contemporary OSs use the mechanisms discussed in

the earlier chapter. We then discussed other issues

related to file systems, beginning with mounting a file

system. We continued with special topics like the

reasons behind virtual file systems and related con-

cepts and the purpose of memory mapped files. We

addressed some of the utility programs an OS must

provide to manage file system information. We then

covered the ideas behind transactional or log-based file

techniques, which make more reliable file systems.

 In the next chapter we cover the lower levels of

the I/O system, primarily disk operation scheduling.

296 Part 4 A Depth-Oriented Presentation of OS Concepts: File Systems and Input/Output

 BIBLIOGRAPHY

 Larson, P., and A. Kajla, “File Organization:

Implementation of a Method Guaranteeing Retrieval

in One Access,” Communications of the ACM,

Vol. 27, No. 7, July 1984, pp. 670–677.

 McKusick, M. K., W. N. Joy, S. J. Leffler, and R. S.

Fabry, “A Fast File System for UNIX,” ACM

Transactions on Computer Systems, Vol. 2, No. 3,

August 1984, pp. 181–197.

 Nelson, M. N., B. B. Welch, and J. K. Ousterhout,

“Caching in the Sprite Network File System,” ACM

Transactions on Computer Systems, Vol. 6, No. 1,

February 1988, pp. 134–154.

 Organick, E. I., The Multics System: An Examination of

Its Structure. Cambridge, MA: MIT Press, 1972.

 Sandberg, R., et al., “Design and Implementation of

the Sun Network File System,” Proceedings of the

USENIX 1985 Summer Conference, June 1985,

pp. 119–130.

 Sandberg, R., The Sun Network File System: Design,

Implementation and Experience. Mountain View,

CA: Sun Microsystems, Inc., 1987.

 WEB RESOURCE

 http://www.linux.org

 http://technet.microsoft.com/en-us/sysinternals/default

.aspx (Sysinternals, originally an outside technical

reference, later bought by Microsoft)

 http://en.wikipedia.org/wiki/CP/M

 http://en.wikipedia.org/wiki/Virtual_file_system

http://www.yolinux.com/TUTORIALS/unix_for_dos_

users.html (A comprehensive comparison between

DOS/Windows and UNIX/Linux commands)

 REVIEW QUESTIONS

 13.1 Why was the FAT12 system designed with such

small pointers?

 13.2 The FAT organizations do not require any separate

mechanism for tracking free space. Why not?

 13.3 In the Windows NTFS, the directory entry for a

file might not contain a pointer to the data blocks

for the file. Why not?

 13.4 Why do UNIX/Linux i-nodes not contain a file

name?

 13.5 When does an OS mount the file system on a

removable disk drive?

 13.6 Why are CDs mounted differently than removable

disk drives?

 13.7 When a remote file system has been mounted by

an OS, how does the remote file system appear to

the user and to application programs?

 13.8 The virtual file system layer was used to allow

access to remote file systems. It had a more gen-

eral purpose, however. What was the purpose?

 13.9 Briefly describe why memory mapped files are

more efficient than normal I/O.

 13.10 Under the heading of File System Utilities we dis-

cussed some utility commands that do not exist as

utilities on the system. Why do they not exist?

 13.11 Briefly explain what it means to say that a file sys-

tem is transactional or log based.

297

 Chapter Chapter

 Disk Scheduling and
Input/Output Management

 In this chapter:

 14.1 Introduction 297

 14.2 Device Characteristics 298

 14.3 I/O Technology 299

 14.4 Physical Disk Organization 302

 14.5 Logical Disk Organization 305

 14.6 RAID 309

 14.7 Disk Operation Scheduling 314

 14.8 DMA and Disk Hardware Features 322

 14.9 Summary 325

 14.1 INTRODUCTION

 In the last chapter we looked at input and output from the way a user or an applica-

tion programmer would look at it—what are the capabilities and services that the OS

provides to the upper layers, what are the data structures needed to perform these

services, and how are these functions performed? In this chapter we look in the lower

layers to see how these things are done. In particular, the lowest layer of any file sys-

tem is a collection of device drivers and interrupt handlers. In earlier chapters we

discussed how I/O capabilities started with simple devices and structures and have

progressed to more complex systems and services. We take a closer look at modern

hardware and the OS organization necessary to manage these devices effectively and

economically.

 In Section 14.1 we introduce the topic of lower-level input and output manage-

ment, with a special focus on secondary storage and disk drives. Next, in Section 14.2

we discuss some broad classes of I/O devices and how they differ. Section 14.3

describes some general techniques used in support of I/O devices. In Section 14.4 , we

then explore the physical structure of disk drives, and in Section 14.5 we discuss the

logical organization of the information stored thereon. Section 14.6 covers the topic of

 14 14

298 Part 4 A Depth-Oriented Presentation of OS Concepts: File Systems and Input/Output

RAID, wherein assemblies of disks are used in special configurations to achieve greater

throughput and/or reliability. The very important topic of scheduling disk operations

for optimum performance is covered in Section 14.7. Section 14.8 is about a special

type of device controller called a DMA controller that can significantly decrease the

CPU load of I/O operations. This section also discusses some disk drive features that

affect OS behavior. In Section 14.9 we conclude with a chapter summary.

 14.2 DEVICE CHARACTERISTICS

 There are some categories of input/output that broadly divide them into groups that

are treated differently by OSs. We discuss a few of those categories.

 14.2.1 Random access versus sequential access

 In this chapter we are focused almost exclusively on secondary storage devices, spe-

cifically disk drives. At one time magnetic tapes were used for secondary storage

on large mainframe computers. When personal computers were first developed they

also often had tape drives as the only secondary storage devices—in this case it was a

quarter-inch cassette tape drive that was originally developed for audio use. But tapes

have the unfortunate characteristic that they can’t be read randomly. To get to any

particular piece of data on the tape you have to pass over all the other data between

where the head is now and where it needs to be. Even on very fast tape drives this

could take several minutes. Fortunately, disk drives don’t have that characteristic.

Because of this difference we speak of disk drives as being “random access” devices.

However, as we will see when we later look at disk drives in more detail, this does

not mean that the time to access the data is independent of the location of the data.

This term is merely a reflection of the contrast with using a tape drive as the main

secondary storage device.

 14.2.2 Device classes

 Most OSs broadly divide devices into three classes: block, character, and network.

Each of those classes has substantially different characteristics and each class can

be abstracted in a meaningful way. Table 14.1 gives some information about these

classes.

TABLE 14.1 Characteristics of Linux Device Classes

Block Character Network

Random access Yes No No

Seek backward Yes No No

Transfer unit Block (⫻ 512) Character Packet

Software File System/Raw Device Protocol

 Chapter 14 Disk Scheduling and Input/Output Management 299

 Block devices

 A block device is read or written one block (a group of bytes, usually a multiple of

512) at a time. Such devices include all sorts of disk drives and tape drives, for exam-

ple. The size of a block is determined partly by the hardware, since disk controllers

can only read or write whole disk sectors, but also by the system administrator when

the file system is set up. Normally, the block size will be some small multiple of

the physical sector size—typically 4 or 8 KB. These devices often support random

access directly to any block on the device, that is to say that blocks may be read

or written in any order. File systems typically reside on block devices and are the

normal mechanism for accessing these devices. There are caching mechanisms in

place for random access block structured devices. Sequential access block devices

use double buffering, as explained later. Occasionally, some software needs to access

these block devices directly rather than by using the file system. This is called

raw I/O. Examples of such software include utilities for maintaining or examin-

ing the file system itself (e.g., fsck for Linux and UNIX) and software that places

extraordinary demands on the secondary storage and is sophisticated enough to

include a preferred mechanism for caching or for scheduling disk operations (e.g.,

very demanding database servers).

 Character devices

 Character mode devices transfer data a single byte at a time. They include printers,

keyboards, mice (and other pointing devices), and so on. They support most of the

same basic kinds of operations as a block mode file: open, close, read, and write. To

perform an operation that doesn’t fit the semantics of the file system model (e.g.,

reading the status of a printer), a program can use the ioctl system call. Character

mode devices obviously cannot support seeking backward. For example, one cannot

read the character typed on the keyboard 20 characters previously, or a character

printed on the previous page. Some character devices will allow skipping characters

in a forward direction. Character mode devices are never cached, though they may

have a buffer.

 Network devices

 Network devices do not fit at all well with the traditional semantics of file opera-

tions. The problem is that applications waiting for input from a network never know

when or even if the data might be available. A company might create a website with

high hopes for selling widgets but never receive a single hit on the site. For this rea-

son, network devices have an entirely different set of interfaces than do block and

character devices with their read and write operations.

 14.3 I/O TECHNOLOGY

 In general, there are two ways that an I/O system can go about its work. Most large

systems have many functions going on more or less at the same time, and the only

way to cope with them all is to use an interrupt system such as was described in

300 Part 4 A Depth-Oriented Presentation of OS Concepts: File Systems and Input/Output

Chapter 2. However, an alternative approach is often used in smaller systems with

low-power CPUs, that of polling. In a polling system the control of the OS is written

in a single large loop in which the OS will check the status of each device in turn to

see if it needs attention. This technique is often used in imbedded devices or simple

handheld games where only a few devices are available and checking them in turn

is simpler than setting up an interrupt architecture and undergoing the overhead of

context switching involved in servicing interrupts.

 General Techniques Used in I/O Systems

 There are several general techniques that are used in I/O systems. Before delving

into other I/O system details we cover some of those general techniques.

 14.3.1 Buffering

 When we are inputting data into a computer system we typically are reading from one

device and writing to another. For example, a user is writing a document by keying

it on a keyboard and the computer writes it to disk. At another extreme we might be

backing up our hard drive to a tape drive. In each case we will use a technique called

 buffering. A buffer is a portion of memory where we store a record that will be used in

an I/O operation. There are several reasons why we might use a buffer. The first might

be the size of the transfer. The user writing a document is producing a single character

at a time. However, we can’t write a single character to a disk. The smallest unit of

access is a sector. Block devices like disk and tape drives can only transfer data in large

blocks. So we use a buffer to hold the characters that the user is keying until we have

enough to fill a sector. Then we write the sector to the disk and start a new sector.

 In this particular situation the disk is probably fast enough that we can write the

buffer and empty it to receive the next keystroke before that keystroke could possibly

arrive. However, suppose that the difference in speeds between the devices were

much smaller—say a factor of three or four. In this case we might resort to a slightly

different technique, double buffering. We will assign two buffers to the process. We

will first fill one buffer and then start the operation to write it to the output device. As

we start the write we will begin using the second buffer for the incoming data. By the

time the second buffer is full the write of the first buffer should be finished and we

can start to write the second one while we start to fill the first one again. Figure 14.1

shows this process. In Figure 14.1a we see that Process A is filling Buffer 1 and

Buffer 2 is waiting. In Figure 14.1b Process A has filled Buffer 1, so it is now filling

Buffer 2 and Buffer 1 is being written to the disk drive.

 Another reason we would use buffers might be that we are dealing with two

devices that are both block access devices, but the devices have a different block

size. For example, Ethernet network adapters typically transfer a maximum

block size of about 1,500 bytes. Token Ring adapters would allow a maximum trans-

fer size of about 18,000 bytes. If a packet was being transferred from a Token Ring

connection to an Ethernet connection we would have to use a buffer to hold the

Token Ring packet while we were breaking it up into multiple Ethernet packets to

send out. (There are other complications to this activity as well, but they are beyond

the scope of this text.)

 Chapter 14 Disk Scheduling and Input/Output Management 301

 14.3.2 Caching

 One of the most profound techniques in computer systems is caching. It is used

both in the hardware and in the software. Its purpose is to make a larger, slower, but

cheaper memory appear to perform at the same speed as a smaller, faster, and there-

fore more expensive memory. As was discussed in Chapter 2 and again in Chapter 11,

caches work because processes do not actually access memory randomly. Instead,

they operate according to the principle of locality of reference. This principle says

that a process is more likely to reference memory addresses that are near to those

it has already referenced than it is to reference addresses that are not. For exam-

ple, most of the time a process runs instructions sequentially rather than branching

around randomly. Subroutines are often called, but many instructions are typically

needed to set up the next subroutine call. Also, processes perform linear searches

through sectors, arrays, strings, packets, and so on. The other aspect of the locality

principle says that once a process has referenced a memory location it is more likely

to reference it again than to reference another random location. Again, typically a

process might work for some time to initialize a table, accessing many of the fields

in the table.

 14.3.3 Blocking of small records

 One final general technique used in an I/O system is that of blocking. Blocking is

packing several logical records into one physical block to write to a device. It is

somewhat similar to buffering between devices with different block sizes. Consider

a system that was originally designed to use punched cards but was converted to run

on magnetic tape. The record layouts are probably all very near to the 80-character

size of the punched cards. It is certainly possible to write 80-byte records to a tape

drive, but it is not very efficient. There is a gap between each tape record to allow for

the time it takes the drive to get the tape moving to the right speed and then to stop

the tape between records. This gap would hold many 80-character records and would

thus waste much of the tape. By simply packing 10 records into a block and writing

it to the tape in one operation, we save considerable space. A similar use of the term

“blocking” is used on a disk file system where we will often allocate several sectors

(a) Process A is filling Buffer 1
and Buffer 2 is waiting.

Buffer 1

Buffer 2

Process
A

(b) Process A is now filling Buffer 2
and Buffer 1 is being written

to the output device.

Buffer 1

Buffer 2

Process
A

 FIGURE 14.1

Double buffering.

302 Part 4 A Depth-Oriented Presentation of OS Concepts: File Systems and Input/Output

as a single block. This technique is used only because our file system pointers were

not large enough to address all the sectors on some new large disk drive, so we

 allocated multiple sectors at a time. We will still normally read and write single sec-

tors to the disk drive, however.

 14.4 PHYSICAL DISK ORGANIZATION

 Before we discuss the software that controls the disk drives we will review the hard-

ware design so that we can see how the nature of the hardware dictates some of the

software design.

 14.4.1 Sectors, Tracks, Cylinders, and Heads

 In Chapter 3 we showed a floppy disk in Figure 3.2. Hard disks are similar. In

 Figure 14.2 we show some additional concepts. Here we see two platters stacked

on a spindle so that they rotate together. Four arms reach out over the platters, each

containing a magnetic read–write head. The arms can move in and out. With the

arms stationary in any given position the platters will rotate so that a ring of a disk

surface will pass under the head. This ring is called a track. The four arms are con-

nected together so that they move in and out as a unit. This means that there will be

four tracks that the drive can read without moving the arms, one for each head and

surface. This group of tracks is called a cylinder. Of course, if there are more platters

Logical Cylinder

Track

Sector

Spindle

Head
Assembly

Read–Write
Head

Disk Platter

Rotation

 FIGURE 14.2

A hard disk.

 Chapter 14 Disk Scheduling and Input/Output Management 303

and more heads there can be any number of tracks in a cylinder. A stack of 16 platters

is about the maximum one will find in modern drives.

 A track is logically divided into sectors. As we mentioned before, disk drives

are block devices and will only transfer a complete unit of data rather than individual

characters. The sectors are the smallest unit of data that a disk drive will transfer. In

almost all cases, for a given disk drive all the sectors on the drive will be the same

size. On most modern hard disk drives these sectors contain 512 bytes of data plus

some additional information. Other sector sizes are available, however, notably 256,

1,024, or 2,048 bytes. Almost always the size is an even power of 2. CDs using the

ISO 9660 standard use 2,048-byte blocks.

 This arrangement of disk drive hardware leads to the concept of a disk address

which could be specified by the cylinder, head and sector numbers, or CHS address-

ing. A disk with C cylinders, H heads, and S sectors per track has C ⫻ H ⫻ S sectors

in all, and can normally store C ⫻ H ⫻ S ⫻ 512 bytes. For example, if the disk label

says C/H/S ⫽ 4,092/16/63, then the disk has 4,092 ⫻ 16 ⫻ 63 ⫽ 4,124,736 sectors,

and can hold 4,124,736 ⫻ 512 ⫽ 2,111,864,832 bytes (2.11 GB).

 14.4.2 Sector count zones and sector addressing

 The number of bits that can be stored on a magnetic track is directly proportional to

the linear distance that passes under the head. A hard disk drive rotates at a constant

speed. The circumference of the outer tracks is longer than that of the inner tracks,

so more information can be stored on the outer tracks than on the inner tracks. Older

disk drives used the same timing on all the tracks, so the bits on the outer tracks

were longer than those on the inner tracks. This was a waste of potential bits. The

electronics in the disk drives has gotten more sophisticated, and drives now include a

separate computer. As a result, most drives produced since the mid-1990s have used

a different technique for the timing called zone bit recording (ZBR). They divide

the disk tracks into zones of tracks with a similar size and change the timing for the

tracks in each zone. As a result, they place more sectors in the tracks in the outer

zones and fewer sectors on the tracks in the inner zones.

 Since the number of sectors on a track was no longer constant for the whole

drive, the idea of addressing a sector with a CHS format no longer worked, so

 something had to change. But since some software was heavily oriented to the CHS

concept, it was desirable to try to keep as close to that format as possible. A CHS

disk address was 24 bits, divided as follows:

 cylinder number 0–1023 (10 bit)

 head number 0–254 (8 bit)

 sector number 1–63 (6 bit)

 So the largest disk address that could be expressed with CHS addressing was

8 GiB. In order to conform to the interface pattern of the older drives, newer drives

continued to use the pattern of CHS addressing, and the OS was told that the drive

had some very large number of cylinders, heads, and sectors. The drive would take

those parameters and compute a logical block address, or LBA. This simply means

the sectors of a disk are sequentially numbered starting with zero and every sector is

304 Part 4 A Depth-Oriented Presentation of OS Concepts: File Systems and Input/Output

identified by its LBA number. The drive would then recompute the actual physical

address of the block desired based on the varying number of sectors in each zone.

BIOS routines and drives were developed that allowed the OS to ignore the artificial

CHS format and pass an LBA address directly.

 Eventually the drives got so large that the maximum LBA address that could be

specified was not large enough to address the entire disk drive. In order to accommo-

date these larger drives new address formats were specified that allowed either 28- or

48-bit addresses to be used. This results in a disk size limit of 128 GiB or 128 PiB,

respectively, assuming the standard 512 bytes per sector.

 14.4.3 Low-level formatting

 When disk drives are originally manufactured they contain no information what-

soever. The sectors that we want to access do not yet exist. A special writing mode

must be invoked to have the disk actually write the bytes on the disk that define

the location of the sectors. This mode is called low-level formatting. Each sector

will contain a header that identifies the cylinder, head, and sector numbers of that

 sector. The sector will be blank and a checksum will be appended to the sector.

(More information about checksums in Section 14.5.3 .) With older drive technolo-

gies the user was expected to do this low-level formatting. Thankfully this is now

done by the manufacturers.

 14.4.4 Speeds: Seek, transfer, and buffering

 One of the most important factors in OS performance is the hard drive seek time. It

is the time it takes the drive to move the head assembly from one track (or cylinder)

to another. In most modern systems the CPU is idle much of the time, waiting on

the disk drive to transfer needed information. The biggest factor in the time taken

to access the information is physically getting the read–write head to the location

of the sector. There are several possible ways to measure seek time. The measure

we are interested in is the average seek time, but for simplicity we will just refer

to it as seek time since it has become an industry standard for specifying disk drive

performance. Leaving aside some early developments in the field, the seek time of

disk drives has changed very little. The rate of change is about ⫺ 8% per year. This

works out to a drop of 50% over 10 years. For about the last 30 years this has been

quite accurate. Today the average consumer drive has an average seek time of about

6–12 milliseconds. The highest performance drives are about half that, ranging down

to about 3 ms.

 A related factor is the rotational latency. Assume that we are looking for a par-

ticular sector and we seek to the right track. When the head assembly arrives at the

right track it will stop. There are several sectors on a track and we are looking for a

particular one. (We might be going to transfer several sectors, but we will have speci-

fied that the transfer starts at some particular sector number.) Most of the time the

next sector that will pass under the head will not be the one we are looking for. On

the average we will be in the wrong place by one-half the rotation time. This delay

is referred to as rotational latency. The rotational latency varies inversely with the

 Chapter 14 Disk Scheduling and Input/Output Management 305

rotation speed. Table 14.2 shows the most common rotation speeds for disk drives

and the associated average rotational latency.

 Until fairly recently the rotational delay was largely ignored since it was not

very easy for the OS to monitor the rotational position, and the seek time was so

large that the rotational latency was not a big factor. Notice, however, that this delay

is now about the same magnitude as the seek time. As a result, the rotational latency

is beginning to be considered in disk scheduling algorithms. We have more to say

about this later in the chapter.

 14.5 LOGICAL DISK ORGANIZATION

 An application program typically views secondary storage as a set of files filled

with records. At the lowest level the I/O system sees disk drives as masses of sec-

tors. There needs to be some basic organization of the information on a disk drive so

that the I/O system can find the information it needs. Because personal computers

are so widely available we describe the organization of a disk drive for a personal

computer. Other platforms will use different organizations, but they will have similar

elements.

 14.5.1 Partitions

 When IBM released their first PC it did not even have an option for a hard disk—

floppy disks were the only disk media. When the first hard disks were available they

only contained 10 MB or so. They used a file system organization called FAT12,

which was discussed in the last chapter. In a fairly short time it was clear that this file

system would not support the newer drives that were rapidly becoming available. We

previously discussed the idea of allocating multiple sectors at a time as one solution

to this problem. Another simple solution was to allow a single disk drive to be divided

into multiple pieces and have each piece treated as a separate drive. Then the old file

 TABLE 14.2 Rotational Latency as a Function of Drive Rotation Speed

Spindle Speed (RPM) Average Rotational Latency (ms)

3,600 8.3

4,200 7.1

4,500 6.7

4,900 6.1

5,200 5.8

5,400 5.6

7,200 4.2

10,000 3.0

12,000 2.5

15,000 2.0

306 Part 4 A Depth-Oriented Presentation of OS Concepts: File Systems and Input/Output

system could still be used. This solution is called partitioning. 1 A utility program

called FDISK was provided with DOS that could be used to divide the disk into sepa-

rate partitions. The original version of FDISK allowed a drive to be divided into only

four partitions and only one could contain a bootable OS. With Windows NT a new

version of FDISK was released that allows more partitions to be defined on a single

drive and allows multiple bootable (a.k.a. primary) partitions. This is a good step

forward, but of course it is incompatible with older OSs that were created before this

change in format. Most modern OSs support this format of extended partition tables.

For some time most other OSs simply used the same utility program because it was

not used often and there was not much of a way to enhance the features. Today, most

OSs provide their own partitioning utility program and many have a GUI interface.

 As it turns out, creating partitions is a useful technique for other things as well.

For one thing, it is a simple way of allowing a machine to contain two different oper-

ating systems and still allow each OS to assume it has sole control over the disk drive.

In Figure 14.3 , we see a disk drive divided into four partitions containing three dif-

ferent OSs. In normal situations each partition will contain a file system. But another

use for partitions is for applications that are so specialized that they want to manage

their own I/O rather than utilize the default file–oriented I/O that the OS provides.

An example might be a database management system. Such systems are heavily

 optimized for the specific access patterns they expect to see and would not be nearly

as efficient if they could only use the standard OS file I/O support. This API is known

as raw I/O and it allows the application to treat the partition as an array of blocks that

can be accessed randomly rather than through the normal metaphor of a file.

 Eventually, new file systems were developed with larger pointers that could sup-

port very large hard drives. Some applications required a larger file space than could

be covered with a single hard drive of the sizes that were available at the time. As a

result, the mechanisms of partitioning can be reversed, allowing two or more hard

drives to be combined with the partitioning mechanism and to appear to the upper

layers of the OS as a single drive. Figure 14.4 shows a single partition spanning parts

of two disk drives.

1 This technique did not originate with PC systems. It was earlier used on some mainframe systems for
some of the same reasons alluded to here.

Partition 1
Windows

Partition 2
Linux

Partition 4
Raw I/O

Partition 3
OS/2

 FIGURE 14.3

A disk drive

containing several

OSs in different

partitions.

Disk
Drive 1

Disk
Drive 2

Partition 1
containing

the OS

Partition 2
containing the

data files

 FIGURE 14.4

 A single partition

spanning parts

of two disk drives.

 Chapter 14 Disk Scheduling and Input/Output Management 307

 14.5.2 Boot block

 In Chapter 3 we discussed the concept of booting the system from a disk drive. When

a computer is reset it will normally try to bootstrap an OS from one or more of the

devices on the system. Most PCs contain a special memory that is powered by a bat-

tery. It is commonly referred to as the CMOS memory, or sometimes as the BIOS.

Settings in this memory may specify a set of several different devices that the system

is allowed to boot from, among other things. The system will try to boot from them in

the order specified. A given device may not work when the system tries to boot from

that device. For example, a floppy drive or a CD-ROM drive might not contain a disk.

A hard drive might not have an OS installed on it yet. If the OS cannot boot from one

device, then the next device is tried. If they all fail then a diagnostic error that no nor-

mal user would understand is displayed on the video screen. If the OS finds a drive

that it can boot from, the bootstrap program in the hardware ROM will load the first

sector from the device and begin executing the code that is contained there.

 The information about the partitioning of a hard disk is stored in a part of the

first physical sector on the disk, regardless of how the partitioning is set up. This

 sector is called the master boot record (MBR) or boot block of the disk and it

contains the partition table. It also contains a short program that looks in the parti-

tion table, checks which partition is currently the active partition, and reads the first

sector of that partition. That partition’s boot sector contains another small program

that reads the first part of the OS stored on that partition and starts executing it. The

remainder of the bootstrap program will read in parts of the kernel and mount the

root of the directory structure that is found in that partition.

 After the OS bootstraps itself into memory it will mount the file system that

it finds on the boot volume. The details of mounting the file system depend on the

OS and the format of the partition that the OS was booted from. It may mount other

partitions as well.

 14.5.3 Error detection and correction

 When information is written to a hard disk unit, extra information is written with it.

This information is used for detecting errors and often for correcting them as well.

There are various schemes for creating and using this information. The schemes

used depend on the type of errors expected in the drive, the amount of reliability

desired, and the intended relative price of the drive. The more elaborate techniques

produce a more reliable drive. At the same time, they require more complex calcu-

lations and therefore they require a faster and more powerful processor in the disk

drive. In addition, the more complex techniques store more redundant information

on the disk, so they will hold less user data. Thus, for a given amount of user storage

they will require a larger drive. But error correction allows manufacturers to make

faster, higher-capacity drives that appear to the user to be error-free. The more the

technology for storing data is pushed, the more sophisticated the error correction

mechanisms need to be to reach the same level of reliability.

 A large body of research and development has been done on the calculation of

this redundant information, called error detection codes (EDC) or error correction

308 Part 4 A Depth-Oriented Presentation of OS Concepts: File Systems and Input/Output

codes (ECC). The techniques all compute a small number that is a function of the

contents of the data block. The computation is made when the data is written to the

disk and the computed value is written along with the data. When the data is read

back from the disk, the function is computed again and compared with the value

stored during the write operation. If the two values do not agree, then an error was

made either on the read or on the write. (Errors on the read may reflect that the data

has been damaged since it was written.)

 The simplest error detection codes include a cyclic redundancy check, or CRC,

also sometimes called a longitudinal redundancy check, or LRC. In this case

the function calculated is expressed as a polynomial. For example, the polynomial

X 4 ⫹ X 2 ⫹ 1 would be 10101. The binary digits represent the multiplier of the expo-

nents of the values of the polynomial. We could write X 4 ⫹ X 2 ⫹ 1 more exactly like

this: (1 ⫻ X 4) ⫹ (0 ⫻ X 3) ⫹ (1 ⫻ X 2) ⫹ (0 ⫻ X 1) ⫹ (1 ⫻ X 0). The calculation can

be thought of as dividing the data in the block by the binary number expressed by

the polynomial. After this division the remainder is the CRC. This type of calcula-

tion is in widespread use in computing, especially in networking. Because the types

of errors expected in networks are somewhat different than those expected in a disk

drive, the polynomials used are usually different. Several different commonly used

polynomials are shown in Table 14.3 . Sometimes errors are likely to occur in a num-

ber of bits in a row. Such situations are called burst errors. A polynomial code can

detect any error burst of a length less than or equal to the length of that polynomial.

This type of calculation has been used for some time because a simple, fast hardware

implementation using shift registers was developed.

 CRC-12 is used for serial communication lines of 6-bit characters and generates

a 12-bit CRC. Both CRC-16 and CRC-CCITT are used for 8-bit serial communica-

tion and result in a 16-bit CRC. The last two are widely used in the United States and

Europe, respectively, and give adequate protection for most applications. CRC-CCITT

is used in disk drives. CRC-32 generates a 32-bit CRC. The CRC-32 polynomial is

used in IEEE-802 networks such as Ethernet, Token Ring, and wireless LANs.

 More complex calculations are used in more modern drives. These functions

include Hamming and Reed-Solomon codes. They produce more redundant informa-

tion than the various CRC functions. A typical drive might store 12 bytes of redun-

dancy code with a 512-byte data block and be able to correct burst errors as long as

22 bits. In particular, Reed-Solomon codes are used in CD-ROM drives where they

store 24 data bytes and 8 error correction bytes in a frame for error correction pur-

poses. This higher level of redundancy is required since the media is easily damaged

and the drives are often used when a system is in motion, such as a car CD player.

 TABLE 14.3 Several Commonly Used CRC Polynomials

 CRC-12: X 12 ⫹ X 11 ⫹ X 3 ⫹ X 2 ⫹ X ⫹ 1

 CRC-16: X 16 ⫹ X 15 ⫹ X 2 ⫹ 1

 CRC-CCITT: X 16 ⫹ X 12 ⫹ X 5 ⫹ 1

 CRC-32: X 32 ⫹ X 26 ⫹ X 23 ⫹ X 22 ⫹ X 16 ⫹ X 12 ⫹ X 11 ⫹

X 10 ⫹ X 8 ⫹ X 7 ⫹ X 5 ⫹ X 4 ⫹ X 2 ⫹ X ⫹ 1

 Chapter 14 Disk Scheduling and Input/Output Management 309

 14.6 RAID

 Modern hard drives are very reliable. We measure the reliability in terms of the mean

time between failures, or MTBF. However, we can improve on this reliability to

give even longer lifetimes by using multiple drives in special ways. The techniques

we describe in this section are called redundant arrays of inexpensive disks or

 RAID. Some writers replace the term “inexpensive” with “independent,” but the

former term is the one that was used when the term “RAID” was first coined by

the researchers who systematically investigated the use of multiple-drive arrays. The

original purpose was to show that by combining inexpensive drives in clever ways

the reliability of much more expensive drives could be achieved with less money.

But these days even inexpensive drives are very reliable. However, an important

point in these techniques is that in order for them to work well, the failure modes

of the drives must be independent. This means that the drives must be operating on

separate I/O channels and I/O controllers as well to achieve optimum reliability and

performance. If not, the techniques will still keep data from being lost, but the data

might be unavailable while a shared component is replaced.

 Support for RAID configurations is often done in the disc controllers. However,

RAID does not have to be done in a special controller. For some of the RAID

 configurations it is possible to control the RAID process with a software module in

the OS. Today, RAID 0 and 5 are commonly offered in software in most OSs. These

configurations are explained in the next section.

 The original RAID specifications included six configurations. They are called

RAID 0 through RAID 5. Most of these configurations will be more reliable than

using individual drives. Some of them also yield improved performance in some

areas and worse performance in others. RAID 0 is the exception since it yields only

improved performance on reads.

 14.6.1 RAID configurations

 The following figures show several RAID configurations. Each is intended to repre-

sent a storage system that holds the same amount of user data. In each case the drives

are all of the same size and we are showing how many drives it takes to yield four

drives’ worth of storage with that configuration. The higher levels of the OS will

see each configuration as a single drive with four times the storage as the individual

drives of which it is made. There are three main techniques used in RAID. These are

mirroring (copying data to more than one drive), striping (breaking files across more

than one drive), and error correction (redundant data is stored, allowing detection

and possibly fixing of errors). Different RAID configurations use one or more of

these techniques.

 RAID 0 — Striped disk array without parity. This configuration utilizes data

striping, spreading out blocks of each file across multiple disk drives, but no redun-

dancy. The developers of the RAID technology used the term strip rather than the

term block, but in practice the implementations are always based on blocks. It

improves performance because multiple reads and multiple writes can be carried

out in parallel. But it does not increase fault tolerance. In fact, this configuration

310 Part 4 A Depth-Oriented Presentation of OS Concepts: File Systems and Input/Output

actually decreases reliability, since if one drive fails then all data in the array is lost

because the OS is treating the array of drives as a single drive. Having N drives spin-

ning means that the configuration is N times as likely to fail. If the RAID support is

being provided by the disk controllers, then the OS has no access to the remaining

drives at all. If the support is being done by the OS device driver software, then the

remaining drives would theoretically still be accessible, but it is unlikely that any

files would reside completely on the remaining drives. See Figure 14.5 . The numbers

in the drives show the logical block numbers (seen by the file system) as they are

written to the drives.

 RAID 1 — Mirroring (a.k.a. duplexing). In RAID 1 there is a duplicate set of

disk drives. When any data is written to one drive it is also written to the duplicate

(mirror) of that drive. See Figure 14.6 . The shaded set of drives is the mirror set.

Assuming that a primary drive and its mirror can be read at the same time, this con-

figuration provides twice the read transaction rate of single disks. It has no effect on

the write transaction rate because each individual block must be written to both the

primary and the secondary so the effect of any parallelism is lost. If one drive fails,

the data will be safe but the performance will be reduced when accessing that mirror

pair because only one drive will be available to service that request. This is the most

expensive RAID configuration.

 RAID 2 — Error-correcting coding and RAID 3 — Bit-interleaved parity.

These two techniques turned out to be prohibitively expensive and inferior to other

techniques so we will not describe them here. For high performance they also required

that the spinning of the drives needed to be synchronized. They are not in use today.

 RAID 4 — Dedicated parity drive. This configuration provides block-level

striping (like Level 0) with a parity disk. The parity block that is written to this drive

1

9

5

13

2

10

6

14

3

11

7

15

4

12

8

16

 FIGURE 14.5

RAID 0—Striped

disk array.

1

3

2

4

41

43

42

44

81

83

82

84

121

123

122

124

1

3

2

4

41

43

42

44

81

83

82

84

121

123

122

124

 FIGURE 14.6 RAID 1—Disk mirroring.

 Chapter 14 Disk Scheduling and Input/Output Management 311

covers the other blocks in the stripe, in this case, blocks 1–4. See Figure 14.7 . If a

data disk fails, the parity data is used to create a replacement disk. A disadvantage

to RAID 4 is that every time a block is written the parity block must also be read,

recalculated, and rewritten. The parity disk therefore becomes an I/O bottleneck. It

provides almost the same reliability as RAID 1, but if a drive fails the performance

hit will be much worse. However, the cost is a single extra drive, so it is much supe-

rior in price if the configuration has several drives in it.

 RAID 5 — Block interleaved distributed parity. RAID 5 is very much like

RAID 4, except that rather than keeping the parity block always on the same drive

the parity block is assigned to the drives in a round-robin fashion. See Figure 14.8 .

This technique removes the problem of excessive use of the parity drive that we saw

with RAID 4. Level 5 is one of the most popular configurations of RAID.

 The following RAID configurations were not part of the original RAID speci-

fication. These have been fairly widely accepted and can generally be regarded as

standard.

 RAID 6 — Independent data disks with double parity. Provides block-level

striping with parity data distributed across all disks as in RAID 5, but instead of a

simple parity scheme it computes parity using two different algorithms at the same

time. Several methods of calculations, including dual check data computations (parity

and Reed-Solomon), orthogonal dual parity check data, and diagonal parity have

1

9

5

13

2

10

6

14

3

11

7

15

4

12

8

16

Parity 1–4

Parity 9–12

Parity 5–8

Parity 13–16

 FIGURE 14.7

 RAID 4—Dedicated

parity drive.

1

9

5

13

2

10

6

Parity 13–16

3

Parity 9–12

7

14

4

11

Parity 5–8

15

Parity 1–4

12

8

16

 FIGURE 14.8

 RAID 5—Block

interleaved

distributed parity.

312 Part 4 A Depth-Oriented Presentation of OS Concepts: File Systems and Input/Output

been used to implement RAID 6 configurations. See Figure 14.9 . The two different

parity blocks are shown as P&Q functions of the blocks (or strips) in the stripe and

are shown in contrasting shades. RAID 6 requires an extra disk drive (over RAID 5)

but it will tolerate the loss of two drives at the same time.

 RAID 0 ⫹ 1 — Mirror of stripes. In this configuration two RAID 0 stripes are

created, and a RAID 1 mirror is created over them. This is shown in Figure 14.10 .

The striping provides improved performance and the mirroring provides reliability.

Generally, it will perform better than RAID 5.

 RAID 1 ⫹ 0 (a.k.a. RAID 10)— Stripe of mirrors. Multiple RAID 1 mirrored

drive pairs are created, and a RAID 0 stripe is created over these. See Figure 14.11 .

This configuration has performance and reliability characteristics similar to RAID

0 ⫹ 1. However, the performance and reliability is slightly better when a drive is lost.

With RAID 0 ⫹ 1 the loss of a drive means that the entire stripe set is lost, so the other

stripe set will have to take on all the work. With RAID 1 ⫹ 0 only the drive that loses

1

A B C D E F

9

5

13

P (...)

2

10

6

P (13–16) Q (13–16)

3

P (9–12) Q (9–12)

7

4

P (5–8) Q (5–8)

14

P (1–4)

11

15

8

Q (1–4)

12

16

Q (...)

 FIGURE 14.9 RAID 6—Independent data disks with double parity.

Stripe Set A

Mirrored

Stripe Set B

13

9

5

1

14

10

6

2

15

11

7

3

16

12

8

4

13

9

5

1

14

10

6

2

15

11

7

3

16

5 6 7 8

12

8

4

1 2 3 4 FIGURE 14.10

 RAID 0 ⫹ 1

—A mirror of stripes.

 Chapter 14 Disk Scheduling and Input/Output Management 313

its mirror pair will have to do all the work for that pair. The work on the other pairs

can be distributed across both drives as before.

 14.6.2 RAID failures

 We could build a RAID 0 ⫹ 1 configuration by using two controllers to build the stripe

sets and using software at the device driver level to mirror the two stripe sets. In this case

the failure of a single drive would result in the loss of the entire stripe set, as described

earlier. However, if the controllers running RAID 0 ⫹ 1 were aware of the entire con-

figuration, then when drive 3 failed it would continue striping to the other four drives in

“stripe set A,” and if drive 6 later failed it would use drive 2 in its stead, since it should

have the same data. This would theoretically make RAID 0 ⫹ 1 just as fault-tolerant as

RAID 1 ⫹ 0. Unfortunately, most controllers aren’t designed this way.

 When a failed drive is replaced the system will have to rebuild the information

that was on the lost drive. In RAID 0 ⫹ 1, if drive 2 fails, the data on five hard disks

will need to be rebuilt, because the whole “stripe set A” will be wiped out. In RAID

1 ⫹ 0, only drive 2 has to be rebuilt. Again here, the advantage is to RAID 1 ⫹ 0.

 There is also a plethora of other RAID configurations that are proprietary. They

include many trademarked terms. They may or may not be of some benefit in a

particular situation. Analysis of test configurations and especially their behavior in

a variety of failure scenarios is a nontrivial matter but might be warranted in special

situations.

 When a single drive fails in RAID configurations more advanced than RAID 0,

the array can continue to run. Sometimes the performance is lower and sometimes

we simply have more exposure to risk. For example, loss of a drive in a RAID 1

configuration mostly means that we are now at some increased risk since failure of

the other drive in that pair would mean that we had lost all of that information. We

can continue to run with only one loss. We will notice some drop in performance in

some reads since we only have one drive to do the reads where we had two to share it

before the loss of the drive. At other times we will probably have to shut the system

Stripe Set
Mirrored

Pair 1
Mirrored

Pair 2
Mirrored

Pair 3
Mirrored

Pair 4

13

9

5

1

14

10

6

2

15

11

7

3

16

12

8

4

13

9

5

1

14

10

6

2

15

11

7

3

16

12

8

4

 FIGURE 14.11

RAID 1 ⫹ 0

—A stripe of mirrors.

314 Part 4 A Depth-Oriented Presentation of OS Concepts: File Systems and Input/Output

down because the performance of the system would be unacceptable. For example,

in RAID 6, if we lose a drive, the performance of a write will be very bad because we

will have to read all the other drives to be able to calculate the parity for the missing

drive. This would probably be only marginally acceptable. However, as soon as the

broken drive has been replaced we can begin the processes of rebuilding the infor-

mation that was on the bad drive.

 This brings up a point that for RAID configurations we will want to use drives

that are “hot swappable.” This means that the failed drive can be unplugged from

the system and a new drive plugged in without turning off the power on the system.

While this technology is well understood, it does require special hardware that is

more expensive than normal drives. The decision will probably hinge on whether the

running system is critical to some operation or whether it is only the existence of the

data that is critical. In the latter case we might prefer to take some system downtime

rather than pay extra for the drives.

 In some cases the running system is a requirement. Systems in hospitals, for

example, may be critical to patient care and the loss of the system might mean the

loss of life. In such cases we might choose to go a step further and have a spare drive

on the shelf ready to plug in if one of the drives fails. In extreme cases we may have

the drive in a warm standby situation—already plugged in to the drive rack but not

powered on or at least not spinning. When the OS detects a failure it can turn on the

power to the drive, spin it up, and begin the rebuild process. Of course, disk mirror-

ing is the extreme form of hot standby.

 14.7 DISK OPERATION SCHEDULING

 We mentioned earlier that seek time was one of the most critical measurements of

a disk drive as far as performance of the system is concerned. If we have a large

number of disk operations to do, it turns out that the order in which we handle the

requests can have a significant impact on overall system performance. The perfor-

mance of CPUs has been increasing by a rate of roughly 50% per year for at least

the last couple of decades. The performance of disk drives has only increased at a

rate of about 10% per year during the same time. It is reasonable to assume that we

can spend some of that CPU speed to improve the performance of the disk systems.

To illustrate the point, let us assume that we have a series of disk requests to service.

A seek operation on the disk drive moves all the heads together to some track or

 cylinder. So we will just look at track numbers, and realize that we are actually posi-

tioning (potentially) many heads at the same time—certainly at least two. Accord-

ingly, we will take a list of track numbers that have come to the I/O system from

various processes that are running on the system. We will look at the seek time nec-

essary to perform those requests and then see if we can improve on that. In all these

cases we assume that the disk drive has 80 tracks, that the head is presently resting at

track 28 and we have the following set of requests in a queue:

 17, 30, 24, 37, 15, 27, 11, 75, 20, 5

 Chapter 14 Disk Scheduling and Input/Output Management 315

 14.7.1 FCFS

 The simplest way to handle these requests would be to take them as they are in the

queue, first in, first out, or FIFO. (This is also often known as first come, first

served, or FCFS.) This algorithm is appealing because it is simple to implement.

It also has the advantage that it is fair. It is fair in the sense that the process that

asked first gets served first. However, this does not necessarily give the best overall

 system performance. Moreover, it might not even give the best performance to a sin-

gle application, as we will see later. In the case of the FCFS algorithm, the OS will

move the head from track to track in the order that the requests are in the queue. So

it will move from 28 to 17, then to 30, then to 24, and so on. In processing this queue

in this order the system will seek over 227 tracks. This is shown in Figure 14.12 .

Since we have no idea about the rotational latency involved, we will use the number

of tracks that the system has to seek over to service the requests as our measure of

how efficient the algorithm is.

 14.7.2 Pickup

 A variation on FCFS that is mentioned by some authorities is called pickup. In this

algorithm the requests are generally taken in order as with FCFS, but as the system

is moving the head it will stop for any tracks that are being passed over that have a

request in the queue. (In Linux this is called the Noop scheduler.) For example, given

the requests in our sample, it would start at track 28 and begin moving toward 17, the

first request in the queue. But on the way it would pick up tracks 27, 24, and 20. The

total sequence would be:

 27, 24, 20, 17, 30, 37, 15, 11, 75, 5

 This sequence would result in a total seek time of 191 tracks, a considerable improve-

ment over FCFS. Figure 14.13 charts the Pickup algorithm.

FIFO

0

10

20

30

40

50

60

70

80

1 2 3 4 5 6 7 8 9 10 11

 FIGURE 14.12

 FIFO.

316 Part 4 A Depth-Oriented Presentation of OS Concepts: File Systems and Input/Output

 14.7.3 SSTF

 Next, we will look at an algorithm called shortest seek time first, or SSTF. (It is

also sometimes known as shortest positioning time first, or SPTF.) When we used

similar algorithms in other parts of an OS such as virtual memory page replacement

or process scheduling we usually said that they were optimum, but that we could not

really use them because we could not predict the future. In the case of disk schedul-

ing, however, we can use this algorithm because all the requests we are concerned

with are there in the queue for us to look at. Again, we start with the head at track 28.

The nearest entry on the queue is 27, so we next move the head to that track. Now

the next nearest is back at 30, so we move there. As is shown in Figure 14.14 , the

sequence is

 28, 27, 30, 24, 20, 37, 17, 15, 11, 5, 75

for a total of 133 tracks. This is almost twice the performance of FCFS. However,

it is not very fair. The first request in the queue, the one that has been waiting the

longest, is not serviced until the queue is about half empty. Also notice that the head

Pickup

0

10

20

30

40

50

60

70

80

1 2 3 4 5 6 7 8 9 10 11

 FIGURE 14.13

Pickup.

SSTF

0

10

20

30

40

50

60

70

80

1 2 3 4 5 6 7 8 9 10 11

 FIGURE 14.14

 SSTF.

 Chapter 14 Disk Scheduling and Input/Output Management 317

kept passing back and forth across the middle of the disk. As a result, a process that

was accessing blocks that were located in the middle of the disk would tend to get

better service than one that was accessing blocks located at either extreme on the

drive. Also, notice that while this algorithm is running, more requests will probably

be made of the OS and will get placed in the queue with the rest. Since processes in

the middle are getting favored, they will also get more opportunities to place addi-

tional requests, compounding their advantage. This algorithm can be looked at as

giving priority to some requests—notably those closest to the current head position.

As with any prioritization mechanism, we have to be concerned about starvation of

the lower priority requests. The outlying blocks can be gradually raised in priority

so that they will be serviced sooner. This variant of SSTF is sometimes called aged

shortest seek time first, or ASSTF. The algorithm simply adjusts the actual seek

time by subtracting a weighting factor times the time that the request has been in

the queue. If T eff is the effective (or weighted) seek time for a request, T pos is the

actual time the seek would require, W is a weighting factor we want to assign to old

requests, and T wait is the time the request has been in the queue, the aging formula

would be:

T T W T

eff pos wait
⫽ ⫺ ⫻

 14.7.4 LOOK

 The next algorithm we will study is commonly called LOOK. Another popular name

for it is the “ elevator algorithm. ” In this algorithm, once the OS starts seeking in

one direction it will not reverse the direction it is seeking until there are no other

tracks to access in that direction. In other words, the system “looks” ahead to decide

when to reverse the seek direction. This is analogous to the way an elevator works.

Once it starts going up it will only go in that direction until it has no more requests

in that direction. It will then reverse itself. (As with many analogies it is a bit weak,

because an elevator also considers whether the request from a floor is to go up or

down and will not stop for users wanting to go up if it is going down. But an OS only

needs to position the head to the track. The seek request contains no notion of direc-

tion of the seek.) Let us again look at our reference string. Let us also assume that

the OS starts seeking in the direction of the lower numbered tracks. In this case the

order of the seeks would be

 28, 27, 24, 20, 17, 15, 11, 5, 30, 37, 75

for a total of 93 tracks. This is shown in Figure 14.15 .

 If the OS had started in the direction of the higher numbered tracks the sequence

would be

 28, 30, 37, 75, 27, 24, 20, 17, 15, 11, 5

for a total of 117. This is shown in Figure 14.16 . In either case it would be better

than FIFO or SSTF. However, for every time it moves toward either end it will pass

over the middle of the disk both coming and going; it still tends to favor blocks in the

middle of the disk, so it is less fair than FIFO but not as bad as SSTF.

318 Part 4 A Depth-Oriented Presentation of OS Concepts: File Systems and Input/Output

LOOK starting down

0

10

20

30

40

50

60

70

80

1 2 3 4 5 6 7 8 9 10 11

 FIGURE 14.15

 LOOK starting down.

 FIGURE 14.16

 LOOK starting up.

LOOK starting up

0

10

20

30

40

50

60

70

80

1 2 3 4 5 6 7 8 9 10 11

 Some authorities also discuss a separate algorithm called SCAN. This algorithm

is the same as LOOK, but instead of reversing direction when no more requests are

in the queue in the direction that is currently being traveled, this algorithm would

have to move all the way to the end of the disk in the direction of the travel. Since

nobody would actually implement this algorithm we will ignore it, mentioning it

only for completeness, since some of the other algorithms are called something

related to SCAN.

 14.7.5 C-LOOK

 In an effort to make a fairer algorithm, a variation on the LOOK algorithm was

devised. When the disk head has moved to the last track in one direction, instead

of reversing direction and seeking to the nearest track, the OS will seek to the

track that is the furthest in the queue in the opposite direction. It will then begin to

 perform the seeks moving back in the direction it was originally traveling before.

The objective is to remove the unfair advantage given to files in the middle of

 Chapter 14 Disk Scheduling and Input/Output Management 319

the drive since on one pass over the middle the disk is not servicing any requests.

The name of this algorithm is C-LOOK, short for circular-LOOK (some authori-

ties call this method cylindrical-LOOK or cyclic elevator). The thought behind

the name is to consider the address space (track numbers) of the disk as being

wrapped around a cylinder, so that after seeking to track 0, say, the next track to

be considered is track 80. Unfortunately, this algorithm results in a very long seek

in the middle of servicing the queue. But this long seek is not quite as bad as it

might seem. Normally, we quote the average seek time when we talk about the seek

 performance of a disk drive. However, seek times do not increase linearly with the

distance of the seek. Just as with a moving object, the arm on a disk that holds the

heads will start slowly and gradually get faster and faster. As a result, a seek across

the entire disk will not be double the average seek. It will be somewhat quicker

than that. Since it is not possible to predict this exactly, we will ignore it and simply

make the same sort of calculation that we have made before, stipulating that things

will not really be quite this bad. Again, the exact sum will depend on whether we

start in the direction of the lower numbered tracks or the higher numbered tracks.

Because of the long seek in the middle of the sequence, the difference between the

two directions will not be as large a percentage as it was with LOOK. As seen in

 Figure 14.17 , the sequence is

 28, 27, 24, 20, 17, 15, 11, 5, 75, 37, 30

for a total of 138. In Figure 14.18 , we see a sequence of

 28, 30, 37, 75, 5, 11, 15, 17, 20, 24, 27

for a total of 139. The attraction of C-LOOK is that it offers lower service

 variability —the performance of any given disk request is more predictable in gen-

eral and less dependent on file placement on the disk. C-LOOK is better than LOOK

only when the disk access level is a very high load since it reduces the starvation

problem. As with the SCAN algorithm mentioned above, some authors discuss a

C-SCAN that also travels to the extremes of the disk before reversing directions.

C-LOOK starting down

0

10

20

30

40

50

60

70

80

1 2 3 4 5 6 7 8 9 10 11

 FIGURE 14.17

 C-LOOK starting

down.

320 Part 4 A Depth-Oriented Presentation of OS Concepts: File Systems and Input/Output

 14.7.6 F-SCAN

 Another disk scheduling algorithm is commonly called F-SCAN. Despite the name,

it is a variant on the LOOK algorithm. This mechanism uses two queues, say X and

Y. Queue X is started first and the system freezes request queue X when a scan is

started. Any requests that come in while this scan is under way are put into queue

Y. After the scan with queue X is finished, queue Y is frozen and another scan is

started with it, any incoming requests now going into queue X. This mechanism is a

compromise between the fairness of FCFS and the efficiency of LOOK without the

expensive long seek of C-LOOK. It thus avoids long periods of starvation.

 14.7.7 N-step SCAN

 One last variation of the LOOK algorithm batches requests in groups of N requests.

One batch is scanned before the next batch is processed. Like F-SCAN, N-Step

SCAN prevents indefinite postponement (starvation). The other purpose of N-Step

SCAN is to set an upper bound on how long a request can go without being serviced.

It is thus useful for very heavily loaded systems, and for systems with a large number

of soft real-time applications. Note that the effect of N-Step SCAN is heavily depen-

dent on the size of N. If N equals 1, then N-Step SCAN is effectively FCFS, and if

 N is large enough that almost all requests are serviced in the first scan, then N-Step

SCAN is equivalent to LOOK.

 14.7.8 Linux schedulers

 Linux has more scheduler variations available than most OSs. We look at three that it

currently supports. They are variants of the sorts of algorithms we have been looking at.

 Anticipatory scheduler

 The anticipatory scheduler was for a time the default scheduler in Linux. It merges

requests like the Pickup algorithm and uses a one-way elevator sequence like the

LOOK algorithm. A unique feature is that it tries to anticipate reads by holding off a

C-LOOK starting up

0

10

20

30

40

50

60

70

80

1 2 3 4 5 6 7 8 9 10 11

 FIGURE 14.18

 C-LOOK starting up.

 Chapter 14 Disk Scheduling and Input/Output Management 321

bit after a synchronous read command if it thinks a process might ask for more data

nearby. If a new request comes in from the last process it may reverse the seek direc-

tion if the distance is not too great.

 Deadline scheduler

 The deadline scheduler also merges requests like the Pickup algorithm and uses a

one-way elevator sequence like the LOOK algorithm. It also imposes a deadline on

all operations to prevent resource starvation. Linux returns immediately from a write

request and holds the data to write in the cache. So the deadline scheduler will give

priority to read requests as long as the deadline for a write request hasn’t passed.

This is the preferred scheduler for database systems, especially if the disks are high-

performance drives.

 Complete fair queuing scheduler (“cfq scheduler”)

 The complete fair queuing scheduler also merges requests like the Pickup algo-

rithm and uses a one-way elevator sequence like the LOOK algorithm. In addition, it

tries to give all processes using a particular device the same number of synchronous

IO requests over a measured time interval. It is likely to be more efficient for mul-

tiuser systems than are the other schedulers. It is currently the default scheduler for

most Linux distributions.

 14.7.9 Sending commands to the controller

 Tagged queuing is a technique initially developed in the realm of SCSI disk drives.

It is sometimes called command queuing or native command queuing (NCQ.)

It basically delegates all or part of the task of disk operation scheduling to the disk

controller. The device drivers for such drives pass all I/O requests directly to the

drive controller and the controller does all the scheduling of the I/O operations.

The theory is that the disk controller has a different level of information about the

disk geometry and the current status of the disk mechanism and can therefore do a

better job of scheduling multiple disk requests. Such migration of functions closer

to the hardware is a phenomenon we often see in the OS world. Once a technique

proves useful in the OS we start thinking about putting the function into the hard-

ware where it can often be done more cheaply and sometimes better and frees up

valuable CPU and memory resources. In this case, the controller can do a better

job because it is able to also consider rotational latency. When much of the work

was initially done on these disk scheduling algorithms the seek time was much

greater than the rotational latency. Improvements in the seek mechanism over the

last couple of decades have meant that the seek time is now about the same as the

rotational latency. (See Table 14.2 .) In general, the OS does not have that much

information about the rotational position of a drive. In addition, because of sector

zoning and LBA addressing the disk driver may not even understand the real geom-

etry of the drive. The controller, however, has all that information and can therefore

use an algorithm that includes both rotational and seek time to arrive at an optimum

 schedule. In many situations a performance increase of 30% has been reported, but

322 Part 4 A Depth-Oriented Presentation of OS Concepts: File Systems and Input/Output

this depends highly on the details of the situation. Tagged queuing is implemented

in most modern OSs. The technique is also now finding its way into the latest high-

performance ATA disk drives.

 14.7.10 Which algorithm is best?

 After all this discussion of disk scheduling algorithms it would seem reasonable to

ask which algorithm is the best. Unfortunately, the answer to that question is one

frequently heard in the computer business—“that depends.” In fact, there is no one

algorithm that is the best in all situations. FCFS is the simplest and consumes the

least resources. If a system is usually so lightly loaded that there are not multiple

disk requests in the queue, then all algorithms behave the same—like FCFS. In this

case no other algorithm would be justified.

 However, many systems are moderately to heavily loaded, so we can’t get away

with such an easy answer. In such cases FCFS will give high service variability

and is thus generally the worst choice. The next question that needs to be asked,

then, is what parameter are we trying to optimize? In most cases we are trying to

optimize disk throughput. However, we saw earlier that the optimum throughput

came at the expense of some unfairness to processes that were accessing files that

were not in optimum places. These requests would suffer either significantly delayed

response time or a variance in response time that was unpredictable and therefore

unacceptable. Users can stand a long response if the program can warn them, but

high variance in the response time makes it impossible for the program to adequately

warn the user. In most cases, then, some variation on the LOOK algorithm is prob-

ably the best. This assumes that your system does not contain new equipment that

can handle the scheduling itself. If such hardware is available, then it can almost

certainly do a better job than the OS can.

 14.8 DMA AND DISK HARDWARE FEATURES

 There are several special hardware features of disk controllers that need to be dis-

cussed as they will impact the design of OS device handlers.

 14.8.1 DMA Controllers

 Originally I/O controllers were designed to transfer one byte or one word of data

at a time. The CPU would load control information into the proper registers. This

information would include the type of operation (read, write, or control), a memory

address, and possibly a device address. The CPU would then issue an I/O instruction.

When the I/O operation was complete the controller would issue an interrupt and the

CPU would set up for the next word or byte. This was acceptable for devices like

keyboards, modems, and even for the early text-only CRTs that were on very early

PCs, because very many instructions could be executed by the CPU before the next

interrupt would occur. However, when devices began getting faster, the number and

timing of interrupts began to overwhelm the CPU.

 Chapter 14 Disk Scheduling and Input/Output Management 323

 As a result, an innovation was made in the design of the I/O section of

 computers—a direct memory access controller, or DMA. The main CPU will give

the DMA controller the same information it would have put into the registers before,

plus it will add a length of the data to be transferred (in the case of a read or write).

The DMA controller will take on the job that the CPU was doing before, except that

when the device controller has finished transferring one word it will notify the DMA

controller rather than interrupt the CPU. As each byte (or word) is transferred to or

from the memory the DMA controller will decrement the count of the data to be

transferred and increment the memory address to be used. When the count reaches

zero the DMA controller knows it is finished and it will then interrupt the CPU. This

technique greatly reduces the overhead of I/O on the CPU. Many modern controllers

will have a DMA circuit built-in to the controller rather than sharing one with other

controllers.

 14.8.2 Other disk drive features

 There are several other common features of modern disk drives that will have an

effect on operating systems. The first is buffering in the disk drive. A common speci-

fication for the small disk drive of today is that it contains 8 MiB of RAM. This ram

is used as a cache memory. In this case it can also be called a track buffer. The main

limiting factors on disk drive performance today is the combination of the seek time

and the rotational latency. In our discussions of caching we always mention spatial

locality—the idea that when a program references a piece of data it is highly likely

that it will soon reference data that is located near to the first data. If we were read-

ing a file sequentially and processing the blocks fairly quickly, then we might ask for

sector 5 and begin processing it. We soon finish that sector and ask for sector 6. In

the meantime, however, sector 6 has already begun to pass under the head, and we

will have to wait for an entire rotation of the disk before we can read sector 6. Then

the same thing will happen on sector 7, and so on.

 So when we give a command to a modern disk drive to read a specific sector on

a track it will most often read the entire track into memory once the head is over the

track. If sector 10 comes up next it will begin reading and will read the entire track

until it wraps around and reads up to sector 9. It will then return the sector we had

asked for and hold those others in the cache buffer as long as it can, knowing that it

is probable we will ask for some of them soon.

 14.8.3 Sector sparing and sector relocation

 Over time disk drives will start to fail. The process starts slowly, however, and may

be very gradual at first. Occasionally, a brand new disk drive will have a few bad

sectors at the outset. In order to cope with these failures, disk drives are typically

formatted with a few “spare” sectors scattered around—perhaps one per track. These

sectors are not originally part of the numbering scheme. Instead, they are held in

reserve so that when a failure is detected the system can reassign them—that is, data

from the old sector will be copied to the spare sector, and its number will be changed

to match the failed sector. The failed sector will get a number that will not be used.

324 Part 4 A Depth-Oriented Presentation of OS Concepts: File Systems and Input/Output

In some cases the drive hardware may perform this function. In other cases it is up to

the device driver software to do the recovery and relocation.

 14.8.4 S.M.A.R.T.

 Sector sparing is a reactive technology. It addresses how we cope with failure when

we find it. Self-monitoring and reporting technology, or S.M.A.R.T., is a predictive

technology. It addresses how we might project a future failure and avoid it or mitigate

it. It is a standard interface through which a hard disk drive can report its status to

the host OS, and provide an estimation of a future failure date. With sufficient notice,

a system or user can back up data prior to a drive’s failure. S.M.A.R.T. is defined

for both ATA and SCSI environments. Originated by Compaq, it is under continuing

development by disk drive manufacturers.

 S.M.A.R.T. technology includes a set of parameters specific for each model of

disk drives because drive architectures vary from model to model. Attributes and

thresholds that detect failure for one model may not be useful for another model.

A disk drive must be able to monitor many elements in order to have a thorough

reliability management plan. One of the most crucial factors in such a plan is under-

standing failure modes. Failures can be divided into two classes: predictable and

unpredictable.

 Unpredictable failures occur quickly, like electronic and mechanical problems,

such as a power surge that can cause chip or circuit failure. Improvements in qual-

ity, design, process, and manufacturing can reduce the incidence of unpredictable

 failures. For example, the development of steel-belted radial tires reduced the num-

ber of blowouts common among older tire designs.

 Predictable failures are characterized by degradation of an attribute over time,

before the disk drive fails. This creates a situation where attributes can be monitored,

making it possible for predictive failure analysis. Many mechanical failures are

 typically considered predictable, such as the degradation of head flying height,

which would indicate a potential head crash. Certain electronic failures may show

degradation before failing, but more commonly, mechanical problems are gradual

and predictable. For instance, oil level is a function, or attribute, of most cars that

can be monitored. When a car’s diagnostic system senses that the oil is low, an oil

light comes on. The driver can stop the car and save the engine. In the same manner,

S.M.A.R.T. gives the system administrators sufficient notice to start backup proce-

dures and save the system data. Mechanical failures, which are generally predictable,

account for 60 percent of drive failures. This number shows a large opportunity for

reliability prediction technology. With the S.M.A.R.T. system many future failures

can be predicted, and data loss avoided.

 14.8.5 A look into the future

 Over the last two decades the performance of CPUs as measured in operations per

second per dollar has increased by a factor of 100% per year. The cost of storing a

megabyte of data has dropped from $70 to $1 over the same span. In addition, the

transfer rate of disk drives has increased from one megabyte per second to over

 Chapter 14 Disk Scheduling and Input/Output Management 325

300 megabytes per second. However, the limiting factor in our utilization of disk

drives for secondary storage is the average seek time and the rotational latency. Each

of these factors has only dropped about a factor of 10 in that same time frame. Fur-

thermore, the rotational latency is limited by the speed of sound at the outer tracks

and this will not change. This means that these two factors now totally dominate the

time it takes to randomly access any particular information on a hard drive. Having

drives that are still very slow in relation to CPUs has pushed the performance of

computer systems way out of balance.

 On the OS side we have thrown large blocks of cache RAM at the disk drive

in order to make the speed seem more like RAM. We also developed elaborate

 scheduling algorithms to optimize the performance of the head positioning mecha-

nism. We are spending large amounts of our resources to manage these devices that

are increasingly out of synch with the processors.

 Tape drives were once the normal secondary storage device on mainframe com-

puters. By the 1970s they had vanished in that role and had been replaced by the disk

drive. Tapes were relegated to tertiary storage because of the low cost of the media. It

is becoming increasingly clear that the same thing needs to happen to the disk drive.

It is not yet clear what that new class of devices will be, but we make a strong predic-

tion that within the next 5–10 years we will see a new class of storage devices avail-

able that will essentially have near random latency and costs below the disk drives

of today. Two likely candidates are pure electronic memories and microelectrome-

chanical systems (MEMSs). Hybrid hard drives (HHDs) are already available that

incorporate flash memory as well as rotating media. Windows Vista can already uti-

lize extra flash memory as a high-speed extension to the cache memory. Much of the

technology of this chapter will become obsolete and we will have to rethink how we

use secondary storage. Perhaps we will do something more like the Palm OS does.

 14.9 SUMMARY

 In this chapter, we introduced the topic of lower-

level input and output management, with a special

focus on secondary storage and disk drives. Next, we

discussed some broad classes of I/O devices and how

they differ. We described some general techniques

used in support of I/O devices. We then explored the

physical structure of disk drives, and we discussed

the logical organization of the information stored

thereon. We covered the topic of RAID, wherein

assemblies of disks are used in special configurations

to achieve greater throughput and/or reliability. The

very important topic of scheduling disk operations for

optimum performance was covered. We addressed a

special type of device controller called a DMA con-

troller that can significantly decrease the CPU load

of I/O operations. We also discussed some disk drive

features that affect OS behavior, drive reliability, and

so on.

 BIBLIOGRAPHY

 Hofri, M., “Disk Scheduling: FCFS vs. SSTF Revisited,”

 Communications of the ACM, Vol. 23, No. 11,

pp. 645–653.

 Iyer S., and P. Druschel, “Anticipatory Scheduling:

A Disk Scheduling Framework to Overcome

Deceptive Idleness in Synchronous I/O,”

326 Part 4 A Depth-Oriented Presentation of OS Concepts: File Systems and Input/Output

 WEB RESOURCES

 http://www.osdata.com (Operating System technical

comparison)

 http://www.pcworld.com/article/18693/how_it_works_

hard_drives.html (hard disk characteristics and

architecture)

 http://www.littletechshoppe.com/ns1625/winchest.html

(disk drive price per megabyte)

 http://www.answers.com/topic/hard-disk (disk transfer

rates)

 http://en.wikipedia.org/wiki/RAID

 REVIEW QUESTIONS

 14.1 Distinguish between double buffering and caching

as applied to disk systems.

 14.2 True or false? The reason that disk scheduling

algorithms traditionally ignore rotational latency

is that it is so small compared to the seek time.

 14.3 Briefly define a cylinder.

 14.4 Which of these disk drive organizations provides

increased performance but no redundancy?

 a. RAID 0

 b. RAID 1

 c. RAID 5

 d. RAID 6

 e. All of the above require the same number of

drives.

 14.5 Which of these disk drive organizations pro-

vided redundancy but at the highest cost in extra

drives?

 a. RAID 0

 b. RAID 1

 c. RAID 5

 d. RAID 6

 e. All of the above require the same number of

drives.

 14.6 What is the advantage of RAID 6 over RAID 5?

 a. It is faster on a multiblock read.

 b. It is faster on a multiblock write.

 c. It can stand the loss of two drives at the same

time.

 d. It requires fewer extra drives.

 e. None of the above is an advantage of RAID 6

over RAID 5.

 14.7 True or false? The C-LOOK disk scheduling

algorithm gives about the same number of tracks

seeked over regardless of whether the first direc-

tion selected is up or down.

 14.8 At the end of Chapter 14 we discussed several

mechanisms that had been introduced to increase

the abilities of disk systems. Several were for

performance and some were for reliability.

Which of the following was NOT for increased

performance?

 a. Tagged queuing (native command queuing)

 b. Disk (controller) hardware buffering

 c. Dynamic memory access

 d. Sector sparing

 e. All of the above were for increased performance.

 14.9 What does the acronym CHS refer to?

 14.10 What does the first sector on a PC hard disk

contain?

 14.11 If the FIFO algorithm is the fairest (by definition),

why don’t we just use that?

 14.12 Briefly describe the “pickup” disk scheduling

algorithm.

 14.13 Why was the concept of partitioning drives

introduced?

 Symposium on Operating Systems Principle, 2001,

pp. 117–130.

 Love, R., Linux Kernel Development. Indianapolis, IN:

Sams Publishing, 2004.

 Patterson, D., G.A. Gibson, and R. Katz, “A Case for

Redundant Arrays of Inexpensive Disks (RAID),”

 SIGMOD Conference, 1988, pp. 109–116.

 Russinovich, M. E., and D. A. Solomon, Microsoft

Windows Internals, 4th ed., Redmond WA: Microsoft

Press, 2005.

 Teorey, T. J., and T. B. Pinkerton, “A Comparative

Analysis of Disk Scheduling Policies,” SIGOPS

Operating Systems Review, Vol. 6, No. 1/2, 1972,

pp. 114–121.

 Chapter 14 Disk Scheduling and Input/Output Management 327

 14.14 What is the function of a CRC or LRC on a disk

drive?

 14.15 What is the function of a ECC on a disk drive?

 14.16 How is the C-LOOK scheduling algorithm an

improvement over LOOK?

 14.17 What is the main advantage of a DMA controller?

 14.18 Some new disk drives support native command

queuing or tagged queuing. What is that and why

is it an improvement?

 14.19 Some new disk drives support so-called S.M.A.R.T.

What is that about?

329

PartPart

In this part:

Chapter 15: Introduction to Computer Networks 331

Chapter 16: Protection and Security 359

Chapter 17: Distributed Operating Systems 385

T
his part of the text deals with topics that are not found in all operating systems.

One infamous computer hardware system officer noted that “the network is

the computer.” This is a strange statement, but it does point to the importance

that we today place on the connection of most of our computers to other computers

in general and to the Internet in particular. So this part of the book deals with those

aspects of operating systems that deal with networking, distributed systems, and the

issues of security and protection that arise in such instances.

Chapter 15 deals with the basics of computer networking. This topic by itself

is the subject of many computer science textbooks and a very active research area,

so this treatment is very brief. It takes a top-down approach and deals mostly with

only the hardware and protocols in use today. The Internet features heavily, of

course. The topics covered include why we want to network computers, application

layer protocols, TCP/IP, the Data Link layer, WANs, the Physical layer, and network

management, including remote monitoring.

Simple single-user systems that were not connected to one another by networks

often did not need protection and security mechanisms. As a result, early OSs did

not provide many features in this area, if any. However, today we find that many

machines have multiple users, especially in homes, and most machines are connected

to local area networks or the Internet or both. So security is today an important con-

sideration, and Chapter 16 deals with it accordingly. The topics include authentica-

tion, authorization, and encryption.

After computers were networked we soon began to develop systems that include

portions that ran on different computers, distributed systems. So this is the topic of

Chapter 17. Again, this is topic that fills many books and courses, and much current

research is being done in this area, so the treatment is also brief, as in Chapter 16.

Subtopics include communication, processes, naming, alternative distributed system

paradigms, synchronization, and fault tolerance.

Networks, Distributed Systems,

and Security

55

330

331

 Chapter Chapter

 Introduction

to Computer Networks

 In this chapter:

 15.1 Why Do We Want to Network Computers? 332

 15.2 The Basics 333

 15.3 Application Layer Protocols 338

 15.4 TCP/IP 341

 15.5 The Data Link Layer 345

 15.6 WANs 350

 15.7 The Physical Layer 352

 15.8 Network Management 354

 15.9 Summary 356

 W
e study operating systems because we cannot write large high-

performance applications without a sound understanding of the functions

and mechanisms of an operating system. It is fair to say that today we

study networks for the same reason—it is rare that a large application is written

today that does not make some use of networking technology. What was true of

operating systems in general is also true of networks. If we do not have a sound

understanding of the basics of networking we cannot build and deploy large distrib-

uted application systems.

 This chapter starts with a brief introduction to explain some of the many reasons

why we want to have computers connected in a network. In Section 15.2 we pre-

sent a layered model of network functionality, which is traditionally used in discuss-

ing computer networking. Section 15.3 describes some typical protocols used in the

application layer. Then in Section 15.4 , we discuss the TCP/IP protocols as examples

of the transport and network layers. In Section 15.5 we present the topic of the Data

Link layer in LANs as typified by Ethernet. We give an overview of WAN data link

technology in Section 15.6 . Section 15.7 covers the technologies used in the Physical

layer. Section 15.8 is a brief introduction to the topic of network management. We

conclude with a chapter summary in Section 15.9.

 15 15

332 Part 5 Networks, Distributed Systems, and Security

 15.1 WHY DO WE WANT TO NETWORK COMPUTERS?

 At a more detailed level there are several reasons why we might want to build an appli-

cation that was distributed across a network. As computer systems were maturing the

initial reason we wanted to use networks had to do with sharing access to expensive

resources. At first, that resource was a mainframe computer and we accessed the

computer with simple terminals rather than through a personal computer. We were

accessing data that was on the mainframe and programs that ran there. Later, as local

area networks began to become common, we started using them to access other shared

devices—a departmental file server, an expensive laser printer, a pool of modems,

and attached communication lines. These resources were too expensive to provide to

each user, and were typically not used full time. Therefore, making them accessible

through a network spread the cost over many users. A shared resource might not be as

easy to use as a local one, but the price more than made up for that. Another specific

instance of sharing an expensive device is backing up individual systems to a single

machine that had a tertiary storage device attached—probably a tape drive.

 As networks became more common it became apparent that there were some

special things that could be done with them. One of these special things was building

a system by combining several smaller machines in a redundant configuration so that

if one of the machines was lost, the system would continue to function, even if in a

degraded manner.

 Sometimes we will distribute the computation of a process across multiple

machines to speed up the computation. We divide the processing into smaller parts

that can be handled by individual machines. In a similar way, it is possible to config-

ure multiple smaller machines into a system in such a way that additional machines

can be added as the scale of the application grows. For example, this allows a com-

pany to start a website with a single machine and if the site is successful to add

additional systems as the demand grows. Related to aggregating systems for speed

improvement is the factor of cost. In some cases there are applications that simply

could not be done at all with a single large system because of the mass of data and

processing involved. Or in some cases a single large computer could do the job, but

is not usable because of the cost. But systems can be designed using many smaller

processors. Probably the first example of such a system is the SETI project. This

project collects large amounts of radio telescope data and sends it out through the

Internet to users who voluntarily process the data with a “screen saver” application

that normally runs only in the background. The application is looking for signals

that might represent intelligent life on another planet. Today, there are millions of

registered users of the SETI screen saver. Viewed as a single, loosely coupled system

operating in parallel on multiple streams of data, this is the fastest supercomputer in

the world. There is no way that a nonprofit organization could afford to buy a single

system that would have that much processing power, so without this technique they

literally would not ever get the job done. SETI was the first such system, but today

there are many other systems processing data doing research in cryptography, DNA,

mathematics, gravity waves, and other scientific projects. We will visit this topic

again in the next chapter on distributed systems.

 Chapter 15 Introduction to Computer Networks 333

 After the great growth of the Internet in the last few years it has become clear

that the most profound impact of networking lies in increased access to information.

The relatively quick response time of the Internet has made practical the exchange

of information in ways that were not economical before. An example is the idea of

 “telecommuting”—working from home. Many jobs require frequent, ongoing interac-

tion between employees. To some extent this interaction can be closely approximated

by email. Even closer interaction is available with instant messaging software—

an interactive “chat” facility. In other cases this interaction might require voice com-

munication, a “shared whiteboard,” or even videoconferencing. All of these can be

done today through the Internet, provided enough bandwidth is available at a low

price, and may enable more of us to work from a home office rather than commute to

a central office, at least on a part-time basis. Thus, networking may contribute to the

solution of some societal problems by lessening the consumption of resources (and

the resultant pollution) necessary for commuting.

 Other instances of sharing information over the Internet also exist. It may be

possible for us to collaborate on a project with other persons who live in distant parts

of the world. For example, consider those people who work together to create the

libraries of utilities that make the Linux OS a complete system rather than just an

interesting example of a kernel. It is probable that most of those people have never

met in person. Most of them work together only through the Internet.

 On a less intense scale, think about the average user of the Internet. Most of

us now use email daily and frequently employ the resources of the Web to answer

questions, find people, buy products, download software updates, do our personal

banking and other financial transactions, and so on. Such uses would not be possible

without the Internet. It initially existed largely for other reasons, but information

sharing was always a primary feature. We suggest that in the future it will be likely

that the majority of the applications you might work on will be running in multiple

parts on multiple hosts, and you will not be able to design sound applications with-

out some understanding of networks and how they are used by operating systems.

 15.2 THE BASICS

 15.2.1 Models

 In order to study and implement networks, models have traditionally been created

that divided the subject into smaller topics by considering them as layers of soft-

ware. In these models each lower layer provides some set of services to the next

higher layers. While there is generally pretty good agreement about what functions

are performed in what layers, the models are not perfect and they are not always fol-

lowed exactly. As a result, functions are sometimes found in more than one layer. For

example, we can find security functions available in almost every layer. In addition,

in some cases it is useful to take a lower-level layer network protocol and run it as

a layer on top of another higher-level protocol. In these cases the layer models can

become quite confusing. These models are still quite useful in organizing our think-

ing and a large part of the literature about networking is structured around them, so

334 Part 5 Networks, Distributed Systems, and Security

we discuss them briefly. Furthermore, OS software is often modularized along the

lines of these layers.

 The most widely known network layer model is called the OSI model, shown

in Figure 15.1 . It was developed by the International Standards Organization, or

ISO. It was an abstract design that did not reflect any existing protocol, though a

set of protocols was later designed around this model. At one point the U.S. Gov-

ernment even mandated the implementation of the protocol on all computer sys-

tems purchased by the government under the umbrella term “GOSSIP.” However,

that effort never was very successful and was eventually abandoned. As an abstract

model the OSI model has some problems, the most notable being that it has two

layers that are almost never implemented as such, the Session layer and the Presen-

tation layer.

 In response to the OSI model, another model was constructed as a description

of the TCP/IP protocol suite, which already existed. This model focused heavily on

the upper layers (TCP and IP, for the most part) and pretty much ignored the lower

layers, apparently assuming that the hardware and drivers were merely commodities

and that one just ordered them from a vendor.

 In this chapter we use a common hybrid model that is roughly the bottom two

layers of the OSI model and the top three layers of the TCP/IP model. This model is

shown in Figure 15.2 . The Physical layer defines the actual medium used for com-

municating and the techniques for getting the information on and off of the medium.

The medium might be a metal wire or cable, an optical fiber or an electromagnetic

signal. The Data Link layer is responsible for accessing the shared medium. It is

concerned with packaging information in discrete packets and arbitrating access to

the network media. Today, Data Link layer devices called bridges (or switches) are

used for connecting devices as though each pair of devices were directly connected,

so the function of media access arbitration is largely unused and growing more so.

The Network layer is responsible for routing the information through a complex

internet composed of multiple networks, often of differing Physical layer technolo-

gies. The Transport layer is responsible for creating a reliable connection between

two network entities, though not all applications require either a connection or a

guarantee of reliability. Finally, the Application layer consists of a process in one

host exchanging data with a process in (usually) a different host.

 In a device attached to the network there will be an entity at each layer that is

responsible for the functions of that layer in that device. At the Physical layer this

entity will be in hardware. Some functions at the Data Link layer may be in hardware

as well. For most devices, the entities at the other layers are all software. Each entity

relies on the entity in the layer below it to provide services to it through an API. In

turn, each entity provides services to the layer above it. As a packet in a sending

device travels down the layers from one entity to the next, each entity will add a

small block of information to the front of the packet. This block is called a header.

For example, a data packet might have an application header, a TCP header, an IP

header, an Ethernet header, and a Physical layer header. As the packet flows up the

stack in a receiving device each entity strips off the header for its layer and hands the

packet to the next higher layer. These headers carry a dialog between the correspond-

ing entities in the sending and receiving devices.

7 - Application

6 - Presentation

5 - Session

4 - Transport

3 - Network

2 - Data Link

1 - Physical

FIGURE 15.1

The OSI network

layer model.

FIGURE 15.2

A practical network

layer model.

5 - Application

4 - Transport

3 - Network

2 - Data Link

1 - Physical

 Chapter 15 Introduction to Computer Networks 335

 This division of networking technology into layers has both good and bad

aspects. On the good side, small modules are easier to understand, develop, and

debug. They can be replaced with newer equivalent modules if improved versions

are developed. Different organizations can specialize in different layers and develop

better algorithms and implementations. On the other hand, it is extremely important

that we have very good definitions of the interfaces between the layers and the dialog

between the entities in the sending and receiving hosts. As a result, there are many

different sources of standards. In some cases we have de facto standards where one

vendor comes up with a good idea and other vendors follow the lead or some organi-

zation of vendors and users comes together and agree upon a standard. In other cases

we have de jure standards, which technically have the force of law behind them.

These standards are set by professional, national, or international organizations such

as the IEEE, ANSI, and the ISO. In the networking arena many standards were cre-

ated by members of the Internet Engineering Task Force (IETF). Each of these

standards is known as a Request for Comments (RFC). There is a website that

contains these documents at http://www.ietf.org/rfc.html. From time to time we refer

to an RFC that defines some aspect of the Internet protocols.

 15.2.2 LANs and WANs

 There are several different ways to view the variety of possible network technolo-

gies. Each different view will shed some light on the differences among networks

and their performance characteristics. The first major characteristic we want to

consider is topology—what is the pattern of connections between the individual

machines? Part of the difficulty in understanding networks arises from the fact that

the physical topology of a network might be different from the logical topology of

the network. The first broad division of network topologies is between local area

networks (LANs) and wide area networks (WANs). 1 , 2 Generally speaking, in

WANs the network connections are point-to-point. That is to say that when two sys-

tems are connected, the communication goes only between the two hosts and is not

seen by any other host. The packets therefore do not need an address in them since

there is only one device to read them. Since there are no addresses, there is no way

to send a broadcast packet (one intended for all devices attached to the network) or

a multicast packet (one intended for devices interested in one specific transmission

stream). Frequently WAN links are full duplex, meaning that both of the hosts can

transmit at the same time. In addition, since the link can be used in both directions at

 1 Some networking texts also describe metropolitan area networks (MANs) as a different class, but the
distinction is not useful in this context.

 2 Some authorities specify that the difference between LANs and WANs is a matter of geography—
LANs being small in area and WANs being spread over a wide area. Actually, geography makes
very little difference in the characteristics of connections. FDDI LANs can cover distances of over a
hundred kilometers. Historically it was very common to find two modems sitting on top of one another
connecting two hosts through a WAN mechanism with a wire that was only a foot or two long because it
was the only interface that two systems had in common. This was technically a WAN connection but was
certainly not distributed geographically.

336 Part 5 Networks, Distributed Systems, and Security

the same time there is no need to arbitrate access to the media—a host that is ready

to transmit just does so.

 On the other hand, LANs traditionally are broadcast connections. When two

hosts are communicating with one another on a LAN their communication is across

some medium that is shared among many devices. Devices communicating on a

LAN therefore have to share access to the medium with all other devices connected

to it. Since the packets must have addresses, it is possible to use special addresses

like a broadcast or a multicast. And finally, since many hosts share a single link, it

is necessary for the hardware to control access to the media.

 Switching is a fairly new technology that has blurred the distinction between

LANs and WANs. Individual devices are connected directly to ports on a network

switch using technologies such as Ethernet, which was originally used to connect

those devices to LANs. However, the switch reads the addresses in the packets and

forwards them only to the port connecting to the correct device. Thus, the devices

connected to the switch do not share a medium as with previous shared access tech-

nologies, so the connection can be full duplex and any device can transmit at the full

speed of the network as long as the switch can handle the traffic, and most of them

can handle all that can be sent their way. However, the packets still have to have

addresses and both broadcasts and multicasts are still supported.

 15.2.3 Topologies

 With both WAN and LAN networks there are multiple topologies by which many

devices can be connected. In WANs we can have hosts connected in pairs in any of

the following topologies:

 Linear (Figure 15.3)
 Hierarchical (Figure 15.4 , the top node is the focus point)
 Star (Figure 15.5 , the central node is the focus point)
 Ring (Figure 15.6)
 Partly connected mesh (Figure 15.7)
 Fully connected mesh (Figure 15.8)

FIGURE 15.3

A linear topology.

FIGURE 15.4

A hierarchical or tree

topology.

 Chapter 15 Introduction to Computer Networks 337

 Each of these possible topologies has some distinct characteristics. First, let us

consider these topologies when used in a WAN. Each WAN connection between two

devices is relatively expensive, so the linear, star, and hierarchical topologies have

the lowest cost because they have the fewest connections. The linear topology has

the longest path to get information to all nodes, so communication to all devices in

the network can be somewhat slow. The hierarchical topology is used when all the

network devices are attempting to reach some centralized service. It was very typi-

cal in the era of large mainframes. The ring and mesh topologies are progressively

more reliable (assuming that communication can go both ways on a ring) because

there is often a redundant path for communication. In particular, the loss of a single

link will not result in a loss of communication with any host in a ring topology. The

fully connected mesh topology is the most expensive because it has so many links.

It is also the fastest because every node is only one link away from every other node

and the most reliable because the loss of a link only means that the two nodes on the

opposite sides of the broken link have to use one intermediate node to communicate.

The partially connected mesh is a compromise and is fairly typical. It is the topology

used in the Internet. Networks with redundant pathways require more complex rout-

ing decisions for the packets at the Data Link or Network layers.

 In LANs the two most common forms are a linear bus and a ring. A linear bus

looks somewhat like the bus shown in Figure 15.3 , but is actually connected as shown

in Figure 15.9 . In Figure 15.3 each node had a connection to the next node, and for

a node on one end to communicate to a node on the other end the message had to be

relayed through each intermediate node. In a LAN that is a linear bus topology, the

bus is a separate medium and every node is connected to it. In order for the two end

nodes to communicate, they merely have to gain access to the medium and then they

can exchange their message directly. In a technical sense, a LAN in a ring topology

does actually pass the message from host to host, but most of the hosts never process

the message. Such LANs act as though each node were connected to the ring much

like a linear bus, and when a device wants to send a message to another host it just

waits its turn and transmits the message on the ring. The receiving host will read the

message and hosts that are not addressed by the message will merely pass it along.

 A sort of blending of these two technologies is also possible—a physical linear

bus in which the access to the medium is controlled by passing around a logical

token as though the LAN were a ring. This is called a token passing bus. There were

two instances of such protocols. One, ARCNET ™ , was once widely used for small

networks but today is mostly confined to special applications such as inside of auto-

mobiles. The other, 802.4, was primarily confined to a single industry, automobile

manufacturing, and is not under further development today.

A bit of confusion can arise in determining the topology of LANs. A ring may

be physically connected to resemble a star, as shown in Figure 15.10 . The box in

the center of the figure is a central connection point. The media appear to run from

each node to a central point, but the central point is not a node and the signal actu-

ally passes from node to node in the manner of a ring. 3 Similarly, a linear bus can be

3 The central hub may contain a node for purposes of management and data collection, but the node is
not a part of the hub function.

FIGURE 15.5

A star topology.

FIGURE 15.6

A ring topology.

FIGURE 15.7

A partially connected

mesh topology.

FIGURE 15.8

A fully connected

mesh topology.

338 Part 5 Networks, Distributed Systems, and Security

collapsed into a single concentrator, or hub, and appear to be a physical star or a phys-

ical hierarchical network, but the signals are broadcast throughout the network all at

one time, so the electrical connectivity is that of a bus, not a tree or a star, in the sense

that all the nodes will see the signal but will not have to relay it to another node.

 Today, most LANs are actually switched networks. Again, the network might

look like a star topology, but the central box is a high-speed switch that reads the

packets sent by connected devices and sends them only to the device addressed.

Switches can typically forward all the traffic that can be sent to them on all ports at

one time. This is known as wire speed. If the switch has many ports or the ports are

high-speed ports, then this requires considerable bandwidth in the switch. We dis-

cuss LANs and switches further in the section on the Data Link layer.

 15.3 APPLICATION LAYER PROTOCOLS

 15.3.1 The Application layer

 At each of the layers of the protocol stack, every network attached device will have

some entity that is interacting with a corresponding entity in another network device.

In the Application layer there is an entity in one end system that is interacting with

another application in another end application on a server system across a network.

For example, one might use a Telnet client on a PC to talk to a Telnet server on

a shared UNIX system. Each application will use a specific protocol, often one

designed specifically for that application. Sometimes they will use a generic pro-

tocol designed to serve a wide variety of custom applications. In this section we

briefly look at several Application layer protocols. Many of these Application layer

protocols are widely used and have been assigned a port number for the server to

use. This port number is used by the next lower layer, the Transport layer, to deter-

mine which application should receive an incoming message. Consider that a system

running an FTP server may also be running other services such as Telnet, www,

and so on. Messages arrive from the network at random, so each layer needs some

information in the header that the sending entity applies to the packet to determine

FIGURE 15.10

A LAN with a ring

topology.

FIGURE 15.9

A linear bus topology.

 Chapter 15 Introduction to Computer Networks 339

which entity at the next higher layer should be given the incoming packet. For a

given application the port number to be used may be a well-known port number,

that is, one that was reserved by the IETF to be used only for that application. If it is

not a well-known number it may use a port number of 1024 or greater and less than

49151. Numbers greater than 49151 are used for dynamic assignment to clients by

the OS software.

 Today most networking uses the TCP/IP protocol suite. Figure 15.11 shows the

format of the header used by IP layer. It shows the source and destination port num-

bers as well as other fields discussed in this chapter.

 15.3.2 HTTP

 HTTP, or HyperText Transfer Protocol is the protocol used to exchange messages

between World Wide Web servers and browsers. The well-known port for Web serv-

ers is port 80. HTTP messages are sent in ASCII and as a result they can be easily

read by a human, though they usually are not. Each message sent by a browser starts

with one of only a few commands, such as GET, PUT, POST, or OPTIONS. The

server sends back a response message. This message contains a code that gives the

result of the browser’s input and returns a requested page element when it is applica-

ble. When a browser requests a page it makes a connection to the server and requests

the page with a uniform resource locator (URL). The page referenced by the URL

is returned by the server in its response message. Most pages contain much more

than a few lines of text, however. Usually, there will also be references to other items

such as pictures to include with the page. Each of these contained elements must be

separately requested from the server. In early versions of HTTP the server would

break the connection after each request for a single element, so the browsers would

optionally open several connections at the same time if there were multiple elements

to fetch to complete the page. Later versions of HTTP optionally do not break the

connection immediately, so that after the initial page is returned the browser can

issue additional requests for many elements at the same time.

FIGURE 15.11

TCP header format.

340 Part 5 Networks, Distributed Systems, and Security

 While HTTP was designed specifically for fetching Web pages from servers, it

has found other uses as well. Since access to the Web is so desirable, most institutions

that have implemented firewalls to protect their networks from harm allow HTTP mes-

sages to pass through the firewall and freely admit connections to port 80. As a result,

HTTP is often used in custom-distributed applications to minimize support problems.

 15.3.3 FTP

 Another common Application layer protocol is file transfer protocol, or FTP. FTP is

unusual in that it uses two ports instead of one. The main port, 20, is used for transfer-

ring data. Port 21 is also used by the FTP protocol, but only for sending control mes-

sages. This design allows a large transfer to be interrupted, for example, by a user who

suddenly realizes that the very large file that is now being downloaded is not the file

that is needed after all. Another unusual aspect of FTP is that it is not only the name

of the protocol, it is also the name of a program that uses the protocol. This program

is a command-line utility and is somewhat difficult to learn to use well. One solution

is to use stored scripts to run the program, but another common solution is to embed

the protocol in a more user-friendly application. Many GUI utility programs are avail-

able for transferring files that incorporate the FTP protocol. Even most browsers are

capable of using the FTP protocol when the URL starts with ftp:// instead of http://.

 While the commands used by FTP are strictly ASCII messages, the files being

transferred might be programs, for example, and often contain binary data. They

might, therefore, contain strings that looked like FTP commands by accident. This

is another reason why the data transfer uses a channel separate from the command

channel. FTP includes a BINARY setting so that it can transfer programs and other

files containing arbitrary binary data.

 15.3.4 SMTP/ POP/ IMAP

 SMTP is the simple mail transfer protocol. It is used in email applications to send

email from a user’s email client program and also to forward email from one email

server to another. Interestingly, a different protocol is used by the email client to

fetch email from the server. This protocol is usually POP3 (post office protocol

version 3) on port 110 or IMAP (interactive mail access protocol) on port 143.

POP is an older protocol and is widely supported but not as flexible. IMAP is newer

and more flexible but not as widely supported by email servers.

 All the mail transfer protocols use plain ASCII commands and were originally

designed to transfer text messages only. ASCII is a 7-bit code and modern computers

typically use 8-bit bytes and ignore the extra bit. Some time ago it became clear that

it was desirable to be able to attach all kinds of files to email messages such as sound

and video files and binary programs. So ignoring the extra bit was not an option for

these attachments. As a result, extensions were designed for SMPT to handle other

file types. MIME (multipurpose Internet mail extensions) supplements SMTP

and supports encapsulation of nontext messages inside standard SMTP messages.

 All of these Application layer protocols use TCP at the Transport layer because

of the reliability of the delivery. Other applications use UDP. These applications do

 Chapter 15 Introduction to Computer Networks 341

not need the extra reliability of TCP. In particular, multimedia applications often use

UDP. Unlike data applications, streaming multimedia applications do not normally

require 100% accurate data delivery. A missed packet in a sound stream will often

not be noticed at all if the stream is not highly compressed. At the Application layer

these programs mostly use proprietary protocols rather than IETF standards.

 15.4 TCP/IP

 Application layer protocols are supported by entities that implement a Transport layer

protocol. Only a few years ago there were a number of different sets of network-

ing protocols (called “suites”) at this layer. The phenomenal success of the Internet,

however, has changed this situation. With few exceptions all computer installations

large enough to want a network also want to connect to the Internet. In order to

access the Internet they must use the TCP/IP protocol suite. Within their own net-

work they can also use other protocol suites. For example, it was a simple matter to

load the IPX protocol on a computer in addition to TCP if one wanted to use IPX

to access Novell Netware servers. Each additional protocol suite adds complexity,

however, and the people managing the systems want to avoid that complexity when-

ever they can since it is expensive to support multiple options. Accordingly, they

have put increasing pressure on system vendors to support TCP. As a result, almost

all vendors now support the TCP/IP protocol suite. Since the other protocol suites

do not provide significant services that TCP/IP does not provide, then most network

managers have dropped the other protocols. Thus, TCP/IP has come to dominate the

networking landscape.

 15.4.1 The Transport layer

 In the TCP/IP protocol suite, IP is the major Network layer protocol. TCP, or

 transmission control protocol, is one of two principle Transport layer protocols,

with UDP, or user datagram protocol, being the other. Given an IP Network layer

address, the IP protocols will try to deliver a packet of data to that address. UDP

merely extends that function to the Application layer. This limited functionality is

called an “ unreliable datagram. ” In this case the word “unreliable” does not mean

that it is likely to fail—only that the protocol doesn’t make any guarantees about

the delivery. In many cases this “ best efforts ” functionality is all that is needed or

desired. If the application is exchanging messages with a corresponding application

on the other end of a connection, the two application parts can usually tell if some-

thing has gone awry. For example, most network management tools use UDP to send

requests and responses. If the manager does not get a particular response when it is

expected, then it will simply retry the operation.

 In contrast, the TCP protocol provides “ connection-oriented, reliable ” com-

munication. Given an IP address and a port number the TCP layer will attempt to

contact an entity running at that port address on the addressed system and establish

a connection. It will then transmit data to the entity at the other end and receive

responses, relaying them to the calling application until one of the Application layer

342 Part 5 Networks, Distributed Systems, and Security

entities breaks the connection. This protocol uses various mechanisms such as mes-

sage numbers and acknowledgments to ensure that the data are delivered once and

only once to the other end and are delivered in the order they were sent. It also uses

other mechanisms to cope with senders that are too fast for the receivers and for

congestion in the network.

 15.4.2 IP addressing and routing

 As was mentioned, connection to another host requires that the calling host knows

the IP address of the destination host. IP addresses are 32 bits long. When they are

displayed for humans they are normally written in a specific style known as dot-

ted decimal notation. This style breaks the 32 bits into 4 bytes and displays each

byte as a decimal number separated from the other bytes with a period. Thus an

address of all 1 bits would be written as 255.255.255.255. Each IP network that is

connected to the Internet has a distinct network number. Within that network number

the administrator of the network would assign individual addresses to each host sys-

tem. At one time IP addresses were divided into classes depending on what portion

of the address was to be used as the network number and what portion was the host

address. These classes were known as A, B, and C. (There were also classes D &

E for special purposes.) In 1993 this mechanism was replaced with a new mecha-

nism called CIDR, or classless interdomain routing, and the technical distinction

between the classes of address has mostly gone away, though people often still refer

to a particular address as belonging to one of these classes.

 A class of devices called routers are responsible for delivering IP packets from

the source device to the destination device. Each router will look at the IP address in

the packet and try to determine the best path to the destination network. It is there-

fore making decisions about where to send each input packet based on information

at the Network layer. We therefore sometimes say that they are making forwarding

decisions at layer three. IP network addresses are not assigned geographically (for

the most part), so the routers that connect IP networks together need to learn how to

find any other network in the world. They learn this information mostly by talking

among themselves. They use a variety of protocols for this exchange of informa-

tion. The protocol that two routers will use between themselves depends on their

administrative relationship, among other things. There are several such protocols.

They can be divided into groups depending on the underlying algorithm. The larger

group is the distance vector algorithm group, including RIP (routing information

protocol), RIP2 (routing information protocol version 2), IGRP (interior gate-

way routing protocol), EIGRP (enhanced interior gateway routing protocol),

and BGP (border gateway protocol.) The link state algorithm group currently has

one major representative, OSPF (open shortest path first).

 Routers in the Internet will be connected in a partial mesh topology with many

redundant links so that loss of one link will not normally partition the network into

pieces that cannot communicate. Loss of a link may still cause some degradation

of the service since some portions of the network will have to carry a heavier load.

In the early days of networking, the term gateway was used to refer to the class

of device we now call a router. You may still see the term used when configuring

 Chapter 15 Introduction to Computer Networks 343

the IP protocol on any device, especially as part of the phrase default gateway.

This name refers to the local router that a host is to use when it has no idea of the

best path to use to access a host that it wants to communicate with. The phrase

 default router should be used these days. The term gateway is now more correctly

applied to a service that connects two agents running at the Application layer. A

good example would be an email gateway connecting a mainframe-oriented email

system such as IBM’s OfficeVision and a TCP/IP email system running SMTP and

POP3 protocols.

 It is possible for each network device to be specifically configured with a prede-

termined, static IP address, but this is difficult to administer. Servers that are known

by name throughout the Internet will usually have a permanently assigned address.

In other cases it is far easier to let the address be assigned dynamically. Comput-

ers are often moved as people change departments, for example. Laptops make the

situation even worse as they are moved from the office to home to a neighborhood

hot spot. So a protocol was designed to facilitate this moving around: DHCP, or

 dynamic host configuration protocol. Each network administrator will set up a

DHCP server, which will be configured with a range of IP addresses that the network

has been assigned. A host that is just turned on will send out broadcast messages

looking for the DHCP server. The DHCP server will reply to the host and will tell

it which IP address to use, among other things it will need to know. This address is

 leased to the workstation for some period of time after which it must be renewed.

The DHCP server can also be configured to deliver the same IP address each time

to a specific machine. This is normally only done for servers, printers, and such sys-

tems that normally do not change often.

 15.4.3 Name resolution

 Humans find that remembering IP addresses is not easy, so the TCP/IP protocol suite

includes mechanisms for translating from a user-friendly name to an IP address.

The protocol that is used to make this translation is called DNS, the domain name

service. DNS relies on a hierarchy of servers to make these translations. A host

might use a DNS server, for example, to translate the name “webserv” on the local

network to an IP address. The DNS server might return an IP address like 223.1.2.1

if the user were in the domain where the name was located. Outside of that domain,

a user trying to find this same server would have to use a different form of the name,

called a fully qualified name such as webserv.example.com. In such a name, each

of the parts between the periods is called a domain. The domains are organized

into a tree structure. Various higher domains are owned and managed by different

authorities, with the top level domain, or TLD (.com in this case) being adminis-

tered under the authority of the IETF. If a host wants to look up such a fully quali-

fied name, it begins by asking its default DNS server. The IP address of this server

is either learned through DHCP or is configured manually into the host when the

IP protocol is configured. If the local DNS server does not know the IP address of

webserv.example.com, then it will ask the server at the next level in the DNS hier-

archy. Eventually, the address will be found and returned to the host that started the

request.

344 Part 5 Networks, Distributed Systems, and Security

 15.4.4 IP Version 6

 By the early 1990s it began to look as though the world was going to quickly run out

of IP addresses. As a result, there was a big push to define a new format for the TCP/IP

protocol and IP addresses. This new format is known as IP version 6, or IPv6.

Among other things, IPv6 would allow much bigger IP addresses, to the point that

it is very unlikely that we would run out of IP addresses while we were still using

TCP/IP. Several things happened that lessened this exploding demand. First, CIDR

allowed the reuse of many IP addresses that had previously been allocated to institu-

tions that would never need them. Second, DHCP allowed the dynamic reuse of IP

addresses when hosts were frequently turned off for long periods or regularly came

and went from the network so that institutions could get by with fewer IP addresses.

And finally, network address translation (NAT) was developed. NAT is a tech-

nique for using one set of addresses inside a network and translating those addresses

to a different (and much smaller) set of addresses that are seen outside the local

network on the Internet. Together, these techniques meant that the pressure for going

to IPv6 was largely removed. This migration will probably still happen in the long

run because of other features of IPv6. Fortunately, IPv6 was designed to allow for a

graceful migration. Most router vendors are already supporting IPv6 and new ver-

sions of most OSs include support for it, but not many users appear to be migrating

to IPv6 yet. There is a research network parallel to the Internet known as the Internet

2 that uses IPv6 exclusively.

 15.4.5 Common utility programs

 There are a number of utility programs that are commonly distributed with TCP/IP

protocol stacks. A few are designed for accessing common services such as:

 browsers for HTTP (Web) servers

 ftp clients for FTP servers (sometimes also done by a browser)

 telnet for a remote command shell

 pine for SMTP POP3, and IMAP for email

Other commonly distributed utilities are designed for network management. Knowl-

edge of these tools will help any system designer understand the operation of the

local network and how it affects the system design. These tools are discussed more

in Section 15.8 .

 15.4.6 Other protocols

 Although the other protocols running at the Network layer have largely gone by the

wayside, there is still a significant install base of systems running the IBM proto-

cols in the SNA/APPC family. Some of these protocols predate the TCP/IP stack.

Some devices running these protocols are not programmable and cannot easily be

upgraded. Furthermore, these protocols have special features that make them more

useful in high-demand situations, so they are likely to remain in use for some time to

come. Another very common protocol from the past is IPX, popularized by Novell

 Chapter 15 Introduction to Computer Networks 345

for use with their Netware ™ servers. IPX had one feature that made it very popular.

The MAC layer address was used as a part of the Network layer address and a cli-

ent system could automatically learn the remaining part of the address. This meant

that the IPX protocol drivers in a client workstation did not have to be configured

with an address, even when a system was moved to another physical network. This

greatly simplified network administration and was probably a significant factor in

the popularity of this operating system. But the popularity of the Internet eventu-

ally overwhelmed this factor and lead to the ultimate withdrawal of the protocol by

Novell. However, IPX has found a niche in online multiplayer gaming, so it will also

probably be with us for some time to come. Various other protocols were also used,

mostly related to specific OSs. Examples include DECNet and LAT used with Digi-

tal Equipment hardware and Vines used with Banyan systems. The NetBIOS pro-

tocol was developed originally for IBM for small LANs. It was eventually adopted

by Microsoft and has only begun to disappear with the later releases of Windows

NT. Other vendors have been bought out, merged, or vanished. In some cases there

are remnants of the NetBIOS protocol developed by IBM and used extensively by

Microsoft. In particular these include the server message block (SMB) protocol and

the Open Source Samba package used with UNIX/Linux to access Microsoft serv-

ers. However, the latest releases of the Windows NT family have made it clear that

TCP/IP is their preferred direction.

 15.4.7 Firewalls

 Unfortunately, the world contains people who are ignorant, incompetent, or malevo-

lent. Bad things can come into a network that is exposed to the world through the

Internet (or any similar network). As a result, devices have been developed that are

designed to protect networks from such traffic. In general, these devices are routers.

The routers are placed at the ingress to the network from the Internet and accept

the packets from the Internet as usual. Before they forward the packets to LANs

inside the network, they perform an extra function of looking inside the packets and

checking for things that the network administrators decide they do not want to pass

through the router. These checks can include many things. Here are a few representa-

tive examples. (We discuss many of these in Chapter 16.)

 PINGs
 SPAM email
 Viruses
 Known denial of service (DOS) attacks
 Access to undesirable websites (e.g., parental control)
 Access to ports that are not in use

 15.5 THE DATA LINK LAYER

 The types of networks called LANs originally had a special characteristic: the data

are transmitted in such a way that all the hosts connected to the same link will actu-

ally “see” every transmission. Each host will normally be configured so that it will

346 Part 5 Networks, Distributed Systems, and Security

only “read” information that is actually addressed to it. Another phrase often applied

to such LANs is “multiaccess networks.” Since many such hosts connected to one

physical medium there had to be a mechanism devised to allow them to share access

to the medium. These mechanisms are known as media access control, or MAC.

Another term derived from this name is a MAC address. Every host is connected

to the LAN with a network interface card, or NIC, sometimes called a network

adapter. Every NIC has a 6-byte address assigned by the manufacturer. The first

3 bytes identify the manufacturer and the last 3 identify that specific adapter. For the

most part one can safely assume that these addresses are globally unique, though

there have been reports of unscrupulous vendors manufacturing cards under another

vendor’s identification number.

 There have been many different contending mechanisms for the MAC function.

Only four were very successful: Ethernet ™, ARCNET ™, Token Ring, and FDDI

(fiber distributed data interface). ARCNET was one of the first LAN technologies

but had substantial limitations. These same limitations turn into advantages in embed-

ded systems, and ARCNET survives today in such environments but has virtually

disappeared as a general LAN technology. Ethernet and Token Ring were eventually

standardized by the IEEE as 802.3 and 802.5, respectively. FDDI was an ANSI stan-

dard. Although it is not precisely correct, we will simply refer to “Ethernet” since that

is fairly common usage. Ethernet had a distinct advantage in that it is a simpler tech-

nology than either Token Ring or FDDI. It was therefore generally easier to install cor-

rectly and it was cheaper. There was, however, a serious set of drawbacks to Ethernet.

 15.5.1 Ethernet

 Ethernet relied on the probability that most of the time the network was not busy.

If it was busy then the sender would wait until the network was free and then trans-

mit. If two stations started transmitting at the same time, their transmissions would

interfere with one another, causing a collision. The Ethernet MAC mechanism was

known as carrier sense multiple access/collision detection, or CSMA/CD. It led

to two major problems. First, the bandwidth was not fully usable. In heavily loaded

networks the throughput would reach a maximum at 40–50% utilization in most situ-

ations. Second, if the network was pushed past this point it would eventually reach a

state where collisions were happening all the time and the network would stop trans-

mitting data at all. Token Ring and FDDI did not suffer from these problems. They

were not stochastic, as was Ethernet, but rather were deterministic. When a device

was added to the LAN the average response time for a single host would drop by a

predictable amount. Each station always got equal access and it was fairly easy to

run the LAN at very nearly 100% utilization. Installations such as banks, hospitals,

and police stations that could not tolerate failures and needed to be able to predict the

response times would often spend the extra money for Token Ring or FDDI.

 15.5.2 Bridging and switching

 Eventually, a solution was developed that allowed Ethernet to overcome these dif-

ficulties. The shared wiring concentrator (or hub) was replaced with a switch. A hub

was a simple Physical layer device that merely repeated an input signal from any

 Chapter 15 Introduction to Computer Networks 347

port out to all the other ports. A switch is a multiport device that only sends a packet

of data out the port that leads to the device it is addressed to. The address used at this

level is the Ethernet address of the NIC. So this forwarding decision is being made

at the Data Link layer (or Media Access Control layer). This is sometimes knows

as layer two switching. Furthermore, such switches are able to accept and forward

input on all ports at the same time (subject to limitations of the switch backplane). In

addition, changes were made that allowed the attached devices to run in full duplex —

sending and receiving at the same time—and to run at either 10 or 100 Mbps. Newer

equipment can automatically sense the best mode of operation of the switch and

the attached device so that installation is really as simple as a hub. Inexpensive

switches now can commonly run the ports at Gigabit Ethernet speeds as well. This

series of developments took Ethernet from a system where the top throughput was

roughly 5 Mbps to a system where a fairly modest switch can deliver one Gbps of

throughput at 100 Mbps. Larger, more expensive switches can deliver even higher

performance.

 Before multiport switches became common, smaller switches (known then as

 bridges) were used to divide large LANs into small sections. Dividing networks

into smaller sections allowed better throughput and response time for the devices on

each segment. Bridges were initially devices with only two ports. By reading all the

traffic on the LANs they were connected to they would learn that MAC addresses

could be reached through each port. When they saw a packet on one port that was

addressed to a device that they had learned to be reachable through the other port,

they would forward the packet out that other port. This was called a transparent

bridge or a learning bridge. A problem with transparent bridges would arise if two

bridges were connected in parallel between two LANs. (This is a desirable thing to

do since it provides a redundant link in case of the failure of one bridge.) The bridges

would form a loop and the packets would be continuously transmitted around the

loop. A feature was developed for transparent bridges that allowed them to be con-

nected in parallel (or in more complex mesh networks) without actually making a

loop. The bridges would coordinate among themselves, and by not forwarding traffic

on selected paths would form a spanning tree that would forward data everywhere

but would contain no loops. If a bridge (or a port) failed, then the bridges would

sense this and form a new spanning tree. The biggest problem with this solution

arose when some of the connections were not LAN connections but WAN connec-

tions. The WAN lines are fairly expensive (relative to the other network costs) and

having a bridge that shut a WAN path off to keep from forming a loop was a luxury

that few could afford.

 When multiport switches were introduced to the market they could usually for-

ward traffic from all the input ports to output ports as rapidly as it could be sent by

the attached hosts. This was known as wire speed forwarding. The marketing staff

wanted to distinguish this behavior from the earlier bridges, so they adopted the

word switch. The performance of multiport switches began to cut into the market

for routers. By redesigning routers and using application-specific integrated cir-

cuits (ASICs), engineers were able to build devices that could make the forwarding

decisions at the Network layer but could do this at wire speed as did the layer two

switches. So the marketing people once again got involved and they called these new

high-speed routers layer three switches.

348 Part 5 Networks, Distributed Systems, and Security

 15.5.3 Token Ring

 Token Ring hardware had a MAC mechanism that was entirely different from Ethernet.

The hardware used a special empty packet known as a token that was passed from host to

host until it reached a host that needed to transmit a frame. At that point the host changed

the token into a data frame and sent it on its way. Although this sounds inefficient, it

actually worked very well. As was mentioned before, Token Ring hardware could eas-

ily reach 98% utilization of the bandwidth. Shared Ethernet, on the other hand, rarely

reached 60% utilization and usually not even that.

 Token Ring bridges could operate in the same manner as Ethernet bridges, but

they also had a more complex mode known as source route bridging. In this mode

the attached hosts would learn a path through the bridges and each packet would

contain this routing information. Several advantages arose from this alternative:

 Bridges did not have to learn addresses and were simpler and cheaper.
 Bridges could be connected in a mesh and still utilize all links.
 Load across redundant links tended to self-balance itself.

 Unfortunately, the source routing feature required some configuration (relative to the

transparent bridge, which required essentially none). They also used broadcasts to

find the preferred route and were often accused of causing broadcast storms. When

Ethernet overcame its problems by utilizing fast switching, the Token Ring option

lost out, along with source route bridging.

 15.5.4 Other data link methods

 FDDI is a technology that was initially developed for use over optical fibers rather than

over copper wire. It was thus intrinsically more expensive to build and to install. It ran at

100 Mbps, long before Fast Ethernet did. FDDI rings could be over 200 km in circumfer-

ence. Because of its cost it is normally not used for attachment of individual hosts but

rather for a backbone LAN that connects bridges, switches, or routers between buildings

on a campus. FDDI was later modified to also run over copper wires at shorter distances.

 There have been many other technologies that have contended for the LAN. One

that has enjoyed limited success has been asynchronous transfer mode (ATM).

As was Token Ring, ATM is a rather complex technology. However, ATM offers

features that make it attractive in situations where it is desirable to mix data trans-

mission with voice and video transmissions over a single network and guarantee the

most appropriate quality of service (QoS) to all users. ATM has been a clear winner

in the WAN arena. In the LAN arena the goal of delivering services that require dif-

ferent QoS has been achieved by overbuilding the network so that any application

can have any service it wants. This has been possible because bandwidth cost is

currently so low. The best overall performance would be achieved if communication

were done using ATM end-to-end. Where it has been used the success rate is high. At

this point it is doubtful if ATM will be a major factor in the LAN arena.

 ARCNET was also once very popular. It was an ANSI standard rather than an

IEEE standard, and lost out mostly because it did not support bridging and it had a

Network layer address that was only one byte and was configured with hardware

switches—an error-prone process.

 Chapter 15 Introduction to Computer Networks 349

 15.5.5 Mapping IP addresses to MAC addresses

 We mentioned before that humans usually refer to human-friendly names like

webserv.example.com, and that the Network layer used DNS to translate the name to

an IP address. We also said that on the LAN the information is actually addressed to

the MAC address of the NIC. The obvious question, then, is how does the software

map from the IP address to the MAC address? The answer is that it uses a special

protocol called address resolution protocol, or ARP. A host looking for a server

will make an ARP packet that contains the IP addresses of both the host and the

server. In the MAC header it will include its own MAC address, but it does not yet

know the MAC address of the server, so it will send the packet to all hosts by using a

broadcast MAC address (of all 1 bits). Every host will read the packet and pass it to

the IP software. The IP module will pass the packet on to the ARP module. The ARP

module in the correct server will recognize that it is being addressed by the ARP and

will prepare an ARP response packet. This packet will be sent directly back to the

inquiring host and that host will then continue the conversation using the new MAC

address. The IP software in all the other hosts except the one addressed will merely

ignore the packet. The OS will typically cache the MAC addresses in an arp table.

 15.5.6 Functional migration into hardware

 As networking has become more established, some of the functions that were ini-

tially done in software by the device drivers have migrated into the hardware. This

evolutionary step takes some time, because a function should not be migrated to

hardware until it is very well understood. Mistakes in hardware are quite expensive

to fix. Two examples of functional migration to hardware have occurred in NICs.

First is the calculation of cyclic redundancy checks (CRCs). CRCs are a class of

functions that are computed on blocks that are transmitted over a network. They

were discussed at some length in Chapter 14. The CRC is transmitted with the block

and the receiver makes the same calculation as the sender. If the calculated CRC

does not match the CRC sent with the packet, then the receiver knows that an error

was made. Originally this function was computed by the software driver for the NIC.

It was fairly expensive to compute in terms of CPU cycles. However, hardware engi-

neers discovered a fairly trivial way to do the same computation as the packet was

being transmitted. This was an inexpensive way to take a considerable load off the

CPU. This function might not make much difference in modern machines, but at the

time it was developed machines were much slower so it was a bigger deal.

 Another function that has migrated into the NIC hardware is the recognition of

 multicast addresses. Multicast packets are sent out over the network and every NIC

will see them. Several multicast streams might be in use on a given LAN at any one

time. A specific system might or might not be interested in a particular stream. A good

example of a multicast would be a stock ticker application that might run in a stock

brokerage. Not all systems would need to see that stream, but many of the brokers

might want to watch the ticker, so they would run a specific application that would

look for the particular multicast address that was assigned to that stream. At one time

all multicasts were received by all adapters and passed up to the Network layer where

350 Part 5 Networks, Distributed Systems, and Security

they might be dropped if the system were not interested in that stream. This was

especially unproductive in systems that were not interested in any streams. They still

got interrupted by every multicast packet and the software had to examine the address.

Eventually, this function was also migrated to the NICs. The protocol stack would

notify the NIC of any multicast addresses it had applications interested in. Packets to

those addresses would be passed to the protocol stack and any other multicast packets

would be dropped by the NIC and the CPU would not be interrupted.

 15.6 WANS

 In contrast with LANs where the hosts are usually in the same building or at least

the same campus, wide area networks, or WANs, are connections between devices

where the data must pass over a serial point-to-point connection. Often these connec-

tions are between two bridges or routers but sometimes a host will link to a bridge

or router, especially if the connection is a dial-up link. For dial-up links through

 plain old telephone service (POTS), the highest speed available is 56 Kbps. When

a WAN link is connected permanently, the link is known as a leased line. These

lines are usually digital (as opposed to the dial-up link, which is analog). Typically

the slowest leased line speed is 56 Kbps, though 64 Kbps is also common. The next

speed line available is a T1 line, which runs at 1.544 Mbps. Speeds between 64 Kbps

and T1 are sometimes available as well. These lines are called fractional T1 lines,

or Frac-T1. Higher speed lines are also available that are multiples of T1 speeds. T1

lines were originally designed to carry voice traffic. These calls were analog signals

that had been digitized to a 64 Kbps stream. Up to 24 such slow digital streams could

be combined by synchronous time division multiplexing (TDM) onto one T1 line

that ran between phone company switching centers.

 15.6.1 Frame relay

 When a large network is built with WAN lines, a big factor in the total line cost is

that portion of the circuit that goes from the customer premise to the local phone

company office—called the last mile. If the customer has a number of leased

56 Kbps lines connecting different sites from the home office, they can usually mul-

tiplex them in groups of 24 onto a single T1 line. This can result in tremendous line

cost savings since that T1 line can usually be run over one standard twisted-pair

copper line. Another technology was also developed that goes even further in this

direction. Rather than use synchronous time division multiplexing as was described

above, the line is used to send packets instead of streams of data and each packet is

addressed and switched through the network separately. This technology is known

as frame relay. It makes good sense because often the capacity of some of the indi-

vidual 56 Kbps circuit is underutilized. A network using synchronous TDM circuits

is designed for something near the peak load traffic rates. Since the worst case does

not often arise, there is usually unused bandwidth. Thus, a T1 line might actually be

able to carry all the packets for 40–50 lines running 56 Kbps when using frame relay

 Chapter 15 Introduction to Computer Networks 351

instead of TDM. Alternatively, a single 56 Kbps frame relay circuit to the carrier’s

office might carry all the frames from three to five 56 Kbps circuits that were not

heavily used all the time. Thus, frame relay networks can save their users a lot of

money.

 15.6.2 Other WAN technologies

One LAN protocol that enjoyed a brief period of popularity was integrated ser-

vices for digital networks, or ISDN. A single copper circuit could be brought to a

home or small office, which could carry two 64 Kbps channels. 4 This type of service

was called basic rate interface (BRI). These channels could each carry a single

digitized voice call or a data channel. The two data channels could also be logically

combined and used as a single 128 Kbps channel. This was substantially better than

a POTS line. A large attraction for ISDN came at the core of the network where the

interface was a primary rate interface (PRI), which carried 23 channels of 64 Kbps

each plus one 64 Kbps channel for signaling. The main advantage to PRI was that

the calls could be either digital calls originating from an ISDN BRI device or analog

calls originating at a regular modem. The analog calls would be digitized by the car-

rier at their office and delivered digitally. ISDN PRI services are also still used today

in telephone support offices for pure voice traffic.

 As was mentioned earlier, another technology was developed specifically for

WANs: ATM. ATM is frame relay carried to an extreme. The essence of ATM is that

all traffic is broken into small pieces—48-byte cells. These cells can be switched rap-

idly and cheaply and can give each user exactly the types of traffic service needed.

This is highly desirable for the carriers since they have contracts to offer all kinds of

different services, from Teletype traffic to ultra high-speed data circuits. With ATM

they actually deploy only one network and use different equipment at the entrance

and exit points to the network that make it look like the service the user contracted

for. The carrier only has to train operators and technicians to maintain one network;

they only need one kind of management software; and so on. It is not hard to see why

ATM has captured many of the WAN backbones.

 For homes and small businesses there are two other competing technologies

for high-speed WAN services: cable modems and digital subscriber lines (DSL).

These two services use ATM and similar technology to provide permanent connec-

tions to the Internet at the same time as they provide some other service. In the case

of cable modems, that other service was originally cable TV. In the case of DSL, that

other service is POTS. Since ATM technology is employed, cable modems can also

be used to deliver POTS service, but that is a later add-on to the original concept. As

fiber optic cables are extended further into the local community, the available band-

width to each customer is going up and eventually should reach directly into the

home or office. Such technology goes by many different names, mostly like fiber to

the Curb, or FTTC.

4 Technically there was also a 16 Kbps channel that was used for network signaling or low-speed
applications such as credit card authorizations.

352 Part 5 Networks, Distributed Systems, and Security

 15.7 THE PHYSICAL LAYER

 For information to flow from one device to another there must be some medium

that connects the two devices. That medium must be capable of being changed in

some way such that the change can be sensed by the other device. Historically, for

computer data this has meant that a metal wire of some type has connected the two

devices and conducted a flow of electricity. In the last few years the copper wire has

often been replaced by glass or plastic, which conducts light. Wireless transmission

via electromagnetic transmission is also frequently used for sending information.

For decades it was used only for analog audio and video transmission and telegraph

transmission of text. In the last few years wireless has become more common for data

transmission. Originally this was for digital transmission of analog data, but is now

being used for data transmission, especially for laptop and handheld computers.

 15.7.1 Copper wire specifications

 The metal in communication wiring is most often copper and there are usually two

wires for each line. Sometimes there are two wires that are identical and are twisted

together. This is known as twisted pair. Wires that are twisted together are less likely

to pick up radiated signals from other wires and to radiate signals that can be picked

up externally. There may also be a layer of foil wrapped around a pair of wires or

around several pair of wires that are grouped together as a single cable. This is known

as shielded twisted pair wiring, or STP. Without the shield it is called unshielded

twisted pair, or UTP. STP is less susceptible to outside interference and to having

the signal be picked up outside the network than is UTP. The wire that was histori-

cally used to install telephone wires in homes and businesses is one type of twisted

pair. The UTP wire used for data needs to be higher quality than standard telephone

wire. Quality in UTP wiring is standardized in terms of Category or Cat by the

 Telecommunications Industry Association (TIA). The lowest category currently

approved for new data installations is Cat 5, rated at about 100 Mbps. The newest

standard is for Cat 6 at 250 Mbps. The next step is for a Cat 7 standard that will run

10 gigabit Ethernet over 100 m of copper cabling.

 There is another configuration of copper wiring called coax, shorthand for coaxial

cable. In this case there is a single center conductor wrapped with an insulation mate-

rial. Then a layer of very thin wires are braided around this insulating layer. (Occa-

sionally the outer layer is solid, like a tube.) This layer becomes the second “wire” in

the pair. The center wire is at the center (or axis) of the outer layer, so the two wires

are coaxial. Coax is even less likely to radiate its signal or to pick up external signals

than is STP. However, it is more expensive so it is limited to special uses. Coaxial

cable is the type of wire used for cable TV. The cable TV coax used inside a building

is about the size of a pencil and is somewhat inflexible compared to UTP wire.

 15.7.2 Fiber optic specifications

 Fiber is almost totally free from problems with radiated signals. It is also somewhat

expensive, roughly twice the cost of copper cabling, but it is widely used because

it is almost totally free from errors. In addition, it can send data over rather long

 Chapter 15 Introduction to Computer Networks 353

distances. Indeed, in 2001 a vendor demonstrated transmission across the continen-

tal United States over a single fiber without a repeater. It has very high bandwidth

capability, so the price per bit transmitted can be very low where large volumes of

data need to be handled. The vast majority of new WAN circuits are fiber and it is

very common in the backbone LAN in a building or campus.

 When the telephone carriers first put in fiber optic links they worked very

well. They have very low error rates, for one thing. Each fiber was limited by the

physics of the receiver circuits to about 5 Gbps of data. After they had been in use

for a while, however, engineers realized that there was a simple, inexpensive, and

reliable optical way to combine several signals over the same fiber by using a prism

at each end. This technology is called wavelength division multiplexing, or WDM

(or sometimes DWDM for dense WDM). As a result, each fiber that was installed

can now carry 64 to 128 times as much data as was first thought. Since the cost of

the right-of-way and of installing the fiber itself is a major factor, this has meant a

precipitous drop in the cost of wide area bandwidth. This drop has manifested itself

in a rapid drop in long-distance telephone rates over the last few years. Indeed, in

many cases the local phone companies can afford to give their customers access to

long-distance lines for free if they will agree to buy the local service.

 15.7.3 Wireless networking

 As was mentioned earlier, a relative newcomer to the transmission of digital data

is communication over wireless media—essentially digital radio. 5 This technol-

ogy is obviously applicable in laptop and handheld computers, but it is also appli-

cable where hosts must be moved frequently or where physical limits preclude

direct cabling. Another promising area is in mobile systems—robots, if you will.

There is an IEEE standard for wireless communication, 802.11, known by its

marketing term Wi-Fi. Devices are readily available to connect to wireless LANs—

PC Card NICs, bridges, routers, PCI NICs, and so on. These devices will prob-

ably continue to fill these niches. Another wireless protocol, Bluetooth, facilitates

exchange of information between wireless devices such as personal digital assis-

tants (PDAs), mobile phones, laptops, computers, printers, and digital cameras via

a secure, low-cost wireless link. Bluetooth is being standardized by the IEEE as

802.15. The protocol variants in this family are designed for very short range and

are sometimes referred to as personal area networks (PAN s) or body area net-

works (BAN s.)

 Wireless is very susceptible to picking up interference from external sources and

to being picked up by other devices, either accidentally or intentionally. Its chief vir-

tue is that it does not require a physical connection between the two communicating

devices. Because of the problems with noise, wireless communication has resulted in

more robust error detection and correction and security mechanisms. Development

of these mechanisms had been allowed to lag somewhat because cable and fiber

were so free from errors.

5 There have been wireless networks used before. They traditionally have been used in military
application or locations such as the Hawaiian Islands where it was prohibitively expensive to lay cable.

354 Part 5 Networks, Distributed Systems, and Security

 15.7.4 A note on network troubleshooting

 As a practical aside, when troubleshooting network problems one should always

begin the study by checking the Physical layer. Physical layer problems, especially

intermittent problems, can cause all manner of problems to manifest at other layers.

Therefore, one should always begin network troubleshooting by verifying that there

is an error-free connection between the two devices at the Physical layer.

 15.8 NETWORK MANAGEMENT

 15.8.1 Simple management tools

Two special protocols are used with TCP/IP for network management: ICMP (inter-

net control message protocol) and SNMP (simple network management proto-

col). ICMP serves several functions, but the most visible to the network manager is

that it provides the basis for the ping and tracert (sometimes traceroute) utilities.

The ping utility is a very simple tool primarily used to verify connectivity between

two devices. It sends an ICMP echo command to a destination host. That host will

normally reply to the echo command with an ICMP echo reply. Options on the ping

utility allow sending a large block of data, retrying the ping operation in a loop,

and so on. Measuring the response time and its variability can also help a network

operator identify performance problems in the network. Tracert uses a succession of

pings to discover the series of routers connecting two network hosts. It gives reports

for each hop on the route and this can further assist in locating network performance

problems.

 15.8.2 SNMP and network device management

 SNMP has historically been the protocol that network management software used

to communicate with network devices to monitor, configure, and troubleshoot

them. Most network devices that were manageable would have a set of parameters

that they would furnish information about or allow to be changed. These param-

eters would be described by a MIB, or management information base. From the

outside it is easy to believe that the device actually stores the MIB itself. Actually,

the MIB is just a convenient, structured way to describe the data and its seman-

tics and the format used to transfer the data. The device stores the data values in

whatever fashion is convenient for it. The IETF has standardized quite a number

of MIBs, including ones for specific hardware classes such as Ethernet ports and

for protocols such as TCP and UDP, but vendors have also added many proprietary

extensions.

 Managers rarely see SNMP directly. Rather, the MIB for a networking device

like a router was used to develop a software tool that would allow remote manage-

ment of network devices using SNMP but with a GUI interface. Some of these tools

were quite elaborate, showing images of devices with blinking lights and maps with

colors indicating network status. Unfortunately, they were all proprietary, so many

large network operation centers (NOC s) were filled with dozens of workstations

 Chapter 15 Introduction to Computer Networks 355

all running different software packages. This required extensive cross-training of

operators who knew the vagaries of each software package.

 The trend today is to put a dedicated specific HTML server entity in the device

and manipulate it with a Web browser using the HTTP Application layer protocol.

This means that proprietary management software is less often required, and that

the cross-training demand has lessened. It is still necessary to know the specific

characteristics of the network devices, but much less training is demanded since the

browser is standard to all such devices.

 15.8.3 Packet capture

 When Ethernet networks were built with hubs, every NIC on the network would see

every packet that was sent over a LAN. Normally, an adapter would only read pack-

ets with a broadcast address, a multicast address, or the address of the adapter itself.

However, some adapters could be placed into a promiscuous mode, in which case

they would read every packet on the network. This became a useful tool for trouble-

shooting network protocols. Very elaborate tools were developed. The best known

was the Sniffer™ line made by Network General Corporation. Such tools had many

options. For example, they could be set up to capture only traffic meeting certain

criteria, start capturing only after some trigger event was seen, save captured packets

to a hard drive, and create a decoded display of the packets using only the layers of

interest. Unfortunately, such tools had a dark side as well, as unscrupulous users

could use capture programs to see privileged information and capture passwords if

they were not encrypted.

 The development of switched Ethernet has largely solved this latter problem,

for these switches only forward traffic addressed to a specific device out the port

where that device is attached. Thus, a packet capture device will see only broadcasts,

multicasts, and traffic intended for the capture device itself. Of course, this means

that the capture technique cannot be used for the purpose for which it was originally

intended. For this reason, switches that are intended for use in a large environment

will often have a feature called port mirroring. This feature will allow a manager

to tell the switch to take all packets to and from a specific port and copy it to another

port. The packet capture device can then be plugged into that mirror port and can

capture the session as before, but only the network management folks will be able to

turn on this feature.

 15.8.4 Remote monitoring

 One of the MIBs that is defined by the IETF covers remote monitoring (RMON)

of networks. Traveling to remote network sites for troubleshooting and maintenance

can be very costly, so it is much preferable to be able to diagnose network problems

remotely through the network. Routers are in a unique position to perform this func-

tion since they are already examining every packet they forward. The RMON MIBs

define counters that an RMON agent in a router can maintain that go far beyond

those in the basic router MIBs. They can include full trace facilities, statistics based

on Application layer protocols, and other useful information.

356 Part 5 Networks, Distributed Systems, and Security

 BIBLIOGRAPHY

 Abramson, N., “The ALOHA System—Another

Alternative for Computer Communications,”

 Proceedings, Fall Joint Computer Conference, 1970.

 ANSI/IEEE Standard, Carrier Sense Multiple Access with

Collision Detection (CSMA/CD) Access Method and

Physical Layer Specifications, Std. 802.3-1985, May

1988.

 ANSI/IEEE Standard, Token Ring Access Method and

Physical Layer Specification, Std. 802.5-1985,

December 1987.

 ANSI/IEEE Standard, Token-Passing Bus Access Method

and Physical Layer Specification, Std. 802.4-1985,

March 1986.

 ATM Forum, LAN Emulation Over ATM LNNI

Specification Version 2.0 (AF-LANE-0112.000),

February 1999.

 Beck, M., et al., Linux Kernel Programming, 3rd ed.,

Reading, MA: Addison-Wesley, 2002.

 Bertsekas, D., and R. Gallager, Data Networks.

Englewood Cliffs, NJ: Prentice Hall, 1987.

 Comer, D., Internetworking with TCP/IP Principles,

Protocols, and Architecture. Englewood Cliffs, NJ:

Prentice Hall, 1988.

 Martin, J., and K. K. Chapman, SNA: IBM’s Networking

Solution. Englewood Cliffs, NJ: Prentice Hall, 1987.

 Martin, J., and K. K. Chapman, Local Area Networks

Architectures and Implementations. Englewood

Cliffs, NJ: Prentice Hall, 1989.

 McQuillan, J. M., I. Richer, and E. Rosen, “The New

Routing Algorithm for the ARPANET,” IEEE

Transactions on Communications, Vol. COM-28,

May 1980, pp. 711–719.

 Metcalfe, R., and D. Boggs, “Ethernet: Distributed Packet

Switching for Local Computer Networks,” CACM,

Vol. 19, No. 7, July 1976.

 Perlman, R., Interconnections: Bridges, Routers,

Switches, and Internetworking Protocols, 2nd ed.,

Reading, MA: Addison-Wesley, 1999.

 Postel, J. B., C. A. Sunshine, and D. Cihen, “The ARPA

Internet Protocol,” Computer Networks, 1981.

 Stallings, W., ISDN: An Introduction. New York:

Macmillan, 1989.

 Voydock, V. L., and S. T. Kent, “Security Mechanisms in

High-Level Network Protocols,” Computing Surveys,

Vol. 15, No. 2, June 1983, pp. 135–171.

 Zimmerman, H., “OSI Reference Model—The

ISO Model of Architecture for Open Systems

Interconnection,” IEEE Transactions on

Communications, Vol. COM-28, No. 4, April 1980,

pp. 425–432.

 15.9 SUMMARY

 In this chapter, we gave an overview of the basic

components of networked systems. We started with

some motivational material about why the study of

networks is important to the understanding of com-

puter systems in general and operating systems in

particular. We laid the groundwork for a discussion

of networking by discussing some of the fundamen-

tal concepts and describing a model of networking

that would be used for the remainder of the chapter.

We discussed a few Application layer protocols and

the most well-known protocol used at the Transmis-

sion and Network layers, TCP/IP. We also discussed

the continuing significant role of IBM and SNA. We

discussed the Data Link layer, with special empha-

sis on Ethernet and we also discussed Token Ring

and FDDI and compared them with Ethernet. We

discussed the shortcomings of shared Ethernet and

showed why switched Ethernet at all speeds has

come to dominate LAN architecture. We covered

WANs and a few unusual WAN protocols and why

they are sometimes used. The topic of the next sec-

tion was the Physical layer and some of the options

therein. Finally, we covered network management,

including simple utilities, SNMP and normal net-

work management operations and the migration to

HTTP and browsers. RMON was also profiled.

 Chapter 15 Introduction to Computer Networks 357

REVIEW QUESTIONS

 15.1 What was one of the main initial motivations for

networking computers?

 15.2 Ultimately what became the most significant ben-

efits of networking computers?

 15.3 In the networking models we discussed, each

layer is represented by an entity in each computer.

Each such entity has a conversation with another

entity for each connection. What other entity is it

talking to?

 a. The next higher layer

 b. The next lower layer

 c. The peer entity in the other system

 d. None of the above

 15.4 In a WAN, which topology is the most efficient

in terms of speed of reaching all nodes from a cen-

tral site?

 a. Linear

 b. Tree

 c. Star

 d. Ring

 e. All of the above are the same in terms of com-

munication speed

 15.5 Which WAN topology is the most expensive in

terms of line costs?

 a. Star

 b. Ring

 c. Partially connected mesh

 d. Fully connected mesh

 e. All of the above have equal line costs

 15.6 Some shared LAN topologies were not very

efficient—notably, shared Ethernet rarely ran

over 60% efficiency. What major development

allowed such LANs to operate at much higher

throughput?

 15.7 What is the DHCP protocol used for?

 a. To translate IP addresses to MAC addresses

 b. To translate names to IP addresses

 c. To obtain an IP address and other information

 d. To update pages on a Web server host

 e. None of the above describes the use of DHCP

 15.8 What was the main thing that saved us from a pre-

cipitous migration to IPv6?

 a. DHCP

 b. NAT

 c. CIDR

 d. DNS

 e. None of the above helped us delay using

IPv6

 15.9 Each protocol layer must have some information

in its header to tell the receiving entity what entity

to pass an incoming PDU to. What information

in the Transport layer header tells TCP or UDP

which application to give the packet to?

 15.10 What protocol is used to translate IP addresses to

MAC addresses?

 a. ARP

 b. NAT

 c. DHCP

 d. IGRP

 e. None of the above protocols involve mapping

IP addresses to MAC addresses

 15.11 Which physical medium has the best immunity

against interference?

 a. Coax

 b. STP

 c. Wi-Fi

 d. Fiber

 e. All of the above have equal immunity against

noise

 15.12 We mentioned that a LAN and a WAN were dif-

ferent in what significant way?

 15.13 We mentioned that the FTP protocol had some

unusual things about it compared to the other two

protocols we discussed. Name one.

 WEB RESOURCES

 http://www.bluetooth.com/bluetooth/ (commercial

products)

 https://www.bluetooth.org (standards organization)

 http://www.ietf.org (Internet Engineering Task Force;

defines all RFCs, including IP, TCP, UDP, NAT, RIP,

RIP2, PPP, IPv6, CIDR, SLIP)

 http://www.ipmplsforum.org (Internet Protocol Multi-

Protocol Label Switching forum—succeeded the

ATM forum)

http://www.w3.org/Protocols (mostly about HTTP)

358 Part 5 Networks, Distributed Systems, and Security

 15.14 What is the mechanism by which most network

devices are coming to be managed, especially the

cheaper ones?

 15.15 When troubleshooting networks, which layer

should you check first?

 15.16 We say that UDP is an “unreliable” protocol. Why

did we not design a “reliable” protocol?

 15.17 True or false? Ethernet is the only LAN media

access control protocol in use today.

 15.18 What does Cat 5 refer to?

 15.19 What is a SNIFFER?

 a. A bomb detection device

 b. A proprietary device for analyzing network

protocols

 c. A person addicted to inhaling volatile chemicals

 d. A software program for stealing passwords

 e. None of the above describes a sniffer.

 15.20 When we use a PING command and get a response

from a host we learn quite a few things all at one

time. Assuming that we did not already know

 anything at all about the situation, what are some

of the things we might have just learned?

 15.21 What is the DNS used for?

 a. To translate IP addresses to MAC addresses

 b. To translate names to IP addresses

 c. To obtain an IP address and other information

 d. To update pages on a Web server host

 e. None of the above

 15.22 An IP address typically would be shown like this:

129.107.56.23. Such an address has two parts.

129.107 is one part and 56.23 is the other part.

How are these parts used?

 15.23 A router that is routing IP traffic also might use

a protocol called RIP. What is that protocol used

for?

 15.24 Email uses two distinct kinds of protocols, SMTP

and POP3, for example. What is the difference

between these two protocols?

359

 Chapter Chapter 16 16
 Protection and Security

In this chapter:

 16.1 Introduction: Problems and Threats 360

 16.2 OS Protection 366

 16.3 Policies, Mechanisms, and Techniques 370

 16.4 Communication Security 373

 16.5 Security Administration 380

 16.6 Summary 381

 A
t one time there were few thoughts given to problems of security in computer

operating systems. In most cases security was provided by controlling physi-

 cal access. Computers were huge things locked away in a room with lots of

air-conditioning. A user who could access a system was allowed to access any file

and any program that was running. As time has gone by the situation has changed.

Time sharing began the biggest change since there would commonly be many pro-

grams running at the same time on behalf of many users who might have competing

interests. Today it is quite common to share access to systems, especially in our

homes. Even when systems are not shared, they are more often than not connected

to a network. In many cases, even at home, they are on a LAN. At the least, many

machines can connect to the Internet via a dial-up connection. However, intermittent

that connection might be, while the connection is made our system is exposed to the

entire Internet world—a place where threats reside as well as wonders.

 In Section 16.1 we discuss the origins of some of the security problems. We

then break them down into several different categories and describe the mechanisms

an OS needs to deal with them. Some of these mechanisms need to reside outside

the OS itself. We then move on in Section 16.2 to a general discussion of the nature

of the protection services that OSs need to offer to users, primarily to provide pri-

vacy to files. We describe how these services are designed in general. Beyond the

services the OS must provide for users, a different level of services is needed for

processes. We have built significant barriers between running processes and the OS

in order to protect them all. In Section 16.3 we continue with a look at some of the

services that are needed by processes that are trying to communicate and cooperate

with one another. Section 16.4 covers security as it pertains to networks in general

and the Internet in particular. It includes discussions of encryption, authentication,

360 Part 5 Networks, Distributed Systems, and Security

and digests. It also discusses the related topics of network security and protection

found outside of individual OSs. Section 16.5 covers the problems that arise in the

administration of security in a network and an OS. The chapter concludes with a

summary in Section 16.6 .

 16.1 INTRODUCTION: PROBLEMS AND THREATS

 There are many reasons why we should not blindly trust all programs. Program-

mers can be bored, exhausted, lazy, careless, ignorant, unintelligent, malicious, or

thoroughly evil. Any of these, or all of them together in some cases, can produce

a program that can damage our work or even our systems. There are generally two

classes of people we need to worry about. Hackers are very dangerous for home

users because they attack system weaknesses that most home users are not knowl-

edgeable enough to even recognize, much less fix. Hackers are also the most notori-

ous, but they are only one portion of the problem. A problem that is less well known

is unauthorized use by persons who have legitimate access to the system. Such inter-

nal problems are wide ranging. They include sending abusive or threatening emails,

stealing money from accounts or goods from inventory, wasting time visiting web-

sites not relevant to work or playing games on the computer, snooping on personal

information of other employees, copying projects or papers from fellow students,

bribery, extortion, taking company secrets to sell to the competition, and so on. Most

of these problems are hard to spot and control because the person engaging in these

activities has legitimate access to the system. We generally have to identify them

through some means other than the OS controls. We rely on physical inventories,

audits, and so on. In some ways the hackers are easier to control because they are

forced to use a small set of illegitimate mechanisms to gain access. If we are diligent

enough we may eventually be able to identify and secure most of those mechanisms.

Until this happens, securing large systems is very difficult (some say impossible)

because of the complexity of the systems.

 Hackers are generally exploiting some problem in the OS that allows them to

execute an operation that they are not supposed to be able to execute. Often this

allows them to gain access to a system with the permissions that a supervisor or

administrator must have—permissions that basically allow them to do anything they

want. Most often these mechanisms exploit a bug in the OS. Usually the OS vendors

will quickly learn about these bugs and will release fixes for the OS that will shut

off the hacker’s ability to exploit that bug. Unfortunately, these fixes are not as well

tested as a full release of the OS, so not all users are willing to install all these fixes,

leaving the bugs exposed. This is especially true for corporate administrators who

must manage many diverse systems doing many different tasks. Whereas an individ-

ual might be able to determine fairly quickly that a bug fix was causing a problem, a

corporate administrator might be responsible for many systems and therefore might

be less willing to risk such exposure.

 The hacker threats that we might see can be grouped so that we can assess how

to deal with them. First is the general category that we call today malware. Malware

is a fairly new word that groups together several subcategories including virus pro-

grams, worms, Trojans, and spyware.

 Chapter 16 Protection and Security 361

 16.1.1 Computer viruses

 Computer viruses are portions of programs that insert themselves into other pro-

grams in a manner analogous to the way that biological viruses insert themselves

into living cells. When a program containing a virus is run on a computer system the

virus will insert itself into other programs on secondary storage. The hardest part for

the virus writer is getting a user to run the program containing the virus. Today, this

is accomplished most commonly by attaching the virus program to an email in such

a way that a user will execute it. When most software was distributed on floppy disks

a common technique was to infect the program found in the boot sector of the floppy.

If the system was rebooted after a software installation (as was often required) and

the last floppy disk was not removed from the drive, the floppy would usually be

booted and the virus propagated to the hard drive. From there it would infect every

other floppy that was inserted into the system. Once such a virus got loose in a

corporate environment it was almost impossible to eradicate completely because of

the many floppy disks that were stored in various desk drawers, inside briefcases, at

home on top of the dresser, and so on.

 Today, we have protective programs known as virus scanners that reside in mem-

ory and watch for signs that a program containing a virus is about to be copied or run

and prevent the copying or execution. These scanners work by matching known pat-

terns of instructions or unusual behavior such as a series of system calls or attempts to

modify certain system files or portions of the registry. Unfortunately, the databases of

patterns of data and behaviors have to be maintained since new viruses are constantly

being created. While the programs themselves have often been free, after some trial

period the maintenance of the database has not been. As a result, many people do not

bother to run the scanners or don’t pay for the updates, so viruses continue to circu-

late that should have been eliminated long ago. Just as in the biological world, some

viruses are only annoying but some cause catastrophic harm. The ones that crash

systems are less likely to spread as far as the ones that are less damaging. Crashing a

system gets the attention of the user and will probably result in the eradication of the

virus on that machine. But a small slowdown might not be noticed or might be toler-

ated because the cure is too expensive or would take too much time.

 16.1.2 Trojans

 Trojans are programs that are not what they appear to be. The term comes from a

technique allegedly employed during the Trojan war, when one side appeared to

withdraw from the battlefield but left behind a large wooden statue of a horse. Hid-

den inside the horse was a team of soldiers. The army of the city dragged the horse

inside the city and had a great celebration of the supposed victory. During the night

the hidden soldiers came out of the horse and opened the city gates to admit the

returning army who then sacked the city. Trojan programs appear to be one thing but

either do something else entirely, or do what they appear to do, but do something else

as well—something unnoticed by the user. For example, the program might appear

to work as a screen saver but also installs a process that would log all passwords and

send them to some website in another country. Generally, the same techniques that

work against virus programs will also work against Trojans.

362 Part 5 Networks, Distributed Systems, and Security

 16.1.3 Worms

 Worms are programs that are similar to viruses and Trojans, but slightly different.

They do not infect other programs and do not pretend to do something. When a worm

program is run for the first time it simply tries to send itself to other machines and

trick the OSs into running it. From there it will try to send itself to other machines,

and so on. In 1988 a doctoral student at Cornell University launched a small program

that was destined to be known as The Internet Worm. His intention was that the pro-

gram would do nothing visible. It was designed to spread itself to as many computers

as possible without giving away its existence. If the code had worked correctly it

would have been only a single process running on many Internet-connected comput-

ers. Unfortunately, the code didn’t work as intended. The worm propagated itself too

aggressively, and an infected machine often sent the worm back to the same machine

that it had come from. The result was that these small processes, which didn’t take

up much CPU time individually, began to swamp the systems as more and more

infected processes were started on each machine. In most cases in less than 90 min-

utes the worm had made the infected system unusable. Nobody is actually sure how

many machines were infected by this worm, but it is estimated that it involved about

6,000 machines. It essentially shut down the Internet for about a day. Fortunately,

it only attacked VAX and Sun machines running a specific version of BSD UNIX.

Worms can also be detected and eradicated by virus scanners.

 Worms are not necessarily destructive. The initial development of worms was

at the Xerox PARC installation in the early 1980s. These worms were used for such

activities as distributed processing, broadcast communication, and software distribu-

tion that took place during the off hours on the network.

 16.1.4 Spyware

 Spyware is a special class of Trojans. Such programs are relatively benign in the sense

that they do not damage the computer they are running on or any of the user data. What

they typically do is report local activity to some unrelated website. In the most benign

case this information merely identifies which websites are being accessed and helps

the system place ads on the websites that might be of more interest to the user. There

is a gray area in which this activity could be viewed as being actually helpful. Unso-

phisticated users are misled by unscrupulous advertisers to install “screen savers”

and “browser toolbars” that are actually Trojans containing such spyware. At the very

least, the user is not usually notified that these additional functions are being installed.

In the worst case vendors of music CDs and tax software installed spyware packages

when one of their DVDs was played on the computer or their software was installed

in misguided attempts to enforce digital rights management, or DRM. These instal-

lations were done without any notice to the user of this software. In both cases the

performance of the system was degraded and new security flaws were exposed to

the Internet. In more malicious instances spyware can be used to steal passwords to

websites and even credit card numbers. Fortunately, special scanners exist that can

recognize and remove most spyware. The degradation caused by one spyware pro-

gram is not usually too substantial. But when running scanner software for the first

time on machines owned by naive users it is not unusual to find hundreds of instances

 Chapter 16 Protection and Security 363

of spyware, and these systems are often essentially useless under the load. As of this

writing the spyware detectors are beginning to merge with virus scanners into a more

general category of malware scanners.

 16.1.5 DoS attacks

 The Internet Worm just described was intended to be benign. Unfortunately, as a side

effect of its operation it is also an example of another class of attacks, denial of ser-

vice, or DoS. The effect of this worm was that authorized users could not access the

machines or that operating systems failed because they had seldom been tested at the

limits of stress they were being put to. This effect is called denial of service. Usually

a DoS attack is an intended consequence rather than a side effect. There are many

such attacks—we describe two. The first is called the Ping of Death. A ping is a

special message used by network administrators to test network connections. A ping

command received by a server is echoed back to the sender, so the sender will know

that the target machine is reachable. To make the program more useful the sender

can send a large packet and send it several times to see what the average response

time is. There is supposed to be a maximum of 64 KB on the attached packet, but

it is possible to maliciously create a ping packet that contains more than 64 KB.

Unfortunately, more than a few OSs had a ping utility that would try to receive this

packet into a buffer that could be up to 64 KB, but no larger. If a larger packet were

received, then the data would overwrite something unintended, often with fatal con-

sequences. This would not cause any benefit to the sender—only harm to the target.

 Another DoS attack is called a SYN Flood. TCP network connections start with

a “three-way” handshake. The initiator of the connection sends a packet that contains

a SYN flag, which tells TCP that it is starting a connection and that the receiver

should allocate some buffers and reset some data fields regarding that connection.

The receiver replies and the sender sends another packet that completes the con-

nection. In a SYN flood attack the sender sends many initial SYN packets starting

new connections but never responds to the receiver’s reply, thereby tying up mem-

ory resources. After a sufficient number of unfinished connections are opened, the

receiving system may either crash or simply be unable to accept further connections,

thus denying service to authorized users.

 Both of these problems have been fixed in all current OS protocol stacks, but

they may persist in older network equipment that cannot be easily upgraded. Other

such problems are discovered often and eventually get repaired. If we were not con-

tinually developing new protocols these problems would eventually all be solved.

But other kinds of attacks are not so simple to prevent. An example is a coordinated

attack using zombies. A zombie is a machine where security has been compromised

to the extent that a remote user can run an unauthorized program at will. Given a

large set of zombie computers a malicious user can synchronize them to all run a

specific program at the same time. Networks of tens of thousands of zombie systems

are not unusual because so many users are naive about the security on their machines

and a zombie machine might not exhibit symptoms that are easy to detect. (Zombie

machines are sometimes called robots or bots and a large set of such machines is

called a botnet.) The program could consist of legitimate requests—perhaps to ask

a Web server to deliver a specific page. Or the requests might be bogus, but legal

364 Part 5 Networks, Distributed Systems, and Security

from a protocol standpoint, and therefore difficult to detect or prevent. For example,

we might send a page to a Web server. This is usually only used for maintenance, so

most users are unauthorized, but the request itself looks legitimate. If several thou-

sand zombie computers can be used at the same time they can overload a server to

the point that legitimate users are denied access. Even if the server is not overloaded,

the entire communication connection to the server may be filled, again denying ser-

vice. No single zombie will appear to be under any load, so the systems’ owners may

not even be aware that anything is happening.

 16.1.6 Buffer overflows

 In order to do much damage, a virus or worm needs to somehow fool the system into

running its code in supervisor mode. One of the most common ways that a virus or

worm manages this feat is to exploit a type of program coding error called a buffer

overflow, or buffer overrun. The ping of death we mentioned was one example. A

buffer overflow occurs when a process stores data beyond the end of a buffer. What

happens is that the extra data overwrites nearby memory locations. Buffer overflows

can cause a process to crash or output wrong information. They can be triggered

by inputs intended either to run malicious code or only to make the program oper-

ate in an unintended way by changing the data. Buffer overflows are the cause of

many software vulnerabilities and the basis of many exploits. Bounds checking can

prevent buffer overflows. Programmers often don’t think about the problem, naively

assuming that the input data will be valid. Compilers can generate code that always

does bounds checking, but programmers typically turn such options off for the sake

of efficiency.

 In the following example, X is data that was in memory when the program began

executing. Y is right next to it. Both are currently 0.

X X X X X X X Y Y

00 00 00 00 00 00 00 00 00

 If the program tried to store the string “too much” in X, then it would overflow the

buffer (X) and wipe out the value in variable Y.

X X X X X X X Y Y

‘t’ ‘o’ ‘o’ ‘ ’ ‘m’ ‘u’ ‘c’ ‘h’ 00

 Although the programmer did not intend to change Y at all, Y’s value has now been

replaced by a number formed from part of the character string. In this example, on a

big-endian system that uses ASCII, “h” followed by a zero byte would become the

number 26624. Writing a very long string could cause an error such as a segmenta-

tion fault, crashing the process.

 The methods used to exploit a buffer overflow vary by the architecture, operat-

ing system, and memory area. Besides changing values of unrelated variables, buffer

 Chapter 16 Protection and Security 365

overflows can often be used by attackers to trick the program into executing arbitrary

code that came from the malicious input. The techniques used by an attacker to gain

control depend on the part of memory where the buffer resides. For example, it might

be in the stack area, where data is pushed onto the stack and later popped off. But

there are also heap overflow exploits as well.

 Typically, when a function begins executing, local variables are pushed onto

the stack, and are accessible only during the execution of that function. This is a

problem because on most systems the stack also holds the return address—the loca-

tion in the program that was executing before the current function was called. When

the function ends, execution jumps back to the return address. If the return address

has been overwritten by a buffer overflow it will now point to some other location.

In the case of an accidental buffer overflow as in the first example, this will almost

certainly be an invalid location, not containing any program instructions, and the

process will crash. But by carefully examining the code in a system an attacker can

cleverly arrange things so that the system will begin executing code supplied by the

attack. Modern OSs are now starting to locate code and data randomly in the logical

address space to make such exploits more difficult to create.

 16.1.7 Scripts and applets

 Another variety of malware is sometimes found on malicious websites. Several

mechanisms have evolved that allow a website to send programs to client systems.

These include scripting languages such as JavaScript and VBScript and applets

intended to run on software virtual machines such as the Java virtual machine

(JVM) from Sun Microsystems and the Common Language Runtime (CLR) from

Microsoft. Both of these mechanisms normally execute programs inside the browser

in a manner known as a sandbox. See Figure 16.1 . This means that the actions of the

program are restricted so that it cannot cause harm. For example, normally programs

running in a browser are not allowed to access the local disk drives. Most browsers

allow a user to override these limits so that a trusted program can do things we might

Applet A

Browser Program

Client System

Applet A

Web Server

Server System

Applet
files

FIGURE 16.1

Sandbox execution

model.

366 Part 5 Networks, Distributed Systems, and Security

not want a program we are unsure about to do. If we got the applet from our company

website we would probably trust it. If it came from another source we might not.

 One additional mechanism that is widely believed to cause security problems

is that of cookies. By design, Web servers are stateless—they do not keep any infor-

mation about individual clients. (Applications that run in Web servers can do so,

but it is not a feature of the server itself.) This stateless nature limits what servers

can do. In order to expand on these capabilities, browsers were enhanced to allow

a server to record information about a website on the browser system. These are

fairly short strings of text. The server can read the cookie when a browser requests

a page. These can help the server appear to be stateful. They can store a customer

number, a last question asked, a last page visited, shopping cart information, and so

on. They can be used to temporarily tell a website that you have logged in as you

move from page to page on the site. It is a common misconception that cookies

can contain viruses or other malware. Cookies called tracking cookies can be con-

structed to share information across multiple websites for advertising purposes, but

there is no way that a cookie can harm a computer or other information or programs

on the computer.

 16.2 OS PROTECTION

 16.2.1 OS protection

 In earlier chapters we discussed several different aspects of OS protection, but they

are worth mentioning again in this context. One example is the separation of Super-

visor Mode for running the OS and User Mode for running application programs.

This separation allows the OS to monitor various operations in an attempt to make

sure that they do not do anything disastrous. It is possible for the OS to make sure,

for example, that an I/O request does not overwrite part of the file system metadata.

However, in many cases it can’t prevent some abuses, such as deleting a file that a

user might want. Some of this sort of abuse can be mitigated by file system protec-

tions, which we discuss a bit further on.

 Similarly, the OS protects the use of the CPU by starting a timer and preventing

user programs from changing the timer. This allows the OS to abort any program

that goes into a loop, intentionally or not. In batch systems a runtime estimate is

given when a program is started and the program will be terminated if it exceeds that

estimate by more than a certain percentage. In interactive systems it is assumed that

eventually the user will abort an operation and either retry it or do something else.

In either case, a rogue program can’t completely tie up the system since the OS is

probably multitasking and the user will still be able to interact with the OS to kill a

looping program.

 One final aspect of the OS protection is memory protection. The hardware can

usually check the addressing bounds of the logical address space. In addition, many

systems can mark certain pages as allowing read-only access or execute-only access,

giving an added measure of protection. These features allow the OS to protect itself

from any user program and also keeps programs from interfering with each other.

 Chapter 16 Protection and Security 367

 16.2.2 Authentication

 When users remotely access computer systems we may be concerned that they only

access resources we want them to access, though sometimes we don’t care what they

access. Most Web servers, for example, will allow any user to access any page. How-

ever, an online banking system accessed by a Web interface certainly does not want

any user to access all of the information on the server. We want users to access only

accounts they are authorized to access. Controlling what a user can access on a sys-

tem actually has two parts to it: authentication and authorization. Authentication is

verifying the identity of a party to a communication. In the case of a user accessing

a bank account we need to authenticate both parties. Obviously the bank wants to

authenticate the user. Until recently it was not so obvious that when using an online

banking system we want to authenticate the bank as well. A new class of computer

fraud has arisen that is known as phishing. A phishing fraud is most often sent in

an email. It directs a user to a website that pretends to be something it is not—your

bank, for example. It asks that you enter some confidential information such as your

credit card number or bank account number and ID and password. It uses some

plausible-sounding reason for requesting the information, usually saying that it is

needed to authenticate you, and often stating that the system needs this information

because the system security has been compromised in some way. As a result, we

now understand that it is important to authenticate the host system to the client as

well as authenticate the client to the host system.

 Authentication usually takes one of three forms: something you have, some-

thing you know, or something you are. Examples of something you have include

your ATM card or your house key. Cards and keys can be stolen, however. Something

you know might be your login ID and password or your account number. Any such

information can be captured if a third party sees you enter it or reads the message

from the communication line. Something you are might be a voiceprint, thumbprint,

or a retinal scan. Such systems are just now coming into use and in theory should

be harder to fool once they are further developed. Using two different methods of

authentication at the same time is called two-factor authentication. This is seen

when one uses an ATM card and must also supply a PIN.

 Passwords are problematic because of social factors. The very worst password

is the default password that sometimes comes with software or hardware. Surpris-

ingly often these passwords are never changed. If passwords are not chosen care-

fully they can be easily guessed. Such passwords are considered weak. The Internet

Worm mentioned earlier used several mechanisms for guessing passwords and was

remarkably successful. So the use of strong passwords is recommended. Passwords

are generally considered strong if they contain a combination of upper- and lower-

case letters, symbols, and numbers and do not contain any names or words, repeated

symbols, or sequences such as 123 or tuv. Passwords that are names or words can

often be broken be guessing common words or names associated with the account.

This is known as a dictionary attack. But the problem with strong passwords is that

they are difficult to remember. This is especially true since it is normally recom-

mended that you do not use the same password on different systems. As a result,

strong passwords are often found on notes attached to computer monitors, seriously

368 Part 5 Networks, Distributed Systems, and Security

compromising their effectiveness. A good technique is to make up a sentence and

use the first letter of each word in an acronym. For example, “World War 2 began

in 1939!” could yield a password of WW2bi1939! That is a nice strong password.

When you try to use it and you can’t remember the year, just go to Google and enter

“year wwii started.” Now your note can contain some cryptic hint like “W2” that will

be meaningful only to you.

 16.2.3 Authorization

 Once an OS knows who a user is, the next task is to decide what operations that

user is allowed to do. More specifically, the allowed operations depend on the object

being accessed—we normally do not have the same rights to all files on a computer.

We have been discussing a user as a person, but in the context of an OS, a process

can be a user as well. Deciding what operations a user can perform on an object

such as a file is called authorization. Abstractly the OS could have a data table

called an access control matrix, or ACM. One dimension of the matrix would be

the user and the other would be the object to be operated on. The entries in the

matrix cells would be the operations that would be allowed for that user on that

object. Figure 16.2 shows a hypothetical ACM. In it we see that the rows are labeled

with user names and the columns are labeled with objects. In this case we see three

file objects and one printer object. Wendy is a designer in the art department and is

authorized to use the laser printer but not the C compiler. Ann and Fred can read and

write their own resumés, but nobody else can. Ann and Fred can both execute the C

compiler, but neither can read it as data or write to it. Note that the set of possible

operations for one object are likely not the same as the set of possible operations for

another object of a different type. A file would not have a Stop Queue operation like

a printer might.

 One thing is clear even from this small piece of an ACM—most of the cells are

empty. Trying to store an entire ACM would waste a tremendous amount of memory.

Read
Write

Ann’s
Resumé

File

Ann

Fred

Fred’s
Resumé

File

Laser
Printer

gcc

Read
Write

nil

nil

Execute

Execute

Wendy nil nil nil
Write

Stop Queue
Start Queue

nil

nil
. . .

. . .

FIGURE 16.2

An access control

matrix.

 Chapter 16 Protection and Security 369

A large machine might have tens of thousands of users and hundreds of thousands

of files and most users would be allowed to access only a small set of the files. For

this reason, OSs do not use an ACM. Instead, they either use an access control list or

a capability list. An access control list, or ACL, is attached to an object and would

contain only the users who were authorized to perform some operation on an object.

The list elements would list each specified user who could access the object and the

operations they could perform on the object. Figure 16.3 shows some ACLs that cor-

respond to the ACM in Figure 16.2 .

 Alternatively, an OS can use a capability list, or CL. A CL is shown in Figure 16.4

that also matches the ACM in Figure 16.2 . The elements of the list show the objects

that a user is authorized to operate on and lists the operations the user is authorized

to perform.

 Creating the entries in these lists the way that we have shown them, however,

still creates many more references than we might like. Consider the problem of

setting up rights for students at a large university to access the general system utili-

ties on a computer. Not only are there thousands or tens of thousands of students,

they change every semester—some enroll and some move on, one way or another.

Setting up all the necessary rights for each individual student would be a signifi-

cant administrative problem. Instead, we utilize groups or roles. We create a group

called “student” and we assign the rights to the necessary objects to the group.

Then, as students arrive and leave all the administrators have to do is to add the new

Ann

Fred

Laser
Printer

Read

Ann’s
Resumé

File

Ann

gcc

Execute

Execute

Wendy
Write

Stop Queue
Start Queue

FIGURE 16.3

Some access control

lists.

Read
Write

Ann’s
Resume

File

Ann

Laser
Printer

gcc

Execute

Wendy
Write

Stop Queue
Start Queue

. . .

. . .

FIGURE 16.4

Some capabilities

lists.

370 Part 5 Networks, Distributed Systems, and Security

students to the group and remove them when they no longer have access privileges.

The rights that are given to the group are inherited by the students. Roles are simi-

lar in that they allow for us to have a user in the system and have that user be

assigned to a role. A role might correspond to being a member of a specific project

team. All users who are members of that team inherit a set of rights in a set of

objects shared by the team. When members leave the team and go to another, then

all that the administrator has to do is change their roles and all their rights will be

changed as well.

 A question that must be answered is when the authorization should be checked.

One option is to check the authorization when an object is first accessed—a file is

opened, a socket connection is made, spooling to a specific printer is requested.

After that, a set of operations implied by the initial access is allowed without fur-

ther checking. If we opened a file for input, for example, reads to that file would

be allowed, but not writes. Depending on the level of security desired in the OS we

may feel that this is not enough. We may require that every separate option will

be specifically checked against the lists—perhaps the user’s privileges have been

revoked since the initial access was made. For example, the user is going to be

fired, finds out about it, and begins writing over files on the OS trying to remove

evidence of malfeasance. The administrator revokes the user’s passwords, but the

operations are already ongoing. We discuss this more under the topic of security

levels. Note that this is a case where the OS designer must decide whether to pro-

vide the mechanism in the OS to support a feature and the system administrator

must then decide whether to invoke it. In a department store such security might

not be worth the system and administrative cost to maintain; in a bank it might be a

different story altogether.

 Yet another question is at what level the authorization is to be made. Normally,

the objects in a system are organized in one or more tree structures—as an example,

the file system on a hard drive. We often will grant a user access to a specific home

directory. By implication the rights to a directory will extend to a subdirectory unless

they are overridden. Typically we can also override the rights to any file in a direc-

tory. In some systems we can also assign rights to individual portions of a data-

base—sometimes a set of fields. Thus, a clerical worker in the HR department might

be able to see the home contact information of all employees, but not the payroll

information. Sometimes the restriction might be to a set of values—a set of records,

for example. So a payroll clerk might be able to access the payroll records of most

employees, but not those above a certain management level. Again, the OS designer

must decide whether to supply those mechanisms and the administrators must set

policies about their use.

 16.3 POLICIES, MECHANISMS, AND TECHNIQUES

 There are a number of types of security mechanisms that are commonly found in

most larger OSs. In this section we look at a few of these common mechanisms. But

before we worry about mechanisms it is important to establish policies that unequiv-

ocally establish what users can and cannot do and what they must do.

 Chapter 16 Protection and Security 371

 16.3.1 Security and protection policies

 Any network that is to be secure must have a set of policies that clearly spell out

several things:

 ɀ what users are allowed to do,

 ɀ what users are not allowed to do,

 ɀ what users are required to do, and

 ɀ what the punishments are if the procedures are not followed.

 Even in a home environment, if parents wish to restrict access to certain types of

websites they should clearly spell out what the restrictions are. Firewall mechanisms

are not perfect and it is likely that the children in the family will end up being more

computer literate than their parents and able to thwart many security mechanisms.

The punishments for doing the things that are prohibited should be established

beforehand. Firing an employee for sending a threatening email is difficult if the

restriction was not spelled out clearly beforehand.

 Similarly, employees must be clearly told what their responsibilities are with

respect to backing up information, using encryption in certain environments, secur-

ing their computers, and so on. If they are supposed to run a virus checker and a

firewall and to keep the software updated, then they should be told so in advance of

any problems that might occur if they do not and what the penalties are for failing to

adhere to the policies.

 16.3.2 Crash protection: Backups

 Crashes will happen. OSs must provide mechanisms to deal with them. First, the running

system may crash. OSs are much better than they used to be, but no nontrivial program

is ever truly debugged. When they crash we must be able to recover from these crashes.

We have already discussed some mechanisms for dealing with these crashes. First is the

mechanism of transactions. Often we have a series of file or database updates that work

together to define a transaction. Perhaps we are moving a piece of expensive equipment

from one warehouse location to another. If these are separate files or databases, then

one update needs to reflect that the item left one warehouse and the other update needs

to reflect that it is now in the other warehouse. If the system crashes before one of these

updates is done, then we will either lose track of the item or we will think we have one

more of them than we really do. By coupling the updates together as a single transac-

tion the system can ensure that either both updates are done or neither is. We discussed

the implementation of transactions through logging, checkpoints, and rollbacks.

 Another possible source of data loss is the physical crash of a disk drive. Some-

times the read–write heads literally crash into the platters and scrape the coating off.

Other times we have a failure of a bearing or the electronics. Recovering some or all of

the data off a dead disk drive is sometimes possible but is certainly expensive. It is also

time-consuming. A far better method to cope with this possibility is to back up the data

to a removable medium. Historically, this copying was done to magnetic tape because

of the low cost of the media. For small systems, floppy disks or their slightly higher

capacity relatives were utilized. Today, personal computer backups are most often done

via CDs or DVDs. Not only do disk drives crash, users sometimes “crash” too. Every

372 Part 5 Networks, Distributed Systems, and Security

system administrator gets used to hearing that a user has deleted a file that they really

need accompanied by a fervent request to please recover it. So backups are also desir-

able because files can be deleted or corrupted by human error or software problems.

 There are many approaches we can take to backing up a system, but there is

one that works best. It involves the fact that most OSs have an indication in the file

directories that shows whether a file has been changed since it was last backed up. It

is often called an archive bit. The details of the best procedure can vary, but for the

sake of illustration we will assume that we want to keep the system backups fairly

easy to use, so every weekend we will create a backup copy of the entire system.

This backup will clear the archive bit on all the files, showing that we have a backup

copy. As the system runs during each day, it will set the archive bit on any file that

is changed. At the end of the day we can run a different backup procedure that will

copy only the files that have been changed that day. We will label this backup with the

date. We will do that each day. Then when a user requests a file that was deleted, we

can search all the daily backups in reverse order until we find it. In a large centralized

operation the backup mechanism can keep track of which files are on which daily

backups so that it is not necessary to search them all. There are a couple of other key

features of such a system. First, the backups should not be in the same room as the

computer. In case of a fire, backups in the same room would likely also be destroyed.

Even more important, the backup media from the week before should not even be

kept in the same building for the same reason. A flood might make the entire build-

ing inaccessible for some time. If an off-site backup is available, then the data can be

restored to systems in another facility and operations resumed more quickly.

 An alternative mechanism can be considered in environments where the data

represent a great deal of money. Such data might include engineering or artistic

designs where the value can be hard to even estimate because of the creative effort

that went into them. They might literally be irreplaceable. In such situations we can

employ a dynamic backup system that will write each file to a remote backup mech-

anism as it is changed. Such a solution is obviously more expensive, mostly because

of the administration involved. But in such situations it can be well worth it, even if

just for the peace of mind of knowing that the files are safe. It is still important to

take the media to an off-site storage location.

 If files are on laptops or the media used for backups are often physically taken

outside the facility, then using encryption on the files or the media is a sound idea so

that if the computer or the backup is stolen, the data will not be compromised.

 An alternative to constant backups is the use of RAID disk organizations, as

discussed in Chapter 14. Some of the RAID configurations provide substantially

improved reliability at fairly low cost and mitigate the problems of losing data due

to drive failures. They will not solve problems of file loss due to human or software

errors, however.

 16.3.3 Concurrency protection

 We have mentioned that we build OSs with a great deal of protection between run-

ning processes. We also said that we want to build high-level systems out of mul-

tiple processes. Building systems out of multiple processes requires the ability to

communicate among the processes. We therefore need mechanisms to facilitate

 Chapter 16 Protection and Security 373

that communication. One of those mechanisms that an OS can provide for such

 applications is the ability to share memory. In this case we provide a means for

processes to stipulate that they want to cooperate and share access to some portion

of memory. In Chapter 9 we discussed some potential problems that can arise with

the use of shared memory and said that we could solve this problem with the use of

locking mechanisms, which the OS also must provide. This opened up yet another

potential problem involving a deadlock. In this instance, the processes can avoid

deadlocks by the consistent ordering of setting and releasing the locks.

 16.3.4 File protection

 With multiuser systems the OS must also provide a mechanism to make files private.

Privacy does not necessarily mean that only a single user can access a given file. It

must be possible for multiple users to share a file. In Chapter 6 we discussed the

mechanism used in older versions of UNIX and Linux for specifying the access rights

of the file owner, a group whose membership is defined by the system administrator

and all other users. These rights are set with the chmod utility. In Chapter 18 we cover

the mechanism for specifying access rights to files in the Windows NT OS family and

in Chapter 19 we mention the newer mechanisms available in Linux systems.

 Sometimes communication between concurrent processes involves sharing infor-

mation at a file level. Most OSs allow concurrent accesses to files by separate processes

as a default. In order to avoid problems when one or more of the processes is writing in

a file, the processes must use the same locking mechanisms and proper ordering of lock-

ing and unlocking to synchronize the use of the files just as we do to synchronize the use

of shared memory. We discuss file protection further in the encryption section below.

 16.4 COMMUNICATION SECURITY

 Often a process running on one system will need to communicate with a process run-

ning on a different system. When we send information across a communication link

from one computer to another there are three potential classes of problems that can

occur at the level of sending the message. These can be seen in Figure 16.5 . Commu-

nication in security systems is normally shown as being between two parties, known

as Alice (A) and Bob (B). First, an outside party can read (or intercept) the message.

Second, an outside party can send (or insert) a bogus message. And finally, an out-

side party can change a message that an authorized user sends. We are concerned

with protecting a system against all of these problems.

 One class of mechanisms that we will commonly use consists of elaborate

protocols for specific functions such as authentication. As an example, a protocol

known as Kerberos has been developed for authentication. It is widely used, having

become almost a de facto standard. For example, as of Windows 2000, Kerberos

is the default authentication protocol. Designing such protocols so they are secure

is a very complex matter and a specialty in its own right. Using such secure protocols

allows us to be certain that we are communicating with the other party we think we

are communicating with. This mitigates most problems of having a third party insert

messages into the communication stream undetected.

374 Part 5 Networks, Distributed Systems, and Security

 16.4.1 Encryption

 Another class of algorithms has been developed for making sure that messages are

not subject to any of the three problems outlined above. These algorithms are used to

encrypt the messages between the systems in such a way that they cannot be easily

read by a third party. If they can’t be read, then they can’t be changed. Thus, encryp-

tion can eliminate or at least mitigate two of these three problems. Encryption takes a

message (often referred to as the plaintext) and uses a known algorithm to scramble

the message. A special number called a key is used with these algorithms. Unscram-

bling the received message will reveal the original message and is called decryption.

A schematic of this procedure is seen in Figure 16.6 . These algorithms rely on the

fact that when a third party captures an encrypted message it will be computation-

ally infeasible to decrypt the message without knowing the key. An interceptor could

theoretically try every possible key value in what is called a brute force attack. The

phrase “computationally infeasible” therefore means that it would take so long to

run the algorithm with all possible keys that the information would no longer be of

value once it is discovered. Unfortunately, the meaning of computationally infeasible

constantly changes. We know that the speed of processors doubles roughly every

18 months, so what was computationally infeasible 5 years ago may be easy now.

 We have been discussing encryption mainly in the context of message trans-

mission. But encryption also can be used in file systems. It can be very useful in

protecting information that is very sensitive in case the computer is stolen or lost. As

systems are becoming more and more portable, this can be a very useful feature. It is

Transmission Channel

Plaintext Encryption KeyAlice

Plaintext Decryption KeyBob

FIGURE 16.6

Encryption.

Insecure
Transmission

Channel

MessageAlice

Bob

Intercepting

Changing

Inserting

Message

FIGURE 16.5

Communication

threats.

 Chapter 16 Protection and Security 375

true for PDAs and cell phones as well as laptop computers. They have files stored in

RAM instead of in secondary storage, but they can often still be encrypted.

 Symmetric key encryption

 Sometimes the decryption uses the same key as the encryption. In this case the key

must be known only to the sender and the receiver (though there may be many receiv-

ers of a given encrypted message, and they must all know the key). Algorithms that

use such keys are referred to as symmetric, or sometimes as shared key or secret

key algorithms. Figure 16.7 shows how a shared key system works. The secret key

shared between Alice and Bob is shown as K A,B .

 There are several different algorithms for using symmetric keys. For many years

the standard algorithm used was DES, or data encryption standard, but it is no

longer considered secure. In 2001 a new algorithm known as AES, or advanced

encryption standard, was established. DES used a 56-bit key and AES uses a key

that is either 128, 192, or 256 bits long, depending on the needs of the user. When

AES was released, DES could be broken in a few hours by brute force with a spe-

cialized hardware system costing under $10,000. Breaking AES with a similar but

much faster machine would take 149 trillion years. One problem with using shared

secret keys arises when Alice and Bob do not know each other so they are reluc-

tant to exchange secret keys. An older method of solving this problem was to use

a trusted third party (TTP) to generate a key and send it to both of them. This

solution requires that both users really trust the TTP and also that the TTP always

be online and available. Today there are new protocols like Diffie-Hellman and RSA

that allow two users to dynamically generate a pair of keys like those discussed in

the next paragraph and exchange them over a nonsecure network.

 Asymmetric key encryption

 Other algorithms use a pair of keys that are generated together. One of the keys is used

for the encryption and the other is used for the decryption, so these algorithms are called

 asymmetric, or public key algorithms. There are two interesting facts about these algo-

rithms. The first is that one of the pair of keys can be known to the entire world. This

key will be called the public key. The other key will not be public and is therefore called

the private key. In fact, this usually is the case. How this works is seen in Figure 16.8 .

Bob’s public key is shown as K B ⫹ and his private key is shown as K B ⫺ .

 If Alice wants to send an encrypted message to Bob, she can use Bob’s public key

to encrypt the message. Only Bob knows the matching private key, so only Bob will

be able to read the message. Interestingly enough, it does not matter which key is used

Transmission Channel

Plaintext Encryption KA,BAlice

Plaintext Decryption KA,BBob

FIGURE 16.7

Symmetric key

encryption.

376 Part 5 Networks, Distributed Systems, and Security

for the encryption as long as the other is used for the decryption. Bob could encrypt a

message with his private key and send it to Alice. If Alice is confident that the public

key she has for Bob really does belong to Bob, then she knows the message really

came from Bob. (This assumes that the message can otherwise be validated by the pro-

tocol.) Another interesting fact about the use of public key encryption is that different

key pairs can be applied in any order. So Alice can encrypt a message with Bob’s pub-

lic key and then with her private key. Bob can decrypt the keys in the reverse order or

the same order. This property is used in some electronic commerce systems. There are

several algorithms for public key encryption, just as there were for secret key encryp-

tion. The standard for many years has been RSA, or Rivest, Shamir, Adleman after

the names of the developers of the algorithm. It is based on prime numbers and relies

on the fact that there are efficient algorithms for testing whether or not a number is

prime but no efficient algorithm is known for finding the prime factors of a number.

 16.4.2 Message digests

 In some circumstances we don’t necessarily want to hide the contents of the message.

We only want to make sure that it didn’t get changed. In such cases we can compute

a simpler, faster function known as a message digest or a hash. This function is

seen in Figure 16.9 . These functions chop a long message into short pieces (typi-

cally about 512 bits) and combine them with a one-way function—one that cannot

be easily reversed. The result is a message digest of a fixed length—usually about

128 bits. Two algorithms are presently in use, MD5, which produces a 128-bit hash,

Transmission Channel

Plaintext Encryption KB
+Alice

Plaintext Decryption KB
−Bob

FIGURE 16.8

Asymmetric key

encryption.

Plaintext

Alice Bob

EncryptionHash

Digest

Hash

Decryption

Yes =

Sender
Signed

Digest

Transmission
Channel

KeyA
− KeyA

+

=?

FIGURE 16.9

Message signing.

 Chapter 16 Protection and Security 377

and secure hash standard, or SHA, which outputs a 160-bit hash. MD5 is com-

monly used to validate files downloaded from the Internet via HTTP or FTP, espe-

cially for programs. The file is downloaded along with a message digest of the file,

commonly with an extension of .md5. Then a publicly available utility is run against

the downloaded file and a new digest is computed. If the new one matches the

downloaded one, then one can be assured that the file was not changed after it was

uploaded to the server and that the download also did not change it. Unfortunately,

MD5 is now known to be breakable with only modest amounts of computing power,

so it is mainly useful to ensure that a file was downloaded correctly.

 16.4.3 Message signing and certificates

 By combining a message digest with public key encryption Alice can effectively sign

a message electronically. Alice will take a message M and create a digest of the mes-

sage. She will encrypt the digest with her private key and send both the message and

the encrypted digest to Bob. Bob knows her public key, so he can decrypt the digest.

He can then run the publicly available digest algorithm on the message and compare

that computed digest to the decrypted one. If they are equal, then he knows (and can

prove) that Alice sent the message. This ensures that Alice cannot later repudiate the

message. Note that in order to prove this at a later date Bob must keep the message,

the signed digest, and Alice’s public key, since Alice might later change her public

key. Note also that Bob cannot change the message and still claim that Alice sent it,

so it also protects Alice against having Bob change the message.

 A special use of signing of messages is used to authenticate either clients or serv-

ers. This process produces a certificate that verifies identity. A special program is run

that produces a preliminary certificate. A bank would do this on their server. The pre-

liminary certificate is sent to a certificate authority, and the CA encrypts the certificate

with its private key and returns it to the requesting entity as a finished certificate. The

bank now installs this certificate on their server. The bank can now send this certificate

to clients to prove its identity. So when a browser tries to make a secure connection to

the bank’s server, the server will send back the certificate to the browser. The browser

can decrypt the certificate by using the public key of the certificate authority to verify

the identity of the bank. The public key of popular certificate authorities are built-in to

most browsers. So the browser decrypts the bank’s certificate with the public key of

the CA and the user now knows that the browser has really connected to the bank.

 We mentioned before that Alice can send Bob a message by encrypting it with

his public key. The problem there is that Alice must be sure that the key really is

Bob’s public key. The way that she can ensure that is for Bob to use a certificate

authority to sign his public key with their own private key. Alice can use the public

key of the certificate authority to open the key and verify that it is Bob’s key inside.

Messages signed electronically in such a way are legally admissible in court.

 16.4.4 Security protocols

 As we saw in the last chapter, network support is divided into several layers. Each

layer provides certain capabilities. An interesting question is, what layer in the proto-

col stack provides security? As it happens, security functions have been specified at

378 Part 5 Networks, Distributed Systems, and Security

several different layers. In the TCP/IP protocol used in the Internet, security has been

specified for both the Transport layer and the Network layer. If we are using 802.11

wireless networking, then there may also be encryption at the Data Link layer. In the

Transport layer security features are defined in a protocol called SSL, or secure socket

layer (also called TLS, or transport layer security). This protocol is commonly used

between Web servers and browsers for secure communication in combination with an

application layer protocol called HTTPS or secure HTTP. The server is authenticated,

as discussed in the last section, with a certificate assuring the client process that it is

talking to the correct server. The two entities will initially use their own public and

private keys for asymmetric encryption. They will then decide on a temporary secure

 session key and continue the session with symmetric encryption. Symmetric keys are

more efficient to use than asymmetric keys but repeated reuse of them is risky, so they

are commonly generated for a single connection and then discarded.

 Security is also available at the Network layer with a protocol known as IPsec,

or IP security. IPsec is a set of protocols developed by the IETF to support secure

exchange of packets at the IP layer. It supports two encryption modes: transport

and tunnel. Transport mode encrypts only the data inside the messages but ignores

the header. Tunnel mode is more secure since it encrypts both the header and the

message. IPsec uses shared public keys for both the sender and receiver. These are

exchanged by a protocol known as Internet Security Association and Key Man-

agement Protocol/Oakley (ISAKMP/Oakley) which allows the receiver to obtain

a public key and authenticate the sender using digital certificates. IPsec is more flex-

ible than TLS since it can be used with all the Internet Transport layer protocols,

including TCP, UDP, and ICMP, but is more complex and has processing overhead

because it cannot use Transport layer functions that increase security.

 Security is also available at the Application layer with a protocol known as PGP,

or pretty good privacy. PGP uses a public key system in which each user has a public–

private key pair. For creating digital signatures, PGP generates a hash from the user’s

name and other signature data. This hash code is then encrypted with the sender’s pri-

vate key. The receiver uses the sender’s public key to decrypt the hash code. If it matches

the hash code sent as the digital signature for the message, then the receiver is sure that

the message was sent by the stated sender and was not changed, either accidentally or

intentionally. PGP has two versions, one using RSA to exchange session keys and the

other using a Diffie-Hellman protocol. The RSA version uses the MD5 algorithm to

generate the hash code while the Diffie-Hellman uses the SHA-1 algorithm.

 16.4.5 Network protection

 There are several facilities that can be used in a network to improve security that are

not actually inside an OS, but we will discuss them briefly because they impact the

security features inside an OS. Actually, most of these facilities are applications that

run inside a dedicated computer.

 Most homes and organizations that run a local area network are connected to

the Internet at only one point (though some businesses have dual connections if they

can justify the cost of the extra reliability). This one connection is an ideal point to

inspect communication messages for various problems. The facility that provides

 Chapter 16 Protection and Security 379

this function is called a firewall. Normally, this function is embedded in the router

that connects to the Internet since the router is looking at the packets anyway. A typi-

cal firewall configuration is shown in Figure 16.10 . There are several functions that a

firewall can do. First, it can block certain types of connections altogether by looking

at the port numbers used by the connection requests. It can also inspect the insides of

the packets and disallow certain types of traffic—pings, for example. Some firewalls

also are configured to disallow traffic from IP addresses that are considered to be

unsafe or unsavory. Firewalls can be supplied with signatures, data patterns known

to be associated with specific attacks. They can also include a traffic monitor that

watches for patterns that indicate a significant deviation from normal traffic patterns.

This monitoring is also known as anomaly detection. Network protection systems

using signatures or anomaly detection are usually called intrusion detection sys-

tems (IDSs) and intrusion prevention systems (IPSs). The firewall in the figure

also shows a demilitarized zone, or DMZ. This military term in this case refers to a

separate network that can be accessed either from the outside network or the inside

network. This allows local staff to maintain the contents of servers located there and

still have those servers accessed from the Internet.

 One problem with firewalls at the network connection point is that not all machines

in the network need the same types of connections. While a large university with a

big UNIX server would likely want to allow Telnet sessions to be set up through the

firewall, it is not likely that a Telnet session is needed to a personal computer. There-

fore, it is common to also provide a firewall function in a personal computer that will

disallow such sessions. Interestingly, it often will be configured to disallow many

outbound connections as well as inbound connections since a common technique of

many viruses is to connect to rogue hosts to report purloined information. A local

firewall will be an application program rather than a part of the OS, but in order to

inspect the connections that are being requested and the traffic coming and going,

they will need to be able to insert their functionality in the protocol stack. This is an

unusual requirement for an application to make of a protocol stack, but OS designers

have learned of the necessity to provide it for this special class of applications. Thus

these programs are not only able to watch for text patterns in the messages but can

Public
Servers

Inside Network

“DMZ” Network

Firewall

Connections to
Outside Networks

FIGURE 16.10

A modern firewall.

380 Part 5 Networks, Distributed Systems, and Security

also monitor other system activity to detect behavior that is characteristic of viruses

such as accesses to certain system files not normally accessed by applications.

 16.5 SECURITY ADMINISTRATION

 There are several things that a system administrator must do to ensure the security of

the systems connected to a network. We have already discussed the need for a regular

backup system, firewalls, and traffic monitoring. In addition, several actions should

be logged and the logs reviewed regularly. First would be the log of failed login

attempts. A small number of failed logins will be normal—passwords should expire

from time to time, users will accidentally type something wrong or use a password

from another system, and so on. Any spike in the number of failed logins should

give cause for alarm as a likely indication of attempts at penetrating a system. Other

failures should also be logged and analyzed, such as a failure to find a requested Web

page on a Web server. Such errors may only show bad links, but close examination

might expose attempts at hacking the server.

 Some systems have substantially higher security requirements than do others. A

home personal computer probably needs little security beyond keeping out viruses

and hackers. A bank needs a higher level of security because of the money involved.

A hospital system charged with patient care probably needs still higher security

because problems with the system can literally be a matter of life or death for a

patient. A military system might need still higher security because a failure could put

millions of lives at risk. As a result, the National Computer Security Center (NCSC),

an agency of the U.S. government, has published a definition of four major levels of

security with some minor variants. With each higher level the OS must provide extra

features, many in the area of logging of activities. Needless to say, we don’t want to

load down the OS of a personal computer in a home with all the features necessary

for security on that military system. The lowest level is D, which has minimal secu-

rity. A system with this level of security might be used by any user in an office or

in a home. As an example of the increasing levels, the additional requirements (over

those required for C1) for a C2 rating are:

 ɀ Access control works on per user basis. It must be possible to permit access to

any selected subset of the user community.

 ɀ Memory must be cleared after use. The OS must ensure that disk space and

memory allocated to a process does not contain data from previous operations.

 ɀ The OS must be capable of recording security-relevant events, including authen-

tication and object access. The audit log must be protected from tampering and

must record the date, time, user, object, and event.

 Most commercial OSs today can easily operate at the C2 level. OSs that operate at

higher levels are generally specially designed for that purpose. For government pur-

poses, the security level of an OS must be established by an independent third-party

auditing firm. Furthermore, the certification applies only to a specific release of the

OS and a specific hardware configuration so generic certification by the manufacturers

is not often done at these levels.

 Chapter 16 Protection and Security 381

 16.6 SUMMARY

 Since computer systems are now accessible by many

users and are more often connected to the Internet,

it is necessary that the systems, the files therein, the

running processes, and the communications between

users and between processes be protected from harm,

either accidental or intentional. In this chapter we

discussed several facets of protection and security as

they pertain to OSs. First, we gave an overview of

system security problems. We classified some of the

security problems we see as a result of being con-

nected to the Internet and described how an OS needs

to deal with them, including mechanisms outside the

OS. Then we moved on to discuss the protection

services OSs offer to users, primarily in the area of

privacy of files. We described the general designs of

such services. The OS must also provide services for

processes. Significant barriers are erected between

running processes and the OS. We looked at some of

the services provided to processes that are communi-

cating with one another. Section 16.4 covered secu-

rity about networks, most specifically the Internet.

It discussed encryption, authentication protocol, and

message digests, and the related topics of network

security outside of the OSs. We covered problems of

administration of network and OS security.

 In the next chapter we take a look at special con-

siderations we must use when using OSs to create

systems that are distributed across multiple systems.

 BIBLIOGRAPHY

 Akl, S. G., “Digital Signatures: A Tutorial Survey,”

 Computer, Vol. 16, No. 2, February 1983, pp. 15–24.

 Denning, D. E., “Protecting Public Keys and Signature

Keys,” IEEE Computer, Vol. 16, No. 2, February

1983, pp. 27–35.

 Denning, D. E., “Digital Signatures with RSA and Other

Public-Key Cryptosystems,” Communications of the

ACM, Vol. 27, No. 4, April 1984, pp. 388–392.

 Dennis, J. B., and E. C. Van Horn, “Programming

Semantics for Multiprogrammed Computations,”

 Communications of the ACM, Vol. 9, No. 3,

March 1966, pp. 143–155.

 Farrow, R., “Security Issues and Strategies for Users,”

 UNIX World, April 1986, pp. 65–71.

 Farrow, R., “Security for Superusers, or How to Break

the UNIX System,” UNIX World, May 1986,

pp. 65–70.

 Filipski, A., and J. Hanko, “Making Unix Secure,” Byte,

April 1986, pp. 113–128.

 Grampp, F. T., and R. H. Morris, “UNIX Operating

System Security,” AT&T Bell Laboratories

Technical Journal, Vol. 63, No. 8, October 1984,

pp. 1649–1672.

 Hecht, M. S., A. Johri, R. Aditham, and T. J. Wei,

“Experience Adding C2 Security Features

to UNIX,” USENIX Conference Proceedings,

San Francisco, June 20–24, 1988, pp. 133–146.

 Kramer, S. M., “Retaining SUID Programs in a Secure

UNIX,” USENIX Conference Proceedings,

San Francisco, June 20–24, 1988, pp. 107–118.

 Lamport, L., “Password Authentication with Insecure

Communication,” Communications of the ACM,

Vol. 24, No. 11, November 1981, pp. 770–772.

 Lehmann, F., “Computer Break-Ins,” Communications

of the ACM, Vol. 30, No. 7, July 1987, pp. 584–585.

 National Bureau of Standards, “Data Encryption

Standard DES,” NTIS NBS-FIPS PUB 46,

January 1977.

 Needham, R. M., and M. D. Schoeder, “Using

Encryption for Authentication in Large Networks

of Computers, Communications of the ACM,

Vol. 21, No. 12, 1978, pp. 993–999.

 Organick, E. I., The Multics System: An Examination

of Its Structure. Cambridge, MA: MIT Press, 1972.

 Reid, B., “Reflections on Some Recent Widespread

Computer Break-Ins,” Communications of the ACM,

Vol. 30, No. 2, February 1987, pp. 103–105.

 Rivest, R., and A. Shamir, “How to Expose an

Eavesdropper,” Communications of the ACM,

Vol. 27, No. 4, April 1984, pp. 393–394.

 Rivest, R., A. Shamir, and L. Adleman, “On Digital

Signatures and Public Key Cryptosystems,”

 Communications of the ACM, Vol. 21, No. 2,

February 1978, pp. 120–126.

382 Part 5 Networks, Distributed Systems, and Security

 Rushby, J. M., “Design and Verification of Secure

Systems,” Proceedings of the 8th Symposium on

Operating Systems Principles, Vol. 15, No. 5,

December 1981, pp. 12–21.

 Rushby, J., and B. Randell, “A Distributed Secure

System,” Computer, Vol. 16, No. 7, July 1983,

pp. 55–67.

 Schell, R. R., “A Security Kernel for a Multiprocessor

Microcomputer,” Computer, Vol. 16, No. 7, July

1983, pp. 47–53.

 Silverman, J. M., “Reflections on the Verification of

the Security of an Operating System Kernel,”

 Proceedings of the 9th Symposium on Operating

Systems Principles, ACM, Vol. 17, No. 5, October

1983, pp. 143–154.

 Simmons, G. J., “Symmetric and Asymmetric

Encryption,” ACM Computing Surveys, Vol. 11,

No. 4, December 1979, pp. 305–330.

 Spafford, E. H., “The Internet Worm Program: An

Analysis,” Purdue Technical Report CSD-TR-823,

November 28, 1988.

 Wood, P., and S. Kochan, UNIX System Security. Carmel,

IN: Hayden Book Co., 1985.

 WEB RESOURCES

 http://ciac.llnl.gov/ciac/index.html (U.S. Department of

Energy, Office of the Chief Information Officer—

computer incident advisory capability)

 http://www.cert.org (Carnegie Mellon University’s

Computer Emergency Response Team)

 http://freshmeat.net (Web’s largest index of UNIX

and cross-platform software)

 http://www.ietf.org (Internet Engineering Task Force,

including all RFCs)

 http://www.linuxsecurity.com

 http://www.netfilter.org (packet filtering framework

for Linux)

 http://www.networkcomputing.com (networking

magazine with online edition)

 http://packetstormsecurity.org (nonprofit organization

of security professionals dedicated to securing

networks)

 http://www.redbooks.ibm.com (IBM publications

archive)

 http://www.tasklist.org (software to list all processes

running on a Windows system)

 http://tldp.org (Linux Documentation Project [LDP])

 http://www.usenix.org/publications/ (USENIX, the

Advanced Computing Systems Association)

 http://en.wikipedia.org/wiki/Identd (daemon program

for providing the ident service)

 http://www.windowsecurity.com

 REVIEW QUESTIONS

 16.1 Which is the larger problem, hackers or insiders?

Justify your answer.

 16.2 What characteristics of malware distinguish a virus

program?

 16.3 What characteristics of malware distinguish a

Trojan program?

 16.4 What characteristics of malware distinguish a worm

program?

 16.5 Briefly describe a buffer overflow.

 16.6 What is the purpose of the sandbox model?

 16.7 Authentication makes use of some special mecha-

nism to verify the identity of an entity. Most often

we are concerned with verifying the identity of

a user. Which of the following did we not say was

something that could be used to verify the identity

of a user?

 a. Something you have

 b. Something you see

 c. Something you know

 d. Something you are

 e. All of the above can be used to verify a user’s

identity.

 16.8 Once a user (or other entity) is authenticated, the

actions allowed by the user must be authorized.

We discussed two different mechanisms that are

often used to support authorization. The first was an

access control list. Briefly describe what an ACL is.

 16.9 What is a capability list?

 Chapter 16 Protection and Security 383

 16.10 Where should backup copies of data be stored?

 16.11 What is meant by the phrase “brute force attack”?

 16.12 How many key values are used in a symmetric

key encryption system?

 16.13 True or false? In a asymmetric key encryption key

system it is crucial for both of the key values to be

kept secret.

 16.14 If we are not particularly concerned about confi-

dentiality but we want to ensure that a message

that is sent is not altered by any party, what sort

of mechanism would we use?

 16.15 A certificate authority signs a user’s public key

with its own private key. How does a browser use

that to verify the user’s public key?

 16.16 What secure protocol is used on the Web for

HTTPS connections?

 16.17 What is a common mechanism for protecting a

network from an outside attack?

385

 In this chapter:

 17.1 Introduction 386

 17.2 Distributed Application Models 388

 17.3 Abstractions: Processes, Threads, and Machines 391

 17.4 Naming 394

 17.5 Other Distributed Models 396

 17.6 Synchronization 400

 17.7 Fault Tolerance 406

 17.8 Summary 409

 D
istributed systems are becoming very prevalent. We discuss Operating Systems

because they stand between our application programs and the hardware.

When we are developing a casual application there is no need to worry

much about the OS. But when we are developing high-performance applications we

need to have a better understanding of what is going on inside of the OS so that we

are working with the OS and not against it. So it goes with distributed processing.

As we will we see shortly, when we are developing systems designed to support a

large number of users we will often be compelled to develop distributed systems—

systems that have multiple parts running on different machines. Of course, we may

build an application that is distributed for reasons other than performance or scal-

ing, and in such cases we may still not need to know much about the details of the

OS as it pertains to distributed systems. But if our system is a high-performance or

high-volume application, we may still profit from knowing how the underlying ser-

vices work so that we can better utilize them and not do something that forces them

to do extra work for no purpose.

 This chapter starts with an introduction where we discuss a number of reasons

why this is so. It also introduces the notion of distribution transparency and why it

is important. Lastly, it introduces the concept of middleware and explains why it

evolved as it did. We then present a number of different models that are found in dis-

tributed systems, including both the client server model and more complex models

as well. Section 17.3 reviews the topics of processes and threads and discusses how

threads can be used in clients and servers to make distributed systems perform better.

 Distributed Operating Systems

 17 17 Chapter Chapter

386 Part 5 Networks, Distributed Systems, and Security

When processes in distributed systems communicate they need to refer to other

entities, so in Section 17.4 , we discuss the concept of naming and name spaces. In

 Section 17.5 we present some different paradigms for distributed systems, including

remote procedure calls, distributed objects, and distributed documents. We discuss

synchronization in Section 17.6 because distributed systems have special issues con-

cerning synchronization that make them different from monolithic systems. Then

in Section 17.7 we present the topic of fault tolerance and the special problems dis-

tributed systems have regarding failure of one component in a system that otherwise

continues to run. We conclude with a chapter summary in Section 17.8.

 17.1 INTRODUCTION

 There are many reasons why we may need to develop systems that are distributed.

We discussed many of them at some length in Chapter 9 with regard to cooperating

processes, so we recap them briefly here:

 Performance. Systems running on multiple machines have more CPU time and

other resources to apply to the problems. Some processes need a lot of power

just for a single processing run—simulating weather systems, for example.

 Scaling. Multiple systems means more transactions can be processed in a given

amount of time.
 Purchased components. Many times it is much cheaper to buy a system compo-

nent than it is to develop it in-house. Sometimes it is developed in such a way

that it is essentially only available as a standalone process and may really need a

separate system to run on.

 Third-party service. Sometimes an application component requires access to

special databases that are not themselves for sale, so the component is only

available as an online service (e.g., credit verification).

 Components of multiple systems. Often a component is developed in one sys-

tem but later is needed as a component in other related systems. In such a case it

may be better to isolate that component on a dedicated machine.

 Reliability. When a system has only a single instance of some component, fail-

ure of that component can cause the entire system to stop. Having multiple

instances of each component allows the larger system to keep running, though

perhaps with degraded performance.

 Physical location of information. If a system is supporting multiple physical facil-

ities it may be desirable for parts of the system to be collocated with the facilities.

Consider a warehouse inventory system supporting multiple warehouses where

the bulk of the transactions are applied to a local database but connectivity is

needed for a few transactions that have to be serviced out of another warehouse.

 Enable application. Some applications require so many resources that they

 literally could not be executed without a highly distributed system. SETI

(Search for Extra-Terrestrial Intelligence) takes vast amounts of radio telescope

and searches for patterns that might indicate an intelligent origin. They divide

it into small data sets to distribute them to volunteers who process them via a

screen saver. Otherwise, they literally could not process this data.

 Chapter 17 Distributed Operating Systems 387

 There are several goals that we ideally would like for distributed systems to have. First,

they should connect users and resources. (Note that in this context a “user” may be another

process.) Second, the systems should exhibit distribution transparency. Ideally, a user

should not be able to tell that the system is distributed. There are several different ways

that a user might notice a lack of transparency. These include transparency of:

 Heterogeneity. Different system parts may be running on different hardware

systems or different OSs or both

 Access. Differences in data representation and access (floating point number

formats vary from machine to machine)

 Location. Where a resource is located (Web pages can be anywhere)

 Migration. Whether a resource can move (scripts sent to your browser by a server)

 Relocation. Whether a resource moves while it is in use (your cell phone)

 Replication. Resource is replicated (Google data servers)

 Concurrency. Resource may be shared by many users (websites)

 Persistence. Whether a resource is maintained on disk or in RAM

 Failure. Whether a resource fails while in use (the Internet routes around failed

links)

 A key aspect of distributed systems is that they depend heavily on open standards

to achieve most of the desired transparency. Many standards exist in the computer

science industry. Some are proprietary and some are open. Proprietary standards are

usually not as useful in distributed systems because it is too difficult for different ven-

dors to test the components for interoperability. Thus, many OS facilities developed

for distributed systems by a single vendor are often eventually placed in an open sta-

tus so that other vendors can test their systems for interoperability. Examples include

NFS (Network File System) by Sun Microsystems and CLR (Common Language

Runtime) by Microsoft.

 Most OSs have not traditionally supported many of the services that distributed

applications need. As a result, these services have developed in a category called

 middleware. As seen in Figure 17.1 , middleware modules are placed functionally

between the OS network services and the application programs. Thus, the OS and

Application

User
Mode

Supervisor
Mode

Middleware

Network
Services

Kernel

System 1

Application

Middleware

Network
Services

Kernel

System 2

 FIGURE 17.1

Middleware service

layer.

388 Part 5 Networks, Distributed Systems, and Security

the network modules provide services to the middleware but are otherwise ignorant

of any distinction between the middleware and the application. The network ser-

vices may be quite independent from one another, communicating via open network

 standards. The middleware modules also communicate via open standards, but by

definition they cooperate to provide services that cross system boundaries.

 17.2 DISTRIBUTED APPLICATION MODELS

 Systems comprised of processes running on separate machines obviously need to

communicate. There are several models that have been developed to describe the

interactions between these components. We are describing the following models: a

client–server model, a three-layer model, a multilayer model, horizontal distribution,

and vertical distribution.

 17.2.1 The Client-Server Model

 The client–server model is shown in Figure 17.2 . It is so well known that it almost

needs no explanation. A client system needs a well-defined service so it contacts a

server, which will provide that service. The main question we might need to answer

in designing a client–server model is how much of the function of an application

should be in the client and how much in the server. At one extreme the application

will run on a central system and the client will be little more than a terminal. This

model is sometimes referred to as a thin client. In other cases the application will

run mostly at the client station and the server will provide only a very limited service

such as a database to hold the information used by the application. There are many

hybrid models that can be used as well. We elaborate more on this in the next sec-

tion, since the principle is the same there, only operating in more layers.

 17.2.2 The three-layer model

 After a few years of working with the client–server model it began to be clear that

there were really three major functions that were easily identifiable in most systems:

the user interface, the application logic (sometimes called business rules), and the

 database storage. The model for this architecture is shown in Figure 17.3 . This extra

division probably came about because database systems began to evolve themselves,

and it was clear that building such facilities separately for each application was not

economical.

Request

Response

Client
(Browser)

(Web)
Server

 FIGURE 17.2
 Client–server

architecture.

 Chapter 17 Distributed Operating Systems 389

 As with the client–server model, there are many variations that we can have in

the three-tier architecture. The user interface can be very simple, perhaps only an

X- Terminal in the UNIX environment. In other environments a Web browser on a

personal computer may provide a simple way to have a GUI presentation for an appli-

cation. In such an environment we can send a page from a Web server that contains

a form for the user to fill in for the application. The user fills in the form and clicks a

button on the form. This click will cause the browser to submit to the server the data

the user input into the form. The server will check the data, and if all is OK the server

will process the request and return some result. But we can improve the performance

of such a design by moving some of the processing to the client side. When a user is

inputting data into a form to record some business event, if a detectable error is input,

the sooner we catch it and get the user to fix it, the better. For example, if we are expect-

ing a field to contain a date and the user enters some alphabetic information (other than

a month name), then the system should reject it. If we wait until the user has submitted

the form and sent it to the server and we send an error message back to the user, we

have separated the feedback from the input by quite a few steps, and this will render it

less effective. It also disrupts the thought process of the user, who has mentally moved

on from this transaction, thinking it to be already complete. It would be much better

for the application to check the format of the data at the time the user moves the focus

from the date field. Considerable design effort usually goes into deciding what check-

ing can be done on the client side and what should be done on the server side.

 Other features can also be moved to the client side. For example, because com-

munication costs can be high or the network connectivity unreliable, it may be useful

to allow the client side to do a considerable amount of data collection in an offline

configuration and submit the transactions to the server later when the server or the

connection is again available.

 The third tier, data storage, is usually provided by a packaged database man-

agement system. Often these systems do little more than provide a higher-level file

 system that supports very reliable storage and retrieval of data in normalized tables.

In other cases the database systems are used to run part of the system logic by execut-

ing procedures stored in the database, improve data validity by verifying referential

integrity, summarizing data for reports, and so on.

 17.2.3 N-tier applications

 The three-tier model is often extended to N-tiers. This is sometimes called vertical

distribution and is done when an application can conveniently be broken into several

parts. An illustrative example is the architecture of the Google search engine, as shown

Request

Response

Client
(Browser)

(Web)
Server

Lookup

Reply

Database
Server

 FIGURE 17.3

Three-layer model.

390 Part 5 Networks, Distributed Systems, and Security

in Figure 17.4 . It is broken into several portions. Although there is no detailed descrip-

tion of the architecture available, enough has been published to illustrate the point.

 There is a front-end process that receives the request and parses it into separate

words. Another server may be queried for spelling corrections. The front-end server then

takes those words and passes them on to other servers, each of which is responsible for

a database of indexes of Web pages that contain a given word. These servers pass a set

of those pointers on to another server, which merges the sets of pointers to create a set

of pointers to pages that satisfy the entire search. Usually such searches contain all the

words in the query, but other forms of query are possible. Another server is queried that

pulls advertising from a database, selecting ads that are related to the search terms or

to other searches that this user has made in the past. The pages are ranked to determine

their probable relevance to the user, and the pointers are used to fetch the cached pages

from other servers so that short snippets of the referenced page can be merged into a

Web page that is then returned to the client’s browser. Thus, we see at least five different

tiers in this application. Though they may not be tiers in a strictly vertical sense, they

are interacting components, which are separate servers serving many clients.

 17.2.4 Horizontal distribution

 We also see another paradigm being used in the Google setup in two different ways—

 horizontal distribution. We mentioned that the database is distributed across a group

of servers, each of which is responsible only for pages that contain a given individual

word (or set of words). This arrangement is a type of distributed database, where

part of the information is contained on one server and part on another. In addition,

the servers that Google uses are inexpensive PCs, not high-performance machines.

Exact figures are unknown, and estimates vary, but a research organization estimated

Request

Response

L
o
o
k
u
p

R
ep

ly

Lookup

Reply

Lookup

Reply

L
o
o
k
u
p

R
ep

ly

Client
(Browser)

(Web)
Server

Index
Servers

Document
Servers

Ad
Server

Spell
Checker

 FIGURE 17.4

Google system

architecture.

 Chapter 17 Distributed Operating Systems 391

that they had one million servers in mid-2007 and were adding more at a rate of

100,000 per quarter. Google expects that servers are going to fail. Accordingly, each

of those servers that handles documents containing a specific word is actually several

servers—at least three in a given Google network node. Furthermore, the word data-

bases are replicated in at least three geographically distributed nodes in order to limit

failures due to a disaster in a center containing a node. This is known as a replicated

database. The Google databases are therefore both distributed and replicated.

 But it is also the case that each of those other servers that we mentioned before is

not a single server. No server in the world could possibly keep up with the number of

search requests that Google gets per hour. Instead, the network is designed such that the

requests are passed out among a group of essentially identical search engines. There

are many instances of the advertising and spelling check servers as well. The entire

system is designed to route around any failed node and use another instance of the data.

Thus, all the various server functions are replicated, just as the database servers are.

 17.3 ABSTRACTIONS: PROCESSES, THREADS, AND MACHINES

 Processes are an abstraction that an OS uses to virtualize the CPU so that a running

program does not need to be aware that it does not actually control the CPU. In order

to have a system do more work on a single application we can have a process create

other processes that will also run and thus get additional turns at the CPU. However,

switching from one process to another requires a context switch on a uniprocessor

system, and context switches cause a serious dip in performance of the system. All

the caches must either be flushed, most specifically the TLB, which is caching page

table entries, or will not find any cached entries until the new process has run long

enough to reload the cache from the new process. This will also cause slowdowns

because of the TLB misses, which must be handled until the TLB is reloaded to

 represent the full working set of the process that is being started.

 As a result, threads were developed. They arose from the recognition that the

state information held in a process control block really had two parts. One part rep-

resented the many resources currently being held by the process. The other part held

the actual CPU state regarding the current point of execution of the CPU (for any

process that was not actually running). Storage for the latter part could be duplicated,

and the second block could then track a different point of execution of the CPU within

the same process. So a program could effectively ask the OS to allow several parts

of the process to continue to run while other portions were also running, so long as

those parts could communicate and synchronize their operations. This allowed one

program to have several parallel points of execution without incurring the penalty of

context switching.

 17.3.1 Threads

 There are several ways threads can be used beneficially in distributed systems. In

client systems threads can be used to allow processing to overlap with asynchronous

communication. A primary example is in a Web browser that is running the HTTP

392 Part 5 Networks, Distributed Systems, and Security

protocol version 1.0. In this earlier version of the protocol a browser first fetched the

base page of a document. It scanned the document for embedded elements and then

had to make a separate connection to the server to fetch each of the other elements,

one after the other. So a browser using this protocol could start separate threads for

the retrieval of each element rather than fetching them one by one. This sped up the

process considerably. Similarly, a client that was making a long set of remote proce-

dure calls (RPCs) could make each call in a separate thread so long as the result of

one call was not required in another call.

 Servers can also make good use of threads. The primary use here is to process

each incoming request in a separate thread. Initially, the system starts a primary or

 dispatcher thread, which listens for incoming requests. When a request comes, the

primary thread will start a worker thread to process the request. This design has

the added benefit of program simplicity. Assuming that we are using kernel-level

threads, if the worker thread makes a blocking kernel call, for a disk read, perhaps,

then that thread can simply block and the rest of the server can continue. Each thread

proceeds through a series of (usually) simple steps to process the request, return the

result, and terminate. See Figure 17.5 .

 17.3.2 Virtual machines

 Virtual machines are another level of abstraction—virtualizing an entire machine

rather than only the CPU. There are two different sorts of virtual machines, or VMs.

This is an unfortunate overloading of the acronym VM since it is also used to refer to

virtual memory, but the distinction is normally clear from the context.

 Physical virtual machines

 First, there is the concept of a virtual physical machine. A small OS kernel is loaded

that will in turn execute other OSs on top of itself. The OS that is loaded first is

the host OS. These other OSs will be known as guest OSs. The basic trick is that

when a host OS loads the guest OSs it runs them in user mode. Whenever a guest

OS tries to execute any operation that would normally require supervisor mode, the

hardware will cause an interrupt that the host OS will receive. Then the host OS will

do the operation, and when the results are ready will return them to the guest OS.

Request

Response

Client
(Browser)

(Web)
Server

Dispatcher
Thread

Worker
Thread

Worker
Thread

 FIGURE 17.5

Multithreaded server.

 Chapter 17 Distributed Operating Systems 393

See Figure 17.6 . There are several reasons why it can be useful to run multiple OSs

on the same machine at the same time. As far as distributed processing goes, the main

reason is to consolidate several servers onto one system. Building a server that is very

reliable and high performance and placing it in a secure location is quite expensive.

Often a server purchased today will be much more powerful than is actually required

to run the service. Using VM allows several servers to be consolidated. This can save

money on hardware since one larger server can replace several smaller ones, using

less power and air conditioning. It is especially useful if the servers were running on

different OS platforms, but even if they were running on the same OS, the VM can

run multiple copies of any guest OS. This would seem strange, but it helps isolate the

server functions since a crash of one guest cannot impact any other guest.

 Abstract virtual machines

 The other sort of virtual machine is an abstract virtual machine that is a software

simulation of a machine designed to run some intermediate language. The primary

examples are the Java virtual machine, or JVM, developed by Sun Microsystems

and the Common Language Runtime, or CLR, developed by Microsoft as part

of the .NET system. These are used widely in distributed processing, primarily for

three reasons: code mobility, code portability, and security. Mobility allows a com-

piled program to be downloaded from a server to the client to be run locally. This

happens when a Java applet is downloaded from a server to run in a client browser.

The client browser contains an implementation of a Java virtual machine, so the Java

program could be copied from the server and run at the client. This could be for any

of the reasons we mentioned earlier. Code is more portable when run in a virtual

machine because the virtual machine can be ported to any hardware and platform.

This assures a software vendor a wide market because the target machine is virtual.

Since the JVM may be running in a browser in the client we have some risk that the

Guest
OS
1

Host OS

Guest
OS
2

Guest
OS
3

 FIGURE 17.6

Physical virtual

machine.

394 Part 5 Networks, Distributed Systems, and Security

downloaded applet might present a security problem. So, as a default the browser

will be very restrictive about what it will let the applet do—inhibiting accessing of

the local hard drive, for example. Usually the client browser can be configured to

show that certain sites are to be trusted—the client company headquarters, perhaps,

and code from these sites will be allowed to do some of these things that would not

otherwise be allowed. As an alternative to execution in the browser’s virtual machine

simulation, the program may be compiled into the native machine code of the target

machine in an operation called just-in-time (or JIT) compilation.

 17.4 NAMING

 Distributed applications require communication between the various processes involved.

When the processes communicate they need to refer to other entities such as files, sock-

ets, records, users, and so on. References to entities can take several forms. We will need

to distinguish between names, identifiers, and addresses. Names denote entities. Users

have names. So do computer systems—for example, webserv.example.com. Names can

be reused, so it would be possible for the example domain to replace the system cur-

rently called webserv with another system and call the new one webserv. This is espe-

cially likely with servers of any kind. Many other entities we might wish to access also

have names. Names are not necessarily unique. Therefore, we create true identifiers.

An identifier is generally issued by some authority. Identifiers are never reused and are

never duplicated so they always refer to the same entity. Examples include a Social

Security Number for a user or a burned-in MAC address for a network interface card

(NIC). Finally, addresses denote access points for entities. Examples include a phone

number, an IP address, and a socket (or port), which addresses a specific process or

thread within a computer system.

 Passing references within a single system is usually simple because the sys-

tems share a common frame of reference. Thus, for most platforms a simple file

name without any other surrounding context will first be assumed to be in the cur-

rent working directory. Failing that, a series of alternative directories is used. This

set is usually specified in some global set of values defined for the system or for a

given user. On Microsoft OSs these are called environment variables. One of them

is known as the path. The path is the series of directories that the OS will search to

find a file with no path name. Together these alternatives make up a common frame

of reference in which a file name will have meaning. All the processes on the system

share this reference frame.

 Passing references to entities within a single system is usually not difficult

because of that common frame of reference. However, distributed systems are much

more complex. This is one of the problems caused by the heterogeneous nature

of distributed systems—they do not share a common frame of reference. In order

to provide common frames of reference the industry has established some global

reference frames, often called a name space. Name spaces are organized collec-

tions of information in which a name can be located. The primary example is the

 domain name system, or DNS. The DNS is a hierarchical name space defined by

the Internet naming authority, or INA. It is very simple for a process that has

 Chapter 17 Distributed Operating Systems 395

been passed a DNS name to look it up and find an IP address that corresponds to

the name. Usually the process will have a socket number to use with the IP address

and that concatenated pair of numbers identifies a particular software entity in the

addressed system.

 17.4.1 Discovery services and Jini

 Jini™ (pronounced like genie) is a middleware design for dynamically creating

 distributed systems. It is an open specification that enables developers to create net-

work services, either hardware or software, that are highly adaptive to change. This

design specifies a means for clients to find services on the network and then to use

the services to accomplish a task. Providers of services send to clients Java objects

that furnish the client access to the service. This interaction can use any middleware

technology because the client only sees the object and all network communication is

confined to that object and the service it accesses.

 When a service joins a Jini-enabled network it advertises itself by publishing an

object that implements a well-known service API. A client finds services by looking

for an object that supports the API it wants to use. When it finds the service’s pub-

lished object, it can download the code it needs to talk to the service.

 17.4.2 Directory services, X.500 and LDAP

 Directory access protocol (DAP) is a network standard specified by the ITU-T and

ISO for use with an X.500 directory service. It was intended to be used by client

computers but was not successful because there were few implementations of the

OSI protocol suite for personal computers. The basic operations of DAP were incor-

porated in Novell Directory Service (NDS) and later in the lightweight directory

access protocol (LDAP).

 LDAP was intended to be a lightweight alternative for accessing X.500 directory

services and can run over TCP/IP. The intent of LDAP was that a client could access

X.500 services through an LDAP-to-DAP gateway. But instead LDAP directory

servers quickly sprang up. LDAP has become extremely popular in enterprises. It

is the default directory services for Windows XP and is also usable with most other

OSs today. It includes an authentication protocol that is quite robust so that accessing

distributed services is quite secure.

 17.4.3 Locating mobile IP entities

 Devices that are communicating over the Internet using IP have a special problem if

they are mobile. The problem arises because part of the IP address of a node specifies

the network where the node is connected. If the node moves to a different network,

then the IP address should change. But the TCP connectivity model and most other

protocols are not designed to allow for a change in the IP address during a session. So

tracking a mobile IP entity is quite difficult. Mobile IP is most often found in wire-

less environments where users move their mobile devices across multiple networks

as they move from home to school to work.

396 Part 5 Networks, Distributed Systems, and Security

 A protocol suite for Mobile IP is defined by RFC 3344. A node that is going

to use mobile IP will have an IP address called its home address. It will register

with a server on its home network called a mobile IP home agent. When the node

moves to another network it will be given an IP address on the new network. This

will be called the care-of address. It will then search for a server called a mobile

IP foreign agent. It will tell the foreign agent where its home agent is. The foreign

agent will connect to the home agent and the home agent will store the temporary

new IP address in a database and will register itself locally with that IP address. A

host that needs to communicate with the mobile node initially connects to the home

address of the node. The packets are received by the home agent and it forwards the

packets to the mobile node’s care-of address with a new IP header. The original IP

packet is left inside the new packet. The mobile IP software in the node will strip off

the outer packet header and deliver the inner packet to the application software in the

node. This process is known as tunneling. The application software does not need

to be aware that it is running in a mobile environment (i.e., the middleware provides

mobility transparency).

 17.5 OTHER DISTRIBUTED MODELS

 We discussed the client–server model and several variations on that model. But there

are other models that are also useful in distributed systems.

 17.5.1 Remote procedure call

 Often an existing monolithic system needs to be modified to become a distributed

system. One model for dividing an existing process is to remove subroutines from

the existing application and run them on a separate server. This is called remote

 procedure call (RPC). It is a useful technique because it involves a component

model that programmers are already familiar with. In principle the idea is simple—

take a subroutine out of a running system and put it on a server. Replace the removed

routine with a new subroutine called a client stub that knows the subroutine is

somewhere else and invokes the RPC middleware to find it and call it. The model

for this process is shown in Figure 17.7 . But this process is complicated by the

possible heterogeneous nature of distributed systems. RFC 1831 that defines RPC

assumes that the systems are heterogeneous. This means that the parameters being

passed to the subroutine must be converted to the format of the server that is running

the subroutine, and the answers must be converted the opposite way on the return.

This process is called marshalling and unmarshalling. On the server system there

will be another stub. This server stub takes the place of the original program in that

it calls the subroutine. It receives the message from the client system, unmarshals

the arguments into the formats required by the server platform, calls the subroutine,

marshals the returned arguments, and packs them into a message to send back to the

client stub.

 Since the client system does not know what platform the server system is run-

ning on, the client stub converts the arguments into an intermediate form called

 Chapter 17 Distributed Operating Systems 397

eXternal Data Representation (XDR), which was defined in RFC 1832. This

 intermediate format is platform neutral and allows us to represent any data in a

 standardized, platform-independent format. An implementation of RPC for a given

platform must define the mapping from the XDR formats to native platform formats.

 When a subroutine is removed from a program, the client stub must be substi-

tuted for it. Creation of the stub starts with a language called an interface descrip-

tion language, or IDL. Most IDLs are similar to C. The stub is used to declare the

nature of the arguments to the removed routine. Once the interface is described in

IDL, an IDL compiler that is specific to the client platform and source language is

run against the description. It will produce two things—a header file that will be

inserted into the original program to describe the missing routine arguments and a

separate source program that should be compiled, which will become the client stub

routine. This process is shown in Figure 17.8 . The object form of this routine will be

linked with the original application to produce the modified application. The IDL is

 FIGURE 17.7

Remote procedure

call model.

Request

Response

Original
Program

Original
Subroutine A

Original
System

Original
Program

Stub for A

Original
Subroutine A

Stub for Caller

RPC Client
System

RPC Server
System

Original Program

Stub

IDL
Language
Compiler

IDL
Interface

Description

System

Header
File

Stub
Code

 FIGURE 17.8

Creation of an RPC

stub.

398 Part 5 Networks, Distributed Systems, and Security

standardized, so the same IDL file can be used on the server platform to produce the

server stub and the modified routine that the stub will call.

 As was mentioned earlier, RPC is defined by an RFC. This specification is then

implemented in specific packages. In this case there is a fairly standardized imple-

mentation called the distributed computing environment (DCE) that was created

by the Open Group (i.e., the Object Management Group , or OMG) as an open

source project. Individual system manufacturers are certainly able to produce their

own implementations, but using this source has the advantage of producing a pack-

age that has been rigorously tested already. The Open Group is an ad hoc group

consisting of over 800 organizations.

 17.5.2 Distributed objects

 A model that is very similar to RPC is that of distributed objects. The techniques

are very similar, but objects are more complex than subroutines. The naming of the

 components is a bit different. The stub on the client system is known as a proxy and

the stub on the server side is called a skeleton. One additional component usually

found on the server side is an object adapter. Its function is to enforce some admin-

istrative restrictions on how the object is invoked. There are several such restrictions,

but the most common one is a serializer that restricts the object to one invocation at

a time unless the object is known to be thread safe.

 As with RPC, distributed objects are defined by a specification and then imple-

mented in a specific package. One of the main standards for distributed objects is

known as the common object request broker, or CORBA. This standard is also

defined by the Open Group. In this architecture the middleware layer itself has a

specific name—the object request broker, or ORB —pronounced “orb.”

 17.5.3 Distributed documents

 Another model that is used in distributed processing is that of distributed documents.

The most well-known instance of this model is certainly the World Wide Web

(WWW). Originally the WWW was created as a mechanism for providing easy

access to research papers related to atomic energy. It included a technique for refer-

encing other papers called hyperlinks, though this was a concept that was not in itself

new. Links could also be imbedded in the text document to reference graphics files

that contained figures from the paper. Of course, today that model has grown wildly

and is much more complex than that of a document. In fact, we normally speak of

Web “pages” rather than documents. The idea today is that a Web page should only

include a few thousand words at the most, and should link to other pages as needed.

Web pages now include links to other multimedia elements such as sound and movies

and forms that can allow a user to input information and interact with an application

running on the server. More importantly, pages can now include programmable ele-

ments such as scripts and applets. It is possible to develop very sophisticated appli-

cations using the tools that were designed to create Web pages. The big advantage

of such an interface is that the client only needs a browser to access the functions

of the application. In theory this means that application Web pages can be accessed

 Chapter 17 Distributed Operating Systems 399

not only with a personal computer, but also with PDAs and cell phones. There are

difficulties in such use, primarily based on the speed of the access and the smaller

screen sizes. Most websites today are designed with an assumption of a fairly large

user screen and a fairly fast connection.

 Another less well-known system that uses a document model is Lotus Notes. It

is a highly sophisticated application that exposes libraries of notes on various topics.

Some topics are automatically pushed to all users as with email. Others are only

accessed as the user requests them. There are not a great many institutions that are

users of Lotus Notes, but they tend to be large organizations with many users, so

the system merits at least a mention in any discussion of distributed systems using a

document model.

 Other systems that also use a document model include Internet E-mail and

 Network News. Each works in a different manner to distribute information to clients

in specific ways using both push and pull protocols.

 17.5.4 Distributed file systems

 File are a concept that all programmers and most users understand, so naturally

many systems have been developed that allow distribution of services by connecting

the machines through the file system somehow. In Chapter 7 we mentioned the NFS

model and we examined it more closely in Chapter 13, so we will not repeat that

discussion here. NFS allows directories on a remote machine to appear to the local

system as though they were local, providing location transparency. It was developed

by Sun Microsystems in the UNIX arena, so it is also now available in the Mac OS X

and Linux OSs. Microsoft also provides optional NFS client and server support with

higher-level versions of its NT OS family.

 Microsoft offers a similar service known under various names— common

 Internet file system (CIFS) and server message block (SMB). These are similar to

NFS. Compatible clients and servers have been developed through reverse engineer-

ing for non-Microsoft OSs. These are known as Samba.

 Both NFS and CIFS require that a nontransparent connection be made from

the client to the server. Other systems have been developed that intend to make this

part of the process more transparent. For example, Microsoft has a system called

 distributed file system (DFS). It is used to build a hierarchical view of file servers

and shared directories that can be given a unique name. Instead of having to link to a

bunch of different names a user will only have to remember one name. DFS supports

replication of servers and routing a client to the closest available file server. It can

also be installed on a cluster for even better performance and reliability.

 Other distributed file systems exist that are less widely used. In particular these

include the Andrew File System (AFS) and CODA, both developed at Carnegie

Mellon University. AFS was designed to give each client workstation a homoge-

neous, location-transparent file name space. CODA is a newer product with an

emphasis on fault recovery and disconnected operation (mobile computing). These

systems are supported only in UNIX and derivative OSs.

 The design of the Google search engine is also heavily dependent on a dis-

tributed file system architecture. They rely on triple redundancy in all systems.

400 Part 5 Networks, Distributed Systems, and Security

Unfortunately for us the design is proprietary and not much detailed information is

available.

 17.6 SYNCHRONIZATION

 Systems divided into multiple parts need to synchronize their actions, as we saw in

Chapter 9. Distributed systems need to work even harder to enable synchronization.

We will discuss several mechanisms for distributed clocks, synchronization, mutual

exclusion, coordinator election, and concurrency control.

 17.6.1 Clocks

 In many distributed algorithms it is necessary to know the order of events. If two

people make a withdrawal from a bank account at the “same time,” we want to honor

the first one before the second. Unfortunately, the speed of light limits the transmis-

sion time from one system to another. So even if two events do happen at the same

time it is impossible to know this until sometime later. Among other things, it makes

it virtually impossible to be sure that the clocks on two systems are synchronized.

Fortunately, we often don’t really care about the actual time that two events took

place. We merely care about the order of the events. This makes the problem some-

what simpler. What we really need are logical clocks. The idea behind logical clocks

is that there is some set of events for which we are worried about the order in which

they happened. So in each system, whenever one of these events happens we incre-

ment a counter. We associate the value of the counter at that time with that event,

calling it a timestamp. This becomes the logical clock by which we will order the

events. For two events, if the timestamp of one event is less than the timestamp of the

other, then we say that the first happened before the other.

 There is one other step that we must take in a distributed system. We must also

be concerned about messages between processes. We will want to assert that the

event of sending the message happened before the event of receiving the message.

We associate a timestamp with the sending of a message to another process, and we

send that logical clock value with the message. Then when the message is received

the receiving system will check the clock value that came in with the message. If that

clock value of the incoming message is greater than the logical clock at the receiving

process, then the receiving process will set its own clock to the value of the clock

in the incoming message plus one, accounting for the event of the message arrival.

Otherwise, it will simply add one to its own clock to account for the arrival. This

mechanism is called Lamport timestamps.

 Unfortunately, what we need is sometimes a bit more complex than this. Often

we need to know what events at other systems might have had an effect on the event

being described by an incoming message. The mechanism for keeping track of

the timestamps of all processes in a distributed system is to attach to each event a

 vector of timestamps. The index of the vector is a number assigned by the distrib-

uted system to each process, and the value of the i’th item in the vector is the latest

time stamp we know about from that process. When messages are sent, rather than

 Chapter 17 Distributed Operating Systems 401

 sending the value of the local event counter as a timestamp, the entire vector of

 timestamps known by that process is sent with them. The receiving system updates

the information in its own vector with the corresponding elements of the vector with

the incoming message when they are greater than its own.

 17.6.2 Mutual exclusion

 When two processes are cooperating they often need to synchronize access to shared

data in order to avoid conflicting updates. This part of synchronization is called

mutual exclusion, and in each process it involves a section of code called the critical

region in which it is updating the shared information. As we discussed in Chapter 9,

this usually is implemented through semaphores, which are locked and unlocked.

This works fine in a system running on a single processor, since the OS can coordi-

nate the locking and unlocking, as we saw. But when the processes are running on

separate systems, there is no single OS to do the locking and unlocking. Two differ-

ent approaches have been developed for locking and locking in distributed systems:

using a centralized lock server and using a distributed algorithm. Using a central

server is fairly straightforward. A central server is created and all lock and unlock

requests are sent to the server, as is shown in Figure 17.9 . It operates on a first-come,

first-served basis.

 But a centralized server is a single point of failure and a potential perfor-

mance bottleneck, so a distributed algorithm is sometimes used instead, as shown

in Figure 17.10 . In this algorithm a process desiring to enter a critical section will

ask permission of all the other processes, including a logical clock timestamp in the

requests. If a process receiving a request does not currently want access to its related

critical section, then it will grant permission immediately. If that process does wish

to access the critical section, then it will compare its own timestamp with that of the

incoming request. It will grant the request if the timestamp of the request is earlier.

Otherwise, it will not grant the request until it has finished its own use of the critical

section. In Figure 17.10 all three clients want to access a related critical section in

their processes. Client 3 sends a message to all the other clients with a logical clock

Client 1

Yes

No

Lock
Request

Lock
Request

Client 2

Lock
Server

 FIGURE 17.9

A centralized lock

server.

402 Part 5 Networks, Distributed Systems, and Security

value of 157. Client 1 has a logical clock value of 155, so it will delay giving lock

permission to client 3 until it has completed its own access. Client 2 gives client 3

permission since the request from client 3 had a lower clock value than its own. (The

requests from clients 1 and 2 are not shown.)

 17.6.3 Election

 If a distributed system is using a centralized server function such as the lock server

that was mentioned in the last section, then one design decision that needs to be

made concerns the question of how it was determined that this server would perform

that function, assuming that any of them could do so. Similarly, in some algorithms

we will have one process that will be the coordinator of the algorithm. In most cases

a server (or coordinator) is selected by the system administrator and the function

runs there. However, the coordinator is a single point of failure—if we are interested

in a more reliable overall system, then we need to be able to have that function run in

more than one place in case the primary site is down or unreachable. In the most gen-

eral and most reliable case we will allow the function to run anywhere. In this case

we need to dynamically determine which process should run this function. Dynami-

cally determining the server or coordinator process is called an election. There are

two algorithms that are commonly used for such an election—the bully algorithm

and a token ring algorithm. In each case the nodes will each have some preassigned

priority for being the coordinator and the algorithm should elect the highest priority

process as the coordinator.

 The first question that must be addressed is a simple one. How does a node

decide that an election is needed? There are basically three times an election might be

needed: when a node joins the group, when a network failure partitions the network

so that part of the group cannot connect to the coordinator, and when the coordina-

tor crashes. When a node joins a group it may have the highest priority for being the

coordinator, so in this situation it will always start running the election algorithm.

In the other two cases the processes should each be using a timer to detect a lack of

communication with the coordinator. If the timer expires without a message from

the coordinator, then the process will start the election. This may necessitate that the

 FIGURE 17.10

Distributed locking.
Client 1

Time
155

Request
@ 157

OK

Request
@ 157

Not
Yet

Client 2

Time
158

Client 3

 Chapter 17 Distributed Operating Systems 403

coordinator send keep-alive notices to the group if there are no other messages so

that the other participants do not start an unnecessary election.

 In the bully algorithm each process is assigned a priority and a process that

needs to start an election sends messages to all the other processes in the group,

giving its own priority and declaring itself to be the coordinator. Any process, P,

receiving this message will compare the priority given in the incoming message with

its own priority.

 If the incoming message priority is higher than its own, then the receiving

 process merely quits the algorithm.

 If its own priority is higher than that in the incoming message, then it replies

with its own message stating its superiority and the process that sent the original

message retires from the algorithm.

 Eventually, the winning process will send a broadcast to the group announcing

its coordinator status.

 In Figure 17.11 , we see three processes sending bully algorithm messages. If Priority 1

is assumed to be high, then that process will win the algorithm and become the

coordinator.

 An alternative algorithm is the token ring algorithm. In this algorithm each

process is given a number that establishes an order in a logical ring. Each process

will need to know the order of the entire ring. The process starting an election sends

an election message containing its own process number and its priority to the pro-

cess, which it believes is the next in the ring. If it receives no reply, then it sends

the message to the next higher process. Eventually, some process will respond to

the message. It will append its own process number and priority to the message and

pass it on around the ring, bypassing any failed processes. When the message gets

back to the process that started the election, it will contain an ordered list of all the

current processes and their priorities. This final message will be sent around the ring

again. As a result, each process will know the process number that is the coordinator

and the complete order of the ring. This process is shown in Figure 17.12 . Client A

Priority 3
Client

I Win
1

I Win
1

I Win
2

I Win
2

I Win
3

I Win
3

Priority 1
Client

Priority 2
Client

 FIGURE 17.11
 The bully algorithm.

404 Part 5 Networks, Distributed Systems, and Security

starts the message and Client B and C each add their ID and priority to the message

as it goes around the ring. When the message gets back to A, A will know that it is

the coordinator. The message will be sent around the ring one more time so that all

processes will know the total group membership and the order of the ring.

 17.6.4 Reliable multicast communication

 Cooperating groups of processes frequently need to reliably communicate with

every member of the group. Sending a message to all the members of a group and

not to any other entities is called a multicast. 1 Unfortunately, TCP/IP does not sup-

port multicasting except within a single IP network, and MAC layer multicasting is

restricted to a single LAN. UDP supports multicasting, but it is unreliable. So we

have to figure out how to do reliable multicasting at the Application layer. The only

mechanism that will work in all cases is for each member of the group to have a

point-to-point connection to each of the other members. This is fairly easy to do over

the Internet, though in a large group it will not scale well. So when a process wants

to send a message to all the members of the group, it simply sends it to each of them

over a point-to-point connection. That cumbersome process is unavoidable given the

facilities available in the lower networking layers today. If we want to be sure that

all the processes see all the messages, then we need to use some method of acknowl-

edgment. We could use TCP, which has such assurance built-in. But TCP is very

inefficient for this and would not scale very well to large numbers of processes. So

we would rather use UDP and do the acknowledgments ourselves. This still entails a

large number of acknowledgment messages (ACKs) coming back to the sender. As a

result, several methods of minimizing these acknowledgments have been developed.

 1 Theoretically multicasting includes the idea of sending the message only once into the network and
having the network deliver it to all the destinations simultaneously, delivering the messages over each
link of the network only once and only creating copies when links to the destinations split. We are
ignoring that optimization here.

Priority 3
Client B

A, 1
B, 3
C, 2 A, 1

B, 3

A, 1

Priority 1
Client A

Priority 2
Client C

 FIGURE 17.12
 A token ring election.

 Chapter 17 Distributed Operating Systems 405

The first is to rely on the high reliability of today’s networks and only have the

receivers send a negative acknowledgment (NACK) if they infer from the incom-

ing message sequence numbers that they have missed a message. This is seen in

 Figure 17.13 , where process D has sent message 83 to the other processes. Process C

shows that the last message it received was 81, so it knows it missed message 82. In

this case process D will retransmit the missing message to all receivers who missed

it. Other refinements have also been developed but are neither as significant nor as

widely deployed.

 17.6.5 Distributed transactions

 In interactive systems we often are processing transactions that involve several

updates to a database. A typical example would be an inventory transaction that

moved an item from one warehouse (A) to another (B). This would normally require

several steps:

 1. Read the count for the item in warehouse A.

 2. Subtract 1 from the count and update that item count in the database.

 3. Read the count for the item in warehouse B.

 4. Add 1 to the count and update that item count in the database.

 If the system happens to crash after step 2 is completed and before the write of step

4 is completed, then the database will show an inconsistent state —we will have

lost track of one item in the inventory. We could avoid losing track of anything

by doing the two updates in the opposite order, but then we would run the risk of

thinking that we had an extra item. This problem can be avoided with a mechanism

known as a transaction. This looks like an overloaded term because we use that

word to indicate something a user might want to do with a system. But that closely

parallels the steps we are looking at here. Most user transactions involve updates to

A
Last Msg.

= 82
Msg. 83

Msg. 83

Msg. 83

NAK 82

B
Last Msg.

= 82

D

C
Last Msg.

= 81

 FIGURE 17.13

Reliable multicasting

with NACKs.

406 Part 5 Networks, Distributed Systems, and Security

several files or database tables and we want the entire system to accurately reflect

the event we are recording. We say that this type of update is atomic, meaning that it

should result in all steps being recorded or none of them, even if one of the systems

crashes during the sequence of updates. When a process is going to record such a

series of updates, it issues an API call for a transaction start. As each update to the

database is written, it may succeed or it may fail. The database system will make

these updates in a temporary fashion, putting them in the database in such a manner

that they can be recognized as something that was in progress but not finished. If

any of the updates is rejected, the process will issue a transaction abort system call

and the database will erase all the temporary updates. If all the steps are success-

ful, then the process will issue a transaction commit system call and the database

system will commit the updates, making them permanent and deleting any previous

records.

 In a system with a distributed database the operation is very similar, but since

there are several different database servers working together on a single transaction,

the commit process is a bit more complicated because a failure of one of the pro-

cesses might have happened since the original update call was issued. One of the

processes that is managing one of the elements of the distributed database may have

crashed or the network may have failed and we may not be able to communicate

with that process. In either case, the operation can’t continue. With a nondistributed

database the system is unlikely to fail in such a divided manner. In order to allow for

such conditions, distributed transaction processing relies on a protocol known as a

 two-phase commit. We discuss this protocol in the next section.

 One other problem with distributed database transactions is that in order to

improve performance a database may try to interleave updates from different pro-

cesses on the same data tables. As long as no two processes try to update the same

data, then there will be no conflict so the operations can proceed in an interleaved

fashion. If two processes attempt to update the same data at the same time, then one

of the operations will be rejected. Note that at this point the best choice for the appli-

cation that was rejected is to simply retry the operation. This is not something that

would arise in a uniprocessing system, so it violates distribution transparency.

 17.7 FAULT TOLERANCE

 In our discussion of transparency we said that one goal was to make failures trans-

parent to the user. There are many mechanisms that can be used to increase the fault

tolerance of a distributed application, but they mostly center on redundancy.

 17.7.1 Introduction

 Failure is a more complex topic in distributed systems than in monolithic systems.

When a monolithic system fails, all of it stops. When a distributed system fails,

only a part of it may stop. Since the parts are not necessarily communicating con-

stantly, the first problem is for the various components to figure out that another part

has stopped. This can be very tricky to do. Usually we start with the idea of using

 Chapter 17 Distributed Operating Systems 407

 timeouts. When a client asks a server to do something it starts a timer. If there is no

reply within some certain time limit the client may infer that the server is down. But

the server may not be down. It may be that there is a network problem and the server

is not currently reachable. There may be a sudden burst of traffic at some point in

the network such that an intermediate router was forced to drop either the request

or the response. It may be that the server is currently overloaded and that the action

has been executed already but the reply either has not been yet sent or it is still in

transit. If we retry the operation, that might cause problems. If the operation was to

subtract an item from an inventory count, we don’t want the operation repeated. On

the other hand, if we just counted the inventory and we are setting the count to the

value we know is in the warehouse bin, then it would be OK to repeat the request as

long as no other change to the inventory was processed in the interval. We say that

the second operation is idempotent, meaning that it is recorded in such a way that

it can be repeated without altering the result. It is worth noting that if we recorded

the subtraction as a read of an old value and the write of a new value, it would be

idempotent as well.

 17.7.2 Process resilience

 We can make functions more robust by distributing them across several processes

running on different systems—if one fails the others can still run. We speak of such

systems as having process groups. Process groups can be organized in either a

 hierarchical group, as seen in Figure 17.14 , or a flat group, as seen in Figure 17.15 .

In a hierarchical group there is one process that is the coordinator. The other pro-

cesses all report to the coordinator process with point-to-point links. Having a single

coordinator means that the group has a single point of failure, though we can elect

a new coordinator, as we saw in the last section. During that election time (and the

timeout required to recognize the failure), the group is basically nonfunctional, so

the system will appear unstable. Such systems are easy to implement and have a low

communication overhead.

A

B

C

D

 FIGURE 17.14
 A hierarchical

process group.

408 Part 5 Networks, Distributed Systems, and Security

 In a flat group the control is distributed throughout the group. Each process

communicates directly with each other process. Thus, the communication overhead

is much greater than with a hierarchical group. The group is more robust since a

single failure will not shut the group down, but such systems are more complex to

implement than hierarchical groups.

 17.7.3 Reliable client–server communication

 We already mentioned that a client has some special considerations to make if a server

fails to respond. We may not want to resend the request because we do not want the

operation to be redone. Similarly, if a server crashes we are in a quandary because we

do not know if the server got the request and processed it and crashed before it could

send the reply. However, sometimes it is very important that the request be acted

upon. Perhaps we are sending in a fire alarm. Sending it more than once is not a big

problem. This situation is known as at least once semantics. Sometimes it is highly

undesirable to send the request more than once. Imagine a request to pay a bill out of

our bank account! We would not want that to happen more than once. This is known

as at most once semantics. Other times we are more or less indifferent—perhaps

with a stock ticker that is only listing the latest transactions for a stock. This is known

as no guarantee semantics. Finally, we would like for the middleware to guarantee

that a transaction will be processed exactly once. It is possible for middleware to

achieve this level of guarantee, but it requires extensive logging and double-checking

and is thus relatively expensive to implement. In general, we must analyze each type

of transaction separately and see what level of semantics guarantee is warranted.

 17.7.4 Distributed commit

 When discussing distributed transactions in a previous section we introduced a

notion of a distributed commit. This algorithm is discussed here separately because

it is relevant to failure transparency. It is known as a two-phase commit. One process

A

B

C

D

 FIGURE 17.15

A flat process group.

 Chapter 17 Distributed Operating Systems 409

will be the coordinator of the algorithm. It will send a message to each other process

asking if it can commit the updates it was requested to do. If all the processes are

still running and the network is working, then they will all reply affirmatively and

the coordinator will then tell them all to commit the updates. If any of the processes

has failed or the network is not working, then the coordinator will not receive an

affirmation from at least one process, so eventually it will timeout the operation and

will send an abort request to each of the other processes. There are complications if a

process crashes. When a failed process restarts, it can learn from examining log files

that it was in the midst of a commit operation. What it needs to do then will depend

on the state it was in when it crashed. If it was in an abort state, then it should simply

abort the operation. Similarly, if it was in a commit state, then it should continue

with the commit. Each of these states could only be reached if the coordinator had

instructed it accordingly. If the recovering process was in the ready state, waiting

to hear from the coordinator, then it can simply ask the coordinator to repeat its

instruction.

 The big problem occurs when the coordinator crashes. In this case the other par-

ticipants will timeout the coordinator. If the participant is in either the abort or com-

mit state, then it acts accordingly. If it is in the ready state then it cannot tell what to

do by itself. It will ask all of the other processes what state they are in. If any of the

other processes is in an abort or commit state, then all of them can act accordingly,

since that will mean that the coordinator had reached a decision and had started

sending out instructions before it failed.

 There is a small possibility that the algorithm can hang because the coordinator

crashed before sending a commit message. For this purpose a three-phase commit

variant of this algorithm was developed. In practice this situation is so rare that the

three-phase commit is almost never used.

 17.8 SUMMARY

 If they are not already, distributed systems will

soon be the norm rather than the exception. This

chapter reviewed a number of reasons why we

find distributed systems more common each day. It

also explained the notion of distribution transpar-

ency and introduced the idea of middleware and

explained why it takes the forms it does. We then

presented several different models often used with

distributed systems, including the client server

model, three-tier and N-tier models, and horizontal

distribution. Section 17.3 went over the principles

of processes and threads and explained how threads

can be used in distributed systems to make clients

and servers perform better, or at least appear to do

so. Processes in distributed systems need to com-

municate, and to do so they need to refer to other

entities. Accordingly, Section 17.4 introduced the

concept of naming and name spaces. In Section 17.5

we covered some different paradigms for distributed

systems, including remote procedure calls, distrib-

uted objects, distributed documents, and distributed

file systems. We then discussed synchronization

because distributed systems have special problems

with synchronization that are different from uni-

fied systems. Section 17.7 was about fault tolerance

because distributed systems have special problems

since failure of one component can allow the rest of

the system to continue to run.

 In the next part of the book we take a look at a

few important modern OSs and see how they imple-

ment some of the features we have described in these

in-depth topic chapters. Some of these OSs were

410 Part 5 Networks, Distributed Systems, and Security

covered in Part 2, but there we only discussed the

kinds of features that such OSs needed to have to

support a given level of features. We revisit some of

those OSs in Part 6 of the text to look at them in

greater detail and see how they use the mechanisms

we have been discussing.

 BIBLIOGRAPHY

 Barroso, L., J. Dean, and U. Hoelzle, “Web Search for a

Planet: The Google Cluster Architecture,” Research

Paper, Google, Inc., 2005.

 Chandy, K. M., and J. Misra, “Distributed Deadlock

Detection,” ACM Transactions on Computer

Systems, Vol. 1, No. 2, May 1983, pp. 144–156.

 Knapp, E., “Deadlock Detection in Distributed

Databases,” ACM Computing Surveys, Vol. 19, No. 4,

December 1987, pp. 303–328.

 Lamport, L., “Time, Clocks, and the Ordering of Events

in a Distributed System,” Communications of the

ACM, Vol. 21, No. 7, July 1978, pp. 558–565.

 Obermarck, R., “Distributed Deadlock Detection

Algorithm,” ACM Transactions on Database

Systems, Vol. 7, No. 2, June 1982, pp. 187–208.

 Ricart, G., and A. K. Agrawala, “An Optimal Algorithm

for Mutual Exclusion in Computer Networks,”

 Communications of the ACM, Vol. 24, No. 1, January

1981, pp. 9–17.

 Rivest, R., A. Shamir, and L. Adleman, “On Digital

Signatures and Public Key Cryptosystems,”

 Communications of the ACM, Vol. 21, No. 2,

February 1978, pp. 120–126.

 Sandberg, R., et al., “Design and Implementation of

the Sun Network File System,” Proceedings of the

USENIX 1985 Summer Conference, June 1985,

pp. 119–130.

 WEB RESOURCES

 http://www.opengroup.org/dce/ (the OSF Distributed

Computing Environment [DCE], an RPC

implementation)

 http://www.w3.org (World Wide Web Consortium [W3C])

 http://www-306.ibm.com/software/lotus/ (Lotus Notes

and Symphony, among other distributed products)

 http://en.wikipedia.org/wiki/Two-phase_commit

 REVIEW QUESTIONS

 17.1 We listed eight reasons why distributed systems

are being found more and more often. Name four

of the eight.

 17.2 We listed nine facets of distributed systems that

should ideally be transparent to users. List five.

 17.3 Briefly define middleware.

 17.4 We gave four models for building distributed sys-

tems. What is the model that underlies the World

Wide Web?

 17.5 What was the layer that was added to the WWW

model to derive the three-tier model?

 17.6 A further generalization of a distributed systems

model as seen in Google was called what?

 17.7 A different sort of model was described that was

called horizontal distribution. Give an example of

the type of system described by this model.

 17.8 Early Web browsers using the HTTP 1.0 proto-

col had to open a separate connection to retrieve

each component referenced by a Web page.

What technique was used to make this more

efficient.

 17.9 Describe two ways that servers typically use

threads.

 17.10 When a physical virtual machine host OS loads a

guest OS, what does it do to ensure that the host

OS maintains control of the system?

 17.11 Briefly describe the operation of an abstract virtual

machine.

 17.12 True or false? The Jini design allows applications

to access services without any prior knowledge of

the network mechanisms that will be used by the

service.

 Chapter 17 Distributed Operating Systems 411

 17.13 What is the basic reason why mobile entities using

IP are such a problem?

 17.14 One of the middleware applications we looked at

allows us to take an existing program and move

part of it to another system. What was the non-

object-oriented design for doing this?

 17.15 What do we call the main standard for developing

systems of distributed objects?

 17.16 What does the Lamport timestamp mechanism do

when receiving a message to ensure that the local

logical clock reflects correct information about

the order of occurrence of events in a distributed

system?

 17.17 How does a centralized mechanism for supporting

mutual exclusion in a distributed system work?

 17.18 What were the two different distributed algorithms

for election a coordinator process for a system?

 17.19 True or false? TCP supports reliable multicasting

over the Internet.

 17.20 Why are database transactions more difficult in

distributed systems?

413

PartPart

 In this part:

 Chapter 18: Windows NT™ through Vista™ 415

 Chapter 19: Linux: A Case Study 445

 Chapter 20: Palm OS: A Class Case Study 469

 T
he first two parts of the book gave us some initial background and introduced

a series of more complex operating systems in what we dubbed a “spiral

approach.” This approach was used in order to motivate the features being

introduced and to give some perspective to the material. The next three parts treated

various technical OS aspects in depth. In this part we once again turn to real OSs,

now in the form of case studies. We describe in more depth how several modern OSs

incorporate and implement the features described in Parts 3–5.

 Chapter 18 covers the Windows NT family starting with the first release and

through the existing release known as Vista. Some historical material is included to

give perspective to the student. Other subtopics in this chapter include a discussion

of the single-user OS environment, process scheduling, memory management, file

support, basic I/O, GUI programming, networking, symmetric multiprocessing, a

note about the significance of the startup speed of the later releases, and a few words

about the new features in the Vista release.

 Chapter 19 on Linux covers additional topics that were not covered in the second

part of the text and how it implements some of the standard features that we expect

to see in any modern OS. After a brief review of Linux we discuss the memory man-

agement features of Linux, and the organization of file systems. This chapter also

cover basic I/O functions, support for GUI programming, networking support, and

symmetric multiprocessing. We then introduce some interesting variants of Linux,

primarily hard real-time systems.

 Chapter 20 covers additional topics on the Palm OS. Subtopics include other

interesting functions of the OS that were not necessary to the spiral approach sec-

tion, the programming environments that are required when dealing with such sys-

tems, and similar developments in the cell phone market and how they contrast with

the PDA market. Finally, the chapter discusses new applications that are being devel-

oped for these OSs because they are mobile, and how this impacts OS features.

Case Studies

66

414

415

 Chapter Chapter 18 18
 Windows NT™ through
Vista™

 In this chapter:

 18.1 Introduction: Windows NT Family History 416

 18.2 The User OS Environment 421

 18.3 Process Scheduling 423

 18.4 Memory Management 425

 18.5 File Support 428

 18.6 Basic Input and Output 436

 18.7 GUI Programming 439

 18.8 Networking 440

 18.9 Symmetric Multiprocessing 441

 18.10 Startup Speed of XP 441

 18.11 Summary 442

 I
n this chapter, we discuss an operating system family that is clearly the domi-

nant personal computer OS in terms of numbers of installations, the Windows

NT Operating System family developed by Microsoft. It may appear to a casual

observer that it only supports a single user at one time using the console of a personal

computer. It actually supports multiple users at remote terminals. It also supports

many concurrent users by running services for various remotely accessed functions

such as file, print, and directory services, and serves as a platform for other higher-

level services such as databases, HyperText Transport Protocol servers (HTTP or

Web), File Transfer Protocol servers (FTP), Web services, and many others as well.

In the later versions it also supports a function known as fast user switching. This

function allows one user to log off the system while any applications that were run-

ning stay in memory. A second user can then log in and start other applications.

The second user can log off, again leaving all applications running and the first user

log back in and resume work where it was left off without having to restart those

applications.

 Although the title of this chapter refers to Vista, we are using the term Windows

NT to refer to the entire product release series. Formally, this term only applies to

416 Part 6 Case Studies

the NT Version 3.1, 3.5, 3.51, and 4.0 releases. However, the product family nam-

ing is not uniform and for the most part the differences between the releases are not

significant for our purposes. Also, the term NT is often used casually to refer to the

entire series of versions, and we will also use it that way. If we are referring to some

feature that was dropped or added in a specific release, then we may mention the

specific version’s product name.

 We start this chapter with an overview of NT and some background about the

history of the various Windows OSs in order to give some perspective about the

various features and design decisions. In Section 18.2 we discuss the nature of a

typical environment for the NT OS. There is also a discussion of the main goals of

NT—multiple hardware platform support and legacy OS application support.

 NT supports many simultaneously operating user processes as well as concur-

rent server functions, so in Section 18.3 we discuss the scheduling of processes and

tasks in NT. NT uses secondary storage as an extension to primary storage, so com-

plex memory handling mechanisms are needed. These are discussed in Section 18.4 .

OSs that support multiple server functions and multiple users require complex file

systems that provide for security of files as seen in the Linux OS. Section 18.5 thus

covers the organization and structure of files and file system metadata in the NT

OS and Section 18.6 covers basic I/O functions that NT provides to support those

higher-level functions.

 The NT GUI allows for multiple overlapping windows, just as do the Mac OS

and Linux, and thus requires an elaborate API for the GUI, so Section 18.7 describes

some aspects of GUI programming with NT. PDAs running OSs like the Palm have

elaborate communication options, but for the most part they are used one at a time.

In NT the user may be running many communication activities at the same time—

checking email, playing a game over the Internet, synchronizing the database with a

PDA, and so on. Section 18.8 is a discussion of the many kinds of networking sup-

port in Windows NT. NT often runs on systems with multiple CPUs, especially when

being used primarily as a server rather than only as a workstation. Section 18.9 deals

with the way NT supports such systems. In Section 18.10 we describe the goal of the

startup speed of the XP release of NT and why it was important. We conclude with a

chapter summary in Section 18.11 .

 18.1 INTRODUCTION: WINDOWS NT FAMILY HISTORY

 First some history: As was mentioned, the Windows OSs were initially developed

for supporting a single user on a personal computer. This support goes back to the

8088/8086 processors. Microsoft began development of an OS that supported a

graphical user interface (GUI) in 1981. It was then called the Interface Manager

(IM). The CPUs in use lacked the features necessary for protecting one process from

another. Because of this hardware limitation, most personal computer OSs prior to

this time were not multiprocessing systems, and neither was the IM. Multiple appli-

cations could be open at the same time, but only one would actually be running. The

windows could not overlap but could only be tiled. Tiled windows do not partly cover

 Chapter 18 Windows NT™ through Vista™ 417

one another, so the management of the windows is much simpler for the OS. By the

time IM was formally announced in 1983 the name had been changed to Windows.

As often happens in areas of technical development, the idea of a GUI was evolving

at several places at the same time. The idea arose at the Xerox Palo Alto Research

Center (PARC). So Windows was not the first OS for the Intel CPU family with a

GUI. Personal Software (which later changed their name to VisiCorp) had released

VisiOn before Windows was released. This was actually an environment that ran on

top of the OS in a manner similar to X-Windows in UNIX. IBM was also working on

a multiprocessing 8x86 environment called TopView, though it did not have a GUI.

 The first release of the Windows OS was only marginally successful, primar-

ily because of the hardware architecture limitations and the processor speed. Later

releases took advantage of the more advanced features available in the 80286 proces-

sor to provide better support for memory management, but the performance of PCs

of this era were still marginal when displaying graphics. In addition, these versions

of Windows were actually shells that ran on top of the original 16-bit DOS. Also

they were mostly or entirely written in assembly language and were increasingly

harder to enhance, or even to maintain. When the 80386 processor became avail-

able, Microsoft released a version of Windows known as Windows 3.0. This version

was extremely successful. Being built on portions of DOS, however, it still had sub-

stantial problems. There were various iterations of this product, including Windows

3.1 and Windows for Workgroups. Among other drawbacks, the instruction set and

addressing space of the hardware allowed only for a design with a 16-bit memory

addressing space. Later, substantial development went into a modified version of this

Windows family, including use of a 32-bit instruction set and memory model. This

OS series included Windows 95, Windows 98, Windows 98 SE (Second Edition),

and Windows ME (Millennium Edition).

 In parallel with the development of the early versions of Windows, Microsoft

was also involved in the development of a similar OS with IBM called OS/2. OS/2

was originally viewed as a means of running several text-based programs at the same

time. Subsequently other versions of OS/2 were released that had a GUI interface

and ran on the 80286 and 80386 processors. At some point they decided that writing

operating systems in assembly language (as was DOS) was not a good idea, so OS/2

was written mostly in C. OS/2 initially had an API that was an extension of the DOS

API. Version 3 of OS/2 was started by Microsoft as a complete rewrite of the OS

using the OS/2 API, but the enormous success of Windows 3.x caused Microsoft to

reevaluate their initial direction. As a result, the primary native API was changed to

be the 32-bit Win32 interface developed for Windows 95 and later versions. Partly

as a result of this change, IBM and Microsoft parted company on OS/2 and IBM was

left to develop OS/2 by itself. Microsoft changed the name of this release to NT.

 Besides the Win32 API, NT was also supposed to support the 16-bit applications

developed for DOS and the Windows 3.x products. In addition, a UNIX-style API

was required for many U.S. government and corporate procurements. As a result, NT

also includes support for applications written to the POSIX.1 API standardized for

UNIX systems. (The POSIX interface is actually OS independent, but it was driven

by the splintered UNIX community and is based largely on that API.)

418 Part 6 Case Studies

 At the time the Intel x86 processor did not have quite the dominant position in

personal computers (PCs) that it has today. If one processor family came to domi-

nate the PC, Microsoft needed to ensure that their OSs would be able to run on that

platform. If no processor dominated, then they needed to run on most or all of them.

They thus determined that portability was a primary goal for their main OS product.

This meant that they had to move away from the DOS-based Windows products and

write a new OS. In order to ensure portability they decided to write this new operat-

ing system in a high-level language. There are also many other reasons to use a high-

level language, of course. To create this new OS they hired a crew of experienced OS

designers. They originally aimed to write it in C ⫹ ⫹ and to initially target the Intel

i860 processor, among others. The i860 was a Reduced Instruction Set Computer

(RISC) processor. The version of the processor chip that this team was using was

called the N10, and Microsoft was using an i860 emulator called the N10 (N-Ten).

This lead to the name NT, also referred to as New Technology. The hardware turned

out to be too underpowered for supporting object-oriented programming, so the core

of NT ended up being almost entirely written in standard C.

 The biggest difference between the various Windows products and Microsoft’s

earlier systems was the graphical user interface. Today, GUIs are very common, of

course—perhaps requiring little more explanation, but they were new to Microsoft

OSs when Windows was first created. Such interfaces greatly enhance the user expe-

rience, extending the ways that a user interacts with the system well beyond what is

available with text-oriented terminals and the ability to run more than one task at a

time. This combination of multiple programs running in separate but possibly over-

lapping graphics-based task windows and controlled with a pointing device such as a

mouse or a touch pad that moves an indicator on the screen has been wildly success-

ful. Today, there are few OSs that do not contain such an interface other than systems

embedded in appliances and other machines. In some OSs such as UNIX, Linux, and

the Mac OS X the GUI interface is a separate layer on top of the OS. In the Microsoft

Windows products the GUI interface is an integral portion of the OS design and has

been a part of the kernel since at least the Windows 2000 release.

 Early work for NT was sometimes done on MIPS systems. Afterward, Micro-

soft decided that they would like to replace all existing DOS and Windows systems

with NT systems, so additional support was added for the 80x86 series of processors

and the i860 was eventually dropped due to issues with the chip regarding general

OS use. Support for other processors was also added, such as the DEC Alpha 64 bit

processor, the MIPS RISC processor, and the PowerPC. (The MIPS chip is used in

several families of machines, including Silicon Graphics workstations.) The market

eventually decided against these three processors for use in PCs, so they are not sup-

ported by later versions of NT. In the XP release of NT, however, support has been

added for the Intel Itanium 64-bit RISC processor and the Intel and AMD 64 bit x64

processor families. So the idea of hardware platform independence has remained as

an important feature of the NT family.

 The NT family included Windows NT 3.1, 3.5, 3.51, and 4.0, Windows 2000

(kernel version NT 5.0), Windows XP (kernel version NT 5.1) and Windows Server

2003, Windows XP x64 Edition, and now Windows Vista (kernel version 6.0). This

OS product line includes support for a GUI interface, virtual memory, journaling file

systems, preemptive multitasking, and a full suite of networking protocols. Basically

 Chapter 18 Windows NT™ through Vista™ 419

it is a very high-end OS. Although there have been some significant enhancements to

the product family during this time, much of the system architecture we are describ-

ing in this chapter is essentially unchanged from the first release.

 18.1.1 Windows Vista

 The latest version of NT is Windows Vista. Microsoft’s primary objective with Vista

was to improve the security in the NT OS, but there are many other enhancements as

well. We briefly discuss a few of the features in this release as an illustration of the

sorts of activity that are being undertaken in current OS development. Many of these

features are also found in other contemporary OSs. Other features of Vista that are

related strictly to NTFS are discussed in Section 18.5.5. Several of the new features

are related to security or reliability:

 Code Integrity Verification. The OS loader and the kernel now perform load-

time checks on all kernel mode binaries to verify that the modules have

not been changed on the disk. This helps prevent malicious programs from

taking control of a machine by modifying the OS.

 Service Security Improvements. Services can now specify which privileges

they require (e.g., shutdown, audit, write-restricted, etc.), which limits the

power of these services. Privileges not explicitly specified are removed, thus

limiting the damage a damaged service can do to the OS.

 User Account Control. UAC improves security by limiting applications to

standard user privileges until an administrator authorizes an increase in

privilege level. A user may have administrator privileges, but an application

the user runs has only standard user privileges unless it is approved

beforehand or the user explicitly authorizes it to have higher privileges.

UAC will prompt the user for additional privileges automatically or the user

can right-click a program icon and select “Run as administrator.”

 Address Space Layout Randomization. ASLR is a security technique for randomly

assigning parts of the address space of a process. This usually includes the base

of the executable program, libraries, and heap and stack space. This mechanism

thwarts some security attacks by preventing an attacker from predicting the

addresses of the components that are the target of the attack.

 User-Mode Driver Framework (UMDF). Most drivers run in kernel mode with

complete access to the physical address space and system data structures.

Such access allows a malicious or badly coded driver to cause problems that

affect other drivers or the system itself and eventually crash the machine.

Drivers that run in user mode have access only to the user address space and

are a much less risk. Vista has added support for such user-mode drivers.

UMDF is designed for devices like cameras and portable music players.

 Some other new features are related to reliability:

 Windows Error Reporting. This feature captures application software crash and

hang data from end users who agree to report it. Software developers can

access data related to their applications online, monitor error trends, and

download debug information.

420 Part 6 Case Studies

 Reliable Sleep State. Before now an application or driver could prevent the

system from entering sleep or hibernate mode (a sleep state). The problem

with this was that a laptop user often did not realize the system had not

entered the state and would end up with an overheated laptop in the bag, a

dead battery, and eventually lost data. Vista does not ask processes before

entering sleep states and has reduced the timeout for user-mode notifications

from twenty seconds to two.

 Clean Service Shutdown. Before Vista services had no way to extend the time

allowed for shutdown. After a fixed timeout the system halted with those

services still running. This could cause problems for services that needed to

flush data to disk. With Vista, services that request notification of a pending

shutdown can take as long as they need to shut down. The notification

service notifies these services first and waits for them to stop. After they all

stop the system continues with a normal shutdown.

 Service Shutdown Ordering. Vista allows services to specify a shutdown order

where service dependencies need to be followed by the shutdown.

 A few features are added to Vista, primarily to speed up the general performance or

the time needed to shut down or restart the system:

 Delayed Auto-Start Services. Services running in NT are often set to auto-

start because they will probably be needed later. However, they have

been multiplying and are thereby increasing the time it takes to boot the

system. However, many auto-start services do not have to be part of the

boot sequence; they just need an unattended start so that they are ready

fairly soon after the system starts. Vista provides a new option called

delayed auto-start. Services that are designated as delayed auto-start are

started shortly after the system has booted. This improves boot and login

performance for the user.

 SuperFetch analyzes the regular use of applications and tries to keep the

frequently used applications in main memory so they can launch more

quickly. It will also notice when any prefetched data is moved out to the

page file and will monitor the application that caused the prefetched data to

be moved out to the page file. As soon as that application is done it will pull

the prefetched data back into memory. When the user again accesses the

application, the prefetched data will already be in main memory again.

 ReadyBoost can create a cache memory on a flash memory device. Although

the data transfer speed of such devices is less than current hard drives, flash

memory devices have neither seek nor rotational latency so they can boost the

apparent speed of the hard disk substantially. Note that this is consistent with

our prediction in Chapter 14 about the future replacement of rotating memories.

 Hybrid Hard Drives. These new drives incorporate a large flash buffer. They

reduce drive power consumption significantly since the drive can be

powered down most of the time while data moves between main memory

and the flash RAM in the drive. Also, such drives will have increased

reliability since the parts are moving less often. Finally, the system will have

 Chapter 18 Windows NT™ through Vista™ 421

faster boot time since reading from the flash memory is much faster than

waiting for the platters to spin up and then looking for the data. ReadyDrive

is the name for the Vista features that support these hybrid hard drives.

 18.2 THE USER OS ENVIRONMENT

 Because the NT environment is primarily a GUI, the user can easily open up many

windows on the screen and start multiple applications. It is not at all unusual for an

NT user to have a dozen or more applications running at any one time. Often there

will be an email reader checking for incoming mail from time to time; an appoint-

ment scheduler open; a Web browser, perhaps open to a portal page that updates the

latest news and statistics on the user’s stock portfolio; an office-type application

such as a spreadsheet the user is working on; a window showing a dictionary that

the user has just looked up a word in; and an “instant messenger” application. This

does not include numerous other utilities that may be running such as local firewalls,

clipboard editors, battery status indicators, sound volume adjustment panels, and so

forth. There may also be server functions running such as shared printing, personal

Web services, and so on. So while NT is viewed by many users as a single-user sys-

tem, that by no means implies that the OS has only a few things running.

 18.2.1 Goals: Multiple Hardware and OS Platform Emulation

 Two of the main goals of the developers of NT were being portable across multiple

hardware platforms and supporting applications from legacy OSs. To achieve the

first goal, Microsoft used two methods. First, to a substantial extent, certain low-

level hardware-dependent portions of the OS kernel are isolated in a single module

called the Hardware Abstraction Layer, or HAL. Other modules also have portions

of the code that have hardware dependencies; for example, the memory manager

must know what the physical memory page size is. But having the HAL simplified

the process of porting the system to a new hardware platform by partially isolating

the hardware-dependent portions of the OS in a single module. The HAL varies with

such factors as the support chips used with the CPU (the interrupt controllers, for

example), whether the system is a uniprocessor or a multiprocessor system, and what

power management features the BIOS supports. These chips connect the buses and

other devices to the CPU and they sometimes require specific instructions, just as

does the CPU. The second technique was to write all the rest of the OS in a higher-

level language that was machine independent. The language initially chosen was

C ⫹ ⫹ with the original intent of having the system be completely object oriented.

Later, this strategy was relaxed and much of NT was built with C for reasons of

efficiency. The fact that NT has been able to support several different CPUs without

major rewrites shows that in this goal it succeeded well.

 The second goal of running legacy applications correctly and efficiently has also

largely been achieved. Since NT strongly enforces the restriction that only the OS is

allowed to directly control the hardware, there are many DOS and a few Windows 3.x

422 Part 6 Case Studies

applications that will not run under NT because they use the hardware directly. Most

applications that do not directly manipulate the hardware will run correctly under NT.

The key concept for supporting legacy applications was to add another layer on top

of the kernel. This layer supported legacy APIs by translating legacy API calls into

native NT API calls. In the NT family these extra layers are called “environments” or

“subsystems.” In fact, even the 32-bit Windows API that is considered the standard

for the NT family is not the native API for the NT kernel itself. These subsystems

are shown in Figure 18.1 . By the time XP was released, the world had essentially

moved on from OS/2 and support for this subsystem was dropped in the XP release

of NT. The POSIX support that was originally included with NT was only a minimal

implementation of the IEEE 1003.1/ ISO 9945-1 standard. It was withdrawn in the

XP release and subsequently replaced with a more complete implementation.

 To be sure, originally there were many other goals of the NT OS family such

as performance and reliability and a high-level goal of building a first-class operat-

ing system, unlike the earlier versions of Windows that were hobbled by limited

resources. However, the goals of portability and compatibility were the ones that

probably had the most impact on the system design.

 These subsystems are not always straightforward, and running older applications

can sometimes cause problems. For example, DOS was a single-user system so appli-

cations would typically start an I/O operation and then do a spin lock to wait for it to

FIGURE 18.1 Original Windows NT family architecture.

Scheduler
Device
Drivers

Hardware Abstraction Layer (HAL)

Kernel
Mode

User
Mode

System Services

I/O
Manager

Security
Monitor

Virtual
Memory

Processes
and Threads

Object
Management

File
Systems

Local
Procedure

Call

Graphic Device
Drivers

Cache
Manager

Network
Protocols

Volume
Management

Win32 and
Graphics
Device

Interface

DOS Application POSIX ApplicationWin32 Application

DOS VDM

Win16
Application

WOW VDM

Win32 Subsystem

OS/2 Subsystem

OS/2 Application

POSIX Subsystem

 Chapter 18 Windows NT™ through Vista™ 423

complete. NT will virtualize the CPU, so other applications will not get locked out, but

in the meantime the DOS application can be burning lots of CPU cycles. Similarly, by

default all 16-bit Windows applications run as threads in the Windows on Windows

Virtual DOS Machine (WOW VDM). The way the threads are dispatched, if one

Windows application stops taking input, all those applications will hang.

 18.3 PROCESS SCHEDULING

 NT uses a complex mechanism to control scheduling of the running processes. It runs

multiple processes and creates at least one thread for every process. Then it schedules

the threads for execution, not the processes. The mechanism it uses is a multilevel

feedback queue. Each thread in NT will have a priority ranging from 0 to 31 that tells

the OS how important it is that the process be run as promptly as possible. The thread

priority is derived from the base priority (defined below) of the process. For each of

the 32 priority levels there is a separate queue of threads that are ready to run. When

a thread starts running it is given a limited time quantum to run. When this limit is

reached the thread is suspended and put at the back of the run queue for its priority level

and the next thread at that priority level will be run. For each priority level the sched-

uler will move to the next lower level only when all the threads that are ready to run at

that level have been exhausted. If an event occurs that a thread was waiting on, such as

waiting for the disk to read some data, then the OS will check to see if the thread that

was waiting on the event has a higher priority than the one that is currently running. If

it does, then the current thread will be suspended and the higher priority waiting thread

will be run. Interrupting threads for time-slice expiration and for higher priority events

are both examples of preemptive multitasking, as was discussed in Chapter 8.

 When a process is started, an initial base priority class for that process is deter-

mined. See Figure 18.2 . This class is used to determine the base priority of all the

threads in the process. As threads in the process execute, their priorities may change

in response to the operations they perform. This is known as a dynamic priority.

There are limits below which the thread priority cannot fall and above which it can-

not rise. This changing of priorities as the thread runs is the “feedback” referred

to in the phrase “multilevel feedback queuing.” The intent of raising and lowering

the priority like this is to give higher priority to the interactive processes that are

closely focused on the user interface and lower to the background those processes

that appear to be less involved with the user interface.

 The NT scheduler therefore gives high priority to threads that are involved in

such interactive tasks as typing on the keyboard. In order to do so it uses a mecha-

nism that is slightly different from that discussed in Chapter 8. There are several

cases when NT will raise the priority of a thread:

 When a thread has made a blocking call and that request is finished, its dynamic

priority is raised so that it can make good use of the completed operation.
 When a window associated with a process that uses the NORMAL priority

class gains the focus, the scheduler boosts the priority of the process so that it

is greater than or equal to that of all background processes. The priority class

424 Part 6 Case Studies

returns to its previous setting when the window associated with the process no

longer has the focus.
 When a window receives input such as mouse events, timer events, or keyboard

input, the scheduler boosts the dynamic priority of the thread that owns the

window.

 After raising a thread’s dynamic priority, the scheduler decreases the priority

by one each time the thread completes a time slice, until the thread drops back

to its base priority. A thread’s dynamic priority is never lowered below its base

priority.

 NT has some threads that it runs that it considers “real-time” threads. These

include handling time-critical devices like moving a mouse. All of the priorities from

16 to 31 are considered to be real-time priorities. A normal user-created process runs

threads that take on only priorities from 0–15. Most of the real-time threads are OS

threads, but it is possible for a user process to also use real-time threads. NT is not

a hard real-time system, so these processes are soft real-time processes. That is to

say that the OS makes an effort to ensure that they get run as often and as soon as

desired. However, it does not make any attempt to guarantee that any timing criteria

will be met. The system does not boost the priority of real-time threads.

 When no other thread is ready to run, NT runs a special thread called the idle

thread. If the power circuitry supports it, this thread puts the CPU into a lower power

state in which it runs more slowly, and then it goes into a tight loop. Having this

special thread also allows the OS to determine how much of the system resources are

being used for real work and how much is not being used because the system is wait-

ing for something to happen—perhaps a direction from the user as to which other

program to run. When a volunteer computing package such as BOINC is being run,

the idle thread will be replaced by the volunteer application. Volunteer computing

projects were discussed in Chapter 7.

FIGURE 18.2

NT thread priority

relationships.

N
O
R
M
−

N
O
R
M

Critical

Real-time
(fixed)

Normal
(dynamic)

Worker
threads

I
D
L
E

31

30

29

28

27

26

25

24

23

22

21

20

19

18

17

16

+

N
O
R
M

H
I
G
H

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

0

 Chapter 18 Windows NT™ through Vista™ 425

 18.4 MEMORY MANAGEMENT

 NT supports a virtual memory system with demand paging, as was described

in Chapter 11. When the CPU is running a process, it generates logical memory

addresses for the memory hardware to use to fetch or store instructions or data.

The memory management unit (MMU) hardware translates each of these gener-

ated addresses to a physical address that the memory system then uses to access the

information. The memory is divided into pages of a fixed size. This size is deter-

mined by the hardware, so the OS must work with whatever page size the hardware

uses. For the Intel x86 family, the size of these pages is normally 4 KB. For other

systems, the page size may be different. Because NT is designed to be platform neu-

tral, it must not depend on the actual size of these sections. Since NT was designed

to run on many hardware platforms, it must be coded in such a way as to be flexible

in the page size.

 18.4.1 The address space

 In NT the logical address space is divided into two parts, one for the OS and one

for the user application. See Figure 18.3 . The figure shows the address space to be

evenly divided between the user space and the kernel space, but this can be over-

ridden. This override might be used, for example, by an application like a database

server that needed a very large memory space. Two other areas of the logical address-

ing space are set aside to aid in error detection. They are called the guard area and

the null pointer catcher. If a program accidentally references an address in either of

these spaces, then the hardware will signal an error and the program will be aborted.

(This mechanism is a convention used by the language support generally used with

the OS and is not actually enforced by the OS itself.) Recall that this address is a part

of the logical address space, which is 4 GB. The purpose of these reserved blocks is

to generate an interrupt via the hardware when these addresses are used accidentally.

FIGURE 18.3

The default Windows

NT family x86

memory map.

0x00000000–0x0000FFFF

0x00001000–0x7FFEFFFF

0x7FFF0000–0x7FFFFFFF

0x80000000–0xFFFFFFFF

Reserved—Null pointer catcher

2 GB User Address Space

2 GB Kernel Address Space

Reserved—Guard area

426 Part 6 Case Studies

This means that there is no physical memory assigned to these addresses, so we are

not wasting real memory for these functions.

 There is a special hardware feature in newer CPUs that are compatible with the

Intel architecture that lets the kernel use a page size of 4 MB for itself so that a smaller

page table is kept and the tables only need a few entries to point to the static parts of

the kernel and some additional pages for the parts of the kernel that can be paged.

 18.4.2 Page mapping

The NT system running on Intel 8x86–compatible CPUs use a two-level table struc-

ture and special hardware to make this translation, as was described in Chapter 11.1

 Figure 18.4 is similar to a figure from that chapter but shows the specific terminology

used in NT. The two tables that are used are called a page directory and a page table.

The use of a two-level table allows the logical address space to be very large and very

sparse and for the page table itself to be divided into pages. So if no page table entries

are made in a given block of the logical address space, then that page table will not be

created. The entries in the page table point to the actual frames in physical memory.

 18.4.3 Page sharing and copy on write

 We have seen that designers go to great lengths to build walls between the OS and the

running processes and between the processes as well. However, sometimes it is advan-

tageous for processes to be able to share access to the same locations in memory. This

technique must be used carefully when the processes are intentionally sharing pages.

1 Other hardware platforms may use a more complex design. Intel-compatible CPUs must be at least an
80386 architecture.

FIGURE 18.4

A multilevel page

table.

CPU

Logical
address

Page Directory

Page Table

f
p1

p2Page Directory
Address Register

Physical
address

p1 p2 d f d

Physical
Memory

 Chapter 18 Windows NT™ through Vista™ 427

However, sometimes the OS can allow processes to share pages without the processes

being aware of it. One simple case is where a process does a fork —that is, the process

asks the OS to create another copy of the process and to run both the new and original

copies. In this case, NT will create the second process, but will not create an actual

copy of all the pages. Instead, it will create a new set of page tables and point the tables

to the same physical pages. In both sets of page tables it will mark the pages as read

only. Later, if one of the processes writes to a memory location in a given page, the

CPU will generate an interrupt and the OS will make a separate copy of that page for

each process and remove the read-only flag. This technique is called copy on write,

discussed in Chapter 11. It will save a lot of time and memory in the case of large

objects, especially shared libraries that should never modify themselves anyway.

 18.4.4 Page replacement

 In Chapter 11 we discussed the problem that occurs when a page needs to be brought

into memory and no free frame exists. A currently used page must be selected to

be replaced. There are a number of algorithms that we discussed for choosing the

page to be replaced. Many of them use hardware features to assist the OS in choos-

ing a page to be replaced. Since NT is designed to be relatively independent of the

hardware, the designers chose not to depend on the most advanced features available

for paging hardware. Instead, they use a (relatively) simple FIFO algorithm that is a

variant of the clock algorithm. When a page is brought into memory for the first time

a timestamp is recorded for the page. When a page is needed, the page table will be

searched and the oldest page will be discarded. Unfortunately, this sometimes turns

out to be a page that is needed frequently. But as soon as it is reloaded it will get a

new timestamp, and it will likely not be chosen again soon. NT chooses the pages

only from the faulting process, known as local replacement. Linux and most other

UNIX variants use a global replacement policy, choosing from all pages in memory.

 18.4.5 Prefetch profiles

 A clever optimization is used by NT and other OSs to speed up the loading of appli-

cations. As was mentioned, when a program starts in a virtual memory system, the

entire program is not loaded at once. Instead, when a process makes reference to a

part of its logical address space that is not yet loaded, a page fault occurs and the

desired page is loaded into physical memory. As a result, when a large program is

loading, say a Web browser, it will tend to load pages from different parts of the pro-

gram, almost in random order, as the initialization code for various data structures is

run. As a result, there is considerable disk activity and head movement as the various

pieces of program code are fetched. NT will keep track of the page faults generated

for 10 seconds after a program starts. Later, when the system is not busy, it will sort

this list of the page faults and save this list in a page fault profile for that program.

When the program is run again later, the OS will prefetch all the pages that it knows

will normally be fetched in those first 10 seconds. This can result in substantial time

savings in moving disk heads, waiting for rotational delays and in doing I/O in larger

blocks and therefore results in faster program startup times.

428 Part 6 Case Studies

 18.5 FILE SUPPORT

 During the past 20 years or so, computing devices have dropped rapidly in price. At

the same time, the capacity of disk memory has risen as rapidly. When disk capaci-

ties were small, the file system structures were designed to match them. Early DOS

file system pointers were restricted to 12 bits because that was enough to point to

all the sectors on the floppy disk drives then in use and the designers did not want to

“waste” space on larger pointers. As drive sizes have grown, however, the file sys-

tem designs had to change to support the larger hard drives. As a part of the goal of

upgrading existing PC systems to the NT series of OSs, a migration path was needed

for the various file systems that users might have. Most OSs have their own preferred

file system. NT does as well. It is called NTFS (NT file system). However, NT also

supports other file systems, specifically those that Microsoft had developed earlier.

These are the FAT12, FAT16, and FAT32 file systems, which were inherited from

DOS and Windows. XP also supports the ISO 9660 CD-ROM standard format for

CDs (CDFS in NT), UDF, ISO 13346 standard format for writable CDs and DVDs,

the HPFS (high performance file system) that came from OS/2, and quite a few

other standard file systems. The HPFS support was eventually dropped because the

number of machines that had never been converted from OS/2 was too small to be

concerned with. When NT was developed, there was not a large install base of any

single version of UNIX on 80x86 machines, so Microsoft apparently did not feel it

necessary to support any particular UNIX file systems.

 18.5.1 NTFS

 We discuss a few general characteristics of NTFS, and then the major goals for NTFS

and how they were reached. Finally, we discuss a few advanced features of NTFS. A

schematic of an NTFS volume is shown in Figure 18.5 .

 Master file table

 The boot sector of an NTFS volume contains a pointer to the master file table, or

 MFT. File systems have to record a lot of metadata about files (as opposed to the

data that the files themselves contain). Key metadata for an NTFS volume itself are

stored as special system files in the MFT. Every file or directory in an NTFS volume

has a record in the MFT that is from 1,024 to 4,096 bytes long.2 The metadata about

files and directories are stored in MFT records as attributes. The attributes are what

we would normally think of as the fields in a file system directory record. Since the

attributes needed for a given file can vary greatly depending on the type of the file,

most of the attributes are stored as a pair, an identifier, and a value. A few attributes

are always present and are stored at the front of the MFT entry for the file, but most

of the attributes are in a variable sequence. Since the size of each MFT record is lim-

ited, there are different ways that NTFS can store a file’s attributes: as either resident

2 NTFS is technically proprietary, so some of the details are subject to dispute, having been inferred from
observation.

 Chapter 18 Windows NT™ through Vista™ 429

attributes that are stored within the MFT record, or nonresident attributes, stored

either in other MFT records or in extents in non-MFT clusters of the file system:

 Resident Attributes. Attributes that require only a little space are kept in the

file’s MFT record. Most common file attributes are resident. Some are

required to be resident, for example, the file name and date/timestamps

for file creation, modification, and access are always resident. Figure 18.6

shows an MFT record with resident attributes.

 Nonresident Attributes (AKA external attributes). If an attribute will not fit in

the MFT record, it is put in a separate place. A pointer in the MFT gives the

location of the attribute. Nonresident storage is of two kinds: If the pointers

to the value of an attribute will fit in the file’s MFT record, then the value is

placed in a data run outside the MFT record called an extent, and a pointer

to the run is placed in the MFT record. (This is most commonly true of the

FIGURE 18.5

NTFS volume layout.
Partition Boot Sector

Master File Table Area

System Files

File
Area

FIGURE 18.6

MFT record with

resident attributes.

MFT Entry Header

Attribute Header

$FILE_NAME

Attribute Header

$STD_INFO

Attribute Header

(unused)

$DATA

Resident attribute

Identifies the attribute

Value of the attribute

430 Part 6 Case Studies

data attribute, but theoretically it can apply to any attribute.) Figure 18.7

shows an MFT record with nonresident attributes. An attribute may be

stored in many different runs, each with a separate pointer. If the attribute

value has so many extents that even the pointers to them won’t fit in the

MFT record, then the entire attribute may be moved to an external attribute

in a separate MFT record, or even multiple external records.

 NTFS has several predefined attributes. Some are associated only with a file or

only with a directory or only with some other structure in the metadata for the vol-

ume, while others are associated with more than one structure. Here are some of the

most common NTFS system-defined attributes:

 Volume Name, Volume Information, and Volume Version. The key name,

version, and other metadata for the volume itself.

 Bitmap. Contains the cluster allocation bitmap. This attribute is only used by

the bitmap metadata MFT record.

 File Name. The name of a file or directory. A file or directory can have

multiple file name attributes to allow an MS-DOS short filename or for

POSIX support for hard links from multiple directories.

 Standard Information. Data needed by all files and directories—date/

timestamps for file creation, modification and access, read-only, hidden, etc.

 Index Root. An index of the files in a directory. If the directory is small, the

entire index may fit in the MFT. Otherwise, some of the information will be

in nonresident attributes.

 Security Descriptor. Information controlling access to a file or directory (e.g.,

ownership, access control lists, and auditing information).

FIGURE 18.7

MFT record with

nonresident data

attributes.

Data attribute header

Block start

Block count

Pointer to first data cluster

Block count

Pointer to next data cluster

Block count

Header

Run # 1

Run # 2

MFT Entry Header

Attribute Header

$FILE_NAME

Attribute Header

$STD_INFO

Attribute Header

0

5

12

3

47

2

(unused)

 Chapter 18 Windows NT™ through Vista™ 431

 Attribute List. This is a meta-attribute—it describes other attributes. If an

attribute is nonresident, then that attribute’s identifier is placed in the MFT

record with a pointer to the nonresident attribute.

 Data. The data in a file is the value of the “data” attribute. If all of the attributes

of a file (including the data) will fit in the MFT record, then the data

attribute will be resident in the MFT record itself. Such files require no

other storage space on the volume, and more importantly they do not require

an extra disk access to read the data, improving performance.

 Larger files are more complicated. If all of the attributes for a file do not fit into the

MFT record, the attributes will be made nonresident. So most files will have their

data stored outside the MFT record. The attributes for a file obviously include point-

ers to the data. Very large files may be so large that the attributes pointing to the data

will not fit in the MFT record and thus become external attributes themselves.

 Keeping the MFT contiguous on the disk improves performance, so when an

NTFS volume is initialized, about 13% of the disk space immediately following the

MFT is reserved as the “MFT zone.” It is still usable, but normal files and directories

will not use this space until the rest of the space is used. Eventually, the MFT may

use up the “MFT zone.” If this happens, NTFS will allocate more space for the MFT.

This fragmentation of the MFT may reduce performance by increasing the number

of reads required for some files, and the MFT cannot generally be defragmented.

 Space tracking

 NTFS allocates disk space in blocks of sectors called clusters. It uses a bitmap to

track whether or not each cluster has been allocated to a file. The bitmap itself is

stored in the master file table as a special system file.

 Pointers to the clusters that have been allocated to a file are kept together in a

block. In Chapter 12 we described these as “index blocks” to conform to the stan-

dard terminology in OS literature. (This term should not be confused with NTFS

$INDEX attributes, which apply to directories.) The index block pointers give the

cluster number of the start of a data run, which is a contiguous group of clusters

that are all allocated to this file. The index block has a starting cluster number and a

run length, or count of the contiguous clusters. An MFT record using such runs was

shown in Figure 18.7 .

 Major NTFS goals

 NTFS had two major goals: high reliability and security. High reliability was

approached from two different directions, recoverability after a crash and software

data redundancy and fault tolerance (i.e., RAID). Beyond these three main goals

NTFS provides many other advanced features.

 Recoverability Probably the primary goal of the NTFS design was to increase the

reliability of the file systems in the face of a crash. With previous file system designs,

if the data that controlled the file system was corrupted due to an abnormal system

shutdown, there was a strong possibility that whole files or large portions could be

irretrievably lost. The mechanism that has evolved for the purpose of increasing file

432 Part 6 Case Studies

system recoverability is a log-based file system or journaling file system, as was

discussed in Chapter 13. Whenever any update is to be done to the file system meta-

data, NT first writes out a record to a log file, which lists the steps of the update that

are to be made. This set of steps is referred to as a transaction. Then the individual

steps of the update are made. Finally, any file I/O for which the metadata updates

were being done is executed. Once the entire series of steps is finished, the record

listing those steps will be removed from the log file. If the system goes down, then

when it comes back up it checks to see if an update transaction was in process. If

a record in the log file shows an update was in process, then the OS can recognize

what part of the operation was not completed successfully, and it can either finish

the transaction if it is able or it can back out those portions that were already done if

it cannot finish. In this way the file system will always be brought into a valid state.

Some application data might have been lost, but at least the file system can continue

to be used without fear that additional data will be lost in the future because the file

system has been left in a corrupted state. The Vista release includes optional features

called Volume Shadow Copy and Transaction Support, which can provide protection

for data files. These features are discussed in Section 18.5.5.

 Naturally, these extra steps take extra time and increase the load on the disk

drive. Since NT is designed primarily for a personal computer, the extra load is tol-

erable because the system is probably not being overworked in most cases. Other

NTFS design elements also allowed some performance gains over the other file sys-

tems that NT supports, so the performance of NTFS overall is acceptable because of

the increased reliability over other Microsoft file systems. Also, if a system crashes

and the file system is not a log-based system, then it is prudent to run a utility func-

tion to check the integrity of the file system. On a system with very many files this

might take several hours to run. On a system that is being used as a server, such a long

delay is unacceptable. In such cases it makes more sense to distribute this perfor-

mance impact so that guaranteeing the integrity is spread over the normal day-to-day

operation rather than incurred at one time after a system crash.

 Data redundancy and fault tolerance Another disk reliability feature of NT is sup-

port for three different software RAID (redundant array of independent disks)

organizations. RAID was discussed in more detail in Chapter 14. The RAID forms

supported by NT are RAID-0, RAID-1, and RAID-5. RAID-0 is strictly for perfor-

mance enhancement and offers no increased reliability. RAID-1 is full mirroring—

everything written to one drive is automatically written to another drive. It offers

good reliability but at a higher hardware cost. For RAID-5 a parity block is written

that corresponds to a group of data blocks. It offers good reliability at a lower hard-

ware cost but with increased software overhead. Of course hardware RAID systems

can be used with NT rather than using software solutions.

 Security In NT the fundamental building block of all OS data structures is an

object. Included in this group are files and directories. Each object has an owner,

originally the entity that created the object. Security can be applied to any object

using an access control list. You may recall that an ACL for an entity lists the enti-

ties (including groups and roles) that are allowed to operate on an object and the list

of operations that the entity is allowed to perform. The owner can do several things

 Chapter 18 Windows NT™ through Vista™ 433

to the ACL, including changing it directly, allowing other entities to change it, and

allowing other entities to become the owner. In NTFS the ACL for a file or directory

is stored as an attribute of the object. The permissions used in NTFS are these:

 * R — read

 * W — write

 * X — execute

 * D — delete

 * P — modify the ACL

 * O — make current account the new owner (”take ownership”)

 18.5.2 Advanced features of NTFS

 NTFS includes many advanced features for supporting applications. Some fea-

tures are available to application programs as API calls and others are only used

internally:

 Read-only support. Before the XP release NTFS required that volumes be

on writeable media so that it could write the transaction log files. XP

introduced drivers that can mount volumes on read-only media. This feature

is needed by embedded systems that have read-only volumes in NTFS

format.

 Defragmentation. NTFS makes no special efforts to keep files contiguous. It

provides a defragmentation API that applications can use to move file data

so that files occupy contiguous clusters. NT includes a defragmentation

tool but it has several limitations. Third-party products usually offer more

features.

 Volume mount points. These are similar to UNIX mount points. In NTFS, this

allows additional file systems to be visible without requiring a separate

drive letter for each. This includes remote volumes as well.

 POSIX support. One of the goals for NT was to support the POSIX standard.

For file systems this requires support for case-sensitive file and directory

names, a different method of determining access permissions when parsing

path names, and a different set of timestamp semantics. None of these

features is compatible with NT itself. NTFS includes these optional features

in support for POSIX.

 Encryption. Data stored on laptops can be exposed when a laptop is lost or

stolen. File system protection is not perfect in this case because volumes

can be read by software that doesn’t require NT to be running. Furthermore,

NTFS file permissions are worthless when another user can use an

account with administrator privileges. So NTFS includes a function called

encrypting file system (EFS) to encrypt the data stored in the data attribute.

EFS is completely transparent to applications. Encrypted files can be

accessed only by using the private key of an account’s EFS private/public

434 Part 6 Case Studies

key pair, and private keys are locked using an account’s password so the

files can’t be read without the password of an authorized account.

 Volume shadow copy. This service keeps historical versions of files and folders

on NTFS volumes by copying overwritten data to a hidden shadow backup.

The user can later request a switch back to an earlier version. This feature

allows backup programs to archive files currently in use.

 Link tracking. Shortcuts allow users to place files on their desktop. Similarly,

object linking and embedding (OLE) allow documents from one application

to be linked to documents of other applications. Such links provide an easy

way to connect files with one another but they have been hard to manage,

since if the user moves the target of a link, the link will be broken. NTFS

supports distributed link-tracking, which maintains the integrity of shell and

OLE links when link targets move. With NTFS link-tracking support, if a link

target located on an NTFS volume moves to another NTFS volume in the

same domain, the link-tracking service can update the link to reflect the move.

 Single instance storage (SIS). Sometimes several directories have files with

identical content. Single instance storage allows identical files to be reduced

to one physical file and many SIS references to the merged file. SIS is a

file system filter that manages changes to files and a service that searches

for files that are identical and need merging. Unlike hard links that point to

only one file, each SIS file remains distinct as far as the externals to the file

system are concerned, and changes to one copy of a file will not change the

others. A distinct copy will be created for the one SIS file that is changed.

 Per-user disk space quotas. Administrators often need to track or limit user disk

space usage, especially on servers, so NTFS includes quota-management

support, which allows for per-user specification of disk space quotas.

 Change logging. Applications sometimes need to monitor volumes for file

and directory changes. For example, an automatic backup program might

make incremental backups when files change. One way for this to happen

is for the application to scan the volume and record the state of files and

directories. Then on a later scan it can check for differences. This process

can significantly slow the system, however, especially when computers

commonly have hundreds of thousands of files. NTFS allows an application

to ask NTFS to record information about file and directory changes to a

special file called the change journal. The application can then read the

change journal instead of scanning the entire directory tree.

 Transaction support. With Vista, applications can use transactions to group

changes to files together into a transaction. The transaction guarantees

that all changes happen, or none of them do, and it will guarantee that

applications outside the transaction will not see the changes until they

are committed. Transactions have been commonly supported in database

systems and in the NTFS metadata. This feature brings the reliability of

transaction-based systems to normal files.

 Compression and sparse files. NTFS supports compression of file data.

Compression and decompression are transparent, so applications don’t

 Chapter 18 Windows NT™ through Vista™ 435

have to be modified to take advantage of this feature. Directories can also

be compressed, and any files in compressed directories are automatically

compressed. NTFS has a related mechanism known as sparse files. If a file

is marked as sparse, NTFS doesn’t allocate space on a volume for portions

of the file that are empty. NTFS returns 0-filled buffers when an application

reads from empty areas of a sparse file. As with compressed files, sparse

files are generally transparent to the application, though applications can

be aware of sparse files and possibly save considerable CPU and memory

resources when processing portions of files that are actually null.

 Aliases. NTFS supports both hard and symbolic links. A hard link allows

multiple paths to refer to the same file. They are implemented much as was

discussed in Chapter 12. NTFS prevents loops by the simple expedient of

not allowing a hard link to refer to a directory. NTFS calls symbolic links

 junctions. They are based on a more general mechanism called a reparse

point. A reparse point is an extra attribute about the file or directory, such as

its current location, that can be read by the I/O manager. When NTFS hits

a reparse point during a file or directory lookup, it tells the I/O manager to

check the reparse data. The I/O manager can alter the pathname specified

in the original operation and let it restart with the changed path. Reparse

points can also be used by tape archival software to show that a file has been

moved to an archive system. It moves a file to a tape, leaving reparse points

in their directory entries that tell the software where the file is now located.

When a process tries to access a file that has been archived, the driver

removes the reparse point attribute from the directory, reads the file data

from the archival media back to the original media, and reissues the access.

Thus, the retrieval of the offline data is transparent to a process accessing an

archived file. Of course, opening the file probably takes a little longer than

normal.

 Dynamic bad-cluster handling. If a data read accesses a bad disk sector, the

read fails and the data is no longer available. If the disk is a fault-tolerant

(RAID) volume, however, the driver fetches a good copy of the data and

also tells NTFS that the sector is bad. NTFS allocates a new cluster on the

failed drive to replace the bad cluster and copies the data there. It marks the

bad cluster and thereafter ignores it.

 Indexing. NTFS allows indexing of any of the file attributes on a disk volume.

Indexing sorts the attributes. This lets the file system quickly find files that

match any criteria, such as all the files in one directory.

 Complex file names. NTFS uses Unicode characters to store names of files,

directories, and volumes. Unicode is a 16-bit character-coding scheme that

allows each character in each of the world’s major languages to be uniquely

represented. Each element in a path name can be up to 255 characters long

and can contain Unicode characters, spaces, and multiple periods.

 Multiple data streams. In NTFS a file’s data is considered to be an attribute of

the file called the data stream. New attributes can be added by applications,

including additional data streams, so files (and directories) can contain

436 Part 6 Case Studies

multiple data streams. NT uses an alternate stream to associate user

“properties” with the file, such as a title, subject, author, and keywords. It

stores the date in an alternate stream called Summary Information.

 18.6 BASIC INPUT AND OUTPUT

 The architecture of the total NT file system can be seen more closely in Figure 18.8 .

Unfortunately, as often happens with OS documentation, the names that we have

been using in this text conflict with the names used by the NT system designers. For

example, they call the top layer of the I/O system the “I/O Manager,” while we have

used that term for the lower-level I/O functions of an OS. In this chapter we use the

terms as they are used by Microsoft. So the functions we were describing in the pre-

vious section actually reside in the Partition/Volume Storage Manager and the Disk

Class Manager.

 18.6.1 Partitions

 Because hard drive support in PCs derived from the designs used in MS/DOS, there

are certain things that any OS on a PC is going to support. For one thing, the design

allows the system administrator to divide the disk drive into separate areas called

 partitions. The administrator will then use OS utility programs to establish a sepa-

rate file system in each partition. These file systems may even be file systems native

to other OSs. The I/O system will see each partition as a separate drive. As with the

FIGURE 18.8

NT I/O architecture.

Disk Class
Manager

Virtual Memory
Manager

MINI-
PORT

File System Driver

Partition/Volume

Storage Manager

Application

PORT

Cache Manager

USER

KERNEL NT I/O Manager

File System Filters

Karnel32/ntdll

 Chapter 18 Windows NT™ through Vista™ 437

file systems themselves, the design of the partitioning structure has had to evolve to

cope with the increasing size of hard disks. The partitioning mechanism creates a

small table in the first sector of the hard disk called the master boot block (MBB)

or master boot record (MBR). The original mechanism could create only four par-

titions on a single disk. Later extensions allowed one partition to be designated as

an extended partition. This would allow up to 24 logical partitions to be created on

one disk.

 18.6.2 I/O system layering

 The separation of the layers in the I/O system allows additional extra layers to be

easily inserted into the OS architecture. In many cases the NT I/O drivers expose the

same calls at their API as they use to invoke the drivers at the next lower level, and

each alternative module at any given layer implements the same interfaces. Among

other things, this layering allows a logical device to be defined on a system that is

not really a local disk partition but is instead located on another machine across a

network. In this case the system performs a redirection so that to the user and to pro-

grams, network devices appear to be no different from local devices. It also allows a

device to appear to be a disk drive when it actually is something else—a USB flash

drive, for example.

 The layers also allow extra features to be inserted between layers. They are

loaded as the system boots in the form of device drivers of a special class called

 filters. In the simple case where the average user might not want any extra features,

the basic I/O functions can be supported with very little overhead. When a user does

want some more exotic function, the extra features can be inserted between two

layers in a manner that is transparent to both the higher and lower layers. One exam-

ple of such extra functionality is that of virus scanners. By providing this interface

between the layers, NT can allow third-party software to extend the features of the

I/O system without violating the integrity of the OS code. Also, if any future unan-

ticipated functionality is developed it will be easy to add it to the I/O system because

of this well-defined standard layered interface.

 18.6.3 Plug and play

 When an OS is written it is a generic entity, capable of running on a wide variety of

hardware configurations. When we install an OS on a specific machine it must be

configured to match the hardware installed. If new hardware is later added or old

hardware replaced or removed, then the OS must be adjusted to match the new con-

figuration. We need drivers for new hardware and we also don’t want to waste space

on drivers that are no longer needed.

 In the early generations of the large mainframes it was common for the systems

programming staff to have to perform a sysgen (system generation) when installing

or upgrading an OS. Briefly, this amounted to describing the hardware configuration

with a file of specification records, which were then used to generate an executable

version of the OS specifically tailored to match the hardware. For a moderate-sized

configuration this took days and sometimes several tries to work correctly.

438 Part 6 Case Studies

 The original IBM PC was typical of hardware systems of that era, and configu-

ration of DOS to fit the hardware was very difficult. There were two to four different

pieces of information required to configure most controllers, including an interrupt

request level (IRQ), a memory address, an I/O port (address), and a direct memory

access (DMA) channel number. These were set manually using small switches or

jumpers on the controller board. These addresses had to be selected so that they

did not conflict with one another. Installing a new controller in a machine could be

quite challenging because it was often difficult to find out the settings on the existing

cards. In addition, the hardware then had to be described to the OS using a file called

 config.sys. Hardware vendors usually supplied a utility program that would attempt

to adapt the config.sys file for the new hardware, but they often would cause more

problems than they would fix.

 Beginning with the IBM MicroChannel™ and EISA buses, the controllers were

able to identify themselves to the OS and respond to configuration changes by the

software. This activity is known as plug and play, or sometimes PnP. This trend

continued with the PCI bus and today most OSs are capable of recognizing most new

hardware, setting the parameters for the cards dynamically, selecting configurations,

that will work with the existing hardware configuration, and customizing the OS by

dynamically loading the correct device drivers for the hardware. The OS is still being

adapted to fit the hardware, but the process is normally done dynamically by the OS

and is much more transparent to the user.

 18.6.4 Device drivers

 All of the hardware characteristics of the I/O devices are isolated in the lowest level

of the kernel, the device drivers. This means, for example, that all higher-level mod-

ules should not concern themselves with how many sectors are on a disk track or how

many read/write heads a disk drive has. Nor should they be concerned with which

bits in the status register indicate an error has occurred. Instead, they should focus on

the things that are common to all disk drives, and confine the details of any specific

device (or controller) to the device driver for that particular device or controller.

 Since NT uses such device drivers to hide the details of the hardware, it is easy

to change the hardware configuration of an NT system. Indeed, the drivers can be

installed in or removed from the system dynamically. This means that when a device

is added to the system it is not necessary to reboot the OS. Prior to this development

such rebooting had been necessary when the hardware was changed. This was time-

consuming and in the case of very important systems such as servers it was highly

undesirable. With device controllers that are physically inserted into the bus—for

example, a new graphics card—the system power has to be turned off anyway, so

having to reboot the system is not a problem. However, several of the new methods

for connecting peripheral devices to the computer assume the device is external, like

a VCR or a camcorder, so powering it off is not necessary. Examples of such inter-

faces include USB (Universal Serial Bus), IEEE 1394, and PC Card or Card Bus

(formerly called PCMCIA) devices. Furthermore, protocols are defined for these

interfaces such that the device identifies itself to the computer in a manner similar to

the plug and play features of a PCI bus. This dynamic identification means that the

 Chapter 18 Windows NT™ through Vista™ 439

OS can automatically load the drivers for any newly installed device without reboot-

ing the OS and generally without any assistance from the user other than possibly

providing a CD-ROM containing drivers for the device. Most users will also connect

devices to serial or parallel ports without shutting off the power, though manufactur-

ers of such devices do not generally recommend it. But devices connected through

these ports may not be able to identify themselves automatically like those with the

newer interfaces do.

 18.6.5 Disk class, port, and miniport drivers

 The File System module calls on storage driver functions at lower layers that move

progressively closer to the hardware. These layers are called the storage class, stor-

age port, and miniport drivers. At the top layer NT provides storage class drivers,

which implement features common to all storage devices of a particular type such as

disks or tapes. At the next layer are storage port drivers, which have features com-

mon to a particular bus such as SCSI or ATA. Disk drive vendors supply miniport

drivers that support a particular device or family of compatible devices. The class

drivers have the same API as the device driver interfaces. Miniport drivers use a

port driver interface instead of the device driver interface. This approach simplifies

the role of miniport developers because they have APIs that are compatible with

previous Microsoft OSs. Storage class drivers can often handle many devices in the

class without having a storage port or miniport driver. The prime example of this is

the generic USB storage class driver, which can access many USB storage devices

without any other drivers.

 18.7 GUI PROGRAMMING

 For the user, arguably the defining feature of Windows is the GUI. The program-

mer accesses the OS functions that manipulate the objects on the desktop through

Windows’ APIs. These interfaces provide functions that allow the programmer to

draw windows, make menus and dialog boxes, and so forth. The OS itself takes

care of common functions like making sure that when one window is closed that

the appropriate parts of any windows that were behind the closed window are

updated. Some facilities are provided for the programmer such as the common dia-

log box. See Figure 18.9 . This is a standard window-based dialog that the program

can use to find a file (or files) to open, specify a name to save a file under, select

a font or a color, and several other common features that any program might want

to allow. An application programmer can use this interface, but is not required to

do so. Using this interface provides a similar look-and-feel to different applica-

tions. As programmers have developed more sophisticated interfaces, they have

often tended to use them in the place of the standard interfaces. One can argue that

these new interfaces are more user-friendly or more appropriate to a given task,

but having a different interface for every application may make the overall system

more difficult for a novice to learn, so it is not clear that the tradeoff is always

worth it.

440 Part 6 Case Studies

 18.8 NETWORKING

 Another aspect of NT where the creators desired bringing compatibility with other

OSs was in the networking protocols it supported. When NT was being developed

the Internet was already fairly popular in academic circles, but the TCP/IP protocols

used in the Internet were not the overwhelmingly dominant network protocols that

they are today. The Novell Netware OS was the dominant personal computer file

server platform and it had its own protocols in the form of IPX/SPX. There were

many UNIX systems in operation, and in addition, many of the larger enterprises

had IBM mainframes and midrange systems that used IBM protocols. Systems from

Apple, Inc. ran a protocol known as AppleTalk over various hardware topologies.

In order to gain a place in the networks of customers who used these other systems,

Microsoft had to be able to install systems that could communicate easily with those

systems by supporting the protocols they used. Of course, NT also had to provide

compatibility with the protocols that earlier versions of Windows and DOS used. It

therefore incorporated all the standard protocols used by these other systems. (These

protocols were sometimes common to multiple systems—VAX systems often used

TCP/IP, for example.) Typically these protocols included:

 IPX/SPX for Novell Netware
 TCP/IP for UNIX
 DECNet for Digital Equipment VAX systems
 SNA and NetBEUI for IBM systems
 LAN Manager for Windows legacy systems

 Similar to most of the other major components of NT, the networking functions are

layered. For example, the lowest layer of the networking stack uses an interface called

 NDIS (network driver interface specification) that was defined by Microsoft and

FIGURE 18.9

A File Open dialog

box.

 Chapter 18 Windows NT™ through Vista™ 441

3Com. This interface is specifically designed to allow a single hardware device driver

to support multiple Network layer protocols. This allowed the network interface card

(NIC) vendors to write a single driver for each combination of NIC and hardware

platform without regard for the operating system or the Network layer software.

Indeed, it allowed the driver to support multiple Network layer protocols at the same

time. As with the I/O system, this layered architecture allows the transparent insertion

of extra functionality that is not needed by most users. One example is a layer to pro-

vide SNMP (Simple Network Management Protocol) functions in a PC so that it

can be remotely monitored with an SNMP-based network management console. This

protocol was discussed in Chapter 15. When such monitoring is not needed it does

not have to be installed and waste resources.

 An interesting feature of NT networking support is that it includes an interface

for asynchronous transfer mode (ATM) hardware. ATM has several interesting char-

acteristics that most people have overlooked in their rush to join the Ethernet band-

wagon. For one thing, the maximum ATM frame size of 64 KB fits better with the

maximum IP frame size of 64 KB than does Ethernet with a maximum frame size of

1,500 bytes. When the hardware can directly support the much larger blocks, it is a

waste of resources to break them into smaller pieces. For another, ATM supports qual-

ity of service (QoS) features in the hardware without resorting to software contortions

and extra software layers. As multimedia applications have become more important,

some people have found that these applications work much better over ATM than they

do over Ethernet, and that NT already includes support for those features.

 18.9 SYMMETRIC MULTIPROCESSING

 The hardware platforms that support the NT OS family can scale up to fairly large

systems. One feature that is often found in systems that are designed for supporting

high-volume servers is that they may have more than one CPU. Multiple CPU tech-

nology is now moving down into average desktop systems with CPUs that can run

multiple processes concurrently and with multiple CPUs in a single chip. NT sup-

ports symmetric multiprocessing (SMP), as was discussed in Chapters 6 and 9. The

maximum number of CPUs supported by the NT family varies with the CPU word

size; 32-bit CPUs will support up to 32 CPUs and the 64-bit CPUs will support up

to 64 CPUs. These limits are simply because masks about the individual CPUs are

stored in a single data word.

 18.10 STARTUP SPEED OF XP

 One of the interesting design goals of the XP release was to speed up the time required

to boot the operating system. The goal depended on the way in which the system was

started. From a cold start the goal was considerably longer than from a standby mode

or a hibernate mode. For a restart from a standby state a five second boot time was the

goal. Note that this requires a hardware option called advanced configuration power

interface (ACPI). The time interval of this goal is interesting because it is roughly the

timeout of a human’s short-term memory. If you begin to do some task and the actions

required to start that task take more than about seven seconds, you will frequently find

442 Part 6 Case Studies

that your attention has wandered—you will have forgotten that phone number you

just looked up, for example. So if your PC is turned off and you decide to turn it on to

look up something interesting, if it takes more than seven seconds to boot up you may

find that the hot idea you had has just slipped away. So this was an important feature

that was probably not fully appreciated by many users but affected them nonetheless.

 18.11 SUMMARY

 In this chapter, we discussed the features and con-

cepts of a more advanced OS—the Windows NT

Operating System developed by Microsoft, Inc. We

started this chapter with an overview of the NT OS

and a bit of the history of the evolution of Micro-

soft OSs. We then moved to a brief discussion of the

nature of a high-end single-user OS and the main

goals of the NT family—support for applications

from legacy OSs and support for multiple hardware

platforms. Next, we discussed the complexity caused

by running multiple-user applications and server

applications at the same time. This additional com-

plexity shows in both the scheduling of processes

and threads and in the additional memory manage-

ment functions supported by the NT OS family.

 Then we gave an overview of the support of files

in the NT OS and the higher functions required by

having multiple users and possibly multiple serv-

ers configured on the system, followed by coverage

of the I/O functions that the OS provides. We then

briefly discussed some new aspects of the GUI func-

tionality caused by having multiple windows open

at the same time and we also touched on the sub-

ject of multiprocessor support under NT. Finally, we

addressed the speed of the startup of XP.

 In the next section of the book we provide a case

study of the Linux OS by covering some features

that were not covered in the spiral chapter where

the focus was primarily on those features that were

required when supporting multiple users.

 BIBLIOGRAPHY

 IEEE: Information Technology—Portable Operating

Systems Interface (POSIX). New York: IEEE, 1990.

 Ricadela, A., “Gates Says Security Is Job One For Vista.”

 InformationWeek News, February 14, 2006.

 Russinovich, M. E., and D. A. Solomon, Microsoft

Windows Internals, 4th ed., Redmond WA: Microsoft

Press, 2005.

 WEB RESOURCES

 http://www.activewin.com/awin/default.asp (outsider

information on Microsoft)

 http://book.itzero.com/read/microsoft/0507/Microsoft.Press.

Microsoft.Windows.Internals.Fourth.Edition.Dec.2004

.internal.Fixed.eBook%2DDDU%5Fhtml/ (Microsoft ®

Windows ® Internals, 4th ed. Microsoft Windows

Server™ 2003, Windows XP, and Windows 2000, by

Russinovich, M. E., and D. A. Solomon)

 http://msdn.microsoft.com/en-us/default.aspx (Microsoft

Developer News)

 http://www.osnews.com (news site on all OSs)

 http://technet.microsoft.com/en-us/library/bb878161.aspx

(Windows XP resource kit)

 http://technet.microsoft.com/en-us/sysinternals/default

.aspx (Sysinternals, originally an outside technical

reference, later bought by Microsoft)

 http://pages.prodigy.net/michaln/history/ (OS/2 history)

 http://www.tasklist.org (software to list all processes

running on a system)

 http://www.windowsitlibrary.com (magazine site)

 http://www.winsupersite.com (outsider information on

Microsoft)

 Chapter 18 Windows NT™ through Vista™ 443

 REVIEW QUESTIONS

 18.1 What was the major change when Windows

NT was being developed that made it differ-

ent from most of the previous OS products from

Microsoft?

 18.2 What were some of the major goals for the XP

family that were mentioned in the chapter?

 18.3 When a process does a fork call, XP does not

really create a second copy of the program. What

does it do instead?

 18.4 How was the goal of hardware independence

addressed?

 18.5 What sorts of objects does NT use to schedule the

CPU?

 18.6 Describe the difference between the normal prior-

ity class and the real-time class.

 18.7 What is so unusual about how the NTFS supports

the data in a file? Specifically, what happens if the

data is rather short?

 18.8 True or false? Windows XP supports the OS/2

HPFS file system.

 18.9 Which RAID configurations does NT support in

software?

 18.10 Why is it important to have such a specific divi-

sion between the IOS and the file system?

 18.11 True or false? NT supports compression of files or

entire portions of a file system.

 18.12 What is the impact of a “log-based” file system?

 18.13 What is the advantage of dynamically installable

device drivers?

 18.14 What is unusual about the command-line interface

to Windows XP?

 18.15 One school of thought says that it is better for

applications to stick to standard elements in the

GUI interface. Another argues that improved ele-

ments can make applications better. Justify your

choice.

 18.16 Why does XP support an ATM protocol stack?

 18.17 What does the NDIS specification do?

 18.18 Which multiprocessing mechanism does XP

support?

445

 Chapter Chapter 19 19
 Linux: A Case Study

In this chapter:

 19.1 Introduction 446

 19.2 Process Scheduling 447

 19.3 Memory Management 451

 19.4 File Support 452

 19.5 Basic Input and Output 454

 19.6 GUI Programming 458

 19.7 Networking 460

 19.8 Security 462

 19.9 Symmetric Multiprocessing 463

 19.10 Other Linux Variants 463

 19.11 Summary 466

 I
n Part 2 of the book we discussed some basic features of the Linux operating

system and how a multiuser design placed some different requirements on an

OS. In that chapter we also presented an overview of Linux and some back-

ground about its history and we discussed the general nature of a multiuser OS, the

scheduling of processes and processes in Linux, and the nature of user logons and

file protection mechanisms.

 In this chapter, we present further information about Linux in a case study of

OS and how it implements some of the standard features that we expect to see in any

modern OS. This chapter is intended to be studied with Chapter 6 so that material is

not repeated unnecessarily. We start this chapter with a brief review of Linux and its

history. Section 19.2 discusses the scheduling of processes in Linux and Section 19.3

continues, discussing the memory management features necessitated by supporting

many users who are working at many different processes. Section 19.4 covers the

organization of files in the Linux OS. Linux supports many different file systems

because of its unique evolutionary history. Section 19.5 covers the basic I/O func-

tions that Linux provides and Section 19.6 describes support for GUI programming,

which was derived from the design used in UNIX. In Section 19.7 is a discussion of

the networking support in Linux, which, like the file systems, is complex because of

the history of Linux and the environments it must coexist in. Section 19.8 deals with

some special security aspects of Linux and Section 19.9 discusses a problem that

446 Part 6 Case Studies

arose with Linux support for multiple CPUs. Section 19.10 covers hard real-time

and embedded variants of the Linux OS. We conclude with a chapter summary in

 Section 19.11 .

 19.1 INTRODUCTION

 19.1.1 Linux history

 The Linux OS is largely oriented around UNIX, an older OS that supported multiple

users using terminals connected to a large computer. Today, there are versions of

Linux that are used as the OS on a personal computer for a single user. These ver-

sions still maintain the internal structure of a multiuser facility. Indeed, a single user

can run multiple virtual terminals and can switch between them as though there were

several users on the system and can support concurrent sessions from users with

remote connections. Other versions of Linux are intended to be used purely remotely

as servers for various functions, to act as routers in networks, to control real-time

systems, and to be embedded in equipment with no human interface. As was pointed

out in Chapter 6, Linux is released in production versions and development versions.

The features described in this chapter mostly relate to version 2.6.

 The history of Linux is shorter than many other OSs. Here is a short summary of

the more significant releases and features:

 V. 1.0, March 1994 supported only single-processor i386 machines

 V. 1.2, March 1995 added support for Alpha, SPARC, and MIPS CPUs

 V. 2.0, June 1996 added support for more processors and SMP

 V. 2.2, January 1999

 V. 2.4.0, January 2001
 Hewlett-Packard’s PA-RISC processor
 Axis Communications’ ETRAX CRIS
 ISA Plug-and-Play, USB, PC Card, and Bluetooth
 RAID devices

 V. 2.6, December 17, 2003
 uClinux (for machines with no paged MMU)
 Hitachi’s H8/300 series, NEC v850, Motorola’s embedded m68k

processors
 Intel’s hyperthreading and physical address extension (PAE)
 Maximum number of users and groups (each) now 4,294,967,296
 Maximum number of process ids now 1,073,741,824
 File systems of up to 16 terabytes
 Infiniband support

 19.1.2 Kernel architecture

 The structure of the Linux kernel is monolithic. It is quite modular, however, allow-

ing individual subsystems to be replaced with experimental versions quite easily.

The relationships among the individual modules are complex. Indeed, there are few

 Chapter 19 Linux: A Case Study 447

modules that do not interact with most of the other major modules in some way.

 Figure 19.1 shows some of the major components and the most significant relation-

ships among the modules. In the remaining sections of this chapter we discuss the

operation of some of the major system modules.

 19.2 PROCESS SCHEDULING

 The process scheduler module was redesigned in Linux 2.6. The motivation was to

create a scheduler that used an algorithm that ran in O(1) time. The scheduler used

in prior kernel releases was O(n) and performed poorly when the load was too high.

The Process Scheduler module (SCHED) is responsible for selecting which process

should have access to the CPU. Linux documentation often uses the term “task”

instead of the term “process,” but for most purposes we can consider these to be the

same thing. Linux uses a priority-based scheduling algorithm to choose from among

the runnable processes in the system. (A runnable process is one that is waiting for

a CPU to run on.)

 There is a runqueue made up of 140 lists, one for each priority. An example is

shown in Figure 19.2 . (In a multi-CPU system there will be similar structures for each

CPU but we will ignore that for now.) The individual lists are each scanned in FIFO

order. Processes that are scheduled to execute are added to the end of their respective

runqueue’s priority list. Most processes have a time slice, or quantum, that limits

FIGURE 19.1 The Linux system architecture.

A
p
p
l
i
c
a
t
i
o
n

P
r
o
g
r
a
m
s

S
y
s
t
e
m

C
a
l
l
s

Virtual File
System

Protocols:
IP, TCP, UDP

Network
Management

Character
Devices

Block
Devices

Process
Scheduler Interrupts

Memory
Manager:
kmalloc

Device
Module

File Systems:
ext3, ...

Interprocess
Comm.

Process
Memory

mmap

cache

NFS

Proc and sysfs
File SystemsKernel

Sockets

Virtual
Memory

Process
Control

Network
Drivers

Character
Devices

Disk
Drivers

Memory
access:

Pages, faults

Bus
Drivers

swap

CPU
Registers

Network
Cards

Monitors,
etc.

Disk
Controllers

SCSI, ATA, ...

MMU,
RAM

Bus
Controllers

PCI, USB, ...

448 Part 6 Case Studies

the time they are permitted to run. The time it takes the scheduling algorithm to find

a process to run thus depends not on the number of active processes but rather on the

number of priority lists.

 The runqueue we have been discussing is properly called the active runqueue.

In addition to this queue there is also an expired runqueue. When a process on the

active runqueue uses all of its time slice, it is moved to the expired runqueue. At the

same time its next time slice and its priority are recalculated. If there are no processes

on the active runqueue, the pointers for the active and expired runqueues are swapped,

and the expired runqueue becomes the active one. At this point all the processes will

effectively have a fresh time quantum. A scheduling epoch is the time between when

all runnable processes begin with a fresh time quantum and when all runnable pro-

cesses have used up their time and the queues need to be swapped.

 The scheduler always schedules the highest priority process on a system. If

there are multiple processes at the same priority they are scheduled in round-robin

fashion. The runqueue structure not only makes finding the highest priority process

a constant-time operation, it also makes round-robin behavior within priority levels

possible in constant-time. As well, having two runqueues makes transitions between

time slice epochs a constant-time operation.

 19.2.1 Real-time processes

 The standard Linux scheduler provides soft real-time scheduling support, meaning

that while it does a good job of meeting scheduling deadlines, it does not guaran-

tee that deadlines will be met. This scheduler uses two different scheduling classes

to ensure that all processes will have fair access to the CPU, but still ensure that

 necessary hardware actions are performed by the kernel on time. Linux thus separates

FIGURE 19.2 The active runqueue.

Queue 139

Queue 138

Queue 137

Queue 136

Queue 8

Queue 7

Queue 6

Queue 5

Queue 4

Queue 3

Queue 2

Queue 1

100 Real-Time
Process Queues

40 Normal
Process Queues

Queue 0

null

→ task 137,0

null

→ task 139,0

→ task 0,0

null

→ task 2,0

null

null

→ task 5,0

null

null

null

→ task 137,1

→ task 139,1

→ task 2,1

→ task 5,1

→ task 137,2

task 2,2

. . .

 Chapter 19 Linux: A Case Study 449

processes into two classes: normal and real time. The first 100 priority lists of the

runqueue are reserved for real-time processes, and the last 40 are used for user pro-

cesses. Since real-time processes have lower priorities than non-real-time processes,

they will always run before non-real-time processes. (This might be somewhat con-

fusing because a “lower” priority number has a “higher” priority in the sense that it

will be run first, but that is the way Linux documentation describes it.) As long as

real-time processes are runnable, no normal processes will run. Real-time processes

are scheduled with two scheduling schemes, namely FIFO (or SCHED_FIFO) and

 round robin (or SCHED_RR.) A process that needs to run as a real-time process

will make a system call to tell the OS which of these schedulers to use. If it does not

make such a call, then it is a normal process, as discussed in the next section.

 FIFO processes are scheduled in a first-in first-out manner. If there is a FIFO

process ready to run on a system it will preempt any other higher priority processes

and run for as long as it needs to run since FIFO processes do not have time lim-

its. Multiple FIFO processes are scheduled by priority and lower priority FIFO pro-

cesses will preempt higher priority processes. RR processes are identical to FIFO

processes except that they have time quantum limits and are always preempted by a

FIFO process. Within a given priority level, SCHED_RR processes are scheduled in

a round-robin fashion. Each SCHED_RR process runs for its allotted time quantum

and then goes to the end of the list in its runqueue.

 19.2.2 Normal processes

 Non-real-time processes are marked SCHED_NORMAL (previously known as

SCHED_OTHER)—the default scheduling behavior. To prevent a process from

holding the CPU and starving other processes that also need CPU access, the sched-

uler can dynamically alter a process’s priority. It does so by raising the priority num-

ber (and thus lowering the priority) of processes that are CPU-bound and lowering

the number of processes that are I/O-bound. I/O-bound processes commonly use the

CPU to set up an I/O and then wait for the completion of the I/O. While a process

waits on I/O, other processes get access to the CPU. Processes that communicate

with the user are generally doing lots of I/O and therefore are given preference over

noninteractive processes, resulting in better interactive responsiveness.

 The priority of I/O-bound processes is decreased by a maximum of five prior-

ity levels. CPU-bound processes have their priority increased by up to five levels.

Processes are determined to be I/O-bound or CPU-bound based on an interactivity

heuristic. The interactiveness of a process is calculated based on how much time the

process executes compared to how much time it sleeps. Computing is much faster

than typical I/O operations. Since I/O-bound processes call for an I/O operation and

then wait for it to complete, an I/O-bound process spends more time waiting than

computing, increasing its interactiveness.

 19.2.3 Nice

 Sometimes it is desirable to run a program with a priority other than the normal

default. For example, a program might be providing a background function that is

a lower priority than an interactive user function. Conversely, a process might be

450 Part 6 Case Studies

running that needs a higher priority than normal. There are two ways that a program

priority can be changed. First, a user can run a program with a priority other than

normal using the nice command, and second, a program can issue a system call to

change its priority while it is running. The original concept of the nice command was

that a user could voluntarily run a command with a higher priority number (and thus

a lower priority). Such a command would look like this:

 nice [-n increment]... [Command [Arg]...]

 -n increment increment must be in the range 1–19. If not specified, an increment

of 10 is assumed. An increment greater than 19 is set to 19. A user

with administrative privileges may run commands with priority

higher than normal by using a negative increment such as ⫺ 10.

 command The name of a command that is to be invoked.

 argument A string to be used as an argument when invoking the command.

 Alternatively, a process can alter its own priority by calling an OS function such as

 sched_setparam. This is a POSIX function. There are other OS calls that may also

be used. In the following example, sched_setparam sets the scheduling parameters

associated with the scheduling policy for the process identified by pid. The inter-

pretation of the parameter p depends on the selected policy. As discussed above,

the following three scheduling policies are supported under Linux: SCHED_FIFO,

 SCHED_RR, and SCHED_NORMAL.

 #include <sched.h>

int sched_setparam (pid_t pid, const struct sched_param *p);

struct sched_param {

 ...

 int

 ...

};

 19.2.4 SMP load balancing

 Since release 2.0 Linux has supported symmetric multiprocessing (SMP). We

mentioned that when a system has multiple CPUs there will be multiple active

r unqueues—one per CPU. When processes are created in an SMP system, they’re

placed on the runqueue for some CPU. Some processes will be short and others

might run for a long time and the OS has no way in advance to know which is which.

Therefore, it is impossible to initially allocate processes across multiple CPUs in

a balanced fashion. To maintain a balanced workload across CPUs, work can be

moved from an overloaded CPU to a less loaded one. The Linux scheduler does such

load balancing. Every 200 milliseconds, the OS checks to see whether the CPU loads

are unbalanced. If so, it tries to balance the loads. One negative aspect of moving a

process to another CPU is that the caches in the new CPU do not hold any informa-

tion for the process. This makes the effective memory access time go way up tempo-

rarily, but lightening the load on the busier CPUs makes up for the problem.

 Chapter 19 Linux: A Case Study 451

 19.3 MEMORY MANAGEMENT

 The memory manager (MM) permits multiple processes to share securely the

machine’s main memory system. In addition, the memory manager supports virtual

memory that allows Linux to support processes that use more memory than is avail-

able in the system. Unused memory is swapped out to persistent storage using the

file system and swapped back in if it is needed again later.

 Linux was designed from the outset to be independent of the hardware it is run-

ning on. This brings up several interesting points about the sizes of various internal

data structures in the OS. The first problem that Linux must cope with is the fact that

the basic word size of the machine may be different on different CPUs that Linux

might be running on. Other details may also vary—the memory page size, how the

memory management hardware works, and so on. Linux deals with these problems

by being very modular and very configurable. Although Linux is a monolithic ker-

nel OS rather than a micro-kernel OS, it is still very modular, and it is reasonably

straightforward to replace one module, such as the memory manager, with a different

one. Such module replacement may happen, for example, in an effort to use a new

mechanism that is developed when research has shown that a mechanism that is

currently used is not using the most efficient methods. It can also happen when the

implementation of that replacement turns out to have been rushed and actually leads

to worse performance than the previous release. In Linux 2.2, for example, the page

replacement algorithm that had replaced the algorithms used earlier turned out to be

flawed. While it worked in the general cases, there were some situations where the

performance was very bad. So in release 2.4, parts of the earlier mechanism were

reintroduced. The 2.6 version introduced the O(1) scheduler described earlier.

 The memory manager in the modern Linux kernels is a full virtual memory man-

ager with demand paging. We discussed this technique thoroughly in Chapter 11 so

we will not repeat that here. Linux uses a two-level page table on x86 processors and a

three-level table on 64-bit processors. In theory, paging eliminates the need for contig-

uous memory allocation, but some operations like DMA ignore paging circuitry and

access the address bus directly while transferring data. To allow for this problem Linux

implements a mechanism for allocating contiguous page frames called the buddy sys-

tem algorithm. Pages are kept in one of 10 lists of blocks that contain 1, 2, 4, 8, 16,

32, 64, 128, 256, or 512 contiguous frames, respectively. When asked for a contiguous

block the memory manager looks in the list for the right size or larger, dividing the

block if necessary. When a block is released, the manager iteratively tries to merge

together pairs of free blocks into larger blocks. Linux keeps a separate set of buddy

lists for addresses that are in low memory and thus suitable for DMA operations.

 Linux has a separate mechanism for dealing with requests for small memory areas

called the slab allocator. Rather than allocate all storage requests randomly from a sin-

gle heap, it views memory as collections of similar objects such as process descriptors.

The slab allocator allocates similar objects from a block called a slab, which holds only

objects of a single type. Initializing many of these objects takes more time than reallo-

cating one, so when an object is released it is cached for later reuse as the same type of

object. The slab mechanism is not limited to system-defined objects. Applications can

create their own slab lists and have the memory manager manage them in the same way.

452 Part 6 Case Studies

 The modular design of Linux allows for using different memory managers in differ-

ent versions or distributions. So, for example, a distribution intended for only a real-time

version of Linux would probably have to avoid a virtual memory architecture because it

would not have deterministic performance. Similarly, a Linux-based system embedded

in a PDA or a microwave that did not have secondary storage could use a memory man-

ager more appropriate for those environments. In Chapter 20 we describe a very clever

use of paging hardware in the Symbian OS that shows such a memory manager.

 19.4 FILE SUPPORT

 One decision every OS designer must make is the physical and logical layout of the

file system on secondary storage—usually disks. Several alternative file system lay-

outs may be used and the differences can have dramatic effects on the performance

of the OS. The modular nature of Linux shows again in the area of file support.

 19.4.1 Standard file systems

 As was previously mentioned, the original version of Linux was developed on a

MINIX system. Not surprisingly, the file system that was used in that initial Linux

version was designed around the physical and logical layout of the MINIX file sys-

tem. Even today, the MINIX file system layout is still supported by Linux. Because

various developers of Linux have had different uses as goals for their version of

Linux OS, many other file system layouts, including MS-DOS, OS/2, CDs, and

DVDs, as well as other (non-Linux) UNIX versions, are supported. Something of

a standard file system does exist for Linux for hard disks, however, ext2fs. Much

Linux system documentation discusses the “Linux file system” as though it were the

only one currently used. One of the complications caused by open source projects is

that developers are free to create whatever variations they like to the operating sys-

tem. This is often good in that it encourages experimentation and creativity. It can,

however, be a problem in that it can complicate choices for beginners. Some argue

that from the viewpoint of the larger Linux user community, scarce resources might

be more profitably spent if they were focused on only a few file systems. Table 19.1

shows some of the other Linux file systems that have been created.

 19.4.2 The virtual file system

 The idea of having many different, yet coexisting, file systems is not new with Linux.

UNIX was developed in a fashion similar to Linux, in the sense that many universities

took the source and “improved” it to fit some specific local need. One common change

was to design a new file system for UNIX to work with an existing file system from

some legacy OS. For example, see the HPFS in Table 19.1 . In order to cope with this

multiplicity of file systems, UNIX introduced the concept of the virtual file system, or

 VFS. The virtual file system was an additional layer in the OS between the kernel system

calls and the file systems, and it is invisible to application programs. See Figure 19.3 .

The API for this layer is identical to the API for standard UNIX file systems. When a file

is opened through the VFS layer, it looks to see what file system was on the device being

referenced and passes the request to the appropriate file system driver for that device.

 Chapter 19 Linux: A Case Study 453

Neither the driver nor the application program is aware of the additional layer. In other

operating systems this concept is sometimes called a file redirector.

 This simple mechanism has fostered many developments that might have been

otherwise difficult. For example, when CD-ROM devices were introduced, the

industry was able to standardize on a single data file format (music CDs follow a

TABLE 19.1 Other Linux File Systems

EXT Extended File System (replaced MINIX)

EXT2 Second Extended File System

EXT3 Third Extended File System

XFS Silicon Graphics [IRIX] Journaling File System

HFS Macintosh Hierarchical File System

EFS Silicon Graphics [IRIX] Extent File System

VxFS Veritas File System

UFS Early BSD UNIX File System

BSD FFS BSD UNIX File System

AIX IBM RS/6000 UNIX

JFS IBM’s Journaling File System

HPFS OS/2 High-Performance File System

BeFS BeOS File System

QNX4 FS QNX4 [OS] File System

AFFS Amiga Fast File System

FAT16 MS-DOS File System

FAT32 Windows File System

ReiserFS Balanced Trees (under development)

Xia New MINIX File System

FIGURE 19.3

The Linux virtual file

system (VFS).

File
System

A

File
System

B

File
System

C

Virtual File
System

File
System

D

Apprication
Programs

Remote Server (NFS)

Partition
2

Partition
1

454 Part 6 Case Studies

different, older format). In part, this was because UNIX (and other OSs as well) were

able to support a different file system format on these devices than on hard disks or

floppies. This has been a great benefit to the industry and to the user community.

Imagine if every OS had its own format for CDs! You don’t really have to think very

hard to imagine it—it would be much like the floppy disk industry used to be. You

had to buy floppy disks formatted for the OS you were going to use, disks could be

hard or soft sectored, with various densities (number of sectors that would fit on a

track). At least in the floppy disk case, when MS-DOS became popular, it’s format

was so ubiquitous that every OS was obliged to somehow cope with that format, so

the situation was not as bad as it might have otherwise been. Sun Microsystems was

able to use this mechanism to introduce a “file system” that was actually a network

protocol that accessed files that were not on a local disk; rather, they were resident

across a network. The remote nature of this mechanism was totally transparent to

application programs, but naive use of this feature sometimes could seriously impact

performance. This file system is called the network file system, or NFS.

 19.4.3 The /proc file system

 Linux (and some variations of UNIX) also makes use of the file system interface in

a very creative way. The proc file system is not really a physical file system in that it

doesn’t refer to files on a disk. It is sometimes called a virtual or pseudo file system

and is referred to as being nonpersistent. It responds to most of the same system calls

that any other file system does, but instead of accessing a storage device it returns

information about variables in the OS kernel. The root file system is accessed with

standard I/O calls, so that one merely opens a proc entry (in the proc subdirectory)

and reads its contents. The information that is returned does not actually exist, in

that format, in the kernel (though some parts might), but is instead created on-the-fly

when the read operation is performed. These records include information about the

processes running on the system as well as information about other modules such as

networking, memory management, and so forth. The proc file system even appears to

users to have directories in it. For example, there is a /proc/net directory that includes

all information about the network modules. Other directories correspond to the pro-

cesses running on the system. These directories sometimes contain subdirectories

corresponding to subfunctions of a particular module. For example, the /proc/net

directory contains subdirectories for the arp table and for parameters and counters for

the TCP and IP networking protocols. Note that the proc file system supports writing

as well as reading, so that data in the kernel can be carefully changed. Normally this

means that only a user with root (supervisor) privileges can write to this file system.

 19.5 BASIC INPUT AND OUTPUT

 19.5.1 The /dev table

 Observable in a Linux system is a separate “file system” similar to the /proc file

system called the /dev “file system.” Most devices on a Linux system have a corre-

sponding “file” in /dev, network devices being the exception. The files in /dev each

 Chapter 19 Linux: A Case Study 455

have a major and minor device number associated with them. The kernel uses these

numbers to map references from a device file to the appropriate driver.

 The major device number identifies the driver with which the file is associ-

ated (in other words, the type of device). These numbers are assigned by the Linux

Assigned Names And Numbers Authority (LANANA). The minor device number

usually identifies which particular instance of a given device type is to be addressed.

For example, with hard disks there may be different types of hard disks, SCSI and

SATA, and there may be two SATA disks, differentiated by minor device number.

The minor device number is sometimes called the unit number.

 You can see the major and minor number of a device file by entering the follow-

ing command in a Linux shell:

 ls -l /dev/sda

brw-rw---- 1 root disk 8, 0 Mar 3 2007 /dev/sda

 This example shows the first SCSI disk on a Linux system. It has a major num-

ber of 8 and a minor number of 0. The minor device number is sometimes used by

the driver to select the particular characteristic of a device. For example, one tape

drive can have several different files in /dev representing various configurations of

recording density and rewind characteristics. In essence, the driver can use the minor

device number in any way that it wants.

 Note that here the “ls” command, which normally is used to list files in a direc-

tory, is being used to show device characteristics just the same as if it were an actual,

physical file.

 19.5.2 Device classes

 As do most OSs, Linux broadly divides devices into three classes—block, character,

and networking—and treats each of those classes differently. Figure 19.4 shows a

diagram of some of the kernel I/O modules and the relationships between them.

 Block devices

 For Linux the access to block mode devices is usually through the file system, even

for tape storage. Linux also supports raw I/O directly to devices.

 Character devices

 Character mode devices transfer data a single byte at a time and include printers,

keyboards, mice (and other pointing devices), and so on. A program can use the ioctl

system call to access most character mode devices.

 Network devices

 Network devices do not fit the semantics of files since applications waiting for input

never know when they might arrive. As a result, network devices have an entirely

different set of interfaces than do other devices.

 Network devices do not show up in the /dev table since their operations are so dif-

ferent. Instead, they have a generic network interface that conforms, most often, to the

456 Part 6 Case Studies

TCP/IP (or UDP) protocol stack model, and are most frequently accessed with a pro-

gramming model called a socket. This model is an API that lets an application make a

network connection to another application, presumably but not necessarily on a differ-

ent system, and to send and receive either a stream of data or a series of blocks of data

between the two applications. This model has layers for the data link, network, and

transport control services. Most classes of device drivers keep various usage statistics

about their operation (including errors) so that the system administrator can optimize

performance of the system. Network drivers are more aggressive than most other driv-

ers, and typically keep many different types of statistics, including error counters and

number of packets sent and received. The network modules have a generic network

interface with common operations for connecting, sending, receiving, timeout han-

dling, statistic collection, and routing. Since the origins of UNIX are tightly connected

to utilization of TCP/IP, it is not surprising to learn that the Linux drivers are optimized

for TCP/IP support. Once again, however, the open nature of Linux and the diverse

needs of Linux supporters have resulted in the adaptation of many other network pro-

tocols for Linux. Here are some of the many other protocols available for Linux:

 Network protocols (software protocols)
 IP version 6 - the Internet and Internet 2
 IPX/SPX - Novell
 AppleTalk Protocol Suite - Apple
 NetBEUI - IBM and Microsoft
 NetBIOS - IBM and Microsoft
 CIFS - Microsoft
 SNA - IBM
 APPC - IBM
 DECNet - Digital Equipment Corporation

FIGURE 19.4

The Linux I/O

systems.

Application
Programs

File
Systems

Device
Control

Sockets

File
System

X

Network
Protocols

Block
Device
Driver

Network
Interface

Kernel

Character
Device
Drivers

Remote Server
NFS, Samba

 Chapter 19 Linux: A Case Study 457

 Physical protocols (hardware protocols or router and switch interfaces)
 ISDN - Integrated Services Digital Network
 PPP - Point-to-Point Protocol
 SLIP - Serial Line Interface Protocol
 PLIP - Parallel Line Internet Protocol
 Amateur Radio - AX25
 ATM - Asynchronous Transfer Mode
 ARCNet - Datapoint Corp., among others
 FDDI - Fiber Distributed Data Interface
 Frame Relay
 Token Ring - IBM
 X.25 - Slow, asynchronous
 802.11 - wireless LAN
 Bluetooth - wireless

 In keeping with its UNIX orientation, Linux gives strong support to the sockets and

datagram mechanisms. They were included in the 1.0 release in 1994. This mecha-

nism was introduced to the UNIX world with BSD 4.3 UNIX. The network inter-

faces and mechanisms were discussed more in Chapter 15.

 Disk scheduling

 In Chapter 14 we discussed the many options that OSs have for scheduling opera-

tions on disk drives, for example, when to move to the next track and which track to

move to. One of the strengths of Linux that has been emphasized in this chapter is

its modularity. This modularity allows replacement of individual modules in Linux

with a different implementation that is more appropriate for a particular situation.

The scheduling of disk operations is a good example. While the default scheduler

is generally fair and performs quite well, the overall performance of any particular

system depends greatly on the type of processing that is being done. Web servers,

for example, place very different demands on a system than does a database server.

Accordingly, several different disk schedulers are available to fit certain situations

better than others. Historically the default disk request scheduler in Linux has been

C-LOOK. It treats the disk like a cylinder, starting at one end of the drive and pro-

cessing operations in order as it goes. When it reaches the end of the queue of opera-

tions it moves the head all the way back to the other end without processing any

requests and begins processing the operations that piled up after the head had passed

them by on the last scan. Later releases of Linux have begun to incorporate more

advanced scheduling algorithms.

 The recent history of disk schedulers in Linux demonstrates how having a replace-

able module was used to great advantage. As was mentioned, the disk scheduler in

Linux was basically a C-LOOK scheduler that merely merged requests in the direction

of the seek. It was noted that this sometimes caused very poor performance of requests

that were very far away from the bulk of the other requests. In order to improve the

performance of such requests the scheduler was modified such that each new request

was given a deadline. If the deadline for a request drew near, then it would be serviced

immediately. This algorithm gave better performance in certain situations.

458 Part 6 Case Studies

 Unfortunately, applications that do a lot of reading tend to use synchronous I/O.

Typically they read a block, process it a bit, and issue a read for the next block. While

the processing was going on, the head was moved to another part of the drive and the

next block could not be read until much later. In order to improve the performance of

such applications, a new anticipatory scheduler was introduced in Version 2.6. This

scheduler is basically C-LOOK, but when performing a read, this scheduler would

delay moving the head away from the block read for a short time (a few milliseconds)

on the theory that the application might shortly issue a new read for the next block.

It performed well in some cases such as compilation, but was miserable in others,

primarily interactive tasks. This poor performance was caused by not keeping the

seeking mechanism busy all the time.

 So yet another scheduler was released. It is known as complete fair queuing

scheduler, or CFQ scheduler. CFQ places synchronous requests into separate queues

for each process and allocates time slices for each of the queues to access the disk.

The length of the time slice and the number of requests a queue is allowed to sub-

mit depends on an I/O priority assigned to the process. Asynchronous requests are

batched together into separate queues for each priority. CFQ does not do anticipatory

IO scheduling, but it gives good throughput for the system as a whole by allowing a

process queue to idle at the end of synchronous I/O, thereby “anticipating” further

close I/O from that process. The CFQ scheduler was released as part of the 2.6.18

kernel. It is the default scheduler in kernel releases.

 Since no scheduler is optimum for all circumstances, there are presently four

schedulers available for Linux:

 Noop Scheduler

 Anticipatory IO Scheduler (“as scheduler”)

 Deadline Scheduler

 Complete Fair Queuing Scheduler (“cfq scheduler”)

 One can change schedulers by setting the kernel option ‘elevator’ at boot time. You

can set it to one of “as,” “cfq,” “deadline,” or “noop.” In addition, some of the sched-

ulers have parameters that can be tuned at runtime.

 19.6 GUI PROGRAMMING

 When UNIX was created, very little computing work was done in a graphics mode.

Instead, many users connected to the computer with a terminal that was basically a

typewriter (or Teletype), a printer with a keyboard built in. When CRT terminals came

into use they normally displayed text only, much like the printer terminals then being

used. Terminals that supported graphics might cost as much as the computer that they

were connected to. As a result, UNIX kernels do not assume that the user interface

is a graphical user interface (GUI). Instead, if a GUI is desired, it must be provided

as a facility apart from the OS kernel. The X-Window system was created to pro-

vide a mechanism to display graphics in UNIX. The X-Window system is a platform-

independent, client/server-based protocol for displaying graphics. A block diagram of

the components of the X-Window system is seen in Figure 19.5 . The naming of the

 Chapter 19 Linux: A Case Study 459

components can be somewhat confusing today—the system where the graphics are

viewed is called an X-Window server and the system where the graphics are generated

is called an X-Window client. Both the server and the client can be running on the same

machine as they often are in a Linux PC environment, or they can be different systems

on opposite sides of the world, connected through a network.

 The X-Window (or X11) protocol requires a third component to actually display

windows, menus, boxes, and scroll bars, which may be drawn however the manager

determines. This component is called a window manager. The window manager

determines the way the interface looks and how the user interacts with it—the so-

called look-and-feel. Running an X-Window server and window manager on a single

machine provides a familiar GUI. There are currently two very popular window man-

agers in the Linux world—the Kool Desktop Environment (KDE) and GNU Net-

work Object Model Environment (GNOME). Both of these window managers are

found in most Linux distributions, and occasionally they include other managers that

are not as popular. Since Linux applications most often use the X-Windows API to

draw on the system, programs that work with any one manager usually work correctly

with any other windows manager as well. However, dialog boxes, menus, scroll bars,

and moving between windows may appear differently to the user. So, for example,

the Apple Mac OS version X is built on a UNIX kernel but the window manager

looks and works like the prior releases of the Mac OS. A drawback to having the win-

dow manager as an external component is that there may be multiple, different GUI

interfaces, so books and training materials will need to be customized for each. While

this might not matter so much to an individual, it is a problem for institutions of all

kinds who have to support many users who may choose different managers.

 With UNIX this is not a problem confined only to GUI interfaces. Traditionally,

UNIX commands are given to the OS by typing them on a line in a textual command

interpreter, or shell. The UNIX text-oriented shell is a separate external module, just

as are the GUIs. In the case of UNIX there were quite a few of them. See Table 19.2 .

 Different shells were sometimes only slightly different from one another, but

some were very different in the way that they could be programmed, assist in helping

users complete commands, and keeping and repeating command histories, among

FIGURE 19.5

X-Windows.

Keyboard

Display
X-Application

X-Toolkit

X-Intrinsics

X-Server

X-Protocol

Mouse

Device-Dependent
Module

XLib

X-Protocol

[LAN]

460 Part 6 Case Studies

other things. These differences made choosing a shell a very personal decision. It

also made the life of help desk personnel more complicated and limited the ability of

one user to help another.

 19.7 NETWORKING

 The network interface (NET) module of the OS provides access to several network-

ing standards and a variety of network hardware.

 19.7.1 Network layering

 The networking model used in the Linux OS is based on the standard TCP/IP model.

Since the physical interface is implemented by the network interface card (NIC), Linux

generally ignores the Physical layer, so the model only shows three service layers and

the Application layer. See Figure 19.6 . The three service layers were also shown in

 Figure 19.2 . Often OS developers create each network protocol layer in total isolation.

The result is often that high overhead is caused by excessive copying of messages from

layer to layer as the successive layers add headers and sometimes trailers to the mes-

sage. Linux avoids this problem by allocating the space for a message in a buffer called

a socket buffer, or skbuff. An skbuff contains pointers to locations in a contiguous block

of memory that stores the whole packet. When data is passed from one layer to a lower

layer, the header of the lower layer is added to the data, and likewise, the header of the

lower layer is stripped off when data is passed from a lower layer to an upper layer.

When an skbuff is allocated, Linux will calculate the amount of memory including the

maximum length of the headers of various layers needed by the packet. The initial mes-

sage is put into the middle of the buffer, leaving room for the headers from lower layers.

TABLE 19.2 Popular UNIX and Linux Shells

Shell Comments

KSH Linux version of Korn shell

TCSH Turbo C shell

BASH Bourne Again shell

CSH Linux version of C shell

ASH

ZSH Advanced command-line editing—not for scripting

Bourne Enhanced original shell

Korn Originated with AT&T and System V

C UC Berkeley

SH The original UNIX shell

rc Plan 9 from Bell Labs

es RC-like syntax with Scheme semantics

eshell Emacs

CLISP CommonLisp

 Chapter 19 Linux: A Case Study 461

So when a packet is passed between layers the only need is to set the pointers that indi-

cate the new location of the start of the header or trailer of the corresponding skbuff.

 19.7.2 Connection super-server

 Linux uses a super-server called inetd, which listens on many ports used by common

IP services such as HTTP, POP3, and Telnet. When an IP packet arrives on one of

these port numbers, inetd launches a selected server program. For services that are

not used frequently this mechanism uses memory more efficiently, as the specific

servers run only when needed. Also, no network code is required in the applications,

since inetd connects the sockets directly to the stdin, stdout, and stderr functions of

the server process. For protocols that have more frequent use, a dedicated server that

handles the server requests directly would be used instead.

 19.7.3 SAMBA

 Since Linux presently exists in a world dominated by Microsoft OS software, a great

deal of effort goes into making Linux systems work well with Microsoft products.

We briefly touched on file systems that support present and past Microsoft file sys-

tem formats. We also mentioned a few networking protocols that Linux offers sup-

port for. But one server package dominates in the networking area—Samba.

 Samba is a server that implements many Microsoft services and protocols,

including SMB (Server Message Block), CIFS (Common Internet File System),

DCE/RPC (Distributed Computing Environment/Remote Procedure Calls), MSRPC,

a WINS server (a NetBIOS Name Server, NBNS), NetBIOS over TCP/IP (NBT), the

Network Neighborhood protocols, the NT Domain protocols including NT Domain

Logons, a Secure Accounts Manager (SAM) database, Local Security Authority

4 - Application

3 - Transport

2 - Network

1 - Device

FIGURE 19.6

The Linux Network

layer model.

462 Part 6 Case Studies

(LSA) service, NT-style printing service (SPOOLSS), NTLM, and Active Directory

Logon using Kerberos and LDAP. Samba also uses these protocols to see and share

local resources including printers.

 Samba sets up network shares for chosen Linux directories (including subdirec-

tories). These appear to Microsoft Windows users just as folders. Linux users can

either mount the shares or can access the files with a utility program that acts like an

FTP program. Each directory can have different access privileges aside from normal

Linux file protections. Samba is also available on most other UNIX-variant systems.

 19.8 SECURITY

 19.8.1 The Linux security module

 The Linux community has been divided on the issue of security. The crux of the

division has to do with the fact that the security community is itself divided about

how security should be implemented. A primary consideration with security is that

supporting high levels of security involve substantial resources, obviously including

hardware such as memory and CPU utilization but also administrative and user time

to set it up and use it correctly. If high levels of security are not needed in a particular

installation, then those resources should not have to be spent. The solution in Linux

has been the inclusion of a module called the Linux security module, or LSM. It

consists of a set of hooks that a specific security implementation can attach itself to

in order to perform authorization checks when objects are accessed.

 There are several different security systems that have been designed to run under

Linux using the LSM hooks. The most well known is Security-Enhanced Linux

(SELinux), which provides a secure access control mechanism based on the trust (clear-

ance) level of the individual requesting access. Others include AppArmor (Application

Armor), Linux Intrusion Detection System, BSD Secure Levels, and Commercial

IP Security Option (CIPSO). As of release 2.6 of Linux, none of these modules had

prevailed over the others, so the LSM approach continues to be supported.

 19.8.2 Networking security

 Because the source code for Linux is freely available it is often used as the OS of

choice both for security analysts and hackers. As a result, there are many tools for

both hacking and security protection available for Linux.

 Port scanners are software packages that try to determine what services are

running on a target machine. Generally they will try to make a connection to each

possible port on the machine. Based on the results of this attempt a hacker may be

able to tell if the machine is vulnerable to a known exploit. Port scanners can be set

to attack a single machine, a group of machines, or all machines on a network. There

are many software packages that do port scanning. Nmap, SATAN, ISS, and SAINT

are some of the better known ones.

 There are also stealth port scanners. These scanners use a low-level interface to

create TCP or UDP packets that do not correctly conform to the protocol. For example,

a TCP packet with the ACK bit set will likely get through a packet-filtering firewall

because it looks like part of an established connection. If such a packet is received

 Chapter 19 Linux: A Case Study 463

on a port that had no established session with the sender, then the TCP software will

respond with an appropriate message and the hacker can assume that there is a process

that is reading that port.

 TCP Wrapper (tcpd) is used to filter network access to IP services run on Linux

or other UNIX-like variants. When IP services are started by a super-server like inetd

the TCP wrapper program is invoked to check the source of the connection. It sup-

ports filtering on host or subnet IP addresses or names. In addition, these IP services

can be linked to an ident service. This service will first query the source IP address

on TCP port 113. It will expect a query reply that identifies the source system. Only if

the reply is received and matched against a database will the connection be allowed.

Most network service programs can be directly linked with the library that does the

filtering. This method is used by services that operate without being started by a

super-server, or by any service that handles multiple connections. Otherwise, only

the first connection attempt would get checked against the database by tcpd.

 19.9 SYMMETRIC MULTIPROCESSING

 With SMP the OS can be running on more than one CPU at one time. As was discussed

in Chapter 6, the two (or more) instances of the running OS must be prevented from

changing the same data structure at the same time by using locks. Early releases of the

Linux SMP support used a single lock for the entire kernel, the so-called Big Kernel

Lock. This was not very efficient, since many times the different instances of the OS

would not be manipulating the same data structures at all. So later releases have begun

replacing those references to that one lock with references to more localized locks.

Some references to the Big Lock still remain as of version 2.6, but the multiprocessor

performance is greatly improved over prior versions. The Linux kernel also uses spin-

locks on a special read–write type of semaphore that allows multiple readers but only

one writer at a time, when a structure is read mostly. For example, the table of network

devices changes only very rarely but is read frequently, so allowing multiple readers is

beneficial. When a change needs to be made to the table, then locking all the readers

out briefly while it is changed by only one writer is not a frequent problem.

 19.10 OTHER LINUX VARIANTS

 Since the source code for Linux is readily available, there are several variants of

Linux that have been created for special purposes. Two special areas are versions

for real-time applications and for embedding Linux in small systems with limited

resources.

 19.10.1 Real-time Linux

 The normal Linux OS is not a hard real-time OS. This is true for most OSs. A hard

real-time system guarantees that real deadlines are met, for example that a process or

thread will be run in the next 50 milliseconds. Hard real-time systems preclude many of

the mechanisms that have evolved for traditional OSs, mechanisms that use stochastic

techniques and try to be fair in providing services to processes. Hard real-time systems

464 Part 6 Case Studies

need to establish deadlines for events and for the servicing of requests and the normal

OS mechanisms do not allow us to provide such deadline support. Embedded applica-

tions are also important, where a computer is a controlling component in a piece of

equipment rather than a general-purpose computing tool. Such embedded applications

are often real-time systems as well. This means that there is a considerable overlap

between embedded Linux implementations and real-time Linux implementations.

 There are two main schools of thought about how to make a real-time system out

of Linux. Some of the implementations of real-time Linux use a small real-time OS

(RTOS) as a host OS and they run a version of the Linux kernel that runs as a single

thread in the host OS kernel at a background or idle priority. In other words, when there

is no real-time process to run, then any normal Linux applications can run. This model

is known as RTLinux. The other school uses the Linux kernel but modifies it heav-

ily to include only scheduling mechanisms that allow the support of a real-time API.

These mechanisms would include at least the process scheduler and the disk sched-

uler and probably the networking protocol stack. This real-time application interface

model is also known as RTAI. There are also other interesting approaches that do not

fit either of these categories. Deciding on the correct package to use for a project could

be quite complex. Fortunately there is real-time Linux common API, an open source

API that allows programmers to code to a common API when using either RTLinux or

RTAI. Table 19.3 lists some embedded and real-time implementations of Linux.

 19.10.2 Embedded Linux

 Linux has also been modified to run in very limited environments. Such environ-

ments include platforms like those discussed in the chapter on the Palm OS, but it

also include devices like microwave ovens and home heating controls where the user

environment is very limited. The open source and modular nature of Linux make it

ideal for such situations. However, there are many issues that must be resolved in

using Linux as an OS in such systems:

 These devices typically have no secondary memory and thus don’t really need

paged memory. But standard Linux presumes that these exist. So one modifica-

tion that is often found in embedded Linux systems is the removal of paged

memory hardware support requirements. They also need no caching manage-

ment system or features like memory mapped files.

 The very limited user interface is also significant because Linux does not pre-

sume a GUI. Rather, the GUI is an add-on and the standard interface is a com-

mand line. Even this may be too strong an assumption for a microwave where

the display might be limited to an LCD panel that can only display a few digits.

Some embedded Linux systems are found in complex devices such as small

routers. These devices now often support the HTTP protocol and can be man-

aged by a remote browser.

 Process scheduling in Linux typically uses the concept of “interactiveness” to

promote the priority of a process that is interacting with a user. But in an embed-

ded system there is no elaborate, interactive user interface. There may be a small

display and a few buttons that can be handled quite adequately with some real-

time processes or normal interrupt handlers. So the process scheduler may be a

stripped-down version that does not incorporate dynamic priority changes.

 Chapter 19 Linux: A Case Study 465

TABLE 19.3 Common Linux Variants

Commercial platforms:

FSMLabs: RTLinuxpro - RTCore - a hard real-time platform that runs Linux as an idle thread.

Lineo Solutions: uLinux - hard real-time Linux kernel - targets consumer electronics devices.

LynuxWorks: BlueCat - time-critical handling of interrupts and other hardware operations - implements Linux

kernel as a thread.

MontaVista Software: Real-Time Solutions for Linux - MontaVista Linux for embedded and real-time

applications - includes a preemptable Linux kernel.

Concurrent Computer Corp.: RedHawk - a Linux-based RTOS kernel for multiprocessor systems - uses CPU

shielding - processors can be designated as locked out from Linux so hard real-time processes execute on a

shielded CPU with guaranteed interrupt response time.

REDSonic: REDICE-Linux - a real-time Linux kernel with extra preemption points that allow RTAI support

and quality of service (QoS) guarantees.

TimeSys: TimeSys Reservations - dynamically installed kernel modules extend a Linux RTOS. Reservations

retain a fixed amount of CPU and network bandwidth for a specific process or set of processes.

Open-source implementations:

Accelerated Technology - provides embedded developers with a real-time operating systems (RTOS).

ADEOS - provides a hardware abstraction layer that allows a real-time kernel and a general-purpose kernel to

coexist. Supports dual-kernel hard real-time Linux environments like RTLinux or RTAI free from technology

patent.

ART Linux - a real-time extension to the 2.2 Linux kernel.

Flight Linux - a real-time variation designed for onboard spacecraft use.

KURT—The KU Real-Time Linux - a real-time Linux kernel developed at the University of Kansas.

Linux/RK - a “resource kernel” enhancement to Linux based on a loadable kernel module that provides timely,

guaranteed, and enforced access to system resources for applications. Development based at Carnegie Mellon

University.

OnCore’s Linux for Real-Time™ - allows embedded designers to pick a memory footprint and performance

model appropriate to the problem.

RED-Linux - a real-time version of Linux; based at the University of California, Irvine.

RTAI - real-time application interface, a comprehensive real-time API usable both for uniprocessors and SMPs.

Allows control of real-time processes from user space - soft real-time with fine-grained process scheduling.

AtomicRTAI is a small-footprint (single floppy) version.

RTLinux - a “hard real-time” mini OS runs Linux as its lowest priority preemptable user thread so real-time

threads and interrupt handlers are never delayed by non-real-time operations. Supports user-level real-time

programming. MiniRTL is a small-footprint version.

RedIce Linux - RedIce Linux allows RTAI and RED-Linux to run concurrently, enabling real-time jobs

requiring very low latency and hard real-time user applications with complete Linux kernel support to run under

one structure.

466 Part 6 Case Studies

 19.11 SUMMARY

 This chapter is one of several case studies of real

OSs showing how they implement several standard

OS features. This chapter discussed such features in

a multiuser OS, Linux. We started this chapter with

a discussion of the process scheduling mechanisms

and followed it with a rundown on the virtual mem-

ory management by the OS necessitated by sup-

porting potentially many users doing very different

processes. We then gave an overview of the support

of files in Linux and the many different file systems

supported because of the unusual history of Linux,

followed by coverage of the I/O functions that the

OS provides. We then briefly discussed the imple-

mentation of the GUI. Sections on networking and

security were also provided. Next, we touched on the

subject of multiprocessor support under Linux, and

finally we addressed some variations of Linux that

have resulted from its being used in situations where

an OS such as Linux would not normally be found

such as hard real-time and embedded environments.

 BIBLIOGRAPHY

 Bovet, D. P., and M. Cesate, Understanding the Linux

Kernel, 2nd ed., Sebastopol, CA: O’Reilly &

Associates, Inc., 2003.

 Gorman, M., Understanding the Linux Virtual Memory

Manager. Upper Saddle River, NJ: Prentice Hall, 2004.

 Love, R., Linux Kernel Development. Indianapolis, IN:

Sams Publishing, 2004.

 Stevens, R., Advanced Programming in the UNIX

Environment. Boston, MA: Addison-Wesley, 1992.

 Stevens, R., Unix Network Programming. Upper Saddle

River, NJ: Prentice Hall, 1990.

 Yaghmour, K., Building Embedded Systems. Sebastopol,

CA: O’Reilly & Associates, Inc., 2003.

 WEB RESOURCES

 http://www.linux.org (the home of Linux kernel

development)

 http://www.kernel.org (a repository of historic kernel

sources)

 http://www.tldp.org (the Linux Documentation Project)

 REVIEW QUESTIONS

 19.1 What was the specific objective of the redesign of

the scheduler for Linux 2.6?

 19.2 True or false? In the Linux scheduler the real-time

process queues are serviced in a FIFO manner.

 19.3 Briefly describe SMP load balancing.

 19.4 True or false? Linux uses a standard demand pag-

ing virtual memory manager.

 19.5 What is the buddy system?

 19.6 True or false? Linux offers only a simple file sys-

tem derived from MINIX.

 19.7 True or false? One of the main contributions of

Linux is that it uses a unique disc scheduling

algorithm not found in other OSs.

 19.8 How does Linux provide protection for files

belonging to different users?

 19.9 In the Windows NT OS family the GUI is intrin-

sic to the OS. How is a GUI provided in Linux?

 19.10 What does Linux do to keep from having exces-

sive buffer copying when passing messages

 Chapter 19 Linux: A Case Study 467

down through the layers of the networking

architecture?

 19.11 On a multiprocessor system the Linux kernel

can be executing on multiple CPUs at the same

time. When it is necessary for the kernel to enter

a critical section it can’t just call the OS to WAIT

because it is the OS. What does it do instead?

 19.12 Real-time OSs have some timing requirements

that are ignored by most OSs. There are many

commercial and open source variants of Linux.

We described two different approaches to sup-

porting real-time requirements under Linux. One

approach involved heavily modifying the Linux

kernel process scheduling module. The other

approach was conceptually cleaner and simpler.

Briefly describe that approach.

 19.13 What is the Big Kernel Lock and what is happen-

ing to it?

469

 Chapter Chapter 20 20
 Palm OS: A Class
Case Study

In this chapter:

 20.1 Overview 469

 20.2 The Multi-Process OS Environment 470

 20.3 Palm Process Scheduling 471

 20.4 Palm Memory Management 471

 20.5 File Support 472

 20.6 Input/Output Subsystems 472

 20.7 GUI Programming 473

 20.8 Network Programming 473

 20.9 Programming Environments 475

 20.10 Similar Systems and Current Developments 476

 20.11 Summary 480

20.1 OVERVIEW

 In Chapter 4 we discussed some elements of the Palm operating system. That discus-

sion was mainly limited to issues that arose as we studied the more complex design

goals of this OS compared to the ones studied before it. This chapter is nominally

about the Palm OS versions prior to version 5. This OS represented a particular niche

in the hierarchy of OSs that was described in Part 2 of this text. As such there is not

a great deal more that can be said about this OS that was not covered in Chapter 4.

So this chapter starts with a series of sections that parallel the other two case study

chapters and provide some details that were not relevant to Chapter 4. But other

material is added here that helps place this OS in the computer industry as it is evolv-

ing today. We discuss some aspects of programming such platforms and the trends of

the applications that are developing in the industry.

 We begin this chapter with a brief restatement of the type of environment that the

Palm OS is designed for in Section 20.2. Sections 20.3 through 20.5 briefly summarize

the related points of Chapter 4. Section 20.6 then discusses several developments that

470 Part 6 Case Studies

have occurred in the area of the input/output subsystems in the Palm OS beyond the

fundamental things we covered in Chapter 4. These features are typical of new hand-

held platforms. Sections 20.7 and 20.8 also summarize related sections of Chapter 4.

Section 20.9 explains the nature of the cross-development systems needed to develop

programs for such a limited environment. PDAs, cell phones, and multimedia players

were originally different sorts of devices, but these platforms are currently undergo-

ing a merger. So Section 20.10 discusses how software is evolving in these platforms.

It also touches on some of the developments in later releases of the Palm OS. We

conclude with a chapter summary in Section 20.11.

 20.2 THE MULTI-PROCESS OS ENVIRONMENT

 The Palm OS and its environment were discussed in Chapter 4, but they are reviewed

here for convenience. The Palm OS is designed for a very specific type of environ-

ment. There are several characteristics of this environment that restricted the design

of the OS. The environment characteristics are briefly outlined in Table 20.1 .

 The primary characteristic of the Palm OS is the small screen size. This means

that the user is only interacting with one program at a time so that applications

assume that their window fills the entire screen at all times except for small notice

boxes that may pop up in front of the main window.

 Although later models sometimes included disk drives, especially as an add-on

feature, the initial machines did not include them and the OS design assumes that all

programs reside in primary memory. The lack of a keyboard means that the OS must

provide for handwriting recognition. This feature is a real-time application, so a real-

time kernel underlies the Palm OS. User applications, however, are not real time and

are single threaded. The resulting OS design choices are listed in Table 20.2 .

TABLE 20.1 Unusual Characteristics of the Palm Platform

Small screen size

No secondary storage

No text keyboard—touch screen

Limited power for better battery life

Slow CPU to reduce power

Limited primary memory

TABLE 20.2 Unusual Characteristics of the Palm OS

Programs never stop

No demand paging (virtual memory) or disk caching

Single-window GUI

Multiple text input options

Real-time OS tasks but non-real-time applications

No application multithreading

 Chapter 20 Palm OS: A Class Case Study 471

 20.3 PALM PROCESS SCHEDULING

 20.3.1 Real-time tasks

 The process scheduler in the Palm OS is a preemptive multitasking priority sched-

uler. It will dynamically determine which task that is ready has the highest priority

and it will interrupt the running of a less important task to run a more important one

that becomes ready. The underlying OS is a real-time kernel for support of hand-

writing recognition, but user application programs cannot access these functions.

Handwriting recognition is divided into two parts: stylus tracking and character rec-

ognition. The stylus tracking task processes interrupts from the stylus using a stan-

dard interrupt mechanism. When the stylus tracking determines that the stylus has

changed direction, stopped, or is no longer touching the screen, it will calculate a

vector describing the movement and will pass this information on to another task

that is running, the character (graffiti) recognizer. If this routine recognizes a char-

acter, then it will pass this information on to the OS so that it can decide what to do

with the character. Usually the character will be passed to the application that has the

focus to be placed on a control on the current form where the user is entering text. Of

course, the character might be a control character instead of a text character and the

application may then be given a message telling it about the event. If the screen touch

is not in the graffiti area, then the OS must detect screen taps on form buttons or pass

the information on to the application—perhaps it is a drawing tool, for example.

 20.3.2 Other tasks

 Only a single-user application has the focus, and that application is most likely

waiting for user input as just described. But it is normal for Palm systems to have

background communication functions running such as telephony, database synchro-

nization, Bluetooth connection to local devices such as headphones, and Internet

access for browsing and email. In addition, certain user features such as searching

for a name will invoke a search function in applications that do not currently have the

focus. Tasks that do not have the focus will be running in an event loop waiting for

signals about events requesting them to do some work. The Palm scheduler module

will see that each application gets some time to do its work.

 20.4 PALM MEMORY MANAGEMENT

 Processes in the Palm OS are always resident in primary memory. Once a process

has begun running it never really stops. It may lose the focus, in which case it will

not be running anymore, but it is still there waiting to be selected from the menu

again and resume execution.

 The memory manager in the Palm OS treats a large block of a primary memory

as a heap. As memory is allocated and freed on the heap, the eventual result is exter-

nal fragmentation. This requires occasional compaction to aggregate larger blocks

of memory. To facilitate this, items in memory are addressed indirectly through a

472 Part 6 Case Studies

memory pointer table (MPT). Thus, when the memory manager moves an item, it

merely updates the MPT entry that points to the item. The details of this mechanism

were covered extensively in Chapter 4.

 20.5 FILE SUPPORT

 The Palm OS programmer’s documentation refers to “databases,” but these are actu-

ally random access flat files. They are accessed by an “index” value that is a 16-bit

integer. Records are of variable length and can be resized dynamically, and added

and deleted. The file manager maintains an index for each database giving the cur-

rent location in memory of each record in that database. A database must fit entirely

within a single memory card.

 20.6 INPUT/OUTPUT SUBSYSTEMS

 Early Palm devices were merely used as PDAs. As was mentioned, these systems

have evolved to cover many additional functions including games, cell phones, Web

browsers, and media players. The initial Palm releases had limited functionality in

the audio area in particular, and these have been enhanced significantly through the

various releases. In addition, the platform evolution has also seen advances in com-

munication and networking functions. This section discusses the audio functions.

The networking functions are covered in a later section in order to maintain a parallel

structure with the other case study chapters.

 20.6.1 Audio I/O

 The continuing development of technology has led to a rising interest in portable

music devices. In addition, the advanced games that users want to have on these

machines needed enhanced audio features. The initial sound support in the Palm

OS was limited to short sounds for alerts and a few noises for games. Later ver-

sions added support for a low-level implementation of a musical instrument device

interface (MIDI) so that more elaborate musical sounds could be created by an

application. This led to a number of interesting applications for musicians to use

a Palm OS device as a simple musical tool, such as a tone generator and a metronome.

Later versions of the platform also added more advanced sound support, allowing

these devices to be used as cell phones and to play music files. Later they also added

the ability to perform voice recording and playback—audio notes to oneself—and the

recording and sending of audio to other cell phones.

 20.6.2 Stream I/O

 For purposes of ease of programming, the Palm OS also includes a version of file

streams similar to the stdin/stdout functions available in most C language libraries.

These functions use the database structure discussed in the File Support section but

allow easier porting of some applications to the Palm OS.

 Chapter 20 Palm OS: A Class Case Study 473

 20.6.3 RAM disk driver

 The underlying OS is designed to be used in embedded systems where there is com-

monly no secondary memory. But many applications are developed to run from a

standard file system–style interface. Therefore, the AMX OS comes with a pre-

defined RAM “disk” driver that uses a portion of RAM to emulate a disk drive. This

allowed the Palm OS to readily define a RAM drive as a DOS-formatted floppy drive

so that porting applications to the Palm were easier and programmers did not have to

learn a separate interface to use the system.

 20.6.4 Cameras

 The development of low-cost, high-resolution CMOS image sensor technology has

meant that many cell phones and PDAs now include cameras. Moreover, since larger

memories are now available, the cameras can even record video files as well as static

images. So now these devices are capable of transmitting image and video files in

addition to audio files.

 20.6.5 Communication circuits

 Bluetooth and 802.11 Wi-fi communication circuits are now available and have been

incorporated in the latest Palm devices. These allow other synchronization pathways

but also a merging of the PDA and cell phone device classes and to Internet access

devices such as the Blackberry ™ .

 20.7 GUI PROGRAMMING

 The GUI environment on the Palm platform was extensively covered in Chapter 4.

The principle factors that distinguish this platform are the small screen size and lim-

ited memory. As a result of the small screen size, the Palm system does not support

tiling the forms of applications. (The Palm OS uses the term “form” for a normal

window.) Pop-up boxes from a single application are allowed but the pop-up boxes

must be closed before the application can continue. (The Palm OS calls these boxes

windows.) The limited Palm memory led to the development of specific windows

that can be created by Palm applications merely by filling in specific data structures

and calling OS routines. The OS will then take on the task of displaying the window

and closing it when the user selects an option.

 20.8 NETWORK PROGRAMMING

 20.8.1 Personal data synchronization

 It is natural that a portable device would need to have strong support for communica-

tion protocols. Since the Palm devices were initially envisioned as PDAs, the most

important communication application was synchronizing with a PC so that the data

474 Part 6 Case Studies

in the handheld unit could be backed up. Accordingly the initial interfaces provided

with the Palm OS were low-level drivers for serial, infrared, and USB ports. At the

same time there was a higher-level interface provided for writing applications for

synchronization personal information such as contact lists and appointment calen-

dars. A consortium of interested vendors was created known as the Versit Consor-

tium. They have defined a set of standards concerning personal data interchange

(PDI) that include standards for a vCard, an electronic business card, and vCalen-

dar, an electronic calendar and scheduling exchange format. These standards are

now maintained by the Internet Mail Consortium. The Palm OS includes a library

that allows an application to open a PDI stream as either a reader or a writer to facili-

tate the development of synchronization applications.

 20.8.2 Other data synchronization

 Some users will be concerned with developing custom applications that go beyond

traditional PDA applications. They may have specific data files that need to be syn-

chronized between a Palm application and a similar application on another platform.

So the Palm OS provides exchange libraries, which act as plug-ins to an OS module

called the Exchange Manager. They allow Palm OS applications to import and export

data records without being concerned with the transport mechanism. For example,

one exchange library always available to Palm Powered ™ handhelds implements the

IrDA protocol, IrOBEX. This allows applications to beam objects by way of infrared

from one Palm Powered handheld to another. Similar exchange libraries exist for

other hardware ports and other protocols such as the SMS (short message service)

library, email protocols, and the Bluetooth library.

 20.8.3 Internet applications

 During the last several years the Internet has risen in popularity to the point where it

is almost mandatory that handheld units be able to access many of the popular fea-

tures found there. In particular, these include accessing World Wide Web (WWW)

sites as well as the email protocol already mentioned. Accordingly, more protocol

stacks and APIs have been added to the Palm OS to support networking applica-

tions. The first addition was the widely used and well-known lower-level Berkeley

Sockets API. This interface allows a programmer to connect to services on other

systems using a variety of protocols without having to implement that protocol in the

application. The interface included with the Palm OS allows either TCP (connection-

oriented) or UDP (connectionless) communications.

 The second level of protocol supported in the Palm OS includes support for

Application layer protocols such hyperText Transport Protocol (HTTP), the protocol

used for the WWW. This protocol is used by Web browser and Web service appli-

cations for Palm devices. There are some interesting problems to be solved when

developing a browser for a Palm unit because initially few websites are developed

with the very small screen space of a handheld unit in mind. However, current HTML

attributes allow a Web server to determine that a browser is running on a mobile plat-

form and to adjust its output to fit.

 Chapter 20 Palm OS: A Class Case Study 475

 20.8.4 Telephony applications

 In Section 20.10 we discuss the current merging of PDA devices with cellular tele-

phones. The Palm Telephony Manager provides a set of functions that allow an

application to access a variety of telephony services. The telephony API organizes

the functions in groups called service sets. Each service set contains a related set of

functions that may or may not be available on a particular mobile device or network.

One of the API functions allows the application to find out if a given service set is

supported in the current environment. A list of some of the more common service

sets is shown in Table 20.3 .

 20.9 PROGRAMMING ENVIRONMENTS

 The resources available on a computer designed to run the Palm OS are usually not

sufficient to develop software. The Palm OS programming website suggests that pro-

grams designed for a Palm-based system be designed to support only a minimum

amount of data entry. This suggestion is made partly because of the difficulty of input-

ting data with the handwriting recognition, but also because of the very limited screen

display. Instead, Palm suggests that the user should mainly input data on a desktop

system and use the Palm system for referencing the data. Furthermore, once a program

is running on the Palm OS there would be no simple way of getting any debugging

TABLE 20.3 Telephony API Service Sets

Service set Functionality

Basic Functions always available

Configuration Configure phones including SMS

Data Data call handling

Emergency calls Emergency call handling

Information Retrieve information about the current phone

Network Network-oriented services, including authorized networks,

current network, signal level, and search mode information

OEM Allow manufacturers to add features to the Telephony

Manager and provide a new set of functions for a device

Phone book Access the Subscriber Identity Module (SIM) and address

book

Power Power supply–level functions

Security Provide PIN code management and related services for

phone and SIM security-related features

Short Message Service Enable reading, sending, and deleting of short messages

Sound Phone sound management, including the playing of key

tones and muting

Speech calls Handle the sending and receiving of speech calls; also

includes Dual-tone multi-frequency (DTMF) signaling

476 Part 6 Case Studies

information displayed and the environment is obviously not well suited for the entry

and editing of program source code. Moreover, there rarely are printers attached to

Palm systems and as was noted before, the CPUs are very slow and there is generally

limited RAM and rarely any secondary storage. Most program development is there-

fore done on another system, a concept known as cross-platform development.

 There is a wide variety of languages and tools for development of software for

the Palm OS. Some is available from Palm itself and others are available from third

parties. These include commercial integrated development environments (IDEs) such

as CodeWarrior ™ from Metrowerks and free tools such as PRC-Tools, which is a gcc-

based compiler tool chain for building Palm OS applications in C or C ⫹ ⫹ . Tools that

are supplied by Palm include a Software Development Kit (SDK) that includes the

headers, libraries, and tools for Palm OS platform development on Windows, Linux,

and the Mac OS. It also includes a version of the Palm OS running in native X-86 code

on a Windows machine. This emulation offers an easy way to test applications destined

for the Palm OS for compatibility. Compilers are also available for developing applica-

tions in other languages, including Visual Basic, Pascal, Forth, Smalltalk, and Java.

 An essential feature is a package that Palm calls an Emulator. This is a soft-

ware package that emulates the hardware of the various models of Palm OS platform

devices on Windows, Linux, or Mac OS computers. Since various platforms have

different features available in their ROM, ROM images for use with the Palm OS

Emulator are available to emulate each desired model.

 Once a program has been developed with the cross-platform tools, it can be

installed on a Palm device using the synchronization tools included with Palm PDAs

that are available for the various cross-development platforms.

 20.10 SIMILAR SYSTEMS AND CURRENT DEVELOPMENTS

 One of the difficulties facing authors who write about computer science is that the

state of the industry changes so rapidly that a book is not reflective of the latest

developments even on the day it is printed. Operating Systems are no exception.

There have been rapid developments in the hardware systems used for the Palm OS

and others of its ilk discussed in this chapter. In addition, a different functional view

has captured the minds of the public and the vendors that have forced some changes

in the OS. As a result, other OSs that were developed for this different view have

some features that are more complex than the Palm OS described here. But then, so

do later versions of the Palm OS.

 In this section we describe some features found in other OSs for small systems.

We mostly mention the Symbian OS. This OS is developed by Symbian Ltd. It is a

descendant of Psion’s EPOC OS and runs only on ARM processors. Symbian is a

consortium of manufacturers of cell phones.

 20.10.1 New functional models

 In addition to the use of more advanced CPUs, the basic functions of small handheld

systems have also evolved in the last few years. At the beginning of this century the

products in this area were mostly envisioned as either PDAs or cell phones. In PDAs

 Chapter 20 Palm OS: A Class Case Study 477

the applications were things like phone and address books, appointment calendars,

calculators, memo pads, to-do lists, specialized data bases, and an occasional special-

ized application. In cell phones the main application was the phone book or contact

list. In either case, these were primarily standalone applications that required occa-

sional connection to another computer for purposes of synchronization, backup, and

loading new applications. In the cell phone the actual telephone application was a

real-time task that was considered to be a fundamental function of the device rather

than a separate application. These cell phones were closed systems in that installation

of additional applications was not part of the design.

 Lately, however, a new model has evolved for handheld devices. This evolu-

tion has come about partly because of the revolution in the availability of communi-

cations technology and ubiquitous connectivity. The devices are now positioned as

mobile communications platforms—but as much more than just replacements for cell

phones. The main feature that distinguishes a cell phone from a PDA is that PDAs are

turned on, used for some single function and then turned off, while a cellular phone

is normally left on most of the time and is continuously connected to the network

and waiting for incoming calls. In addition to waiting for calls, a cellular phone does

other work to manage the connection such as keeping the time synchronized and

conversing with the cellular network so that if a cell phone is turned on the network

knows where it is. In order for the PDA functions to be used while the cell phone is

handling the network connection, the OSs for these mobile communicating devices

have to incorporate multiple active tasks at the same time. In a pure PDA device

such as the original Palm products, the OS provided only a few separate tasks so that

handwriting recognition and synchronization could take place while a user interface

(UI) application was also running. (You may recall the screens are so small that there

is no room for more than one UI application to be executing at a time.) However,

there was no provision for applications to provide any separate background function

such as managing the connection to a cellular network and checking for incoming

calls. As a result, these OSs all have added more features to support application mul-

tithreading. More importantly, applications can now start a thread as part of a back-

ground task in addition to the single foreground UI thread. An example of the utility

of such a feature would be that a service can be built that will handle multiple TCP/IP

connections at the same time, so that several TCP/IP-based applications can all be

running at the same time using a single TCP/IP multithreaded service. The TCP/IP

service will be running as a “user” application rather than as part of the OS kernel.

Another important example is a Web browser. When a page is fetched from a server,

the images and other included items are not automatically sent. The browser must

parse the initial page and then individually request each referenced element. The

browser must be able to continue to work on displaying the main page for the user

while the other elements are being fetched from the server. This gives the user some

immediate access to the contents and a smoother browsing experience.

 As in the case of the cellular phone connectivity, other applications can ben-

efit from these background tasks without having control of the UI. Some of the

more obvious ones are playing an audio file, downloading new audio files to play,

instant messaging, and having an email program connect to a server to check for new

email. Other, less obvious background functions exist as well, such as synchronizing

478 Part 6 Case Studies

changes to distributed databases and updating installed software. These new tasks

help cell-phone manufacturers to differentiate their products from one another. In

addition, users are asking for these features because they are beginning to value the

instant access to information through messaging, email, and the World Wide Web. In

order to provide these features, these devices have incorporated advanced hardware

components to handle the multiple communication streams, multimedia streams, and

so forth. The OSs have had to improve as well. Not only can applications start many

threads and set different priorities for each thread, they have new mechanisms to syn-

chronize between the threads and with other processes, to share memory segments

with other processes, to communicate with other processes, and to protect databases.

 20.10.2 Advanced communication models

 Other advanced facilities being provided by the OSs now include encryption and

other security mechanisms, new Data Link layer modules such as Bluetooth and

802.11x, and APIs so that new user applications can easily access these OS func-

tions. As the cost of bandwidth from communication services continues to decrease,

we are beginning to see more and more intense multimedia applications. The near

term projections of the marketplace include more streaming multimedia applica-

tions. These applications have heavy hard and soft real-time requirements. These

small OSs will continue to evolve with the increasing requirements.

 20.10.3 Thread scheduling

 As discussed earlier, cell phones are used somewhat differently than PDAs. PDAs

are generally turned off when not being used, but cell phones stay on all the time so

that they can wait for incoming calls and keep the network updated about the loca-

tion of the phone. In addition, the demands of the cellular technology are such that

real-time tasks are needed to service the network. Accordingly, the scheduler used in

the Symbian OS is a priority-based multithreading scheduler. Any application can be

a “server” and can create multiple threads of execution within its address space. The

Palm OS included a real-time scheduler because of the needs of the graffiti handwrit-

ing recognition program, but user applications were not able to create real-time tasks

or threads. We discussed such schedulers in Chapter 8.

 20.10.4 User interface reference design

 The user interface (UI) for most PC systems is very flexible. Windows can fill the

screen, shrink to a smaller size, move around, cover one another, and so on, depend-

ing on the whim of the user. These smaller systems, however, have simpler interfaces

than personal computers do. Often the application assumes that its window fills the

entire screen. There are generally three different types of UI in such devices. They

roughly represent the classes of a cell phone, a PDA, and a handheld computer. The

user interface class is an abstraction of the features that the members of each family

have in common. These classes are summarized in Table 20.4 .

 The challenge for the OS designers and for application programmers is to write

OSs and applications that will run on any of these different platforms without a major

 Chapter 20 Palm OS: A Class Case Study 479

rewrite. The desire for such portability forces system implementation into strict object-

oriented designs in order to isolate the UI functions from the rest of the application.

Industry estimates are that about 80% of an application can be isolated from the UI.

 The rise of the popularity of the Internet have lead to the incorporation of several

standard applications in these new devices. In particular, users want to send instant

messages, work with their email, view (or listen to) streaming multimedia transmis-

sions, browse the World Wide Web, and upload multimedia files to their websites.

These small systems have very limited screen size, and Web pages are typically set

up for at least 800 ⫻ 600 pixels. As a result, a browser on a cell phone has to work

really hard to make an intelligent display of a larger Web page. Initially a separate

standard was created for building Web pages intended to be viewed on a handheld

system— wireless markup language (WML), a part of a larger standard, wireless

access protocol (WAP). Later developments seem to indicate that standard browsers

can be modified to display standard Web pages on handheld systems. This is an area

of active research.

 An additional protocol has been developed for sending short text messages when

a phone call is not appropriate. For example, it might be used when the recipient is in

a very noisy environment, in a lecture or arts performance, or in a meeting. IT can also

be used for short queries where a complex interaction is not needed. This protocol is

the short message service, or SMS. It allows the sending of messages up to 160 bytes

long. It can be used similarly to instant messaging (IM) services on normal PCs, but

IM is typically interactive while SMS typically uses one-way messages.

 20.10.5 Location-aware applications

 Another obvious but still interesting facet of these systems is that they move around

with the user. After some time it became clear that there were some interesting appli-

cations that could be created if the application knew where the phone was. The initial

impetus was probably the emergency location system that has been mandated for

cell phones. In an emergency there is obviously a great benefit available if the cell

phone can tell the emergency call handlers where the cell phone is located within a

few tens of meters.

TABLE 20.4 Small Systems Device Families

Cell phone Small vertical screen
Keyboard with digits and a few buttons
Almost no user input
Application has full screen

PDA Larger vertical screen
Stylus input and a few buttons
Limited user data input
Application has full screen

Advanced Larger still horizontal screen
Full QWERTY (usually) keyboard
More extensive user input
Application windows can overlap, etc.

480 Part 6 Case Studies

 There are many other location-based applications that can be created as well.

Since the cellular carriers in the United States were mandated to have the network

able to locate the phone, they have decided to make lemonade out of those lemons by

devising services that they can offer to their users (for a modest fee, of course) based

on the current location of the phone. Where is the nearest pizza restaurant? Dial *1411

(or some similar special number) and a friendly operator will get your location from

the network, ask what you are looking for, search a location-indexed database for the

nearest Chinese restaurant, and give you the information. Some of the other obvious

applications are general driving directions, traffic reports, and weather reports. Of

course, these systems can also be computerized, eliminating the human operator.

 An interesting question is, how does the phone (or the network) find out where

the phone is? One answer is the federal GPS system. There are a few dozen satellites

that are in orbit purely for this function. Initially they were installed for the benefit

of the military, but since using the satellites merely involves listening to their broad-

casts, it was impossible to keep civilian uses out forever. By locating several satel-

lites at one time any device can determine its present location, including altitude.

This is an extremely accurate mechanism, to within a few feet in many cases. How-

ever, the hardware costs are still somewhat high compared to most of the rest of the

phone. Fortunately, there are at least two other ways to find the location of a phone.

The first is just triangulation of the phone by the network. All the cells that can hear

the phone will report the timing of the signals from the phone and the network will

be able to locate the phone within a hundred feet or so. This is not accurate enough

to drive a car, but it is usually accurate enough to locate the nearest post office, for

example. The other location mechanism is for the network merely to report which

cell is currently servicing the mobile device and perhaps a distance from the tower

based on signal propagation times. Although this method is even less accurate than

the triangulation, it is still accurate enough for many purposes.

 20.10.6 Later Palm OS releases

 Beginning with release 5 the Palm OS supports an ARM processor instead of the

Motorola CPU used in previous platforms. Beginning with the 5.4 release the PAI

came to be known as Garnet. The PalmSource company that had been spun off of

Palm Inc. was purchased by a Access Co. Ltd. They have created a release of Linux

with the Garnet API for use on mobile platforms. The latest release of Palm OS was

version 6. It is named Cobalt.

 20.11 SUMMARY

 In this chapter, we discussed further the features and

concepts of a simple modern OS—the Palm Operat-

ing System ™ developed by Palm, Inc. This OS was

developed for small handheld devices. Although this

is a single-user system, it can concurrently run some

OS processes and a small number of applications.

 We started this chapter with a recap of the pro-

cess scheduling and memory management functions

of the OS. We then followed this by discussing sev-

eral additional I/O subsystems in the Palm OS, GUI

and network programming, and by explaining the

process of developing programs for these limited

 Chapter 20 Palm OS: A Class Case Study 481

environments using simulators and cross-compilers

on larger systems. We continued with a discussion

of some similar OSs for limited environments and

how they differ from the Palm OS, including later

versions of the Palm OS itself, actually a different

OS for a different CPU. We further discussed some

of the new types of applications emerging from the

convergence of PDA and cell phone platforms.

 BIBLIOGRAPHY

 Exploring Palm OS: Palm OS File Formats, Document

Number 3120-002. Sunnyvale, CA: PalmSource,

Inc., 2004.

 Exploring Palm OS: System Management, Document

Number 3110-002. Sunnyvale, CA: PalmSource,

Inc., 2004.

 Palm OS Programmer’s Companion, Volume 1,

Document Number 3120-002. Sunnyvale,

CA: Palm, Inc., 2001.

 Palm OS Programmer’s Companion, Volume 2,

Communications, Document Number 3005-002.

Sunnyvale, CA: Palm, Inc., 2001.

 Palm OS ® Programmer’s API Reference, Document

Number 3003-004. Sunnyvale, CA: Palm, Inc., 2001.

 Rhodes, N., and McKeehan, J. Palm Programming: The

Developer’s Guide. Sebastopol, CA: O’Reilly &

Associates, Inc., 2000.

 SONY Clié, Personal Entertainment Organizer, Sony

Corporation, 2001.

 WEB RESOURCES

 http://www.accessdevnet.com (ACCESS Linux Platform

Development Suite)

 http://www.freescale.com

 http://www.freewarepalm.com (free Palm software)

 http://www.freesoft.org/CIE/ (Connected: An Internet

Encyclopedia)

 http://www.imc.org/pdi/

 http://oasis.palm.com/dev/palmos40-docs/

memory%20architecture.html

 http://www.palm.com (Palm home page)

 http://www.palmsource.com/developers/

 http://www.pocketgear.com/en_US/html/index.jsp

(software for mobile devices)

 http://prc-tools.sourceforge.net (programming tools

supporting for Palm OS)

 http://www.symbian.com (Symbian OS)

 http://www.w3.org/Protocols/ (HTTP, primarily)

 http://en.wikipedia.org/wiki/Graffiti_2 (article on Graffiti 2)

 http://en.wikipedia.org/wiki/Palm_OS (history of the

Palm OS versions)

 REVIEW QUESTIONS

 20.1 Since almost no websites are developed with the

assumption that the screen size is 160 ⫻ 160 pix-

els, of what use is the HTTP protocol support?

 20.2 What does a Palm device need a RAM disk

driver for?

 20.3 How does a programmer go about creating and

testing programs for the kind of handheld plat-

forms discussed in this chapter?

 20.4 What are some of the new device types and fea-

tures that have been added to the Palm platform

since the earlier models and what sorts of applica-

tions do they facilitate?

 20.5 What is a vCard?

 20.6 What is a “location aware application?”

 20.7 Describe the three different families of handheld

systems.

 20.8 One of the major differences between a cell phone

and a PDA is that a PDA is turned off and on and

a cell phone usually stays on most of the time.

What major feature did this force to be included

into OSs designed for cell phones?

483

 In this appendix:

 A.1 Typical Computer System Components 484

 A.2 The Processor or Central Processing Unit 485

 A.3 The Memory Unit and Computer Storage Hierarchies 496

 A.4 Input and Output 502

 A.5 The Network 504

 A.6 A More Detailed Picture 507

 A.7 Summary 507

 In this appendix, we give an overview of computer architecture concepts, with an

emphasis on those concepts that are particularly relevant to OSs. Some readers will

have already completed a course in computer organization or computer architecture,

and hence will be familiar with these concepts. In this case, the appendix can pro-

vide a review of this material. For those who have not had a previous course in this

topic, this appendix might be covered in detail, because the discussions of many OS

concepts are based on the underlying computer architecture. The concepts presented

here are needed throughout the presentation of OS concepts.

 We start by giving a description of the major components of a typical computer

system in Section A.1, and a discussion of the functions performed by each com-

ponent. In Section A.2 we discuss the central processing unit and control concepts.

Section A.3 outlines the ideas of memory and storage hierarchy, and Section A.4

describes the basic concepts of input/output systems. Section A.5 briefly discusses

the role and characteristics of networks in modern computing. We then give a more

detailed picture of typical computer system components in Section A.6. Finally,

 Section A.7 provides a summary.

 Overview of Computer System
and Architecture Concepts

484 Appendix Overview of Computer System and Architecture Concepts

 A.1 TYPICAL COMPUTER SYSTEM COMPONENTS

 Computer systems vary widely, based on their functionality and expected use. They

include the following types of systems:

 Personal desktop and notebook computers that are typically utilized by a

single user at a time.

 Large server computers that provide services to hundreds or thousands

of users each day. These include Internet Web servers that store Web

documents, database servers that store large databases, file servers that

store and manage files for a network of computers, and application servers

that run some specific application that provides a remotely accessed

service.

 Embedded computer systems, which are used in automobiles, aircraft,

telephones, calculators, appliances, media players, game consoles, computer

network units, and many other such devices. As CPU chips have become

cheaper and cheaper we see them in more and more places. In the future we

will see them in places that might be hard to imagine today.

 Mobile wearable devices, cell phones, and PDAs (personal digital assistants)

that are used for keeping appointment calendars, email, phone directories,

and other information. Today these units are becoming hard to distinguish

from personal computers as they become more and more powerful.

 Hence, it is difficult to decide what a typical computer system would look like. How-

ever, it is traditionally accepted that most computer systems have three major com-

ponents, as illustrated in Figure A.1 . These are the processor or central processing

unit, the memory unit, and the input/output units. 1 In addition to the three major

components, network devices connect computer systems together and allow sharing

of information and programs. Let us briefly describe the main functionality of each

of these units.

 The central processing unit (or CPU) is the circuitry that performs the com-

putation and control logic required by a computer system. The memory is the com-

ponent that stores both the data required by a computation and the actual commands

that perform the computation. Memory is often organized into several levels, lead-

ing to a storage hierarchy of different types of storage devices, as we describe in

Section A.3. The class of input/output (or I/O) units include two broad subclasses

of devices based on their major functionality: input and output. Some devices can

also be used for both input and output. Input devices are used to load data and pro-

gram instructions into the memory unit from devices such as CD-ROMs or disks.

They are also used to process input commands from a user through devices such

as a keyboard or pointing device (e.g., a mouse or touchpad). Output devices are

used to display data and information to the user through devices such as printers or

1 At a more detailed level, the CPU is sometimes separated into two components: the control unit and the
data path unit, as we discuss in the next section. Similarly, the input/output unit is sometimes separated
into input devices and output devices.

 Appendix Overview of Computer System and Architecture Concepts 485

video monitors, and to store data and programs on secondary storage devices such

as various types of disks. Devices such as hard disk drives and CD-RW drives are

used for both input and output, and hence are classified as input/output devices.

Network devices can be considered as input/output devices but they are so special

that they are best regarded as being something separate.

 Disk devices in general (hard disk, floppy disk, CD, etc.) are considered as I/O

devices if we consider a low-level hardware view of the computer system. If we take

a more conceptual view of the roles they play, which is to store data and programs,

then they can also be considered as part of the storage hierarchy of the computer

system, as we discuss in Section A.3.

 Another crucial component in many modern computer systems is the network,

which is the hardware and software that allows the millions of computers and network

devices in existence to communicate with one another. Networks can be formed from

phone lines, fiber optic and other types of cables, satellites, wireless hubs, infrared

devices, and other components. At the individual machine level, though, it is some-

times useful to consider the network as another type of input/output device, because

its main functionality is to transfer data (such as files, text, pictures, commands, etc.)

from one machine (as output) to another machine (as input). For computer users, the

Internet is the most visible example of a network.

 The following three sections discuss each of the three main computer system

components—processor, memory, and input/output—in more detail. The network is

discussed in Section A.5.

 A.2 THE PROCESSOR OR CENTRAL PROCESSING UNIT

 As was said before, the central processing unit, or CPU, is the hardware circuitry

that performs the various arithmetic and logical operations. Each processor will

have a particular instruction set that defines the operations that can be performed

by the processor. These typically include integer arithmetic operations, comparison

 FIGURE A.1

Simplifi ed diagram of

the major computer

system components.

System Buses (transfer data, addresses, control
commands)

CPU Main Memory

Input and Output

Devices

Video
Display

Keyboard
Hard
Disk

Network
Connection

486 Appendix Overview of Computer System and Architecture Concepts

o perations, transfer operations, control operations, and so on. A processor usually

has a set of registers that hold the operations that are being executed as well as some

of the data values or operands needed by these operations. 2 Other operands can be

accessed directly from memory locations, depending on the design of the instruction

set. We further elaborate on the use of registers and the types of operands later in this

section.

 Instruction sets can vary widely. Some processors are designed based on the

 RISC (reduced instruction set computer) philosophy, where only a few basic instruc-

tion types are directly implemented in hardware. These instructions are usually

similar to one another in their design. One of the advantages of RISC is to reduce

hardware complexity by having a limited set of instruction types and hence increase

the speed of execution of the instructions. The most common RISC microprocessors

are the HP Alpha series (no longer being manufactured, but historically significant),

ARM-embedded processors, MIPS, the PIC microcontroller family, the Apple/IBM/

Motorola PowerPC and related designs, and the Sun Microsystems SPARC family.

 Other processors have a much larger instruction set implemented directly in

hardware, with a variety of instruction types included in the instruction set. This

approach is known as CISC (complex instruction set computer). A RISC proces-

sor typically has between 30 and 100 different instructions with a fixed instruction

format of 32 bits. A CISC processor typically has between 120 and 400 different

instructions. Examples of CISC processors are the IBM System/360, DEC VAX,

DEC PDP-11, the Motorola 68000 family, and Intel x86 architecture–based proces-

sors and compatible CPUs.

 Most of today’s processors are not completely RISC or completely CISC. The

two are really design philosophies that have evolved toward each other so much that

there is no longer a clear distinction between the approaches to increasing perfor-

mance and efficiency. Chips that use various RISC instruction sets have added more

instructions and complexity so that now they are as complex as their CISC counter-

parts and the debate is mostly among marketing departments.

 A.2.1 Instruction set architecture: The machine language

 The instruction set architecture defines the machine language of the processor,

which is the set of commands that the processor can directly execute. Each instruc-

tion is coded as a sequence of bits (a bit string) that can be decoded and executed

by the processor. Instructions are stored in memory, and are typically executed in

sequential order, except when a specific transfer of control is specified by some

types of instructions. The instruction bit string is divided into several parts called

 fields. Although instruction formats can vary widely, some of the typical fields are

the following:

 The opcode (operation code) field specifies the particular operation to be

executed.

2 The registers that store data values can also be considered, at least conceptually, to be the top level of
the storage hierarchy (see Section A.3), since they hold data and provide the fastest access time when
accessed by the executing instructions. Physically they are part of the processor chip.

 Appendix Overview of Computer System and Architecture Concepts 487

 A modifier field is sometimes used to distinguish among different operations

that have the same opcode and format—for example, integer addition and

subtraction.

 The operand fields specify the data values or addresses that are needed by

each particular operation. Addresses can be either memory addresses or

register addresses.

 There are many different types of operands, and the way to interpret the

meaning of each type of operand is called the addressing mode. We can

distinguish between two main types of operands. The first type supplies

a data value or the address of a data value needed by the operation.

The second type provides the address of an instruction, and is used for

changing the sequence of instruction execution by a branch or jump

operation.

 The most common addressing modes for data operands are the following:

 Register addressing: The operand specifies a register location where the data

that is needed or produced by the operation is stored.

 Immediate addressing: The operand is a direct data value contained in one of

the fields of the instruction bit string itself.

 Base register addressing: The operand is stored in a memory location. The

address of the memory location is calculated by adding the contents of a

 base register (which contains the address of a reference memory location)

and a displacement or offset. The displacement can be a direct value in the

instruction itself, or it could be the value in another register, called an index

register.

 Indirect addressing: The memory address of the data to be used as an operand

is stored in a register or in another memory location. This is called indirect

addressing because instead of pointing to the data to be used in an operation

the instruction points to the address of the data, either in memory or in

a register, and that address must first be accessed to get the actual data

address needed.

 The most common addressing modes for instruction address operands are the

following:

 PC-relative addressing: The memory address of the instruction is calculated

by adding an offset to the contents of the PC (program counter) register,

which holds the address of the next instruction to be executed. As in base

register addressing, the offset can be a direct value in the instruction itself,

or it could be the value in an index register.

 Indirect addressing: The memory address of the instruction is stored in a

register or in another memory location. As with indirect data addressing,

instead of pointing to the address to be transferred to, the instruction

points to the address of the address, either in memory or in a register,

and that address must first be accessed to get the actual transfer address

needed.

488 Appendix Overview of Computer System and Architecture Concepts

Input data valueRegister A

Input data valueRegister B

Result output data value (sum of input data values)Register C

Register COpcode Register AInstruction Register

Register
Address

Register
Address

Register
Address

Register B

 FIGURE A.2(a)
Register addressing

for add operation.

 FIGURE A.2
 Illustrating some

addressing modes

and instruction

formats.

Figure A.2(a) illustrates an add operation which places the result of adding the

contents of registers A and B into register C. Here the values to be added must first

be loaded into registers A and B by previous instructions.

Instruction Register

Input data valueRegister A

Result output data value (sum of input data values)Register C

Immediate Operand ValueOpcode Register A

Register
Address

Register
Address

Input
DataValue

Register C

 FIGURE A.2(b)
Register and

immediate

addressing for add

operation.

Figure A.2(b) shows an add operation where one of the operands is an immedi-

ate value stored in the instruction itself. This operation places the result of adding the

contents of register A and the immediate operand value into register C.

 Some of these addressing modes are illustrated in Figure A.2 .

 The type of operation determines how to interpret the operands—whether

as memory addresses or instruction addresses or direct data values or in some

other way. RISC processors typically have a limited number of addressing modes,

whereas CISC processors typically have a much larger variety of addressing

modes.

 We now illustrate some simple instruction formats and their addressing modes

in Figure A.2 .

 Appendix Overview of Computer System and Architecture Concepts 489

Next instruction to be executedMemory Location

Input reference memory address locationBase Register

OpcodeInstruction Register

Register
Address

Base Register

Offset
Data Value

Immediate Operand Value

Address of
memory
location

+

FIGURE A.2(d)
Immediate relative

address for jump

operation.

Figure A.2(d) shows an unconditional jump operation, which transfers control

to an instruction other than the next instruction. It calculates the memory address

of the next instruction based on a base register and an immediate value. The next

instruction to be executed is in the memory address calculated by adding the base

register contents to the immediate index value stored in the instruction itself.

Input offset valueIndex Register

Result output data value (loaded from memory location)Register A

Data value to be loaded into Register AMemory Location

Input reference memory address locationBase Register

Opcode Register AInstruction Register

Register
Address

Register
Address

Base Register

Register
Address

Index Register

+

Address
of

memory location

FIGURE A.2(c)
Base and index

registers for load

operation.

Figure A.2(c) illustrates a load operation that places a value from memory

into register A. This instruction uses base register addressing mode to calculate the

memory address. The values in the base and index registers are added, and their

result is used as the memory address whose contents are loaded into the result reg-

ister A.

490 Appendix Overview of Computer System and Architecture Concepts

Next instruction to be executed (if branch)

Address of next instruction (if no branch)

Opcode
Instruction
Register

Program
Counter (PC)

Memory Location

Input data valueRegister B

Input data valueRegister A

Register
Address

Register A Register B

Offset
Data Value

Immediate Operand Value

Address
of

memory location

+

Yes (branch)No (no branch) =?

FIGURE A.2(e)
Program counter

indexed addressing

for conditional

branch.

Figure A.2(e) shows a conditional branch-on-equal operation. The instruction

first compares the values in registers A and B. If the values are equal, it transfers

control to the instruction whose address is calculated by adding the contents of the

program counter register (the next instruction address) to the immediate value in the

instruction. Such an instruction can be used to control looping, for example.

In addition to different addressing modes—which determine how to interpret

an operand location and value—many processors have two execution modes.

User mode is used when a user or application program is executing. Supervisory

(or privileged) mode is used when an OS kernel routine is executing. A special

register in the processor determines which execution mode is being used. When

in user mode, certain safeguards are incorporated during instruction execution.

For example, memory protection is enabled in user mode to prohibit the pro-

gram from accessing memory locations outside of the part of memory allocated

to the user program. Certain privileged instructions are allowed to execute only

when the system is in supervisory mode—for example, instructions that control

I/O devices.

 A.2.2 Components of a CPU

 Figure A.3 is a simplified diagram that shows the typical components of a CPU.

The integer ALU (arithmetic and logic unit) and the floating point unit include the

hardware circuitry that performs instruction set operations. Most regular i nstructions

are handled by the integer ALU, whereas floating-point arithmetic instructions are

 Appendix Overview of Computer System and Architecture Concepts 491

handled by the floating point unit, since such operations require more complex,

highly specialized circuitry. The control unit usually includes the processor regis-

ters, as well as circuitry for controlling the sequencing of instruction execution, the

interpretation of instruction codes and operands, and the execution of instructions

using the ALU or floating point unit circuitry.

 The processor cache shown in Figure A.3 is a memory component that is part

of the processor chip, and holds instructions and data from main memory that are

being used by the processor. (There may be other cache memories outside the CPU

chip itself.) The cache is connected to main memory via a separate memory bus. The

main memory is also connected to a main system bus. The control unit is connected

to the I/O devices through the system bus as well. Another component is a DMA

(direct memory access) controller. It allows for transfer of data directly from I/O

devices to memory. We discuss the idea of caching in some detail in Section A.3.2

and covered DMA in Chapter 14.

 A.2.3 Programs: Source, object, and executable

 An assembly language is an alternate form of the machine language instructions

that is easier to read (and write) by humans. In assembly language, each possible

opcode is given a mnemonic name —a symbolic name to identify the instruction.

The operands are shown as numbers or are also given names to identify program

variables that are mapped to a memory address or register. A program that is writ-

ten in a high-level programming language such as C++ (called the source code)

is converted into a program in machine language (called the object code) by the

programming language compiler. Such an object code program is then linked

with other needed object code programs from program libraries and other pro-

gram modules, creating an executable code program file. This is usually stored on

disk as a binary file, and hence is sometimes called the program binary (or bin)

file. The executable code is loaded into memory when needed, and the program

instructions are executed in the desired sequence by the processor.

Integer
ALU

CPU

Floating
Point
Unit

Processor
Cache

I/O
Controllers

Control
Unit System

Bus

Main Memory

DMA
Controller

FIGURE A.3

Simplifi ed diagram

of typical CPU

components.

492 Appendix Overview of Computer System and Architecture Concepts

 Good programming language compilers should take advantage of the machine

instruction set available when creating the object code. Hence, programmers who

write compilers must study the instruction set architecture of each machine in detail

in order to fully utilize its capabilities.

 A.2.4 Processor registers, data path, and control

 There are several types of registers that are part of the CPU. They are used by the

processor circuitry in various ways. Some processors use general-purpose registers,

where the same physical register may be used in many or all of the ways discussed

below. In other processor designs some or all of the registers are special-purpose

registers and can only be utilized for specific functions. The following are the most

common uses of registers:

 Instruction registers: These registers are used to hold the instructions that

are being executed. They are directly connected to the control circuitry that

interprets the opcode and operands when executing an instruction.

 Program counter: Also known as the instruction counter, this register holds

the address of the next instruction to be executed. It is initialized to the

address of the first program instruction when the program is loaded into

memory and is to start execution. The length of the current instruction is

normally added to this register as the instruction is executed in order to

fetch the next sequential instruction. Of course, branching or subroutine

calls or other transfer of control may alter that sequence.

 Data registers: These registers hold operands. Some data registers may be

dedicated to hold operands of a certain data type; for example, a floating-

point register could only hold a floating-point operand. Small CPUs may

have only one main data register, typically called an accumulator. In some

such cases there will be an additional register used for larger operands or

remainders of division operations and generically called an accumulator

extension register.

 Address registers: These hold values of main memory addresses where

operands or instructions are stored. They may hold absolute memory

addresses, or relative memory addresses (offsets) that are added to a value in

a base register to calculate an absolute address. Registers that hold relative

addresses are called index registers.

 Interrupt registers: These hold information about interrupt events that may

have occurred, as we discuss shortly.

 Program status registers: These hold control information needed by the

CPU. Different machines may have any number of status registers and the

contents vary wildly. Examples of the sort of control information that they

hold include the following:

 Results of the last comparison operation (i.e., a > b, a = b or a < b)

 Processor status (i.e., whether it is in user or supervisory mode)

 Error status such as arithmetic overflow, divide by zero, etc.

 Appendix Overview of Computer System and Architecture Concepts 493

 Clock: The clock register is actually a timer that counts down to zero and causes

an interrupt. This is known as a clock or timer interrupt, and can be set

by the OS for various reasons. For example, in a multiuser system, the OS

typically gives control to a user program for a limited amount of time known

as the time quantum. By setting a timer interrupt, the OS can interrupt the

user program if it is still running at the end of the time quantum and check

to see if other programs are waiting to run on the processor. This interrupt

may also be used to compute the actual date and time. A CPU usually has a

privileged instruction that can only be executed by the OS to load a value into

the clock register so that a user program cannot override the OS clock value.

 Some registers can be set by user programs, and hence are known as user- visible

registers. These usually include data, address, and instruction registers. Other reg-

isters can only be set by the processor or the OS kernel, such as status and interrupt

registers. RISC processors typically have a large number of general-purpose regis-

ters because of their uniform instruction set design, whereas CISC processors often

have both general-purpose and special-purpose registers. Some types of register use

may require special-purpose registers; for example, interrupt registers, program sta-

tus registers, and instruction registers.

 The circuitry to identify the particular instruction (from the opcode) and to exe-

cute the instruction using the operands is connected to the instruction register. Since

instruction execution involves the transfer of information (opcode, operands, etc.)

from registers and memory through the hardware circuitry, it is sometimes referred

to as the data path component of the processor. On the other hand, the circuitry that

controls the fetching of the next instruction and handling of other events such as

interrupts (see below) is referred to as the control component of the processor.

 A.2.5 System timing

 Another important component within each processor is the system clock. The opera-

tion of most logic circuits proceeds in synchronized steps. At the electronic level this

is known as a system clock. (This should not be confused with the CPU register that

is used by the OS for timing.) A system clock cycle is the fixed shortest time interval

during which a processor action can occur. The speed of a processor is determined by

how many cycles per second are generated by the system clock. A one-Gigacycle pro-

cessor will have one billion clock cycles per second. The processor technology and the

instruction set design are major factors that determine overall processor speed, because

simple instructions take fewer clock cycles to complete than do complex instructions.

That is considered one advantage of RISC machines, since the RISC instructions typi-

cally execute in a smaller number of clock cycles than will CISC instructions.

 A.2.6 Instruction execution cycle and pipelining

 It is customary to divide a typical instruction execution cycle into the following five

phases:

 Instruction Fetch: The instruction is fetched from memory into an instruction

register.

494 Appendix Overview of Computer System and Architecture Concepts

 Decode: The opcode is decoded and the input operand locations are

determined.

 Data Fetch: The operands are fetched from memory if necessary.

 Execute: The operation is executed.

 Write-back: The operation output results are stored in the appropriate

locations.

 Note that the instruction or the operands may be in a cache memory instead of the

primary memory. For many simple instructions, each phase typically takes one clock

cycle, although this may differ depending on the CPU, the type of instruction, and the

addressing modes for the operands. A simple instruction would thus take five clock

cycles from start to finish. In order to speed up program execution, most modern

processors employ a strategy called pipelining, where successive instructions over-

lap their execution phases. For example, while one instruction is in its write-back

phase, the next instruction would be in its execute phase, the following one in its data

fetch phase, and so forth. This would work as long as all instructions are executed in

sequential order so that their order of execution is known in advance by the processor.

A speedup of instruction processing by a factor of five would be realized in this case.

 A pipelining processor would have to include provisions for instructions that

change the order of execution, such as branch and jump instructions. A jump will

terminate one execution pipeline and start another at a different instruction loca-

tion. Instructions that have gone through some steps of their execution cycle may

have to be cancelled (undone) if a branch is determined after their execution cycle

is started. It is also sometimes necessary to delay the pipeline if an instruction needs

as its input an operand that is being produced by the previous instruction. Hence, the

speedup actually achieved by pipelining must be estimated by averaging the speedup

achieved by many different programs.

 A.2.7 Interrupts

 An important functionality included in the processor is the interrupt. This is par-

ticularly relevant to OSs, which use interrupts in various ways, as we see throughout

this book. An interrupt is usually an asynchronous event, which is an event that can

occur at any time, and is hence not synchronized with the system clock and with

processor instruction execution cycle. The interrupt signals to the processor that it

needs to handle a high-priority event. The processor hardware typically includes one

or more interrupt registers, which are set by the interrupting event.

 Whenever an instruction finishes executing, the control circuitry automati-

cally checks to see whether any event has placed a value in an interrupt register.

Hence, interrupts cannot be serviced during instruction execution —only between

instructions. 3 If so, the processor state —which includes the contents of the pro-

gram counter and any registers that will be used during interrupt processing—is

saved into memory and a jump to execute the program code that handles interrupts is

 3 When pipelining is used, interrupts may be checked whenever an instruction completes its execution
cycle. Provisions for undoing partially executed subsequent instructions by the processor would be needed.

 Appendix Overview of Computer System and Architecture Concepts 495

p erformed. Once the interrupt handler is done, the system will normally restore the

processor state and resume processing the user program from the point at which it

was interrupted. The OS may switch to run another program if the interrupt caused

the current program to be terminated or suspended.

 While processing an interrupt, it is usually the case that lower priority or less

important interrupts are disabled until interrupt handling is completed. The OS does

this by setting an interrupt disable (or interrupt mask) register. Depending on the

value in that register the system will not check for interrupts for lower priority inter-

rupt levels. Hence, the OS can set this register before starting interrupt processing,

and reset it back after completing the interrupt processing.

 We can categorize the events that cause interrupts into hardware events and soft-

ware events. In general, hardware interrupts are asynchronous and software inter-

rupts are synchronous. Typical of the hardware events that can cause interrupts are

the following:

 Some I/O user action has occurred, such as mouse movement or mouse

button click or keyboard input. The interrupt handler would retrieve the

information about the I/O action, such as mouse coordinates or which

character was input from the keyboard.

 A disk I/O transfer was completed. The interrupt handler would check to see if

other disk I/O operations were pending, and if so initiate the next disk I/O

transfer to or from main memory.

 A clock timer interrupt has occurred, which allows the OS to allocate the CPU

to another program.

 The software events that can cause interrupts may be further categorized into traps,

which occur when a program error or violation happens, and system calls, which

occur when a program requests services from the OS. (For historical reasons a sys-

tem call interrupt is sometimes called a trap—somewhat confusing.) Some events

that cause traps are the following:

 A memory protection violation, for example, a program executing in user mode

tries to access an area of memory outside of its allowed memory space.

 An instruction protection violation, for example, a program executing in user

mode attempts to execute an instruction reserved for supervisor mode.

 An instruction error such as division by zero.

 An arithmetic error such as a floating point overflow.

 We discuss in detail how these events and other events that cause interrupts are han-

dled by the OS throughout this book.

 A.2.8 Microprogramming

 In some computers complex instructions are implemented as sequences of basic

instructions, often using the concept of microprogramming. A microprogram

is a sequence of basic operations that implement a more complex operation. This

sequence is stored in a special microprogram memory in the processor, so that it

496 Appendix Overview of Computer System and Architecture Concepts

can be invoked when the complex instruction is to be executed. The microprograms

are sometimes referred to as firmware. Some CPU architectures, usually CISC, use

microprogramming while others do not.

 A.2.9 Processor chip

 Historically the CPU was built out of discrete components such as relays, tubes, tran-

sistors, or simple integrated circuits. In modern systems the whole processor is typi-

cally implemented as a single integrated circuit (chip). The processor chip includes

the CPU, clock, registers, cache memory, and perhaps other circuitry depending on

the particular processor design.

 A.2.10 Multicore chips

 In the last few years the manufacturers of CPU integrated circuits have concluded

that the demand for ever faster CPUs is slacking off somewhat. They have begun

to use the extra space on the chips to provide multiple CPUs in the package. There

are various alternative designs regarding placement of cache memories, etc. We talk

about these caches in the next section. Although this would appear to be a fairly

trivial change, we see in the chapters on memory that it is not at all trivial for the OS.

At the present time chips with four CPU cores are fairly common. Predictions call

for up to 128 cores in the next few years.

 It is difficult to write a program that can effectively use multiple CPUs at the

same time. But most users have many programs running at the same time and having

multiple CPUs to run them on will mean that they will all run faster. Furthermore,

most users use only a few programs, and they are ones that have been highly devel-

oped and are prepared to use the multiple CPUs. Such programs include most of the

programs we use the most—word processors, spreadsheets, browsers, and so on.

 A.3 THE MEMORY UNIT AND STORAGE HIERARCHIES

 A.3.1 Storage units: Bits, bytes, and words
 The memory unit is the hardware that stores the program instructions and oper-

ands that are needed by the processor. The basic physical storage unit is a single

 bit, which stores a binary zero (0) or one (1) value. In modern systems, bits are

grouped into bytes (8 bits), and bytes are grouped into words (typically 4 bytes

or 8 bytes, though CPUs designed for embedded systems may have 1- or 2-byte

words). Normally, the basic unit that will be transferred between the memory unit

and the processor is a word. Typically there will be instructions that will allow load-

ing or storing of a single byte or half word. In most systems each byte has a unique

 memory address. Given a particular memory address, the memory circuitry can

locate that particular byte in memory. The word containing this byte can then be

transferred to or from the processor. Memory bytes or words can also be transferred

to or from input/output devices. In many cases, blocks of multiple words are trans-

ferred directly.

 Appendix Overview of Computer System and Architecture Concepts 497

 The word size is usually the standard size for processor registers. A 32-bit pro-

cessor thus will have standard data items of 32 bits, or 4 bytes. On the other hand,

16-bit processors would have 16-bit data formats as many older PC processors had.

Some processors have a 64-bit “double word” data size. At one time this was mostly

found in large mainframe computers. Most processors currently are of the 32-bit

variety, but today’s PCs are switching to a 64-bit format. The size of many operands

is also one word size (4 bytes), although some operands can be a single byte or 2

bytes or 8 bytes. The particular opcode will determine the type and size of each

operand.

 As the basic data word size has increased from 16 to 64 bits, the instruction

formats have also increased in size, mainly so that larger memory addresses can be

used. Instructions in CISC machines tend to be variable length since it takes only

a few bits to specify a register but many to specify a memory address. Depending

on the addressing mode, instructions specify anywhere from none to three memory

addresses, so the instruction lengths will vary accordingly.

 A.3.2 A storage hierarchy

 Most current systems have several levels of storage, often referred to as the storage

hierarchy. This is illustrated in Figure A.4 . The traditional view of a storage hier-

archy has three levels: primary, secondary, and tertiary storage. We discuss each of

these next.

 Primary storage consists of main memory and usually one or more cache memo-

ries. Even the processor registers are sometimes considered to be part of the main

memory storage hierarchy. Hence, within primary storage, there can be several lev-

els. If we consider the processor registers to be part of the memory hierarchy, they

would be at the top level. At the next level is a high-speed low-capacity cache mem-

ory, which is usually included as part of the processor chip itself. There may be addi-

tional cache memories outside of the main CPU chip, each slower but larger than the

previous level. At a still lower level, a lower-speed but higher-capacity main mem-

ory is included on one or more separate chips. The cache memory typically uses a

FIGURE A.4

A storage hierarchy.
Registers

Cache Memory (first and second level)
Main Memory

Primary
Storage

Hard Disk
Flash Memory

Seconday
Storage

Removable Floppy and Zip Disks
CD-ROMs and DVDs

Magnetic Tapes

Tertiary
Storage

498 Appendix Overview of Computer System and Architecture Concepts

h ardware technology known as SRAM (static random access memory), whereas the

main memory typically uses DRAM (dynamic random access memory) technology.

SRAM technology is faster but more expensive than DRAM per unit of storage. 4

 Processor registers are faster to read or write than cache memory or main mem-

ory locations. For example, a register-to-register copy may take a single clock cycle

in a RISC processor, whereas a register-to-cache transfer may take two clock cycles,

and a register-to-memory transfer might take three or four clock cycles.

 The cache memory is often divided into two parts: the data cache (for storing

operands) and the instruction cache (for storing instructions). In some cases there

are distinct cache parts for applications in user mode and the kernel in supervisor

mode. Transfer of bytes between the cache and processor is several times faster than

that between the main memory and the cache. Hence, the goal is to keep in the cache

the data and instructions currently being used. This job is the responsibility of the

cache management circuitry in the processor, but program design can affect the abil-

ity of the hardware to cache the needed instructions and data.

 Memory capacity is usually measured in Kilobytes (KB or 1,024 bytes), Mega-

bytes (MB or 1,048,576 bytes), Gigabytes (GB or 1,073,741,824 bytes), and even

Terabytes (TB or 1,099,511,627,776 bytes). Since cache is more expensive than main

memory it has a much smaller capacity. Many processors have two caches: a level-1

or L1 cache on the processor chip and an external level-2 or L2 cache outside the

processor. A few processors have a third L3 cache that is also outside the CPU. The

higher-level caches are faster than the lower-level caches but are more expensive and

hold less information.

 The memory bus is the hardware component that handles the transfer of data

between main memory (on the memory chip) and cache memory (on the processor

chip). Cache memory sizes often are in the 64-KB to several Megabyte range, whereas

main memory capacity is typically in the 32-MB to 4-GB range. These numbers con-

tinue to grow rapidly, though.

 A.3.3 Secondary storage: Hard disk

 The next level in the storage hierarchy is typically a magnetic disk hard-drive stor-

age component or simply hard disk, which is slower than main memory but has a

much higher capacity and lower cost per Megabyte. Hard disk capacity typically

ranges between 10-GB to 1-TB or higher, but again these numbers continue to grow

rapidly. A hard disk is a part of most standalone computer systems, but is often not

included in embedded systems that are used in various devices such as PDAs, music

players, telephones, cars, home appliances, and so on. Traditionally, the registers,

cache memories, and main memory together are referred to as primary storage,

whereas the hard disk is referred to as secondary storage. Every system must have

a primary storage component.

 An important distinction between primary and secondary storage is called stor-

age volatility. In a volatile memory, memory content is lost when electric power

 4 Memory, processor, and disk technologies are always changing, so newer technologies may come in
use at any time. We will not discuss further how different types of memories are actually built at the
hardware level, since this is not directly relevant to our presentation.

 Appendix Overview of Computer System and Architecture Concepts 499

is turned off. In nonvolatile memory, content is not lost when power is turned off.

Most main memory systems are volatile, whereas most secondary storage systems

are nonvolatile. Hence, the disk also serves as a backup storage medium in case of

system crashes due to power failure. 5

 At the hardware level, transfer of data between primary and secondary storage

involves an I/O device controller, which we discuss in Section A.4. Device control-

lers often have a storage component to hold data being transferred between the disks

and main memory. This storage component is called the disk cache or controller

cache.

 This cache is needed because the controller typically has its own processor and

clock that are not synchronized with the clock of the CPU. Once the CPU initiates a

transfer operation, it leaves the actual control of the transfer to the I/O controller—

while the CPU continues with program execution. Hence, main memory is being

accessed by both the CPU and the device controllers. Because requests to access

memory by the CPU are given higher priority, memory access by the controller may

be delayed. The controller cache prevents the loss of data because of such delays

by acting as a buffer storage when transferring data from disks and other second-

ary storage devices to main memory. Controller caches also exist in I/O controllers

for some types of tertiary storage devices such as floppy disks and CDs, which we

describe next. This type of data transfer between an I/O controller and main memory

may make use of DMA technology (direct memory access), which we discussed in

Chapter 14.

 A.3.4 Tertiary and offline storage: Removable discs and tapes

 Additional levels of the storage hierarchy exist in many computer systems, such as

various types of magnetic tape storage for backup, sometimes referred to as tertiary

storage or offline storage. In addition, various types of rotating memories (floppy

disk, CD-ROM, CD-RW, DVD, etc.) 6 are used as storage media to hold informa-

tion. The information stored on removable media is generally either too large to fit

on secondary storage or is not usually needed frequently or immediately, so it is not

permanently kept on the hard disk. So this data is not usually available within the

computer system as is the case with cache memory, main memory, and hard disk,

which are referred to as online storage because they are available as soon as the

computer system is turned on.

 Removable media units can be automated so that the drive can select from among

many individual media that are inserted into the drive. Examples include automated

tape libraries or optical disc jukeboxes. In this case they are properly referred to as

 tertiary storage. Removable media storage units that are not automated are usually

called offline storage, because the storage media (floppy disk, DVD, CD-ROM, tape)

must be manually loaded before the data on the media can be accessed. Tertiary and

offline storage devices can also be viewed as input/output devices (see Section A.4).

 5 Historically, main memories were not necessarily volatile. Magnetic core primary memory in particular
would retain its contents even with the power turned off.

 6 CD-ROM stands for compact disc-read only memory; CD-RW stands for compact disc-read write; and
DVD stands for digital video disc.

500 Appendix Overview of Computer System and Architecture Concepts

 A.3.5 Managing the storage hierarchy

 Transfer between the various levels of the storage hierarchy is usually done in units

of multiple bytes or blocks of bytes. The block size between main memory and cache

memory is typically in the range of 16 bytes (four words) to 256 bytes (64 words),

whereas the block size between hard disk and main memory is typically in the 4-KB

to 16-KB range or even higher. The main reason for transferring blocks instead of

single bytes or single words is to improve performance by reducing overall transfer

time. Especially with tapes there is a large overhead to start and stop the tape move-

ment. So transferring larger blocks with each read or write is much more efficient

than transferring smaller blocks. Similarly, positioning a tape or disk to access the

needed information is quite slow. Transferring more data at one time means that

fewer such positioning operations are needed.

 Performance is also improved by taking advantage of the locality principle,

which states that programs tend to access a small portion of their instructions and

operands in any short time interval. This locality characteristic has been shown to

exist in most programs, and has two components:

 Temporal locality: This characteristic states that a program that accesses

certain memory addresses may soon access them again. An example is that

instructions within a loop may be accessed repeatedly within a short period

of time.

 Spatial locality: This characteristic states that if a program accesses certain

memory addresses, it may soon access other words that are stored nearby.

For example, instructions are typically stored and accessed sequentially.

Another example is that a program may process operands (data) that are

stored consecutively—for example, accessing consecutive array elements or

sequentially scanning through a block of text that is being edited.

 If multiple words that are stored in spatial proximity in a block are loaded into cache

memory, then access to subsequent words when needed will be quite fast since they

will already be in the cache. These are known as cache hits. On the other hand, if

these subsequent words are never accessed, the cost of loading them into the cache

will be wasted. When instructions or operands are referenced that are not in cache

memory, the system will try to locate them in main memory and transfer them to the

cache. These are known as a cache misses.

 If the words that caused a cache miss are not in main memory, they have to be

located on hard disk and transferred to main memory, and the needed part is then

transferred to cache. Hence, it is necessary to find an appropriate block size that

reduces the access cost per unit of storage. Generally, the cost of transferring n con-

secutive bytes or words between one level and the next in a single transfer is much

lower than transferring them using multiple transfers. This is particularly true for

transfer between hard disk and main memory, and is also true to a lesser extent for

transfer between main memory and cache memory. As we will see, a major part of

the memory management component of an OS is to attempt to optimize these types

of transfers. In general, the OS handles transfers between hard disk and primary

memory, and the CPU hardware handles memory-to-cache transfers.

 Appendix Overview of Computer System and Architecture Concepts 501

 A.3.6 Memory protection

 Another aspect of main memory that is particularly relevant to OSs is the memory

protection component. When an executing program references a memory location,

the OS needs to make sure that this location is part of the address space for that

program. It should not allow an application program to make references to memory

locations that are being used by other programs or by the OS itself. This protects the

OS and other user programs and data from being corrupted by an erroneous or mali-

cious program.

 One technique for memory protection is to use a pair of registers, the base reg-

ister and limit register. This is illustrated in Figure A.5 . Before a program starts

execution, the OS sets those registers to delimit the addresses in memory that contain

the program address space. Setting the contents of the base and limit registers are

privileged instructions that can only be used when the CPU is in supervisory mode

in the OS kernel. Once the OS sets the execution mode to user mode and transfers

control to the user program, the base and limit registers cannot be changed. Any

reference to memory locations outside this range causes a hardware interrupt that

indicates an invalid memory reference. The OS will reset the base and limit registers

whenever it transfers execution to another program.

 In many modern systems a more complex scheme is used. Memory is divided

into equal-sized memory pages. Typical memory page sizes range from 512 bytes to

4 KB. This technique uses page tables, which are data structures that refer to the par-

ticular memory pages that can be accessed by the executing user program. Only those

memory locations referenced through the page table are accessible to the program.

The page table is implemented through hardware support in the processor itself. The

commands to load the contents of the page table would be privileged instructions that

can only be executed by the OS in supervisory mode in the kernel. We discussed this

and other memory protection techniques in detail in Chapters 10 and 11.

FIGURE A.5

A memory protection

mechanism using

base and limit

registers.

Unused space

Operating system
memory address space

Unused space

Unused space

Program 1 address space

Program 2 address space
(executing program)

Program 3 address space

Limit Register

Base Register

502 Appendix Overview of Computer System and Architecture Concepts

 A.4 INPUT AND OUTPUT

 The input and output systems are the components that connect the main memory and

the processor to other devices. These are sometimes called I/O devices or periph-

eral devices.

 A.4.1 Types of I/O devices

 I/O devices can be divided into four broad categories: user interface devices, storage

devices, network devices, and devices that the computer is controlling.

 User interface I/O devices: These are employed for user interaction with

the computer system. Devices for direct interaction between a user and a

system include keyboards, pointing devices (such as mouse, trackball, touch

screen, or pad), joysticks, microphones (voice or sound input), other similar

components for input, and video monitors, speakers (voice or sound output),

and the like for output. Other I/O devices allow indirect interaction, such

as digital cameras and scanners for video or image input, and printers and

plotters for hard copy or film output.

 Storage I/O devices: These are used for storing information and hence are

considered as both input/output devices and as part of the storage hierarchy.

They include magnetic disks (hard or floppy), optical discs/DVD, magnetic

tape, flash memory chips, and so on.

 Network I/O devices: These are devices that connect a computer system to

a network, and include analog telephone modems, DSL (digital subscriber

line) connections, cable modems, and wired cables. In addition, wireless

connections such as infrared or Bluetooth are becoming quite common.

They may use a wireless network card installed in a computer or device to

connect to a wireless hub, which in turn connects to the network, or they

may connect devices directly to a computer.

 Controlled devices: Computers are often used to control noncomputing

devices. Examples include motors, heating and air conditioning, light

displays, and so on. Embedded computer systems also fit into this category.

 As we can see, there are a wide variety of I/O devices, and new devices are fre-

quently being introduced. To deal with this proliferation of I/O devices, efforts

were undertaken to standardize single interfaces that can be used with different

types of I/O devices. One such standard is the USB (Universal Serial Bus) 2.0

standard, which allows I/O transmission rates of 480 million bps (bits per second),

and is hence suitable for connecting everything from keyboards to digital video

cameras or external disk hard drives. Another standard is IEEE 1394, which also

allows transmission rates of up to 400 million bps and is used for the same sorts of

devices. This interface is also known by two proprietary names, FireWire ™ from

Apple and i.Link ™ from Sony. FireWire is somewhat more efficient than USB for

higher-speed devices and is commonly used for video cameras. It has also been

 Appendix Overview of Computer System and Architecture Concepts 503

selected as the standard connection interface for audio/visual component commu-

nication and control.

 A.4.2 Device controllers and device drivers

 A device controller is a component that interfaces an I/O device to the computer

processor and memory. Device controllers frequently contain their own processor,

which has a specialized instruction set that is used by device manufacturers to write

programs that control the I/O devices. A device controller will also have a command

set, which is the set of commands that the OS can send to the controller across one of

the system buses to control the I/O device. These commands are generally restricted

to being used only by OS device drivers, and are usually not accessible to applica-

tion or systems programmers. Many device controllers also have a memory compo-

nent known as controller cache (see Section A.3.3).

 Standard device controllers such as USB and FireWire can be used to connect to

any type of I/O device that supports the standard. On the other hand, some special-

ized device controllers—such as disk controllers or graphics video controllers—can

only connect to a single type of I/O device for which it was designed. 7 The controller

handles the interfacing with the I/O device and may use its memory to either buffer

or cache the data as it is being transferred from or to the computer primary memory.

The command set of the controller will include commands that initiate input or out-

put operations. For example, a hard disk controller would have commands to initi-

ate a read-block command for a particular disk block address, while providing the

address of the computer memory buffer that will hold the block. Figure A.6 is a

simplified diagram to illustrate these concepts.

 At the computer side, the OS typically handles all interactions with the device

controllers. As was mentioned, the parts of the OS that interact with the device con-

trollers and handle I/O are called the device drivers. Each device driver will be

programmed to handle the low-level hardware commands and details of a particular

device controller. The device driver will present an abstract and uniform view of the

device to the rest of the OS.

 7 In some cases, a controller is limited further to a subset of a certain type of device; for example, an
ATA controller only works with ATA disk drives rather than all types of disk drives. Sometimes the
controller will only work with devices from a single manufacturer or even only with a specific model.

DeviceDevice Controller

Data and Addresses

Memory

Data

Addresses

Device Controller Device

CPU

FIGURE A.6
How I/O devices

connect to memory

and the CPU through

device controllers.

504 Appendix Overview of Computer System and Architecture Concepts

 A.4.3 Other categorizations of I/O devices and connections

 There are other ways to categorize I/O devices. One categorization is to divide them

into groups based on the type of connection to the computer. I/O devices are typi-

cally connected to the memory and CPU at the hardware connection level using

either serial or parallel physical connections (usually cables). A serial connection

transfers bits serially over a single wire, whereas a parallel connection typically

transfers 8 bits (or more) at a time in parallel over multiple wires. Interfaces to sim-

ple I/O devices such as keyboard, mouse, or modem typically use serial connections,

whereas higher-speed devices such as some hard disk SCSI (small computer system

interface) connections use parallel cables. USB and FireWire controllers use serial

cables, but the cables are high grade and shielded, and this permits the high data

transfer speeds of these controllers.

 Another higher-level categorization of I/O devices is into block devices that

transfer multiple bytes at a time versus character devices that transfer single

c haracters or bytes. Disks are a good example of block devices, whereas a keyboard

is an example of a character device.

 A third categorization is whether the connection is wired through a cable or

wireless. Wireless connections are being used increasingly to connect portable com-

puters to the network or to output devices such as printers.

 A.5 THE NETWORK

 Many computers are connected to some kind of network. At an abstract level, one

may consider a network connection to be similar to the way that a computer’s CPU

and memory can be connected to I/O devices. However, the network allows the com-

puter to be connected to other computers, as well as other devices connected to the

network. This connectivity allows users to access functions and information on other

computers and to use devices that their own computer does not have. It also allows

for exchange of information among processes running on different computers.

 A.5.1 Client-server versus peer-to-peer versus multitier models

 One common way to look at network interaction is through the client–server model.

Here, one computer—typically where the user is located—is called the client. The

client can access one or more server computers to access information or other func-

tions that the server provides. Servers might include any of the following:

 database servers that contain large amounts of information
 Web servers that allow the client to access documents on the Internet
 printer servers that allow the user to print on various printers
 file servers that manage user files
 email servers for storing and forwarding email
 servers that support application such as word processing or spreadsheets

 Another model for network interaction is the peer-to-peer model in which the com-

puters are considered to be equals. For example, the computers could be cooperating

 Appendix Overview of Computer System and Architecture Concepts 505

toward solving a large computing problem that has been designed to run in a distrib-

uted manner over multiple computers on the network.

 As distributed systems have evolved it has become necessary to have more com-

plex models than these. Large applications are frequently designed in multiple tiers.

In a typical three-tier design there will be a front-end that is responsible for the user

interface, a middle tier that contains the main logic for the application—often called

the business rules—and a database tier that is responsible for all the data storage for

the application. In Chapter 17 we discussed the reasons why these more complex

architectures have evolved. These models are discussed in greater length in Chapter 15

on networking and Chapters 7 and 17 on distributed processing systems.

 A.5.2 Network controllers, routers, and name servers

 Similar to the manner in which a computer interacts with a device controller that con-

trols an I/O device, the CPU and memory connect to a network through a network

interface controller, or NIC. At the hardware level there are various types of net-

work connections of varying speed, and new technologies for connections are being

introduced all the time. Some of the common hardware devices and technologies that

connect computers to a network are modems, Ethernet, DSL, cable modems, and

several wireless techniques.

 At the Physical level, it is useful to distinguish between two types of connections

used to build a network: wired and wireless. Hardware for wired networks includes

cables or optical fibers of different types, network gateways, routers, switches, hubs,

and other similar components. Wireless network components include satellites, base

stations for wireless connections, wireless hubs, infrared and Bluetooth ports, and

so on.

 The network can route a message from its source to its destination through the

use of bridges, switching devices, or routers. To manage the complexity it is com-

mon to divide a network within an organization into subnetworks, each connecting

a small number of computers via a local area network (LAN). These subnetworks

are connected to one another through local routers, which then connect to a regional

router, which then connects to the rest of the global network through one or more

additional Internet routers.

 In the case of the Internet, every computer on the network has a numeric IP

(Internet protocol) address (such as 192.168.2.1), which uniquely identifies that

computer, and allows the network to route messages addressed to that IP address.

C omputers also have unique names, such as ourserver.example.com. Specialized

servers called domain name servers (DNS) have databases that can find a com-

puter’s numeric IP address when given its name. The other specialized comput-

ers that connect the network, namely the routers and switching devices, can then

find a path through the network to deliver a message to the destination computer

based on the numeric IP address or the media access control (MAC) address of

the destination. These devices use specific network protocols at various levels to

physically deliver the message. Figure A.7 shows a simplified diagram to illustrate

these concepts. The techniques for doing this routing and switching are covered in

Chapter 15.

506 Appendix Overview of Computer System and Architecture Concepts

 A.5.3 Types of networks

 We conclude this brief introduction to networks with a traditional characterization of

the types of networks. 8

 Local area networks (LAN s) are networks that normally connect computers

within a limited geographical area, say a group of offices or one building or a num-

ber of adjacent buildings within an organization. These networks are primarily built

of cables that run through and between the buildings, possibly with switches or rout-

ers connecting, say, the various networks on each floor or in each cluster of adjacent

offices. Increasingly, wireless access points are being used that allow the connection

of a computer with a wireless network card to the local area network.

 Wide area networks (WAN s), on the other hand, generally refer to networks

that connect computers over a large geographical area. These use phone lines, fiber

optic cables, satellites, and other connections to connect the thousands of local area

networks to one another, and hence to allow global connectivity of computers.

 Mobile networks are made up of thousands of telecommunications towers and

control systems that operate as fixed base stations, which are then connected to local

or wide area networks. Mobile devices such as cellular phones or handheld comput-

ers or PDAs can connect to a nearby base station, which connects it to the rest of the

network, and to other parts of the global network.

 8 The technical distinction between a LAN and a WAN is somewhat different. See Chapter 15 for details.

Email Server

Shared
Printer

LAN LAN

LAN

DNS

WAN

Internet

Router

Router

Router

File Server

Client Client Client

Web
Server

FIGURE A.7

How a network

connects various

computers.

 Appendix Overview of Computer System and Architecture Concepts 507

 A.7 SUMMARY

 In this appendix, we gave an overview of the basic

components of a computer system. We started with

a simple overview and a diagram of typical com-

puter system components, and concluded with a

more detailed—though still simplified—diagram. In

between, we devoted one section to each of the main

components of modern-day computers: the processor

or CPU, memory and storage hierarchy, I/O devices,

and the network. From the discussion, it should be

clear that there is overlap between these categories.

For example, hard disks can be considered as both

an I/O device or as part of the storage hierarchy,

and the network interface to a computer can also be

abstracted to look like I/O devices. However, the tra-

ditional division is useful for structuring our discus-

sion and presentation of computer systems and OSs.

FIGURE A.8 A diagram to illustrate a computer system in some additional detail.

Serial Port
Controller

ATA Disk
Controller

USB
Controller

SCSI
Controller

Parallel
Port

Controller

Printer Mouse

Hard Disk Tape

CD-ROM/DVD

GPS

Hard Disk

Video Camera

System Buses (transfers data, addresses, control commands)

CPU
and

Level 1 Cache

Graphics
Controller

Network
Controller

Video
Monitor
Display

Network

Level 2 Cache

Keyboard
Controller

Keyboard

Main
Memory

 A.6 A MORE DETAILED PICTURE

 We conclude this appendix with Figure A.8 , which presents a more detailed p icture

to illustrate how various system components that we discussed throughout this

appendix are connected to one another.

508 Appendix Overview of Computer System and Architecture Concepts

 BIBLIOGRAPHY

 Belady, L. A., R. P. Parmelee, and C. A. Scalzi, “The IBM

History of Memory Management Technology,” IBM

Journal of Research and Development, Vol. 25,

No. 5, September 1981, pp. 491–503.

 Brown, G. E., et al., “Operating System Enhancement

through Firmware,” SIGMICRO Newsletter, Vol. 8,

September 1977, pp. 119–133.

 Bucci, G., G. Neri, and F. Baldassarri, “MP80: A

Microprogrammed CPU with a Microcoded

Operating System Kernel,” Computer, October 1981,

pp. 81–90.

 Chow, F., S. Correll, M. Himelstein, E. Killian, and

L. Weber, “How Many Addressing Modes Are

Enough?” Proceedings of the Second International

Conference on Architectural Support for

Programming Languages and Operating Systems,

Palo Alto, CA, October 5–8, 1987, pp. 117–122.

 Davidson, S., and B. D. Shriver, “An Overview of

Firmware Engineering,” Computer, May 1978,

pp. 21–31.

 DeRosa, J., R. Glackemeyer, and T. Knight, “Design

and Implementation of the VAX 8600 Pipeline,”

 Computer, Vol. 18, No. 5, May 1985, pp. 38–50.

 Elmer-DeWitt, P., and L. Mondi, “Hardware, Software,

Vaporware,” Time, February 3, 1986, p. 51.

 Fenner, J. N., J. A. Schmidt, H. A. Halabi, and

D. P. Agrawal, “MASCO: The Design of a

Microprogrammed Processor,” Computer, Vol. 18,

No. 3, March 1985, pp. 41–53.

 Foley, J. D., “Interfaces for Advanced Computing,”

 Scientific American, Vol. 257, No. 4, October 1987,

pp. 126–135.

 Foster, C. C., and T. Iberall, Computer Architecture,

3rd ed., New York: Van Nostrand Reinhold, 1985.

 Fox, E. R., K. J. Kiefer, R. F. Vangen, and S. P. Whalen,

“Reduced Instruction Set Architecture for a GaAs

Microprocessor System,” Computer, Vol. 19, Issue

10, October 1986, pp. 71–81.

 Hunt, J. G., “Interrupts,” Software—Practice and

Experience, Vol. 10, No. 7, July 1980, pp. 523–530.

 Leonard, T. E., ed., VAX Architecture Reference Manual.

Bedford, MA: Digital Press, 1987.

 Lilja, D. J., “Reducing the Branch Penalty in Pipelined

Processors,” Computer, Vol. 21, No. 7, July 1988,

pp. 47–53.

 Mallach, E. G., “Emulator Architecture,” Computer,

Vol. 8, August 1975, pp. 24–32.

 Patterson, D. A., “Reduced Instruction Set Computers,”

 Communications of the ACM, Vol. 28, No. 1, January

1985, pp. 8–21.

 Patterson, D., and J. Hennessy, Computer Organization

and Design, 3rd ed., San Francisco, CA: Morgan

Kaufmann, 2004.

 Patterson, D. A., and R. S. Piepho, “Assessing RISCs in

High- Level Language Support,” IEEE Micro, Vol. 2,

No. 4, November 1982, pp. 9–19.

 Patton, C. P., “Microprocessors: Architecture and

Applications,” IEEE Computer, Vol. 18, No. 6, June

1985, pp. 29–40.

 Pohm, A. V., and T. A. Smay, “Computer Memory

Systems,” Computer, October 1981, pp. 93–110.

 Rauscher, T. G., and P. N. Adams, “Microprogramming:

A Tutorial and Survey of Recent Developments,”

 IEEE Transactions on Computers, Vol. C-29, No. 1,

January 1980, pp. 2–20.

 Smith, A. J.; “Cache Memories,” ACM Computing

Surveys, Vol. 14, No. 3, September 1982,

pp. 473–530.

 WEB RESOURCES

 http://books.elsevier.com/companions/1558606041/

(Hennessy and Patterson)

 http://en.wikipedia.org/wiki/Cache

 REVIEW QUESTIONS

 A.1 What are the two major classes of CPU design?

 A.2 What is the importance of the instruction set archi-

tecture to a discussion of the design and develop-

ment of OSs?

 A.3 Why is a system hardware timer important to

an OS?

 A.4 What is the purpose of an interrupt?

 A.5 What is the significance of multicore CPU chips?

 Appendix Overview of Computer System and Architecture Concepts 509

 A.6 True or false? Primary storage in computers is

always made up of electronic memory circuits.

 A.7 It is hard to overemphasize the importance of

caching to the performance of an OS.

 a. What is the purpose of a cache?

 b. What theory underlies its function?

 A.8 In theory we could make the cache between sec-

ondary storage and primary storage as big as the

secondary storage. This would have the advantage

of having much smaller latency. Why do we not

do this?

 A.9 What is the purpose of memory protection?

 A.10 What is the purpose of having device controllers?

 A.11 In order to help us discuss and understand large

complex topics such as I/O devices, we can view

the subject as a space with many dimensions. We

first discussed a broad division of I/O devices

according to the purpose of the device. What were

the three broad purposes that were discussed?

Give some examples of each class.

 A.12 We also divided the I/O device space into those

interfaces that were general-purpose interfaces

and those that were for specific device types. Give

some examples of each class.

 A.13 DMA controllers cause many fewer interrupts per

block transferred to or from a device than do con-

trollers, which do not use DMA. Other than obvi-

ously freeing up the CPU to do other things, why

do we need controllers that use DMA?

 A.14 What is the function of a device driver and how do

we configure OSs with the correct drivers?

 A.15 What facility is used to translate computer names

such as omega.example.com to IP addresses for

use in the Internet?

511

Index

Page numbers followed by f indicate

figures; those followed by t indicate

tables.

A

Absolute pathname, 263

Abstraction, 50, 82, 391–394

Abstraction layers, 14

Abstract virtual machines, 393–394

Access bit, 242

Access Co. Ltd., 480

Access control list (ACL), 250, 369,

369f

Access control matrix (ACM),

368–369, 368f

Access methods, 265–269, 266f

Accumulator, 492

Accumulator extension, 492

Acknowledgment (ACK), 404, 462

Active partition, 307

Active runqueue, 448, 448f

Acyclic graph directories, 261–262

Add operation, 488f

Address

of data value, 487

of instruction, 487

registers, 492

space, 425–426, 425f, 501

Addressing modes, 487, 488–489f, 490

Address management unit

(AMU), 103

Address resolution protocol

(ARP), 349

Address space identifiers

(ASIDs), 230

Address space layout randomization

(ASLR), 419

Advanced communication

models, 478

Advanced configuration power

interface (ACPI), 441

Advanced encryption standard

(AES), 375

Advanced memory management,

225–252

purpose of, 225–226

types of, 248–252

A5world, 94

Aged shortest seek time first

(ASSTF), 317

Aging, 157, 242

Alarm clock, 92

Alert box form, 81f, 83

Algorithms, 160–163, 322

Alias, 261, 435

Allocation blocks, 58

Allocation map, 57

Allocation of memory, 76–78,

77–79f, 132

Alpha, 446

ALTO, 90

Amateur Radio (AX25), 457

Amdahl’s law, 131

AMD x64, 418

AMX™ Multitasking Executive, 69n

AMX OS, 473

Andrew File System (AFS), 399

Anomaly detection, 379

ANSI, 335

Anticipatory scheduler, 320–321, 458

Apache Web, 110

AppArmor (Application Armor), 462

APPC, 456

Apple, Inc

Lisa, 90, 92

Mac, 104

Script, 102

Share, 98, 102

68030, 102

68040, 102

Talk, 98, 102, 108, 440, 456

Applets, 365–366, 365f

Application, 59–60

Application Armor (AppArmor), 462

Application heap, 95–96

Application layer, 334, 338–341, 339f

Application logic, 388

Application partition, 94, 95f

Application processes, 74

Application program, 59–60

Application program interface (API),

7, 70, 395, 417

Application programmers, 6–7, 7f

Application programmers’ view, 9

Application specific integrated

circuits (ASICs), 347

Application users, 6

Application virtual machines, 39–40

Architectural approach to building

OS, 33–35, 34f, 35f

Architecture of Palm, 72f

Archive bit, 372

ARCNET™, 337, 346, 348

Arithmetic and logic unit (ALU), 490

ARM processor, 476, 480, 486

ASCII, 339, 340, 364

Assembly language, 491

Associated reference count, 243f

Associative memory, 228

Asymmetric algorithm, 375

Asymmetric key encryption,

375–376, 376f

Asymmetric multiprocessing, 105,

125, 194

Asynchronicity, 5

Asynchronous attributes, 185,

187–188

Asynchronous event, 494

Asynchronous read, 188

Asynchronous transfer mode (ATM),

348, 441, 457

ATA, 439, 502n

Athene, 38

512 Index

Athlon, 137

At least once semantics, 408

At most once semantics, 408

Atomic, 191–192

AT&T, 114

Attribute list, 431

Attributes, 428

Audio I/O, 472

Authentication, 367–368

Authorization, 368–370, 368f, 369f

Automatic page limit balancing,

245, 246f

Auto mounting, 288

Average response time, 160

Average turnaround time, 160

Average wait time, 161

Avoidance, 203–204

Axis Communication, 446

B

Backbone, 348

Background, 63, 243

Backing store, 243

Backups, system, 371–372

Backward compatibility, 41

Banker’s Algorithm, 204

Banyan, 345

Base file record, 286

Base priority class, 423

Base register, 213, 492, 501

Base register addressing, 487

Basic input/output system (BIOS),

13, 49–50, 82, 96

Basic memory management,

209–222

binding model of, 210–211

purpose of, 209–210

See also Memory management

Basic rate interface (BRI), 351

Batch files, 59

Batch-oriented job streams, 164

Be Inc., 38, 110

Bell Laboratories, 114

BeOS, 38, 110

Berkeley Sockets, 474

Best efforts functionality, 341

Best fit, 219

Bi-directional attributes, 184, 185

Big Kernel Lock, 463

Bin, 491

Binary semaphores, 193

Binary trees (B-trees), 268

Binding model, 210–211

Biovine spongiform encephalopathy

(BSE), 144

Bit, 496

Bit-interleaved parity, 310

Bitmap, 271–272, 273f, 430

Bit string, 486

Blackberry™, 473

Block, 269, 309

Block devices, 299, 455, 504

Blocked state, 27

Blocking, 99

Blocking I/O, 187

Block interleaved distributed parity

(RAID 5), 311, 311f

Blocks, 54, 500

Block striping, 310f

Blue Gene, 144

Blue Matter, 144

Bluetooth™, 74, 353, 446, 478

Body area networks (BANs), 353

Bootable partitions, 306

Boot block, 307

Booted, 76

Booting, 56

Bootstrap loader, 16

Border gateway protocol (BGP), 342

Botnet, 363

Bots, 363

Bottom-half organization, 120

Bounded-buffer problem, 195–196

Bounds checking, 364

Branch operation, 487

Bridge, 346–347, 353, 505

Broadcast, 184, 186

Broadcast packets, 335, 336

Broadcast storms, 348

Brute force attack, 374

BSD Secure Levels, 462

BSD UNIX File System, 453

Buddy system, 451

Buffering, 300, 304–305, 305t

Buffering strategy, 184, 185

Buffer overflows, 364–365

Buffer overrun, 364–365

Built-in-functions, 59

Bully algorithm, 402, 403, 403f

Burst errors, 308

Business rules, 388

Busy-waiting, 193

Bytes, 496

C

Cable modems, 351

Cache hits, 500

Cache memory, 497–498

Cache misses, 500

Caching, 301

Calculator, 92, 93f

Cameras, 473

Capability list (CL), 369, 369f

Carbon API, 109

Card Bus, 438

Card deck (loadable program tape), 16f

Cards, 51, 70

Care-of address, 396

Carrier sense multiple access/

collision detection (CSMA/

CD), 346

Carnegie Mellon University, 399

Case studies, file systems, 284–288

Categorization, 503

Category (Cat), 352

Cathode ray tube (CRT), 72

CDFS, 428

Centralized lock server, 401f

Central processing unit (CPU)

components of, 490–491, 490f

defined, 484

development of, 103–104

types of, 22–23

CERN, 140

Certificate, 377

Certificate authority, 377

Cfq scheduler (complete fair queuing

scheduler), 321

Change a message, 373

Change directory (cd or chdir), 264

Change journal, 434

Change logging, 434

Change mode, 121

Character devices, 299, 455, 504

Character recognition, 73

Checkdisk, 293

Checksumming, 138

Child process, 123, 164–165

Chip-level multiprocessor

(CMP), 124

 Index 513

Chmod, 121–122

Choices, 38

CHS addressing, 303

Circular buffer, 188

Circular-LOOK (C-LOOK),

318–319, 319f, 320f, 457

Circular queue, 188

Circular wait, 199, 202–203

City traffic deadlock, 200f

ClassAds, 137

Classic environment, 110

Classified advertisements, 137

Classless interdomain routing

(CIDR), 342, 344

Clean page mechanisms, 247

Clean service shutdown, 420

Client, 32

Client server, 388, 388f, 504

Client stub, 396

Clock, 493

Clock algorithm, 242

Clock cycle, 493

Clock synchronization, 400–401

Clock time, 131

Clone call flags, 123t

Clone system call, 176–177

Cluster, 269

Clustered multiprocessing system, 134f

Clusters, 134–135

concept of, 139–140

defined, 129

types of, 142–146

Clusters of workstations (COWS), 130

CMOS memory, 307

Coax, 352

Coaxial cable, 352

Cobalt, 480

CODA, 399

Code, 210

Code Fragment Manager, 103

Code integrity verification, 419

CodeWarrior™, 476

Coding time, 211–212

Collision, 346

ColorSync, 102

Columbia University, 211

Command interpreter, 11, 60,

164–166

Command line interface, 60, 92

Command queuing, 321

Command set, 503

Commercial IP Security Option

(CIPSO), 462

Commercial platforms, 465t

Common Internet file system (CIFS),

183, 386, 399, 461

Common language runtime (CLR),

39, 365, 393

Common object request broker

(CORBA), 398

Communication, 182

Communication circuits, 473

Communication security, 373–377,

374–376f

Communication threats, 374f

Compact disc (CD), 288–289,

428, 452

Compact disc-read only memory

(CD-ROM), 108, 308, 499

Compact disc-read write (CD-RW),

485, 499

Compaction, 77, 220, 220f

Compaq, 324

Compiler, 491

Complete fair queuing (CFQ), 458

Complete fair queuing scheduler (cfq

scheduler), 321

Complex file names, 435

Complex instruction set computer

(CISC), 486

Compression, 434–435

Computational Biology Center, 144

Computational grid, 142–143

Computer networks, 331–356

basics of, 333–338

physical layer of, 352–354

purpose of, 332–333

Computer system, overview and

architecture concepts, 483–507

components of, 484–485, 485t

concepts of, 507f

illustration of, 507, 507f

Computer viruses, 361

Computing grids, 135–136

Concurrency, 387

Concurrency protection, 372–373

Conditional branch-on-equal

operation, 490f

Condition variables, 197

Condor Project, 136, 137

Config.sys, 438

Connectionless attributes, 184,

185–186

Connection oriented attributes, 184,

185–186, 341

Connection super-server, 461

Console, 49

Console command processor

(CCP), 50, 70

Content addressable memory

(CAM), 228

Context switch, 23, 30, 100

Context switch overhead, 163

Contiguous allocation, 273–275, 274f

Controlled devices, 502

Controller, 321–322, 491–492

Controller cache, 499

Control Panel, 92

Control Program/Monitor (CP/M)

abstraction, component of, 50

development of, 49

Control unit, 491

Convoy effect, 162

Cooked interface, 82

Cookies, 366

Cooperating process, 181, 386

Cooperative multitasking, 99, 157

Coordinator, 402

Copper wire specifications, 352

Copy command (cp/copy), 264

Copy-on-write, 176, 248, 426–427

CORBA (Common Object Request

Broker Architecture),

134–135

Cornell University, 362

Counting semaphores, 194

Coupled multiprocessors, 124

CP-40, 38

CPU preference, 133

CPU process scheduler, 27

CPU scheduler, 27

CPU state information, 153

CPU utilization, 161

Crash protection, 371–372

Critical region, 401

Critical section, 138, 192

CTL/C, 187

Current position, 265

Current record pointer, 265

Current working directory, 263

514 Index

Cursor tracking mouse motion, 8–9, 9f

Cyclic elevator, 318–319

Cyclic redundancy check (CRC),

138, 308, 308t, 349

Cylinders, 302–303

Cylindrical-LOOK, 318–319

D

Database file support, 80–81

Database servers, 31, 484

Database storage, 388

Data cache, 498

Data encryption standard (DES), 375

Data fetch, 494

Data link layer, 345–350

Data path, 492

Datapoint Corp, 457

Data redundancy, 432

Data registers, 492

Data run, 431

Data storage area, 56, 57–58

Data stream, 435

Data striping, 309

Data structures, 81

Data value, 487

Deadline scheduler, 321, 458

Deadlocks

defined, 182

process management and,

197–206, 198–200f

Decode, 494

Decryption, 374

Dedicated parity drive, 310–311, 311f

De facto standard, 50, 335

Default gateway, 343

Default router, 343

Defragmentation, 275, 277, 433

Defrag utility, 294

De jure standards, 335

Delayed auto-start services, 420

Del command, 264

Demand paging, 238–248

Demilitarized zone (DMZ), 379

Denial of service (DOS), 142, 345, 363

Dense wavelength division

multiplexing (DWDM), 353

Desk accessories, 92

Detection, 201

Detection deadlocks, 205

Device controller, 10–11, 503, 503f

Device driver, 438–439, 503

defined, 11

OS, component of, 12

Devices, 10–11

characteristics of, 298–299, 298t

classes of, 298–299, 298t,

455–458

types of, 502

/dev table, 454–455

Dictionary attack, 367

Diffie-Hellman, 375, 378

Digital Equipment Corporation

(DEC), 92

Alpha 64, 418

Net, 184, 345, 440, 456

PDP-11, 486

VAX, 232, 486

Digital Research, Inc., 49

Digital rights management

(DRM), 362

Digital subscriber lines (DSL), 351

Digital video disk (DVD), 428,

452, 499

“Dining Philosophers” problem,

199f

Dir command, 264

Directed acyclic graphs (DAGs), 261

Directed edges, 26

Direct memory access (DMA),

322–325

characteristics of, 323

components of, 491

future of, 324–325

Directory, 259–264

Directory access protocol (DAP), 395

Directory records, 286

Directory service, 10, 395

Dirty pages, 242–243

Discovery services, 395

Discrete modeling, 161

Disk boot area, 55, 56

Disk cache, 499

Disk class, 439

Disk controller, 55

Disk drive, 55

Disk format, 51, 55

Disk head, 55

Disk management, 54–55, 54f

Disk scheduling, I/O management

and, 297–325

characteristics of, 298–299

technology of, 299–302

Disk scheduling algorithms, 322

Disk system, 54–55, 54f

Dispatch, 155

Dispatcher thread, 392

Displacement (d), 226, 234, 487

Display management, 83–84, 84t

Distributed Component Object

Model (DCOM), 134, 135

Distributed computing environment

(DCE), 398

Distributed Computing Environment/

Remote Procedure Calls

(DCE/RPC), 461

Distributed file system (DFS),

399–400

Distributed OS, 385–409

defined, 32

development of, 386–388, 387f

models of, 396–400, 397f

Distributed processing, 127–147

architectures of, 133f,

134–138, 134f

concepts of, 128

Distributed system architecture,

132–134, 133f

Distributed transactions, 405–406

Distribution, 116

Distribution transparency, 387

Distributive objects, 398

DLL Hell, 222

DMA controller, 298, 322–323, 491

Domain, 343

Domain name servers (DNS),

343, 505

Domain name system (DNS),

394–395

Dotted decimal notation, 342

Double buffering, 300, 301f

Drive disk, 306f

Drive rotation speed, 305t

Dual memory access, 228, 228f

Duplexing, 310

Dynamically loadable modules

(DLMs), 117–119,

118f, 119t

Dynamic bad-cluster handling, 435

Dynamic host configuration protocol

(DHCP), 343

 Index 515

Dynamic link libraries (DLLs),

221–222

Dynamic load balancing, 32

Dynamic loading, 221

Dynamic memory, 6

Dynamic priority, 423–424

Dynamic random access memory

(DRAM), 76, 497

Dynamic relocation, 213

E

Effective access time (EAT),

229–230

Effective address time (EAT),

239–240, 240t

802.11, 457

800 TFLOPS, 137

80/20 rule, 239

EISA buses, 438

Election, 402–404, 403f, 404f

Electronic main memory, 70

Elevator algorithm, 317–318

E-mail, 399

Embedded computer systems, 484

Emulator, 476

Enabled application, 183–184, 386

Encrypting file system (EFS), 433

Encryption, 374–376, 374–376f,

433–434

End users, 6, 7f

End user’s view, 9

Enhanced interior gateway routing

protocol (EIGRP), 342

Enhanced second chance

algorithm, 244

Entry section, 192

Environment, 121–122, 123f,

394, 422

EPOC, 68, 476

Equal allocation, 245

Error correction codes (ECC),

307–310

Error detection codes (EDC),

307–308, 308t

Ethernet™, 346

ETRAX CRIS, 446

Event-driven programs,

84–85, 85f

Event loop, 74

Exactly once semantics, 408

Exchange libraries, 474

Exchange Manger, 474

Exec system call, 166

Executable code, 61, 491

Executable programs, 491

Execution, defined, 20

Execution modes, 28–29, 490

Exit section, 192

Exit state, 155

Expired runqueue, 448

Exponentially decaying, 158

Ext2fs, 452

Ext3, 295

Extent, 274, 429

Extent counter, 57

External attributes, 429–430

EXternal Data Representation

(XDR), 397

External fragmentation, 76, 77f,

219, 275

F

Failure, handling, 142

Fair-share scheduling, 158

Family x86 memory map, 425f

Fast Ethernet, 348

Fast user switching, 415

Fat binaries, 103

FAT file systems, 285f, 285t

Fault tolerance, 406–409, 407f,

408f, 432

FDDI (Fiber Distributed Data

Interface), 457

FDISK, 306

Feedback, 160

Fetch-and-add, 193

Fiber distributed data interface

(FDDI), 346, 457

Fiber optic specifications, 352–353

Fiber to the Curb (FTTC), 351

Fields, 486

File abstraction, 265

File allocation table (FAT)

defined, 284

16, 284, 428

structure of, 272

32, 284, 428

12, 284, 290, 305, 428

File buffering, 10

File control blocks, 122, 123f

File copying, 10f

File director area, 55, 56–57

File encryption, 108

File management, 22

File metadata, 259, 264

File mode, 122

File name, 56–57, 430

File open dialog box, 440f

File permissions, 121–122

File protection, 373

File record, 284

File redirector, 453

File servers, 31, 484

File sharing techniques, 141

File storage, 10, 278f

File support, 80–81, 452–454, 472

File system

basic, 257–280

multiple, 290–292, 291f, 292f

purpose of, 258, 258f, 283

types of, 283–295

File transfer protocol (FTP), 32, 114,

340, 344, 415

File type, 56–57

Filters, 437

Finder, 92, 96, 98

Firewall, 345, 379, 379f

FireWire™, 106, 502

Firmware, 55, 496

First come, first served (FCFS),

156–157, 315, 315f

First fit, 219

First in, first out (FIFO), 37, 241,

315, 315f, 449

Five-state process model, 154f

Fixed data, 61

Fixed memory, 6

Fixed number of processes, 216–218,

217f, 218f

Fix load address, 59

Flash memory, 71

Flat process group, 407, 408f

Floating point unit, 490

Floppy disk, 54f, 371

FlProtect, 250

Folder records, 286

Folders, 93, 259

Folding@home, 144

Foreground process, 63

Fork, 164–165, 427

516 Index

“Forking a child,” 165

Fork system, 176

Forms, 83

Forth, 476

Fortran compiler, 173

Frac-T (fractional T1), 350

Fragmented file, 277

Frame (f), 226, 227

Frame relay, 350, 350–351, 457

FreeBSD, 110

Free Software Foundation, 115

Free space, 269-270

Free space chain, 270f

Free space tracking, 79–80,

269–272, 270–273f

F-SCAN, 320

Fsck, 294, 299

Full duplex, 335

Fully connected mesh, 337f

Fully qualified name, 343

Functional classes of OS, 29–33

Functionality, 5–6, 40–41

Function migration, 349–350

Function name (*fn), 176

Functions of OS, 20–22

G

Gadgets, 83

Garbage collection, 79f

Garnet, 480

General-purpose registers, 492

Genome shotgun assembly

approach, 143

Gigabit Ethernet, 347

Gigabytes (GB), 497

Gigahertz (GHz), 128

GigAssembler, 143

GIMPS, 175

Global positioning system (GPS), 70

Global replacement, 244

Globus cluster, 145–146

Globus Toolkit, 135

GNU Network Object Model

Environment (GNOME),

115, 459

Google™, 182, 389–391, 390f

GOSSIP, 334

Graffiti input, 70

Graphical user interface (GUI),

91–92, 96–97, 102

elements of, 83, 84

interface of, 418

MultiFinder, 100

Graph workflows, 130f

Green threads, 170

Grid, 129–130, 140–141

Grid computing, 175

Grouped free space chain, 272f

Grouping, 271

Groups, 369–370

Guaranteed scheduling, 157–158

Guard area, 425

Guest OS, 38, 392

GUI. See Graphical user interface

(GUI)

H

Hacker release, 116

Hackers, 360

Hamming, 308

Handspring, 69

Hard deadlines, 32

Hard disk, 302f, 498

Hardware, 82–83

Hardware abstraction layer (HAL),

72–73, 421

Hardware changes, 106

Hardware components, 51f

Hardware details, hiding, 82

Hardware events, 495

Hardware locking instructions,

192–193

Hardware system dependent, 163

Hardware virtual machines, 38–39

Hash, 376–377

Hashed access, 268

“Have the focus,” 97

Header, 80, 334

“Head of line blocking,” 162

Heads, 302–303

Heap, 61, 76

H8/300, 446

Heterogeneity, 185, 187, 387

Hewlett-Packard, 446

HFile, 250

Hierarchical File System (HFS), 98

Hierarchical File System Plus

(HFS+), 105–106

Hierarchical group, 407

Hierarchical process group, 407f

Hierarchical tree, 336f

Higher-level access methods,

267–268, 267f

Higher-level services, 31–32

Higher-level system view, 8

Highest response ratio next

(HRRN), 159

High performance file system

(HPFS), 428

Hitachi, 446

Hit ratio, 229

Hold-and-wait, 198, 202

Hole, 219

Home address, 396

Homogeneous, 185, 187

Honeywell, 31

Horizontal distribution, 390, 390–391

Host OS, 38, 392

Hot standby, 314

Hub, 346

Human Genome Project, 143

Hybrid hard drives (HHDs), 325,

420–421

Hyperlinks, 398

Hypertext Transport Protocol

(HTTP), 114, 339–340, 378

Hyper-Threading™, 172, 446

I

IBM

Computational Biology Center, 144

CP/M, use of, 50

emulation packages produced by, 38

MicroChannel™, 438

networking, 440

PC, 91, 104

RS6000, 103

650, 211

360, 275

Idempotent, 407

Identifier (ID), 121

Ident service, 463

Idle process, 157

Idle thread, 424

IEEE

committee, 115

802, 308

1003, 422

1394, 438

I.Link™, 502

 Index 517

I-list, 286–287

Immediate addressing, 487

Improved linked list, 270–271,

271f, 272f

Inconsistent state, 405

Incremental releases, 96

Independent data disks with double

parity, 311–312

Independent process, 181

Index block, 270

Indexed access, 267–268, 267f

Indexed allocation, 278–279,

278–280f

Indexed free space chain, 271f

Indexed sequential access method

(ISAM), 267

Index hole, 54

Indexing, 435

Index register, 487, 492

Index root, 430

Indirect addressing, 487

Inetd server, 461

Infiniband, 446

Init phase, 215

Inode, 259, 286, 287t

Input/output (I/O)

classes of, 484–485

computer systems, overview of,

502–504

Linux, use of, 454–458

management of, 297–325

Palm OS, subsystems of, 472–473

single process OS, management

of, 52–54

single-user multitasking OS,

basic, 82

Windows NT, use of, 436–439

Instant messaging (IM), 333, 373, 479

Instruction address, 487

Instruction cache, 498

Instruction counter, 167f, 492

Instruction execution cycle, 493–494

Instruction fetch, 493

Instruction formats, 488f

Instruction pointer, 166

Instruction register, 152, 492

Instruction set, 485, 486–490

Integrated circuits (ICs), 51

Integrated development

environments (IDEs), 476

Integrated services for digital

networks (ISDN), 351

Intel

CPU, 417

8080, 50

8088, 50

8080/8085, 49

80 X 86, 187

i860, 418

Itanium 64, 418

PC, 103

Pentium, 233

386, 115, 116

x86, 418, 486

Interactive mail access protocol

(IMAP), 340–341, 344

Interactiveness, 449, 464

Interactive processing, 164

Intercept message, 373

Interface description language (IDL),

397–398

Interface Manager (IM), 416

Interior gateway routing protocol

(IGRP), 342

Internal fragmentation, 217–218,

218f, 275

International Standards Organization

(ISO), 334, 335, 395

9660, 288

9945-1, 422

9960, 428

13346, 428

Internet, 107, 333, 399

Internet applications, 474

Internet browser, 4

Internet control message protocol

(ICMP), 354

Internet Engineering Task Force

(IETF), 335, 339

Internet Mail Consortium, 474

Internet naming authority (INA),

394–395

Internet Security Association and Key

Management Protocol/Oakley

(ISA KMP/Oakley), 378

Internet 2, 344

Internet Worm, 362, 363

Interprocess communication, 133,

184–190

Interrupt, 8, 35, 494, 495

Interrupt disable, 495

Interrupt handlers, 119–120

Interrupt handling, 35–36, 35f, 52

Interrupt mask, 495

Interrupt registers, 492, 494

Interrupt request level (IRQ), 438

Interrupt vectors, 35–36, 35f

Interthread communication, 167

Intrusion detection systems

(IDSs), 379

Intrusion prevention systems

(IPSs), 379

I-number, 286

Inverted page table, 232–233,

232f

I/O. See Input/output (I/O)

Ioctl system call, 299

IP address, 342

IPC systems, 188–189

IP foreign agent, 396

IP home agent, 396

IP routing, 342–343

IP security protocol, 378

IP version 6, 344, 456

IPX/SPX, 341, 345, 440, 456

IrDA, 474

IrOBEX, 474

ISA Plug-and-Play, 446

ISDN (Integrated Services Digital

Network), 457

ISDN BRI, 351

ISS, 462

ITU-T, 395

J

Java™, 177

RMI, 134

Script, 365

Java virtual machine (JVM), 39,

365, 393

JDode, 38

JFS, 295

Jini™, 395

Job, 26, 151

Job Control Language (JCL), 26

Jobs, Steven, 90

Journaling file system, 295, 432

Jump operation, 487

Junctions, 435

Just-in-time (JIT), 40, 394

518 Index

K

KADAK Products Limited, 69n

Keep-alive notices, 403

Kerberos, 373, 462

Kernel, 11

Kernel approach, 33

Kernel architecture, 446–447, 447f

Kernel level thread, 169

Kernel mode, 29

Keyboard, 52–53, 72–73

Keyboard interface chip, 53

Keychain Access, 108

Keys, 374

Kildall, Gary, 49

Kilobytes (KB), 498

Kool Desktop Environment

(KDE), 459

Ksym, 119

L

Lamport timestamps, 400

LAN Manager for Windows legacy

system, 440

Large Hadron Collider (LHC), 140

Large network operation centers

(NOCs), 354

Large page tables, 231–232, 231f

LaserWriter, 98

Last mile, 350

LAT, 345

Lawrence Livermore Labs, 144

Layered architecture, 25, 33

Layered OS approach, 33–34, 34f

Layered view of OS, 13f

Layer three switches, 347

Layer two switches, 347

Lazy loading, 238

L1 cache, 498

L2 cache, 498

L3 cache, 498

LDAP-to-DAP gateway, 395

Learning bridge, 347

Leased line, 348

Least recently used (LRU), 241

Legacy applications, 421–422

Legacy systems, 440

Lightweight directory access

protocol (LDAP), 395, 462

Light-weight process (LWP),

167, 176

Limit register, 501

Linear addressing, 237f

Linear bus, 337f

Linear topologies, 336f

Line tracking, 434

Linked allocation, 275–278, 276f,

277

Linked index block lists, 279

Linked indexed file, 280f

Linked list, 269–270, 270f

Linking, 210

Linking time, 212

Link state, 342

Linux™, 445–466

classes of, 298t

file system of, 286–288

historical overview of, 446

organization of, 116–117, 117f

2.2, 451

2.6, 447, 451

variants of, 463–464, 465t

Linux Assigned Names And

Numbers Authority

(LANANA), 455

Linux Intrusion Detection System, 462

Linux security module (LSM), 462

Liquid crystal display (LCD), 69

“Little endian/big endian”

problem, 187

Load, 210

Loadable program tape (card deck),

16f

Loader, 16, 61

Load operation, 489f

Local area network (LAN), 335–336,

338f, 506

Local disk organization, 305–308

Local file system, 288–289

Locality of reference, 238

Locality principle, 500

Localization, 106

Local replacement, 244, 427

Local Security Authority (LSA),

461–462

LocalTalk, 98

Location, 387

Location aware applications,

479–480

Location transparency, 32

Lock a page, 246

Locks, 192, 192f

Lock server, 401

Log-based file system, 294–295, 432

Logical address, 214f

Logical block address (LBA), 102,

214, 303–304

Logical clocks, 400

Logical structure, 259–262, 259t,

260f, 262f

Log-structured file system, 295

Longitudinal redundancy check

(LRC), 308

Long-term scheduler, 164

LOOK, 317–318, 318f

Look-and-feel, 459

Lotus Notes, 399

Low-level formatting, 104, 304

Low-level network access services, 31

Low-level system view, 8

LpName, 250

Ls command, 264

M

MAC. See Macintosh (MAC)

MAC address, 346

Machine language, 486–490,

488–489f

Mach kernel, 110

Macintosh (MAC)

Classic, 96

File System (MFS), 98

512K, 96

II, 98, 102–103

origin of, 90–91

OS Standard File System, 98

OS X, 109–110, 399, 418

ROM, 96

SE, 98

Mad cow disease, 144

Magnetic disk hard-drive, 498

Mailbox, 189

Main-loop phase, 215

Main memory, 23, 51, 235f, 497–498

Major modules, 24–25, 25f

Management information base

(MIB), 354

Management tools, 354

Many-to-many mapping, 171

Many-to-one mapping, 170

Mapping addresses, 227f, 349

 Index 519

Marshaling, 396

Mars Pathfinder, 195

Master boot block (MBB), 437

Master boot record (MBR), 307, 437

Master chunk pointer (MCT), 77

Master file table (MFT), 284, 286,

428–431

Master pointer block, 95

Master pointer table (MPT), 77, 78f

Matchmake, 137

Maximalist philosophy, 16, 40

MD-DOS, 212–213

MD5, 376–377

Mean time between failures

(MTBF), 309

Media access control (MAC),

346, 505

Megabytes (MB), 498

Memory

overlay, 60

pages, 501

protection, 501, 501f

space, 25

unit, 496–501, 501f

Memory access control,

230–231, 240t

Memory address, 438, 496

Memory allocation, 76–78,

77–79f, 132

Memory areas, 236

Memory bus, 491, 498

Memory chunks, 76

Memory contents, 60f

Memory fragmentation, 95

Memory management

advanced memory management,

types of, 248–252

defined, 21

fundamentals of, 75–76

Linux, 451–452

Palm, 471–472

process and, 58–63

single-user multitasking OS and,

75–80

system, 110

Windows NT, 425–427

See also Basic memory

management

Memory management unit (MMU),

102–103, 425, 446

Memory manager (MM), 451

Memory mapped files, 190,

249–250, 292–293

Memory pointer table (MPT), 472

Message

certificates, 377

digest, 376–377, 376f

oriented attributes, 185, 187

passing, 134, 184

queuing, 189

signing, 376f

Message passing interface, parallel

virtual machines (MPI/PVM),

134

Meta-attributes, 431

Methods, 37

Metrowerks, 476

MFT record, 429f, 430f

Microelectromechanical systems

(MIEMS), 325

Microkernel system, 34, 35f, 117,

118f

Microprogramming, 495–496

Microsoft

DOS, 284

NFS, 399

OS, 394

Windows NT™, 415

Middleware, 134, 387–388

Middleware service layer, 387f

Migration, 387

Minimalist philosophy, 16, 40

Miniport drivers, 439

MINIX file system, 115, 452

MIPS

CPUs, 446

R4000, 248

RISC processor, 418

Mirroring, 309, 310

Mirror of stripes, 312

Mkdir command, 264

Mnemonic name, 491

Mobile IP, 395–396

Mobile networks, 506

Mobile wearable devices, 484

Model, 333–335

Model form, 83

Modifier field, 487

Modules, 70

Monitor, 48–49, 196–197

Monitor mode, 29

Monitor program, 48

Monolithic architecture, 25

Monolithic kernel, 33, 116

Monolithic single-kernel, 33

Moore’s law, 128, 140

Most significant byte (MSB), 187

Motherboard, 50

Motorola 68000, 91, 103, 109, 486

Motorola 68020, 101–103

Mounting, 288–290

Mouse device driver, 8

MPT chaining, 79f

MS-DOS, 104–105, 452

MS-DOS partitions, 436

M68k processor, 446

MSRPC, 461

Multicast, 184, 186, 404

Multicast addresses, 349

Multicast packets, 335, 336

Multicore chips, 496

Multicore processor (MCP), 124

MULTICS, 31, 114, 236

MultiFinder, 98, 99–100, 99f

Multilevel indexed file, 279f

Multilevel indexes, 278–279

Multilevel page table, 231, 426f

Multilevel queues, 160

Multiple connections, 185, 186

Multiple data streams, 435–436

Multiple hardware, 421–423

Multiple interactive users, 30

Multiple page size, 233

Multiple processes, 218–220f,

218–222

Multiple threads, 168f

Multiple tiers, 505

Multiple-user OS, 113–125

environment of, 121–123, 123f

historical overview of, 114–116

purpose of, 113–114

Multiple users, 107–108

Multiprocessing (MP), 48,

128–129, 132

Multipurpose Internet mail

extensions (MIME), 340

Multitasking, 63, 69–71, 69f, 97f

Multitasking OS, 30

Multitasking system design, 70

Multithreaded server, 392f

520 Index

Multithreading, 132

Musical instrument device interface

(MIDI), 472

Mutex, 192, 196

Mutual exclusion, 201–202,

401–402, 401f, 402f

N

Named pipes, 189

Name resolution, 343

Name servers, 505

Name space, 394

Naming, 394–396

Naming strategy, 184, 186

Nanokernel, 103

National Computer Security Center

(NCSC), 380

Native command queuing (NCQ), 321

N buffer, 185

NEC v850, 446

Negative acknowledgment (NACK),

405, 405f

NetBEUI, 440, 456

NetBIOS, 345, 456, 461

.net remoting, 134, 135

Netware™, 345

Network

computer system, use of,

504–506, 506f

functional classes of, 31–32

Linux, use of, 460–462

troubleshooting, 354

types of, 506

Windows NT, use of, 440–441

Network access, 24

Network adapter, 346

Network address translation

(NAT), 344

Network attached storage

(NAS), 129

Network controller, 505

Network devices, 299, 455–457

Network driver interface

specification (NDIS), 440

Network file system (NFS),

289–292, 292f, 387, 399

Network General Corporation, 355

Network interface (NET), 460

Network interface card (NIC), 346,

349, 460

Network interface controller

(NIC), 505

Network I/O devices, 502

Network layering, 460–461, 461f

Network management, 354–355

Network Neighborhood protocols, 461

Network News, 399

Network Object Model Environment

(GNOME), 459

Network programming, 473–474,

475t

Network protection, 378–380, 379f

New state, 27, 154–155

New Technology (NT), 418

NeXT Computer Inc., 38, 107, 110

Next fit, 220

NextStep OS, 38, 107

Nice command, 449–450, 450

Nmap, 462

No buffer, 185

Nodes, 26, 129, 145

No guarantee semantics, 408

Nonblocking read, 188

Non-moveable chunks, 78

Nonresident attributes, 429–430

Non-Uniform Memory Access

(NUMA), 129

Nonvolatile memory, 499

Noop scheduler, 315, 458

Normal process, 449

Notebook computer, 484

Notepad, 92, 264

Not recently used (NRU), 244

Not used recently (NUR), 244

Novell Directory Service (NDS), 395

Novell Netware, 184, 440

Novolatile random access memory

(NVRAM), 75–76

N-step SCAN, 320

N10 (N-Ten), 418

NT file system (NTFS), 428–433

advanced features of, 433–436

goals of, 431–433

N-tier applications, 389–390, 390f

NTLM, 462

NT-style printing service

(SPOOLSS), 462

NuBus, 104

Null pointer catcher, 425

Number of records, 57

O
Object, 37, 81, 83

Object adapter, 398

Object code, 491

Object linking and embedding

(OLE), 434

Object Management Group (OMG),

398

Object module, 210

Object oriented approach, 37–38

Object oriented architecture, 25

Object programs, 491

Object request broker (ORB), 398

Offline storage, 499

Offset, 487

One buffer, 185

One-to-one mapping, 170

One-to-one thread mapping model, 170f

One-way connections, 184, 185

Online storage, 499

Opcode (operation code), 486

Open files, 26

Open files table, 37

OpenGL, 109

Open Group, 398

Open shortest path first (OSPF), 342

Open source implementations, 465t

Open source projects, 115

Open Source Samba, 345

Open source systems, 8

Open standards, 387

Operand fields, 487

Operating system (OS), 3–17

basic functionality’s of, 5–6

basic terminology of, 10–11

concepts of, 138–142

functions of, 20–25, 25f

historical overview of, 15–17, 16f

images of, 11–13, 12f, 13f

360 TSO, 31

2, 295, 417, 422, 428, 452

Optimal page replacement (OPT), 241

ORG 100, 211, 212

ORG 500, 211

Orphan process, 165

OSI model, 334, 334f

Output devices, 484–485

Overlay, 48, 51, 62

Overlay memory management,

61–63, 62f

 Index 521

Overlay single process, 215, 215f

Overloading, 288

P

Packet capture, 355

Page access, 230–231

Page access protection, 227f,

230–231

Page directory, 426

Paged memory access, 227f

Page fault, 102, 239, 427

Page fault frequency (PFF), 245

Page locking, 246–247

Page mapping, 227f, 426, 426f

Page reference bit, 242

Page replacement, 240, 427

Page sharing, 426–427

Pages per process, 244–245

Page table, 37, 233, 501

Page table address register, 227

Page table demand paging, 239f

Page table length register, 230

Paging, 226–233

PAI, 480

Palm, Inc., 67, 69

Palm OS, 71–73, 72f, 469–480

Palm Pilot, 69f

Palm Powered™, 474

PalmSource, Inc., 70, 480

Palm Sync, 74

Pande Group, 144

Parallel computing, 128

Parallel connection, 504

Parallelism, 128

Parallel Line Internet Protocol

(PLIP), 457

Parallel processing, 128–132, 130f,

131f

Parent process, 123, 164–165

PA-RISC, 446

Parity schemes, 312f

Partially connected mesh, 337f

Partitioning, 306, 306f

Partitions, 305–306, 436–437

Partition table, 307

Pascal, 39, 476

Passwords, 108, 367

Patch, 211

Path, 261, 394

PC

Card, 104, 353, 438, 446

characteristics of, 50–52, 51f

Exchange, 104

MCIA, 104–105, 438

OS, 90

relative addressing, 487

PDP-7, 114

Peer-to-peer (P2P), 130, 504

Pentium, 137

Performance, 182, 386

Performa 6100, 103

Peripheral Component Interconnect

(PCI), 104

Peripheral devices, 502

Per-process open file table, 122

Persistence, 188, 387

Persistent attributes, 185

Persistent data, 76

Personal area networks (PANs), 353

Personal data interchange (PDI), 474

Personal data synchronization,

473–474

Personal desktop computer, 484

Personal digital assistant (PDA), 4,

68, 353, 473

Personal identification number

(PIN), 367

Personal information managers

(PIMs), 68

Personal Software, 417

Personal Web Sharing, 105

Per-user disk space quotas, 434

Phishing, 367

Physical address extension (PAE),

102, 214, 446

Physical disk organization, 302–305,

302f, 305t

Physical layer, 334, 352–354

Physical location of information,

183, 386

Physical memory space, 132

Physical space, 214

Physical structure, 262

Physical virtual machine, 392–393,

393f

Pickup, 315, 316f

Ping, 354

Ping of Death, 363

PINGs, 345

Pipeline architectures, 194

Pipeline flow graph, 131f

Pipelining, 494

Pipes, 188

Plain old telephone service (POTS),

350, 351

Plaintext, 374

Platform agnostic, 134

Plug and play (PnP), 437–438

Pocket PC, 68

Pointing device, 8, 17

Point-to-Point Protocol (PPP), 457

Polling, 300

POP3 (post office protocol version

3), 340–341, 344, 461

Port, 189, 439

Port 21, 340

Port 80, 339, 340

Portability, 49, 52

Portable batch system (PBS), 129,

145–146

Portals, 146–147

Port mirroring, 355

Port number, 338

Port scanners, 462

POSIX, 115, 173–174

Power Macintosh, 103, 104

Power-On Self-Test (POST), 96

PowerPC, 103, 110, 418

Practical network layer model, 334f

PRC-Tools, 476

Preallocation, 270

Preemption, 75, 159, 205–206

Preemptive multitasking, 124, 110

Prefetch file, 251

Prefetch profiles, 427

Pretty good privacy (PGP), 378

Prevention, 201–203

Primary data, 267

Primary key, 267

Primary memory, management of,

209–210

Primary partitions, 306

Primary rate interface (PRI), 351

Primary storage, 70, 496–497, 498

Printer queue, 37

Priority inversion, 195

Priority scheduling, 157

Priority with preemption, 159

Private key, 375

Privileged mode, 29, 490

522 Index

Problems and threats. See Security

and protection

Process

concept of, 25–27

defined, 20, 151

types of, 28–29

Process control block (PCB), 28,

28f, 152–153, 153f

Process descriptor, 152

Processes, 28–29

Process groups, 407

Process identifier (ID), 28

Processing graffiti input, 73

Process management, 21, 151–178

Process node, 131

Processor, 485–496

Processor affinity, 133, 164

Processor cache, 491

Processor chip, 496

Processor control, 491–492

Processor data path, 491–492

Processor instruction execution

cycle, 493–494

Processor instruction set architecture,

486–490

Processor interrupts, 494–495

Processor machine language,

486–490, 488f, 489f

Processor microprogramming, 495

Processor multicore chips, 496

Processor pipelining, 493–494

Process resilience, 407–408, 407f,

408f

Process scheduler, 27, 75

Process Scheduler module

(SCHED), 447

Process scheduling

Linux, 447–450

single-user multitasking OS, use

of, 73–75

Windows NT, 423–424

Process sharing, 168f

Process state information, 153

Process states, 25–27, 26f, 152, 154

Process synchronization, 138–140

Process threads, 123–125, 123t,

125f, 172–173

Proc file system, 454

Producer-consumer problem,

195–196

Program binary, 59, 491

Program counter, 25, 152, 492

Program header, 61

Program image, 59

Programmable read-only memory

(PROM), 71, 75–76

Programmer fragmentation, 274, 275

Programming, 439, 458–460

Programming environments,

475–476

Program object, 491

Program processor, 491

Programs, 491

Program source, 491

Program status registers, 492

Progress dialog, 83

Promiscuous mode, 355

Proportional allocation, 245

Protection and security. See Security

and protection

Pseudo file system, 454

Psion, 476

Pthreads, 173, 174

Public key, 375

Purchased components, 182, 386

Q

Quality of service (QoS), 348

Quantum, 447

QuickTime, 102

R

Race condition, 138, 191

Race hazard, 191

RAID (redundant array of

independent disks), 309–314

RAID failure, 313–314

RAM disk driver, 473

RAM management, 100

RAM methods, 266–267, 266f

RAM sequential access, 298

Random access, 266–267, 266f

Random access memory (RAM), 50,

75–76

Raw access, 268–269

Raw access method, 268–269

Raw interface, 82

Raw I/O, 299, 306

Read message, 373

Read next operation, 266

Read-only memory (ROM), 6, 14,

48, 71, 75–76, 96

Read-only support, 433

Read the button software, 5

ReadyBoost, 420

Ready process queue, 22–23, 37, 156

Ready state, 27, 155, 156

Ready to run, 26

Real-time application interface

(RTAI), 464

Real-time functional classes, 32–33

Real-time Linux common API,

463–464

Real-time processes, 448–449

Real-time tasks, 471

Real-time threads, 424

Records, 80–81

Recoverability, 431, 431–432

Redirection, 290–292, 291f, 292f, 437

Redirector, 292

Reduced Instruction Set Computer

(RISC), 418, 486

Reed-Solomon codes, 308

Reentrancy, 172

Reference count, 242

Regions, 236

Register, 491–492, 497

Register addressing, 487

Registration functions, 119t

ReiserFS, 295

Relative pathname, 263

Release number, 116

Reliability, 183, 386

Reliable client-server

communication, 408

Reliable multicast communication,

404–405, 405f

Reliable sleep state, 420

Relocation, 387

Relocation hardware, 213, 213f

Remainder section, 192

Remote file systems, 289–290

Remote method invocation (RMI),

134, 141

Remote monitoring (RMON), 355

Remote procedure call (RPC), 141,

187, 392, 396–398, 397f

Remote services, use of, 141–142

Removable discs, 498–499

Removable medium, 371

 Index 523

Reparse point, 435

Replacement algorithms, 243–244

Replicated database, 391

Replication, 387

Replication transparency, 32

Repudiate, 377

Request for comments (RFC), 335–337

Reserved area, 55

Resident attributes, 428–429

Resource allocation graph, 200, 200f

Resource management, types of,

22–24

Resource processes sharing, 198f

Resources, 81

Resource utilization, 132

Ring topologies, 337f

Ritchie, Dennis, 114

Rivest, Shamir, Adleman (RSA), 376

Rm command, 264

Rmdir command, 264

Robots, 363

Roles, 369–370

Roll-out/roll-in, 216

Rotational latency, 304–305

Round robin, 159, 449

Routers, 342, 353, 505

Routing information protocol

(RIP), 342

RPC stub, 397f

RSA protocol, 375

RTLinux, 464

Run, 210

Runable program, 59

Running, 26

Running state, 27

Runqueue, 447, 448

S

Safe state, 204f

SAINT, 462

SAMBA, 461–462

Sandbox, 365

Sandbox execution model, 365f

SATAN, 462

Scaling, 182, 386

SCAN, 318

Scandisk, 293

Sched_setparam, 450

Scheduling, process, 156–164

Scientific computing, 142–143

Screen savers, 332

Screen size, 72

Screen window, 74

Scripts, 59, 365–366, 365f

SDLC, 184

Search for Extra-Terrestrial

Intelligence (SETI), 175, 183

Secondary key, 267

Secondary storage, 23, 71, 81, 498

Second chance algorithm, 243

Secret key, 375

Sector addressing, 303–304

Sector count zones, 303–304

Sector relocation, 323–324

Sectors, 54, 302–303, 302f

Sector sparing, 323–324

Secure Accounts Manager

(SAM), 461

Secure hash standard (SHA), 377

Secure HTTP protocol, 378

Secure socket layer (SSL), 378

Security administration, 380

Security and protection, 359–381

policies for, 370–373

problems concerning, 360–366

techniques for, 370–373

threats concerning, 360–366

Security descriptor, 430

Security-Enhanced Linux

(SELinux), 462

Security protocols, 377–378

Seek, 304–305, 305t

Seek time, 304

Segmentation, 233–236

Segmentation with paging, 236–238,

237f

Segmenting a process, 234f

Segment number (s), 234

Self-monitoring and reporting

technologies (S.M.A.R.T.),

324

Semaphore, 193

Send message, 373

Sequential access, 265–267, 265f

Sequential file with current record

pointer, 265f

Serial connection, 504

Serial Line Interface Protocol

(SLIP), 457

Server computers, 484

Server message block (SMB), 345,

399, 461

Servers, 31, 32

Services, 11

Service security improvements, 419

Service shutdown ordering, 420

Service variability, 319

SETI@Home, 130, 137, 144

SETI project, 332

SHA-1, 378

Shared key, 375

Shared memory, 190, 192f

among processes, 248–249

systems, 190

Shared variable, 191f

Shell, 60

Shell command, 166

Shell interpreter, 11

Shielded twisted pair (STP) wiring,

352

Shift, 6

Shmid, 249

Shortest job next (SJN), 158

Shortest positioning time first

(SPTF), 316–317, 316f

Shortest remaining time first (SRTF),

158–159

Shortest runtime first (SRTF), 158

Shortest seek time first (SSTF), 316

Short message service (SMS),

474, 479

Short-term scheduler, 156

Signatures, 379

Silicon Graphics, 248, 418

Simple mail transfer protocol

(SMTP), 340–341, 344

Simple Network Management

Protocol (SNMP), 354–355,

441

Simple network management

protocol (SNMP), 354

Simultaneous multithreading

(SMT), 172

Single connections, 185, 186

Single instance storage (SIS), 434

Single-level directory, 259–260, 260f

Single process of memory

management, 211–216

Single-process OS, 47–63

Single routine, 194

524 Index

Single system call, 193

Single tasking, 92–93, 93f

Single UNIX Specification (SUS), 115

Single user, 30

Single-user multitasking/

multithreading OS, 89–110

historical overview of, 89–90

origin of, 90–91

Single-user multitasking OS, 67–85

Single-user single-tasking OS, 29

Single-user systems, 15

Skeleton, 398

Slab allocator, 451

Sleep mode, 71

Sliding window, 240

Small computer system interface

(SCSI), 118, 439

Small real-time OS (RTOS), 464

Small records, blocking of, 301–302

Small systems device families, 479t

Smalltalk, 476

S.M.A.R.T., 324

SMP load balancing, 450

SMP systems, 194–195

SNA, 184, 344, 456

Sniffer™, 355

Snooping, 195

Socket, 189, 456

Socket buffer (skbuff), 460

Soft deadlines, 32

Software, OS, 12f

Software Development Kit (SDK), 476

Software events, 495

Software tools, 132

Solaris, 33, 110, 175–176, 249

Solutions, real-world, 205–206

Sony, 69

Source code, 491

Source programs, 491

Source route bridging, 348

Space tracking, 431

SPAM email, 345

Spanning tree, 347

SPARC, 446

Sparse files, 434–435

Spatial locality, 500

“Spawning a child,” 165

Special forms, types of, 83–84

Special memory management,

249–251, 252f

Special-purpose registers, 492

Speed of light, 128

Speeds, 304–305, 305t

Spin-lock, 193

SPOOLING system, 157

Spyware, 362–363

Stack, 61

Stack sniffer, 95

Stack space, 166

Standard file systems, 452

Standard information, 430

Star topologies, 337f

Startup speed of XP, 441–442

Starvation, 157

Stateless, 366

States, 28, 154–156, 154f, 494

State transitions, 26

Static data, 59, 61

Static IP address, 343

Static random access memory

(SRAM), 497

Status-driven system, 36

Stderr (standard error), 82

Stdin (standard input), 82

Stdin/stdout function, 472

Stdout (standard output), 82

Stealth port scanners, 462

Storage area network (SAN), 129

Storage class, 439

Storage driver, 439

Storage hierarchy, 484, 497–500,

497f, 501f

Storage I/O devices, 502

Storage port, 439

Storage random access memory, 76

Storage units, 496–497

Storage voltility, 498

Streaming, 185, 187

Stream I/O, 472

Stream of data, 187

Strict priority mechanism, 160

Strip, 309

Striped disk array, 309–310

Stripe of mirrors, 312–313, 312f,

313f

Striping, 309

Strong passwords, 367

Stylus tracking, 73

Subfiles, 59

Subroutines, 61

Subsystems, 422

Suites, 341

Summary Information, 436

Sun Microsystems, 110, 291, 393, 454

SuperFetch, 420

Supervisor mode, 29, 490

Support models, threads, 171f

Suspended state, 155

Swap file, 243

Swap instruction, 193

Swap out, 23

Swapping, 215–216, 216f

Sweep workflows, 133

Switch, 347

Switcher, 97

“Switcher” memory layout, 97f

Switches/switching, 334, 336,

346–347

Switching devices, 505

Syllable, 38

Symbian™, 68, 251, 252f, 452, 476

Symbolic Optimizing Assembler

Program (SOAP), 211

Symbolic references, 262

Symbol table, 119

Symmetric algorithm, 375

Symmetric key encryption, 375, 375f

Symmetric multiprocessing (SMP),

125, 125f, 132–134, 133f

Sync application, 74

Synchronization, 190–197, 400–406

Synchronous attributes, 185,

187–188

Synchronous I/O, 187–188

SYN Flood, 363

Sysadmin, 121

Sysgen (system generation), 437

System 1, 94f

System 2, 96–97, 97f

System 3, 98

System 4, 98–100, 99f

System 5, 98, 100

System 6, 101

System 7, 101–105

System 8, 106–107

System 9, 107–109

System administrator, 7f, 8, 121

System bus, 491

System calls, 7, 36, 495

System clock, 493

 Index 525

System heap, 95–96

System idle task, 175

System managers, 7f

System partition, 94

System programmers, 7, 7f

Systems program, 21

System timing, 493

System view, 6, 8–10, 9f, 10f

Systemwide open file table, 122

System X, 107

T

Tables, 37

Tagged queuing, 321–322

TAJ, 38

Tanenbaum, Andrew, 115

Tape drives, 325

Tapes, 499

Task automation, 102

Tasklet, 120

Tasks, 26, 151, 176

TCP communication, 474

TCP header format, 339f

TCP/IP, 341–345, 404, 440

TCP/IP protocol suite, 334

TCP Wrapper (tcpd), 463

TDM circuits, 350–351

Telecommunications Industry

Association (TIA), 352

Telecommuting, 333

Telephony applications, 475, 475t

Teletype, 49

Telnet, 338, 344, 379, 461

Temporal locality, 500

Terminated state, 27

Tertiary storage, 499

Test and Set instruction, 192–193

THE OS, 204

Thin client, 388

Third-party service, 183, 386

32-bit clean, 101

Thompson, Ken, 114

Thrashing, 245–246

Thread control block (TCB), 166

“Thread of execution,” 166

Thread pool, 171

Thread priority relationships, 424f

Threads, 167f, 168f, 170–177, 170f,

171f, 174f, 391–392

Thread-safe, 172

3Com, 441

370 TFLOPS, 144

Three-layer model, 388–389, 389f

Three-state model, 154

Throughput, 132, 160

Ticket granting agencies, 135

Time division multiplexing

(TDM), 350

Time interrupt, 492

Time quantum, 23

Time sharing, 218

Time-sharing OS, 31

Time slice, 447

Timestamp, 400

TLB, 391

TLB miss, 229

Token passing bus, 337

Token Ring, 308, 346, 348, 457

Token ring, 300, 402, 404f

Top-half organization, 120

Top level domain (TLD), 343

Topologies, 335–338, 336–338f

Top View, 417

TORQUE, 145

Torvalds, Linus, 114, 117

Traceroute, 354

Tracert, 354

Track buffer, 323

Tracking cookies, 366

Tracks, 54, 302, 302–303

Traffic monitor, 379

Transaction, 405, 432

Transaction abort, 406

Transactional file system, 295

Transaction commit, 406

Transaction processing, 31, 295

Transaction start, 406

Transaction support, 432, 434

Transfer, 304–305, 305t

Transient, 185, 188

Transitions, 154–156, 154f

Translate, 210

Translation lookaside buffer (TLB),

172, 228, 228f

Transmission control protocol

(TCP), 341

Transparency, lack of, 387

Transparent bridge, 347

Transport layer, 334, 341–342

Transport layer security (TLS), 378

Traps, 495

Trash, 96

Tree directory structure, 260f

Tree structure, 260–261, 260f

Trojans, 361

True identifiers, 394

TrueType, 102

Trusted third party (TTP), 375

Tunneling, 396

Twisted pair, 352

Two disk drives, 306f

Two-factor authentication, 367

Two-level page table, 231, 231f

Two-phase commit, 406

U

UClinux, 446

UDF, 428

UltraSPARC®, 233

Unconditional jump operation, 489f

Unicast, 184, 186

Unicode Consortium, 106, 107, 435

Unicode support, 106–107

Unics. See UNIX™

Uniform resource locator (URL), 339

University of California San Diego, 39

University of Helsinki, 114

University of Wisconsin, 136, 137

UNIX™, 286–287, 460t

Unmarshalling, 396

Unqualified name, 263

Unreliable datagram, 341

Unshielded twisted pair

(UTP), 352

USB (Universal Serial Bus), 106,

119, 438, 446

Use bit, 242

User account control (UAC), 419

User applications, 74–75

User datagram protocol (UDP),

340–341, 404, 474

User interface (UI), 24, 388, 478

User interface I/O devices, 502

User-level thread, 169–170

User mode, 29, 490

User-mode driver framework

(UMDF), 419

User number, 56

User optimization vs. hardware

optimization, 41

526 Index

User OS environment, 421–423

User release, 116

Users of OS, 6–8, 7t

User view, 6, 8

User-visible registers, 493

Utilities, 11

Utility programs, 344

Utilization, 132

V

Valid bits, 230, 242f

Variable number of processes,

218–221, 219f

VAX system, 184, 362, 440

VBScript, 365

VCalendar, 474

VCard, 474

Vector, 400

V850, 446

Venter, J. Craig, 143

Vertical distribution, 389–390

Vi command, 264

Video, 109

Video attributes, 53

Video monitor output, 53–54

Vines, 345

Virtual file system (VFS), 291, 291f,

292f, 452–454, 453f

Virtualizing, 38

Virtual machines (VM), 38–40, 39f,

392–394, 392f, 393f

Virtual memory (VM), 101–103,

243, 425

Virtual organizations, 140

Virtual page table, 232

Viruses, 345

Virus scanners, 361

VisiCorp, 417

VisiOn, 417

Vista™, 432

Visual Basic, 476

Volatile memory, 498

Volume information, 430

Volume layout, 429f

Volume mount points, 433

Volume name, 430

Volume shadow copy, 432, 434

Volume version, 430

Volunteer computing, 136–138

clusters, 144

systems, 130

W

Waiting, 26

Waiting semaphores, 193

Wait routine, 193, 194

Wait state, 27, 155

Wall time, 131

Warm standby, 314

Wavelength division multiplexing

(WDM), 353

Web interfaces, 146–147

Webserv, 394

Web servers, 31, 484

Well-known port number, 339

Well-known sockets, 189

Wide area networks (WANs), 335,

350–351, 506

Wi-Fi, 353, 473

Window manager, 459

Windows, 4

API, 422

ME (Millennium Edition), 417

Mobile, 68

95, 417

98 SE (second edition), 417

NT 5.0, 418

Server 2003, 418

6.0, 418

3.x, 109, 421–422

3.0, 417

2000, 33, 373, 418

Win32, 250

XP, 250–251, 395, 418, 422

XP x64 Edition, 418

Windows NT™, 415–442

family architecture of, 422f

family history of, 416–421

Windows on Windows Virtual DOS

Machine (WOW VDM), 423

WINS server, 461

Win32, 417

Wireless access protocol

(WAP), 479

Wireless LANs, 308

Wireless markup language

(WML), 479

Wireless networking, 353

Wire speed, 338, 347

Wiring concentrator, 346

WordPerfect, 92

Words, 496

Worker thread, 392

Workflows, 130–132, 130f,

131f, 137

Working set, 240–242, 241t, 242f,

243f

Work time, 131

WorldScript, 102

World Wide Web (WWW), 68, 110,

398, 474

Worms, 362

Worst fit, 219

Wrap-up phase, 215

Write-back, 494

X

XADD instruction, 193

Xerox Palo Alto Research Center

(PARC), 90, 362, 417

Xerox Star, 90

X.500, 395

XFS, 295

XNS, 184

XPBS, 146

X-Terminal, 388

X-Windows, 417

X-Window (X11) system, 458–459

Y

Y2K bug, 41, 101

Z

Zilog Z-80, 50

Zombies, 363

Zone bit recording (ZBR), 303

Z/VM, 38

	Title
	Table of Contents
	Part 1 Operating Systems Overview and Background
	1 Getting Started
	1.1 Introduction
	1.2 What Are Operating Systems All about?
	1.3 User versus System View of an OS
	1.4 Some OS Terms, Basic Concepts, and Illustrations
	1.5 A Small Historical Diversion
	1.6 Summary

	2 Operating System Concepts, Components, and Architectures
	2.1 Introduction: What Does the OS Do?
	2.2 Resources Managed by the OS and Major OS Modules
	2.3 The Process Concept and OS Process Information
	2.4 Functional Classes of OSs
	2.5 Architectural Approaches to Building an OS
	2.6 Some OS Implementation Techniques and Issues
	2.7 Minimalist versus Maximalist Approaches to OS Functionality and Backward Compatibility
	2.8 Summary

	Part 2 Building Operating Systems Incrementally: A Breadth-Oriented Spiral Approach
	3 A Simple, Single-Process Operating System
	3.1 Introduction: Monitors and CP/M
	3.2 Characteristics of a Simple PC System
	3.3 Input/Output Management
	3.4 Disk Management and the File System
	3.5 Process and Memory Management
	3.6 Summary

	4 A Single-User Multitasking Operating System
	4.1 Introduction: A Simple Multitasking System
	4.2 The Palm OS Environment and System Layout
	4.3 Process Scheduling
	4.4 Memory Management
	4.5 File Support
	4.6 Basic Input and Output
	4.7 Display Management
	4.8 Event-Driven Programs
	4.9 Summary

	5 A Single-User Multitasking/Multithreading Operating System
	5.1 Introduction
	5.2 The Origin of the Macintosh Computer
	5.3 The Macintosh OS—System 1
	5.4 System 2
	5.5 System 3
	5.6 System 4
	5.7 System 5
	5.8 System 6
	5.9 System 7
	5.10 System 8
	5.11 System 9
	5.12 Mac OS X
	5.13 Summary

	6 A Multiple-User Operating System
	6.1 Introduction
	6.2 The Multiuser OS Environment
	6.3 Processes and Threads
	6.4 Summary

	7 Parallel and Distributed Computing, Clusters, and Grids
	7.1 Introduction
	7.2 Key Concepts
	7.3 Parallel and Distributed Processing
	7.4 Distributed System Architectures
	7.5 How Operating System Concepts Differ in SMPs, Clusters, and Grids
	7.6 Examples
	7.7 Summary

	Part 3 CPU and Memory Management
	8 Process Management: Concepts, Threads, and Scheduling
	8.1 Introduction to Processes
	8.2 Process Descriptor–Process Control Block
	8.3 Process States and Transitions
	8.4 Process Scheduling
	8.5 One Good Process Deserves Another
	8.6 Threads
	8.7 Case Studies
	8.7 Summary

	9 More Process Management: Interprocess Communication, Synchronization, and Deadlocks
	9.1 Why Have Cooperating Processes?
	9.2 Interprocess Communication
	9.3 Synchronization
	9.4 Deadlocks
	9.5 Summary

	10 Basic Memory Management
	10.1 Introduction: Why Manage Primary Memory?
	10.2 Binding Model: Steps in Development Cycle
	10.3 A Single Process
	10.4 Multiple Processes with a Fixed Number of Processes
	10.5 Multiple Processes with a Variable Number of Processes
	10.6 Summary

	11 Advanced Memory Management
	11.1 Why Do We Need Hardware Help?
	11.2 Paging
	11.3 Segmentation
	11.4 Segmentation with Paging
	11.5 Demand Paging
	11.6 Special Memory Management Topics
	11.7 Summary

	Part 4 A Depth-Oriented Presentation of OS Concepts: Files Systems and Input/Output
	12 File Systems—Basics
	12.1 Introduction
	12.2 Directories
	12.3 Access Methods
	12.4 Free Space Tracking
	12.5 File Allocation
	12.6 Summary

	13 File Systems—Examples and More Features
	13.1 Introduction
	13.2 Case Studies
	13.3 Mounting
	13.4 Multiple File Systems and Redirection
	13.5 Memory Mapped Files
	13.6 File System Utilities
	13.7 Log-Based File Systems
	13.8 Summary

	14 Disk Scheduling and Input/Output Management
	14.1 Introduction
	14.2 Device Characteristics
	14.3 I/O Technology
	14.4 Physical Disk Organization
	14.5 Logical Disk Organization
	14.6 RAID
	14.7 Disk Operation Scheduling
	14.8 DMA and Disk Hardware Features
	14.9 Summary

	Part 5 Networks, Distributed Systems, and Security
	15 Introduction to Computer Networks
	15.1 Why Do We Want to Network Computers?
	15.2 The Basics
	15.3 Application Layer Protocols
	15.4 TCP/IP
	15.5 The Data Link Layer
	15.6 WANs
	15.7 The Physical Layer
	15.8 Network Management
	15.9 Summary

	16 Protection and Security
	16.1 Introduction: Problems and Threats
	16.2 OS Protection
	16.3 Policies, Mechanisms, and Techniques
	16.4 Communication Security
	16.5 Security Administration
	16.6 Summary

	17 Distributed Operating Systems
	17.1 Introduction
	17.2 Distributed Application Models
	17.3 Abstractions: Processes, Threads, and Machines
	17.4 Naming
	17.5 Other Distributed Models
	17.6 Synchronization
	17.7 Fault Tolerance
	17.8 Summary

	Part 6 Case Studies
	18 Chapter Windows NT™ through Vista™
	18.1 Introduction: Windows NT Family History
	18.2 The User OS Environment
	18.3 Process Scheduling
	18.4 Memory Management
	18.5 File Support
	18.6 Basic Input and Output
	18.7 GUI Programming
	18.8 Networking
	18.9 Symmetric Multiprocessing
	18.10 Startup Speed of XP
	18.11 Summary

	19 Linux: A Case Study
	19.1 Introduction
	19.2 Process Scheduling
	19.3 Memory Management
	19.4 File Support
	19.5 Basic Input and Output
	19.6 GUI Programming
	19.7 Networking
	19.8 Security
	19.9 Symmetric Multiprocessing
	19.10 Other Linux Variants
	19.11 Summary

	20 Palm OS: A Class Case Study
	20.1 Overview
	20.2 The Multi-Process OS Environment
	20.3 Palm Process Scheduling
	20.4 Palm Memory Management
	20.5 File Support
	20.6 Input/Output Subsystems
	20.7 GUI Programming
	20.8 Network Programming
	20.9 Programming Environments
	20.10 Similar Systems and Current Developments
	20.11 Summary

	Appendix Overview of Computer System and Architecture Concepts A.1 Typical Computer System Components
	A.2 The Processor or Central Processing Unit
	A.3 The Memory Unit and Storage Hierarchies
	A.4 Input and Output
	A.5 The Network
	A.6 A More Detailed Picture
	A.7 Summary
	Index

