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  Preface 

  WHY WE WROTE YET ANOTHER OPERATING SYSTEMS BOOK 

  We have long felt that the traditional approach to teaching about Operating Systems 

(OSs) was not the best approach. The purpose of this book is to support a different 

approach to this task. When studying any complex domain of knowledge, the order 

in which one learns the hierarchy of principles, laws, ideas, and concepts can make 

the process easier or more diffi cult. The most common technique is to partition the 

subject into major topics and then study each one in great detail. For OSs, this has 

traditionally meant that after a brief introduction to some terms and an overview, a 

student studied isolated topics in depth—processes and process management, then 

memory management, then fi le systems, and so on. We can call this a depth-oriented 

approach or a vertical approach. After learning a great mass of unrelated details in 

these isolated topic areas, the student then examined case studies, examples of real 

OSs, and fi nally saw how the different topics fi t together to make a real OS. 

 We believe that a better model is that followed by children when learning a 

language: learn a few words, a little grammar, a little sentence structure, and then 

cycle (or spiral) through; more words, more grammar, more sentence structure. By 

continuing to spiral through the same sequence, the complexity of the language is 

mastered. We can call this a breadth-oriented or spiral approach. 

 We have taken this approach to the subject of OSs. The fi rst few chapters give 

some basic background and defi nitions. We then begin to describe a very simple 

OS in a simple system—early PCs—and evolve toward more complex systems with 

more features: fi rst limited background tasks (such as simultaneous printing), then 

multitasking, and so on. In each case we try to show how the increasing requirements 

caused each system to be designed the way it was. This is not specifi cally a his-

torical order of OS development. Rather, we choose a representative system at each 

complexity level in order to see how the different OS components interact with and 

infl uence one another. It is our belief that this approach will give the student a greater 

appreciation of how the various features of each level of OS were put together. 

 Part of the motivation for this approach has to do with why Computing Science 

students are told they must study OSs at all. It is highly unlikely that many of these 

students will work on the development of OSs. However, virtually every system that 

they do work on will run on top of an OS, though perhaps a very few will work on 

embedded systems with no OS. For the rest of them, the OS will stand between the 

applications and the hardware, and failure to thoroughly understand the nature of the 

OS will mean that these applications will be underperforming at best and hazardous 

at worst. We believe that our approach will lead students to a better understanding of 

the entire architecture of modern OSs than does the traditional approach.   



  THE ORGANIZATION OF THE BOOK 

  In Part 1 of the book we give some general background information. This infor-

mation will cover basic principles of OSs and show several different views of an 

OS. It will also include an overview of typical computer hardware that an OS 

controls. Another chapter addresses such basic concepts as processes, multipro-

gramming, time sharing, resource management, and different approaches to OS 

architecture. 

 Then in Part 2 of the book, we will cover fi ve types of operating systems in 

increasing order of complexity, our spiral approach, as follows:

    1. A simple single-process OS (CPM)  

   2. A more complex OS (Palm OS), which allows simple system multitasking  

   3. An OS with full multitasking for a single user (Apple Mac OS, pre-OS X)  

   4. An OS that supports multiple users (Linux)  

   5. A distributed OS (mostly Globus)    

 In each case we have selected an OS that is typical of the class on which to base 

the discussion so as to make it more concrete. This selection was made with an eye 

to practicality. We fi rst discuss simple systems in terms of process, memory, fi le, 

and I/O management, and then (slowly) move to more complex systems, gradu-

ally introducing such concepts as multitasking, time sharing, networking, security, 

and other issues. Occasionally we will also mention other well-known OSs that 

are examples of a class, such as MS-DOS in Chapter 3 and the Symbian OS in 

Chapter 4. 

 In Parts 3–5 of the book, we move to an in-depth approach of covering each OS 

topic in more detail: from processes to memory management to fi le systems. We also 

discuss many recent issues in operating systems: threading, object orientation, secu-

rity, and approaches to parallel and distributed systems. In these chapters we revisit 

the sample systems discussed in Part 2 and explain the mechanisms in more detail, 

especially for the modern OSs. 

 In Part 6 we look more closely at several OSs in what are typically called case 

studies. Now that we know more about the details, we look at some systems in more 

depth and see how some features were implemented. In two cases we are revisiting 

more closely OSs that were covered in Part 2. 

 An appendix covers basic computer hardware architecture for those institutions 

that do not require such a course as a prerequisite for an Operating Systems course. It 

can also be used as a reference for those who need to review a specifi c topic.   

  THE STYLE OF THE BOOK 

      We use a conversational style to avoid boring the students with excessive 

pedantry.  
    We avoid the use of excessive formalisms. A more formal presentation is pro-

vided where needed. This choice stems from our belief that most students will 

not develop OSs, but rather will use them to support applications.  
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    We use the normal, accepted terms but also discuss alternative terms when 

no accepted standard terminology exists or where other terms were used 

historically.  
    We discuss algorithmic solutions as opposed to listing actual code since stu-

dents at different schools will have been exposed to different languages.  
    For each OS that is treated separately, whether in the spiral section or in the case 

studies, we include some history of the industry at the time, and sometimes the 

key companies or individuals involved. This follows from our basic belief that a 

student can understand OSs better if they are placed in a meaningful context.  
    We cover modern OSs found in devices not conventionally regarded as com-

puters since the students use these devices every day and have an operational 

familiarity with them.  
    Frequent fi gures are incorporated as an aid to those who learn best visually 

rather than by reading sequences of words.  
    Each chapter ends with a set of questions that a student can use to assess the 

level of understanding of the material in the chapter.  
    Projects are outlined for many chapters, which can be used by the instructor to 

ground the students’ understanding in reality.      
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 We have been teaching OS classes for quite a few years using other materials. We 

have developed this text because we felt the need for a different methodology. We all 

have served on the faculty of the Department of Computer Science and Engineering 

at the University of Texas at Arlington (UTA).

    Ramez Elmasri  is a Professor at the University of Texas at Arlington. He received 

his BS in Electrical Engineering from Alexandria University, Egypt, in 1972, and 

his MS and PhD degrees in Computer Science at Stanford University in 1980. His 

current research interests are in sensor networks and RFID, mediators for bioinfor-

matics data, query personalization, and systems integration. He is the lead co-author 

of the textbook “Fundamentals of Database Systems,” now in its 5th Edition. His 

previous research covered various aspects of databases, conceptual modeling, and 

distributed systems.  

   A. Gil Carrick  was formerly a Lecturer at UTA and is now retired from teaching. 

He received his BS in Electronics Technology from the University of Houston in 

1970 and his MSCS in 2000 from the University of Texas at Arlington. He is a mem-

ber of Upsilon Pi Epsilon, the Computer Science Honor Society. His career spans the 

information technology industry: end-user organizations, hardware manufacturers, 

software publishers, third-party maintenance, universities, and R&D fi rms. He has 

written for professional journals and edited IT books, primarily in the networking 

fi eld. In his career he has used all the operating systems discussed in this text and 

many others besides.  

  David Levine has been teaching courses in operating systems, software engineer-

ing, networking, and computer architecture. His research interests include mobile 

computing, mobile objects, and distributed computing and he has presented the 

results of this research in recent publications and several international conferences. 

He enjoys discussing Operating Systems, talking about current research with stu-

dents and reading about new OS advances.     

     HOW TO USE THIS BOOK—FOR INSTRUCTORS 

  This text is intended to be used for a one-semester undergraduate course in Operating 

Systems, probably in the junior or senior year. The fi rst part of the book is designed 

to consolidate basic background information necessary for the  following chapters. 

Chapter 1 sets the discussion and gives some historical perspective. The instructor can 

  The Authors 



skim this chapter and decide what to include. The appendix is a brief look at fairly 

modern hardware architectures. If a course in hardware is not a  prerequisite for this 

course, then this appendix could be included. Chapter 2 defi nes some simple terms 

used in OSs and offers some more perspective on the larger topic of OS design. Again, 

an instructor can review this chapter and select different parts to include or exclude. 

 Part 2 begins the spiral approach. We believe this is a signifi cant portion of the 

book. Here the student is gradually introduced to a series of OSs with more complex 

goals. These increasingly more complex goals lead to increasingly more complex 

OSs. Only two of these chapters are not normal topics in OS texts—Chapter 4 on a 

single-user multitasking operating system and Chapter 7 on a distributed operating 

system. They could be left out at the instructor’s discretion, but more and more stu-

dents will be working in such environments as users and as programmers. 

 Part 3 begins the in-depth chapters. Each chapter is fairly independent of the 

others, though Chapters 12 and 13 are strongly related. Beginning with Chapter 14 

the individual chapters can probably be left out if the topic is the major subject of 

another course that the students will be required to take. 

 Notes about the bibliographies: The chapters in Part 3 all include a bibliography 

section. The reference papers that are cited are widely regarded as being seminal 

papers or good summaries. They may cover material that is not covered in the text. If 

an instructor or a student is looking for material to provide a better understanding of 

a given topic, then they are suggested reading.   

  HOW TO USE THIS BOOK—FOR STUDENTS 

  For students the most important thing about using this text is to understand how one 

learns best. There are many pathways to get information into the brain. The book 

itself directly addresses two of these pathways. There is obviously the text for those 

who learn best through reading the words and the illustrations for those who are 

more visually oriented. When you attend the lectures you will hear the instructor 

talk about the material. This is for those who learn best through hearing words. At 

the same time, the instructor will probably use visual aids such as the PowerPoint 

slides that are available for the text. Again, this is to the benefi t of those who learn 

best by reading the words and seeing the illustrations. Some students learn best from 

mechanical skills, so the process of outlining the material or making study notes 

works well for those students. 

 Also presented in the book at the end of each chapter are questions about the 

material. These questions are designed such that a student who has a reasonable 

grasp of the material should be able to answer the question. 

 As new information is presented to the brain it takes a certain amount of time 

to link with other information already there. But the brain gets much information 

during the day that is not signifi cant and therefore it does not retain it. Only when 

presented with the same or similar material again a short time later will the brain 

retain a signifi cant amount of the information. The more different mechanisms that 

are used and the more times the information is repeated, the stronger the retention 

of the material. So the best method is to use all these methods combined, focusing 
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on what works best for you. What we have found works well for most students is the 

following sequence:

     Print the slides to be covered in the next section, with several slides per page.  
    Read the assigned material in the text. Note questions on the slide printouts.  
    Come to class and listen to the instructor, amplifying any notes, especially things 

the instructor says that are not in the text. (Those points are favorite issues for 

the instructor and they tend to show up on exams.)  
    Ask questions about things that are unclear.  
    When it is time to review the material for an exam, go over the slides. If there 

are points that are unclear, go back to the text to fi ll them in. If any questions 

remain, then contact the instructor or teaching assistants.  
    The review questions can be studied at any time the student fi nds convenient.      

  AVAILABLE RESOURCES FOR INSTRUCTORS 

    The text is supported by a website with separate sections for instructors and students.  

    Supplements to the text will be made from time to time as the need presents 

itself.  
    A set of suggested projects will be available for instructors. Most of these proj-

ects will have been used by the authors. They should be suffi ciently rich and 

OS independent that they can be readily adapted to fi t any situation. They are 

not based on any specifi c package that the instructor, students, or assistants will 

have to master in order to work the labs.  
    PowerPoint slides are provided for the students to use, as described earlier. 

Instructors are encouraged to modify these presentations to fi t their needs. 

Acknowledgement of their source is requested.  
    Review question answers are provided for the instructors in order that they not 

be embarrassed by not knowing some arcane point the authors thought was 

important.  
    A current list of errata will be maintained on the website.     
    Reference to web resources are provided for many chapters, but the web is 

very volatile. The website for the book will contain an up-to-date set of web 

references.  

  ACKNOWLEDGMENTS 

  This text has actually been developing for longer than we would like to remember. 

The people at McGraw-Hill have been exceptionally patient with us. In particular, 

we would like to thank the following folks with McGraw-Hill: Melinda Bilecki, 

Kay Brimeyer, Brenda Rolwes, Kara Kudronowicz, Faye Schilling, and Raghu 

S rinivasan. We would also like to thank Alan Apt and Emily Lupash, who were our 

editors when we started working on the book. Finally, we also thank Erika Jordan 

and Laura Patchkofsky with Pine Tree Composition. 

 The Authors xiii



 The chapter on Windows Vista was reviewed by Dave Probert of Microsoft. He 

provided valuable feedback on some items we had only been able to speculate on 

and brought several problems to our attention. His participation was arranged by 

Arkady Retik, also with Microsoft Corporation. Two chapters were reviewed by our 

fellow faculty members at University of Texas, Arlington. These included Yonghe 

Liu who reviewed the chapter on networking and Matthew Wright who reviewed the 

chapter on protection and security. Another faculty member, Bahram Khalili, used 

drafts of the text in his OS class. Naturally any remaining problems are our respon-

sibility and not theirs. 

 We have used drafts of these materials in our teaching for several years and we 

wish to thank all our students for their feedback. In particular we wish to thank the 

following students: Zaher Naarane, Phil Renner, William Peacock, Wes Parish, Kyle 

D. Witt, David M. Connelly, and Scott Purdy.   

  REMAINING ERRORS 

  One diffi culty with working on a project with multiple authors is that with the best 

of intentions, one of the writers can alter a bit of text that he himself did not write, 

thinking that he is clearing up some minor point, but actually altering the meaning in 

some subtle but important way. Accordingly, you may fi nd minor errors in the text. 

Naturally these errors were not the fault of the original author, who doubtless wrote 

the original text correctly, but were introduced by another well-meaning author who 

was not as familiar with the material. 

 Still, such errors may be present, and we must deal with them. So, if you do 

fi nd errors, we would be very happy to know about them. We will publish any errata, 

fi x them in the next edition, determine who is to blame, and deal with the offending 

authors appropriately.      
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1

  In this part:

   Chapter 1: Getting Started   3

  Chapter 2:  Operating System Concepts, Components, 

and Architectures   19

    T
his part of the book contains two chapters. Chapter 1 gives a basic explanation 

about what an Operating System (or OS for short) is. It explains how the OS 

provides services to users and programmers. These services make it possible 

to utilize a computer without having to deal with the low-level, arcane details, but 

rather, being allowed to concentrate on the problem(s) to be solved. Such problems 

may be anything, including not only the things we normally consider computing 

activities, but also activities such as playing games, dynamically generating art, and 

monitoring the performance of an automobile engine. 

 Chapter 2 provides an initial high-level look at OS concepts, components, and 

architecture. General terms are introduced that a student will need to know in order to 

study the series of increasingly more complex OSs that are presented in Part 2. 

 Operating Systems Overview 

and Background 

 Part  Part 1 1 



2



3

    Chapter    Chapter 1 1 
 Getting Started 

     In this chapter: 

  1.1 Introduction  4

  1.2 What Are Operating Systems All About?  5

  1.3 User versus System View of an OS  6

  1.4 Some OS Terms, Basic Concepts, and Illustrations  10

  1.5 A Small Historical Diversion  15

  1.6 Summary   17

  O
perating systems are at the heart of every computer. The  Operating System

(or  OS  for short) provides services to users and programmers that make it 

possible to utilize a computer without having to deal with the low-level, dif-

ficult-to-use hardware commands. It provides relatively uniform interfaces to access 

the extremely wide variety of devices that a computer interacts with, from input/

output devices such as printers and digital cameras, to wired and wireless network 

components that allow computers to communicate. It allows users to create, manage, 

and organize different types of files. In addition, most modern OSs provide graphical 

user interfaces (GUIs) to allow a relatively easy-to-use interface for computer users. 

 In this opening chapter, we start in  Section 1.1  with a brief introduction to 

show how important an Operating System is and how they are used not only in 

computers but also in many types of electronic devices that we all use in our 

daily routines.  Section 1.2  is a more technical look at why even simple devices 

contain an Operating System. Then in  Section 1.3  we discuss the different views 

of what an Operating System does by looking at the Operating System from two 

perspectives: the user’s perspective and the system’s perspective. We also discuss 

the requirements that each type of user has for the Operating System.  Section 1.3  

next gives a few simple examples to illustrate some sequences of functions that 

an Operating System goes through to perform seemingly simple user requests. 

In  Section 1.4  we present some basic terminology and concepts, and give some 

figures to illustrate typical components for a simple Operating System. We give a 

brief historical perspective in  Section 1.5  and conclude with a chapter summary 

in  Section 1.6 .  



4 Part 1 Operating Systems Overview and Background

   1.1 INTRODUCTION 

  For many years, OSs were viewed by most people as uninteresting—except for 

OS programmers and computer “nerds.” Because of a number of high-profile cases, 

OSs have occasionally become front-page news in recent years. Suddenly, the OS 

is seen by some as controlling all computing. There are very strongly felt opinions 

about what constitutes good versus bad OSs. There is also quite a bit of disagree-

ment about what functionality should be provided by the OS. While many people 

(and some courts!) believe that one company dominates the OS market, others say 

that the OS is increasingly unimportant—the  Internet browser   is  the OS. In fact, 

there is a very wide variety of types of OSs, and OSs exist at some level on every 

conceivable computing device, including some that may surprise many people. 

 For example, handheld personal digital assistants ( PDA s) have very capable, 

complex, and flexible OSs. Most electronic devices that have some intelligence 

have complex, yet easy-to-use OSs and system software to control them. The OS 

that was once thought of as the arcane world of process management and memory 

management techniques is now occasionally a conversation topic in cafés, bars, 

and computer stores. Many people now seem to be experts—or at least have an 

opinion—on OSs. 

(Perhaps) Surprising places to find an OS:

Personal digital assistants

Cable TV controller boxes

Electronic games

Copiers

Fax machines

Remote controls

Cellular telephones

Automobile engines

Digital cameras

 While we also have our opinions, we try to get behind the hype—generated 

by marketing and salespeople as well as millions of opinionated users—in order 

to explain the real systems. We also throw in our own opinions when needed and 

explain why we hold these beliefs. We give many examples of currently used sys-

tems to demonstrate concepts and show what is good and bad about the various sys-

tems. We try to avoid the so-called religious issues, such as: Which is the better OS: 

 Windows  or  Mac-OS?  Or are  UNIX  and its variations such as  Linux  better than 

both? Instead, we point out how these systems came about and what they provide to 

users and programmers. 
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 Increasingly, certain parts of the OS—particularly those handling user and 

application program interaction—are visible to users and programmers and often 

may be critical in marketing a computer or electronic—or even mechanical—

device. Buyers are becoming very critical and have higher expectations of what the 

OS should provide them. More than ever before, the system must not only provide 

new features and be easier to use but it must also support those old features and 

applications that we are used to. Of course, as we add new devices—video devices 

and disks, high fidelity sound, and wireless networking, for example—we want the 

system to easily adapt to and handle those devices. In fact, a good OS architecture 

should even allow the connection of new devices that were not yet available and 

may not even have been thought of when the OS was created!   

  1.2 WHAT ARE OPERATING SYSTEMS ALL ABOUT? 

  In this section, we give a simple example—a simple handheld game system—to 

illustrate some of the basic functionalities that an OS should provide. 

 Think about a handheld electronic game system, one that is very cheap but has a 

small screen, a few buttons, and several games. Although this game system might not 

require an OS, it probably has one. The main reason is to consolidate the common 

functions needed by the various games installed on the game system. 

 The games typically have some common parts. For example, each game needs to 

get some input from the buttons, and to display something on the screen. While those 

actions sound easy, they do require some not-so-simple software programming. Get-

ting the input from a button—that sounds easy. Well, except that the user may push two 

buttons at once—what then? It is also likely that a cheap game does not use sophis-

ticated and expensive buttons, so there is electronic noise that may distort the signal 

coming in—how should the games deal with that? The easy solution is to handle each 

of these common issues in one, single place. For example, all button pushes can be read 

in, have any noise cleaned up, and so forth in a single software routine. Having a single 

 read-the-button  software routine has the advantage of providing a consistent user inter-

face—all games treat button input in the same way. It also allows the routine to occupy 

space in only one place in system memory instead of occupying space in each individ-

ual game. And where should that  read-the-button  software routine be placed? It should 

be in the OS—where every game that needs to read a button can call this routine. 

 The OS should also handle unexpected events. For example, a user may quit a 

game in the middle (when losing) and start another game. No reboot of the game sys-

tem should be necessary. The user’s need to switch from game to game (task to task) 

is natural and expected. In fact, users (5-year-olds) may push buttons at unexpected 

times and the screen should continue to be updated (refreshed) while the game is being 

played—even while waiting for a button to be pushed. This is called  asynchronicity,  

which can be defined informally as the occurrence of events at random or unexpected 

times—a very important feature in even simple systems like a handheld game. 

 Several important OS concepts are part of this game system: When a game is 

started, some part of its software may be loaded into memory, whereas other parts 
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may have been preloaded in ROM (read-only memory) or fixed memory  1  ; dynamic 

memory is reserved for use by the game and is initialized; timers may be set. All on 

a cheap (but fun) game! What more does one expect from an OS?

     1.3 USER VERSUS SYSTEM VIEW OF AN OS 

  You have probably heard the old adage; “There are two sides to every question.” 

(Maybe that should be “two  or more  sides.”) The idea is that trying to look at some 

question from different perspectives often helps our understanding. One of the impor-

tant methods to learning something new is to view it from different perspectives. For 

an OS, the two most important perspectives are the  user view  and the  system view.  

 The user view pertains to how users or programs—programs are the main users 

of the OS—utilize the OS; for example, how a program reads a keystroke. The sys-

tem view pertains to how the OS software actually does the required action—how it 

gets keystrokes, separates out special ones like  shift,  and makes them available to the 

user or program. We present OS facilities, concepts, and techniques from both user 

and system points of view throughout the book. First, we elaborate on the different 

types of users and their views of the OS.  

   1.3.1 Users’ views and types of users 

 The term  user  is often too vague—especially for persons whose role in computing 

is so critical—so it is important to first describe the various types of users. Trying to 

pin down the role of a user of an OS is not simple. There are various types of users. 

We primarily want to distinguish among end users, application programmers, system 

programmers and system administrators.  Table 1.1  lists some of the most important 

concerns about what the OS should provide for each of the three main types of users. 

Of course, there is some overlap among these concerns. We are merely trying to 

show how those viewpoints sometimes diverge. Further complicating the issue is 

that sometimes users fit into several of the roles or even all of them. Such users often 

find themselves having conflicting needs. 

  Application Users (or End Users) —this group includes all of us, people who 

use (or run) application or system programs. When we use a word processor, a web 

browser, an email system, or a multimedia viewer, we are a user of that application. 

As users, we expect a quick, reliable response (to keystrokes or mouse movement), 

a consistent user view (each type of command—such as scrolling or quitting an 

application—should be done in a similar manner), and other features that depend on 

each specific type of OS. Other needs are listed in  Table 1.1 . In general, this group of 

users is most often called simply  users,  or sometimes  end users.  

  Application Programmers —this group includes the people who write appli-

cation programs, such as word processors or email systems. Programmers are very 

demanding of the OS: “How do I read and write to a file?”, “How do I get a user’s 

keystroke?”, and “How do I display this box?” are typical questions programmers 

1 We define these terms in Chapters 2 and 3.  
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ask when learning to use a new OS. The facilities that the OS provide are the pro-

grammers’ view of the OS. Sometimes they are called system calls or an API (appli-

cation program interface). They may also appear as language library functions or 

sometimes just as packages of classes. Programmers also want the software they 

develop to be easily ported to other platforms. 

  Systems Programmers —these are the people who write software—either pro-

grams or components—that is closely tied to the OS. A utility that shows the status 

of the computer’s network connection or an installable driver for a piece of hardware 

are examples of systems programs. Systems programmers need to have a detailed 

understanding of the internal functioning of the OS. In many cases, systems pro-

grams need to access special OS data structures or privileged system calls. While OS 

designers sometimes are concerned with portability to other platforms, often they 

are not—they are charged with developing a specific set of functions for a specific 

platform and portability is not a concern. 

TABLE 1.1 Concerns of Various User Classes

End Users Easy to use and learn

Adapts to user’s style of doing things

Lively response to input

Provides lots of visual cues

Free of unpleasant surprises (e.g., deleting a file without warning)

Uniform ways to do the same thing (e.g., moving an icon or scrolling down a 

window—in different places)

Alternative ways to do one thing (e.g., some users like to use the mouse, 

others like to use the keyboard)

Application Programmers Easy to access low-level OS calls by programs (e.g., reading keystrokes, 

drawing to the screen, getting mouse position)

Provide a consistent programmer view of the system

Easy to use higher-level OS facilities and services (e.g., creating new 

windows, or reading from and writing to the network)

Portability to other platforms

Systems Programmers Easy to create correct programs

Easy to debug incorrect programs

Easy to maintain programs

Easy to expand existing programs

System Managers and 

Administrators

Easy addition or removal of devices such as disks, scanners, multimedia 

accessories, and network connections

Provide OS security services to protect the users, system, and data files

Easy to upgrade to new OS versions

Easy to create and manage user accounts

Average response is good and predictable

System is affordable
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  System Administrators —this group includes the people who manage computer 

facilities, and hence are responsible for installing and upgrading the OS, as well as 

other systems programs and utilities. They are also responsible for creating and man-

aging user accounts, and for protecting the system. They need to have a detailed 

understanding of how the OS is installed and upgraded, and how it interacts with 

other programs and utilities. They must also understand the security and authoriza-

tion features of the OS in order to protect their system and users effectively.  

  1.3.2 System view 

 The system view refers to  how the OS actually provides services.  In other words, it 

refers to the internal workings of the OS. This is a less common view. Often only a 

few people, the OS designers and implementers, understand or care about the inter-

nal workings of an OS. Indeed this information is often considered secret by com-

panies that produce and sell OSs commercially. Sometimes the overall workings of 

major parts of the system—management of files, running of programs, or handling 

of memory—may be described to help programmers understand the use of those 

subsystems. In some cases, the whole source code for an OS is available. Such sys-

tems are known as  open source  systems.  2  

  The majority of this book is concerned with the  how —how does the system run 

a program, create a file, or display a graphic. To understand the actual “how”—the 

internal details—we describe algorithms and competing methods for implement-

ing OS functions. We now illustrate the system view (or views) with two examples: 

tracking mouse and cursor movement, and managing file operations. Although these 

examples may seem a bit complex, they serve to illustrate how the OS is involved in 

practically all actions that are performed by a computer user.  

  1.3.3 An example: moving a mouse (and mouse cursor) 

 While the movement of a mouse pointer (or cursor) on a screen by moving the 

mouse (or some other  pointing device  such as a pad or trackball) seems straightfor-

ward, it illustrates the many views of an OS.  Figure 1.1  illustrates this process. When 

the pointing device is moved, it generates a hardware event called an  interrupt,  

which the OS handles. The OS notes the movements of the mouse in terms of some 

hardware-specific units—that is, rather than millimeters or inches the readings are in 

number of pulses generated. This is the  low-level system view.  The actual software 

reading the mouse movements is part of the OS, and is called a  mouse device driver.  

This device driver reads the low-level mouse movement information and another 

part of the OS interprets it so that it can be converted into a  higher-level system 

view,  such as screen coordinates reflecting the mouse movements. 

   On the “other side” or view is the question, What does the user see? The  user’s 

view  is that the cursor will smoothly move on the screen and that as the mouse moves 

greater distances faster, the screen movement will appear faster too. In between these 

2 The Linux OS is a well-known example of an open source operating system.  
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views is the  application programmers’ view,  How do I get the mouse movement 

information in order to use it and display it in my application? Another issue is how 

this information on mouse movements is presented to the application programmer. 

This is the higher-level system view mentioned earlier. 

 And to complete these views a bit let us return to the system’s view, Which 

application gets this mouse movement if there are multiple open windows? The 

mouse movements may need to be queued up if there are multiple movements 

before the application retrieves them. The movements may even be lost if the OS 

is busy doing other things—for example, loading a Web page through a network 

connection—and cannot receive the device driver’s input in a timely manner.  

  1.3.4 Another (bigger) example: Files 

 Sometimes the most critical  end user’s view  of an OS is the file system—in particu-

lar, file names. Can file names contain spaces? How long can they be? Are upper- 

and lowercase letters allowed? Are they treated as different or the same characters? 

How about non-English characters or punctuation? An OS may even be called good 

or bad simply because long file names are not used or the difference between upper- 

and lowercase characters is not distinguished. 

 In the  application programmer’s view,  the file system is a frequently used, 

critical part of the system. It provides commands for creating a new file, using an 

existing file, reading or appending data to a file, and other file operations. There 

may even be several different types of files provided by the system. The  system 

Application 
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Interrupt
Routines

Memory

Mouse
Controller

Video
Controller

Bus

Cursor
motion

Mouse
motion

  FIGURE 1.1   
  The cursor tracking 

mouse motion.  
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view  of the file system is so large it is usually divided into subparts: file naming and 

name manipulation (directory services), file services such as locating and mapping 

a file name to its data (file allocation and storage), trying to keep parts of open files 

in main memory to speed up access to its data (file buffering and caching), and the 

actual management of the storage devices (disk scheduling). 

 For example, suppose that a user types the name of a file to be copied from a CD 

to a hard disk. The program may first need to see whether that file exists on the CD, 

and if it would overwrite a file with that name on the hard disk. The OS then needs to 

create an entry for the file in the hard disk directory, find space on the hard disk for 

storing the data, and find and get the data from the CD, which has been recorded in 

pieces (sectors) that will be copied. And all this should be done in a few seconds or 

even a fraction of a second! See  Table 1.2 . 

     1.4 SOME OS TERMS, BASIC CONCEPTS, AND ILLUSTRATIONS 

  We now list and define some important OS concepts and terms. Then we give some 

diagrams to illustrate these concepts.  

   1.4.1 Basic terminology 

  Operating System  (or just  System ). Although we can give different definitions 

based on the different views of an OS, the following informal definition is a good 

starting point: The OS is a collection of one or more software modules that manages 

and controls the resources of a computer or other computing or electronic device, 

and gives users and programs an interface to utilize these resources. The managed 

resources include memory, processor, files, input or output devices, and so on. 

  Device.  A device is a piece of hardware connected to the main computer system 

hardware. Hard disks, DVDs, and video monitors are typical devices managed by 

an OS. Many devices have a special electronic (hardware) interface, called a  device 

controller,  which helps connect a device or a group of similar devices to a computer 

TABLE 1.2 The Steps in Copying a File from a CD to a Hard Disk

Check for file on CD

Check for file on hard disk—confirm overwrite

Create file name in hard disk directory

Find space for file on hard disk

Read data sectors from CD

Write data sectors to hard disk

Update hard disk directory

Update hard drive space information

Do all this in seconds (or less!)
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system. Examples include hard disk controllers and video monitor controllers. There 

are many types of hard disk controllers that usually follow industry standards such 

as SCSI, SATA, and other common but cryptic acronyms. Device controllers are the 

hardware glue that connects devices to the main computer system hardware, usually 

through a  bus.  

  Device driver.  A device driver is a software routine that is part of the OS, and is used 

to communicate with and control a device through its device controller. 

  Kernel.  This term usually refers to that part of the OS that implements basic func-

tionality and is always present in memory. In some cases the entire OS is created as 

one monolithic entity and this entire unit is called the kernel. 

  Service.  Services are functions that the OS kernel provides to users, mostly through 

APIs via OS calls. These services can be conveniently grouped into categories based 

on their functionality, for example, file manipulation services (create, read, copy), 

memory allocation services (get, free), or miscellaneous services (get system time). 

The key to a programmer’s understanding a system is to understand the OS services 

it provides. 

  Utility.  These are programs that are not part of the OS core (or kernel), but work 

closely with the kernel to provide ease of use or access to system information. A 

 shell  or  command interpreter  is an example of a utility. The shell utility provides 

a user interface to many system services. For example, user requests such as listing 

file names in a directory, running a program, or exiting (logging out), may all be 

handled by the shell. The shell may invoke other utilities to actually do the work; for 

example, directory file listing is sometimes a utility program itself.  

  1.4.2 How about some pictures? 

  Figure 1.2  is a simplified view of a small personal computer showing some basic 

devices connected to the computer memory and CPU (processor). The OS program 

(or kernel) will include various device drivers that handle the peripherals (devices) of 

the system under CPU control. For example, part of the contents of memory may be 

transferred to the video controller to be displayed on the monitor, or the contents of a 

part of the disk (a sector) may be transferred to the disk controller and eventually to 

memory (for a disk read operation). 

  Figure 1.3  is a simplistic view of part of an OS. The OS controls (or manages) 

the system resources: it controls the disks, keyboards, video monitor, and other 

devices. It controls allocation of memory and use of the CPU by deciding which pro-

gram gets to run. It provides services to the shell and other programs through the use 

of system calls. It also provides an abstraction of the hardware by hiding complex 

details of hardware devices from programs. 

  Figure 1.3 , a common one used to illustrate OSs, is a logical view, not a physi-

cal one. For example, the OS kernel physically resides inside the memory unit and 

it is running (executing) on the CPU. Thus, the arrows between the kernel—which 

is software—and the devices—which are hardware—represent a logical control, not 

physical. 
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  Figure 1.4  represents a layered view of the OS, where the outermost circle rep-

resents the utilities/applications layer that accesses the OS kernel layer, which in turn 

manages access to the hardware layer. 

   1.4.3 Closer to reality: A personal computer OS 

  Figure 1.5  shows more detail of a simple OS for a personal computer or PC. The OS 

has two additional components that were not shown in  Figure 1.3 :  device drivers  
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and a  BIOS  ( Basic Input/Output System ). The BIOS abstracts the hardware—that 

is, the BIOS manages common devices, such as keyboards, basic video, and the sys-

tem clock. This allows the main or higher-level part of the OS to deal with all devices 

of the same type—for example, all keyboards—in the same way. Thus, the OS kernel 

does not change whether a keyboard has 88 keys, 112 keys, or some other number, 

or even in cases where keys may not appear where they might on different keyboards 

because of different language characters or accent keys. Device drivers also provide 

a similar abstraction to similar devices. For example, a DVD device driver can be 

supplied by a device manufacturer to provide an abstract or common view of the 

DVD device to the OS, so that the OS does not have to vary with every idiosyncrasy 

of DVD drives, regardless of the manufacturer. 

 The next section elaborates further on why it is important to provide abstraction 

layers when designing an OS.  

Hardware

OS Kernel

Applications+
Utilities+Shell

FIGURE 1.4 

A layered view 
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  1.4.4 Why the abstraction layers? 

 Good question. Early in the days of personal computers, computer hobbyists had 

fun assembling and building the hardware and getting simple programs to work, 

usually written in assembly language or machine language. This was a good learn-

ing tool for some, but programming was very tedious. But people wanted to enjoy 

the experience of writing more interesting and therefore larger and more complex 

programs. So better tools were needed. These tools include easy-to-use editors and 

compilers or interpreters for high-level languages. For end users, the desire was 

to use the computer as a business or productivity tool. These users needed word 

processing, spreadsheets, and communication software. Certainly there were many 

very dissimilar computer hardware systems being built. But there were also a num-

ber of similar, but not identical, computers, built by many manufacturers. These 

systems might either have the same CPU from the same CPU manufacturer, or use 

a compatible CPU that had the same instruction set. However, they may have video 

devices that were quite different. For example, one system might have a terminal-

like device attached to a serial port, whereas another might have a built-in video 

controller with many capabilities for advanced graphics. Keyboards would typically 

differ in function keys or “arrow” or cursor movement keys, with other keys being 

added or missing. 

 In order for programmers to be able to create programs that would run on these 

different systems with minor or no changes required to the program when moving it 

to a different system, the OS provided the same interface to the hardware for all the 

different devices supported by that OS. For instance, a program could read a key-

stroke from a keyboard regardless of what type of keyboard it was by a system call 

to read a key. The OS would take care of translating the keys which were in different 

places on different keyboards or which were coded differently. 

 To avoid the complexity and cost of having different versions of the OS for dif-

ferent keyboards, different video monitors, different disks, and so forth, the OS was 

split into a part that was adapted to the different hardware devices (the BIOS and 

device drivers) and a part that remained the same for all hardware (shown as the ker-

nel in  Figure 1.5 ). This technique of dividing complicated work into several  layers,  

or  levels,  is an established software technique used in large and complex software 

systems including OSs. Thus, adapting an OS to a new compatible computer system 

with different devices involved changing (or writing) a BIOS but using the same 

module for the rest of the kernel and the same programs and utilities. This was a very 

attractive idea for everyone—users, manufacturers, and OS writers. 

 A problem arose when a computer peripheral manufacturer (e.g., a video card 

manufacturer) designed a new device and wanted to sell it to users so they could 

upgrade their computer to newer hardware designs. Often the existing BIOS in 

the computer was installed in ROM (read only memory) and would be difficult 

and expensive to replace. The solution to this problem was the creation of a modi-

fiable BIOS by allowing device drivers to be loadable at the time the OS was 

loaded into memory. Having BIOS code that could be replaced when the system 

was booted allows adding new features to the computer or replacing features in 

the BIOS with new software and perhaps supporting new functions on existing 

hardware.    
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  1.5 A SMALL HISTORICAL DIVERSION 

  We close this chapter with a historical perspective on how OSs were developed, and 

the different views about what type of functionality should be included in an OS. We 

give a more detailed historical timeline of OS development at the end of Chapter 3, 

after we have introduced some additional concepts.  

   1.5.1 Origins of operating systems 

 Before personal computers there were of course many larger computers. Early on 

these machines were very large and very expensive, but by modern standards primi-

tive, and there were few programmers. Programs were limited in their capabilities 

because main memory was quite small, the CPU processors were very slow, and only 

a few simple input and output devices existed. A typical early computer system may 

have had a few thousand  words   3   of main memory, a processor that executed several 

thousand instructions per second, and a Teletype  4   device for input/output. The lim-

ited capabilities of these early computers required very careful and well-thought-out 

programs which were mostly written in the basic machine code of the computer, 

machine language or assembly language.

  These programs were amazing in that in a few hundred or thousand machine 

instructions they accomplished a tremendous amount of work. But they all faced 

similar needs: How can a program print some output? How can a program get loaded 

into memory to begin execution? These needs—the need to load programs into 

memory, to run a program, to get input and produce output—were the impetus for 

creating early OSs. At those early times the few programmers on a system knew each 

other and would share routines (program code) that had been debugged to simplify 

the job of programming. These shared routines (e.g., “print the value in register A on 

the Teletype”) would eventually be combined into a  library  that could be combined 

(linked) with an application program to form a complete running program. 

 These early computers were  single-user  systems. That is to say that only one 

user—and one program—could run at any one time. Typically programmers would 

reserve the use of the computer in small blocks of time—perhaps increments of 

10–15 minutes. A programmer would use this time to run or debug a program. 

Because computers were expensive and computer time was very valuable, often big-

ger blocks of time were available only in the middle of the night or early in the morn-

ing when things were quieter, few managers were around, and one could get much 

more done than in the daytime. This tradition, started in the early days of computing, 

is one of the few that has lasted until today! 

 The programs, once written and assembled, were linked or bound with utility 

routines for input, output, mathematical functions,  5   printout formatting, and other 

3 A  word  was typically six characters, but differed from system to system.  
4 A  Teletype  is an electromechanical printer and keyboard, built for telegraphy, that could print or type at 
a speed of a dozen or so characters per second.  
5 Early computer hardware often did not have instructions for complex mathematical and even arithmetic 
operations—for example, long division—so these operations were implemented in software utility routines.  
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common tasks, into an executable program ready to be loaded into memory and run. 

The program might be stored on punched paper tape or punched cards. The computer 

hardware would know how to start reading from the input device, but it would only 

load the first card or the first block of the tape. So that block had to include a small 

routine that would be able to load the rest of the application into memory. This short 

routine is called a  loader.  The loader would in turn read the programmer’s execut-

able program and put it and the needed utility routines into memory at a specified 

location, usually either the first memory address or some special fixed location. Then 

it would transfer execution—by a branch or “subroutine” call—to the program it 

had loaded. The loadable program tape or card deck might look as illustrated in 

 Figure 1.6 .  6   The END delimiter tells that loader that there are no more routines to be 

loaded since there might be data records following the routines.

  As programmers had time to develop more utility routines, the loader grew more 

sophisticated. Loaders were soon able to load programs that had been translated 

(compiled) from higher-level programming languages. As the size of loaders, util-

ity routines, and users’ programs grew, the card decks or paper tapes became very 

large (and it became unfortunately common to drop a card deck or tear a paper tape). 

These loaders and utility routines would become the beginnings of early OSs, which 

were then often called  monitors.   

  1.5.2 What should an Operating System do (or what should 

it support)? 

 From the early days of computing until today there has been a fierce debate—

ranging from polite discussion to a political or almost religious argument—about 

what an OS should do. The two extreme views of this debate could be called the 

maximalist view and the minimalist view. The maximalist view argues that the OS 

should include as much functionality as possible, whereas the minimalist view is that 

only the most basic functionality should be part of the OS. From the early systems, 

the question started: “Should all the routines for input and output be included in my 

program? I don’t even read from the card reader.” Including too many routines—any 

that are not necessary—makes the memory available for my program smaller, and 

it is too small to begin with. How can one get just what one needs? Mathematical 

routines such as programs for performing floating-point arithmetic could be done 

once in the OS rather than separately included in each user’s program. But then 

every program incurred the overhead of the extra memory occupied by these routines 

in the OS, even programs like accounting applications that did not use floating point 

arithmetic. 

6  This type of loader is often known as a  bootstrap loader.   
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 In more recent times the debate concerning what to include in an OS continues. 

For example, a user-friendly OS interface is now commonly considered to have 

a pointing device—such as a mouse, trackball, or pad—and some type of screen 

windowing with pull-down menus. Whether that interface should be a part of the 

OS—thus giving all applications a similar “look and feel,” or part of the shell—to 

allow each user to decide the particular look they want is one of the current issues of 

the debate about what the OS should include. 

 To be fair, like many hotly contested issues, both maximalist and minimal-

ist sides have a point. The historical trends are not clear. Newer OSs have been in 

some cases smaller, simpler, and more configurable and in other cases exactly the 

opposite—larger, more functional, and more constraining. This issue of what func-

tionality should go where (in the OS kernel or not) has created different design 

possibilities for OSs, as we discuss further in Chapter 2.     

1.6    SUMMARY 

 In this chapter, we first introduced some of the 

basic functionality of operating systems. We gave 

a few simple examples to illustrate why OSs are 

so important. Then we discussed the different 

views of what an OS does by looking at the OS 

from two perspectives: the user’s perspective and 

the system’s perspective. We then presented some 

basic terminology and concepts, and provided some 

figures to illustrate typical components of simple 

OSs. Next we began to look at a few architectures 

that are commonly used to actually create OSs and 

discussed the very idea of abstraction that is so 

fundamental to the successful design of OSs. We 

concluded with a brief historical perspective on the 

origins of OSs. 

 The next chapter gives an overview of the major 

components of an OS and discusses the architecture 

alternatives in more detail.  

  REVIEW QUESTIONS 

    1.1 Give a one-sentence definition of an OS.  

   1.2 Since most of us are not going to be writing an OS, 

why do we need to know anything about them?  

   1.3 Give three reasons why a simple device such as a 

handheld electronic game probably contains an OS.  

   1.4 What is the primary difference between a user 

view of an OS and a system view?  

   1.5 What are the four different classes of users that 

were discussed, and what aspects of an OS are 

they mostly interested in?  

   1.6 The chapter discussed how the different users are 

supported from the system view. Two examples 

were presented, moving a mouse and file systems. 

Consider another aspect of an OS and discuss how 

the system view works to support the three differ-

ent classes of users.  

   1.7 Should OSs be proprietary so that the manufactur-

ers will be able to make enough profit to continue 

their development or should the internals and spec-

ifications of OSs be open for all users to know?  *7  

     1.8 With respect to the study of OSs, how is a control-

ler best defined?  

   1.9 What is the general principle of abstraction?  

   1.10 What are some of the reasons why we want 

abstraction in an OS?  

   1.11 Distinguish between an OS and a kernel.  

   1.12 Describe briefly the origins of OSs on the early 

large mainframe systems.  

   1.13 Should the characteristics of a windowing inter-

face—the factors that determine its look and 

feel—be a part of the OS kernel or part of the 

command shell?                  

* Note to instructors: Don’t use this question as part of the class 
unless you have nothing else to talk about for the day.
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  I
n this chapter, we discuss in general what the operating system does, and give 

an overview of OS concepts and components so that a student has some overall 

perspective about OSs. We also discuss some common techniques employed in 

nearly all OSs. 

 To gain some understanding of how the OS is involved in practically all system 

operations, we start in  Section 2.1  with a simple user scenario and describe some 

of the actions within the scenario that are undertaken by the OS.   In  Section 2.2  we 

give an overview of the main types of system resources that the OS manages. These 

resources include the processor (CPU), main memory, I/O devices, and files. We 

then give an overview of the major OS modules, and the services that each module 

provides. These include the process management and CPU scheduling module, the 

memory management module, the file system module, and the I/O management 

and disk scheduling module. These may or may not be implemented as separate 

modules in any particular OS, but looking at each of these separately makes it 

easier to explain OS concepts. 
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 Then in  Section 2.3  we define the concept of a process, which is central to what 

the OS does, and describe the states of a process and some of the information that 

the OS maintains about each process. A process (sometimes called job or task)  1   is 

basically an executing program, and the OS manages system resources on behalf of 

the processes. In  Section 2.4  we discuss the characteristics of different types of OSs, 

from systems that can run or execute a single process at a time, to those that manage 

concurrently executing processes, to time sharing and distributed systems. 

 In  Section 2.5  we present some of the different architectural approaches that 

have been taken for OS construction. These include monolithic OS, microkernels, 

and layered architectures. We then describe some implementation techniques that 

are used repeatedly by various OS modules in  Section 2.6 . These include the queues 

that are maintained by multitasking OSs to keep track of the jobs that are waiting 

to acquire resources or to have certain services performed. For example, processes 

could be waiting for disk I/O or CPU time or printing services. We also describe 

interrupts and how they are handled in some detail, object-oriented OS design, and 

virtual machines.  Section 2.7  gives a philosophical discussion concerning what func-

tionality should be part of an OS. Finally, in  Section 2.8  we summarize this chapter.  

   2.1 INTRODUCTION: WHAT DOES THE OS DO? 

  In this section, we go over a small example scenario, in order to see how the OS is 

involved in nearly every aspect of computing. Consider the following simple user 

scenario: 

 A user wants to type a small note to himself.  2   Coming into work this morning he 

heard a radio advertisement that his favorite music group is coming to town, and he 

wants to have a reminder to buy tickets and invite some friends. So he starts a sched-

uling program (or possibly a text editor or a word processing program), types in his 

reminder, saves the document, and exits. The user could have used a PDA (personal 

digital assistant), a Windows-based system (e.g., Mac, MS Windows or Linux with a 

GUI-based text editor), or simply a text-based command shell such as UNIX. Let’s 

assume he is using a GUI-based text editor to write a separate note and save it as a 

file. Regardless of the type of system used, this scenario caused the OS to create, 

manage, and terminate software components to accomplish the work. When the user 

started the editor or some other program he created a  process  (also called  task  or 

 job ).  3   A process is basically a program in  execution.  A process may be waiting to 

run, currently running, waiting for something to happen, or finishing. Some of the 

events that a process may be waiting for include a keystroke from the user, or some 

data to be read from a disk drive or to be supplied by another program. 

 Before a process can be started, the executable program file (binary) that will be 

run must be brought into main memory. This is usually loaded from a disk or some 

   1  The terms  job  and  task  are used to refer to the same concepts in some of the literature, and to different 
concepts in other literature. We discuss this as needed in the footnotes.  

   2  For grammatical simplicity, this text will assume the user is a male.  

   3  Starting a program is sometimes called instantiating, executing, loading, or running the program.  
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electronic memory such as a flash drive. Several major OS activities are needed to 

accomplish this. First, a portion of main memory is needed to hold the program’s 

executable code. Additional memory is needed for the program’s data, variables, and 

temporary storage. In our example, the data would be the entry that the user is creat-

ing in the memo file. These activities to allocate memory are part of the  memory 

management  that the OS must do. Often several programs may be in memory at the 

same time. The OS memory manager module controls which processes are placed 

into memory, where they are placed, and how much memory each is given.  Process 

management —deciding which process gets to run, for how long, and perhaps at 

what priority (or level of importance)—is another key management activity of the 

OS, usually handled in part by the OS CPU scheduler. 

 Once the editor process is running, it needs to accept some keystrokes and 

display what has been typed on the screen. Even if the device is a PDA with no 

keyboard, characters are input and accepted by the OS in some manner. Acquiring 

keystrokes or characters and displaying those characters on the screen are done in a 

series of steps through the  I/O and device management  component of the OS. 

 When our user hits a key, he enters a character that must be read by the sys-

tem. The device—in this case a keyboard—inputs the information about the raw key 

action. This information—the row and column of the key’s position on the keyboard 

and whether it was pressed or released—is stored in a temporary buffer. In a PDA 

or PC, there may be a special keyboard controller chip that saves the key action 

information and then sends an interrupt to the processor. The processor may have its 

own keyboard device controller in addition to the controller chip on the keyboard. 

The interrupt causes the CPU to stop the process that is running. This may be done 

immediately if the CPU is doing lower priority work, or it may be done later if the 

CPU had been doing higher priority work. Then an interrupt service routine is started 

by the OS to handle the keyboard action. The interrupt service routine is a part of the 

interrupt handling and device control in the OS. This processing is repeated for each 

character typed. The character must be sent to the editor process and displayed on 

the screen—another action that goes through the OS. In this case, an output opera-

tion to the video monitor is performed. 

 When our user finishes typing his note, he saves his note as a file. This may involve 

moving a pointing device such as a mouse to point to the file menu on the screen. The 

mouse movement and clicking are handled first by a device controller—which tracks 

the mouse coordinates and sends them to the OS. The mouse tracking icon (e.g., an 

arrow) must be moved and displayed on the monitor display screen—another output 

to the screen. When the mouse button is clicked, the controller sends that informa-

tion to the OS, which forwards the coordinates where the clicking occurred to the 

windowing system that is managing the user interface. The windowing system will 

have information concerning which window is currently active and the positions of 

various buttons and other icons within that window. Using this information, it will 

match the coordinates of the cursor when the user clicked the mouse button to the 

particular screen button icon (or symbol) that was “clicked.” The windowing system 

that handles user interaction is usually quite complex. It is considered by some to be 

a  systems program,  separate from the OS, and by others to be an integral part of the 

OS (see  Section 2.7  for a discussion on what is and is not part of the OS). 
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 Continuing with our scenario, our user may now choose a directory called “personal 

notes” within which he wants to store his file. This brings into play the  file management  

component of the OS. When the user selects the directory (e.g., by double-clicking on a 

folder icon), this causes the OS file manager to take several actions. First, it must open 

the directory by retrieving the directory information from the OS internal tables. The 

directory information includes the names of files (and possibly other directories) stored 

under this directory as well as where the directory is stored on disk. The user must then 

type a file name such as “concert _remind,”  and the file system will check to make sure 

that no existing file in that directory has the same name. It may then invoke the disk 

space allocation module to find an area of free space on disk to store the file. Finally, the 

OS file manager will create a file entry in the directory to contain the information about 

the new file such as its name, file type, and disk location. 

 As we can see from this very simple example, the OS is involved in practically 

every aspect of user and program interaction—from low-level actions such as pro-

cessing keyboard strokes and mouse movements, to resource allocation algorithms 

such as allocating memory space and processor time, to higher-level actions such as 

managing file names and directories. We describe how the OS handles all these vari-

ous tasks throughout this book.   

  2.2 RESOURCES MANAGED BY THE OS AND MAJOR 
OS MODULES 

  A major role of an OS is the management of the system resources, so this section 

covers the main types of resources that the OS manages. Then it covers a conceptual 

view of a typical OS, showing the major OS modules, the resources that each module 

manages, and the services and functions that each module provides.  

   2.2.1 Types of resources managed by an OS 

 This section first addresses some of the major resources managed by a typical OS. 

These resources are CPUs (processors), main memory and caches, secondary stor-

age, and I/O devices at the lowest level, and file system and user interface at a higher 

level. The OS also manages network access and provides security to protect the vari-

ous resources it is managing. 

  CPU  

The OS needs to schedule which process to run on each CPU at any point in time. 

In older single-process systems, this is very simple because only one process will be 

memory resident so the OS would mainly be responsible for starting the memory-

resident process by giving it control of the CPU. However, even in such a simple sys-

tem, the OS must do other tasks such as setting up any memory protection registers 

and switching to user execution mode before giving the process control of the CPU. 

 In multitasking systems, managing the CPU resource is quite complex since 

multiple processes will be memory resident. It may be further complicated by having 

multiple CPUs in the system. The OS will maintain various queues of processes. The 

queue most relevant to CPU scheduling is called the  ready queue,  which  contains all 
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processes that are ready to execute. If processes have different priorities a  separate 

ready queue may exist for each priority level. Each process is typically given control 

of the CPU for a maximum period of time, called a  time quantum.  If the time quan-

tum expires before the process finishes execution, a timer interrupt would initiate 

an OS process called  context switching  that would switch CPU control to another 

process. We discuss how the OS manages the CPU resource and CPU scheduling 

algorithms in detail in Chapter 9.  

  Main memory and caches  

The OS needs to assign memory space to a process before it can execute. The execut-

able code of a program will typically be stored on hard disk (or some other secondary 

storage medium). When a user or program wants to execute a disk-resident program, 

the OS must locate the program code file on disk and it must allocate enough mem-

ory space to hold an initial part of the program. Since many programs are quite large, 

the OS might load only part of the program from the disk. One of the main memory 

management functions is to allocate initial memory space to a process, and perhaps 

to load additional parts of the program from disk as the process needs them. If all 

memory space is full, the memory management module of the OS must  swap out  

some of the memory-resident information so it can load additional portions needed 

by the process. We discuss memory management techniques in Chapters 10 and 11.  

  Secondary storage  

Another important resource managed by the OS is secondary storage, which is typi-

cally hard disk. Most program code files and data files are stored on hard disk until 

there is a request to load some parts of them into main memory. Whenever a process 

requires data or code that are not in memory, a request is sent to the disk schedul-

ing module of the OS. The OS would typically suspend the requesting process until 

the required data are read into memory. In a multitasking system, there could be 

many requests to read (load into memory) and write (store to disk) disk data. The 

OS typically maintains one or more queues for the disk read and write requests, and 

uses various algorithms to optimize the servicing of these requests. We discuss disk 

scheduling in Chapter 14 as part of our discussion of I/O management.  

  I/O devices  

The OS must also control and manage the various input and output devices con-

nected to a computer system.  4   The OS will include modules called  device drivers  

that control access to these devices. Since there are many different types of I/O 

devices and users often add new I/O devices to their systems, modern OSs have the 

capability to detect new hardware and install the appropriate device drivers dynami-

cally. A device driver handles low-level interaction with the device controllers, and 

presents a higher-level view of the I/O devices to the rest of the OS. That way, the OS 

can handle similar devices in an abstract, uniform way. We discuss I/O management 

in Chapter 12.  

   4  It is not uncommon to consider disk management as part of I/O management since both disks and I/O 
devices either input (read) or output (write) bytes to/from main memory.  
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  File systems  

The resources discussed so far are considered low level because they are all hardware 

resources. The OS also manages higher-level resources that are created through software. 

One of the main such resources is the  file system.  The file system is an OS module that 

provides a higher-level interface that allows users and programs to create, delete, mod-

ify, open, close, and apply other operations to various types of files. The simplest type of 

file is just a sequence of bytes. More complex file structures are possible—for example, 

structuring file contents into records. The file system allows users to give names to files, 

to organize the files into directories, to protect files, and to access those files using the 

various file operations. We discuss file management in more detail in Chapter 12.  

  User interfaces  

Many modern OSs include another high-level component to handle user interaction. 

This includes the functionality for creating and managing windows on a computer 

screen to allow users to interact with the system. By having such a component in the 

OS, the user can access various resources in a uniform way. For example, access to the 

directory of the file system or to Internet documents would be handled through a uni-

form interface.  5   We discuss user interfaces in various chapters throughout the book.  

  Network access  

Another resource that the OS manages is network access to allow users and programs 

on one computer to access other services and devices on a computer network. An OS 

can provide both low- and high-level functionality for network access. An example 

of low-level functionality is the capability given to a program to create network ports 

and to connect to a port on another machine. An example of high-level functionality 

is the capability to access a remote file. We will discuss networks and distributed 

systems in Chapters 15 and 17.  

  Providing protection and security  

The OS also provides mechanisms to protect the various resources from unauthor-

ized access, as well as security techniques to allow the system administrators to 

enforce their security policies. The simplest type of security is access authorization 

through passwords, but generally this is not sufficient. We will discuss security and 

protection in Chapter 16.   

  2.2.2 Major modules of an OS 

  Figure 2.1  is an illustration of some of the major modules of an OS at an abstract level. 

Not surprisingly, many of these modules correspond closely to the resources that are 

being managed. Other modules provide common support functions used by several 

other modules. The modules provide functions that are accessed by system users and 

programs as well as by the other OS modules. Some functionality is restricted so that 

it can only be accessed in privileged mode by other OS modules—for example, device 

5 As we mentioned earlier, user interfaces are sometimes considered to be part of the systems programs 
rather than an integral part of the OS.  
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driver functions are often restricted to OS access. Other functionality is available to 

OS modules, users, and application programs—for example, file system functions. 

       In  Figure 2.1 , we do not show how the OS modules interact with one another. 

This is because the types of interactions depend on the particular architecture used 

to implement the OS. For example, in a  layered architecture,  the modules would be 

separated into layers. Generally, modules at one level would call the functions pro-

vided by the modules at either the same level or at lower levels. On the other hand, 

in an  object-oriented architecture,  each module would be implemented as one or 

more objects with services, and any object can invoke the services provided by other 

objects. In a  monolithic architecture,  all modules would be implemented as one 

giant program. We discuss the most common OS architectures in a later section.    

  2.3 THE PROCESS CONCEPT AND OS PROCESS INFORMATION 

  We now introduce the concept of a process, as it is central to presenting OS concepts. 

First, we define what a process is, and describe the various states that a process can 

go through and the types of events that cause process state transitions. Next, we dis-

cuss the types of information that an OS must maintain on each process in order to 

manage processes and resources. We also introduce the concept of a PCB (process 

control block), the data structure that the OS maintains to keep track of each process. 

Finally, we categorize various types of processes.  

   2.3.1 Process definition and process states 

 A  process  is a running or executing program. To be a process, a program needs to 

have been started by the OS. However, a process is not necessarily running all the 

time during its existence—for example, it may be waiting for I/O (say, a key to be 

pressed) or it may be waiting for the OS to assign it some resource (say, a block of 

RAM). Every process has a particular sequence of execution, and hence a  program 

counter  that specifies the location of the next instruction to be executed. It will also 

have various resources allocated to it by the OS. For example, it will need some 

 memory space  in which to store all or part of its program code and data (such as 
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program variables). It will almost certainly be accessing files, so it will probably 

have some  open files  associated with it. A process has also been called a  job   6   or a 

 task,  and we use these terms interchangeably. 

 Once a process is created, it may be in one of several states:  running  (if it has 

control of the CPU),  ready to run  (if other processes currently are using all of the 

CPUs),  waiting  (for some event to occur), and so on. The typical states that a pro-

cess can go through are illustrated in  Figure 2.2 , which is called a  state transition 

diagram.  The  nodes  (shown as hexagons) in  Figure 2.2  represent  process states,  

and the  directed edges  (arrows) represent  state transitions.  We now discuss these 

states, and the events that cause state transitions.  7   

 State transition 0 (zero) creates a new process, which can be caused by one of 

the following events:

    1. A running OS process may create or spawn a new process. For example, when 

an interactive user logs onto a computer system, the OS process that handles 

logins typically creates a new process to handle user interaction and commands. 

The OS may also create new processes to handle some OS functions such as an 

interrupt handler or error handler process.  

   6  The term  job  historically referred to a sequence of control that may invoke various tasks using a 
language called  JCL,  or  Job Control Language.  This interpretation is primarily used in older batch 
systems.  

   7  This state diagram is typical, but for any particular OS there may be other states that the OS designers 
want to distinguish among, so one might see fewer or more states internally and in the documentation.  
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   2. A user process may also create another process by calling the OS function for 

new process creation. For example, a Web browser might create a new process 

to run an external “plug-in” module to handle a particular type of multimedia 

content accessed on a website.  

   3. When a job is started by the OS as a scheduled event (e.g., a “cron” job on a 

UNIX system), the OS creates a process to execute that job.    

 As a new process is being created, it is in the  new  state. The OS must build the table 

that will hold information about the process (see  Section 2.2.2 ), allocate necessary 

resources (e.g., memory to hold the program), locate the program executable file and 

any initial data needed by the process, and execute the appropriate routines to load 

the initial parts of the process into memory. State transition 1 in  Figure 2.2  shows 

that the OS moves a process from the new state to the  ready  state, which indicates 

that the process is now ready to execute. Note that before this transition can occur 

the OS must be ready to add a new process—for example, some OSs may have a 

maximum number of allowed processes at a given time and hence would not permit 

a new process to be added if the maximum is already reached. In a large mainframe 

system or cluster system there might also be resource requirements that the job must 

have available before it can run—perhaps a specific I/O device or a certain number 

of CPUs. After all this initialization has occurred, the process can be moved to the 

ready state. 

 Even after a process is in the ready state, it does not start executing until the 

OS gives it control of the CPU. This is state transition 2 in  Figure 2.2 . The process 

is now executing, and is in the  running  state. If there is more than one process in 

the ready state, the part of the OS that chooses one of those to execute is called 

the  CPU scheduler  or  process scheduler.  We discuss process scheduling in detail in 

Chapter 9. 

 If a process executes until its end or has an error or exception that causes the 

OS to abort it, these events—a process reaching its end or having a fatal error—will 

cause state transition 6 in  Figure 2.2 . This leads a process to the  terminated  state, at 

which point the OS will do cleanup operations on the process—for example, delete 

the process information and data structures and free up the process memory and 

other resources. When this cleanup is completed, this indicates state transition 7 in 

 Figure 2.2 , which causes the process to exit the system. 

 Two other state transitions may occur when a process is in its running state—

transitions 3 and 5 in  Figure 2.2 . State transition 3 occurs if the process requires 

some resource that is not available or if it needs some I/O to occur—for example, 

waiting for a keystroke or reading from a file—before it can continue processing. 

This leads a process to the  wait  or  blocked  state. A process remains in the wait 

state until the resource it needs is allocated to it or its I/O request is completed, at 

which point state transition 4 occurs to move the process from the wait state back 

to the ready state. On the other hand, state transition 5 from running state directly 

to ready state typically occurs when the OS decides to suspend the process because 

it has more urgent processes to run. This may be because of a timer or some other 

kind of interrupt, which can occur for various reasons. The most common reason is 

to allocate the CPU to another process because of the CPU scheduling algorithm, as 

we describe in Chapter 8.  
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  2.3.2 Process information maintained by the OS 

 To keep track of a process, the OS typically assigns to it a unique  process identifier  

(or  process ID ). It also creates a data structure called a  process control block  (or 

 PCB ) to keep track of the process information, such as the process ID, resources it 

is using or requesting, its priority, its access rights to various system resources or 

files, and so on. The PCB will also include references to other OS data structures that 

include information on how to locate the memory space and open files being utilized 

by the process. For processes not in the running state, the PCB will save informa-

tion on the hardware  processor state  for the process, such as the values stored in the 

program counter register and other processor registers. This information is needed 

to restart the process when it moves back to the running state.  Figure 2.3  illustrates 

some of the information that is typically kept in a process control block. 

 The information on open files that the process is using is typically kept in a 

separate OS data structure, which is created and used by the OS file manager module 

(see Chapter 12). The information on which areas of memory are occupied by the 

process is usually kept in page tables or limit registers that are created and used by 

the OS memory management module (see Chapters 10 and 11). Both these tables are 

referenced from the PCB data structure. Additional information, such as the process 

priority level, and a reference to the security or protection levels of the process (see 

Chapter 16) will also be included in the PCB.  

  2.3.3 Types of processes and execution modes 

 We can categorize processes into several types:

    1. User or application processes. These are processes that are executing applica-

tion programs on behalf of a user. Examples include a process that is running an 

accounting program or a database transaction or a computer game.  
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   2. Systems program processes. These are other application programs that perform 

a common system service rather than a specific end-user service. Such programs 

often interact closely with the OS and need special information about interfaces 

and system structures such as the layout of a relocatable program module or an 

executable program file. Examples include programming language compilers 

and program development environments. Other programs such as Internet brows-

ers, windowing user interfaces, and OS shell programs are considered by some to 

be in this category, and by others to be part of the OS itself (see  Section 2.7 ).  

   3. OS processes. These are also known as daemons and are processes that are exe-

cuting OS services and functions. Examples include memory management, pro-

cess scheduling, device control, interrupt handling, file services, and network 

services.    

 Almost all processors have two execution modes for processes: privileged mode 

and nonprivileged or regular (user) mode. OS kernel processes typically execute 

in  privileged mode —also known as  supervisor mode, kernel mode,  or  monitor 

mode —allowing them to execute all types of hardware operations and to access all 

of memory and I/O devices. Other processes execute in  user mode,  which prohibits 

them from executing some commands such as low-level I/O commands. User mode 

also brings in the hardware memory protection mechanism, so that a process can 

only access memory within its predefined memory space. This protects the rest of 

memory—used by the OS and other processes—from erroneous or malicious access 

to their memory space that may damage their data or program code.    

  2.4 FUNCTIONAL CLASSES OF OSs 

  There are many different types of OSs. Some OSs are quite restricted and provide lim-

ited services and functions, whereas other OSs are very complex, and provide many 

services and a wide range of functionality. We now give a brief overview of five types 

of OSs: single-user, multitasking, time-sharing, distributed, and real-time systems.  

   2.4.1 Single-user single-tasking OS 

 A  single-user   single-tasking  OS runs a single process at a time. The first OSs were 

of this type, as were OSs for early personal computers such as CP/M and earlier ver-

sions of MS-DOS. Similar OSs may be found today in systems with limited resources 

such as embedded systems. Such an OS is not as complex as the other OSs we discuss 

below. However, there are still a lot of details and issues that it must handle. The main 

services it provides would be handling I/O and starting and terminating programs. 

Memory management would be fairly simple since only the OS and one process 

reside in memory at any particular time. There would be no need for CPU schedul-

ing. Following our spiral approach, we describe the basic services and functionality 

provided by a single-user OS in Chapter 3. We use primarily CP/M as an example to 

illustrate how these concepts were implemented in a real system. We also mention 

MS-DOS from time to time since it dominated the OS market for quite some time.  
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  2.4.2 Multitasking OS 

 The next level in OS complexity is a  multitasking  or  multiprogramming  OS. 

Such an OS will control multiple processes running concurrently. Hence, it must 

have a CPU scheduling component to choose which of the ready processes to run 

next. The majority of modern-day computers support multitasking. One of the ini-

tial reasons for creating multitasking OSs was to improve processor utilization by 

keeping the CPU busy while I/O is performed. In a single-tasking system, if the 

single running process requests I/O and needed to wait for the operation to com-

plete, then the CPU would remain idle until the I/O request was completed. By hav-

ing several processes ready to execute in memory, the CPU can switch to running 

another process while I/O is performed. Changing from running one process to run-

ning another is known as  context switching.  But there is a high cost for a context 

switch. The entire CPU state must be saved so that it can be restored when the pro-

cess is later restarted. Basically, when a running process—say process A—requests 

I/O that can be handled by an I/O controller, the OS CPU scheduler module would 

check to see if there are any processes in the ready state. If there are, one of the 

ready processes—say, process B—will be selected based on the CPU scheduling 

algorithm. The OS will save the processor state of process A (in A’s PCB) and load 

the processor state of process B (from B’s PCB) into the appropriate CPU registers. 

The OS will then give control of the CPU to process B, which moves to the running 

state, while process A moves to the waiting (or blocked) state until the I/O opera-

tion is complete. 

 Multitasking is now available in most computer OSs, including personal com-

puters. Even though a PC typically has a single interactive user, that user can 

create multiple tasks. For example, if there are multiple windows on the display 

screen, each is often handled by a separate task or process. In addition, other tasks 

may be running in the background. Some early multitasking OSs could handle 

only batch jobs—which were loaded on disk in bulk through card readers or other 

old-fashioned I/O devices. Many current systems handle both batch jobs and inter-

active jobs. Interactive jobs are processes that handle a user interacting directly 

with the computer through mouse, keyboard, video monitor display, and other 

interactive I/O devices. 

 We can further distinguish between two types of multitasking OSs: those that 

usually interact with a  single user  and those that support  multiple interactive users.  

Single-user multitasking systems include most modern PCs that support windowing. 

In such systems it is common that one user is interacting with the system but that the 

user may have several tasks started simultaneously. For example, the user may have 

an email program, a text editor, and a Web browser, all open at the same time, each in 

a separate window. The task that has the current user focus is called the foreground 

task, while the others are called background tasks. The other type of multitasking 

system handles multiple interactive users concurrently, and hence is called a time-

sharing OS. We discuss these next. 

 In our spiral approach part we describe two examples of single-user multitasking 

OSs: an OS for a handheld Palm Pilot device in Chapter 4 and the Mac OS from Apple 

in Chapter 5.  
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  2.4.3 Time-sharing OS and servers 

 A  multiuser  or  time-sharing OS  also supports multitasking, but a large number of the 

tasks (processes) running are handling users interacting with the machine. These were 

called time-sharing systems because the computer time was “shared” by the many 

interactive concurrent users. In terms of OS internals, the main difference between 

interactive and batch processes is in their response requirements. Interactive jobs typi-

cally support many short interactions, and require that the system respond rapidly to 

each interaction. But quick response to interactive users’ requirements calls for a high 

level of context switching and this introduces a lot of nonproductive overhead. Batch 

jobs, on the other hand, have no live user so rapid response is not a requirement. 

Therefore, less context switching is needed and more time is spent on productive 

computing. A time-sharing OS will support both interactive and batch jobs and will 

typically give higher priorities for interactive jobs. Early time-sharing systems in the 

1960s and 1970s, such as IBM’s OS 360 TSO  8   and Honeywell’s MULTICS, sup-

ported large numbers of interactive users, which were all logged in to the same system 

through dumb monitors and terminals. This was because terminals cost many orders 

of magnitudes less than the computer system itself in those days. 

 As the price of hardware and processors was being dramatically reduced, the 

need for time sharing declined. In modern computing the new generation of systems 

that can be considered to be the successors of interactive time-sharing systems are 

the systems that are used in file, database, and Web servers.  File servers  and  data-

base servers  handle requests for file and database access from tens to thousands of 

users. Instead of being located at dumb terminals attached to processes running on 

the server, the users are working at PCs or workstations and the service requests are 

coming to the server through the network. Large database servers are often called 

 transaction processing systems,  because they handle very many user transactions 

per second.  Web servers  handle requests for Web documents, and often retrieve 

some of the document information from database servers. Database and Web servers 

require OSs that can handle hundreds of concurrent processes.  

  2.4.4 Network and distributed OS 

 Most computers today are either permanently connected to a network, or are equipped 

so that they can be connected and disconnected from some type of network. This 

allows information and resource sharing among multiple machines, and requires that 

the OS provide additional functionality for these network connections. This addi-

tional functionality can be categorized into two main levels:

    1.  Low-level network access services.  The OS will typically include additional 

functionality to set up network connections, and to send and receive messages 

between the connected machines.  

   2.  Higher-level services.  Users want to be able to connect to other machines to 

browse through information, download files (text, pictures, songs) or programs of 

   8  OS 360 TSO stands for Operating System 360 Time Sharing Option.  
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various types, or access databases. This is typically done through Web  browsers 

or specialized services, such as  telnet  for logging on to remote machines or  ftp  

for file transfer. As we mentioned earlier, these services are considered by some 

to be independent systems programs and by others to be part of the OS.    

 The standard network protocols actually provide several levels of service, from the 

basic hardware level to the user interaction level, as we will see in Chapter 15. Sepa-

rately from the network connection, a distributed OS can provide a wide spectrum of 

capabilities. A very basic distributed OS, sometimes called a  network OS,  provides 

the capability to connect from a machine where the user is logged in—called the 

 client —to a remote machine—called the  server,  and to access the remote server. 

However, the client user must know the name or address of the specific machine 

they want to access. Most current systems provide at least this level of service. For 

example, telnet and ftp services fall in this category. 

 At the other end of the spectrum, a completely general  distributed OS  may 

allow a user logged in at a client machine to transparently access all possible services 

and files they are authorized to access without even knowing where they reside. The 

OS itself will keep directory information to locate any desired file or service, and to 

connect to the appropriate machine. This is known as  location transparency.  The 

files and services may be physically replicated on multiple systems so the OS would 

choose the copy that is most easily or most efficiently accessible—known as  repli-

cation transparency.   9   The OS could also do  dynamic load balancing  to choose a 

machine that is not heavily loaded when choosing a server. Such OSs would obvi-

ously be very complicated, and hence do not yet exist except in the realm of special-

purpose systems or research prototypes! 

 Between the two ends of the spectrum, one can consider many types of distrib-

uted OSs that can provide more than the minimum capabilities but less than the full 

wish list of capabilities.  

  2.4.5 Real-time OS 

 Real-time OSs are multitasking systems that have the additional requirement of time 

deadlines for completing some or all of their tasks. Two types of deadlines are:

    1.  Hard deadlines.  A task with a hard deadline of, say,  n  milliseconds  must  be 

completed within  n  milliseconds of submission; otherwise, it would be useless 

and there may be very bad consequences for missing the deadline. Examples of 

such tasks include industrial control tasks in a steel mill or an oil refinery, or a 

task in a weapons guidance system.  

   2.  Soft deadlines.  A process with a soft deadline of  n  milliseconds  should  be 

completed within  n  milliseconds of submission; however, the deadline may 

be missed without catastrophic consequences. An example could be a task to 

update the display in a virtual reality game as the user moves about.    

 Hard real-time OSs have scheduling algorithms that take into account the deadline 

of each process and its estimated running time when deciding which process to run 

   9  There are many additional transparency levels that a distributed OS can achieve; see Chapter 17.  
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next. These OSs are mainly used in embedded systems that are found in devices such 

as aircraft or process control systems, where a software process that makes a crucial 

decision must be completed within its specified deadline. Soft real-time systems, on 

the other hand, only need to give high priority to the tasks that have been designated 

as real-time tasks. So most current OSs—for example, Windows 2000 or Solaris—

provide soft real-time support. 

 Unfortunately, most of the techniques that have evolved to give smooth average 

response in most OSs are based on statistical decision making. These techniques will 

not work in a hard real-time system. Such systems require unique algorithms for 

scheduling time-critical events. As a result, we will not spend much time discussing 

such systems. They are best treated separately.    

  2.5 ARCHITECTURAL APPROACHES TO BUILDING AN OS 

   2.5.1 Monolithic single-kernel OS approach 

 The first OSs were written as a single program. This approach to building the OS is 

called the  kernel  or  monolithic kernel  approach, and was illustrated in Figure 1.3. 

As the monolithic kernel OS included more functionality its size grew, in some cases 

from a few thousand bytes to many millions of bytes. With limited and expensive 

memory, the OS size overhead (the percentage of main memory occupied by the OS) 

was considered too large. This bloated OS not only occupied memory, but like most 

large programs, the OS was less efficient than a more minimal system, had more 

bugs, and was difficult to maintain, either to add features or to fix bugs. This led OS 

designers to develop OSs based on a more modular, layered design.  

  2.5.2 Layered OS approach 

 The modular approach that was developed was a  layered architecture.  The OS 

would be divided into modules that were limited to a specific function such as pro-

cessor scheduling or memory management. The modules were grouped into layers 

of increasing abstraction—each layer provides a more abstract view of the system 

and relies on the services of the layers below it. The layered approach would hide 

the peculiarities and details of handling hardware devices, and provide a common 

abstract view to the rest of the OS. Thus, when new devices entered the market-

place, new device drivers could be added to the kernel without drastically affecting 

the other OS modules, which provide memory management, processor schedul-

ing, and the file system interface. This is illustrated in a very rudimentary way in 

 Figure 2.4 . 

     This approach can be extended to implement an OS with several layers. One 

variation would allow modules at layer  n  to call only the modules in the next lower 

layer  n-1.  Another variation would allow modules at layer  n  to call modules at any of 

the lower layers ( n-1,   n-2,  and so on). A further variation would allow level  n  modules 

to interact with other level  n  modules, in addition to lower-level modules. Because 

of the difficulty of separating complex OS functionality into multiple  layers, usually 
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only two or three layers are used in practice. We examine more specific instances 

of layered designs in later chapters. Most modern OSs are built on a layered archi-

tecture. However some OS programmers felt that the layered approach was not suf-

ficient, and that OS design should return to a minimum amount of code in the kernel 

and the concept of microkernel.  

  2.5.3 Microkernel OS approach 

 The  microkernel  approach is illustrated in  Figure 2.5 . Here only basic functional-

ity, usually the interfaces to the various types of device drivers, is included in the 

microkernel. Specifically, the only code in these modules is code that must run in 

 supervisor mode because it actually uses privileged resources such as protected 

instructions or accesses memory not in the kernel space. The remainder of the OS 

functions are still part of the resident OS, but they run in user mode rather than 

protected mode. Code running in protected mode literally can do anything, so an 

error in this code can do more damage than code running in user mode. So the 

theory of the microkernel is that the benefits to this approach arise partly from the 

fact that the amount of code that is running in supervisor mode is smaller, making 

them more robust. It also makes them easier to inspect for flaws. Also, the extra 

design effort required makes it more probable that the implementation will be cor-

rect. Finally, it is easier to port a small microkernel to a new platform than it is to 

port a large, layered, but monolithic kernel. On the other hand, a microkernel must 

make use of interrupts to make the necessary calls from the user mode portions 

of the OS to the supervisor mode portions. These interrupts will often necessitate 

context switches. Critics of the microkernel approach say that this makes a micro-

kernel OS run more slowly. (It should be noted that this issue is not resolved in the 

OS community.) 
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         2.6 SOME OS IMPLEMENTATION TECHNIQUES AND ISSUES 

  As we discussed in  Sections 2.2  and  2.5 , an OS is a complex software system with 

many modules and components. As with any such system, there will be many data 

structures and algorithms implemented within a typical OS. In this section, we dis-

cuss a few implementation techniques that are part of most or all OSs. These subjects 

include the normal method used for handling interrupts, queues and data structure 

used in many OS components, an object-oriented approach to OS implementation, 

and the topic of Virtual Machines.  

   2.6.1 Interrupt handling using interrupt vectors 

 As we have already mentioned several times, an  interrupt  is a mechanism used by 

an OS to signal to the system that some high-priority event has occurred that requires 

immediate attention. Many interrupt events are associated with I/O. Some of these 

typical interrupt events are signaling that a disk block read or write has been com-

pleted, signaling that a mouse button has been clicked, or signaling that a keyboard 

button has been pressed. As we can see, most of these interrupts correspond to some 

hardware action. The hardware associates with each interrupt event a particular inter-

rupt number. The interrupting controller typically places this interrupt number in an 

interrupt register when the corresponding event occurs. Depending on the particular 

type of interrupt event, the OS has to take certain actions. The question that comes up 

is, How can the OS efficiently determine which particular interrupt event has occurred, 

and how does it start up the appropriate process that services that interrupt? 

 The normal technique for interrupt handling uses a data structure called an  inter-

rupt vector  (see  Figure 2.6 ). The vector has one entry for each interrupt number. 

That entry contains the memory address of the interrupt service routine for that type 

of interrupt. The interrupt number placed in the interrupt register is used as an index 

into the interrupt vector. The interrupt vector entry is picked up by the hardware as 
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an address and the hardware effectively calls the appropriate interrupt routine as a 

subroutine. When the interrupt routine is finished it will simply return from the call, 

resuming the process that was interrupted. 

 In a small embedded system with only a few I/O devices the hardware may not 

provide an interrupt system. The alternative is known as a  status-driven  system. In 

such a system the application (or the OS) is mostly a large loop. It will check the 

status of each device in turn to see whether it needs servicing.  

  2.6.2 System calls 

 Application programs normally need to use data and services managed by the OS. 

For example, OSs typically manage all the hardware devices on the system, such as 

sound cards, and applications are not allowed to access them directly. Also, applica-

tions may need to communicate between one another and the OS has to act as an 

intermediary. 

 Any normal application needs such abilities and the way it asks the OS for ser-

vices is by using a  system call.  A system call is much like any other function call. 

First, the application will load certain registers with information describing the ser-

vice required and then will execute a system call instruction. However, instead of 

directly calling a section of code that will do the function, the system call instruction 

will usually cause an interrupt, which the OS will handle. The OS will perform the 

requested service and then return control to the application. This mechanism also 

allows the OS to implement some security by first checking to see if the application 

is allowed to access the resource in the requested way. 

 Generally, application development systems provide a library that loads as part 

of application programs. This library handles the details of passing information to 

the kernel and executing the system call instruction. Having this function provided 

by the library reduces the strength of the connection between the operating system 

and the application and make the application more portable.  
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  2.6.3 Queues and tables 

 An OS manages many data structures to accomplish its tasks. Two of the common 

data structures used are tables and queues. Tables are used to store information about 

various objects that the OS manages. For example, the PCB, described in  Section 

2.2 , is an example of a table that the OS maintains to keep track of the informa-

tion associated with each process. Another frequently found table is the  page table,  

which is used to keep track of the address space of a process when the hardware sup-

ports paged memory (see Chapter 11). The OS will maintain one PCB and one page 

table for each process. Another typical table is the  open files table,  which keeps an 

entry for each file open in the system. 

 The OS also maintains a number of queues to keep track of information that is 

ordered in some way. Each resource that can be shared by multiple processes would 

need a queue to hold service requests for that resource. For example, since multiple 

processes may need to read and write disk pages, the OS maintains a  disk schedul-

ing queue  that has a list of processes waiting for disk I/O. Requests for printer ser-

vices may be maintained in a  printer queue.  A list of processes that are ready to run 

can be maintained in a  ready process queue.  

 Many of these “queues” are not strictly speaking queues at all since a queue is 

always managed on a first-in-first-out (FIFO) basis. But the scheduling algorithm 

that utilizes the queue determines the order of entries in a queue. For example, if the 

policy of choosing which process to run next were a priority policy, the scheduler 

for the ready process queue would implement that policy. In the FIFO case each 

new entry is placed at the end of the queue. When the CPU needs to execute a new 

process, it would remove an entry from the beginning of the queue for processing. As 

we will see, there are various ways for organizing queues depending on the particu-

lar requirements for each type of queue. 

 Each entry in a queue must contain all the information that the OS needs to 

determine the action that must be taken. For example, each ready queue entry may 

contain a pointer to the PCB of a ready process. By accessing the PCB through the 

pointer, the OS can retrieve the needed process information.  

  2.6.4 Object-oriented approach 

 One approach to OS development is to use the principles and practices developed 

for object-oriented software engineering and apply them to OS design and imple-

mentation. In this approach, each OS module would be designed as a collection of 

 objects  and each object will include  methods  that are provided as services to other 

parts of the OS or to application programs. Building the OS with objects provides the 

many advantages of object-oriented software engineering, such as encapsulation of 

object data structures, separating an interface from its implementation, extensibility 

and ease of reuse of objects, and many other advantages. In simpler terms, the key 

feature of an object is that the internal structure of an object is hidden and any access 

to the data contained in an object is through the methods of the object. This makes 

it less likely that an application can misuse an object and cause problems for other 

modules. 
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 There have been several attempts at making an OS that is object oriented, most 

notably the NEXTSTEP OS from NeXT and BeOS from Be Inc. A few research 

projects have created—most notably Choices, Athene, Syllable, TAJ, and JNode—

an OS written in Java. But it seems that there is no major OS that is truly based on 

objects. Usually a kernel module is written in C or assembler and a library provides 

an API of object-oriented interfaces that can be invoked in most high-level languages 

that provide support for objects. Windows NT is typical of such OSs. Data structures 

that are internal to a single module are not objects.  

  2.6.5 Virtual machines 

 Yet another approach to OS design is the technique of using a software emulator for 

abstracting or  virtualizing  a total system (devices, CPU, and memory). This concept 

is referred to as a  virtual machine  ( VM ). One prime reason for VMs is that it allows 

the different emulation environments to be protected from one another so that a crash 

in one program does not crash others. The system design being abstracted can be 

either an actual hardware design or an idealized application virtual machine. 

  Hardware virtual machines  

In this approach, a program or kernel subsystem will provide a software emulation of 

an actual hardware machine. There are two different sorts of such emulation, one in 

which the host hardware system itself is being emulated and another where another 

CPU is being emulated. The latter sort was traditionally developed by a manufac-

turer to assist the migration of customers from an older system to a newer one by 

providing a program that would emulate the older system. Various emulation pack-

ages were created by IBM, for example, to help customers migrating from the 1401 

systems, then in common use, to the 360 series. In such cases the emulation is usu-

ally done by an application program running in user mode. 

 Emulation of the host machine is often used to allow multiple OS kernels to 

run simultaneously, as illustrated in  Figure 2.7 . In such cases the emulation is done 

by the kernel of a special  host OS.  This model allows one or more OS kernels 

to run on top of a virtual machine layer as  guest OSs.  The VM layer creates an 

interface that abstracts the hardware, so that each kernel believes that it alone is 

running on the hardware. Kernels may be from different OSs or may be different 

instances of the same OS.  10   One of the prime difficulties in the VM model is to cre-

ate a VM that accurately emulates the hardware—so that kernels may run on a VM 

the same way they ran directly on the real hardware (only slower, because they are 

actually sharing the hardware with other kernels). One of the first, if not  the  first, 

such emulation packages was created by IBM for a modified version of the 360 

model 40 and was known as CP-40. It ran multiple instances of client operating 

systems—particularly CMS, the Cambridge Monitor System. That early package 

has been reimplemented several times and the current version,  z/VM,  runs on their 

z9 series of mainframes. 

   10  In fact, the VM concept was created in part (by IBM) to allow OS programmers to test a kernel, since 
even if the kernel being debugged crashed, other kernels would continue to run.  
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   VM systems are becoming quite common now. As one can easily imagine, having 

one OS run on top of another OS is not terribly efficient. So contemporary VM OSs 

are usually running a slightly modified version of the guest OS that is aware that it is 

running in a VM environment and does things in a slightly different way so that the 

VM emulation can be more efficient. In addition, newer CPUs often have additional 

instructions and other features that assist in virtualization.  

  Application virtual machines  

It is now common to apply the term  virtual machine  (VM) to any software that 

creates an abstraction of a machine. Sometimes the machine being emulated is not 

an actual CPU but rather is an idealized machine specification designed to support 

either a specific language or a broad class of languages. Such systems are some-

times known as  application virtual machines.  One early such design was known 

as the  p-code  system and was designed by the University of California San Diego 

to support their Pascal system. A VM that is currently very popular is the  Java vir-

tual machine  ( JVM ), which creates an abstract machine that runs Java programs. 

Sometimes the JVM runs as a separate package that enables the execution of Java 

programs. In other cases the VM emulation may be internal to another program 

such as a Web browser. In such cases the Java programs are more restricted in what 

they are allowed to do. Another such package is the  Common Language Runtime  

( CLR ) created by Microsoft for support of their .net architecture. In this case the 

abstract machine was designed for supporting a broad class of languages rather than 

a single language. 

 Since emulation of a virtual machine can be somewhat inefficient, code created 

to run in an application virtual machine can usually also be compiled into native 
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machine code so that it will run faster. This technique is known as  just-in-time  

 compilation, or  JIT.  The binary code produced by JIT compilation is normally dis-

carded after execution but it can also be saved permanently for later reuse.     

  2.7 MINIMALIST VERSUS MAXIMALIST APPROACHES 
TO OS FUNCTIONALITY AND BACKWARD COMPATIBILITY 

  We conclude this chapter with a discussion on what functionality should be included 

in the OS. In other words, what exactly should the OS do? That is a big question. 

Let us take a somewhat philosophical look at it. At one end of the spectrum is the 

 minimalist  philosophy—only those things that really must go into the kernel (or 

microkernel) are included in the OS. Other components may be added into library 

routines or as “user” programs (not part of the kernel, but usually not written by the 

user). At the other end of the spectrum is the  maximalist  philosophy—to put most 

of the commonly used services in the OS. For example, if a maximalist philosophy 

were adopted, a service such as screen window management would be included in 

the OS kernel, since almost everyone uses this service. 

 Minimalists argue that their approach allows each user to choose what they 

want. For example, a user may pick from a large group of window managers, and in 

fact may pick two or more if desired. This makes it easier to select components and 

build the desired configuration. A user may even write new components. Minimalists 

also argue that this approach makes the OS modules easy to design and program, 

and easier to debug. They often say that the resulting system is more “elegant” or 

“cleaner.” 

 Maximalists will counterargue that user choice in some fundamental areas is a 

problem—it is  too  flexible. They say a common  “look and feel”  for common appli-

cations functions such as scroll bars, menus, and moving a cursor allow for a more 

consistent usage and more satisfied users. This makes it easier for users to know the 

basics of how applications work and creates consistency among applications. They 

contend that common functions such as drawing on a screen, moving a mouse, and 

menus, are used by almost every application program and should be accomplished in 

one place efficiently and consistently—the OS. They will claim that some functions 

may be done more efficiently in the OS and other functions—for example, security 

features— must  be done in the kernel. 

 In reality very few OSs really are minimalist or maximalist—as in most argu-

ments the choice is made by a big dose of the “real world” injected into the dis-

cussion. For example, if we examine OSs for handheld small computers (personal 

digital assistants), many of these real-world issues affect the design choices. These 

issues include very limited memory, and hence making as many functions available 

in the OS as possible in order to use less memory in the applications by sharing 

routines. Another issue was to make a common look and feel, but to include only the 

most commonly needed routines so that not everyone needs to pay the price of extra 

memory use for infrequently used services.  
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   2.7.1 Backward compatibility 

 One last issue, that of backward compatibility, is the price of success. This issue 

has caused more difficulty for OS system designers and implementers than can pos-

sibly be imagined.  11    Backward compatibility  is the ability to run old application 

programs on newer versions of the OS. This ability is a selling point of almost every 

new version of any OS—in fact, even new OSs that have  no  previous versions may 

claim to be able to run applications done for  other  (popular) OSs without change—

 transparently.  Note that this means that the executable program (the binary code) 

must run unchanged on the new system. 

 Some systems claim that the new system is “source code compatible”—that the 

source code for the application must be recompiled, but not necessarily changed, to 

move from old to new system. This does not help someone who purchased a program 

and has only the executable! Not only does this require that every new version of the 

OS contain all services in the previous versions—they must work the same way, even 

though newer services doing the same or similar things may be more efficient and 

more secure. One of the most horrible problems is that even bugs—those that may 

have been discovered—must remain since some applications may have taken advan-

tage (used features!) of those bugs. For example, a famous bug in Microsoft DOS 

that allowed one to truncate the size of a file—make a file size  shrink —has remained 

for decades in many versions of the OS—even through Windows—because in the 

original “buggy” version, there was no other way to truncate files. It had been fixed 

in a version soon afterward, but to allow compatibility with already existing execut-

able, it was fixed as an extension—a new service. The old service remained “buggy.” 

(Compatibility issues are sometimes hidden under the famous statement: “It’s not a 

bug—it’s a feature!”)  

  2.7.2 User optimization versus hardware optimization 

 One final point: Personal computers have stood the traditional goals of OSs on their 

head. Until PCs came along, one of the chief goals of an OS was to optimize the 

utilization of a bunch of very expensive hardware. This meant using every bit of 

expensive memory (leading to the infamous Y2K bug), every instruction cycle of the 

slow CPU, and every sector of the limited-capacity, expensive disk drive. Once the 

level of integration of the circuitry made it fairly cheap to produce a personal com-

puter, the most expensive part of the total system became the unit sitting in front of 

the monitor, not the unit sitting behind it. This means that the OS needs to be very 

responsive to the keyboard and to update the screen displays as fast and as smoothly 

as possible, even if that means using the CPU in a less efficient manner. GUIs are a 

good example. They would most likely be much less common if we were still using 

only mainframe systems that cost a million dollars each.     

   11  After all, how difficult is it just to leave old code in the system?  
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  REVIEW QUESTIONS 

    2.1 What are some of the types of resources that an 

OS must manage?  

   2.2 What is the difference between a program and a 

process?  

   2.3 What are the states that a process can be in?  

   2.4 How many processes can be in the run state at the 

same time?  

   2.5 What sort of events can cause a transition from the 

run state to the terminate state?  

   2.6 Name at least a few things that a process might be 

waiting on.  

   2.7 Some information stored in a PCB is not always 

kept current. What are some examples of such 

information?  

   2.8 SUMMARY 

 In this chapter, we started with a simple user scenario 

and described some of the actions within the sce-

nario that are undertaken by the OS. We then gave an 

overview of the main types of system resources that 

the OS manages, and discussed the major OS mod-

ules. Then we defined the process concept, which is 

central to what the OS does, and described the states 

of a process and some of the information that the OS 

maintains about each process. We then discussed the 

characteristics of different types of OSs, from sys-

tems that can execute a single process at a time to 

those that manage concurrently executing processes 

to time-sharing and distributed systems. 

 Following that, we presented some of the different 

architectural approaches that have been taken for con-

structing an OS. These include monolithic OS, micro-

kernels, and layered architectures. We discussed some 

of the common data structures that an OS maintains, 

namely interrupt vectors and queues, object-oriented 

systems, and virtual machines. Finally, we concluded 

with a philosophical discussion on the minimalist ver-

sus maximalist approaches to OS functionality.  
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   2.8 Give examples of the three types of processes: 

user, system, and OS.  

   2.9 The chapter discussed five different overall design 

types for OSs. What design types do these exam-

ples belong in?

    a. OSs in handheld computers and PDAs  

   b. UNIX  

   c. Novell Netware  

   d. VCRs  

   e. Automobile engine     

   2.10 If we are writing applications, what are some of 

the reasons that we need an OS to manage the 

hardware for us?  

   2.11 What are some of the reasons why we divide an 

OS into separate modules?  

   2.12 What is a “microkernel” OS?  

   2.13 Generally speaking, object-oriented programming 

is less efficient than procedural programming. 

Why would we want to use a less efficient tool to 

make an OS?  

   2.14 When an OS gets an interrupt from a device, what 

mechanism does it usually use to select the code 

to handle the interrupt?  

   2.15 How does an application ask the OS to do 

something?  

   2.16 True or false? The evolution of OSs has resulted 

in the present state in which most modern OSs are 

virtual machine OSs.  

   2.17 What are the two modern software virtual machine 

architectures?  

   2.18 Do you feel that an OS should include many 

common system functions or that it should con-

tain only a minimum level of functions, leaving 

as much as possible to be in additional layers and 

libraries? Justify your answer.  

   2.19 What is the most standard OS API that applica-

tions can be designed around?     
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  P
art 2 of this book is the part that makes the book different from others. Other 

books tend to treat a series of separate topics concerning different aspects of 

typical OS in depth, but isolated from one another. Instead, this part of the 

book presents a series of chapters that treat selected operating systems to show how 

operating systems were forced to evolve as the underlying hardware evolved and the 

expectations and demands of users grew. The systems that were selected all run on a 

personal computer of some sort. This choice was deliberate. It was based partly on 

the belief that such computers will be familiar to most students, perhaps having seen 

many of these machines and OSs before. They are also the systems that students are 

most likely to have access to, at least the more modern systems. At the same time, 

the evolution of the OSs for personal computers paralleled that of OSs for larger 

machines. As a result, examples exist of personal computer OSs that range from the 

most primitive to the most complex. Many of these OSs are also available on larger 

machines, including some of the largest mainframes available today. 

 Part 2 consists of five chapters. Chapter 3 discusses an early personal computer 

OS, CP/M. This is a single-user, single-tasking OS with no graphical user interface, 
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or GUI. It supported only a flat file system. As such, it was very similar to many of 

the early mainframe OSs such as IBSYS for the IBM 709x series. We show all of the 

basic mechanisms required of the OS in these simple systems. These mechanisms 

include separation of the kernel from the OS and file system support. 

 In Chapter 4 we look at an OS that introduces two additional concepts: the idea 

of running multiple programs at the same time and the use of a GUI. The OS that is 

covered is the Palm OS, used in many PDAs and cellular phones. These two addi-

tional requirements necessitate additional OS mechanisms to support them, most 

notably the idea of CPU abstraction and a process control block. PDAs and cell 

phone systems usually do not have secondary storage devices, but they still have the 

concept of a file system because the metaphor is so familiar to application program-

mers. They do have a GUI, but the use of the screen is limited by its very small size. 

We discuss the impact these two restrictions had on the design of the OS. 

 The OS series discussed in Chapter 5 introduces additional requirements. It is 

the Macintosh OS series, and it was designed from the start with secondary storage 

in mind. The evolution of this family is interesting in that it is in itself an example 

of a spiral evolution. The only feature that the MAC OS initially offered that was 

not discussed in the Palm OS was that the MAC OS GUI could have overlapping 

windows. It was still a single-user system and had a flat file system, just as did CP/M 

and the Palm OS. However, as the MAC OS evolved, Apple added many new fea-

tures such as multitasking, a hierarchical file system, multiple users (though not con-

currently), multiple CPUs, and eventually a virtual memory system. Each of these 

mechanisms is discussed in turn, and the virtual memory topic leads naturally into 

the next chapter. 

 Chapter 6 covers Linux as an example of an OS that has been ported to many 

different hardware platforms ranging from embedded systems to real-time systems 

to supercomputers. The main distinction made here for Linux is that it was designed 

with the assumption of multiple users at multiple terminals. In order to provide this 

functionality an OS must provide more protection mechanisms in the OS, and espe-

cially in the file system. Linux is also an example of an open source OS, and this 

distinction is explored in this chapter as well. A later portion of the book covers 

Linux in greater detail. 

 Chapter 7 explores the issues that arise when an OS is designed that spans mul-

tiple computer systems. Often, such systems cross administrative domains. Almost 

certainly the policies and interests of the institutions involved are not the same. 

Indeed, they may even conflict with one another. Still, the institutions involved have 

found some common interests that compel them to establish systems that cross such 

boundaries, and GLOBUS is used in this chapter to illustrate some of the issues 

involved. Other systems are discussed as well.  
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 W
e now start the “spiral” part of the book, where each chapter discusses a type 

of operating system based on a particular real OS. We start with a real but 

simple OS with limited capability and discuss progressively more complex 

OSs in the following chapters. We base most of our presentation in this chapter on the 

features of an early personal computer operating system—CP/M—and the  hardware 

commonly used to run this system. We discuss how these OSs were designed as well 

as the rationale behind the design. Although these systems were single-process, lim-

ited functionality systems, they provided sufficient power for hundreds of applications 

to be written for millions of personal computers. Thus, they provide a good practical 

example of a simple operating system. The issues discussed in this chapter—such 

as I/O management, the file system, and memory and process management—are 

expanded upon in subsequent chapters as more complex operating systems are intro-

duced. However, we start here with a basis: real but simple functionality. 

 This chapter is organized as follows.  Section 3.1  describes the predecessors 

of simple operating systems, called monitors, and discusses how they evolved into 

early operating systems because of the need for standardization. In  Section 3.2 , 

we describe the characteristics of the early PC systems for which this type of OS 

was used. Then we discuss how input/output was managed in such an early OS in 

 Section 3.3 , followed by description of the file system in  Section 3.4 , and process 

and memory management in  Section 3.5 . 

 The systems of this era were quite limited—they ran only one user application at 

a time. Process management was initially limited to loading and starting a particular 

application program. Late in the life of CP/M a background printing function was 

 3  3 
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added. This facility was the beginning of the concept of multiprocessing as it is car-

ried out in more modern OSs. Memory management in the OS was limited to which 

part of memory to use for the OS, the interrupt vector, the user program, the program 

data, and so on. But because memory was quite limited, large programs often did not 

fit completely into memory or were limited in the amount of data they could handle. 

It was necessary for an application programmer to break down such programs into 

sections, and to replace one section in memory with another as needed. This memory 

management technique, known as  overlays,  is discussed in  Section 3.5 . Again, these 

techniques foreshadow the more complex memory management techniques found in 

a modern OS.  

   3.1 INTRODUCTION: MONITORS AND CP/M 

  We start this section with a discussion on why a need emerged for a PC operating 

system. The predecessors of these OSs were called  monitors,   1   and had very limited 

capabilities. There was no standard for monitors—each manufacturer of early PC 

systems used to write their own monitor program, which had unique commands and 

conventions. This variety meant that early application programs had to be rewritten 

for each monitor.  

   3.1.1 Introduction to monitors: The predecessors of simple OSs 

 When personal computing was young and single-chip microprocessors made it pos-

sible to build small, relatively inexpensive computers, there was a software crisis. 

The advent of cheap microprocessors allowed small startup companies to sell kits for 

home hobbyists who wanted to build their own computer. These kits typically con-

tained a circuit board, a microprocessor, some memory, and some additional device 

controller chips. The additional chips were for controlling various input and output 

devices—for example, cassette tapes, floppy disks, external video terminals, and 

printers. There were a large number of companies selling PC kits. At first they were, 

by any standard, very limited. In early systems of this type, memory size was one 

to four kilobytes—or sometimes even less. Application programs were written in 

machine language or assembly language. There was typically no operating system. 

Instead, there was a small  monitor program  usually stored in  ROM —read-only 

memory—that would allow an application to do simple, common tasks, such as:

   ɀ output a character to a device such as a video display or Teletype  

  ɀ get a character from the keyboard device  

  ɀ save the contents of all or part of memory to a cassette tape or floppy disk  

  ɀ restore memory from a saved image on tape or disk  

  ɀ print a character to the printer 

 The monitor did only these basic tasks and not much else.    

1 We are talking about a software module that is a precursor to an OS, not a video display terminal, 
sometimes also called a monitor and often used on computers.   
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 An application program could print a character (e.g., a “1”) on the  console —a 

video display or Teletype—by calling the monitor using the following steps:

    1. Put the character in a specific register as specified by the monitor (assume that 

this is register E). In this case, the value 31 Hex (the ASCII value of “1”) is 

placed in register E.  

   2. Select a particular monitor function, in this case, the “print a character” func-

tion, which has value 2. Place the number corresponding to the selected monitor 

function in register C.  

   3. Finally, a call to the monitor is executed through Interrupt 5. This would cause 

the monitor to execute the print function called for by the function code stored 

in register C using the character stored in register E.  

   4. After the monitor outputs the character, it returns a status code in register A that 

indicates OK or not OK. Not OK indicated some exceptional condition such as 

a device that is not responding or illegal values for some of the parameters to the 

function. The application should look at the status code in register A to determine 

an appropriate action in case of errors. Typical early applications did not always 

check for errors because there was little they could do for most errors anyway.     

  3.1.2 Why CP/M? What was the software crisis? 

 There were many companies building computer kits, and each had to provide the 

software for a small monitor. These monitors were not large in terms of memory 

requirements—a few hundred or a few thousand bytes. Typically, a monitor pro-

vided only a dozen functions or so, but these functions required time and expertise 

to develop, debug, and build. Even worse, there was no standard monitor or interface 

to a monitor. Each manufacturer simply implemented whatever functions they imag-

ined that programmers wanted. For example, passing parameters to functions might 

use registers in one monitor. In another monitor, the parameters might be passed in 

memory locations. They might use some combination of both methods in a third 

monitor. This created a problem for application programming. How could a pro-

gram be written that was  portable —that is, it would run on different manufacturer’s 

computers?  2   Because of the different monitor programs, application programs would 

need to be specially written for each manufacturer’s computers. This situation led to 

the development of  CP/M  ( Control Program/Monitor ). Created for microcomput-

ers based on the Intel 8080/8085 CPU circuits, it was initially the product of one 

person, Gary Kildall of Digital Research, Inc.  

  3.1.3 Components of CP/M 

  CP/M  ( Control Program/Monitor ) was written to allow software developers, users, 

and manufacturers to have one single, simple, standard interface. The hardware devices 

would be isolated from the operating system by a layer of software: the  BIOS  ( Basic 

Input/Output System ). This BIOS would be similar to a monitor but with standard 

2 Since the early application programs were written in machine language, the CPUs had to be identical, 
or at least compatible—that is, one CPU’s instruction set had to be a superset of the other.  
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specified functions and interfaces. Each manufacturer would adapt the BIOS to the set 

of devices included with their particular machine.  3   The interface to the BIOS, how-

ever, was the same, no matter how the underlying devices might work. Porting CP/M 

to a new system consisted mostly of writing the BIOS routines for the hardware. 

 The core of the operating system was called the  BDOS  ( Basic Disk Operating 

System ). It was what we call the kernel today. It would be independent of the hardware 

and would call the more primitive services in the BIOS. The BDOS software would be 

the same for any system that CP/M was to run on. This kind of standardized interface 

that provides general system functions but hides the messy hardware details is called 

an  abstraction.  We refer to the technique of abstraction many times in this book. 

 The last part of the OS was a user interface to the operating system called the 

 CCP  ( console command processor ). The other commands that the CCP executed 

were mostly programs on the disk. These three components of a CP/M operating 

system were quite small. Each component was 2,000–4,000 bytes in size and all of 

CP/M fit on a few sectors of a floppy disk for booting the computer. 

 The existence of a de facto standard in CP/M encouraged software writers 

to develop application software for personal computers built by a wide variety of 

manufacturers. The software could support many input and output devices—such 

as different capacity floppy disks, hard disks, and video terminals. Applications did 

not need to be custom written for each type of computer. There were hundreds of 

programs written within a very short time. For programmers there were text editors, 

compilers for many programming languages, and debuggers. There were word pro-

cessors, accounting packages, simple file systems, games, and many other programs 

written that created a booming market for personal computers. And since the operat-

ing system was well designed, with a clearly specified interface at each layer, there 

were several replacements for the CCP that offered different interfaces. 

 When IBM decided to enter the personal computing market, the decision was 

initially made to use the well-established CP/M standard. Since the CPU for the IBM 

PC (Intel 8088) was not exactly compatible to the CP/M-80—which was based on 

Intel 8080 and Zilog Z-80 processors—some small modifications were made. The 

IBM hardware was well known and specific, so the BIOS could take advantage of 

those characteristics.  4   

 In the following sections, we take the liberty of abstracting the hardware of early 

IBM PCs and CP/M computers. Our purpose is not to teach CP/M, but rather to use 

it as an example to illustrate the features and functionality of a simple OS.    

  3.2 CHARACTERISTICS OF A SIMPLE PC SYSTEM 

  Early PC systems consisted of a main circuit board—the  motherboard  of the PC. 

The motherboard had a microprocessor chip (CPU), some random access memory 

(RAM), a ROM memory that contained the BIOS, and several other integrated 

3 It was also possible for a hobbyist user to do this adaptation, since instructions and examples came with 
the software. Even something as simple as adding memory to a system required recreating the BIOS.  
4 In the end, IBM adopted the MS/DOS operating system—developed by Microsoft—for their PC.  
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 circuits (ICs) that interfaced these chips together. The motherboard had some slots 

to insert additional expansion circuit boards—called  cards  in early PC terminol-

ogy. These cards included a video controller that was connected to a video moni-

tor by plugging the monitor’s cable into the video controller card. Other expansion 

cards could include additional RAM and floppy disk and hard disk controllers. User 

input/output was through a video monitor and keyboard. The keyboard was plugged 

directly into the motherboard, which had a keyboard controller chip built in. There 

was also a simple clock or timer chip on the motherboard. 

 A simple system schematic view of the typical hardware components in an early 

PC computer system is illustrated in  Figure 3.1 . Some of the characteristics of this 

type of system that had major effects on the design of the operating system were the 

following:

    1.  Main memory was quite limited in size.  This led to the OS design decision that 

a single application program would be loaded into memory at a time. Because 

the CP/M OS was quite small, it would be permanently placed in memory. This 

includes the loader, interrupt handler, and device drivers. If an application pro-

gram did not fit into the remaining available memory, the application would 

have to be written so that it is divided into sections that individually fit in mem-

ory. When a new section is needed, a memory management technique known 

as  overlays  could be used by the application to replace the old section with the 

new one.  

   2.  Disk format was standardized.  The disk block size and format was fixed for 

both floppy and hard disks in early PCs. This led to a standardized file system 

design that was based on the standard disk format.    
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 3. Interrupt handling was mainly for I/O devices. Since one application would 

be running at a time, there was no need for switching between applications. No 

CPU scheduling was needed in the OS. The main types of interrupts were for 

handling I/O devices.  

  3.3 INPUT/OUTPUT MANAGEMENT 

  I/O handling was limited in early OSs since the types of I/O devices were quite lim-

ited compared to the wide variety available nowadays. Most application programs 

for early PCs needed the following I/O services:

    1. Read characters from the keyboard.  

   2. Write characters to the video screen.  

   3. Print a character to the printer.  

   4. Utilize the disk file system to create a new file, read and write to the file, and 

close a file.    

 One problem for many programs was the lack of flexibility in handling keyboard 

input and screen output. Because there were many different companies making com-

puter hardware that worked differently, the OS tried to provide a standard way of 

dealing with these differences. 

 Another problem was performance: executing some I/O commands by direct calls 

to the BIOS or the hardware was often much faster and more flexible than calling the 

appropriate OS command. This led to a tradeoff between  portability —if application 

designers used only OS calls to perform I/O—versus the flexibility and higher speed 

that was possible if application designers used direct calls to BIOS and hardware func-

tions. As an example, we discuss these tradeoffs with respect to the two most common 

I/O devices in early systems: keyboard for input and video monitor for output.  

   3.3.1 Keyboard input—Portability versus flexibility 

 Keyboards came in many types. They might have 65 to 95 keys placed in different 

places on the keyboard. The data transferred from the keyboard might be serialized 

or parallel and characters might be represented by seven or eight bits. How could this 

be standardized? The BIOS was customized for each type of keyboard, but would 

provide the same set of BIOS interface functions to the rest of the OS. The BDOS 

would then use those BIOS functions to create a simple OS interface for the key-

board. These functions—OS system calls—for the keyboard were: (1) read a charac-

ter from the keyboard and (2) check if a key has been pressed. For many applications 

this was adequate. If an application used these standard functions for its keyboard 

input, it would be portable to any computer system. 

 But some applications needed additional flexibility. For example, a word pro-

cessor may want to use “modified” keys—a “control  ⫹  S” might save the file, and 

a “control  ⫹  C” might pop up a command list menu. These special keystrokes or 

keystroke combinations created a problem because they were not recognized by the 

BDOS and hence could not be passed on to an application. Even worse, some com-

binations like “control  ⫹  C” might be interpreted by the BIOS or BDOS and cause 
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some OS action such as a reboot. In this case, it would obviously not pass the key-

stroke combination to the application. 

 Applications that wanted additional flexibility to handle the keyboard so that 

combinations of keystrokes had meaning to the application bypassed the BDOS. 

This was trivial to do. It might mean simply reading keys from the BIOS rather than 

the BDOS, or even reading keys directly from the keyboard hardware (actually the 

keyboard interface chip). It was easy to bypass the operating system (BDOS) because 

in early systems there was no memory protection. Any application could address any 

part of memory. It was just as easy to use BIOS calls as to use BDOS calls, and the 

BDOS call would not do what was needed by the application. The problem with this 

approach is that programs would not be portable anymore, especially if the applica-

tion went directly to the hardware.  

  3.3.2 Video monitor output—Portability versus functionality 

and performance 

 The screen—or  video monitor —posed even more significant problems. First, the 

functions available through the BDOS and BIOS interface functions was rather lim-

ited. There were many features of video systems that could not be used directly 

by the simple OS system calls. For example, one could not use color, write mul-

tiple “pages” of video memory to simulate motion by rapidly displaying a series of 

images, or move the cursor independently of writing to the screen. Second, and even 

more critical, screen output using BDOS was very slow. Many applications would 

write characters directly to the screen memory and access the video controller hard-

ware directly. Many applications would also move the cursor using BIOS calls. The 

main reason for bypassing BDOS was to improve application performance. 

 Writing directly to video memory provided not only more functionality but was 

also much faster than going through an OS system call. Depending on the program-

ming language used, it could be 100 times faster or even more! Bypassing the OS to 

display characters created the same type of portability problems that bypassing the 

keyboard did. But the performance benefits were so significant that many applica-

tion programs ignored portability to improve performance. This was especially true 

of game programs, which always tried to wring every possible ounce of performance 

out of the hardware. Games have always driven the rapid progress of PC hardware 

development. 

 For example, to put a white-colored “ ⫹ ” on a black screen background required 

a call to a single machine instruction: “Move 0F800, 2B07.” Writing text directly 

to video memory was relatively straightforward. Video memory began at location 

0F800 Hex, which corresponded to the first visible character on the upper left corner 

of the screen. It was followed by the  video attributes  of that character. In the case of 

a color adapter this was 8 bits of information: 3 bits of color information for the fore-

ground  5  ; 3 bits of background color; one bit for “high intensity foreground” (bright); 

and the last bit for blinking the character. So the character “ ⫹ ” (“2B” ASCII) was 

written to the screen at location upper left corner (F800) and was set to a foreground 

5 Color was specified using 1 bit each for red, green, and blue; white is all 3 bits as 1’s.  
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for early PCs.

of white (“7”) on a black (“0”) background. A black character on a white background 

would simply have the attribute “70.”    

  3.4 DISK MANAGEMENT AND THE FILE SYSTEM 

  Since so many applications bypassed the keyboard and video OS system calls, what 

did the OS really provide? One of the main services that such an early OS provided 

was a standard and portable file system. About 75% of OS system calls were disk file 

related. In this section, we discuss the file system for CP/M but first we describe the 

disk system that is the basis for the file system.  

   3.4.1 The Disk System 

 In early PC systems, there was a standard for the hardware disk devices for use with 

the file system—the 8-inch floppy, illustrated in  Figure 3.2 . This floppy had a hole 

in the middle where the floppy disk drive would position it on a spindle. The spindle 

is connected to a disk drive motor that would spin the disk at 360 revolutions per 

minute. The standard disk had 77  tracks  numbered from track 0 at the outside track 

furthest from the hole to track 76 at the innermost track. Tracks were concentric 

circles—each track began and ended equidistant from the center hole. A track con-

tained 26  sectors  (sometimes called  blocks ), the first sector numbered 1 and the last 

sector 26.  6   Each sector contained 128 bytes of data, plus some control information, 

such as which sector number it was. Floppy disks were two-sided, with the sides 

numbered, not surprisingly, 0 and 1. There was a small hole called the  index hole  

near the center hole that was used by the disk controller to find out where the first 

sector of each track was. Since all tracks had 26 sectors, the tracks were longer on 

the outside and shorter on the inside, but each track held the same amount of data.  7    

6 Tracks started at 0, but sectors started at 1.  
7 This is no longer true in modern hard disks.  
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    The disk system was comprised of the  disk drive  and  disk controller.  The disk 

drive held and rotated the disk media (a floppy disk), which actually contained the 

stored data. The disk controller was usually built on to the computer’s motherboard 

or on a circuit card plugged into the motherboard. Disk drives can move a  disk 

head —which contains read and write magnetic sensors—from track to track. To 

read any individual sector on a track, the drive must wait for the sector to rotate 

under the disk head. 

 A disk controller can take commands to read or write a sector or multiple sectors 

on a given track and on a given side of the disk. When the disk drive head movement 

motor moved the head it might sometimes miss (go to the wrong track). The con-

troller would notice this (each sector of each track has the track number on it) and 

would reposition the disk head correctly. Sometimes sectors may be incorrectly read 

and again the disk controller would notice this and try to read again. The controller 

would also reorient itself to start looking for sectors on tracks starting after the index 

hole rotates around. All of these activities are invisible to the OS or even the BIOS. 

They are implemented either at the hardware level of the disk controller itself or on 

the software controlling the specialized processor on the disk controller. This soft-

ware embedded in ROMs on controllers is often known as  firmware.  

 Such a standard disk for early PC systems contained: 77 (tracks)  *  26 (sec-

tors per track)  *  128 (bytes per sector)  *  2 (sides)  ⫽  512,512 bytes of raw data 

(500 Kbytes), after being formatted by the OS.  Disk formatting  is the process of 

writing control information on the disk to divide the disk tracks into sectors. This 

standard disk was used as the basis for implementing the OS file system for PCs, 

which we discuss in the next section.  

  3.4.2 The File System 

 The OS had a simple file system built on top of the BIOS to store user and system files. 

A part of the system files that can be stored on a disk contain the binary OS code itself. 

In addition, each disk has a directory that stores information about all files stored on 

the disk, their sizes, the physical disk locations (sectors) where they are stored, and so 

on. The files stored on disk may contain any of the following types of data:

   ɀ application-produced data (documents, spreadsheets, source code)  

  ɀ application program executables (binary code)  

  ɀ directory information (the names of the files, date created, location—where it is 

stored on the disk)  

  ɀ the binary executable of the operating system (the OS executable, used to load 

or “boot” the OS)    

 To accommodate the different types of information stored on a disk, each physical 

disk is divided into three areas for a BIOS file system, as shown in  Figure 3.3 :  

      ɀ a  reserved area,  where the OS executable is placed (also called the  disk boot 

area )  

  ɀ the  file directory area  containing entries with information about each file stored 

on disk  
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  ɀ the  data storage area  for data and program files, which occupies the remainder 

of the disk and is the largest part of the disk. 

 The BIOS has a built-in table that gives the size of each of these areas. We now dis-

cuss the contents of each of these areas in more detail.   

  Disk boot area 

 The simplest part of the file system is this reserved area, which holds the OS binary 

for booting the PC. This area is not visible from the file system—it has no directory 

entry and no name. The loadable image of the BIOS, BDOS, and CCP are written 

in this area, sector-by-sector, track-by-track, starting at track 0, sector 1. These are 

not part of any “file.” They simply occupy the first few tracks of a disk. The BIOS is 

usually 2 KB, the BDOS is 3.5 KB, and the CCP is 2 KB, so together the OS binaries 

occupy the first three tracks. 

 When the computer is turned on or rebooted a small program in ROM is run that 

copies the OS executable image from disk to memory and then starts executing this 

program—the Operating System. This is called  booting  or  OS loading.   8    

  File directory area 

 The size of the directory area is fixed and is recorded in a table in the BIOS. For a 

floppy disk the directory holds up to 64 entries of 32 bytes each.  9   A disk directory 

entry layout is shown in  Figure 3.4 . Each entry in a directory contains the following:  

     1. A  user number.  This is actually a group number from 0 to 15, which allows mul-

tiple users or groups to share a disk and collect their files into a group. Notice 

that there are actually no subdirectories—all files are in one directory. Group 

numbers provide an illusion of having single-level subdirectories. In effect these 

are virtual subdirectories.  

   2. A  file name and file type.  These may be considered as one item, which is 1–8 

characters of file name and 0–3 characters of file type—often called  8.3 file 

8 In modern PCs, a similar booting is usually done from the hard disk rather than a floppy. The hard disk 
is usually preloaded with an OS by the PC manufacturer.  
9 For hard disks, it is of course much larger.  



 Chapter 3 A Simple, Single-Process Operating System 57

User Number - 1

File Name - 8

File Type - 3

Extent Counter - 2

Reserved - 1

Number of records - 1

Allocation - 16

FIGURE 3.4 

CP/M file directory 

entry.

names.  If the actual file names are smaller than 8.3 they are padded with spaces. 

Not all characters are allowed in file names. A period is used to separate the file 

name and type (e.g., MYFILE.DOC) but is not stored in the directory, so using 

periods or spaces is not allowed. While utility programs that come with the OS 

do not allow illegal names, the OS calls that an application program uses to cre-

ate, open, or rename a file do not actually check the names, so an application can 

create files that may not be accessible to other programs.  

   3. An  extent counter.  An extent is the portion of a file controlled by one directory 

entry. If a file takes up more blocks than can be pointed to by one directory entry 

it is given additional directory entries. The extent is set to zero for the first part 

of the file and then is sequentially numbered for each of the remaining parts of 

the file. Large files will have multiple directory entries with the same file name 

but different file extent numbers and a different group of allocation pointers in 

each entry. Since files may be deleted and their directory entries reused, the 

extents may not be in order in the directory.  

   4. The  number of records.  This is actually the number of 128-byte records used in 

this extent. If the count is 080x, this extent is full and there may be another one 

on the disk. File lengths are rounded up to the nearest 128 bytes, so applications 

had to know how much data was really in the last record. This lead to the con-

vention of a Control-Z character to mark the end of a text file.  

   5. An  allocation map.  This is a group of numbers of (or pointers to) the disk blocks 

that contain the data for the file. There are eight pointers of 16 bits each. Each 

value points to a sector on the disk that contains part of the file. If the file is so 

small that it contains fewer than eight sectors, then the unused pointers are set to 

zero. If the file is too large and eight sectors are not enough to contain the file’s 

data, then an additional extent is allocated and another directory entry filled in. 

On some systems there were 16 pointers of eight bytes each. Such inconsisten-

cies were one of the main problems that restricted the growth of CP/M.    

  Data storage area 

 The data storage area contains the data blocks for the files. For the system to 

access a file, the user or application program would provide the file name and the 
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file system would search the disk directory to determine if a file with that name 

was stored on the disk. If the file name was found, the directory entry would have 

the addresses of the sectors where the file was stored, so the file data could be 

accessed. 

  Note:  Actually, the disk structure is just a bit more complicated. If you count 

up the total number of file pointers as described above, in all files, 64 (directory 

entries)  *  8 (file pointers per entry) gives 512 sectors, but there are more sectors 

(77  *  26  ⫽  2002) on a floppy disk! This would not allow one to use most of the 

floppy space. So, in reality, rather than pointing to an individual sector, sectors are 

grouped together into  allocation blocks,  which are consecutive sectors grouped 

together. The size of these allocation blocks is determined by the size of the disk, but 

in typical early floppies it is eight sectors, or 1024 bytes. So in reality each directory 

entry points to up to eight allocation blocks of 1024 bytes each. 

 Here are a few observations about and limitations of this file system structure:

   ɀ There are no dates or times in the directory.  

 ɀ  There is no explicit file size entry, so the file size must be calculated roughly 

from the number of pointers in its directory entry and possible extents.  

  ɀ There is only a single directory with no subdirectories, but group numbers give 

the illusion of a one-level subdirectory.  

  ɀ A file must be stored entirely on one disk.  

  ɀ If the directory is full, so is the disk. The directory is a fixed size, so only 64 files 

or fewer can be stored on a floppy disk.    

  An Observation:  One of the biggest complaints against CP/M was the 8.3 file names, 

something that should have been relatively easy to fix. Directory entries, where 

file names are stored, are 32 bytes long. They could have easily been lengthened to 

48- or 64-byte directory entries, allowing 23.3 or even 40.3 names. But the original 

design was simple, and the designer did not want to use too much disk space for the 

directory. The design compromise was made to minimize the disk space (and mem-

ory space) for each directory entry. This was particularly important for floppy disks 

where the file contents and directory entries together were a few hundred kilobytes.     

  3.5 PROCESS AND MEMORY MANAGEMENT 

  In the more complex OSs that we will study later, the topics of process and memory 

management are covered first since processes correspond to what a user wants to get 

done, so they are of primary importance. But in this simple OS, process manage-

ment and memory management are rather limited, since only one program at a time 

is executing. And the issues of hardware abstraction and file systems were therefore 

more significant. 

 Still, even with this limited functionality, there are several process and memory 

issues that the OS must handle. First, we discuss the typical flow during program 

execution. Then we discuss command processing. Finally, we discuss memory man-

agement and an overlay technique that can be used when the program to be created 

is larger than the main memory space available.  
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   3.5.1 Creating and executing an application program 

 An application program is usually written by typing the program language instruc-

tions into a text editor. It is then compiled or assembled (or both) and finally linked 

together with library routines using a link editor. This results in a  program image  

file that is ready to be loaded into memory and run. The program image has been 

given many names, for example  program executable,   program binary,  or  run-

nable program.  After a few rounds of debugging this program is ready for use. 

 In order for a program to begin running, its executable binary code file must be 

loaded into memory. This loading process is usually done by the CCP. The CCP is 

itself an application program that provides a few  built-in functions —for example, 

the “DIR” command gives a directory listing of all files, and the “ERA” command 

erases a file or a group of files. CCP accomplishes its work by making only BDOS 

calls—it never calls the BIOS or hardware directly. This makes the BDOS more 

easily portable to a new hardware system. When a name is entered to the CCP, it 

first looks to see if it is the name of a built-in command. If so, then that command is 

executed. If the name is not that of a built-in command, then the CCP tries to find an 

executable program file on the disk with that name. If one exists, then the contents of 

that file are loaded into memory and the program starts running. There was a special 

code in the program header that would identify the file as being an executable pro-

gram. Alternatively the command the user entered might name a text file that was a 

string of commands that the CCP should read and execute one at a time. These were 

called  subfiles  in CP/M after the standard extension “.sub,” which was the second 

part of the file name. Command files of this sort are commonly known as  scripts  or 

 batch  files. 

 In CP/M, normal application programs are always loaded into RAM beginning 

at address 0100 Hex. Having a fixed load address for all programs makes it easy for 

compilers and linkers to create executables, since the program starting address will 

be known in advance. 

 Programs typically need additional memory for static data—for example, 

predefined fixed-size data such as static strings. In addition, a stack is needed for 

dynamic data—for example, temporary variables. The predefined static data are 

loaded into memory following the loading of the program binary file. Additional 

memory following static data is reserved for other data.  Figure 3.5  illustrates the 

general memory map for the various parts of an executing program. 

 The stack is initially placed at the highest location in memory that is just below 

the OS code. The stack grows in memory toward lower memory addresses (see 

 Figure 3.5 ). After loading is complete, the OS calls the first instruction of the pro-

gram as though it were calling a subroutine. The program executes until it has fin-

ished its work, at which time control simply returns to the CCP program that loaded 

it. The CCP might still be in memory, but if it is not then it is simply reloaded from 

the disk. As a program executes it may use all available memory anytime it wants to 

except for reserved memory containing the OS or parts of the OS. 

 The process executes from start to finish. If it requires I/O, the CPU will remain 

idle until the required I/O is completed. For example, the process may wait for user 

input from the keyboard. For large programs that do not fit entirely in memory, the 
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program code is typically divided into several segments that are brought into  memory 

separately. When one segment calls a function whose code is not in memory, a tech-

nique called memory overlay is used to bring in the new code segment in place of 

the other code segment currently in memory. Implementing overlays was left up to 

the application program, though it usually had some assistance from the application 

libraries. We discuss this technique further in  Section 3.5.3 .  

      3.5.2 Command processing via the CCP 

 In our simple OS the CCP is a program pretty much like any other. The CCP is per-

haps better structured than some programs since it only uses OS system calls and 

never bypasses the OS. In other OSs, the component similar to the CCP is sometimes 

called a  shell  or  command interpreter.  A user can directly invoke CCP commands 

by typing a CCP command or the name of an executable program file. Still another 

name for this kind of command interpreter is  command line interface,  since each 

command is entered on a screen line and is submitted to the command interpreter 

when the user presses the <carriage return> or <enter> key. The CCP was linked to 

load in high memory just under the BDOS. When a program was finished running, it 

would exit by returning control to the BDOS, which would check to see if the CCP 

was still intact in the memory. If it was, then the BDOS would return control to the 

CCP without reloading it. 

 Many users prefer additional functions or a different “look and feel,” menus 

or graphics, for instance. It was fairly common to replace the CCP with a shell 

more suited to a one’s likes. In many OSs one has a choice of several different 

shells. Writing a command processor or shell is a fun exercise. But like many 

programs, as you and others use it, it will need new and more complex func-

tions added, such as recalling past commands or the ability to chain commands 

together.  
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  3.5.3 Memory management 

 As we discussed in  Section 3.5.1 , the basic handling of memory by the CP/M OS is 

quite simple. All programs are loaded at a fixed address in memory. Programs are 

divided into two parts: (1) the program executable code and (2) fixed (static) data—

such as constant values in the program, character strings, and so forth. 

 The software that copies these two parts into memory from disk is called a 

 loader,  and is a part of the CCP command processor. A program also needs some 

 stack  space to store temporary variables, pass parameters to called subroutines, and 

return data from those routines. The stack was placed at the highest location in mem-

ory, immediately below the OS itself. This allowed the stack to “grow” downward in 

memory and not “collide” with the program data—unless no more memory is avail-

able.  Figure 3.5  illustrates this memory structure. 

 But CP/M had no provision for detecting a collision between the stack and fixed 

data. Such an occurrence would usually either crash the program or produce strange 

results because the CPU had no memory management registers for memory protec-

tion. Such memory overwriting bugs were difficult to find and fix and occurred fre-

quently on CP/M systems. 

 For programs written in some high-level programming languages—for instance, 

Pascal or C—there is a large pool of memory that can be dynamically allocated and 

returned called the  heap.  The heap was set aside by the loader, but managed by rou-

tines in the high-level language runtime libraries. Not all programs used a heap. If 

there was one, it would be located in memory between the fixed data and the stack. 

 A  program header  was located in memory immediately preceding the exe-

cutable binary code. The program header contained pointers to memory addresses 

where the stack is located and where the fixed data is located. It also contained a 

pointer to strings passed as parameters to the program when the user typed the com-

mand and supplied arguments to the program. For example, if a user entered a com-

mand to run a text editor, the command line would probably also include the name 

of the file to be edited. 

 Why was the OS located in the highest part of memory rather than in low mem-

ory? Because CP/M systems did not all have the same amount of memory. Some 

computers might have 32 KB of memory, others 48 or 64 KB. So the operating 

system would be generated (configured) to occupy the highest locations in mem-

ory, leaving a fixed address—always 100 Hex—to load programs. If the OS became 

larger it would start at a lower address in memory, but not force any program to 

change addresses, although a user program would have less memory remaining in 

which to run. This meant that when the OS was upgraded to a new version it was not 

necessary to relink all the application programs.  

  3.5.4 Overlays 

 The maximum size of memory in a CP/M system was constrained by the amount of 

memory that the CPU could address. Initially, this was 64 KB but some later versions 

of the CPU allowed more memory and some computers had additional hardware 

added to provide “banks” of memory that could be mapped into memory spaces by 

program control. What happened if a program would not fit in the available space? 

This problem had been an issue since the earliest days of computers. 
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 Of course, programs that manipulated large amounts of data could keep some 

of the data on disk, rather than in memory, bringing in only what was needed at a 

given time. But what could be done about programs whose binary code was large? 

Those programs could similarly bring in only those parts of the program needed for 

some part of the processing. These parts or programs would “overlay” each other 

in the same locations in memory and were called  overlays.  Programs that had large 

amounts of code would be divided into a main part of the program and other pro-

gram sections. The main part of the program would always reside in memory. Those 

sections of the program that were only needed sometimes would be brought into 

memory as overlays that replaced other sections. Typical candidates for overlays 

were some large computations or error-handling routines. 

 The programmer would have to identify those parts of the program that should 

be grouped together into an overlay. When designing overlays, it is important to avoid 

one overlay calling into a different overlay that would take the place of the first one 

in memory. The actual loading of overlays was done by the programming language 

runtime library, which used CP/M system calls to load an overlay. The program-

mer would indicate to the compiler which parts of a program—which functions and 

procedures—would be in each overlay, and the compiler produced the loadable over-

lay code.  Figure 3.6  illustrates these concepts. Here, a program has one main part and 

three overlays. Only one of the overlays would be in memory at any particular time.  

    An example of a program that might use overlays is an assembler. The source 

program is typically read twice. During the first pass the assembler is building a 

symbol table and allocating space for both code and data. Then the source program 

is reread and the actual code generation takes place. Now the assembler has suf-

ficient information to generate the instructions and fill in the addresses they refer-

ence. Clearly these two passes over the source program do not reference one another 

directly and can thus overlay one another. In this case there are often at least two other 
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possible overlays. One would be an initialization phase that takes in the user control 

options, opens the input file, allocates the symbol table, and so on. A second might 

be providing additional printed output about the file such as a listing of the generated 

code with the user comments. While that full assembler might run in a large machine 

without overlays, smaller machines might not be able to run it. In addition, the size of 

the source program that can be handled is limited by the storage space for the symbol 

table, so that an overlaid assembler can handle much larger programs.  

  3.5.5 Processes and basic multitasking 

 Even in early systems with limited memory and slow processors, users wanted to do 

some work in parallel. One very common request was the ability to print a file in a 

 background process  while editing (or playing a game) in a  foreground process.  

This processing of printing while allowing another foreground program to run was 

a very widely requested feature. Printers were slow, and starting a print job and then 

leaving your computer printing and walking away for 30 minutes or an hour was 

very boring, and wasteful of a most valuable resource—a person’s time. This was 

especially true if something went wrong and the user returned 30 minutes later to 

find that the printer was waiting for user attention. 

 CP/M’s solution was a background printing process. A small program was 

loaded into memory at the highest location of memory, immediately below the OS. 

This program initialized itself and then returned control to the CCP, allowing another 

program to run. When a user wanted to print in the background, the name of the file 

to print was passed to the background print handler. This would print a little bit of 

the file—a line or two—whenever it got control. The background process would 

typically get control any time a foreground process did a system call, or possibly by 

setting a timer and causing an interrupt of the foreground process. 

 Background printing gave the appearance of the computer doing two things at 

once, something called multitasking. The background print handler would allow only 

printing in the background, and nothing else. Users liked the idea of doing work in 

parallel, especially input and output that was very slow, like printing on early print-

ers. We will see that all newer OSs, even those on very small devices, have some sort 

of multitasking facility.     

   3.6 SUMMARY 

 In this chapter, we presented the typical components 

of a simple OS with limited capability. We based our 

presentation on the features of an early personal com-

puter operating system, CP/M, and the basic hard-

ware of early PC systems. We started by describing 

the predecessors of simple operating systems, called 

monitors, and discussed how they evolved into early 

operating systems because of the need for standard-

ization. We then described the characteristics of the 

early PC systems for which this type of OS was 

used. Next, we discussed how input/output was man-

aged in such an early OS. We saw that application 

programs often ignored the use of standardized I/O 

functions provided by the OS to achieve better per-

formance and more flexibility. 

 We then continued with a description of the file 

system in such a simple OS, and the standard disk 

devices that the file system was based on. We then 



64 Part 2 Building Operating Systems Incrementally: A Breadth-Oriented Spiral Approach

moved on to discuss process and memory manage-

ment. We saw that a program binary was always 

loaded starting at a fixed predefined memory location 

because only one program was in memory at a time. 

Other parts of memory stored the OS binaries and fixed 

program data. A stack area was reserved for storing 

dynamic data. We discussed the techniques of overlays 

for large programs that could not fit in memory. Over-

lays allowed programmers to divide a program into 

sections that would replace one another in memory 

when needed. Finally, we discussed an early example 

of multitasking—that of background printing.  
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  REVIEW QUESTIONS 

    3.1 What kinds of limited functions did early PC 

monitor programs provide?  

   3.2 What kind of error checking was done on the argu-

ments to the calls to the monitor program? What 

was the likely result?  

   3.3 In the PC era there were a multitude of small 

startup hardware vendors and all of their users 

were clamoring for software. What was the char-

acteristic of early monitors in this environment 

that led to the development of a real OS?  

   3.4 What was the overriding characteristic of the 

hardware systems that CP/M and MS-DOS were 

designed to run on and what were some of the 

design decisions that were made as a result?  

   3.5 The basic I/O needs of early programs were fairly 

modest. Some applications, however, had some-

what more complex needs. In many cases the 

functions provided by the monitor were much 

slower than equivalent functions that were in the 

BIOS code. What did the application program-

mers do when the functions the OS provided 

hid the  functions that the application needed or 

were so slow that the performance of the appli-

cation was unacceptable? What problems did that 

cause?  

   3.6 Besides the keyboard and video, what was the 

other major I/O system that was very important in 

the early OSs?  

   3.7 To the command interpreter, most of the com-

mands that a user types are executed by finding a 

program on the disk with that name and running it. 

A few commands are not mapped to programs on 

the disk. Where do they reside?  

   3.8 On a floppy disk (or a hard disk) the heads on all 

of the surfaces will be in the same relative position 

over the surfaces measured in from the outside 

of the disk. As the disk rotates a certain portion 

of a surface will pass under each head. What is 

that portion of the surface called? That portion is 

divided up into smaller pieces. Those pieces are 

the smallest addressable portion of the disk. What 

are these pieces called?  
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   3.9 CP/M divided the contents of a floppy disk into 

three parts. What were these three parts?  

   3.10 Why does the CP/M OS reside in high memory 

instead of low memory?  

   3.11 True or false? Overlays are an obsolete technique 

used when system memories were very small and 

are no longer used in modern systems.  

   3.12 While CP/M did not allow true application mul-

tiprocessing, it did allow one sort of background 

processing. What was that?     
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  I
n this chapter we discuss a more complex class of operating systems than the one 

discussed in Chapter 3, and one that is considerably more modern. We look at the 

Palm Operating System™  1   developed by Palm, Inc. The CP/M system, which was 

covered in the previous chapter, originally supported only one program (or process) 

at a time. Toward the end of its major period of use it was extended to include func-

tions such as background printing. In contrast, the Palm OS was designed from the 

outset to support the execution of several processes at the same time. 

 We start this chapter in Section 4.1 with an overview of Palm OS and some 

background about the underpinnings of the kernel. There are several other OSs in 

1 The OS functions described in this chapter cover releases of the Palm OS prior to release 5. Release 5 
is a different OS and supports a different CPU. We feel that there will continue to be a class of devices 
and corresponding OSs that will function at approximately the level described, so we have not changed 
the material to correspond to the later versions. The functions covered in this chapter are probably more 
representative of the functions that students will find in similar low-end OSs for some time to come. For 
example, as nanotechnology evolves, it is quite likely that such machines will often contain computer 
systems that will require an OS and there will be no secondary storage. Furthermore, it currently seems 
likely that rotating data storage devices may soon be a thing of the past, and that most new computers 
will have vast amounts of primary storage and some removable tertiary storage but no secondary storage. 
Thus, all OSs might function like this OS at some point.  
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this class, most notably EPOC by Symbian™ and scaled-down versions of Linux 

and Windows NT. The latter is called the Windows Mobile (formerly the Pocket PC) 

OS. At the end of the chapter we look at these other OSs and also some more recent 

developments in this highly dynamic field. The Palm OS was developed for small 

handheld devices called  personal digital assistants  ( PDA s) or  personal informa-

tion managers  ( PIM s) that are typically used by a single user to keep track of per-

sonal schedules, contacts, and to-do lists or to access email or the World Wide Web 

while on the move. These OSs are now used in cellular phones that have much of the 

same functionality as a PDA. The Palm OS usually runs only a few applications at a 

time, and can concurrently run some OS processes in parallel with the small number 

of applications. Thus, it supports a limited number of concurrently executing tasks. 

It provides more features than the single-tasking type of OS described in Chapter 3. 

It also serves to illustrate a modern version of a simple OS. 

 In Section 4.2 we discuss some unusual hardware characteristics of the hand-

held computers that use the Palm OS. These special characteristics force the choices 

of some of the decisions made in the Palm OS design. In the CP/M world we saw 

at the very end the introduction of multiple programs in memory at the same time, 

providing such functions as pop-up windows and background printing. The Palm OS 

has much more complex multiprogramming, so in Section 4.3 we discuss the sched-

uling of application processes and OS tasks in the Palm OS. 

 When multiple programs are running in a system at the same time, memory 

management becomes more complex. A program can no longer assume that it can 

use all the memory there is. The OS must take on the responsibility of allocating sec-

tions of memory to applications as they ask for it. It must therefore track the memory 

used by each application and recover it when the application ends. Therefore, Sec-

tion 4.4 moves on to discuss memory management. Section 4.5 covers the organiza-

tion of files in the Palm OS, and Section 4.6 covers the basic I/O functions that the 

Palm OS provides. 

 Early PDAs were text based to a large extent, though many had special icons or 

small portions of the screen that had graphics capabilities. Now such devices always 

have graphics-oriented displays. CP/M was a text-based OS, so in this chapter we 

also introduce some simple characteristics of a graphical user interface, or GUI. All 

modern OSs include support for a GUI, though they are not always intrinsic to the 

OS itself. Programs on a CP/M system assumed that they were in total control of 

the system, so they were designed to interact in a certain way. Programs that work 

in a GUI have to cope with events that occur asynchronously to the main flow of 

the program. So this chapter also introduces event-oriented programming. Section 

4.7 describes the display subsystem and Section 4.8 first discusses event-oriented 

programming and then describes the design of a typical Palm OS application. We 

conclude with a chapter summary in Section 4.9. 

 Later in the book we cover a few more advanced features of the Palm OS and 

similar systems. Chapter 20 discusses several interesting subsystems in the Palm 

OS and explains the nature of the cross-development systems needed to develop 

programs for such a limited environment. It also covers some of the developments in 

later releases of the Palm OS.  
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   4.1 INTRODUCTION: A SIMPLE MULTITASKING SYSTEM 

  The Palm OS was developed by Palm, Inc. for use with their small handheld comput-

ers. A typical unit is shown in  Figure 4.1 . This platform has become very popular. 

Several hardware manufacturers have produced devices that conform to this tech-

nology, including Handspring, Sony, and IBM. The same OS is also used in several 

cellular telephones, including the Treo and the Samsung 500. The environment in 

which Palm OS runs has several characteristics that are unusual compared to most 

general-purpose computers or PCs. These characteristics forced some unusual deci-

sions to be made when developing the OS. However, these characteristics are typical 

in many systems that will be seen more and more in the future, so that far from being 

a distraction, these characteristics will actually be quite important to current and 

future OS architects. These characteristics also limit the design goals of the OS so 

that it is only a little more complex than the single-process OSs covered in Chapter 

3. They are summarized in  Table 4.1 .  

  The first of these unusual characteristics arises from the fact that these handheld 

computers are grown-up versions of the PDAs that preceded them. They are designed 

to give top priority to servicing the interface with the user—so much so that the OS 

is actually built on top of a real-time kernel that Palm, Inc. licensed from another 

vendor.  2   For example, this real-time kernel allows the system to support the use of a 

stylus to “write” on a small section of the liquid crystal display (LCD) screen. The 

screen is touch sensitive, and touching the screen (preferably with the stylus) will 

cause an interrupt that will give the coordinates of the touched screen location to a 

2 That system is the AMX™ Multitasking Executive from KADAK Products Limited.  
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FIGURE 4.1 

A Palm Pilot.



70 Part 2 Building Operating Systems Incrementally: A Breadth-Oriented Spiral Approach

routine that will track the movement of the stylus across the screen. The OS attempts 

to read and interpret the handwriting in real time—this is known in the Palm OS as 

 Graffiti input.   3   While the OS is handling this real-time task, it also allows a few 

applications to be running on the machine at the same time. Having multiple applica-

tions as well as the real-time kernel running concurrently necessitates a  multitask-

ing  or  multiprogramming  system design. 

 The Palm OS is designed for supporting applications such as the following:

   ɀ Reading email  

  ɀ Keeping track of contacts in an address book  

  ɀ Keeping records of expenses  

  ɀ Enhancing to-do lists with alarm reminders  

  ɀ Playing simple games such as Sudoku  

  ɀ Accessing information through the WWW   

It is not intended to support multiple users at a time or to be a Web server. Accord-

ingly, the real-time and multitasking characteristics of the OS are not exposed to the 

application programmer through the application programming interfaces (APIs). 

 Another unusual aspect of these systems is that in general there is no secondary 

storage—all of system memory is primary storage (electronic main memory). The 

limited memory and CPU performance in these handheld systems lead to special 

designs for memory management and some special treatment for basic input and 

output operations. Some of these devices come with plug-in capability. This allows 

various types of  cards  or  modules  to be attached to the device. These cards can 

be memory cards preloaded with specific applications, global positioning systems 

(GPS) navigational devices, digital cameras, or even hard disks. The basic hardware, 

however, has no secondary storage, so the design of the OS must reflect this. Support 

for secondary storage has been grafted onto the main system design, as we discuss 

in more detail later. 

 The Palm OS supports a GUI to display output to the user. There are special 

considerations for programming this interface because of its small screen size. In 

particular, there is usually only a single window (form) visible on the screen at any 

point. There may be smaller dialog or alert boxes that are displayed in front of that 

single window. Finally, these systems support several mechanisms for accepting 

3 In 2003 PalmSource, Inc. lost a suit over the use of the original Graffiti software. The software now 
used is known as Graffiti 2. We use the simpler term as a generic name for the function.  

TABLE 4.1 Unusual Characteristics of the Palm OS

Real-time OS tasks but non-real-time applications

All solid state memory

Low power to conserve batteries

Single-window GUI

Multiple text input options

Expansion through plug-ins
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user text input but they try to hide the differences between these mechanisms from 

the applications.   

  4.2 THE PALM OS ENVIRONMENT AND SYSTEM LAYOUT 

  There are several characteristics of Palm devices that had to be taken into consider-

ation when designing the Palm OS. These were:

   ɀ Basic memory is volatile RAM  

  ɀ Typically no secondary storage  

  ɀ Small screen size  

  ɀ Keyboard is not standard  

  ɀ CPU is slow to reduce battery drain     

   4.2.1 Basic memory is volatile RAM 

 There are several unusual characteristics about the handheld computers that the 

Palm OS is designed to support. First, the devices are battery powered, and the 

design of the hardware and the OS reflect this. If the system is unused for a few min-

utes it will put itself into a  sleep mode  that uses very little power. The CPU is still 

running so the OS can sense when the user presses buttons, but it is running very 

slowly and in a small loop where it is waiting for interrupts. Power to the memory 

is actually  never turned off.  Even when the CPU and the OS are shut down the 

memory is still powered on. The hardware has a small current flow to maintain the 

contents of memory. (It is also possible to add memory modules to the system that 

contain read-only memory [ROM] or programmable read-only memory [PROM], 

sometimes called flash memory, but the basic design assumes that all main memory 

is volatile.)  

  4.2.2 No secondary storage 

 The second unusual characteristic about these handheld systems is that in the 

original design they do not have any secondary storage—no disk, CD, DVD, or 

tape drives. All data and programs are kept in a single address space. Some of this 

memory is ROM on modules (cards) that can be removed from the computer. This 

allows programs and databases to be loaded onto these modules and inserted into 

the machines as desired. Whether on a removable card or built in to the machine, all 

of memory is visible all the time so that all programs and all databases are always 

directly accessible. Some vendors of Palm OS–compatible hardware have added 

a separate class of memory that is accessed through I/O commands just as a sec-

ondary storage device is. This memory is not part of the main address space and 

thus requires special OS commands to access it. This class of memory is removable 

and is intended to be used to move information from one system to another. It is 

designed to emulate a disk drive so that it is physically compatible with other hard-

ware systems as well.  
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  4.2.3 Small screen size 

 The next feature is the nature of the LCD that presents the GUI to the user. Its system 

function is similar to CRT (cathode ray tube) or LCD screens used in other current 

systems, such as PCs utilizing OSs with GUI implementations. The fundamental dif-

ference is the size of the screen. Since these devices are literally designed to fit in a 

user’s hand, the screen display is limited. With most other GUIs there can be multiple 

windows open on the screen at the same time. Often these windows overlap such that 

parts of some windows are hidden by other windows that are “in front” of them. It is 

usually possible to “maximize” one window so that it fills (almost) the whole screen. 

 In contrast to other GUIs, an application window in the Palm OS will fill the 

whole screen. The application may still use pull-down menus and dialog boxes but 

there will usually be no other application windows partially hidden behind the win-

dow of the running application.  

  4.2.4 No keyboard 

 One final interesting aspect of PDA handheld systems is that they initially did not 

have a keyboard. There are some attachable keyboards available, and some later 

models do have an actual keyboard, but this is not the way the system is normally 

assumed to obtain user input. The usual mode of input is through Graffiti input, as 

discussed in Section 4.1. This is generally acceptable, as most applications for PDAs 

do not expect large amounts of input. 

  Figure 4.2  shows an overall layout of the Palm OS. Immediately above the hard-

ware is a software layer known as the hardware abstraction layer (HAL). Its  function 
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is to isolate the rest of the software from the specifics of the hardware devices. This 

allows the developers of the OS kernel to build an OS that can easily be moved to 

another hardware platform. The kernel of the OS lies on top of the HAL. Many ser-

vices provided by the OS are not part of the kernel, but lie above it. On top of the 

System Services area (which is always there) would come optional system library 

routines; on top of that would come application library routines, and, finally, the 

applications themselves.  

        4.3 PROCESS SCHEDULING 

  In the Palm OS multitasking environment, one needs to distinguish between 

OS processes and application processes. In this section, we discuss some pro-

cesses of each type, and describe how the Palm OS handles and schedules these 

processes.  

   4.3.1 Processing Graffiti input—A real-time OS task 

 As was mentioned in the first chapter, there are many tasks that can best be done 

in the OS. There are several reasons for putting functions in the OS. Often it is 

because they are used by many applications. Putting the function in the OS simpli-

fies development for the application programmers, guarantees that all applications 

will function similarly, and decreases the likelihood of having bugs in that part of the 

applications. The prime example of such a task in the Palm OS is the Graffiti input 

function. The display of the Palm OS systems is an LCD panel that is touch sensi-

tive. Users generally input data into the Palm by drawing characters on this screen. 

This is such a specialized task that it is done by the OS. Two OS tasks are involved: 

 stylus tracking  and  character recognition.  

 In order to track the path of a stylus across the face of the Graffiti area of the 

LCD screen, the CPU must rapidly and repeatedly check the current location of 

the stylus. This tracking is a real-time task because the system needs to be able to 

guarantee that it can check the position of the stylus frequently and quickly enough 

to track the movement of the stylus. This task is further complicated because the 

CPUs in these devices are running more slowly than those in PCs or workstations. 

The tracking task will recognize when the stylus changes direction and will divide 

the path into small vectors, which it will pass to the character recognition task. 

Once the position vectors of the stylus are analyzed and discovered, then the char-

acter can be recognized. Again, this is done by the OS. Every application developer 

does not want to have to write a handwriting recognizer. Indeed, this is one of the 

advances in PDA technology that the Palm OS brought to the market. This is a 

task that can be approached more leisurely than the tracking of the stylus. As the 

characters are recognized, the recognition task will give them to the application, 

which must display them back to the user in appropriate places on the LCD screen 

so that the user will get feedback about the characters input—just as with keyboard 

input on a PC.  



74 Part 2 Building Operating Systems Incrementally: A Breadth-Oriented Spiral Approach

  4.3.2 Application processes—One focus at a time 

 In most systems a user can be running several applications at the same time. In the 

Palm OS only one user application will be visibly running at a time. Most Palm appli-

cations, however, do not have an “exit” function that the user can invoke. When the 

user selects a new application, any application that was running will be hidden from the 

user by the OS. So in the Palm OS, only one application will be running at a time that 

is in  focus —that is, in control of the  screen window,  accepting and displaying input. 

However, other applications may run at times but do not have the focus. One example 

of such activity is a text search function. If the user does a text search, the Palm OS will 

sequentially call every application that has indicated to the OS that it will provide a text 

search function for its own database files. Each application will be asked to search its 

database for the search string that the user has input. These applications, however, will 

not gain control of the screen, and will only report their results to the OS. 

 Another example of a task that is running but does not have the focus of the 

screen is found in the  Sync application.  This application synchronizes database files 

on the handheld unit with those on a PC. The PC is running a corresponding syn-

chronization program and the two systems communicate using some type of serial 

communication link. This connection might be an infrared or Bluetooth™ link or 

a USB cable. While this application will normally have the focus, there is no user 

input while the synchronization is running. However, the user might want to stop the 

synchronization before it finishes. One way to make this happen would be for the 

sync application to be in a loop, sending a block of data and then checking the screen 

for a stylus tap. However, this would slow the serial communication and would delay 

the response to the tap. Instead, the Palm Sync application uses two tasks: a real-time 

task to respond to screen taps via an interrupt and a synchronization application that 

can devote all its time to the communication task.  

  4.3.3 Typical user applications 

 Most Palm OS applications primarily involve a database and GUI interface and are 

designed for organizing information. Typical applications include to-do lists, address 

and contact information, appointment calendars, and various alarms. As such, they 

do not directly involve real-time tasks. As was previously described, the OS uses 

real-time tasks for stylus input. The applications themselves merely input and dis-

play information about things such as the user’s appointments. Normal user applica-

tions, therefore, do not need to start extra tasks, as does the Sync system application. 

The main part of each application is a loop called the  event loop.  The OS “launches” 

the application. The application checks to see if this is the first time it has been run. 

If so, it will initialize any databases it maintains. It then enters the loop in which it 

waits for events. Most events are activities such as the recognition of a character by 

the Graffiti input or the selection of an item in a menu list. 

 There are a few unusual system events such as a notification to all applications 

that the system is about to enter sleep mode. Another frequent type of event is the 

“appStopEvent.” As was mentioned before, when the user selects another application 

to run, that application will become the active application and the OS will force the 
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currently running application to stop. In a different environment another OS would 

not want to stop an application merely because it did not have the focus. Too much I/O 

and CPU processing would be required to restart the application if the user switched 

back to it. On Palm handheld systems, however, there is no need to do such tasks as 

allocate memory to the program, read the executable module from a disk drive, and 

open its files, since both the program and the files are already in main memory at all 

times. If the user reselects an application that has been stopped, all the application 

does is realize that its files are already initialized and go into its loop of checking the 

queue of events that it needs to process. For a typical application that is merely wait-

ing for the user to select some action from a menu or via the GUI, stopping may not 

mean much. But a game where a user is playing against the computer probably will 

pause its actions if the user switches to another application, for example.  

  4.3.4 Will the real scheduler please stand up? 

 As far as the actual process scheduler used by the Palm OS, it is a preemptive mul-

titasking scheduler. This means that it is prepared to run many tasks, shifting among 

them as needed in order to service the needs of the system. Different types of tasks 

have various priorities and the OS scheduler will dynamically determine which task 

is the most important and will interrupt a less important task to run a more important 

one. Interrupting one task to run another is called  preemption.  The CPU is being 

taken away from the less important task so the more important task can run first. 

Various types of OS CPU schedulers will be discussed in more detail in Chapter 9.    

  4.4 MEMORY MANAGEMENT 

  Because there are many processes in a Palm system that are sharing the primary 

memory, the OS must provide lots of memory management functions. The first job 

is to see that the various processes don’t access any locations outside their assigned 

memory. It must also keep track of memory that is not currently in use.  

   4.4.1 Memory fundamentals 

 Memory access in the Palm system uses 32-bit addresses, allowing for a 4 GB total 

address space. The actual physical memory is on one or more cards and the view of 

memory that the application sees reflects this. Each card has a minimum 256 MB 

portion of the logical address space. The cards are normally replaceable so the 

amount of memory in a system can be upgraded. While initial hardware designs sup-

ported only one memory card, newer systems allow for more. Memory cards may 

contain three different types of memory:

   ɀ  Read-only memory  ( ROM )  

  ɀ  Programmable read-only memory  ( PROM;  also called  flash memory ) or 

 nonvolatile RAM  ( NVRAM )  

  ɀ Random access memory (RAM)   
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All cards contain at least some RAM; the presence of the other two types of mem-

ory on a card depends on the card. The OS and the entire initial set of applications 

were initially contained in ROM but are now usually in PROM so that they can be 

upgraded. Additional applications can also be installed in the PROM or RAM. 

 Logically, the RAM is divided into two sections: (1) one section of the RAM 

is treated as being volatile and is called  dynamic RAM  and (2) the other section of 

RAM is treated as being  nonvolatile   4   ( NVRAM ) and is called  storage RAM.  

 If there is PROM on the card it is always considered to be storage RAM since 

it really is nonvolatile. The dynamic RAM is used like conventional RAM as it is 

in most computer systems. The contents of the entire RAM are preserved when the 

system is  turned off  (i.e., turned to low-power sleep mode). However, when the sys-

tem is  turned on  (or  booted ) the contents of the dynamic part of the RAM are reset 

by the OS. The storage portion of the RAM is used in the same way a disk drive is 

used in most systems—to contain  persistent data  that is intended for retention for 

a long time (i.e., files or databases). Storage RAM can also contain extensions (and 

presumably fixes) to the OS as well as additional applications. 

 Since the cards are replaceable, there needs to be a mechanism for preserving 

the data contained in the storage RAM. The method is to use the Sync application 

to synchronize the contents of the storage RAM with a PC, replace the memory 

card, and then resynchronize the Palm with the PC. When used this way the PC is 

a backup device for the memory card contents. Alternatively, we can consider the 

Palm to be a  mobile device  that  caches  copies of part of the user’s files and data-

bases that normally reside on the PC.  

  4.4.2 Allocating memory 

 Memory is managed by the Palm OS as a  heap   5  —that is to say that pieces of the 

memory are allocated and tracked by the OS and accessed within the heap as the 

application program runs and finally is released by the programs and returned to 

the available pool of memory by the OS. Those pieces are known in the Palm OS as 

memory  chunks.  There are a minimum of three heaps, one for each type of memory: 

ROM, dynamic RAM, and storage RAM. In newer versions of the Palm OS some 

of these blocks of memory may be broken into more than one heap. Within each 

heap, the OS allocates chunks of memory when an application makes a request. The 

chunks can be of any nonzero size up to slightly less than 64 KB in increments of 

2 bytes. Memory chunks can be returned to the OS in any order and can be made 

smaller or larger through OS service calls. 

 Memory chunks are randomly allocated and freed and they may change size. 

If they are made larger then they may have to move to another place in the heap. 

Ultimately this process will lead to a condition known as  external   fragmentation.  

This term describes a condition where there are free chunks available for use and the 

total amount of free memory is sufficient to satisfy a new request but the largest free 

4 Nonvolatile memory does not lose its contents in case of power failure.  
5 A heap is a structure in which memory is allocated as needed in no particular sequence or order.  
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chunk is too small to satisfy the request, so the memory request cannot be directly 

satisfied. This is illustrated in  Figure 4.3 .  

  When this happens, the OS will attempt to move the currently used chunks so 

that the free space is contiguous. This kind of reorganization of fragmented space is 

known as  compaction.  There is a potential problem with this memory reorganiza-

tion: an application has been allocated these chunks of memory and has pointers to 

them. If the OS is going to move the data then the application must still be able to 

access the data. 

 To allow for this moving of chunks in memory, the occupied chunks are accessed 

in a controlled manner. First, the data are accessed indirectly by the code rather than 

being accessed directly. That way the OS can move the data in the heap and the pro-

cess will still be able to access it through the pointer. Each chunk in a heap is pointed 

to by an entry in a table called the master pointer table ( MPT ). The MPT is itself a 

chunk of RAM at the start of the heap. When a chunk is allocated, the application is 

not given a direct pointer to the chunk. Instead, it is returned a master chunk pointer 

( MCP ). This pointer is actually the offset in the MPT of the pointer to that chunk, as 

illustrated in  Figure 4.4 .  

  The second aspect of the controlled access to memory is that an application 

must  lock  a chunk prior to using it. When the application wants to use the data 

in a chunk of memory it calls the OS to lock the MCP of that chunk. The OS will 

maintain a count of the locks for each chunk and will increase the lock count for that 

chunk by 1 (the maximum is 16) and return to the application the current physical 

address of the chunk. The application can now access the chunk as it needs to. The 

application unlocks the chunk when it is finished using it and the OS will decrement 

Although there are 96 bytes of 
free space in this heap we can’t 
allocate a chunk any larger than 
16 bytes because the free space 
is fragmented.
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the lock count. When the OS needs to do compaction it will not move chunks that 

are locked by an application, as the lock means that the application is currently using 

the data. 

 Each MPT that controls one specific heap segment also contains a pointer to a 

possible next MPT. If the first MPT fills up, then a second MPT will be allocated 

from the heap and the first MPT will point to the second.  Figures 4.5  and  4.6  illus-

trate these concepts.  6    

          4.4.3 Nonmoveable chunks 

 Some memory chunks cannot be moved—for example, program code. Nonmoveable 

chunks are allocated from the high order end of the heap (higher memory addresses) 

while moveable chunks are allocated from the front (lower memory addresses). Non-

moveable chunks do not need an entry in the MPT since the only purpose of the 

MPT is to allow chunks to be moved during compaction. For consistency, even ROM 

is accessed through a chunk table. This allows an application to be debugged in 

RAM and then be moved to ROM without any changes. Since the code in the ROM 

is nonmoveable by definition, there will be no MCPs in the MPT for the heap in 

the ROM.  

6 This mechanism looks quite complex, and it  is  complex. However, it is typical of the memory access 
control mechanisms used in many OSs today, so it is worth looking at it in detail.  
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  4.4.4 Free space tracking 

 When the heap is initially created by the OS, the storage management software will 

create the empty MPT. As was mentioned, moveable chunks are allocated from the 

front of the heap and nonmoveable chunks are allocated from the end. The area 

between the two is considered to be free memory. When applications have chunks 

HEAP Space before
Garbage collection

The memory 
manager moves
chunks that are not 
currently locked to
combine unused 
chunks into larger
chunks. Chunk B
was not moved
because it was
locked.

HEAP Space after
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that are no longer needed they call the OS to free the chunk. The freed chunks are 

marked as being free and will be allocated again to any application if needed. If a 

request for a smaller amount of memory is made, a larger chunk will be split into two 

pieces, one allocated to the data and one marked free (unused). This fragments the 

heap. But how does the OS decide which of the free chunks to divide? Does it pick 

the smallest one that will fit? Does it pick the first one it finds that is big enough? 

These strategies, respectively called “first fit” and “best fit,” as well as other strate-

gies are discussed further in Chapter 10.    

  4.5 FILE SUPPORT 

  In a more traditional OS the file system will call the OS to read individual file records 

from secondary storage into main memory. The application will operate on the data 

in main memory, and if needed, the application will write the data back to secondary 

storage, again by calling the OS. In the Palm design there normally is no secondary 

storage. All data is kept in the storage portion of main memory, either flash memory 

or RAM. Since most programmers are strongly oriented to the concepts of files and 

records, this orientation is maintained in the Palm OS. The storage RAM is used as 

a kind of secondary storage. As was mentioned earlier, the contents of storage RAM 

are never erased, even when the system is turned “off.”  

   4.5.1 Databases and records 

 Data are saved in  records.  For example, a record might correspond to the contact 

information for one contact in an address book. Each record is saved in a memory 

chunk. The chunks are aggregated into collections called  databases.  (These data-

bases are what are called “files” in most OSs. They are not what we normally mean 

when we use the word “database,” a system that automatically indexes data, among 

other things.) Each database has a  header.  This header contains some basic informa-

tion about the database and a list of records in the database. This list is actually a list 

of unique IDs for the records. If the initial chunk that contains the list of record IDs 

becomes full, then another header chunk will be allocated and the first header will 

point to the second. The IDs are only unique within the address space of a single 

memory card, so all the records for a given database have to reside within a single 

memory card. While the record ID is simply an integer with no relation to the data, 

it is also possible to create a key field in each database record that can be searched 

for by a program. 

 On some (non-Palm) systems with limited data storage the data can be com-

pressed to save space. Because the CPU power in the Palm OS platforms is also 

modest, the information is not usually stored in compressed form. When secondary 

storage is on a rotating memory such as a disk there is a time lapse (latency) between 

the time when an application asks for a record and the time when the hardware can 

access the data. That time can normally be traded against the time required to do the 

compression and decompression. Since there normally is no rotating memory in the 
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Palm OS platform there is no time to be gained, so any time used for compression 

would be visible to the user. As a result, compression is not normally used with the 

Palm OS.  

  4.5.2 Resource objects 

 In a GUI there are elements that appear on the screen such as buttons, text boxes, 

slider controls, and so on. The Palm OS defines the various elements of a GUI inter-

face as  objects  called  resources.  These resources are not objects in the traditional 

sense; instead, they are merely  data structures.  Each resource has a specific structure 

so that the OS can handle it in certain default ways. For example, if an application 

wants to display a confirmation alert for a record deletion it merely defines the alert 

and calls the OS to display it.  Figure 4.7  shows such an alert box. When the alert is 

displayed, the OS does all the work of saving the window under which the alert will 

be displayed and updating the window on the form so that the user sees the alert. 

After the user confirms the alert the OS will restore the saved window to the form 

and tell the application which button on the alert box the user selected. The applica-

tion can always override the default action and cause some special action to happen. 

The resources are saved in chunks just as with database records and are tagged by the 

OS so that it knows what kind of resource each object represents.  

      4.5.3 Secondary storage 

 We mentioned that there typically was no secondary storage on the Palm OS plat-

form. From the standpoint of most applications that is true. However, other develop-

ments in the area of small handheld devices have led to a requirement for a more 

general storage mechanism. As of Palm OS release 4.0, support is included for a dif-

ferent category of memory device. These devices are assumed to have an organiza-

tion that is more typical of common secondary storage devices. One popular model 

comes initialized with a file system that mimics that found on a DOS disk drive. The 

intended use of these modules is that they would be written to by another device, 

such as a PC, and then inserted into the Palm OS hardware device for later access. 

A user can store many files on a PC and load individual files onto memory modules 

that can later be inserted in a Palm system for access. In order that the PC need not 

have special software to access regular Palm memory modules, a file organization 

that is already supported by many OSs was used. Because of the ubiquitous nature of 

the Microsoft OSs, virtually all OSs today support those file formats for removable 

secondary storage devices.    

Appointment Delete

Do you really want to

delete this appointment?
?

OK CANCEL

FIGURE 4.7 

An Alert box form.
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  4.6 BASIC INPUT AND OUTPUT     

  4.6.1 Hiding hardware details 

 The Palm OS was designed so that to a programmer the system looked like a con-

ventional computer system as much as possible. A good example of this is in the 

handling of user input. It is normal for an OS to hide many of the details of user 

keyboard input. Generally there are at least two levels of abstraction:

    1. Some programs want to see every keystroke. A good example would be a screen-

oriented text editor like the UNIX text editor program vi. Such application pro-

grams interpret every keystroke so that they can implement very powerful editing 

commands with only a few keystrokes. This is known as a  raw interface.   

   2. A second level of abstraction is available for applications that only want to read 

an entire line of input. The OS will provide various editing operations of the line 

as the user enters it. These might include character or string insertion or dele-

tion, duplication of the previous line, backspace and strikeover, and so on. The 

program only sees completed input lines. This is known as a  cooked interface.     

 Programmers used to writing in C will know the cooked keyboard interface is exposed 

as the function  stdin  (standard input). C libraries also usually provide a cooked style 

of interface for printer output called  stdout  (standard output) and a similar output 

interface for reporting errors called  stderr  (standard error). Originally, these output 

streams were designed to be directed to a hardcopy printer, but later implementations 

usually directed the stdout to the terminal screen instead of a real printer. The Palm 

OS is similar. It provides all three of these interfaces. The unusual thing about the 

handheld hardware, of course, is that it normally has no keyboard. This point serves 

to reinforce the utility of these abstractions. The user may be using the stylus to select 

character icons from a display on the handheld screen that looks like a keyboard or to 

write free form characters in the Graffiti area. The OS hides all those details and allows 

a program written in C to use stdin, ignore those hidden details, and accept an entire 

line of input without worrying about the details of how it was actually entered. When 

an actual keyboard is attached to a handheld unit it will allow the user to enter com-

mands through the keys and the application program will never know the difference.     

  4.7 DISPLAY MANAGEMENT 

   4.7.1 The hardware 

 The standard display is a touch-sensitive LCD panel with a resolution of 160  ⫻  160 

 pixels  (picture elements or dots). A high-resolution display may have up to 480  ⫻  320 

pixels. The original models were only black on white but later models could display 

a four-level grayscale. Newer models are capable of displaying color with 2, 4, 64, 

256, or 65 K colors. As with early PCs, the screen is refreshed directly from memory 

rather than being a device that must be written to with I/O instructions. As the actual 

displays vary, it is strongly recommended that applications access the display by 

using standard system calls and leave the hardware details to the OS. This is a typical 
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abstraction that an OS makes so that applications do not have to deal with hardware 

details and are thus more portable.  

  4.7.2 Top-level GUI elements 

 The Palm OS has a GUI that is based on the concept of  forms.  These forms are similar 

to what is called a window in other GUI OSs, but they normally fill the entire screen. 

A form is typically a view of some portion of an application’s data. For example, an 

address book application might have one form to view the list of addressees, another 

for editing a single address, and so on. The OS also supports an element called a 

window, but in this case the term  window  refers to an object that can be operated on 

by the system’s drawing features. There may be windows that are not forms. These 

are used to create dialog boxes, for example. All forms are windows. In most cases 

the application will not draw directly on the windows. All manipulation will be done 

as a result of the definition of  GUI elements —such as buttons or menus—or as a 

result of system calls made by the application. For example, the OS knows how to 

draw a button and how to handle a tap on the button by the user. The application only 

needs to define the label on the button, tell the OS where to place the button on the 

form, and what numeric code to provide the application when the user touches the 

screen over the button. This is presented to the application as an event. The applica-

tion will only use the low-level drawing facilities if it wants to provide animation, 

for example, or if it wants to define its own additional GUI elements that the OS 

does not provide. These application-specific GUI elements are known in the Palm 

OS as  gadgets  or  objects.  (In other OSs they are often called widgets.) They are not 

“objects” as that term is used in programming. They are merely date structures that 

may have certain subroutines associated with events such as the completion of a field 

or the “tapping” of a button on a form on the screen.  

  4.7.3 Special form types 

 There are two special types of forms that do not fill the entire screen. The first of 

these is an  alert box.  A typical alert box might be a confirmation of a record dele-

tion as was shown in  Figure 4.7 . The alert box is displayed by an application. The 

application requires that this box holds the focus until the user acknowledges the 

box. This is called a  modal form.  In some cases there is a single button the user must 

touch to acknowledge the box. In the case shown in  Figure 4.7  there are two but-

tons and the user selects one of them by touching them with the stylus. Then the OS 

removes the box from the screen. The other special thing about this form is that the 

application does not have to create the form specifically—it merely fills in a struc-

ture that defines the text that appears in the box and on the buttons and asks the OS to 

create the box. The OS will handle all the events such as the taps on the buttons. 

 The second type of special form is a  progress dialog.  This form is similar to 

the alert box but is more dynamic. It is intended for use when an application is 

doing some lengthy processing such as a file transfer. There is a separate call that the 

application can make that will change the text that is currently being displayed. This 

is normally an indicator about the progress of the application. If the application is 

sending a 100 KB, file and has sent 50 KB, it might draw a bar that is 50% colored. 
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This gives the user an indication of the time left to finish the operation. There is nor-

mally a button that the user can press, for example, to cancel the operation. Watching 

for a click on this button is one of the real-time tasks that the OS can do for an appli-

cation without interrupting the application flow and still provide a timely response 

to the button. This relieves the application from having to check for the button click 

in its processing loop.  

  4.7.4 Lower-level GUI controls 

 The Palm OS GUI controls are not traditional objects. Having no methods or proper-

ties, they are merely data structures. For a given type of control there are various OS 

calls that can be made that will cause them to be displayed. When the user touches one 

of the controls on the screen there will be an  event  generated that will be passed to the 

application. The application will receive the event and execute the appropriate code. 

  Table 4.2  shows the controls that the Palm OS supports and some examples or 

other details about the control. 

     4.8 EVENT-DRIVEN PROGRAMS 

  Under the Palm OS, most applications are written to be interactive. They do not gen-

erally process batches of data like a payroll application on a mainframe or respond to 

complete individual requests like a server. Instead, they focus on the user’s  immediate 

interactive inputs. These applications are therefore organized in a special way. When 

a Palm application runs it first initializes its files (if any) and then goes into a loop in 

which it checks for events that are being given to it by the OS. An example is shown 

in  Figure 4.8 .  

TABLE 4.2 Palm OS Controls

System-Defined Controls

Control Details

Button Invokes a function (e.g., “Display”)

Push button “Radio buttons”

Selector trigger Opens a specialized dialog box (e.g., for date input)

Increment arrow Varies a value in an associated control

Checkbox True/false–On/off

Pop-up list Invoked by a pop-up trigger

Pop-up trigger Opens pop-up list (downward pointing triangle ▼)

List A pull-down list (e.g., in a menu)

Menu Access less frequently used functions

Text box Basic data entry box

Scroll bar When the data overflows the display area of a form
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        If there are no events for it to process then it tells the OS that it wants to WAIT 

for more events. When another event occurs the OS will pass the information to the 

application as a return from one of the calls to check for various classes of events. 

The user has started the application for some specific task—perhaps to look up a 

phone number in the contact file. Until the user gives the program a specific task 

the program does not have anything to do so it merely waits. The user will use the 

menus and other controls in the form to tell the application what to do. Perhaps 

a name is being keyed into a text box. As each character is keyed the applica-

tion will get an event signal and will update the display to reflect the name that is 

being keyed. 

 For many of the controls defined in a form, the application is able to specify 

actions to be taken such that the OS can do much of the work without the involve-

ment of the application. For example, the OS knows how to automatically increment 

a value in a control with an increment arrow. For other buttons the application may 

need to do special processing. Each control that the application defines may result in 

event codes being passed to the application when that control is touched. Consider, 

for example, the confirmation dialog shown in  Figure 4.7 . When this control is dis-

played and the user touches one of the buttons, the application will be sent an event. 

The value sent to the application will identify which control the event was from and 

which button was tapped. 

 Because the operation of the touch screen is asynchronous with the application 

(i.e., screen events can happen at any time while the program is running), several 

events can happen faster than the application can process them. The OS therefore has 

to maintain a queue of the events that have happened but that have not been given to 

the application yet. This queue is maintained in priority order so that more important 

events can be processed first by the application. 

 A few such events are system-related events. For example, events are sent to the 

application when the power is being turned off (i.e., the system is going into the low-

power sleep mode). In this case the application will suspend any other operations 

such as communication to another system.    

static void EventLoop(void)
{

UInt16 error;
  EventType event;
  do

        {
EvtGetEvent(&event, evtWaitForever);
PreprocessEvent(&event);
if(! SysHandleEvent (&event))

            if(! MenuHandleEvent(NULL,&event,&error))
               if(! ApplicationHandleEvent(&event))
                   FrmDispatchEvent(&event);
        #ifEMULATION_LEVEL != EMULATION_NONE
            ECApptDBValidate (ApptDB);
        #endif
        }

while (event.eType != appStopEvent);
}

FIGURE 4.8 

An event-driven 

program main 

loop.
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   4.9 SUMMARY 

 In this chapter, we discussed the features and concepts 

of a simple modern OS—the Palm Operating Sys-

tem™ developed by Palm, Inc. This OS was devel-

oped for small handheld devices. Although this is a 

single-user system, it can concurrently run some OS 

processes and a small number of applications. Thus, 

it supports a limited number of concurrently execut-

ing tasks, making it a simple multitasking system. 

 We started this chapter with an overview of the 

Palm OS and discussed some of the unusual hard-

ware characteristics of the handheld computers 

that use the Palm OS. These special characteristics 

force the choices of some of the decisions made in 

the Palm OS design. Then we discussed the nature 

of multitasking and how an OS works to schedule 

application processes and OS tasks. We then dis-

cussed memory management, and the different types 

of memory storage supported by the OS. Because the 

Palm platform does not normally have a hard disk, it 

uses a part of memory called storage RAM to keep 

persistent data. When power is turned off and the 

system is in sleep mode, storage RAM maintains its 

contents. We discussed how memory is divided into 

chunks, and how the OS locates different chunks in 

memory tables and uses compaction to manage the 

free memory. 

 Then came an overview of the organization of 

files in the Palm OS, followed by coverage of the 

basic I/O functions that the Palm OS provides. These 

include the Graffiti input system that allows users to 

input freehand text. We next described the display 

subsystem and simple GUI programming, followed 

by a brief discussion of event-oriented programming, 

a paradigm used in most Palm applications. Next, we 

described the design of a typical Palm OS application. 

 In the next chapter we move on to an OS more 

complex than the Palm OS. It generally handles mul-

tiple programs running concurrently at the applica-

tion level. It is correspondingly more complex and 

contains more system overhead.  
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  REVIEW QUESTIONS 

    4.1 Since the Palm processor can only have one pro-

gram on the display at a time, why does the sys-

tem need a multiprocessing OS?  

   4.2 Outside of a slow processor and fairly small 

memories compared to modern systems, what is 

the most unusual part of the basic hardware design 

that the OS is based on?  

   4.3 Is the Palm OS a microkernel or a monolithic 

kernel?  

   4.4 What does the Palm OS use a real-time kernel for?  

   4.5 What is the basic logic flow of most applications?  

   4.6 Why is memory allocated to a process accessed 

indirectly through the MPT?  

   4.7 How does the OS track free memory?  

   4.8 As is typical in much of information system tech-

nology, the developers of the Palm OS overloaded 

a perfectly good term with a different meaning. 

What does the Palm OS documentation mean 

when it refers to a “database?”  

   4.9 Considering that the Palm platforms do not have 

much memory, why do they typically not use 

compression on the databases?  

   4.10 The Palm OS gives the programmer several 

abstractions for I/O so that the application pro-

grammer did not have to worry about the hard-

ware details. What were some of the abstractions 

that were mentioned?  

   4.11 True or false? The screens are memory mapped 

rather than handled by I/O instructions so most 

applications directly move data to the screen area 

in memory.  

   4.12 Briefly describe event-driven programming.  

   4.13 How does an application programmer draw the 

forms that he wants to display on the screen?     
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5.1 INTRODUCTION 

  The Mac OS represents an interesting level in our spiral evolution of OSs because it 

has gone through a series of evolutions itself. It was initially intended to be an OS 

for an affordable personal computer that had a GUI. At the time this was revolution-

ary. There had been other systems that used a GUI, but they were considerably more 

expensive. But other than the GUI, in most ways the first release of the Mac OS was 

less sophisticated than the Palm OS that was discussed in Chapter 4. However, as 

time went by, pressure from other systems caused an evolution in the Mac hardware 

and the Mac OS, and at the end of its line it was roughly as powerful as the multiuser 
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Linux OS that we will discuss in the next chapter. The difference was that Linux 

was designed from the outset to support multiple concurrent users, and this made 

some significant differences in its structure and design. So we discuss the Mac OS 

as an intermediate step between the Palm OS, which was intended for a very sparse 

environment with only a single user, multitasking but no user multithreading, limited 

screen space, and no secondary storage, and Linux, an OS intended for a multiuser, 

multitasking, multithreading environment with large secondary and tertiary storage 

and a GUI that supported large screens with overlapping windows. 

 Because the Mac OS went through several profound changes during its history 

we use a different approach in this chapter than we did in the other spiral chapters. 

 We start this chapter in Section 5.1 with an overview of the Mac OS and some 

background about the underpinnings of the original kernel. After this short introduc-

tion we follow the releases of the Mac OS in Sections 5.3 through 5.12 and describe 

the additional features in each release. This is because the Mac OS began with such 

humble origins, being little better than CP/M in most features, and ultimately evolving 

into a full-featured, modern OS capable of supporting multiple users and multiple pro-

cesses as completely as the Linux system discussed in the next chapter. Following the 

evolution of the Mac OS is in itself a bit of a mini-spiral approach. We stop short of the 

Mac OS X release in favor of describing an alternate system in the next chapter, Linux. 

We will say only enough about it to position it with regard to the other major PC OSs 

on the market today. We conclude this chapter in Section 5.13 with a summary.   

  5.2 THE ORIGIN OF THE MACINTOSH COMPUTER 

  In 1973 a revolutionary computer system called the ALTO was designed at the 

Xerox Palo Alto Research Center—aka Xerox PARC. This computer was never 

sold, but over 200 were given to universities and other research institutions. They 

cost about $32,000  1   each to build, and included revolutionary technology such as 

a forerunner of the GUI interface we know today, a type of Ethernet and a mouse, 

among other things. A later system, the Xerox Star, contained many of the same 

features. It retailed for $16,600.  2   This was still too costly for a computer intended to 

be used by only one person and the system was not a commercial success. However, 

these systems were seen by some other visionary pioneers of the personal computer 

business, and they began a drive to produce affordable systems that incorporated 

these ideas. Among those pioneers was Steven Jobs, whose Apple Computer sys-

tems had been among the first commercially successful personal computers. 

 Apple first developed the Apple Lisa, which retailed for $10,000.  3   Like the 

Xerox Star, it was also a commercial failure. But Apple persevered, and eventually 

introduced the Macintosh personal computer in 1984,  4   which retailed for $2,500, in the 

1 $157,000 in 2007 dollars.
2 $42,000 in 2007 dollars.
3 Almost $21,000 in 2007 dollars.  
4 Over $5,000 in 2007 dollars.  
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same range as an IBM PC. The Mac seemed more affordable than the Lisa to  average 

people, and the GUI interface made it a very usable system, so it was an immediate 

success. The Macintosh hardware used the Motorola 68000 family of CPUs.   

  5.3 THE MACINTOSH OS—SYSTEM 1 

  The initial release of the Mac OS was known as System 1. System 1 had several 

characteristics that were typical of OSs of the time. It also had a few unique features 

because of its GUI.  

   5.3.1 The GUI 

 System 1 had a desktop, windows, icons, a mouse, menus, and scrollbars. See 

 Figure 5.1 . The desktop had a trash can icon that could be used to delete items 

by dragging and dropping them on the icon. These are all metaphors and features 

we take for granted today, but they were fairly revolutionary for the time. Unlike 

the Palm OS, the OS design assumed that the screen was large enough to hold 

more than one window or to show the desktop with a window that did not take up 

the entire screen. The screens were only black and white and only had a resolu-

tion of 520  ⫻  342 pixels, so the graphics were very limited. Nonetheless, it was 

a GUI and many users found it friendlier than a command-line interface, espe-

cially novice users. Compare this with the command-line prompt in CP/M, which 

merely said:  

A>

  And awaited input from the user with no hint of what to do. 

FIGURE 5.1 

The Mac OS GUI.

Source: All of the MAC 
OS screen shots in this 
chapter were made with 
the Mini vMac emulator. 
It is available at http://
minivmac.sourceforge
.net/.
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 The GUI is probably the most significant thing about the Mac OS, not because it 

was so original or so well done, but because of what it  did not have to support.  In the 

rest of the world the OSs typically evolved from legacy systems that originally had 

command-line interfaces (as with DEC, UNIX, IBM, etc.). The applications were 

standalone programs invoked through entry of one-line commands on an interface 

called a command line. These interfaces simulated the way a typewriter attached to 

a computer worked. So they were designed around keyboard use and had little or no 

mouse support. Each application team was free to use whatever key they wished for 

any given function. So to invoke a spelling check, a word processor might use the 

F7 key while a spreadsheet program might use the F12 key. Even worse, there was 

no dominant package in most application areas, so the WordPerfect word processing 

program might use one key to print and a competitor program like WordStar might 

use a different key for the same function. For each individual application there were 

keyboard templates available that showed what every function key did, when used 

alone or when used with any combination of Shift, CTRL, and ALT keys! 

 With the Mac there were no legacy applications. From the outset there was a 

key sequence assigned to the Print function and a new application had no reason to 

deviate from that assignment. As a result, Apple was able to truthfully advertise the 

ease of learning to use software on a Mac. For example, suppose a user had mastered 

a word processing application on a MAC. If that user understood how a spreadsheet 

tool worked, then that user would be able to easily use a spreadsheet program on the 

MAC because all the standard functions would be invoked just as they were on the 

word processing program. Even today this problem persists in Windows and Linux 

applications. The point is that one should not underestimate the impact of a require-

ment for backward compatibility—something the Mac did not have.  

  5.3.2 Single Tasking 

 In order to deliver an affordable product, the early Macintosh had to run with very 

limited memory since it was still quite expensive. As a result, Apple’s developers 

decided to forego the multitasking Apple had used with the Lisa. Even though an 

application window probably did not take up the entire screen, the Mac OS did not 

initially allow more than one program to run at the same time, even for background 

printing. To allow some parallel functionality, the OS included Desk Accessories, 

which included functions such as a Calculator, Alarm Clock, system Control Panel, 

and Notepad, but these were carefully limited so that they would not use too much 

RAM. They were implemented as “device drivers” rather than separate programs, 

and could open a single window.  Figure 5.2  shows how primitive these were by 

today’s standards.  Figure 5.3  shows the  Control Panel,  which allowed the user to 

change many system settings. The system had an application called  finder  that was 

used to find files in the system. The finder window was the command processor that 

in most OSs was a command-line console. So it was also the mechanism for running 

other programs. The finder window is visible in  Figure 5.1 . The System 1 version of 

finder was referred to as a single application finder. Since only one application pro-

gram was running at a time (not counting the Desk Accessories), there was no need 

for protecting one program from reading or changing another program in memory, 
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FIGURE 5.2 

The Calculator 

desktop accessory.

FIGURE 5.3 

The Control Panel.

so the OS had no such scheme. System 1 also did not even protect the OS from the 

applications. This was also true of most other OSs available at the time.  

      5.3.3 Secondary storage 

 As with the CP/M system discussed in Chapter 3, programs were kept on a single 

floppy disk drive and loaded into RAM only when they were to be executed. The 

disk system that was available on the early Macs was only 400 Kbytes. This is a 

small enough space that it was fairly easy to find files, so all files were kept in a 

single directory. Still, the developers of the OS realized that the idea of grouping like 

files together was useful, so the system showed  folders  on the disk. As with CP/M, 

however, these folders were only a simulation. Each file directory entry could be 

marked with a folder name, and the system would allow the user to look inside the 

folder, essentially listing all the files marked with that folder name. As a result, it was 

also not possible to nest folders within folders.  
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  5.3.4 Memory management 

 The Mac OS has a single address space, as seen in  Figure 5.4 .  5   This architecture 

is said to be “flat,” which means that at any time any instruction can directly ref-

erence all of memory. Other designs of the era used a more complex scheme that 

allowed large amounts of RAM but limited the addressing such that a program could 

only address segments of 64 KB with any instruction. The 68000 CPU has 24-bit 

addresses, allowing for 16 MB of RAM. There is no memory protection, so any 

program can modify anything in memory, including the OS itself. In addition, the 

application code runs in supervisor mode so there is no instruction protection to 

limit what the application can do. The size of the address space is determined when 

the OS boots. The lowest part of RAM is occupied by a  system partition.  This area 

contains some system global values, which applications should not access directly. 

Rather, they should use the OS APIs to read and manipulate any system data. But 

with no memory protection or instruction protection, there is nothing to prevent an 

application from taking a shortcut and accessing such information directly. In the 

early days of personal computers, application writers would often take such short-

cuts and tried to justify their actions in the name of performance.  

    An  application partition  is allocated from the top of memory downward. The 

layout of an application partition is seen in  Figure 5.5 . At the top is a fixed size data-

block called the  A5world,  which contains the application’s static data and some 

metadata about the application. The name arose because the Mac OS loaded the A5 

register of the CPU with a pointer to this area so that the application would know 

where it was located in memory and could access its global data by addressing rela-

tive to the A5 register. Below this is the stack, with the “top” of the stack growing 

downward. The heap grows from the bottom of the application partition upward and 

5 The initial releases of the Mac OS did not support multiple processes. That came later.  
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Application memory 

partition.

includes code segments. So one problem that the OS has to manage is to make sure 

that these two areas do not run into one another.  

  An upper limit on the size of the heap is set for an application when it starts. 

Growth of the heap is controlled by the memory allocation routines, so they always 

check to make sure that a requested allocation will not exceed the limit. But the stack is 

automatically maintained by the hardware. As subroutines and functions are called and 

return, data are pushed onto and popped off of the stack. Since many applications call 

multiple levels of subroutines, sometimes recursively, this stack tends to grow as the 

program runs. But there is no hardware protection against the stack’s extending below 

the limit. Instead, a  stack sniffer  subsystem runs during the interval of the monitor 

vertical retrace (about 60 times a second) that checks the stack level against the limit. 

 A big problem for the designers of the Macintosh was how to make optimum 

use of the 128 KB of RAM. In some ways this was a large amount of memory. 

Other personal computers of the same era had 16 or 64 KB of RAM. But the Mac 

was intended to have a GUI, and such interfaces take a good deal of RAM. As was 

mentioned above, the developers decided to limit the Mac to run only one program at 

a time. Their main concern appears to have been memory fragmentation—repeated 

allocation and deallocation of memory leads to many small, isolated areas of mem-

ory, which cannot be used because they are too small, even though the total free 

memory may be enough to satisfy a particular request. In order to avoid fragmenta-

tion of heap memory the Mac OS supports relocatable memory blocks. These are 

accessed indirectly via a pointer into a nonrelocatable  master pointer block.  The 

Palm OS discussed in the last chapter uses a similar mechanism. The relocatable 

blocks are compacted from time to time in a garbage collection process. Relocatable 

blocks can also be marked purgeable, which means the system may free them dur-

ing compaction if the free memory space falls below a predetermined limit. Pointers 

were initially only 24 bits long, but were stored in a 32-bit field for anticipated future 

growth in the processors. So the top 8 bits (of the 32) were often used for flags mark-

ing blocks as relocatable, temporary, purgeable, and so on. 

 The OS implemented two areas with this scheme: the  system heap  used 

by the OS, and the  application heap.  As long as only one program was run, the 
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 system worked well. Since the application heap was erased when the program quit, 

 fragmentation was minimized. Unfortunately, as was mentioned above, the OS pro-

vided no memory protection, and crashes caused by application program errors 

manipulating the system heap were not uncommon.  

  5.3.5 ROM 

 Most personal computers used only a small amount of ROM to contain code for 

Power-On Self-Test ( POST ) and some Basic Input/Output System ( BIOS ) routines, 

typically about 8 KB. The Mac OS ROM was significantly bigger (roughly 64 KB) 

and held much of the actual OS itself. The initial purpose of having so much code in 

ROM was to avoid filling the limited storage available on a floppy disk, given that 

the early Macs had no hard disk. It also helped the system to boot faster since that 

code did not have to be read from the floppy drive. Only the 1991 Mac Classic model 

was bootable using the ROM alone. This architecture also helped to ensure that only 

Apple computers and licensed clones could run the Mac OS.  

  5.3.6 Incremental releases 

 As with most OSs, between major releases there are incremental releases. These 

releases are often given fractional numbers. They are released for various reasons: 

speedup of some specific function such as the loading of the OS, bug fixes, and 

occasionally some new feature or application that is scheduled for some later major 

release that is falling behind schedule. In the Mac OS System 1 there was one such 

release, 1.1, that did a bit of all of these.    

  5.4 SYSTEM 2 

  System 2 was theoretically a major release, but there were no features that were 

significant from a theoretical point of view. The Finder was somewhat faster. Cer-

tain icon/commands were eliminated, and icons for creating a New Folder and for 

Shutdown of the system were added. Floppy disks could now be ejected merely by 

dragging their icons to the Trash, instead of selecting the Eject Disk command and 

then dragging the icon to the Trash. A Choose Printer desk accessory was added, 

which allowed a user to select a default printer. This utility would later become the 

 Chooser,  a utility for accessing shared resources, such as printers, modems, and disk 

volumes hosted on other systems and made available through a network.  

   5.4.1 GUI 

 Users of the Mac liked the GUI and the ability to cut and paste information from one 

application to another. But this meant cutting the data from one program, stopping 

that program, starting the new program, and then pasting the data into it—an opera-

tion that usually took minutes. Each new Macintosh model included more RAM 

than the previous models, and the Macintosh 512K (aka the Fat Mac), contained 

four times the RAM of the original Mac. This was enough to support some form of 
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multitasking. It was first implemented in the  Switcher  program. Switcher allowed a 

user to start several programs. The user could then switch between these applications 

by clicking an icon on the menu bar. The current application would horizontally slide 

out of view, and the next one would slide in. When a user switched to one of the 

running programs it was said to “ have the focus. ” The user could thus cut and paste 

between applications in seconds instead of minutes.  

  5.4.2 Multitasking 

 Switcher created a number of fixed slots in RAM into which applications were 

loaded. The Switcher program allocated a separate heap for each application that the 

user started, subject, obviously, to the availability of RAM. When the user toggled 

from one process to another the Switcher could perform a context switch and fix the 

OS memory management data so that the OS would begin working with the new 

application. Since there was no memory or instruction protection the Switcher could 

tweak the OS memory structures to affect a switch. However, this was very limited 

multitasking, somewhat like the Palm OS in that there was still only one process run-

ning at any one time. The user could switch from one process to another, but while 

a process did not have the focus, that process was not actually running. Despite its 

awkwardness, this approach worked with the existing system’s memory manage-

ment scheme, as programs did not need to be changed to work with Switcher. The 

changes were also transparent to the OS kernel. A typical memory layout with mul-

tiple processes in the system is shown in  Figure 5.6 .  
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FIGURE 5.6 

System 2 “Switcher” 

memory layout.
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      5.5 SYSTEM 3 

     5.5.1 Hierarchical File System 

 Disk drives were getting bigger and users tended to fill them up then as they do now, 

wanting to have quick access to all their information. This meant that the number of 

files was growing much larger, so it was getting hard for a user to keep track of files. 

So a new file system design was released known as the Hierarchical File System 

(HFS). It replaced the old Macintosh File System (MFS). Folders were now actual 

subdirectories instead of just tags in the directory entries, and folders could contain 

other folders. It was so much more useful that it came to be called the Mac OS 

Standard File System (to distinguish it from a later extended version). The directory 

entries contained timestamps showing when the file was created and when it was last 

modified, the file type and creator codes, a file name of up to 32 characters, and other 

file metadata. (The creator code told the OS what application had created the file.) 

The free space was tracked by a bitmap and the directories are stored as B-trees. 

These ideas will be further explained in Chapters 12 and 13. 

 There were a few bug fix releases until the next real advance in the OS 

capabilities.  

  5.5.2 Networks 

 Local area networks (LANs) were becoming extremely popular. They allowed shared 

access to expensive devices such as large disk drives, high-end laser printers, modem 

pools, and other exotic devices such as microfilm output. They also facilitated com-

munication through shared files and directories on central servers. So with System 3.3 

Apple added support for  AppleShare,  a proprietary file-sharing protocol. The protocol 

stack also included proprietary technology at other layers:  AppleTalk  at the network 

layer and  LocalTalk  at the data link and physical layers. Now the Chooser utility took 

on much more importance than just selecting the default printer. LaserWriter printers 

could be directly connected to the network and shared by several users. The Macin-

tosh began to be viewed as a powerful desktop publishing system and these printers 

were a large factor in that view and in the general success of the Mac product line.    

  5.6 SYSTEM 4 

  System 4 was introduced with the Macintosh SE and Macintosh II. At this stage in the 

development of OS technology, new releases were often required just to support new 

models of a computer. System 4.1 added support for disk drives larger than 32 MB. 

 Different references disagree about when the Mac OS supported a version of 

finder that could launch multiple applications. Most likely this is because the nam-

ing of the releases was somewhat confusing. The main software had one number, 

the finder had another, and the MultiFinder (to be discussed shortly) had another. 

For example, one reference  6   lists System Software 5.0 (System 4.2, Finder 6.0, and 

6 http://en.wikipedia.org/wiki/Mac_OS_history   
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FIGURE 5.7 

MultiFinder.

MultiFinder 1.0), while another reference  7   states that System 5 was never released. 

In addition, because MultiFinder was new and Apple was not certain that all existing 

programs could operate correctly under it, Finder continued to be distributed with 

the OS, compounding the release naming issue.  

   5.6.1 MultiFinder 

 The consensus seems to be, however, that System 4.2 implemented MultiFinder—

users could switch between Finder, which supported only one program at a time, and 

MultiFinder, which could support multiple programs. See  Figure 5.7 . MultiFinder 

extended the OS significantly. Unlike Switcher, which merely switched the OS from 

running one application to running another, MultiFinder allowed each program to 

keep running, giving each application CPU time. Unlike OSs, which we will study 

later, the Mac OS did not set hard limits on how long a process could continue 

running without switching to another process. The technique used in the Mac OS 

is known as  cooperative multitasking.  With this technique a process can run as 

long as it wants to. If the process makes a call to the OS that the OS cannot service 

immediately, such as a disk read, then it will make the process wait—a mechanism 

known as  blocking.  When a process makes such a blocking call, then the OS will 

add the blocked process to a queue of processes that are waiting for something and 

will switch to running another process. If a process makes no blocking calls then 

it can run as long as it likes. In order for all processes to give a quick response to 

user requests, they all need some CPU time. So if one process runs for too long it 

7 http://www.macos.utah.edu/documentation/operating_systems Ⲑ mac_os_x.html   



100 Part 2 Building Operating Systems Incrementally: A Breadth-Oriented Spiral Approach

can make the performance of the system seem uneven. In order to keep this from 

happening, all processes are supposed to make a special system call fairly often that 

tells the OS that the process is not through but that it is voluntarily relinquishing 

control and is ready to run again. This allows other processes to have a fair share of 

the CPU time. Of course, some vendors want their software to appear to be the best 

responding, so they don’t call that routine often enough. In other cases a software 

error may cause a program to go into a loop and never yield control or make a block-

ing call. In these cases the system will essentially freeze.  

      5.6.2 The GUI under MultiFinder 

 MultiFinder provided a way for windows from different applications to coexist by 

using a layering model. Now that there could be multiple running applications, they 

might each have multiple windows open on the desktop at the same time. When a 

program got the focus, all of its windows were brought forward together in one layer. 

This was necessary for compatibility with existing windowing APIs.  

  5.6.3 RAM management with MultiFinder 

 MultiFinder also provided a way for applications to communicate their memory 

requirements to the OS, so that MultiFinder could allocate RAM to each program 

according to its need. Unfortunately, the amount specified would not be enough for 

some tasks, so the user was given an interface to override this number. This strongly 

went against the Apple theory that users should be kept away from such technical 

information. In this case their theory was correct, since users often had no idea how 

much memory a program might really need. One program was often given much 

more memory than it really needed and another program was given much too little. 

As a result, the starved application would perform poorly. When multiple applica-

tions are running, the management of RAM is usually much more complex than 

when a single application is running. But when MultiFinder was being developed, 

a key consideration was that programs that ran under the single Finder should work 

without change under MultiFinder. So the memory architecture is very similar, just 

slightly more complicated. With one application running the architecture looks like 

that in  Figure 5.1 . When several applications are running the architecture looks like 

that in  Figure 5.3 . As execution shifts from one application to another the OS will 

change the contents of certain system variables to reflect the sizes and locations of 

the application partition and its pieces for the new application. This change is known 

as a  context switch.  As we will see later, with modern OSs a context switch is often 

much more complicated than this.    

  5.7 SYSTEM 5 

  As was stated above, some references say that System 5 was never released and oth-

ers say it was released only for a short time. In either case there is nothing significant 

about it for the purposes of studying OS evolution.   
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  5.8 SYSTEM 6 

  In the eyes of many observers, System 6 was the first true upgrade of the Mac OS.  8   

RAM was getting cheaper and larger and users always wanted more of it. So System 

6 began the migration to supporting the Mac in the true 32-bit memory addressing 

modes that had appeared with the Motorola 68020 CPU. These 32-bit addresses 

allowed the Mac OS to address up to 4 GB of RAM. Earlier versions of the Mac 

OS had used the lower 24 bits for addressing, and the upper 8 bits for flags, which 

indicated, for example, that the block pointed to was marked as “locked,” “purge-

able,” or as a “resource.” This had been an effective solution for earlier hardware 

with limited RAM, but became a liability later. Apple referred to code that used the 

24  ⫹  8-bit addressing model as being not  32-bit clean,  and suggested that develop-

ers remove such code from their applications. As was noted before, much of the Mac 

OS was in ROM. Unfortunately, much of that ROM code was not 32-bit clean, and 

so older Macs could not be migrated to this new mode. The new mode required new 

versions of the hardware. The change to 32-bit addressing mode made for a lot of 

compatibility issues that linger even into today’s versions of the Mac OS. The OS 

maintains the capability of running applications in a 24-bit mode, though it is much 

slower than the 32-bit mode. So Apple was now feeling the pinch of supporting 

legacy applications. 

 In the early part of the PC era, developers still saw the RAM in a system as 

a very tight resource and would go to great lengths to save a byte or two here and 

there. As time went by it was often found that such savings had a very negative 

impact later. Indeed, the  Y2K bug  (Year 2000)  9   was another example of this sort 

of problem caused by the desire save a few bytes of RAM by shortening the format 

of the year part of dates to the last two bytes. The end of the century was 20 years 

away and developers assumed that the systems they were developing would not still 

be in use by then anyway. When the last year of the century rolled around, systems 

that had stored dates as only two digits would make incorrect conclusions, calculat-

ing that a date in the year “00” (i.e., 2000) came before a date with the year “99” 

(i.e., 1999.) The Mac OS was apparently designed from the start to avoid the Y2K 

problem, though Apple never officially certified any system release before System 7 

as being Y2K compliant.   

  5.9 SYSTEM 7 

  System 7 was the biggest change to the system software up to that time. It continued the 

migration of the Mac OS to full 32-bit addressing and improved its handling of color 

graphics, networking, and  multitasking,  and it introduced a form of  virtual memory.  

 Many features that had been available as options in earlier versions of the Mac 

OS were integrated into System 7. This release dropped the single program version 

8 http://en.wikipedia.org/wiki/Mac_OS_history   
9 http://en.wikipedia.org/wiki/Y2k  
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of Finder, eliminating the Finder versus MultiFinder issue. Cooperative multitasking 

thus became the normal mode of operation of the system. Networking via Apple-

Talk and file sharing via AppleShare were built into the operating system, instead of 

being optional.  

   5.9.1 The GUI 

 System 7 had several usability improvements, many in the area of the GUI. A menu 

was added to the right end of the menu bar called the Application menu. It showed 

a list of running programs and allowed users to switch among them. Next to the 

Application menu was the Help menu. Users could now drag and drop—a block of 

text could be dragged from one program to another with the mouse instead of hav-

ing to copy and paste. System 7’s Finder finally utilized color features and made 

some interface elements look more three-dimensional. Other usability features were 

also added to the OS in the System 7 releases. WorldScript provided system-level 

support for languages besides English. Technologies such as AppleScript, a macro 

language for task automation; ColorSync, color management utilities; QuickTime 

multimedia software; and TrueType font management were also released. Over 

time, many of the features that we associate with modern GUIs were added to the 

Mac OS. For the most part we will not detail these features in each release. We will 

only note that the GUI was evolving in a piecemeal fashion and was becoming more 

usable over time.  

  5.9.2 Virtual memory 

 Sometimes a user wanted to run more programs than would fit into RAM at the 

same time. Or perhaps the program was used with a data file that was very large. 

For example, a word processor might normally fit fine in a small space if it was just 

being used to write interoffice memos. But if it was used to edit a large report it might 

require a great deal more RAM. When performance is poor because more memory is 

required but a larger memory is not available or is too expensive, then one solution 

is called  virtual memory,  or  VM.  VM is a technique that uses some space on a hard 

disk drive to simulate a larger primary memory. It requires extra memory manage-

ment hardware support to work. Briefly, memory is divided into blocks known as 

 pages.  When a program starts running, only the first page of the program is brought 

into RAM. When the running program references a part of the program that is not yet 

in memory the hardware will cause an interrupt called a  page fault,  and the OS will 

read the missing page into RAM from the disk drive. This technique is discussed in 

greater detail in Chapter 11. 

 As was mentioned, special hardware is required in a computer system for the 

OS to be able to support VM. The computer must have a special  memory manage-

ment unit  ( MMU ), which is capable of translating the  logical addresses  that are 

generated by the program running in the CPU and translating them into a  physical 

address  so that the pages of the program can be located anywhere in RAM. Apple’s 

68040- and 68030-based machines have a VM-capable MMU built into the CPU and 

can thus support VM with no additional hardware. A Macintosh II (68020-based) 
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could have a special MMU coprocessor on its main logic board in place of the stan-

dard address management unit (AMU).  10   This MMU would also support VM. 

 VM was first implemented in the Mac OS with System 7. However, the virtual 

memory support was very preliminary and performed very poorly in many circum-

stances. The design of the OS Memory Manager used RAM in such a way that it 

caused excessive page faults under VM.  11   VM features that are commonly found 

in VM implementations of other OSs today—such as protected address spaces, 

memory mapped files, page locking, shared memory, and so on—were not present. 

Many of these were provided in later releases of the Mac OS. As Apple gained better 

understanding of the workings of VM and modified the behavior of certain portions 

of the OS, the system performance when running VM also improved.  

  5.9.3 A new CPU 

 Sometime around 1990 Apple formed an alliance with IBM and Motorola to develop 

a new processor family based on a combination of the IBM RS6000 architecture, the 

Motorola 68000, and the Intel PC line. It would be known as the PowerPC family, 

and it would determine Apple’s hardware direction until 2006. The initial Mac with 

the PowerPC CPU was the Power Macintosh 6100, or the Performa 6100 series. 

Support for this processor family came in System 7.1.2. It required changes in the 

design of the Mac OS. This architecture was a RISC design, unlike the CISC design 

used in the Motorola 68000 family, so it represented a radical change in the code 

used by the CPU. It would have taken far too long to completely port an OS based on 

the 68000 architecture to a RISC architecture, so the design of the PowerPC archi-

tecture allowed it to emulate the 68000 CPUs. 

 A small piece of code dubbed a  nanokernel  managed the PowerPC CPU. It 

executed in supervisor mode and supplied low-level interfaces for hardware man-

agement to the rest of the system. The API for this nanokernel was restricted to 

system software and debuggers. A 68000 emulator was started by the nanokernel 

at system startup time. It only emulated a 68000 user-mode instruction set with-

out emulating the MMU. This allowed for more universal compatibility. The OS 

was thus able to begin to run on the PowerPC-based systems almost immediately. 

However, emulation of the execution of a 68000 CPU on a PowerPC is significantly 

slower than execution of native PowerPC code. Programs could be compiled and 

linked to produce executable modules that contained both native 68000 code and 

native PowerPC code. This allowed a single version of the program to run on both 

older machines and newer machines. Such dual-mode programs were known as  fat 

binaries.  Switching between the two modes was done by a set of library routines 

called the  Code Fragment Manager.  Over time, more and more of the OS was 

modified to include native PowerPC code as well as code that could still run on the 

68000 family of systems. 

 The architecture of Apple computers was always proprietary. This had several 

side effects, some good and some bad. The main Apple system bus in the Macs was 

10 http://developer.apple.com/documentation/mac/Memory/Memory-152.html#HEADING152-0   
11 http://developer.apple.com/technotes/tn/tn1094.html  
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called NuBus. Since it was proprietary, Apple could exercise firm control over all 

hardware development. Thus, controllers were more likely to work on a Mac than 

on an ISA bus machine, and the drivers were more likely to work as well. On the 

other hand, it meant that there was less competition in this market, and users thus 

paid a higher price for hardware and software than they might have otherwise. 

Also, fewer vendors could afford to hire extra staff to develop hardware for addi-

tional buses. Around 1990 work began at Intel on a standardized bus called the 

Peripheral Component Interconnect bus or PCI. By 1993 the full specification was 

available, card vendors started creating I/O cards for this new bus, and system man-

ufacturers began including them on the new motherboard designs. Apple found that 

this put them at a competitive disadvantage. Since the volumes vendors could sell 

in the PCI bus market were significantly greater than in the Apple NuBus market, 

the prices Apple had to pay for interface controllers was much higher, and this 

both cut into their hardware margins and made the price of their systems less com-

petitive. Apple Computer therefore incorporated the PCI in the Power Macintosh 

computers it introduced in 1995. The System 7.5.2 release supported these new 

machines and thus had to incorporate new drivers and chip set support for the PCI 

bus and controllers.  

  5.9.4 Input/output enhancements 

 The Macs existed in a world that was being dominated by Intel-based PCs running 

Microsoft software. As a result, there was considerable pressure to provide bridges 

to that world. Certainly the networking support was evolving in that direction, and 

many Microsoft-oriented protocols were added to the Mac OS support. Another 

example was that System 7.1 introduced software called PC Exchange that could 

access MS-DOS formatted floppies. Earlier releases only supported Apple floppy 

disk formats. While floppies for the IBM PC and the Apple Mac were physically 

identical, they are used differently in two ways. First, the  low-level formatting  is 

different. New floppy disks in most cases do not have any predetermined number or 

size of sectors. A process called low-level formatting writes headers on the tracks 

that later will tell the hardware where each sector starts, what the track and sector 

numbers are for the sector, and how long it is. Different systems can use different 

numbers and sizes of sectors, and early on there were many competing formats, both 

with regard to the sizes of the media and the low-level formats. Today the sizes and 

formats have been fairly well standardized, but in the early 1990s there were still 

several competing standards. Once the low-level formatting is done the user can have 

the OS “format” the floppy at a higher level, creating an empty file system on the 

disk. In the case of the IBM and Apple systems the file systems were different as 

well as the low-level formatting. Adding to the Mac OS the ability to read and write 

MS-DOS floppies made Macs much more acceptable in the office world where easy 

exchange of files among users was a necessity. 

 By this time laptop systems were in frequent use, and they often included a  PC 

Card  slot. These were called  PCMCIA  slots at that time but were since renamed. 

PC Card slots allowed the insertion of a device that was not built in to the original 

laptop. Typical examples were network cards, controllers for external disk drives, 
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disk drives themselves, and RAM cards. A RAM card could not be addressed as pri-

mary memory because the PCMCIA slot was on the I/O bus. So a common  technique 

for dealing with such a card was to treat it as a special type of disk drive and create 

a file system on it. Because the floppy format was about the right size, these were 

often created with an MS-DOS-compatible file system since they could then also be 

used to move data from IBM-compatible PCs to Macs since the Mac OS could read 

these devices as well. 

 Because of general enhancements to the OS and the fat binaries for use with 

the PowerPC, the System 7 release was the first version of the Mac OS where a 

full installation was too large to fit on a 1.44 MB floppy disk. As a result, System 

7.5 and later would not run from a floppy drive but required a hard disk on the 

computer.    

  5.10 SYSTEM 8 

  By this time Apple was adding Macs to their product line that were intended to be 

used as servers. In some cases these new systems had multiple CPUs. System 8 

therefore added support for these new Mac multiple-CPU models. These machines 

would experience better performance in a server role. Support in modern OSs for 

such systems is called  symmetric multiprocessing,  or  SMP.  In such situations the 

OS runs on any CPU that is available.  12   This can pose special problems for the OS 

because it can literally be running on two or more CPUs at the same time. This 

means that it must take special precautions to prevent having two running instances 

manipulating any one data element at the same time. Since the Mac OS is primarily 

a single-user system, we will defer a more in-depth discussion of SMP to the next 

chapter on Linux, a system designed from the outset to support multiple users and 

run many other services. 

 Personal Web Sharing was also introduced in System 8. This facility allowed 

users to host Web pages on their computers.  

   5.10.1 Hierarchical File System Plus 

 As time went by, hard drives were getting larger and larger. Unfortunately, the file 

systems that were designed earlier for smaller drives used smaller pointers to save 

valuable space both on the disk and in RAM. These pointers could not address all 

the sectors on larger drives, so mechanisms were invented to extend the early file 

systems to larger drives. The first technique was to allocate multiple blocks instead 

of single sectors. For example, the Hierarchical File System that had been intro-

duced with System 3 used a 16-bit pointer in its data structures. This meant that 

only 65,536 sectors could be directly addressed. With the standard sector size of 

12 In asymmetric multiprocessing the OS runs on only one of the CPUs while applications run on 
any CPU. While simpler than SMP, this technique is rarely used today since it limits the total system 
performance.  
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512 bytes, this meant that drives larger than 32 MB could not be supported. So 

HFS allowed allocation to be based on blocks of multiple sectors instead of single 

sectors. If the allocation was done on a basis of two sectors, then the same 16-bit 

pointer could address a 64 MB drive. This could be increased to any number of sec-

tors that was a power of two. As with many techniques that Apple introduced into 

the Mac OS, this was not a new technique. It had been used in the earlier CP/M 

system. Allocation of larger blocks had some drawbacks. For example, on a 1 GB 

disk, even a 1-byte file would take up 16K of disk space. If many short files were 

used this became very inefficient, so a new file system had to be designed to address 

the larger drives efficiently. System 8.1 therefore included an improved version of 

the HFS called Hierarchical File System Plus, or HFS  ⫹  . It used a 32-bit pointer 

and was capable of directly addressing a 4 GB drive. Using an allocation block of 

32 sectors, it could support drives up to 128 GB. HFS  ⫹   also allowed file names to 

be 255 bytes long.  

  5.10.2 Other hardware changes 

 Hardware continued to evolve in the computer field generally and in the Mac prod-

ucts specifically. System 8.1 was the last version to support 68K Macs since Motor-

ola was putting all development efforts into the PowerPC line. System 8.6 added 

enhanced power management and improved support for new device classes such as 

USB and FireWire. 

 In order to allow a single application to use more than one CPU, System 8.6 

introduced the idea of allowing an application to split itself into multiple indepen-

dent threads (called tasks in the Mac OS), which the OS then schedules to run on 

multiple processors. We discuss this technique in-depth in Chapter 8. Apple modi-

fied the nanokernel to support this multithreading. It also added support for priori-

ties to be associated with tasks. This allowed the application to designate some tasks 

as being more important than others. If a task had been waiting on some event that 

was finished and that task had a priority that was higher than the currently running 

task, the OS would preempt the CPU by stopping the running task and starting the 

higher priority task. We saw this feature in the Palm OS in the previous chapter. 

There was still no process preemption—the system still used cooperative multitask-

ing between processes.  

  5.10.3 Unicode support 

 In System 8.5 Apple begain supporting an new mechanism for displaying other 

languages than English using a standard called  Unicode —a worldwide character-

encoding standard. Compared to older mechanisms for handling character and 

string data, Unicode simplifies making software work with other languages, a pro-

cess called  localization.  By using Unicode to represent character and string data, 

a programmer can facilitate data exchange using a single binary file for every 

possible character code. Unicode supports numerous scripts used by languages 

around the world. It also covers many technical symbols and special characters. 
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Unicode can represent the vast majority of characters in computer use. It provides 

the following:

   • Allows any combination of characters from any combination of languages in 

one document  

  • Standardizes script behavior  

  • Provides a standard algorithm for bidirectional text  

  • Defines mappings to legacy standards  

  • Defines semantics for each character  

  • Defines several different encodings of the character set, including UTF-7, 

UTF-8, UTF-16, and UTF-32   

There are many different ways that Unicode can be used, and today most OSs sup-

port Unicode at one level or another. A more comprehensive discussion can be found 

at the website of the Unicode Consortium:   http://www.unicode.org.      

  5.11 SYSTEM 9 

  By this point the development of the Mac OS had become very convoluted. Several 

major attempts at creating a new OS were started and either abandoned or sold off to 

companies that had partnered in their development. One major event was the acquisi-

tion of the NeXT Computer, and with it the NextStep OS. This OS would eventually 

evolve into the next release of the Mac OS, System X. In the meantime, releases of 

the Mac OS had to continue, so over the next several years some important features 

that were either invented or improved for one of the cancelled OS projects were 

added to the Mac OS. It was a steady progression from Mac OS 8. The version num-

ber was increased from 8 to 9 to pave the way for the transition to System X. It was 

felt that a gap in the numbers might have discouraged some users from migrating 

from the classic Mac OS to OS X. System 9 was released in 1999, and Apple called 

it the “best Internet operating system ever.” The rise of the Internet began to impact 

the OS in several ways.  

   5.11.1 Multiple users 

 Originally it was assumed that a personal computer was used by a single person, and 

the Mac OS reflected that orientation. There was initially no such thing as a login. 

The design assumed that there was a single user of the system and that if security 

was an issue then physical access to the machine was limited to that one person. 

Many forces combined to gradually weaken that assumption. In the workplace it was 

common to have machines that were shared by users who only needed access for 

short intervals. At home the younger members of the family had always wanted to 

use the computer to play games, but now they began to value access to the Internet 

and needed to use software for various assignments, whether writing, researching, or 

using special applications. They also used it for access to social connections, rang-

ing from multiplayer games to instant messaging to chatrooms. Whether at home or 

in the business world, each of these persons had distinct preferences in the setup of 
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the system. These included many options on the GUI, a home page for the browser, 

and so on. They also frequently wanted to have files on the system that others did 

not have access to—a personal diary, perhaps. So support for multiple users was 

added in System 9. This required each user to login to the system before using it. 

This feature lets several people share a Mac while sheltering their private files and 

 supporting separate system and application preferences. It is set up and maintained 

through a Multiple Users control panel, which lets one user create accounts for oth-

ers, allowing them either normal or limited access to applications, printers, or the 

CD-ROM drive. The multiple users feature does not offer the same level of security 

found in more modern OSs or in Mac OS X. These OSs have file system-level secu-

rity while System 9 does not. A knowledgeable user can access protected files by 

booting off a different volume, for example. Still, the multiple users feature solved a 

lot of the long-standing problems Mac users had when sharing a machine. 

 Being able to limit the rights of certain users is a sound practice. Unfortunately, 

many users are not very experienced with computers and allowing them unrestricted 

access can mean that they can easily cause problems with the system. In the mini-

mum case they change things so that they do not work right. In the worse case 

they can wipe out an entire system, including much valuable data. Good practice 

says that even knowledgeable users should not normally run with unrestricted rights. 

Instead, they should use a special administrative login when they need to perform 

system maintenance. 

 Passwords are a perennial problem in computer system administration. Having 

many passwords and logins for different applications leads users to unsecure prac-

tices such as writing them on Post-it notes and leaving them on the monitor. Sys-

tem 9 implemented a mechanism known as  Keychain  Access. This feature managed 

users’ multiple IDs and passwords and stored them securely. Once a user unlocked 

the Keychain by typing in the password, every application that was Keychain-aware 

could get the correct application username and password from the Keychain data-

base without having to ask the user. 

 Since the file protection was not quite secure, System 9 also added a capability 

for file encryption. While the encryption scheme is very robust, it was proprietary to 

the Mac OS, so files encrypted in this way could only be decrypted by machines that 

were also running Mac OS 9. If recipients on Windows or UNIX machines needed to 

decrypt these files, then a cross-platform encryption program was still needed. But if 

file protection was not secure enough in a specific multiuser situation, the encryption 

added a measure of security.  

  5.11.2 Networking 

 By the late 1990s the Internet had become such a success that TCP/IP had become 

a requirement for all personal computers. Apple had provided support for TCP/IP 

since System 7, but only for certain functions. System administrators prefer to have 

a minimum number of different protocols to administer. Since AppleTalk did not 

provide any major features that were not also available in TCP/IP, there was con-

siderable pressure on Apple to support TCP/IP for all networking functions. So, 

under System 9, file sharing was modified to support the TCP/IP protocol. Since 
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AppleTalk was not supported over the Internet, users previously could not easily 

access files at work on their Mac remotely through the Internet unless they resorted 

to complex, difficult techniques. Adding support for file sharing over TCP/IP meant 

that Mac users could work more easily from home over their standard Internet 

connection. 

 In addition, a new software update function allowed users to obtain Mac OS 

software updates over the Internet, and would notify users of updates as they became 

available. This greatly simplified the work of system administrators.  

  5.11.3 APIs 

 When System 9 was being developed, OS X was already well underway. As we will 

see shortly, OS X is essentially a different OS. However, Apple did not want it to 

be perceived that way. Accordingly, it was essential that many old applications be 

executable on the new OS. We have already discussed the emulation that was needed 

during the transition from the 68000 to the PowerPC. It was similarly possible to 

execute most older APIs under the new OS, but it was far preferable if an old appli-

cation could be modified to support the APIs that would be available in OS X. So, 

Apple created a new API for System 9 that would be forward-compatible with OS X 

but still included support for most older API functions. This new API was known as 

the Carbon API. It included support for about 70% of the legacy Mac OS APIs.  

  5.11.4 Video 

 One of the driving forces behind the development of powerful advanced video fea-

tures for personal computers is computer games. While other applications such as 

desktop publishing can also benefit from the features, there are many more people 

who play games than use systems to do desktop publishing. Naturally, the hard-

ware vendors want to develop products for the larger markets. Apple computers 

are no exception, and there are many games available for Macs. One of the fea-

tures for which support was added in System 9 was support for video cards that 

had built-in hardware support for accelerated rendering of 3D objects and for soft-

ware APIs for technologies such as OpenGL, which allowed an improved video and 

gaming experience.    

  5.12 MAC OS X 

  OS X may be one of the most revolutionary changes in the history of OSs, and not 

just because Apple changed the release naming from System 10 to OS X. In OS X 

Apple completely discarded the System 9 kernel and replaced it with another one. 

Microsoft’s Windows 3.x had been very successful since its release in 1990. They 

had followed that with the release of another successful OS in 1993, Windows NT. 

NT was an advanced OS designed for high-end applications and included features 

such as preemptive multitasking, the ability to run applications written for several 
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legacy OSs, multiple CPU support, and a new file system. Apple needed an OS that 

would be competitive with these Microsoft products. As was mentioned before, 

they partnered with various firms in several OS projects, but none provided the 

OS they needed. They also considered building a new OS on top of a kernel from 

Solaris (Sun Microsystems), BeOS (Be), and reportedly even NT (Microsoft). They 

ultimately settled on a microkernel based on the Mach kernel and the FreeBSD 

implementation of UNIX, which were the basis for NextStep, an object-oriented 

operating system developed by NeXT Computer Inc. For performance reasons 

some of the FreeBSD code was merged with the Mach kernel so that the result is 

not a true microkernel. The exact evolution of OS X is hard to trace and not very 

relevant to this text. Much information is available on the WWW for those inter-

ested in the varying opinions. 

 Changes were made in OS 9 software to allow it to be booted in the  classic 

environment  within OS X. So the Classic Environment is an OS X application that 

provides a compatibility layer that can run a version of the System 9 OS, allowing 

applications that have not been ported to the new APIs to run on OS X. It is fairly 

seamless, but classic applications keep their original OS 8/9 appearance and do not 

look like OS X applications.  

   5.12.1 New features 

 So OS X is actually a different OS that supports the APIs formerly used in the Clas-

sic versions of Mac OS. Many of the capabilities of OS X came from the UNIX util-

ity packages. In the next chapter we look at another UNIX variant in depth. For now 

we simply mention some of the features that OS X brought to the Mac world:

   ɀ A new memory management system allowed more programs to run at once 

and supported full memory protection that kept programs from crashing one 

another  

  ɀ A command line (part of UNIX terminal emulation)  

  ɀ Preemptive multitasking among processes instead of only among threads  

  ɀ Support for UNIX file system formats  

  ɀ The Apache Web server  

  ɀ Full support for symmetric multiprocessing     

  5.12.2 A new CPU, again 

 Since the greater capabilities of OS X put higher demands on system resources, this 

release officially required at least a PowerPC G3 processor. 

 In June 2005 Apple computers announced that they would be converting the 

Mac product line from PowerPC processors to Intel products. In January 2006 Apple 

released the first Macintosh computers with Intel processors. The Classic (emula-

tion) Environment does not work in the x86 version of OS X. Most well-written 

“classic” applications function properly under this environment, but compatibility 

is only assured if the software did not interact directly with the hardware at all and 

interfaced solely with the operating system APIs.     
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   5.13 SUMMARY 

 In this chapter, we discussed the features and con-

cepts of a more complex modern OS—the Mac 

OS developed by Apple Computer, Inc. This OS 

was developed to bring to market an inexpensive 

personal computer with a GUI. It is the Macintosh 

OS™ (or Mac OS) developed by Apple Computer, 

Inc. It generally supported only a single user. Later 

releases allowed many processes that execute at the 

same time and the ability for user applications to 

start multiple threads. We began this chapter with an 

overview of the Mac OS in Section 5.1. We used a 

different approach in this chapter and followed the 

releases of the Mac OS, describing the major new 

features in each release. This is because the Mac OS 

began as a quite simple system, offering no more 

functionality than CP/M except for the GUI, and 

even that was very primitive compared to what we 

think of today. 

 Ultimately the Mac OS evolved into a modern, 

full-featured OS that can supporting multiple users 

and multiple processes. We ended this saga with only 

brief mention of that Mac OS X release. Instead, in 

the next chapter we describe an alternate multiuser 

system, Linux.  
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  REVIEW QUESTIONS 

    5.1 Which was the first system with a GUI?

    a. Xerox Star  

   b. UNIX X Windows  

   c. Xerox Alto  

   d. Apple Lisa  

   e. None of the above was the first system with a 

GUI.     
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  5.2 True or false? The Apple Macintosh was intro-

duced somewhat after the IBM PC and was 

slightly less expensive than the IBM system. 

   5.3 Which CPU did the Macintosh systems use?

    a. The Motorola 68000 family  

   b. The Motorola PowerPC family  

   c. The Intel 80x86 family  

   d. None of the above  

   e. All of the above     

   5.4 What was the great advantage that the Macintosh 

systems had over most other personal computer 

OSs?  

   5.5 The Apple Lisa was a precursor of the Mac and 

could run multiple applications at the same time. 

How many applications could the original Macin-

tosh run at one time? Why was that?  

  5.6 True or false? The original Mac did not support 

memory protection, which would keep an applica-

tion from corrupting the OS or its data. 

   5.7 How many folder (directory) levels did the origi-

nal Mac OS support?  

   5.8 How large were the portions of the memory that 

the 68000 could address at one time?

    a. 16 KB  

   b. 64 KB  

   c. 128 KB  

   d. 1 MB  

   e. The 68000 could access all of memory at any 

time     

  5.9 True or false? In the Mac OS the kernel runs in 

supervisor mode and the applications run in user 

mode. 

   5.10 What was the difficulty with the way the appli-

cation stack and heap were implemented in the 

Mac OS?  

   5.11 What did the Mac OS do to avoid the problem in 

the previous question?  

   5.12 What is the problem caused by the way that heap 

memory is managed? How did the Mac OS deal 

with it?  

   5.13 How does the Mac OS solution to the heap man-

agement problem differ from the Palm OS?  

   5.14 Unlike most other PC OSs, the Mac OS put much 

of the OS in ROM. Why was that?  

   5.15 With early releases of the Mac OS, a cut-and-paste 

operation typically took minutes instead of sec-

onds. What new feature of the OS changed this?  

   5.16 Did the change mentioned in  question 5.15  make 

the Mac OS a multitasking OS?  

   5.17 What major change was introduced with the Hier-

archical File System?  

   5.18 What did MultiFinder do?

    a. It allowed the user to search a file for multiple 

strings.  

   b. It allowed multiple users to log on to the 

system.  

   c. It allowed the user to search the network for 

other users.  

   d. It searched the Internet much like Google does 

today.  

   e. None of the above describes MultiFinder.     

   5.19 What interesting new feature was made available 

with System 5?  

   5.20 System 6 supported new models of the Mac that 

used 32-bit addressing. What problem did that 

cause?  

   5.21 What was a “fat binary” for?  

  5.22 True or false? Virtual memory uses software to 

simulate missing blocks of memory. 

   5.23 What is the primary use of multithreading?  

   5.24 Quite a few enhancements made it into the various 

System 9 releases. Name three.  

   5.25 Why did we not say much about Mac OS X?         
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  I
n this chapter, we discuss an operating system that is still more capable than the 

Mac OS discussed in the previous chapter, at least as far as the versions of the 

Mac OS prior to OS X. This is the Linux™ Operating System. The intent of this 

chapter is not to discuss the Linux OS in all aspects, but rather to focus on those 

points where the multiuser requirement of the OS lead to the inclusion of some addi-

tional features. We return to Linux in Chapter 19 in a more complete case study that 

examines the decisions made about the individual mechanisms for supporting the 

major system modules. 

 We start this chapter in Section 6.1 with an overview of Linux and some back-

ground about its history. In Section 6.2 we discuss the nature of a multiuser OS and 

how this design decision impacts the features of an OS. Next is Section 6.3 where we 

discuss the scheduling of processes and tasks in Linux. We have seen some of these 

features in other OSs, but Linux is the first OS we have studied that started out with 

a full implementation of all the concepts of both processes and threads. We conclude 

with a chapter summary in Section 6.4.  

6.1 INTRODUCTION 

  The design of Linux is based on UNIX, an earlier OS that was originally developed 

primarily for supporting several users at remote terminals, usually display screens 

and keyboards with a serial data cable. These terminals were connected to a central-

ized computer system, perhaps even over a modem and phone line. UNIX was origi-

nally created to give a large computer development environment feeling to a much 

less expensive mini-computer. (It was also developed as something of a hobby for its 

 6  6 
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two creators, who have won very prestigious computing awards for the concept of 

UNIX.) There are also versions of Linux that are intended for many other situations. 

Among these would be systems designed to:

   ɀ support a single user at the console of a personal computer  

  ɀ act as servers for various remotely accessed functions such as file, print, and 

directory services  

  ɀ serve as platforms for other higher-level services such as database management 

systems, Hypertext Transport Protocol (HTTP, or Web) servers, and File Trans-

fer Protocol (ftp) servers  

  ɀ act as routers in networks  

  ɀ control real-time systems, and  

  ɀ be embedded in equipment where there is no direct human user.     

   6.1.1 The history of a multiuser OS 

 Linux was inspired by UNIX™, so it makes sense to discuss briefly the origins of 

UNIX before addressing Linux. In 1969, Ken Thompson of Bell Laboratories began 

experimenting on creating a multiuser, multitasking operating system using a cast-

off PDP-7 mini-computer. He teamed up with Dennis Ritchie and they and the other 

members of their small research group produced the first versions of UNIX, then 

called Unics as a dig at the Multics project on which they had both worked. (Multics 

was a giant project with over a hundred people working on it whereas a handful of 

programmers created UNIX.) Early versions of UNIX were written in assembly lan-

guage, but the third version was written in a programming language called C, which 

was crafted by Ritchie expressly as a programming language for writing operating 

systems. C was designed as a fairly low-level, simple language that allows the pro-

grammer to ignore many hardware details in most cases, but still write programs in 

such a way that the compiler can take advantage of special hardware features. UNIX 

was a proprietary product of AT&T, the parent company of Bell Labs, where it was 

developed. AT&T made very reasonable charges for licenses to UNIX for academic 

use. UNIX version 6 (around 1976) was free for universities and version 7 cost 

$100. This included all the source code, freely modifiable. However, government 

labs and commercial entities had to pay $21,000. This was not an unreasonable price 

at the time for an operating system for a machine that cost hundreds of thousands 

or millions of dollars. And for universities the academic license was an irresistible 

deal since they had eager students who could port it to other machines or “improve” 

it as they saw fit. This was especially true of the utility programs that are typically 

distributed with an OS—such things as text editors, for example. 

 The allure of UNIX, a simple, consistent, small (it ran in a few kilobytes of 

memory and the source code was only several thousand lines of mostly C), and yet 

very flexible OS was compelling. Several companies and research groups wrote 

UNIX “work-a-likes,” they worked like UNIX with the same OS system calls and 

OS utilities, but the source code was completely rewritten (to avoid AT&T property, 

and avoid needing to license anything from AT&T). 

 In 1991, Linus Torvalds, a University of Helsinki (Finland) computer science 

student, was familiar with UNIX from his classwork and was looking for a UNIX-like 
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OS to use at home. One of the few free options (it came with a textbook) was MINIX, 

a limited UNIX-like system written by Andrew Tanenbaum for educational purposes. 

There were other free OSs that were UNIX-like, but most weren’t mature or stable yet, 

or required higher-end hardware than most users had at home. While Torvalds used 

MINIX, he felt that there were many features missing, so he decided to rewrite MINIX. 

He initially kept the file system design but later replaced it with his own. MINIX ran 

on a very basic 8088 CPU and floppy disks, allowing it to run on very inexpensive 

hardware systems. But it did not take advantage of the power of newer processors and 

hard disks. Torvalds used an Intel 386-based PC and started to add features and eventu-

ally wrote a new OS, initially using the C compiler on MINIX to do the development. 

Before long, Linux had become a “real” OS. The resulting Linux kernel contains no 

UNIX or MINIX code. Rather, it is a complete rewrite based on UNIX interfaces and 

utilities. Linux is actually only the kernel of an OS. It is built with, and uses a lot of, 

the GNU (GNU’s Not UNIX™) software produced by members of the Free Software 

Foundation in Cambridge, Massachusetts, for the utilities and applications that must 

come with a complete OS. Indeed, the bulk of the OS outside the kernel is also part 

of the GNU project. So, one of the more interesting, important features of the Linux 

system is that it is not proprietary to a single company. All of the OSs that we have 

discussed to this point are (or were) owned by a company. They consider the source 

code to be a trade secret and generally do not release it to the public. Linux and the 

GNU software are “open source” projects.  1   The source code is available for free, and 

users are encouraged to correct bugs and to enhance the code. There is a wide-ranging 

debate as to whether the proprietary process produces better, more robust OSs than 

the open source process or vice versa. 

 Although it is accurate to say that Linux provides a free version of an OS that 

supports UNIX operations, this is not as clear or useful a statement as it might appear 

to be on the surface. For one thing, (in part because of the almost free price for the 

source code for UNIX to universities), the history of UNIX development has been 

replete with variants. Many programmers who were porting it to another environ-

ment could not resist the temptation to “improve” something or to add some favor-

ite feature. Not until the late 1980s was a fairly standard UNIX API created by an 

independent IEEE committee. This standard is known as POSIX. Unfortunately the 

IEEE charged substantial fees for access to this standard, with the result that the 

developers of the free variants of UNIX-like OSs were usually not able to afford to 

have their products certified by the IEEE as being POSIX compliant. Later work 

has produced another specification that is more accessible to small companies or to 

unpaid developers, the  Single UNIX Specification  ( SUS ). 

 When Linux was first made available, a would-be Linux user needed to be some-

thing of a UNIX expert, knowing what libraries and executables were needed to suc-

cessfully get Linux to boot and run as well as the details concerning configuration and 

placement of some of the files in the system. Many potential users just wanted the sys-

tem to use for their work, hobbies, or research and were not interested in working on 

the kernel or in becoming an expert on building the system from scratch. Linux source 

1 There are many variations on the concept of “open source” licenses. The adherents of the various 
versions are generally adamant about the variations. We are using the term in a loose, generic sense.  
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code is free, and at the same time, anyone can make a copy of the system and sell the 

copy. As a result, individuals, universities, and companies began creating  distribu-

tions  of Linux. A Linux distribution usually includes compiled versions of the Linux 

kernel and GNU system libraries and utility programs. Many distributions provide an 

install procedure like that provided with other OSs that will customize the OS for a 

given machine. The distributions were originally just a convenience, but today they 

have become the usual installation method even for UNIX or Linux gurus because 

of the savings in time and the decreased probability of overlooking some small but 

important detail in building the system from the source. Now, most distributions of 

Linux are certified as compliant with SUS. There are many different distributions of 

Linux designed for special purposes, such as booting from a device other than a hard 

drive, using Linux as a server, or supporting different languages as the default. 

 The management of a Linux system is an interesting topic in itself. One of the 

key features of Linux is the numbering of the various releases. The major  release 

number  is the first integer. The preliminary versions that Torvalds first released were 

release 0. The current release is 2. The next part of the number is odd for develop-

ment releases (sometimes called “hacker” releases) and even for production releases 

(sometimes called “user” releases). So, for example, the current production release 

of Linux is 2.6 and the current development release is 2.7. Another integer is added 

to distinguish various patch levels. 

 Linux has really outgrown its very humble beginnings. It started as an OS kernel 

that was only available on single processor Intel 386 CPUs (or better) systems. Now 

it is available on almost every hardware platform available, including, in many cases, 

platforms where the hardware vendor also offers a proprietary OS, sometimes even a 

version of UNIX. (Naturally, some of the implementations are better than others.) For 

example, IBM has adopted Linux with considerable enthusiasm. They have ported it 

to all four of their E-series systems lines. This strategy takes advantage of the porta-

bility of applications using Linux. IBM now makes a greater portion of their income 

from writing, installing, and supporting applications than they do from selling hard-

ware or OSs. They quite likely often found themselves in the position of creating an 

application on one of their four hardware product lines and then having to port the 

application to other platforms for other customers. With Linux and Java™ they can 

create applications one time and easily move them to other platforms, including all 

the installation and support procedures using Linux packages, scripts, and so on.  

  6.1.2 Basic organization of Linux 

 Linux uses a  monolithic  kernel. This means that the entire kernel is loaded into a single 

program that contains all the modules of the OS. Every module has direct access to any 

function, object, or data structure in the kernel. This means that monolithic OSs are often 

faster than microkernel OSs. The risks in this approach are several. First, all the OS code 

runs in supervisor mode so that any bug can theoretically cause more drastic problems. 

Also, porting to new architectures is harder because the machine-specific portions are 

not necessarily as well isolated. In addition, if the designers are not careful, the source 

code can quickly become very complex because it is not absolutely essential to have 

clean, well-defined interfaces between the various modules as it is with a microkernel. 
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Also, adding support for new devices is more difficult with a monolithic kernel. Often 

it requires compiling the new driver and relinking and reloading the kernel. This obvi-

ously means that the OS has to be stopped and restarted—something not appreciated in 

a multiuser system or a server offering many network services or serving many users or 

both. But modern Linux versions have overcome many of these problems, as we will see 

shortly. The organization of the Linux kernel is shown in  Figure 6.1 .  

    As was discussed earlier, another type of organization   for   an OS is to be built on a 

 microkernel.  Such an organization is shown in  Figure 6.2 . Again, this means that the 

code in the kernel has been minimized to include only that part of the code that abso-

lutely must be in the kernel in order to execute privileged instructions. These portions 

typically include process management, basic memory management, and interprocess 

communication. The remainder of the functions that we normally think of as being 

part of the resident OS may be run in user mode. This organization has some benefits 

and some costs. It is easier to produce a kernel that is robust, and it is easier to port it 

to a new platform. The major cost of this organization is that it often introduces more 

overhead—the interrupt handling and context switching often make the OS run slower 

than a monolithic kernel. MINIX was designed and created as a microkernel system.  

      6.1.3 Dynamically loadable modules 

 Linux was initially envisioned to be a small, simple project. For this reason it did not 

seem to be important to go to the trouble of creating a microkernel OS. At one time in 

the early development of Linux, Tanenbaum actually sent an email to Linus Torvalds 

that dismissed Linux as being “obsolete” because of the monolithic kernel approach. 

At that time, many in the computing science community viewed the microkernel 
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approach as a preferred approach for the reasons previously listed. As Linux became a 

viable OS alternative, Torvalds and the Linux community came up with an interesting 

approach to modify or augment a purely monolithic kernel. The key idea was intro-

duced in version 2.0 of Linux. This version supports  dynamically loadable modules,  

or  DLMs.  This concept allows the basic kernel to contain a minimum amount of func-

tionality and be embellished by modules that can be loaded (and unloaded) after the 

system has started running. Many of the functions that are basic to Linux are devel-

oped as DLMs because they may not be needed in every installation. These include 

such functions as file systems, specific device drivers, SCSI high-level drivers (disk, 

tape, CD-ROM), network drivers, line printer drivers, and serial (tty) drivers. 

 In order to support DLMs, the core kernel has to have well-defined interfaces. 

This removes one of the significant objections to the monolithic approach. When a 

module is loaded it calls an OS function to “register” itself with the kernel. The exact 

function to be called depends on the type of module being loaded. An illustrative set 

of such calls is listed in  Table 6.1 . 

   One of the interesting effects about the DLM interface is that it allows software 

developers to create enhancements to the Linux system for which they do not want 

to provide the source code (which is necessary to be in accordance with the various 

open source licenses). This allows Linux to remain an open source project but still 

incorporate functions that are kept as proprietary by the developers. 
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 Another point about DLMs is that they need to be linked with the core kernel 

functions and data structures. (That is, they need to be findable by the kernel and 

they need to be able to access parts of the kernel in return.) This is accomplished 

by having a  symbol table  loaded as part of the kernel. This table is called  ksym.  

Any function or data structure that is to be exposed in the kernel will need to have a 

definition in this symbol table. A module being loaded will call a function that will 

search the symbol table and resolve any references in the module being loaded. This 

may sound as if it would slow down the system, but modules are generally loaded 

once and then remain a part of the system. Even if they are added and removed 

repeatedly, such as for a removable USB device, perhaps it is usually at intervals that 

are long compared to the CPU speed. 

 It is also likely that a module that is being loaded by the kernel will want to expose 

its own functions and data structures. A simple function, EXPORT_SYMBOL, allows 

the loading module to add entries to the symbol table.  

  6.1.4 Interrupt handlers 

 As was previously mentioned, device management in Linux is interrupt driven. Hard-

ware interrupts are a mechanism by which the hardware can notify the OS of asynchro-

nous events. A primary example would be the arrival of a packet at a network adapter. 

When the adapter has received a packet it will generate an interrupt so that the OS can 

stop what it is doing and take care of this packet that has just arrived. Sometimes the 

amount of processing required to take care of the packet can be quite lengthy. In addi-

tion, the complete processing of the packet may be much less important than what else 

the system was doing at the time. However, there is a minimum amount of work that 

does need to be done by the kernel immediately. At the very least the OS will prob-

ably need to assign a new buffer for any additional packet that might arrive. While this 

work is being done it is typical that either all interrupt levels are disabled or that the 

current interrupt level and any lower priority level interrupts are disabled. Naturally it 

TABLE 6.1 Dynamic Module Registration Functions

Purpose Dynamic Registration Function

Modules init-module

Symbol tables register_symtab

Console drivers tty_register_driver

Transport protocols inet_add_protocol

Network protocols dev_add_pack

Link protocols register_netdev

Serial interfaces register_serial

File systems register_filesystem

Binary formats register_binfmt

Block devices register_blkdev

Character devices register_chrdev
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is not a good idea to leave the interrupts disabled for very long or some external events 

will be missed. Therefore, an interrupt handler in Linux followed a well-known, popu-

lar  top-half  and  bottom-half  organization. The top-half consisted of those things that 

needed to happen immediately and the bottom-half were those things that could be 

done at a more leisurely pace. The top-half would record sufficient information so that 

the bottom-half could finish the work later. In later releases of Linux the structure of 

a bottom-half was redesigned and given a new name—a  tasklet.  The primary reason 

for the redesign is that tasklets can run on more than one processor in an environment 

with multiple CPUs, whereas bottom-halves could only be run by one CPU at a time. 

Existing bottom-halves were mostly redesigned to conform to this change.  

  6.1.5 File system directory tree 

 Linux, like UNIX, has a strong orientation around the file system. Many things 

appear in the file system tree that are not files at all. This is shown in  Figure 6.3 . The 

root of the directory tree is shown at the top level. Neither the proc nor the dev direc-

tories are actually directories. Rather, they represent the running processes and the 

hardware (or virtual) devices on the system. References to these names will cause 

the Linux OS to invoke other functions that will return appropriate information about 

these elements when they are accessed. These are discussed further in Chapter 19. 

The other interesting directories that can be seen in  Figure 6.3  are the subdirectories 

under the /home directory. These are directories for individual users. When a user 

logs on to the Linux system the OS will set the current working directory to be the 

home directory for that user.  

home mnt proc usr

hda sda alice bob bin lib

boot dev

bin etc lib root tmp var

l

FIGURE 6.3 A partial Linux directory tree.
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        6.2 THE MULTIUSER OS ENVIRONMENT 

  Since Linux is modeled after UNIX and UNIX is a multiuser system, Linux is a 

multiuser system. Assuming that there are multiple users on the system introduces 

from the start a problem that we have not had to worry about too much until now—

information security. When only one person can use a computer, the OS typically 

does not need to concern itself with the right of the user to access any files on the 

computer. It is assumed that any user of that computer can access any file and that 

file security is provided by limiting access to the machine or by using utility pro-

grams, external to the OS, to safeguard files by encrypting them. Multiple users on 

the system at the same time require that the OS provides a facility to protect each 

user’s files from all other users. This will mean that the OS will need to know who 

the user is. This, of course, means that the user will need to log on to the computer 

with a user ID (identifier) and a password. Of course, sometimes users will want to 

share files, so the OS will need mechanisms to allow some files to be shared. All 

multiuser systems also function as servers and may have multiple users logged on 

remotely. These OSs therefore also have security features, which are discussed in 

a later chapter. Of course, as we saw with the Mac OS, as computers are added to 

a network, even single-user systems will need to provide mechanisms for protect-

ing various assets, so user logon and such is now a common feature in most OSs if 

only for network access. The server version of the Linux OS allows multiple users 

to access files and other resources on the system remotely. This was not the main 

thrust of this OS, but the ability to run many services and many user applications at 

the same time meant that it also had to provide support for such advanced features 

as multiprogramming and multithreading. Supporting multiple users does not intro-

duce any new requirements in this area, but Linux does take a different approach to 

this subject, especially considering its UNIX origins.  

   6.2.1 File permissions 

 Linux supports the same model of file protection and sharing that other UNIX-like 

systems support. With respect to any particular file, Linux regards all users as being 

a member of one of three sets. The first set has only one member. This set is the file 

owner. Initially when a file is created the owner is the person who created the file. 

The second set is one that is predefined by the system administrator, or  sysadmin  

as that person is commonly called. This set is normally a bunch of users that share 

some  common interest in a set of files. Perhaps it is a project team that is working to 

develop the documentation for a new product or is using the same source code and 

wishes to share it among the team members. The sysadmin designates a new group 

by name and assigns users to be members of the group. The third set is “everybody.” 

In this case, it refers to every user who is not a member of one of the other two sets. 

For members of each set, three types of access can be allowed for a specific file: 

reading, writing, and executing. 

 The file owner can set the permissions on a file by using a utility called 

 chmod.  This typically obscure Linux command stands for “change mode.” This 
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utility takes two arguments, a file name and a “mode” that specifies the changes 

to be made to the file  mode.  Traditionally, this mode is a three-digit number. 

The digits of the number are limited to octal digits—that is, they can range from 

0 to 7. Each octal digit can be considered to be three bits. These three bits are used 

to allow the various operations—read, write, and execute, respectively—and the 

three digits relate to one of the three sets—owner, group, and everybody, respec-

tively. The ls command, which lists the contents of a directory, can list these 

mode settings for a file or directory. Consider the following entry printed by the 

ls command:

    -rwxr-x--x gil develop spellcheck    

This entry describes an executable file named “spellcheck.” The first part of the line 

is the settings of the permissions. The leading “-” has other uses. The initial mode 

of “rwx” applies to the owner of the file, in this case “gil.” The group for the file is 

“develop” and its mode is “r-x” and the mode for everyone else is “--x.” This means 

that user gil has all rights to the file, even the right to modify or remove it. The other 

members of the group “develop” can read it and execute it (if it is an executable 

script or program) but not write it, and everyone else can only execute it. The chmod 

command to set these permissions would be:

     chmod 751 spellcheck    

The 7 corresponds to binary 111, all rights on, and the 5 corresponds to 101, or read 

and execute only. 

 If we wanted to allow the group “develop” to modify this file we would have 

used another command, chgrp, for “change group.” We would enter:

     chgrp develop spellcheck    

The rather cryptic chmod command use has been enhanced in Linux and other cur-

rent UNIX-like systems to support more symbolic arguments. For example, the 

command

     chmod g ⫹ w spellcheck    

would add the write permission to the permissions for the group assigned to the file.  

  6.2.2 File control blocks 

 Since there are multiple processes running for multiple users, two or more users 

might be working with some of the same files. But they might be processing in dif-

ferent parts of the file. As we see in  Figure 6.4 , the structures are in two pieces to 

support this use with a minimum duplication of information. As we can see, there is 

a  systemwide open file table.  It is in the kernel and it contains metadata about the 

file that is the same for all users—where is the first block, how long is it, and so on. 

Each process has a  per-process open file table  as well. Each entry contains an index 

into the systemwide open file table and information about the use of the file by this 

process such as the current pointer.  
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        6.3 PROCESSES AND THREADS 

   6.3.1 Linux tasks 

 We have not yet fully discussed the idea of threads. This is just as well, since Linux 

does not distinguish between processes and threads, but it is common for writers to 

use those terms when writing about Linux because they are otherwise in common use. 

Linux documentation uses the term  tasks.  Under UNIX, when a process (called the 

parent process) wants to start another process (called the child process), it first issues 

the system call “fork.” This will create the child process as a copy of the parent pro-

cess. (We will see later that there are ways the system can make this happen without 

actually copying all of the program.) With Linux, however, the corresponding system 

call is  clone.  Like all OSs, Linux maintains several different segments of memory 

for every process. These will be described in more detail later. The clone system call 

specifies a set of flags that tells the OS which of these segments are to be shared 

between the parent process and the child process. The flags are shown in  Table 6.2 . 

   In order to support programs written for other UNIX systems, Linux must also 

support the standard UNIX calls for forking a process. Unfortunately, the clone func-

tion provided by Linux does not provide identical functionality. Several data struc-

tures used for supporting tasks are not automatically shared between the parent and 
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TABLE 6.2 Linux Clone Call Flags

CLONE_VM Share memory

CLONE_FILES Share file descriptors

CLONE_SIGHAND Share signal handlers

CLONE_VFORK Allow child to signal parent on exit

CLONE_PID Share PID

CLONE_FS Share the file system
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child tasks by the clone system call, including access rights. Libraries that intend to 

support POSIX compliance must then provide this service themselves.  

  6.3.2 Preemptive multitasking 

 When a single user is running multiple programs, only one of those programs will be 

interactive. In this case there will be no problem if that application takes more than 

a fair share of the CPU time because the user will not care if other programs pause 

now and again while some lengthy processing takes place in the interactive program. 

But in a multiuser system a program running for one user should not be able to seize 

the CPU and run indefinitely. Accordingly, as with the later versions of the Mac OS, 

Linux is a preemptive multitasking system. This means that when the OS starts run-

ning a process it will set a timer so that the OS will be interrupted if the process runs 

too long without making a blocking system call. If the timer expires then the running 

process will be put back into the queue of processes that are ready to run (i.e., the CPU 

is preempted from that process). This prevents a single process from getting control 

of the CPU and keeping any other process from running. This may be due to a bug in 

the application that has caused it to go into an endless loop. Often, the process just has 

a lot of work to do. Note that the resources consumed by the preemption itself are not 

being used to do actually useful work—it is not something that is being done on behalf 

of any user process. However, it gives a smoother overall response to the user, and is 

generally perceived to be better, even though it is slightly less efficient than not pre-

empting would be. In general, all modern OSs use preemption, except for some parts 

of hard real-time OSs. We discuss these questions more thoroughly in Chapter 8.  

  6.3.3 Symmetric multiprocessing 

 Multiprocessing systems are those that run multiple CPUs in a single system. This 

architecture has been common on systems where not enough CPU power was avail-

able to run the entire processing load. Given the alternative of adding a complete 

second system, which often had to be synchronized with the first system, multipro-

cessing is a capable and less expensive option. One reason it is less expensive is that 

a single system can share many expensive hardware components such as power sup-

plies, primary and secondary storage, and the main system bus. 

  Figure 6.5  shows the architecture of a typical multiprocessor system. This is 

a simplified diagram—for example, modern systems have several different buses. 

Note that the main memory and I/O architecture are shared among all the CPUs. On 

a single CPU system we can only be executing one program at any given instant. 

On a system with multiple CPUs there can literally be two or more processes (or 

threads) running at the same time.  

  Beginning around 2004, integrated circuit design engineers decided that it would 

be more cost effective to embed multiple CPUs in one chip rather than to continue 

to make each individual CPU faster and faster. These circuits are known as tightly 

coupled multiprocessors, chip-level multiprocessors (CMP), or multicore processors 

(MCP). They are even more tightly coupled than the previously available MP sys-

tems, which incorporated multiple individual CPU chips. MCP circuits often share 

a single L2 cache, for example. This means that most systems as large as a personal 
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computer will be multiprocessor systems, though single CPU systems will still be 

common in embedded systems for the foreseeable future. 

 There are two different approaches that an OS can take to supporting multiple 

CPUs. The first approach is called  asymmetric multiprocessing.     In this approach 

the OS runs on only one designated CPU. The other CPUs run only applications. 

This design has the advantage that the OS itself can ignore some of the complications 

involved in having the same process run on two CPUs at the same time. Although 

simple, this approach is not commonly used because of performance bottlenecks 

due to running the OS only on one processor. Instead, most modern OSs support 

multiple CPUs with a different approach,  symmetric multiprocessing  ( SMP ). In 

this approach the OS is treated like every other process in that it can be running on 

any CPU. A running program obviously will be modifying its state (data). It is easy 

to see that having two (or more) CPUs running the same code that is modifying the 

same data has to be thought about very carefully. Multiple instances of the OS run-

ning on different CPUs must be prevented from changing the same data structure at 

the same time. We look at this topic more closely in Chapter 9. Because the individ-

ual CPUs may each be caching the same data, the hardware must do a lot of work to 

ensure that all the caches contain the same information. The techniques involved in 

this synchronization have so much overhead that most current systems will not scale 

up beyond a fairly small number of processors—say, 64 or so. 

 Since the 2.0 release Linux has supported SMP.     
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   6.4 SUMMARY 

 In this chapter, we discussed the features and con-

cepts of a multiuser OS, Linux. This chapter is fairly 

brief because it only addresses the additional features 

found in Linux because it is a multiuser OS. Chapter 

19 is a more traditional case study of the Linux OS 

modules. 

 We started this chapter with an overview of 

Linux and a bit of the history of its evolution. We then 

moved to a brief discussion of the characteristics of a 

multiuser OS. Next, we discussed the support of files 

in Linux. We then gave an overview of the scheduling 

of processes and tasks in Linux. 

 In the next chapter of the book we discuss 

an example of distributed OSs—one that runs on 

multiple systems at the same time and attempts to 

make the many systems appear to the user as a single 

environment. The subsequent chapters begin an in-

depth look at the various components of OSs.  
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  REVIEW QUESTIONS 

    6.1 Why is a “distribution” important in Linux?  

   6.2 Why is SUS important to Linux?  

   6.3 Why would a large organization probably not want 

to use release 2.7 as a standard installation for all 

of their Linux systems?  

   6.4 True or false? Linux is only the kernel of an OS 

and relies on other groups to provide the needed 

utility programs to make it a usable OS.  

   6.5 True or false? Linux is a microkernel OS.  

   6.6 Modern OSs are used in a wide variety of environ-

ments. There are an incredible variety of devices 

and controllers that have been interfaced to Linux 

and a wide assortment of different file systems, 

disk schedulers, and so on, most of which are not 

needed on any given installation. How does an OS 

like Linux avoid becoming overloaded with mod-

ules that are not needed in most situations?  

   6.7 Why are interrupt handlers in Linux divided into a 

top half and a bottom half?  

   6.8 Describe briefly how the Linux clone mecha-

nism differs from traditional UNIX processes and 

threads.  

   6.9 True or false? Linux is a nonpreemptive multitask-

ing OS.      
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7.1 INTRODUCTION 

  So far we have been discussing the designs of Operating Systems that run on a single 

machine. But many systems are now designed for processing in situations where 

many processors are used together. In this chapter we discuss computing on more 

than one CPU and how we can manage such systems. There are several common 

configurations for multiple CPU systems, and many unusual ones. 

 We start by introducing a few key concepts encountered in distributed process-

ing. Then, after covering these concepts, in Section 7.3 we introduce some theory 

about computation and programming in parallel environments. Next, Section 7.4 

covers the common architectures found in distributed systems. OSs designed to 

run in such environments have special concerns that do not arise in uniprocessing 

situations, so in Section 7.5 we cover these OS issues. These topics include such 

questions as what needs to be managed, how does resource management differ from 

uniprocessor systems, and what interfaces are presented to programmers and users. 

In Section 7.6 we discuss some real systems that fit into this chapter and we close 

with a summary in Section 7.7.   

 7  7 
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  7.2 KEY CONCEPTS 

  Moore’s law recognized that computers will become more capable year after year. It 

predicts that CPUs double in transistor count every 18 to 24 months. Usually there has 

been a corresponding increase in CPU speed. Memory and disk capacities double at an 

even faster rate as well. Moore’s law has been a fairly accurate rule-of-thumb for more 

than three decades. In the last few years CPU speed has increased by exploiting paral-

lelism inside the CPU chip; such techniques as pipelining, multiple execution units in 

the CPU, and multicore integrated circuits have featured in the relentless pursuit of 

CPU speed. At the same time, they have all appeared transparent to the programmer.  1   

 Unfortunately, there is a rapidly approaching limit—the speed of light, at 3 · 10 8  

meters per second. This means that at a clock speed of 3 Gigahertz (GHz) a signal 

can travel only 10 centimeters in a vacuum between clock cycles, and significantly 

less distance in the silicon material that makes up an integrated circuit. Since CPUs 

are typically more than a centimeter across, this limits how much a CPU can do in 

one clock cycle. Yet CPUs have been getting faster clocks and faster processing 

every year. This forces computer architects to make CPUs do work in parallel (on 

the chip) yet hide those implementation details from programmers and users (who 

don’t want to redesign and rewrite programs for each new CPU chip). We would 

like to exploit parallelism in our computing problems on a higher level (parallel 

computing or clusters) as well, but this requires some modifications to the programs 

and enhancements to the OSs and the middleware. We describe those issues and 

how one may take advantage of these hardware facilities through OSs and other 

(middleware) software.   

  7.3 PARALLEL AND DISTRIBUTED PROCESSING 

  It is common to use the term “parallel” to refer to work being done in multiple places 

simultaneously. We have used the term parallel for that meaning, so far. There are several 

possible ways that we can configure multiple processors to provide parallelism. In this 

section we briefly describe the differences. Later we discuss each one in greater detail. 

 More precisely, we now describe parallel processing (or parallel computing) 

to refer to multiple processors sharing one big pool of memory and other resources 

(disks and printers, for example). This type of computer architecture is usually called 

 multiprocessing   (MP).  Today, most MP systems run under an OS that uses sym-

metric multiprocessing (SMP), as was discussed in Chapter 6 on Linux. While MP 

computers may have any number of CPUs sharing common memory, there are gen-

eral guidelines to most MPs:

   ɀ CPUs share one common pool of memory, and any CPU may read or write any 

memory location (even if it is being used by another CPU).  

  ɀ All CPUs are of the same type and speed.  

1 In this case “transparent” only means that a program that will run correctly without them will still run 
correctly with them. It does not mean that a skillful programmer might not want to take advantage of 
these features when extra performance is needed and the extra work is warranted.  
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  ɀ All other computer resources (disks, networking, and printers) are shared among 

all the CPUs.  

  ɀ There is usually only one copy of the OS running, and it knows about all of the 

CPUs and shared resources. (It is much less common to have multiple OSs run-

ning or to have the OS running on only one CPU.)  

  ɀ Programs must be specially written or modified to take advantage of running on 

multiple CPUs.  

  ɀ MPs may have two, four, or more (usually a power of two), but currently two- 

or four-processor (CPU) MPs offer the best performance per dollar, even better 

than single-processor CPUs; and more than eight-processor MPs are expensive. 

Many rack-mounted systems are two- or four-processor MPs. For hardware rea-

sons these rarely run over 64 CPUs in a single system.  2     

On the other hand, distributed computer systems:

   ɀ don’t share memory;  

  ɀ often have their own resources (such as disk drives);  

  ɀ communicate with each other through a network;  

  ɀ may not use the same hardware; and  

  ɀ run a separate copy of the OS on each machine.   

While sending a message (or sharing data) between computers in a distributed sys-

tem may only take a few microseconds, it is usually at least a hundred times slower 

than sharing memory on an MP system. There are several different classes of distrib-

uted systems as well, and each class has unique performance characteristics. 

 Clusters are a special class of distributed system. A cluster is comprised of indi-

vidual computing nodes. These nodes may be single processors or MP systems. They 

are managed and protected from each other by special software and are connected 

over a dedicated LAN that is separate from other LANs connecting the cluster to 

other resources. Usually the cluster shares a single connection outside the cluster, 

commonly to the Internet. Normally each cluster node has identical software and 

hardware to all other nodes in the cluster. It is possible, though less common, to build 

clusters from nonidentical nodes.   Clusters are usually administered by a single group 

of people (or person) and all login user names and passwords are identical for each 

node in the cluster. This means that a user can run jobs on one or more nodes with a 

single user name and password. Nodes in clusters typically share storage resources 

utilizing  SAN  ( storage area network ) and  NAS  ( network attached storage)  sys-

tems. These are essentially marketing terms for a pool of disks operating as a single 

networked resource using protocols such as  NFS  ( network file system ). Clusters 

typically have multinode job schedulers running through designated “head nodes,” 

which allow jobs, queues, and workflows to be managed. One such scheduler,  PBS,  

or  portable batch system,  is discussed later in Section 7.6.6. 

 Grids (grid computer systems) are comprised of multiple workstations or clusters 

with different administrators. As a result, they do not share resources directly, do not 

2 Some hardware configurations exist with a few thousand CPUs sharing memory. However the 
architecture is not a completely shared memory. These systems are referred to as Non-Uniform Memory 
Access (NUMA) systems, and not the sort we are discussing here.  
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share common logins, and may have totally different hardware and software configu-

rations. But the administrators of the individual clusters have agreed to allow some 

jobs belonging to users of other clusters or computer systems to run on their clusters. 

 Other common shared, distributed configurations include  peer-to-peer  ( P2P ) 

systems,  clusters of workstations  ( COWS ), and volunteer computing systems (such 

as the BOINC system used for SETI@Home, physics, and biology processing, 

among many other projects). While such configurations are often more difficult for 

a developer to utilize, they may offer potentially hundreds of thousands of nodes, 

spread throughout the world. 

 In the following sections we discuss the utilization and potentials of these con-

figurations for processing large computational work, sharing data and processing, 

gathering results, and monitoring progress of work being done.  

   7.3.1 Just to start, a little bit of theory 

 Work to be done may be described in  workflows.  These workflows specify the pro-

cessing steps that need to be done, the inputs and outputs of these steps, and the 

dependencies between the elements. Often a directed acyclic graph (dag) describes 

this process, as is shown in  Figure 7.1 . The nodes A, B, C, and D are shown as 

boxes and represent units of processing work to be done. The edges are shown as 

arrows and represent the dependencies between the processing nodes. We have omit-

ted describing inputs or outputs of the processing.  

    This workflow graph shows the flow of this job: first step A must process some 

data. After step A has completed, either step B or step C may run. Since there are no 

dependencies of steps B and C on each other, they may run at the same time. After 

both steps B and C have completed, then step D may run. For example, step A reads 

some data then passes a part of the data to step B and a part to step C. Then steps B 

and C each process their part and pass their results to step D, which processes their 

results. Let’s say that step A takes 10 minutes to run, step B takes 60 minutes, step C 

takes 60 minutes, and step D takes 20 minutes. If these were done on a single com-

puter they would take: 10  ⫹  60  ⫹  60  ⫹  20 minutes  ⫽  150 minutes. On two comput-

ers (ignoring overhead such as communication) this flow should take 10  ⫹  60  ⫹  20 

minutes (steps A  ⫹  B  ⫹  D side) on one processing node, and 60 minutes on the 

other node (step C). The total work done in either case is 150 minutes but the two-

computer solution reduces the “wall-clock” time (observed time) to 90 minutes, an 

hour faster. Notice that running step D on the second computer would not help to 

D

C

B

A

FIGURE 7.1 

A workflow graph.
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complete this work faster since we still have to wait on steps B and C. Nor would 

having three or four nodes improve performance because of our flow dependencies. 

Suppose we had special computers that can run steps B and C faster. How much ben-

efit do we gain? If we could speed up the runtime of B and C by a factor of two, each 

taking only 30 minutes, we would complete the flow in 10  ⫹  30  ⫹  20  ⫽  60 minutes. 

This is often called Amdahl’s law: the speed up of a portion of the work makes only 

that part faster, not the entire flow. Thus, even a 10 times faster processing in B and 

C only speeds up:

(10 + 60 + 20) minutes (old)

(10 + 6 + 20) minutes (new)   = 2.5 times

Not bad (2.5 times faster), but not 10 times faster (the speed increase of B and C). 

Amdahl’s law will make it very difficult for a practical system to approach the ideal 

of parallel computing: linear speedup. Linear speedup would mean that work done 

on a 10-node system happens 10 times faster than on a one-node system, and on a 

50-node system it would be 50-times faster. Sometimes there can be a superlinear 

speedup! On 10 nodes, processing is more than 10 times faster! This is very unusual, 

and is normally due to caching effects in memory. When 10 processors are running, 

then we also have 10 times as much cache memory involved and this can drastically 

speed up the processing. 

 Workflows are usually composed of two structures, as seen in  Figure 7.2 .  

    Pipeline flows indicate dependencies, but sweep flows may be done simultane-

ously in parallel. Most workflows are combinations of these patterns. One valuable 

insight is the condition where some part of a pipeline may actually allow partial 

processing, where a stage in the pipeline (a processing node) may process data one 

record at a time and then pass those results to the next stage, which may begin pro-

cessing of that record immediately, while the previous stage of the pipeline processes 

the next record, in parallel. 

 In workflows there are several items that would be interesting to measure:

   ɀ Work time—total time spent on all nodes to process the work.  

  ɀ Wall time (or clock time)—elapsed time, start to finish.  

A Pipeline Flow

A Sweep Flow

FIGURE 7.2 

Pipeline flows 

and sweep flows.
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  ɀ Utilization (resource utilization)—percentage of time each node (or the average 

of all nodes) is busy.  

  ɀ Throughput—number of jobs or workflow processes run per hour (or day).       

  7.4 DISTRIBUTED SYSTEM ARCHITECTURES 

   7.4.1 Overview of execution environments 

 There are significant differences between the various distributed system architec-

tures and single processor, multitasking systems. While each of the architectures 

allows us to run jobs in parallel, the effort that we must expend to utilize any one 

particular architecture, as compared to the others, varies quite a bit. So this section 

discusses each of these possible architectures in a bit more detail so that we can bet-

ter understand some of the problems that can occur. 

 As we have seen in previous discussions, as we take advantage of more advanced 

features, we need to be a bit cautious about side effects and interactions between 

different features. For example, recall that the ability to run several processes con-

currently allows more efficient use of computer resources. But it also introduces 

the difficulties of interprocess communication that arise because we build so much 

separation and protection between processes. Then we need locking and unlocking 

to avoid conflicts that arise when sharing resources, and then we need to worry about 

the deadlocks that can arise from the use of locks.  

  7.4.2 Symmetric multiprocessing systems 

 SMP systems share memory, and applications that process large amounts of data and 

pass data between stages or share tables can benefit substantially from being run on 

such architecture. There are parallel versions of many common programs (software 

tools). As you might recall, in SMP systems there is a single copy of the OS running 

and it may run on any CPU available. It must manage process scheduling for each 

CPU, memory allocation (there is only one shared physical memory space), and 

other resources (disks, terminals, and so forth). So, how does one utilize an SMP 

system to do work in parallel? Such a system is seen in  Figure 7.3 .  

    There are two main techniques that are used to take advantage of the power of an 

SMP system: multiprocessing and multithreading. (The distinction between these two 

techniques is discussed in Chapter 8.) If this seems familiar, these are the same facili-

ties offered by most modern OSs such as with Linux and the Mac OS, as we discussed 

previously. The key concept to the use of an SMP system is that it is very similar to a 

traditional uniprocessor computer but with more main memory and more CPUs. 

 From a programmer’s view, harnessing the power of multiple CPUs may be 

done by simply dividing the system into many separate programs, which run as sepa-

rate processes. Usually this means running at least as many processes as there are 

CPUs in the system. Usually we run more processes than there are CPUs in order to 

allow some to run when others are blocked and waiting. A program or a workflow 

(a group of programs/processes) that has been written to create many processes that 
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run simultaneously will run on a single processor computer. But they will also run 

just as well on an SMP system without any change, only faster. (In some unusual 

cases—such as a situation where almost all of the processes are blocked waiting for 

input—there won’t be any speedup benefit.) While this method of parallelism is a 

common one, there are difficulties in having multiple processes share data such as 

the race conditions previously mentioned. Interprocess communication and synchro-

nization work well, but incur overhead that may be avoidable by other methods. If 

work can be partitioned into sets that don’t require much interprocess communica-

tion and synchronization (such as do several types of sweep workflows, described 

previously), multiple process models work very well. 

 So then what does the OS need to do to manage multiprocessing or multithreading 

on an SMP as opposed to what it had to do on a uniprocessor? It turns out that there is 

not a great deal of difference. Since memory is shared in one big pool, memory man-

agement is the same as on uniprocessor computers. CPU scheduling is more complex 

than with uniprocessor systems because the additional CPUs must be handled sepa-

rately. Time-slicing scheduling is commonly used in SMP systems, just as in uniproces-

sor systems, so that part of the design is not much different. But the scheduler does have 

to consider where to schedule processes since work may be sent to different CPUs. This 

is not much more difficult than scheduling one CPU. However, one recent advancement 

in CPU architecture may complicate the scheduling. Recall that most CPUs have cache 

memory on the chip that contain copies of portions of main memory, but whose access 

is much faster. If the scheduler randomly assigns processes and threads to processors, 

the benefits of caching will be impaired. The system will still work correctly, but it will 

run much more slowly than if the data were in the cache for the correct CPU. Sophis-

ticated SMP schedulers try to keep a process (or multiple threads from one process) 

running on the same CPU once they have started. This is called  CPU preference  or 

 processor affinity.  This technique also allows a programmer or administrator to pro-

vide a suggestion to the scheduler to run a process or thread on a specific CPU. 

 The other problem that SMP OSs face is that there may be multiple copies of 

the OS running at the same time. These copies may try to update the same data at the 

same time. Therefore, SMP OSs must make use of locking mechanisms to prevent 

CPU 1

CPU 3 CPU 4
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A multiprocessing 

system.
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different executing copies from interfering with one another. This issue is discussed 

more fully in Chapter 9.  

  7.4.3 Clusters 

 Cluster systems are more loosely coupled than SMP systems. They usually have 

essentially identical system software on each node as well as several options for 

sharing and communicating between processes. An example is seen in  Figure 7.4 , 

where there are two groups of two systems with close coupling between the odd-

numbered systems and even-numbered systems and additional coupling between the 

two groups. In addition, each system has local memory and local storage. Clusters 

are normally administered by a single authority such as a corporation or university. 

They rely on  middleware,  software that facilitates interfaces between systems but is 

not part of the OS—it is in the “middle” between the OS and applications. Middle-

ware attempts to provide abstractions that facilitate distributed processing in ways 

that are independent of the underlying OSs involved. They are said to be  platform 

agnostic.  This allows us to connect existing systems together, among other things, 

and let the middleware sort out the differences. But middleware can be used in clus-

ters that are homogeneous as well.  

    Commonly found middleware packages include  MPI/PVM,   CORBA,   DCOM,  

 .net remoting,  and Java/ RMI  ( remote method invocation ). MPI/PVM ( message 

passing interface, parallel virtual machines ) offers a language-independent 

manner for a process to send or receive messages, data, and parameters to or from 

other processes on other nodes in the cluster, even if the processes are written 

in different programming languages. CORBA ( Common Object Request Bro-

ker Architecture ) is similar but allows one object to invoke methods on another 

CPU 3
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object that resides on a different computer. RMI is similar to CORBA but is spe-

cific to the Java language. DCOM (Distributed Component Object Model) is a 

method for invoking methods on remote objects that was created by Microsoft. It 

is considered to be a binary mechanism rather than a language-oriented mecha-

nism like CORBA or RMI. This means that it finds its target interface via what 

amounts to a branch table on the remote object. Due to the widespread presence of 

the Microsoft OSs, DCOM has been implemented on most other OSs as well. It is 

an older mechanism that is not favored for new development but is still supported 

because it is in such widespread use. Newer development is directed to the .net 

remoting methods. 

 These middleware packages allow processes that do not directly share memory 

to pass information between themselves—ideal for a cluster. But these middleware 

mechanisms are actually better suited to general distributed computing than they 

are to cluster computing. When programs are designed to exploit the parallelism 

in computing clusters, they can make use of other specific cluster interfaces for 

the OS. These are discussed later, for example, the use of PBS cluster scheduling 

commands.  

  7.4.4 Computing grids 

 Grids are even more loosely coupled than clusters. They are loose aggregates of indi-

vidual nodes or clusters administered by different institutions. The primary advan-

tage of grid computing is that each node can be an inexpensive computer, and by 

combining them into a grid they can produce computing power similar to a multi-

processor supercomputer at lower cost due to the economy of producing commodity 

hardware compared to the higher cost of building a small number of single-purpose 

supercomputers. The greatest disadvantage is that the nodes do not have high-speed, 

low latency interconnections. So this arrangement is best for applications in which 

many parallel computations take place independently. 

 Nodes in a grid don’t usually share user logins and passwords and the nodes 

typically have different configurations. They normally run the same OS, however. 

Neither multithreading nor MPI, RMI, or similar middleware mechanisms will be 

effective in distributing work, sharing data, or monitoring work progress in grid 

systems because the systems are so loosely connected. A consortium of industry, 

academic, and other interested parties have contributed to a freely available  Globus  

Toolkit that is widely used to administer computing grids. This package is a set of 

utilities, interfaces, and protocols that allow cluster administrators to share some of 

their resources as a part of a grid. 

 Since the nodes are administered separately, security is a large concern with 

a grid system. For security reasons, rather than creating temporary user logins for 

jobs, “tickets” are issued by  ticket granting agencies.  Many different administrative 

authorities will be concerned with the administration of a given grid. Any source that 

the various administrators can agree to trust can be a ticket granting agency. Transfer-

ring data and programs among nodes in a grid, reserving local space, and retrieving 

results are done by Globus commands and interfaces. Coordinating between sites 

(clusters) is somewhat more difficult than on a single cluster, and very little software 
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has been made grid-enabled. There are many other systems designed to facilitate grid 

computing besides Globus.  

  7.4.5 Volunteer computing 

 Individual people worldwide control millions of computers that sit idle for a large per-

centage of the time. Even when working at their assigned tasks most personal comput-

ers have many unused CPU cycles caused by the need to wait for I/O task completion. 

For many years, utilizing this otherwise wasted computation time on these computers 

has been a desire of several large projects. Many individual systems have been devel-

oped to take advantage of this otherwise wasted computer processing capacity. These 

systems needed to handle several problems, including allowing individuals to register 

their computers in the system, getting jobs to those computers, allowing those jobs to 

be suspended when other, more important work needs to be done on the computer, 

returning results to the originator, and keeping track of the “credit” each user or group 

of users has amassed. Eventually the Condor Project at the University of Wiscon-

sin and BOINC at Berkeley developed common infrastructures to allow many dif-

ferent projects to be run in such a mode without the need for each project to develop 

the infrastructure from scratch. While both offer the possibility of aggregating many 

otherwise unused computer resources, they have important differences. 

 Most volunteer computing projects are based on parameter sweep flows in which 

large amounts of data are broken up into small sets and sent to volunteers’ comput-

ers. These computers all run the same science program to analyze their particular set 

of data, then send the results back. The amount of work to be done in one sweep is 

usually a few hours and the data initially sent to the volunteer and results sent back 

to the server is usually not too large (several hundred kilobytes to several megabytes) 

so that volunteers are not overly burdened. Also, if a job is abnormally terminated for 

some reason, not too much work is lost. 

  BOINC 

 If the computing work of a project can be partitioned into reasonable-size chunks and 

the potential of using millions of volunteer computers will facilitate the project, then 

the BOINC infrastructure will be attractive. BOINC provides the common infrastruc-

ture and allows a project to submit its computing application to be run by millions of 

user computers, which have CPU cycles that are not currently being used. 

 Following on the success of early volunteer computing systems, BOINC (Berkeley 

Open Infrastructure for Network Computing) created an infrastructure for any software 

system to be distributed to millions of volunteer computers. BOINC is composed of 

a server system that sends out work and receives results. It may be configured to use 

any volunteer computer or to prefer computers where the software has already been 

installed and is running Linux or Windows. The BOINC client part is sent to volun-

teer client computers and it then downloads the actual science applications. When 

users register with BOINC they can select which science projects they want to par-

ticipate in and what portion of the spare cycles should go to each project. The BOINC 

client software then takes care of the rest of the problems. It schedules when the 

science applications will run. This might be any time when the computer is idle for 
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a certain time or it might run all the time in the background using idle CPU cycles. 

The BOINC client will keep the version of the science applications current, check-

ing with the server, and handle communication with the server, sending results back. 

Most BOINC science applications have a screen saver graphic display that shows the 

work being done in graphs, charts, and animated graphics. Currently BOINC supports 

several particle physics experiments, climate prediction, protein structure, epidemiol-

ogy and medical disease projects, cancer research, and SETI@home. In early 2008 

BOINC had over 2.5 million active computers worldwide, providing a bit more than 

800 TFLOPS. Of course these numbers will continue to increase.  

  Condor 

 The Condor system is a different approach that allows an administrator to create a 

local cluster of idle workstations to do distributed processing without the limitations 

or constraints of a cluster and without going to the trouble of setting up a cluster in 

hardware and software or organizing a grid. It provides an infrastructure similar to 

BOINC but each project administers its own single project and a private set of nodes. 

These nodes are probably owned by a single institution. 

 Condor is an ongoing project at the University of Wisconsin that allows users of 

computers to register them as being available and to describe a computer’s capabili-

ties: what type of processor(s) it has (Pentium, PowerPC, Athlon, etc.), how much 

memory and disk space, what software libraries are installed, and other character-

istics. Someone who wants to run a program or a group of programs (a workflow) 

describes the requirements of those programs in a similar manner. These descrip-

tions are called ClassAds (like classified advertisements) and are used by Condor to 

matchmake (i.e., to find the best matches between providers and requestors). Condor 

allows computers to describe preferences about when they should do this work. For 

example, a system might be allowed to do the work in the background, or when no 

one has pressed a keyboard key for a few minutes. After many years of development, 

Condor has become very popular and widespread and is a very stable system that 

requires only a simple procedure to install on computers wishing to provide service.  

  Common problems 

 Volunteer computing systems must cope with several problems of the computers 

used:

   They are heterogeneous, so the software must adapt readily.  

  They join and leave the system unpredictably.  

  Their availability is irregular.  

  The systems should not interfere with normal system use.   

In addition, volunteer computing systems must deal with a few problems concern-

ing reliable results, stemming from the fact that volunteers are often anonymous and 

therefore unaccountable:

   Some volunteer computers may malfunction and return incorrect results.  

  Volunteer computers may have their speed set too fast in order to gain extra 

credit and therefore more often malfunction.  
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  Volunteers may intentionally return incorrect results.  

  Volunteers may claim excessive credit for results.   

One common approach to all of these problems is to have each batch of data pro-

cessed on at least two computers. The results and the credit are accepted only if they 

agree fairly closely. Another technique used is checksumming or performing a CRC 

(cyclic redundancy check) on the results. These are mathematical functions com-

puted over the result data that detect transmission errors or tampering.     

  7.5 HOW OPERATING SYSTEM CONCEPTS DIFFER IN SMPS, 
CLUSTERS, AND GRIDS 

  In this section, we discuss several of the OS concepts that we have described in 

previous chapters and how they differ from the uniprocessor systems discussed 

there. In some cases, the concepts and implementations in parallel systems are 

almost identical to single CPU systems; in a few cases, the differences are note-

worthy and important.  

   7.5.1 Process synchronization and communication 

 Recall that processes often share work with other processes. Sharing work usu-

ally also implies sharing data. This distribution of work and partitioning or shar-

ing data requires coordination between processes. Even in simple cases where 

there is not very much interaction between these executable elements, one needs 

to exercise caution in those small parts of the program code where data (even a 

single number) may be shared between processes running on different systems. 

The problem we are trying to avoid is caused by two processes that are trying 

to change a single data item at the same time. This is called a  race condition.  

Traditionally, interprocess communication is done using shared memory or mes-

sage queues. Synchronizing concurrent access to data is done using semaphores 

or similar locking mechanisms in those  critical sections  of the processes involved 

where they actually manipulate the data. These mechanisms are based on shared 

memory and special CPU instructions. They will be elaborated on in Chapter 9. 

On some distributed architectures these mechanisms are not available and other 

mechanisms must be used. Perhaps a simple example best illustrates the question 

of how systems can accomplish synchronization and communication in distrib-

uted architectures.  

  7.5.2 An example 

 Suppose we have a very long list of information about many people. For example, 

it might include telephone numbers, names, email addresses, and some value such 

as the family income for the last year. We would like to sort this list into ascending 

order by phone number and calculate the average income at the same time. This is 
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an ideal problem for the architectures discussed in this chapter. (In fact, this problem 

may be too ideal since it can be structured as a highly parallel application and thus 

yields a speedup factor that may be atypical for distributed computing.) 

 The obvious method to solve this problem is to partition the list into smaller, 

separate lists. If we had eight processors to divide the work among we could have 

each processor sort and calculate the average on one eighth of the data, and then we 

could merge the result. This is a sweep flow, as was described earlier. The merge step 

at the end is a pipeline, as is the partitioning of the data at the beginning of the work 

flow. While each processor is sorting and averaging its own part of the list there is 

no interaction between processes. But at the time of merging the resulting lists and 

calculating the average there will be data sharing. 

 It would be more efficient if we could start processing (merging) results before 

all the results have been calculated. But this might create a race condition where 

some of the processors started trying to merge the results before all the processors 

had produced their first output. Furthermore, even if all eight processors were the 

same type and speed it would be very unusual that they completed their work at the 

same time. We could try to balance this by giving more work—more numbers in 

their list—to faster processors. If a processor was twice as fast as the others we could 

give it twice as many numbers to work with. But, this doesn’t work since it takes 

more than twice as long to sort this longer list, because sorting is not a linear time 

function. Predicting the running time of parallel processes is important, but usually 

difficult—and not very precise.  

  7.5.3 But it gets difficult 

 Now our simple example is getting complex—merging the results of sorted lists, as 

they become available, and calculating the average (a few adds, maybe scaled with 

multiplications, and a divide) shared data—and before we can use the result of a 

sweep process we need to know if it has finished. On a single CPU computer this is 

not difficult. We can communicate using shared memory and signal completion by 

setting flags in the data to indicate completion.  

  7.5.4 The SMP case 

 How would this be done on a SMP system? Fortunately, it can be done exactly the 

same way as on a single CPU computer. SMPs share memory among all the CPUs, 

so most of the common techniques used to communicate among processes work the 

same way as in a uniprocessor system. We discuss the issues involved in SMP OSs 

further in Chapter 9.  

  7.5.5 The cluster case 

 How are sharing and locking done on a cluster of computers? This architecture 

is somewhat more difficult than with a single CPU or an SMP system. Sharing 

memory is not possible (it may be simulated, but that is quite slow). Messages must 

be sent between processor nodes via a local area network. Work is partitioned and 
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distributed. Since data is not shared in memory between processors, it must be sent 

to each processor node separately. If the data is originating in a file, there may be 

file sharing across nodes, minimizing the impact of this distribution. 

 It is common to try to partition the processing of problems for a cluster so 

that there is almost no interaction between processes until the end of each process 

because communication between systems in a cluster is much slower than in an SMP 

system. For this reason, usually the rewriting and restructuring of a work flow for 

a cluster requires more programming and design than for an SMP system or single 

CPU and it does not end up doing as much work in parallel. But, the tradeoff is that 

the per-processing node cost in a cluster is much lower.  

  7.5.6 The grid case 

 How are locking and sharing done on a system with a grid architecture? This is the 

most difficult case. Sharing memory is not physically possible between clusters in 

a grid and is very difficult to simulate. Messages must be sent between nodes or 

between clusters via a network that may be protected by firewalls. The nodes may be 

very far apart and thus have very high communication latency. The work is therefore 

partitioned and distributed. Since data is not shared in memory between processors 

it must be sent to each cluster through a network, primarily the Internet, which is 

often slow, but perhaps over the Internet2, which is usually a bit better performing. 

Results must similarly travel back over the same network. Even if the data is stored 

in a file, the files being shared must still be copied to another cluster, where they may 

be shared between nodes in that cluster. 

 Why is this effort worthwhile? Why do we use grids for computation? We 

use them because grids also share, but instead of only sharing memory, they share 

whole clusters of computers between users. Rather than being limited to using  only  

the perhaps few hundred or so nodes available in a local cluster, a researcher may 

be able to use 50 clusters of computers, ranging from 10 to 400 nodes in each 

cluster. This high-level sharing may allow the use of many thousands of nodes 

for a short time. Since one is using someone else’s cluster, then one may not be 

able to use it for  too  long, maybe only a few thousand hours. But one should also 

share one’s own local cluster, so things should balance out in the long run. Users 

of grids therefore form  virtual organizations.  These organizations agree to pool 

and share resources such as their clusters. Such organizations are very dynamic. A 

virtual organization may form to computationally analyze one problem. It might be 

one task, such as a bioinformatics work flow that takes 100,000 compute hours in 

total, but is done by two dozen (24) clusters creating a small grid, and done over 

the weekend. Then the virtual organization disbands until the next big problem. 

This problem might take more than 10 years if done on a single computer similar to 

nodes on the cluster, or half a year on a typical local cluster such as that described 

later in this chapter. 

 For very large data sets, for example, the output of the LHC (Large Hadron Col-

lider, a large-particle accelerator at CERN, in Europe) physics experiment, the analysis 

work will take many millions of compute hours, so the virtual organizations will be 

around for quite a while. These organizations depend on Moore’s law, that computers 
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and capacities will increase, year-by-year, so that in later years, processing will speed 

up, and possibly the researchers will discover new principles of science that would oth-

erwise never be found.  

  7.5.7 File-sharing techniques 

 Large-scale computation users typically need lots of files. Files contain raw data 

values, parameters, intermediate and final results, and other information. It is not 

unusual that some of these files are very large, perhaps many gigabytes each. Clusters 

with many terabytes of storage (in a few cases, a hundred terabytes) are common, and 

the previously mentioned LHC will need petabytes of storage. 

 File sharing for SMPs is relatively easy since the processes also share the file 

system. Of course, the processes that share files may need to coordinate using locks or 

similar mechanisms. In most SMPs there is a primary file system (or a few) managed 

by the OS. Since the OS handles file operations it can coordinate among multiple 

processes that are creating, reading, writing, and performing other file operations. 

 In clusters, there are multiple instances of identical OSs running on the differ-

ent processors and they manage the sharing of files. This may be done by creating 

special file-sharing nodes, which allow files that they control to be manipulated by 

any (or many) nodes in the cluster. These nodes support an interface that provides 

essentially the same functions as those provided by a local OS in a single node or 

SMP system. Since it is possible to have race conditions on files in a cluster, file 

sharing nodes usually also provide locking commands to lock all or part of a file to 

allow error-free data sharing. 

 Grids do not share parts of files, nor do they allow locking between clusters. 

They do allow entire files to be copied, and some grid tools may simulate cluster-like 

file sharing. Ensuring that all nodes in multiple clusters have a consistent, identical 

view of every shared file is very challenging and is an active area of grid research. 

Even more difficult is the management of files that are almost the same between 

clusters, but have been changed a little, and yet still have the same name.  

  7.5.8 Using remote services 

 Applications often need to access remote services. These may include remote sub-

routines or function, methods on objects, or separate processes. The topic of remote 

services has been a very popular topic in parallel and distributed computing for many 

decades. This refers to how remote services are started and invoked remotely, how 

parameters are passed, and how results are returned. 

 On SMP systems services outside a particular process are most typically invoked 

through remote procedure calls (RPCs) or remote method invocations (RMIs). This is 

the same mechanism as discussed previously for interprocess management. Systems 

running on clusters employ middleware that enhances RPC calls or RMI invocations 

to be similar to the same calls in SMP or multiprocessing uniprocessor systems. Grid 

systems present challenges due to the difficulty of sharing (particularly of sharing 

data) and the issues of security. Naturally, most cluster administrators are very wary 

of allowing direct contact with a node in the cluster they are allowing remote access 

to. Grid systems have potentially long network delays, so usually grid services are 
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provided by batch-like, noninteractive servers. New grid service models, for example, 

the new Globus model discussed in Section 7.4.4, do provide Web services as a model 

and provide security through certificates. 

 With a long history and many opinions and implementations of remote servers 

and services, this area will be contentious and important for many years to come.  

  7.5.9 Handling failures 

 Lastly, we come to the somewhat unpleasant question of what happens  when  some-

thing goes wrong? 

 As more components, more computers, and more software are aggregated into 

a larger system, the chances that something will go wrong increases, maybe just 

something minor. This is why SMP systems, clusters, and grids must all recognize 

and deal with the eventuality of failure. 

 What can fail? The first thing that comes to mind is a hardware failure—a disk goes 

bad, maybe a chip fries, and a computer stops working. This will result in a node fail-

ing or not responding and losing the work it was doing. Network failures are probably 

more likely than node failures. A cable might come loose or a switch or router might 

fail. A network or server might suffer a denial of service (DOS) attack. (We discuss 

such attacks in Chapter 16.) Even more commonly a network or router will get very 

overloaded and drop traffic. In general, network failures will mimic node failures. 

 But software may also cause failures. For example, the wrong version of a pro-

gram or the wrong version of a runtime library may be loaded on a system. This is a 

very common problem. Unfortunately, software bugs may cause failures that are not 

detected until long after the failure actually occurred. 

 Software must be written to account for failures. For example, middleware can 

use timeouts to check that a remote procedure call or other server request is responded 

to within a reasonable amount of time. And if the service does not respond within the 

time limit another call is made, perhaps to a different server. If the original request 

response shows up later, then the result is simply thrown away. 

 Monitoring systems can watch network traffic, trying to detect failures. They 

can also watch individual node or cluster performance for failures due to hardware 

or misconfigured software. There are tradeoffs to be made here. For example, too 

little monitoring will cause failures to be unnoticed and unmanaged for a long time 

but too much monitoring creates a substantial overhead in computing resources and 

network bandwidth.    

  7.6 EXAMPLES 

   7.6.1 Scientific computing on clusters and grids 

 In the last few years several significant, computationally intensive natural science 

projects have used large computational clusters and grids. In this section, we discuss 

a few such projects. The continually declining price of commodity computers, disk 

storage systems, high-speed networking equipment, and network bandwidth and 
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software to control the distribution of work and data have very recently reached the 

point where such systems are affordable by most research communities. As a result, 

many new projects have only achieved results in the last year and others have not yet 

reached such milestones. The following projects are not the largest or perhaps the 

most significant; rather, they are a representative sample of different approaches and 

technologies employed to accomplish intense computational work.  

  7.6.2 The human genome DNA assembly 

 In the early 1990s, J. Craig Venter suggested using a whole genome shotgun assem-

bly approach for large genomes. (It is not possible with current technology to simply 

read each nucleotide, one at a time, in very long pieces of DNA.) A genome assem-

bly starts with ripping a DNA strand into many short pieces. These pieces are then 

“read” by sequencing machines in strings of up to 900 bases at a time. The four 

bases are adenine, guanine, cytosine, and thymine, normally shown as A, G, C, and 

T. A genome assembly algorithm works by taking all the pieces and aligning them to 

one another, and detecting all places where two of the short strings overlap. An exam-

ple is shown in  Figure 7.5 , where several overlaps of short segments of the original 

string can be seen. This method has become very popular, due, in large part, to the 

availability of computer clusters to assemble the large number of overlapping frag-

ments. While smaller genomes had already been sequenced by Venter using shotgun 

assembly, assembling the human genome needed much greater computing resources 

and very sophisticated software. This approach scans a slightly more than 3 billion 

base pair human genome that has been broken into more than 50 million overlap-

ping pieces. Since the chemical process for breaking up and reading sequences is not 

perfect, the algorithmic looks for near matches to align ends.  

  The processing done in this work on the human genome assembly initially took 

about 20,000 CPU hours. But it was done on a cluster of 40 four-processor SMP sys-

tems in a few days. This system, which at the time cost $40 million, would now cost, 

for an equivalent amount of processing power, a few hundred thousand dollars. 

 The major alternative approach, used by the public Human Genome Project, was 

to assemble ever-longer sequences, growing pieces into longer, known sequences. This 

hierarchical approach also requires significant computational resources. A custom writ-

ten program, GigAssembler, was developed that ran on a 100-node Linux cluster. In 

both approaches, the computational needs were large enough to require using compu-

tational clusters. These were cases where there really was no other reasonable choice.  

Original string

1st sample–A XXXACGATCGTCGAGTCATCGTXXXXXXXXXXX

1st sample–B XXXXXXXXXXXXXXXXXXXXXXTAGCGTAXXXX

2nd sample–A XXXACGATGXXXXXXXXXXXXXXXXXXXXXXXX

2nd sample–B XXXXXXXXXCTCGAGTCATCGTTAGCGTAXXXX

XXXACGATCGTCGAGTCATCGTTAGCGTAXXXX FIGURE 7.5 

Genome assembly.
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  7.6.3 IBM Computational Biology Center and cluster computing 

 IBM has been active in parallel and distributed computing for many years, and has 

taken a leadership role in developing very large-scale computer clusters and soft-

ware infrastructure and biological applications to use those systems. Blue Gene/L 

is a 131,000-processor cluster, with multiple network pathways to each node. This 

system, which was co-designed by Lawrence Livermore Labs, is used for science 

research. About half of the 500 largest computational clusters in the world are IBM 

computers. The Blue Gene series of computers, all very large clusters, use relatively 

modest-speed CPUs and employ a modified version of Linux as the OS. 

 The Computational Biology Center has several large projects of interest, includ-

ing bioinformatics, medical informatics, and functional genomics research. One of 

these projects, a biomolecular simulator called Blue Matter, simulates modest-size 

systems (10,000–100,000 atoms) for long time scales (hundreds of nanoseconds to 

a few microseconds). Using 4,096 processors on Blue Gene/L, a 43,000 atom mem-

brane protein system ran for a simulated time of one microsecond in a wall clock 

time of slightly less than two months.  

  7.6.4 Volunteer computing clusters 

 The goal of using processor cycles that would otherwise be wasted has appealed to 

many people for years. SETI@home, a project that searched for extraterrestrial intel-

ligence, utilized years of data collected from radio telescopes that had been stored in 

repositories but for which no computing resources had been available to analyze this 

data. SETI@home has been remarkably successful from a computing view. More 

than 5 million participants have contributed over 2 million years of aggregate com-

puting time over the years. In early 2008 it was estimated that at any given time all of 

the computers in the SETI@home system together provide 370 TFLOPS (370 · 10 12  

floating point operations per second). As a comparison, Blue Gene/L can reach the 

peak performance of 478.2 TFLOPS, with about one-sixth the number of processors 

as SETI. But note that the SETI computers are connected over home networks and 

phone lines, composed of a mixture of older and newer machines, and sometimes 

do other real work for their users. While no conclusive signs of extraterrestrial intel-

ligence have been found, there have been several interesting findings that may war-

rant further investigation. One concern voiced in a recent astronomy publication is 

that the digital signals collected at radio telescopes and sent over the Internet might 

expose the earth’s Internet to extraterrestrial viruses. While this would confirm extra-

terrestrial intelligence, no extraterrestrial viruses have yet been detected on earth. 

SETI@home is considered to be the largest grid/cluster computation in history. 

 Folding@home is an effort to simulate protein folding and misfolding; it was 

created by the Pande Group at Stanford. It has simulated folding in the 5- to 10-

microsecond range, which is a time scale thousands of times longer than was previ-

ously thought possible. It is the second largest volunteer project (after SETI@home). 

On September 16, 2007, the Folding@home project officially attained a perfor-

mance level higher than one petaflops. It has been used lately for analyzing protein 

misfolding, which is thought to be applicable to diseases such as bovine spongiform 

encephalopathy (BSE), or mad cow disease.  
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  7.6.5 A typical computer cluster 

 Here we describe a typical computer cluster with 98 two-processor computers. It 

happens to exist, but it is intended merely as a typical example of such a cluster and 

some samples of commands one might use in such an environment. Each node has 

a local disk and two processors inside the computer, and each computer’s two pro-

cessors share two gigabytes of memory. The 98 computers communicate with each 

other and with the Internet via a one-gigabit per second switched Ethernet LAN. 

There are also several NAS disk arrays using  redundant array of independent 

disks  ( RAID ) technology. (This technology is explained in Chapter 14). Together 

they comprise 100 terabytes of storage. The cluster also has five “head” nodes con-

nected to firewalls that allow an external user to connect to the cluster or to several 

dedicated database servers. It also has a few Web servers outside of the firewall for 

general status and information about the system. 

 Each computer node is running a separate but identical copy of Linux as the 

OS, and each node has common software installed such as OS utilities, high-level 

language compilers, libraries, and several science applications. Individual computa-

tional nodes and storage are isolated from the Internet. Access is granted through the 

aforementioned head nodes. The head nodes run clustering software that allows a user 

to log in to the head node and run multiple parallel jobs by using PBS (portable batch 

system—now called TORQUE, but almost always still referred to as PBS). Head 

nodes also do monitoring and some other accounting work, but are designed to be 

used primarily as portals for running an actual workflow on multiple compute nodes.  

  7.6.6 Utilizing a Globus cluster 

 The Linux OS on the cluster has good support of the two-processor nodes and for 

managing scheduling on the two CPUs. These OSs don’t know that they are part of a 

cluster. Rather than modifying the OS, the cluster work management is done by mid-

dleware, running on top of the OS. The middleware scheduler called PBS is freeware, 

as is the Linux OS underneath it. While PBS is a sophisticated system with many 

interfaces, a user can make effective use of it while knowing only a few commands. 

 First, one has to tell PBS what kind of CPU resources are needed. One can 

specify individual parameters on separate lines, like this:

    #PBS -M dave@mymailer.uta.edu   

   #PBS -l   nodes⫽10:ppn⫽2   

   #PBS -l   cput⫽02:00:00   

   #PBS -l   mem⫽213mb   

   #PBS -l   walltime⫽00:20:00    

Or combine the last four lines, like this:

    #PBS -l   

   nodes⫽10:ppn⫽2,cput⫽2:00:00,mem⫽213mb,walltime⫽00:20:00    

This PBS command requests 10 nodes, two processors per node, and 213 MB of 

memory. It requests a total of two hours of CPU time to run in 20 minutes of wall 
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clock time to run all of the workflow that users will submit. The M parameter tells 

the system who the user is. 

 In order to see the results of a program’s execution a user will need to tell the 

system where the normal output and error output streams should go. Here they are 

redirected to files, so they can be retrieved later:

    #PBS -o outputfile   

   #PBS -e errorfile    

Since the job may take some time to finish (weeks or even months, in some cases, 

even on large grids), a user can ask for an email to be sent when the job begins to run, 

and another when it terminates or aborts.

    #PBS -m bae    

And finally, the OS needs to know where the program is that is to be run:

    cd /temp/my_working_dir   

   echo "I am running on host 'hostname'"   

   execute my_program   

   rm ./junk   

   exit    

Specifically a user asks the OS to run some programs, probably with different files 

as input data, clean up any leftover temporary files, and exit. Note that frequently the 

user will put all of these commands into a shell script file and then run it. 

 A user submitting jobs using PBS needs to keep in mind that it is a batch-oriented 

system. Most modern OSs are primarily interactive—when an icon is clicked to tell the 

OS to run a job, it tries to start it immediately. In a batch system the job may not be able 

to run immediately because the resources asked for are not available at the time. So the 

jobs may be placed in a queue for later execution. There are a number of commands 

that a user can use to manage the jobs and queues available. Here are a few of them:   

          #qalter       Alter a batch job    

    #qdel       Delete a batch job    

    #qhold       Hold a batch job    

    #qmove       Move a batch job to another queue    

    #qrls       Release held jobs    

    #qrerun       Rerun a batch job    

    #qselect       Select a specific subset of jobs    

    #qstat       Show status of batch jobs       

For those users who are not comfortable with command-line interfaces there is also 

a GUI version of PBS called XPBS.  

  7.6.7 Portals and Web interfaces 

 After an application is working on a cluster, it might be desirable to make it avail-

able to others, either within a group or to a wider community. Or a user might simply 

want an easy-to-use interface to an application. In the past, creating a windowing 
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interface was an option, and many applications still do this. But it is now possible to 

make a grid workflow or application Web-enabled. 

 Portals are server computers that allow users to access data, applications, infor-

mation, and to share results. A local portal allows anyone to login, look at ongoing 

research, match interests to faculty researchers, and apply for an account. Account 

holders may access local applications, get datasets, chat with whoever is online, and 

share data and opinions.     

   7.7 SUMMARY 

 Prior to this chapter we discussed the designs of OSs 

that run on a single machine. Modern systems often 

are designed for applications where many proces-

sors are used together. In this chapter we discussed 

computing on more than one CPU and some of the 

difficulties that arise in constructing and using such 

systems. We covered several common designs for 

multiple CPU systems, and a few unusual designs 

as well. After an introduction and definitions of a 

few key concepts, we discussed a bit of the theory of 

parallel computing and the issues of computational 

models and programming. Then we discussed some 

common architectures for distributed systems. OSs 

designed to run in such environments have special 

considerations that do not arise in uniprocessing sit-

uations, so we covered some extra issues OSs face in 

distributed systems. These topics included such ques-

tions as what facets need to be managed, how does 

multiprocessor system resource management differ 

from uniprocessor systems, and what interfaces are 

presented to programmers and users. Finally, we dis-

cussed some real applications that are implemented 

as distributed systems, including a look at a typical 

cluster installation in a grid. 

 In the next part of the book we begin looking at 

individual topics in Operating Systems in more depth.  
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  REVIEW QUESTIONS 

    7.1 Moore’s law says that computers are getting faster 

and faster all the time. Why do we then go to the 

trouble of building cluster systems and other exotic 

designs that require a programmer to work hard to 

exploit any possible parallelism in a design?  

   7.2 True or false? SMP systems and clusters (almost) 

always use the same CPU in every node but grid 

systems can use different CPUs in each node.  
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   7.3 Which is true about the nodes in a cluster system?

    a. They share a single memory.  

   b. They have no local peripherals.  

   c. They communicate over a separate dedicated 

LAN.  

   d. A dedicated node runs the OS.  

   e. None of the above is true about the nodes in a 

cluster system.     

   7.4 True or false? A pipeline flow is an example of a 

workflow where there is parallelism that can be 

exploited.  

   7.5 What does Amdahl’s law say about the speedup of 

a workflow?  

   7.6 What common technique used in uniprocessor 

systems allows a programmer to exploit parallel-

ism on SMP systems?

    a. memory mapped files  

   b. multithreading  

   c. critical sections  

   d. semaphores  

   e. none of the above     

   7.7 What common hardware technique requires an 

SMP scheduler to make some special provisions 

for scheduling processes?  

   7.8 What is the term used to describe the mechanisms 

that are commonly used to exploit parallelism in dis-

tributed applications running on cluster systems?  

   7.9 Which of these techniques used in SMP systems 

or in clusters are also used to distribute processing 

in grid systems?

    a. multithreading  

   b. RMI  

   c. virtual systems  

   d. CORBA  

   e. none of the above     

   7.10 In uniprocessor systems we have to use criti-

cal sections to protect shared memory when it is 

being accessed by multiple processes. Why do we 

not usually need to use such mechanisms on clus-

ters and grids?  

   7.11 What mechanism is suggested to mitigate most 

failures in distributed systems?  

   7.12 How does work get distributed on a multiprocess-

ing computer system?  

   7.13 How does work get distributed on a cluster com-

puting system?  

   7.14 How does work get distributed on a volunteer 

computing system?  

   7.15 How does work get distributed in a Globus 

system?     
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 P
arts 3–5 of this book are similar to the bulk of most OS textbooks. They pro-

vide in-depth treatment of individual aspects of OSs. In particular, Part 3 treats 

some of the more fundamental topics that all modern OSs have to deal with: 

process and thread management and memory management. Together these constitute 

two of the major portions of an OS.

There are four chapters in this part of the text. The first two deal with processes 

and threads and how they communicate and otherwise interact. Chapter 8 defines a 

process and discusses the algorithms and data structures that have evolved to manage 

and schedule processes. It also defines the concept of threads and how they are used 

and implemented.

When high performance systems are developed that place great demands on an 

OS, it is usually necessary to break them into separate parts and allow them to run 

separately. Chapter 9 discusses the reasons why we often end up with systems com-

prised of multiple process or threads. Multiple processes will need to communicate 

to coordinate their work. So this chapter discusses mechanisms for such communi-

cation. It then points out some of the pitfalls involved in such communication and 

introduces the notions of synchronization and the deadlocks that may result.

The last two chapters in this part of the book deal with issues of memory man-

agement. Chapter 10 deals with memory management in simple systems. In part 

this is historical, but today it is clear that miniaturization of computer hardware will 

mean that we will continue to find computers in environments where resources are 

scarce, and these simple techniques will continue to be applicable in the foreseeable 

future.
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Chapter 11 deals with how memory is managed in larger systems. The two 

main techniques that have evolved are paging and segmentation. This chapter first 

explains how these work and then goes on to explain the notion of effective memory 

access time and the effect that paged or segmented memory would have. It then 

introduces the idea of a translation lookaside buffer and how it mitigates this prob-

lem. It next explains the notion of virtual memory and discusses some algorithms for 

the management of virtual memory.
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  8.7 Case Studies  173

  8.8 Summary   178

  I
n this chapter we talk about processes and threads. A fundamental function of an 

OS is the execution of a program and an executing program is known as a process. 

A program is a static thing. In most OSs a program is stored in a file on secondary 

storage. Eventually an OS is instructed to run a program, usually by a user, but some-

times by another process, perhaps one running on another system. The OS brings 

that program into primary storage and begins to execute it. That running entity is 

known as a  process.  Note that we may run many copies of the same program at 

the same time on one system. For example, it is possible to start several copies of a 

program development environment running at the same time. Each running copy of 

the program would be a separate process. Other terms often used for a process are a 

job  or a  task.  

 In the first section we define a process and speak about the abstraction of a 

machine that the process runs on. An OS must keep track of much information about 

each running process, especially when that process is not actually executing on a 

CPU. In  Section 8.2  we explain the main control structure that OSs use to store this 

data for a process, a process control block. As a process executes it will be in vari-

ous states such as ready to run, running, waiting, and so on. Various events cause the 
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process to transition from one such state to another.  Section 8.3  discusses the various 

states that a process can be in and the events that can cause the transitions between 

the states. When systems are running multiple processes the OS must decide which 

process will run next.  Section 8.4  addresses the various algorithms for scheduling the 

execution of processes. In order for a complex application to accomplish many things 

at once it is sometimes desirable for the process to start another process to do some 

of the work, so  Section 8.5  explains how one process can start another process. 

 Switching between processes turns out to have substantial impact on the perfor-

mance of an OS and the programs it is running. As a result, another mechanism was 

developed that will allow a single process to accomplish more things at the same 

time using the mechanism of threads.  Section 8.6  covers this topic. In  Section 8.7  

we discuss some real implementations of threads in some different OSs. Threads are 

also available in some high-level languages and in a standard thread API available on 

many OSs, so we discuss those in this section as well. In  Section 8.8  we close with a 

summarization of the chapter.  

   8.1 INTRODUCTION TO PROCESSES 

  As a process runs it will change its  state.  Most obviously it will be changing the 

program counter (or instruction address register) as it runs and as it calls subroutines 

or functions or invokes methods, loops, and so on. It will also be changing the con-

tents of the CPU registers, the system status register, and the stack pointer, at least 

on most machines. These items (and more discussed later) are collectively known as 

the process state. If we were only running one process on a system then there would 

be nothing much more to say about the process state. But these days we are not nor-

mally running only one process. We are rapidly switching between many processes 

in an effort to keep the hardware very busy and responsive to the user(s). 

 While we want the system to be able to run many processes at the same time, we 

want this switching among processes to be transparent to the processes themselves 

(i.e., a process does not need to know whether or when it will be suspended and 

another process run). We are creating a “virtual CPU” in the sense that every process 

can act as if it were the only process running. Since we are doing all this switching 

between processes, when we stop one process to start another we will have to save 

the state of the process we are stopping and restore the previous state of the process 

we are starting. (This assumes that the process we are starting is not a new process.) 

We will create a structure in memory where we will save the information describing 

the state of the process we are stopping. We will call this structure a  process control 

block  ( PCB ). Some OSs call this structure a  process descriptor.    

  8.2 PROCESS DESCRIPTOR—PROCESS CONTROL BLOCK 

  As was just described, when a process is stopped by the OS for any reason, the state 

of the CPU at that time is saved in the PCB. There are many other pieces of infor-

mation in the PCB as well. A typical PCB is shown in  Figure 8.1 . Different OSs 
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will keep different information in the PCB, but here are some things that are fairly 

common:

   ɀ Program name  

  ɀ Process ID, a number assigned by the OS to identify the process  

  ɀ Parent process ID or a pointer to the parent process PCB  

  ɀ Pointer to a list of child PCBs  

  ɀ Pointer to the “next” PCB, probably in a queue  

  ɀ Accounting information  

  ɀ Pointer to a table of open files  

  ɀ CPU state information

   ɀ Instruction counter  

  ɀ Stack pointer(s)  

  ɀ System status register  

  ɀ Other system registers     

  ɀ Event descriptor, valid if the process is waiting for something  

  ɀ Process state information (see next section)  

  ɀ Process owner (user)  

  ɀ Memory management information  

  ɀ Pointer to a message queue  

  ɀ Pointer to an event queue     

    It is important to understand that while a process is actually running, the  CPU state 

information  is not updated. It is saved only when the process is stopped for some 

reason. Note that the term “state” is overloaded. We have been talking about the 

“state” of the CPU and said that we saved that information in the part of the PCB 

called the “CPU state information” when we stopped a process. You may have 

noticed that the PCB also has another entry called “process state information.” This 

is something different, and it is coming up next.   

process id

next PCB

Parent PCB

Child PCB list

Open File Table

CPU state

Process state

MMU information

. . .

FIGURE 8.1 

A process control 

block.
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  8.3 PROCESS STATES AND TRANSITIONS 

  The designers of OSs have to document the external view of their systems so that 

programmers will know how to write programs for them and users will know how 

to run the programs. Some of the things that need to be discussed can be described 

in several ways. An example is the concept of “states” that a process can be in. The 

most obvious state for a process is that it is running. But only one process can be 

running at any time on each CPU, so what are the other processes doing? Some of 

them are ready to run and some of them are waiting for something else to happen 

before they continue. 

 Different designers (and authors) will use different models to explain the manag-

ing of processes by an OS. In Chapter 2 we introduced this five-state model with dif-

ferent state and transition labels, but it is also common to see a  three-state model  that 

eliminates the new and exit states. The five-state model is shown again in  Figure 8.2 . 

It is convenient to describe these states with a state diagram. The states (or nodes) 

are indicated by the hexagons. The arrows (or transitions) are the events that cause 

the transition from one state to another state. The five states are seen as New, Ready, 

Run, Wait, and Exit. These states often have different names in other references.  

    The  New  state represents a process that the OS is currently preparing to run but 

that is not yet ready. When the user tells the command processor module to run a 

program it goes through the transition marked “0–Program Loaded” and is put in the 

New state. First, the OS has to create a new PCB, assign a process id, and fill in all 

0–Program
Loaded

4–Got What
It Needed

3–Needs 
Something

6–Finished 
or Aborted

7–Exits 
System

5–Interrupted
2–Gets

CPU Time

1–Process 
Initialized

New

Ready

Run

Exit

Wait

FIGURE 8.2 

A five-state process 

model.
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the other PCB parameters. Then it usually has to reserve memory, read the program 

in from secondary storage, and so forth. Especially on a multiple CPU system we 

don’t want an instance of the OS running on another CPU trying to dispatch this pro-

cess, so until it is actually ready to run it is marked as being in the New state. 

 When a process is ready to run it is put in the  Ready  state. This is seen as 

transition “1–Process Initialized.” Eventually it will be selected by the OS as the 

next process to run. Then it will be  dispatched  (i.e., it will be put into the  Run  

state). This transition is indicated by the arrow labeled “2–Gets CPU Time.” As a 

process is running it may decide to wait for something else to happen before it con-

tinues. A very common cause is that the process has requested a synchronous I/O 

operation (like a normal high-level language Read operation) and wants to wait until 

the operation is complete and thus it is moved to the  Wait  state, sometimes known 

as the  Suspended  state. This transition is labeled “3–Needs Something.” We will 

later see that there are many different kinds of events that a process can wait for. 

When a process is in the Wait state, sooner or later the event that the process is wait-

ing for may occur. (Of course, that event might never occur, for example, a process 

that is waiting for possible errors or for an incoming request for a service that is 

rarely used.) As an example of this transition, perhaps the I/O that a process had 

requested has finished. This transition is labeled “4–Got What It Needed” and the 

OS puts the process into the Ready state. The next transition in this model is labeled 

“5–I nterrupted.” The OS may elect to interrupt a running process for several reasons, 

but not all OSs do so. The first instance is a time-slicing system where each process 

in turn is given a short amount of time to execute. If it has not done something in that 

time to cause it to go into wait state then the OS will take it out of Run state and put 

it into the Ready state and allow another process to run. A second instance would 

be where a process with a high priority has been waiting for an event and the event 

occurs. If the process that is running has a lower priority than the process that was 

waiting, then the OS may stop the lower priority process, put it back in the Ready 

state, and put the higher priority process into Run state. But not all OSs use priority 

scheduling. 

 The  Exit  state is reserved for processes that are being ended by the OS. There 

may be many reasons for a process to reach this state. This transition is labeled 

“6–Finished or Aborted.” Finishing is obvious. Abort is fairly clear. Either the pro-

cess or the OS has detected a problem and the process is being stopped before more 

damage occurs. But there are also other reasons why a process might leave the run 

state and go to the exit state. As one example: A parent process to this process may 

decide that this child process is no longer needed and ask the OS to kill it. For most 

purposes we don’t want to clutter up this model so we leave these more rare transi-

tions out of the figure. 

 The Exit state is rather peculiar in that processes don’t stay in it very long, but 

these processes are not running, ready, or waiting, so we could reasonably talk about 

this state as being something distinct from those other states. The OS will need to 

do some housekeeping for this process such as freeing up resources that the process 

may have acquired and not yet returned, ensuring files are closed, and tearing down 

the PCB for the process. Until the resources are fully recovered we don’t want this 

process being selected to run, so we leave it in this state as we work. 
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 Other OS documentation includes even more complex models. In at least one 

case  1   the model used by the designers has nine states and many transitions. While 

the designers of this system may have felt it was necessary to explain to application 

programmers some special facets of the system, this level of complexity is not seen 

in most documentation. 

 Note that except for the Run state, there can normally be many processes in any 

given state. So, we should not be surprised to find that for most OSs there is an elab-

orate mechanism for tracking all the processes that are in any of the other states. The 

Ready state will consist of at least one structure. Often we speak of it as the  Ready 

queue,  but technically we often use it in other ways than a strict queue would oper-

ate. In fact, it might be several linked lists. We discuss this more in the next section. 

The Run state contains only one process unless we have a multiple CPU system. In 

that case the processes running on the various CPUs might be linked on a separate 

list, but it is probably sufficient that they merely be removed from the list(s) of the 

Ready state. For the Wait state there may be many queues. In this case they some-

times are operated in a FCFS manner so it is legitimate to call them queues. In other 

cases we will do more advanced scheduling of operations and the word “queue” 

might not actually apply. However, the term is well entrenched in OS literature, so 

we will stick with it, realizing that it might not always be technically correct.   

  8.4 PROCESS SCHEDULING 

  As was just discussed, a process may leave the Run state for several reasons. When 

it does, it may go immediately into the Ready state, for example, if it was interrupted 

for reaching the limit of its time quantum. If a process is waiting on some event, per-

haps an I/O completion, and the event happens, then we will need to put the process 

into the Ready state so it can get to the Run state and handle the event. When we put 

a process into the Ready state, we need to decide when it should run in relation to the 

processes that are already in the Ready state. This decision is made by an OS module 

called the  short-term scheduler.  There are a number of ways the OS can make this 

decision. We might want to design our OS so that we can plug in various short-term 

scheduler modules to suit the needs of the system users and administrators. First, we 

describe the algorithms and then we discuss some of the pluses and minuses of them 

in various situations.  

   8.4.1 FCFS scheduling 

 The simplest method, and one historically used by many OSs, is simply to run a 

first-in, first-out schedule with an ordinary queue. This is called the  FCFS,  or first 

come, first served algorithm. It has several advantages. It is easy to implement. It is 

well understood by designers, users, administrators, and even teachers. Finally, it is 

by definition the  fairest  (i.e., it does not favor any one process over another in any 

   1 UNIX SVR4. See Bach, M. J., The Design of the UNIX Operating System. Englewood Cliffs, 
NJ: Prentice Hall, 1986. No. 1, January 1988.
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circumstance). FCFS is often enhanced by allowing a running process to make a 

system call that yields control to the next process in the Ready state. This is known 

as cooperative multitasking. It was typical of a generation of OSs that included the 

pre-X Mac OS, Microsoft Windows, and many others. Of course, the running pro-

cess might have a bug or might be trying to make itself have better user response by 

using more CPU time that it ought, so it was not an ideal solution.  

  8.4.2 Priority scheduling 

 There are some circumstances when we might not want to use a FCFS algorithm. For 

one thing, we may have some processes that are much more important than others. In 

a modern OS we want to process keystrokes and mouse operations promptly so that 

the waiting time of the interactive user is minimized. We will want the process that is 

managing the window that has the focus of the OS to be fairly responsive—perhaps we 

are browsing a website. We are less interested in the performance of other processes 

that might be running but that don’t currently have the focus—perhaps our email reader 

is checking our mail servers to see if we have any mail. We are even less interested in 

the performance of some other processes—perhaps the SPOOLING system is printing 

a document that we downloaded some time ago. In such cases we might use a  priority  

scheduling algorithm. In a priority algorithm we will associate a priority with each pro-

cess. Our keystroke and mouse handler might be the highest priority, the window with 

the focus the next higher priority, windows without the focus the next, and background 

processes like the SPOOLING system still lower. There normally is a process in most 

OSs called something like the  idle  process that runs in a loop when no other process is 

ready to run. (Note that the “highest priority” might be the lowest number, not the high-

est number. The choice might depend on the instruction set of the computer or might 

just be an arbitrary decision on the part of the developer. As long as the scheduler is con-

sistent it is perfectly normal to have the lowest number represent the highest priority.) 

 Whenever we allow some jobs to have priority over other jobs there is a special 

problem that we have to worry about. It is possible that higher-priority processes keep 

postponing a low-priority process to the point that the lower-priority process never 

gets to run. This problem is known as  starvation.  There are several ways we can deal 

with this potential problem. Collectively these are known as  aging.  Generally we 

will monitor those processes that are being postponed, and whenever we postpone 

a process too many times we simply raise its priority temporarily. Eventually it will 

reach a high enough priority that it will run one time. Then we will let the priority 

drop back to where it was originally. Eventually even fairly low-priority processes 

will finish, but higher-priority jobs will still be given the majority of the time.  

  8.4.3 Guaranteed scheduling 

 FCFS scheduling gives each process a fair chance to run, but if a process does many 

blocking calls then it will not receive a fair amount of CPU time if other processes 

are running that do fewer blocking calls. It is possible to guarantee that if  n  processes 

are running then each process will get 1/ n th of the CPU time. In  guaranteed sched-

uling  the OS needs to track the total amount of CPU time per process and the total 
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clock time. Then it calculates the ratio of the CPU time the process actually used to 

the amount of time each the process is entitled to and runs the process with the low-

est ratio. This is sometimes called  fair-share scheduling.  In essence, this is a type 

of priority scheduling.  

  8.4.4 SRTF scheduling 

 Even large batch-oriented mainframes can have priorities among the jobs. Typically 

programmers developing new jobs will want fast job turnaround so that they can get 

their work done. Other jobs can run overnight. Nevertheless, some jobs are more 

important than others. Everyone wants the payroll to be on time! When timesharing 

is also incorporated in the system, typically the interactive window-based jobs all run 

at a higher priority than the batch jobs. One way to make this happen is to use an algo-

rithm called  shortest runtime first  (sometimes called shortest remaining time first; 

 SRTF ) or  shortest job next  ( SJN ). This algorithm is fairly self describing. It merely 

selects the job to run next that will run for the shortest amount of time. Incidentally, 

this algorithm will produce the shortest possible turnaround times for all jobs. 

 Recall that when processes are running they will normally compute for a short 

time and then do an I/O operation. The interactive time-sharing jobs typically run for 

short amounts of time between I/O operations. Large batch jobs may run much lon-

ger before doing an I/O operation. So, one way we can give a higher priority to the 

interactive jobs is to base the priority on the amount of time that the process will run 

in its next CPU burst before doing an I/O operation. However, most computers don’t 

come with the “mind reader” option installed, so we usually don’t know how long 

the next CPU burst of a process will be. However, we can track the past performance 

of each process and guess that it will behave in the next CPU burst much as it has in 

the past few bursts. To make this guess we will use an exponentially decaying func-

tion. We will use the following variables:

T
i
will be the actual time taken by this processs in the i’th time interval.

will be the tim
i

E ee we estimated in the i’th time interval.

There is a parameter in this formula that will be used to tune the performance:   . 

It is the percentage of the guess that we want to be based on the last actual CPU time 

taken by the process. Its value is therefore between 0 and 1. The rest of the guess will 

be based on the last guess we made. The formula will be:

E E
i i 1 i 1

( ) ((1 ) )=  ⫹ ⫺ * *T
⫺⫺ ⫺⫺

   is often initially set to .5, so that half of the guess for this time slot is based on 

the last actual time and half (1⫺   ) is based on the last guess. Each time we make 

another guess, the effect of both the past guess and the time actually taken is reduced 

by half. This is why the function is described as  exponentially decaying.  If we raise 

the value of   , then more of the next guess will be based on the actual CPU perfor-

mance. This will make our estimate respond more quickly to changes in the CPU 

use, but we will tend to overcorrect for small fluctuations. If we lower the value of    
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then we will do the opposite—we will respond to changes more slowly but will not 

overreact to short fluctuations. 

 We will use this guess to select the processes to run next, choosing the pro-

cess we guess will use the smallest amount of CPU time before it does an I/O 

operation. We will leave for later those processes that we think will take longer. 

In this way the SRTF algorithm is a variation on the Priority algorithm. We are 

merely setting the priority of the process based on our guess of the length of the 

next CPU burst.  

  8.4.5 Highest response ratio next 

 Highest response ratio next (HRRN) scheduling is similar to Shortest job next, in 

which the priority of each job is dependent on its estimated runtime. But HRRN also 

includes the amount of time the process has spent waiting. A process gets higher 

priority if it waits longer. This variation is used mainly because it lessens the likeli-

hood of starvation.

Priority (time waiting estimated runtime) e⫽ ⫹ / sstimated runtime.

    8.4.6 Preemption 

 In each of these algorithms we have assumed that when a process has the CPU we 

will let it run as long as it wants to—typically it goes to Wait state for an I/O opera-

tion. However, what if we were running the priority algorithm and currently had 

a process running that was of fairly low priority? Assume another process with a 

higher priority has been waiting on an I/O event that finishes. Since we know that 

this process has higher priority than the one that is running we can stop the one that 

is running and start the higher-priority process. Taking a resource away from a pro-

cess is called  preemption.  In this particular case the resource we are preempting is 

the CPU itself. 

 We can apply this idea of preemption in each of the algorithms we have stud-

ied so far. In most cases we will give a new name to the algorithm when we are 

allowing preemption. If we allow preemption in the FCFS algorithm it becomes the 

 round-robin  algorithm. In this case the preemption is not based on priority but on 

a time quantum. We allow each process a specific amount of time to run without 

doing any I/O. If it exceeds that time then we preempt the CPU and put that process 

at the back of the run queue. 

 If we apply preemption to the shortest runtime first algorithm then it becomes 

the  shortest remaining time first  algorithm. When we preempt a running process 

for a higher-priority process we note in the PCB the amount of time remaining in our 

guess of the runtime of that process. When we restart it later we don’t make a new 

guess—we just use the time that was remaining when the process got preempted. 

 In the priority algorithm we can apply preemption when a higher-priority pro-

cess enters the Ready state. We don’t give this modified algorithm a special name. It 

is simply referred to as  priority with preemption.   
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  8.4.7 Multilevel queues 

 Modern OSs use a more complex scheduling algorithm called  multilevel queu-

ing.  As the name implies, instead of a single queue we will use several queues. A 

new job will be placed in one of the queues. The individual queues can all use the 

same scheduling algorithm or they can use different algorithms. If the algorithms 

are all doing timeslicing then the queues may each have a different time quantum 

assigned. The queues will have different priorities, and the highest-priority queue 

is serviced first. A question that must be decided is the mechanism used to share 

the CPU between the queues. There are basically two approaches. First, we could 

make the mechanism a strict priority mechanism. That is to say that as long as there 

are processes in the higher-priority queues, those are run first. Of course, with this 

mechanism we would have to worry about starvation. An alternative approach is to 

share the CPU among the queues. For example, we might dedicate 50% to the first 

queue (as long as there were jobs in the queue to be run), 30% to the second, and 

20% to the third. Since the lower-priority queues are always getting some service 

they will not starve. 

 Most modern OSs add a  feedback  mechanism to the multilevel queues. The 

initial assumption is that a new process is interactive so it is put in a high-priority 

queue. If the process runs for more than the allowed time quantum for this queue 

without doing any blocking OS call, then the OS assumes it is not really an interac-

tive process, so it moves it to the next lower-priority queue. This queue may also 

have a longer time quantum. Remember that context switches are not productive 

work and they slow the execution of the processes down temporarily for hardware 

reasons that we will cover later. So if the process is not finishing its time quantum on 

the fast queue, we may want to give it more time at the lower queue. Typically there 

are at least three such queues. So if a process running in the second queue still does 

not do any blocking call in the time quantum for this queue it is moved to a lower 

queue, perhaps with a still larger time quantum. 

 Of course, all processes will have some intervals in which they are doing more 

computing than in others. So a process that is basically interactive may have short 

periods where it is doing a lot of computing and sinks to a lower queue. Thus, we 

will want to have some mechanism that will allow a process to rise back to a higher 

queue. This might be as simple as elevating a process to a higher queue anytime it 

does a blocking call without finishing the time quantum at the current level. This 

might be too reactive, however, and we might find it necessary to wait until a process 

does not finish its quantum several times in succession.  

  8.4.8 Selecting the best algorithm 

 With so many algorithms, how do we compare them? There are a number of mea-

sures of system performance that have been used to compare scheduling algorithms. 

A few of these include:

   ɀ throughput—jobs run per hour or per minute  

  ɀ average turnaround time—time from start to end of the job  

  ɀ average response time—time from submission to start of output  
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  ɀ CPU utilization—the percent of time the CPU is running real jobs (not switching 

between processes or doing other overhead; of more interest in big systems)  

  ɀ average wait time—the time that processes spend in the ready queue    

 The first three depend on the job mix, so they are difficult to compare fairly and 

accurately. CPU utilization is interesting and is easy to measure, but in personal 

computer systems we really don’t care about it. These CPUs are reasonably cheap 

and we are more concerned with optimizing perceived user performance. The aver-

age wait time is the measure that makes the most sense in most circumstances. We 

want to make sure that the most computing is getting done with the least amount of 

wasted time. Average waiting time seems to reflect that most accurately. 

 The easiest way to compare the average waiting time of the various algorithms is to 

use a method known as  discrete modeling.  We take a sample set of processes and their 

runtimes and we simulate by hand the execution of each process on that sample data. We 

then calculate the waiting time of the nonrunning processes and compare the values. 

 First, consider this set of processes:  

Process ID Arrival Time Runtime

1 0 20

2 2 2

3 2 2

For our purposes, it does not matter what the time units are, so let’s just say they are 

microseconds. Also, note that we show P2 and P3 both arrived at time 2. With only 

one CPU they can’t really both arrive at time 2 since the computer can only do one 

thing at a time. But our clock isn’t very fast, so for the purposes of this algorithm 

they both arrive at time 2. For each set of data we produce a timeline showing the 

processes running on the CPU. For this set of data, using the FCFS algorithm, we 

would see the following timeline:

0
|    P1 |  P2  |  P3  |
|_________________________________________|____|____|

20 22 24

Now let us compute the average waiting time. P1 arrives at T0, so it starts imme-

diately. P2 arrives at T2, but does not start running until T20 when P1 finishes, so it 

waited for 18. P3 also arrived at T2 but did not start until P2 was over at T22, so it 

waited for 20. So the average waiting time was (0  ⫹  18  ⫹  20) / 3  ⫽  38/3  ⫽  12.67. 

 Now suppose that the same three processes arrived in a slightly different order:  

Process ID Arrival Time Runtime

1 0 2

2 2 2

3 2 20
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The timeline looks like this:

P1 P2 P3
0 4 242

This time the short processes came first. P1 and P2 had no wait and P3 only 

waited 2. Thus, the average waiting time was

( ) / / . .0 0 2 3 2 3 0 67⫹ ⫹ ⫽ ⫽

This small difference in arrival times illustrates a major problem with the FCFS 

algorithm. It is called the  convoy effect  or “ head of line blocking ”—a short job 

arriving just after a long job will have to wait a long time before it gets to run. This 

will give a system running this algorithm a highly variable average wait time. 

 Let’s look at the first set of data again, but this time we assign priorities to the 

arriving jobs ⫺ lowest number  ⫽  highest priority:  

Process ID Arrival Time Runtime Priority

1 0 20 4

2 2 2 2

3 2 2 1

Now our timeline will look like this:

0 242 4 6
P1P2P3P4

Now P1 starts immediately, but at T2 it gets preempted by P3, which has the 

highest priority, so P3 starts immediately. P2 has to wait for 2, then P1 starts again at 

T6 after waiting 4. So now the average waiting time is:

( ) / .4 2 0 3 2⫹ ⫹ ⫽

This is not quite as good as FCFS, when the processes happened to arrive in the 

optimum order, but it certainly is better than what happened when they arrived in 

the wrong order. In this case the lower-priority job happened to be the longest job. 

When we are running SRTF, the process with the shortest estimated runtime gets the 

highest priority. This is just what happens in SRTF, so this simulation applies to that 

specific case of priority scheduling as well. 
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 Next let us look at another example for SRTF. Suppose we had the following set 

of processes and that we were not allowing preemption:  

Process ID Arrival Time Runtime

1 0 12

2 2 4

3 3 1

4 4 2

The timeline would look like this:

0 12 13 15 19

P1 P3 P4 P2

and our average waiting time would be:

( ) / . .0 13 9 9 4 7 75⫹ ⫹ ⫹ ⫽

Now suppose that we allow preemption. Our timeline would look like this:

190 2 9

P1P1
6

P2
4

P4

3

P3P2

Notice that the total execution time of the processes themselves was the same as 

without preemption. But now our average waiting time would be:

( ) / . .7 3 0 0 4 2 5⫹ ⫹ ⫹ ⫽

Clearly, we would prefer this result—but at what price? We know that every-

thing has a price. Observe that in the case without preemption we only did three 

context switches and in the case with preemption we did five context switches. We 

should recall that the time taken to do a context switch is not time that the system is 

doing productive work. It is all overhead that we spend to make the average waiting 

time smaller so many things appear to happen faster, especially the high-priority 

things. Later we will see that context switches are even more expensive than just 

the time it takes to save and restore the CPU state of the processes and the time 

we spend running the chosen scheduling algorithm. Switching contexts also slows 

down the hardware for a short time—in some cases quite dramatically. As a result, 

we want to do as few context switches as possible. We have to take a hard look at 

the typical decrease in the average waiting time and balance that against the con-

text switch overhead (hardware system dependent) and the resulting slowdown of 

the processes.  
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  8.4.9 A long-term scheduler 

 Some OSs also have another scheduler module called a  long-term scheduler.  In a 

PC OS with a GUI there normally is not such a scheduler. When the user clicks on an 

icon, a process associated with that icon starts running. In large computer systems with 

batch-oriented job streams (perhaps in addition to interactive processing) the system 

does not automatically start all the jobs that are submitted. Instead, they are put in a 

queue for starting later. It is the job of the long-term scheduler to decide how many jobs 

to try to run at the same time and which jobs to run when. The first aspect of this deci-

sion is that there will be some minimum number of jobs that we want to have running 

at the same time. We will start executing at least this minimum number of jobs, assum-

ing that there are more to run than we can run at one time. One aspect of this decision 

has to do with the level of CPU utilization. If all of the jobs that are running are pri-

marily jobs heavily using I/O, the long-term scheduler will try to find some jobs that it 

thinks will raise the level of CPU utilization. To some extent this information may be 

conveyed by accounting information submitted with the job. In other cases the sched-

uler will just pick one, probably on a FCFS basis. In Chapter 11 we discuss a problem 

that this approach may cause when memory becomes too full. The long-term scheduler 

can use most any of the short-term scheduling algorithms instead of FCFS. Since the 

long-term scheduler runs only once for each process that is started, it does not need to 

be extremely fast and can spend more resources selecting the next job carefully.  

  8.4.10 Processor affinity 

 We have mentioned several times that there is considerable overhead involved when a 

CPU switches from one process to another. Because of memory caching that the hard-

ware is doing, the execution of the new process will be slowed dramatically for some 

period of time until the cache buffers switch from the old process to the new process. 

We may have some processes in a system that we consider to be much more important 

than the other processes. Perhaps our system is being set up to be a dedicated database 

server, for example. We might want that database program to have the very highest 

priority. As a result, in a multiprocessor system it is often possible for the OS to main-

tain a  processor affinity  for a given process. This affinity is value that the OS will use 

to indicate a preference for this process to run on some particular CPU whenever pos-

sible. In some instances a system administrator may indicate that a particular process 

is to be closely coupled to a particular CPU. In other cases the OS will merely try to 

run a process on the same CPU it ran on the last time it ran. In some OSs it is possible 

to dedicate a CPU to a process so that only that process will run on that CPU.    

  8.5 ONE GOOD PROCESS DESERVES ANOTHER 

  When a user signals to the Command Interpreter to start a new process, there has 

to be a way for that Command Interpreter process to start the user’s process. The 

Command Interpreter uses a normal supervisor call to start another process. This 

supervisor call is known as a  fork.  The process that makes the call is called a  parent  
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process and the process that is started as a result is called a  child  process. The entire 

mechanism is referred to as “forking a child,” or sometimes as “spawning a child.” 

So it is clear that the Command Interpreter needs to be able to start another process, 

but why would a user application need to do so? The first reason is for performance. 

If a process has many tasks to do that can be started at the same time, then it can 

start additional processes to perform some of those tasks and the OS can keep all the 

processes running at the same time. This is especially true if the system has multiple 

CPUs. There are other reasons why an application might be broken into several pro-

cesses. In the next chapter we discuss these at some length.  

 But there are several complications that arise when we let one process start 

another. For one thing, if the parent process ends for any reason, do we let any child 

process continue running or do we end it as well? Most OSs will automatically end 

any child process if the parent process ends. Some do not. In most modern OSs we 

can have our choice. A child process who’s parent process has ended is known as an 

 orphan  process. 

 Another question has to do with the ownership of resources. If a parent process 

has a file open, can the child process access the file? Yet another question has to do 

with the program that is running in the child process. In most cases of a fork call, the 

child process is an exact copy of the parent process in another block of memory. Note 

that both the parent process and the child process will next execute the instruction 

following the fork call. An interesting question is, How does each of the processes 

know which instance is the parent and which is the child? In general, the return code 

from the fork call is set to zero for the child process and a positive nonzero number 

(the child process ID) for the parent process. The following code is an example of a 

typical fork system call:  

int main(void) {

    pid_t pid = fork();

    if (pid == 0) {/* If pid=0, we are in the child process.*/

    do_something(from_the_child);

    }

    exit(0);

    }

    else if (pid > 0){/* If pid is positive we are in the

        parent process and pid is the child process id.*/

    do_something_else(from_the_parent);

    }

    exit(0);

    }

    Else {/* If pid is negative then there was an error;

        E.g., the number of running processes reached

        the maximum. */

    fprintf(stderr, “Can’t fork, error %d\n”, errno);

    exit(1);

    }

}
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  Usually having another instance of the parent process run is not what we really want. 

This is obviously the case with the Command Interpreter. We don’t want another 

copy of the Command Interpreter. We want it to run some other program. Generally, 

what we really want is another program running in a child process. So after the fork 

call, another call is made to load a new program into the memory space allocated for 

the child process. This is usually an  exec  system call. 

 Of course, if what we really want is for another program to run, then the initial 

step of copying the parent process into another block of memory is a waste of many 

resources. So some OSs provide a different call known as a  shell  command. This 

command creates a new process but never copies the parent process to the child 

space—it loads the desired program immediately. Some OSs offer both a fork/exec 

pair and a shell command and others only offer one or the other. In some systems a 

high-level language library will offer a shell command, but if the OS does not have 

a corresponding function call then the library may have to use a fork/exec sequence 

to do the work. 

 One last question has to do with the actions of the parent process while the 

child process runs. In a manner analogous to I/O, which can be either synchronous 

or asynchronous, when a parent process forks a child process it can elect to continue 

execution itself in parallel with the execution of the child process or it can elect to 

wait until the child process is finished. A parent process might initially elect to con-

tinue but later need to wait until a child process has finished its work. In such a case 

there is usually a separate  wait  system call that a process can make to put itself into 

a Wait state until the child process finishes.   

  8.6 THREADS 

   8.6.1 What is a thread? 

 Suppose that we picture the logical address space of a process as the vertical axis on 

a graph. As time goes by we keep moving to the right at intervals and making a mark 

everywhere the instruction counter has been in that interval. We might end up with 

something like  Figure 8.3 . We could instead imagine that we unwound a thread and 

placed it on the graph instead of marking the space with a pencil. This is an analogy 

that gave rise to the phrase “ thread of execution. ” 

 Now suppose that we stopped this process, and saved all the data that represented 

the CPU state in a table (we might call it a  thread control block,  or  TCB ). Then further 

suppose we started the process over from the beginning. Again we let it run for a time, 

then stopped it and saved the CPU state in another TCB. We could now go back and 

restore the saved CPU state of the first thread and resume its execution. How would this 

be different from running multiple processes? There are several ways that using mul-

tiple threads can be better than using multiple processes. For one thing, we only have 

one copy of the program and data in memory, so we have more memory to use for other 

things. For another thing, there is a much smaller overhead to switch between threads 

than to switch between processes since we are only saving the CPU state. Generally 

this means saving only a few registers (including the instruction pointer) and the pointer 

to the stack space. On some computers this can be done with a single instruction. We 

are not saving accounting data, OS scheduling information, execution statistics, etc. In 
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addition, as we have previously discussed, there are hardware performance problems 

we will cause when we switch the CPU between one process and another. We want to 

avoid the heavy overhead of a process context switch whenever we can.  

    Finally, when multiple processes are being used to implement a system, they 

have a difficult time communicating. This is natural. The OS designers have gone 

to a great deal of trouble to isolate processes from one another so that one process 

can’t change the contents of memory in another process, intentionally or not. Many 

different mechanisms have been invented to allow cooperating processes to commu-

nicate. We look at several of them in the next chapter. However, threads don’t have 

this problem. By definition, all the threads created by a single process are running in 

the same address space and share both the code and the data. Therefore interthread 

communication is trivial—all threads simply access the same variables. The main 

difficulty is keeping the individual threads from manipulating the same data at the 

same time. This problem is discussed in depth in the next chapter. 

 Actually, when we start a second thread we don’t really start it at the beginning 

of the process. Recall that we just said that the various threads share a single copy of 

the program code and the data that the process owns. Normally, one of the first things 

a process does is to initialize data tables. Since the first thread has already done this 

setup we don’t want the second thread to redo it. More to the point, the startup of a 

second thread is not something that the OS does on its own. It is initiated by the run-

ning process in order to let the system do more work on behalf of the process with-

out incurring that heavy overhead of a full process context switch. For this reason, 

a thread is sometimes called a  lightweight process.  As a process is running it will 

reach a point where there is some additional work that can be done in parallel with 

the work the main thread is doing, so the process (parent thread) will start a child 

thread to do that extra work. In  Figure 8.4 , we see an example of two threads in a 

single process. The first thread is shown as a solid line. At some point it calls the OS 

to start a second thread, shown here as a dotted line. Eventually, the OS switches back 
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to the first thread again. Both of these switches were done without the overhead of 

a context switch between processes. And if the system has multiple CPUs or a CPU 

that is capable of running multiple threads at the same time, then both of the threads 

can literally run at the same time.  

    One example of how threads work can be seen in a word processing program. 

As this is being written a check shows that the word processor has 18 threads run-

ning. Some are fairly obvious, but it is hard to come up with 18:

   ɀ foreground keystroke handling  

  ɀ display updating  

  ɀ spelling checker  

  ɀ grammar checker  

  ɀ repagination  

  ɀ “smart tag” recognition  

  ɀ periodic file save    

 Another example is commonly seen in server applications such as a Web server. 

One thread will wait for incoming HTTP requests. For each incoming request a new 

thread is started. The thread will do (at least these) several steps:

   ɀ Parse the incoming request  

  ɀ Look up the requested file  

  ɀ Read the page  

  ɀ Format it for output  

  ɀ Request the transmission of the page  

  ɀ Exit    
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 This sequence keeps the handling of each request in a separate thread of execution 

and makes the program logic much simpler than having a single process keep track 

of the state of hundreds or thousands of individual requests.  

  8.6.2 User-level threads versus kernel-level threads 

 Historically, the use of multiple processes came before the idea of threads. When 

programmers realized that switching between processes used so many resources and 

slowed things down so much they begin to develop the concept of threads. However, 

the OSs of the time did not have threads built in to them. So the original develop-

ment of threads was done as a set of library subroutines. Of course, this meant that 

the entire thread package ran in user mode and the OS was unaware that an applica-

tion was trying to keep multiple activities running in parallel. Accordingly, if any of 

the threads in a process made a system call that would block for some reason, the 

entire application, including all the threads of that application, would be blocked at 

the same time. Such a thread package is referred to as a  user-level thread  package 

because it runs entirely in user mode. Designing programs that utilize such user 

thread libraries must therefore be done very carefully so that one thread does not put 

the entire process to sleep. 

 Eventually, however, OS designers decided that threads were such a good idea 

that they would incorporate the thread functions into the kernel. Now the OS was 

aware that the application was using threads. In many circumstances the OS did not 

need to block an entire process if a single thread did a blocking call to the OS. Such 

thread packages are called  kernel-level threads.  Also, since the OS is aware of the 

individual threads, it is possible for the threads to execute on separate CPUs in a 

multi-CPU system. This is a major advantage for kernel-level threads, especially in 

an era when a multicore CPU system will soon be the normal case for average work-

stations rather than something found only in powerful servers. 

 In general, kernel threads are much easier to use than user threads because the 

programmer does not have to avoid blocking calls. This makes the programming 

model much easier. For example, consider writing a Web server using threads. The 

application sits in a loop, waiting for requests in HTTP commands to come in from 

the network. When a request comes in to return a page, the main application thread 

starts a separate thread to handle the request and goes back to waiting for more 

requests. Now the child thread has a very simple task, as we outlined before. It parses 

the HTTP request, looks up the page on the disk, reads the page in a series of reads, 

formats the page into HTTP messages, sends the answer back (assuming the page 

was found), and exits. This makes each thread very straightforward since it does not 

have to be designed to cope with multiple requests at the same time. The alternative 

would be for the main application to issue asynchronous calls for each of the I/O 

operations. While this is certainly possible, it is a much more complex model and it 

is difficult to take advantage of a multiprocessor system. 

 A later development is a user-level thread package that is designed to give 

some of the advantages of the simplicity of programming one gets with kernel-level 

threads without relying on kernel-level thread support. Such packages are called 
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 green threads.  Green thread libraries capture blocking system calls and turns them 

into nonblocking calls. They then handle scheduling of the various user threads. This 

model allows a program to run unmodified in either mode by loading with the kernel-

level thread library or with the green user thread library. However, there are some 

disadvantages to this approach. First, if the system is a multi-CPU system, the indi-

vidual threads will not take advantage of the multiple CPUs because the kernel is not 

aware of them. As we have mentioned, the trend in processors is that most systems 

already include multiple CPUs. Second, kernel-level threads can be scheduled pre-

emptively, so a thread that takes too long to do its job cannot dominate the system. 

Green threads do not offer this level of control.  

  8.6.3 Thread support models 

 When OSs began to offer kernel thread packages, the application programmers were 

not anxious to rewrite their applications just to use kernel threads. So the OS design-

ers would take the existing user thread libraries and rewrite them so that they would 

use the mechanisms provided by the kernel threads. There are three common meth-

ods for making the user library routines utilize kernel threads. The main question 

that distinguishes them is the method of mapping the user threads to kernel threads. 

The three methods are one-to-one, many-to-one, and many-to-many.  One-to-one  

mapping is fairly simple. When the application calls the library routine to create a 

new thread, the library routine calls the kernel thread mechanism to create a new ker-

nel thread.  Figure 8.5  shows a schematic diagram of the one-to-one thread mapping 

model. This model has the advantages of being fast and very simple to develop and 

for the user to understand. Although other models appear to give the user more con-

trol, they are significantly more complex to use and therefore more prone to errors. 

Most OS vendors are moving away from the more complex models on the grounds 

that the advantages of finer control are outweighed by the disadvantages.  

  The second mapping model is called  many-to-one.  Recall that the user library 

that is being modified will block the entire process when any thread in the applica-

tion makes a blocking call to the OS. In that case, this model will do exactly the same 

thing. Only one kernel thread is created and all the user threads will be mapped onto 

that same kernel thread.  Figure 8.6  shows the many-to-one thread mapping model. 
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This model is less desirable than the one-to-one model because it does not offer 

the advantages of kernel threads. It is used only when an operating system has no 

kernel thread support. The single “kernel thread” in this case is the running process 

itself.  

    The last model is called  many-to-many.  In this model the programmer will tell 

the system something about how many user threads and kernel threads will be needed 

and how they should be mapped. The basic idea is to have a group of kernel threads 

available and dynamically assign user threads to them as they are needed. It may also 

be possible to have multiple groups of user and kernel threads and to specify that some 

user threads are bound to a single kernel thread.  Figure 8.7  illustrates the many-to-

many thread mapping model. As was mentioned before, this model theoretically gives 

the user finer control over the behavior of the entire system, but it is more difficult to 

use correctly and is losing favor since modern systems have such large memories and 

speedy processing that the performance gain perceived by the user is very slight and 

not worth the programming problems that come with using the more complex model.  

    Although threads are easier to create and destroy than processes, there is still 

some overhead involved in creating them. As a result, some thread packages will 

create a group of thread structures when the procedure first calls the thread package. 

This group is called a  thread pool.  When the parent thread calls for a new thread, 

one structure is taken from the pool, initialized for the specific thread, and used. 

When that thread exits the structure is returned to the pool. 
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 One problem with threads is that not all library subroutines are prepared to be 

called multiple times without completing one call before another call starts. (This is 

called “ reentrancy. ”) This is specifically a problem when a process is running on 

a system with multiple CPUs. Suppose a library routine is called by a thread and it 

uses a static local variable during its work. Now another thread of the same process 

running on another CPU calls the same library routine and it tries to use the same 

static local variable. It is easy to see that there will be a problem here. The library 

routine should be able to handle this situation by always allocating local variables 

on the stack. Libraries that are coded in this way are called  thread-safe,  and most 

modern libraries are thread-safe.  

  8.6.4 Simultaneous multithreading 

 In simultaneous multithreading (SMT), instructions from more than one process can 

be executing in a single CPU at one time. The hardware essentially creates a second 

“logical” CPU. This CPU is not a completely distinct CPU since it shares many 

resources between two logical CPUs. The term “multithreading” is somewhat mis-

leading since the executing threads can be from distinct processes. The largest gains 

come when one process tries to access data that is not in the cache. Without the SMT 

the CPU would be idle until the data are ready. Other small gains can come when 

parts of the CPU are not being used by one process and can be used by the other. 

 The main additions to the CPU are the ability to load instructions from more than 

one thread (or process) during a cycle and a duplicate set of registers to hold data from 

each thread. A second addition concerns some memory management hardware that we 

have not looked at yet. On most machines there is a memory addressing cache called 

the translation lookaside buffer, or TLB. The problem here is that each TLB entry must 

contain data that identifies which logical CPU each entry is for because the two logical 

address spaces could not otherwise be distinguished by the hardware. The greatest gain 

from the SMT architecture will come when both of the CPUs are running threads from 

a single process since they will be able to share the resources more effectively. Chip 

design complexity generally limits the number of logical CPUs to two. Measuring the 

effectiveness of SMT can be difficult. In some cases an increase of performance of 

30% or more can be seen, but in a few cases the performance actually decreases. The 

most common implementation of SMT today is Intel’s Hyper-Threading™.  

  8.6.5 Processes versus threads 

 Threads and processes are both methods of adding parallelization to an application. 

Processes are independent entities, each containing its own state information and 

address space. They only interact with one other via interprocess communication 

mechanisms through the OS. Applications are typically divided into processes dur-

ing the design phase. A single controlling process invokes the other processes when 

it makes sense to logically separate significant application functionality. In other 

words, processes are a design concept. 

 By contrast, a thread is a coding technique that doesn’t affect the architecture of 

an application. A single process often contains multiple threads. All the threads in a 
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process share the same state and same memory space and they implicitly communicate 

with each other directly by manipulating the shared data. 

 Threads typically are created for a short-term use that is usually thought of as 

a serial task that does not have to be executed in sequence but rather can be run in 

parallel. They are then deconstructed when no longer required. The scope of a thread 

is within a specific code module so that we can introduce threading into a process 

without affecting the overall application design.    

  8.7 CASE STUDIES 

  We have discussed processes and threads using an ideal model that is intended to 

explain their various features. In the real OS world, no OS works exactly as we have 

described. In addition, although the model may be very close to reality, the terminol-

ogy used by the OS documentation may differ from our model. In this section we 

cover a few modern systems and show how they differ from our idealized model and 

discuss their terminology a bit.  

   8.7.1 POSIX threads 

 We have previously explained about the POSIX standards that attempt to bring some 

uniformity to the UNIX APIs that had proliferated so wildly. One of these standards 

has to do with threads. This standard is so well known that it goes by the special 

name  Pthreads.  Beyond UNIX, however, POSIX libraries are available on many 

OSs because of the large number of programs that have been implemented with these 

API system calls. You may recall that even the Windows NT family has a library 

that supports some POSIX API system calls at the source level. Because of this 

wide availability POSIX threads have a real niche: They provide a very high level 

of portability for an application. The standard is so well known that there is even an 

implementation of them in an IBM Fortran compiler!  2   It is important to remember, 

however, that POSIX is not a package, it is a standard. Each implementer is free to 

implement the services in any way seen fit. 

 Any implementation of POSIX threads can be written as purely a user thread 

package. But if the OS supports kernel threads, then the POSIX thread package is 

usually implemented using either the one-to-one or many-to-many models. This 

shows the downside of the POSIX thread standard when developing an applica-

tion to run with the POSIX API. If the system is to be run on a package where 

the implementation will utilize user-level threads, then a single blocking call in any 

thread will block the entire process. But if the package will support kernel-level 

threads, then the OS can run multiple threads for a single process at the same time. 

Therefore, if an application programmer really wants to take full advantage of mul-

tithreading regardless of the particular package to be used, then the program must 

be written with asynchronous I/O operations to avoid blocking the entire process. 

As a result, if the program is running in an environment where the implementation 

is using kernel-level threads and will not block an entire process because one thread 

2 www-4.ibm.com/software/ad/fortran   
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issues a blocking call, the effort that was spent developing the program with the 

asynchronous calls has been wasted. This is the price that the developers had to pay 

to gain the portability of POSIX. 

 There are over 60 functions available in the Pthreads standard. Only 22 of these 

have to do with the basic functioning of the threads themselves. The other two-thirds 

are related to synchronization and interprocess communication. We address these 

additional topics in the next chapter.  

  8.7.2 Windows NT 

 None of the OSs that we are discussing implements threads and processes exactly 

according to the way we have been describing them. Windows NT is the first such 

example. NT does implement processes, but it does not schedule processes. Instead, 

it implements a thread for every process, even if the application never indicates that 

it wants to use threads. NT schedules the threads instead of the processes. In this 

way the kernel only has to worry about one sort of scheduled entity, a thread. Some 

information is kept in a process control block and some is kept in a thread control 

block. If the application never calls a thread package to create any more threads, then 

only the first thread is used. 

 The scheduling mechanism in NT is a multilevel feedback queue. It uses 32 

queues. See  Figure 8.8 . The top 16 queues are considered to be “real-time” queues. 

Normal applications run in the bottom 16 queues. NT will always service all the 

threads that are in the ready state at a higher-level queue before it will service a thread 

in a lower-level queue. In addition, NT is preemptive. If a thread has been waiting 

for an event and the event happens, then if the thread that is currently running is of a 

lower priority than the thread that had just become ready, then the running thread will 

be preempted and the thread that just became ready will be run. As threads run, if they 

finish their time quantum without doing any blocking I/O operation, then they will be 
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demoted to the next lower level. The assumption is that the thread is acting more like 

a background task than a foreground task—it is computationally intensive—so we 

will run it less often. Similarly, threads that do not complete their time quantum will 

eventually be promoted to a higher-level queue. When a thread is created it will have 

associated with it a maximum priority level and a minimum priority level. The thread 

will not be promoted or demoted past the associated priority limits.  

    Since the main intent of a personal computer with a GUI is to enable a user to 

get work done more efficiently, the threads associated with the GUI usually run at a 

higher priority than threads that are running the processing aspects of an application. 

In addition, one window will always be the window that has the focus. Any threads 

that are associated with the window that has the focus will be temporarily promoted 

several queue levels and will have their time quantum multiplied by three. This pro-

motion will help to ensure that the user’s actions are responded to quickly and that 

the threads are able to complete their task without being preempted. 

 The lowest priority is reserved for a job that is called the system idle task. This 

thread will run only when no other thread in the system is ready to run. In many cases 

on a personal workstation this thread will often consume about 98% of the available 

CPU time. Our personal computers are often much faster in this respect than we need 

them to be for many tasks that we do. This vast amount of available CPU cycles is 

beginning to be tapped in such applications as SETI  3   and GIMPS.  4   These programs 

use the idle CPU cycles on volunteer computers to processes batches of data for 

large-scale scientific experiments. The data are downloaded and updated over the 

Internet. These systems are similar to  grid computing,  a technique that attempts to 

tap these unused CPU cycles in the desktop computers in a campus environment to 

run some programs that are computationally intensive. This concept was discussed 

in Chapter 7 and is explained further in Chapter 17. 

 Windows NT can also be used as a server. In general, the code is the same for 

the server version of the software as it is for a personal workstation. The main differ-

ences are in the values assigned to the system tuning parameters. One example is that 

the time quanta for the various queues are six times longer than the same queues in 

the workstation version. You should recall that switching program contexts is consid-

ered overhead rather than useful work, so we want to avoid it when we don’t need it. 

In a workstation the entire focus is on the user and there are many idle CPU cycles 

anyway, so we will pay the extra penalty to make the OS more responsive to those 

inputs. In a server environment we are more concerned with overall throughput to 

many service requests and we have less idle CPU time so we increase the time quan-

tum and as a result we spend less time in the context switches.  

  8.7.3 Solaris 

 The Solaris OS threading support has been a staple for OS discussions for some time 

because the architecture was quite complex and offered the programmer a choice 

of models to use to achieve the best possible balance between a user-level thread 

3 http://setiathome.berkely.edu/   
4 http://www.mersenne.org/   
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implementation and a kernel-level thread implementation. The basic model used by 

Solaris has been a many-to-many model. Solaris created a structure called a “light-

weight process,” or  LWP.  A LWP was the unit that was set to run on a processor by 

the operating system. User-level threads were bound to LWPs. An application pro-

grammer had considerable flexibility on how the threads were bound to the LWPs. 

Threads could be created in groups. On the one hand, the program could ask for a 

single thread to be bound to a single LWP. Thus, the programmer could approximate 

the one-to-one model, although the library routines would be somewhat slower than 

a library created for a pure one-to-one model because it also supported more com-

plex mappings. For example, the program could ask for M threads and N LWPs to be 

in one group. In a group, if a particular thread made a blocking call, then the LWP 

that was bound to that thread would be blocked. But other LWPs in that group would 

not automatically be blocked, and user threads in that group could be dynamically 

assigned to the LWPs whenever one was ready to run. Additionally, for really high 

performance applications, a “processor affinity” could be specified, as was men-

tioned earlier in this chapter. This mechanism allowed only the LWPs bound to that 

application to be run on that CPU (or CPUs). 

 However, beginning with Solaris release 8 this elaborate mechanism was being 

phased out. The OS designers at Sun determined that all this mechanism is not worth 

the trouble. Probably as a reflection of the continuing decrease in the cost of memory, 

this complex model is being gradually withdrawn. A new alternative thread library 

called the T2 library has been created. It supports only the one-to-one model. The 

older library was still supported in Solaris 8. However, as of Solaris release 9 the 

T2 model became the standard library and the older model is being phased out. Sun 

expects the increased simplicity of the library to result in faster operation in most 

cases and in fewer bugs and support issues. The model should be simpler for the 

programmers and system administrators as well.  

  8.7.4 Linux 

 The approach Linux takes to procedures and threads is also different from our basic 

model. Official Linux literature does not use either of those terms (though many 

writers do). Instead, they speak of  tasks.  A task is equivalent to what we have been 

calling a procedure. Linux supports the  fork  system call with the same effect as most 

UNIX systems, but it uses a memory management technique called copy-on-write 

to create the child task. This technique allows the child task to be created with very 

little overhead. Copy-on-write will be discussed further in Chapter 11. Differences 

arise in Linux when a primary task starts another task with the  clone  system call. 

Here is the syntax for the clone system call:  

#include <sched.h> 
int clone(int (*fn)(void *), void *child_stack, int flags, 

void *args);   

The first difference is that with a fork system call both the parent task and the child 

task will continue execution with the next instruction after the call. In the clone sys-

tem call, a function name ( *fn ) is passed as an argument to the system call. The par-

ent task returns and continues at the next instruction after the fork, but the child task 
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will instead call the function that was passed as an argument. When that function 

exits the child task ends and the value of the function is returned to the parent task as 

a return code. This is similar to the way that thread calls work in other OSs. 

 The other major difference with the clone call has to do with the information 

shared between the parent and child tasks. Normally, all threads running in a single 

task (or process) share the code segment, data segment, and other resources such as 

open files, but each thread has its own thread control block to save the CPU state and 

its own stack (possibly two stacks, one for user mode and one for kernel mode). Under 

Linux, when a task clones a child task it provides a bit mask that specifies which ele-

ments the child task will share with the parent. Some of the flags available to the clone 

call are:

   ɀ CLONE_VM—share the entire memory space  

  ɀ CLONE_FILES—share file descriptors  

  ɀ CLONE_SIGHAND—share signal handlers  

  ɀ CLONE_PID—share PID (Process ID)  

  ɀ CLONE_FS—share file system    

 As an example of how these flags might make things different, if the child and par-

ent task do not share the same file system, then if the child task executes a chdir 

call, changing the current working directory, the current directory for the parent task 

will not change. If the two tasks share the same file system then both tasks will see 

the change. The clone call can be used to create a new task such that the new task 

is equivalent to a new process in most OSs. This is done simply by sharing nothing 

between the parent task and the child task. Starting a task that is the equivalent to a 

thread in most OSs involves sharing everything except the process ID.   

clone (CLONE_VM| CLONE_FS| CLONE_FILES| CLONE_SIGHAND, 0);

   Before executing the clone system call, the parent process will allocate the stack 

space for the child task. It will pass to the clone call a pointer to the stack space that 

was set up for the child ( *  child_stack ). It will have to decide how much space is 

required for the operations the child process will perform. Typically this will be set 

the same as for the parent process. The last parameter to the clone call is a pointer to 

the arguments that will pass to the function that the child process will execute.  

  8.7.5 Java 

 The Java programming language and runtime environment is an interesting example 

of threads because Java is a language rather than an OS. Java supports threads at 

the language level rather than through subroutine calls, as is done with other pro-

gramming languages. Java, of course, is implemented on many different OSs. Java 

threads originally had the same problem as do POSIX threads—there was no way of 

knowing whether the program would be executing with kernel-level threads or with 

user-level threads. So Sun has implemented two thread libraries for Java, including 

a “green” library that can be implemented without kernel-level thread support but 

still provides the same nonblocking model as is provided with kernel-level threads. 

Depending on the OS these libraries might be based on kernel-level threads or might 

be based on user-level threads.     
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   8.8 SUMMARY 

 In this chapter, we defined the state of a process and 

how that state is captured in the contents of a process 

control block. We then defined various models for 

the states of a process in the system and the events 

that cause transitions from one state to another. We 

then covered the various algorithms that are used 

to schedule processes in OSs and discussed how 

to evaluate them using deterministic modeling. We 

wrapped up the discussion of processes with a brief 

discussion of process forking. 

 Next, we defined a thread and discussed the 

differences between processes and threads. Then 

we explained the difference between user-level 

threads and kernel-level threads. Next, we showed 

various ways that user-level threads could be 

mapped onto kernel-level threads. Finally, we cov-

ered the implementation of threads in modern OSs 

and discussed a couple of special cases of thread 

mechanisms. 

 In the next chapter of the book we discuss how 

processes can communicate and cooperate and some 

of the problems involved in these areas. They are 

not as simple as they might seem at first.  
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  REVIEW QUESTIONS 

    8.1 What is a PCB?

    a. A class of toxic chemical compounds  

   b. A process control block  

   c. A program counter boundary  

   d. A partially completed buffer  

   e. None of the above     
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   http://web.cs.mun.ca/~paul/cs3725/material/web/notes/

node19.html    (Allocation of processes to a processor)

   http://www-4.ibm.com/software/ad/fortran     (IBM Fortran 

compilers)
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   8.2 In the context of processes, the word “state” is 

overloaded. Distinguish between the two mean-

ings of this word with respect to processes.  

   8.3 How many unique OS states can a process be in?  

   8.4 How many queues are there in the ready state?  

   8.5 How many queues are there in the wait state?  

   8.6 Why do we care if a process scheduler is fair?  

   8.7 The SRTF process scheduling algorithm is opti-

mum, so why do we not use it as it was described 

initially?  

   8.8 Since FCFS process scheduling is so fair, what is 

the problem with it?  

   8.9 Why do systems with GUIs generally not have a 

long-term scheduler?  

   8.10 What is the purpose of processor affinity?  

   8.11 What does a process do to start another process?  

   8.12 Distinguish between a process and a thread.  

   8.13 Why do we usually say that kernel-level threads 

are better than user-level threads?  

   8.14 User-level thread packages were developed before 

kernel-level thread packages. When kernel-level 

threads were made available, users did not want 

to throw out or rewrite their multithreaded appli-

cations. So the user-level thread packages were 

recoded to work with kernel-level threads. What 

were the three models we spoke of that were used 

to map user-level threads to kernel-level threads?  

   8.15 What do we mean when we say that a library is 

“thread safe”?  

   8.16 True or false? Simultaneous multithreading refers 

to having multiple processes create threads at the 

same time.  

   8.17 POSIX threads would appear to be ideal in the 

sense that they are ubiquitous. What is the major 

drawback to POSIX threads?  

   8.18 What is unique about Windows NT process 

scheduling?  

   8.19 What is unique about Linux process scheduling?  

   8.20 Solaris provided an elaborate mechanism for 

mapping user-level threads to “lightweight” pro-

cesses. Why was this done?  

   8.21 What is unusual about Java threads?      
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  I
n this chapter we continue the in-depth discussion of processes and threads. We 

discuss techniques for designing applications that are divided into multiple parts 

in order to keep the system busier working on behalf of the application. When 

we break applications into multiple parts, the parts will need to cooperate, and to do 

that they will need to communicate with one another. Since we spent considerable 

time explaining how and why an OS isolated processes, we now need to explain the 

mechanisms that have evolved to allow them to communicate. 

 OSs devote a great deal of their resources to ensuring that processes are inde-

pendent of one another. More formally, an  independent process  cannot affect or 

be affected by the execution of another process. On the other hand, we sometimes 

need for two or more processes to cooperate with one another. Again, formally, a 

cooperating process  is one that can affect or be affected by the execution of another 

process. When we try to develop systems we may need to allow for the system to 

include multiple cooperating processes. Sometimes we will need for parts of the pro-

cess to run on different machines, and sometimes they will run on the same machine. 
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In any case, the parts will need to do several things in order to cooperate successfully 

with one another to do the job. They will certainly need to  communicate  with one 

another. For example, one process might be taking in sales orders. It may then pass 

those orders to another process, which will enter a transaction to ship the merchan-

dise. Processes may also need to  synchronize  their actions so that they do not inter-

fere with one another by trying to update the same piece of information at the same 

time. As the processes run they may need to ask the OS to give them exclusive access 

to a resource for some time. It turns out that this can lead to a special kind of problem 

called a  deadlock  that the OS will need to worry about. 

 This chapter will talk mostly about separate processes, but much of the material 

also applies to multiple threads. In particular, threads share memory and will have 

many of the synchronization and deadlock issues addressed in this chapter. They will 

generally not use the message-passing mechanisms often used between processes. 

 In Section 9.1, we discuss the motivating factors behind this idea—why do we 

sometimes have to divide applications even though we might not necessarily desire 

to do so? Next, Section 9.2 describes various mechanisms used by cooperating pro-

cesses to communicate among themselves. In Section 9.3, we explore the need for 

processes to synchronize their activities and discuss some mechanisms for doing so. 

In Section 9.4, we discuss a potential problem called a deadlock that can arise when 

processes seek to have exclusive access to resources. We conclude with a chapter 

summary in Section 9.5.  

   9.1 WHY HAVE COOPERATING PROCESSES? 

  Before we get into the details of how processes can communicate, it makes sense 

to ask why we might want to divide our system into multiple processes. There are a 

number of reasons why we may want to develop systems where the application runs 

in several pieces: 

  Performance.  When we design a system we may have more work to be done 

than can be done on one inexpensive processor. It may be more economical to put in 

several inexpensive processors and run some portion of the process on each machine 

than it would be to buy a bigger system that could do the entire task itself. If the sys-

tem will need to service a large number of users it might not be possible to service 

them all with a single system. 

  Scaling.  When we first develop an application we do not necessarily know how 

big the system load will get. What we think of as a small service might become an 

overnight sensation and require that it serve many more users than we originally 

thought it would. A good example is the Google ™  search engine. Whatever the 

dreams of the originators of this service, it is very doubtful that they ever imagined 

that by the year 2004 they would have 65,000 servers running the application. This 

reason is obviously closely related to the performance problem, but it is different. 

  Purchased components.  We may want our system to include some function 

such as a Web server. It is unlikely that we would find it economical to develop our 

own Web server. We would most likely use an existing Web server program and fit it 

into our system somehow—perhaps by writing parts of the system that dynamically 

create pages that the purchased server displays. 
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  Third-party service.  Our system might make use of a service that is provided 

by another organization. A typical example is to enter a credit card charge. Again, it 

is unlikely that we could develop a system to do this function as cheaply as buying 

the service unless we have a very high volume of transactions to process. 

  Components in multiple systems.  We might be building a number of different 

systems that do similar jobs. Rather than build similar parts of many systems and 

be required to maintain them separately, we can build the common components to 

run as a separate process and have the various systems feed transactions to the com-

mon components. For example, these days a company selling directly to the public 

will likely have a website that allows customers to place orders online. It might also 

have retail counters in the stores, a telemarketing group that takes orders over the 

telephone in response to infomercials run on TV, and a mail-order catalog group that 

enters orders as well. Each of these systems might accept orders in a different way 

and use the common services of other processes to first verify and later charge cus-

tomer credit cards, to order shipping from the warehouse, to monitor inventory, and 

to place orders with suppliers when goods appear to be running low. These common 

components may be run as separate processes. 

  Reliability.  When systems are built in one piece and are all on one computer, 

then a significant failure in that computer will terminate the entire system. If systems 

are built in a modular fashion then there can be multiple instances of each module. 

Returning to the Google design, if one system out of 10,000 fails, then the sys-

tem will continue to run. There might be a few users whose searches were already 

allocated to the failing server. They may have to click the “reload” button, but will 

probably be totally unaware that a server at the host site has been lost. In the case 

of Google, they have even split the servers among several different sites, so that a 

physical disaster such as a fire or flood will not take out the entire system. 

  Physical location of information.  Even a small company will sometimes end 

up with multiple facilities. Often this situation arises because one company buys 

another. Whatever the reason, we may end up with multiple warehouses, for exam-

ple, and for most transactions we will want to have an inventory system at the site. 

For other purposes, we will want to have parts of the system at a central location. 

Due to volume discounts, for example, we will want a single centralized purchasing 

function. If we have designed the various warehouse inventory systems so that they 

feed inventory requests to the purchasing system, then we can view this as a single 

system, parts of which are at various physical locations. 

  Enable application.  There are a very few applications that have such massive 

computational requirements that they literally could not be done on existing computer 

systems. Sometimes this is partly a question of economics—a big enough machine 

could be built but the organization wanting to solve the problem could not afford it. 

Sometimes we would only have to wait a few years. Roughly speaking, the power 

of available processors doubles every 18 months. With the continuous application of 

this law we might have a big enough machine soon. An example of such a system is 

that employed by SETI (Search for Extra-Terrestrial Intelligence). This is a system 

that takes large volumes of data recorded by a large radio telescope and searches it 

for patterns that might indicate an intelligent origin to the data. The amount of data 

is so massive that in order to get it processed by the machines available today they 

divide it up into smaller data sets and distribute those data sets to various interested 
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users who have volunteered to let the idle time on their computer system be used to 

process this data via the mechanism of a screen saver. Regardless of your opinion 

of the scientific merits of this endeavor, it was certainly one of the first systems to 

employ this technique. When viewed as a single, loosely coupled system, it currently 

represents the world’s single largest computer system. Without this “divide and con-

quer” approach, they literally could not have processed this data.   

  9.2 INTERPROCESS COMMUNICATION 

  For one or more of these reasons, people have been building systems of multiple 

cooperating processes for some time now, and the number of such systems is grow-

ing rapidly, both in absolute numbers and as a percentage of new applications. Obvi-

ously, if we are going to have a system that is comprised of multiple processes, those 

processes will have to communicate to get the work done. However, we have spent 

a great deal of time and effort making sure that two processes running on the same 

system can’t interfere with one another. Therefore, we need to develop mechanisms 

to allow processes to communicate. As developers began to recognize this need, 

those of them in different environments saw the problem in different terms. They 

also had different tools to work with. IBM mainframe customers using SNA and 

SDLC saw things differently from PC users using Novell Netware, and they saw 

things differently from UNIX or VAX users with XNS or DECNet or TCP/IP. As 

a result, there are dozens of different mechanisms that exist for processes to com-

municate with one another. There are two fairly different types of mechanisms for 

IPC. On the one hand, there are message passing mechanisms. They operate much 

as the term specifies—one process sends a message to another process using some 

facility of the OS. Message passing is generally done between processes. On the 

other hand, is the use of shared memory. With such a mechanism two or more tasks 

share access to one block of memory. Sharing of memory space is implicit between 

threads of a single process, but it can also be done among processes. Before discuss-

ing these classes of mechanisms we will first abstract the common features of all the 

mechanisms so that when you are faced with a different mechanism you will have 

an organized structure with which to identify the important characteristics. Then we 

look at a few of the more common mechanisms.  

   9.2.1 Attributes of communication mechanisms 

 The services available for processes to use for communication can be characterized 

by several different attributes:

    Number of processes that can use a single channel at one time   

   One-way or bidirectional connections   

   Buffering strategy (none, 1, N, infinite)   

   Connection oriented or connectionless   

   Naming strategy (name, one way or two way, mailbox, port)   

   Multicast, broadcast, unicast   
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   Multiple or single connections possible   

   Streaming or message oriented   

   Heterogeneous or homogeneous only   

   Synchronous or asynchronous   

   Persistent or transient     

  Number of processes supported.  In most cases there are only two processes 

involved in a specific interprocess communication. But in some cases there can be 

many processes involved in communicating among themselves at the same time. For 

example, many processes might be able to simultaneously share a connection to a 

single process that would write records to a log file. 

  One-way or bidirectional.  While it might be somewhat unusual for cooperating 

processes to have communication that was only one way, it is not unusual to have com-

munication channels that are one way. What normally happens with one-way channels 

is that two channels may be set up between two processes, but the channels are going 

in opposite directions. This type of mechanism is usually found where the communi-

cation is much heavier in one direction than in the other. For example, one process is 

sending transactions to a second process and the second process is only sending back 

acknowledgments. We might need many large buffers on the first channel but many 

fewer or much smaller buffers or lower bandwidth on the return channel. 

  Buffering strategy.  There are four different cases of handling the buffers in 

a communication channel based on the number of buffers available: none, one, N, 

and infinite. The first case is where there is  no buffer  to which both processes have 

access. Both processes must be accessing the channel at the same time so that one 

process can send the message to the other process. The second case is that there 

is only  one buffer  with both processes having shared access to it. In this case, the 

sending process will put a message in the buffer and then tell the OS it is available. 

The OS will tell the receiving process that the message is there and it will take the 

message out of the buffer. It will then tell the OS that the sender can send another. 

The case of one buffer might appear to be just one possible instance of the case of N 

buffers, but in the case of one buffer we can use simple mechanisms to synchronize 

the processes. The processes always know which buffer to use, and the processes 

only need to coordinate whether the buffer is now available for the sender to insert 

a message into it or not. In the case of  N buffers  we have much more informa-

tion to coordinate. The communication channel mechanism for each process must 

know where the buffers are and which ones contain messages and which do not. We 

discuss these problems further in Section 9.3.9. The last case is where the channel 

mechanism has some external memory that it can use to expand the buffer space by 

essentially an infinite amount. An example might be a spooling system that uses a 

disk file to hold a message stream until a printer is available on which to print it. For 

practical purposes the sending process can consider the buffer to be infinite. 

  Connection oriented or connectionless.  A communication channel can be 

connection oriented or connectionless. Sometimes communicating processes need 

to establish a complex conversation. In this case they will be likely to establish a 

connection that they will use for the duration of their interaction. A good analogy is 

a telephone call where one person calls another. The terminology comes from a time 
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when connections were made between devices using an actual physical connection. 

Today the connection is likely to be a logical or virtual connection. Sometimes, 

however, one process simply has information to send and does not care what other 

processes might be listening. An example might be an application where a server in 

a company is broadcasting stock purchase information so that clients can receive it 

if they want. An analogy might be to a radio broadcast. There might be millions of 

listeners or none. 

  Naming strategy.  When two processes are going to communicate with one 

another, they will need some mechanism to identify one another. This is called the 

naming strategy. In the strictest case, both processes must explicitly name each other. 

The name is most often the name of the executable file used to run the program, but 

names can be associated with running processes in other ways—in some systems the 

process id number might be used as a name. This specific naming mechanism has 

the advantage of having the least margin for error, but also requires the most effort 

to maintain. It is generally only useful when the same developers are responsible 

for both processes and there is only one sender and one receiver. In a somewhat 

looser model, the message sender must specify the name of the receiving process, 

but the receiver is willing to accept transmissions from any sending process. The 

third model is that both processes agree on some other reference that they will both 

use. Examples include mailbox numbers and TCP/IP ports. 

 Another attribute of interprocess communication is whether the messages are 

sent as a  unicast,   a multicast,  or a  broadcast.  Unicast messages are sent only to the 

receiver, so if many processes are cooperating, then many messages may need to be 

sent for all processes to receive the message. Unicast messages are private, however. 

Broadcast messages are sent so that every process (in a given environment) can hear 

them. An example might be a time server that periodically sends clock update mes-

sages so that any process can read them. Unfortunately, broadcast messages must 

be received and processed by all processes, whether the process is interested in the 

message or not, so it may waste resources. Some messages might need to be received 

by all processes—a system shutdown request, for example. Multicast messages are 

intended only for a group of receivers. Sometimes this is for security reasons, so 

that membership in the group might be restricted. Sometimes multicast groups are 

created only to save resources for those processes not interested in the messages—a 

stock ticker application might be a good example. 

  Multiple or single connections possible.  Most of the time it is sufficient to 

allow only one connection between two processes. Sometimes it is desirable to have 

separate channels for data messages and control messages. FTP is an example of a 

standard that uses two connections in this manner. There can also be multiple paral-

lel data connections. An example of multiple connections is the mechanism used in 

some Web browser/server connections using the HTTP version 1 protocol. In this 

protocol a single channel could retrieve only one object from the server and then the 

server would close the connection. In order to speed up the process, a browser could 

retrieve a main page and parse it to find the other elements needed to display the 

page. It then could open as many connections as there were objects to retrieve. (In 

practice the client usually opened only some limited number at one time in order to 

keep from bogging down the server.) 
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  Streaming or message oriented.  For some applications it is important that the 

communication link supports the idea of discrete  messages.  The sending application 

will send a block of data and that same block will be presented to the receiving appli-

cation in the same manner—as a discrete message. The blocks may be of fixed or 

variable length, depending on the implementation. Other applications do not identify 

blocks in the data. Instead, the communication is viewed as a  stream  of data flowing 

from the sender to the receiver. As easy example is a telnet client. Each keystroke 

that the user types on the keyboard is sent from the client to the server without regard 

to the content. Certain keystrokes may take priority over others (e.g., CTL/C), and 

the protocol may bundle many keystrokes together for transmission in order to mini-

mize transmission overhead, but generally the keystrokes are sent as a continuous 

flow of information. 

  Heterogeneous or homogeneous only.  Some communication systems assume 

that the sender and receiver of the messages are operating on the same type of hard-

ware and the same OS. The strongest case is when the assumption is that the two 

communicating processes are running on the same machine. Other communication 

systems do not make this assumption. In this case they may try to cope with a set of 

problems that have to do with the representation of information. Different systems 

store information in different formats. Often this is due to hardware considerations. 

One example is the storage of integers. On Intel 80 X 86 series hardware the most 

significant byte (MSB) of the number is stored in a higher memory address. On most 

other hardware the MSB is in a lower memory address. (This is known as the “little 

endian/big endian” problem, a reference to  Gulliver’s Travels. ) If a system is send-

ing messages between platforms that may implement integers in different formats 

then that system may want to solve that problem in a universal way. For example, a 

subroutine called with Remote Procedure Calls (RPCs) may need to perform arith-

metic operations on the arguments, so the sender and receiver will need to solve this 

problem in a way that is transparent to the applications. On the other hand, the FTP 

protocol simply moves files. Any reformatting of the contents is not the concern of 

the communication mechanism. However, FTP may need to consider the differences 

in file naming conventions. The name of a file on a sending system might not be a 

legal name on the receiving system. Some examples of formatting questions concern 

not the hardware but the language of the implementation. For example, strings may 

be stored one way in C and another way in BASIC, so systems that have components 

written in different languages may have to convert data between these formats. (Of 

course, this can be true of a single program running on a single CPU as well as for 

multiple processes.) One other problem that might be encountered is that a param-

eter to a message might be a memory address—possibly a pointer to an error routine. 

Obviously, if such a parameter were passed directly to a process running on another 

platform it would be meaningless. If we are going to pass memory addresses as 

parameters we will have to invent some other mechanism for supporting them. 

  Synchronous or asynchronous.  When a program reads a record from a file in 

most high-level languages the model that is normally used for this function is that 

when the next instruction is executed the read has been completed. This model of 

I/O is known as  synchronous  I/O or  blocking  I/O. If a process has other tasks to 

attend to while the reading is being done then it may choose to issue the read as an 
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 asynchronous  or  nonblocking  read. In this case the read instruction will return to 

the program immediately and the read will take place independently. Eventually 

the program will want to find out if the read has finished. The means to do that 

depend on the language and the OS. Communication channels are similar. A pro-

cess might want to check a channel for messages but continue on if no messages 

are available. So with some communication mechanisms a receiving process can 

issue an asynchronous read of the channel, and if there is no information to read, 

the OS will return from the call with an indication that no data was transferred, 

and the process will not wait. Similarly, an asynchronous write might be rejected if 

there were no buffer space available to receive the message. 

  Persistent or transient.  In the simplest case both the sending and receiving 

processes must be running at the same time for them to exchange messages. If one of 

the processes is unavailable then the system cannot function. This sort of mechanism 

is called  transient.  In other systems the OS will retain messages that are intended 

for a process that is not running now or deliver messages from processes that are no 

longer running. Such communication services are said to be  persistent.   

  9.2.2 Examples of IPC systems 

 In the simplest case, a sending process may need to pass only a minimum amount of 

information, a single bit, to indicate that some event has occurred. In this case they 

can make use of the synchronization mechanisms described in the next section. Most 

of the time, however, processes need to send more information than a single bit, so 

they will use more elaborate schemes to send entire messages. 

 One widely used method of message exchange between processes is the use of 

 pipes.  A pipe is essentially a circular buffer (or queue) that one process will put data 

into and the other will take data out of. The two processes can make use of system 

calls to put and get the data. This mechanism lets the processes avoid having to worry 

about synchronization issues. (We will discuss the nature of this problem shortly.) 

The OS will watch for a full buffer or an empty buffer, but the calling routine needs 

to be aware that the call might not succeed. For example, if the buffer is full then a 

sending routine that tries to put data into the buffer will be blocked. Usually a receiv-

ing routine can call a nonblocking system routine to try to read data from the buffer. 

If data is available then it will be returned. If no data is in the buffer then the call 

will return immediately, but there will be a return code indication that no message 

was read. Usually there is also a blocking type read as well. A receiver might use a 

blocking read if it had nothing else to do except wait for incoming information. Pipes 

first appeared in UNIX, and in UNIX and Linux the pipes are byte streams rather 

than discrete messages and the pipes are one-way channels. In the Windows imple-

mentation the pipes can be byte streams, but they can alternatively be used to send 

messages, and the pipes are bidirectional. 

 Another issue with pipes is the question of how they are set up in the first place. 

In some cases the sending and receiving processes must name each other explicitly. 

This is generally undesirable because it is more difficult to maintain than other meth-

ods. Alternatively, the receiver might not care who is sending but the sender must 

name the receiver explicitly. An application that is writing messages to a log file 
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might offer this service to many clients at the same time. It will receive an indication 

of which client sent the message and can log that information as well. A final method 

is for the sender to provide some other reference rather than the name of the receiv-

ing process. This is sometimes called a  mailbox.  In this case the sender is looking 

for a service that can be provided by many different processes. It does not care which 

process is providing the service. An example of such a mechanism is  named pipes.  

 The mechanism of  sockets  has been in use for quite a while now, so one of the 

benefits of it is that it has many compatible implementations—they are available on 

every OS. Sockets are designed to run over a standard networking layer. Most often 

this layer is TCP or UDP over IP, but other implementations exist. The client (send-

ing) host names the server (receiving) host and also names a specific socket (some-

times called a port) on the receiving host. These are only logical designations and 

not references to hardware ports. In many cases, this socket will be a  well-known  

number. Well-known sockets (below 1024) are assigned by standards bodies for pro-

tocols that are also standardized. A higher range of socket numbers is reserved for 

applications that are not standardized. The client will be assigned a socket number 

for its use when it tries to connect to the server. Unlike the simpler one-way buffer-

ing mechanism used for pipes, sockets support a much more elaborate model. Once 

the client and server have connected, the protocol they use is determined by the 

application. Either the client or the server can send a message at any time. For some 

applications the application layer protocol is standardized, but new applications can 

design any sort of protocol that is needed. Applications can also use existing proto-

cols for different purposes. For example, it is common for applications to support 

the HTTP protocol because many firewalls are set to pass this protocol. The server 

normally establishes a socket by making a series of OS calls and then waits for 

incoming connections to the socket. If the server is offering a complex service such 

as FTP, it is common for the server to start a separate thread to handle each client. 

If the service is very simple, such as a quote-of-the-day service, then the server may 

just send a message and break the connection. 

 Another advantage of the socket design is that the server and the client can be 

located on the same machine. This is especially handy when developing new appli-

cations. It also means that the same program can serve both local and remote clients 

without any changes in either program. It is a very clean model without some of the 

complications of other mechanisms. Of course, it does mean that for local clients 

a lot of work is being done that is not strictly necessary. If performance is an issue 

and the system will always run with the client and server on the same machine, then 

more efficient mechanisms should be used. 

 One kind of persistent communication system is called  message queuing.  Such 

systems create named queues of messages. A process wishing to write messages to 

the queue calls the OS with the message and the name of a queue to put the mes-

sage in. A process wishing to read messages from the queue will call the OS with an 

empty buffer and the name of the queue. The processes may or may not be running 

at the same time. Other processes or system utilities are normally used to create 

and destroy the message queues. The queues are normally maintained in secondary 

storage is order to ensure this persistence, so there is a large amount of overhead to 

using them.  
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  9.2.3 Examples of shared memory systems 

 In many OSs it is possible for two (or more) processes running on the same machine 

to ask the OS to allow them to share access to a block of memory, a technique known 

as  shared memory.  Usually this is done by having one process call the OS and asking 

for a segment of memory (of some specified length) to be allocated and given a name. 

Other processes wishing to share this memory will have to know the same name. 

They will then give the OS the name and ask for access to the segment. The memory 

address settings of both processes will be altered so that they can have access to the 

shared block of memory. The exact mechanism is discussed in Chapter 11. Some 

applications are very simple and will not need complex synchronization to make sure 

that the two processes do not interfere with one another. Other systems may require 

more elaborate synchronization mechanisms to control access to the data in the shared 

memory block. This topic will be elaborated upon in the next section. You should 

recall that while separate processes must use such an elaborate mechanism to share 

memory, threads within a single process always share their memory by definition. 

 A special case of shared memory is sometimes provided in the form of  memory 

mapped files.  This is a slight modification of the shared memory technique. In this 

case the initiating procedure calls the OS and gives it the name of a file on secondary 

storage. The OS will locate the file and will allocate space in the calling process to 

contain the entire file. However, the file will not immediately be loaded into mem-

ory. As parts of the shared file are accessed for the first time the hardware will signal 

the OS and it will load the appropriate portion of the file into the memory and then 

resume running the process. This mechanism is described more fully in Chapter 11.    

  9.3 SYNCHRONIZATION 

   9.3.1 The problem 

 Now that we have an understanding of why processes need to communicate and 

some of the mechanisms they can use to do so, we need to turn our attention to a 

problem that can occur when two processes want to share a piece of data in memory. 

Consider the following example where two processes, A and B, are using a buffer 

to communicate and are attempting to update a shared record counter, X, which ini-

tially has the value 8. Process A has put a record into a buffer and is trying to incre-

ment the counter by adding 1 to X. Process B has taken a record out of the buffer, so 

it is trying to decrement the counter by subtracting 1 from X. So process A has an 

instruction X  ⫽  X  ⫹  1 and process B has an instruction X  ⫽  X - 1. After these two 

instructions execute we would expect X to still contain the value 8. However, there 

is a small potential problem. 

 The high-level language instructions we have shown are normally broken into 

three separate machine instructions: a Load to a register, an Add or Subtract, and 

a Store back into memory. Consider the execution shown in  Figure 9.1 . Process A 

loads the value of X into register A, so register A contains an 8. Process A is now 

interrupted because its time slice has finished. The registers are saved in the PCB for 

process A. Now process B gets a time slice. It loads the value of X into register A, 
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so register A is not changed. Process B subtracts 1 from register A, yielding a 7, and 

stores it in the memory location for X, leaving X at a 7. It continues on. Eventually 

process A gets another time slice. The registers for process A are restored from its 

PCB, so register A now contains an 8 again. It adds 1 to Register A, giving a value 

of 9, which it stores in the memory location for X, leaving X at a 9. This result is not 

exactly what we were expecting. To make matters even worse, this problem is timing 

dependent. There is a very small window in which this problem will occur. Almost 

all the time these two processes will share this variable very nicely, assuming this 

was the only modification they were making to the variable. This kind of problem 

is quite hard to debug because it is intermittent. It is called a  race condition.  A race 

condition, or  race hazard,  is a defect in a design whereby the output of the system 

is dependent on the sequence or timing of other events. This problem can also occur 

in a multiprocessor system when process A is running on one CPU and process B is 

running on another CPU. Regardless of the cause of the problem, we need a solution. 

Although multiple CPU systems have been uncommon outside of high-end servers, 

the focus of the current generation of CPU chips is to have multiple CPUs within a 

single chip. As a result, this sort of problem will become more common.  

      9.3.2 Atomic operations 

 The trick we need is to make those operations  atomic.  This word means that the oper-

ation we are doing is indivisible—specifically, it cannot be interrupted by another 

process that wants to update the same information. One possible solution might be to 

compile that instruction into a single uninterruptible instruction. For example, some 
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machines can add 1 to (or subtract 1 from) a variable in memory without loading the 

variable into a register. However, when we are writing our program in a higher-level 

language we want to not worry about such hardware details. We would like to be 

able to move our program to a different machine that perhaps didn’t have such an 

instruction. So we have to use a more general solution.  

  9.3.3 Locks and critical sections 

 Sometimes our processes will be sharing a single variable and sometimes they will 

be sharing a more elaborate structure. Sometimes we will be doing a single operation 

and sometimes we will be doing more complex operations. Sometimes we will have 

only two processes trying to share a single resource and sometimes we will have many. 

Sometimes we will be trying to share a resource for which there are multiple instances 

and sometimes there will only be one instance of the resource. The general technique we 

will use is to use a special kind of variable called a  lock  to control access to the shared 

variable. A lock is also sometimes called a  mutex  since it can be used to provide mutu-

ally exclusive access to the item the lock is protecting. When we look at a process that is 

using a lock we can think of the program as having four parts, as seen in  Figure 9.2 .  

      A  critical section  is a part of the process that is manipulating information that 

may also be manipulated by another process. The  entry section  is code that locks 

the shared information—it first ensures that no other process is currently in its criti-

cal section and then locks the lock so that no other process sharing this information 

can now enter its critical section. The  exit section  is code that releases the lock after 

this process has finished with this critical section. The  remainder section  is the rest 

of the process. Note that this process can contain other critical sections and locks. 

This description is merely a structured way of looking at the parts of a single locking 

operation. The effect of this structure is that we have made the operations we are per-

forming on the shared information atomic. No other process that wants to manipu-

late this shared information can interrupt this critical section. This structure does not 

keep process A from being interrupted. It does mean that if process A is interrupted, 

any other process that tries to enter its critical section (for this variable) will be made 

to wait until process A finishes its exit section.  

  9.3.4 Hardware locking instructions 

 There are many ways that the entry and exit section can be coded. In a very simple 

embedded OS or in the kernel of an OS we may use special machine instructions to 

lock and unlock the locks. These instructions are themselves atomic instructions. 

There are only a few common variants. One is a  Test and Set  instruction. This 

Main() {

entry section /* make sure the lock is free */

critical section /* manipulate the shared data */

exit section /* show the lock is free */

remainder section /* everything else */

}

FIGURE 9.2 
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shared memory.
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instruction will set a variable in memory to a nonzero value (i.e., lock it) and will 

also return a result that tells us whether the lock was already set before we executed 

this instruction. If the lock was already set then we did not gain access to the lock, so 

we just retry the operation:

   while (TestAndSet(MyLock)) ;   

Note that the scope of the while statement is null (the ;), so this loop does nothing but 

wait until the lock is not set when the instruction is executed. This type of coding is 

sometimes called a  spin-lock  or  busy-waiting.  Another common atomic instruction 

is a  Swap  instruction. It exchanges the values of two variables in a single step. This 

instruction is slightly more powerful than the Test and Set instruction in the sense that it 

can put any value into the lock variable. Other than that, the instructions are equivalent. 

Another similar instruction is called  fetch-and-add.  It fetches an integer used as a lock 

from memory and at the same time adds one to the value and writes it back to the same 

location. An XADD instruction that works this way has been used in the Intel proces-

sors since the 80486 CPUs. The choice of which of these atomic instructions to imple-

ment is a function of hardware design issues. With the first two of these instructions the 

exit section of our process is merely to set the lock variable to false (zero). Storing a 

zero into a memory location is normally an atomic instruction on any hardware.  

  9.3.5 Semaphores and waiting 

 If a process actually contained that while loop that we showed with the Test and Set 

instruction, it would be wasting CPU cycles while it was waiting. As a result, in most 

cases an application will not use these instructions to implement an entry section. 

Instead, it will issue OS system calls for both the entry and exit sections. Normally 

the variable used in these calls is declared to be a  semaphore.  Semaphores can be 

more complex than the simple locks we have been describing. A lock is always a 

binary condition but semaphores are often more general. So the simple semaphores 

are called  binary semaphores,  and only support locking. 

 While different OSs and languages use many different names for these routines, 

generally the system call for the entry section is simply:

    wait (MySemaphore)    

and the call for the exit section is:

    signal (MySemaphore)    

When we call the  wait  routine, if the locked resource is not available, then instead 

of putting our process into a loop the OS will take our task out of run state and put 

it into wait state. The process will be waiting for the lock to be released. This will 

happen when the task that currently has the lock falls through its exit section and 

executes a  signal  system call on the lock we are waiting for. The OS will take our 

task out of wait state and put it in ready state. At the same time, it will give our task 

the lock so that no other task can get it. As was mentioned earlier, there can be any 

number of tasks waiting on the same lock, so the OS may need to have a queue for 

all the tasks waiting for each semaphore.  
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  9.3.6 Counting semaphores 

 But in the more general case a count is associated with each semaphore, which is a 

positive integer. Such semaphores are sometimes called  counting semaphores.  They 

are normally used to control access to a group of similar resources such as the records 

in a buffer. The count associated with a counting semaphore is initialized to the num-

ber of available resources. The code in the application for using counting semaphores 

is normally the same as for binary semaphores. When a process wants to access an 

instance of the resource it calls the  wait  routine as shown. If the count associated 

with the semaphore is zero then no instances of the resource are available and the 

requesting process is blocked. If the count is greater than zero then more instances of 

the resource are available. The count will be decremented to show that an instance is 

in use. When the process calls the  signal  routine the associated count will be incre-

mented, and any waiting processes will be dispatched with the available resource. 

 Counting semaphores can also be used to synchronize access to files where pro-

cesses will do many reads and only a few writes. Many readers can be allowed at the 

same time, but we may not want to allow readers to be active when a process is try-

ing to write to the file. So we can allow multiple readers with a counting semaphore 

and only allow a writer to access when the count of readers reaches zero. Once a 

writer tries to access the lock we will not allow any more readers to get the lock until 

the writer has gotten the lock and finished its work.  

  9.3.7 Synchronization and pipeline architectures 

 When multiple CPUs are present in a single system and the CPUs have a pipeline 

architecture it is possible for a CPU to execute instructions out of order. This can 

cause timing problems with synchronization instructions such as the test and set. As 

a result, a mechanism is usually provided that allows an application (or the OS) to 

issue a command that forces the CPU to execute a particular sequence of instructions 

in the order they are in the program, thus avoiding the problem.  

  9.3.8 Synchronization in SMP systems 

 We mentioned in earlier chapters that the trend is for computer systems to include 

multiple CPUs, in particular multicore processors where multiple CPUs are incor-

porated into a single integrated circuit. Such systems require OSs that can manage 

the resources of the multiple CPUs. The preferred solution is known as  symmetric 

multiprocessing,  or  SMP.  In this architecture the OS is designed so that it can run 

on any of the CPUs. (An alternative architecture is known as asymmetric multipro-

cessing where one CPU runs the OS and the others only run applications. This archi-

tecture is seldom seen today.) 

 The multiple execution streams of the OS running on separate CPUs can attempt 

to reference the same data at the same time. In order to avoid this an SMP OS will use 

locks. We had said that user programs did not use spin locks since they would waste 

valuable CPU cycles for an unknown amount of time. Within an OS, however, we pre-

sumably know that we will hold a lock only for a very brief, predetermined amount of 

time. Also, we can’t very reasonably make an OS call to a  wait  routine since we are 
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already in the kernel! As a result, OS kernel code normally uses a hardware spin lock 

mechanism in spite of the waste of CPU cycles. 

 This brings up an interesting hardware problem though. Suppose that one of the 

several processors wishes to write a value into memory. To protect that critical sec-

tion it uses a lock. The semaphores are in the shared memory, and each CPU may 

also have the value of the semaphore in its cache. You can see the problem—now 

there are many processors that are using those same atomic instructions, potentially 

at the same time. This requires that CPUs that share memory in SMPs be a little 

smarter about sharing. One common way to do this is for every CPU to watch for 

manipulation of shared memory by  snooping  the memory bus. This is more work 

for the CPU hardware, but it is worth the effort—the potential for speedup by using 

multiple CPUs is quite large. The cache hardware must also be smarter because each 

CPU might have a copy of the semaphore in its cache and if one CPU changes the 

value of the semaphore then all the other copies must be updated as well. These are 

very important problems for CPU architects, and are very widely argued about.  

  9.3.9 Priority inversion 

  Priority inversion  describes a situation that can arise when a lower-priority task 

holds a shared resource that is required by a task running with a higher priority. This 

inversion causes blocking of the high-priority task until the resource is released. This 

effectively inverts the priorities of the two tasks. If some other medium priority task 

not using the shared resource tries to run it will take precedence over both the low- 

and high-priority tasks. Priority inversion often does not cause great harm. The delay 

of the high-priority task goes unnoticed and eventually the low-priority task releases 

the shared resource. However, priority inversion can cause serious problems. If the 

high-priority task is delayed long enough it might lead to triggering of a timer and 

the resetting of the OS. The Mars Pathfinder mission had a priority inversion prob-

lem that caused it to reset itself several times. At the very least priority inversion 

can make a system seem unreasonably slow. Low-priority tasks usually have a low 

priority because it is not important for them to finish in any particular time frame so 

long as their job gets done eventually. A high-priority task probably has strict time 

constraints. It might be working with the user interface or on a soft real-time task. 

Thus, priority inversion can lead to reduced system responsiveness.  

  9.3.10 A classical problem 

 There is a problem that occurs quite often in OSs called the  producer–consumer 

problem  or the  bounded-buffer problem.  It is an example of a multiprocess syn-

chronization problem. It concerns at least two processes, one of which is a producer 

of data and another of which is a consumer of the data, and they all share a common, 

fixed-size buffer. The job of a producer process is to continuously generate blocks of 

data and put them into the buffer. At the same time, a consumer process is consuming 

the data by taking it from the buffer a block at a time. But a producer should not try 

and add data to the buffer if it’s full and a consumer should not try to remove data from 

an empty buffer. One solution to this problem is shown in the following procedures. It 
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works for multiple consumers and multiple producers but we will discuss it as though 

there were only one of each. 

 The solution for the producer is to block if the buffer is full. Each time the con-

sumer removes an item from the buffer, it signals the producer who starts to fill the 

buffer again. In the same way, the consumer blocks if it finds the buffer is empty. 

Each time the producer puts data into the buffer, it signals the consumer. The counting 

semaphore  full  is the number of buffers that are currently full, the semaphore  empty  

is the number of empty buffers, and  mutex  is for establishing mutual exclusion.  

 semaphore mutex  ⫽  1

semaphore full  ⫽  0

semaphore empty  ⫽  BUFFER_SIZE

procedure producer() {

 while (true) {

  item  ⫽  produceItem()

  wait(empty)

  wait(mutex)

  putItemIntoBuffer(item)

  signal(mutex)

  signal(full)

 }

}

procedure consumer() {

 while (true) {

  wait(full)

  wait(mutex)

  item  ⫽  removeItemFromBuffer()

  signal(mutex)

  signal(empty)

  consumeItem(item)

 }

}

     9.3.11 Monitors 

 Although it does not look that difficult on the surface, the use of locks and sema-

phores is a very error-prone part of programming. In order to make locking and 

unlocking more robust, some high-level languages have introduced a mechanism for 

expressing synchronization requirements. This mechanism is known as a  monitor.  

Monitors are not OS constructs so much as they are a way to package OS constructs 

in a less error-prone way. A monitor is an item with built-in mutual exclusion and 

thread synchronization capabilities. These features are defined by programming lan-

guages so that the compiler can generate the correct code to implement the moni-

tor. Though they take different forms in different languages, there are some general 

things we can say about monitors. 
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 A monitor is associated with an item in the language such as a procedure or a 

class. A mutex will be associated with the procedure. Only one thread of an associ-

ated process can be executing with the monitor at any given time. A monitor proce-

dure tries to access the lock before doing anything else, and holds it until it either 

finishes or waits for a condition. When a procedure finishes, it releases the lock so 

no deadlocks can take place. 

 Monitors may also have  condition variables.  These allow a thread to wait if 

conditions are not right for it to continue executing with the monitor. In this case the 

thread will be blocked and another thread will be given the lock and allowed to exe-

cute. The other thread may change the state of the monitor. If conditions are now right 

for the waiting thread to continue, the running thread can signal the waiting thread. 

This will move the waiting thread back to the ready queue so that it can resume 

execution with the monitor when it becomes free. The following code uses condition 

variables to use a communication channel that can store only one message at a time: 

 monitor channel {

 condition can_send

 condition can_receive

 char contents

 boolean full : =  false

 function send (char message) {

  while full then wait (can_receive)

  contents : =  message

  full : =  true

  signal (can_send)

 }

 function receive () {

  var char received

  while not full then wait (can_send)

  received : =  contents

  full :=   false

  signal (can_receive)

  return received

 }

 }

        9.4 DEADLOCKS 

   9.4.1 What is a deadlock? 

  A very simple case 

 Suppose that we have two processes, A and B, which are attempting to share two 

different resources, 1 and 2. Process A locks resource 1 and then locks resource 2. It 

does its work and then releases the resources. Process B locks resource 2 and then 
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locks resource 1. It does its work and then releases the resources. These events are 

shown schematically in  Figure 9.3 .  

    Now consider what happens if process A gets interrupted at Point X—perhaps 

it has used up its time quantum and the operating system takes it out of the run state 

and puts it back in the ready queue. Process A has already locked resource 1. Now 

process B starts. It locks resource 2 and then tries to lock resource 1. Since process 

A is holding a lock on resource 1, the OS puts process B into the wait state and some 

other process is started. Eventually process A comes to the head of the ready queue 

and is restarted by the dispatcher. It runs briefly and tries to lock resource 2. Since 

process B is holding a lock on resource 2, process A is put into the wait state and 

these two processes are now in a deadlock. Neither process will ever finish because 

each is holding a resource that the other is waiting for. 

 This simple example easily shows two of the necessary conditions for a dead-

lock to occur. The first is that there must be resources involved that are not shar-

able. This is called  mutual exclusion.  In the case of locks, this is clear from the 

definition—only one process can hold a lock at any one time. In the case of some 

resources it is not as clear, as will be discussed later. The second condition necessary 

for a deadlock is that it must be possible for a process to hold one resource while it 

waits for another. This is called  hold-and-wait.  Again, in the case of locks we can 

see that normally a process can get as many locks as it needs without releasing any 

that it holds.  

  Some more elaborate examples 

 A favorite example in the computer science literature is the “Dining Philosophers” 

problem. In this problem, shown in  Figure 9.4 , there is a table at which there are three 

philosophers who alternatively eat or think. After thinking for a while, a philosopher 

will want to eat. The meal being served is rice, and it requires two chopsticks to eat. 

Between each two philosophers is a chopstick. When it is time to eat, a philosopher 

picks up one chopstick on the left and one chopstick on the right and begins to eat. 

It should be clear that this setting can easily lead to a deadlock. Suppose that more 

or less simultaneously, each philosopher decides to eat. Each reaches out to the left 

and picks up a chopstick. Each philosopher then gets interrupted and has to wait for 

a while (as in the simple example).  

Lock 
Resource 

1

Lock 
Resource 

1

Lock 
Resource 

2

Lock 
Resource 

2

Process A

Process B

Process A
Continues

Process B
Continues
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X
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Two processes 
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    When it resumes processing (trying to eat), it tries to pick up the chopstick to 

the right, but finds that chopstick already in use, so it waits on the right chopstick. 

Eventually we make it all around the table and each philosopher is holding one chop-

stick and waiting for another. The difference between this example and the first is 

that in this case there are more than two processes (philosophers) and more than 

two resources (chopsticks). Each process is holding one resource and is waiting for 

another resource. This condition is known as  circular wait.  It was present in the 

first example but the circle was harder to see because there were only two processes. 

Each process then had a resource that was needed by the other. As is seen in the 

dining philosophers problem, all that is needed is that there is some sequence of 

processes, each holding a resource wanted by another, and ultimately one process in 

this sequence that is holding a resource wanted by the first process. There is a simple 

method of avoiding this situation, which we discuss later in the chapter. 

 An often cited example of a deadlock in the real world is a gridlock in traffic 

on city streets. For example,  Figure 9.5  shows a simple traffic gridlock. (To keep it 

simple we have shown one-way streets.) In this case you see a number of different 

processes (cars), each wanting to use a resource that the car in front of it is already 

using. In this case the resource is a position on the street. It is clear that there is 

mutual exclusion—no two cars can be in the same position at the same time. There is 

also circular wait—it is obvious from the picture. Consider, however, the car identi-

fied as A. Although this car is also waiting, it is not a part of the deadlock because no 

other car is waiting on the resource it holds.  

    In many analyses of deadlocks a fourth condition is stated—that preemption not 

be allowed. Preemption would mean that we could take away from a process some 

resource that it is currently holding, thus breaking the deadlock. In our analysis, pre-

emption is a solution to a deadlock. Adding a “condition” of no preemption is merely 

a way of saying that one possible solution to the deadlock problem is not used. It is not 

really a necessary condition for a deadlock. We discuss this further later in the chapter.  

FIGURE 9.4 

The “Dining 

Philosophers” 

problem.
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  Resource-allocation graphs 

 A tool often used to explain deadlocks is called a  resource-allocation graph.  These 

graphs show processes and resources and which processes are waiting for or hold-

ing instances of each resource. An example is shown in  Figure 9.6 . Each node in the 

graph represents either a process (shown here as a triangle) or a resource (shown as 

an oval box). A directed edge is drawn from process B to resource 2 to show that B 

is waiting for 2, and from 1 to A to show that A holds 1. If there is a deadlock then 

there will be a loop in the graph and it will be obvious from the diagram. In a com-

puter system there is usually more than one instance of a resource. In this case it is 

traditional to represent each instance of a resource in the graph as a single dot inside 

the resource node. In such a case a loop in the diagram does not necessarily mean 

that there is a deadlock because there may still be free instances of each resource 

available. Unfortunately, OSs don’t understand pictures, so this technique is not as 

useful to them as it is to a human analyst. A programmer can simulate a graph, how-

ever, and write a program to do a search with a graph in mind, but that is not quite 

the same thing.  

A
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       9.4.2 What can we do about deadlocks? 

 There are basically four approaches to solving the deadlock problem. First, we can 

 prevent  deadlocks from ever happening by making sure that one of the necessary 

conditions does not exist. Second, we can allow all three conditions to occur, but 

 avoid  deadlocks by making sure that we do not allocate resources in such a way that 

they will ever happen. Third, we can allow deadlocks to happen,  detect  that they 

have happened, and perhaps do something about them. Finally, we can ignore them.  

  9.4.3 Prevention 

 Preventing deadlocks would involve making sure that one or more of the three neces-

sary conditions for deadlock cannot occur. We address these three conditions in turn. 

  Mutual Exclusion 

 In a computer system some resources are very clearly not sharable. If one process 

is printing the payroll checks on a printer it will not work well for another process 

to begin to print an email message on the same printer. (We can simulate simultane-

ous access to a printer by spooling the output. We discuss this further later in this 

section.) Similarly, if one process is writing records to a tape drive it will not be 

practical for another process to start using the same tape drive. Other resources are 

clearly sharable. For example, a network interface card is very likely to be shared 

by several applications at the same time. A server might be running several different 

services over the same network adapter—perhaps a Web server, a file server, and 

an FTP server. Requests can come in randomly from other hosts in the network and 

responses can be queued up by the server processes. One might argue that the mes-

sages are not going out together—that the line is not really being used “at the same 

time.” However, the point is that no process will ever have to wait for the network to 

send data. Assuming enough memory space is available for buffers, no process will 

ever enter a deadlock because it is waiting to send data to the network. (It may have 

to wait for a response, but that is not the same thing.) Similarly, access to files on a 

disk drive is sharable at the software level. Two processes can have files open on a 

hard drive and can read from and write to those files on a single drive without wait-

ing for the other process to completely finish with its file processing. 

 Some resources are less clear. Consider RAM, for example. One could argue 

that RAM is sharable since many processes can be using parts of it at the same 

time. However, processes generally are given exclusive access to blocks of RAM 

and are not allowed to access blocks allocated to other processes. So in that sense 

RAM is really not sharable. However, there are many instances where processes do 

share memory, so memory is very difficult to categorize in this regard. With most 

OSs access to a single file may be sharable. If we have a spelling dictionary on a 

timesharing system each user can be checking spelling on different documents at 

the same time. However, if the system is an inventory system and we have several 

processes trying to allocate inventory to customers at the same time, the applications 

need to lock the files (or at least parts of the files) so that we do not try to ship the 

last widget to three different customers. So files are not intrinsically either sharable 

or nonsharable. It depends on the use being made of them. 
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 Even with nonsharable devices like printers we can use some mechanisms to 

make most uses of a printer a sharable event. The solution is to use spooling. Rather 

than write data directly to the printer, the OS will take the data from the application 

and temporarily store it in a disk file. Later, when it knows that the printer is avail-

able, has the right forms mounted, and so on, it can actually print the data on the 

printer. Since we have removed the mutual exclusion involving printers, we have 

removed them from the list of resources that can cause a deadlock. On the other 

hand, a deadlock of a sort can occur even with spooling. When an OS is spooling the 

printer output for several applications it is temporarily writing the output to disk. It is 

entirely possible that the disk space allocated to the spooling fills up. This can once 

again leave the system exposed to a possible deadlocked state. 

 But the bottom line is that since some resources are intrinsically nonsharable, 

removing mutual exclusion is not a generally applicable solution.  

  Hold and wait 

 There are two ways we can avoid the hold-and-wait condition necessary for a dead-

lock to occur. We can require that a process must request all resources it will ever 

need when it starts. For a few simple batch systems this might be possible, but for 

most modern applications it is not feasible. There are simply too many combinations 

of possible events to make prediction of all requirements practical. Furthermore, in 

many cases the 80/20 rule applies—in 80 percent of the cases we will only need a 

few resources. In only 20 percent of the cases will we need a big allotment of extra 

RAM. If we have to ask for the worst case in advance then most of the time we will 

be tying up resources that we will not need. 

 The second option is to require that any process that is asking for a resource 

must first release all resources it is holding before it asks for any other resources. So, 

in our first example, when process B wants to ask for resource 1 it must first release 

resource 2 and then ask for resources 1 and 2 at the same time. This set of resources 

can’t be allocated because process A has resource 1, so process B will now wait, but 

it will no longer be holding resource 2. Process A will eventually get its next time 

slice and it will release resource 1 and attempt to allocate resources 1 and 2 at the 

same time. Since it currently has the CPU it will be allowed to lock both resources 

and will continue. When it is finished with these two resources and releases both of 

them, then process B will eventually be put into the ready state and will be granted 

both resources and continue. Thus we have prevented a deadlock. However, if an 

application was using a nonsharable resource, how could it release it? Furthermore, 

this constant releasing and relocking is just too inefficient to use except in the most 

trivial circumstances. So, as with mutual exclusion, eliminating hold and wait is gen-

erally not a useful solution to the problem of deadlocks.  

  Circular wait 

 The last condition of a deadlock is a circular wait. There is a very simple method of 

preventing deadlock by not allowing this condition. The solution is to establish an 

ordering of all the resources in a system. (There is no real significance to this order-

ing except that it works best if the ordering matches the order in which programs are 
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most likely to lock the resource.) The next requirement is that all processes must lock 

resources in the same order. This will prevent the circular wait condition. Consider 

once again the first example. If process A and process B both try to lock resource 

1 before they try to lock resource 2, then a deadlock between these two will never 

arise. When the second process tries to lock resource 1 it will be forced to wait. This 

works just as well if multiple processes and multiple resources are involved. 

 Unfortunately, as a general-purpose solution for deadlock avoidance in OSs, 

resource ordering is not a practical solution. OS utility programs, third-party soft-

ware, and end user applications all would have to be written with some such standard 

in mind and no such standard exists. However, for a development team working on 

a large system with multiple concurrently running subsystems, ordering of locks on 

resources is a useful technique to avoid creating deadlocks within the application 

system itself. So this is an important technique to be aware of, even if it is not a gen-

eral solution to the deadlock problem.   

  9.4.4 Avoidance 

 So far all our examples of resources have shown a single instance of each resource. 

A simple lock can only have one user at a time, a printer can only have one user, and 

so on. With other resources there can be many instances of the resource. The most 

obvious example is RAM—there are always many blocks of RAM to be allocated. 

Similarly, we might have multiple tape drives on which a tape can be mounted. On 

a large mainframe we may even have multiple identical printers and not really care 

which one we get to use. In studying the avoidance mechanisms, we consider the 

more general case where resources can have multiple instances. 

 There are two mechanisms for deadlock avoidance. Each of these mechanisms 

requires that before a process runs it must provide the OS with a maximum number 

of instances of each resource that it will ask for under any circumstances. It might 

say that it will only need 543 KB of RAM, one printer, and three tape drives. There 

are then two ways the OS can use this number. The first is to use the numbers to 

decide whether to run the job at all. When the OS is going to start a job it can look 

at the resources it has available right now and see if it can satisfy the maximum 

demand that the application might ask for. It might have the printer and three tape 

drives it can allocate to the program, but only 506 KB of RAM. If the OS can’t 

ensure that it will be able to grant the maximum number of all the resources that 

the job might request, then it does not run the job. In this way the OS will  avoid  

putting itself into a situation where a deadlock can occur. This is certainly safe but 

is not a very optimum solution since the job might often run without asking for the 

worst case of its resources. This is equivalent to requiring that the process ask for all 

resources in advance. 

 The second solution is harder, but more nearly optimum. In this case the OS 

will start the job without checking the maximum resource allocations, but when the 

program asks for any resource the OS will determine whether it knows it will be able 

to grant that request and still be able to finish all the other jobs it has running. If the 

system can’t safely grant the request that the process has made then it will put that 

process into a wait state. A state where the OS knows it can finish running all the 
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currently running jobs even if all the jobs request the maximum amount of all 

resources they have said they might use is known as a  safe state.  

 In the example shown in  Figure 9.7 , the OS is monitoring four resources, 

A–D. For these resources it currently has unallocated (Available) 1, 5, 2, and 0 

instances, respectively. We show these lists of resource counts without commas 

for simplicity. There are five processes, 0–4. When these processes started running 

they each gave a maximum number of instances of each of the four resources they 

might ask for. These are listed in the column titled Max. That is, process 1 said that 

at a maximum it would need 1 instance of resource A, 7 of B, 5 of C, and no Ds. 

Each process is currently holding some number of instances of each resource, as 

listed in the column titled Alloc. As we can see, process 2 currently has allocated 

1 A, 3 Bs, 5 Cs, and 4 Ds. The OS can determine that process 1 could not ask for 

any more As because it is already allocated as many as it said it would ever need. 

If it asked for more we could terminate the job. It could ask for 7 Bs and 5 Cs but 

no Ds. These are shown in the column titled Need. The OS can check to see if it 

will be possible to finish this set of jobs without a deadlock occurring. We notice 

that process 1 will be not be able to finish because it can ask for 7 more Bs and 

we only have 5. But process 0 will be able to finish since it can’t ask for anything 

more. When it finishes we will recover the resources allocated to the process—in 

this case 0 0 1 2. This will leave us with 1 5 3 2. This is shown in the column titled 

Work. Now process 1 still can’t finish, but process 2 can finish because its need 

is less than our working resources. When it finishes we will recover its resources, 

giving us 2 8 8 6. Now process 1 can finish, giving us 3 8 8 6. Similarly, process 3 

and 4 can also finish. Since we know that all the processes can finish we know that 

the system is in a safe state. 

   So in order to avoid deadlocks the OS must check each request by a process for 

a resource allocation to make sure that if it grants the request the system will still 

be in a safe state. Note that an unsafe state does not mean that we have a deadlock 

or that we will definitely have a deadlock. It only means that we  might  eventually 

have a deadlock. By never allowing the system to enter an unsafe state we will avoid 

deadlocks. However, we will once again be using the system in a suboptimum man-

ner because we may be making processes wait when they could have successfully 

run without a deadlock. The algorithm we just informally described is known as the 

Banker’s Algorithm. It was used in an OS known as THE Operating System. How-

ever, for many systems it is impossible to know in advance what every process will 

request, so deadlock avoidance is not used in current OSs.  

For resources (A, B, C, D):   Available: 1 5 2 0

NeedMaxAllocProc
P0 can finish
enough of every thing

P1 can't finish
not enough Bs

0      0 0 1 2     0 0 1 2 0 0 0 0
1      1 0 0 0     1 7 5 0 0 7 5 0
2      1 3 5 4     2 3 5 6 1 0 0 2
3      0 6 3 2     0 6 5 2 0 0 2 0
4      0 0 1 4     0 6 5 6 0 6 4 2

Work

1 5 2 0
1 5 3 2
2 8 8 6
3 8 8 6

. . .

FIGURE 9.7 

Showing a safe state.
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  9.4.5 Detection 

 Our next approach to the deadlock problem is simply to let deadlocks happen, when 

a deadlock happens, discover that it happened, and then try to recover from the 

deadlock. The main advantage of this approach is that it is optimum in the sense 

that it lets all processes try to run and never makes processes wait just to avoid a 

possible deadlock. 

 If we were actually concerned about detecting resource allocation conflicts with 

multiple instances of each resource we could utilize an algorithm similar to the Bank-

er’s Algorithm. Instead of maximum resources yet requested, we would be looking 

at the resources currently requested but not yet allocated. If we were not able to find 

a “safe state” then we would know that the processes that were unable to finish were 

involved in a deadlock. However, no real OS today incorporates such an algorithm. 

Instead, they leave it up to the applications to worry about deadlocks since these are 

the sorts of deadlocks that are actually encountered. The OS provides an API call that 

allows the application to examine the list of all waiting tasks. The application can 

then examine all the waits to see if there is a loop in them. This examination is actu-

ally done by a debugger program that is running a user application. If the debugger 

finds a loop then the programmers can examine the data and fix the problem.  

  9.4.6 Preemption and other real-world solutions 

 Some resources are used in such a way that once a process starts using them the pro-

cess needs to finish what it is doing before we can use the resource. Good examples 

are writing a file to a tape drive or to a printer (without spooling). Other resources are 

different—RAM, for example. If two processes are running and each demands more 

RAM than the system can supply, we can temporarily suspend one of the processes, 

save all the information it currently has in RAM to secondary storage, and let the 

second process have all the RAM. When the second process finishes we restore the 

first process into RAM, give it the extra RAM it wanted, and let it continue. This 

technique is known as  preemption.  In  Figure 9.5 , we could apply preemption by 

having a police officer ask the driver of the car in the lower left corner of the figure 

to back it up, preempting its position on the street. 

 The next question is then which job(s) should be preempted. The best choice is 

usually the one that has the minimum cost—the one with the smallest current RAM 

use that is large enough to satisfy the current request, for example. If preempting the 

largest process does not free enough resources for the remaining jobs to finish, then 

the preemption may need to be repeated with the next smaller process. 

 If all the processes involved in a deadlock are waiting on resources that can-

not be preempted, we may have no choice but to abort some or all of the processes. 

As unusual as it may seem, the normal choice is to abort all the processes in the 

deadlock. Deadlocks are usually a rare event—so rare that it is probably not worth 

spending the time to develop more complex algorithms. Plus, the available data on 

which to develop such algorithms is sparse. A better choice would be to successively 

abort the lowest cost processes until the deadlock disappears. The deadlock detection 

algorithm should be run after each attempt. 
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 As was mentioned, the most often used solution is to ignore the problem. 

Unfortunately, the deadlocked processes may consume some large amount of 

resources. Probably other processes will eventually begin to stop and wait because 

of the deadlocks held by the originally deadlocked processes. Eventually, the sys-

tem may stop running any processes. Hopefully, the system operator will notice 

this problem and will begin to solve it, probably by aborting jobs until the system 

resumes operation. 

 In the future it seems likely that OSs will incorporate more mechanisms for 

coping with deadlocks. Although the algorithms for detection do require some CPU 

and memory resources, deadlocks are very mysterious to users—the system they are 

using just appears to hang and they have no idea what to do to fix it or to avoid it in 

the future. Computer hardware continues to get more powerful and RAM less expen-

sive. Deadlock detection is being implemented for debuggers and we surmise that 

they will find their way into the kernel as a background function in the future.     

   9.5 SUMMARY 

 In this chapter, we discussed the nature of systems 

that are comprised of multiple cooperating pro-

cesses. We started this chapter with an examination 

of the reasons why systems are often built this way, 

a trend that seems to be increasing. We looked at 

the mechanisms that processes use to communicate 

with one another. We then studied the problems that 

arise when each of two processes is trying to access 

data that the other process is (or may be) accessing 

at the same time. We described some tools that have 

been developed to allow processes to synchronize 

their activities so that these issues can be avoided. 

Finally, we discussed another class of problems 

called deadlocks that can arise when multiple pro-

cesses use the synchronization mechanisms to lock 

resources. We described four theoretical mecha-

nisms for keeping deadlocks from bringing our 

systems to a halt. 

 In the next chapter we cover management of 

primary system memory.  
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   REVIEW QUESTIONS 

     9.1 We listed eight reasons why it is sometimes desir-

able to have a system separated into different pro-

cesses, sometimes running on different machines. 

For each of these reasons, give a different exam-

ple than was given in the text.

    a. Performance -  

   b. Scaling -  

   c. Purchased components -  

   d. Third-party service -  

   e. Components of multiple systems -  

   f. Reliability -  

   g. Physical location of information -  

   h. Enable application -     

   9.2 For each attribute of interprocess communication 

mechanisms there were various alternatives for 

that attribute. Discuss some good and bad points 

for the alternatives for the following attributes:

    a. Multiple or single connections possible -  

   b. Naming strategy -  

   c. Connection oriented or connectionless -  

   d. Persistent or transient -  

   e. Number of processes -     

   9.3 True or false? Pipes are an example of a blocking 

communication mechanism.  

   9.4 True or false? Sockets are an example of a persis-

tent communication mechanism.  

   9.5 What is the big problem with shared memory IPC 

mechanisms?  

   9.6 Why are synchronization problems so difficult to 

debug?  

   9.7 What is the special feature of all the hard-

ware locking instructions that we discussed for 

synchronization?  

   9.8 Why do applications not use spin-locks? What do 

they do instead?  

   9.9 What are the normal names of the locking and 

unlocking system calls?

    a. Lock and unlock  

   b. Set and clear  

   c. Wait and signal  

   d. Enter and exit  

   e. None of the above     

   9.10 There are special semaphores called counting sema-

phores. What kinds of things are they used for?  

   9.11 True or false? When running on SMP systems, 

applications must take special precautions to 

make sure that the values of any locks are seen by 

all CPUs.  

   9.12 Briefly describe the concept of priority inversion.  

   9.13 What caused the development of monitors in 

high-level languages?  

   9.14 There are three conditions for a deadlock. What 

are they?  

   9.15 We said that for a deadlock to happen there had 

to be a sequence of processes, each holding a 

resource and waiting on another resource that 

was held by another process, with the last pro-

cess waiting on a resource held by the first pro-

cess. How many processes does it take to create a 

deadlock?  

   9.16 Some devices are not sharable, but we have found 

a way to make a virtual device that allows us to 

pretend that we are sharing them. What is that 

mechanism?  

   9.17 Ordering of locks on resources can eliminate cir-

cular waits and thus eliminate deadlocks. When is 

this technique applicable and when is it not?  

   9.18 We discussed two different types of avoidance. In 

general, what’s wrong with avoidance?  

   9.19 The algorithms for deadlock detection are well 

known and not too hard to write. So why do we 

not use them more often?  

   9.20 What is the case where preemption is easy to do 

and works well?    

   Problems possibly requiring further reading: 

    9.21 Modern OSs use several different kinds of sema-

phores for different purposes. Pick a modern OS 

and name some of the different types of semaphores 

they support with a brief explanation of each.  

   9.22 There are several classic problems involved in syn-

chronization. We described two. What were they 

and what other classic problems can you find?         
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10.1 INTRODUCTION: WHY MANAGE PRIMARY MEMORY? 

  In the last two chapters we discussed one of the main jobs that an OS has to do: man-

aging processes running on the CPU. In this chapter we discuss the second main job 

of the OS: managing primary memory. As with all system resources, the OS attempts 

to manage the primary memory of the system. Usually primary memory is random 

access memory (RAM) made of electronic circuits.  1   The basic goal of memory man-

agement is to allow as many processes to be running as possible. The OS provides 

API functions to allow us to allocate, access, and return memory. When memory is 

allocated to processes, the OS must keep track of which parts of the memory are 

free, which parts are allocated, and to which processes they are allocated. The OS 

sometimes may also preempt memory from processes. In this case it must be pre-

pared to save the current contents of the primary memory on secondary memory, to 

track where the contents are stored for each part of each process, and to restore the 

contents of primary memory when the preempted process is resumed. 

1 Systems have been built with other types of primary memory. Early systems used acoustic waves in 
tanks of mercury or rotating drums, for example. For some years almost all computer systems used the 
polarity of magnetization in iron oxide cores to store bits. The phrase “core dump”—a printout of the 
contents of the memory allocated to a program that had crashed—comes from this era. This memory had 
the property that it retained its contents even when the power was turned off. This strikes us as a peculiar 
property today since we normally presume that primary memories are volatile.  



210 Part 3 CPU and Memory Management

 In most situations the OS will try to manage memory in ways that are transparent 

to the application. However, we note later in the next chapter that in some cases the 

transparency is not complete. Naive use of memory services can sometimes cause prob-

lems for a large system that is trying to optimize performance. Indeed, one of the main 

reasons we study OSs is to gain the information and understanding necessary to get past 

such problems. 

 Having discussed why we want to manage memory, in Section 10.2 we show the 

traditional model of the cycle of developing and running a process and the steps in 

the binding of a reference to an item in a program to the physical memory location 

where that item is stored. We later use these steps to explain the various memory 

management mechanisms. We then discuss memory management in progressively 

more complex situations, starting with a single process in Section 10.3 and discuss-

ing such aspects as relocation and overlays. We then move to situations where mul-

tiple processes are involved, again discussing gradually more complex mechanisms, 

including operating with a fixed number of processes in Section 10.4 and with a vari-

able number of processes in Section 10.5. We end with a summary of the chapter.   

  10.2 BINDING MODEL: STEPS IN THE DEVELOPMENT CYCLE 

  First, let us describe the standard model of the steps of building an application, loading 

it into memory, and running it. In the later sections of the chapter we use this model to 

explain the common features of how an OS manages the way a process uses memory. 

 There are really five steps in the sequence of events that result in a process in 

execution in memory. First, we write (or  code ) the program. Usually this is done 

with some symbolic language, either a lower-level assembly language or a higher-

level problem-oriented language. Second, we use a translator program (usually an 

assembler or a compiler but occasionally an interpreter) to  translate  this symbolic 

program into a sequence of instructions for the target machine, creating an “object 

module.” Normally this object module is not ready to run yet. In the third step, we 

 link  that module with similar modules that were created separately. Those modules 

might be other modules we created. They may also be library modules that we pur-

chased or that came with the OS. Fourth, we  load  the program into memory, and 

fifth we actually  run  the program. 

 A word of caution about the names of these steps: Historically there have been 

many different software packages designed to assist a programmer in implementing 

a program. Because different systems were used to solve different problems in dif-

ferent environments, the capabilities of some of these steps have sometimes been 

combined into a single model. The function we described as combining the modules 

together is most often called  linking  and the function of bringing the process into 

memory is usually called  loading.  Sometimes, however, these functions have been 

done in one step. In other literature you may see either word used to describe either 

step or to a combination of both of these steps at one time. 

 Let us suppose that we are creating a process that consists of two modules. We 

have a main procedure that we call a subroutine named XYZ that we have written 

earlier. As we go through progressively more complex models, the idea we focus on 
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is a question of  binding.  Binding is the process of determining where in the physical 

memory the subroutine should go and making the reference in the main routine point 

to the subroutine. However, binding occurs with all references to items that are not a 

part of our main program, not just with subroutines, but including data items as well.   

  10.3 A SINGLE PROCESS 

   10.3.1 Binding at coding time 

 In a very simple environment like an embedded system with a very tiny BIOS, we 

might manually decide where each piece of the program was going to go. We might 

put the main module at location 100 and the subroutine XYZ at location 500. If we 

coded the main module in assembly language we might include assembler directive 

like  ORG 100  and in the subroutine we might include an  ORG 500.  These direc-

tives cause the assembler to generate code that absolutely references these memory 

addresses. In our main module we would know that the subroutine XYZ was going 

to be at address 500, so instead of issuing a call to XYZ we could actually issue the 

call to location 500. In this case we have made the binding decision during the cod-

ing step and have told the assembler of this through the ORG directives. As unlikely 

as this might seem to us today, it is by no means an extreme example of early bind-

ing. Here are three extreme examples:  

 When computers were first developed, and again when minicomputers and personal 

computers were first developed, the first systems had very little software and few 

peripherals. Programmers not only assigned the addresses manually, they wrote the 

programs in machine language and even entered them into the memory manually 

by manipulating switches and buttons on the front panel of the machines. In some 

machines there were peripheral devices that used a fixed memory address as a buffer 

so that the programmer did not even have a choice. Needless to say, having pro-

grammers allocate memory manually was error-prone and time-consuming. It was a 

phase that didn’t last long. 

 The IBM 650 had a primary memory that was a rotating drum. The instructions 

took a variable amount of time to execute. While the instruction was executing, of 

course, the drum continued to rotate. As a result, each instruction included a field 

that gave the address of the next instruction. The programmer had to try to optimize 

the program by placing the next instruction in the location that would be coming up 

next under the drum’s read head when the current instruction finished. Obviously 

that phase didn’t last long either. An assembler called SOAP, Symbolic Optimizing 

Assembler Program, was developed at Columbia University. Its main job was the 

optimum placement of the instructions on the drum. 

 When programs were routinely punched into cards and no magnetic tapes or 

rotating memories were available, it was a fairly complex process to load the assem-

bler program into memory, feed in the source program, obtain an object module 

punched into cards, load the linker program into memory, feed that object module to 

the linker, punch out an executable program, and finally load the object program into 

the computer and run it. As a result, it was common to  patch  executable programs 

that had been punched into cards. The assembler listings included the machine lan-

guage that was output for each instruction. This allowed the programmer to find the 
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card containing an incorrect instruction, load it into a keypunch, and fix the program 

by changing the machine language. Unfortunately, that practice did continue for 

some time, and it was also error-prone. Programmers would insert multiple patches 

in a card deck. Eventually the number of patches would become unwieldy, so the 

programmer would go back to the source deck, make all the changes to the source 

program, and do the reassembly. Unfortunately, it was all too easy to miss one of 

the changes to the source, so it was not uncommon to find oneself fixing bugs in the 

source code that one had already fixed with a patch.   

  10.3.2 Binding at linking time 

 In the environment of CP/M, all programs were supposed to start at location 100, so 

we might include the ORG 100 statement in the main module. However, we prob-

ably did not care where subroutine XYZ ended up, so in our main routine we use the 

symbolic name XYZ. When the assembler outputs our object module, it includes all 

of our instructions and data, but it also includes information that will tell the linker 

program that we have some references that it needs to fix up, or link. After the linker 

processes our main routine it will have a list of names that it needs to resolve. It 

will then begin to process other modules we told it to include. As it includes these 

modules in the load step, it will find in those modules the names that were defined 

in them. In this case, “XYZ” will be defined in one of the modules that we tell the 

linker to process. When the linker figures out where the module XYZ will reside 

in our address space, it will go back and link (or bind) the references in the main 

module to the addresses in the subroutine module. Now we have made the binding 

decision at link time rather than at coding time. Notice that when we put off the bind-

ing until a later step we gain somewhat in flexibility. If we decided at coding time 

to put module XYZ at location 500 and we later found that we needed to move it to 

some other location, we have to go to a lot of trouble to change all the references to 

that address. Letting the linker decide where to put the module makes it easier. How-

ever, we pay a little for the increased flexibility. In this case we are carrying around 

extra information in the object modules that define the names and the references to 

the names, and we spend a little extra time in the link step while it does the binding. 

As computers have gotten bigger and faster, however, this extra time and space has 

become such a small price to pay that we most likely don’t even give it a thought.  

  10.3.3 A single process 

 In the CP/M environment, the OS resided at the top of memory. Application programs 

started at location 100 to avoid the interrupt vector in low memory, and grew upward. 

Unfortunately, as the operating system grew (and it always does) it might eventually 

get so big that an upgraded OS might be using the memory that was needed by a 

program that had been running fine before the upgrade. It would now crash and it was 

probably not obvious what the problem was. MS-DOS, therefore, took a different 

tack: The OS was loaded into low RAM and the program was loaded above it. When 

the application tried to load, if there was enough memory left over, then the program 

would load and run. If not, then at least the failure was clearly defined. Initially, when 

one created an application program under MS-DOS, one linked the program to run 
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on a specific release of the OS. This step defined the address of the service routines in 

the OS and the address at which the application should begin loading. Unfortunately, 

this meant that when a release of MS-DOS came out that changed the absolute size of 

the resident OS, all applications had to be relinked to run on the new release. 

 Many mainframe OSs had similar architecture, but they employed additional hard-

ware to protect themselves. In  Figure 10.1  we see a typical early OS architecture for 

a mainframe that ran only a single process. The executable program would be created 

to reside at a particular address that was above the OS kernel. In addition, a  base reg-

ister  would be loaded with an address below which the executable program could not 

address. If the program did reference memory below this address, an interrupt would 

be generated and the program would be terminated. Such systems still had the problem 

that if the OS grew then the programs had to be linked with new addresses. The solu-

tion to this problem was to change the function of the base register somewhat.  

      10.3.4 Dynamic relocation 

 This change in function also resulted in a change in name. What had been called a 

base register was now called a  relocation register,  as shown in  Figure 10.2 . The 

value loaded into the register was no longer a limit. Instead, the executable program 

was created to act as though it were located at address 0, and the value in the reloca-

tion register was added to every memory reference made by the program. Now the 

program did not have to be relinked every time the OS changed since every memory 

reference is automatically relocated as the program runs.  
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      10.3.5 Physical RAM space versus logical RAM space 

 This new relocation function introduces an important concept: the difference between 

the logical address space and the physical address space. Originally when we com-

piled a program we created a program that was to be loaded into RAM at the address 

that was assigned to it either in the translation step or the linking step. The execut-

able program was compiled to reference a range of addresses that corresponded one 

to one with the actual physical memory addresses. Though it was not clear at this 

point in the evolution of the hardware, there were actually two different address 

spaces in use. The first address space is the set of addresses that the CPU would gen-

erate as the program executed. This address space is called a  logical address  space. 

We loaded the executable program into the primary memory. The set of addresses 

used to access this memory is known as the  physical address  space. When we intro-

duced the relocation register it became clear that the program’s logical address space 

and its physical address space were different. We see this illustrated in  Figure 10.2 . 

The executable program on the disk was created so that it generated addresses with 

a low address of zero. But when it was located into memory it was actually loaded 

into physical memory address 10000. The memory address hardware dynamically 

relocated the logical addresses generated by the program as it ran, and by adding the 

value in the relocation register it mapped the logical address space into the physical 

address space.  Figure 10.3  shows a more specific example of the process. The appli-

cation as it is running in the CPU generates a memory reference. This might be the 

address of the next instruction in the program, a subroutine call, a reference to a data 

item, or many other things. In this case the reference is to address 456 in the logical 

address space of the program. The OS, however, has loaded the relocation register 

with the physical address of the start of the program, in this case 10000. The memory 

hardware adds the value in the relocation register to the logical address and generates 

the physical address of 10456.  

    10.3.6 Programs larger than memory 

 As time has gone by, RAM has gotten much cheaper. But at one point primary mem-

ory was a very large part of the total price of a system. As a result, most early sys-

tems had fairly small primary memories. It was quite common to have a mainframe, 

minicomputer, or early microprocessor with a primary memory measured in Kilo-

words or Kilobytes rather than Gigabytes. Programmers spent a lot of time trying 
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to squeeze more function or more information into very small memories. It was this 

pressure that lead to the Y2K problem, for example. Since it was going to be 30 years 

or so before years started with anything but “19,” why waste memory on storing 

those two extra digits in every date? Today we may still have to deal with embedded 

systems that have limited primary memory. But typically this is now done for rea-

sons of space or power requirements, not because of the price of the memory.  

  10.3.7 Overlays 

 Programmers often needed to add functions to programs that ran in these small 

memories. It was (and still is) fairly common to have a program that has three parts: 

an initialization phase, a main computation loop, and some final reporting phase. 

Programmers realized that these parts of a program didn’t need to be in memory at 

the same time, so they decided to let these parts of the program  overlay  one another 

in memory.  Figure 10.4  shows such a program. The main portion of the program is 

just a series of calls to subroutines that implement the three phases, perhaps “init,” 

“main-loop,” and “wrap-up.” OS function calls would be added to the program to 

load the appropriate subroutine before the call was made. The main portion was 

always in memory and the other phases were brought in before they were called. In 

elaborate interactive systems this could get to be a bit tricky. A simple program like 

an assembler or compiler might easily fit into memory without using overlays, but 

having it broken into phases allowed the translator to process larger source programs 

in a given memory space.  

      10.3.8 Swapping 

 As the price of main memory began to fall relative to the rest of the machine, the 

administrators of the machine looked at what was going on and realized that with 

only one program running they were not getting very good utilization of their very 

expensive system. Some programs would do a little I/O and compute for a long time 

and others would mainly do I/O with very little CPU execution because the program 
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was always waiting on the I/O to complete. Some techniques like SPOOLing grew 

out of this situation. In a single-process batch system the OS could read in the cards 

that contained the next programs to be run and the associated data and store them on 

the disk. This reading would be overlapped with the execution of the current job. As 

the job tried to print its output the print lines would be stored in a disk file and the 

actual printing would be overlapped with the processing of the following jobs. 

 But in the long run it was realized that even SPOOLing was not enough—there 

was still much waste in lost CPU cycles and lost I/O time. It began to look like the 

solution was to run several programs at the same time. Hopefully, some would be 

computing while others were doing I/O and the whole machine would stay busier. 

This was quite desirable when the machines cost a million dollars. By this point in the 

history of computing most systems had a secondary memory comprised of magnetic 

disks or drums. The first technique was to keep several programs running by  swap-

ping  them out. This worked as shown in  Figure 10.5 . The figure shows program A 

running in the main memory. This program calls for a line to be printed on the printer, 

an operation that will take hundredths of a second at least. In this time we can do a 

lot of disk I/O and a lot of computing, so we would swap program A out by writing 

the contents of the primary memory to the disk and swap in program B. We would let 

it run until it issued an I/O to a slow device and then we would swap it back out and 

bring back in program A. Swapping is sometimes called  roll-out/roll-in.  Obviously 

the time to wait on the I/O operation must be greater than the time for the swap, but 

with direct memory access hardware swapping a contiguous block of memory can be 

very fast and places little overhead on the CPU.  

      10.4 MULTIPLE PROCESSES WITH A FIXED NUMBER 
OF PROCESSES 

  Even the technique of swapping was not enough however, and the owners of these 

expensive machines wanted to get more work done for the money they were spend-

ing. So the OS designers began to search for better ways to organize the processing. 
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Primary memory was continuing to get cheaper, so they began thinking about ways 

to keep multiple programs in primary memory and run more than one by alternat-

ing between them without swapping them out—swapping being an operation that 

requires lots of resources. Eventually they realized that the relocation register could 

run a program anywhere, not only at the top of the resident OS. So they moved to an 

OS memory organization like that shown in  Figure 10.6a . At first the base register 

had been used to keep applications from harming the OS. Then the use of this regis-

ter was changed to a relocation register, primarily to solve the problem of the growth 

of the OS. Now when the OS is running multiple programs and one program does an 

I/O operation to some slow device, the OS simply puts the memory address of the 

second program in the relocation register and starts to run the second program. This 

situation is shown in  Figure 10.6b . (It does more than that, but here we are focused 

just on the memory aspects.)  

    At this point we progressed to where there were other applications running in the 

primary memory, so it was necessary to fix things so that the applications couldn’t 

harm one another. The solution was to add a limit register that would establish an 

upper bound beyond which a program could not address, just as it couldn’t address 

below the relocation register setting. One might expect that this would be simply 

another register that contained the high address, but for reasons we address later it 

is almost universally true that this register instead contains the size of the program 

rather than the high address. The hardware adds this address to the relocation address 

on the fly to establish the upper bound. As with the lower bound, if the program tries 

to access memory beyond the limit set by the limit register, the hardware will gener-

ate an addressing error interrupt and the OS will abort the application. So when the 

OS shifts from running one program to another it must now set both the relocation 

register and the limit register.  

   10.4.1 Internal fragmentation 

 When this type of OS is installed the administrator will decide how much memory to 

set aside for each program area, or  partition.  The OS will not change the size of these 

partitions as the system runs. With the earlier OS models a program might not use all 

of the memory. If it didn’t use it all then we didn’t worry about it. Now the OS is try-

ing to put more programs into the same memory. If we have set aside 100 KB for each 

partition and we want to run a program that only needs 6 KB, then we are wasting the 

rest of the space in that partition. This unused space is called internal fragmentation 
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and is shown in  Figure 10.7 . We might set up a small partition or two to run small 

quick jobs and a larger partition or two for our big applications. This would tend to 

minimize the space wasted due to internal fragmentation. If the administrator is clever 

about setting up the partition sizes, then the programs that are running will come close 

to filling primary memory and we will have a better chance of keeping that expensive 

hardware fully utilized.  

      10.4.2 Time Sharing 

 Another case where swapping is utilized is in systems that are designed to support 

many users at terminals in a mode called  time sharing.  When users are interactively 

editing programs and testing them, the vast majority of the time that process is wait-

ing on the user at the terminal. In this case the system can swap out the process 

while the user is thinking or keying. In the case that was described in Section 10.3 

there was only one partition and thus only one process actually executing. Any other 

processes could be swapped out to secondary storage. In the case of time sharing 

it is more likely that we will have several partitions, perhaps even many partitions. 

We might keep in memory only the ones that are not waiting for the user to finish 

entering a line and are either running, ready to run, or waiting on something other 

than terminal I/O. The fixed size of the partitions wastes memory, of course. Recall 

the internal fragmentation that we just discussed. In that case we only had fragmen-

tation of a single partition. Now we have internal fragmentation in every partition. 

We would like to be able to use those fragments. If we saved enough memory then 

maybe we could run another program and keep the CPU busier. Although these tech-

niques worked well enough for the time, modern time-sharing systems generally use 

techniques described in the next chapter.    

  10.5 MULTIPLE PROCESSES WITH A VARIABLE NUMBER 
OF PROCESSES 

  A partial solution to that internal fragmentation is to not make the partitions fixed 

in size or in number. Instead, we use as much memory as we need to run a pro-

gram. We require that a programmer estimate in advance of running the program the 
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maximum amount of primary memory that the program will need. When we start 

the program we allocate that much memory to the program. If the program tries to 

use more memory than the programmer said it would, then the OS will end it with 

an error. When a program ends the OS will again make that memory available to 

run another program. This space is normally referred to as a  hole,  or sometimes an 

 external fragment —a block of memory that we are currently not using at all. In 

 Figure 10.8a  we see a situation where the system is currently running four applica-

tions. In  Figure 10.8b  we see that applications two and four have ended, so the holes 

where they were running are now available for use in running other programs. The 

OS usually keeps a list of the holes available. In  Figure 10.8c  we see that the OS has 

started application 5 in a part of the hole left where application 2 was running. There 

is now a smaller hole left over.  

    Now suppose that the OS has another program to run and there are many holes 

available to choose from. Which hole should the OS choose? As with most of the 

algorithm classes we study in this book, the first algorithm is simply to scan through 

the list of holes and use the first one we find that is big enough to run the program. 

This algorithm is called  first fit.  It has the advantage of being simple. But this may 

not be the best choice. Another algorithm is to use the hole that is the smallest that 

will fit the program we want to run. This algorithm is called  best fit.  It has an intui-

tive appeal—we waste the smallest amount of primary memory. Unfortunately, this 

algorithm requires that we either scan the entire list or keep the list in order by size. 

Either requires extra processing. 

 But what if our average program needs 10 MB, we have a program to run that 

needs 8 MB, and we have holes of 12 MB and 18 MB? If we use the 12 MB hole 

then we will have a leftover hole of 4 MB and on average we will not be able to use 

it. If we use a part of the 18 MB hole then we will have a 10 MB hole left and we 

will be able to use it, on average. So the next algorithm says that we should use the 

hole that is the  worst fit  on the grounds that it leaves the biggest (and therefore most 

useful) hole. Again, this algorithm requires that we either scan the entire list or keep 

it in order by size. 
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 A slight variation on the first fit algorithm is called  next fit.  In this variation we 

do not start each search from the front of the list. We do not keep the list sorted, and 

we always start the next search from where the last one left off. The first fit algorithm 

will tend to break up the holes at the front of the list the most, so we will end up with 

a bunch of small holes that we keep looking through but can seldom use. The next fit 

variation will tend to distribute this fragmentation through the list. In practice, worst 

fit turns out to be worst. Either best fit or next fit are better, and next fit is very easy 

to implement. 

 Now suppose that we have two holes that are each 5 MB and we have a process 

to run that says it may need 8 MB. We have 10 MB of free memory blocks in the two 

holes, enough free memory in total to run this process. But the free memory is not 

in one piece so we can’t run the program. This situation is known as  external frag-

mentation.  Recall that our processes are relocatable—they can run anywhere in the 

physical memory because the memory hardware relocates their logical addressing 

space dynamically as they run. So, it is possible to move a program in memory even 

after it has started running. Normally, the process is suspended, moved to another 

location and restarted. The OS only has to change the value that is placed in the 

relocation register to point to the start of the new location of the application in physi-

cal memory. For example, in  Figure 10.9a , if the two holes (marked “unused”) were 

together big enough to run application 6, the OS could stop application 3, move it 

to the space just above application 5, and put that address in the relocation register 

whenever application 3 was restarted, It could then start application 6 running in 

the resulting larger hole. This result is shown in  Figure 10.9b  This process is called 

 compaction.  Naturally, the situation is usually much more complex than this simple 

case, and often several programs have to be relocated to find a hole large enough to 

run the program we want to run. One can appreciate that when the OS is moving pro-

grams around in memory, no work is being done on behalf of the applications. The 

OS is choosing to spend the CPU and memory bandwidth for the purpose of running 

more jobs in parallel.  

unused

Application
Program 1

Application
Program 5

Application
Program 3

Resident
Monitor

(a) There is enough RAM for Application 6
but the holes are not contiguous

unused

unused

Application
Program 1

Application
Program 5

Application
Program 3Relocation

Register

Resident
Monitor

(b) Application 3 is relocated to
bring the two holes together

FIGURE 10.9 

Compaction.



 Chapter 10  Basic Memory Management    221

    Now we can appreciate why the relocation hardware uses a length for an upper 

bound instead of using the upper end of the program. If it used the upper address then 

when we relocated a program we would also have to recompute the upper bound. 

This is not an overwhelmingly complicated calculation, and it does not need to be 

done all that often, but if the hardware can work just as well the other way then we 

are lucky not to have to do it. 

 One complication in this process can be that the I/O hardware may not utilize 

the relocation hardware. In other words, I/O is done using physical addresses rather 

than logical addresses. This means that if a process has I/O pending, then we cannot 

move it in memory. So processes that start I/O may have to be marked temporarily 

as unmovable. 

 We also may still suffer from internal fragmentation. This comes about because 

our holes can keep getting smaller and smaller. It is not efficient for the OS to keep 

track of very small chunks of memory, so there is some minimum amount of mem-

ory that the OS will try to manage. It is common for this minimum to be in the range 

of 256 bytes to 4 KB. When the program starts it will be allocated a block of memory 

that is an integral multiple of this minimum piece. On the average, any program will 

not need half of its last piece, so it will go to waste—internal fragmentation.  

   10.5.1 Dynamic loading 

 With overlays we do not load the entire program into primary memory at one time. 

Instead, the programmer explicitly decides when to load the overlays and when 

to call the routines that are in the overlay. It is also possible for the system to do 

something similar. When the OS loads a program into main memory it might load 

into memory only the main body of the program. To access various subroutines 

it might make use of a table that shows which routines are already loaded into 

memory and which are not. Many programs follow roughly the “80-20” rule—80% 

of the code of a program is for situations that only happen 20% of the time. So if 

we don’t load the subroutines when the program first starts we might never need to 

load them at all. Therefore, the program starts somewhat faster. If the program later 

calls the routine then we can load it at that time and we will have paid very little 

penalty for waiting—a small bit of RAM for the table and a few extra instructions 

executed whenever we first call the routine.  

  10.5.2 Dynamic link libraries 

 We can, however, postpone the binding even a step further. We can put off even 

linking the subroutine with the main module. In this case the library routine itself 

does not become a part of the executable program. Instead, we leave intact the sym-

bolic reference to the library routine that was produced by the compiler. As with 

dynamic loading, if the routine is never referenced, then not only did we not bother 

to load it into memory, we didn’t even bind the symbol to a logical address. We 

leave the subroutines in special libraries that are usually called dynamic link librar-

ies, or DLLs. In Linux and most other UNIX variants such libraries are referred to 
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as shared object libraries or dynamic libraries and normally have “.so” as a part of 

their name. When a subroutine in such a library is referenced, then the OS will load 

the routine into memory and bind the link at program execution time. 

 Notice that we get several other benefits from this mechanism at the same time:

   ɀ Since the subroutines are not a part of the executable program, the program is 

smaller so it take up less space on the disk drive and loads faster into RAM.  

  ɀ Normally, we will have many programs that use the same library modules. Some 

library modules are so commonly used that they will be referred to by literally 

thousands of programs on the hard drive. Having only one copy of the code can 

save us a lot of disk space.  

  ɀ If a bug is fixed in one of the library modules it is only necessary to fix the one 

library routing and load it onto the system. This will automatically fix that bug 

in every program that references that DLL.   

This last feature is a great boon to application software developers because it 

means that if a fix is made to a system library by the OS manufacturer, the appli-

cation developer does not have to reload their application with the new libraries 

and redistribute the executable programs to every customer who is running that 

platform. If the customer calls with a complaint related to a DLL provided by 

another vendor, the application developer merely explains that the problem is in 

the system libraries and that a fix is available in release x.y.z.1.5 of the library 

module, which is downloadable from the library vendor’s website at . . . If the 

application vendor is really lucky, the customer finds the problem in some other 

application first and the fixed library is downloaded before the customer ever has 

a problem with their application. 

 Unfortunately, there is a problem with dynamic libraries. When the developer 

of a software package is using a particular set of functions in a DLL, their code 

may also depend on bug fixes in a particular version of the library. They will 

want to make sure that the set of functions and bug fixes they are using is in the 

version of the library that is available on any system the package is installed on. 

So the package installation can include a version that is at least as late as the one 

the vendor developed with. Unfortunately, the target system may already include 

a later version that was installed by another package that depends on functions 

or bug fixes in that version. Installing an older version would cause the already 

installed package to fail. The vendor of the package that suddenly quits work-

ing may be quite surprised to get the resulting request for support and will be 

understandably annoyed when the problem is finally resolved and time has been 

wasted solving a problem that is not related to anything their company did. Of 

course, the installation software is supposed to check to see that any DLL being 

installed is a newer version than the one already installed. Unfortunately, this is 

not always done or may be done incorrectly. This problem is colloquially called 

 DLL Hell.  Newer OS releases allow an application to specify a version number 

for a dynamic link library, so this problem is being minimized by allowing a sys-

tem to carry multiple versions of a single library. This takes up some additional 

space, but nowhere near as much as was consumed by having the library as a part 

of every application that used it.     
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   10.6 SUMMARY 

 In this chapter we discussed many ways that primary 

memory can be managed by the OS. We began with 

a discussion of why an OS manages memory, that 

purpose being to run programs that are larger than 

the primary memory of the machine and to allow 

as many programs to be running as possible. We 

then discussed the software development cycle as 

an aid to understanding the various possible times 

for address binding. Next, we looked at progres-

sively more complex memory models, beginning 

with a single process and covering fixed and vari-

able multiprocessing contiguous memory organiza-

tions. Through this discussion we also focused on 

the hardware required to support these OS tech-

niques. We ended with a section that covered the 

advantages and disadvantages of dynamic loading 

of routines. 

 In the next chapter we discuss some modern 

approaches to solving the problems of memory 

management through paging and segmentation.  

  BIBLIOGRAPHY 

  Daley, R. C., and J. B. Dennis, “Virtual Memory, 

Processes and Sharing in Multics,”  CACM,  Vol. 11, 

No. 5, May 1968, pp. 306–312.  

  Dennis, J. B., “Segmentation and the Design of 

Multiprogrammed Computer Systems,”  Journal of 

the ACM,  Vol. 12, No. 4, October 1965, pp. 589–602.  

  Kilburn, T., D. J. Howarth, R. B. Payne, and 

F. H. Sumner, “The Manchester University Atlas 

Operating System, Part I: Internal Organization,” 

 Computer Journal,  Vol. 4, No. 3, October 1961, 

pp. 222–225.  

  Knuth, D. E.,  The Art of Computer Programming: 

Fundamental Algorithms,  Vol. 1, 2nd ed. Reading, 

MA: Addison-Wesley, 1973.  

  Organick, E. I.,  The Multics System: An Examination 

of Its Structure.  Cambridge, MA: MIT Press, 1972.   

The bibliography for this chapter overlaps considerably 

with the next chapter.

  REVIEW QUESTIONS 

    10.1 What is the fundamental reason an OS has to be 

concerned with managing primary memory?  

   10.2 What are the five steps leading from the creation 

of a program to its execution in memory?  

   10.3 What is meant by the term “binding”?  

   10.4 In which of the five steps listed in Question 10.2 

can binding be done?  

   10.5 What is the difference between a logical address-

ing space and a physical addressing space?   

   10.6 Attempting to run several jobs at the same time 

we created a few fixed partitions. We ran into a 

problem of internal fragmentation. Describe this 

problem.  

   10.7 An alternative to fixed partitions was to allow 

variable partitions. This minimized the internal 

fragmentation but created a new problem—that 

of external fragmentation. Describe this problem.  

   10.8 What did we do about that external fragmentation?  

   10.9 When running variable partitions we might have 

several holes that were big enough to run the next 

job we wanted to run. We listed four algorithms 

for selecting the hole to use from among those 

large enough to run the process. Name and briefly 

describe those algorithms.  

   10.10 Describe the difference between dynamic loading 

and dynamic linking.  

   10.11 Dynamic linking has one huge advantage and a 

number of smaller ones. Name the huge one and a 

couple of the little ones.      
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  T
his chapter continues the discussion of memory management techniques. In 

particular, it covers the more advanced techniques used in modern systems. 

The first section discusses the issues that arise from the mechanisms covered 

in the last chapter and why the newer techniques were developed. 

 Section 11.2 describes the action of paging hardware and how it further sepa-

rates the logical and physical addressing spaces. Section 11.3 discusses an alter-

native hardware mechanism known as segmentation and Section 11.4 shows how 

paging and segmentation can be used together. In Section 11.5 we move on to the 

subject of demand paging—bringing pages into memory only when they are to be 

accessed—and some of the problems that arise with this technique. Section 11.6 

then covers a few special advanced memory techniques and Section 11.7 summa-

rizes the chapter.  

11.1 WHY DO WE NEED HARDWARE HELP? 

  Multiprocessing with contiguous memory allocation causes external fragmentation, 

wasting memory and CPU resources when we are not able to run programs even 

though sufficient RAM is available to run them. In the last chapter we saw that we 

can mitigate this problem somewhat, but the solution requires running compaction 

routines, an unproductive use of the CPU and memory. In order to do away with 

 11  11  Chapter  Chapter 
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this problem we need to further separate the memory address space that a program 

sees (the logical address) from the address space used by the hardware (the physical 

address) in such a way that all the parts of a program do not have to be in contiguous 

memory. Making this separation requires hardware assistance. There are several dif-

ferent approaches to this problem and these approaches are covered in the following 

sections.   

  11.2 PAGING 

  Earlier we discussed the idea of the separation of the logical addressing space from 

the physical addressing space. We changed the memory management unit (MMU) 

to make this work. Instead of using the base register to check an address we used it 

to relocate an address. This allowed us to put any program anywhere in memory—

dynamic relocation. However, we found that allowing variable-sized programs to 

come and go in memory caused us to have external fragmentation of the memory 

and to spend valuable CPU time doing compaction. Unfortunately, compaction is not 

“useful work” in the sense that it is not anything the user is trying to do. It is merely 

a task that the OS does to make things work better in an overall sense. Eventually 

another solution was developed—we divide the memory into fixed-size blocks and 

instead of allocating to an application the entire space it needs in one large segment, 

we allocate enough of the smaller blocks to give the program what it needs. How-

ever, the blocks we allocate do not need to be contiguous—they can be anywhere in 

memory because we ask the MMU to dynamically relocate each block separately. 

This technique is known as  paging.  This means that we have to make our memory 

management unit a lot more complex. 

 We will divide our physical address space into blocks of uniform size, which 

we call  frames.  We will conceptually divide the logical addressing space into 

blocks called  pages,  which are the same size as the frames. Commonly these 

blocks are 512 bytes to 8 KB long. For byte addressable machines the number of 

bytes in a block is always a power of 2. Today a common page size is 4 KB, but 

the increasing size of RAM and hard drives means that in the future we are more 

likely to see larger page sizes.  Figure 11.1  shows the process of relocating each 

address reference.  

    We see that the CPU generates a memory address. In general, the program ignores 

the fact that the memory is handled in separate pages, so these addresses are regarded 

as just a binary number in the range of the logical address space. This address might 

be the address of the next sequential instruction, a jump to a subroutine, a reference 

to a data item or to the stack. The purpose of the reference does not matter. As before, 

we call this the logical address. However, the MMU will regard the address as being 

composed of two parts, shown here as the  page number, p  and the  displacement,  

 d.  The displacement is the address of the specific byte within the frame. If our frame 

size is 4 KB then our displacement field is the exact size needed to address every byte 

in a frame, or 12 bits. When we relocate a logical address to a physical address we 

will still be addressing the same displacement in the frame as we were in the page. 

So we will not change the displacement part of the logical address. The rest of the 
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logical address is the page number. What we need to relocate is the page, so we will 

look in a  page table  of relocation addresses for the frames. We will have a register 

that holds the memory address of the page table for the running process. This register 

is called the  page table address register.  The memory control unit will add the page 

number from the logical address generated by the process running in the CPU to the 

value in the page table address register. The value stored in that location of the page 

table will be the relocation address of the particular  frame  we are trying to access. In 

this case it is shown as the value  f.  The value of  f  is combined with the displacement 

we already had to address the particular byte in physical memory.  

     Figure 11.2  shows a more complete page table. We are ignoring the displace-

ment portion of the address and considering only how the pages map to the frames. 

Here we see the logical address space for a process that is running. It is divided into 

pages that are labeled A–H. The third page is labeled C, for example. If the CPU gen-

erates a reference to this page, then the memory management unit will translate this 

address by looking in the third entry in the page table for the process. Here we see 
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that this entry contains the number of frame 7. So the memory management unit will 

look into frame 7 to find the information we are accessing. Of course, in a real sys-

tem the frames would be spread out and mixed in with frames from other processes.  

   11.2.1 Dual memory accesses required 

 As we have described this mechanism, however, we have a problem. For each refer-

ence to memory we have to make a second reference to memory to find the page 

table entry to use as the relocation factor for this page. This will make our process 

run at half speed when accessing memory, an obviously unacceptable penalty. As 

with many other things in computer systems, our solution is for the memory man-

agement unit to cache the last few relocation factors so we can use them again 

without having to look them up in memory. This caching is done with a special 

kind of hardware device called a  translation lookaside buffer,  or TLB. The TLB 

is a type of circuit that goes by several names. It is sometimes called a content 

addressable memory (CAM) or associative memory. The essence of this circuitry 

is that when it tries to check to see if it has a page number in it, all the entries 

are searched in parallel. This means that the entries in the TLB do not have to be 

kept in any order since they are all compared at the same time. If the page we are 

trying to access has been accessed lately then it will be in the TLB and it will be 

returned very quickly—maybe 100 times faster than if we had to access the page 

table in main memory. The TLB is obviously a complex circuit. As a result, they are 

typically rather small. On current machines they are rarely over about 1,000 entries 

and usually much fewer. However, that is normally enough for most processes to 

find the information in the cache most of the time. The use of a TLB is shown in 

 Figure 11.3 .  

CPU p

p

p

d

TLB

f

f

f

d

Page Table
in RAM

Logical
Address

Physical
Address Memory

FIGURE 11.3 

The translation 

lookaside buffer.



 Chapter 11  Advanced Memory Management  229

  11.2.2 Effective memory access times 

 There is a formula by which we can estimate the impact of the TLB on the execution 

speed of the computer. We will calculate the  effective access time,  or EAT. The for-

mulas use the speed of a TLB lookup, which we will call  E  and the speed of a main 

memory reference, which we will call  M.  Some percent of the time we will find the 

page number we are referencing in the TLB. We will call this percentage  A.  This per-

centage is often called the  hit ratio.  Obviously, the percentage that we will not find 

the referenced page in the TLB (a  TLB miss ) will be 1-A. For example, if we get a 

hit 80% of the time then we are going to get a miss 20% of the time. When we find 

the page number in the TLB, then the memory reference will take E  ⫹  M time ⫺ E to 

search the TLB and M to make the normal memory reference. When we do not find 

the page number in the TLB, then the total memory reference will take 2 *  M—two 

memory references, one to get the frame number out of the page table and one for the 

normal memory reference. The EAT will then be: 

EAT A (E M) (1 A) (2 M)⫽ ⫹ ⫹ ⫺ ∗ .

       For example, suppose our TLB lookup time (E) was 5 nanoseconds, our memory 

access time (M) was 100 nanoseconds, and our hit ratio (A) was 80%. Then the 

effective memory access time would be .8(100  ⫹  5)  ⫹  (1 ⫺ .8)  *  (2 *   100), or 124 

nanoseconds. This is a slowdown of 25%. 

 Depending on the hardware design, the TLB lookup may take place while the 

first memory reference is being started. If the TLB lookup is not successful, then the 

main memory reference will continue. In this case, the formula just given applies. 

But other hardware may not start the main memory reference until the TLB lookup 

has failed. In this case, the equation for EAT becomes: 

EAT A (E M) (1 A) (E 2 M)⫽ ⫹ ⫹ ⫺ ⫹ ∗ .

   The larger we make the TLB the higher the hit ratio will be. For example, using the 

same numbers as before but with a hit ratio of 90%, the EAT will be .9(100  ⫹  5)  ⫹  

(1 ⫺ .9) *   (2 *   100), or 114.5 nanoseconds. This is a slowdown of less than 15%. 

Unfortunately, this is a hardware design decision, not a software question or even a 

decision the purchaser of the system can make. Unlike RAM, for example, TLBs are 

generally not upgradeable, being an integral part of the memory management unit 

itself and normally embedded in the CPU chip. 

 Note that each process has the same logical addressing space—it starts at 0 and 

goes up to the size of the program. On most systems the TLB hardware does not 

concern itself with which process is running. As a process runs, the TLB will fill 

up with frame numbers that correspond to the page numbers of the running process. 

When we switch to another process the OS must tell the hardware to forget all the 

current frame numbers since the new process will have different frame numbers that 

will need to be mapped to the same page numbers that the previous process had used. 

Therefore, after we do a context switch to the new process, for the first few mem-

ory references we will not get any TLB hits, so our process will run at half speed 

on memory reference instructions. This is one reason why we don’t want to switch 
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processes any more often than we have to and why switching threads is faster than 

switching processes. A few hardware designs do have  address space identifiers,  or 

 ASIDs,  stored in the cache with the frame numbers. These designs do not require 

that the TLB be flushed. They will still get many TLB misses and will therefore run 

more slowly for a short time until the TLB is repopulated. This sort of TLB is very 

useful with CPUs that are running multiple processes in parallel.  

  11.2.3 Memory access control 

 When we were accessing main memory with one relocation register for the entire 

program we also had a limit register that prohibited a process from accessing out-

side the memory area assigned to it. With paging hardware we will need a similar 

mechanism. There is no problem with the individual pages themselves since they are 

normally of a fixed size. However, we will need some mechanism for limiting the 

access to the page table. There are basically two approaches to this problem. Both 

depend on the hardware, so the decision is not up to the OS designer, but we will 

discuss them so that you will be aware of them. The first approach is to use a fixed 

page table size. In this case, we will need a  valid  bit in each page table word to indi-

cate whether a page table address is valid. So, for example, if we had a fixed page 

table size of 10 entries and the process only took three pages in the logical address 

space, we would fill in the first three entries with the addresses of the corresponding 

memory page numbers and set the valid bit “on” for those three entries. For the rest 

of the entries in that page table we would set the valid bit to “off” because they do 

not hold a reference to a valid page. When the memory management unit accessed 

any entry in the page table it would generate a memory addressing error if the entry 

had a valid bit that was set to off. 

 The other approach to memory address control is to use a page table with a 

variable size. In this case, we will have a  page table length register.  With a single 

relocation register we had a length register that specified the length of the process in 

main memory. A page table length register will work just as it sounds like it would. It 

holds the address of the largest valid page number for a process. If an address gener-

ated by the CPU when the process is running contains a page number bigger than the 

number in the page table length register, then the hardware will generate an address-

ing error interrupt because the process has generated a reference to a page that is not 

in the logical address space of the process. These days most systems use a valid bit 

for reasons that we will see later.  

  Page access protection 

 In addition to limiting memory addressing, paging allows the OS to restrict the kinds 

of access that may be made to the various pages. The hardware can be set up to 

allow only read access to a page, for example, or only execute access. In order to 

make effective use of this the compilers (and assemblers) must be able to force the 

linker to place portions of the executable file on a page boundary. In this way, the 

data portions of the module can be marked as read–write but not execute. Similarly, 

the program code can be marked as execute only. There are some problems with this 
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sort of mechanism that need to be addressed. For example, it might appear that the 

stack should not allow execution of items on the stack. But it is common for Java 

virtual machines to compile Java program byte codes into instructions on the stack 

and execute them there.  

  11.2.4 Large page tables 

 In modern machines with modern OSs and modern compilers the programs are get-

ting very large. This means that the page tables are also very large. Also, it turns out 

that in many cases the page tables are sparse, meaning that they may have large parts 

of the table that are in the logical address space but do not point to a valid frame. 

Later, we discuss some of the reasons why this happens. In any case, it became 

increasingly difficult to manage the memory allocated to the page tables themselves. 

Several different approaches were taken to deal with these large, sparse tables. 

 The first technique was to make a  multilevel page table.   Figure 11.4  shows a 

two-level page table—essentially we page the page table. As with the single-level 

tables we have been discussing, the MMU will consider the logical address gener-

ated by the CPU as being made up of several parts—in this case, three. As before, 

we have the page displacement, which will be carried over and used as the frame 

displacement. Now we view the page number as being made up of two parts, here 

shown as p1 and p2. P1 will be used by the hardware to access into the top-level page 

table, just as before. However, the number stored in this entry will not be a frame 

number, but another memory address, that of a second-level page table. The remain-

ing bits of the page number, here shown as p2, will be used to access within the 

selected second-level page table. This entry will be the frame number for the page 

number represented in the original address by p1 and p2 together. This frame number 
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will be used with the original displacement to access the desired memory location in 

physical memory. The DEC VAX systems used a two-level paging architecture.  

    Two-level page tables turned out to be such a useful technique that the process 

has been extended. Modern processors normally have three- or four-level page table 

architectures. Note that this could potentially really cause problems with our EAT. 

In the worst case, with a four-level page table we can take five memory accesses to 

reach a single byte in memory because each of the page table references may not be 

in the TLB. Thus our equation for the EAT becomes something like: 

EAT A (E M) (1 A) (5 M)⫽ ⫹ ⫹ ⫺ ∗ .

   Fortunately, most of the time our TLB will hold those final physical memory refer-

ences and on the average we will pay a performance penalty only slightly greater 

than with a single-level page table. 

 It is worth noting that this technique has the effect of creating a  virtual page 

table.  Since the address spaces are so large, the page table is generally very sparse—

there are large parts of it that are not really used. In such cases those portions of the 

lower-level page tables do not need to be allocated and filled in until they are actu-

ally needed. This can save considerable table space and the resources necessary to 

access it.  

  11.2.5 Inverted page table 

 A slightly different approach to the problem of external memory was to turn the 

problem around. The idea was to map the physical frames into the logical pages.  Fig-

ure 11.5  shows an inverted page table approach to process page mapping. The table 

is kept in order by the physical frame number. The table itself is searched to find a 

reference. Since there is only one table, the page numbers from the various processes 
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are not sufficient to specify the mapping. For instance, every process will have a 

page number 0. A process identifier must therefore be stored with the page number. 

The time to search an inverted page table will often be slower than for a normal page 

table. The OS can speed up this search by using a hash function to access the table. 

This method will require a chaining scheme to resolve collisions since some pro-

cesses may have page number/process ID combinations that hash to the same value. 

So even more than with a normal page table, we rely heavily on the TLB lookup to 

resolve most of our lookups. Inverted page tables take much less RAM than normal 

page tables.  

    11.2.6 Page tables with multiple page sizes 

 In later systems it has become common to have more than one page table size. In the 

Intel Pentium architecture, for example, the normal page size is 4096 bytes, but there 

is another possible page size of 4 MB. The reason for this is so that the kernel of 

the OS can be mapped in the page table with the process without taking up so much 

RAM in the page table. Most of the kernel pages will be the same in every process; 

they will never move around and cause fragmentation and they will always be there, 

so there is no need to divide them into small pages as there is with processes that 

are of unknown size and duration. In addition, as we will see shortly, in the applica-

tion part of the logical space of a process the pages will sometimes not even be in 

memory. This is usually not the case with the kernel, though some OSs page portions 

of the kernel. Therefore, having only one or a few pages to map the kernel through 

is a big advantage since it can be set up and manipulated more easily and only takes 

one TLB entry to map the entire kernel. 

 In some of the later UltraSPARC ®  processors the software can select multiple 

page sizes for different parts of the application. We will see in the section on seg-

mentation with paging how this works.  

  11.2.7 A historical footnote 

 While modern systems normally use these techniques in the context of running mul-

tiple processes concurrently, historically there were a few systems that used paging 

while only running a single process. Programs could refer to portions of the program 

that were not yet in memory much as if they were calling overlays, as discussed 

in the last chapter. This had the advantage of allowing the running process to be 

much larger than the physical memory. In the era of smaller memories this was a big 

advantage, but it is not utilized much in current systems. Modern OSs use demand 

paging, discussed in a later section.    

  11.3 SEGMENTATION 

  At about the same time that paging was being devised, a different track of develop-

ment evolved that was designed mostly to help solve the same problems that paging 

addressed, but a few others besides. This technique is called  segmentation.  It arose 
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out of the observation that we can consider a program as being made up of several 

distinct parts. We usually have a main routine and we often have subroutines and 

functions that are recognized by the compiler as being separate items. Sometimes we 

even compile the subroutines and functions separately and put them into libraries. 

We have areas where we keep the stack, static data items, constant information, file 

buffers, communication buffers, and so on. Each of these areas can be created and 

controlled separately.  Figure 11.6  shows a collection of segments of a program that 

make up a process after being loaded into primary memory.  

    Each of these parts can be considered to be separate from the other parts and 

can have a separate logical addressing space. For example, since there is a sepa-

rate addressing space for the data, we would consider that the first data item was 

at address 0 in the data segment address space. We now need for the hardware to 

relocate all references to addresses in each segment in the same way it relocated ref-

erences to the entire process with a relocation register. So we will use a mechanism 

that is much like a page table, with a couple of small differences.  Figure 11.7  shows 

a sample segment table. We will still consider the logical address to be broken into 

two parts, but they will be a  segment number  ( s ) and a  displacement  ( d ). With pag-

ing we had quite a few pages of a fairly small size so the displacement was a small 

number of bits and the page number was much larger. With segmentation we have a 

relatively small number of segments, each of which can be fairly large by itself, so 

the segment number will usually be a smaller number of bits and the displacement 

within the segment will be a larger size. In addition, while the entries in a page table 

contained a frame number, the entries in the segment table will contain memory 

addresses. The programmer does not normally exert any overt control over the seg-

mentation. The compilers will generate separate segments for the major portions of 

the module being compiled—the program code, the stack, the heap, global variables, 

and so on—and place symbolic references to them in the object modules. The linker 

will assign actual segment numbers to be used when combining the object modules 

into the executable binary program and for the OS to use when dynamically loading 

library modules. 
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 In  Figure 11.7  we see a memory reference to the segment containing Subroutine 

A. The hardware will use the segment table entry specified by the number in the seg-

ment part of the address. It will take the segment table address pointer found in that 

entry of the segment table and it will add it to the displacement part of the logical 

address. The paging hardware simply replaced the page number with a frame num-

ber. This worked because frames and pages were always the same size so they were 

also always located on block boundaries. Since segments are of variable size they 

can also be located anywhere, so we will use the segment table pointer  plus  the dis-

placement to get the physical memory address. Note that use of segmentation causes 

an extra memory reference for each access, just as it did with paging. So systems 

with segmentation will also use a TLB to speed up access.  

  Since segments can be anywhere and are not all the same size, this is not an opti-

mum solution to avoid external fragmentation. We will still have to keep track of mem-

ory holes. We will still not allocate tiny pieces of memory. Instead, we will have some 

minimum granularity—perhaps 1024 bytes. We will therefore have some internal frag-

mentation. But now the range of sizes of the holes will be smaller than the range we had 

to consider when keeping track of entire processes because we are breaking each pro-

cess up into (potentially many) segments. Therefore, we will have less of a problem with 

external fragmentation than we did with memory management for entire processes. 

 Since the segments are of variable size, we must provide a way for the system to 

check the addresses so that we can make sure the process is not addressing outside 

the limits of the segment. The limit for each segment is stored in the segment table 

along with the pointer to the segment. Since the segments have different purposes we 

can also increase the protection we are providing to the system by limiting the kinds 

of accesses we make to the various segments, much as we discussed with paging. 

It is common to have a set of bit flags with each segment that controls the kinds of 

access we can make. For example, a segment of data constants can be marked as read 

only. The program pages can be marked as execute only. Stacks and data pages will 

allow read and write but not execute. 
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 In some OSs it is possible for processes to share segments. For example, we 

might have several users running a program editor at the same time. We could cre-

ate a process per user and map the code segments in their respective segment tables 

so that they all pointed to the same parts of physical memory. If we had common 

runtime libraries for standard languages, we could also map segments to point to the 

same physical memory segments, even for different programs. Managing the seg-

ment numbers across multiple processes can be quite a chore for the OS. 

 Programmers who are writing in high-level languages will not normally be aware 

that segmentation is being used by an OS until their program generates a segmenta-

tion fault, most often by overflowing the segment used for the stack. The compilers 

and the linker will generally take care of assigning the segment numbers for the vari-

ous pieces by calling OS routines that manage the segment numbers. Programmers 

working in fairly low-level languages will need to be aware of segmentation and how 

the OS is using it and they can control the segmentation if need be. The Windows 

NT family does not use segmentation because it is not needed on many hardware 

designs and not available on others and using it would make the software less por-

table. Linux uses segmentation only in a limited way, which we discuss in the next 

section. Most UNIX-derivative OSs use segmentation with paging, also discussed in 

the next section.   

  11.4 SEGMENTATION WITH PAGING 

  There is a fundamental difference between paging and segmentation. Paging is trans-

parent to the running process. An application program that was created to run in an 

OS where the process is mapped into a single large partition could run unchanged on 

a system that used a paged memory architecture. Segmentation, on the other hand, 

requires that programs somehow be structured so that they are divided into logi-

cal parts with different address spaces. An interesting aspect of this is that with the 

proper hardware design we can run a segmented program architecture in combina-

tion with a paged memory architecture. In the documentation for various OSs the 

segments may be known as  regions  or  memory areas.  The segmentation works as 

we have described it, but the address that is generated is not used as a physical mem-

ory address. Instead, it is now treated as a logical address and run through a paging 

mechanism. This allows us to have both the fine control over the types of references 

as with segmentation and the fixed page sizes of paging, which result in no external 

fragmentation. 

 There are two generally different ways that segmentation and paging can be 

combined. The first design originated with the Multics project.  1   In this design we 

will have a page table for each segment of a process rather than a single page table 

for the process. This design is shown in  Figure 11.8 . First, the segment portion of 

the address is looked up in a segment table. This lookup returns a pointer to a page 

table that maps the page numbers within the segment to frame numbers in physical 

memory.  

1 http://www.multicians.org/fjcc1.html  
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  The second design is used in more modern systems. In this design there is still 

a segment table, but instead of pointing to separate page tables for each segment, 

the addresses in the segment table lie within a linear address space, which is then 

mapped into the physical memory in the same manner that a paged system works. 

This design is seen in  Figure 11.9 . In this case a segment table entry describes a por-

tion of the linear address space, which can be viewed as the page table for the seg-

ment. But as far as the hardware is concerned, it is just a part of a single-page table.  
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    Most modern OSs use this latter mechanism in one form or another, but they 

limit the use of the segments. Linux, for example, uses the segments only for the 

kernel, except for one segment that it uses for the running process. The segments 

are used to restrict addressing and control access. So, for example, two segments are 

used to map the same kernel address space. One is used for the execution of the pro-

gram, so it is set to allow execution but not reading or writing. The other is used for 

access to data, so it allows reading and writing but not execution. Another is used for 

accessing a runtime stack. This allows the hardware mechanism to check for stack 

overflow efficiently and dynamically.   

  11.5 DEMAND PAGING 

  So far we have assumed that when a program is brought into memory that the entire 

program is brought in and a frame of physical memory is allocated for every page 

in the logical addressing space. However, it was eventually realized that this was not 

necessary. As programs run they do not really access addresses randomly through-

out their logical address space. The instructions in the code segment are accessed 

sequentially to a large extent, so for about a thousand instructions we might be 

accessing a single page in the code portion of the logical address space. Or the 

program may go into a loop, sometimes for quite a while, and stay in a single code 

page. To be sure, we will frequently call library routines, which may in turn call 

other library routines. The program steps through an array or scans through a string 

or searches through an incoming message. When we divide the execution of a pro-

gram into small time slots and look at the pages accessed by the memory references 

in that time slot we will normally find that only a few pages are accessed by the 

process in any given time slot. This phenomenon is quite important in OS design. It 

is called  locality of reference.  We use the same idea in caching and in many of our 

other OS algorithms. 

 The trick that was developed to take advantage of this phenomenon is called 

 demand paging.  The idea is that we slightly modify the meaning of the valid bit 

in the page table. The hardware associated with the use of the bit will not change. 

All the bit indicates is that there is no frame allocated for this page. In our previous 

design this meant that this page was outside the logical address space for the pro-

gram. Now it may still indicate that, but it may only indicate that no physical frame 

is currently mapped to this page. When we load the first page we will set its valid bit 

to true to indicate that it is in memory. We will mark the valid bit of every other page 

to show that that page is not in memory. Then we will start the program running. In 

theory, we could begin the execution of a program without bringing in to physical 

memory  any  pages. The OS could simply branch to the process in memory and let 

the page fault mechanism bring in even the first page of the program. This is known 

as  lazy loading.  Even if we load the first page of the program, it will soon reference 

data in another page that is not yet in memory.  Figure 11.10  shows an example of 

such a page table. This reference will fetch the page table entry and the setting of 

the valid bit will cause a “memory addressing error” interrupt. The memory manage-

ment subsystem will look at the reference to see if the reference is to a page that 
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really is in the logical address space of the program, but that has not been brought 

into memory yet. If the reference is to a page that is not really in the logical address 

space of the process, then the program has made an error and an addressing excep-

tion is raised, most likely aborting the process. 

     If the address that caused a fault is in the logical address space of the process, 

then the page simply is not currently mapped into physical memory, either because it 

has never been brought in or because it has been taken out. This condition is known as 

a  page fault.  The memory management subsystem will now request a read of the page 

from secondary storage and the OS will put the program into wait state until it has 

finished. Once the block has been read in, the OS will update the page table to point 

to the new frame, mark the entry valid, and restart the process that generated the page 

fault at the instruction that caused the fault. Note that this mechanism is still transpar-

ent to the application. In other words, the application programmer does not normally 

need to be aware that this process is going on, much less do anything about it. 

 In some cases this would allow us to run programs that were so large they would 

not fit into memory at all. The “80/20 rule” usually holds—80% of a program is 

written to take care of things that only happen 20% of the time. In many cases, there-

fore, much of that 80% of the program will never be loaded into memory. As an extra 

benefit, this will allow our programs to start faster, because if a page is never refer-

enced we never load it into memory at all. As well, in an environment where we are 

trying to run many programs, perhaps for many users, with a given amount of physi-

cal memory, on the average we will be able to run more programs at the same time.  

   11.5.1 EAT with demand paging 

 You may recall that when we first looked at the paging mechanism we saw how 

the use of a page table by itself would double the effective access time of memory. 

This necessitated the introduction of the TLB to cache the frame numbers for the 

page references in the working set. Now consider what happens when we access a 

page that is not in memory. Our effective access time will have four components, as 

shown in  Table 11.1.  (The speeds shown are simply approximate relative speeds, not 

specific expected values.) 
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   As the table shows, the disk I/O vastly overwhelms the memory speeds. This 

domination will lead to several mechanisms that may seem at first to be overly 

complex that are developed merely to avoid doing a single-disk I/O for demand 

paging.  

  11.5.2 The working set and page replacement 

 So far we have assumed that there are enough pages free in memory to bring in any 

page we need when a process references it. Unfortunately, we normally will soon run 

out of free pages. At that point we need to get rid of some pages that are in memory. 

Frequently this will not cause us any problem at all. As a program runs it will be 

referencing some set of pages—a page in the main process, perhaps a few pages of 

library routines, buffers for the input and the output, doubtless a few pages of data. 

This group of pages that a process is referencing in a short period is called the  work-

ing set.  We typically measure the working set over some fixed interval known as a 

 sliding window.  

 For example, suppose a process had a logical address space containing seven 

pages identified as 1 through 7, and had the sequence of references to those pages 

as follows:

   1 2 1 5 7 1 6 3 7 1 6 4 2 7    

 We will track the working set by looking at the last four references. As this sequence 

of references unfolds the working set will change, as seen in  Table 11.2 .   As the pro-

cess runs, the working set typically changes from time to time. It is normal to find 

that a process will have in memory several pages that it is no longer referencing. In 

the table we can see that page 5 is no longer referenced after step 4, so we could get 

rid of it. What we would like to be able to do is to identify those pages and remove 

them from memory when we no longer need them. (Removing pages that we think 

may not be needed anymore is called  page replacement. ) Unfortunately, we can’t 

really do that. Just because we have not referenced a page in a while does not mean 

that the very next instruction won’t reference that page. In the table we saw that page 

2 was not referenced between steps 2 and 13, so we no longer saw it as being in the 

working set since we were only looking at a four-step window. Fortunately, remov-

ing a page from memory that is needed later doesn’t break anything. It is just not 

quite as efficient. The next reference to the page will cause a page fault and the page 

will be fetched again. 

TABLE 11.1 Demand Paging Effective Address Time

Component Relative Speed

TLB lookup 1 nanosecond

Memory access 100 nanoseconds

Disk write (dirty page) 20 milliseconds

Disk read 20 milliseconds
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 There is a very simple page replacement strategy,  first in, first out,  or  FIFO.  

The OS keeps a queue of the page numbers as they are brought in for each process 

and simply ejects the oldest one. This algorithm is a low-overhead algorithm, which 

requires little overhead from the OS. While FIFO is cheap and easy to understand 

and implement, it performs poorly and erratically so it is rarely used today. This 

algorithm experiences Belady’s anomaly. It was used in the VAX/VMS OS. 

 Theoretically, there is a  optimal page replacement  algorithm (also known as 

OPT). It would work as follows: when a page needs to be replaced, the OS replaces 

the page whose next use will be the furthest in the future. For example, a page that is 

not going to be used until 200 milliseconds from now will be chosen over a page that 

is going to be used in 10 milliseconds. This algorithm can’t be used in general because 

it is impossible to know how long it will be before a page is going to be used except in 

very limited circumstances. If it were implementable it would be the best we could do, 

so it is worth discussing. Assuming that we had only three free frames to work with, if 

we used this algorithm with the reference string shown previously, we would generate 

nine page faults, including the page faults required to bring in the first three pages. 

 There are several other mechanisms we can use to select a page to replace. One 

possibility is to try to figure out which page has not been referenced for the longest 

time. As is commonly said, this page is the  least recently used (LRU)  page. We 

will make the assumption that this page is the most likely not to be used again, and 

we will take it out of memory. If we tried to actually save the time of the last refer-

ence to every page, we would end up making at least one extra memory reference 

for every real memory reference. So real OSs do not implement an LRU algorithm. 

However, with the help of some hardware features we can identify pages that have 

not been used for some time. The simplest of the algorithms that use this feature is 

TABLE 11.2 Tracking a Working Set

Event Number Working Set

1 1

2 1 2

3 1 2

4 1 2 5

5 1 2 5 7

6 1 2 5 7

7 1 5 6 7

8 1 3 6 7

9 1 3 6 7

10 1 3 6 7

11 1 3 6 7

12 1 4 6 7

13 1 2 4 6

14 2 4 6 7
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known as the  clock algorithm.  2  At a fairly low cost (in terms of additional memory 

references) the hardware can ensure that a bit in a page table entry is set when a page 

is referenced. This bit is often called a  page reference bit,  or sometimes an  access 

bit  or  use bit.  (See  Figure 11.11 .) When a page is referenced (via the page table), the 

hardware will check this bit. If it is already set, then nothing needs to happen. If it is 

not yet set, it will be turned on, perhaps costing one extra memory cycle. Occasion-

ally, the OS can clear these bits for the pages that are currently in memory. We clear 

the bits for all the pages in a page table and we let the process run for a while. The 

hardware will set the bits on for all the pages that are referenced. When we need to 

find a page to take out of RAM we will search through the table and find a page with 

a valid bit set on and a reference bit that is cleared. This page will be a good candi-

date for replacement.  

  We can also enhance this mechanism a little bit. For each page we can keep a 

byte or more of information about the past history of the setting of this bit, called 

(somewhat misleadingly) a  reference count.  This mechanism is sometimes known 

as  aging.  When we periodically clear the reference bits, we first shift the reference 

count right one bit and shift the latest value of the page reference bit into the high-

order position of the reference count. If a page was referenced in the last cycle, this 

count will therefore have a high value. As refresh cycles go by in which this page 

is not referenced, the shift operation will effectively keep dividing the count by two 

each time, so the number will get smaller and smaller.  Figure 11.12  shows a refer-

ence count for a page. In the last two refresh cycles the bit shifted into the high-order 

position was a zero, so this number is getting smaller each time. When we need to 

replace a page we pick the page with the smallest reference count. This gives us a 

much better idea of the recent history of the usage of a page than a single bit that 

shows only that it has or has not been referenced in the last time interval.  

    11.5.3 Dirty pages 

 When part of a program is loaded into a page and we replace it with something else, 

we don’t need to save it anywhere because we can go back to the original program 

and get the page if it is referenced again. This is one of many reasons why programs 

are not supposed to ever modify themselves while they are running. However, if a 

page contains data and some of the contents of the page have been changed since the 

page was brought into memory, then we can’t just replace the page—we must save 

2 This unfortunate term has no reference to the system clock. It refers to the idea that when the OS 
reaches the end of the page reference list it simply starts over, much as a clock sweeps past 12 and goes 
back to 1.  
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the data currently in the page in case it is referenced again. We refer to pages that 

have been modified as  dirty  pages. We will write those dirty pages out to secondary 

storage in a special place. This place is variously called a  swap file  or a  backing 

store.  This swap file therefore acts as an extension of the primary memory of the 

system. This is the origin of the term  virtual memory.  The swap file can be many 

times larger than the primary memory. In some OSs this file is literally a file in the 

normal file space and in others it is in a special block of disk space that lies outside 

the regular file system. In either case it is accessed in such a special way by the OS 

that accesses to it do not go through the normal file system interface, but use raw 

mode I/O routines. With some OSs there is only one such file. With others it is pos-

sible to place separate swap files on separate drives to increase performance.  

  11.5.4 More page replacement algorithms 

 Modern OSs use a variety of algorithms to try to optimize page replacement.   One such 

algorithm is called the  second chance algorithm.  It is a modification of the clock 

algorithm, which looks through the page table in the manner that we first described, 

looking for a page that has not been referenced. However, as it checks each page, 

if it finds the reference bit set, then it clears it. In this way it updates the reference 

bits to reflect a later time than the latest reference refresh cycle. As it moves through 

the page table, if it does not find any pages that are free on the first pass, then it will 

find some on the second pass. In some OSs this searching for pages is done by a 

background process rather than by the page replacement process. If the free memory 

space in the system is very low, then the OS will run the background process more 

often and for a longer time than if there is plenty of memory available. It will run less 

often and for a shorter time if the free memory is not an immediate cause for concern. 

 Background  operations are chores that are done when there are no high-priority pro-

cesses in the ready state. Instructions that are executed in a background task are thus 

not executed at the expense of any user process, so they are more or less free. 

 It is worth noting that replacing a dirty page is twice as expensive as replacing 

a read-only page or a clean page. This is because the OS must make two accesses 

to the disk and the disk is roughly 1–10,000 times slower than the primary memory. 

Therefore, we can afford to burn lots of CPU cycles trying to figure out which is the 

“best” page to replace given what is known at the time. One way we can see such 

an expenditure of processing resources to save I/O is to enhance the second chance 
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algorithm by using the dirty bit in conjunction with the reference bit. This algorithm 

is sometimes known as the  enhanced second chance algorithm  and sometimes as 

the  not recently used (NRU)  or  not used recently (NUR) algorithm.  In this case 

we will divide the pages into four classes according to the settings of these two bits: 

(1) clean and unreferenced, (2) dirty but unreferenced (the referenced bit has been 

cleared since the page was modified), (3) clean but referenced, and (4) dirty and 

referenced. We first look through the page table for entries in the first class to find 

a page that is unreferenced and clean. We can use this page immediately. If we do 

not find a page in this class then we look through the table again for class two, and 

so forth. By the fourth pass we are assured to find a page, but we usually will have 

found a better one before then. 

 One question that arises in demand paging systems is how to choose the process 

the OS should take a replacement page from. There are two possibilities. Either the 

OS can select the page only from the process that caused the fault ( local replace-

ment ) or it can select the page from any process ( global replacement ). We would 

like for programmers to write programs that use the fewest resources. If a program-

mer writes a program that generates fewer page faults, then his programs should run 

faster. With local replacement a poorly performing program will hurt itself the most. 

With global replacement a poorly written program can hurt other processes by hav-

ing too large a working space and therefore generating too many page faults. As a 

result, a program that is well designed and generates fewer page faults can be penal-

ized by another, less well designed program that generates many page faults. Hav-

ing a background process that runs the second chance algorithm to identify suspect 

pages works well with global replacement. UNIX and related systems generally use 

global replacement and the Windows NT family uses local replacement. 

 Page replacement algorithms are an area where much research is ongoing because 

of the very dynamic nature of both RAM and hard disks. As the sizes, speeds, and 

costs are changing, the tradeoffs change and different algorithms become useful.  

  11.5.5 How many pages for each process? 

 When an OS is being designed with demand paging, we are not going to let pro-

grams grow indefinitely in RAM. For one thing, as we saw in the discussion on the 

working set concept, eventually there will be pages in memory that the program 

will not reference again. There will be others that it will not need for some time, 

but that we could profitably let another process use for now, reloading them again 

when we need them. So the question arises of how many pages each process should 

be allowed to use. Different schemes are commonly used to set this limit. To begin 

with, there is some minimum set below which we don’t want a program to fall. For 

example, a common type of instruction on some machines is a memory-to-memory 

operation. In this case, the instruction itself may span across a page boundary so 

that we need two pages just to access the instruction. Both the source and the target 

operands may also span a page boundary, so that on this type of machine there is an 

absolute lower limit of six pages for a single process. Even in this situation a pro-

gram will likely have a working set that is larger than that. But what is a reasonable 

upper limit? 
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 We could study running programs on a prototype system and set some arbitrary 

limit. But, if there are not enough processes running to fill up all of the available 

memory with pages, then we will produce page faults when we don’t need to. So 

setting an arbitrary limit is not a good idea. We can make the system a little more 

dynamic by simply dividing the number of available pages by the number of pro-

cesses that are running. This mechanism is known as  equal allocation.  But this is 

not usually reasonable either. If one of the processes was a GUI calculator and the 

other was a Web server, then we would probably reasonably infer that the Web server 

would use extra pages to more benefit. One simple method of guessing which pro-

grams could use more pages is to compare the sizes of the programs. The Web server 

program on the disk might be 100 times larger than the calculator program, so it 

would be reasonable to allocate 100 times as many pages to the Web server as to the 

calculator. This mechanism is known as  proportional allocation.  But it is still not a 

perfect solution. Consider a word processor that can open either a small memo file 

or an entire book. Clearly, opening an entire book would probably effectively utilize 

more pages than opening a small memo file. What we would like to do is have a 

mechanism that allocates pages to a process in proportion to its use of the pages.  

      11.5.6 Automatic page limit balancing 

 Most modern operating systems use just such a mechanism. Most of these mecha-

nisms are variations on the  page fault frequency (PFF) algorithm.  They depend 

on the idea that the page fault rate of a process is a good indicator of whether it has 

the right number of pages. If it has too few pages, then the page fault rate will go up 

rapidly. If a process is not generating any page faults, then it may also have pages in 

RAM that it doesn’t need. This mechanism sets an upper and lower limit on the page 

fault rate.  Figure 11.13  shows this mechanism at work. If the page fault rate of a 

process falls below the lower limit, then the OS will subtract one from the maximum 

frame count for that process. If the page fault rate exceeds the upper limit, then the 

OS will add one to the count. This mechanism will tend to keep all the processes in 

the system running at a similar page fault rate and will allocate only as many frames 

to a process as it needs to stay in this range.  

  11.5.7 Thrashing 

 Assume for a moment that we have set a hard upper limit on how many pages a process 

can use—let’s call that limit  N.  Suppose further that the design of this process is such 

that it has reached a phase in its execution where its working set is more than the  N  page 

limit. Finally, assume that we are using only local page replacement so that when the 

process creates a page fault we will replace one of the pages that this process already 

has mapped. This process will constantly be creating new page faults and will spend 

most of its time waiting on the disk I/O. As a consequence it is going to get little real 

work done and the system will see an excessive amount of disk I/O. This phenomenon 

is called  thrashing.  In this case a single process is thrashing. Thrashing does not depend 

on those restrictions we imagined here. If the sum of the working sets of all the running 

processes is greater than the real main memory, then the whole system is going to spend 
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more time replacing pages than it will spend running processes and we will say that the 

system is thrashing. When it happens it can be difficult to stop because the very act of 

executing operations to stop some processes that might not be essential will itself cause 

more code to be brought into memory and may actually make the situation worse.  

  11.5.8 Page locking 

 Primary memory is commonly used as a buffer for input and output operations. If 

a buffer page has an I/O operation pending, then it is probably not currently being 

changed by the application, so it might end up being selected by the paging mecha-

nism for reuse—clearly with disastrous results. In order to prevent such an unfortu-

nate event, an OS that is doing demand paging must allow an application (usually 

a device driver) to  lock  a page so that the paging mechanism will not select it. The 

following calls from the POSIX specification are typical for these functions:

   int  mlock  (const void  * addr, size_t len)    

This routine asks the OS to lock a range of pages from the logical address space of 

the calling process. The range of pages to be locked starts at address  addr  and is 

 len  bytes long. Only whole pages can be locked, so the range actually includes any 

pages that contain any part of the specified address range. If the function returns suc-

cessfully then each of the pages is bound to a physical frame and is marked to stay 

that way. This means that a call to this function may cause page-ins if some of the 

pages in the range are not currently resident and the function will block to wait for 

them. If the function succeeds, the return value is zero. Otherwise, it is ⫺1 and the 

global  errno  variable is set accordingly.

   int  munlock  (const void  * addr, size_t len)   
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The munlock routine asks the OS to unlock a range of pages of the calling process. 

It is the inverse of mlock.  

  11.5.9 Clean page mechanisms 

 As was mentioned, it is important to use a page for replacement that is clean rather 

than a dirty page so that the dirty page does not have to be written to the swap file. 

In addition, because the disk is 1–10,000 times slower than main memory, we can 

spend many instructions trying to avoid one disk I/O operation. Alternatively, we 

can try to do some of the disk operations in the background rather than when we are 

waiting for a page to be loaded. 

 We can lessen the impact of the use of a dirty page by keeping available for use 

a pool of free frames that are clean. When the page replacement algorithm selects a 

dirty page as the victim for replacement, the OS can use one of the clean frames from 

the pool. Then in the background the contents of the dirty page can be written out to 

the disk. When it is clean then the frame can be placed in the pool. 

 Another task that can be done in the background is to clean pages that are dirty. 

A background task can look for pages that have not been referenced lately (and thus 

are likely candidates for replacement) but that are dirty. A background write opera-

tion can be started for those pages so that when they are selected for replacement 

they will be clean. Of course, the page may become dirty again while the process 

runs, but we are doing this work in the background at the lowest priority so we are 

not wasting I/O or CPU cycles that could be spent doing something else.  

  11.5.10 Program design and page fault rates 

 In general, we say that virtual memory and demand paging are transparent to an 

application program, However, there are a few observations about how program 

design can affect the rate of page faults. Consider, for example, searching a large 

table. Assume that the table is large enough that it covers many pages and that it is to 

be searched many times for different items. With a binary search we will hit the mid-

dle page every time we start a search. Then we will likely hit one of two other pages, 

either in the first half or the second half. These three pages at least will probably stay 

in memory most of the time so we will rarely get a page fault on these pages. With 

a hash table search, however, almost every lookup will cause a different page to be 

read in since the basic intent of hash tables is to randomly address the entire table in 

hopes of hitting the desired entry with the first reference. So very large hash tables 

do not work well with virtual memory systems. 

 Next, consider a portion of a program that does a matrix multiplication:     3

 for(i ⫽ 0;i<500;i ⫹  ⫹ )

      for(j ⫽ 0;j<500;j ⫹  ⫹ )

            for(k ⫽ 0;k<500;k ⫹  ⫹ )

                  x[i][j] ⫽ x[i][j] ⫹ y[i][k]*z[k][j];

3 Patterson, David A. and John L. Hennessy,  Computer Organization and Design: The Hardware/

Software Interface,  Morgan Kaufmann, 2004, p. 617.  
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    When this code was run with arrays of double precision floating point numbers on a 

Silicon Graphics system with a MIPS R4000 processor and a 1 MB cache, the run-

ning time was 77.2 seconds. 

 We can make a small change to vary the order of the loops so that the innermost 

loop is stepping through the memory in the same page like this: 

 for(k ⫽ 0;k<500;k ⫹  ⫹ )

      for(j ⫽ 0;j<500;j ⫹  ⫹ )

            for(i ⫽ 0;i<500;i ⫹  ⫹ )

                  x[i][j] ⫽ x[i][j] ⫹ y[i][k]*z[k][j];    

The problem with the first example is that the array is stored in memory so that 

adjacent row elements (the first subscript) are contiguous. Since the variable that is 

controlling the innermost loop is not the row subscript, then each reference will be 

to a different page. When we change the loops as in the second example, then each 

iteration is referencing the same page and the runtime decreases to 44.2 seconds due 

to the lower number of page faults. 

 So it is true that in general the action of virtual memory and demand paging 

are transparent to applications in the sense that the programmer does not have to 

pay a great deal of attention to the mechanism—this code will work correctly in 

either format. But as we have just seen, this doesn’t mean that they have no effect 

in every case.    

  11.6 SPECIAL MEMORY MANAGEMENT TOPICS 

   11.6.1 Sharing memory among processes 

 Both segmentation and paging allow for portions of memory to be shared between 

processes. This can result in large savings in memory. For example, on a mainframe 

supporting many users it might be common for many users to be running a word pro-

cessing program at the same time. With paging the page tables for many processes 

can both point to the same frames in memory so that only one copy of the program 

code is actually resident. Similarly, with segmentation the segment tables for many 

processes can point to the same physical memory segment. While this can be handy, 

it can also cause problems. If the portions of memory that are being shared are data 

segments, then the individual processes will be changing some of the pages. This 

may or may not be desired. Several processes might be using shared memory to 

communicate among themselves. In this case, we would want each process to see all 

the changes to the pages, so they should be looking at the same frames in physical 

memory. But consider the case where one process forks itself. Initially, it would be 

ideal to share the entire physical address space between the two processes. But as 

they run, changes made by one process should not be seen by the other process. In 

order to allow this to happen, an OS can use a mechanism known as  copy on write.  

Initially, the two processes will be mapped to the same physical frames. But the page 

(or segment) tables will be set as read only. If either process tries to write to a shared 

portion of the memory, then an interrupt will occur. When this happens the memory 
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management subsystem will make a separate copy of the shared portion for each 

process and remove the write protection flag from the table, allowing each process to 

see only its own version of the data. 

 Solaris supports access to a shared memory block (Solaris calls it a segment) 

using the shmget() routine. One process creates a shared block with the first call. The 

block is described by a control structure with a unique ID that points to an area of 

physical memory. The identifier of the block is called the shmid. 

 Here is the call used to access a shared memory block in Solaris:

   int shmget (key_t key, size_t size, int shmflg);    

 The key argument is either of type key_t or is IPC_PRIVATE. It is the numeric key 

to be assigned to the returned shared memory block. The size argument is the size 

in bytes of the requested block. The shmflg argument specifies the starting access 

permissions and creation control flags. 

 If the call succeeds, it returns an ID to identify the shared memory block. This 

call can also be used to get the ID of an existing shared block by another process. 

The following code illustrates shmget():

   key_t key;           /* key to be passed to shmget()               */

int shmflg;          /* shmflg to be passed to shmget()     */

int shmid;           /* return value from shmget()                          */

int size;            /* size to be passed to shmget()           */

shm_id  ⫽  shmget(IPC_PRIVATE, size, shmflg);

if (shm_id<0) {

     printf(“shmget error\n”);

     exit(1);

}

    Server and clients can be created with a fork call or can be unrelated. For a child 

process, if a shared memory block is requested and attached prior to forking the 

child, then the server may want to use IPC_PRIVATE since the child has a copy of 

the server’s address space, which includes the attached shared block. However, if the 

server and clients are separate processes, using IPC_PRIVATE is not a good idea 

since the clients will not know the key.  

  11.6.2 Memory mapped files 

 Most modern OSs allow a special mode of memory sharing referred to as  memory 

mapped files.  In this mode a process will ask the OS to open a file and associate all 

or part of the data in the file with a region of the logical address space of the process. 

Then the process can refer to the information in that space as an array or through 

memory pointers. There are two main advantages of such a system. The first is that 

the process does not have to use I/O statements to access the data—the demand pag-

ing system takes care of accessing the right data from the file. The second advantage 

is that two or more processes can ask the OS for access to the same file at the same 

time. The same memory frames will be mapped into the logical address spaces of 
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both processes, allowing them to share access to the memory. This mechanism there-

fore provides a simple mechanism for sharing data between two processes. Of course, 

the processes may need to use synchronization techniques to avoid interfering with 

one another. In addition, if the real purpose of the “shared file” is to provide a shared 

memory region between two or more processes, the shared file does not actually need 

to reside on the file system as a file. 

 As an example, here is how memory mapped objects (including files) can be 

created under the Windows Win32 libraries: 

 HANDLE WINAPI CreateFileMapping(

  _in HANDLE hFile,

  _in_opt LPSECURITY_ATTRIBUTES lpAttributes,

  __in DWORD flProtect,

  __in DWORD dwMaximumSizeHigh,

  __in DWORD dwMaximumSizeLow,

  _in_opt LPCTSTR lpName

);

    The meanings of some of the parameters are:

   ɀ hFile—A handle to the file from which to create a mapping object. If hFile is 

⫺1, the call must also give a size for the object in the dwMaximumSizeHigh 

and dwMaximumSizeLow parameters and a temporary file is created in the sys-

tem paging file instead of mapping to a file system file.  

  ɀ A pointer to a security descriptor structure for the object that contains access 

control lists (ACL) and other security information.  

  ɀ flProtect—Protection to be applied to the object

  ɀ PAGE_READONLY 

  ɀ PAGE_READWRITE 

  ɀ PAGE_WRITECOPY (copy on write) 

  ɀ PAGE_EXECUTE_READ 

  ɀ PAGE_EXECUTE_READWRITE 

  ɀ PAGE_EXECUTE_WRITECOPY 

  ɀ Etc.   

  ɀ dwMaximumSizeHigh—High-order DWORD of max size of the object.  

  ɀ dwMaximumSizeLow—Low-order DWORD of max size of the object.  

  ɀ lpName—The name of the file to be mapped.     

  11.6.3 Windows XP prefetch files 

 Various OSs have developed some interesting tricks to optimize the use of demand 

paging. One interesting technique used in Windows XP is designed to speed up the 

loading and initialization of programs. The idea is that when a program is loading 

it will go through the same sequence of instructions each time. Therefore, it will 

generate the same sequence of page faults. Furthermore, it will tend to generate 

these faults in clusters. For example, as the code executes it will pass through a 

contiguous sequence of pages in the code. As it does so it will be generating other 
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page faults as it calls subroutines and references data in other pages. As a result, 

the disk drive gets a workout seeking back and forth to fetch these pages in random 

order. XP (and sometimes other OSs as well) uses a better technique. The first time 

a program starts, the OS will keep track of all the page faults it makes in the first 

few minutes. It will record those page faults in a file called a  prefetch  file. Later, 

in the background it will sort that file so that subsequently when the program is 

launched the OS can fetch all the code pages that will be used as the program ini-

tializes. It can fetch all the needed pages of the main program in a few large read 

operations. Then it will move to another place on the disk to fetch all the subrou-

tine code, then move to another place to fetch those data pages that will be used, 

and so forth. This technique will save a lot of page fault interrupts. It will also save 

a lot of disk head movement and rotational delays as larger chunks of disk storage 

are read in single operations.  

  11.6.4 Symbian memory management 

 The Symbian OS was created for use in cell phones. This OS has a unique way of 

utilizing the paging hardware found in modern CPUs. The problem they faced was 

this: In a cell phone it is presumed that there is no secondary storage—no disk drive. 

As was discussed in Chapter 4 on the Palm OS, all the programs that are stored in 

the phone are always in primary memory. Therefore, primary memory is even more 

scarce than in most systems, especially given the need to maintain a low power bud-

get in cell phones. But the processor architecture used in the phone includes paging 

hardware since most system environments do include secondary storage. In most 

OSs there are three functions that the memory management hardware is supposed to 

perform: (1) dynamic relocation of the program, (2) restriction of addressing to the 

space reserved for a given program, and (3) allowing for random dynamic loading 

of any page from secondary storage into primary storage. In the Symbian OS the 

dynamic loading function is not needed. In addition, storing a page table for each 

program would take up valuable RAM. So the problem faced by the Symbian devel-

opers was how to use the hardware most efficiently to do the two jobs that remained. 

The solution adopted by the Symbian OS developers was to use a single-page table 

for all the processes in the system.  

    The single-page table is modified when a context change is needed and a pro-

gram is about to be put into run state.  Figure 11.14  shows how this change is made. 

In  Figure 11.14a  we see the page table when process B is running. The page table 

has a normal mapping for the frames of both process A and process B and for their 

respective thread data pages. But there is also a reserved section of the page table 

that always points to the frames for the process that is currently executing. When it 

is time to make a context switch and start executing process A, the OS will copy the 

page table entries for process A into the page table entries reserved for the running 

process. This is shown in  Figure 11.14b  where we see that the page table has been 

changed to run process A. The result is that pointers to the frames of the running pro-

cess always appear in two places in the page table, once where it actually resides and 

once where the running process appears. This allows the paging hardware to support 
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the dynamic relocation function needed to simplify code generation and still restrict 

program access to its own memory areas without consuming extra RAM for a page 

table per process.     
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   11.7 SUMMARY 

 In this chapter we discussed the designs of memory 

management through paging and segmentation sys-

tems and their hardware requirements as well as a 

combination of segmentation and paging. We then 

discussed demand paging memory management. 

We examined the effect of demand paging and some 

problems that arose in its implementation. Through-

out this discussion we also focused on the hardware 

required to support these OS techniques. We ended 

with a section that covered some subtopics related 

to advanced memory management.  
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  REVIEW QUESTIONS 

    11.1 What hardware development solved the problem 

of external fragmentation?  

   11.2 While the paging hardware is translating a logical 

page address to a physical frame address, what 

happens to the displacement part of the address?  

   11.3 When we first looked at translating memory refer-

ences through a table that was also in memory, 

what was the effect on the effective access time of 

memory? What did we do about it?  

   11.4 Using page tables, we need some way to know 

where the end of the logical address space is in 

the table. We discussed two different techniques 

for doing this. What mechanisms did the two 

techniques use? Under what circumstance is one 

technique preferred over another?  

   11.5 Eventually, page tables started to grow very big 

and sparse. What technique was employed to 

solve this problem?  

   11.6 An alternative to paging is segmentation. Briefly 

describe this technique.  

   11.7 What is the basic idea behind demand paging?  

   11.8 When running demand paging, how does the OS 

know a page is needed by a process?  

   11.9 What is the “working set” of a process?  

   11.10 Why do we worry about page replacement algo-

rithms so much?  

   11.11 Why do we prefer not to replace dirty pages when 

a page fault occurs?  

   11.12 When an OS is selecting a page to replace in 

a demand paging system, what is the differ-

ence between local replacement and global 

replacement?  

   11.13 What is the minimum number of pages that a pro-

cess needs to run?  

   11.14 If a process frequently starts thrashing, what 

should the architect of the process do to improve 

the situation?  

   11.15 What kind of background operations can an OS 

do to improve demand paging performance?  

   11.16 Hash tables are very poor performing structures 

as far as demand paging goes. We mentioned that 

binary lookups were probably pretty good. What 

other basic system structure gives very good 

demand paging performance?  

   11.17 What is the purpose of a prefetch file in Windows 

XP?  

   11.18 How are memory mapped files used by multiple 

processes?  

   11.19 The Symbian OS uses the paging memory hard-

ware in a very special way. Why is that?     
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 N
ot all operating systems have file systems, but any of those devices we would 

normally think of as a computer certainly would have one. Indeed, many of 

the devices that we might not think of as a computer may have file systems as 

well, including many gaming systems, cell phones, music players, and personal digi-

tal assistants. This part of the text covers those aspects of an OS that are concerned 

with the management of secondary storage and the file systems found thereon.

Chapter 12 discusses the layout of typical hard drives and explains the basic 

concerns that a file system has. The topics covered here start with the concepts of 

directories and how they are laid out in modern file systems. Then the chapter dis-

cusses the concept of file access methods, including sequential, random, and indexed 

access. Next, it covers the tracking of free space within a file system and the layout 

(allocation) of the files themselves.

Chapter 13 first covers several modern file systems as case studies to show how 

the individual mechanisms discussed in Chapter 12 are used in real OSs. It then cov-

ers advanced file system features often found in modern OSs but not so fundamen-

tal to the normal application. These topics include virtual file systems/redirection, 

memory mapped files, file system utilities, and log-based file systems.

Chapter 14 moves to a lower level that is normally isolated from the file system. 

It discusses the entire input/output management subsection present in any OS. It 

discusses various classes of I/O devices, including those used for secondary storage. 

This chapter is included in this part of the text since secondary storage management 

is such a dominant use of the I/O subsystem. Other aspects of I/O are treated sepa-

rately in the chapters on networking, for example.
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of OS Concepts: File Systems 

and Input/Output
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 F
iles are one of the most important abstractions an OS can provide. The con-

cept of files predates computers, so they are a metaphor that everyone under-

stands. Programmers do not want to think about disk drives, tapes, or any 

other media. They want to think about the data they are processing, and they think 

of the data as a collection. In a computer, that collection is abstracted as a file. Pro-

grams need data to work on. We usually keep that data on secondary storage devices 

because primary storage is too expensive to keep all the data we need to have access 

to. Today, these devices are almost always rotating magnetic disk drives. As appli-

cation programmers we do not want to be concerned with the details of operation 

of the thousands of different types of disk drives. We want to think of our data in 

terms of some abstraction. Usually, we think in terms of a file as being a collection 

of records or bytes. Therefore, a major function of most OSs is to provide for the 

abstraction of a file on secondary storage. The contents of a file are usually meaning-

ful only to application programs. By this we mean that the OS is typically not aware 

of the internal structure of the files. There are a few exceptions such as the execut-

able (binary) programs that the OS can run and the object modules that are used to 

make those files. Such files have structures that are defined by the OS itself. These 

structures will be known by all the linker or loader utilities that are used to make the 

executable files and the compilers and assemblers that are used to produce the object 

modules from source program files. 

 In Section 12.1 we introduce the concept of file systems and how they fit in 

an OS. Modern computers typically contain hundreds of thousands of files. It must 

be possible to organize the files so that things can be found. Next, we discuss the 

mechanisms used for supporting directories in file systems. Different applications 

have different needs in terms of how they access the data in files. Sometimes the 
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data can be processed sequentially. Sometimes the transactions are random. Some-

times a special key number makes it easy to find a record. Other times we need to 

access records based on their content. Section 12.3 describes various methods that 

applications can use for accessing the data in files. File systems on random-access 

media need to keep track of what parts of the media contain data and what parts are 

free to use. So next we explore the need for tracking the space in a file system that is 

not currently allocated to a file, and the different structures used to track that space. 

In Section 12.5 we present the topic of the structure of the files themselves and dis-

cuss the tradeoffs of the various methods. We conclude with a chapter summary in 

Section 12.6.  

   12.1 INTRODUCTION 

  File systems generally have layered designs, with each layer providing services to 

the layer above it. Every OS has a unique partitioning of the functions across these 

layers. Two things are true about all file systems: the top layer API is an abstraction 

of the concept of files and the bottom layer interacts directly with the hardware. As 

an example, a Linux file system organization is shown in  Figure 12.1  with the layers 

flowing left to right. We discuss file abstraction in this chapter and the bottom layers 

in the next chapter. 
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      12.2 DIRECTORIES 

  Before a program can use a file, it will need to find the file. The OS will need to 

provide some sort of an index to the files that the program can search. We call 

these indexes  directories.  (Since more people have begun using computers who 

are not very knowledgeable about them, another term has also come into common 

usage for these structures:  folders. ) Directories will obviously have to store the 

name of the file, but they will also store other data about the file as well. In some 

OSs there may be a lot of other information kept for each file, but in others there 

is only a small amount. This other information about a file that is not part of the 

file data is referred to as  file metadata.  Some of these other items are almost uni-

versal and others are found only rarely. Clearly, we will need a disk address that 

points to the start of the file data. Usually, we also want to know the size of the file. 

 Table 12.1  shows some examples of metadata we might find for a file on various 

operating systems. It is unlikely that any OS will have all of these items—in some 

cases they represent different ways of accomplishing the same ends. In some OSs 

this information is stored in the directory entry for a file. In other OSs it is stored 

in a separate structure—most notably, UNIX-derivative OSs use an external table 

called an inode. 

      12.2.1 Logical structure 

 There are many different logical structures that can be used to store a directory struc-

ture for a file system. We look at several common structures in this section. 

  Single level 

 How we logically organize the directory on a disk depends to some extent on the 

size of the disk. As was discussed in Chapter 4, early disk drives were fairly small (a 

few hundred thousand bytes) and the number of files was therefore small. In order 

to make maximum use of the limited space, the names were kept short (6–8 charac-

ters was fairly common) and the pointers to the blocks on the disk were kept small. 

There was normally only a single directory for the entire disk. In  Figure 12.2 , we 

show such a single-level directory structure. As we mentioned in earlier chapters, 

some OSs with a single-level directory structure attempted to give the appearance of 

TABLE 12.1 Some Possible Directory Information Items

File Name Archived?

 Starting Block Protection (can be very complex)

Maximum File Size Encryption Information

Current File Size Compression Information

 Last Block Owner ID

Date & Time Created File Allocation Type

Date & Time Last Written Date & Time Last Accessed
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a two-level structure by associating a group name with files so that a user could look 

at the directory and see only the files for a specific group. 

     Tree structure 

 Disk storage capacities have grown dramatically over time. Current disk drive tech-

nology is such that drives with the capacity of several hundred billion bytes ( GB ) 

are standard equipment on a typical new personal computer. It is normal for such 

a disk to have hundreds of thousands of files on it. An average user would have no 

specific knowledge about many of them. A single directory would not work on such 

large drives. So a key development in the organization of the logical structure of disk 

directories was to allow for multiple directories. The main trick is simply to allow 

directories to refer to other directories in addition to referring to files. If we limit 

such references to link only to directories with no other link to them (including the 

starting directory), the resulting structure is a tree structure with the starting direc-

tory as the root of the tree. See  Figure 12.3 . 

   With such a hierarchical directory organization we can divide the files up into 

different categories. On machines that are used by more than one user, we can 

Filename Length Start

MSDOS.SYS 14 0000404

IO.SYS 12 0000303

AUTOEXEC.BAT 2 0000505

CONFIG.SYS 1 0000506

COMMAND.COM 50 0000600
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give each user a “home” directory, which will contain all their data files in sub-

directories. The various subdirectories can also be dedicated to different types of 

files—perhaps one for utility programs, one for games, one for email, and so on. 

This process can be continued to arbitrary depths. Email, for example, could be 

further divided into directories related to work, school, family, friends, and technol-

ogy. The school directory could be further divided into directories for each class, 

and so forth. 

 A side effect of this organization is that we can have many files with the same 

file name just by keeping them in separate directories. This would allow a group of 

people working in different home directories to use identical file names.  Figure 12.3  

shows the unlikely but perfectly legal case that many subdirectories contain the same 

set of file names. However, there was a price to pay for this feature—the names of 

files can no longer be uniquely specified by a single name. In order to unambigu-

ously refer to a file we will have to give the entire  path  of the directories leading to 

the file. It is common to separate the subdirectory names with some delimiter that 

cannot be used as part of a file name. The characters  /  and  \  are the most often used 

characters. So in  Figure 12.3 , in order to unambiguously name the one file shown, 

we would have to give the name “ \W\T\N. ”  

  Acyclic graph directories 

 Unfortunately, the real world can’t be accurately modeled by a tree structure. For 

example, a canary is a bird. If we had a digital picture of a canary and we were 

studying biology, then we might put it in a directory with cats and other animals. 

It also flies, so if we were studying engineering we might put it in a directory with 

airplanes and other things that fly. It also is yellow, so if we were artists we might 

put it in a directory with butter and lemons and other things that are yellow. But if 

we were studying biomedical engineering and working on color vision systems, we 

might be at a loss as to how to classify this file. With only a tree structured directory 

we are often in a quandary as to how we should classify some file. Furthermore, 

sometimes we later can’t remember which folder we decided to put the canary pic-

ture in. A solution that is sometimes employed to help with this dilemma is to allow 

directories to form  directed acyclic graphs  ( DAG s). The way to accomplish this 

is to use a special kind of directory entry called an  alias.  An alias is an entry that 

does not point directly to a file, but rather points to another directory entry. (The 

alias could actually point to the file, but there are some problems that arise with this 

mechanism, which we discuss later. The distinction between the two mechanisms 

is not relevant here.) 

 Unfortunately, moving from a tree structure to a DAG introduces some prob-

lems that must be considered. The simplest example is a one that would occur when 

a program tries to sum up all the space in all the files on a system. If the aliases are 

not considered, then the program might come up with the wrong total if some files 

are referenced more than once. Another large problem is how the system should 

decide that a file can actually be deleted. Consider the case in  Figure 12.4 . Here we 

see three directories. The top directory has two entries pointing to subdirectories, 

 W  and  Q.  It also has a directory entry pointing to a file,  A.  The subdirectory  W  

contains an entry that also points to file  A.  Suppose the user deletes file  A  while 
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in subdirectory  W.  The OS shouldn’t actually remove the file because of the other 

reference to it in the top directory. 

   There are two mechanisms that are sometimes used to resolve this issue. The 

first is to distinguish between the primary reference to a file and any aliases to a 

file. The OS will also include a reference count in the primary directory entry. When 

an alias is added for a file, the reference count is incremented. Then if an alias is 

deleted, the primary reference count is decremented, and if the count goes to zero 

then the file can actually be deleted. There remains the issue of what happens when 

the primary reference is deleted but aliases remain. The second technique is to make 

all aliases  symbolic references,  including any path information. This is what we 

meant earlier when we said that the alias should point to the directory entry for the 

file instead of to the file itself. In this case, if the lower reference in the figure was the 

primary reference, then the second directory entry would actually contain “ \W\A”  

rather than a pointer to the file on the disk.   

  12.2.2 Physical structure 

 In older systems there was considerable attention given to the speed of searching 

directories. As a result, older systems sometimes used techniques such as hashing to 

speed up directory searches. However, over the last 20 years or so CPU and memory 

speeds have speeded up by a factor of at least 10 faster than disk drives have speeded 

up. Therefore, most modern OSs don’t worry about such matters, and directories 

are not sorted in any particular order. The search is simply sequential. In most cases 

people tend to keep directories fairly small—under 100 entries or so.  

  12.2.3 Operations on directories 

 The OS must support several different operations on directories. One might think 

that these would only be the operations that are supported on files, since directories 

are essentially files. However, there are a few differences. For one thing, because 

of the potentially catastrophic consequences of having an error in the file system, 

most OSs do not allow an application program to write into a directory. Instead, the 

application must call special routines to create a new file or directory or do any other 

such operations on directories.  Table 12.2  shows a number of operations that an OS 

might support on directories. 
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T V A

S R N

FIGURE 12.4 
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 The first operation listed is to change the working directory. As was mentioned, 

each subdirectory can contain files with the same local name as other subdirectories, 

so that a path name is required to unambiguously name a file. When we are enter-

ing names into a command line to run a program, we don’t want to have to keep 

typing path names all the time, so OSs use the concept of a working directory. The 

idea is that the user will take some action that specifies a specific directory to be 

the  current working directory,  or sometimes just the working directory. One way 

the working directory can be determined is to log in to the system. Systems support-

ing such logins will usually assign the user’s home directory to be the current work-

ing directory at login time. A reference to a file name that does not include any path 

information is called an  unqualified name.  Any commands that make reference to 

an unqualified name will imply that the file is in the current working directory. So, 

in  Figure 12.5 , if directory  W  were the current working directory, then a reference 

to file  S  would be assumed to be a reference to the file in that directory. In order to 

refer to the file  S  in the subdirectory  T  of directory  W,  the program would have to 

specify a path to that directory as a part of the name. In this case it could say either 

“ \W\T\S ” or “ .\T\S. ” The first reference is an  absolute pathname.  It begins with the 

delimiter that separates directory names in the path so it is interpreted as starting at 

the root of the tree. The second reference is called a  relative pathname.  The “ . ” is a 

special name that specifies the current working directory. So this pathname says that 

TABLE 12.2 Operations OSs Must Support on Directories

Change Working Directory

Create Directory

Delete Directory

List Directory

Create File

Delete File

Search for a File

Rename a File

Completely Walk the Directory Tree
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FIGURE 12.5 
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structure.
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the path starts in the current working directory and goes to the subdirectory  T,  where 

it will then find the file name  S.  

   The other common mechanism for changing the current working directory is a 

Change Directory command—usually something like  cd  or  chdir.  This command 

can specify an absolute path or a relative path. Often, shorthand notation can be 

used, for example, so that  cd ..  will change the working directory to the parent direc-

tory of the current directory. On Linux and other UNIX-like systems the cd com-

mand with no arguments will place the current working directory at the user’s home 

directory. 

 The commands to create and remove directories are fairly straightforward. 

Again, these functions exist since we don’t usually let applications write in direc-

tories. Rather, we demand that they use special OS calls to do these functions. 

Special utility programs  mkdir  and  rmdir  exist to allow the user to request these 

operations through the command interpreter. Normally, the OS might not provide 

a built-in function to list the contents of a file, but directories are very special 

files, so the OS must provide a function to list the contents of a directory for an 

application. Again, utility programs ( dir  or  ls ) are provided to make this func-

tion accessible to a user through the command-line interface. However, when an 

application program needs to create a new file, it must have a way to ask the OS 

to do that. Similarly, a program may want to delete a file that is no longer needed. 

There is generally no simple utility to create a new file because such a file would 

be empty. Usually a file is created as a byproduct of some other action. The clos-

est thing to a utility would be a file copy command ( cp  or  copy ). Under Linux 

one can copy the special pseudo file /dev/zero to a file name to create a file of 

binary zeros. Of course, files are often created with text editor utilities like  vi  or 

 notepad.  Other applications create their own files such as .doc files or .xls files 

under Microsoft Office. File deletion is usually exposed to the user with a utility 

that will delete files like  del  or  rm.  Deleting directories is also a special utility 

with a name like  rmdir.  Searching a directory for a file is often something an 

application needs to do. This is not for the purpose of opening the file for input. 

The OS (or the language library modules) will do that. Rather, it is for when the 

application wants to create a new file. It will first need to check to make sure that 

such a name is not already in use in the current directory. (Some language librar-

ies might do that as well.)  

  12.2.4 File system metadata 

 We mentioned before that directory entries contain information about files that 

is not a part of the file itself and that this information was called file metadata. 

There is also other information in the file system that is not about specific files and 

thus is not part of the directory entries. For example, where is the first directory 

located in the file system? We will see later that there will be other structures that 

will tell us things such as how to find free disk blocks. The details will vary with 

the particular file system, but there are always these other structures, and they are 

very important to the integrity of the file system. They are collectively known as 

 file system metadata.     
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  12.3 ACCESS METHODS 

  An OS presents an application program with an API that represents the abstraction of a 

file. The API has to include semantics on how the application tells the OS which portion 

of the file it wants to access. Different applications need different modes of access.  

   12.3.1 Sequential access 

 Initially, computer applications were designed to process information in batches that 

were sequenced by some key information such as a part number or customer num-

ber. Such applications needed to process files sequentially. At one time these files 

were literally sorted decks of punched cards and later were sorted blocks of data on 

a magnetic tape. The system might have an input file of transactions such as time 

cards and a master file such as the payroll records, both of which might be in order 

by the employee number. The application would start reading at the front of each file 

and would incrementally read each file, keeping them synchronized by the key field, 

in this case the employee number. For decks of cards the records were a fixed size. 

For magnetic tape they could be any convenient size up to some maximum that the 

hardware or the OS would dictate. For sequential processing on disk storage the OS 

(or a software library) has to have some definition of what the record size is for each 

file and it then has to keep track of the  current position  (or  current record pointer ) 

for each application that has the file open. This is seen in  Figure 12.6 . (Note that 

different processes accessing the same file probably would have different current 

record pointers.) For normal sequential processing the OS will increment the current 

record pointer for each read or write. There is usually a command in the API to reset 

the current record pointer to the start of the file. This operation would be analogous 

FIGURE 12.6 
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to rewinding a tape to the starting position. Since the disk blocks are a fixed size and 

may not exactly match the record length requirements of the application, it is fairly 

common for the OS to combine more than one logical record into a physical data 

block. Blocking is covered more fully in the next chapter. 

     12.3.2 Random access 

 As disk drives got much cheaper, secondary storage migrated from being stored on 

magnetic tapes to being stored on disk drives. Once the data was mostly kept online 

it became possible to process each transaction as it occurred rather than accumulat-

ing them to be processed in sequential batches. Transaction processing is generally 

preferable to batch processing because it allows management to track the status of 

an enterprise more nearly in real time. However, this meant that the application had 

to access the master file data in random order rather than purely sequential order. So 

the file APIs were extended to include another model: random access. In this model 

the application will tell the OS which record in the file it needs and the OS will move 

directly to that record and access it for reading or writing. Usually this will require 

some simple mapping of a key value to the record number. For example, a small com-

pany might simply assign the employee numbers sequentially and use the employee 

number as the record number. In some OSs this addressing is expressed as a record 

number and in others it is expressed as a byte offset from the start of the file. 

 Note that sequential access is still possible on random access files. When the 

application accesses a record randomly this will leave the current record pointer 

positioned at the next record. The application can now issue a  read next  operation 

and the OS will return the next record and increment the current record pointer. We 

can see this in  Figure 12.7 , where the employee number for employee 34 is used to 

Record for employee

34 is in record 34.

Random file

FIGURE 12.7 

A random access 

method file.
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access that record in the file. If the application does a read next operation it will get 

the next record. 

   In order to start accessing at any point in a random access file, the OS usually 

provides a  seek  command, which will position the current record pointer at the first 

record that has a key value greater than or equal to a given key value. When OSs only 

ran one process at a time this command would actually position the disk head to this 

position in the file (i.e., it would seek the physical location of the data). Now it is a 

logical positioning only.  

  12.3.3 Higher-level access methods 

 Most OSs provide at least these two different access methods. A few OSs provide one 

or more higher-level access methods. We describe two such mechanisms in the rest of 

this section. Most of these higher-level access methods are also subsumed in database 

systems and are sometimes provided as library modules as support for high-level lan-

guages. Having the access methods provided by the OS means that less development 

work needs to be done to support many high-level languages as long as the semantics 

of the APIs are similar enough for the OS access method to support them. 

  Indexed access 

 Random access often will not work as well for a larger company employee file as it 

did for a smaller company. After a while many employees will retire, leave the com-

pany, get fired, and so on. The result would be that there would be many records in the 

master file that would not represent a current employee. For such situations the OS 

might provide an access method called an indexed access method. A fairly common 

term for such access methods is  ISAM,  or  indexed sequential access method.  

 How such access methods work can be seen in  Figure 12.8 . The figure shows 

a data file for a retail store. It has three areas: the  primary data  area where the data 

records are kept; the  primary key  area, which is an index to the main key field in the 

record; and a  secondary key  area, which is an index to a different variable. As records 

are added to the file they are written sequentially to the primary data area. However, 

for each record written to the primary data area an additional record is written to the 

primary key area and another record is written to the secondary key area. (Note that 
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there might not be a secondary key area or there might be several of them.) Each record 

in any of the key areas is stored in order by the value of the associated key field. In the 

figure there are two key fields that have been used to index the data: the SKU number 

(the stocking number of the retail store) and the manufacturer’s item number. So when 

record 0 was written into the primary data area a record was written to the primary 

key area that showed that SKU number ABC was found in data record 0 and another 

record was written to the secondary key area showing that manufacturer’s number 

CBA was in data record 0. When the second record was written into the primary data 

area, then similar records were written into the key areas. However, when the third data 

record was added, the record that was added to the primary key area caused a problem 

since it was not in order, so we had to sort this area by the value of the key. There are a 

number of techniques for building the key areas that avoid actual sorting of the entire 

file, including  binary trees  (or  B-trees ), hashing, and multilevel indexing. 

   Notice that the keys do not have to be a single field. An index might be created 

that concatenated a last name and a first name, for example. Also notice that the 

key fields may or may not allow duplicate keys. We see in  Figure 12.8  that a single 

manufacturer’s part number is stocked in the store with two different SKU numbers. 

In a more likely scenario, in our employee file we might have two Bill Smiths, but 

we should not have two employees with the same Social Security number. Such an 

access method is close to being a database system but is somewhat simpler. 

 The three “areas” that we discussed in  Figure 12.8  could be portions of a single 

file or they could be stored as separate files. Having them as separate files might 

make it simpler to add an index on another key after the file was initially created. 

The risk of having separate files is that it becomes very easy when backing up and 

restoring files to end up with files that did not go together. Of course, we would 

likely have a utility program that verified and possibly rebuilt the secondary index 

files, but on a large file this could take some time, and we might not realize immedi-

ately that there was a problem such that we should run that utility.  

  Hashed access 

 Another higher-level access method sometimes provided by OSs is a hashed access 

method. Hashing a key field can be used to create a random key value for use in 

accessing a random access file when the key values are not all used. Of course, gen-

erating hash keys probably will create record numbers that collide for different val-

ues of the source key, so a mechanism must be provided to resolve these collisions. 

While not as common as indexed sequential access methods, a hashed file access 

method is still a useful tool for an OS to provide.   

  12.3.4 Raw access 

 For some applications the services provided by the file system would be counter-

productive. This can happen when an application has high performance require-

ments and the patterns of accessing the files it uses are well known to the developers 

of the application. The services designed for most applications are provided for 

an “average” or “typical” application where the file processing demands are not 

unusual. In such cases the OS will sometimes provide a  raw access method.  In 
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this case the OS does not provide any file structure, but reserves an area of the disk 

wherein the application can provide its own structure. Examples of applications 

where such raw access are useful include the paging store for the OS itself and 

database systems.    

  12.4 FREE SPACE TRACKING 

  The OS will be storing files and directories in blocks on the disk. In order to do that 

it will have to keep track of which blocks have not been used yet. There are gener-

ally two ways to keep track of this  free space:  linked lists and bitmaps. Initially, file 

systems kept track of the smallest chunk of space that could be accessed on a disk 

drive—a sector. As disk drives got larger, the size of the pointers to the sectors on the 

disk got larger. For example, modern disk drives are now extending into the terabyte 

range. Anything larger than a 2 terabyte drive would require a pointer greater than 

4 bytes. Naturally, the file systems initially designed for floppy disks did not use 

pointers that big. So when the disk drives outgrew the pointers in the file systems, 

one easy solution was to allocate more than one sector at a time. Simply allocat-

ing two sectors together would double the reach of the pointer. The process was 

extended, and in some cases file systems have allocated up to 64 sectors at a time, 

though sizes of 4 KB are more typical. The resulting structure is referred to as a 

 block,  or sometimes as a cluster. This seemed good, but one problem with the mech-

anism was that it wasted space if the data stored on the disk included many small 

files. Most script (or batch) files, for example, are just a few lines of text. Few would 

fill a single sector, much less 64 sectors! Since this technique of allocating multiple 

sectors at a time is still very common, we will generally speak of allocating a block 

in this chapter rather than allocating a sector.  

   12.4.1 Linked list free space tracking 

 One way to keep track of the free space is to put all the free blocks in a list. 

 Figure 12.9  shows blocks on a disk drive. The OS must keep track of the first block 

on the list. Each free block will then contain a pointer to the next free block. Notice 

that the list is not in any order. We might initially start with an ordered list, but when 

an application frees up a block we will want to be able to put it in the list at the front 

so that we do not have to change any other sector on the disk to point to this newly 

freed block. We will take the pointer to the block currently at the head of the list and 

put it in the newly freed block. We will write the sector of the block that actually 

contains the next free block pointer to disk and we will record the newly freed block 

as the first block in the list. 

   One good aspect of this mechanism is that the only “extra” space it requires to 

keep track of the free space is the single pointer to the head of the list. All the rest 

of the pointers are kept in the free space itself. A bad aspect of this mechanism is 

that it is normally very difficult to allocate contiguous blocks of space. So if appli-

cations might want to have contiguous blocks of data on the disk drive, this is not 
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a good mechanism to use. Another problem with this mechanism is that to get the 

address of the next free block, the OS has to read the free block because it contains 

the pointer to the next one. In the next section we discuss some ways to get around 

this problem.  

  12.4.2 Improved linked lists 

 What linked lists need in order to work better is to have some way for us to not 

have to read each sector before we use it in order to find the next available free 

sector. There are several ways to do this. Two common ways include grouping and 

indexing. With indexing we merely store a bunch of free space pointers in a single 

block. Suppose a block was only a sector, 512 bytes, and our pointers were 32 bits, 

or 4 bytes. Then one block could store 128 pointers. So the block at the head of the 

chain, instead of just pointing to the next free block, would point at the next 128 free 

blocks. This first block would be called an  index block.  An example is shown in 

 Figure 12.10 . We could use all the blocks pointed to by the first index block and then 

use the index block itself. The last block pointed to should be another index block. 

As we use each data block we need to write the index block back to the disk so it will 

stay current, but a slight optimization there would be to take out several block point-

ers at the same time and rewrite the block, temporarily holding those block pointers 

in RAM. This is called  preallocation.  It is a technique that can be used with many of 

the free space tracking mechanisms in order to minimize the updating of the data on 

the disk. Of course, there is some possibility that the system might go down and the 

information on the disk would show that those blocks were in use when they were 

not. Having the system go down is a fairly low-probability event. If it does go down, 
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the few blocks we lose track of is normally a small part of the available space. There 

will be no loss of data in the files or metadata. Also, we will have file system check-

ing utilities that will recover the lost blocks at the cost of scanning the file system. 

Therefore, we will not worry about the possible loss of consistency in the metadata. 

   Another mechanism that can improve linked list free space tracking is  group-

ing.  In this technique the OS will take every opportunity to determine that two or 

more blocks in the chain are adjacent. This can easily happen if blocks can be allo-

cated to files in multiples rather than only one at a time. In this case, the first block 

in that group will contain not only a pointer to the next free block, but also an indica-

tion of how many of the following blocks in the list are adjacent to one another. Such 

a mechanism is shown in  Figure 12.11 . This will allow the allocation mechanism to 

sometimes allocate contiguous blocks more easily. But also, this first block can be 

read and then the rest of the blocks of the group handed out without having to read 

the disk again. 

     12.4.3 Bitmap free space tracking 

 Another approach to free space tracking is to have a bitmap in which each block in 

the file system is represented by a single bit in a long string. If the bit is set one way, 

then the block is free. If it is set the other way, then it is in use. Whether the “1” bit 

indicates that the block is free or it indicates that the block is in use depends mostly on 

the instruction set of the computer. We will clarify this shortly. Recall that one prob-

lem with the linked list mechanism is the difficulty in allocating multiple contiguous 

blocks. With a bitmap this is much simpler than it was with the linked list mechanisms. 

It is merely necessary to find a string of contiguous bits of the required size. It is this 
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scan for a contiguous block that we will want to execute efficiently. The instruction set 

of the computer may be such that it is much more efficient to find a string of 0’s than 

a string of 1’s. Or it may be the other way around. These would be the only consider-

ations that would make it important whether a “1” bit meant a free block or a block in 

use. An example of a bitmap used for free space tracking is seen in  Figure 12.12 . 

   Notice that using a bitmap to keep track of the available free space costs us more 

memory than does the linked list mechanism. We need to keep in memory a portion 

of the bitmap. Most likely we will keep an entire block because it will be easier to 

read it that way. With the linked list we only kept one pointer—maybe a few more if 

we were preallocating the blocks. However, the cost of memory is already very low 

now and is continually declining so this is probably not a significant factor. We do 

need to update the disk copy of the bitmap as we allocate the blocks. But we can still 

use the preallocation technique discussed with the linked list tracking mechanism. It 

is very important that we update the map before we actually begin to use the space. If 

we don’t then we run the risk of having a block allocated to more than one file. This 

does not work well. 

 Not only does the bitmap take more RAM space, it also takes more disk space. 

The bitmap has to be in a dedicated spot on the disk. That location cannot be used for 

data storage. In the linked list mechanism the pointers were stored in the free blocks 

themselves. Once again, however, disk space is relatively inexpensive and the price 

is constantly declining, so this is also probably not a significant factor today, though 

it certainly was at one time. 

 There is one more common mechanism for tracking free space, but it is a byprod-

uct of the mechanism used to link the blocks of the file together in the FAT structure, 

so we will discuss it under that heading.    
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  12.5 FILE ALLOCATION 

  The other major design decision about file systems is how the files themselves 

should be organized on the disk drive. The abstraction(s) that the OS presents to the 

user through the API will partly determine the types of organization that the OS can 

use. There are basically three mechanisms for allocating the space to a file. These 

are contiguous, linked, and indexed mechanisms. Note that it is not necessary that 

an OS use only one of these mechanisms. Some OSs support multiple types of file 

allocation. All that is necessary are to have APIs that support both types of allocation 

requests and to keep track of the free space correctly.  

   12.5.1 Contiguous allocation 

 Contiguous allocation means that the blocks allocated to a file have numbers in a 

sequence strictly increasing by 1. For example, in  Figure 12.13 , we see File B occu-

pying contiguous blocks 1000–1799. Such blocks do not necessarily start on a track 

boundary. They are merely adjacent in the numbering scheme. This method of file 

space allocation has some distinct advantages. For one thing, very little information 

is needed to find all of the data. All that is required are the sector address of the first 

block and the length of the file in blocks. This allocation method makes random 

access to the data very simple. The exact mechanism varies depending on the OS API 

and the block size being allocated. With some OSs, for example, the API requires 
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that the application pass a byte number of an offset in the file at which the read is 

to start and a length of data to read—normally a multiple of the sector size. In this 

case the access method merely divides the byte offset by the block size and adds it to 

the starting sector address of the first block in the file. Sequential access is trivial, of 

course. As was mentioned above, if the space tracking mechanism is a bitmap, then 

allocating contiguous space is fairly trivial. All that is necessary is to find a contigu-

ous string of bits in the bitmap that indicate free blocks. With a linked list free space 

tracking mechanism it would be highly impractical, though not technically impos-

sible. The grouping mechanism we described might help somewhat in this regard. 

   One problem with contiguous allocation is that once a file has been allocated it 

can be difficult to make it any larger because it is likely that some other file will be 

allocated right after the file we want to make larger. For example, in  Figure 12.13 , 

File A could not be made larger without moving File B. In order to avoid this prob-

lem, programmers will tend to allocate more storage for the file than is currently 

required by the data. That way, the file can grow for some time before it needs to 

be made larger. For example, the programmer might know that the system now has 

100 records and typically will add another two records per month. The file is then 

allocated with space for 130 records and can operate for somewhat more than 2 years 

without filling up and needing to be reallocated. We call this  programmer fragmen-

tation.  Unfortunately, this is wasteful of storage. If there is sufficient free space on 

the disk drive to allocate another copy of the file, then the operation is fairly simple, 

but it can be time-consuming if the file is large. If there is not sufficient space for 

the new copy, then the file must be unloaded to a tertiary storage device, the old file 

deleted, other files moved around to make enough contiguous space for the new file, 

the new file allocated, and the data loaded into the new file. 

 The awkwardness of this procedure led to a variation on the contiguous allocation 

mechanism—the use of  extents.  In this scheme a file is not limited to a single contigu-

ous allocation. The initial allocation is a contiguous block, but if it fills up, instead of 

making a new copy, a secondary allocation is made, not necessarily contiguous to the 

initial allocation. This secondary extent is also contiguous, but is typically smaller than 

the initial (primary) allocation. Additional secondary extents can be allocated, usually 
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up to some small limit—16 or so. The calculation of random file addresses is now a bit 

more complicated. With a single contiguous file we took the record or byte offset and 

calculated a displacement from the front of the file. Now we need to have a table of 

starting logical and physical addresses and sizes for the various extents. We calculate 

the offset and then we look at the table. We find the extent that contains the offset and 

then we calculate the offset from the start of that extent. This is still fairly trivial com-

pared to the speed of a hard drive. Extents are not a particularly new scheme, having 

been used, for example, at least as far back as OS/360 by IBM in the late 1960s. 

 There are several instances of waste in the contiguous allocation scheme. The 

first instance is caused by the fact that the smallest portion of the space that we can 

access is a sector. We usually compound that problem by tracking the allocation in 

blocks rather than in sectors. So, we might be allocating blocks of four sectors, but in 

most cases we will not need all of that allocation. Sometimes we will fill up the last 

block exactly, but sometimes we will only need one byte of the last block. On aver-

age we will use only half of it. This unused space caused by the allocation granularity 

is called  internal fragmentation.  We had exactly the same problem in Chapter 10

in which we discussed primary memory allocation. Unless we have very many files 

that are very short, internal fragmentation on disk drives is not usually of much con-

sequence given the size and cost of disk drives today. 

 Of greater consequence is the problem of  external fragmentation.  Again, this 

problem was discussed in Chapter 10 on primary memory management. The prob-

lem arises when we come near to filling up the disk. As we allocate and free contigu-

ous files we will tend to chop up the free space because we keep taking a contiguous 

free space out of bigger free spaces. Eventually, the leftover holes become too small 

for the next allocation we want to make, even though there is sufficient free space 

for the allocation. In  Figure 12.13 , for example, based on the sizes shown, we prob-

ably have space for about 2,000 blocks, but the space is broken into two pieces, so 

we could not allocate a file that big, even though we have enough free space to do it. 

The solution to the problem is somewhat ugly. It is known as  defragmentation.  The 

basic idea is to move some of the files into holes where they will fit, leaving larger 

holes for the files we want to allocate. The technique was described more fully in 

Chapter 10, so we will not rehash it here. The third sort of “fragmentation” is the 

 programmer fragmentation  we discussed where the programmer allocates more 

space to the file than is really needed. This, however, is more of a social problem 

than a technical problem, but it comes about because of the difficulty of making a 

contiguous file bigger, so it needs to be mentioned.  

  12.5.2 Linked allocation 

 The second common file allocation mechanism is a linked list. This mechanism is just 

like a linked list structure in primary memory, but here the linked elements are always 

the same size—one disk block. Each block will contain the starting sector address of the 

next block in the file. So, one downside of the linked mechanism is that a part of each 

block is spent on this link. In the worst case we have a single sector of probably 512 bytes 

with a pointer of probably 4 bytes, so the waste is less than 1%. If the blocks are bigger 

than one sector, then the overhead is even less.  Figure 12.14  shows such a structure. 
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 There is another downside to the linked list allocation mechanism: it is some-

what difficult to do random access methods on such files. It is not impossible, 

however. Consider the files shown in  Figure 12.13 . All that would be necessary to 

provide random access to this file is to enlarge on the idea of the extents discussed in 

the section on contiguous allocation. We merely need a table in RAM that contains 

a pointer to the start of each disk block allocated to the file. Though this table might 

be large in the case of a very long file, and it could take some time to follow the 

entire chain to build the table, it is probably a practical mechanism in most cases. 

If the file is not going to be open for very long, then the space and time required to 

build and store the table might be too expensive. If there is going to be a good deal 

of random access on the file and the file is not too big, then it would be practical. 

In addition, we would not necessarily need to follow the entire chain when the file 

was first opened. We might follow the chain and fill in the table only as references 

to records caused us to need to access a part of the file where we had not yet read 

the pointers. 

   In  Figure 12.14 , we see a directory entry that describes a linked file. It contains 

a pointer to the first block of the file and the length of the file in blocks. It also con-

tains a pointer to the last block of the list. On first examination it might not seem 

necessary to store the pointer to the end of the file, and actually it isn’t, because we 

could always follow the pointers in the list to find the end, but it is there for two 

practical reasons. The first is that sometimes we want to open the file in an “append” 

mode—we just want to add to the end of the file. Log files are a good example of 

such action. It will always be faster to be able to go directly to the end of the list. The 
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second reason has to do with redundancy. It is always good to have some redundancy 

in the file system metadata. Then  when  problems arise, the utility programs that we 

will run to repair the file system have a better indication of what might be the correct 

course of action. 

 On the good side, with linked files we will have no programmer fragmentation. 

Since it is trivial to extend a linked file, there is no pressure to overallocate the initial 

file space. 

 In the section on contiguous file allocation we discussed the need for space com-

pression when there was sufficient free space available to satisfy an allocation request 

but the available space was not contiguous. We mentioned that  defragmentation  was 

a name sometimes used for this process. Perhaps somewhat surprisingly, linked files 

also suffer from a related structural problem, and the defragmentation term is proba-

bly better applied to this problem. A linked file structure can be viewed as an extreme 

case of a structure using contiguous extents, where the extents are a single block 

long. The problem that happens with linked files is that as the file grows, the “next 

available” block can be anywhere on the disk. As a result, the linked list can tend to 

bounce back and forth on the disk, depending on which block was available when the 

file was lengthened. An example of such extreme allocation is shown in  Figure 12.15 . 

Processing such a file with a program that is doing much I/O and very little process-

ing can be very costly. Rearranging all the files so that the blocks allocated to each 

file are in order and are contiguous is known as defragmentation. It can significantly 

speed up the processing of the files. As was mentioned earlier, some systems sup-

port both contiguous file allocation and linked allocation. Many modern OSs support 
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both types, and the result is that they have both the external fragmentation problem 

and the random chain problem. In such systems defragmentation can assist with both 

problems. 

     12.5.3 Indexed allocation 

 Just as there is an indexed method for keeping track of the free space, there is a 

similar mechanism for keeping track of the structure of a file. In the simplest terms, 

the indexed file structure is somewhat like a linked list except that we allocate a 

separate index block to hold the pointers rather than placing the pointers in each data 

block.  Figure 12.16  shows a number of blocks in a file that are pointed to by an index 

block rather than being individually chained. As with the indexed free space tracking 

mechanism, in the simplest implementation we are limited to a single index block. 

This restriction will limit the file size, since the blocks are a fixed size and therefore 

the index can only hold pointers to a maximum number of blocks. There are two 

ways we can expand this mechanism to remove this limit. We can use multiple levels 

of indexes, similar to the way we did with RAM page tables, or we can link the index 

blocks themselves into a list. 

    Multilevel indexes 

 With multilevel indexes we will again use one block to contain pointers, much as 

with the simple index structure. But in this case the first index block will not contain 

pointers to data blocks. Instead, it will contain pointers to second-level index blocks. 
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With a two-layer index structure those index blocks will contain pointers to data 

blocks. If an index block contained 100 pointers, then when we introduced a two-

layer structure we would multiply that by 100. We would then be able to address a 

file containing 10,000 blocks. If this was not sufficient we could introduce another 

layer of indexes, each time multiplying the original space by 100. The next level 

would allow for 1 million blocks. Notice that we do not necessarily need to read 

the entire set of index blocks into memory when the file is first opened. We can 

wait until the application tries to access the portion of the file covered by an index 

to read it. This is especially useful for very large files opened and read briefly—for 

example, looking up a word in a dictionary.  Figure 12.17  shows a multilevel indexed 

file organization. 

     Linked index block lists 

 As with free space linked lists, we can simply link index blocks together in a chain. 

Each index block will thus contain one fewer pointers to data blocks because we 

need one pointer to access the next index block, but this is unlikely to be a signifi-

cant factor for most block and disk sizes.  Figure 12.18  shows a file organized with a 

linked index structure. If a file is being accessed randomly, then this mechanism will 

require that we follow the linked chain when the file is opened and read the index 

blocks into main memory. Of course, we can postpone reading all the blocks until 

we need them. If the file is being accessed sequentially we can just read each index 

block when we are nearing the last pointer in the previous block. 
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          12.6 SUMMARY 

 Files are an important abstraction for an OS to pro-

vide. Files were in use long before there were com-

puters, so they are something everyone knows about. 

Programmers do not want to think about hardware; 

they want to think about a collection of data. In a com-

puter system that collection is a file. In this chapter 

we discussed the nature of file systems. We then 

introduced the idea of OS file systems. Modern com-

puter systems have many files. It needs to be pos-

sible to organize the files so that we can find things. 

We discussed directories in file systems. Different 

a pplications need different methods of accessing 

data, so we described various methods that applica-

tions can be offered for accessing the data in files. 

File systems need to keep track of what parts of the 

total space is currently free. We explored different 

structures used to track that space. We then presented 

the topic of the structure of the files themselves and 

discussed the tradeoffs of the various methods. 

 In the next chapter we are covering a few case 

studies of file systems in well-known OSs and a few 

other miscellaneous topics about OS file systems.  
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  REVIEW QUESTIONS 

    12.1 We mentioned several items that might be in a 

file directory. Some are fairly rare. What few 

items are most likely in every OS directory 

structure?  

   12.2 What is the main problem with single-level direc-

tory structures for today’s systems?  

   12.3 Since hierarchical directory structures allow for 

the existence of multiple files with the same name, 

how do we have to refer to them to uniquely spec-

ify them?  

   12.4 What kind of problem motivates the use of 

aliases?  

   12.5 How are directories organized internally to opti-

mize searching time?  

   12.6 Why does an OS typically provide special calls 

for accessing directory entries?  

   12.7 What is the effect of the working directory on a 

command such as erase <filename>?  

   12.8 If a file is being processed via a sequential access 

method, what happens to the current record 

pointer on a read?  

   12.9 True or false? An application using random access 

can’t just ask the OS for the next record. It must 

always specify the record number.  

   12.10 True or false? For indexed sequential access, the 

primary key field must contain unique key values 

for each record.  

   12.11 What services does raw access provide?  

   12.12 What are the two BASIC mechanisms for free 

space tracking in file systems?  

   12.13 There are two broad “improvements” to one of 

our free space tracking mechanisms, and one of 

those improvements had a variant as well. These 

improvements were aimed at mitigating a sig-

nificant performance issue associated with one 

of those tracking mechanisms. Which mechanism 

was this and what was the issue that we were con-

cerned about?  

   12.14 The variant mentioned in the previous question 

was a technique that could also be applied in 

other free space mechanisms and their improve-

ments. What was that technique?  
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   12.15 What are the three basic mechanisms for file space 

allocation in file systems?  

   12.16 One of the file space allocation mechanisms is the 

most convenient for random access files. Which 

mechanism is that?  

   12.17 That same allocation mechanism makes it difficult 

to increase the size of files. This problem caused 

a secondary problem. What was the secondary 

problem?  

   12.18 That same allocation mechanism makes it difficult 

to increase the size of files. We described a varia-

tion on that basic mechanism that would allow the 

size to be increased. What was the variation?  

   12.19 What is internal fragmentation and why is it no 

longer much of a problem in most cases?  

   12.20 What is external fragmentation and why is it a big-

ger problem than internal fragmentation for some 

systems?  

   12.21 We referred to a problem of “programmer frag-

mentation” and said that one of the file allocation 

mechanisms did not have this problem. Which 

mechanism and why not?  

   12.22 That same mechanism has a serious drawback. 

What is it?  

   12.23 Briefly describe what defragmentation does for 

linked files.  

   12.24 The simplest indexed file allocation method limits 

the size of files because of the limited number of 

pointers that can be stored in a single index block. 

What two mechanisms were discussed for extend-

ing this limit?  

   12.25 Which of those mechanisms would probably work 

better for random file access?     
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   13.1 INTRODUCTION 

  In Chapter 12 we introduced the concept of file systems and how they fit in an OS. We covered 

many possible alternative mechanisms for storing the files and tracking free space. Designers 

of real file systems have to make choices about the mechanisms they will include. We will 

see that modern OSs use all of the techniques we have described, but none of them uses these 

techniques in exactly the ways we have described. 

 In Section 13.2 we take a look at several case studies of how modern OS file 

systems have been designed. We then discuss several other topics related to file sys-

tems and file processing. This begins in Section 13.3, where we address the concept 

of mounting a file system and making the information therein available to the appli-

cations. We continue with special topics in Section 13.4 on the reasons behind virtual 

file systems and related concepts and in Section 13.5 on the purpose of memory 

mapped files. OSs typically provide a number of utility programs to make standard 

manipulations of file system information. Section 13.6 addresses some of these 

utility programs. Section 13.7 discusses the important concept of transactional or 

log-based file system techniques, which make for more reliable file systems. We 

conclude with a chapter summary in Section 13.8.   
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  13.2 CASE STUDIES 

  Often, real OSs use some combination of the basic techniques described in Chapter 12. 

We have already mentioned, for example, that some OSs allow both contiguous file allo-

cation and chained file allocation. In the following sections we look a little more closely 

at some modern file systems and how they are implemented.  

  13.2.1 FAT 

 The first file system we look at more closely is a modification of a linked system. 

Instead of having each data block contain the pointer to the next data block, those 

pointers will be stored in a separate table. This system was used in the original 

Microsoft DOS and is known by the name given to the area used to store this table, 

the  file allocation table,  or  FAT.  In this case the FAT is not kept in the area that 

would be used for data storage. It is in a separate area of the disk just after the 

boot block. This table will contain space for one disk pointer for each block in the 

data area. If a block is not allocated to a file, then this pointer will be zero. If this 

block is a part of a file, then this pointer will normally contain the pointer to the 

next block in the file. If this block is the last one in the file, then it will contain a 

special pointer value that indicates that it is the end of the list.  Figure 13.1  shows 

how a FAT might look with two files in it. We have indicated the end of file mark 

as FFFFFFFF. 

 There are some very interesting things to notice about the FAT mechanism. First, 

there is no separate mechanism to keep track of free space. The free space blocks 

have a zero pointer in the FAT. Second, it is very easy to allocate contiguous space 

for a file. Just as with a bitmap free space mechanism, all that is necessary to find a 

contiguous group of free blocks is to scan the FAT and find a contiguous string of 

zero pointers. It is also easy to allocate single sectors to support allocation of single 

blocks for chained file access. 

 The original FAT file system design was created for floppy disk drives, so the 

pointers were quite small. It later came to be called the FAT12 file system. It was 

used on early small hard disks, but the disks quickly grew so large that even allocat-

ing large blocks instead of individual sectors could not cover the entire space. So 

a new file system was designed that was much like FAT12 but used bigger point-

ers. This system was called the FAT16 file system. This was a fairly reasonable 

size to base a file system design around because the computers of that era had a 

16-bit word size. This size was still fairly limiting and the FAT16 design was later 

replaced by the FAT32 system. A summary of these three file systems is given in 

 Table 13.1 . 

  13.2.2 NTFS 

 NTFS is the native file system for the Windows NT family. It is a variation on a 

two-level indexed structure. NTFS uses a  master file table  ( MFT ) to store all the 

metadata about files and directories. In the MFT it creates a  file record  for each file 

and a  folder record  for each folder, even for the MFT itself. These records are 1 KB 
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FIGURE 13.1 A file in a FAT file system.

TABLE 13.1 Comparison of Various FAT File Systems

Attribute FAT12 FAT16 FAT32

Used for Floppies and 

very small hard 

drives

Small to midsize 

hard drives

Medium to very 

large hard drives

Size of each FAT 

entry

12 bits 16 bits 28 bits

Maximum number 

of clusters

4,096 65,526 > 260,000,000

Block size used 0.5 KB to 4 KB 2 KB to 32 KB 4 KB to 32 KB

Maximum volume 

size in bytes

16,736,256 2,147,133,200 About 241
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each  1   and they include all the attributes of the file. NT considers the data in a file or 

a directory to be one of the attributes for the file. If all of the attributes fit in the MFT 

record, then no separate space is allocated. This means that a small file or directory 

(about 900 bytes) will be stored entirely within the MFT record.  Figure 13.2  shows 

an MFT record for a small file or folder. If the data attribute does not fit into the 

MFT record, then one or more blocks will be allocated to hold the data and an index 

to the blocks will be built in the MFT record. Each file typically has only one MFT 

file record. However, if a file has many attributes or is very fragmented it might need 

more than one record. In this case the first record for the file, called the base file 

record, stores the location of the other file records required by the file. 

 Folder (or directory) records contain index information. Small folder records 

reside entirely within the MFT structure, while large directories are organized into 

B-tree structures with pointers to external clusters that contain directory entries that 

cannot be contained within the MFT structure. The benefit of B-tree structures is 

evident when NTFS holds files in a very large folder. The B-tree structure groups 

similar file names into a block so that it need search only the group that contains the 

file. This will minimize the disk accesses needed to find a file.   Some other points 

about NTFS:

   ɀ It uses a bitmap to track free space.  

  ɀ It supports variable block (cluster) sizes in the later releases.  

  ɀ It supports compression of the entire file system, directories, subtrees, or 

individual files.  

  ɀ It supports file encryption of the entire file system, directories, subtrees, or 

individual files.  

  ɀ It supports software RAID 1 and RAID 5 (see Chapter 14, Section 14.6).  

  ɀ It maintains a separate map of bad clusters that it will not use.  

  ɀ It will not write to disk (large) portions of a file that contain only binary zeroes 

(nulls).  

  ɀ It is a transactional (log-based) file system (see Section 13.7).     

  13.2.3 UNIX and Linux 

 UNIX and many UNIX derivatives such as Linux support many different file sys-

tems, but the ext file system is fairly standard. It uses a version of a multilevel index 

scheme to hold the metadata about a file. This data is stored in a table on the disk 

called an  inode.  Each entry in a UNIX directory contains only the name of the item, 

and a numerical reference to the location of the item. The reference is called an 

 i-number  or  inode number,  and is an index to a table known as the  i-list.  Details 

   1 The details of the NTFS system are actually proprietary. The figures used here are generally accepted, 
but might not always be exactly right.  

Standard
Information

File or
Directory Name

Data or Index
Unused
Space

FIGURE 13.2 

NTFS MFT record for 

small file or directory.
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of the i-list location and format and the contents of the inodes depend somewhat on 

the specific variant and version of UNIX, but typical inode information is shown in 

 Table 13.2 . Of interest here is what is and what is not in the inode. One thing that 

is not in the inode is the file name. UNIX allows files to have aliases, meaning that 

more than one directory entry can point to the same file. Among other things, there 

is no requirement that different references to the file use the same name. Therefore, 

the file name is stored in the directory and the directory entry points to the inode 

for all other metadata about the file. One of the entries in the inode is the number of 

directory entries that point to this file. When a directory entry is deleted for a file, 

the count of the references will be decremented, but the file itself will not be deleted 

until the reference count goes to zero. 

 The UNIX file system inode structure is a hybrid variation of an indexed struc-

ture. There are a number of pointers that point directly to data blocks. That number 

varies, but is typically 10–13. The inode is brought into primary memory when the 

file is opened, so if the file is fairly small, then the pointers to the first few blocks 

are already available. If the file is large enough that it requires more blocks than can 

be pointed to by these direct pointers, then the next pointer is a pointer to a single 

index block. If the system is using 4 KB blocks, then this block might contain 1,024 

pointers to additional blocks. If all of this space is used up, then the next entry is to a 

double index block. This index block will contain pointers not to data blocks, but to 

other index blocks. So this index block will address 1,024 index blocks, which will 

altogether address over 1 million data blocks. If that is not enough, the next entry 

in the inode is a pointer to a triple index block structure. Using the 4 KB blocks 

described, this structure can address over 4 Terabytes of file space. 

TABLE 13.2 Typical UNIX inode Contents

File type

Access permissions—read, write, etc.

Count of directories that reference the file

Owner

Group (owner)

Date and time created

Date and time last accessed

Date and time last modified

Size

Data block pointer 1

Data block pointer 2

. . .

Data block pointer 10 (sometimes 13)

Single index block pointer

Double index block pointer

Triple index block pointer
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 When a UNIX file system is initialized, the i-list is built to be a size appropriate 

for the size of the disk partition and the block size used. A number of empty inodes 

will be created and distributed evenly across the partition. As blocks are allocated to 

a file they will be selected from those available that are close to the inode. This pro-

cess helps to keep all the blocks allocated to a file near each other. As long as other 

processes are not accessing too many other files on other parts of the drive, this will 

have the effect of minimizing the seek time required to access the file.    

  13.3 MOUNTING 

  Sometimes we have to deal with computer science terms that have multiple mean-

ings, known as overloading. One such term is  mounting.  Actually, the two meanings 

for this term are related, but at first glance they appear to refer to different opera-

tions. The first meaning concerns what must be done when a disk drive partition con-

taining a file system is going to be accessed by the OS. The second meaning refers to 

a process used to give a user a means of specifying files on a remote directory.  

   13.3.1 Local file system mounting 

 Before an OS can allow a user to access a particular file system, it will need to do 

certain things. The metadata that describes the partition must be read, some part of 

the free space mechanism must be read into RAM—perhaps some blocks preallo-

cated, the directory that represents the root of the directory tree must be read in, and 

so on. This process is called mounting. When the OS is installed there will be some 

partitions that it is told to access, and normally those partitions will be mounted 

whenever the OS is booted. These partitions are normally the ones that are on local 

hard drives. There are differences between OSs, however, with respect to remov-

able media, OSs treat them in one of three ways: (1) implicit mount when the media 

is inserted in the drive, (2) implicit mount when the media is first accessed, or (3) 

explicit mount command must be given. 

 UNIX and most of its variants have traditionally used the last mechanism. Until 

the user gives a specific mount command the removable medium cannot be accessed. 

Since floppy disks formatted for MS-DOS were so pervasive, this actually had a good 

side effect since it allowed the user to specify which file system format a floppy disk 

contained: UNIX, MS-DOS, or Mac. Later versions of Linux and UNIX have begun 

experimenting with implicit mounting when the media is inserted. The term used 

for this is  automounting.  MS-DOS and the Windows products have always used 

implicit mounting when an attempt is first made to access the media. Historically the 

Mac OS automatically mounted a removable media whenever it was inserted into the 

drive. Since Mac OS X is based on UNIX, it now mounts as UNIX does. 

 A different situation exists in the area of CDs. Fairly early in the days of CD 

development a large number of vendors convened and decided on a common for-

mat for data and audio CDs. This format ultimately was designated an international 

standard, ISO-9660. This common format means that there is no reason to postpone 

the mounting as was done with UNIX, so CDs are normally mounted immediately 
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on insertion. This allows the OS to detect the format of the CD (i.e., audio, data, or 

mixed) and to have a default option to execute when such a CD is inserted. This 

means that if a user so chooses, inserting an audio CD will launch a CD audio player 

application of the user’s choice to play the CD. Similarly, a data CD can contain 

instructions on what is to be done with the CD on common OSs. Many will auto-

matically run a script file that depends on the OS to start the software on the CD.  

  13.3.2 Mounting remote file systems 

 A similar process must also take place when an OS is requested to provide access to a 

file system on a remote computer, but the details are vastly different. The remote file 

system might be an entire file system that is made available to users, but more likely 

it is some portion of a file system rather than the whole thing. A large difficulty that 

must be overcome is that the platform that the remote file system is running on may 

be entirely different from the local file system. Data representation may be different, 

file naming conventions may be different, directory structures may be different, and 

so forth. In order to overcome these differences we have to have well-established rules 

about how the information is to be presented and the protocols to be used for exchang-

ing the information. In most cases the rules and protocols are de facto rules that are 

established by one platform vendor to allow their systems to interoperate. Other ven-

dors will create packages to access these systems from other platforms. Sometimes 

these rules become open standards, as with  network file system  ( NFS;  see Section 

13.4.2), and sometimes they are reverse engineered by other vendors. Whatever the 

case, the remote system will do the accessing of the directories but the information 

must be mapped into the context of the client OS. For example, if the client is a Win-

dows system, then the metaphor of the remote file system is that of a “drive letter.” 

Initially, these letters were used in DOS to indicate real drives on a system. Remote 

file systems use the same convention, assigning any drive letter that is not used for a 

local resource. In contrast, UNIX sees all file systems as a tree structure, including 

pseudo-directories like proc and dev. So mapping a remote file system in UNIX-like 

systems simply involves adding (or replacing) a directory node in the file system tree 

structure with a node that identifies itself as pointing to a remote resource. 

 From a programmer’s point of view, remote mounting of file systems is a pow-

erful tool. Generally speaking, the program is not aware of any difference between 

a local file and a remote file. Without making any modifications to programs at all 

they are capable of operating over a network. Unfortunately, this is not always a wise 

thing to do. Consider the case of a database software program accessing a database 

file that is remotely mounted across a network. When searching the indexes for data, 

the database program will end up reading and writing large amounts of data across 

the network. In a fast LAN with light traffic the performance might be acceptable, 

but if the connection is a WAN or there is considerable network traffic, then it might 

not be a good idea. In this case it would be far better to run the database program on 

the remote machine and send SQL commands across the network, getting back only 

the final answers. Even better would be to use commands previously stored on the 

remote server. Of course, it is not always possible to anticipate all queries so they can 

be stored in advance on the server. Sometimes ad hoc queries are necessary. 
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 Letting a node in a file system become a reference to a remote file system causes 

a slight problem. Path names now become more difficult to parse. Without these 

remote reference nodes in the file system tree, parsing a path name was fairly simple. 

Given a path like /fred/work/expenses, as the OS parsed down the string, each “/” 

represented a move to another directory in the local file system. But with nodes 

possibly representing remote file systems in the tree, the file system must check at 

each level to see whether the node was a local directory or a remote file system and 

perform the appropriate lookup. 

 Another problem with remote mounting is that two different clients may mount 

a given remote directory at different points in their local file system. In Windows 

systems two users might assign the same remote file system to a different drive letter. 

In UNIX-like systems they might mount the same remote file system at a different 

logical node in their local file system. Then if a process on one user’s machine passed 

a path name to a process on the other user’s machine the second machine would not 

be able to find the file because the path is different. Administrators can mitigate this 

problem by defining standardized mounting scripts that run at user login time and 

provide more consistent path naming for all users for commonly accessed resources.    

 13.4 MULTIPLE FILE SYSTEMS AND REDIRECTION 

  As in many other instances, an OS will present to the API an abstraction of a file. 

The program should not be aware of what the file system is like. There are likely to 

be performance differences if the wrong file system is used for an application, but 

the coding of the application should not be affected. That is really a system engi-

neering issue. If the application is designed for accessing a file randomly and the 

file system supports random access, then the application should be unaware of any 

other differences. In most systems it will be necessary for the OS to support several 

different file systems. If for no other reason, it is necessary because different file 

systems are best suited for different media. For CDs there is normally only ISO-9660 

to consider, although a few very early CDs were created in proprietary formats. For 

floppy disks it is almost a given that the OS will need to be able to read and write 

FAT12 floppy formatted disks derived from MS-DOS. But Mac and UNIX formats 

are widely used as well. Even with hard drives it will sometimes be desirable to 

support a format other than the native format of the OS. This often happens when a 

system is upgraded to a new OS or a new version of the same OS. Even if the OS is 

the same, the new version may have a new wonderful file system that comes with 

it. When the upgrade is first performed, however, the file system will still be the old 

format. Usually a separate step is then needed to convert the old file system format 

to the new format. Not infrequently a system needs to contain two different OSs and 

be booted into different ones depending on the current need. Today it is even becom-

ing common to see a virtual OS running two different client OSs at the same time 

and supporting different file systems on different drives. It may still be desirable to 

access all of the file systems on the disc drives regardless of the OS currently in use. 

For all of these reasons OSs will need to support a number of different file system 

formats.  
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 13.4.1 Virtual file systems 

 UNIX developers created a mechanism exactly for the purpose of transparently sup-

porting multiple file systems on the same system at the same time. It is called the 

 virtual file system,  or  VFS.  VFS was a separate layer added to UNIX on top of the 

file system module. Actually, it was loaded in a system with multiple file system 

modules supporting different file systems. VFS supported the same API as the exist-

ing file systems so that applications would not have to change.  Figure 13.3  shows 

the interface between applications and the file system both before (a) and after (b) 

VFS was introduced. When a request was passed to the VFS layer it would examine 

the request by looking at the nodes in the file system tree and determine which file 

system module was the correct module for this file system. It would then pass the 

request to that module. When the file system module was finished with the request 

it would return control to the VFS module, which would then return control to the 

application that had called it. 

 13.4.2 Network file system 

 VFS was also used to redirect file system requests to remotely mounted drives using 

the NFS protocol developed by Sun Microsystems. This process was alluded to 

under the topic of remote mounting earlier.  Figure 13.4  shows how this mechanism 

works. The client system is shown on the top of the figure. The application makes 

file requests through the standard file API. The VFS system realizes that this is a 

request for access to an NFS file that is being served on another system. That system 

is the NFS server shown at the bottom of the figure. The VFS layer on the client 

machine therefore sends the request to the NFS client system. It uses a remote pro-

cedure call mechanism to solve the problems of heterogeneous OS environments. 

This is discussed further in Chapter 17. The client system sends the request across 

the network to the NFS daemon that is running in the NFS server system. The NFS 

daemon takes the request and sends it to the VFS layer on the server system. The file 
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is accessed as requested as though the client were local, and the data are sent back to 

the application running on the client system. 

 The requests made by the application are redirected by the NFS client software 

to the system running the NFS server, so we say that the model being used is a  redi-

rector.  This is a common technique, being used in other OSs as well. NFS is nearly 

completely transparent to a client application. But before the files can be accessed by 

the client application, the directories on the NFS server must be mounted so that the 

application can find the file. This step is not transparent, because the user (or the appli-

cation) must designate the server. In UNIX-derivative OSs this is done with a mount 

command. The mount command will specify the name of the remote system and a 

directory on that system as well as a local directory. The remote directory will thereaf-

ter appear to be a part of the directory tree in the local file system and to all operations 

of any applications it will be transparent that these files are actually remote. 

  13.5 MEMORY MAPPED FILES 

  An alternative file access mechanism is found in many OSs, memory mapped files, 

discussed earlier in Chapter 11 on advanced memory techniques. This mechanism is 

very different from the standard metaphor of a file. Because it is so different it has 

some characteristics that make it very useful in certain situations. When an application 

process uses a memory mapped file it tells the OS the name of a file to map and the 

OS creates a byte-by-byte mapping of the addressing space for the file into the l ogical 
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addressing space of the process. So the first interesting characteristic of a memory 

mapped file is that all of the mechanisms of the file system are not used to address 

the space. Instead, the application treats the memory mapped file as a large array and 

uses subscripting or pointer arithmetic to address the file. The virtual memory manager 

then keeps track of which portions of the file space are needed in physical memory, 

tracks changed pages, and writes them to the disk as required. These mechanisms use 

hardware support and are therefore much more efficient than the mechanisms of a file 

system. As you may recall, because of potential interactions with paging, normal file 

processing either locks pages into RAM and thereby inhibits the performance of the 

paging system or copies the I/O buffers into the kernel space before doing the I/O. 

Mapping the file onto the paging mechanism avoids these problems. Applications are 

also freed from having to do any memory allocation. 

 The second interesting characteristic of a memory mapped file is that multiple 

processes are allowed to memory map the same file at the same time. (Interestingly, 

because of the virtual memory hardware they do not have to map the file into the 

same logical memory address.) This creates a very efficient method for interprocess 

communication. In fact, the “file” does not actually have to exist. Both processes 

can name a temporary file purely for the purpose of interprocess communication. 

However, the memory mapped mechanism does not do any synchronization. If there 

is a possibility of conflicting operations being performed by multiple processes, then 

some external synchronization mechanism must be used to protect the critical sec-

tions of the processes. Another limit of the memory mapped file mechanism is that 

the mapped files cannot easily grow in size. It is sometimes possible, but requires 

careful remapping of the area. A third limitation is that there is no provision for 

doing asynchronous I/O. Since the paging hardware is doing the reading and writing 

transparently to the application, the I/O is blocking. When a page fault occurs the 

process will be blocked and will not be aware of it. One final precaution is that if the 

file is larger than the available logical addressing space, then the mapping must be 

carefully positioned over the file address space.   

  13.6 FILE SYSTEM UTILITIES 

  All OSs come with a handful of utility programs and included among these are 

always a group of programs for working with the file system. Some are designed to 

use while the OS is running. They include mundane things like making a new direc-

tory and deleting a file. These programs are often run from a command-line inter-

face.  Table 13.3  lists some common file system utility programs for DOS/Windows 

and UNIX-like systems. Later versions of most OSs use mostly a GUI interface and 

the commands do not have a name that most users are aware of. Note that some of 

the commands do not exist in all versions of DOS/Windows or in UNIX/Linux. 

 Those utilities are primarily things that a user decides to do. Other utilities 

are necessary as well that do things that may be important to the users but are not 

done to satisfy any real need of the user. Rather, they do things to the file system to 

confirm their integrity or improve the performance. Under DOS and Windows there 

were two verification utilities known as scandisk and checkdisk. UNIX-like systems 
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have a similar utility known as fsck. Besides verifying the consistency and integrity of 

the file system, these utilities will optionally attempt to repair faults that they find. Win-

dows also has a utility known as defrag, which reorganizes the files in a file system to 

improve the performance of the system. This problem was discussed earlier in the sec-

tion on linked file allocation. The backers of UNIX-like systems claim that the designs 

of their file system preclude the need for defragmentation utilities. The fact that such 

utilities are not being marketed suggests that this claim is at least fairly accurate. 

 Some things that look like utilities are actually built-in commands in the OS com-

mand interface. For example, under DOS or Windows there are no executable files 

that execute the commands dir, del, time, type, and so on. These functions map very 

closely to supervisor calls in the OS API, so that the command interpreter (command

.com in the DOS case) has these functions built-in and no external module is needed. 

This saves both disk space and time to load an external program into memory.   

  13.7 LOG-BASED FILE SYSTEMS 

  System failures are fairly rare, but they do happen. That is why those file system 

verification utilities were created. When an OS closes normally it will record an indi-

cation of a normal shutdown to the file system. When the OS boots it will check to 

see if the system was shut down normally or if it crashed. Traditionally, if the system 

had crashed, then before mounting the file system the OS will run the file system 

integrity checker. If a system that crashes is being used by only one individual, then 

the likelihood that anything was actually happening at the time of the failure will be 

low. Even in a fairly busy server there is not a high risk of loss. Any server failure is 

likely to cause problems for more people than a crash on a single-user system. Still, 

TABLE 13.3 Some File Commands

Purpose of Utility DOS/Windows UNIX/Linux

Change file permissions attrib chmod

Combine files backup tar

List files in a directory dir ls

Copy a file copy cp

Delete a file del rm

Delete a file system subtree deltree rm –R; rmdir

Edit a text file edit vi

Format format fdformat/ mkfs

Move or Rename a file move/rename mv

List a file type less

Change the working directory cd cd; chdir

View a file one page at a time more more

Create or edit disk partitions Fdisk cfdisk, parted, etc.

Make a new directory md, mkdir mkdir
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the single user would rather not lose anything in any circumstances. OS developers 

searched for a way to make file systems more resistant to failures. 

 When a block has been added to a file and the file is closed, then several things 

may have to happen. We will certainly have to write out records containing the data 

block. We may have to find the next free block, update the free space information 

to show this block was used, update any directory entry for the file to show the last 

time the file was written, and so on. We want all this information to be updated in 

an atomic fashion—either all of it should reach the hard disk or none of it should. 

In applications we call this  transaction processing.  OS file systems that operate in 

such a manner are called  log-based,   log-structured,   transactional,  or  journaling 

file systems.  In such systems, anytime metadata is to be updated, the system will 

first write a record to a log file that describes all the updates that are going to be 

made. Whenever the system starts it will check the log file to see if there was a trans-

action pending. If so, the system checks to see if all the steps of the transaction were 

successfully applied. If not, then the system will attempt to finish the transaction. If 

it can, then all is fine and we have dodged a bullet. If the transaction can’t be finished 

for some reason, then the transaction will be aborted. We will have lost that last 

block of data that was to be written to the file, but the file system is safe from further 

corruption. Running with a file system with corrupt metadata would be disastrous. 

 Of course, nothing is free, and the price we pay for the security of a log-based 

file system is a performance hit. Since we take the time to write the transaction log 

every time before we write the metadata, we will see decreased performance in the 

system. Also, the transaction that is logged does not necessarily include the actual 

user data, though some OSs do include application data in the transactions. On the 

other hand, if a system has many files, then when it crashes we would have to do a 

complete file system scan to verify the integrity of the metadata before resuming sys-

tem operation, and on a large server this could literally take hours. So it is normally 

preferable to slow the system response a bit in order to maintain integrity continu-

ously. This is especially true in a single-user system where there is often lots of spare 

CPU and disk time for this task while the user is typing or thinking. As a result, most 

file systems developed in the last few years are transaction based. This includes JFS 

for OS/2, HFS Plus for the Mac OS, NTFS for the Windows NT family, and many 

systems for Linux, including Ext3, ReiserFS, XFS, and JFS.    

   13.8 SUMMARY 

 In Chapter 12 we covered the concepts of file sys-

tems and how they fit in an OS, including many pos-

sible alternative designs. Real-file systems reflect 

design choices about mechanisms included in them. 

We looked at several case studies of modern OS file 

systems. These brief overviews showed how some 

contemporary OSs use the mechanisms discussed in 

the earlier chapter. We then discussed other issues 

related to file systems, beginning with mounting a file 

system. We continued with special topics like the 

reasons behind virtual file systems and related con-

cepts and the purpose of memory mapped files. We 

addressed some of the utility programs an OS must 

provide to manage file system information. We then 

covered the ideas behind transactional or log-based file 

techniques, which make more reliable file systems. 

 In the next chapter we cover the lower levels of 

the I/O system, primarily disk operation scheduling.  
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  REVIEW QUESTIONS 

    13.1 Why was the FAT12 system designed with such 

small pointers?  

   13.2 The FAT organizations do not require any separate 

mechanism for tracking free space. Why not?  

   13.3 In the Windows NTFS, the directory entry for a 

file might not contain a pointer to the data blocks 

for the file. Why not?  

   13.4 Why do UNIX/Linux i-nodes not contain a file 

name?  

   13.5 When does an OS mount the file system on a 

removable disk drive?  

   13.6 Why are CDs mounted differently than removable 

disk drives?  

   13.7 When a remote file system has been mounted by 

an OS, how does the remote file system appear to 

the user and to application programs?  

   13.8 The virtual file system layer was used to allow 

access to remote file systems. It had a more gen-

eral purpose, however. What was the purpose?  

   13.9 Briefly describe why memory mapped files are 

more efficient than normal I/O.  

   13.10 Under the heading of File System Utilities we dis-

cussed some utility commands that do not exist as 

utilities on the system. Why do they not exist?  

   13.11 Briefly explain what it means to say that a file sys-

tem is transactional or log based.    
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   14.1 INTRODUCTION 

  In the last chapter we looked at input and output from the way a user or an applica-

tion programmer would look at it—what are the capabilities and services that the OS 

provides to the upper layers, what are the data structures needed to perform these 

services, and how are these functions performed? In this chapter we look in the lower 

layers to see how these things are done. In particular, the lowest layer of any file sys-

tem is a collection of device drivers and interrupt handlers. In earlier chapters we 

discussed how I/O capabilities started with simple devices and structures and have 

progressed to more complex systems and services. We take a closer look at modern 

hardware and the OS organization necessary to manage these devices effectively and 

economically. 

 In  Section 14.1  we introduce the topic of lower-level input and output manage-

ment, with a special focus on secondary storage and disk drives. Next, in  Section 14.2  

we discuss some broad classes of I/O devices and how they differ.  Section 14.3  

describes some general techniques used in support of I/O devices. In  Section 14.4 , we 

then explore the physical structure of disk drives, and in  Section 14.5  we discuss the 

logical organization of the information stored thereon.  Section 14.6  covers the topic of 

 14  14 
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RAID, wherein assemblies of disks are used in special configurations to achieve greater 

throughput and/or reliability. The very important topic of  scheduling disk operations 

for optimum performance is covered in  Section 14.7.   Section 14.8  is about a special 

type of device controller called a DMA controller that can significantly decrease the 

CPU load of I/O operations. This section also discusses some disk drive features that 

affect OS behavior. In  Section 14.9  we conclude with a chapter summary.   

  14.2 DEVICE CHARACTERISTICS 

  There are some categories of input/output that broadly divide them into groups that 

are treated differently by OSs. We discuss a few of those categories.  

   14.2.1 Random access versus sequential access 

 In this chapter we are focused almost exclusively on secondary storage devices, spe-

cifically disk drives. At one time magnetic tapes were used for secondary storage 

on large mainframe computers. When personal computers were first developed they 

also often had tape drives as the only secondary storage devices—in this case it was a 

quarter-inch cassette tape drive that was originally developed for audio use. But tapes 

have the unfortunate characteristic that they can’t be read randomly. To get to any 

particular piece of data on the tape you have to pass over all the other data between 

where the head is now and where it needs to be. Even on very fast tape drives this 

could take several minutes. Fortunately, disk drives don’t have that characteristic. 

Because of this difference we speak of disk drives as being “random access” devices. 

However, as we will see when we later look at disk drives in more detail, this does 

not mean that the time to access the data is independent of the  location of the data. 

This term is merely a reflection of the contrast with using a tape drive as the main 

secondary storage device.  

  14.2.2 Device classes 

 Most OSs broadly divide devices into three classes: block, character, and network. 

Each of those classes has substantially different characteristics and each class can 

be abstracted in a meaningful way.  Table 14.1  gives some information about these 

classes. 

TABLE 14.1   Characteristics of Linux Device Classes 

Block Character Network

Random access Yes No No

Seek backward Yes No No

Transfer unit Block (⫻ 512) Character Packet

Software File System/Raw Device Protocol
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  Block devices 

 A block device is read or written one block (a group of bytes, usually a multiple of 

512) at a time. Such devices include all sorts of disk drives and tape drives, for exam-

ple. The size of a block is determined partly by the hardware, since disk controllers 

can only read or write whole disk sectors, but also by the system administrator when 

the file system is set up. Normally, the block size will be some small multiple of 

the physical sector size—typically 4 or 8 KB. These devices often support random 

access directly to any block on the device, that is to say that blocks may be read 

or written in any order. File systems typically reside on block devices and are the 

normal mechanism for accessing these devices. There are caching mechanisms in 

place for random access block structured devices. Sequential access block devices 

use double buffering, as explained later. Occasionally, some software needs to access 

these block devices directly rather than by using the file system. This is called  

raw I/O.  Examples of such software include utilities for maintaining or examin-

ing the file system itself (e.g.,  fsck  for Linux and UNIX) and software that places 

extraordinary demands on the secondary storage and is sophisticated enough to 

include a preferred mechanism for caching or for scheduling disk operations (e.g., 

very demanding database servers).  

  Character devices 

 Character mode devices transfer data a single byte at a time. They include printers, 

keyboards, mice (and other pointing devices), and so on. They support most of the 

same basic kinds of operations as a block mode file: open, close, read, and write. To 

perform an operation that doesn’t fit the semantics of the file system model (e.g., 

reading the status of a printer), a program can use the  ioctl  system call. Character 

mode devices obviously cannot support seeking backward. For example, one cannot 

read the character typed on the keyboard 20 characters previously, or a character 

printed on the previous page. Some character devices will allow skipping characters 

in a forward direction. Character mode devices are never cached, though they may 

have a buffer.  

  Network devices 

 Network devices do not fit at all well with the traditional semantics of file opera-

tions. The problem is that applications waiting for input from a network never know 

when or even if the data might be available. A company might create a website with 

high hopes for selling widgets but never receive a single hit on the site. For this rea-

son, network devices have an entirely different set of interfaces than do block and 

character devices with their read and write operations.     

  14.3 I/O TECHNOLOGY 

  In general, there are two ways that an I/O system can go about its work. Most large 

systems have many functions going on more or less at the same time, and the only 

way to cope with them all is to use an interrupt system such as was described in 
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Chapter 2. However, an alternative approach is often used in smaller systems with 

low-power CPUs, that of  polling.  In a polling system the control of the OS is written 

in a single large loop in which the OS will check the status of each device in turn to 

see if it needs attention. This technique is often used in imbedded devices or simple 

handheld games where only a few devices are available and checking them in turn 

is simpler than setting up an interrupt architecture and undergoing the overhead of 

context switching involved in servicing interrupts.  

      General Techniques Used in I/O Systems 

 There are several general techniques that are used in I/O systems. Before delving 

into other I/O system details we cover some of those general techniques.   

  14.3.1 Buffering 

 When we are inputting data into a computer system we typically are reading from one 

device and writing to another. For example, a user is writing a document by keying 

it on a keyboard and the computer writes it to disk. At another extreme we might be 

backing up our hard drive to a tape drive. In each case we will use a technique called 

 buffering.  A buffer is a portion of memory where we store a record that will be used in 

an I/O operation. There are several reasons why we might use a buffer. The first might 

be the size of the transfer. The user writing a document is producing a single character 

at a time. However, we can’t write a single character to a disk. The smallest unit of 

access is a sector. Block devices like disk and tape drives can only transfer data in large 

blocks. So we use a buffer to hold the characters that the user is keying until we have 

enough to fill a sector. Then we write the sector to the disk and start a new sector. 

 In this particular situation the disk is probably fast enough that we can write the 

buffer and empty it to receive the next keystroke before that keystroke could possibly 

arrive. However, suppose that the difference in speeds between the devices were 

much smaller—say a factor of three or four. In this case we might resort to a slightly 

different technique,  double buffering.  We will assign two buffers to the process. We 

will first fill one buffer and then start the operation to write it to the output device. As 

we start the write we will begin using the second buffer for the incoming data. By the 

time the second buffer is full the write of the first buffer should be finished and we 

can start to write the second one while we start to fill the first one again.  Figure 14.1  

shows this process. In  Figure 14.1a  we see that Process A is filling Buffer 1 and 

Buffer 2 is waiting. In  Figure 14.1b  Process A has filled Buffer 1, so it is now filling 

Buffer 2 and Buffer 1 is being written to the disk drive. 

 Another reason we would use buffers might be that we are dealing with two 

devices that are both block access devices, but the devices have a different block 

size. For example, Ethernet network adapters typically transfer a maximum 

block size of about 1,500 bytes. Token Ring adapters would allow a maximum trans-

fer size of about 18,000 bytes. If a packet was being transferred from a Token Ring 

connection to an Ethernet connection we would have to use a buffer to hold the 

Token Ring packet while we were breaking it up into multiple Ethernet packets to 

send out. (There are other complications to this activity as well, but they are beyond 

the scope of this text.)  
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  14.3.2 Caching 

 One of the most profound techniques in computer systems is caching. It is used 

both in the hardware and in the software. Its purpose is to make a larger, slower, but 

cheaper memory appear to perform at the same speed as a smaller, faster, and there-

fore more expensive memory. As was discussed in Chapter 2 and again in  Chapter 11, 

caches work because processes do not actually access memory  randomly. Instead, 

they operate according to the principle of locality of reference. This principle says 

that a process is more likely to reference memory addresses that are near to those 

it has already referenced than it is to reference addresses that are not. For exam-

ple, most of the time a process runs instructions sequentially rather than branching 

around randomly. Subroutines are often called, but many instructions are typically 

needed to set up the next subroutine call. Also, processes perform linear searches 

through sectors, arrays, strings, packets, and so on. The other aspect of the locality 

principle says that once a process has referenced a memory location it is more likely 

to reference it again than to reference another random location. Again, typically a 

process might work for some time to initialize a table, accessing many of the fields 

in the table.  

  14.3.3 Blocking of small records 

 One final general technique used in an I/O system is that of blocking. Blocking is 

packing several logical records into one physical block to write to a device. It is 

somewhat similar to buffering between devices with different block sizes. Consider 

a system that was originally designed to use punched cards but was converted to run 

on magnetic tape. The record layouts are probably all very near to the 80-character 

size of the punched cards. It is certainly possible to write 80-byte records to a tape 

drive, but it is not very efficient. There is a gap between each tape record to allow for 

the time it takes the drive to get the tape moving to the right speed and then to stop 

the tape between records. This gap would hold many 80-character records and would 

thus waste much of the tape. By simply packing 10 records into a block and writing 

it to the tape in one operation, we save considerable space. A similar use of the term 

“blocking” is used on a disk file system where we will often allocate several  sectors 

(a) Process A is filling Buffer 1
and Buffer 2 is waiting.

Buffer 1

Buffer 2

Process
A

(b) Process A is now filling Buffer 2
and Buffer 1 is being written 

to the output device.

Buffer 1

Buffer 2

Process
A

  FIGURE 14.1  

Double buffering.   
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as a single block. This technique is used only because our file system  pointers were 

not large enough to address all the sectors on some new large disk drive, so we 

 allocated multiple sectors at a time. We will still normally read and write single sec-

tors to the disk drive, however.    

  14.4 PHYSICAL DISK ORGANIZATION 

  Before we discuss the software that controls the disk drives we will review the hard-

ware design so that we can see how the nature of the hardware dictates some of the 

software design.  

   14.4.1 Sectors, Tracks, Cylinders, and Heads 

 In Chapter 3 we showed a floppy disk in Figure 3.2. Hard disks are similar. In 

  Figure 14.2  we show some additional concepts. Here we see two platters stacked 

on a spindle so that they rotate together. Four arms reach out over the platters, each 

containing a magnetic read–write head. The arms can move in and out. With the 

arms stationary in any given position the platters will rotate so that a ring of a disk 

surface will pass under the head. This ring is called a  track.  The four arms are con-

nected together so that they move in and out as a unit. This means that there will be 

four tracks that the drive can read without moving the arms, one for each head and 

surface. This group of tracks is called a  cylinder.  Of course, if there are more platters 

Logical Cylinder

Track

Sector

Spindle

Head
Assembly

Read–Write
Head

Disk Platter

Rotation

  FIGURE 14.2  

A hard disk.   
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and more heads there can be any number of tracks in a cylinder. A stack of 16 platters 

is about the maximum one will find in modern drives. 

 A track is logically divided into  sectors.  As we mentioned before, disk drives 

are block devices and will only transfer a complete unit of data rather than individual 

characters. The sectors are the smallest unit of data that a disk drive will transfer. In 

almost all cases, for a given disk drive all the sectors on the drive will be the same 

size. On most modern hard disk drives these sectors contain 512 bytes of data plus 

some additional information. Other sector sizes are available, however, notably 256, 

1,024, or 2,048 bytes. Almost always the size is an even power of 2. CDs using the 

ISO 9660 standard use 2,048-byte blocks. 

 This arrangement of disk drive hardware leads to the concept of a disk address 

which could be specified by the cylinder, head and sector numbers, or  CHS address-

ing.  A disk with C cylinders, H heads, and S sectors per track has C  ⫻  H  ⫻  S sectors 

in all, and can normally store C ⫻ H ⫻ S ⫻ 512 bytes. For example, if the disk label 

says C/H/S  ⫽  4,092/16/63, then the disk has 4,092 ⫻   16  ⫻  63  ⫽  4,124,736 sectors, 

and can hold 4,124,736  ⫻  512  ⫽  2,111,864,832 bytes (2.11 GB).  

  14.4.2 Sector count zones and sector addressing 

 The number of bits that can be stored on a magnetic track is directly proportional to 

the linear distance that passes under the head. A hard disk drive rotates at a constant 

speed. The circumference of the outer tracks is longer than that of the inner tracks, 

so more information can be stored on the outer tracks than on the inner tracks. Older 

disk drives used the same timing on all the tracks, so the bits on the outer tracks 

were longer than those on the inner tracks. This was a waste of potential bits. The 

electronics in the disk drives has gotten more sophisticated, and drives now include a 

separate computer. As a result, most drives produced since the mid-1990s have used 

a different technique for the timing called  zone bit recording  ( ZBR ). They divide 

the disk tracks into zones of tracks with a similar size and change the timing for the 

tracks in each zone. As a result, they place more sectors in the tracks in the outer 

zones and fewer sectors on the tracks in the inner zones. 

 Since the number of sectors on a track was no longer constant for the whole 

drive, the idea of addressing a sector with a CHS format no longer worked, so 

 something had to change. But since some software was heavily oriented to the CHS 

concept, it was desirable to try to keep as close to that format as possible. A CHS 

disk address was 24 bits, divided as follows:

              cylinder number     0–1023     (10 bit)   

   head number     0–254     (8 bit)   

   sector number     1–63     (6 bit)       

 So the largest disk address that could be expressed with CHS addressing was 

8 GiB. In order to conform to the interface pattern of the older drives, newer drives 

continued to use the pattern of CHS addressing, and the OS was told that the drive 

had some very large number of cylinders, heads, and sectors. The drive would take 

those parameters and compute a  logical block address,  or  LBA.  This simply means 

the sectors of a disk are sequentially numbered starting with zero and every sector is 
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identified by its LBA number. The drive would then recompute the actual physical 

address of the block desired based on the varying number of sectors in each zone. 

BIOS routines and drives were developed that allowed the OS to ignore the artificial 

CHS format and pass an LBA address directly. 

 Eventually the drives got so large that the maximum LBA address that could be 

specified was not large enough to address the entire disk drive. In order to accommo-

date these larger drives new address formats were specified that allowed either 28- or 

48-bit addresses to be used. This results in a disk size limit of 128 GiB or 128 PiB, 

respectively, assuming the standard 512 bytes per sector.  

  14.4.3 Low-level formatting 

 When disk drives are originally manufactured they contain no information what-

soever. The sectors that we want to access do not yet exist. A special writing mode 

must be invoked to have the disk actually write the bytes on the disk that define 

the location of the sectors. This mode is called  low-level formatting.  Each sector 

will contain a header that identifies the cylinder, head, and sector numbers of that 

 sector. The sector will be blank and a checksum will be appended to the sector. 

(More  information about checksums in  Section 14.5.3 .) With older drive technolo-

gies the user was expected to do this low-level formatting. Thankfully this is now 

done by the manufacturers.  

  14.4.4 Speeds: Seek, transfer, and buffering 

 One of the most important factors in OS performance is the hard drive  seek time.  It 

is the time it takes the drive to move the head assembly from one track (or cylinder) 

to another. In most modern systems the CPU is idle much of the time, waiting on 

the disk drive to transfer needed information. The biggest factor in the time taken 

to access the information is physically getting the read–write head to the location 

of the sector. There are several possible ways to measure seek time. The measure 

we are interested in is the average seek time, but for simplicity we will just refer 

to it as seek time since it has become an industry standard for specifying disk drive 

performance. Leaving aside some early developments in the field, the seek time of 

disk drives has changed very little. The rate of change is about  ⫺ 8% per year. This 

works out to a drop of 50% over 10 years. For about the last 30 years this has been 

quite accurate. Today the average consumer drive has an average seek time of about 

6–12 milliseconds. The highest performance drives are about half that, ranging down 

to about 3 ms. 

 A related factor is the rotational latency. Assume that we are looking for a par-

ticular sector and we seek to the right track. When the head assembly arrives at the 

right track it will stop. There are several sectors on a track and we are looking for a 

particular one. (We might be going to transfer several sectors, but we will have speci-

fied that the transfer starts at some particular sector number.) Most of the time the 

next sector that will pass under the head will not be the one we are looking for. On 

the average we will be in the wrong place by one-half the rotation time. This delay 

is referred to as  rotational latency.  The rotational latency varies inversely with the 
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rotation speed.  Table 14.2  shows the most common rotation speeds for disk drives 

and the associated average rotational latency. 

 Until fairly recently the rotational delay was largely ignored since it was not 

very easy for the OS to monitor the rotational position, and the seek time was so 

large that the rotational latency was not a big factor. Notice, however, that this delay 

is now about the same magnitude as the seek time. As a result, the rotational latency 

is beginning to be considered in disk scheduling algorithms. We have more to say 

about this later in the chapter.    

  14.5 LOGICAL DISK ORGANIZATION 

  An application program typically views secondary storage as a set of files filled 

with records. At the lowest level the I/O system sees disk drives as masses of sec-

tors. There needs to be some basic organization of the information on a disk drive so 

that the I/O system can find the information it needs. Because personal computers 

are so widely available we describe the organization of a disk drive for a personal 

computer. Other platforms will use different organizations, but they will have similar 

elements.  

   14.5.1 Partitions 

 When IBM released their first PC it did not even have an option for a hard disk—

floppy disks were the only disk media. When the first hard disks were available they 

only contained 10 MB or so. They used a file system organization called FAT12, 

which was discussed in the last chapter. In a fairly short time it was clear that this file 

system would not support the newer drives that were rapidly becoming available. We 

previously discussed the idea of allocating multiple sectors at a time as one solution 

to this problem. Another simple solution was to allow a single disk drive to be divided 

into multiple pieces and have each piece treated as a separate drive. Then the old file 

  TABLE 14.2 Rotational Latency as a Function of Drive Rotation Speed 

Spindle Speed (RPM) Average Rotational Latency (ms)

3,600 8.3

4,200 7.1

4,500 6.7

4,900 6.1

5,200 5.8

5,400 5.6

7,200 4.2

10,000 3.0

12,000 2.5

15,000 2.0
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system could still be used. This solution is called  partitioning.   1   A utility program 

called  FDISK  was provided with DOS that could be used to divide the disk into sepa-

rate partitions. The original version of FDISK allowed a drive to be divided into only 

four partitions and only one could contain a bootable OS. With Windows NT a new 

version of FDISK was released that allows more partitions to be defined on a single 

drive and allows multiple bootable (a.k.a. primary) partitions. This is a good step 

forward, but of course it is incompatible with older OSs that were created before this 

change in format. Most modern OSs support this format of extended partition tables. 

For some time most other OSs simply used the same utility program because it was 

not used often and there was not much of a way to enhance the features. Today, most 

OSs provide their own partitioning utility program and many have a GUI interface. 

 As it turns out, creating partitions is a useful technique for other things as well. 

For one thing, it is a simple way of allowing a machine to contain two different oper-

ating systems and still allow each OS to assume it has sole control over the disk drive. 

In  Figure 14.3 , we see a disk drive divided into four partitions containing three dif-

ferent OSs. In normal situations each partition will contain a file system. But another 

use for partitions is for applications that are so specialized that they want to manage 

their own I/O rather than utilize the default file–oriented I/O that the OS provides. 

An example might be a database management system. Such systems are heavily 

 optimized for the specific access patterns they expect to see and would not be nearly 

as efficient if they could only use the standard OS file I/O support. This API is known 

as raw I/O and it allows the application to treat the partition as an array of blocks that 

can be accessed randomly rather than through the normal metaphor of a file. 

 Eventually, new file systems were developed with larger pointers that could sup-

port very large hard drives. Some applications required a larger file space than could 

be covered with a single hard drive of the sizes that were available at the time. As a 

result, the mechanisms of partitioning can be reversed, allowing two or more hard 

drives to be combined with the partitioning mechanism and to appear to the upper 

layers of the OS as a single drive.  Figure 14.4  shows a single partition spanning parts 

of two disk drives.  

1  This technique did not originate with PC systems. It was earlier used on some mainframe systems for 
some of the same reasons alluded to here.  
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  14.5.2 Boot block 

 In Chapter 3 we discussed the concept of booting the system from a disk drive. When 

a computer is reset it will normally try to bootstrap an OS from one or more of the 

devices on the system. Most PCs contain a special memory that is powered by a bat-

tery. It is commonly referred to as the  CMOS memory,  or sometimes as the BIOS. 

Settings in this memory may specify a set of several different devices that the system 

is allowed to boot from, among other things. The system will try to boot from them in 

the order specified. A given device may not work when the system tries to boot from 

that device. For example, a floppy drive or a CD-ROM drive might not contain a disk. 

A hard drive might not have an OS installed on it yet. If the OS cannot boot from one 

device, then the next device is tried. If they all fail then a diagnostic error that no nor-

mal user would understand is displayed on the video screen. If the OS finds a drive 

that it can boot from, the bootstrap program in the hardware ROM will load the first 

sector from the device and begin executing the code that is contained there. 

 The information about the partitioning of a hard disk is stored in a part of the 

first physical sector on the disk, regardless of how the partitioning is set up. This 

 sector is called the  master boot record  ( MBR ) or  boot block  of the disk and it 

contains the  partition table.  It also contains a short program that looks in the parti-

tion table, checks which partition is currently the  active partition,  and reads the first 

sector of that partition. That partition’s boot sector contains another small program 

that reads the first part of the OS stored on that partition and starts executing it. The 

remainder of the bootstrap program will read in parts of the kernel and mount the 

root of the directory structure that is found in that partition. 

 After the OS bootstraps itself into memory it will mount the file system that 

it finds on the boot volume. The details of mounting the file system depend on the 

OS and the format of the partition that the OS was booted from. It may mount other 

partitions as well.  

  14.5.3 Error detection and correction 

 When information is written to a hard disk unit, extra information is written with it. 

This information is used for detecting errors and often for correcting them as well. 

There are various schemes for creating and using this information. The schemes 

used depend on the type of errors expected in the drive, the amount of reliability 

desired, and the intended relative price of the drive. The more elaborate techniques 

produce a more reliable drive. At the same time, they require more complex calcu-

lations and therefore they require a faster and more powerful processor in the disk 

drive. In addition, the more complex techniques store more redundant information 

on the disk, so they will hold less user data. Thus, for a given amount of user storage 

they will require a larger drive. But error correction allows manufacturers to make 

faster, higher-capacity drives that appear to the user to be error-free. The more the 

technology for storing data is pushed, the more sophisticated the error correction 

mechanisms need to be to reach the same level of reliability. 

 A large body of research and development has been done on the calculation of 

this redundant information, called  error detection codes  ( EDC ) or  error  correction 
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codes  ( ECC ). The techniques all compute a small number that is a function of the 

contents of the data block. The computation is made when the data is written to the 

disk and the computed value is written along with the data. When the data is read 

back from the disk, the function is computed again and compared with the value 

stored during the write operation. If the two values do not agree, then an error was 

made either on the read or on the write. (Errors on the read may reflect that the data 

has been damaged since it was written.) 

 The simplest error detection codes include a  cyclic redundancy check,  or  CRC,  

also sometimes called a  longitudinal redundancy check,  or  LRC.  In this case 

the function calculated is expressed as a polynomial. For example, the  polynomial 

X 4   ⫹  X 2   ⫹  1 would be 10101. The binary digits represent the multiplier of the expo-

nents of the values of the polynomial. We could write X 4   ⫹  X 2   ⫹  1 more exactly like 

this: (1  ⫻  X 4 )  ⫹  (0  ⫻  X 3 )  ⫹  (1  ⫻  X 2 )  ⫹  (0  ⫻  X 1 )  ⫹  (1  ⫻  X 0 ). The calculation can 

be thought of as dividing the data in the block by the binary number expressed by 

the polynomial. After this division the remainder is the CRC. This type of calcula-

tion is in widespread use in computing, especially in networking. Because the types 

of errors expected in networks are somewhat different than those expected in a disk 

drive, the polynomials used are usually different. Several different commonly used 

polynomials are shown in  Table 14.3 . Sometimes errors are likely to occur in a num-

ber of bits in a row. Such situations are called  burst errors.  A polynomial code can 

detect any error burst of a length less than or equal to the length of that polynomial. 

This type of calculation has been used for some time because a simple, fast hardware 

implementation using shift registers was developed. 

 CRC-12 is used for serial communication lines of 6-bit characters and generates 

a 12-bit CRC. Both CRC-16 and CRC-CCITT are used for 8-bit serial communica-

tion and result in a 16-bit CRC. The last two are widely used in the United States and 

Europe, respectively, and give adequate protection for most applications. CRC-CCITT 

is used in disk drives. CRC-32 generates a 32-bit CRC. The CRC-32 polynomial is 

used in IEEE-802 networks such as Ethernet, Token Ring, and wireless LANs. 

 More complex calculations are used in more modern drives. These functions 

include Hamming and Reed-Solomon codes. They produce more redundant informa-

tion than the various CRC functions. A typical drive might store 12 bytes of redun-

dancy code with a 512-byte data block and be able to correct burst errors as long as 

22 bits. In particular, Reed-Solomon codes are used in CD-ROM drives where they 

store 24 data bytes and 8 error correction bytes in a frame for error correction pur-

poses. This higher level of redundancy is required since the media is easily damaged 

and the drives are often used when a system is in motion, such as a car CD player.    

  TABLE 14.3 Several Commonly Used CRC Polynomials 

                   CRC-12:     X 12   ⫹  X 11   ⫹  X 3   ⫹  X 2   ⫹  X  ⫹  1   

   CRC-16:     X 16   ⫹  X 15   ⫹  X 2   ⫹  1   

   CRC-CCITT:     X 16   ⫹  X 12   ⫹  X 5   ⫹  1   

   CRC-32:      X 32   ⫹  X 26   ⫹  X 23   ⫹  X 22   ⫹  X 16   ⫹  X 12   ⫹  X 11   ⫹  

X 10   ⫹  X 8   ⫹  X 7   ⫹  X 5   ⫹  X 4   ⫹  X 2   ⫹  X  ⫹  1      
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  14.6 RAID 

  Modern hard drives are very reliable. We measure the reliability in terms of the  mean 

time between failures,  or  MTBF.  However, we can improve on this reliability to 

give even longer lifetimes by using multiple drives in special ways. The techniques 

we describe in this section are called  redundant arrays of inexpensive disks  or 

 RAID.  Some writers replace the term “inexpensive” with “independent,” but the 

former term is the one that was used when the term “RAID” was first coined by 

the researchers who systematically investigated the use of multiple-drive arrays. The 

original purpose was to show that by combining inexpensive drives in clever ways 

the reliability of much more expensive drives could be achieved with less money. 

But these days even inexpensive drives are very reliable. However, an important 

point in these techniques is that in order for them to work well, the failure modes 

of the drives must be independent. This means that the drives must be operating on 

separate I/O channels and I/O controllers as well to achieve optimum reliability and 

performance. If not, the techniques will still keep data from being lost, but the data 

might be unavailable while a shared component is replaced. 

 Support for RAID configurations is often done in the disc controllers.  However, 

RAID does not have to be done in a special controller. For some of the RAID 

 configurations it is possible to control the RAID process with a software module in 

the OS. Today, RAID 0 and 5 are commonly offered in software in most OSs. These 

configurations are explained in the next section. 

 The original RAID specifications included six configurations. They are called 

RAID 0 through RAID 5. Most of these configurations will be more reliable than 

using individual drives. Some of them also yield improved performance in some 

areas and worse performance in others. RAID 0 is the exception since it yields only 

improved performance on reads.  

   14.6.1 RAID configurations 

 The following figures show several RAID configurations. Each is intended to repre-

sent a storage system that holds the same amount of user data. In each case the drives 

are all of the same size and we are showing how many drives it takes to yield four 

drives’ worth of storage with that configuration. The higher levels of the OS will 

see each configuration as a single drive with four times the storage as the individual 

drives of which it is made. There are three main techniques used in RAID. These are 

mirroring (copying data to more than one drive), striping (breaking files across more 

than one drive), and error correction (redundant data is stored, allowing detection 

and possibly fixing of errors). Different RAID configurations use one or more of 

these techniques. 

  RAID 0 — Striped disk array  without parity. This configuration utilizes  data 

striping,  spreading out blocks of each file across multiple disk drives, but no redun-

dancy. The developers of the RAID technology used the term  strip  rather than the 

term  block,  but in practice the implementations are always based on blocks. It 

improves performance because multiple reads and multiple writes can be carried 

out in parallel. But it does not increase fault tolerance. In fact, this configuration 
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actually decreases reliability, since if one drive fails then all data in the array is lost 

because the OS is treating the array of drives as a single drive. Having  N  drives spin-

ning means that the configuration is  N  times as likely to fail. If the RAID support is 

being provided by the disk controllers, then the OS has no access to the remaining 

drives at all. If the support is being done by the OS device driver software, then the 

remaining drives would theoretically still be accessible, but it is unlikely that any 

files would reside completely on the remaining drives. See  Figure 14.5 . The numbers 

in the drives show the logical block numbers (seen by the file system) as they are 

written to the drives. 

  RAID 1 — Mirroring  (a.k.a.  duplexing ). In RAID 1 there is a duplicate set of 

disk drives. When any data is written to one drive it is also written to the duplicate 

(mirror) of that drive. See  Figure 14.6 . The shaded set of drives is the mirror set. 

Assuming that a primary drive and its mirror can be read at the same time, this con-

figuration provides twice the read transaction rate of single disks. It has no effect on 

the write transaction rate because each individual block must be written to both the 

primary and the secondary so the effect of any parallelism is lost. If one drive fails, 

the data will be safe but the performance will be reduced when accessing that mirror 

pair because only one drive will be available to service that request. This is the most 

expensive RAID configuration. 

  RAID 2 — Error-correcting coding  and  RAID 3 — Bit-interleaved parity.  

These two techniques turned out to be prohibitively expensive and inferior to other 

techniques so we will not describe them here. For high performance they also required 

that the spinning of the drives needed to be synchronized. They are not in use today. 

  RAID 4 — Dedicated parity drive.  This configuration provides block-level 

striping (like Level 0) with a parity disk. The parity block that is written to this drive 
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covers the other blocks in the stripe, in this case, blocks 1–4. See  Figure 14.7 . If a 

data disk fails, the parity data is used to create a replacement disk. A disadvantage 

to RAID 4 is that every time a block is written the parity block must also be read, 

recalculated, and rewritten. The parity disk therefore becomes an I/O bottleneck. It 

provides almost the same reliability as RAID 1, but if a drive fails the performance 

hit will be much worse. However, the cost is a single extra drive, so it is much supe-

rior in price if the configuration has several drives in it. 

  RAID 5 — Block interleaved distributed parity.  RAID 5 is very much like 

RAID 4, except that rather than keeping the parity block always on the same drive 

the parity block is assigned to the drives in a round-robin fashion. See  Figure 14.8 . 

This technique removes the problem of excessive use of the parity drive that we saw 

with RAID 4. Level 5 is one of the most popular configurations of RAID. 

 The following RAID configurations were not part of the original RAID speci-

fication. These have been fairly widely accepted and can generally be regarded as 

standard. 

  RAID 6 — Independent data disks with double parity.  Provides block-level 

striping with parity data distributed across all disks as in RAID 5, but instead of a 

simple parity scheme it computes parity using two different algorithms at the same 

time. Several methods of calculations, including dual check data computations (  parity 

and Reed-Solomon), orthogonal dual parity check data, and diagonal  parity have 
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been used to implement RAID 6 configurations. See  Figure 14.9 . The two  different 

parity blocks are shown as P&Q functions of the blocks (or strips) in the stripe and 

are shown in contrasting shades. RAID 6 requires an extra disk drive (over RAID 5) 

but it will tolerate the loss of two drives at the same time. 

   RAID 0 ⫹ 1 — Mirror of stripes.  In this configuration two RAID 0 stripes are 

created, and a RAID 1 mirror is created over them. This is shown in  Figure 14.10 . 

The striping provides improved performance and the mirroring provides reliability. 

Generally, it will perform better than RAID 5. 

   RAID 1 ⫹ 0  (a.k.a.  RAID 10 )— Stripe of mirrors.  Multiple RAID 1 mirrored 

drive pairs are created, and a RAID 0 stripe is created over these. See  Figure 14.11 . 

This configuration has performance and reliability characteristics similar to RAID 

0 ⫹ 1. However, the performance and reliability is slightly better when a drive is lost. 

With RAID 0 ⫹ 1 the loss of a drive means that the entire stripe set is lost, so the other 

stripe set will have to take on all the work. With RAID 1 ⫹ 0 only the drive that loses 
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its mirror pair will have to do all the work for that pair. The work on the other pairs 

can be distributed across both drives as before.  

  14.6.2 RAID failures 

 We could build a RAID 0 ⫹ 1 configuration by using two controllers to build the stripe 

sets and using software at the device driver level to mirror the two stripe sets. In this case 

the failure of a single drive would result in the loss of the entire stripe set, as described 

earlier. However, if the controllers running RAID 0 ⫹ 1 were aware of the entire con-

figuration, then when drive 3 failed it would continue striping to the other four drives in 

“stripe set A,” and if drive 6 later failed it would use drive 2 in its stead, since it should 

have the same data. This would theoretically make RAID 0 ⫹ 1 just as fault-tolerant as 

RAID 1 ⫹ 0. Unfortunately, most controllers aren’t designed this way. 

 When a failed drive is replaced the system will have to rebuild the information 

that was on the lost drive. In RAID 0 ⫹ 1, if drive 2 fails, the data on five hard disks 

will need to be rebuilt, because the whole “stripe set A” will be wiped out. In RAID 

1 ⫹ 0, only drive 2 has to be rebuilt. Again here, the advantage is to RAID 1 ⫹ 0. 

 There is also a plethora of other RAID configurations that are proprietary. They 

include many trademarked terms. They may or may not be of some benefit in a 

particular situation. Analysis of test configurations and especially their behavior in 

a variety of failure scenarios is a nontrivial matter but might be warranted in special 

situations. 

 When a single drive fails in RAID configurations more advanced than RAID 0, 

the array can continue to run. Sometimes the performance is lower and sometimes 

we simply have more exposure to risk. For example, loss of a drive in a RAID 1 

configuration mostly means that we are now at some increased risk since failure of 

the other drive in that pair would mean that we had lost all of that information. We 

can continue to run with only one loss. We will notice some drop in performance in 

some reads since we only have one drive to do the reads where we had two to share it 

before the loss of the drive. At other times we will probably have to shut the system 
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down because the performance of the system would be unacceptable. For example, 

in RAID 6, if we lose a drive, the performance of a write will be very bad because we 

will have to read all the other drives to be able to calculate the parity for the missing 

drive. This would probably be only marginally acceptable. However, as soon as the 

broken drive has been replaced we can begin the processes of rebuilding the infor-

mation that was on the bad drive. 

 This brings up a point that for RAID configurations we will want to use drives 

that are “hot swappable.” This means that the failed drive can be unplugged from 

the system and a new drive plugged in without turning off the power on the system. 

While this technology is well understood, it does require special hardware that is 

more expensive than normal drives. The decision will probably hinge on whether the 

running system is critical to some operation or whether it is only the existence of the 

data that is critical. In the latter case we might prefer to take some system downtime 

rather than pay extra for the drives. 

 In some cases the running system is a requirement. Systems in hospitals, for 

example, may be critical to patient care and the loss of the system might mean the 

loss of life. In such cases we might choose to go a step further and have a spare drive 

on the shelf ready to plug in if one of the drives fails. In extreme cases we may have 

the drive in a  warm standby  situation—already plugged in to the drive rack but not 

powered on or at least not spinning. When the OS detects a failure it can turn on the 

power to the drive, spin it up, and begin the rebuild process. Of course, disk mirror-

ing is the extreme form of  hot standby.     

  14.7 DISK OPERATION SCHEDULING 

  We mentioned earlier that seek time was one of the most critical measurements of 

a disk drive as far as performance of the system is concerned. If we have a large 

number of disk operations to do, it turns out that the order in which we handle the 

requests can have a significant impact on overall system performance. The perfor-

mance of CPUs has been increasing by a rate of roughly 50% per year for at least 

the last couple of decades. The performance of disk drives has only increased at a 

rate of about 10% per year during the same time. It is reasonable to assume that we 

can spend some of that CPU speed to improve the performance of the disk systems. 

To illustrate the point, let us assume that we have a series of disk requests to service. 

A seek operation on the disk drive moves all the heads together to some track or 

 cylinder. So we will just look at track numbers, and realize that we are actually posi-

tioning (potentially) many heads at the same time—certainly at least two. Accord-

ingly, we will take a list of track numbers that have come to the I/O system from 

various processes that are running on the system. We will look at the seek time nec-

essary to perform those requests and then see if we can improve on that. In all these 

cases we assume that the disk drive has 80 tracks, that the head is presently resting at 

track 28 and we have the following set of requests in a queue:

   17, 30, 24, 37, 15, 27, 11, 75, 20, 5     
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   14.7.1 FCFS 

 The simplest way to handle these requests would be to take them as they are in the 

queue,  first in, first out,  or  FIFO.  (This is also often known as  first come, first 

served,  or  FCFS. ) This algorithm is appealing because it is simple to implement. 

It also has the advantage that it is  fair.  It is fair in the sense that the process that 

asked first gets served first. However, this does not necessarily give the best overall 

 system performance. Moreover, it might not even give the best performance to a sin-

gle application, as we will see later. In the case of the FCFS algorithm, the OS will 

move the head from track to track in the order that the requests are in the queue. So 

it will move from 28 to 17, then to 30, then to 24, and so on. In processing this queue 

in this order the system will seek over 227 tracks. This is shown in  Figure 14.12 . 

Since we have no idea about the rotational latency involved, we will use the number 

of tracks that the system has to seek over to service the requests as our measure of 

how efficient the algorithm is.  

  14.7.2 Pickup 

 A variation on FCFS that is mentioned by some authorities is called  pickup.  In this 

algorithm the requests are generally taken in order as with FCFS, but as the system 

is moving the head it will stop for any tracks that are being passed over that have a 

request in the queue. (In Linux this is called the  Noop  scheduler.) For example, given 

the requests in our sample, it would start at track 28 and begin moving toward 17, the 

first request in the queue. But on the way it would pick up tracks 27, 24, and 20. The 

total sequence would be:

   27, 24, 20, 17, 30, 37, 15, 11, 75, 5    

 This sequence would result in a total seek time of 191 tracks, a considerable improve-

ment over FCFS.  Figure 14.13  charts the Pickup algorithm.  
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  14.7.3 SSTF 

 Next, we will look at an algorithm called  shortest seek time first,  or  SSTF.  (It is 

also sometimes known as  shortest positioning time first,  or  SPTF. ) When we used 

similar algorithms in other parts of an OS such as virtual memory page replacement 

or process scheduling we usually said that they were optimum, but that we could not 

really use them because we could not predict the future. In the case of disk schedul-

ing, however, we can use this algorithm because all the requests we are concerned 

with are there in the queue for us to look at. Again, we start with the head at track 28. 

The nearest entry on the queue is 27, so we next move the head to that track. Now 

the next nearest is back at 30, so we move there. As is shown in  Figure 14.14 , the 

sequence is

   28, 27, 30, 24, 20, 37, 17, 15, 11, 5, 75   

for a total of 133 tracks. This is almost twice the performance of FCFS. However, 

it is not very fair. The first request in the queue, the one that has been waiting the 

longest, is not serviced until the queue is about half empty. Also notice that the head 
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kept passing back and forth across the middle of the disk. As a result, a process that 

was accessing blocks that were located in the middle of the disk would tend to get 

better service than one that was accessing blocks located at either extreme on the 

drive. Also, notice that while this algorithm is running, more requests will probably 

be made of the OS and will get placed in the queue with the rest. Since processes in 

the middle are getting favored, they will also get more opportunities to place addi-

tional requests, compounding their advantage. This algorithm can be looked at as 

giving priority to some requests—notably those closest to the current head position. 

As with any prioritization mechanism, we have to be concerned about starvation of 

the lower priority requests. The outlying blocks can be gradually raised in priority 

so that they will be serviced sooner. This variant of SSTF is sometimes called  aged 

shortest seek time first,  or  ASSTF.  The algorithm simply adjusts the actual seek 

time by subtracting a weighting factor times the time that the request has been in 

the queue. If T eff  is the effective (or weighted) seek time for a request, T  pos  is the 

actual time the seek would require, W is a weighting factor we want to assign to old 

requests, and T wait  is the time the request has been in the queue, the aging formula 

would be:

  
T T W T

eff pos wait
⫽ ⫺ ⫻

  14.7.4 LOOK 

 The next algorithm we will study is commonly called  LOOK.  Another popular name 

for it is the “ elevator algorithm. ” In this algorithm, once the OS starts seeking in 

one direction it will not reverse the direction it is seeking until there are no other 

tracks to access in that direction. In other words, the system “looks” ahead to decide 

when to reverse the seek direction. This is analogous to the way an elevator works. 

Once it starts going up it will only go in that direction until it has no more requests 

in that direction. It will then reverse itself. (As with many analogies it is a bit weak, 

because an elevator also considers whether the request from a floor is to go up or 

down and will not stop for users wanting to go up if it is going down. But an OS only 

needs to position the head to the track. The seek request contains no notion of direc-

tion of the seek.) Let us again look at our reference string. Let us also assume that 

the OS starts seeking in the direction of the lower numbered tracks. In this case the 

order of the seeks would be

   28, 27, 24, 20, 17, 15, 11, 5, 30, 37, 75   

for a total of 93 tracks. This is shown in  Figure 14.15 . 

 If the OS had started in the direction of the higher numbered tracks the sequence 

would be

   28, 30, 37, 75, 27, 24, 20, 17, 15, 11, 5   

for a total of 117. This is shown in  Figure 14.16 . In either case it would be better 

than FIFO or SSTF. However, for every time it moves toward either end it will pass 

over the middle of the disk both coming and going; it still tends to favor blocks in the 

middle of the disk, so it is less fair than FIFO but not as bad as SSTF. 
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  FIGURE 14.15 

 LOOK starting down.   

  FIGURE 14.16 

 LOOK starting up.   
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 Some authorities also discuss a separate algorithm called  SCAN.  This algorithm 

is the same as LOOK, but instead of reversing direction when no more requests are 

in the queue in the direction that is currently being traveled, this algorithm would 

have to move all the way to the end of the disk in the direction of the travel. Since 

nobody would actually implement this algorithm we will ignore it, mentioning it 

only for completeness, since some of the other algorithms are called something 

related to SCAN.  

  14.7.5 C-LOOK 

 In an effort to make a fairer algorithm, a variation on the LOOK algorithm was 

devised. When the disk head has moved to the last track in one direction, instead 

of reversing direction and seeking to the nearest track, the OS will seek to the 

track that is the furthest in the queue in the opposite direction. It will then begin to 

 perform the seeks moving back in the direction it was originally traveling before. 

The objective is to remove the unfair advantage given to files in the middle of 
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the drive since on one pass over the middle the disk is not servicing any requests. 

The name of this algorithm is  C-LOOK,  short for  circular-LOOK  (some authori-

ties call this method  cylindrical-LOOK  or  cyclic elevator ). The thought behind 

the name is to consider the address space (track numbers) of the disk as being 

wrapped around a cylinder, so that after seeking to track 0, say, the next track to 

be considered is track 80. Unfortunately, this algorithm results in a very long seek 

in the middle of servicing the queue. But this long seek is not quite as bad as it 

might seem. Normally, we quote the average seek time when we talk about the seek 

 performance of a disk drive. However, seek times do not increase linearly with the 

distance of the seek. Just as with a moving object, the arm on a disk that holds the 

heads will start slowly and gradually get faster and faster. As a result, a seek across 

the entire disk will not be double the average seek. It will be somewhat quicker 

than that. Since it is not possible to predict this exactly, we will ignore it and simply 

make the same sort of calculation that we have made before, stipulating that things 

will not really be quite this bad. Again, the exact sum will depend on whether we 

start in the direction of the lower numbered tracks or the higher numbered tracks. 

Because of the long seek in the middle of the sequence, the difference between the 

two directions will not be as large a percentage as it was with LOOK. As seen in 

 Figure 14.17 , the sequence is

   28, 27, 24, 20, 17, 15, 11, 5, 75, 37, 30   

for a total of 138. In  Figure 14.18 , we see a sequence of

   28, 30, 37, 75, 5, 11, 15, 17, 20, 24, 27   

for a total of 139. The attraction of C-LOOK is that it offers lower  service 

 variability —the performance of any given disk request is more predictable in gen-

eral and less dependent on file placement on the disk. C-LOOK is better than LOOK 

only when the disk access level is a very high load since it reduces the starvation 

problem. As with the SCAN algorithm mentioned above, some authors discuss a 

C-SCAN that also travels to the extremes of the disk before reversing directions.  
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  14.7.6 F-SCAN 

 Another disk scheduling algorithm is commonly called  F-SCAN.  Despite the name, 

it is a variant on the LOOK algorithm. This mechanism uses two queues, say X and 

Y. Queue X is started first and the system freezes request queue X when a scan is 

started. Any requests that come in while this scan is under way are put into queue 

Y. After the scan with queue X is finished, queue Y is frozen and another scan is 

started with it, any incoming requests now going into queue X. This mechanism is a 

compromise between the fairness of FCFS and the efficiency of LOOK without the 

expensive long seek of C-LOOK. It thus avoids long periods of starvation.  

  14.7.7 N-step SCAN 

 One last variation of the LOOK algorithm batches requests in groups of  N  requests. 

One batch is scanned before the next batch is processed. Like F-SCAN, N-Step 

SCAN prevents indefinite postponement (starvation). The other purpose of N-Step 

SCAN is to set an upper bound on how long a request can go without being serviced. 

It is thus useful for very heavily loaded systems, and for systems with a large number 

of soft real-time applications. Note that the effect of N-Step SCAN is heavily depen-

dent on the size of  N.  If  N  equals 1, then N-Step SCAN is effectively FCFS, and if 

 N  is large enough that almost all requests are serviced in the first scan, then N-Step 

SCAN is equivalent to LOOK.  

  14.7.8 Linux schedulers 

 Linux has more scheduler variations available than most OSs. We look at three that it 

currently supports. They are variants of the sorts of algorithms we have been looking at. 

  Anticipatory scheduler 

 The  anticipatory scheduler  was for a time the default scheduler in Linux. It merges 

requests like the Pickup algorithm and uses a one-way elevator sequence like the 

LOOK algorithm. A unique feature is that it tries to anticipate reads by holding off a 
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bit after a synchronous read command if it thinks a process might ask for more data 

nearby. If a new request comes in from the last process it may reverse the seek direc-

tion if the distance is not too great.  

  Deadline scheduler 

 The  deadline scheduler  also merges requests like the Pickup algorithm and uses a 

one-way elevator sequence like the LOOK algorithm. It also imposes a deadline on 

all operations to prevent resource starvation. Linux returns immediately from a write 

request and holds the data to write in the cache. So the deadline scheduler will give 

priority to read requests as long as the deadline for a write request hasn’t passed. 

This is the preferred scheduler for database systems, especially if the disks are high-

performance drives.  

  Complete fair queuing scheduler (“cfq scheduler”) 

 The  complete fair queuing scheduler  also merges requests like the Pickup algo-

rithm and uses a one-way elevator sequence like the LOOK algorithm. In addition, it 

tries to give all processes using a particular device the same number of synchronous 

IO requests over a measured time interval. It is likely to be more efficient for mul-

tiuser systems than are the other schedulers. It is currently the default scheduler for 

most Linux distributions.   

  14.7.9 Sending commands to the controller 

  Tagged queuing  is a technique initially developed in the realm of SCSI disk drives. 

It is sometimes called  command queuing  or  native command queuing  ( NCQ. ) 

It basically delegates all or part of the task of disk operation scheduling to the disk 

controller. The device drivers for such drives pass all I/O requests directly to the 

drive controller and the controller does all the scheduling of the I/O operations. 

The theory is that the disk controller has a different level of information about the 

disk geometry and the current status of the disk mechanism and can therefore do a 

better job of scheduling multiple disk requests. Such migration of functions closer 

to the hardware is a phenomenon we often see in the OS world. Once a technique 

proves useful in the OS we start thinking about putting the function into the hard-

ware where it can often be done more cheaply and sometimes better and frees up 

valuable CPU and memory resources. In this case, the controller can do a better 

job because it is able to also consider rotational latency. When much of the work 

was initially done on these disk scheduling algorithms the seek time was much 

greater than the rotational latency. Improvements in the seek mechanism over the 

last couple of decades have meant that the seek time is now about the same as the 

rotational latency. (See  Table 14.2 .) In general, the OS does not have that much 

information about the  rotational position of a drive. In addition, because of sector 

zoning and LBA addressing the disk driver may not even understand the real geom-

etry of the drive. The controller, however, has all that information and can therefore 

use an algorithm that includes both rotational and seek time to arrive at an optimum 

 schedule. In many situations a performance increase of 30% has been reported, but 
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this depends highly on the details of the situation. Tagged queuing is implemented 

in most modern OSs. The technique is also now finding its way into the latest high-

performance ATA disk drives.  

  14.7.10 Which algorithm is best? 

 After all this discussion of disk scheduling algorithms it would seem reasonable to 

ask which algorithm is the best. Unfortunately, the answer to that question is one 

frequently heard in the computer business—“that depends.” In fact, there is no one 

algorithm that is the best in all situations. FCFS is the simplest and consumes the 

least resources. If a system is usually so lightly loaded that there are not multiple 

disk requests in the queue, then all algorithms behave the same—like FCFS. In this 

case no other algorithm would be justified. 

 However, many systems are moderately to heavily loaded, so we can’t get away 

with such an easy answer. In such cases FCFS will give high service variability 

and is thus generally the worst choice. The next question that needs to be asked, 

then, is what parameter are we trying to optimize? In most cases we are trying to 

optimize disk throughput. However, we saw earlier that the optimum throughput 

came at the expense of some unfairness to processes that were accessing files that 

were not in optimum places. These requests would suffer either significantly delayed 

response time or a variance in response time that was unpredictable and therefore 

unacceptable. Users can stand a long response if the program can warn them, but 

high  variance in the response time makes it impossible for the program to adequately 

warn the user. In most cases, then, some variation on the LOOK algorithm is prob-

ably the best. This assumes that your system does not contain new equipment that 

can handle the scheduling itself. If such hardware is available, then it can almost 

certainly do a better job than the OS can.    

  14.8 DMA AND DISK HARDWARE FEATURES 

  There are several special hardware features of disk controllers that need to be dis-

cussed as they will impact the design of OS device handlers.  

   14.8.1 DMA Controllers 

 Originally I/O controllers were designed to transfer one byte or one word of data 

at a time. The CPU would load control information into the proper registers. This 

information would include the type of operation (read, write, or control), a memory 

address, and possibly a device address. The CPU would then issue an I/O instruction. 

When the I/O operation was complete the controller would issue an interrupt and the 

CPU would set up for the next word or byte. This was acceptable for devices like 

keyboards, modems, and even for the early text-only CRTs that were on very early 

PCs, because very many instructions could be executed by the CPU before the next 

interrupt would occur. However, when devices began getting faster, the number and 

timing of interrupts began to overwhelm the CPU. 
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 As a result, an innovation was made in the design of the I/O section of 

 computers—a  direct memory access  controller, or  DMA.  The main CPU will give 

the DMA controller the same information it would have put into the registers before, 

plus it will add a length of the data to be transferred (in the case of a read or write). 

The DMA controller will take on the job that the CPU was doing before, except that 

when the device controller has finished transferring one word it will notify the DMA 

controller rather than interrupt the CPU. As each byte (or word) is transferred to or 

from the memory the DMA controller will decrement the count of the data to be 

transferred and increment the memory address to be used. When the count reaches 

zero the DMA controller knows it is finished and it will then interrupt the CPU. This 

technique greatly reduces the overhead of I/O on the CPU. Many modern controllers 

will have a DMA circuit built-in to the controller rather than sharing one with other 

controllers.  

  14.8.2 Other disk drive features 

 There are several other common features of modern disk drives that will have an 

effect on operating systems. The first is buffering in the disk drive. A common speci-

fication for the small disk drive of today is that it contains 8 MiB of RAM. This ram 

is used as a cache memory. In this case it can also be called a  track buffer.  The main 

limiting factors on disk drive performance today is the combination of the seek time 

and the rotational latency. In our discussions of caching we always mention spatial 

locality—the idea that when a program references a piece of data it is highly likely 

that it will soon reference data that is located near to the first data. If we were read-

ing a file sequentially and processing the blocks fairly quickly, then we might ask for 

sector 5 and begin processing it. We soon finish that sector and ask for sector 6. In 

the meantime, however, sector 6 has already begun to pass under the head, and we 

will have to wait for an entire rotation of the disk before we can read sector 6. Then 

the same thing will happen on sector 7, and so on. 

 So when we give a command to a modern disk drive to read a specific sector on 

a track it will most often read the entire track into memory once the head is over the 

track. If sector 10 comes up next it will begin reading and will read the entire track 

until it wraps around and reads up to sector 9. It will then return the sector we had 

asked for and hold those others in the cache buffer as long as it can, knowing that it 

is probable we will ask for some of them soon.  

  14.8.3 Sector sparing and sector relocation 

 Over time disk drives will start to fail. The process starts slowly, however, and may 

be very gradual at first. Occasionally, a brand new disk drive will have a few bad 

sectors at the outset. In order to cope with these failures, disk drives are typically 

formatted with a few “spare” sectors scattered around—perhaps one per track. These 

sectors are not originally part of the numbering scheme. Instead, they are held in 

reserve so that when a failure is detected the system can reassign them—that is, data 

from the old sector will be copied to the spare sector, and its number will be changed 

to match the failed sector. The failed sector will get a number that will not be used. 
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In some cases the drive hardware may perform this function. In other cases it is up to 

the device driver software to do the recovery and relocation.  

  14.8.4 S.M.A.R.T. 

 Sector sparing is a reactive technology. It addresses how we cope with failure when 

we find it.  Self-monitoring and reporting technology,  or  S.M.A.R.T.,  is a  predictive 

technology. It addresses how we might project a future failure and avoid it or  mitigate 

it. It is a standard interface through which a hard disk drive can report its status to 

the host OS, and provide an estimation of a future failure date. With  sufficient notice, 

a system or user can back up data prior to a drive’s failure. S.M.A.R.T. is defined 

for both ATA and SCSI environments. Originated by Compaq, it is under continuing 

development by disk drive manufacturers. 

 S.M.A.R.T. technology includes a set of parameters specific for each model of 

disk drives because drive architectures vary from model to model. Attributes and 

thresholds that detect failure for one model may not be useful for another model. 

A disk drive must be able to monitor many elements in order to have a thorough 

reliability management plan. One of the most crucial factors in such a plan is under-

standing failure modes. Failures can be divided into two classes: predictable and 

unpredictable. 

 Unpredictable failures occur quickly, like electronic and mechanical problems, 

such as a power surge that can cause chip or circuit failure. Improvements in qual-

ity, design, process, and manufacturing can reduce the incidence of unpredictable 

 failures. For example, the development of steel-belted radial tires reduced the num-

ber of blowouts common among older tire designs. 

 Predictable failures are characterized by degradation of an attribute over time, 

before the disk drive fails. This creates a situation where attributes can be  monitored, 

making it possible for predictive failure analysis. Many mechanical failures are 

 typically considered predictable, such as the degradation of head flying height, 

which would indicate a potential head crash. Certain electronic failures may show 

degradation before failing, but more commonly, mechanical problems are gradual 

and predictable. For instance, oil level is a function, or attribute, of most cars that 

can be monitored. When a car’s diagnostic system senses that the oil is low, an oil 

light comes on. The driver can stop the car and save the engine. In the same manner, 

S.M.A.R.T. gives the system administrators sufficient notice to start backup proce-

dures and save the system data. Mechanical failures, which are generally predictable, 

account for 60 percent of drive failures. This number shows a large opportunity for 

reliability prediction technology. With the S.M.A.R.T. system many future failures 

can be predicted, and data loss avoided.  

  14.8.5 A look into the future 

 Over the last two decades the performance of CPUs as measured in operations per 

second per dollar has increased by a factor of 100% per year. The cost of storing a 

megabyte of data has dropped from $70 to $1 over the same span. In addition, the 

transfer rate of disk drives has increased from one megabyte per second to over 



 Chapter 14 Disk Scheduling and Input/Output Management 325

300 megabytes per second. However, the limiting factor in our utilization of disk 

drives for secondary storage is the average seek time and the rotational latency. Each 

of these factors has only dropped about a factor of 10 in that same time frame. Fur-

thermore, the rotational latency is limited by the speed of sound at the outer tracks 

and this will not change. This means that these two factors now totally dominate the 

time it takes to randomly access any particular information on a hard drive. Having 

drives that are still very slow in relation to CPUs has pushed the performance of 

computer systems way out of balance. 

 On the OS side we have thrown large blocks of cache RAM at the disk drive 

in order to make the speed seem more like RAM. We also developed elaborate 

 scheduling algorithms to optimize the performance of the head positioning mecha-

nism. We are spending large amounts of our resources to manage these devices that 

are increasingly out of synch with the processors. 

 Tape drives were once the normal secondary storage device on mainframe com-

puters. By the 1970s they had vanished in that role and had been replaced by the disk 

drive. Tapes were relegated to tertiary storage because of the low cost of the media. It 

is becoming increasingly clear that the same thing needs to happen to the disk drive. 

It is not yet clear what that new class of devices will be, but we make a strong predic-

tion that within the next 5–10 years we will see a new class of storage devices avail-

able that will essentially have near random latency and costs below the disk drives 

of today. Two likely candidates are pure electronic memories and microelectrome-

chanical systems ( MEMSs ).  Hybrid hard drives  ( HHDs ) are already  available that 

incorporate flash memory as well as rotating media. Windows Vista can already uti-

lize extra flash memory as a high-speed extension to the cache memory. Much of the 

technology of this chapter will become obsolete and we will have to rethink how we 

use secondary storage. Perhaps we will do something more like the Palm OS does.     

   14.9 SUMMARY 

 In this chapter, we introduced the topic of lower-

level input and output management, with a special 

focus on secondary storage and disk drives. Next, we 

discussed some broad classes of I/O devices and how 

they differ. We described some general techniques 

used in support of I/O devices. We then explored the 

physical structure of disk drives, and we discussed 

the logical organization of the information stored 

thereon. We covered the topic of RAID, wherein 

assemblies of disks are used in special configurations 

to achieve greater throughput and/or reliability. The 

very important topic of scheduling disk  operations for 

optimum performance was covered. We addressed a 

special type of device controller called a DMA con-

troller that can significantly decrease the CPU load 

of I/O operations. We also discussed some disk drive 

features that affect OS behavior, drive reliability, and 

so on.  
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  REVIEW QUESTIONS 

    14.1 Distinguish between double buffering and caching 

as applied to disk systems.  

   14.2 True or false? The reason that disk scheduling 

algorithms traditionally ignore rotational latency 

is that it is so small compared to the seek time.  

   14.3 Briefly define a cylinder.  

   14.4 Which of these disk drive organizations provides 

increased performance but no redundancy?

    a. RAID 0  

   b. RAID 1  

   c. RAID 5  

   d. RAID 6  

   e. All of the above require the same number of 

drives.     

   14.5 Which of these disk drive organizations pro-

vided redundancy but at the highest cost in extra 

drives?

    a. RAID 0  

   b. RAID 1  

   c. RAID 5  

   d. RAID 6  

   e. All of the above require the same number of 

drives.     

   14.6 What is the advantage of RAID 6 over RAID 5?

    a. It is faster on a multiblock read.  

   b. It is faster on a multiblock write.  

   c. It can stand the loss of two drives at the same 

time.  

   d. It requires fewer extra drives.  

   e. None of the above is an advantage of RAID 6 

over RAID 5.     

        14.7 True or false? The C-LOOK disk scheduling 

algorithm gives about the same number of tracks 

seeked over regardless of whether the first direc-

tion selected is up or down.  

        14.8 At the end of Chapter 14 we discussed several 

mechanisms that had been introduced to increase 

the abilities of disk systems. Several were for 

performance and some were for reliability. 

Which of the following was  NOT  for increased 

performance?

    a. Tagged queuing (native command queuing)  

   b. Disk (controller) hardware buffering  

   c. Dynamic memory access  

   d. Sector sparing  

   e. All of the above were for increased performance.     

        14.9 What does the acronym CHS refer to?  

   14.10 What does the first sector on a PC hard disk 

contain?  

   14.11 If the FIFO algorithm is the fairest (by definition), 

why don’t we just use that?  

   14.12 Briefly describe the “pickup” disk scheduling 

algorithm.  

   14.13 Why was the concept of partitioning drives 

introduced?  
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   14.14 What is the function of a CRC or LRC on a disk 

drive?  

   14.15 What is the function of a ECC on a disk drive?  

   14.16 How is the C-LOOK scheduling algorithm an 

improvement over LOOK?  

    14.17 What is the main advantage of a DMA controller? 

   14.18 Some new disk drives support native command 

queuing or tagged queuing. What is that and why 

is it an improvement?  

   14.19 Some new disk drives support so-called S.M.A.R.T. 

What is that about?                            
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T
his part of the text deals with topics that are not found in all operating systems. 

One infamous computer hardware system officer noted that “the network is 

the computer.” This is a strange statement, but it does point to the importance 

that we today place on the connection of most of our computers to other computers 

in general and to the Internet in particular. So this part of the book deals with those 

aspects of operating systems that deal with networking, distributed systems, and the 

issues of security and protection that arise in such instances.

Chapter 15 deals with the basics of computer networking. This topic by itself 

is the subject of many computer science textbooks and a very active research area, 

so this treatment is very brief. It takes a top-down approach and deals mostly with 

only the hardware and protocols in use today. The Internet features heavily, of 

course. The topics covered include why we want to network computers, application 

layer protocols, TCP/IP, the Data Link layer, WANs, the Physical layer, and network 

management, including remote monitoring.

Simple single-user systems that were not connected to one another by networks 

often did not need protection and security mechanisms. As a result, early OSs did 

not provide many features in this area, if any. However, today we find that many 

machines have multiple users, especially in homes, and most machines are connected 

to local area networks or the Internet or both. So security is today an important con-

sideration, and Chapter 16 deals with it accordingly. The topics include authentica-

tion, authorization, and encryption.

After computers were networked we soon began to develop systems that include 

portions that ran on different computers, distributed systems. So this is the topic of 

Chapter 17. Again, this is topic that fills many books and courses, and much current 

research is being done in this area, so the treatment is also brief, as in Chapter 16. 

Subtopics include communication, processes, naming, alternative distributed system 

paradigms, synchronization, and fault tolerance.

Networks, Distributed Systems, 

and Security
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 W
e study operating systems because we cannot write large high-

performance applications without a sound understanding of the functions 

and mechanisms of an operating system. It is fair to say that today we 

study networks for the same reason—it is rare that a large application is written 

today that does not make some use of networking technology. What was true of 

operating systems in general is also true of networks. If we do not have a sound 

understanding of the basics of networking we cannot build and deploy large distrib-

uted application systems. 

 This chapter starts with a brief introduction to explain some of the many reasons 

why we want to have computers connected in a network. In  Section 15.2  we pre-

sent a layered model of network functionality, which is traditionally used in discuss-

ing computer networking.  Section 15.3  describes some typical protocols used in the 

application layer. Then in  Section 15.4 , we discuss the TCP/IP protocols as examples 

of the transport and network layers. In  Section 15.5  we present the topic of the Data 

Link layer in LANs as typified by Ethernet. We give an overview of WAN data link 

technology in  Section 15.6 .  Section 15.7  covers the technologies used in the Physical 

layer.  Section 15.8  is a brief introduction to the topic of network management. We 

conclude with a chapter summary in Section 15.9.  

 15  15 



332 Part 5 Networks, Distributed Systems, and Security

   15.1 WHY DO WE WANT TO NETWORK COMPUTERS? 

  At a more detailed level there are several reasons why we might want to build an appli-

cation that was distributed across a network. As computer systems were maturing the 

initial reason we wanted to use networks had to do with sharing access to expensive 

resources. At first, that resource was a mainframe computer and we accessed the 

computer with simple terminals rather than through a personal computer. We were 

accessing data that was on the mainframe and programs that ran there. Later, as local 

area networks began to become common, we started using them to access other shared 

devices—a departmental file server, an expensive laser printer, a pool of modems, 

and attached communication lines. These resources were too expensive to provide to 

each user, and were typically not used full time. Therefore, making them accessible 

through a network spread the cost over many users. A shared resource might not be as 

easy to use as a local one, but the price more than made up for that. Another specific 

instance of sharing an expensive device is backing up individual systems to a single 

machine that had a tertiary storage device attached—probably a tape drive. 

 As networks became more common it became apparent that there were some 

special things that could be done with them. One of these special things was building 

a system by combining several smaller machines in a redundant configuration so that 

if one of the machines was lost, the system would continue to function, even if in a 

degraded manner. 

 Sometimes we will distribute the computation of a process across multiple 

machines to speed up the computation. We divide the processing into smaller parts 

that can be handled by individual machines. In a similar way, it is possible to config-

ure multiple smaller machines into a system in such a way that additional machines 

can be added as the scale of the application grows. For example, this allows a com-

pany to start a website with a single machine and if the site is successful to add 

additional systems as the demand grows. Related to aggregating systems for speed 

improvement is the factor of cost. In some cases there are applications that simply 

could not be done at all with a single large system because of the mass of data and 

processing involved. Or in some cases a single large computer could do the job, but 

is not usable because of the cost. But systems can be designed using many smaller 

processors. Probably the first example of such a system is the SETI project. This 

project collects large amounts of radio telescope data and sends it out through the 

Internet to users who voluntarily process the data with a “screen saver” application 

that normally runs only in the background. The application is looking for signals 

that might represent intelligent life on another planet. Today, there are millions of 

registered users of the SETI screen saver. Viewed as a single, loosely coupled system 

operating in parallel on multiple streams of data, this is the fastest supercomputer in 

the world. There is no way that a nonprofit organization could afford to buy a single 

system that would have that much processing power, so without this technique they 

literally would not ever get the job done. SETI was the first such system, but today 

there are many other systems processing data doing research in cryptography, DNA, 

mathematics, gravity waves, and other scientific projects. We will visit this topic 

again in the next chapter on distributed systems. 



 Chapter 15 Introduction to Computer Networks 333

 After the great growth of the Internet in the last few years it has become clear 

that the most profound impact of networking lies in increased access to information. 

The relatively quick response time of the Internet has made practical the exchange 

of information in ways that were not economical before. An example is the idea of 

 “telecommuting”—working from home. Many jobs require frequent, ongoing interac-

tion between employees. To some extent this interaction can be closely approximated 

by email. Even closer interaction is available with instant messaging software—

an interactive “chat” facility. In other cases this interaction might require voice com-

munication, a “shared whiteboard,” or even videoconferencing. All of these can be 

done today through the Internet, provided enough bandwidth is available at a low 

price, and may enable more of us to work from a home office rather than commute to 

a central office, at least on a part-time basis. Thus, networking may contribute to the 

solution of some societal problems by lessening the consumption of resources (and 

the resultant pollution) necessary for commuting. 

 Other instances of sharing information over the Internet also exist. It may be 

possible for us to collaborate on a project with other persons who live in distant parts 

of the world. For example, consider those people who work together to create the 

libraries of utilities that make the Linux OS a complete system rather than just an 

interesting example of a kernel. It is probable that most of those people have never 

met in person. Most of them work together only through the Internet. 

 On a less intense scale, think about the average user of the Internet. Most of 

us now use email daily and frequently employ the resources of the Web to answer 

questions, find people, buy products, download software updates, do our personal 

banking and other financial transactions, and so on. Such uses would not be possible 

without the Internet. It initially existed largely for other reasons, but information 

sharing was always a primary feature. We suggest that in the future it will be likely 

that the majority of the applications you might work on will be running in multiple 

parts on multiple hosts, and you will not be able to design sound applications with-

out some understanding of networks and how they are used by operating systems.   

  15.2 THE BASICS 

   15.2.1 Models 

 In order to study and implement networks, models have traditionally been created 

that divided the subject into smaller topics by considering them as layers of soft-

ware. In these models each lower layer provides some set of services to the next 

higher layers. While there is generally pretty good agreement about what functions 

are performed in what layers, the models are not perfect and they are not always fol-

lowed exactly. As a result, functions are sometimes found in more than one layer. For 

example, we can find security functions available in almost every layer. In addition, 

in some cases it is useful to take a lower-level layer network protocol and run it as 

a layer on top of another higher-level protocol. In these cases the layer models can 

become quite confusing. These models are still quite useful in organizing our think-

ing and a large part of the literature about networking is structured around them, so 
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we discuss them briefly. Furthermore, OS software is often modularized along the 

lines of these layers. 

 The most widely known network layer model is called the  OSI model,  shown 

in  Figure 15.1 . It was developed by the International Standards Organization, or 

ISO. It was an abstract design that did not reflect any existing protocol, though a 

set of protocols was later designed around this model. At one point the U.S. Gov-

ernment even mandated the implementation of the protocol on all computer sys-

tems purchased by the government under the umbrella term “GOSSIP.” However, 

that effort never was very successful and was eventually abandoned. As an abstract 

model the OSI model has some problems, the most notable being that it has two 

layers that are almost never implemented as such, the Session layer and the Presen-

tation layer. 

 In response to the OSI model, another model was constructed as a description 

of the TCP/IP protocol suite, which already existed. This model focused heavily on 

the upper layers (TCP and IP, for the most part) and pretty much ignored the lower 

layers, apparently assuming that the hardware and drivers were merely commodities 

and that one just ordered them from a vendor. 

 In this chapter we use a common hybrid model that is roughly the bottom two 

layers of the OSI model and the top three layers of the TCP/IP model. This model is 

shown in  Figure 15.2 . The  Physical  layer defines the actual medium used for com-

municating and the techniques for getting the information on and off of the medium. 

The medium might be a metal wire or cable, an optical fiber or an electromagnetic 

signal. The  Data Link  layer is responsible for accessing the shared medium. It is 

concerned with packaging information in discrete packets and arbitrating access to 

the network media. Today, Data Link layer devices called bridges (or switches) are 

used for connecting devices as though each pair of devices were directly connected, 

so the function of media access arbitration is largely unused and growing more so. 

The  Network  layer is responsible for routing the information through a complex 

internet composed of multiple networks, often of differing Physical layer technolo-

gies. The  Transport  layer is responsible for creating a reliable connection between 

two network entities, though not all applications require either a connection or a 

guarantee of reliability. Finally, the  Application  layer consists of a process in one 

host exchanging data with a process in (usually) a different host. 

 In a device attached to the network there will be an entity at each layer that is 

responsible for the functions of that layer in that device. At the Physical layer this 

entity will be in hardware. Some functions at the Data Link layer may be in hardware 

as well. For most devices, the entities at the other layers are all software. Each entity 

relies on the entity in the layer below it to provide services to it through an API. In 

turn, each entity provides services to the layer above it. As a packet in a sending 

device travels down the layers from one entity to the next, each entity will add a 

small block of information to the front of the packet. This block is called a header. 

For example, a data packet might have an application header, a TCP header, an IP 

header, an Ethernet header, and a Physical layer header. As the packet flows up the 

stack in a receiving device each entity strips off the header for its layer and hands the 

packet to the next higher layer. These headers carry a dialog between the correspond-

ing entities in the sending and receiving devices. 

7 - Application

6 - Presentation

5 - Session

4 - Transport

3 - Network

2 - Data Link

1 - Physical

FIGURE 15.1 

The OSI network 

layer model.

FIGURE 15.2 

A practical network 

layer model.
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 This division of networking technology into layers has both good and bad 

aspects. On the good side, small modules are easier to understand, develop, and 

debug. They can be replaced with newer equivalent modules if improved versions 

are developed. Different organizations can specialize in different layers and develop 

better algorithms and implementations. On the other hand, it is extremely important 

that we have very good definitions of the interfaces between the layers and the dialog 

between the entities in the sending and receiving hosts. As a result, there are many 

different sources of standards. In some cases we have  de facto  standards where one 

vendor comes up with a good idea and other vendors follow the lead or some organi-

zation of vendors and users comes together and agree upon a standard. In other cases 

we have  de jure  standards, which technically have the force of law behind them. 

These standards are set by professional, national, or international organizations such 

as the IEEE, ANSI, and the ISO. In the networking arena many standards were cre-

ated by members of the  Internet Engineering Task Force  ( IETF ). Each of these 

standards is known as a  Request for Comments  ( RFC ). There is a website that 

contains these documents at  http://www.ietf.org/rfc.html.  From time to time we refer 

to an RFC that defines some aspect of the Internet protocols.  

  15.2.2 LANs and WANs 

 There are several different ways to view the variety of possible network technolo-

gies. Each different view will shed some light on the differences among networks 

and their performance characteristics. The first major characteristic we want to 

consider is topology—what is the pattern of connections between the individual 

machines? Part of the difficulty in understanding networks arises from the fact that 

the physical topology of a network might be different from the logical topology of 

the network. The first broad division of network topologies is between  local area 

networks  ( LANs ) and  wide area networks  ( WANs ).  1  ,    2 Generally speaking, in 

WANs the network connections are point-to-point. That is to say that when two sys-

tems are connected, the communication goes only between the two hosts and is not 

seen by any other host. The packets therefore do not need an address in them since 

there is only one device to read them. Since there are no addresses, there is no way 

to send a  broadcast  packet (one intended for all devices attached to the network) or 

a  multicast  packet (one intended for devices interested in one specific transmission 

stream). Frequently WAN links are  full duplex,  meaning that both of the hosts can 

transmit at the same time. In addition, since the link can be used in both directions at 

   1  Some networking texts also describe metropolitan area networks (MANs) as a different class, but the 
distinction is not useful in this context.  

   2  Some authorities specify that the difference between LANs and WANs is a matter of geography—
LANs being small in area and WANs being spread over a wide area. Actually, geography makes 
very little difference in the characteristics of connections. FDDI LANs can cover distances of over a 
hundred kilometers. Historically it was very common to find two modems sitting on top of one another 
connecting two hosts through a WAN mechanism with a wire that was only a foot or two long because it 
was the only interface that two systems had in common. This was technically a WAN connection but was 
certainly not distributed geographically.  
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the same time there is no need to arbitrate access to the media—a host that is ready 

to transmit just does so.

  On the other hand, LANs traditionally are broadcast connections. When two 

hosts are communicating with one another on a LAN their communication is across 

some medium that is shared among many devices. Devices communicating on a 

LAN therefore have to share access to the medium with all other devices connected 

to it. Since the packets must have addresses, it is possible to use special addresses 

like a  broadcast  or a  multicast.  And finally, since many hosts share a single link, it 

is necessary for the hardware to control access to the media. 

  Switching  is a fairly new technology that has blurred the distinction between 

LANs and WANs. Individual devices are connected directly to ports on a network 

switch using technologies such as Ethernet, which was originally used to connect 

those devices to LANs. However, the switch reads the addresses in the packets and 

forwards them only to the port connecting to the correct device. Thus, the devices 

connected to the switch do not share a medium as with previous shared access tech-

nologies, so the connection can be full duplex and any device can transmit at the full 

speed of the network as long as the switch can handle the traffic, and most of them 

can handle all that can be sent their way. However, the packets still have to have 

addresses and both broadcasts and multicasts are still supported.  

  15.2.3 Topologies 

 With both WAN and LAN networks there are multiple topologies by which many 

devices can be connected. In WANs we can have hosts connected in pairs in any of 

the following topologies:

     Linear ( Figure 15.3 )  
    Hierarchical ( Figure 15.4 , the top node is the focus point)  
    Star ( Figure 15.5 , the central node is the focus point)  
    Ring ( Figure 15.6 )  
    Partly connected mesh ( Figure 15.7 )  
    Fully connected mesh ( Figure 15.8 )    

FIGURE 15.3 

A linear topology.

FIGURE 15.4 

A hierarchical or tree 

topology.
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 Each of these possible topologies has some distinct characteristics. First, let us 

consider these topologies when used in a WAN. Each WAN connection between two 

devices is relatively expensive, so the linear, star, and hierarchical topologies have 

the lowest cost because they have the fewest connections. The linear topology has 

the longest path to get information to all nodes, so communication to all devices in 

the network can be somewhat slow. The hierarchical topology is used when all the 

network devices are attempting to reach some centralized service. It was very typi-

cal in the era of large mainframes. The ring and mesh topologies are progressively 

more reliable (assuming that communication can go both ways on a ring) because 

there is often a redundant path for communication. In particular, the loss of a single 

link will not result in a loss of communication with any host in a ring topology. The 

fully connected mesh topology is the most expensive because it has so many links. 

It is also the fastest because every node is only one link away from every other node 

and the most reliable because the loss of a link only means that the two nodes on the 

opposite sides of the broken link have to use one intermediate node to communicate. 

The partially connected mesh is a compromise and is fairly typical. It is the topology 

used in the Internet. Networks with redundant pathways require more complex rout-

ing decisions for the packets at the Data Link or Network layers. 

 In LANs the two most common forms are a linear bus and a ring. A linear bus 

looks somewhat like the bus shown in  Figure 15.3 , but is actually connected as shown 

in  Figure 15.9 . In  Figure 15.3  each node had a connection to the next node, and for 

a node on one end to communicate to a node on the other end the message had to be 

relayed through each intermediate node. In a LAN that is a linear bus topology, the 

bus is a separate medium and every node is connected to it. In order for the two end 

nodes to communicate, they merely have to gain access to the medium and then they 

can exchange their message directly. In a technical sense, a LAN in a ring topology 

does actually pass the message from host to host, but most of the hosts never process 

the message. Such LANs act as though each node were connected to the ring much 

like a linear bus, and when a device wants to send a message to another host it just 

waits its turn and transmits the message on the ring. The receiving host will read the 

message and hosts that are not addressed by the message will merely pass it along. 

 A sort of blending of these two technologies is also possible—a physical linear 

bus in which the access to the medium is controlled by passing around a logical 

token as though the LAN were a ring. This is called a token passing bus. There were 

two instances of such protocols. One, ARCNET ™ , was once widely used for small 

networks but today is mostly confined to special applications such as inside of auto-

mobiles. The other, 802.4, was primarily confined to a single industry, automobile 

manufacturing, and is not under further development today. 

A bit of confusion can arise in determining the topology of LANs. A ring may 

be physically connected to resemble a star, as shown in  Figure 15.10 . The box in 

the center of the figure is a central connection point. The media appear to run from 

each node to a central point, but the central point is not a node and the signal actu-

ally passes from node to node in the manner of a ring.    3 Similarly, a linear bus can be 

3 The central hub may contain a node for purposes of management and data collection, but the node is 
not a part of the hub function.

FIGURE 15.5 

A star topology.

FIGURE 15.6 

A ring topology.

FIGURE 15.7 

A partially connected 

mesh topology.

FIGURE 15.8 

A fully connected 

mesh topology.
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collapsed into a single concentrator, or hub, and appear to be a physical star or a phys-

ical hierarchical network, but the signals are broadcast throughout the network all at 

one time, so the electrical connectivity is that of a bus, not a tree or a star, in the sense 

that all the nodes will see the signal but will not have to relay it to another node.

 Today, most LANs are actually switched networks. Again, the network might 

look like a star topology, but the central box is a high-speed switch that reads the 

packets sent by connected devices and sends them only to the device addressed. 

Switches can typically forward all the traffic that can be sent to them on all ports at 

one time. This is known as  wire speed.  If the switch has many ports or the ports are 

high-speed ports, then this requires considerable bandwidth in the switch. We dis-

cuss LANs and switches further in the section on the Data Link layer.    

  15.3 APPLICATION LAYER PROTOCOLS 

   15.3.1 The Application layer 

 At each of the layers of the protocol stack, every network attached device will have 

some entity that is interacting with a corresponding entity in another network device. 

In the Application layer there is an entity in one end system that is interacting with 

another application in another end application on a server system across a network. 

For example, one might use a Telnet client on a PC to talk to a Telnet server on 

a shared UNIX system. Each application will use a specific protocol, often one 

designed specifically for that application. Sometimes they will use a generic pro-

tocol designed to serve a wide variety of custom applications. In this section we 

briefly look at several Application layer protocols. Many of these Application layer 

protocols are widely used and have been assigned a  port number  for the server to 

use. This port number is used by the next lower layer, the Transport layer, to deter-

mine which application should receive an incoming message. Consider that a system 

running an FTP server may also be running other services such as Telnet, www, 

and so on. Messages arrive from the network at random, so each layer needs some 

information in the header that the sending entity applies to the packet to determine 

FIGURE 15.10 

A LAN with a ring 

topology.

FIGURE 15.9 

A linear bus topology.
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which entity at the next higher layer should be given the incoming packet. For a 

given application the port number to be used may be a  well-known port  number, 

that is, one that was reserved by the IETF to be used only for that application. If it is 

not a well-known number it may use a port number of 1024 or greater and less than 

49151. Numbers greater than 49151 are used for dynamic assignment to clients by 

the OS software. 

 Today most networking uses the TCP/IP protocol suite.  Figure 15.11  shows the 

format of the header used by IP layer. It shows the source and destination port num-

bers as well as other fields discussed in this chapter.  

  15.3.2 HTTP 

  HTTP,  or  HyperText Transfer Protocol  is the protocol used to exchange messages 

between World Wide Web servers and browsers. The well-known port for Web serv-

ers is port 80. HTTP messages are sent in ASCII and as a result they can be easily 

read by a human, though they usually are not. Each message sent by a browser starts 

with one of only a few commands, such as GET, PUT, POST, or OPTIONS. The 

server sends back a response message. This message contains a code that gives the 

result of the browser’s input and returns a requested page element when it is applica-

ble. When a browser requests a page it makes a connection to the server and requests 

the page with a  uniform resource locator  ( URL ). The page referenced by the URL 

is returned by the server in its response message. Most pages contain much more 

than a few lines of text, however. Usually, there will also be references to other items 

such as pictures to include with the page. Each of these contained elements must be 

separately requested from the server. In early versions of HTTP the server would 

break the connection after each request for a single element, so the browsers would 

optionally open several connections at the same time if there were multiple elements 

to fetch to complete the page. Later versions of HTTP optionally do not break the 

connection immediately, so that after the initial page is returned the browser can 

issue additional requests for many elements at the same time. 

FIGURE 15.11 

TCP header format.
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 While HTTP was designed specifically for fetching Web pages from servers, it 

has found other uses as well. Since access to the Web is so desirable, most institutions 

that have implemented firewalls to protect their networks from harm allow HTTP mes-

sages to pass through the firewall and freely admit connections to port 80. As a result, 

HTTP is often used in custom-distributed applications to minimize support problems.  

  15.3.3 FTP 

 Another common Application layer protocol is  file transfer protocol,  or  FTP.  FTP is 

unusual in that it uses two ports instead of one. The main port, 20, is used for transfer-

ring data. Port 21 is also used by the FTP protocol, but only for sending control mes-

sages. This design allows a large transfer to be interrupted, for example, by a user who 

suddenly realizes that the very large file that is now being downloaded is not the file 

that is needed after all. Another unusual aspect of FTP is that it is not only the name 

of the protocol, it is also the name of a program that uses the protocol. This program 

is a command-line utility and is somewhat difficult to learn to use well. One solution 

is to use stored scripts to run the program, but another common solution is to embed 

the protocol in a more user-friendly application. Many GUI utility programs are avail-

able for transferring files that incorporate the FTP protocol. Even most browsers are 

capable of using the FTP protocol when the URL starts with ftp:// instead of http://. 

 While the commands used by FTP are strictly ASCII messages, the files being 

transferred might be programs, for example, and often contain binary data. They 

might, therefore, contain strings that looked like FTP commands by accident. This 

is another reason why the data transfer uses a channel separate from the command 

channel. FTP includes a BINARY setting so that it can transfer programs and other 

files containing arbitrary binary data.  

  15.3.4 SMTP/ POP/ IMAP 

  SMTP  is the  simple mail transfer protocol.  It is used in email applications to send 

email from a user’s email client program and also to forward email from one email 

server to another. Interestingly, a different protocol is used by the email client to 

fetch email from the server. This protocol is usually  POP3  ( post office protocol 

version 3 ) on port 110 or  IMAP  ( interactive mail access protocol ) on port 143. 

POP is an older protocol and is widely supported but not as flexible. IMAP is newer 

and more flexible but not as widely supported by email servers. 

 All the mail transfer protocols use plain ASCII commands and were originally 

designed to transfer text messages only. ASCII is a 7-bit code and modern computers 

typically use 8-bit bytes and ignore the extra bit. Some time ago it became clear that 

it was desirable to be able to attach all kinds of files to email messages such as sound 

and video files and binary programs. So ignoring the extra bit was not an option for 

these attachments. As a result, extensions were designed for SMPT to handle other 

file types.  MIME  ( multipurpose Internet mail extensions ) supplements SMTP 

and supports encapsulation of nontext messages inside standard SMTP messages. 

 All of these Application layer protocols use TCP at the Transport layer because 

of the reliability of the delivery. Other applications use UDP. These applications do 
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not need the extra reliability of TCP. In particular, multimedia applications often use 

UDP. Unlike data applications, streaming multimedia applications do not normally 

require 100% accurate data delivery. A missed packet in a sound stream will often 

not be noticed at all if the stream is not highly compressed. At the Application layer 

these programs mostly use proprietary protocols rather than IETF standards.    

  15.4 TCP/IP 

  Application layer protocols are supported by entities that implement a Transport layer 

protocol. Only a few years ago there were a number of different sets of network-

ing protocols (called “suites”) at this layer. The phenomenal success of the Internet, 

however, has changed this situation. With few exceptions all computer installations 

large enough to want a network also want to connect to the Internet. In order to 

access the Internet they must use the TCP/IP protocol suite. Within their own net-

work they can also use other protocol suites. For example, it was a simple matter to 

load the IPX protocol on a computer in addition to TCP if one wanted to use IPX 

to access Novell Netware servers. Each additional protocol suite adds complexity, 

however, and the people managing the systems want to avoid that complexity when-

ever they can since it is expensive to support multiple options. Accordingly, they 

have put increasing pressure on system vendors to support TCP. As a result, almost 

all vendors now support the TCP/IP protocol suite. Since the other protocol suites 

do not provide significant services that TCP/IP does not provide, then most network 

managers have dropped the other protocols. Thus, TCP/IP has come to dominate the 

networking landscape.  

   15.4.1 The Transport layer 

 In the TCP/IP protocol suite,  IP  is the major Network layer protocol.  TCP,  or 

 transmission control protocol,  is one of two principle Transport layer protocols, 

with  UDP,  or  user datagram protocol,  being the other. Given an IP Network layer 

address, the IP protocols will try to deliver a packet of data to that address. UDP 

merely extends that function to the Application layer. This limited functionality is 

called an “ unreliable datagram. ” In this case the word “unreliable” does not mean 

that it is likely to fail—only that the protocol doesn’t make any guarantees about 

the delivery. In many cases this “ best efforts ” functionality is all that is needed or 

desired. If the application is exchanging messages with a corresponding application 

on the other end of a connection, the two application parts can usually tell if some-

thing has gone awry. For example, most network management tools use UDP to send 

requests and responses. If the manager does not get a particular response when it is 

expected, then it will simply retry the operation. 

 In contrast, the TCP protocol provides “ connection-oriented, reliable ” com-

munication. Given an IP address and a port number the TCP layer will attempt to 

contact an entity running at that port address on the addressed system and establish 

a connection. It will then transmit data to the entity at the other end and receive 

responses, relaying them to the calling application until one of the Application layer 
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entities breaks the connection. This protocol uses various mechanisms such as mes-

sage numbers and acknowledgments to ensure that the data are delivered once and 

only once to the other end and are delivered in the order they were sent. It also uses 

other mechanisms to cope with senders that are too fast for the receivers and for 

congestion in the network.  

  15.4.2 IP addressing and routing 

 As was mentioned, connection to another host requires that the calling host knows 

the  IP address  of the destination host. IP addresses are 32 bits long. When they are 

displayed for humans they are normally written in a specific style known as  dot-

ted decimal notation.  This style breaks the 32 bits into 4 bytes and displays each 

byte as a decimal number separated from the other bytes with a period. Thus an 

address of all 1 bits would be written as 255.255.255.255. Each IP network that is 

connected to the Internet has a distinct network number. Within that network number 

the administrator of the network would assign individual addresses to each host sys-

tem. At one time IP addresses were divided into  classes  depending on what portion 

of the address was to be used as the network number and what portion was the host 

address. These classes were known as A, B, and C. (There were also classes D &

E for special purposes.) In 1993 this mechanism was replaced with a new mecha-

nism called  CIDR,  or  classless interdomain routing,  and the technical distinction 

between the classes of address has mostly gone away, though people often still refer 

to a particular address as belonging to one of these classes. 

 A class of devices called  routers  are responsible for delivering IP packets from 

the source device to the destination device. Each router will look at the IP address in 

the packet and try to determine the best path to the destination network. It is there-

fore making decisions about where to send each input packet based on information 

at the Network layer. We therefore sometimes say that they are making forwarding 

decisions at layer three. IP network addresses are not assigned geographically (for 

the most part), so the routers that connect IP networks together need to learn how to 

find any other network in the world. They learn this information mostly by talking 

among themselves. They use a variety of protocols for this exchange of informa-

tion. The protocol that two routers will use between themselves depends on their 

administrative relationship, among other things. There are several such protocols. 

They can be divided into groups depending on the underlying algorithm. The larger 

group is the  distance vector  algorithm group, including  RIP (routing information 

protocol), RIP2 (routing information protocol version 2), IGRP (interior gate-

way routing protocol),   EIGRP (enhanced   interior   gateway routing protocol),  

and  BGP (border gateway protocol. ) The  link state  algorithm group currently has 

one major representative,  OSPF (open shortest path first).  

 Routers in the Internet will be connected in a partial mesh topology with many 

redundant links so that loss of one link will not normally  partition  the network into 

pieces that cannot communicate. Loss of a link may still cause some degradation 

of the service since some portions of the network will have to carry a heavier load. 

In the early days of networking, the term  gateway  was used to refer to the class 

of device we now call a router. You may still see the term used when configuring 
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the IP protocol on any device, especially as part of the phrase  default gateway.  

This name refers to the local router that a host is to use when it has no idea of the 

best path to use to access a host that it wants to communicate with. The phrase 

 default router  should be used these days. The term gateway is now more correctly 

applied to a service that connects two agents running at the Application layer. A 

good example would be an email gateway connecting a mainframe-oriented email 

system such as IBM’s OfficeVision and a TCP/IP email system running SMTP and 

POP3 protocols. 

 It is possible for each network device to be specifically configured with a prede-

termined,  static  IP address, but this is difficult to administer. Servers that are known 

by name throughout the Internet will usually have a permanently assigned address. 

In other cases it is far easier to let the address be assigned dynamically. Comput-

ers are often moved as people change departments, for example. Laptops make the 

situation even worse as they are moved from the office to home to a neighborhood 

hot spot. So a protocol was designed to facilitate this moving around:  DHCP,  or 

 dynamic host configuration protocol.  Each network administrator will set up a 

DHCP server, which will be configured with a range of IP addresses that the network 

has been assigned. A host that is just turned on will send out broadcast messages 

looking for the DHCP server. The DHCP server will reply to the host and will tell 

it which IP address to use, among other things it will need to know. This address is 

 leased  to the workstation for some period of time after which it must be renewed. 

The DHCP server can also be configured to deliver the same IP address each time 

to a specific machine. This is normally only done for servers, printers, and such sys-

tems that normally do not change often.  

  15.4.3 Name resolution 

 Humans find that remembering IP addresses is not easy, so the TCP/IP protocol suite 

includes mechanisms for translating from a user-friendly name to an IP address. 

The protocol that is used to make this translation is called  DNS,  the  domain name 

service.  DNS relies on a hierarchy of servers to make these translations. A host 

might use a DNS server, for example, to translate the name “webserv” on the local 

network to an IP address. The DNS server might return an IP address like 223.1.2.1 

if the user were in the domain where the name was located. Outside of that domain, 

a user trying to find this same server would have to use a different form of the name, 

called a  fully qualified name  such as webserv.example.com. In such a name, each 

of the parts between the periods is called a domain. The domains are organized 

into a tree structure. Various higher domains are owned and managed by different 

authorities, with the  top level domain,  or  TLD  (.com in this case) being adminis-

tered under the authority of the IETF. If a host wants to look up such a fully quali-

fied name, it begins by asking its default DNS server. The IP address of this server 

is either learned through DHCP or is configured manually into the host when the 

IP protocol is configured. If the local DNS server does not know the IP address of 

webserv.example.com, then it will ask the server at the next level in the DNS hier-

archy. Eventually, the address will be found and returned to the host that started the 

request.  



344 Part 5 Networks, Distributed Systems, and Security

  15.4.4 IP Version 6 

 By the early 1990s it began to look as though the world was going to quickly run out 

of IP addresses. As a result, there was a big push to define a new format for the TCP/IP

protocol and IP addresses. This new format is known as IP version 6, or  IPv6.  

Among other things, IPv6 would allow much bigger IP addresses, to the point that 

it is very unlikely that we would run out of IP addresses while we were still using 

TCP/IP. Several things happened that lessened this exploding demand. First,  CIDR    

allowed the reuse of many IP addresses that had previously been allocated to institu-

tions that would never need them. Second, DHCP allowed the dynamic reuse of IP 

addresses when hosts were frequently turned off for long periods or regularly came 

and went from the network so that institutions could get by with fewer IP addresses. 

And finally,  network address translation  ( NAT ) was developed. NAT is a tech-

nique for using one set of addresses inside a network and translating those addresses 

to a different (and much smaller) set of addresses that are seen outside the local 

network on the Internet. Together, these techniques meant that the pressure for going 

to IPv6 was largely removed. This migration will probably still happen in the long 

run because of other features of IPv6. Fortunately, IPv6 was designed to allow for a 

graceful migration. Most router vendors are already supporting IPv6 and new ver-

sions of most OSs include support for it, but not many users appear to be migrating 

to IPv6 yet. There is a research network parallel to the Internet known as the Internet 

2 that uses IPv6 exclusively.  

  15.4.5 Common utility programs 

 There are a number of utility programs that are commonly distributed with TCP/IP 

protocol stacks. A few are designed for accessing common services such as:

   browsers for HTTP (Web) servers  

   ftp  clients for FTP servers (sometimes also done by a browser)  

   telnet  for a remote command shell  

  pine for SMTP POP3, and IMAP for email       

Other commonly distributed utilities are designed for network management. Knowl-

edge of these tools will help any system designer understand the operation of the 

local network and how it affects the system design. These tools are discussed more 

in  Section 15.8 .  

  15.4.6 Other protocols 

 Although the other protocols running at the Network layer have largely gone by the 

wayside, there is still a significant install base of systems running the IBM proto-

cols in the SNA/APPC family. Some of these protocols predate the TCP/IP stack. 

Some devices running these protocols are not programmable and cannot easily be 

upgraded. Furthermore, these protocols have special features that make them more 

useful in high-demand situations, so they are likely to remain in use for some time to 

come. Another very common protocol from the past is IPX, popularized by Novell 
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for use with their Netware ™  servers. IPX had one feature that made it very popular. 

The MAC layer address was used as a part of the Network layer address and a cli-

ent system could automatically learn the remaining part of the address. This meant 

that the IPX protocol drivers in a client workstation did not have to be configured 

with an address, even when a system was moved to another physical network. This 

greatly simplified network administration and was probably a significant factor in 

the popularity of this operating system. But the popularity of the Internet eventu-

ally overwhelmed this factor and lead to the ultimate withdrawal of the protocol by 

Novell. However, IPX has found a niche in online multiplayer gaming, so it will also 

probably be with us for some time to come. Various other protocols were also used, 

mostly related to specific OSs. Examples include DECNet and LAT used with Digi-

tal Equipment hardware and Vines used with Banyan systems. The NetBIOS pro-

tocol was developed originally for IBM for small LANs. It was eventually adopted 

by Microsoft and has only begun to disappear with the later releases of Windows 

NT. Other vendors have been bought out, merged, or vanished. In some cases there 

are remnants of the NetBIOS protocol developed by IBM and used extensively by 

Microsoft. In particular these include the  server message block  ( SMB ) protocol and 

the Open Source Samba package used with UNIX/Linux to access Microsoft serv-

ers. However, the latest releases of the Windows NT family have made it clear that 

TCP/IP is their preferred direction.  

  15.4.7 Firewalls 

 Unfortunately, the world contains people who are ignorant, incompetent, or malevo-

lent. Bad things can come into a network that is exposed to the world through the 

Internet (or any similar network). As a result, devices have been developed that are 

designed to protect networks from such traffic. In general, these devices are routers. 

The routers are placed at the ingress to the network from the Internet and accept 

the packets from the Internet as usual. Before they forward the packets to LANs 

inside the network, they perform an extra function of looking inside the packets and 

checking for things that the network administrators decide they do not want to pass 

through the router. These checks can include many things. Here are a few representa-

tive examples. (We discuss many of these in Chapter 16.) 

     PINGs  
    SPAM email  
    Viruses  
    Known denial of service (DOS) attacks  
    Access to undesirable websites (e.g., parental control)  
    Access to ports that are not in use      

  15.5 THE DATA LINK LAYER 

  The types of networks called LANs originally had a special characteristic: the data 

are transmitted in such a way that all the hosts connected to the same link will actu-

ally “see” every transmission. Each host will normally be configured so that it will 
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only “read” information that is actually addressed to it. Another phrase often applied 

to such LANs is “multiaccess networks.” Since many such hosts connected to one 

physical medium there had to be a mechanism devised to allow them to share access 

to the medium. These mechanisms are known as  media access control,  or MAC. 

Another term derived from this name is a  MAC address.  Every host is connected 

to the LAN with a  network interface card,  or  NIC,  sometimes called a network 

adapter. Every NIC has a 6-byte address assigned by the manufacturer. The first 

3 bytes identify the manufacturer and the last 3 identify that specific adapter. For the 

most part one can safely assume that these addresses are globally unique, though 

there have been reports of unscrupulous vendors manufacturing cards under another 

vendor’s identification number. 

 There have been many different contending mechanisms for the MAC function. 

Only four were very successful:  Ethernet ™,  ARCNET ™,  Token Ring,  and  FDDI  

( fiber distributed data interface ). ARCNET was one of the first LAN technologies 

but had substantial limitations. These same limitations turn into advantages in embed-

ded systems, and ARCNET survives today in such environments but has virtually 

disappeared as a general LAN technology. Ethernet and Token Ring were eventually 

standardized by the IEEE as 802.3 and 802.5, respectively. FDDI was an ANSI stan-

dard. Although it is not precisely correct, we will simply refer to “Ethernet” since that 

is fairly common usage. Ethernet had a distinct advantage in that it is a simpler tech-

nology than either Token Ring or FDDI. It was therefore generally easier to install cor-

rectly and it was cheaper. There was, however, a serious set of drawbacks to Ethernet.  

   15.5.1 Ethernet 

 Ethernet relied on the probability that most of the time the network was not busy. 

If it was busy then the sender would wait until the network was free and then trans-

mit. If two stations started transmitting at the same time, their transmissions would 

interfere with one another, causing a  collision.  The Ethernet MAC mechanism was 

known as  carrier sense multiple access/collision detection,  or  CSMA/CD.  It led 

to two major problems. First, the bandwidth was not fully usable. In heavily loaded 

networks the throughput would reach a maximum at 40–50% utilization in most situ-

ations. Second, if the network was pushed past this point it would eventually reach a 

state where collisions were happening all the time and the network would stop trans-

mitting data at all. Token Ring and FDDI did not suffer from these problems. They 

were not stochastic, as was Ethernet, but rather were deterministic. When a device 

was added to the LAN the average response time for a single host would drop by a 

predictable amount. Each station always got equal access and it was fairly easy to 

run the LAN at very nearly 100% utilization. Installations such as banks, hospitals, 

and police stations that could not tolerate failures and needed to be able to predict the 

response times would often spend the extra money for Token Ring or FDDI.  

  15.5.2 Bridging and switching 

 Eventually, a solution was developed that allowed Ethernet to overcome these dif-

ficulties. The shared wiring concentrator (or  hub ) was replaced with a switch. A hub 

was a simple Physical layer device that merely repeated an input signal from any 
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port out to all the other ports. A  switch  is a multiport device that only sends a packet 

of data out the port that leads to the device it is addressed to. The address used at this 

level is the Ethernet address of the NIC. So this forwarding decision is being made 

at the Data Link layer (or Media Access Control layer). This is sometimes knows 

as  layer two switching.  Furthermore, such switches are able to accept and forward 

input on all ports at the same time (subject to limitations of the switch backplane). In 

addition, changes were made that allowed the attached devices to run in full duplex —

sending and receiving at the same time—and to run at either 10 or 100 Mbps. Newer 

equipment can automatically sense the best mode of operation of the switch and 

the attached device so that installation is really as simple as a hub. Inexpensive 

switches now can commonly run the ports at Gigabit Ethernet speeds as well. This 

series of developments took Ethernet from a system where the top throughput was 

roughly 5 Mbps to a system where a fairly modest switch can deliver one Gbps of 

throughput at 100 Mbps. Larger, more expensive switches can deliver even higher 

performance. 

 Before multiport switches became common, smaller switches (known then as 

 bridges ) were used to divide large LANs into small sections. Dividing networks 

into smaller sections allowed better throughput and response time for the devices on 

each segment. Bridges were initially devices with only two ports. By reading all the 

traffic on the LANs they were connected to they would learn that MAC addresses 

could be reached through each port. When they saw a packet on one port that was 

addressed to a device that they had learned to be reachable through the other port, 

they would forward the packet out that other port. This was called a  transparent 

bridge  or a  learning bridge.  A problem with transparent bridges would arise if two 

bridges were connected in parallel between two LANs. (This is a desirable thing to 

do since it provides a redundant link in case of the failure of one bridge.) The bridges 

would form a loop and the packets would be continuously transmitted around the 

loop. A feature was developed for transparent bridges that allowed them to be con-

nected in parallel (or in more complex mesh networks) without actually making a 

loop. The bridges would coordinate among themselves, and by not forwarding traffic 

on selected paths would form a  spanning tree  that would forward data everywhere 

but would contain no loops. If a bridge (or a port) failed, then the bridges would 

sense this and form a new spanning tree. The biggest problem with this solution 

arose when some of the connections were not LAN connections but WAN connec-

tions. The WAN lines are fairly expensive (relative to the other network costs) and 

having a bridge that shut a WAN path off to keep from forming a loop was a luxury 

that few could afford. 

 When multiport switches were introduced to the market they could usually for-

ward traffic from all the input ports to output ports as rapidly as it could be sent by 

the attached hosts. This was known as  wire speed  forwarding. The marketing staff 

wanted to distinguish this behavior from the earlier bridges, so they adopted the 

word  switch.  The performance of multiport switches began to cut into the market 

for routers. By redesigning routers and using  application-specific integrated cir-

cuits  ( ASICs ), engineers were able to build devices that could make the forwarding 

decisions at the Network layer but could do this at wire speed as did the layer two 

switches. So the marketing people once again got involved and they called these new 

high-speed routers  layer three switches.   
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  15.5.3 Token Ring 

 Token Ring hardware had a MAC mechanism that was entirely different from Ethernet. 

The hardware used a special empty packet known as a token that was passed from host to 

host until it reached a host that needed to transmit a frame. At that point the host changed 

the token into a data frame and sent it on its way. Although this sounds inefficient, it 

actually worked very well. As was mentioned before, Token Ring hardware could eas-

ily reach 98% utilization of the bandwidth. Shared Ethernet, on the other hand, rarely 

reached 60% utilization and usually not even that. 

 Token Ring bridges could operate in the same manner as Ethernet bridges, but 

they also had a more complex mode known as source route bridging. In this mode 

the attached hosts would learn a path through the bridges and each packet would 

contain this routing information. Several advantages arose from this alternative:

     Bridges did not have to learn addresses and were simpler and cheaper.  
    Bridges could be connected in a mesh and still utilize all links.  
    Load across redundant links tended to self-balance itself.    

 Unfortunately, the source routing feature required some configuration (relative to the 

transparent bridge, which required essentially none). They also used broadcasts to 

find the preferred route and were often accused of causing  broadcast storms.  When 

Ethernet overcame its problems by utilizing fast switching, the Token Ring option 

lost out, along with source route bridging.  

  15.5.4 Other data link methods 

 FDDI is a technology that was initially developed for use over optical fibers rather than 

over copper wire. It was thus intrinsically more expensive to build and to install. It ran at 

100 Mbps, long before Fast Ethernet did. FDDI rings could be over 200 km in circumfer-

ence. Because of its cost it is normally not used for attachment of individual hosts but 

rather for a  backbone  LAN that connects bridges, switches, or routers between buildings 

on a campus. FDDI was later modified to also run over copper wires at shorter distances. 

 There have been many other technologies that have contended for the LAN. One 

that has enjoyed limited success has been  asynchronous transfer mode  ( ATM ). 

As was Token Ring, ATM is a rather complex technology. However, ATM offers 

features that make it attractive in situations where it is desirable to mix data trans-

mission with voice and video transmissions over a single network and guarantee the 

most appropriate  quality of service  ( QoS ) to all users. ATM has been a clear winner 

in the WAN arena. In the LAN arena the goal of delivering services that require dif-

ferent QoS has been achieved by overbuilding the network so that any application 

can have any service it wants. This has been possible because bandwidth cost is 

currently so low. The best overall performance would be achieved if communication 

were done using ATM end-to-end. Where it has been used the success rate is high. At 

this point it is doubtful if ATM will be a major factor in the LAN arena. 

 ARCNET was also once very popular. It was an ANSI standard rather than an 

IEEE standard, and lost out mostly because it did not support bridging and it had a 

Network layer address that was only one byte and was configured with hardware 

switches—an error-prone process.  
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  15.5.5 Mapping IP addresses to MAC addresses 

 We mentioned before that humans usually refer to human-friendly names like 

webserv.example.com, and that the Network layer used DNS to translate the name to 

an IP address. We also said that on the LAN the information is actually addressed to 

the MAC address of the NIC. The obvious question, then, is how does the software 

map from the IP address to the MAC address? The answer is that it uses a special 

protocol called  address resolution protocol,  or  ARP.  A host looking for a server 

will make an ARP packet that contains the IP addresses of both the host and the 

server. In the MAC header it will include its own MAC address, but it does not yet 

know the MAC address of the server, so it will send the packet to all hosts by using a 

broadcast MAC address (of all 1 bits). Every host will read the packet and pass it to 

the IP software. The IP module will pass the packet on to the ARP module. The ARP 

module in the correct server will recognize that it is being addressed by the ARP and 

will prepare an ARP response packet. This packet will be sent directly back to the 

inquiring host and that host will then continue the conversation using the new MAC 

address. The IP software in all the other hosts except the one addressed will merely 

ignore the packet. The OS will typically cache the MAC addresses in an  arp table.   

  15.5.6 Functional migration into hardware 

 As networking has become more established, some of the functions that were ini-

tially done in software by the device drivers have migrated into the hardware. This 

evolutionary step takes some time, because a function should not be migrated to 

hardware until it is very well understood. Mistakes in hardware are quite expensive 

to fix. Two examples of functional migration to hardware have occurred in NICs. 

First is the calculation of  cyclic redundancy checks  ( CRCs ). CRCs are a class of 

functions that are computed on blocks that are transmitted over a network. They 

were discussed at some length in Chapter 14. The CRC is transmitted with the block 

and the receiver makes the same calculation as the sender. If the calculated CRC 

does not match the CRC sent with the packet, then the receiver knows that an error 

was made. Originally this function was computed by the software driver for the NIC. 

It was fairly expensive to compute in terms of CPU cycles. However, hardware engi-

neers discovered a fairly trivial way to do the same computation as the packet was 

being transmitted. This was an inexpensive way to take a considerable load off the 

CPU. This function might not make much difference in modern machines, but at the 

time it was developed machines were much slower so it was a bigger deal. 

 Another function that has migrated into the NIC hardware is the recognition of 

 multicast addresses.  Multicast packets are sent out over the network and every NIC 

will see them. Several multicast streams might be in use on a given LAN at any one 

time. A specific system might or might not be interested in a particular stream. A good 

example of a multicast would be a stock ticker application that might run in a stock 

brokerage. Not all systems would need to see that stream, but many of the brokers 

might want to watch the ticker, so they would run a specific application that would 

look for the particular multicast address that was assigned to that stream. At one time 

all multicasts were received by all adapters and passed up to the Network layer where 
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they might be dropped if the system were not interested in that stream. This was 

especially unproductive in systems that were not interested in any streams. They still 

got interrupted by every multicast packet and the software had to examine the address. 

Eventually, this function was also migrated to the NICs. The protocol stack would 

notify the NIC of any multicast addresses it had applications interested in. Packets to 

those addresses would be passed to the protocol stack and any other multicast packets 

would be dropped by the NIC and the CPU would not be interrupted.    

  15.6 WANS 

  In contrast with LANs where the hosts are usually in the same building or at least 

the same campus, wide area networks, or WANs, are connections between devices 

where the data must pass over a serial point-to-point connection. Often these connec-

tions are between two bridges or routers but sometimes a host will link to a bridge 

or router, especially if the connection is a dial-up link. For dial-up links through 

 plain old telephone service  ( POTS ), the highest speed available is 56 Kbps. When 

a WAN link is connected permanently, the link is known as a leased line. These 

lines are usually digital (as opposed to the dial-up link, which is analog). Typically 

the slowest leased line speed is 56 Kbps, though 64 Kbps is also common. The next 

speed line available is a  T1  line, which runs at 1.544 Mbps. Speeds between 64 Kbps 

and T1 are sometimes available as well. These lines are called  fractional T1  lines, 

or  Frac-T1.  Higher speed lines are also available that are multiples of T1 speeds. T1 

lines were originally designed to carry voice traffic. These calls were analog signals 

that had been digitized to a 64 Kbps stream. Up to 24 such slow digital streams could 

be combined by synchronous  time division multiplexing  ( TDM ) onto one T1 line 

that ran between phone company switching centers.  

   15.6.1 Frame relay 

 When a large network is built with WAN lines, a big factor in the total line cost is 

that portion of the circuit that goes from the customer premise to the local phone 

company office—called the  last mile.  If the customer has a number of leased 

56 Kbps lines connecting different sites from the home office, they can usually mul-

tiplex them in groups of 24 onto a single T1 line. This can result in tremendous line 

cost savings since that T1 line can usually be run over one standard twisted-pair 

copper line. Another technology was also developed that goes even further in this 

direction. Rather than use synchronous time division multiplexing as was described 

above, the line is used to send packets instead of streams of data and each packet is 

addressed and switched through the network separately. This technology is known 

as  frame relay.  It makes good sense because often the capacity of some of the indi-

vidual 56 Kbps circuit is underutilized. A network using synchronous TDM circuits 

is designed for something near the peak load traffic rates. Since the worst case does 

not often arise, there is usually unused bandwidth. Thus, a T1 line might actually be 

able to carry all the packets for 40–50 lines running 56 Kbps when using frame relay 
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instead of TDM. Alternatively, a single 56 Kbps frame relay circuit to the carrier’s 

office might carry all the frames from three to five 56 Kbps circuits that were not 

heavily used all the time. Thus, frame relay networks can save their users a lot of 

money.  

  15.6.2 Other WAN technologies 

One LAN protocol that enjoyed a brief period of popularity was  integrated ser-

vices for digital networks,  or  ISDN.  A single copper circuit could be brought to a 

home or small office, which could carry two 64 Kbps channels.  4   This type of service 

was called  basic rate interface  ( BRI ). These channels could each carry a single 

digitized voice call or a data channel. The two data channels could also be logically 

combined and used as a single 128 Kbps channel. This was substantially better than 

a POTS line. A large attraction for ISDN came at the core of the network where the 

interface was a  primary rate interface  ( PRI),  which carried 23 channels of 64 Kbps 

each plus one 64 Kbps channel for signaling. The main advantage to PRI was that 

the calls could be either digital calls originating from an ISDN BRI device or analog 

calls originating at a regular modem. The analog calls would be digitized by the car-

rier at their office and delivered digitally. ISDN PRI services are also still used today 

in telephone support offices for pure voice traffic.

 As was mentioned earlier, another technology was developed specifically for 

WANs: ATM. ATM is frame relay carried to an extreme. The essence of ATM is that 

all traffic is broken into small pieces—48-byte cells. These cells can be switched rap-

idly and cheaply and can give each user exactly the types of traffic service needed. 

This is highly desirable for the carriers since they have contracts to offer all kinds of 

different services, from Teletype traffic to ultra high-speed data circuits. With ATM 

they actually deploy only one network and use different equipment at the entrance 

and exit points to the network that make it look like the service the user contracted 

for. The carrier only has to train operators and technicians to maintain one network; 

they only need one kind of management software; and so on. It is not hard to see why 

ATM has captured many of the WAN backbones. 

 For homes and small businesses there are two other competing technologies 

for high-speed WAN services:  cable modems  and  digital subscriber lines  ( DSL ). 

These two services use ATM and similar technology to provide permanent connec-

tions to the Internet at the same time as they provide some other service. In the case 

of cable modems, that other service was originally cable TV. In the case of DSL, that 

other service is POTS. Since ATM technology is employed, cable modems can also 

be used to deliver POTS service, but that is a later add-on to the original concept. As 

fiber optic cables are extended further into the local community, the available band-

width to each customer is going up and eventually should reach directly into the 

home or office. Such technology goes by many different names, mostly like  fiber to 

the Curb,  or  FTTC.     

4 Technically there was also a 16 Kbps channel that was used for network signaling or low-speed 
applications such as credit card authorizations.
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  15.7 THE PHYSICAL LAYER 

  For information to flow from one device to another there must be some medium 

that connects the two devices. That medium must be capable of being changed in 

some way such that the change can be sensed by the other device. Historically, for 

computer data this has meant that a metal wire of some type has connected the two 

devices and conducted a flow of electricity. In the last few years the copper wire has 

often been replaced by glass or plastic, which conducts light. Wireless transmission 

via electromagnetic transmission is also frequently used for sending information. 

For decades it was used only for analog audio and video transmission and telegraph 

transmission of text. In the last few years wireless has become more common for data 

transmission. Originally this was for digital transmission of analog data, but is now 

being used for data transmission, especially for laptop and handheld computers.  

   15.7.1 Copper wire specifications 

 The metal in communication wiring is most often copper and there are usually two 

wires for each line. Sometimes there are two wires that are identical and are twisted 

together. This is known as  twisted pair.  Wires that are twisted together are less likely 

to pick up radiated signals from other wires and to radiate signals that can be picked 

up externally. There may also be a layer of foil wrapped around a pair of wires or 

around several pair of wires that are grouped together as a single cable. This is known 

as  shielded twisted pair  wiring, or  STP.  Without the shield it is called  unshielded 

twisted pair,  or  UTP.  STP is less susceptible to outside interference and to having 

the signal be picked up outside the network than is UTP. The wire that was histori-

cally used to install telephone wires in homes and businesses is one type of twisted 

pair. The UTP wire used for data needs to be higher quality than standard telephone 

wire. Quality in UTP wiring is standardized in terms of  Category  or  Cat  by the 

 Telecommunications Industry Association (TIA).  The lowest category currently 

approved for new data installations is Cat 5, rated at about 100 Mbps. The newest 

standard is for Cat 6 at 250 Mbps. The next step is for a Cat 7 standard that will run 

10 gigabit Ethernet over 100 m of copper cabling. 

 There is another configuration of copper wiring called  coax,  shorthand for  coaxial 

cable.  In this case there is a single center conductor wrapped with an insulation mate-

rial. Then a layer of very thin wires are braided around this insulating layer. (Occa-

sionally the outer layer is solid, like a tube.) This layer becomes the second “wire” in 

the pair. The center wire is at the center (or axis) of the outer layer, so the two wires 

are coaxial. Coax is even less likely to radiate its signal or to pick up external signals 

than is STP. However, it is more expensive so it is limited to special uses. Coaxial 

cable is the type of wire used for cable TV. The cable TV coax used inside a building 

is about the size of a pencil and is somewhat inflexible compared to UTP wire.  

  15.7.2 Fiber optic specifications 

 Fiber is almost totally free from problems with radiated signals. It is also somewhat 

expensive, roughly twice the cost of copper cabling, but it is widely used because 

it is almost totally free from errors. In addition, it can send data over rather long 
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distances. Indeed, in 2001 a vendor demonstrated transmission across the continen-

tal United States over a single fiber without a repeater. It has very high bandwidth 

capability, so the price per bit transmitted can be very low where large volumes of 

data need to be handled. The vast majority of new WAN circuits are fiber and it is 

very common in the backbone LAN in a building or campus. 

 When the telephone carriers first put in fiber optic links they worked very 

well. They have very low error rates, for one thing. Each fiber was limited by the 

physics of the receiver circuits to about 5 Gbps of data. After they had been in use 

for a while, however, engineers realized that there was a simple, inexpensive, and 

reliable optical way to combine several signals over the same fiber by using a prism 

at each end. This technology is called  wavelength division multiplexing,  or  WDM  

(or sometimes  DWDM  for  dense WDM ). As a result, each fiber that was installed 

can now carry 64 to 128 times as much data as was first thought. Since the cost of 

the right-of-way and of installing the fiber itself is a major factor, this has meant a 

precipitous drop in the cost of wide area bandwidth. This drop has manifested itself 

in a rapid drop in long-distance telephone rates over the last few years. Indeed, in 

many cases the local phone companies can afford to give their customers access to 

long-distance lines for free if they will agree to buy the local service.  

  15.7.3 Wireless networking 

 As was mentioned earlier, a relative newcomer to the transmission of digital data 

is communication over wireless media—essentially digital radio.  5   This technol-

ogy is obviously applicable in laptop and handheld computers, but it is also appli-

cable where hosts must be moved frequently or where physical limits preclude 

direct cabling. Another promising area is in mobile systems—robots, if you will. 

There is an IEEE standard for wireless communication, 802.11, known by its 

marketing term  Wi-Fi.  Devices are readily available to connect to wireless LANs—

PC Card NICs, bridges, routers, PCI NICs, and so on. These devices will prob-

ably continue to fill these niches. Another wireless protocol, Bluetooth, facilitates 

exchange of information between wireless devices such as personal digital assis-

tants (PDAs), mobile phones, laptops, computers, printers, and digital cameras via 

a secure, low-cost wireless link. Bluetooth is being standardized by the IEEE as 

802.15. The protocol variants in this family are designed for very short range and 

are sometimes referred to as  personal area networks  ( PAN s) or  body area net-

works  ( BAN s.) 

 Wireless is very susceptible to picking up interference from external sources and 

to being picked up by other devices, either accidentally or intentionally. Its chief vir-

tue is that it does not require a physical connection between the two communicating 

devices. Because of the problems with noise, wireless communication has resulted in 

more robust error detection and correction and security mechanisms. Development 

of these mechanisms had been allowed to lag somewhat because cable and fiber 

were so free from errors.  

5 There have been wireless networks used before. They traditionally have been used in military 
application or locations such as the Hawaiian Islands where it was prohibitively expensive to lay cable.
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  15.7.4 A note on network troubleshooting 

 As a practical aside, when troubleshooting network problems one should always 

begin the study by checking the Physical layer. Physical layer problems, especially 

intermittent problems, can cause all manner of problems to manifest at other layers. 

Therefore, one should always begin network troubleshooting by verifying that there 

is an error-free connection between the two devices at the Physical layer.    

  15.8 NETWORK MANAGEMENT 

  15.8.1 Simple management tools 

Two special protocols are used with TCP/IP for network management:  ICMP  ( inter-

net control message protocol ) and  SNMP  ( simple network management proto-

col ). ICMP serves several functions, but the most visible to the network manager is 

that it provides the basis for the  ping  and  tracert  (sometimes traceroute) utilities. 

The ping utility is a very simple tool primarily used to verify connectivity between 

two devices. It sends an ICMP echo command to a destination host. That host will 

normally reply to the echo command with an ICMP echo reply. Options on the ping 

utility allow sending a large block of data, retrying the ping operation in a loop, 

and so on. Measuring the response time and its variability can also help a network 

operator identify performance problems in the network. Tracert uses a succession of 

pings to discover the series of routers connecting two network hosts. It gives reports 

for each hop on the route and this can further assist in locating network performance 

problems.

  15.8.2 SNMP and network device management 

 SNMP has historically been the protocol that network management software used 

to communicate with network devices to monitor, configure, and troubleshoot 

them. Most network devices that were manageable would have a set of parameters 

that they would furnish information about or allow to be changed. These param-

eters would be described by a  MIB,  or  management information base.  From the 

outside it is easy to believe that the device actually stores the MIB itself. Actually, 

the MIB is just a convenient, structured way to describe the data and its seman-

tics and the format used to transfer the data. The device stores the data values in 

whatever fashion is convenient for it. The IETF has standardized quite a number 

of MIBs, including ones for specific hardware classes such as Ethernet ports and 

for protocols such as TCP and UDP, but vendors have also added many proprietary 

extensions. 

 Managers rarely see SNMP directly. Rather, the MIB for a networking device 

like a router was used to develop a software tool that would allow remote manage-

ment of network devices using SNMP but with a GUI interface. Some of these tools 

were quite elaborate, showing images of devices with blinking lights and maps with 

colors indicating network status. Unfortunately, they were all proprietary, so many 

large  network operation centers  ( NOC s) were filled with dozens of workstations 
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all running different software packages. This required extensive cross-training of 

operators who knew the vagaries of each software package. 

 The trend today is to put a dedicated specific HTML server entity in the device 

and manipulate it with a Web browser using the HTTP Application layer protocol. 

This means that proprietary management software is less often required, and that 

the cross-training demand has lessened. It is still necessary to know the specific 

characteristics of the network devices, but much less training is demanded since the 

browser is standard to all such devices.  

  15.8.3 Packet capture 

 When Ethernet networks were built with hubs, every NIC on the network would see 

every packet that was sent over a LAN. Normally, an adapter would only read pack-

ets with a broadcast address, a multicast address, or the address of the adapter itself. 

However, some adapters could be placed into a  promiscuous  mode, in which case 

they would read every packet on the network. This became a useful tool for trouble-

shooting network protocols. Very elaborate tools were developed. The best known 

was the Sniffer™ line made by Network General Corporation. Such tools had many 

options. For example, they could be set up to capture only traffic meeting certain 

criteria, start capturing only after some trigger event was seen, save captured packets 

to a hard drive, and create a decoded display of the packets using only the layers of 

interest. Unfortunately, such tools had a dark side as well, as unscrupulous users 

could use capture programs to see privileged information and capture passwords if 

they were not encrypted. 

 The development of switched Ethernet has largely solved this latter problem, 

for these switches only forward traffic addressed to a specific device out the port 

where that device is attached. Thus, a packet capture device will see only broadcasts, 

multicasts, and traffic intended for the capture device itself. Of course, this means 

that the capture technique cannot be used for the purpose for which it was originally 

intended. For this reason, switches that are intended for use in a large environment 

will often have a feature called  port mirroring.  This feature will allow a manager 

to tell the switch to take all packets to and from a specific port and copy it to another 

port. The packet capture device can then be plugged into that mirror port and can 

capture the session as before, but only the network management folks will be able to 

turn on this feature.  

  15.8.4 Remote monitoring 

 One of the MIBs that is defined by the IETF covers  remote monitoring  ( RMON ) 

of networks. Traveling to remote network sites for troubleshooting and maintenance 

can be very costly, so it is much preferable to be able to diagnose network problems 

remotely through the network. Routers are in a unique position to perform this func-

tion since they are already examining every packet they forward. The RMON MIBs 

define counters that an RMON agent in a router can maintain that go far beyond 

those in the basic router MIBs. They can include full trace facilities, statistics based 

on Application layer protocols, and other useful information.     
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   15.9 SUMMARY 

 In this chapter, we gave an overview of the basic 

components of networked systems. We started with 

some motivational material about why the study of 

networks is important to the understanding of com-

puter systems in general and operating systems in 

particular. We laid the groundwork for a discussion 

of networking by discussing some of the fundamen-

tal concepts and describing a model of networking 

that would be used for the remainder of the chapter. 

We discussed a few Application layer protocols and 

the most well-known protocol used at the Transmis-

sion and Network layers, TCP/IP. We also discussed 

the continuing significant role of IBM and SNA. We 

discussed the Data Link layer, with special empha-

sis on Ethernet and we also discussed Token Ring 

and FDDI and compared them with Ethernet. We 

discussed the shortcomings of shared Ethernet and 

showed why switched Ethernet at all speeds has 

come to dominate LAN architecture. We covered 

WANs and a few unusual WAN protocols and why 

they are sometimes used. The topic of the next sec-

tion was the Physical layer and some of the options 

therein. Finally, we covered network management, 

including simple utilities, SNMP and normal net-

work management operations and the migration to 

HTTP and browsers. RMON was also profiled.  
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REVIEW QUESTIONS

 15.1 What was one of the main initial motivations for 

networking computers?

 15.2 Ultimately what became the most significant ben-

efits of networking computers?

 15.3 In the networking models we discussed, each 

layer is represented by an entity in each computer. 

Each such entity has a conversation with another 

entity for each connection. What other entity is it 

talking to?

 a. The next higher layer

 b. The next lower layer

 c. The peer entity in the other system

 d. None of the above

 15.4 In a WAN, which topology is the most efficient 

in terms of speed of reaching all nodes from a cen-

tral site?

 a. Linear

 b. Tree

 c. Star

 d. Ring

 e. All of the above are the same in terms of com-

munication speed

 15.5 Which WAN topology is the most expensive in 

terms of line costs?

 a. Star

 b. Ring

 c. Partially connected mesh

 d. Fully connected mesh

 e. All of the above have equal line costs

 15.6 Some shared LAN topologies were not very 

efficient—notably, shared Ethernet rarely ran 

over 60% efficiency. What major development 

allowed such LANs to operate at much higher 

throughput?

 15.7 What is the DHCP protocol used for?

 a. To translate IP addresses to MAC addresses

 b. To translate names to IP addresses

 c. To obtain an IP address and other information

 d. To update pages on a Web server host

 e. None of the above describes the use of DHCP

 15.8 What was the main thing that saved us from a pre-

cipitous migration to IPv6?

 a. DHCP

 b. NAT

 c. CIDR

 d. DNS

 e. None of the above helped us delay using 

IPv6

 15.9 Each protocol layer must have some information 

in its header to tell the receiving entity what entity 

to pass an incoming PDU to. What information 

in the Transport layer header tells TCP or UDP 

which application to give the packet to?

 15.10 What protocol is used to translate IP addresses to 

MAC addresses?

 a. ARP

 b. NAT

 c. DHCP

 d. IGRP

 e. None of the above protocols involve mapping 

IP addresses to MAC addresses

 15.11 Which physical medium has the best immunity 

against interference?

 a. Coax

 b. STP

 c. Wi-Fi

 d. Fiber

 e. All of the above have equal immunity against 

noise

 15.12 We mentioned that a LAN and a WAN were dif-

ferent in what significant way?

 15.13 We mentioned that the FTP protocol had some 

unusual things about it compared to the other two 

protocols we discussed. Name one.

  WEB RESOURCES 

   http://www.bluetooth.com/bluetooth/  (commercial 

products)  

   https://www.bluetooth.org  (standards organization)  

   http://www.ietf.org  (Internet Engineering Task Force; 

defines all RFCs, including IP, TCP, UDP, NAT, RIP, 

RIP2, PPP, IPv6, CIDR, SLIP)  

   http://www.ipmplsforum.org  (Internet Protocol Multi-

Protocol Label Switching forum—succeeded the 

ATM forum)    

http://www.w3.org/Protocols (mostly about HTTP)
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 15.14 What is the mechanism by which most network 

devices are coming to be managed, especially the 

cheaper ones?

 15.15 When troubleshooting networks, which layer 

should you check first?

 15.16 We say that UDP is an “unreliable” protocol. Why 

did we not design a “reliable” protocol?

 15.17 True or false? Ethernet is the only LAN media 

access control protocol in use today.

 15.18 What does Cat 5 refer to?

 15.19 What is a SNIFFER?

 a. A bomb detection device

 b. A proprietary device for analyzing network 

protocols

 c. A person addicted to inhaling volatile chemicals

 d. A software program for stealing passwords

 e. None of the above describes a sniffer.

 15.20 When we use a PING command and get a response 

from a host we learn quite a few things all at one 

time. Assuming that we did not already know 

 anything at all about the situation, what are some 

of the things we might have just learned?

 15.21 What is the DNS used for?

 a. To translate IP addresses to MAC addresses

 b. To translate names to IP addresses

 c. To obtain an IP address and other information

 d. To update pages on a Web server host

 e. None of the above

 15.22 An IP address typically would be shown like this: 

129.107.56.23. Such an address has two parts. 

129.107 is one part and 56.23 is the other part. 

How are these parts used?

 15.23 A router that is routing IP traffic also might use 

a protocol called RIP. What is that protocol used 

for?

 15.24 Email uses two distinct kinds of protocols, SMTP 

and POP3, for example. What is the difference 

between these two protocols?
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 A
t one time there were few thoughts given to problems of security in computer 

operating systems. In most cases security was provided by controlling physi-

 cal access. Computers were huge things locked away in a room with lots of 

air-conditioning. A user who could access a system was allowed to access any file 

and any program that was running. As time has gone by the situation has changed. 

Time sharing began the biggest change since there would commonly be many pro-

grams running at the same time on behalf of many users who might have competing 

interests. Today it is quite common to share access to systems, especially in our 

homes. Even when systems are not shared, they are more often than not connected 

to a network. In many cases, even at home, they are on a LAN. At the least, many 

machines can connect to the Internet via a dial-up connection. However, intermittent 

that connection might be, while the connection is made our system is exposed to the 

entire Internet world—a place where threats reside as well as wonders. 

 In  Section 16.1  we discuss the origins of some of the security problems. We 

then break them down into several different categories and describe the mechanisms 

an OS needs to deal with them. Some of these mechanisms need to reside outside 

the OS itself. We then move on in  Section 16.2  to a general discussion of the nature 

of the protection services that OSs need to offer to users, primarily to provide pri-

vacy to files. We describe how these services are designed in general. Beyond the 

services the OS must provide for users, a different level of services is needed for 

processes. We have built significant barriers between running processes and the OS 

in order to protect them all. In  Section 16.3  we continue with a look at some of the 

services that are needed by processes that are trying to communicate and cooperate 

with one another.  Section 16.4  covers security as it pertains to networks in general 

and the Internet in particular. It includes discussions of encryption, authentication, 
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and digests. It also discusses the related topics of network security and protection 

found outside of individual OSs.  Section 16.5  covers the problems that arise in the 

administration of security in a network and an OS. The chapter concludes with a 

summary in  Section 16.6 .  

   16.1 INTRODUCTION: PROBLEMS AND THREATS 

  There are many reasons why we should not blindly trust all programs. Program-

mers can be bored, exhausted, lazy, careless, ignorant, unintelligent, malicious, or 

thoroughly evil. Any of these, or all of them together in some cases, can produce 

a program that can damage our work or even our systems. There are generally two 

classes of people we need to worry about. Hackers are very dangerous for home 

users because they attack system weaknesses that most home users are not knowl-

edgeable enough to even recognize, much less fix. Hackers are also the most notori-

ous, but they are only one portion of the problem. A problem that is less well known 

is unauthorized use by persons who have legitimate access to the system. Such inter-

nal problems are wide ranging. They include sending abusive or threatening emails, 

stealing money from accounts or goods from inventory, wasting time visiting web-

sites not relevant to work or playing games on the computer, snooping on personal 

information of other employees, copying projects or papers from fellow students, 

bribery, extortion, taking company secrets to sell to the competition, and so on. Most 

of these problems are hard to spot and control because the person engaging in these 

activities has legitimate access to the system. We generally have to identify them 

through some means other than the OS controls. We rely on physical inventories, 

audits, and so on. In some ways the hackers are easier to control because they are 

forced to use a small set of illegitimate mechanisms to gain access. If we are diligent 

enough we may eventually be able to identify and secure most of those mechanisms. 

Until this happens, securing large systems is very difficult (some say impossible) 

because of the complexity of the systems. 

 Hackers are generally exploiting some problem in the OS that allows them to 

execute an operation that they are not supposed to be able to execute. Often this 

allows them to gain access to a system with the permissions that a supervisor or 

administrator must have—permissions that basically allow them to do anything they 

want. Most often these mechanisms exploit a bug in the OS. Usually the OS vendors 

will quickly learn about these bugs and will release fixes for the OS that will shut 

off the hacker’s ability to exploit that bug. Unfortunately, these fixes are not as well 

tested as a full release of the OS, so not all users are willing to install all these fixes, 

leaving the bugs exposed. This is especially true for corporate administrators who 

must manage many diverse systems doing many different tasks. Whereas an individ-

ual might be able to determine fairly quickly that a bug fix was causing a problem, a 

corporate administrator might be responsible for many systems and therefore might 

be less willing to risk such exposure. 

 The hacker threats that we might see can be grouped so that we can assess how 

to deal with them. First is the general category that we call today  malware.  Malware 

is a fairly new word that groups together several subcategories including virus pro-

grams, worms, Trojans, and spyware.  
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   16.1.1 Computer viruses 

  Computer viruses  are portions of programs that insert themselves into other pro-

grams in a manner analogous to the way that biological viruses insert themselves 

into living cells. When a program containing a virus is run on a computer system the 

virus will insert itself into other programs on secondary storage. The hardest part for 

the virus writer is getting a user to run the program containing the virus. Today, this 

is accomplished most commonly by attaching the virus program to an email in such 

a way that a user will execute it. When most software was distributed on floppy disks 

a common technique was to infect the program found in the boot sector of the floppy. 

If the system was rebooted after a software installation (as was often required) and 

the last floppy disk was not removed from the drive, the floppy would usually be 

booted and the virus propagated to the hard drive. From there it would infect every 

other floppy that was inserted into the system. Once such a virus got loose in a 

corporate environment it was almost impossible to eradicate completely because of 

the many floppy disks that were stored in various desk drawers, inside briefcases, at 

home on top of the dresser, and so on. 

 Today, we have protective programs known as virus scanners that reside in mem-

ory and watch for signs that a program containing a virus is about to be copied or run 

and prevent the copying or execution. These scanners work by matching known pat-

terns of instructions or unusual behavior such as a series of system calls or attempts to 

modify certain system files or portions of the registry. Unfortunately, the databases of 

patterns of data and behaviors have to be maintained since new viruses are constantly 

being created. While the programs themselves have often been free, after some trial 

period the maintenance of the database has not been. As a result, many people do not 

bother to run the scanners or don’t pay for the updates, so viruses continue to circu-

late that should have been eliminated long ago. Just as in the biological world, some 

viruses are only annoying but some cause catastrophic harm. The ones that crash 

systems are less likely to spread as far as the ones that are less damaging. Crashing a 

system gets the attention of the user and will probably result in the eradication of the 

virus on that machine. But a small slowdown might not be noticed or might be toler-

ated because the cure is too expensive or would take too much time.  

  16.1.2 Trojans 

  Trojans  are programs that are not what they appear to be. The term comes from a 

technique allegedly employed during the Trojan war, when one side appeared to 

withdraw from the battlefield but left behind a large wooden statue of a horse. Hid-

den inside the horse was a team of soldiers. The army of the city dragged the horse 

inside the city and had a great celebration of the supposed victory. During the night 

the hidden soldiers came out of the horse and opened the city gates to admit the 

returning army who then sacked the city. Trojan programs appear to be one thing but 

either do something else entirely, or do what they appear to do, but do something else 

as well—something unnoticed by the user. For example, the program might appear 

to work as a screen saver but also installs a process that would log all passwords and 

send them to some website in another country. Generally, the same techniques that 

work against virus programs will also work against Trojans.  
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  16.1.3 Worms 

  Worms  are programs that are similar to viruses and Trojans, but slightly different. 

They do not infect other programs and do not pretend to do something. When a worm 

program is run for the first time it simply tries to send itself to other machines and 

trick the OSs into running it. From there it will try to send itself to other machines, 

and so on. In 1988 a doctoral student at Cornell University launched a small program 

that was destined to be known as The Internet Worm. His intention was that the pro-

gram would do nothing visible. It was designed to spread itself to as many computers 

as possible without giving away its existence. If the code had worked correctly it 

would have been only a single process running on many Internet-connected comput-

ers. Unfortunately, the code didn’t work as intended. The worm propagated itself too 

aggressively, and an infected machine often sent the worm back to the same machine 

that it had come from. The result was that these small processes, which didn’t take 

up much CPU time individually, began to swamp the systems as more and more 

infected processes were started on each machine. In most cases in less than 90 min-

utes the worm had made the infected system unusable. Nobody is actually sure how 

many machines were infected by this worm, but it is estimated that it involved about 

6,000 machines. It essentially shut down the Internet for about a day. Fortunately, 

it only attacked VAX and Sun machines running a specific version of BSD UNIX. 

Worms can also be detected and eradicated by virus scanners. 

 Worms are not necessarily destructive. The initial development of worms was 

at the Xerox PARC installation in the early 1980s. These worms were used for such 

activities as distributed processing, broadcast communication, and software distribu-

tion that took place during the off hours on the network.  

  16.1.4 Spyware 

  Spyware  is a special class of Trojans. Such programs are relatively benign in the sense 

that they do not damage the computer they are running on or any of the user data. What 

they typically do is report local activity to some unrelated website. In the most benign 

case this information merely identifies which websites are being accessed and helps 

the system place ads on the websites that might be of more interest to the user. There 

is a gray area in which this activity could be viewed as being actually helpful. Unso-

phisticated users are misled by unscrupulous advertisers to install “screen savers” 

and “browser toolbars” that are actually Trojans containing such spyware. At the very 

least, the user is not usually notified that these additional functions are being installed. 

In the worst case vendors of music CDs and tax software installed spyware packages 

when one of their DVDs was played on the computer or their software was installed 

in misguided attempts to enforce  digital rights management,  or  DRM.  These instal-

lations were done without any notice to the user of this software. In both cases the 

performance of the system was degraded and new security flaws were exposed to 

the Internet. In more malicious instances spyware can be used to steal passwords to 

websites and even credit card numbers. Fortunately, special scanners exist that can 

recognize and remove most spyware. The degradation caused by one spyware pro-

gram is not usually too substantial. But when running scanner software for the first 

time on machines owned by naive users it is not unusual to find  hundreds of instances 
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of spyware, and these systems are often essentially useless under the load. As of this 

writing the spyware detectors are beginning to merge with virus scanners into a more 

general category of malware scanners.  

  16.1.5 DoS attacks  

 The Internet Worm just described was intended to be benign. Unfortunately, as a side 

effect of its operation it is also an example of another class of attacks,  denial of ser-

vice,  or  DoS.  The effect of this worm was that authorized users could not access the 

machines or that operating systems failed because they had seldom been tested at the 

limits of stress they were being put to. This effect is called denial of service. Usually 

a DoS attack is an intended consequence rather than a side effect. There are many 

such attacks—we describe two. The first is called the  Ping of Death.  A ping is a 

special message used by network administrators to test network connections. A ping 

command received by a server is echoed back to the sender, so the sender will know 

that the target machine is reachable. To make the program more useful the sender 

can send a large packet and send it several times to see what the average response 

time is. There is supposed to be a maximum of 64 KB on the attached packet, but 

it is possible to maliciously create a ping packet that contains more than 64 KB. 

Unfortunately, more than a few OSs had a ping utility that would try to receive this 

packet into a buffer that could be up to 64 KB, but no larger. If a larger packet were 

received, then the data would overwrite something unintended, often with fatal con-

sequences. This would not cause any benefit to the sender—only harm to the target.  

 Another DoS attack is called a  SYN Flood.  TCP network connections start with 

a “three-way” handshake. The initiator of the connection sends a packet that contains 

a SYN flag, which tells TCP that it is starting a connection and that the receiver 

should allocate some buffers and reset some data fields regarding that connection. 

The receiver replies and the sender sends another packet that completes the con-

nection. In a SYN flood attack the sender sends many initial SYN packets starting 

new connections but never responds to the receiver’s reply, thereby tying up mem-

ory resources. After a sufficient number of unfinished connections are opened, the 

receiving system may either crash or simply be unable to accept further connections, 

thus denying service to authorized users.  

 Both of these problems have been fixed in all current OS protocol stacks, but 

they may persist in older network equipment that cannot be easily upgraded. Other 

such problems are discovered often and eventually get repaired. If we were not con-

tinually developing new protocols these problems would eventually all be solved. 

But other kinds of attacks are not so simple to prevent. An example is a coordinated 

attack using  zombies.  A zombie is a machine where security has been compromised 

to the extent that a remote user can run an unauthorized program at will. Given a 

large set of zombie computers a malicious user can synchronize them to all run a 

specific program at the same time. Networks of tens of thousands of zombie systems 

are not unusual because so many users are naive about the security on their machines 

and a zombie machine might not exhibit symptoms that are easy to detect. (Zombie 

machines are sometimes called  robots  or  bots  and a large set of such machines is 

called a  botnet. ) The program could consist of legitimate requests—perhaps to ask 

a Web server to deliver a specific page. Or the requests might be bogus, but legal 
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from a protocol standpoint, and therefore difficult to detect or prevent. For example, 

we might send a page to a Web server. This is usually only used for maintenance, so 

most users are unauthorized, but the request itself looks legitimate. If several thou-

sand zombie computers can be used at the same time they can overload a server to 

the point that legitimate users are denied access. Even if the server is not overloaded, 

the entire communication connection to the server may be filled, again denying ser-

vice. No single zombie will appear to be under any load, so the systems’ owners may 

not even be aware that anything is happening.  

  16.1.6 Buffer overflows 

 In order to do much damage, a virus or worm needs to somehow fool the system into 

running its code in supervisor mode. One of the most common ways that a virus or 

worm manages this feat is to exploit a type of program coding error called a buffer 

overflow, or buffer overrun. The ping of death we mentioned was one example. A 

buffer overflow occurs when a process stores data beyond the end of a buffer. What 

happens is that the extra data overwrites nearby memory locations. Buffer overflows 

can cause a process to crash or output wrong information. They can be triggered 

by inputs intended either to run malicious code or only to make the program oper-

ate in an unintended way by changing the data. Buffer overflows are the cause of 

many software vulnerabilities and the basis of many exploits. Bounds checking can 

prevent buffer overflows. Programmers often don’t think about the problem, naively 

assuming that the input data will be valid. Compilers can generate code that always 

does bounds checking, but programmers typically turn such options off for the sake 

of efficiency. 

 In the following example, X is data that was in memory when the program began 

executing. Y is right next to it. Both are currently 0.                      

X X X X X X X Y Y

00 00 00 00 00 00 00 00 00

            If the program tried to store the string “too much” in X, then it would overflow the 

buffer (X) and wipe out the value in variable Y.                      

X X X X X X X Y Y

‘t’ ‘o’ ‘o’ ‘ ’ ‘m’ ‘u’ ‘c’ ‘h’ 00

    Although the programmer did not intend to change Y at all, Y’s value has now been 

replaced by a number formed from part of the character string. In this example, on a 

big-endian system that uses ASCII, “h” followed by a zero byte would become the 

number 26624. Writing a very long string could cause an error such as a segmenta-

tion fault, crashing the process. 

 The methods used to exploit a buffer overflow vary by the architecture, operat-

ing system, and memory area. Besides changing values of unrelated variables, buffer 
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overflows can often be used by attackers to trick the program into executing  arbitrary 

code that came from the malicious input. The techniques used by an attacker to gain 

control depend on the part of memory where the buffer resides. For example, it might 

be in the stack area, where data is pushed onto the stack and later popped off. But 

there are also heap overflow exploits as well. 

 Typically, when a function begins executing, local variables are pushed onto 

the stack, and are accessible only during the execution of that function. This is a 

problem because on most systems the stack also holds the return address—the loca-

tion in the program that was executing before the current function was called. When 

the function ends, execution jumps back to the return address. If the return address 

has been overwritten by a buffer overflow it will now point to some other location. 

In the case of an accidental buffer overflow as in the first example, this will almost 

certainly be an invalid location, not containing any program instructions, and the 

process will crash. But by carefully examining the code in a system an attacker can 

cleverly arrange things so that the system will begin executing code supplied by the 

attack. Modern OSs are now starting to locate code and data randomly in the logical 

address space to make such exploits more difficult to create.  

  16.1.7 Scripts and applets 

 Another variety of malware is sometimes found on malicious websites. Several 

mechanisms have evolved that allow a website to send programs to client systems. 

These include scripting languages such as  JavaScript  and  VBScript  and  applets  

intended to run on software virtual machines such as the  Java virtual machine  

( JVM ) from Sun Microsystems and the  Common Language Runtime  ( CLR)  from 

Microsoft. Both of these mechanisms normally execute programs inside the browser 

in a manner known as a  sandbox.  See  Figure 16.1 . This means that the actions of the 

program are restricted so that it cannot cause harm. For example, normally programs 

running in a browser are not allowed to access the local disk drives. Most browsers 

allow a user to override these limits so that a trusted program can do things we might 

Applet A

Browser Program

Client System

Applet A

Web Server

Server System

Applet
files
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Sandbox execution 
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not want a program we are unsure about to do. If we got the applet from our company 

website we would probably trust it. If it came from another source we might not.  

  One additional mechanism that is widely believed to cause security problems 

is that of  cookies.  By design, Web servers are stateless—they do not keep any infor-

mation about individual clients. (Applications that run in Web servers can do so, 

but it is not a feature of the server itself.) This stateless nature limits what servers 

can do. In order to expand on these capabilities, browsers were enhanced to allow 

a server to record information about a website on the browser system. These are 

fairly short strings of text. The server can read the cookie when a browser requests 

a page. These can help the server appear to be stateful. They can store a customer 

number, a last question asked, a last page visited, shopping cart information, and so 

on. They can be used to temporarily tell a website that you have logged in as you 

move from page to page on the site. It is a common misconception that cookies 

can contain viruses or other malware. Cookies called  tracking cookies  can be con-

structed to share information across multiple websites for advertising purposes, but 

there is no way that a cookie can harm a computer or other information or programs 

on the computer.    

  16.2 OS PROTECTION 

   16.2.1 OS protection 

 In earlier chapters we discussed several different aspects of OS protection, but they 

are worth mentioning again in this context. One example is the separation of Super-

visor Mode for running the OS and User Mode for running application programs. 

This separation allows the OS to monitor various operations in an attempt to make 

sure that they do not do anything disastrous. It is possible for the OS to make sure, 

for example, that an I/O request does not overwrite part of the file system metadata. 

However, in many cases it can’t prevent some abuses, such as deleting a file that a 

user might want. Some of this sort of abuse can be mitigated by file system protec-

tions, which we discuss a bit further on. 

 Similarly, the OS protects the use of the CPU by starting a timer and preventing 

user programs from changing the timer. This allows the OS to abort any program 

that goes into a loop, intentionally or not. In batch systems a runtime estimate is 

given when a program is started and the program will be terminated if it exceeds that 

estimate by more than a certain percentage. In interactive systems it is assumed that 

eventually the user will abort an operation and either retry it or do something else. 

In either case, a rogue program can’t completely tie up the system since the OS is 

probably multitasking and the user will still be able to interact with the OS to kill a 

looping program. 

 One final aspect of the OS protection is memory protection. The hardware can 

usually check the addressing bounds of the logical address space. In addition, many 

systems can mark certain pages as allowing read-only access or execute-only access, 

giving an added measure of protection. These features allow the OS to protect itself 

from any user program and also keeps programs from interfering with each other.   
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  16.2.2 Authentication 

 When users remotely access computer systems we may be concerned that they only 

access resources we want them to access, though sometimes we don’t care what they 

access. Most Web servers, for example, will allow any user to access any page. How-

ever, an online banking system accessed by a Web interface certainly does not want 

any user to access all of the information on the server. We want users to access only 

accounts they are authorized to access. Controlling what a user can access on a sys-

tem actually has two parts to it: authentication and authorization.  Authentication  is 

verifying the identity of a party to a communication. In the case of a user accessing 

a bank account we need to authenticate both parties. Obviously the bank wants to 

authenticate the user. Until recently it was not so obvious that when using an online 

banking system we want to authenticate the bank as well. A new class of computer 

fraud has arisen that is known as  phishing.  A phishing fraud is most often sent in 

an email. It directs a user to a website that pretends to be something it is not—your 

bank, for example. It asks that you enter some confidential information such as your 

credit card number or bank account number and ID and password. It uses some 

plausible-sounding reason for requesting the information, usually saying that it is 

needed to authenticate you, and often stating that the system needs this information 

because the system security has been compromised in some way. As a result, we 

now understand that it is important to authenticate the host system to the client as 

well as authenticate the client to the host system. 

 Authentication usually takes one of three forms: something you  have,  some-

thing you  know,  or something you  are.  Examples of something you have include 

your ATM card or your house key. Cards and keys can be stolen, however. Something 

you know might be your login ID and password or your account number. Any such 

information can be captured if a third party sees you enter it or reads the message 

from the communication line. Something you are might be a voiceprint, thumbprint, 

or a retinal scan. Such systems are just now coming into use and in theory should 

be harder to fool once they are further developed. Using two different methods of 

authentication at the same time is called  two-factor   authentication.  This is seen 

when one uses an ATM card and must also supply a PIN. 

 Passwords are problematic because of social factors. The very worst password 

is the default password that sometimes comes with software or hardware. Surpris-

ingly often these passwords are never changed. If passwords are not chosen care-

fully they can be easily guessed. Such passwords are considered weak. The Internet 

Worm mentioned earlier used several mechanisms for guessing passwords and was 

remarkably successful. So the use of  strong passwords  is recommended. Passwords 

are generally considered strong if they contain a combination of upper- and lower-

case letters, symbols, and numbers and do not contain any names or words, repeated 

symbols, or sequences such as 123 or tuv. Passwords that are names or words can 

often be broken be guessing common words or names associated with the account. 

This is known as a  dictionary attack.  But the problem with strong passwords is that 

they are difficult to remember. This is especially true since it is normally recom-

mended that you do not use the same password on different systems. As a result, 

strong passwords are often found on notes attached to computer monitors, seriously 



368 Part 5 Networks, Distributed Systems, and Security

compromising their effectiveness. A good technique is to make up a sentence and 

use the first letter of each word in an acronym. For example, “World War 2 began 

in 1939!” could yield a password of WW2bi1939! That is a nice strong password. 

When you try to use it and you can’t remember the year, just go to Google and enter 

“year wwii started.” Now your note can contain some cryptic hint like “W2” that will 

be meaningful only to you.  

  16.2.3 Authorization 

 Once an OS knows who a user is, the next task is to decide what operations that 

user is allowed to do. More specifically, the allowed operations depend on the object 

being accessed—we normally do not have the same rights to all files on a computer. 

We have been discussing a user as a person, but in the context of an OS, a process 

can be a user as well. Deciding what operations a user can perform on an object 

such as a file is called  authorization.  Abstractly the OS could have a data table 

called an  access control matrix,  or  ACM.  One dimension of the matrix would be 

the user and the other would be the object to be operated on. The entries in the 

matrix cells would be the operations that would be allowed for that user on that 

object.  Figure 16.2  shows a hypothetical ACM. In it we see that the rows are labeled 

with user names and the columns are labeled with objects. In this case we see three 

file objects and one printer object. Wendy is a designer in the art department and is 

authorized to use the laser printer but not the C compiler. Ann and Fred can read and 

write their own resumés, but nobody else can. Ann and Fred can both execute the C 

compiler, but neither can read it as data or write to it. Note that the set of possible 

operations for one object are likely not the same as the set of possible operations for 

another object of a different type. A file would not have a Stop Queue operation like 

a printer might.  

  One thing is clear even from this small piece of an ACM—most of the cells are 

empty. Trying to store an entire ACM would waste a tremendous amount of memory. 
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A large machine might have tens of thousands of users and hundreds of thousands 

of files and most users would be allowed to access only a small set of the files. For 

this reason, OSs do not use an ACM. Instead, they either use an access control list or 

a capability list. An  access control list,  or  ACL,  is attached to an object and would 

contain only the users who were authorized to perform some operation on an object. 

The list elements would list each specified user who could access the object and the 

operations they could perform on the object.  Figure 16.3  shows some ACLs that cor-

respond to the ACM in  Figure 16.2 .  

  Alternatively, an OS can use a  capability list,  or  CL.  A CL is shown in  Figure 16.4 

that also matches the ACM in  Figure 16.2 . The elements of the list show the objects 

that a user is authorized to operate on and lists the operations the user is authorized 

to perform.  

  Creating the entries in these lists the way that we have shown them, however, 

still creates many more references than we might like. Consider the problem of 

setting up rights for students at a large university to access the general system utili-

ties on a computer. Not only are there thousands or tens of thousands of students, 

they change every semester—some enroll and some move on, one way or another. 

Setting up all the necessary rights for each individual student would be a signifi-

cant administrative problem. Instead, we utilize  groups  or  roles.  We create a group 

called “student” and we assign the rights to the necessary objects to the group. 

Then, as students arrive and leave all the administrators have to do is to add the new 
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students to the group and remove them when they no longer have access  privileges. 

The rights that are given to the group are inherited by the students. Roles are simi-

lar in that they allow for us to have a user in the system and have that user be 

assigned to a role. A role might correspond to being a member of a specific project 

team. All users who are members of that team inherit a set of rights in a set of 

objects shared by the team. When members leave the team and go to another, then 

all that the administrator has to do is change their roles and all their rights will be 

changed as well. 

 A question that must be answered is when the authorization should be checked. 

One option is to check the authorization when an object is first accessed—a file is 

opened, a socket connection is made, spooling to a specific printer is requested. 

After that, a set of operations implied by the initial access is allowed without fur-

ther checking. If we opened a file for input, for example, reads to that file would 

be allowed, but not writes. Depending on the level of security desired in the OS we 

may feel that this is not enough. We may require that every separate option will 

be specifically checked against the lists—perhaps the user’s privileges have been 

revoked since the initial access was made. For example, the user is going to be 

fired, finds out about it, and begins writing over files on the OS trying to remove 

evidence of malfeasance. The administrator revokes the user’s passwords, but the 

operations are already ongoing. We discuss this more under the topic of security 

levels. Note that this is a case where the OS designer must decide whether to pro-

vide the mechanism in the OS to support a feature and the system administrator 

must then decide whether to invoke it. In a department store such security might 

not be worth the system and administrative cost to maintain; in a bank it might be a 

different story altogether. 

 Yet another question is at what level the authorization is to be made. Normally, 

the objects in a system are organized in one or more tree structures—as an example, 

the file system on a hard drive. We often will grant a user access to a specific home 

directory. By implication the rights to a directory will extend to a subdirectory unless 

they are overridden. Typically we can also override the rights to any file in a direc-

tory. In some systems we can also assign rights to individual portions of a data-

base—sometimes a set of fields. Thus, a clerical worker in the HR department might 

be able to see the home contact information of all employees, but not the payroll 

information. Sometimes the restriction might be to a set of values—a set of records, 

for example. So a payroll clerk might be able to access the payroll records of most 

employees, but not those above a certain management level. Again, the OS designer 

must decide whether to supply those mechanisms and the administrators must set 

policies about their use.    

  16.3 POLICIES, MECHANISMS, AND TECHNIQUES 

  There are a number of types of security mechanisms that are commonly found in 

most larger OSs. In this section we look at a few of these common mechanisms. But 

before we worry about mechanisms it is important to establish policies that unequiv-

ocally establish what users can and cannot do and what they must do.  
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   16.3.1 Security and protection policies 

 Any network that is to be secure must have a set of policies that clearly spell out 

several things:

   ɀ what users are allowed to do,  

  ɀ what users are not allowed to do,  

  ɀ what users are required to do, and  

  ɀ what the punishments are if the procedures are not followed.    

 Even in a home environment, if parents wish to restrict access to certain types of 

websites they should clearly spell out what the restrictions are. Firewall mechanisms 

are not perfect and it is likely that the children in the family will end up being more 

computer literate than their parents and able to thwart many security mechanisms. 

The punishments for doing the things that are prohibited should be established 

beforehand. Firing an employee for sending a threatening email is difficult if the 

restriction was not spelled out clearly beforehand. 

 Similarly, employees must be clearly told what their responsibilities are with 

respect to backing up information, using encryption in certain environments, secur-

ing their computers, and so on. If they are supposed to run a virus checker and a 

firewall and to keep the software updated, then they should be told so in advance of 

any problems that might occur if they do not and what the penalties are for failing to 

adhere to the policies.  

  16.3.2 Crash protection: Backups 

 Crashes will happen. OSs must provide mechanisms to deal with them. First, the running 

system may crash. OSs are much better than they used to be, but no nontrivial program 

is ever truly debugged. When they crash we must be able to recover from these crashes. 

We have already discussed some mechanisms for dealing with these crashes. First is the 

mechanism of transactions. Often we have a series of file or database updates that work 

together to define a transaction. Perhaps we are moving a piece of expensive equipment 

from one warehouse location to another. If these are separate files or databases, then 

one update needs to reflect that the item left one warehouse and the other update needs 

to reflect that it is now in the other warehouse. If the system crashes before one of these 

updates is done, then we will either lose track of the item or we will think we have one 

more of them than we really do. By coupling the updates together as a single transac-

tion the system can ensure that either both updates are done or neither is. We discussed 

the implementation of transactions through logging, checkpoints, and rollbacks. 

 Another possible source of data loss is the physical crash of a disk drive. Some-

times the read–write heads literally crash into the platters and scrape the coating off. 

Other times we have a failure of a bearing or the electronics. Recovering some or all of 

the data off a dead disk drive is sometimes possible but is certainly expensive. It is also 

time-consuming. A far better method to cope with this possibility is to back up the data 

to a removable medium. Historically, this copying was done to magnetic tape because 

of the low cost of the media. For small systems, floppy disks or their slightly higher 

capacity relatives were utilized. Today, personal computer backups are most often done 

via CDs or DVDs. Not only do disk drives crash, users sometimes “crash” too. Every 
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system administrator gets used to hearing that a user has deleted a file that they really 

need accompanied by a fervent request to please recover it. So backups are also desir-

able because files can be deleted or corrupted by human error or software problems. 

 There are many approaches we can take to backing up a system, but there is 

one that works best. It involves the fact that most OSs have an indication in the file 

directories that shows whether a file has been changed since it was last backed up. It 

is often called an  archive bit.  The details of the best procedure can vary, but for the 

sake of illustration we will assume that we want to keep the system backups fairly 

easy to use, so every weekend we will create a backup copy of the entire system. 

This backup will clear the archive bit on all the files, showing that we have a backup 

copy. As the system runs during each day, it will set the archive bit on any file that 

is changed. At the end of the day we can run a different backup procedure that will 

copy only the files that have been changed that day. We will label this backup with the 

date. We will do that each day. Then when a user requests a file that was deleted, we 

can search all the daily backups in reverse order until we find it. In a large centralized 

operation the backup mechanism can keep track of which files are on which daily 

backups so that it is not necessary to search them all. There are a couple of other key 

features of such a system. First, the backups should not be in the same room as the 

computer. In case of a fire, backups in the same room would likely also be destroyed. 

Even more important, the backup media from the week before should not even be 

kept in the same building for the same reason. A flood might make the entire build-

ing inaccessible for some time. If an off-site backup is available, then the data can be 

restored to systems in another facility and operations resumed more quickly.  

 An alternative mechanism can be considered in environments where the data 

represent a great deal of money. Such data might include engineering or artistic 

designs where the value can be hard to even estimate because of the creative effort 

that went into them. They might literally be irreplaceable. In such situations we can 

employ a dynamic backup system that will write each file to a remote backup mech-

anism as it is changed. Such a solution is obviously more expensive, mostly because 

of the administration involved. But in such situations it can be well worth it, even if 

just for the peace of mind of knowing that the files are safe. It is still important to 

take the media to an off-site storage location. 

 If files are on laptops or the media used for backups are often physically taken 

outside the facility, then using encryption on the files or the media is a sound idea so 

that if the computer or the backup is stolen, the data will not be compromised. 

 An alternative to constant backups is the use of RAID disk organizations, as 

discussed in Chapter 14. Some of the RAID configurations provide substantially 

improved reliability at fairly low cost and mitigate the problems of losing data due 

to drive failures. They will not solve problems of file loss due to human or software 

errors, however.  

  16.3.3 Concurrency protection 

 We have mentioned that we build OSs with a great deal of protection between run-

ning processes. We also said that we want to build high-level systems out of mul-

tiple processes. Building systems out of multiple processes requires the ability to 

communicate among the processes. We therefore need mechanisms to facilitate 



 Chapter 16  Protection and Security    373

that  communication. One of those mechanisms that an OS can provide for such 

 applications is the ability to share memory. In this case we provide a means for 

processes to stipulate that they want to cooperate and share access to some portion 

of memory. In Chapter 9 we discussed some potential problems that can arise with 

the use of shared memory and said that we could solve this problem with the use of 

locking mechanisms, which the OS also must provide. This opened up yet another 

potential problem involving a deadlock. In this instance, the processes can avoid 

deadlocks by the consistent ordering of setting and releasing the locks.  

  16.3.4 File protection 

 With multiuser systems the OS must also provide a mechanism to make files private. 

Privacy does not necessarily mean that only a single user can access a given file. It 

must be possible for multiple users to share a file. In Chapter 6 we discussed the 

mechanism used in older versions of UNIX and Linux for specifying the access rights 

of the file owner, a group whose membership is defined by the system administrator 

and all other users. These rights are set with the chmod utility. In Chapter 18 we cover 

the mechanism for specifying access rights to files in the Windows NT OS family and 

in Chapter 19 we mention the newer mechanisms available in Linux systems. 

 Sometimes communication between concurrent processes involves sharing infor-

mation at a file level. Most OSs allow concurrent accesses to files by separate processes 

as a default. In order to avoid problems when one or more of the processes is writing in 

a file, the processes must use the same locking mechanisms and proper ordering of lock-

ing and unlocking to synchronize the use of the files just as we do to synchronize the use 

of shared memory. We discuss file protection further in the encryption section below.    

  16.4 COMMUNICATION SECURITY 

  Often a process running on one system will need to communicate with a process run-

ning on a different system. When we send information across a communication link 

from one computer to another there are three potential classes of problems that can 

occur at the level of sending the message. These can be seen in  Figure 16.5 . Commu-

nication in security systems is normally shown as being between two parties, known 

as Alice (A) and Bob (B). First, an outside party can  read  (or intercept) the message. 

Second, an outside party can  send  (or insert) a bogus message. And finally, an out-

side party can  change  a message that an authorized user sends. We are concerned 

with protecting a system against all of these problems.   

  One class of mechanisms that we will commonly use consists of elaborate 

protocols for specific functions such as authentication. As an example, a protocol 

known as Kerberos has been developed for authentication. It is widely used, having 

become almost a de facto standard. For example, as of Windows 2000, Kerberos 

is the default authentication protocol. Designing such protocols so they are secure 

is a very complex matter and a specialty in its own right. Using such secure protocols 

allows us to be certain that we are communicating with the other party we think we 

are communicating with. This mitigates most problems of having a third party insert 

messages into the communication stream undetected.  
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   16.4.1 Encryption 

 Another class of algorithms has been developed for making sure that messages are 

not subject to any of the three problems outlined above. These algorithms are used to 

encrypt the messages between the systems in such a way that they cannot be easily 

read by a third party. If they can’t be read, then they can’t be changed. Thus,  encryp-

tion  can eliminate or at least mitigate two of these three problems. Encryption takes a 

message (often referred to as the  plaintext ) and uses a known algorithm to scramble 

the message. A special number called a key is used with these algorithms. Unscram-

bling the received message will reveal the original message and is called  decryption.  

A schematic of this procedure is seen in  Figure 16.6 . These algorithms rely on the 

fact that when a third party captures an encrypted message it will be  computation-

ally infeasible  to decrypt the message without knowing the key. An interceptor could 

theoretically try every possible key value in what is called a  brute force  attack. The 

phrase “computationally infeasible” therefore means that it would take so long to 

run the algorithm with all possible keys that the information would no longer be of 

value once it is discovered. Unfortunately, the meaning of computationally infeasible 

constantly changes. We know that the speed of processors doubles roughly every 

18 months, so what was computationally infeasible 5 years ago may be easy now.   

  We have been discussing encryption mainly in the context of message trans-

mission. But encryption also can be used in file systems. It can be very useful in 

protecting information that is very sensitive in case the computer is stolen or lost. As 

systems are becoming more and more portable, this can be a very useful feature. It is 
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true for PDAs and cell phones as well as laptop computers. They have files stored in 

RAM instead of in secondary storage, but they can often still be encrypted. 

  Symmetric key encryption 

 Sometimes the decryption uses the same key as the encryption. In this case the key 

must be known only to the sender and the receiver (though there may be many receiv-

ers of a given encrypted message, and they must all know the key). Algorithms that 

use such keys are referred to as  symmetric,  or sometimes as  shared key  or  secret 

key  algorithms.  Figure 16.7  shows how a shared key system works. The secret key 

shared between Alice and Bob is shown as K A,B .  

  There are several different algorithms for using symmetric keys. For many years 

the standard algorithm used was  DES,  or  data encryption standard,  but it is no 

longer considered secure. In 2001 a new algorithm known as  AES,  or  advanced 

encryption standard,  was established. DES used a 56-bit key and AES uses a key 

that is either 128, 192, or 256 bits long, depending on the needs of the user. When 

AES was released, DES could be broken in a few hours by brute force with a spe-

cialized hardware system costing under $10,000. Breaking AES with a similar but 

much faster machine would take 149 trillion years. One problem with using shared 

secret keys arises when Alice and Bob do not know each other so they are reluc-

tant to exchange secret keys. An older method of solving this problem was to use 

a  trusted third party  ( TTP ) to generate a key and send it to both of them. This 

solution requires that both users really trust the TTP and also that the TTP always 

be online and available. Today there are new protocols like Diffie-Hellman and RSA 

that allow two users to dynamically generate a pair of keys like those discussed in 

the next paragraph and exchange them over a nonsecure network.  

  Asymmetric key encryption 

 Other algorithms use a pair of keys that are generated together. One of the keys is used 

for the encryption and the other is used for the decryption, so these algorithms are called 

 asymmetric,  or  public   key  algorithms. There are two interesting facts about these algo-

rithms. The first is that one of the pair of keys can be known to the entire world. This 

key will be called the  public key.  The other key will not be public and is therefore called 

the  private key.  In fact, this usually is the case. How this works is seen in  Figure 16.8 . 

Bob’s public key is shown as K B   ⫹   and his private key is shown as K B   ⫺  .  

  If Alice wants to send an encrypted message to Bob, she can use Bob’s public key 

to encrypt the message. Only Bob knows the matching private key, so only Bob will 

be able to read the message. Interestingly enough, it does not matter which key is used 
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for the encryption as long as the other is used for the decryption. Bob could encrypt a 

message with his private key and send it to Alice. If Alice is confident that the public 

key she has for Bob really does belong to Bob, then she knows the message really 

came from Bob. (This assumes that the message can otherwise be validated by the pro-

tocol.) Another interesting fact about the use of public key encryption is that different 

key pairs can be applied in any order. So Alice can encrypt a message with Bob’s pub-

lic key and then with her private key. Bob can decrypt the keys in the reverse order or 

the same order. This property is used in some electronic commerce systems. There are 

several algorithms for public key encryption, just as there were for secret key encryp-

tion. The standard for many years has been  RSA,  or  Rivest, Shamir, Adleman  after 

the names of the developers of the algorithm. It is based on prime numbers and relies 

on the fact that there are efficient algorithms for testing whether or not a number is 

prime but no efficient algorithm is known for finding the prime factors of a number.   

  16.4.2 Message digests 

 In some circumstances we don’t necessarily want to hide the contents of the message. 

We only want to make sure that it didn’t get changed. In such cases we can compute 

a simpler, faster function known as a  message digest  or a  hash.  This function is 

seen in  Figure 16.9 . These functions chop a long message into short pieces (typi-

cally about 512 bits) and combine them with a one-way function—one that cannot 

be easily reversed. The result is a message digest of a fixed length—usually about 

128 bits. Two algorithms are presently in use,  MD5,  which produces a 128-bit hash, 
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and  secure hash standard,  or  SHA,  which outputs a 160-bit hash. MD5 is com-

monly used to validate files downloaded from the Internet via HTTP or FTP, espe-

cially for programs. The file is downloaded along with a message digest of the file, 

commonly with an extension of .md5. Then a publicly available utility is run against 

the downloaded file and a new digest is computed. If the new one matches the 

downloaded one, then one can be assured that the file was not changed after it was 

uploaded to the server and that the download also did not change it. Unfortunately, 

MD5 is now known to be breakable with only modest amounts of computing power, 

so it is mainly useful to ensure that a file was downloaded correctly.  

    16.4.3 Message signing and certificates 

 By combining a message digest with public key encryption Alice can effectively sign 

a message electronically. Alice will take a message M and create a digest of the mes-

sage. She will encrypt the digest with her private key and send both the message and 

the encrypted digest to  Bob. Bob knows her public key, so he can decrypt the digest. 

He can then run the publicly available digest algorithm on the message and compare 

that computed digest to the decrypted one. If they are equal, then he knows (and can 

prove) that Alice sent the message. This ensures that Alice cannot later  repudiate  the 

message. Note that in order to prove this at a later date Bob must keep the message, 

the signed digest, and Alice’s public key, since Alice might later change her public 

key. Note also that Bob cannot change the message and still claim that Alice sent it, 

so it also protects Alice against having Bob change the message. 

 A special use of signing of messages is used to authenticate either clients or serv-

ers. This process produces a  certificate  that verifies identity. A special program is run 

that produces a preliminary certificate. A bank would do this on their server. The pre-

liminary certificate is sent to a  certificate authority,  and the CA encrypts the certificate 

with its private key and returns it to the requesting entity as a finished certificate. The 

bank now installs this certificate on their server. The bank can now send this certificate 

to clients to prove its identity. So when a browser tries to make a secure connection to 

the bank’s server, the server will send back the certificate to the browser. The browser 

can decrypt the certificate by using the public key of the certificate authority to verify 

the identity of the bank. The public key of popular certificate authorities are built-in to 

most browsers. So the browser decrypts the bank’s certificate with the public key of 

the CA and the user now knows that the browser has really connected to the bank. 

 We mentioned before that Alice can send Bob a message by encrypting it with 

his public key. The problem there is that Alice must be sure that the key really is 

Bob’s public key. The way that she can ensure that is for Bob to use a certificate 

authority to sign his public key with their own private key. Alice can use the public 

key of the certificate authority to open the key and verify that it is Bob’s key inside. 

Messages signed electronically in such a way are legally admissible in court.  

  16.4.4 Security protocols 

 As we saw in the last chapter, network support is divided into several layers. Each 

layer provides certain capabilities. An interesting question is, what layer in the proto-

col stack provides security? As it happens, security functions have been specified at 
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several different layers. In the TCP/IP protocol used in the Internet, security has been 

specified for both the Transport layer and the Network layer. If we are using 802.11 

wireless networking, then there may also be encryption at the Data Link layer. In the 

Transport layer security features are defined in a protocol called  SSL,  or  secure socket 

layer  (also called  TLS,  or  transport layer security ). This protocol is commonly used 

between Web servers and browsers for secure communication in combination with an 

application layer protocol called  HTTPS  or secure HTTP. The server is authenticated, 

as discussed in the last section, with a certificate assuring the client process that it is 

talking to the correct server. The two entities will initially use their own public and 

private keys for asymmetric encryption. They will then decide on a temporary secure 

 session key  and continue the session with symmetric encryption. Symmetric keys are 

more efficient to use than asymmetric keys but repeated reuse of them is risky, so they 

are commonly generated for a single connection and then discarded. 

 Security is also available at the Network layer with a protocol known as  IPsec,  

or  IP security.  IPsec is a set of protocols developed by the IETF to support secure 

exchange of packets at the IP layer. It supports two encryption modes: transport 

and tunnel. Transport mode encrypts only the data inside the messages but ignores 

the header. Tunnel mode is more secure since it encrypts both the header and the 

message. IPsec uses shared public keys for both the sender and receiver. These are 

exchanged by a protocol known as  Internet Security Association and Key Man-

agement Protocol/Oakley  ( ISAKMP/Oakley ) which allows the receiver to obtain 

a public key and authenticate the sender using digital certificates. IPsec is more flex-

ible than TLS since it can be used with all the Internet Transport layer protocols, 

including TCP, UDP, and ICMP, but is more complex and has processing overhead 

because it cannot use Transport layer functions that increase security. 

 Security is also available at the Application layer with a protocol known as  PGP,  

or  pretty good privacy.  PGP uses a public key system in which each user has a public–

private key pair. For creating digital signatures, PGP generates a hash from the user’s 

name and other signature data. This hash code is then encrypted with the sender’s pri-

vate key. The receiver uses the sender’s public key to decrypt the hash code. If it matches 

the hash code sent as the digital signature for the message, then the receiver is sure that 

the message was sent by the stated sender and was not changed, either accidentally or 

intentionally. PGP has two versions, one using RSA to exchange session keys and the 

other using a Diffie-Hellman protocol. The RSA version uses the MD5 algorithm to 

generate the hash code while the Diffie-Hellman uses the SHA-1 algorithm.  

  16.4.5 Network protection 

 There are several facilities that can be used in a network to improve security that are 

not actually inside an OS, but we will discuss them briefly because they impact the 

security features inside an OS. Actually, most of these facilities are applications that 

run inside a dedicated computer. 

 Most homes and organizations that run a local area network are connected to 

the Internet at only one point (though some businesses have dual connections if they 

can justify the cost of the extra reliability). This one connection is an ideal point to 

inspect communication messages for various problems. The facility that provides 
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this function is called a  firewall.  Normally, this function is embedded in the router 

that connects to the Internet since the router is looking at the packets anyway. A typi-

cal firewall configuration is shown in  Figure 16.10 . There are several functions that a 

firewall can do. First, it can block certain types of connections altogether by looking 

at the port numbers used by the connection requests. It can also inspect the insides of 

the packets and disallow certain types of traffic—pings, for example. Some firewalls 

also are configured to disallow traffic from IP addresses that are considered to be 

unsafe or unsavory. Firewalls can be supplied with  signatures,  data patterns known 

to be associated with specific attacks. They can also include a  traffic monitor  that 

watches for patterns that indicate a significant deviation from normal traffic patterns. 

This monitoring is also known as  anomaly detection.  Network protection systems 

using signatures or anomaly detection are usually called  intrusion detection sys-

tems  ( IDSs ) and  intrusion prevention systems  ( IPSs ). The firewall in the figure 

also shows a  demilitarized zone,  or  DMZ.  This military term in this case refers to a 

separate network that can be accessed either from the outside network or the inside 

network. This allows local staff to maintain the contents of servers located there and 

still have those servers accessed from the Internet.  

  One problem with firewalls at the network connection point is that not all machines 

in the network need the same types of connections. While a large university with a 

big UNIX server would likely want to allow Telnet sessions to be set up through the 

firewall, it is not likely that a Telnet session is needed to a personal computer. There-

fore, it is common to also provide a firewall function in a personal computer that will 

disallow such sessions. Interestingly, it often will be configured to disallow many 

outbound connections as well as inbound connections since a common technique of 

many viruses is to connect to rogue hosts to report purloined information. A local 

firewall will be an application program rather than a part of the OS, but in order to 

inspect the connections that are being requested and the traffic coming and going, 

they will need to be able to insert their functionality in the protocol stack. This is an 

unusual requirement for an application to make of a protocol stack, but OS designers 

have learned of the necessity to provide it for this special class of applications. Thus 

these programs are not only able to watch for text patterns in the messages but can 
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also monitor other system activity to detect behavior that is characteristic of viruses 

such as accesses to certain system files not normally accessed by applications.    

  16.5 SECURITY ADMINISTRATION 

  There are several things that a system administrator must do to ensure the security of 

the systems connected to a network. We have already discussed the need for a regular 

backup system, firewalls, and traffic monitoring. In addition, several actions should 

be logged and the logs reviewed regularly. First would be the log of failed login 

attempts. A small number of failed logins will be normal—passwords should expire 

from time to time, users will accidentally type something wrong or use a password 

from another system, and so on. Any spike in the number of failed logins should 

give cause for alarm as a likely indication of attempts at penetrating a system. Other 

failures should also be logged and analyzed, such as a failure to find a requested Web 

page on a Web server. Such errors may only show bad links, but close examination 

might expose attempts at hacking the server. 

 Some systems have substantially higher security requirements than do others. A 

home personal computer probably needs little security beyond keeping out viruses 

and hackers. A bank needs a higher level of security because of the money involved. 

A hospital system charged with patient care probably needs still higher security 

because problems with the system can literally be a matter of life or death for a 

patient. A military system might need still higher security because a failure could put 

millions of lives at risk. As a result, the National Computer Security Center (NCSC), 

an agency of the U.S. government, has published a definition of four major levels of 

security with some minor variants. With each higher level the OS must provide extra 

features, many in the area of logging of activities. Needless to say, we don’t want to 

load down the OS of a personal computer in a home with all the features necessary 

for security on that military system. The lowest level is D, which has minimal secu-

rity. A system with this level of security might be used by any user in an office or 

in a home. As an example of the increasing levels, the additional requirements (over 

those required for C1) for a C2 rating are:

   ɀ Access control works on per user basis. It must be possible to permit access to 

any selected subset of the user community.  

  ɀ Memory must be cleared after use. The OS must ensure that disk space and 

memory allocated to a process does not contain data from previous operations.   

  ɀ The OS must be capable of recording security-relevant events, including authen-

tication and object access. The audit log must be protected from tampering and 

must record the date, time, user, object, and event.     

 Most commercial OSs today can easily operate at the C2 level. OSs that operate at 

higher levels are generally specially designed for that purpose. For government pur-

poses, the security level of an OS must be established by an independent third-party 

auditing firm. Furthermore, the certification applies only to a specific release of the 

OS and a specific hardware configuration so generic certification by the manufacturers 

is not often done at these levels.    
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   16.6 SUMMARY 

 Since computer systems are now accessible by many 

users and are more often connected to the Internet, 

it is necessary that the systems, the files therein, the 

running processes, and the communications between 

users and between processes be protected from harm, 

either accidental or intentional. In this chapter we 

discussed several facets of protection and security as 

they pertain to OSs. First, we gave an overview of 

system security problems. We classified some of the 

security problems we see as a result of being con-

nected to the Internet and described how an OS needs 

to deal with them, including mechanisms outside the 

OS. Then we moved on to discuss the protection 

services OSs offer to users, primarily in the area of 

privacy of files. We described the general designs of 

such services. The OS must also provide services for 

processes. Significant barriers are erected between 

running processes and the OS. We looked at some of 

the services provided to processes that are communi-

cating with one another.  Section 16.4  covered secu-

rity about networks, most specifically the Internet. 

It discussed encryption, authentication protocol, and 

message digests, and the related topics of network 

security outside of the OSs. We covered problems of 

administration of network and OS security.  

 In the next chapter we take a look at special con-

siderations we must use when using OSs to create 

systems that are distributed across multiple systems.  
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  REVIEW QUESTIONS 

    16.1 Which is the larger problem, hackers or insiders? 

Justify your answer.  

   16.2 What characteristics of malware distinguish a virus 

program?  

   16.3 What characteristics of malware distinguish a 

Trojan program?  

   16.4 What characteristics of malware distinguish a worm 

program?  

   16.5 Briefly describe a buffer overflow.  

   16.6 What is the purpose of the sandbox model?  

   16.7 Authentication makes use of some special mecha-

nism to verify the identity of an entity. Most often 

we are concerned with verifying the identity of 

a user. Which of the following did we  not  say was 

something that could be used to verify the identity 

of a user?

    a. Something you have  

   b. Something you see  

   c. Something you know  

   d. Something you are  

   e. All of the above can be used to verify a user’s 

identity.     

   16.8 Once a user (or other entity) is authenticated, the 

actions allowed by the user must be authorized. 

We discussed two different mechanisms that are 

often used to support authorization. The first was an 

access control list. Briefly describe what an ACL is.  

   16.9 What is a capability list?  
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   16.10 Where should backup copies of data be stored?  

   16.11 What is meant by the phrase “brute force attack”?   

   16.12 How many key values are used in a symmetric 

key encryption system?  

   16.13 True or false? In a asymmetric key encryption key 

system it is crucial for both of the key values to be 

kept secret.  

   16.14 If we are not particularly concerned about confi-

dentiality but we want to ensure that a message 

that is sent is not altered by any party, what sort 

of mechanism would we use?  

   16.15 A certificate authority signs a user’s public key 

with its own private key. How does a browser use 

that to verify the user’s public key?  

   16.16 What secure protocol is used on the Web for 

HTTPS connections?  

   16.17 What is a common mechanism for protecting a 

network from an outside attack?      
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  D
istributed systems are becoming very prevalent. We discuss Operating Systems 

because they stand between our application programs and the hardware. 

When we are developing a casual application there is no need to worry 

much about the OS. But when we are developing high-performance applications we 

need to have a better understanding of what is going on inside of the OS so that we 

are working with the OS and not against it. So it goes with distributed processing. 

As we will we see shortly, when we are developing systems designed to support a 

large number of users we will often be compelled to develop distributed systems—

systems that have multiple parts running on different machines. Of course, we may 

build an application that is distributed for reasons other than performance or scal-

ing, and in such cases we may still not need to know much about the details of the 

OS as it pertains to distributed systems. But if our system is a high-performance or 

high-volume application, we may still profit from knowing how the underlying ser-

vices work so that we can better utilize them and not do something that forces them 

to do extra work for no purpose. 

 This chapter starts with an introduction where we discuss a number of reasons 

why this is so. It also introduces the notion of distribution transparency and why it 

is important. Lastly, it introduces the concept of middleware and explains why it 

evolved as it did. We then present a number of different models that are found in dis-

tributed systems, including both the client server model and more complex models 

as well.  Section 17.3  reviews the topics of processes and threads and discusses how 

threads can be used in clients and servers to make distributed systems perform  better. 

 Distributed Operating Systems 

 17  17  Chapter  Chapter 
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When processes in distributed systems communicate they need to refer to other 

entities, so in  Section 17.4 , we discuss the concept of naming and name spaces. In 

  Section 17.5  we present some different paradigms for distributed systems,  including 

remote procedure calls, distributed objects, and distributed documents. We discuss 

synchronization in  Section 17.6  because distributed systems have special issues con-

cerning synchronization that make them different from monolithic systems. Then 

in  Section 17.7  we present the topic of fault tolerance and the special problems dis-

tributed systems have regarding failure of one component in a system that otherwise 

continues to run. We conclude with a chapter summary in  Section 17.8.   

   17.1 INTRODUCTION 

  There are many reasons why we may need to develop systems that are distributed. 

We discussed many of them at some length in Chapter 9 with regard to cooperating 

processes, so we recap them briefly here:

     Performance. Systems running on multiple machines have more CPU time and 

other resources to apply to the problems. Some processes need a lot of power 

just for a single processing run—simulating weather systems, for example.  

    Scaling. Multiple systems means more transactions can be processed in a given 

amount of time.  
    Purchased components. Many times it is much cheaper to buy a system compo-

nent than it is to develop it in-house. Sometimes it is developed in such a way 

that it is essentially only available as a standalone process and may really need a 

separate system to run on.  

    Third-party service. Sometimes an application component requires access to 

special databases that are not themselves for sale, so the component is only 

available as an online service (e.g., credit verification).  

    Components of multiple systems. Often a component is developed in one sys-

tem but later is needed as a component in other related systems. In such a case it 

may be better to isolate that component on a dedicated machine.  

    Reliability. When a system has only a single instance of some component, fail-

ure of that component can cause the entire system to stop. Having multiple 

instances of each component allows the larger system to keep running, though 

perhaps with degraded performance.  

    Physical location of information. If a system is supporting multiple physical facil-

ities it may be desirable for parts of the system to be collocated with the facilities. 

Consider a warehouse inventory system supporting multiple warehouses where 

the bulk of the transactions are applied to a local database but connectivity is 

needed for a few transactions that have to be serviced out of another warehouse.  

    Enable application. Some applications require so many resources that they 

 literally could not be executed without a highly distributed system. SETI 

(Search for Extra-Terrestrial Intelligence) takes vast amounts of radio telescope 

and searches for patterns that might indicate an intelligent origin. They divide 

it into small data sets to distribute them to volunteers who process them via a 

screen saver. Otherwise, they literally could not process this data.    
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 There are several goals that we ideally would like for distributed systems to have. First, 

they should connect users and resources. (Note that in this context a “user” may be another 

process.) Second, the systems should exhibit  distribution    transparency.  Ideally, a user 

should not be able to tell that the system is distributed. There are several different ways 

that a user might notice a lack of transparency. These include transparency of:

     Heterogeneity. Different system parts may be running on different hardware 

systems or different OSs or both  

    Access. Differences in data representation and access (floating point number 

formats vary from machine to machine)  

    Location. Where a resource is located (Web pages can be anywhere)  

    Migration. Whether a resource can move (scripts sent to your browser by a server)  

    Relocation. Whether a resource moves while it is in use (your cell phone)  

    Replication. Resource is replicated (Google data servers)  

    Concurrency. Resource may be shared by many users (websites)  

    Persistence. Whether a resource is maintained on disk or in RAM  

    Failure. Whether a resource fails while in use (the Internet routes around failed 

links)    

 A key aspect of distributed systems is that they depend heavily on  open standards  

to achieve most of the desired transparency. Many standards exist in the computer 

science industry. Some are proprietary and some are open. Proprietary standards are 

usually not as useful in distributed systems because it is too difficult for different ven-

dors to test the components for interoperability. Thus, many OS facilities  developed 

for distributed systems by a single vendor are often eventually placed in an open sta-

tus so that other vendors can test their systems for interoperability.  Examples include 

NFS (Network File System) by Sun Microsystems and CLR (Common Language 

Runtime) by Microsoft. 

 Most OSs have not traditionally supported many of the services that distributed 

applications need. As a result, these services have developed in a category called 

 middleware.  As seen in  Figure 17.1 , middleware modules are placed functionally 

between the OS network services and the application programs. Thus, the OS and 
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the network modules provide services to the middleware but are otherwise ignorant 

of any distinction between the middleware and the application. The network ser-

vices may be quite independent from one another, communicating via open network 

 standards. The middleware modules also communicate via open standards, but by 

definition they cooperate to provide services that cross system boundaries.   

  17.2 DISTRIBUTED APPLICATION MODELS 

  Systems comprised of processes running on separate machines obviously need to 

communicate. There are several models that have been developed to describe the 

interactions between these components. We are describing the following models: a 

client–server model, a three-layer model, a multilayer model, horizontal distribution, 

and vertical distribution.  

   17.2.1 The Client-Server Model 

 The client–server model is shown in  Figure 17.2 . It is so well known that it almost 

needs no explanation. A client system needs a well-defined service so it contacts a 

server, which will provide that service. The main question we might need to answer 

in designing a client–server model is how much of the function of an application 

should be in the client and how much in the server. At one extreme the application 

will run on a central system and the client will be little more than a terminal. This 

model is sometimes referred to as a  thin client.  In other cases the application will 

run mostly at the client station and the server will provide only a very limited service 

such as a database to hold the information used by the application. There are many 

hybrid models that can be used as well. We elaborate more on this in the next sec-

tion, since the principle is the same there, only operating in more layers.  

  17.2.2 The three-layer model 

 After a few years of working with the client–server model it began to be clear that 

there were really three major functions that were easily identifiable in most systems: 

the  user interface,  the  application logic  (sometimes called business rules), and the 

 database  storage. The model for this architecture is shown in  Figure 17.3 . This extra 

division probably came about because database systems began to evolve themselves, 

and it was clear that building such facilities separately for each application was not 

economical. 
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 As with the client–server model, there are many variations that we can have in 

the three-tier architecture. The user interface can be very simple, perhaps only an 

X- Terminal in the UNIX environment. In other environments a Web browser on a 

personal computer may provide a simple way to have a GUI presentation for an appli-

cation. In such an environment we can send a page from a Web server that contains 

a form for the user to fill in for the application. The user fills in the form and clicks a 

button on the form. This click will cause the browser to submit to the server the data 

the user input into the form. The server will check the data, and if all is OK the server 

will process the request and return some result. But we can improve the performance 

of such a design by moving some of the processing to the client side. When a user is 

inputting data into a form to record some business event, if a detectable error is input, 

the sooner we catch it and get the user to fix it, the better. For example, if we are expect-

ing a field to contain a date and the user enters some alphabetic information (other than 

a month name), then the system should reject it. If we wait until the user has submitted 

the form and sent it to the server and we send an error message back to the user, we 

have separated the feedback from the input by quite a few steps, and this will render it 

less effective. It also disrupts the thought process of the user, who has mentally moved 

on from this transaction, thinking it to be already complete. It would be much better 

for the application to check the format of the data at the time the user moves the focus 

from the date field. Considerable design effort usually goes into deciding what check-

ing can be done on the client side and what should be done on the server side. 

 Other features can also be moved to the client side. For example, because com-

munication costs can be high or the network connectivity unreliable, it may be useful 

to allow the client side to do a considerable amount of data collection in an offline 

configuration and submit the transactions to the server later when the server or the 

connection is again available. 

 The third tier, data storage, is usually provided by a packaged database man-

agement system. Often these systems do little more than provide a higher-level file 

 system that supports very reliable storage and retrieval of data in normalized tables. 

In other cases the database systems are used to run part of the system logic by execut-

ing procedures stored in the database, improve data validity by verifying referential 

integrity, summarizing data for reports, and so on.  

  17.2.3 N-tier applications 

 The three-tier model is often extended to  N-tiers.  This is sometimes called  vertical 

distribution  and is done when an application can conveniently be broken into several 

parts. An illustrative example is the architecture of the Google search engine, as shown 
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in  Figure 17.4 . It is broken into several portions. Although there is no detailed descrip-

tion of the architecture available, enough has been published to illustrate the point. 

 There is a front-end process that receives the request and parses it into separate 

words. Another server may be queried for spelling corrections. The front-end server then 

takes those words and passes them on to other servers, each of which is responsible for 

a database of indexes of Web pages that contain a given word. These servers pass a set 

of those pointers on to another server, which merges the sets of pointers to create a set 

of pointers to pages that satisfy the entire search. Usually such searches contain all the 

words in the query, but other forms of query are possible. Another server is queried that 

pulls advertising from a database, selecting ads that are related to the search terms or 

to other searches that this user has made in the past. The pages are ranked to determine 

their probable relevance to the user, and the pointers are used to fetch the cached pages 

from other servers so that short snippets of the referenced page can be merged into a 

Web page that is then returned to the client’s browser. Thus, we see at least five different 

tiers in this application. Though they may not be tiers in a strictly vertical sense, they 

are interacting components, which are separate servers serving many clients.  

  17.2.4 Horizontal distribution 

 We also see another paradigm being used in the Google setup in two different ways—

 horizontal distribution.  We mentioned that the database is distributed across a group 

of servers, each of which is responsible only for pages that contain a given individual 

word (or set of words). This arrangement is a type of  distributed database,  where 

part of the information is contained on one server and part on another. In addition, 

the servers that Google uses are inexpensive PCs, not high-performance machines. 

Exact figures are unknown, and estimates vary, but a research organization estimated 
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that they had one million servers in mid-2007 and were adding more at a rate of 

100,000 per quarter. Google expects that servers are going to fail. Accordingly, each 

of those servers that handles documents containing a specific word is actually several 

servers—at least three in a given Google network node. Furthermore, the word data-

bases are replicated in at least three geographically distributed nodes in order to limit 

failures due to a disaster in a center containing a node. This is known as a  replicated 

database.  The Google databases are therefore both distributed and replicated. 

 But it is also the case that each of those other servers that we mentioned before is 

not a single server. No server in the world could possibly keep up with the number of 

search requests that Google gets per hour. Instead, the network is designed such that the 

requests are passed out among a group of essentially identical search engines. There 

are many instances of the advertising and spelling check servers as well. The entire 

system is designed to route around any failed node and use another instance of the data. 

Thus, all the various server functions are replicated, just as the database servers are.    

  17.3 ABSTRACTIONS: PROCESSES, THREADS, AND MACHINES 

  Processes are an abstraction that an OS uses to virtualize the CPU so that a running 

program does not need to be aware that it does not actually control the CPU. In order 

to have a system do more work on a single application we can have a process create 

other processes that will also run and thus get additional turns at the CPU. However, 

switching from one process to another requires a context switch on a uniprocessor 

system, and context switches cause a serious dip in performance of the system. All 

the caches must either be flushed, most specifically the TLB, which is caching page 

table entries, or will not find any cached entries until the new process has run long 

enough to reload the cache from the new process. This will also cause slowdowns 

because of the TLB misses, which must be handled until the TLB is reloaded to 

 represent the full working set of the process that is being started. 

 As a result, threads were developed. They arose from the recognition that the 

state information held in a process control block really had two parts. One part rep-

resented the many resources currently being held by the process. The other part held 

the actual CPU state regarding the current point of execution of the CPU (for any 

process that was not actually running). Storage for the latter part could be  duplicated, 

and the second block could then track a different point of execution of the CPU within 

the same process. So a program could effectively ask the OS to allow  several parts 

of the process to continue to run while other portions were also running, so long as 

those parts could communicate and synchronize their operations. This allowed one 

program to have several parallel points of execution without incurring the penalty of 

context switching.  

   17.3.1 Threads 

 There are several ways threads can be used beneficially in distributed systems. In 

client systems threads can be used to allow processing to overlap with asynchronous 

communication. A primary example is in a Web browser that is running the HTTP 
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protocol version 1.0. In this earlier version of the protocol a browser first fetched the 

base page of a document. It scanned the document for embedded elements and then 

had to make a separate connection to the server to fetch  each  of the other elements, 

one after the other. So a browser using this protocol could start separate threads for 

the retrieval of each element rather than fetching them one by one. This sped up the 

process considerably. Similarly, a client that was making a long set of remote proce-

dure calls (RPCs) could make each call in a separate thread so long as the result of 

one call was not required in another call. 

 Servers can also make good use of threads. The primary use here is to process 

each incoming request in a separate thread. Initially, the system starts a primary or 

 dispatcher thread,  which listens for incoming requests. When a request comes, the 

primary thread will start a  worker thread  to process the request. This design has 

the added benefit of program simplicity. Assuming that we are using kernel-level 

threads, if the worker thread makes a blocking kernel call, for a disk read, perhaps, 

then that thread can simply block and the rest of the server can continue. Each thread 

proceeds through a series of (usually) simple steps to process the request, return the 

result, and terminate. See  Figure 17.5 .  

  17.3.2 Virtual machines 

 Virtual machines are another level of abstraction—virtualizing an entire machine 

rather than only the CPU. There are two different sorts of  virtual machines,  or  VMs.  

This is an unfortunate overloading of the acronym VM since it is also used to refer to 

virtual memory, but the distinction is normally clear from the context. 

  Physical virtual machines 

 First, there is the concept of a virtual physical machine. A small OS kernel is loaded 

that will in turn execute other OSs on top of itself. The OS that is loaded first is 

the  host OS.  These other OSs will be known as  guest OSs.  The basic trick is that 

when a host OS loads the guest OSs it runs them in user mode. Whenever a guest 

OS tries to execute any operation that would normally require supervisor mode, the 

hardware will cause an interrupt that the host OS will receive. Then the host OS will 

do the operation, and when the results are ready will return them to the guest OS. 
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See   Figure 17.6 . There are several reasons why it can be useful to run multiple OSs 

on the same machine at the same time. As far as distributed processing goes, the main 

reason is to consolidate several servers onto one system. Building a server that is very 

reliable and high performance and placing it in a secure location is quite expensive. 

Often a server purchased today will be much more powerful than is actually required 

to run the service. Using VM allows several servers to be consolidated. This can save 

money on hardware since one larger server can replace several smaller ones, using 

less power and air conditioning. It is especially useful if the servers were running on 

different OS platforms, but even if they were running on the same OS, the VM can 

run multiple copies of any guest OS. This would seem strange, but it helps isolate the 

server functions since a crash of one guest cannot impact any other guest.  

  Abstract virtual machines 

 The other sort of virtual machine is an abstract virtual machine that is a software 

simulation of a machine designed to run some intermediate language. The primary 

examples are the  Java virtual machine,  or  JVM,  developed by Sun Microsystems 

and the  Common Language Runtime,  or  CLR,  developed by Microsoft as part 

of the .NET system. These are used widely in distributed processing, primarily for 

three reasons: code mobility, code portability, and security. Mobility allows a com-

piled program to be downloaded from a server to the client to be run locally. This 

happens when a Java applet is downloaded from a server to run in a client browser. 

The client browser contains an implementation of a Java virtual machine, so the Java 

program could be copied from the server and run at the client. This could be for any 

of the reasons we mentioned earlier. Code is more portable when run in a virtual 

machine because the virtual machine can be ported to any hardware and platform. 

This assures a software vendor a wide market because the target machine is virtual. 

Since the JVM may be running in a browser in the client we have some risk that the 
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downloaded applet might present a security problem. So, as a default the browser 

will be very restrictive about what it will let the applet do—inhibiting accessing of 

the local hard drive, for example. Usually the client browser can be configured to 

show that certain sites are to be trusted—the client company headquarters, perhaps, 

and code from these sites will be allowed to do some of these things that would not 

otherwise be allowed. As an alternative to execution in the browser’s virtual machine 

simulation, the program may be compiled into the native machine code of the target 

machine in an operation called  just-in-time  (or  JIT ) compilation.     

  17.4 NAMING 

  Distributed applications require communication between the various processes involved. 

When the processes communicate they need to refer to other entities such as files, sock-

ets, records, users, and so on. References to entities can take several forms. We will need 

to distinguish between names, identifiers, and addresses.  Names  denote entities. Users 

have names. So do computer systems—for example, webserv.example.com. Names can 

be reused, so it would be possible for the example domain to replace the system cur-

rently called webserv with another system and call the new one webserv. This is espe-

cially likely with servers of any kind. Many other entities we might wish to access also 

have names. Names are not necessarily unique. Therefore, we create  true   identifiers.  

An identifier is generally issued by some authority. Identifiers are never reused and are 

never duplicated so they always refer to the same entity. Examples include a Social 

Security Number for a user or a burned-in MAC address for a network interface card 

(NIC). Finally,  addresses  denote access points for entities. Examples include a phone 

number, an IP address, and a socket (or port), which addresses a specific process or 

thread within a computer system. 

 Passing references within a single system is usually simple because the sys-

tems share a common frame of reference. Thus, for most platforms a simple file 

name without any other surrounding context will first be assumed to be in the cur-

rent working directory. Failing that, a series of alternative directories is used. This 

set is usually specified in some global set of values defined for the system or for a 

given user. On Microsoft OSs these are called  environment variables.  One of them 

is known as the  path.  The path is the series of directories that the OS will search to 

find a file with no path name. Together these alternatives make up a common frame 

of reference in which a file name will have meaning. All the processes on the system 

share this reference frame. 

 Passing references to entities within a single system is usually not difficult 

because of that common frame of reference. However, distributed systems are much 

more complex. This is one of the problems caused by the heterogeneous nature 

of distributed systems—they do not share a common frame of reference. In order 

to provide common frames of reference the industry has established some global 

reference frames, often called a  name space.  Name spaces are organized collec-

tions of information in which a name can be located. The primary example is the 

 domain name system,  or  DNS.  The DNS is a hierarchical name space defined by 

the   Internet naming authority,  or  INA.  It is very simple for a process that has 
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been passed a DNS name to look it up and find an IP address that corresponds to 

the name. Usually the process will have a socket number to use with the IP address 

and that concatenated pair of numbers identifies a particular software entity in the 

addressed system.  

   17.4.1 Discovery services and Jini 

 Jini™ (pronounced like genie) is a middleware design for dynamically creating 

 distributed systems. It is an open specification that enables developers to create net-

work services, either hardware or software, that are highly adaptive to change. This 

design specifies a means for clients to find services on the network and then to use 

the services to accomplish a task. Providers of services send to clients Java objects 

that furnish the client access to the service. This interaction can use any middleware 

technology because the client only sees the object and all network communication is 

confined to that object and the service it accesses. 

 When a service joins a Jini-enabled network it advertises itself by publishing an 

object that implements a well-known service API. A client finds services by looking 

for an object that supports the API it wants to use. When it finds the service’s pub-

lished object, it can download the code it needs to talk to the service.  

  17.4.2 Directory services, X.500 and LDAP 

 Directory access protocol (DAP) is a network standard specified by the ITU-T and 

ISO for use with an  X.500  directory service. It was intended to be used by client 

computers but was not successful because there were few implementations of the 

OSI protocol suite for personal computers. The basic operations of DAP were incor-

porated in  Novell Directory Service  ( NDS ) and later in the  lightweight directory 

access protocol  ( LDAP ). 

 LDAP was intended to be a lightweight alternative for accessing X.500  directory 

services and can run over TCP/IP. The intent of LDAP was that a client could access 

X.500 services through an LDAP-to-DAP gateway. But instead LDAP directory 

servers quickly sprang up. LDAP has become extremely popular in enterprises. It 

is the default directory services for Windows XP and is also usable with most other 

OSs today. It includes an authentication protocol that is quite robust so that accessing 

distributed services is quite secure.  

  17.4.3 Locating mobile IP entities 

 Devices that are communicating over the Internet using IP have a special problem if 

they are mobile. The problem arises because part of the IP address of a node specifies 

the network where the node is connected. If the node moves to a different  network, 

then the IP address should change. But the TCP connectivity model and most other 

protocols are not designed to allow for a change in the IP address during a session. So 

tracking a mobile IP entity is quite difficult. Mobile IP is most often found in wire-

less environments where users move their mobile devices across multiple  networks 

as they move from home to school to work. 
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 A protocol suite for Mobile IP is defined by RFC 3344. A node that is going 

to use mobile IP will have an IP address called its  home address.  It will register 

with a server on its home network called a mobile IP  home agent.  When the node 

moves to another network it will be given an IP address on the new network. This 

will be called the  care-of   address.  It will then search for a server called a mobile 

IP  foreign agent.  It will tell the foreign agent where its home agent is. The foreign 

agent will connect to the home agent and the home agent will store the temporary 

new IP address in a database and will register itself locally with that IP address. A 

host that needs to communicate with the mobile node initially connects to the home 

address of the node. The packets are received by the home agent and it forwards the 

packets to the mobile node’s care-of address with a new IP header. The original IP 

packet is left inside the new packet. The mobile IP software in the node will strip off 

the outer packet header and deliver the inner packet to the application software in the 

node. This process is known as  tunneling.  The application software does not need 

to be aware that it is running in a mobile environment (i.e., the middleware provides 

mobility transparency).    

  17.5 OTHER DISTRIBUTED MODELS 

  We discussed the client–server model and several variations on that model. But there 

are other models that are also useful in distributed systems.  

   17.5.1 Remote procedure call 

 Often an existing monolithic system needs to be modified to become a distributed 

system. One model for dividing an existing process is to remove subroutines from 

the existing application and run them on a separate server. This is called  remote 

 procedure call  ( RPC ). It is a useful technique because it involves a component 

model that programmers are already familiar with. In principle the idea is  simple—

take a subroutine out of a running system and put it on a server. Replace the removed 

routine with a new subroutine called a  client   stub  that knows the subroutine is 

somewhere else and invokes the RPC middleware to find it and call it. The model 

for this process is shown in  Figure 17.7 . But this process is complicated by the 

possible heterogeneous nature of distributed systems. RFC 1831 that defines RPC 

assumes that the systems are heterogeneous. This means that the parameters being 

passed to the subroutine must be converted to the format of the server that is running 

the subroutine, and the answers must be converted the opposite way on the return. 

This process is called  marshalling  and unmarshalling. On the server system there 

will be another stub. This server stub takes the place of the original program in that 

it calls the subroutine. It receives the message from the client system, unmarshals 

the arguments into the formats required by the server platform, calls the subroutine, 

marshals the returned arguments, and packs them into a message to send back to the 

client stub. 

 Since the client system does not know what platform the server system is run-

ning on, the client stub converts the arguments into an intermediate form called  
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eXternal Data Representation  ( XDR ), which was defined in RFC 1832. This 

 intermediate format is platform neutral and allows us to represent any data in a 

 standardized, platform-independent format. An implementation of RPC for a given 

platform must define the mapping from the XDR formats to native platform formats. 

 When a subroutine is removed from a program, the client stub must be substi-

tuted for it. Creation of the stub starts with a language called an  interface descrip-

tion language,  or  IDL.  Most IDLs are similar to C. The stub is used to declare the 

nature of the arguments to the removed routine. Once the interface is described in 

IDL, an IDL compiler that is specific to the client platform and source language is 

run against the description. It will produce two things—a header file that will be 

inserted into the original program to describe the missing routine arguments and a 

separate source program that should be compiled, which will become the client stub 

routine. This process is shown in  Figure 17.8 . The object form of this routine will be 

linked with the original application to produce the modified application. The IDL is 
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standardized, so the same IDL file can be used on the server platform to produce the 

server stub and the modified routine that the stub will call. 

 As was mentioned earlier, RPC is defined by an RFC. This specification is then 

implemented in specific packages. In this case there is a fairly standardized imple-

mentation called the  distributed computing environment  ( DCE ) that was created 

by the Open Group (i.e., the  Object Management Group , or  OMG ) as an open 

source project. Individual system manufacturers are certainly able to produce their 

own implementations, but using this source has the advantage of producing a pack-

age that has been rigorously tested already. The Open Group is an ad hoc group 

consisting of over 800 organizations.  

  17.5.2 Distributed objects 

 A model that is very similar to RPC is that of distributed objects. The techniques 

are very similar, but objects are more complex than subroutines. The naming of the 

 components is a bit different. The stub on the client system is known as a  proxy  and 

the stub on the server side is called a  skeleton.  One additional component usually 

found on the server side is an  object adapter.  Its function is to enforce some admin-

istrative restrictions on how the object is invoked. There are several such restrictions, 

but the most common one is a serializer that restricts the object to one invocation at 

a time unless the object is known to be thread safe. 

 As with RPC, distributed objects are defined by a specification and then imple-

mented in a specific package. One of the main standards for distributed objects is 

known as the  common object request broker,  or  CORBA.  This standard is also 

defined by the Open Group. In this architecture the middleware layer itself has a 

specific name—the  object request broker,  or  ORB —pronounced “orb.”  

  17.5.3 Distributed documents 

 Another model that is used in distributed processing is that of  distributed  documents.  

The most well-known instance of this model is certainly the  World Wide Web  

( WWW ). Originally the WWW was created as a mechanism for providing easy 

access to research papers related to atomic energy. It included a technique for refer-

encing other papers called hyperlinks, though this was a concept that was not in itself 

new. Links could also be imbedded in the text document to reference graphics files 

that contained figures from the paper. Of course, today that model has grown wildly 

and is much more complex than that of a document. In fact, we normally speak of 

Web “pages” rather than documents. The idea today is that a Web page should only 

include a few thousand words at the most, and should link to other pages as needed. 

Web pages now include links to other multimedia elements such as sound and movies 

and forms that can allow a user to input information and interact with an application 

running on the server. More importantly, pages can now include programmable ele-

ments such as scripts and applets. It is possible to develop very sophisticated appli-

cations using the tools that were designed to create Web pages. The big advantage 

of such an interface is that the client only needs a browser to access the functions 

of the application. In theory this means that application Web pages can be accessed 
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not only with a personal computer, but also with PDAs and cell phones. There are 

difficulties in such use, primarily based on the speed of the access and the smaller 

screen sizes. Most websites today are designed with an assumption of a fairly large 

user screen and a fairly fast connection. 

 Another less well-known system that uses a document model is  Lotus Notes.  It 

is a highly sophisticated application that exposes libraries of notes on various  topics. 

Some topics are automatically pushed to all users as with email. Others are only 

accessed as the user requests them. There are not a great many institutions that are 

users of Lotus Notes, but they tend to be large organizations with many users, so 

the system merits at least a mention in any discussion of distributed systems using a 

document model. 

 Other systems that also use a document model include Internet E-mail and 

 Network News. Each works in a different manner to distribute information to clients 

in specific ways using both push and pull protocols.  

  17.5.4 Distributed file systems 

 File are a concept that all programmers and most users understand, so naturally 

many systems have been developed that allow distribution of services by connecting 

the machines through the file system somehow. In Chapter 7 we mentioned the NFS 

model and we examined it more closely in Chapter 13, so we will not repeat that 

discussion here. NFS allows directories on a remote machine to appear to the local 

system as though they were local, providing location transparency. It was developed 

by Sun Microsystems in the UNIX arena, so it is also now available in the Mac OS X 

and Linux OSs. Microsoft also provides optional NFS client and server support with 

higher-level versions of its NT OS family. 

 Microsoft offers a similar service known under various names— common 

 Internet file system  ( CIFS ) and  server message block  ( SMB ). These are similar to 

NFS. Compatible clients and servers have been developed through reverse engineer-

ing for non-Microsoft OSs. These are known as Samba. 

 Both NFS and CIFS require that a nontransparent connection be made from 

the client to the server. Other systems have been developed that intend to make this 

part of the process more transparent. For example, Microsoft has a system called 

 distributed file system  ( DFS ). It is used to build a hierarchical view of file servers 

and shared directories that can be given a unique name. Instead of having to link to a 

bunch of different names a user will only have to remember one name. DFS supports 

replication of servers and routing a client to the closest available file server. It can 

also be installed on a cluster for even better performance and reliability. 

 Other distributed file systems exist that are less widely used. In particular these 

include the  Andrew File System  ( AFS ) and  CODA,  both developed at Carnegie 

Mellon University. AFS was designed to give each client workstation a homoge-

neous, location-transparent file name space. CODA is a newer product with an 

emphasis on fault recovery and disconnected operation (mobile computing). These 

systems are supported only in UNIX and derivative OSs. 

 The design of the Google search engine is also heavily dependent on a dis-

tributed file system architecture. They rely on triple redundancy in all systems. 
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Unfortunately for us the design is proprietary and not much detailed information is 

available.    

  17.6 SYNCHRONIZATION 

  Systems divided into multiple parts need to synchronize their actions, as we saw in 

Chapter 9. Distributed systems need to work even harder to enable synchronization. 

We will discuss several mechanisms for distributed clocks, synchronization, mutual 

exclusion, coordinator election, and concurrency control.  

   17.6.1 Clocks 

 In many distributed algorithms it is necessary to know the order of events. If two 

people make a withdrawal from a bank account at the “same time,” we want to honor 

the first one before the second. Unfortunately, the speed of light limits the transmis-

sion time from one system to another. So even if two events do happen at the same 

time it is impossible to know this until sometime later. Among other things, it makes 

it virtually impossible to be sure that the clocks on two systems are synchronized. 

Fortunately, we often don’t really care about the actual time that two events took 

place. We merely care about the order of the events. This makes the problem some-

what simpler. What we really need are  logical clocks.  The idea behind logical clocks 

is that there is some set of events for which we are worried about the order in which 

they happened. So in each system, whenever one of these events happens we incre-

ment a counter. We associate the value of the counter at that time with that event, 

calling it a  timestamp.  This becomes the logical clock by which we will order the 

events. For two events, if the timestamp of one event is less than the timestamp of the 

other, then we say that the first  happened before  the other. 

 There is one other step that we must take in a distributed system. We must also 

be concerned about messages between processes. We will want to assert that the 

event of sending the message happened before the event of receiving the message. 

We associate a timestamp with the sending of a message to another process, and we 

send that logical clock value with the message. Then when the message is received 

the receiving system will check the clock value that came in with the message. If that 

clock value of the incoming message is greater than the logical clock at the receiving 

process, then the receiving process will set its own clock to the value of the clock 

in the incoming message plus one, accounting for the event of the message arrival. 

Otherwise, it will simply add one to its own clock to account for the arrival. This 

mechanism is called  Lamport timestamps.  

 Unfortunately, what we need is sometimes a bit more complex than this. Often 

we need to know what events at other systems might have had an effect on the event 

being described by an incoming message. The mechanism for keeping track of 

the timestamps of all processes in a distributed system is to attach to each event a 

  vector  of  timestamps.  The index of the vector is a number assigned by the distrib-

uted  system to each process, and the value of the i’th item in the vector is the latest 

time stamp we know about from that process. When messages are sent, rather than 
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 sending the value of the local event counter as a timestamp, the entire vector of 

 timestamps known by that process is sent with them. The receiving system updates 

the information in its own vector with the corresponding elements of the vector with 

the incoming message when they are greater than its own.  

  17.6.2 Mutual exclusion 

 When two processes are cooperating they often need to synchronize access to shared 

data in order to avoid conflicting updates. This part of synchronization is called 

mutual exclusion, and in each process it involves a section of code called the critical 

region in which it is updating the shared information. As we discussed in Chapter 9, 

this usually is implemented through semaphores, which are locked and unlocked. 

This works fine in a system running on a single processor, since the OS can coordi-

nate the locking and unlocking, as we saw. But when the processes are running on 

separate systems, there is no single OS to do the locking and unlocking. Two differ-

ent approaches have been developed for locking and locking in distributed systems: 

using a centralized  lock server  and using a distributed algorithm. Using a central 

server is fairly straightforward. A central server is created and all lock and unlock 

requests are sent to the server, as is shown in  Figure 17.9 . It operates on a first-come, 

first-served basis. 

 But a centralized server is a single point of failure and a potential perfor-

mance bottleneck, so a distributed algorithm is sometimes used instead, as shown 

in   Figure 17.10 . In this algorithm a process desiring to enter a critical section will 

ask permission of all the other processes, including a logical clock timestamp in the 

requests. If a process receiving a request does not currently want access to its related 

critical section, then it will grant permission immediately. If that process does wish 

to access the critical section, then it will compare its own timestamp with that of the 

incoming request. It will grant the request if the timestamp of the request is earlier. 

Otherwise, it will not grant the request until it has finished its own use of the critical 

section. In  Figure 17.10  all three clients want to access a related critical section in 

their processes. Client 3 sends a message to all the other clients with a logical clock 
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A centralized lock 
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value of 157. Client 1 has a logical clock value of 155, so it will delay giving lock 

permission to client 3 until it has completed its own access. Client 2 gives client 3 

permission since the request from client 3 had a lower clock value than its own. (The 

requests from clients 1 and 2 are not shown.)  

  17.6.3 Election 

 If a distributed system is using a centralized server function such as the lock server 

that was mentioned in the last section, then one design decision that needs to be 

made concerns the question of how it was determined that this server would perform 

that function, assuming that any of them could do so. Similarly, in some algorithms 

we will have one process that will be the  coordinator  of the algorithm. In most cases 

a server (or coordinator) is selected by the system administrator and the function 

runs there. However, the coordinator is a single point of failure—if we are interested 

in a more reliable overall system, then we need to be able to have that function run in 

more than one place in case the primary site is down or unreachable. In the most gen-

eral and most reliable case we will allow the function to run anywhere. In this case 

we need to dynamically determine which process should run this function. Dynami-

cally determining the server or coordinator process is called an  election.  There are 

two algorithms that are commonly used for such an election—the bully algorithm 

and a token ring algorithm. In each case the nodes will each have some preassigned 

priority for being the coordinator and the algorithm should elect the highest priority 

process as the coordinator. 

 The first question that must be addressed is a simple one. How does a node 

decide that an election is needed? There are basically three times an election might be 

needed: when a node joins the group, when a network failure partitions the  network 

so that part of the group cannot connect to the coordinator, and when the coordina-

tor crashes. When a node joins a group it may have the highest priority for being the 

coordinator, so in this situation it will always start running the election algorithm. 

In the other two cases the processes should each be using a timer to detect a lack of 

communication with the coordinator. If the timer expires without a message from 

the coordinator, then the process will start the election. This may necessitate that the 
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coordinator send  keep-alive  notices to the group if there are no other messages so 

that the other participants do not start an unnecessary election. 

 In the  bully algorithm  each process is assigned a priority and a process that 

needs to start an election sends messages to all the other processes in the group, 

giving its own priority and declaring itself to be the coordinator. Any process, P, 

receiving this message will compare the priority given in the incoming message with 

its own priority.

     If the incoming message priority is higher than its own, then the receiving 

 process merely quits the algorithm.  

    If its own priority is higher than that in the incoming message, then it replies 

with its own message stating its superiority and the process that sent the original 

message retires from the algorithm.  

    Eventually, the winning process will send a broadcast to the group announcing 

its coordinator status.    

 In  Figure 17.11 , we see three processes sending bully algorithm messages. If  Priority 1

is assumed to be high, then that process will win the algorithm and become the 

coordinator. 

 An alternative algorithm is the  token ring  algorithm. In this algorithm each 

process is given a number that establishes an order in a logical ring. Each process 

will need to know the order of the entire ring. The process starting an election sends 

an election message containing its own process number and its priority to the pro-

cess, which it believes is the next in the ring. If it receives no reply, then it sends 

the message to the next higher process. Eventually, some process will respond to 

the message. It will append its own process number and priority to the message and 

pass it on around the ring, bypassing any failed processes. When the message gets 

back to the process that started the election, it will contain an ordered list of all the 

current processes and their priorities. This final message will be sent around the ring 

again. As a result, each process will know the process number that is the coordinator 

and the complete order of the ring. This process is shown in  Figure 17.12 . Client A 
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     FIGURE 17.11  
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starts the message and Client B and C each add their ID and priority to the message 

as it goes around the ring. When the message gets back to A, A will know that it is 

the coordinator. The message will be sent around the ring one more time so that all 

processes will know the total group membership and the order of the ring.  

  17.6.4 Reliable multicast communication 

 Cooperating groups of processes frequently need to reliably communicate with 

every member of the group. Sending a message to all the members of a group and 

not to any other entities is called a  multicast.   1   Unfortunately, TCP/IP does not sup-

port multicasting except within a single IP network, and MAC layer multicasting is 

restricted to a single LAN. UDP supports multicasting, but it is unreliable. So we 

have to figure out how to do reliable multicasting at the Application layer. The only 

mechanism that will work in all cases is for each member of the group to have a 

point-to-point connection to each of the other members. This is fairly easy to do over 

the Internet, though in a large group it will not scale well. So when a process wants 

to send a message to all the members of the group, it simply sends it to each of them 

over a point-to-point connection. That cumbersome process is unavoidable given the 

facilities available in the lower networking layers today. If we want to be sure that 

all the processes see all the messages, then we need to use some method of acknowl-

edgment. We could use TCP, which has such assurance built-in. But TCP is very 

inefficient for this and would not scale very well to large numbers of  processes. So 

we would rather use UDP and do the acknowledgments ourselves. This still entails a 

large number of  acknowledgment  messages ( ACKs ) coming back to the sender. As a 

result, several methods of minimizing these acknowledgments have been  developed. 

   1 Theoretically multicasting includes the idea of sending the message only once into the network and 
having the network deliver it to all the destinations simultaneously, delivering the messages over each 
link of the network only once and only creating copies when links to the destinations split. We are 
ignoring that optimization here.  
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     FIGURE 17.12  
 A token ring election.   
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The first is to rely on the high reliability of today’s networks and only have the 

receivers send a  negative acknowledgment  ( NACK ) if they infer from the incom-

ing message sequence numbers that they have missed a message. This is seen in 

 Figure 17.13 , where process D has sent message 83 to the other processes.  Process C 

shows that the last message it received was 81, so it knows it missed message 82. In 

this case process D will retransmit the missing message to all receivers who missed 

it. Other refinements have also been developed but are neither as significant nor as 

widely deployed.  

  17.6.5 Distributed transactions 

 In interactive systems we often are processing transactions that involve several 

updates to a database. A typical example would be an inventory transaction that 

moved an item from one warehouse (A) to another (B). This would normally require 

several steps:

    1. Read the count for the item in warehouse A.  

   2. Subtract 1 from the count and update that item count in the database.  

   3. Read the count for the item in warehouse B.  

   4. Add 1 to the count and update that item count in the database.    

 If the system happens to crash after step 2 is completed and before the write of step 

4 is completed, then the database will show an  inconsistent state —we will have 

lost track of one item in the inventory. We could avoid losing track of anything 

by doing the two updates in the opposite order, but then we would run the risk of 

thinking that we had an extra item. This problem can be avoided with a mechanism 

known as a  transaction.  This looks like an overloaded term because we use that 

word to indicate something a user might want to do with a system. But that closely 

parallels the steps we are looking at here. Most user transactions involve updates to 
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several files or database tables and we want the entire system to accurately reflect 

the event we are recording. We say that this type of update is  atomic,  meaning that it 

should result in all steps being recorded or none of them, even if one of the systems 

crashes during the sequence of updates. When a process is going to record such a 

series of updates, it issues an API call for a  transaction start.  As each update to the 

database is written, it may succeed or it may fail. The database system will make 

these updates in a temporary fashion, putting them in the database in such a manner 

that they can be recognized as something that was in progress but not finished. If 

any of the updates is rejected, the process will issue a  transaction abort  system call 

and the database will erase all the temporary updates. If all the steps are success-

ful, then the process will issue a  transaction commit  system call and the database 

system will commit the updates, making them permanent and deleting any previous 

records. 

 In a system with a distributed database the operation is very similar, but since 

there are several different database servers working together on a single  transaction, 

the commit process is a bit more complicated because a failure of one of the pro-

cesses might have happened since the original update call was issued. One of the 

processes that is managing one of the elements of the distributed database may have 

crashed or the network may have failed and we may not be able to communicate 

with that process. In either case, the operation can’t continue. With a nondistributed 

database the system is unlikely to fail in such a divided manner. In order to allow for 

such conditions, distributed transaction processing relies on a protocol known as a 

 two-phase commit.  We discuss this protocol in the next section. 

 One other problem with distributed database transactions is that in order to 

improve performance a database may try to interleave updates from different pro-

cesses on the same data tables. As long as no two processes try to update the same 

data, then there will be no conflict so the operations can proceed in an interleaved 

fashion. If two processes attempt to update the same data at the same time, then one 

of the operations will be rejected. Note that at this point the best choice for the appli-

cation that was rejected is to simply retry the operation. This is not something that 

would arise in a uniprocessing system, so it violates distribution transparency.    

  17.7 FAULT TOLERANCE 

  In our discussion of transparency we said that one goal was to make failures trans-

parent to the user. There are many mechanisms that can be used to increase the fault 

tolerance of a distributed application, but they mostly center on redundancy.  

   17.7.1 Introduction 

 Failure is a more complex topic in distributed systems than in monolithic systems. 

When a monolithic system fails, all of it stops. When a distributed system fails, 

only a part of it may stop. Since the parts are not necessarily communicating con-

stantly, the first problem is for the various components to figure out that another part 

has stopped. This can be very tricky to do. Usually we start with the idea of using 
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 timeouts. When a client asks a server to do something it starts a timer. If there is no 

reply within some certain time limit the client may infer that the server is down. But 

the server may not be down. It may be that there is a network problem and the server 

is not currently reachable. There may be a sudden burst of traffic at some point in 

the network such that an intermediate router was forced to drop either the request 

or the response. It may be that the server is currently overloaded and that the action 

has been executed already but the reply either has not been yet sent or it is still in 

transit. If we retry the operation, that might cause problems. If the operation was to 

subtract an item from an inventory count, we don’t want the operation repeated. On 

the other hand, if we just counted the inventory and we are setting the count to the 

value we know is in the warehouse bin, then it would be OK to repeat the request as 

long as no other change to the inventory was processed in the interval. We say that 

the second operation is  idempotent,  meaning that it is recorded in such a way that 

it can be repeated without altering the result. It is worth noting that if we recorded 

the subtraction as a read of an old value and the write of a new value, it would be 

idempotent as well.  

  17.7.2 Process resilience 

 We can make functions more robust by distributing them across several processes 

running on different systems—if one fails the others can still run. We speak of such 

systems as having  process groups.  Process groups can be organized in either a 

  hierarchical group,  as seen in  Figure 17.14 , or a  flat group,  as seen in  Figure 17.15 . 

In a hierarchical group there is one process that is the coordinator. The other pro-

cesses all report to the coordinator process with point-to-point links. Having a single 

coordinator means that the group has a single point of failure, though we can elect 

a new coordinator, as we saw in the last section. During that election time (and the 

timeout required to recognize the failure), the group is basically nonfunctional, so 

the system will appear unstable. Such systems are easy to implement and have a low 

communication overhead. 
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 In a flat group the control is distributed throughout the group. Each process 

communicates directly with each other process. Thus, the communication overhead 

is much greater than with a hierarchical group. The group is more robust since a 

single failure will not shut the group down, but such systems are more complex to 

implement than hierarchical groups.  

  17.7.3 Reliable client–server communication 

 We already mentioned that a client has some special considerations to make if a server 

fails to respond. We may not want to resend the request because we do not want the 

operation to be redone. Similarly, if a server crashes we are in a quandary because we 

do not know if the server got the request and processed it and crashed before it could 

send the reply. However, sometimes it is very important that the request be acted 

upon. Perhaps we are sending in a fire alarm. Sending it more than once is not a big 

problem. This situation is known as  at least once  semantics. Sometimes it is highly 

undesirable to send the request more than once. Imagine a request to pay a bill out of 

our bank account! We would not want that to happen more than once. This is known 

as  at most once  semantics. Other times we are more or less indifferent—perhaps 

with a stock ticker that is only listing the latest transactions for a stock. This is known 

as  no guarantee  semantics. Finally, we would like for the middleware to guarantee 

that a transaction will be processed  exactly once.  It is possible for middleware to 

achieve this level of guarantee, but it requires extensive logging and double-checking 

and is thus relatively expensive to implement. In general, we must analyze each type 

of transaction separately and see what level of semantics guarantee is warranted.  

  17.7.4 Distributed commit 

 When discussing distributed transactions in a previous section we introduced a 

notion of a distributed commit. This algorithm is discussed here separately because 

it is relevant to failure transparency. It is known as a two-phase commit. One process 
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will be the coordinator of the algorithm. It will send a message to each other process 

asking if it can commit the updates it was requested to do. If all the processes are 

still running and the network is working, then they will all reply affirmatively and 

the coordinator will then tell them all to commit the updates. If any of the processes 

has failed or the network is not working, then the coordinator will not receive an 

affirmation from at least one process, so eventually it will timeout the operation and 

will send an abort request to each of the other processes. There are complications if a 

process crashes. When a failed process restarts, it can learn from examining log files 

that it was in the midst of a commit operation. What it needs to do then will depend 

on the state it was in when it crashed. If it was in an abort state, then it should simply 

abort the operation. Similarly, if it was in a commit state, then it should continue 

with the commit. Each of these states could only be reached if the coordinator had 

instructed it accordingly. If the recovering process was in the ready state, waiting 

to hear from the coordinator, then it can simply ask the coordinator to repeat its 

instruction. 

 The big problem occurs when the coordinator crashes. In this case the other par-

ticipants will timeout the coordinator. If the participant is in either the abort or com-

mit state, then it acts accordingly. If it is in the ready state then it cannot tell what to 

do by itself. It will ask all of the other processes what state they are in. If any of the 

other processes is in an abort or commit state, then all of them can act accordingly, 

since that will mean that the coordinator had reached a decision and had started 

sending out instructions before it failed. 

 There is a small possibility that the algorithm can hang because the coordinator 

crashed before sending a commit message. For this purpose a three-phase commit 

variant of this algorithm was developed. In practice this situation is so rare that the 

three-phase commit is almost never used.     

   17.8 SUMMARY 

 If they are not already, distributed systems will 

soon be the norm rather than the exception. This 

chapter reviewed a number of reasons why we 

find distributed systems more common each day. It 

also explained the notion of distribution transpar-

ency and introduced the idea of middleware and 

explained why it takes the forms it does. We then 

presented several different models often used with 

distributed systems, including the client server 

model, three-tier and N-tier models, and horizontal 

distribution.   Section 17.3  went over the principles 

of processes and threads and explained how threads 

can be used in distributed systems to make clients 

and servers perform better, or at least appear to do 

so. Processes in distributed systems need to com-

municate, and to do so they need to refer to other 

entities. Accordingly,  Section 17.4  introduced the 

concept of naming and name spaces. In  Section 17.5  

we covered some different paradigms for distributed 

systems, including remote procedure calls, distrib-

uted objects, distributed documents, and distributed 

file systems. We then discussed synchronization 

because distributed systems have special problems 

with  synchronization that are different from uni-

fied systems.  Section 17.7  was about fault tolerance 

because distributed systems have special problems 

since failure of one component can allow the rest of 

the system to continue to run. 

 In the next part of the book we take a look at a 

few important modern OSs and see how they imple-

ment some of the features we have described in these 

in-depth topic chapters. Some of these OSs were 
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covered in Part 2, but there we only discussed the 

kinds of features that such OSs needed to have to 

support a given level of features. We revisit some of 

those OSs in Part 6 of the text to look at them in 

greater detail and see how they use the mechanisms 

we have been discussing.  

  BIBLIOGRAPHY 

  Barroso, L., J. Dean, and U. Hoelzle, “Web Search for a 

Planet: The Google Cluster Architecture,” Research 

Paper, Google, Inc., 2005.  

  Chandy, K. M., and J. Misra, “Distributed Deadlock 

Detection,”  ACM Transactions on Computer 

Systems,  Vol. 1, No. 2, May 1983, pp. 144–156.  

  Knapp, E., “Deadlock Detection in Distributed 

Databases,”  ACM Computing Surveys,  Vol. 19, No. 4, 

December 1987, pp. 303–328.  

  Lamport, L., “Time, Clocks, and the Ordering of Events 

in a Distributed System,”  Communications of the 

ACM,  Vol. 21, No. 7, July 1978, pp. 558–565.  

  Obermarck, R., “Distributed Deadlock Detection 

Algorithm,”  ACM Transactions on Database 

Systems,  Vol. 7, No. 2, June 1982, pp. 187–208.  

  Ricart, G., and A. K. Agrawala, “An Optimal Algorithm 

for Mutual Exclusion in Computer Networks,” 

 Communications of the ACM,  Vol. 24, No. 1, January 

1981, pp. 9–17.  

  Rivest, R., A. Shamir, and L. Adleman, “On Digital 

Signatures and Public Key Cryptosystems,” 

 Communications of the ACM,  Vol. 21, No. 2, 

February 1978, pp. 120–126.  

  Sandberg, R., et al., “Design and Implementation of 

the Sun Network File System,”  Proceedings of the 

USENIX 1985 Summer Conference,  June 1985, 

pp. 119–130.   
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   http://www.opengroup.org/dce/  (the OSF Distributed 

Computing Environment [DCE], an RPC 

implementation)  

   http://www.w3.org  (World Wide Web Consortium [W3C])  

   http://www-306.ibm.com/software/lotus/  (Lotus Notes 

and Symphony, among other distributed products)  

   http://en.wikipedia.org/wiki/Two-phase_commit    

  REVIEW QUESTIONS 

    17.1 We listed eight reasons why distributed systems 

are being found more and more often. Name four 

of the eight.  

   17.2 We listed nine facets of distributed systems that 

should ideally be transparent to users. List five.  

   17.3 Briefly define middleware.  

   17.4 We gave four models for building distributed sys-

tems. What is the model that underlies the World 

Wide Web?  

   17.5 What was the layer that was added to the WWW 

model to derive the three-tier model?  

   17.6 A further generalization of a distributed systems 

model as seen in Google was called what?  

   17.7 A different sort of model was described that was 

called horizontal distribution. Give an example of 

the type of system described by this model.  

   17.8 Early Web browsers using the HTTP 1.0 proto-

col had to open a separate connection to retrieve 

each component referenced by a Web page. 

What technique was used to make this more 

efficient.  

   17.9 Describe two ways that servers typically use 

threads.  

   17.10 When a physical virtual machine host OS loads a 

guest OS, what does it do to ensure that the host 

OS maintains control of the system?  

   17.11 Briefly describe the operation of an abstract virtual 

machine.  

   17.12 True or false? The Jini design allows applications 

to access services without any prior knowledge of 

the network mechanisms that will be used by the 

service.  
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   17.13 What is the basic reason why mobile entities using 

IP are such a problem?  

   17.14 One of the middleware applications we looked at 

allows us to take an existing program and move 

part of it to another system. What was the non-

object-oriented design for doing this?  

   17.15 What do we call the main standard for developing 

systems of distributed objects?  

   17.16 What does the Lamport timestamp mechanism do 

when receiving a message to ensure that the local 

logical clock reflects correct information about 

the order of occurrence of events in a distributed 

system?  

   17.17 How does a centralized mechanism for supporting 

mutual exclusion in a distributed system work?  

   17.18 What were the two different distributed algorithms 

for election a coordinator process for a system?  

   17.19 True or false? TCP supports reliable multicasting 

over the Internet.  

   17.20 Why are database transactions more difficult in 

distributed systems?                    
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  In this part:

   Chapter 18: Windows NT™ through Vista™ 415  

  Chapter 19: Linux: A Case Study 445  

  Chapter 20: Palm OS: A Class Case Study 469    

  T
he first two parts of the book gave us some initial background and introduced 

a series of more complex operating systems in what we dubbed a “spiral 

approach.” This approach was used in order to motivate the features being 

introduced and to give some perspective to the material. The next three parts treated 

various technical OS aspects in depth. In this part we once again turn to real OSs, 

now in the form of case studies. We describe in more depth how several modern OSs 

incorporate and implement the features described in Parts 3–5. 

 Chapter 18 covers the Windows NT family starting with the first release and 

through the existing release known as Vista. Some historical material is included to 

give perspective to the student. Other subtopics in this chapter include a discussion 

of the single-user OS environment, process scheduling, memory management, file 

support, basic I/O, GUI programming, networking, symmetric multiprocessing, a 

note about the significance of the startup speed of the later releases, and a few words 

about the new features in the Vista release. 

 Chapter 19 on Linux covers additional topics that were not covered in the second 

part of the text and how it implements some of the standard features that we expect 

to see in any modern OS. After a brief review of Linux we discuss the memory man-

agement features of Linux, and the organization of file systems. This chapter also 

cover basic I/O functions, support for GUI programming, networking support, and 

symmetric multiprocessing. We then introduce some interesting variants of Linux, 

primarily hard real-time systems. 

 Chapter 20 covers additional topics on the Palm OS. Subtopics include other 

interesting functions of the OS that were not necessary to the spiral approach sec-

tion, the programming environments that are required when dealing with such sys-

tems, and similar developments in the cell phone market and how they contrast with 

the PDA market. Finally, the chapter discusses new applications that are being devel-

oped for these OSs because they are mobile, and how this impacts OS features.    
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     In this chapter: 

  18.1 Introduction: Windows NT Family History 416 
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  18.4 Memory Management 425 
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  18.7 GUI Programming  439
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  18.11 Summary   442

 I
n this chapter, we discuss an operating system family that is clearly the domi-

nant personal computer OS in terms of numbers of installations, the Windows 

NT Operating System family developed by Microsoft. It may appear to a casual 

observer that it only supports a single user at one time using the console of a personal 

computer. It actually supports multiple users at remote terminals. It also supports 

many concurrent users by running services for various remotely accessed functions 

such as file, print, and directory services, and serves as a platform for other higher-

level services such as databases, HyperText Transport Protocol servers (HTTP or 

Web), File Transfer Protocol servers (FTP), Web services, and many others as well. 

In the later versions it also supports a function known as fast user switching. This 

function allows one user to log off the system while any applications that were run-

ning stay in memory. A second user can then log in and start other applications. 

The second user can log off, again leaving all applications running and the first user 

log back in and resume work where it was left off without having to restart those 

applications. 

 Although the title of this chapter refers to Vista, we are using the term Windows 

NT to refer to the entire product release series. Formally, this term only applies to 
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the NT Version 3.1, 3.5, 3.51, and 4.0 releases. However, the product family nam-

ing is not uniform and for the most part the differences between the releases are not 

significant for our purposes. Also, the term NT is often used casually to refer to the 

entire series of versions, and we will also use it that way. If we are referring to some 

feature that was dropped or added in a specific release, then we may mention the 

specific version’s product name. 

 We start this chapter with an overview of NT and some background about the 

history of the various Windows OSs in order to give some perspective about the 

various features and design decisions. In  Section 18.2  we discuss the nature of a 

typical environment for the NT OS. There is also a discussion of the main goals of 

NT—multiple hardware platform support and legacy OS application support. 

 NT supports many simultaneously operating user processes as well as concur-

rent server functions, so in  Section 18.3  we discuss the scheduling of processes and 

tasks in NT. NT uses secondary storage as an extension to primary storage, so com-

plex memory handling mechanisms are needed. These are discussed in  Section 18.4 . 

OSs that support multiple server functions and multiple users require complex file 

systems that provide for security of files as seen in the Linux OS.  Section 18.5  thus 

covers the organization and structure of files and file system metadata in the NT 

OS and  Section 18.6  covers basic I/O functions that NT provides to support those 

higher-level functions. 

 The NT GUI allows for multiple overlapping windows, just as do the Mac OS 

and Linux, and thus requires an elaborate API for the GUI, so  Section 18.7  describes 

some aspects of GUI programming with NT. PDAs running OSs like the Palm have 

elaborate communication options, but for the most part they are used one at a time. 

In NT the user may be running many communication activities at the same time—

checking email, playing a game over the Internet, synchronizing the database with a 

PDA, and so on.  Section 18.8  is a discussion of the many kinds of networking sup-

port in Windows NT. NT often runs on systems with multiple CPUs, especially when 

being used primarily as a server rather than only as a workstation.  Section 18.9  deals 

with the way NT supports such systems. In  Section 18.10  we describe the goal of the 

startup speed of the XP release of NT and why it was important. We conclude with a 

chapter summary in  Section 18.11 .  

   18.1 INTRODUCTION: WINDOWS NT FAMILY HISTORY 

  First some history: As was mentioned, the Windows OSs were initially developed 

for supporting a single user on a personal computer. This support goes back to the 

8088/8086 processors. Microsoft began development of an OS that supported a 

graphical user interface (GUI) in 1981. It was then called the Interface Manager 

(IM). The CPUs in use lacked the features necessary for protecting one process from 

another. Because of this hardware limitation, most personal computer OSs prior to 

this time were not multiprocessing systems, and neither was the IM. Multiple appli-

cations could be open at the same time, but only one would actually be running. The 

windows could not overlap but could only be tiled. Tiled windows do not partly cover 
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one another, so the management of the windows is much simpler for the OS. By the 

time IM was formally announced in 1983 the name had been changed to Windows. 

As often happens in areas of technical development, the idea of a GUI was evolving 

at several places at the same time. The idea arose at the Xerox Palo Alto Research 

Center (PARC). So Windows was not the first OS for the Intel CPU family with a 

GUI. Personal Software (which later changed their name to VisiCorp) had released 

VisiOn before Windows was released. This was actually an environment that ran on 

top of the OS in a manner similar to X-Windows in UNIX. IBM was also working on 

a multiprocessing 8x86 environment called TopView, though it did not have a GUI. 

 The first release of the Windows OS was only marginally successful, primar-

ily because of the hardware architecture limitations and the processor speed. Later 

releases took advantage of the more advanced features available in the 80286 proces-

sor to provide better support for memory management, but the performance of PCs 

of this era were still marginal when displaying graphics. In addition, these versions 

of Windows were actually shells that ran on top of the original 16-bit DOS. Also 

they were mostly or entirely written in assembly language and were increasingly 

harder to enhance, or even to maintain. When the 80386 processor became avail-

able, Microsoft released a version of Windows known as Windows 3.0. This version 

was extremely successful. Being built on portions of DOS, however, it still had sub-

stantial problems. There were various iterations of this product, including Windows 

3.1 and Windows for Workgroups. Among other drawbacks, the instruction set and 

addressing space of the hardware allowed only for a design with a 16-bit memory 

addressing space. Later, substantial development went into a modified version of this 

Windows family, including use of a 32-bit instruction set and memory model. This 

OS series included Windows 95, Windows 98, Windows 98 SE (Second Edition), 

and Windows ME (Millennium Edition). 

 In parallel with the development of the early versions of Windows, Microsoft 

was also involved in the development of a similar OS with IBM called  OS/2.  OS/2 

was originally viewed as a means of running several text-based programs at the same 

time. Subsequently other versions of OS/2 were released that had a GUI interface 

and ran on the 80286 and 80386 processors. At some point they decided that writing 

operating systems in assembly language (as was DOS) was not a good idea, so OS/2 

was written mostly in C. OS/2 initially had an API that was an extension of the DOS 

API. Version 3 of OS/2 was started by Microsoft as a complete rewrite of the OS 

using the OS/2 API, but the enormous success of Windows 3.x caused Microsoft to 

reevaluate their initial direction. As a result, the primary native API was changed to 

be the 32-bit  Win32  interface developed for Windows 95 and later versions. Partly 

as a result of this change, IBM and Microsoft parted company on OS/2 and IBM was 

left to develop OS/2 by itself. Microsoft changed the name of this release to NT. 

 Besides the Win32 API, NT was also supposed to support the 16-bit applications 

developed for DOS and the Windows 3.x products. In addition, a UNIX-style API 

was required for many U.S. government and corporate procurements. As a result, NT 

also includes support for applications written to the POSIX.1 API standardized for 

UNIX systems. (The POSIX interface is actually OS independent, but it was driven 

by the splintered UNIX community and is based largely on that API.) 
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 At the time the Intel x86 processor did not have quite the dominant position in 

personal computers (PCs) that it has today. If one processor family came to domi-

nate the PC, Microsoft needed to ensure that their OSs would be able to run on that 

platform. If no processor dominated, then they needed to run on most or all of them. 

They thus determined that portability was a primary goal for their main OS product. 

This meant that they had to move away from the DOS-based Windows products and 

write a new OS. In order to ensure portability they decided to write this new operat-

ing system in a high-level language. There are also many other reasons to use a high-

level language, of course. To create this new OS they hired a crew of experienced OS 

designers. They originally aimed to write it in C ⫹  ⫹  and to initially target the Intel 

i860 processor, among others. The i860 was a Reduced Instruction Set Computer 

(RISC) processor. The version of the processor chip that this team was using was 

called the N10, and Microsoft was using an i860 emulator called the N10 (N-Ten). 

This lead to the name NT, also referred to as New Technology. The hardware turned 

out to be too underpowered for supporting object-oriented programming, so the core 

of NT ended up being almost entirely written in standard C. 

 The biggest difference between the various Windows products and Microsoft’s 

earlier systems was the graphical user interface. Today, GUIs are very common, of 

course—perhaps requiring little more explanation, but they were new to Microsoft 

OSs when Windows was first created. Such interfaces greatly enhance the user expe-

rience, extending the ways that a user interacts with the system well beyond what is 

available with text-oriented terminals and the ability to run more than one task at a 

time. This combination of multiple programs running in separate but possibly over-

lapping graphics-based task windows and controlled with a pointing device such as a 

mouse or a touch pad that moves an indicator on the screen has been wildly success-

ful. Today, there are few OSs that do not contain such an interface other than systems 

embedded in appliances and other machines. In some OSs such as UNIX, Linux, and 

the Mac OS X the GUI interface is a separate layer on top of the OS. In the Microsoft 

Windows products the GUI interface is an integral portion of the OS design and has 

been a part of the kernel since at least the Windows 2000 release. 

 Early work for NT was sometimes done on MIPS systems. Afterward, Micro-

soft decided that they would like to replace all existing DOS and Windows systems 

with NT systems, so additional support was added for the 80x86 series of processors 

and the i860 was eventually dropped due to issues with the chip regarding general 

OS use. Support for other processors was also added, such as the DEC Alpha 64 bit 

processor, the MIPS RISC processor, and the PowerPC. (The MIPS chip is used in 

several families of machines, including Silicon Graphics workstations.) The market 

eventually decided against these three processors for use in PCs, so they are not sup-

ported by later versions of NT. In the XP release of NT, however, support has been 

added for the Intel Itanium 64-bit RISC processor and the Intel and AMD 64 bit x64 

processor families. So the idea of hardware platform independence has remained as 

an important feature of the NT family. 

 The NT family included Windows NT 3.1, 3.5, 3.51, and 4.0, Windows 2000 

(kernel version NT 5.0), Windows XP (kernel version NT 5.1) and Windows Server 

2003, Windows XP x64 Edition, and now Windows Vista (kernel version 6.0). This 

OS product line includes support for a GUI interface, virtual memory, journaling file 

systems, preemptive multitasking, and a full suite of networking protocols. Basically 
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it is a very high-end OS. Although there have been some significant enhancements to 

the product family during this time, much of the system architecture we are describ-

ing in this chapter is essentially unchanged from the first release.  

   18.1.1 Windows Vista 

 The latest version of NT is  Windows   Vista.  Microsoft’s primary objective with Vista 

was to improve the security in the NT OS, but there are many other enhancements as 

well. We briefly discuss a few of the features in this release as an illustration of the 

sorts of activity that are being undertaken in current OS development. Many of these 

features are also found in other contemporary OSs. Other features of Vista that are 

related strictly to NTFS are discussed in Section 18.5.5. Several of the new features 

are related to security or reliability:

   Code Integrity Verification. The OS loader and the kernel now perform load-

time checks on all kernel mode binaries to verify that the modules have 

not been changed on the disk. This helps prevent malicious programs from 

taking control of a machine by modifying the OS.  

  Service Security Improvements. Services can now specify which privileges 

they require (e.g., shutdown, audit, write-restricted, etc.), which limits the 

power of these services. Privileges not explicitly specified are removed, thus 

limiting the damage a damaged service can do to the OS.  

  User Account Control. UAC improves security by limiting applications to 

standard user privileges until an administrator authorizes an increase in 

privilege level. A user may have administrator privileges, but an application 

the user runs has only standard user privileges unless it is approved 

beforehand or the user explicitly authorizes it to have higher privileges. 

UAC will prompt the user for additional privileges automatically or the user 

can right-click a program icon and select “Run as administrator.”  

  Address Space Layout Randomization. ASLR is a security technique for randomly 

assigning parts of the address space of a process. This usually includes the base 

of the executable program, libraries, and heap and stack space. This mechanism 

thwarts some security attacks by preventing an attacker from predicting the 

addresses of the components that are the target of the attack.  

  User-Mode Driver Framework (UMDF). Most drivers run in kernel mode with 

complete access to the physical address space and system data structures. 

Such access allows a malicious or badly coded driver to cause problems that 

affect other drivers or the system itself and eventually crash the machine. 

Drivers that run in user mode have access only to the user address space and 

are a much less risk. Vista has added support for such user-mode drivers. 

UMDF is designed for devices like cameras and portable music players.    

 Some other new features are related to reliability:

   Windows Error Reporting. This feature captures application software crash and 

hang data from end users who agree to report it. Software developers can 

access data related to their applications online, monitor error trends, and 

download debug information.  
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  Reliable Sleep State. Before now an application or driver could prevent the 

system from entering sleep or hibernate mode (a sleep state). The problem 

with this was that a laptop user often did not realize the system had not 

entered the state and would end up with an overheated laptop in the bag, a 

dead battery, and eventually lost data. Vista does not ask processes before 

entering sleep states and has reduced the timeout for user-mode notifications 

from twenty seconds to two.  

  Clean Service Shutdown. Before Vista services had no way to extend the time 

allowed for shutdown. After a fixed timeout the system halted with those 

services still running. This could cause problems for services that needed to 

flush data to disk. With Vista, services that request notification of a pending 

shutdown can take as long as they need to shut down. The notification 

service notifies these services first and waits for them to stop. After they all 

stop the system continues with a normal shutdown.  

  Service Shutdown Ordering. Vista allows services to specify a shutdown order 

where service dependencies need to be followed by the shutdown.    

 A few features are added to Vista, primarily to speed up the general performance or 

the time needed to shut down or restart the system:

   Delayed Auto-Start Services. Services running in NT are often set to auto-

start because they will probably be needed later. However, they have 

been multiplying and are thereby increasing the time it takes to boot the 

system. However, many auto-start services do not have to be part of the 

boot sequence; they just need an unattended start so that they are ready 

fairly soon after the system starts. Vista provides a new option called 

delayed auto-start. Services that are designated as delayed auto-start are 

started shortly after the system has booted. This improves boot and login 

performance for the user.  

  SuperFetch analyzes the regular use of applications and tries to keep the 

frequently used applications in main memory so they can launch more 

quickly. It will also notice when any prefetched data is moved out to the 

page file and will monitor the application that caused the prefetched data to 

be moved out to the page file. As soon as that application is done it will pull 

the prefetched data back into memory. When the user again accesses the 

application, the prefetched data will already be in main memory again.  

  ReadyBoost can create a cache memory on a flash memory device. Although 

the data transfer speed of such devices is less than current hard drives, flash 

memory devices have neither seek nor rotational latency so they can boost the 

apparent speed of the hard disk substantially. Note that this is consistent with 

our prediction in Chapter 14 about the future replacement of rotating memories.  

  Hybrid Hard Drives. These new drives incorporate a large flash buffer. They 

reduce drive power consumption significantly since the drive can be 

powered down most of the time while data moves between main memory 

and the flash RAM in the drive. Also, such drives will have increased 

reliability since the parts are moving less often. Finally, the system will have 



 Chapter 18 Windows NT™ through Vista™ 421

faster boot time since reading from the flash memory is much faster than 

waiting for the platters to spin up and then looking for the data. ReadyDrive 

is the name for the Vista features that support these hybrid hard drives.       

  18.2 THE USER OS ENVIRONMENT 

  Because the NT environment is primarily a GUI, the user can easily open up many 

windows on the screen and start multiple applications. It is not at all unusual for an 

NT user to have a dozen or more applications running at any one time. Often there 

will be an email reader checking for incoming mail from time to time; an appoint-

ment scheduler open; a Web browser, perhaps open to a portal page that updates the 

latest news and statistics on the user’s stock portfolio; an office-type application 

such as a spreadsheet the user is working on; a window showing a dictionary that 

the user has just looked up a word in; and an “instant messenger” application. This 

does not include numerous other utilities that may be running such as local firewalls, 

clipboard editors, battery status indicators, sound volume adjustment panels, and so 

forth. There may also be server functions running such as shared printing, personal 

Web services, and so on. So while NT is viewed by many users as a single-user sys-

tem, that by no means implies that the OS has only a few things running.  

   18.2.1 Goals: Multiple Hardware and OS Platform Emulation 

 Two of the main goals of the developers of NT were being portable across multiple 

hardware platforms and supporting applications from legacy OSs. To achieve the 

first goal, Microsoft used two methods. First, to a substantial extent, certain low-

level hardware-dependent portions of the OS kernel are isolated in a single module 

called the  Hardware Abstraction Layer,  or HAL. Other modules also have portions 

of the code that have hardware dependencies; for example, the memory manager 

must know what the physical memory page size is. But having the HAL simplified 

the process of porting the system to a new hardware platform by partially isolating 

the hardware-dependent portions of the OS in a single module. The HAL varies with 

such factors as the support chips used with the CPU (the interrupt controllers, for 

example), whether the system is a uniprocessor or a multiprocessor system, and what 

power management features the BIOS supports. These chips connect the buses and 

other devices to the CPU and they sometimes require specific instructions, just as 

does the CPU. The second technique was to write all the rest of the OS in a higher-

level language that was machine independent. The language initially chosen was 

C ⫹  ⫹  with the original intent of having the system be completely object oriented. 

Later, this strategy was relaxed and much of NT was built with C for reasons of 

efficiency. The fact that NT has been able to support several different CPUs without 

major rewrites shows that in this goal it succeeded well. 

 The second goal of running legacy applications correctly and efficiently has also 

largely been achieved. Since NT strongly enforces the restriction that only the OS is 

allowed to directly control the hardware, there are many DOS and a few Windows 3.x 
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applications that will not run under NT because they use the hardware directly. Most 

applications that do not directly manipulate the hardware will run correctly under NT. 

The key concept for supporting legacy applications was to add another layer on top 

of the kernel. This layer supported legacy APIs by translating legacy API calls into 

native NT API calls. In the NT family these extra layers are called “environments” or 

“subsystems.” In fact, even the 32-bit Windows API that is considered the standard 

for the NT family is not the native API for the NT kernel itself. These subsystems 

are shown in  Figure 18.1 . By the time XP was released, the world had essentially 

moved on from OS/2 and support for this subsystem was dropped in the XP release 

of NT. The POSIX support that was originally included with NT was only a minimal 

implementation of the IEEE 1003.1/ ISO 9945-1 standard. It was withdrawn in the 

XP release and subsequently replaced with a more complete implementation. 

 To be sure, originally there were many other goals of the NT OS family such 

as performance and reliability and a high-level goal of building a first-class operat-

ing system, unlike the earlier versions of Windows that were hobbled by limited 

resources. However, the goals of portability and compatibility were the ones that 

probably had the most impact on the system design. 

 These subsystems are not always straightforward, and running older applications 

can sometimes cause problems. For example, DOS was a single-user system so appli-

cations would typically start an I/O operation and then do a spin lock to wait for it to 

FIGURE 18.1 Original Windows NT family architecture.
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complete. NT will virtualize the CPU, so other applications will not get locked out, but 

in the meantime the DOS application can be burning lots of CPU cycles. Similarly, by 

default all 16-bit Windows applications run as threads in the  Windows on Windows 

Virtual DOS Machine  ( WOW VDM).  The way the threads are dispatched, if one 

Windows application stops taking input, all those applications will hang.    

  18.3 PROCESS SCHEDULING 

  NT uses a complex mechanism to control scheduling of the running processes. It runs 

multiple processes and creates at least one thread for every process. Then it schedules 

the threads for execution, not the processes. The mechanism it uses is a multilevel 

feedback queue. Each thread in NT will have a priority ranging from 0 to 31 that tells 

the OS how important it is that the process be run as promptly as possible. The thread 

priority is derived from the  base priority  (defined below) of the process. For each of 

the 32 priority levels there is a separate queue of threads that are ready to run. When 

a thread starts running it is given a limited time quantum to run. When this limit is 

reached the thread is suspended and put at the back of the run queue for its priority level 

and the next thread at that priority level will be run. For each priority level the sched-

uler will move to the next lower level only when all the threads that are ready to run at 

that level have been exhausted. If an event occurs that a thread was waiting on, such as 

waiting for the disk to read some data, then the OS will check to see if the thread that 

was waiting on the event has a higher priority than the one that is currently running. If 

it does, then the current thread will be suspended and the higher priority waiting thread 

will be run. Interrupting threads for time-slice expiration and for higher priority events 

are both examples of preemptive multitasking, as was discussed in Chapter 8. 

 When a process is started, an initial  base priority class  for that process is deter-

mined. See  Figure 18.2 . This class is used to determine the base priority of all the 

threads in the process. As threads in the process execute, their priorities may change 

in response to the operations they perform. This is known as a dynamic priority. 

There are limits below which the thread priority cannot fall and above which it can-

not rise. This changing of priorities as the thread runs is the “feedback” referred 

to in the phrase “multilevel feedback queuing.” The intent of raising and lowering 

the priority like this is to give higher priority to the interactive processes that are 

closely focused on the user interface and lower to the background those processes 

that appear to be less involved with the user interface. 

 The NT scheduler therefore gives high priority to threads that are involved in 

such interactive tasks as typing on the keyboard. In order to do so it uses a mecha-

nism that is slightly different from that discussed in Chapter 8. There are several 

cases when NT will raise the priority of a thread:

     When a thread has made a blocking call and that request is finished, its dynamic 

priority is raised so that it can make good use of the completed operation.  
    When a window associated with a process that uses the NORMAL priority 

class gains the focus, the scheduler boosts the priority of the process so that it 

is greater than or equal to that of all background processes. The priority class 



424 Part 6 Case Studies

returns to its previous setting when the window associated with the process no 

longer has the focus.  
    When a window receives input such as mouse events, timer events, or keyboard 

input, the scheduler boosts the dynamic priority of the thread that owns the 

window.    

 After raising a thread’s dynamic priority, the scheduler decreases the priority 

by one each time the thread completes a time slice, until the thread drops back 

to its base priority. A thread’s dynamic priority is never lowered below its base 

priority. 

 NT has some threads that it runs that it considers “real-time” threads. These 

include handling time-critical devices like moving a mouse. All of the priorities from 

16 to 31 are considered to be real-time priorities. A normal user-created process runs 

threads that take on only priorities from 0–15. Most of the real-time threads are OS 

threads, but it is possible for a user process to also use real-time threads. NT is not 

a hard real-time system, so these processes are soft real-time processes. That is to 

say that the OS makes an effort to ensure that they get run as often and as soon as 

desired. However, it does not make any attempt to guarantee that any timing criteria 

will be met. The system does not boost the priority of real-time threads. 

 When no other thread is ready to run, NT runs a special thread called the idle 

thread. If the power circuitry supports it, this thread puts the CPU into a lower power 

state in which it runs more slowly, and then it goes into a tight loop. Having this 

special thread also allows the OS to determine how much of the system resources are 

being used for real work and how much is not being used because the system is wait-

ing for something to happen—perhaps a direction from the user as to which other 

program to run. When a volunteer computing package such as BOINC is being run, 

the idle thread will be replaced by the volunteer application. Volunteer computing 

projects were discussed in Chapter 7.   

FIGURE 18.2 

NT thread priority 

relationships.

N
O
R
M
−

N
O
R
M

Critical

Real-time
(fixed)

Normal
(dynamic)

Worker
threads

I
D
L
E

31

30

29

28

27

26

25

24

23

22

21

20

19

18

17

16

+

N
O
R
M

H
I
G
H

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

0



 Chapter 18 Windows NT™ through Vista™ 425

  18.4 MEMORY MANAGEMENT 

  NT supports a  virtual memory  system with  demand paging,  as was described 

in Chapter 11. When the CPU is running a process, it generates logical memory 

addresses for the memory hardware to use to fetch or store instructions or data. 

The memory management unit (MMU) hardware translates each of these gener-

ated addresses to a physical address that the memory system then uses to access the 

information. The memory is divided into pages of a fixed size. This size is deter-

mined by the hardware, so the OS must work with whatever page size the hardware 

uses. For the Intel x86 family, the size of these pages is normally 4 KB. For other 

systems, the page size may be different. Because NT is designed to be platform neu-

tral, it must not depend on the actual size of these sections. Since NT was designed 

to run on many hardware platforms, it must be coded in such a way as to be flexible 

in the page size.  

   18.4.1 The address space 

 In NT the logical address space is divided into two parts, one for the OS and one 

for the user application. See  Figure 18.3 . The figure shows the address space to be 

evenly divided between the user space and the kernel space, but this can be over-

ridden. This override might be used, for example, by an application like a database 

server that needed a very large memory space. Two other areas of the logical address-

ing space are set aside to aid in error detection. They are called the guard area and 

the null pointer catcher. If a program accidentally references an address in either of 

these spaces, then the hardware will signal an error and the program will be aborted. 

(This mechanism is a convention used by the language support generally used with 

the OS and is not actually enforced by the OS itself.) Recall that this address is a part 

of the logical address space, which is 4 GB. The purpose of these reserved blocks is 

to generate an interrupt via the hardware when these addresses are used accidentally. 
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This means that there is no physical memory assigned to these addresses, so we are 

not wasting real memory for these functions. 

 There is a special hardware feature in newer CPUs that are compatible with the 

Intel architecture that lets the kernel use a page size of 4 MB for itself so that a smaller 

page table is kept and the tables only need a few entries to point to the static parts of 

the kernel and some additional pages for the parts of the kernel that can be paged.  

  18.4.2 Page mapping 

The NT system running on Intel 8x86–compatible CPUs use a two-level table struc-

ture and special hardware to make this translation, as was described in Chapter 11.1     

 Figure 18.4  is similar to a figure from that chapter but shows the specific terminology 

used in NT. The two tables that are used are called a  page directory  and a  page table.  

The use of a two-level table allows the logical address space to be very large and very 

sparse and for the page table itself to be divided into pages. So if no page table entries 

are made in a given block of the logical address space, then that page table will not be 

created. The entries in the page table point to the actual frames in physical memory.

     18.4.3 Page sharing and copy on write 

 We have seen that designers go to great lengths to build walls between the OS and the 

running processes and between the processes as well. However, sometimes it is advan-

tageous for processes to be able to share access to the same locations in memory. This 

technique must be used carefully when the processes are intentionally sharing pages. 

1 Other hardware platforms may use a more complex design. Intel-compatible CPUs must be at least an 
80386 architecture.
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However, sometimes the OS can allow processes to share pages without the processes 

being aware of it. One simple case is where a process does a  fork —that is, the process 

asks the OS to create another copy of the process and to run both the new and original 

copies. In this case, NT will create the second process, but will not create an actual 

copy of all the pages. Instead, it will create a new set of page tables and point the tables 

to the same physical pages. In both sets of page tables it will mark the pages as read 

only. Later, if one of the processes writes to a memory location in a given page, the 

CPU will generate an interrupt and the OS will make a separate copy of that page for 

each process and remove the read-only flag. This technique is called  copy on write,  

discussed in Chapter 11. It will save a lot of time and memory in the case of large 

objects, especially shared libraries that should never modify themselves anyway.  

  18.4.4 Page replacement 

 In Chapter 11 we discussed the problem that occurs when a page needs to be brought 

into memory and no free frame exists. A currently used page must be selected to 

be replaced. There are a number of algorithms that we discussed for choosing the 

page to be replaced. Many of them use hardware features to assist the OS in choos-

ing a page to be replaced. Since NT is designed to be relatively independent of the 

hardware, the designers chose not to depend on the most advanced features available 

for paging hardware. Instead, they use a (relatively) simple FIFO algorithm that is a 

variant of the clock algorithm. When a page is brought into memory for the first time 

a timestamp is recorded for the page. When a page is needed, the page table will be 

searched and the oldest page will be discarded. Unfortunately, this sometimes turns 

out to be a page that is needed frequently. But as soon as it is reloaded it will get a 

new timestamp, and it will likely not be chosen again soon. NT chooses the pages 

only from the faulting process, known as local replacement. Linux and most other 

UNIX variants use a global replacement policy, choosing from all pages in memory.  

  18.4.5 Prefetch profiles 

 A clever optimization is used by NT and other OSs to speed up the loading of appli-

cations. As was mentioned, when a program starts in a virtual memory system, the 

entire program is not loaded at once. Instead, when a process makes reference to a 

part of its logical address space that is not yet loaded, a page fault occurs and the 

desired page is loaded into physical memory. As a result, when a large program is 

loading, say a Web browser, it will tend to load pages from different parts of the pro-

gram, almost in random order, as the initialization code for various data structures is 

run. As a result, there is considerable disk activity and head movement as the various 

pieces of program code are fetched. NT will keep track of the page faults generated 

for 10 seconds after a program starts. Later, when the system is not busy, it will sort 

this list of the page faults and save this list in a  page fault profile  for that program. 

When the program is run again later, the OS will prefetch all the pages that it knows 

will normally be fetched in those first 10 seconds. This can result in substantial time 

savings in moving disk heads, waiting for rotational delays and in doing I/O in larger 

blocks and therefore results in faster program startup times.    
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  18.5 FILE SUPPORT 

  During the past 20 years or so, computing devices have dropped rapidly in price. At 

the same time, the capacity of disk memory has risen as rapidly. When disk capaci-

ties were small, the file system structures were designed to match them. Early DOS 

file system pointers were restricted to 12 bits because that was enough to point to 

all the sectors on the floppy disk drives then in use and the designers did not want to 

“waste” space on larger pointers. As drive sizes have grown, however, the file sys-

tem designs had to change to support the larger hard drives. As a part of the goal of 

upgrading existing PC systems to the NT series of OSs, a migration path was needed 

for the various file systems that users might have. Most OSs have their own preferred 

file system. NT does as well. It is called  NTFS  (NT file system). However, NT also 

supports other file systems, specifically those that Microsoft had developed earlier. 

These are the  FAT12,   FAT16,  and  FAT32  file systems, which were inherited from 

DOS and Windows. XP also supports the  ISO 9660 CD-ROM  standard format for 

CDs ( CDFS  in NT), UDF,  ISO 13346  standard format for writable CDs and DVDs, 

the  HPFS  (high performance file system) that came from OS/2, and quite a few 

other standard file systems. The HPFS support was eventually dropped because the 

number of machines that had never been converted from OS/2 was too small to be 

concerned with. When NT was developed, there was not a large install base of any 

single version of UNIX on 80x86 machines, so Microsoft apparently did not feel it 

necessary to support any particular UNIX file systems.  

   18.5.1 NTFS 

 We discuss a few general characteristics of NTFS, and then the major goals for NTFS 

and how they were reached. Finally, we discuss a few advanced features of NTFS. A 

schematic of an NTFS volume is shown in  Figure 18.5 . 

    Master file table 

 The boot sector of an NTFS volume contains a pointer to the  master file table,  or 

 MFT.  File systems have to record a lot of metadata  about  files (as opposed to the 

data that the files themselves contain). Key metadata for an NTFS volume itself are 

stored as special system files in the MFT. Every file or directory in an NTFS volume 

has a record in the MFT that is from 1,024 to 4,096 bytes long.2 The metadata about 

files and directories are stored in MFT records as  attributes.  The attributes are what 

we would normally think of as the fields in a file system directory record. Since the 

attributes needed for a given file can vary greatly depending on the type of the file, 

most of the attributes are stored as a pair, an identifier, and a value. A few attributes 

are always present and are stored at the front of the MFT entry for the file, but most 

of the attributes are in a variable sequence. Since the size of each MFT record is lim-

ited, there are different ways that NTFS can store a file’s attributes: as either  resident 

2 NTFS is technically proprietary, so some of the details are subject to dispute, having been inferred from 
observation.



 Chapter 18 Windows NT™ through Vista™ 429

attributes  that are stored within the MFT record, or  nonresident attributes,  stored 

either in other MFT records or in extents in non-MFT clusters of the file system:

  Resident Attributes. Attributes that require only a little space are kept in the 

file’s MFT record. Most common file attributes are resident. Some are 

required to be resident, for example, the file name and date/timestamps 

for file creation, modification, and access are always resident.  Figure 18.6  

shows an MFT record with resident attributes. 

  Nonresident Attributes (AKA external attributes). If an attribute will not fit in 

the MFT record, it is put in a separate place. A pointer in the MFT gives the 

location of the attribute. Nonresident storage is of two kinds: If the pointers 

to the value of an attribute will fit in the file’s MFT record, then the value is 

placed in a data run outside the MFT record called an extent, and a pointer 

to the run is placed in the MFT record. (This is most commonly true of the 
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data attribute, but theoretically it can apply to any attribute.)  Figure 18.7  

shows an MFT record with nonresident attributes. An attribute may be 

stored in many different runs, each with a separate pointer. If the attribute 

value has so many extents that even the pointers to them won’t fit in the 

MFT record, then the entire attribute may be moved to an external attribute 

in a separate MFT record, or even multiple external records. 

    NTFS has several predefined attributes. Some are associated only with a file or 

only with a directory or only with some other structure in the metadata for the vol-

ume, while others are associated with more than one structure. Here are some of the 

most common NTFS system-defined attributes:

   Volume Name, Volume Information, and Volume Version. The key name, 

version, and other metadata for the volume itself.  

  Bitmap. Contains the cluster allocation bitmap. This attribute is only used by 

the bitmap metadata MFT record.  

  File Name. The name of a file or directory. A file or directory can have 

multiple file name attributes to allow an MS-DOS short filename or for 

POSIX support for hard links from multiple directories.  

  Standard Information. Data needed by all files and directories—date/

timestamps for file creation, modification and access, read-only, hidden, etc.  

  Index Root. An index of the files in a directory. If the directory is small, the 

entire index may fit in the MFT. Otherwise, some of the information will be 

in nonresident attributes.  

  Security Descriptor. Information controlling access to a file or directory (e.g., 

ownership, access control lists, and auditing information).  
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  Attribute List. This is a meta-attribute—it describes other attributes. If an 

attribute is nonresident, then that attribute’s identifier is placed in the MFT 

record with a pointer to the nonresident attribute.  

  Data. The data in a file is the value of the “data” attribute. If all of the attributes 

of a file (including the data) will fit in the MFT record, then the data 

attribute will be resident in the MFT record itself. Such files require no 

other storage space on the volume, and more importantly they do not require 

an extra disk access to read the data, improving performance.    

 Larger files are more complicated. If all of the attributes for a file do not fit into the 

MFT record, the attributes will be made nonresident. So most files will have their 

data stored outside the MFT record. The attributes for a file obviously include point-

ers to the data. Very large files may be so large that the attributes pointing to the data 

will not fit in the MFT record and thus become external attributes themselves. 

 Keeping the MFT contiguous on the disk improves performance, so when an 

NTFS volume is initialized, about 13% of the disk space immediately following the 

MFT is reserved as the “MFT zone.” It is still usable, but normal files and directories 

will not use this space until the rest of the space is used. Eventually, the MFT may 

use up the “MFT zone.” If this happens, NTFS will allocate more space for the MFT. 

This fragmentation of the MFT may reduce  performance by increasing the number 

of reads required for some files, and the MFT cannot generally be defragmented.  

  Space tracking 

 NTFS allocates disk space in blocks of sectors called clusters. It uses a bitmap to 

track whether or not each cluster has been allocated to a file. The bitmap itself is 

stored in the master file table as a special system file. 

 Pointers to the clusters that have been allocated to a file are kept together in a 

block. In Chapter 12 we described these as “index blocks” to conform to the stan-

dard terminology in OS literature. (This term should not be confused with NTFS 

$INDEX attributes, which apply to directories.) The index block pointers give the 

cluster number of the start of a  data run,  which is a contiguous group of clusters 

that are all allocated to this file. The index block has a starting cluster number and a 

run length, or count of the contiguous clusters. An MFT record using such runs was 

shown in  Figure 18.7 .  

  Major NTFS goals 

 NTFS had two major goals: high reliability and security. High reliability was 

approached from two different directions, recoverability after a crash and software 

data redundancy and fault tolerance (i.e., RAID). Beyond these three main goals 

NTFS provides many other advanced features. 

  Recoverability   Probably the primary goal of the NTFS design was to increase the 

reliability of the file systems in the face of a crash. With previous file system designs, 

if the data that controlled the file system was corrupted due to an abnormal system 

shutdown, there was a strong possibility that whole files or large portions could be 

irretrievably lost. The mechanism that has evolved for the purpose of increasing file 
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system recoverability is a  log-based file system  or  journaling file system,  as was 

discussed in Chapter 13. Whenever any update is to be done to the file system meta-

data, NT first writes out a record to a log file, which lists the steps of the update that 

are to be made. This set of steps is referred to as a  transaction.  Then the individual 

steps of the update are made. Finally, any file I/O for which the metadata updates 

were being done is executed. Once the entire series of steps is finished, the record 

listing those steps will be removed from the log file. If the system goes down, then 

when it comes back up it checks to see if an update transaction was in process. If 

a record in the log file shows an update was in process, then the OS can recognize 

what part of the operation was not completed successfully, and it can either finish 

the transaction if it is able or it can back out those portions that were already done if 

it cannot finish. In this way the file system will always be brought into a valid state. 

Some application data might have been lost, but at least the file system can continue 

to be used without fear that additional data will be lost in the future because the file 

system has been left in a corrupted state. The Vista release includes optional features 

called Volume Shadow Copy and Transaction Support, which can provide protection 

for data files. These features are discussed in Section 18.5.5. 

 Naturally, these extra steps take extra time and increase the load on the disk 

drive. Since NT is designed primarily for a personal computer, the extra load is tol-

erable because the system is probably not being overworked in most cases. Other 

NTFS design elements also allowed some performance gains over the other file sys-

tems that NT supports, so the performance of NTFS overall is acceptable because of 

the increased reliability over other Microsoft file systems. Also, if a system crashes 

and the file system is not a log-based system, then it is prudent to run a utility func-

tion to check the integrity of the file system. On a system with very many files this 

might take several hours to run. On a system that is being used as a server, such a long 

delay is unacceptable. In such cases it makes more sense to distribute this perfor-

mance impact so that guaranteeing the integrity is spread over the normal day-to-day 

operation rather than incurred at one time after a system crash.  

  Data redundancy and fault tolerance   Another disk reliability feature of NT is sup-

port for three different software  RAID  ( redundant array of independent disks ) 

organizations. RAID was discussed in more detail in Chapter 14. The RAID forms 

supported by NT are RAID-0, RAID-1, and RAID-5. RAID-0 is strictly for perfor-

mance enhancement and offers no increased reliability. RAID-1 is full mirroring—

everything written to one drive is automatically written to another drive. It offers 

good reliability but at a higher hardware cost. For RAID-5 a parity block is written 

that corresponds to a group of data blocks. It offers good reliability at a lower hard-

ware cost but with increased software overhead. Of course hardware RAID systems 

can be used with NT rather than using software solutions.  

  Security   In NT the fundamental building block of all OS data structures is an 

object. Included in this group are files and directories. Each object has an owner, 

originally the entity that created the object. Security can be applied to any object 

using an access control list. You may recall that an ACL for an entity lists the enti-

ties (including groups and roles) that are allowed to operate on an object and the list 

of operations that the entity is allowed to perform. The owner can do several things 
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to the ACL, including changing it directly, allowing other entities to change it, and 

allowing other entities to become the owner. In NTFS the ACL for a file or directory 

is stored as an attribute of the object. The permissions used in NTFS are these:

    * R — read   

   * W — write   

   * X — execute   

   * D — delete   

   * P — modify the ACL   

   * O — make current account the new owner (”take ownership”)        

  18.5.2 Advanced features of NTFS 

 NTFS includes many advanced features for supporting applications. Some fea-

tures are available to application programs as API calls and others are only used 

internally:

   Read-only support. Before the XP release NTFS required that volumes be 

on writeable media so that it could write the transaction log files. XP 

introduced drivers that can mount volumes on read-only media. This feature 

is needed by embedded systems that have read-only volumes in NTFS 

format.  

  Defragmentation. NTFS makes no special efforts to keep files contiguous. It 

provides a defragmentation API that applications can use to move file data 

so that files occupy contiguous clusters. NT includes a defragmentation 

tool but it has several limitations. Third-party products usually offer more 

features.  

  Volume mount points. These are similar to UNIX mount points. In NTFS, this 

allows additional file systems to be visible without requiring a separate 

drive letter for each. This includes remote volumes as well.  

  POSIX support. One of the goals for NT was to support the POSIX standard. 

For file systems this requires support for case-sensitive file and directory 

names, a different method of determining access permissions when parsing 

path names, and a different set of timestamp semantics. None of these 

features is compatible with NT itself. NTFS includes these optional features 

in support for POSIX.  

  Encryption. Data stored on laptops can be exposed when a laptop is lost or 

stolen. File system protection is not perfect in this case because volumes 

can be read by software that doesn’t require NT to be running. Furthermore, 

NTFS file permissions are worthless when another user can use an 

account with administrator privileges. So NTFS includes a function called 

encrypting file system (EFS) to encrypt the data stored in the data attribute. 

EFS is completely transparent to applications. Encrypted files can be 

accessed only by using the private key of an account’s EFS private/public 
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key pair, and private keys are locked using an account’s password so the 

files can’t be read without the password of an authorized account.  

  Volume shadow copy. This service keeps historical versions of files and folders 

on NTFS volumes by copying overwritten data to a hidden shadow backup. 

The user can later request a switch back to an earlier version. This feature 

allows backup programs to archive files currently in use.  

  Link tracking. Shortcuts allow users to place files on their desktop. Similarly, 

object linking and embedding (OLE) allow documents from one application 

to be linked to documents of other applications. Such links provide an easy 

way to connect files with one another but they have been hard to manage, 

since if the user moves the target of a link, the link will be broken. NTFS 

supports distributed link-tracking, which maintains the integrity of shell and 

OLE links when link targets move. With NTFS link-tracking support, if a link 

target located on an NTFS volume moves to another NTFS volume in the 

same domain, the link-tracking service can update the link to reflect the move.  

  Single instance storage (SIS). Sometimes several directories have files with 

identical content. Single instance storage allows identical files to be reduced 

to one physical file and many SIS references to the merged file. SIS is a 

file system filter that manages changes to files and a service that searches 

for files that are identical and need merging. Unlike hard links that point to 

only one file, each SIS file remains distinct as far as the externals to the file 

system are concerned, and changes to one copy of a file will not change the 

others. A distinct copy will be created for the one SIS file that is changed.  

  Per-user disk space quotas. Administrators often need to track or limit user disk 

space usage, especially on servers, so NTFS includes quota-management 

support, which allows for per-user specification of disk space quotas.  

  Change logging. Applications sometimes need to monitor volumes for file 

and directory changes. For example, an automatic backup program might 

make incremental backups when files change. One way for this to happen 

is for the application to scan the volume and record the state of files and 

directories. Then on a later scan it can check for differences. This process 

can significantly slow the system, however, especially when computers 

commonly have hundreds of thousands of files. NTFS allows an application 

to ask NTFS to record information about file and directory changes to a 

special file called the change journal. The application can then read the 

change journal instead of scanning the entire directory tree.  

  Transaction support. With Vista, applications can use transactions to group 

changes to files together into a transaction. The transaction guarantees 

that all changes happen, or none of them do, and it will guarantee that 

applications outside the transaction will not see the changes until they 

are committed. Transactions have been commonly supported in database 

systems and in the NTFS metadata. This feature brings the reliability of 

transaction-based systems to normal files.  

  Compression and sparse files. NTFS supports compression of file data. 

Compression and decompression are transparent, so applications don’t 
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have to be modified to take advantage of this feature. Directories can also 

be compressed, and any files in compressed directories are automatically 

compressed. NTFS has a related mechanism known as sparse files. If a file 

is marked as sparse, NTFS doesn’t allocate space on a volume for portions 

of the file that are empty. NTFS returns 0-filled buffers when an application 

reads from empty areas of a sparse file. As with compressed files, sparse 

files are generally transparent to the application, though applications can 

be aware of sparse files and possibly save considerable CPU and memory 

resources when processing portions of files that are actually null.  

  Aliases. NTFS supports both hard and symbolic links. A hard link allows 

multiple paths to refer to the same file. They are implemented much as was 

discussed in Chapter 12. NTFS prevents loops by the simple expedient of 

not allowing a hard link to refer to a directory. NTFS calls symbolic links 

 junctions.  They are based on a more general mechanism called a  reparse 

point.  A reparse point is an extra attribute about the file or directory, such as 

its current location, that can be read by the I/O manager. When NTFS hits 

a reparse point during a file or directory lookup, it tells the I/O manager to 

check the reparse data. The I/O manager can alter the pathname specified 

in the original operation and let it restart with the changed path. Reparse 

points can also be used by tape archival software to show that a file has been 

moved to an archive system. It moves a file to a tape, leaving reparse points 

in their directory entries that tell the software where the file is now located. 

When a process tries to access a file that has been archived, the driver 

removes the reparse point attribute from the directory, reads the file data 

from the archival media back to the original media, and reissues the access. 

Thus, the retrieval of the offline data is transparent to a process accessing an 

archived file. Of course, opening the file probably takes a little longer than 

normal.  

  Dynamic bad-cluster handling. If a data read accesses a bad disk sector, the 

read fails and the data is no longer available. If the disk is a fault-tolerant 

(RAID) volume, however, the driver fetches a good copy of the data and 

also tells NTFS that the sector is bad. NTFS allocates a new cluster on the 

failed drive to replace the bad cluster and copies the data there. It marks the 

bad cluster and thereafter ignores it.  

  Indexing. NTFS allows  indexing  of any of the file attributes on a disk volume. 

Indexing sorts the attributes. This lets the file system quickly find files that 

match any criteria, such as all the files in one directory.  

  Complex file names. NTFS uses Unicode characters to store names of files, 

directories, and volumes. Unicode is a 16-bit character-coding scheme that 

allows each character in each of the world’s major languages to be uniquely 

represented. Each element in a path name can be up to 255 characters long 

and can contain Unicode characters, spaces, and multiple periods.  

  Multiple data streams. In NTFS a file’s data is considered to be an attribute of 

the file called the data stream. New attributes can be added by applications, 

including additional data streams, so files (and directories) can contain 
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multiple data streams. NT uses an alternate stream to associate user 

“properties” with the file, such as a title, subject, author, and keywords. It 

stores the date in an alternate stream called Summary Information.       

  18.6 BASIC INPUT AND OUTPUT 

 The architecture of the total NT file system can be seen more closely in  Figure 18.8 . 

Unfortunately, as often happens with OS documentation, the names that we have 

been using in this text conflict with the names used by the NT system designers. For 

example, they call the top layer of the I/O system the “I/O Manager,” while we have 

used that term for the lower-level I/O functions of an OS. In this chapter we use the 

terms as they are used by Microsoft. So the functions we were describing in the pre-

vious section actually reside in the Partition/Volume Storage Manager and the Disk 

Class Manager. 

   18.6.1 Partitions 

 Because hard drive support in PCs derived from the designs used in MS/DOS, there 

are certain things that any OS on a PC is going to support. For one thing, the design 

allows the system administrator to divide the disk drive into separate areas called 

 partitions.  The administrator will then use OS utility programs to establish a sepa-

rate file system in each partition. These file systems may even be file systems native 

to other OSs. The I/O system will see each partition as a separate drive. As with the 

FIGURE 18.8 
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file systems themselves, the design of the partitioning structure has had to evolve to 

cope with the increasing size of hard disks. The partitioning mechanism creates a 

small table in the first sector of the hard disk called the  master boot block  ( MBB ) 

or  master boot record  ( MBR ). The original mechanism could create only four par-

titions on a single disk. Later extensions allowed one partition to be designated as 

an extended partition. This would allow up to 24 logical partitions to be created on 

one disk.  

  18.6.2 I/O system layering 

 The separation of the layers in the I/O system allows additional extra layers to be 

easily inserted into the OS architecture. In many cases the NT I/O drivers expose the 

same calls at their API as they use to invoke the drivers at the next lower level, and 

each alternative module at any given layer implements the same interfaces. Among 

other things, this layering allows a logical device to be defined on a system that is 

not really a local disk partition but is instead located on another machine across a 

network. In this case the system performs a  redirection  so that to the user and to pro-

grams, network devices appear to be no different from local devices. It also allows a 

device to appear to be a disk drive when it actually is something else—a USB flash 

drive, for example. 

 The layers also allow extra features to be inserted between layers. They are 

loaded as the system boots in the form of device drivers of a special class called 

 filters.  In the simple case where the average user might not want any extra features, 

the basic I/O functions can be supported with very little overhead. When a user does 

want some more exotic function, the extra features can be inserted between two 

layers in a manner that is transparent to both the higher and lower layers. One exam-

ple of such extra functionality is that of virus scanners. By providing this interface 

between the layers, NT can allow third-party software to extend the features of the 

I/O system without violating the integrity of the OS code. Also, if any future unan-

ticipated functionality is developed it will be easy to add it to the I/O system because 

of this well-defined standard layered interface.  

  18.6.3 Plug and play 

 When an OS is written it is a generic entity, capable of running on a wide variety of 

hardware configurations. When we install an OS on a specific machine it must be 

configured to match the hardware installed. If new hardware is later added or old 

hardware replaced or removed, then the OS must be adjusted to match the new con-

figuration. We need drivers for new hardware and we also don’t want to waste space 

on drivers that are no longer needed. 

 In the early generations of the large mainframes it was common for the systems 

programming staff to have to perform a  sysgen (system generation)  when installing 

or upgrading an OS. Briefly, this amounted to describing the hardware configuration 

with a file of specification records, which were then used to generate an executable 

version of the OS specifically tailored to match the hardware. For a moderate-sized 

configuration this took days and sometimes several tries to work correctly. 
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 The original IBM PC was typical of hardware systems of that era, and configu-

ration of DOS to fit the hardware was very difficult. There were two to four different 

pieces of information required to configure most controllers, including an interrupt 

request level (IRQ), a memory address, an I/O port (address), and a direct memory 

access (DMA) channel number. These were set manually using small switches or 

jumpers on the controller board. These addresses had to be selected so that they 

did not conflict with one another. Installing a new controller in a machine could be 

quite challenging because it was often difficult to find out the settings on the existing 

cards. In addition, the hardware then had to be described to the OS using a file called 

 config.sys.  Hardware vendors usually supplied a utility program that would attempt 

to adapt the config.sys file for the new hardware, but they often would cause more 

problems than they would fix. 

 Beginning with the IBM MicroChannel™ and EISA buses, the controllers were 

able to identify themselves to the OS and respond to configuration changes by the 

software. This activity is known as  plug and play,  or sometimes  PnP.  This trend 

continued with the PCI bus and today most OSs are capable of recognizing most new 

hardware, setting the parameters for the cards dynamically, selecting configurations, 

that will work with the existing hardware configuration, and customizing the OS by 

dynamically loading the correct device drivers for the hardware. The OS is still being 

adapted to fit the hardware, but the process is normally done dynamically by the OS 

and is much more transparent to the user.  

  18.6.4 Device drivers 

 All of the hardware characteristics of the I/O devices are isolated in the lowest level 

of the kernel, the device drivers. This means, for example, that all higher-level mod-

ules should not concern themselves with how many sectors are on a disk track or how 

many read/write heads a disk drive has. Nor should they be concerned with which 

bits in the status register indicate an error has occurred. Instead, they should focus on 

the things that are common to all disk drives, and confine the details of any specific 

device (or controller) to the device driver for that particular device or controller. 

 Since NT uses such device drivers to hide the details of the hardware, it is easy 

to change the hardware configuration of an NT system. Indeed, the drivers can be 

installed in or removed from the system dynamically. This means that when a device 

is added to the system it is not necessary to reboot the OS. Prior to this development 

such rebooting had been necessary when the hardware was changed. This was time-

consuming and in the case of very important systems such as servers it was highly 

undesirable. With device controllers that are physically inserted into the bus—for 

example, a new graphics card—the system power has to be turned off anyway, so 

having to reboot the system is not a problem. However, several of the new methods 

for connecting peripheral devices to the computer assume the device is external, like 

a VCR or a camcorder, so powering it off is not necessary. Examples of such inter-

faces include  USB  (Universal Serial Bus),  IEEE 1394,  and  PC Card  or  Card Bus  

(formerly called  PCMCIA ) devices. Furthermore, protocols are defined for these 

interfaces such that the device identifies itself to the computer in a manner similar to 

the plug and play features of a PCI bus. This dynamic identification means that the 
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OS can automatically load the drivers for any newly installed device without reboot-

ing the OS and generally without any assistance from the user other than possibly 

providing a CD-ROM containing drivers for the device. Most users will also connect 

devices to serial or parallel ports without shutting off the power, though manufactur-

ers of such devices do not generally recommend it. But devices connected through 

these ports may not be able to identify themselves automatically like those with the 

newer interfaces do.  

  18.6.5 Disk class, port, and miniport drivers 

 The File System module calls on  storage driver  functions at lower layers that move 

progressively closer to the hardware. These layers are called the  storage class,   stor-

age port,  and  miniport  drivers. At the top layer NT provides storage class drivers, 

which implement features common to all storage devices of a particular type such as 

disks or tapes. At the next layer are storage port drivers, which have features com-

mon to a particular bus such as SCSI or ATA. Disk drive vendors supply miniport 

drivers that support a particular device or family of compatible devices. The class 

drivers have the same API as the device driver interfaces. Miniport drivers use a 

port driver interface instead of the device driver interface. This approach simplifies 

the role of miniport developers because they have APIs that are compatible with 

previous Microsoft OSs. Storage class drivers can often handle many devices in the 

class without having a storage port or miniport driver. The prime example of this is 

the generic USB storage class driver, which can access many USB storage devices 

without any other drivers.    

  18.7 GUI PROGRAMMING 

  For the user, arguably the defining feature of Windows is the GUI. The program-

mer accesses the OS functions that manipulate the objects on the desktop through 

Windows’ APIs. These interfaces provide functions that allow the programmer to 

draw windows, make menus and dialog boxes, and so forth. The OS itself takes 

care of common functions like making sure that when one window is closed that 

the appropriate parts of any windows that were behind the closed window are 

updated. Some facilities are provided for the programmer such as the common dia-

log box. See  Figure 18.9 . This is a standard window-based dialog that the program 

can use to find a file (or files) to open, specify a name to save a file under, select 

a font or a color, and several other common features that any program might want 

to allow. An application programmer can use this interface, but is not required to 

do so. Using this interface provides a similar look-and-feel to different applica-

tions. As programmers have developed more sophisticated interfaces, they have 

often tended to use them in the place of the standard interfaces. One can argue that 

these new interfaces are more user-friendly or more appropriate to a given task, 

but having a different interface for every application may make the overall system 

more difficult for a novice to learn, so it is not clear that the tradeoff is always 

worth it. 
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      18.8 NETWORKING 

  Another aspect of NT where the creators desired bringing compatibility with other 

OSs was in the networking protocols it supported. When NT was being developed 

the Internet was already fairly popular in academic circles, but the TCP/IP protocols 

used in the Internet were not the overwhelmingly dominant network protocols that 

they are today. The Novell Netware OS was the dominant personal computer file 

server platform and it had its own protocols in the form of IPX/SPX. There were 

many UNIX systems in operation, and in addition, many of the larger enterprises 

had IBM mainframes and midrange systems that used IBM protocols. Systems from 

Apple, Inc. ran a protocol known as AppleTalk over various hardware topologies. 

In order to gain a place in the networks of customers who used these other systems, 

Microsoft had to be able to install systems that could communicate easily with those 

systems by supporting the protocols they used. Of course, NT also had to provide 

compatibility with the protocols that earlier versions of Windows and DOS used. It 

therefore incorporated all the standard protocols used by these other systems. (These 

protocols were sometimes common to multiple systems—VAX systems often used 

TCP/IP, for example.) Typically these protocols included:

      IPX/SPX for Novell Netware  
     TCP/IP for UNIX  
     DECNet for Digital Equipment VAX systems  
     SNA and NetBEUI for IBM systems  
     LAN Manager for Windows legacy systems    

 Similar to most of the other major components of NT, the networking functions are 

layered. For example, the lowest layer of the networking stack uses an interface called 

 NDIS  ( network driver interface specification ) that was defined by Microsoft and 

FIGURE 18.9 
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3Com. This interface is specifically designed to allow a single hardware device driver 

to support multiple Network layer protocols. This allowed the network interface card 

( NIC ) vendors to write a single driver for each combination of NIC and hardware 

platform without regard for the operating system or the Network layer software. 

Indeed, it allowed the driver to support multiple Network layer protocols at the same 

time. As with the I/O system, this layered architecture allows the transparent insertion 

of extra functionality that is not needed by most users. One example is    a layer to pro-

vide  SNMP  ( Simple Network Management Protocol ) functions in a PC so that it 

can be remotely monitored with an SNMP-based network management console. This 

protocol was discussed in Chapter 15. When such monitoring is not needed it does 

not have to be installed and waste resources. 

 An interesting feature of NT networking support is that it includes an interface 

for asynchronous transfer mode (ATM) hardware. ATM has several interesting char-

acteristics that most people have overlooked in their rush to join the Ethernet band-

wagon. For one thing, the maximum ATM frame size of 64 KB fits better with the 

maximum IP frame size of 64 KB than does Ethernet with a maximum frame size of 

1,500 bytes. When the hardware can directly support the much larger blocks, it is a 

waste of resources to break them into smaller pieces. For another, ATM supports qual-

ity of service (QoS) features in the hardware without resorting to software contortions 

and extra software layers. As multimedia applications have become more important, 

some people have found that these applications work much better over ATM than they 

do over Ethernet, and that NT already includes support for those features.   

  18.9 SYMMETRIC MULTIPROCESSING 

  The hardware platforms that support the NT OS family can scale up to fairly large 

systems. One feature that is often found in systems that are designed for supporting 

high-volume servers is that they may have more than one CPU. Multiple CPU tech-

nology is now moving down into average desktop systems with CPUs that can run 

multiple processes concurrently and with multiple CPUs in a single chip. NT sup-

ports symmetric multiprocessing (SMP), as was discussed in Chapters 6 and 9. The 

maximum number of CPUs supported by the NT family varies with the CPU word 

size; 32-bit CPUs will support up to 32 CPUs and the 64-bit CPUs will support up 

to 64 CPUs. These limits are simply because masks about the individual CPUs are 

stored in a single data word.   

  18.10 STARTUP SPEED OF XP 

  One of the interesting design goals of the XP release was to speed up the time required 

to boot the operating system. The goal depended on the way in which the system was 

started. From a cold start the goal was considerably longer than from a standby mode 

or a hibernate mode. For a restart from a standby state a five second boot time was the 

goal. Note that this requires a hardware option called advanced configuration power 

interface (ACPI). The time interval of this goal is interesting because it is roughly the 

timeout of a human’s short-term memory. If you begin to do some task and the actions 

required to start that task take more than about seven seconds, you will frequently find 
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that your attention has wandered—you will have forgotten that phone number you 

just looked up, for example. So if your PC is turned off and you decide to turn it on to 

look up something interesting, if it takes more than seven seconds to boot up you may 

find that the hot idea you had has just slipped away. So this was an important feature 

that was probably not fully appreciated by many users but affected them nonetheless.    

   18.11 SUMMARY 

 In this chapter, we discussed the features and con-

cepts of a more advanced OS—the Windows NT 

Operating System developed by Microsoft, Inc. We 

started this chapter with an overview of the NT OS 

and a bit of the history of the evolution of Micro-

soft OSs. We then moved to a brief discussion of the 

nature of a high-end single-user OS and the main 

goals of the NT family—support for applications 

from legacy OSs and support for multiple hardware 

platforms. Next, we discussed the complexity caused 

by running multiple-user applications and server 

applications at the same time. This additional com-

plexity shows in both the scheduling of processes 

and threads and in the additional memory manage-

ment functions supported by the NT OS family. 

 Then we gave an overview of the support of files 

in the NT OS and the higher functions required by 

having multiple users and possibly multiple serv-

ers configured on the system, followed by coverage 

of the I/O functions that the OS provides. We then 

briefly discussed some new aspects of the GUI func-

tionality caused by having multiple windows open 

at the same time and we also touched on the sub-

ject of multiprocessor support under NT. Finally, we 

addressed the speed of the startup of XP. 

 In the next section of the book we provide a case 

study of the Linux OS by covering some features 

that were not covered in the spiral chapter where 

the focus was primarily on those features that were 

required when supporting multiple users.  
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  REVIEW QUESTIONS 

    18.1 What was the major change when Windows 

NT was being developed that made it differ-

ent from most of the previous OS products from 

Microsoft?  

   18.2 What were some of the major goals for the XP 

family that were mentioned in the chapter?  

   18.3 When a process does a fork call, XP does not 

really create a second copy of the program. What 

does it do instead?  

   18.4 How was the goal of hardware independence 

addressed?  

   18.5 What sorts of objects does NT use to schedule the 

CPU?  

   18.6 Describe the difference between the normal prior-

ity class and the real-time class.  

   18.7 What is so unusual about how the NTFS supports 

the data in a file? Specifically, what happens if the 

data is rather short?  

   18.8 True or false? Windows XP supports the OS/2 

HPFS file system.  

   18.9 Which RAID configurations does NT support in 

software?  

   18.10 Why is it important to have such a specific divi-

sion between the IOS and the file system?  

   18.11 True or false? NT supports compression of files or 

entire portions of a file system.  

   18.12 What is the impact of a “log-based” file system?  

   18.13 What is the advantage of dynamically installable 

device drivers?  

   18.14 What is unusual about the command-line interface 

to Windows XP?  

   18.15 One school of thought says that it is better for 

applications to stick to standard elements in the 

GUI interface. Another argues that improved ele-

ments can make applications better. Justify your 

choice.  

   18.16 Why does XP support an ATM protocol stack?  

   18.17 What does the NDIS specification do?  

   18.18 Which multiprocessing mechanism does XP 

support?                     
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  I
n Part 2 of the book we discussed some basic features of the Linux operating 

system and how a multiuser design placed some different requirements on an 

OS. In that chapter we also presented an overview of Linux and some back-

ground about its history and we discussed the general nature of a multiuser OS, the 

scheduling of processes and processes in Linux, and the nature of user logons and 

file protection mechanisms. 

 In this chapter, we present further information about Linux in a case study of 

OS and how it implements some of the standard features that we expect to see in any 

modern OS. This chapter is intended to be studied with Chapter 6 so that material is 

not repeated unnecessarily. We start this chapter with a brief review of Linux and its 

history.  Section 19.2  discusses the scheduling of processes in Linux and  Section 19.3  

continues, discussing the memory management features necessitated by supporting 

many users who are working at many different processes.  Section 19.4  covers the 

organization of files in the Linux OS. Linux supports many different file systems 

because of its unique evolutionary history.  Section 19.5  covers the basic I/O func-

tions that Linux provides and  Section 19.6  describes support for GUI programming, 

which was derived from the design used in UNIX. In  Section 19.7  is a discussion of 

the networking support in Linux, which, like the file systems, is complex because of 

the history of Linux and the environments it must coexist in.  Section 19.8  deals with 

some special security aspects of Linux and  Section 19.9  discusses a problem that 
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arose with Linux support for multiple CPUs.  Section 19.10  covers hard real-time 

and embedded variants of the Linux OS. We conclude with a chapter summary in 

 Section 19.11 .  

   19.1 INTRODUCTION 

   19.1.1 Linux history 

 The Linux OS is largely oriented around UNIX, an older OS that supported multiple 

users using terminals connected to a large computer. Today, there are versions of 

Linux that are used as the OS on a personal computer for a single user. These ver-

sions still maintain the internal structure of a multiuser facility. Indeed, a single user 

can run multiple virtual terminals and can switch between them as though there were 

several users on the system and can support concurrent sessions from users with 

remote connections. Other versions of Linux are intended to be used purely remotely 

as servers for various functions, to act as routers in networks, to control real-time 

systems, and to be embedded in equipment with no human interface. As was pointed 

out in Chapter 6, Linux is released in production versions and development versions. 

The features described in this chapter mostly relate to version 2.6. 

 The history of Linux is shorter than many other OSs. Here is a short summary of 

the more significant releases and features:

     V. 1.0, March 1994 supported only single-processor i386 machines  

    V. 1.2, March 1995 added support for Alpha, SPARC, and MIPS CPUs  

    V. 2.0, June 1996 added support for more processors and SMP  

    V. 2.2, January 1999  

    V. 2.4.0, January 2001
     Hewlett-Packard’s PA-RISC processor  
    Axis Communications’ ETRAX CRIS  
    ISA Plug-and-Play, USB, PC Card, and Bluetooth  
    RAID devices     

    V. 2.6, December 17, 2003
     uClinux (for machines with no paged MMU)  
     Hitachi’s H8/300 series, NEC v850, Motorola’s embedded m68k 

processors  
    Intel’s hyperthreading and physical address extension (PAE)  
    Maximum number of users and groups (each) now 4,294,967,296  
    Maximum number of process ids now 1,073,741,824  
    File systems of up to 16 terabytes  
    Infiniband support        

  19.1.2 Kernel architecture 

 The structure of the Linux kernel is monolithic. It is quite modular, however, allow-

ing individual subsystems to be replaced with experimental versions quite easily. 

The relationships among the individual modules are complex. Indeed, there are few 
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modules that do not interact with most of the other major modules in some way. 

 Figure 19.1  shows some of the major components and the most significant relation-

ships among the modules. In the remaining sections of this chapter we discuss the 

operation of some of the major system modules.  

      19.2 PROCESS SCHEDULING 

  The process scheduler module was redesigned in Linux 2.6. The motivation was to 

create a scheduler that used an algorithm that ran in O(1) time. The scheduler used 

in prior kernel releases was O(n) and performed poorly when the load was too high. 

The Process Scheduler module (SCHED) is responsible for selecting which process 

should have access to the CPU. Linux documentation often uses the term “task” 

instead of the term “process,” but for most purposes we can consider these to be the 

same thing. Linux uses a priority-based scheduling algorithm to choose from among 

the runnable processes in the system. (A runnable process is one that is waiting for 

a CPU to run on.) 

 There is a  runqueue  made up of 140 lists, one for each priority. An example is 

shown in  Figure 19.2 . (In a multi-CPU system there will be similar structures for each 

CPU but we will ignore that for now.) The individual lists are each scanned in FIFO 

order. Processes that are scheduled to execute are added to the end of their respective 

runqueue’s priority list. Most processes have a time slice, or  quantum,  that limits 

FIGURE 19.1 The Linux system architecture.
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the time they are permitted to run. The time it takes the scheduling algorithm to find 

a process to run thus depends not on the number of active processes but rather on the 

number of priority lists.  

  The runqueue we have been discussing is properly called the  active runqueue.  

In addition to this queue there is also an  expired runqueue.  When a process on the 

active runqueue uses all of its time slice, it is moved to the expired runqueue. At the 

same time its next time slice and its priority are recalculated. If there are no processes 

on the active runqueue, the pointers for the active and expired runqueues are swapped, 

and the expired runqueue becomes the active one. At this point all the processes will 

effectively have a fresh time quantum. A scheduling  epoch  is the time between when 

all runnable processes begin with a fresh time quantum and when all runnable pro-

cesses have used up their time and the queues need to be swapped. 

 The scheduler always schedules the highest priority process on a system. If 

there are multiple processes at the same priority they are scheduled in round-robin 

fashion. The runqueue structure not only makes finding the highest priority process 

a constant-time operation, it also makes round-robin behavior within priority levels 

possible in constant-time. As well, having two runqueues makes transitions between 

time slice epochs a constant-time operation.  

   19.2.1 Real-time processes 

 The standard Linux scheduler provides soft real-time scheduling support, meaning 

that while it does a good job of meeting scheduling deadlines, it does not guaran-

tee that deadlines will be met. This scheduler uses two different scheduling classes 

to ensure that all processes will have fair access to the CPU, but still ensure that 

 necessary hardware actions are performed by the kernel on time. Linux thus separates 

FIGURE 19.2 The active runqueue.
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processes into two classes: normal and real time. The first 100 priority lists of the 

runqueue are reserved for real-time processes, and the last 40 are used for user pro-

cesses. Since real-time processes have lower priorities than non-real-time processes, 

they will always run before non-real-time processes. (This might be somewhat con-

fusing because a “lower” priority number has a “higher” priority in the sense that it 

will be run first, but that is the way Linux documentation describes it.) As long as 

real-time processes are runnable, no normal processes will run. Real-time processes 

are scheduled with two scheduling schemes, namely  FIFO  (or SCHED_FIFO) and 

 round robin  (or SCHED_RR.) A process that needs to run as a real-time process 

will make a system call to tell the OS which of these schedulers to use. If it does not 

make such a call, then it is a  normal  process, as discussed in the next section. 

 FIFO processes are scheduled in a first-in first-out manner. If there is a FIFO 

process ready to run on a system it will preempt any other higher priority processes 

and run for as long as it needs to run since FIFO processes do not have time lim-

its. Multiple FIFO processes are scheduled by priority and lower priority FIFO pro-

cesses will preempt higher priority processes. RR processes are identical to FIFO 

processes except that they have time quantum limits and are always preempted by a 

FIFO process. Within a given priority level, SCHED_RR processes are scheduled in 

a round-robin fashion. Each SCHED_RR process runs for its allotted time quantum 

and then goes to the end of the list in its runqueue.  

  19.2.2 Normal processes 

 Non-real-time processes are marked SCHED_NORMAL (previously known as 

SCHED_OTHER)—the default scheduling behavior. To prevent a process from 

holding the CPU and starving other processes that also need CPU access, the sched-

uler can dynamically alter a process’s priority. It does so by raising the priority num-

ber (and thus lowering the priority) of processes that are CPU-bound and lowering 

the number of processes that are I/O-bound. I/O-bound processes commonly use the 

CPU to set up an I/O and then wait for the completion of the I/O. While a process 

waits on I/O, other processes get access to the CPU. Processes that communicate 

with the user are generally doing lots of I/O and therefore are given preference over 

noninteractive processes, resulting in better interactive responsiveness. 

 The priority of I/O-bound processes is decreased by a maximum of five prior-

ity levels. CPU-bound processes have their priority increased by up to five levels. 

Processes are determined to be I/O-bound or CPU-bound based on an interactivity 

heuristic. The  interactiveness  of a process is calculated based on how much time the 

process executes compared to how much time it sleeps. Computing is much faster 

than typical I/O operations. Since I/O-bound processes call for an I/O operation and 

then wait for it to complete, an I/O-bound process spends more time waiting than 

computing, increasing its interactiveness.  

  19.2.3 Nice 

 Sometimes it is desirable to run a program with a priority other than the normal 

default. For example, a program might be providing a background function that is 

a lower priority than an interactive user function. Conversely, a process might be 
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running that needs a higher priority than normal. There are two ways that a program 

priority can be changed. First, a user can run a program with a priority other than 

normal using the  nice  command, and second, a program can issue a system call to 

change its priority while it is running. The original concept of the nice command was 

that a user could voluntarily run a command with a higher priority number (and thus 

a lower priority). Such a command would look like this: 

 nice [-n increment]... [Command [Arg]...]          

    -n increment      increment must be in the range 1–19. If not specified, an increment 

of 10 is assumed. An increment greater than 19 is set to 19. A user 

with administrative privileges may run commands with priority 

higher than normal by using a negative increment such as  ⫺ 10.   

   command     The name of a command that is to be invoked.   

   argument     A string to be used as an argument when invoking the command.       

 Alternatively, a process can alter its own priority by calling an OS function such as 

 sched_setparam.  This is a POSIX function. There are other OS calls that may also 

be used. In the following example, sched_setparam sets the scheduling parameters 

associated with the scheduling policy for the process identified by  pid.  The inter-

pretation of the parameter  p  depends on the selected policy. As discussed above, 

the following three scheduling policies are supported under Linux:  SCHED_FIFO,  

 SCHED_RR,  and  SCHED_NORMAL.  

 #include <sched.h>

int sched_setparam (pid_t pid, const struct sched_param *p);

struct sched_param {

    ...

    int

    ...

};    

  19.2.4 SMP load balancing 

 Since release 2.0 Linux has supported symmetric multiprocessing ( SMP ). We 

mentioned that when a system has multiple CPUs there will be multiple active 

r unqueues—one per CPU. When processes are created in an SMP system, they’re 

placed on the runqueue for some CPU. Some processes will be short and others 

might run for a long time and the OS has no way in advance to know which is which. 

Therefore, it is impossible to initially allocate processes across multiple CPUs in 

a balanced fashion. To maintain a balanced workload across CPUs, work can be 

moved from an overloaded CPU to a less loaded one. The Linux scheduler does such 

load balancing. Every 200 milliseconds, the OS checks to see whether the CPU loads 

are unbalanced. If so, it tries to balance the loads. One negative aspect of moving a 

process to another CPU is that the caches in the new CPU do not hold any informa-

tion for the process. This makes the effective memory access time go way up tempo-

rarily, but lightening the load on the busier CPUs makes up for the problem.    
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  19.3 MEMORY MANAGEMENT 

  The  memory manager  (MM) permits multiple processes to share securely the 

machine’s main memory system. In addition, the memory manager supports virtual 

memory that allows Linux to support processes that use more memory than is avail-

able in the system. Unused memory is swapped out to persistent storage using the 

file system and swapped back in if it is needed again later. 

 Linux was designed from the outset to be independent of the hardware it is run-

ning on. This brings up several interesting points about the sizes of various internal 

data structures in the OS. The first problem that Linux must cope with is the fact that 

the basic word size of the machine may be different on different CPUs that Linux 

might be running on. Other details may also vary—the memory page size, how the 

memory management hardware works, and so on. Linux deals with these problems 

by being very modular and very configurable. Although Linux is a monolithic ker-

nel OS rather than a micro-kernel OS, it is still very modular, and it is reasonably 

straightforward to replace one module, such as the memory manager, with a different 

one. Such module replacement may happen, for example, in an effort to use a new 

mechanism that is developed when research has shown that a mechanism that is 

currently used is not using the most efficient methods. It can also happen when the 

implementation of that replacement turns out to have been rushed and actually leads 

to worse performance than the previous release. In Linux 2.2, for example, the page 

replacement algorithm that had replaced the algorithms used earlier turned out to be 

flawed. While it worked in the general cases, there were some situations where the 

performance was very bad. So in release 2.4, parts of the earlier mechanism were 

reintroduced. The 2.6 version introduced the O(1) scheduler described earlier. 

 The memory manager in the modern Linux kernels is a full virtual memory man-

ager with demand paging. We discussed this technique thoroughly in Chapter 11 so 

we will not repeat that here. Linux uses a two-level page table on x86 processors and a 

three-level table on 64-bit processors. In theory, paging eliminates the need for contig-

uous memory allocation, but some operations like DMA ignore paging circuitry and 

access the address bus directly while transferring data. To allow for this problem Linux 

implements a mechanism for allocating contiguous page frames called the  buddy sys-

tem  algorithm. Pages are kept in one of 10 lists of blocks that contain 1, 2, 4, 8, 16, 

32, 64, 128, 256, or 512 contiguous frames, respectively. When asked for a contiguous 

block the memory manager looks in the list for the right size or larger, dividing the 

block if necessary. When a block is released, the manager iteratively tries to merge 

together pairs of free blocks into larger blocks. Linux keeps a separate set of buddy 

lists for addresses that are in low memory and thus suitable for DMA operations. 

 Linux has a separate mechanism for dealing with requests for small memory areas 

called the  slab allocator.  Rather than allocate all storage requests randomly from a sin-

gle heap, it views memory as collections of similar objects such as process descriptors. 

The slab allocator allocates similar objects from a block called a slab, which holds only 

objects of a single type. Initializing many of these objects takes more time than reallo-

cating one, so when an object is released it is cached for later reuse as the same type of 

object. The slab mechanism is not limited to system-defined objects. Applications can 

create their own slab lists and have the memory manager manage them in the same way. 
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 The modular design of Linux allows for using different memory managers in differ-

ent versions or distributions. So, for example, a distribution intended for only a real-time 

version of Linux would probably have to avoid a virtual memory architecture because it 

would not have deterministic performance. Similarly, a Linux-based system embedded 

in a PDA or a microwave that did not have secondary storage could use a memory man-

ager more appropriate for those environments. In Chapter 20 we describe a very clever 

use of paging hardware in the Symbian OS that shows such a memory manager.   

  19.4 FILE SUPPORT 

  One decision every OS designer must make is the physical and logical layout of the 

file system on secondary storage—usually disks. Several alternative file system lay-

outs may be used and the differences can have dramatic effects on the performance 

of the OS. The modular nature of Linux shows again in the area of file support.  

   19.4.1 Standard file systems 

 As was previously mentioned, the original version of Linux was developed on a 

MINIX system. Not surprisingly, the file system that was used in that initial Linux 

version was designed around the physical and logical layout of the MINIX file sys-

tem. Even today, the MINIX file system layout is still supported by Linux. Because 

various developers of Linux have had different uses as goals for their version of 

Linux OS, many other file system layouts, including MS-DOS, OS/2, CDs, and 

DVDs, as well as other (non-Linux) UNIX versions, are supported. Something of 

a standard file system does exist for Linux for hard disks, however,  ext2fs.  Much 

Linux system documentation discusses the “Linux file system” as though it were the 

only one currently used. One of the complications caused by open source projects is 

that developers are free to create whatever variations they like to the operating sys-

tem. This is often good in that it encourages experimentation and creativity. It can, 

however, be a problem in that it can complicate choices for beginners. Some argue 

that from the viewpoint of the larger Linux user community, scarce resources might 

be more profitably spent if they were focused on only a few file systems.  Table 19.1  

shows some of the other Linux file systems that have been created.

      19.4.2 The virtual file system 

 The idea of having many different, yet coexisting, file systems is not new with Linux. 

UNIX was developed in a fashion similar to Linux, in the sense that many universities 

took the source and “improved” it to fit some specific local need. One common change 

was to design a new file system for UNIX to work with an existing file system from 

some legacy OS. For example, see the HPFS in  Table 19.1 . In order to cope with this 

multiplicity of file systems, UNIX introduced the concept of the  virtual file system,  or 

 VFS.  The virtual file system was an additional layer in the OS between the kernel system 

calls and the file systems, and it is invisible to application programs. See  Figure 19.3 . 

The API for this layer is identical to the API for standard UNIX file systems. When a file 

is opened through the VFS layer, it looks to see what file system was on the device being 

referenced and passes the request to the appropriate file system driver for that device. 
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Neither the driver nor the application program is aware of the additional layer. In other 

operating systems this concept is sometimes called a file  redirector.   

  This simple mechanism has fostered many developments that might have been 

otherwise difficult. For example, when CD-ROM devices were introduced, the 

industry was able to standardize on a single data file format (music CDs follow a 

TABLE 19.1 Other Linux File Systems

EXT Extended File System (replaced MINIX)

EXT2 Second Extended File System 

EXT3 Third Extended File System

XFS Silicon Graphics [IRIX] Journaling File System

HFS Macintosh Hierarchical File System

EFS Silicon Graphics [IRIX] Extent File System

VxFS Veritas File System

UFS Early BSD UNIX File System

BSD FFS BSD UNIX File System

AIX IBM RS/6000 UNIX

JFS IBM’s Journaling File System 

HPFS OS/2 High-Performance File System

BeFS BeOS File System

QNX4 FS QNX4 [OS] File System 

AFFS Amiga Fast File System

FAT16 MS-DOS File System

FAT32 Windows File System

ReiserFS Balanced Trees (under development)

Xia New MINIX File System

FIGURE 19.3 
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different, older format). In part, this was because UNIX (and other OSs as well) were 

able to support a different file system format on these devices than on hard disks or 

floppies. This has been a great benefit to the industry and to the user community. 

Imagine if every OS had its own format for CDs! You don’t really have to think very 

hard to imagine it—it would be much like the floppy disk industry used to be. You 

had to buy floppy disks formatted for the OS you were going to use, disks could be 

hard or soft sectored, with various densities (number of sectors that would fit on a 

track). At least in the floppy disk case, when MS-DOS became popular, it’s format 

was so ubiquitous that every OS was obliged to somehow cope with that format, so 

the situation was not as bad as it might have otherwise been. Sun Microsystems was 

able to use this mechanism to introduce a “file system” that was actually a network 

protocol that accessed files that were not on a local disk; rather, they were resident 

across a network. The remote nature of this mechanism was totally transparent to 

application programs, but naive use of this feature sometimes could seriously impact 

performance. This file system is called the  network file system,  or  NFS.   

  19.4.3 The /proc file system 

 Linux (and some variations of UNIX) also makes use of the file system interface in 

a very creative way. The  proc  file system is not really a physical file system in that it 

doesn’t refer to files on a disk. It is sometimes called a virtual or  pseudo file system  

and is referred to as being nonpersistent. It responds to most of the same system calls 

that any other file system does, but instead of accessing a storage device it returns 

information about variables in the OS kernel. The root file system is accessed with 

standard I/O calls, so that one merely opens a proc entry (in the proc subdirectory) 

and reads its contents. The information that is returned does not actually exist, in 

that format, in the kernel (though some parts might), but is instead created on-the-fly 

when the read operation is performed. These records include information about the 

processes running on the system as well as information about other modules such as 

networking, memory management, and so forth. The proc file system even appears to 

users to have directories in it. For example, there is a /proc/net directory that includes 

all information about the network modules. Other directories correspond to the pro-

cesses running on the system. These directories sometimes contain subdirectories 

corresponding to subfunctions of a particular module. For example, the /proc/net 

directory contains subdirectories for the arp table and for parameters and counters for 

the TCP and IP networking protocols. Note that the proc file system supports writing 

as well as reading, so that data in the kernel can be carefully changed. Normally this 

means that only a user with  root  (supervisor) privileges can write to this file system.    

  19.5 BASIC INPUT AND OUTPUT 

   19.5.1 The /dev table 

 Observable in a Linux system is a separate “file system” similar to the /proc file 

system called the /dev “file system.” Most devices on a Linux system have a corre-

sponding “file” in /dev, network devices being the exception. The files in /dev each 
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have a major and minor device number associated with them. The kernel uses these 

numbers to map references from a device file to the appropriate driver. 

 The major device number identifies the driver with which the file is associ-

ated (in other words, the type of device). These numbers are assigned by the Linux 

Assigned Names And Numbers Authority (LANANA). The minor device number 

usually identifies which particular instance of a given device type is to be addressed. 

For example, with hard disks there may be different types of hard disks, SCSI and 

SATA, and there may be two SATA disks, differentiated by minor device number. 

The minor device number is sometimes called the unit number. 

 You can see the major and minor number of a device file by entering the follow-

ing command in a Linux shell: 

 ls -l /dev/sda

brw-rw---- 1 root  disk   8,  0 Mar 3 2007 /dev/sda   

 This example shows the first SCSI disk on a Linux system. It has a major num-

ber of 8 and a minor number of 0. The minor device number is sometimes used by 

the driver to select the particular characteristic of a device. For example, one tape 

drive can have several different files in /dev representing various configurations of 

recording density and rewind characteristics. In essence, the driver can use the minor 

device number in any way that it wants. 

 Note that here the “ls” command, which normally is used to list files in a direc-

tory, is being used to show device characteristics just the same as if it were an actual, 

physical file.  

  19.5.2 Device classes 

 As do most OSs, Linux broadly divides devices into three classes—block, character, 

and networking—and treats each of those classes differently.  Figure 19.4  shows a 

diagram of some of the kernel I/O modules and the relationships between them.  

   Block devices 

 For Linux the access to block mode devices is usually through the file system, even 

for tape storage. Linux also supports raw I/O directly to devices.  

  Character devices 

 Character mode devices transfer data a single byte at a time and include printers, 

keyboards, mice (and other pointing devices), and so on. A program can use the  ioctl  

system call to access most character mode devices.  

  Network devices 

 Network devices do not fit the semantics of files since applications waiting for input 

never know when they might arrive. As a result, network devices have an entirely 

different set of interfaces than do other devices. 

 Network devices do not show up in the /dev table since their operations are so dif-

ferent. Instead, they have a generic network interface that conforms, most often, to the 
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TCP/IP (or UDP) protocol stack model, and are most frequently accessed with a pro-

gramming model called a  socket.  This model is an API that lets an application make a 

network connection to another application, presumably but not necessarily on a differ-

ent system, and to send and receive either a stream of data or a series of blocks of data 

between the two applications. This model has layers for the data link, network, and 

transport control services. Most classes of device drivers keep various usage statistics 

about their operation (including errors) so that the system administrator can optimize 

performance of the system. Network drivers are more aggressive than most other driv-

ers, and typically keep many different types of statistics, including error counters and 

number of packets sent and received. The network modules have a generic network 

interface with common operations for connecting, sending, receiving, timeout han-

dling, statistic collection, and routing. Since the origins of UNIX are tightly connected 

to utilization of TCP/IP, it is not surprising to learn that the Linux drivers are optimized 

for TCP/IP support. Once again, however, the open nature of Linux and the diverse 

needs of Linux supporters have resulted in the adaptation of many other network pro-

tocols for Linux. Here are some of the many other protocols available for Linux:

     Network protocols (software protocols)
     IP version 6 - the Internet and Internet 2  
    IPX/SPX - Novell  
    AppleTalk Protocol Suite - Apple  
    NetBEUI - IBM and Microsoft  
    NetBIOS - IBM and Microsoft  
    CIFS - Microsoft  
    SNA - IBM  
    APPC - IBM  
    DECNet - Digital Equipment Corporation     

FIGURE 19.4 
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    Physical protocols (hardware protocols or router and switch interfaces)
     ISDN - Integrated Services Digital Network  
    PPP - Point-to-Point Protocol  
    SLIP - Serial Line Interface Protocol  
    PLIP - Parallel Line Internet Protocol  
    Amateur Radio - AX25  
    ATM - Asynchronous Transfer Mode  
    ARCNet - Datapoint Corp., among others  
    FDDI - Fiber Distributed Data Interface  
    Frame Relay  
    Token Ring - IBM  
    X.25 - Slow, asynchronous  
    802.11 - wireless LAN  
    Bluetooth - wireless       

 In keeping with its UNIX orientation, Linux gives strong support to the sockets and 

datagram mechanisms. They were included in the 1.0 release in 1994. This mecha-

nism was introduced to the UNIX world with BSD 4.3 UNIX. The network inter-

faces and mechanisms were discussed more in Chapter 15.  

  Disk scheduling 

 In Chapter 14 we discussed the many options that OSs have for scheduling opera-

tions on disk drives, for example, when to move to the next track and which track to 

move to. One of the strengths of Linux that has been emphasized in this chapter is 

its modularity. This modularity allows replacement of individual modules in Linux 

with a different implementation that is more appropriate for a particular situation. 

The scheduling of disk operations is a good example. While the default scheduler 

is generally fair and performs quite well, the overall performance of any particular 

system depends greatly on the type of processing that is being done. Web servers, 

for example, place very different demands on a system than does a database server. 

Accordingly, several different disk schedulers are available to fit certain situations 

better than others. Historically the default disk request scheduler in Linux has been 

C-LOOK. It treats the disk like a cylinder, starting at one end of the drive and pro-

cessing operations in order as it goes. When it reaches the end of the queue of opera-

tions it moves the head all the way back to the other end without processing any 

requests and begins processing the operations that piled up after the head had passed 

them by on the last scan. Later releases of Linux have begun to incorporate more 

advanced scheduling algorithms. 

 The recent history of disk schedulers in Linux demonstrates how having a replace-

able module was used to great advantage. As was mentioned, the disk scheduler in 

Linux was basically a C-LOOK scheduler that merely merged requests in the direction 

of the seek. It was noted that this sometimes caused very poor performance of requests 

that were very far away from the bulk of the other requests. In order to improve the 

performance of such requests the scheduler was modified such that each new request 

was given a deadline. If the deadline for a request drew near, then it would be serviced 

immediately. This algorithm gave better performance in certain situations. 
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 Unfortunately, applications that do a lot of reading tend to use synchronous I/O. 

Typically they read a block, process it a bit, and issue a read for the next block. While 

the processing was going on, the head was moved to another part of the drive and the 

next block could not be read until much later. In order to improve the performance of 

such applications, a new  anticipatory   scheduler  was introduced in Version 2.6. This 

scheduler is basically C-LOOK, but when performing a read, this scheduler would 

delay moving the head away from the block read for a short time (a few milliseconds) 

on the theory that the application might shortly issue a new read for the next block. 

It performed well in some cases such as compilation, but was miserable in others, 

primarily interactive tasks. This poor performance was caused by not keeping the 

seeking mechanism busy all the time. 

 So yet another scheduler was released. It is known as complete fair queuing 

scheduler, or  CFQ scheduler.  CFQ places synchronous requests into separate queues 

for each process and allocates time slices for each of the queues to access the disk. 

The length of the time slice and the number of requests a queue is allowed to sub-

mit depends on an I/O priority assigned to the process. Asynchronous requests are 

batched together into separate queues for each priority. CFQ does not do anticipatory 

IO scheduling, but it gives good throughput for the system as a whole by allowing a 

process queue to idle at the end of synchronous I/O, thereby “anticipating” further 

close I/O from that process. The CFQ scheduler was released as part of the 2.6.18 

kernel. It is the default scheduler in kernel releases. 

 Since no scheduler is optimum for all circumstances, there are presently four 

schedulers available for Linux:

     Noop Scheduler  

    Anticipatory IO Scheduler (“as scheduler”)  

    Deadline Scheduler  

    Complete Fair Queuing Scheduler (“cfq scheduler”)    

 One can change schedulers by setting the kernel option ‘elevator’ at boot time. You 

can set it to one of “as,” “cfq,” “deadline,” or “noop.” In addition, some of the sched-

ulers have parameters that can be tuned at runtime.     

  19.6 GUI PROGRAMMING 

  When UNIX was created, very little computing work was done in a graphics mode. 

Instead, many users connected to the computer with a terminal that was basically a 

typewriter (or Teletype), a printer with a keyboard built in. When CRT terminals came 

into use they normally displayed text only, much like the printer terminals then being 

used. Terminals that supported graphics might cost as much as the computer that they 

were connected to. As a result, UNIX kernels do not assume that the user interface 

is a graphical user interface (GUI). Instead, if a GUI is desired, it must be provided 

as a facility apart from the OS kernel. The  X-Window  system was created to pro-

vide a mechanism to display graphics in UNIX. The X-Window system is a platform-

independent, client/server-based protocol for displaying graphics. A block diagram of 

the components of the X-Window system is seen in  Figure 19.5 . The naming of the 
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components can be somewhat confusing today—the system where the graphics are 

viewed is called an X-Window server and the system where the graphics are generated 

is called an X-Window client. Both the server and the client can be running on the same 

machine as they often are in a Linux PC environment, or they can be different systems 

on opposite sides of the world, connected through a network.  

  The X-Window (or  X11 ) protocol requires a third component to actually display 

windows, menus, boxes, and scroll bars, which may be drawn however the manager 

determines. This component is called a  window manager.  The window manager 

determines the way the interface looks and how the user interacts with it—the so- 

called  look-and-feel.  Running an X-Window server and window manager on a single 

machine provides a familiar GUI. There are currently two very popular window man-

agers in the Linux world—the  Kool Desktop Environment  ( KDE ) and  GNU Net-

work Object Model Environment  ( GNOME ). Both of these window managers are 

found in most Linux distributions, and occasionally they include other managers that 

are not as popular. Since Linux applications most often use the X-Windows API to 

draw on the system, programs that work with any one manager usually work correctly 

with any other windows manager as well. However, dialog boxes, menus, scroll bars, 

and moving between windows may appear differently to the user. So, for example, 

the Apple Mac OS version X is built on a UNIX kernel but the window manager 

looks and works like the prior releases of the Mac OS. A drawback to having the win-

dow manager as an external component is that there may be multiple, different GUI 

interfaces, so books and training materials will need to be customized for each. While 

this might not matter so much to an individual, it is a problem for institutions of all 

kinds who have to support many users who may choose different managers. 

 With UNIX this is not a problem confined only to GUI interfaces. Traditionally, 

UNIX commands are given to the OS by typing them on a line in a textual command 

interpreter, or shell. The UNIX text-oriented shell is a separate external module, just 

as are the GUIs. In the case of UNIX there were quite a few of them. See  Table 19.2 .

  Different shells were sometimes only slightly different from one another, but 

some were very different in the way that they could be programmed, assist in helping 

users complete commands, and keeping and repeating command histories, among 
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other things. These differences made choosing a shell a very personal decision. It 

also made the life of help desk personnel more complicated and limited the ability of 

one user to help another.   

  19.7 NETWORKING 

  The  network interface  (NET) module of the OS provides access to several network-

ing standards and a variety of network hardware.  

   19.7.1 Network layering 

 The networking model used in the Linux OS is based on the standard TCP/IP model. 

Since the physical interface is implemented by the network interface card (NIC), Linux 

generally ignores the Physical layer, so the model only shows three service layers and 

the Application layer. See  Figure 19.6 . The three service layers were also shown in 

 Figure 19.2 . Often OS developers create each network protocol layer in total isolation. 

The result is often that high overhead is caused by excessive copying of messages from 

layer to layer as the successive layers add headers and sometimes trailers to the mes-

sage. Linux avoids this problem by allocating the space for a message in a buffer called 

a socket buffer, or  skbuff.  An skbuff contains pointers to locations in a contiguous block 

of memory that stores the whole packet. When data is passed from one layer to a lower 

layer, the header of the lower layer is added to the data, and likewise, the header of the 

lower layer is stripped off when data is passed from a lower layer to an upper layer. 

When an skbuff is allocated, Linux will calculate the amount of memory including the 

maximum length of the headers of various layers needed by the packet. The initial mes-

sage is put into the middle of the buffer, leaving room for the headers from lower layers. 

TABLE 19.2 Popular UNIX and Linux Shells

Shell Comments

KSH Linux version of Korn shell

TCSH Turbo C shell

BASH Bourne Again shell

CSH Linux version of C shell

ASH

ZSH Advanced command-line editing—not for scripting

Bourne Enhanced original shell

Korn Originated with AT&T and System V

C UC Berkeley

SH The original UNIX shell

rc Plan 9 from Bell Labs

es RC-like syntax with Scheme semantics

eshell Emacs

CLISP CommonLisp
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So when a packet is passed between layers the only need is to set the pointers that indi-

cate the new location of the start of the header or trailer of the corresponding skbuff.  

    19.7.2 Connection super-server 

 Linux uses a super-server called  inetd,  which listens on many ports used by common 

IP services such as HTTP, POP3, and Telnet. When an IP packet arrives on one of 

these port numbers, inetd launches a selected server program. For services that are 

not used frequently this mechanism uses memory more efficiently, as the specific 

servers run only when needed. Also, no network code is required in the applications, 

since inetd connects the sockets directly to the stdin, stdout, and stderr functions of 

the server process. For protocols that have more frequent use, a dedicated server that 

handles the server requests directly would be used instead.  

  19.7.3 SAMBA 

 Since Linux presently exists in a world dominated by Microsoft OS software, a great 

deal of effort goes into making Linux systems work well with Microsoft products. 

We briefly touched on file systems that support present and past Microsoft file sys-

tem formats. We also mentioned a few networking protocols that Linux offers sup-

port for. But one server package dominates in the networking area—Samba. 

 Samba is a server that implements many Microsoft services and protocols, 

including SMB (Server Message Block), CIFS (Common Internet File System), 

DCE/RPC (Distributed Computing Environment/Remote Procedure Calls), MSRPC, 

a WINS server (a NetBIOS Name Server, NBNS), NetBIOS over TCP/IP (NBT), the 

Network Neighborhood protocols, the NT Domain protocols including NT Domain 

Logons, a Secure Accounts Manager (SAM) database, Local Security Authority 

4 - Application

3 - Transport

2 - Network

1 - Device

FIGURE 19.6 

The Linux Network 

layer model.
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(LSA) service, NT-style printing service (SPOOLSS), NTLM, and Active Directory 

Logon using Kerberos and LDAP. Samba also uses these protocols to see and share 

local resources including printers. 

 Samba sets up network shares for chosen Linux directories (including subdirec-

tories). These appear to Microsoft Windows users just as folders. Linux users can 

either mount the shares or can access the files with a utility program that acts like an 

FTP program. Each directory can have different access privileges aside from normal 

Linux file protections. Samba is also available on most other UNIX-variant systems.    

  19.8 SECURITY 

   19.8.1 The Linux security module 

 The Linux community has been divided on the issue of security. The crux of the 

division has to do with the fact that the security community is itself divided about 

how security should be implemented. A primary consideration with security is that 

supporting high levels of security involve substantial resources, obviously including 

hardware such as memory and CPU utilization but also administrative and user time 

to set it up and use it correctly. If high levels of security are not needed in a particular 

installation, then those resources should not have to be spent. The solution in Linux 

has been the inclusion of a module called the  Linux security module,  or  LSM.  It 

consists of a set of hooks that a specific security implementation can attach itself to 

in order to perform authorization checks when objects are accessed. 

 There are several different security systems that have been designed to run under 

Linux using the LSM hooks. The most well known is  Security-Enhanced Linux  

( SELinux ), which provides a secure access control mechanism based on the trust (clear-

ance) level of the individual requesting access. Others include  AppArmor  ( Application 

Armor ),  Linux Intrusion Detection System,   BSD Secure Levels,  and  Commercial 

IP Security Option (CIPSO).  As of release 2.6 of Linux, none of these modules had 

prevailed over the others, so the LSM approach continues to be supported.  

  19.8.2 Networking security 

 Because the source code for Linux is freely available it is often used as the OS of 

choice both for security analysts and hackers. As a result, there are many tools for 

both hacking and security protection available for Linux. 

  Port scanners  are software packages that try to determine what services are 

running on a target machine. Generally they will try to make a connection to each 

possible port on the machine. Based on the results of this attempt a hacker may be 

able to tell if the machine is vulnerable to a known exploit. Port scanners can be set 

to attack a single machine, a group of machines, or all machines on a network. There 

are many software packages that do port scanning.  Nmap,   SATAN,   ISS,  and  SAINT  

are some of the better known ones. 

 There are also  stealth port scanners.  These scanners use a low-level interface to 

create TCP or UDP packets that do not correctly conform to the protocol. For example, 

a TCP packet with the ACK bit set will likely get through a packet-filtering firewall 

because it looks like part of an established connection. If such a packet is received 
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on a port that had no established session with the sender, then the TCP software will 

respond with an appropriate message and the hacker can assume that there is a process 

that is reading that port. 

  TCP Wrapper  ( tcpd)  is used to filter network access to IP services run on Linux 

or other UNIX-like variants. When IP services are started by a super-server like  inetd  

the TCP wrapper program is invoked to check the source of the connection. It sup-

ports filtering on host or subnet IP addresses or names. In addition, these IP services 

can be linked to an  ident  service. This service will first query the source IP address 

on TCP port 113. It will expect a query reply that identifies the source system. Only if 

the reply is received and matched against a database will the connection be allowed. 

Most network service programs can be directly linked with the library that does the 

filtering. This method is used by services that operate without being started by a 

super-server, or by any service that handles multiple connections. Otherwise, only 

the first connection attempt would get checked against the database by tcpd.    

  19.9 SYMMETRIC MULTIPROCESSING 

  With SMP the OS can be running on more than one CPU at one time. As was discussed 

in Chapter 6, the two (or more) instances of the running OS must be prevented from 

changing the same data structure at the same time by using locks. Early releases of the 

Linux SMP support used a single lock for the entire kernel, the so-called  Big Kernel 

Lock.  This was not very efficient, since many times the different instances of the OS 

would not be manipulating the same data structures at all. So later releases have begun 

replacing those references to that one lock with references to more localized locks. 

Some references to the Big Lock still remain as of version 2.6, but the multiprocessor 

performance is greatly improved over prior versions. The Linux kernel also uses spin-

locks on a special read–write type of semaphore that allows multiple readers but only 

one writer at a time, when a structure is read mostly. For example, the table of network 

devices changes only very rarely but is read frequently, so allowing multiple readers is 

beneficial. When a change needs to be made to the table, then locking all the readers 

out briefly while it is changed by only one writer is not a frequent problem.   

  19.10 OTHER LINUX VARIANTS 

  Since the source code for Linux is readily available, there are several variants of 

Linux that have been created for special purposes. Two special areas are versions 

for real-time applications and for embedding Linux in small systems with limited 

resources.  

   19.10.1 Real-time Linux 

 The normal Linux OS is not a hard real-time OS. This is true for most OSs. A hard 

real-time system guarantees that real deadlines are met, for example that a process or 

thread will be run in the next 50 milliseconds. Hard real-time systems preclude many of 

the mechanisms that have evolved for traditional OSs, mechanisms that use stochastic 

techniques and try to be fair in providing services to processes. Hard real-time systems 
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need to establish deadlines for events and for the servicing of requests and the normal 

OS mechanisms do not allow us to provide such deadline support. Embedded applica-

tions are also important, where a computer is a controlling component in a piece of 

equipment rather than a general-purpose computing tool. Such embedded applications 

are often real-time systems as well. This means that there is a considerable overlap 

between embedded Linux implementations and real-time Linux implementations. 

 There are two main schools of thought about how to make a real-time system out 

of Linux. Some of the implementations of real-time Linux use a small real-time OS 

( RTOS ) as a host OS and they run a version of the Linux kernel that runs as a single 

thread in the host OS kernel at a background or idle priority. In other words, when there 

is no real-time process to run, then any normal Linux applications can run. This model 

is known as  RTLinux.  The other school uses the Linux kernel but modifies it heav-

ily to include only scheduling mechanisms that allow the support of a real-time API. 

These mechanisms would include at least the process scheduler and the disk sched-

uler and probably the networking protocol stack. This  real-time application interface  

model is also known as  RTAI.  There are also other interesting approaches that do not 

fit either of these categories. Deciding on the correct package to use for a project could 

be quite complex. Fortunately there is  real-time Linux common API,  an open source 

API that allows programmers to code to a common API when using either RTLinux or 

RTAI.  Table 19.3  lists some embedded and real-time implementations of Linux.

      19.10.2 Embedded Linux 

 Linux has also been modified to run in very limited environments. Such environ-

ments include platforms like those discussed in the chapter on the Palm OS, but it 

also include devices like microwave ovens and home heating controls where the user 

environment is very limited. The open source and modular nature of Linux make it 

ideal for such situations. However, there are many issues that must be resolved in 

using Linux as an OS in such systems:

     These devices typically have no secondary memory and thus don’t really need 

paged memory. But standard Linux presumes that these exist. So one modifica-

tion that is often found in embedded Linux systems is the removal of paged 

memory hardware support requirements. They also need no caching manage-

ment system or features like memory mapped files.  

    The very limited user interface is also significant because Linux does not pre-

sume a GUI. Rather, the GUI is an add-on and the standard interface is a com-

mand line. Even this may be too strong an assumption for a microwave where 

the display might be limited to an LCD panel that can only display a few digits. 

Some embedded Linux systems are found in complex devices such as small 

routers. These devices now often support the HTTP protocol and can be man-

aged by a remote browser.  

    Process scheduling in Linux typically uses the concept of “interactiveness” to 

promote the priority of a process that is interacting with a user. But in an embed-

ded system there is no elaborate, interactive user interface. There may be a small 

display and a few buttons that can be handled quite adequately with some real-

time processes or normal interrupt handlers. So the process scheduler may be a 

stripped-down version that does not incorporate dynamic priority changes.        
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TABLE 19.3 Common Linux Variants

Commercial platforms:

FSMLabs: RTLinuxpro - RTCore - a hard real-time platform that runs Linux as an idle thread.

Lineo Solutions: uLinux - hard real-time Linux kernel - targets consumer electronics devices.

LynuxWorks: BlueCat - time-critical handling of interrupts and other hardware operations - implements Linux 

kernel as a thread.

MontaVista Software: Real-Time Solutions for Linux - MontaVista Linux for embedded and real-time 

applications - includes a preemptable Linux kernel.

Concurrent Computer Corp.: RedHawk - a Linux-based RTOS kernel for multiprocessor systems - uses CPU 

shielding - processors can be designated as locked out from Linux so hard real-time processes execute on a 

shielded CPU with guaranteed interrupt response time.

REDSonic: REDICE-Linux - a real-time Linux kernel with extra preemption points that allow RTAI support 

and quality of service (QoS) guarantees.

TimeSys: TimeSys Reservations - dynamically installed kernel modules extend a Linux RTOS. Reservations 

retain a fixed amount of CPU and network bandwidth for a specific process or set of processes.

Open-source implementations:

Accelerated Technology - provides embedded developers with a real-time operating systems (RTOS).

ADEOS - provides a hardware abstraction layer that allows a real-time kernel and a general-purpose kernel to 

coexist. Supports dual-kernel hard real-time Linux environments like RTLinux or RTAI free from technology 

patent.

ART Linux - a real-time extension to the 2.2 Linux kernel.

Flight Linux - a real-time variation designed for onboard spacecraft use.

KURT—The KU Real-Time Linux - a real-time Linux kernel developed at the University of Kansas.

Linux/RK - a “resource kernel” enhancement to Linux based on a loadable kernel module that provides timely, 

guaranteed, and enforced access to system resources for applications. Development based at Carnegie Mellon 

University.

OnCore’s Linux for Real-Time™ - allows embedded designers to pick a memory footprint and performance 

model appropriate to the problem.

RED-Linux - a real-time version of Linux; based at the University of California, Irvine.

RTAI - real-time application interface, a comprehensive real-time API usable both for uniprocessors and SMPs. 

Allows control of real-time processes from user space - soft real-time with fine-grained process scheduling. 

AtomicRTAI is a small-footprint (single floppy) version.

RTLinux - a “hard real-time” mini OS runs Linux as its lowest priority preemptable user thread so real-time 

threads and interrupt handlers are never delayed by non-real-time operations. Supports user-level real-time 

programming. MiniRTL is a small-footprint version.

RedIce Linux - RedIce Linux allows RTAI and RED-Linux to run concurrently, enabling real-time jobs 

requiring very low latency and hard real-time user applications with complete Linux kernel support to run under 

one structure.
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   19.11 SUMMARY 

 This chapter is one of several case studies of real 

OSs showing how they implement several standard 

OS features. This chapter discussed such features in 

a multiuser OS, Linux. We started this chapter with 

a discussion of the process scheduling mechanisms 

and followed it with a rundown on the virtual mem-

ory management by the OS necessitated by sup-

porting potentially many users doing very different 

processes. We then gave an overview of the support 

of files in Linux and the many different file systems 

supported because of the unusual history of Linux, 

followed by coverage of the I/O functions that the 

OS provides. We then briefly discussed the imple-

mentation of the GUI. Sections on networking and 

security were also provided. Next, we touched on the 

subject of multiprocessor support under Linux, and 

finally we addressed some variations of Linux that 

have resulted from its being used in situations where 

an OS such as Linux would not normally be found 

such as hard real-time and embedded environments.  
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  REVIEW QUESTIONS 

    19.1 What was the specific objective of the redesign of 

the scheduler for Linux 2.6?  

   19.2 True or false? In the Linux scheduler the real-time 

process queues are serviced in a FIFO manner.  

   19.3 Briefly describe SMP load balancing.  

   19.4 True or false? Linux uses a standard demand pag-

ing virtual memory manager.  

   19.5 What is the buddy system?  

   19.6 True or false? Linux offers only a simple file sys-

tem derived from MINIX.  

   19.7 True or false? One of the main contributions of 

Linux is that it uses a unique disc scheduling 

algorithm not found in other OSs.  

   19.8 How does Linux provide protection for files 

belonging to different users?  

   19.9 In the Windows NT OS family the GUI is intrin-

sic to the OS. How is a GUI provided in Linux?  

   19.10 What does Linux do to keep from having exces-

sive buffer copying when passing messages 
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down through the layers of the networking 

architecture?  

   19.11 On a multiprocessor system the Linux kernel 

can be executing on multiple CPUs at the same 

time. When it is necessary for the kernel to enter 

a critical section it can’t just call the OS to WAIT 

because it is the OS. What does it do instead?  

   19.12 Real-time OSs have some timing requirements 

that are ignored by most OSs. There are many 

commercial and open source variants of Linux. 

We described two different approaches to sup-

porting real-time requirements under Linux. One 

approach involved heavily modifying the Linux 

kernel process scheduling module. The other 

approach was conceptually cleaner and simpler. 

Briefly describe that approach.  

   19.13 What is the Big Kernel Lock and what is happen-

ing to it?      
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20.1 OVERVIEW 

  In Chapter 4 we discussed some elements of the Palm operating system. That discus-

sion was mainly limited to issues that arose as we studied the more complex design 

goals of this OS compared to the ones studied before it. This chapter is nominally 

about the Palm OS versions prior to version 5. This OS represented a particular niche 

in the hierarchy of OSs that was described in Part 2 of this text. As such there is not 

a great deal more that can be said about this OS that was not covered in Chapter 4. 

So this chapter starts with a series of sections that parallel the other two case study 

chapters and provide some details that were not relevant to Chapter 4. But other 

material is added here that helps place this OS in the computer industry as it is evolv-

ing today. We discuss some aspects of programming such platforms and the trends of 

the applications that are developing in the industry. 

 We begin this chapter with a brief restatement of the type of environment that the 

Palm OS is designed for in Section 20.2. Sections 20.3 through 20.5 briefly  summarize 

the related points of Chapter 4. Section 20.6 then discusses several developments that 



470 Part 6 Case Studies

have occurred in the area of the input/output subsystems in the Palm OS beyond the 

fundamental things we covered in Chapter 4. These features are typical of new hand-

held platforms. Sections 20.7 and 20.8 also summarize related sections of Chapter 4. 

Section 20.9 explains the nature of the cross-development systems needed to develop 

programs for such a limited environment. PDAs, cell phones, and multimedia players 

were originally different sorts of devices, but these platforms are currently undergo-

ing a merger. So Section 20.10 discusses how software is evolving in these platforms. 

It also touches on some of the developments in later releases of the Palm OS. We 

conclude with a chapter summary in Section 20.11.   

  20.2 THE MULTI-PROCESS OS ENVIRONMENT 

  The Palm OS and its environment were discussed in Chapter 4, but they are reviewed 

here for convenience. The Palm OS is designed for a very specific type of environ-

ment. There are several characteristics of this environment that restricted the design 

of the OS. The environment characteristics are briefly outlined in  Table 20.1 .   

 The primary characteristic of the Palm OS is the small screen size. This means 

that the user is only interacting with one program at a time so that applications 

assume that their window fills the entire screen at all times except for small notice 

boxes that may pop up in front of the main window. 

 Although later models sometimes included disk drives, especially as an add-on 

feature, the initial machines did not include them and the OS design assumes that all 

programs reside in primary memory. The lack of a keyboard means that the OS must 

provide for handwriting recognition. This feature is a real-time application, so a real-

time kernel underlies the Palm OS. User applications, however, are not real time and 

are single threaded. The resulting OS design choices are listed in  Table 20.2 .     

TABLE 20.1 Unusual Characteristics of the Palm Platform

Small screen size

No secondary storage

No text keyboard—touch screen

Limited power for better battery life

Slow CPU to reduce power

Limited primary memory

TABLE 20.2 Unusual Characteristics of the Palm OS

Programs never stop

No demand paging (virtual memory) or disk caching

Single-window GUI

Multiple text input options

Real-time OS tasks but non-real-time applications

No application multithreading
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  20.3 PALM PROCESS SCHEDULING 

   20.3.1 Real-time tasks 

 The process scheduler in the Palm OS is a preemptive multitasking priority sched-

uler. It will dynamically determine which task that is ready has the highest priority 

and it will interrupt the running of a less important task to run a more important one 

that becomes ready. The underlying OS is a real-time kernel for support of hand-

writing recognition, but user application programs cannot access these functions. 

Handwriting recognition is divided into two parts: stylus tracking and character rec-

ognition. The stylus tracking task processes interrupts from the stylus using a stan-

dard interrupt mechanism. When the stylus tracking determines that the stylus has 

changed direction, stopped, or is no longer touching the screen, it will calculate a 

vector describing the movement and will pass this information on to another task 

that is running, the character (graffiti) recognizer. If this routine recognizes a char-

acter, then it will pass this information on to the OS so that it can decide what to do 

with the character. Usually the character will be passed to the application that has the 

focus to be placed on a control on the current form where the user is entering text. Of 

course, the character might be a control character instead of a text character and the 

application may then be given a message telling it about the event. If the screen touch 

is not in the graffiti area, then the OS must detect screen taps on form buttons or pass 

the information on to the application—perhaps it is a drawing tool, for example.  

  20.3.2 Other tasks 

 Only a single-user application has the focus, and that application is most likely 

waiting for user input as just described. But it is normal for Palm systems to have 

background communication functions running such as telephony, database synchro-

nization, Bluetooth connection to local devices such as headphones, and Internet 

access for browsing and email. In addition, certain user features such as searching 

for a name will invoke a search function in applications that do not currently have the 

focus. Tasks that do not have the focus will be running in an event loop waiting for 

signals about events requesting them to do some work. The Palm scheduler module 

will see that each application gets some time to do its work.    

  20.4 PALM MEMORY MANAGEMENT 

  Processes in the Palm OS are always resident in primary memory. Once a process 

has begun running it never really stops. It may lose the focus, in which case it will 

not be running anymore, but it is still there waiting to be selected from the menu 

again and resume execution. 

 The memory manager in the Palm OS treats a large block of a primary memory 

as a heap. As memory is allocated and freed on the heap, the eventual result is exter-

nal fragmentation. This requires occasional compaction to aggregate larger blocks 

of memory. To facilitate this, items in memory are addressed indirectly through a 
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memory pointer table (MPT). Thus, when the memory manager moves an item, it 

merely updates the MPT entry that points to the item. The details of this mechanism 

were covered extensively in Chapter 4.   

  20.5 FILE SUPPORT 

  The Palm OS programmer’s documentation refers to “databases,” but these are actu-

ally random access flat files. They are accessed by an “index” value that is a 16-bit 

integer. Records are of variable length and can be resized dynamically, and added 

and deleted. The file manager maintains an index for each database giving the cur-

rent location in memory of each record in that database. A database must fit entirely 

within a single memory card.   

  20.6 INPUT/OUTPUT SUBSYSTEMS 

  Early Palm devices were merely used as PDAs. As was mentioned, these systems 

have evolved to cover many additional functions including games, cell phones, Web 

browsers, and media players. The initial Palm releases had limited functionality in 

the audio area in particular, and these have been enhanced significantly through the 

various releases. In addition, the platform evolution has also seen advances in com-

munication and networking functions. This section discusses the audio functions. 

The networking functions are covered in a later section in order to maintain a parallel 

structure with the other case study chapters.  

   20.6.1 Audio I/O 

 The continuing development of technology has led to a rising interest in portable 

music devices. In addition, the advanced games that users want to have on these 

machines needed enhanced audio features. The initial sound support in the Palm 

OS was limited to short sounds for alerts and a few noises for games. Later ver-

sions added support for a low-level implementation of a  musical instrument device 

interface  (MIDI) so that more elaborate musical sounds could be created by an 

application. This led to a number of interesting applications for musicians to use 

a Palm OS device as a simple musical tool, such as a tone generator and a metronome. 

Later versions of the platform also added more advanced sound support, allowing 

these devices to be used as cell phones and to play music files. Later they also added 

the ability to perform voice recording and playback—audio notes to oneself—and the 

recording and sending of audio to other cell phones.  

  20.6.2 Stream I/O 

 For purposes of ease of programming, the Palm OS also includes a version of file 

streams similar to the  stdin/stdout  functions available in most C language libraries. 

These functions use the database structure discussed in the File Support section but 

allow easier porting of some applications to the Palm OS.  
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  20.6.3 RAM disk driver 

 The underlying OS is designed to be used in embedded systems where there is com-

monly no secondary memory. But many applications are developed to run from a 

standard file system–style interface. Therefore, the AMX OS comes with a pre-

defined RAM “disk” driver that uses a portion of RAM to emulate a disk drive. This 

allowed the Palm OS to readily define a RAM drive as a DOS-formatted floppy drive 

so that porting applications to the Palm were easier and programmers did not have to 

learn a separate interface to use the system.  

  20.6.4 Cameras 

 The development of low-cost, high-resolution CMOS image sensor technology has 

meant that many cell phones and PDAs now include cameras. Moreover, since larger 

memories are now available, the cameras can even record video files as well as static 

images. So now these devices are capable of transmitting image and video files in 

addition to audio files.  

  20.6.5 Communication circuits 

 Bluetooth and 802.11 Wi-fi communication circuits are now available and have been 

incorporated in the latest Palm devices. These allow other synchronization pathways 

but also a merging of the PDA and cell phone device classes and to Internet access 

devices such as the Blackberry ™ .    

  20.7 GUI PROGRAMMING 

  The GUI environment on the Palm platform was extensively covered in Chapter 4. 

The principle factors that distinguish this platform are the small screen size and lim-

ited memory. As a result of the small screen size, the Palm system does not support 

tiling the forms of applications. (The Palm OS uses the term “form” for a normal 

window.) Pop-up boxes from a single application are allowed but the pop-up boxes 

must be closed before the application can continue. (The Palm OS calls these boxes 

windows.) The limited Palm memory led to the development of specific windows 

that can be created by Palm applications merely by filling in specific data structures 

and calling OS routines. The OS will then take on the task of displaying the window 

and closing it when the user selects an option.   

  20.8 NETWORK PROGRAMMING 

   20.8.1 Personal data synchronization 

 It is natural that a portable device would need to have strong support for communica-

tion protocols. Since the Palm devices were initially envisioned as PDAs, the most 

important communication application was synchronizing with a PC so that the data 
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in the handheld unit could be backed up. Accordingly the initial interfaces provided 

with the Palm OS were low-level drivers for serial, infrared, and USB ports. At the 

same time there was a higher-level interface provided for writing applications for 

synchronization personal information such as contact lists and appointment calen-

dars. A consortium of interested vendors was created known as the Versit Consor-

tium. They have defined a set of standards concerning  personal data interchange 

(PDI)  that include standards for a  vCard,  an electronic business card, and  vCalen-

dar,  an electronic calendar and scheduling exchange format. These standards are 

now maintained by the Internet Mail Consortium. The Palm OS includes a library 

that allows an application to open a PDI stream as either a reader or a writer to facili-

tate the development of synchronization applications.  

  20.8.2 Other data synchronization 

 Some users will be concerned with developing custom applications that go beyond 

traditional PDA applications. They may have specific data files that need to be syn-

chronized between a Palm application and a similar application on another platform. 

So the Palm OS provides  exchange libraries,  which act as plug-ins to an OS module 

called the Exchange Manager. They allow Palm OS applications to import and export 

data records without being concerned with the transport mechanism. For example, 

one exchange library always available to Palm Powered ™  handhelds implements the 

IrDA protocol, IrOBEX. This allows applications to beam objects by way of infrared 

from one Palm Powered handheld to another. Similar exchange libraries exist for 

other hardware ports and other protocols such as the SMS (short message service) 

library, email protocols, and the Bluetooth library.  

  20.8.3 Internet applications 

 During the last several years the Internet has risen in popularity to the point where it 

is almost mandatory that handheld units be able to access many of the popular fea-

tures found there. In particular, these include accessing World Wide Web (WWW) 

sites as well as the email protocol already mentioned. Accordingly, more protocol 

stacks and APIs have been added to the Palm OS to support networking applica-

tions. The first addition was the widely used and well-known lower-level  Berkeley 

Sockets  API. This interface allows a programmer to connect to services on other 

systems using a variety of protocols without having to implement that protocol in the 

application. The interface included with the Palm OS allows either TCP (connection-

oriented) or UDP (connectionless) communications. 

 The second level of protocol supported in the Palm OS includes support for 

Application layer protocols such hyperText Transport Protocol (HTTP), the protocol 

used for the WWW. This protocol is used by Web browser and Web service appli-

cations for Palm devices. There are some interesting problems to be solved when 

developing a browser for a Palm unit because initially few websites are developed 

with the very small screen space of a handheld unit in mind. However, current HTML 

attributes allow a Web server to determine that a browser is running on a mobile plat-

form and to adjust its output to fit.  
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  20.8.4 Telephony applications 

 In Section 20.10 we discuss the current merging of PDA devices with cellular tele-

phones. The Palm Telephony Manager provides a set of functions that allow an 

application to access a variety of telephony services. The telephony API organizes 

the functions in groups called service sets. Each service set contains a related set of 

functions that may or may not be available on a particular mobile device or network. 

One of the API functions allows the application to find out if a given service set is 

supported in the current environment. A list of some of the more common service 

sets is shown in  Table 20.3 .      

  20.9 PROGRAMMING ENVIRONMENTS 

  The resources available on a computer designed to run the Palm OS are usually not 

sufficient to develop software. The Palm OS programming website suggests that pro-

grams designed for a Palm-based system be designed to support only a minimum 

amount of data entry. This suggestion is made partly because of the difficulty of input-

ting data with the handwriting recognition, but also because of the very limited screen 

display. Instead, Palm suggests that the user should mainly input data on a desktop 

system and use the Palm system for referencing the data. Furthermore, once a program 

is running on the Palm OS there would be no simple way of getting any debugging 

TABLE 20.3 Telephony API Service Sets

Service set Functionality

Basic Functions always available

Configuration Configure phones including SMS

Data Data call handling

Emergency calls Emergency call handling

Information Retrieve information about the current phone

Network Network-oriented services, including authorized networks, 

current network, signal level, and search mode information

OEM Allow manufacturers to add features to the Telephony 

Manager and provide a new set of functions for a device

Phone book Access the Subscriber Identity Module (SIM) and address 

book

Power Power supply–level functions

Security Provide PIN code management and related services for 

phone and SIM security-related features

Short Message Service Enable reading, sending, and deleting of short messages

Sound Phone sound management, including the playing of key 

tones and muting

Speech calls Handle the sending and receiving of speech calls; also 

includes Dual-tone multi-frequency (DTMF) signaling
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information displayed and the environment is obviously not well suited for the entry 

and editing of program source code. Moreover, there rarely are printers attached to 

Palm systems and as was noted before, the CPUs are very slow and there is generally 

limited RAM and rarely any secondary storage. Most program development is there-

fore done on another system, a concept known as cross-platform development. 

 There is a wide variety of languages and tools for development of software for 

the Palm OS. Some is available from Palm itself and others are available from third 

parties. These include commercial integrated development environments (IDEs) such 

as CodeWarrior ™  from Metrowerks and free tools such as PRC-Tools, which is a gcc-

based compiler tool chain for building Palm OS applications in C or C ⫹  ⫹ . Tools that 

are supplied by Palm include a Software Development Kit (SDK) that includes the 

headers, libraries, and tools for Palm OS platform development on Windows, Linux, 

and the Mac OS. It also includes a version of the Palm OS running in native X-86 code 

on a Windows machine. This emulation offers an easy way to test applications destined 

for the Palm OS for compatibility. Compilers are also available for developing applica-

tions in other languages, including Visual Basic, Pascal, Forth, Smalltalk, and Java. 

 An essential feature is a package that Palm calls an Emulator. This is a soft-

ware package that emulates the hardware of the various models of Palm OS platform 

devices on Windows, Linux, or Mac OS computers. Since various platforms have 

different features available in their ROM, ROM images for use with the Palm OS 

Emulator are available to emulate each desired model. 

 Once a program has been developed with the cross-platform tools, it can be 

installed on a Palm device using the synchronization tools included with Palm PDAs 

that are available for the various cross-development platforms.   

  20.10 SIMILAR SYSTEMS AND CURRENT DEVELOPMENTS 

  One of the difficulties facing authors who write about computer science is that the 

state of the industry changes so rapidly that a book is not reflective of the latest 

developments even on the day it is printed. Operating Systems are no exception. 

There have been rapid developments in the hardware systems used for the Palm OS 

and others of its ilk discussed in this chapter. In addition, a different functional view 

has captured the minds of the public and the vendors that have forced some changes 

in the OS. As a result, other OSs that were developed for this different view have 

some features that are more complex than the Palm OS described here. But then, so 

do later versions of the Palm OS. 

 In this section we describe some features found in other OSs for small systems. 

We mostly mention the Symbian OS. This OS is developed by Symbian Ltd. It is a 

descendant of Psion’s EPOC OS and runs only on ARM processors. Symbian is a 

consortium of manufacturers of cell phones.  

   20.10.1 New functional models 

 In addition to the use of more advanced CPUs, the basic functions of small handheld 

systems have also evolved in the last few years. At the beginning of this century the 

products in this area were mostly envisioned as either PDAs or cell phones. In PDAs 
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the applications were things like phone and address books, appointment calendars, 

calculators, memo pads, to-do lists, specialized data bases, and an occasional special-

ized application. In cell phones the main application was the phone book or contact 

list. In either case, these were primarily standalone applications that required occa-

sional connection to another computer for purposes of synchronization, backup, and 

loading new applications. In the cell phone the actual telephone application was a 

real-time task that was considered to be a fundamental function of the device rather 

than a separate application. These cell phones were closed systems in that installation 

of additional applications was not part of the design. 

 Lately, however, a new model has evolved for handheld devices. This evolu-

tion has come about partly because of the revolution in the availability of communi-

cations technology and ubiquitous connectivity. The devices are now positioned as 

mobile communications platforms—but as much more than just replacements for cell 

phones. The main feature that distinguishes a cell phone from a PDA is that PDAs are 

turned on, used for some single function and then turned off, while a cellular phone 

is normally left on most of the time and is continuously connected to the network 

and waiting for incoming calls. In addition to waiting for calls, a cellular phone does 

other work to manage the connection such as keeping the time synchronized and 

conversing with the cellular network so that if a cell phone is turned on the network 

knows where it is. In order for the PDA functions to be used while the cell phone is 

handling the network connection, the OSs for these mobile communicating devices 

have to incorporate multiple active tasks at the same time. In a pure PDA device 

such as the original Palm products, the OS provided only a few separate tasks so that 

handwriting recognition and synchronization could take place while a user interface 

(UI) application was also running. (You may recall the screens are so small that there 

is no room for more than one UI application to be executing at a time.) However, 

there was no provision for applications to provide any separate background function 

such as managing the connection to a cellular network and checking for incoming 

calls. As a result, these OSs all have added more features to support application mul-

tithreading. More importantly, applications can now start a thread as part of a back-

ground task in addition to the single foreground UI thread. An example of the utility 

of such a feature would be that a service can be built that will handle multiple TCP/IP 

connections at the same time, so that several TCP/IP-based applications can all be 

running at the same time using a single TCP/IP multithreaded service. The TCP/IP 

service will be running as a “user” application rather than as part of the OS kernel. 

Another important example is a Web browser. When a page is fetched from a server, 

the images and other included items are not automatically sent. The browser must 

parse the initial page and then individually request each referenced element. The 

browser must be able to continue to work on displaying the main page for the user 

while the other elements are being fetched from the server. This gives the user some 

immediate access to the contents and a smoother browsing experience. 

 As in the case of the cellular phone connectivity, other applications can ben-

efit from these background tasks without having control of the UI. Some of the 

more obvious ones are playing an audio file, downloading new audio files to play, 

instant messaging, and having an email program connect to a server to check for new 

email. Other, less obvious background functions exist as well, such as synchronizing 
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changes to distributed databases and updating installed software. These new tasks 

help cell-phone manufacturers to differentiate their products from one another. In 

addition, users are asking for these features because they are beginning to value the 

instant access to information through messaging, email, and the World Wide Web. In 

order to provide these features, these devices have incorporated advanced hardware 

components to handle the multiple communication streams, multimedia streams, and 

so forth. The OSs have had to improve as well. Not only can applications start many 

threads and set different priorities for each thread, they have new mechanisms to syn-

chronize between the threads and with other processes, to share memory segments 

with other processes, to communicate with other processes, and to protect databases.  

  20.10.2 Advanced communication models 

 Other advanced facilities being provided by the OSs now include encryption and 

other security mechanisms, new Data Link layer modules such as Bluetooth and 

802.11x, and APIs so that new user applications can easily access these OS func-

tions. As the cost of bandwidth from communication services continues to decrease, 

we are beginning to see more and more intense multimedia applications. The near 

term projections of the marketplace include more streaming multimedia applica-

tions. These applications have heavy hard and soft real-time requirements. These 

small OSs will continue to evolve with the increasing requirements.  

  20.10.3 Thread scheduling 

 As discussed earlier, cell phones are used somewhat differently than PDAs. PDAs 

are generally turned off when not being used, but cell phones stay on all the time so 

that they can wait for incoming calls and keep the network updated about the loca-

tion of the phone. In addition, the demands of the cellular technology are such that 

real-time tasks are needed to service the network. Accordingly, the scheduler used in 

the Symbian OS is a priority-based multithreading scheduler. Any application can be 

a “server” and can create multiple threads of execution within its address space. The 

Palm OS included a real-time scheduler because of the needs of the graffiti handwrit-

ing recognition program, but user applications were not able to create real-time tasks 

or threads. We discussed such schedulers in Chapter 8.  

  20.10.4 User interface reference design 

 The  user interface (UI)  for most PC systems is very flexible. Windows can fill the 

screen, shrink to a smaller size, move around, cover one another, and so on, depend-

ing on the whim of the user. These smaller systems, however, have simpler interfaces 

than personal computers do. Often the application assumes that its window fills the 

entire screen. There are generally three different types of UI in such devices. They 

roughly represent the classes of a cell phone, a PDA, and a handheld computer. The 

user interface class is an abstraction of the features that the members of each family 

have in common. These classes are summarized in  Table 20.4 .   

 The challenge for the OS designers and for application programmers is to write 

OSs and applications that will run on any of these different platforms without a major 
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rewrite. The desire for such portability forces system implementation into strict object-

oriented designs in order to isolate the UI functions from the rest of the application. 

Industry estimates are that about 80% of an application can be isolated from the UI. 

 The rise of the popularity of the Internet have lead to the incorporation of several 

standard applications in these new devices. In particular, users want to send instant 

messages, work with their email, view (or listen to) streaming multimedia transmis-

sions, browse the World Wide Web, and upload multimedia files to their websites. 

These small systems have very limited screen size, and Web pages are typically set 

up for at least 800  ⫻  600 pixels. As a result, a browser on a cell phone has to work 

really hard to make an intelligent display of a larger Web page. Initially a separate 

standard was created for building Web pages intended to be viewed on a handheld 

system— wireless markup language (WML),  a part of a larger standard,  wireless 

access protocol (WAP).  Later developments seem to indicate that standard browsers 

can be modified to display standard Web pages on handheld systems. This is an area 

of active research. 

 An additional protocol has been developed for sending short text messages when 

a phone call is not appropriate. For example, it might be used when the recipient is in 

a very noisy environment, in a lecture or arts performance, or in a meeting. IT can also 

be used for short queries where a complex interaction is not needed. This protocol is 

the  short message service,  or  SMS.  It allows the sending of messages up to 160 bytes 

long. It can be used similarly to  instant messaging (IM)  services on normal PCs, but 

IM is typically interactive while SMS typically uses one-way messages.  

  20.10.5 Location-aware applications 

 Another obvious but still interesting facet of these systems is that they move around 

with the user. After some time it became clear that there were some interesting appli-

cations that could be created if the application knew where the phone was. The initial 

impetus was probably the emergency location system that has been mandated for 

cell phones. In an emergency there is obviously a great benefit available if the cell 

phone can tell the emergency call handlers where the cell phone is located within a 

few tens of meters. 

TABLE 20.4 Small Systems Device Families

Cell phone Small vertical screen
Keyboard with digits and a few buttons
Almost no user input
Application has full screen

PDA Larger vertical screen
Stylus input and a few buttons
Limited user data input
Application has full screen

Advanced Larger still horizontal screen
Full QWERTY (usually) keyboard
More extensive user input
Application windows can overlap, etc.
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 There are many other location-based applications that can be created as well. 

Since the cellular carriers in the United States were mandated to have the network 

able to locate the phone, they have decided to make lemonade out of those lemons by 

devising services that they can offer to their users (for a modest fee, of course) based 

on the current location of the phone. Where is the nearest pizza restaurant? Dial *1411 

(or some similar special number) and a friendly operator will get your location from 

the network, ask what you are looking for, search a location-indexed database for the 

nearest Chinese restaurant, and give you the information. Some of the other obvious 

applications are general driving directions, traffic reports, and weather reports. Of 

course, these systems can also be computerized, eliminating the human operator. 

 An interesting question is, how does the phone (or the network) find out where 

the phone is? One answer is the federal GPS system. There are a few dozen satellites 

that are in orbit purely for this function. Initially they were installed for the benefit 

of the military, but since using the satellites merely involves listening to their broad-

casts, it was impossible to keep civilian uses out forever. By locating several satel-

lites at one time any device can determine its present location, including altitude. 

This is an extremely accurate mechanism, to within a few feet in many cases. How-

ever, the hardware costs are still somewhat high compared to most of the rest of the 

phone. Fortunately, there are at least two other ways to find the location of a phone. 

The first is just triangulation of the phone by the network. All the cells that can hear 

the phone will report the timing of the signals from the phone and the network will 

be able to locate the phone within a hundred feet or so. This is not accurate enough 

to drive a car, but it is usually accurate enough to locate the nearest post office, for 

example. The other location mechanism is for the network merely to report which 

cell is currently servicing the mobile device and perhaps a distance from the tower 

based on signal propagation times. Although this method is even less accurate than 

the triangulation, it is still accurate enough for many purposes.  

  20.10.6 Later Palm OS releases 

 Beginning with release 5 the Palm OS supports an ARM processor instead of the 

Motorola CPU used in previous platforms. Beginning with the 5.4 release the PAI 

came to be known as Garnet. The PalmSource company that had been spun off of 

Palm Inc. was purchased by a Access Co. Ltd. They have created a release of Linux 

with the Garnet API for use on mobile platforms. The latest release of Palm OS was 

version 6. It is named Cobalt.     

   20.11 SUMMARY 

 In this chapter, we discussed further the features and 

concepts of a simple modern OS—the Palm Operat-

ing System ™  developed by Palm, Inc. This OS was 

developed for small handheld devices. Although this 

is a single-user system, it can concurrently run some 

OS processes and a small number of applications. 

 We started this chapter with a recap of the pro-

cess scheduling and memory management functions 

of the OS. We then followed this by discussing sev-

eral additional I/O subsystems in the Palm OS, GUI 

and network programming, and by explaining the 

process of developing programs for these limited 



 Chapter 20  Palm OS: A Class Case Study    481

environments using simulators and cross-compilers 

on larger systems. We continued with a discussion 

of some similar OSs for limited environments and 

how they differ from the Palm OS, including later 

versions of the Palm OS itself, actually a different 

OS for a different CPU. We further discussed some 

of the new types of applications emerging from the 

convergence of PDA and cell phone platforms.  
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  WEB RESOURCES 

   http://www.accessdevnet.com  (ACCESS Linux Platform 

Development Suite)  

   http://www.freescale.com   

   http://www.freewarepalm.com  (free Palm software)  

   http://www.freesoft.org/CIE/  ( Connected: An Internet 

Encyclopedia )  

   http://www.imc.org/pdi/   

   http://oasis.palm.com/dev/palmos40-docs/

memory%20architecture.html   

   http://www.palm.com  (Palm home page)  

   http://www.palmsource.com/developers/   

   http://www.pocketgear.com/en_US/html/index.jsp  

(software for mobile devices)  

   http://prc-tools.sourceforge.net  (programming tools 

supporting for Palm OS)  

   http://www.symbian.com  (Symbian OS)  

   http://www.w3.org/Protocols/  (HTTP, primarily)  

   http://en.wikipedia.org/wiki/Graffiti_2  (article on Graffiti 2)  

   http://en.wikipedia.org/wiki/Palm_OS  (history of the 

Palm OS versions)   

  REVIEW QUESTIONS 

    20.1 Since almost no websites are developed with the 

assumption that the screen size is 160  ⫻  160 pix-

els, of what use is the HTTP protocol support?  

   20.2 What does a Palm device need a RAM disk 

driver for?  

   20.3 How does a programmer go about creating and 

testing programs for the kind of handheld plat-

forms discussed in this chapter?  

   20.4 What are some of the new device types and fea-

tures that have been added to the Palm platform 

since the earlier models and what sorts of applica-

tions do they facilitate?  

   20.5 What is a vCard?  

   20.6 What is a “location aware application?”  

   20.7 Describe the three different families of handheld 

systems.  

   20.8 One of the major differences between a cell phone 

and a PDA is that a PDA is turned off and on and 

a cell phone usually stays on most of the time. 

What major feature did this force to be included 

into OSs designed for cell phones?      
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  In this appendix, we give an overview of computer architecture concepts, with an 

emphasis on those concepts that are particularly relevant to OSs. Some readers will 

have already completed a course in computer organization or computer architecture, 

and hence will be familiar with these concepts. In this case, the appendix can pro-

vide a review of this material. For those who have not had a previous course in this 

topic, this appendix might be covered in detail, because the discussions of many OS 

concepts are based on the underlying computer architecture. The concepts presented 

here are needed throughout the presentation of OS concepts. 

 We start by giving a description of the major components of a typical computer 

system in Section A.1, and a discussion of the functions performed by each com-

ponent. In Section A.2 we discuss the central processing unit and control concepts. 

Section A.3 outlines the ideas of memory and storage hierarchy, and Section A.4 

describes the basic concepts of input/output systems. Section A.5 briefly discusses 

the role and characteristics of networks in modern computing. We then give a more 

detailed picture of typical computer system components in Section A.6. Finally, 

 Section A.7 provides a summary.  

 Overview of Computer System 
and Architecture Concepts 
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   A.1 TYPICAL COMPUTER SYSTEM COMPONENTS 

  Computer systems vary widely, based on their functionality and expected use. They 

include the following types of systems:

    Personal  desktop and notebook computers that are typically utilized by a 

single user at a time.  

  Large  server  computers that provide services to hundreds or thousands 

of users each day. These include Internet  Web servers  that store Web 

documents,  database servers  that store large databases,  file servers  that 

store and manage files for a network of computers, and application servers 

that run some specific application that provides a remotely accessed 

service.  

   Embedded  computer systems, which are used in automobiles, aircraft, 

telephones, calculators, appliances, media players, game consoles, computer 

network units, and many other such devices. As CPU chips have become 

cheaper and cheaper we see them in more and more places. In the future we 

will see them in places that might be hard to imagine today.  

   Mobile  wearable devices, cell phones, and PDAs (personal digital assistants) 

that are used for keeping appointment calendars, email, phone directories, 

and other information. Today these units are becoming hard to distinguish 

from personal computers as they become more and more powerful.  

   Hence, it is difficult to decide what a typical computer system would look like. How-

ever, it is traditionally accepted that most computer systems have three major com-

ponents, as illustrated in  Figure A.1 . These are the processor or central processing 

unit, the memory unit, and the input/output units.  1   In addition to the three major 

components, network devices connect computer systems together and allow sharing 

of information and programs. Let us briefly describe the main functionality of each 

of these units. 

 The  central processing unit  (or  CPU ) is the circuitry that performs the com-

putation and control logic required by a computer system. The  memory  is the com-

ponent that stores both the data required by a computation and the actual commands 

that perform the computation. Memory is often organized into several levels, lead-

ing to a  storage hierarchy  of different types of storage devices, as we describe in 

Section A.3. The class of  input/output  (or  I/O ) units include two broad subclasses 

of devices based on their major functionality: input and output. Some devices can 

also be used for both input and output.  Input devices  are used to load data and pro-

gram instructions into the memory unit from devices such as CD-ROMs or disks. 

They are also used to process input commands from a user through devices such 

as a keyboard or pointing device (e.g., a mouse or touchpad).  Output devices  are 

used to display data and information to the user through devices such as printers or 

1 At a more detailed level, the CPU is sometimes separated into two components: the control unit and the 
data path unit, as we discuss in the next section. Similarly, the input/output unit is sometimes separated 
into input devices and output devices.  
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video monitors, and to store data and programs on secondary storage devices such 

as  various types of disks. Devices such as hard disk drives and CD-RW drives are 

used for  both input and output,  and hence are classified as  input/output devices.  

Network devices can be considered as input/output devices but they are so special 

that they are best regarded as being something separate. 

 Disk devices in general (hard disk, floppy disk, CD, etc.) are considered as I/O 

devices if we consider a low-level hardware view of the computer system. If we take 

a more conceptual view of the roles they play, which is to store data and programs, 

then they can also be considered as part of the storage hierarchy of the computer 

system, as we discuss in Section A.3. 

 Another crucial component in many modern computer systems is the  network,  

which is the hardware and software that allows the millions of computers and network 

devices in existence to communicate with one another. Networks can be formed from 

phone lines, fiber optic and other types of cables, satellites, wireless hubs, infrared 

devices, and other components. At the individual machine level, though, it is some-

times useful to consider the network as another type of input/output device, because 

its main functionality is to transfer data (such as files, text, pictures, commands, etc.) 

from one machine (as output) to another machine (as input). For computer users, the 

Internet is the most visible example of a network. 

 The following three sections discuss each of the three main computer system 

components—processor, memory, and input/output—in more detail. The network is 

discussed in Section A.5. 

    A.2 THE PROCESSOR OR CENTRAL PROCESSING UNIT 

  As was said before, the central processing unit, or CPU, is the hardware circuitry 

that performs the various arithmetic and logical operations. Each processor will 

have a particular  instruction set  that defines the operations that can be performed 

by the processor. These typically include integer arithmetic operations, comparison 
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o perations, transfer operations, control operations, and so on. A processor usually 

has a set of  registers  that hold the operations that are being executed as well as some 

of the data values or  operands  needed by these operations.    2 Other operands can be 

accessed directly from memory locations, depending on the design of the instruction 

set. We further elaborate on the use of registers and the types of operands later in this 

section. 

 Instruction sets can vary widely. Some processors are designed based on the 

 RISC  (reduced instruction set computer) philosophy, where only a few basic instruc-

tion types are directly implemented in hardware. These instructions are usually 

similar to one another in their design. One of the advantages of RISC is to reduce 

hardware complexity by having a limited set of instruction types and hence increase 

the speed of execution of the instructions. The most common RISC microprocessors 

are the HP Alpha series (no longer being manufactured, but historically significant), 

ARM-embedded processors, MIPS, the PIC microcontroller family, the Apple/IBM/

Motorola PowerPC and related designs, and the Sun Microsystems SPARC family. 

 Other processors have a much larger instruction set implemented directly in 

hardware, with a variety of instruction types included in the instruction set. This 

approach is known as  CISC  (complex instruction set computer). A RISC proces-

sor typically has between 30 and 100 different instructions with a fixed instruction 

format of 32 bits. A CISC processor typically has between 120 and 400 different 

instructions. Examples of CISC processors are the IBM System/360, DEC VAX, 

DEC PDP-11, the Motorola 68000 family, and Intel x86 architecture–based proces-

sors and compatible CPUs. 

 Most of today’s processors are not completely RISC or completely CISC. The 

two are really design philosophies that have evolved toward each other so much that 

there is no longer a clear distinction between the approaches to increasing perfor-

mance and efficiency. Chips that use various RISC instruction sets have added more 

instructions and complexity so that now they are as complex as their CISC counter-

parts and the debate is mostly among marketing departments. 

    A.2.1 Instruction set architecture: The machine language 

 The instruction set architecture defines the  machine language  of the processor, 

which is the set of commands that the processor can directly execute. Each instruc-

tion is coded as a sequence of bits (a  bit string ) that can be decoded and executed 

by the processor. Instructions are stored in memory, and are typically executed in 

sequential order, except when a specific  transfer of control  is specified by some 

types of instructions. The instruction bit string is divided into several parts called 

 fields.  Although instruction formats can vary widely, some of the typical fields are 

the following: 

  The  opcode  (operation code) field specifies the particular operation to be 

executed.  

2 The registers that store data values can also be considered, at least conceptually, to be the top level of 
the storage hierarchy (see Section A.3), since they hold data and provide the fastest access time when 
accessed by the executing instructions. Physically they are part of the processor chip.  
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  A  modifier field  is sometimes used to distinguish among different operations 

that have the same opcode and format—for example, integer addition and 

subtraction.  

  The  operand fields  specify the data values or addresses that are needed by 

each particular operation. Addresses can be either memory addresses or 

register addresses.  

  There are many different types of operands, and the way to interpret the 

meaning of each type of operand is called the  addressing mode.  We can 

distinguish between two main types of operands. The first type supplies 

a  data value  or the  address of a data value  needed by the operation. 

The second type provides the  address of an instruction,  and is used for 

changing the sequence of instruction execution by a  branch  or  jump  

operation.  

   The most common addressing modes for  data  operands are the following:

    Register addressing:  The operand specifies a register location where the data 

that is needed or produced by the operation is stored.  

   Immediate addressing:  The operand is a direct data value contained in one of 

the fields of the instruction bit string itself.  

   Base register addressing:  The operand is stored in a memory location. The 

address of the memory location is calculated by adding the contents of a 

 base register  (which contains the address of a reference memory location) 

and a  displacement  or  offset.  The displacement can be a direct value in the 

instruction itself, or it could be the value in another register, called an  index 

register.   

   Indirect addressing:  The memory address of the data to be used as an operand 

is stored in a register or in another memory location. This is called  indirect 

addressing  because instead of pointing to the data to be used in an operation 

the instruction points to the address of the data, either in memory or in 

a register, and that address must first be accessed to get the actual data 

address needed.  

   The most common addressing modes for  instruction address  operands are the 

following:

    PC-relative addressing:  The memory address of the instruction is calculated 

by adding an offset to the contents of the  PC  (program counter)  register,  

which holds the address of the next instruction to be executed. As in base 

register addressing, the offset can be a direct value in the instruction itself, 

or it could be the value in an index register.  

   Indirect addressing:  The memory address of the instruction is stored in a 

register or in another memory location. As with indirect data addressing, 

instead of pointing to the address to be transferred to, the instruction 

points to the address of the address, either in memory or in a register, 

and that address must first be accessed to get the actual transfer address 

needed.  
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 FIGURE A.2(a)  
Register addressing 

for add operation.

 FIGURE A.2  
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addressing modes 
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Figure A.2(a) illustrates an add operation which places the result of adding the 

contents of registers A and B into register C. Here the values to be added must first 

be loaded into registers A and B by previous instructions.

Instruction Register

Input data valueRegister A

Result output data value (sum of input data values)Register C

Immediate Operand ValueOpcode Register A

Register
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Register
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 FIGURE A.2(b)  
Register and 

immediate 

addressing for add 

operation.

Figure A.2(b) shows an add operation where one of the operands is an immedi-

ate value stored in the instruction itself. This operation places the result of adding the 

contents of register A and the immediate operand value into register C.

   Some of these addressing modes are illustrated in  Figure A.2 . 

 The type of operation determines how to interpret the operands—whether 

as memory addresses or instruction addresses or direct data values or in some 

other way. RISC processors typically have a limited number of addressing modes, 

whereas CISC processors typically have a much larger variety of addressing 

modes. 

 We now illustrate some simple instruction formats and their addressing modes 

in  Figure A.2 . 
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FIGURE A.2(d) 
Immediate relative 

address for jump 

operation.

Figure A.2(d) shows an unconditional jump operation, which transfers control 

to an instruction other than the next instruction. It calculates the memory address 

of the next instruction based on a base register and an immediate value. The next 

instruction to be executed is in the memory address calculated by adding the base 

register contents to the immediate index value stored in the instruction itself.

Input offset valueIndex Register

Result output data value (loaded from memory location)Register A

Data value to be loaded into Register AMemory Location
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FIGURE A.2(c) 
Base and index 

registers for load 

operation.

Figure A.2(c) illustrates a load operation that places a value from memory 

into register A. This instruction uses base register addressing mode to calculate the 

memory address. The values in the base and index registers are added, and their 

result is used as the memory address whose contents are loaded into the result reg-

ister A.
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Figure A.2(e) shows a conditional branch-on-equal operation. The instruction 

first compares the values in registers A and B. If the values are equal, it transfers 

control to the instruction whose address is calculated by adding the contents of the 

program counter register (the next instruction address) to the immediate value in the 

instruction. Such an instruction can be used to control looping, for example.

In addition to different addressing modes—which determine how to  interpret 

an operand location and value—many processors have two execution modes. 

User mode is used when a user or application program is executing. Supervisory 

(or privileged) mode is used when an OS kernel routine is executing. A special 

register in the processor determines which execution mode is being used. When 

in user mode, certain safeguards are incorporated during instruction execution. 

For example, memory protection is enabled in user mode to prohibit the pro-

gram from accessing memory locations outside of the part of memory allocated 

to the user program. Certain privileged instructions are allowed to execute only 

when the system is in supervisory mode—for example, instructions that control 

I/O devices.

 A.2.2 Components of a CPU 

 Figure A.3  is a simplified diagram that shows the typical components of a CPU. 

The  integer ALU  (arithmetic and logic unit) and the  floating point unit  include the 

hardware circuitry that performs instruction set operations. Most regular i nstructions 

are handled by the integer ALU, whereas floating-point arithmetic instructions are 
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handled by the floating point unit, since such operations require more complex, 

highly specialized circuitry. The  control unit  usually includes the processor regis-

ters, as well as circuitry for controlling the sequencing of instruction execution, the 

interpretation of instruction codes and operands, and the execution of instructions 

using the ALU or floating point unit circuitry. 

 The  processor cache  shown in  Figure A.3  is a memory component that is part 

of the processor chip, and holds instructions and data from main memory that are 

being used by the processor. (There may be other cache memories outside the CPU 

chip itself.) The cache is connected to main memory via a separate  memory bus.  The 

main memory is also connected to a main  system bus.  The control unit is connected 

to the I/O devices through the system bus as well. Another component is a  DMA  

(direct memory access) controller. It allows for transfer of data directly from I/O 

devices to memory. We discuss the idea of caching in some detail in Section A.3.2 

and covered DMA in Chapter 14. 

   A.2.3 Programs: Source, object, and executable 

 An  assembly language  is an alternate form of the machine language instructions 

that is easier to read (and write) by humans. In assembly language, each possible 

opcode is given a  mnemonic name —a symbolic name to identify the instruction. 

The operands are shown as numbers or are also given names to identify program 

variables that are mapped to a memory address or register. A program that is writ-

ten in a high-level programming language such as C++ (called the  source code ) 

is converted into a program in machine language (called the  object code ) by the 

programming language  compiler.  Such an object code program is then linked 

with other needed object code programs from program libraries and other pro-

gram modules, creating an  executable code  program file. This is usually stored on 

disk as a binary file, and hence is sometimes called the  program binary  (or  bin ) 

file. The executable code is loaded into memory when needed, and the program 

instructions are executed in the desired sequence by the processor. 
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I/O
Controllers

Control
Unit System
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Controller

FIGURE A.3 

Simplifi ed diagram 
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 Good programming language compilers should take advantage of the machine 

instruction set available when creating the object code. Hence, programmers who 

write compilers must study the instruction set architecture of each machine in detail 

in order to fully utilize its capabilities. 

   A.2.4 Processor registers, data path, and control 

 There are several types of registers that are part of the CPU. They are used by the 

processor circuitry in various ways. Some processors use  general-purpose  registers, 

where the same physical register may be used in many or all of the ways discussed 

below. In other processor designs some or all of the registers are  special-purpose  

registers and can only be utilized for specific functions. The following are the most 

common uses of registers: 

   Instruction registers:  These registers are used to hold the instructions that 

are being executed. They are directly connected to the control circuitry that 

interprets the opcode and operands when executing an instruction.  

   Program counter:  Also known as the  instruction counter,  this register holds 

the address of the next instruction to be executed. It is initialized to the 

address of the first program instruction when the program is loaded into 

memory and is to start execution. The length of the current instruction is 

normally added to this register as the instruction is executed in order to 

fetch the next sequential instruction. Of course, branching or subroutine 

calls or other transfer of control may alter that sequence.  

   Data registers:  These registers hold operands. Some data registers may be 

dedicated to hold operands of a certain data type; for example, a floating-

point register could only hold a floating-point operand. Small CPUs may 

have only one main data register, typically called an  accumulator.  In some 

such cases there will be an additional register used for larger operands or 

remainders of division operations and generically called an  accumulator 

extension  register.  

   Address registers:  These hold values of main memory addresses where 

operands or instructions are stored. They may hold absolute memory 

addresses, or relative memory addresses (offsets) that are added to a value in 

a  base register  to calculate an absolute address. Registers that hold relative 

addresses are called  index registers.   

   Interrupt registers:  These hold information about interrupt events that may 

have occurred, as we discuss shortly.  

   Program status registers:  These hold control information needed by the 

CPU. Different machines may have any number of status registers and the 

contents vary wildly. Examples of the sort of control information that they 

hold include the following:

     Results of the last comparison operation (i.e., a > b, a = b or a < b)  

    Processor status (i.e., whether it is in user or supervisory mode)  

    Error status such as arithmetic overflow, divide by zero, etc.  
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      Clock:  The clock register is actually a timer that counts down to zero and causes 

an interrupt. This is known as a  clock  or  timer interrupt,  and can be set 

by the OS for various reasons. For example, in a multiuser system, the OS 

typically gives control to a user program for a limited amount of time known 

as the  time quantum.  By setting a timer interrupt, the OS can interrupt the 

user program if it is still running at the end of the time quantum and check 

to see if other programs are waiting to run on the processor. This interrupt 

may also be used to compute the actual date and time. A CPU usually has a 

privileged instruction that can only be executed by the OS to load a value into 

the clock register so that a user program cannot override the OS clock value.  

   Some registers can be set by user programs, and hence are known as  user- visible  

registers. These usually include data, address, and instruction registers. Other reg-

isters can only be set by the processor or the OS kernel, such as status and interrupt 

registers. RISC processors typically have a large number of general-purpose regis-

ters because of their uniform instruction set design, whereas CISC processors often 

have both general-purpose and special-purpose registers. Some types of register use 

may require special-purpose registers; for example, interrupt registers, program sta-

tus registers, and instruction registers. 

 The circuitry to identify the particular instruction (from the opcode) and to exe-

cute the instruction using the operands is connected to the instruction register. Since 

instruction execution involves the transfer of information (opcode, operands, etc.) 

from registers and memory through the hardware circuitry, it is sometimes referred 

to as the  data path  component of the processor. On the other hand, the circuitry that 

controls the fetching of the next instruction and handling of other events such as 

interrupts (see below) is referred to as the  control  component of the processor. 

   A.2.5 System timing 

 Another important component within each processor is the  system clock.  The opera-

tion of most logic circuits proceeds in synchronized steps. At the electronic level this 

is known as a system clock. (This should not be confused with the CPU register that 

is used by the OS for timing.) A system  clock cycle  is the fixed shortest time interval 

during which a processor action can occur. The speed of a processor is determined by 

how many cycles per second are generated by the system clock. A one-Gigacycle pro-

cessor will have one billion clock cycles per second. The processor technology and the 

instruction set design are major factors that determine overall processor speed, because 

simple instructions take fewer clock cycles to complete than do complex instructions. 

That is considered one advantage of RISC machines, since the RISC instructions typi-

cally execute in a smaller number of clock cycles than will CISC instructions. 

   A.2.6 Instruction execution cycle and pipelining 

 It is customary to divide a typical instruction execution cycle into the following five 

phases: 

   Instruction Fetch:  The instruction is fetched from memory into an instruction 

register.  
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   Decode:  The opcode is decoded and the input operand locations are 

determined.  

   Data Fetch:  The operands are fetched from memory if necessary.  

   Execute:  The operation is executed.  

   Write-back:  The operation output results are stored in the appropriate 

locations.  

   Note that the instruction or the operands may be in a cache memory instead of the 

primary memory. For many simple instructions, each phase typically takes one clock 

cycle, although this may differ depending on the CPU, the type of instruction, and the 

addressing modes for the operands. A simple instruction would thus take five clock 

cycles from start to finish. In order to speed up program execution, most modern 

processors employ a strategy called  pipelining,  where successive instructions over-

lap their execution phases. For example, while one instruction is in its write-back 

phase, the next instruction would be in its execute phase, the following one in its data 

fetch phase, and so forth. This would work as long as all instructions are executed in 

sequential order so that their order of execution is known in advance by the processor. 

A speedup of instruction processing by a factor of five would be realized in this case. 

 A pipelining processor would have to include provisions for instructions that 

change the order of execution, such as  branch  and  jump  instructions. A jump will 

terminate one execution pipeline and start another at a different instruction loca-

tion. Instructions that have gone through some steps of their execution cycle may 

have to be cancelled (undone) if a branch is determined after their execution cycle 

is started. It is also sometimes necessary to delay the pipeline if an instruction needs 

as its input an operand that is being produced by the previous instruction. Hence, the 

speedup actually achieved by pipelining must be estimated by averaging the speedup 

achieved by many different programs. 

   A.2.7 Interrupts 

 An important functionality included in the processor is the  interrupt.  This is par-

ticularly relevant to OSs, which use interrupts in various ways, as we see throughout 

this book. An interrupt is usually an  asynchronous event,  which is an event that can 

occur at any time, and is hence not synchronized with the system clock and with 

processor instruction execution cycle. The interrupt signals to the processor that it 

needs to handle a high-priority event. The processor hardware typically includes one 

or more  interrupt registers,  which are set by the interrupting event. 

 Whenever an instruction finishes executing, the control circuitry automati-

cally checks to see whether any event has placed a value in an interrupt register. 

Hence, interrupts cannot be serviced  during instruction execution —only between 

instructions.  3   If so, the  processor state —which includes the contents of the pro-

gram counter and any registers that will be used during interrupt processing—is 

saved into memory and a jump to execute the program code that handles interrupts is 

   3  When pipelining is used, interrupts may be checked whenever an instruction completes its execution 
cycle. Provisions for undoing partially executed subsequent instructions by the processor would be needed.  
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p erformed. Once the interrupt handler is done, the system will normally restore the 

processor state and resume processing the user program from the point at which it 

was interrupted. The OS may switch to run another program if the interrupt caused 

the current program to be terminated or suspended. 

 While processing an interrupt, it is usually the case that lower priority or less 

important interrupts are disabled until interrupt handling is completed. The OS does 

this by setting an  interrupt disable  (or  interrupt mask ) register. Depending on the 

value in that register the system will not check for interrupts for lower priority inter-

rupt levels. Hence, the OS can set this register before starting interrupt processing, 

and reset it back after completing the interrupt processing. 

 We can categorize the events that cause interrupts into hardware events and soft-

ware events. In general, hardware interrupts are asynchronous and software inter-

rupts are synchronous. Typical of the  hardware events  that can cause interrupts are 

the following: 

  Some I/O user action has occurred, such as mouse movement or mouse 

button click or keyboard input. The interrupt handler would retrieve the 

information about the I/O action, such as mouse coordinates or which 

character was input from the keyboard.  

  A disk I/O transfer was completed. The interrupt handler would check to see if 

other disk I/O operations were pending, and if so initiate the next disk I/O 

transfer to or from main memory.  

  A clock timer interrupt has occurred, which allows the OS to allocate the CPU 

to another program.  

   The  software events  that can cause interrupts may be further categorized into  traps,  

which occur when a program error or violation happens, and  system calls,  which 

occur when a program requests services from the OS. (For historical reasons a sys-

tem call interrupt is sometimes called a trap—somewhat confusing.) Some events 

that cause traps are the following: 

  A memory protection violation, for example, a program executing in user mode 

tries to access an area of memory outside of its allowed memory space.  

  An instruction protection violation, for example, a program executing in user 

mode attempts to execute an instruction reserved for supervisor mode.  

  An instruction error such as division by zero.  

  An arithmetic error such as a floating point overflow.  

   We discuss in detail how these events and other events that cause interrupts are han-

dled by the OS throughout this book. 

   A.2.8 Microprogramming 

 In some computers complex instructions are implemented as sequences of basic 

instructions, often using the concept of  microprogramming.  A microprogram 

is a sequence of basic operations that implement a more complex operation. This 

sequence is stored in a special microprogram memory in the processor, so that it 
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can be invoked when the complex instruction is to be executed. The microprograms 

are sometimes referred to as  firmware.  Some CPU architectures, usually CISC, use 

microprogramming while others do not. 

   A.2.9 Processor chip 

 Historically the CPU was built out of discrete components such as relays, tubes, tran-

sistors, or simple integrated circuits. In modern systems the whole processor is typi-

cally implemented as a single integrated circuit (chip). The  processor chip  includes 

the CPU, clock, registers, cache memory, and perhaps other circuitry depending on 

the particular processor design. 

   A.2.10 Multicore chips 

 In the last few years the manufacturers of CPU integrated circuits have concluded 

that the demand for ever faster CPUs is slacking off somewhat. They have begun 

to use the extra space on the chips to provide multiple CPUs in the package. There 

are various alternative designs regarding placement of cache memories, etc. We talk 

about these caches in the next section. Although this would appear to be a fairly 

trivial change, we see in the chapters on memory that it is not at all trivial for the OS. 

At the present time chips with four CPU cores are fairly common. Predictions call 

for up to 128 cores in the next few years. 

 It is difficult to write a program that can effectively use multiple CPUs at the 

same time. But most users have many programs running at the same time and having 

multiple CPUs to run them on will mean that they will all run faster. Furthermore, 

most users use only a few programs, and they are ones that have been highly devel-

oped and are prepared to use the multiple CPUs. Such programs include most of the 

programs we use the most—word processors, spreadsheets, browsers, and so on. 

     A.3 THE MEMORY UNIT AND STORAGE HIERARCHIES 

   A.3.1 Storage units: Bits, bytes, and words 
 The memory unit is the hardware that stores the program instructions and oper-

ands that are needed by the processor. The basic physical storage unit is a single 

 bit,  which stores a binary zero (0) or one (1) value. In modern systems, bits are 

grouped into  bytes  (8 bits), and bytes are grouped into  words  (typically 4 bytes 

or 8 bytes, though CPUs designed for embedded systems may have 1- or 2-byte 

words). Normally, the basic unit that will be transferred between the memory unit 

and the processor is a word. Typically there will be instructions that will allow load-

ing or storing of a single byte or half word. In most systems each byte has a unique 

 memory address.  Given a particular memory address, the memory circuitry can 

locate that particular byte in memory. The word containing this byte can then be 

transferred to or from the processor. Memory bytes or words can also be transferred 

to or from input/output devices. In many cases, blocks of multiple words are trans-

ferred directly. 
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 The word size is usually the standard size for processor registers. A 32-bit pro-

cessor thus will have standard data items of 32 bits, or 4 bytes. On the other hand, 

16-bit processors would have 16-bit data formats as many older PC processors had. 

Some processors have a 64-bit “double word” data size. At one time this was mostly 

found in large mainframe computers. Most processors currently are of the 32-bit 

variety, but today’s PCs are switching to a 64-bit format. The size of many operands 

is also one word size (4 bytes), although some operands can be a single byte or 2 

bytes or 8 bytes. The particular opcode will determine the type and size of each 

operand. 

 As the basic data word size has increased from 16 to 64 bits, the instruction 

formats have also increased in size, mainly so that larger memory addresses can be 

used. Instructions in CISC machines tend to be variable length since it takes only 

a few bits to specify a register but many to specify a memory address. Depending 

on the addressing mode, instructions specify anywhere from none to three memory 

addresses, so the instruction lengths will vary accordingly. 

   A.3.2 A storage hierarchy 

 Most current systems have several levels of storage, often referred to as the  storage 

hierarchy.  This is illustrated in  Figure A.4 . The traditional view of a storage hier-

archy has three levels: primary, secondary, and tertiary storage. We discuss each of 

these next. 

 Primary storage consists of main memory and usually one or more cache memo-

ries. Even the processor registers are sometimes considered to be part of the main 

memory storage hierarchy. Hence, within primary storage, there can be several lev-

els. If we consider the processor  registers  to be part of the memory hierarchy, they 

would be at the top level. At the next level is a high-speed low-capacity  cache mem-

ory,  which is usually included as part of the processor chip itself. There may be addi-

tional cache memories outside of the main CPU chip, each slower but larger than the 

previous level. At a still lower level, a lower-speed but higher-capacity  main mem-

ory  is included on one or more separate chips. The cache memory typically uses a 
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h ardware technology known as SRAM (static random access memory), whereas the 

main memory typically uses DRAM (dynamic random access memory) technology. 

SRAM technology is faster but more expensive than DRAM per unit of storage.  4   

 Processor registers are faster to read or write than cache memory or main mem-

ory locations. For example, a register-to-register copy may take a single clock cycle 

in a RISC processor, whereas a register-to-cache transfer may take two clock cycles, 

and a register-to-memory transfer might take three or four clock cycles. 

 The cache memory is often divided into two parts: the  data cache  (for storing 

operands) and the  instruction cache  (for storing instructions). In some cases there 

are distinct cache parts for applications in user mode and the kernel in supervisor 

mode. Transfer of bytes between the cache and processor is several times faster than 

that between the main memory and the cache. Hence, the goal is to keep in the cache 

the data and instructions currently being used. This job is the responsibility of the 

cache management circuitry in the processor, but program design can affect the abil-

ity of the hardware to cache the needed instructions and data. 

 Memory capacity is usually measured in Kilobytes (KB or 1,024 bytes), Mega-

bytes (MB or 1,048,576 bytes), Gigabytes (GB or 1,073,741,824 bytes), and even 

Terabytes (TB or 1,099,511,627,776 bytes). Since cache is more expensive than main 

memory it has a much smaller capacity. Many processors have two caches: a level-1 

or  L1 cache  on the processor chip and an external level-2 or  L2 cache  outside the 

processor. A few processors have a third  L3 cache  that is also outside the CPU. The 

higher-level caches are faster than the lower-level caches but are more expensive and 

hold less information. 

 The  memory bus  is the hardware component that handles the transfer of data 

between main memory (on the memory chip) and cache memory (on the processor 

chip). Cache memory sizes often are in the 64-KB to several Megabyte range, whereas 

main memory capacity is typically in the 32-MB to 4-GB range. These numbers con-

tinue to grow rapidly, though. 

   A.3.3 Secondary storage: Hard disk 

 The next level in the storage hierarchy is typically a  magnetic disk hard-drive  stor-

age component or simply  hard disk,  which is slower than main memory but has a 

much higher capacity and lower cost per Megabyte. Hard disk capacity typically 

ranges between 10-GB to 1-TB or higher, but again these numbers continue to grow 

rapidly. A hard disk is a part of most standalone computer systems, but is often not 

included in embedded systems that are used in various devices such as PDAs, music 

players, telephones, cars, home appliances, and so on. Traditionally, the registers, 

cache memories, and main memory together are referred to as  primary storage,  

whereas the hard disk is referred to as  secondary storage.  Every system must have 

a primary storage component. 

 An important distinction between primary and secondary storage is called  stor-

age volatility.  In a  volatile memory,     memory content is lost when electric power 

   4  Memory, processor, and disk technologies are always changing, so newer technologies may come in 
use at any time. We will not discuss further how different types of memories are actually built at the 
hardware level, since this is not directly relevant to our presentation.  
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is turned off. In  nonvolatile memory,  content is not lost when power is turned off. 

Most main memory systems are volatile, whereas most secondary storage systems 

are nonvolatile. Hence, the disk also serves as a backup storage medium in case of 

system crashes due to power failure.  5   

 At the hardware level, transfer of data between primary and secondary storage 

involves an I/O device controller, which we discuss in Section A.4. Device control-

lers often have a storage component to hold data being transferred between the disks 

and main memory. This storage component is called the  disk cache  or  controller 

cache.  

 This cache is needed because the controller typically has its own processor and 

clock that are not synchronized with the clock of the CPU. Once the CPU initiates a 

transfer operation, it leaves the actual control of the transfer to the I/O controller—

while the CPU continues with program execution. Hence, main memory is being 

accessed by both the CPU and the device controllers. Because requests to access 

memory by the CPU are given higher priority, memory access by the controller may 

be delayed. The controller cache prevents the loss of data because of such delays 

by acting as a buffer storage when transferring data from disks and other second-

ary storage devices to main memory. Controller caches also exist in I/O controllers 

for some types of tertiary storage devices such as floppy disks and CDs, which we 

describe next. This type of data transfer between an I/O controller and main memory 

may make use of DMA technology (direct memory access), which we discussed in 

Chapter 14. 

   A.3.4 Tertiary and offline storage: Removable discs and tapes 

 Additional levels of the storage hierarchy exist in many computer systems, such as 

various types of magnetic tape storage for backup, sometimes referred to as tertiary 

storage or offline storage. In addition, various types of rotating memories (floppy 

disk, CD-ROM, CD-RW, DVD, etc.)  6   are used as storage media to hold informa-

tion. The information stored on removable media is generally either too large to fit 

on secondary storage or is not usually needed frequently or immediately, so it is not 

permanently kept on the hard disk. So this data is not usually available within the 

computer system as is the case with cache memory, main memory, and hard disk, 

which are referred to as  online storage  because they are available as soon as the 

computer system is turned on. 

 Removable media units can be automated so that the drive can select from among 

many individual media that are inserted into the drive. Examples include automated 

tape libraries or optical disc jukeboxes. In this case they are properly referred to as 

 tertiary storage.  Removable media storage units that are not automated are usually 

called  offline storage,  because the storage media (floppy disk, DVD, CD-ROM, tape) 

must be manually loaded before the data on the media can be accessed. Tertiary and 

offline storage devices can also be viewed as input/output devices (see Section A.4). 

   5  Historically, main memories were not necessarily volatile. Magnetic core primary memory in particular 
would retain its contents even with the power turned off.  

   6  CD-ROM stands for compact disc-read only memory; CD-RW stands for compact disc-read write; and 
DVD stands for digital video disc.  
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   A.3.5 Managing the storage hierarchy 

 Transfer between the various levels of the storage hierarchy is usually done in units 

of multiple bytes or  blocks  of bytes. The block size between main memory and cache 

memory is typically in the range of 16 bytes (four words) to 256 bytes (64 words), 

whereas the block size between hard disk and main memory is typically in the 4-KB 

to 16-KB range or even higher. The main reason for transferring blocks instead of 

single bytes or single words is to improve performance by reducing overall transfer 

time. Especially with tapes there is a large overhead to start and stop the tape move-

ment. So transferring larger blocks with each read or write is much more efficient 

than transferring smaller blocks. Similarly, positioning a tape or disk to access the 

needed information is quite slow. Transferring more data at one time means that 

fewer such positioning operations are needed. 

 Performance is also improved by taking advantage of the  locality principle,  

which states that programs tend to access a small portion of their instructions and 

operands in any short time interval. This locality characteristic has been shown to 

exist in most programs, and has two components: 

   Temporal locality:  This characteristic states that a program that accesses 

certain memory addresses may soon access them again. An example is that 

instructions within a loop may be accessed repeatedly within a short period 

of time.  

   Spatial locality:  This characteristic states that if a program accesses certain 

memory addresses, it may soon access other words that are stored nearby. 

For example, instructions are typically stored and accessed sequentially. 

Another example is that a program may process operands (data) that are 

stored consecutively—for example, accessing consecutive array elements or 

sequentially scanning through a block of text that is being edited.    

 If multiple words that are stored in spatial proximity in a block are loaded into cache 

memory, then access to subsequent words when needed will be quite fast since they 

will already be in the cache. These are known as  cache hits.  On the other hand, if 

these subsequent words are never accessed, the cost of loading them into the cache 

will be wasted. When instructions or operands are referenced that are not in cache 

memory, the system will try to locate them in main memory and transfer them to the 

cache. These are known as a  cache misses.  

 If the words that caused a cache miss are not in main memory, they have to be 

located on hard disk and transferred to main memory, and the needed part is then 

transferred to cache. Hence, it is necessary to find an appropriate block size that 

reduces the access cost per unit of storage. Generally, the cost of transferring  n  con-

secutive bytes or words between one level and the next in a single transfer is much 

lower than transferring them using multiple transfers. This is particularly true for 

transfer between hard disk and main memory, and is also true to a lesser extent for 

transfer between main memory and cache memory. As we will see, a major part of 

the memory management component of an OS is to attempt to optimize these types 

of transfers. In general, the OS handles transfers between hard disk and primary 

memory, and the CPU hardware handles memory-to-cache transfers. 
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   A.3.6 Memory protection 

 Another aspect of main memory that is particularly relevant to OSs is the memory 

protection component. When an executing program references a memory location, 

the OS needs to make sure that this location is part of the  address space  for that 

program. It should not allow an application program to make references to memory 

locations that are being used by other programs or by the OS itself. This protects the 

OS and other user programs and data from being corrupted by an erroneous or mali-

cious program. 

 One technique for memory protection is to use a pair of registers, the  base reg-

ister  and  limit register.  This is illustrated in  Figure A.5 . Before a program starts 

execution, the OS sets those registers to delimit the addresses in memory that contain 

the program address space. Setting the contents of the base and limit registers are 

privileged instructions that can only be used when the CPU is in supervisory mode 

in the OS kernel. Once the OS sets the execution mode to user mode and transfers 

control to the user program, the base and limit registers cannot be changed. Any 

reference to memory locations outside this range causes a hardware interrupt that 

indicates an invalid memory reference. The OS will reset the base and limit registers 

whenever it transfers execution to another program. 

 In many modern systems a more complex scheme is used. Memory is divided 

into equal-sized  memory pages.  Typical memory page sizes range from 512 bytes to 

4 KB. This technique uses  page tables,  which are data structures that refer to the par-

ticular memory pages that can be accessed by the executing user program. Only those 

memory locations referenced through the page table are accessible to the program. 

The page table is implemented through hardware support in the processor itself. The 

commands to load the contents of the page table would be privileged instructions that 

can only be executed by the OS in supervisory mode in the kernel. We discussed this 

and other memory protection techniques in detail in Chapters 10 and 11. 

FIGURE A.5 
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     A.4 INPUT AND OUTPUT

   The input and output systems are the components that connect the main memory and 

the processor to other devices. These are sometimes called  I/O devices  or  periph-

eral devices.  

    A.4.1 Types of I/O devices 

 I/O devices can be divided into four broad categories: user interface devices, storage 

devices, network devices, and devices that the computer is controlling.  

   User interface I/O devices:  These are employed for user interaction with 

the computer system. Devices for direct interaction between a user and a 

system include keyboards, pointing devices (such as mouse, trackball, touch 

screen, or pad), joysticks, microphones (voice or sound input), other similar 

components for  input,  and video monitors, speakers (voice or sound output), 

and the like for  output.  Other I/O devices allow indirect interaction, such 

as digital cameras and scanners for video or image input, and printers and 

plotters for hard copy or film output.  

   Storage I/O devices:  These are used for  storing information  and hence are 

considered as both input/output devices and as part of the storage hierarchy. 

They include magnetic disks (hard or floppy), optical discs/DVD, magnetic 

tape, flash memory chips, and so on.  

   Network I/O devices:  These are devices that connect a computer system to 

a network, and include analog telephone modems, DSL (digital subscriber 

line) connections, cable modems, and wired cables. In addition, wireless 

connections such as infrared or Bluetooth are becoming quite common. 

They may use a wireless network card installed in a computer or device to 

connect to a wireless hub, which in turn connects to the network, or they 

may connect devices directly to a computer.  

   Controlled devices:  Computers are often used to control noncomputing 

devices. Examples include motors, heating and air conditioning, light 

displays, and so on. Embedded computer systems also fit into this category. 

   As we can see, there are a wide variety of I/O devices, and new devices are fre-

quently being introduced. To deal with this proliferation of I/O devices, efforts 

were undertaken to standardize single interfaces that can be used with different 

types of I/O devices. One such standard is the USB (Universal Serial Bus) 2.0 

standard, which allows I/O transmission rates of 480 million bps (bits per second), 

and is hence suitable for connecting everything from keyboards to digital video 

cameras or external disk hard drives. Another standard is IEEE 1394, which also 

allows transmission rates of up to 400 million bps and is used for the same sorts of 

devices. This interface is also known by two proprietary names, FireWire ™  from 

Apple and i.Link ™  from Sony. FireWire is somewhat more efficient than USB for 

higher-speed devices and is commonly used for video cameras. It has also been 
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selected as the standard connection interface for audio/visual component commu-

nication and control. 

   A.4.2 Device controllers and device drivers 

 A  device controller  is a component that interfaces an I/O device to the computer 

processor and memory. Device controllers frequently contain their own processor, 

which has a specialized instruction set that is used by device manufacturers to write 

programs that control the I/O devices. A device controller will also have a  command 

set,  which is the set of commands that the OS can send to the controller across one of 

the system buses to control the I/O device. These commands are generally restricted 

to being used only by OS  device drivers,  and are usually not accessible to applica-

tion or systems programmers. Many device controllers also have a memory compo-

nent known as controller cache (see Section A.3.3). 

 Standard device controllers such as USB and FireWire can be used to connect to 

any type of I/O device that supports the standard. On the other hand, some special-

ized device controllers—such as disk controllers or graphics video controllers—can 

only connect to a single type of I/O device for which it was designed.    7 The controller 

handles the interfacing with the I/O device and may use its memory to either buffer 

or cache the data as it is being transferred from or to the computer primary memory. 

The command set of the controller will include commands that initiate input or out-

put operations. For example, a hard disk controller would have commands to initi-

ate a read-block command for a particular disk block address, while providing the 

address of the computer memory buffer that will hold the block.  Figure A.6  is a 

simplified diagram to illustrate these concepts. 

 At the computer side, the OS typically handles all interactions with the device 

controllers. As was mentioned, the parts of the OS that interact with the device con-

trollers and handle I/O are called the  device drivers.  Each device driver will be 

programmed to handle the low-level hardware commands and details of a particular 

device controller. The device driver will present an abstract and uniform view of the 

device to the rest of the OS. 

   7  In some cases, a controller is limited further to a subset of a certain type of device; for example, an 
ATA controller only works with ATA disk drives rather than all types of disk drives. Sometimes the 
controller will only work with devices from a single manufacturer or even only with a specific model.  
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   A.4.3 Other categorizations of I/O devices and connections 

 There are other ways to categorize I/O devices. One categorization is to divide them 

into groups based on the type of connection to the computer. I/O devices are typi-

cally connected to the memory and CPU at the hardware connection level using 

either serial or parallel physical connections (usually cables). A  serial  connection 

transfers bits serially over a single wire, whereas a  parallel  connection typically 

transfers 8 bits (or more) at a time in parallel over multiple wires. Interfaces to sim-

ple I/O devices such as keyboard, mouse, or modem typically use serial connections, 

whereas higher-speed devices such as some hard disk SCSI (small computer system 

interface) connections use parallel cables. USB and FireWire controllers use serial 

cables, but the cables are high grade and shielded, and this permits the high data 

transfer speeds of these controllers. 

 Another higher-level categorization of I/O devices is into  block devices  that 

transfer multiple bytes at a time versus  character devices  that transfer single 

c haracters or bytes. Disks are a good example of block devices, whereas a keyboard 

is an example of a character device. 

 A third categorization is whether the connection is wired through a cable or 

wireless. Wireless connections are being used increasingly to connect portable com-

puters to the network or to output devices such as printers. 

     A.5 THE NETWORK 

  Many computers are connected to some kind of network. At an abstract level, one 

may consider a network connection to be similar to the way that a computer’s CPU 

and memory can be connected to I/O devices. However, the network allows the com-

puter to be connected to other computers, as well as other devices connected to the 

network. This connectivity allows users to access functions and information on other 

computers and to use devices that their own computer does not have. It also allows 

for exchange of information among processes running on different computers. 

    A.5.1 Client-server versus peer-to-peer versus multitier models 

 One common way to look at network interaction is through the  client–server model.  

Here, one computer—typically where the user is located—is called the  client.  The 

client can access one or more  server  computers to access information or other func-

tions that the server provides. Servers might include any of the following: 

    database servers that contain large amounts of information  
    Web servers that allow the client to access documents on the Internet  
    printer servers that allow the user to print on various printers  
    file servers that manage user files  
    email servers for storing and forwarding email  
    servers that support application such as word processing or spreadsheets  

   Another model for network interaction is the  peer-to-peer model  in which the com-

puters are considered to be equals. For example, the computers could be cooperating 
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toward solving a large computing problem that has been designed to run in a distrib-

uted manner over multiple computers on the network. 

 As distributed systems have evolved it has become necessary to have more com-

plex models than these. Large applications are frequently designed in  multiple tiers.  

In a typical three-tier design there will be a front-end that is responsible for the user 

interface, a middle tier that contains the main logic for the application—often called 

the business rules—and a database tier that is responsible for all the data storage for 

the application. In Chapter 17 we discussed the reasons why these more complex 

architectures have evolved. These models are discussed in greater length in Chapter 15 

on networking and Chapters 7 and 17 on distributed processing systems. 

   A.5.2 Network controllers, routers, and name servers 

 Similar to the manner in which a computer interacts with a device controller that con-

trols an I/O device, the CPU and memory connect to a network through a  network 

interface controller,  or  NIC.  At the hardware level there are various types of net-

work connections of varying speed, and new technologies for connections are being 

introduced all the time. Some of the common hardware devices and technologies that 

connect computers to a network are modems, Ethernet, DSL, cable modems, and 

several wireless techniques. 

 At the Physical level, it is useful to distinguish between two types of connections 

used to build a network: wired and wireless. Hardware for wired networks includes 

cables or optical fibers of different types, network gateways, routers, switches, hubs, 

and other similar components. Wireless network components include satellites, base 

stations for wireless connections, wireless hubs, infrared and Bluetooth ports, and 

so on. 

 The network can route a message from its source to its destination through the 

use of  bridges,   switching devices,  or  routers.  To manage the complexity it is com-

mon to divide a network within an organization into subnetworks, each connecting 

a small number of computers via a local area network (LAN). These subnetworks 

are connected to one another through local routers, which then connect to a regional 

router, which then connects to the rest of the global network through one or more 

additional Internet routers. 

 In the case of the Internet, every computer on the network has a numeric IP 

(Internet protocol) address (such as 192.168.2.1), which uniquely identifies that 

computer, and allows the network to route messages addressed to that IP address. 

C omputers also have unique names, such as ourserver.example.com. Specialized 

servers called  domain name servers  (DNS) have databases that can find a com-

puter’s numeric IP address when given its name. The other specialized comput-

ers that connect the network, namely the routers and switching devices, can then 

find a path through the network to deliver a message to the destination computer 

based on the numeric IP address or the  media access control  ( MAC ) address of 

the destination. These devices use specific network protocols at various levels to 

physically deliver the message.  Figure A.7  shows a simplified diagram to illustrate 

these concepts. The techniques for doing this routing and switching are covered in 

Chapter 15.  
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  A.5.3 Types of networks 

 We conclude this brief introduction to networks with a traditional characterization of 

the types of networks.  8   

  Local area networks  ( LAN s) are networks that normally connect computers 

within a limited geographical area, say a group of offices or one building or a num-

ber of adjacent buildings within an organization. These networks are primarily built 

of cables that run through and between the buildings, possibly with switches or rout-

ers connecting, say, the various networks on each floor or in each cluster of adjacent 

offices. Increasingly, wireless access points are being used that allow the connection 

of a computer with a wireless network card to the local area network. 

  Wide area networks  ( WAN s), on the other hand, generally refer to networks 

that connect computers over a large geographical area. These use phone lines, fiber 

optic cables, satellites, and other connections to connect the thousands of local area 

networks to one another, and hence to allow global connectivity of computers. 

  Mobile networks  are made up of thousands of telecommunications towers and 

control systems that operate as fixed base stations, which are then connected to local 

or wide area networks. Mobile devices such as cellular phones or handheld comput-

ers or PDAs can connect to a nearby base station, which connects it to the rest of the 

network, and to other parts of the global network. 

   8  The technical distinction between a LAN and a WAN is somewhat different. See Chapter 15 for details.  

Email Server

Shared
Printer

LAN LAN

LAN

DNS

WAN

Internet

Router

Router

Router

File Server

Client Client Client

Web
Server

FIGURE A.7 

How a network 

connects various 

computers.



 Appendix Overview of Computer System and Architecture Concepts 507

      A.7 SUMMARY 

 In this appendix, we gave an overview of the basic 

components of a computer system. We started with 

a simple overview and a diagram of typical com-

puter system components, and concluded with a 

more detailed—though still simplified—diagram. In 

between, we devoted one section to each of the main 

components of modern-day computers: the processor 

or CPU, memory and storage hierarchy, I/O devices, 

and the network. From the discussion, it should be 

clear that there is overlap between these categories. 

For example, hard disks can be considered as both 

an I/O device or as part of the storage hierarchy, 

and the network interface to a computer can also be 

abstracted to look like I/O devices. However, the tra-

ditional division is useful for structuring our discus-

sion and presentation of computer systems and OSs.  

FIGURE A.8 A diagram to illustrate a computer system in some additional detail.
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     A.6 A MORE DETAILED PICTURE 

  We conclude this appendix with  Figure A.8 , which presents a more detailed p icture 

to illustrate how various system components that we discussed throughout this 

appendix are connected to one another. 
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   REVIEW QUESTIONS 

    A.1 What are the two major classes of CPU design?  

   A.2 What is the importance of the instruction set archi-

tecture to a discussion of the design and develop-

ment of OSs?  

   A.3 Why is a system hardware timer important to 

an OS?  

   A.4 What is the purpose of an interrupt?  

   A.5 What is the significance of multicore CPU chips?  



 Appendix Overview of Computer System and Architecture Concepts 509

   A.6 True or false? Primary storage in computers is 

always made up of electronic memory circuits.  

   A.7 It is hard to overemphasize the importance of 

caching to the performance of an OS.

    a. What is the purpose of a cache?  

   b. What theory underlies its function?  

      A.8 In theory we could make the cache between sec-

ondary storage and primary storage as big as the 

secondary storage. This would have the advantage 

of having much smaller latency. Why do we not 

do this?  

   A.9 What is the purpose of memory protection?  

   A.10  What is the purpose of having device controllers?  

   A.11 In order to help us discuss and understand large 

complex topics such as I/O devices, we can view 

the subject as a space with many dimensions. We 

first discussed a broad division of I/O devices 

according to the purpose of the device. What were 

the three broad purposes that were discussed? 

Give some examples of each class.  

   A.12 We also divided the I/O device space into those 

interfaces that were general-purpose interfaces 

and those that were for specific device types. Give 

some examples of each class.  

   A.13 DMA controllers cause many fewer interrupts per 

block transferred to or from a device than do con-

trollers, which do not use DMA. Other than obvi-

ously freeing up the CPU to do other things, why 

do we need controllers that use DMA?  

   A.14 What is the function of a device driver and how do 

we configure OSs with the correct drivers?  

   A.15 What facility is used to translate computer names 

such as  omega.example.com  to IP addresses for 

use in the Internet?          
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