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PREFACE TO VOLUME 4

Annual Reports in Computational Chemistry (ARCC) focuses on providing timely re-
views of topics important to researchers in the field of computational chemistry.
The ARCC is published and distributed by Elsevier and is sponsored by the Di-
vision of Computers in Chemistry (COMP) of the American Chemical Society.
Members in good standing of the COMP Division receive a copy of the ARCC
as part of their membership benefits. We are very pleased that all three previous
volumes have received a very positive response from our readers. The COMP Ex-
ecutive Committee expects to deliver future volumes of the ARCC that build on
the solid contributors of our first four volumes. To ensure that you receive future
installments of this series, please join the Division as described on the COMP web-
site at http://membership.acs.org/c/Comp/index.html.

In Volume 4, our Section Editors have assembled 12 contributions in five sections.
Topics covered include a new section on Bioinformatics (Wei Wang), as well as
continuing sections on Simulation Methodologies (Carlos Simmerling), Biologi-
cal Modeling (Nathan Baker), Physical Modeling (Jeffry Madura), and Emerging
Technologies (Wendy Cornell). We anticipate that two sections included in prior
volumes, Quantum Chemistry and Chemical Education will reappear in the next
volume, Volume 5. With Volume 4, we extend the practice of cumulative indexing
of both the current and past editions in order to provide easy identification of past
reports.

As was the case with our previous volumes, the Annual Reports in Computational
Chemistry has been assembled entirely by volunteers in order to produce a high-
quality scientific publication at the lowest cost possible. The Editors extend our
gratitude to the many people who have given their time to make this edition of
the Annual Reports in Computational Chemistry possible. The authors of each of this
year’s contributions and the Section Editors have graciously dedicated significant
amounts of their time to make this Volume successful. This year’s edition could
not have been assembled without the help of Deirdre Clark, of Elsevier. Thank
you one and all for your hard work, your time, and your contributions.

We hope that you will find this edition to be interesting and valuable. We are ac-
tively planning the fifth volume and are soliciting input from our readers about
future topics. Please contact either of us with your suggestions and/or to volun-
teer to be a contributor.

Sincerely,

Ralph A. Wheeler and David Spellmeyer, Editors
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1. INTRODUCTION

Nothing in biology makes sense except in the light of evolution [1]. These words, writ-
ten by famed evolutionary biologist Theodosius Dobzhansky, have a special place
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in the life sciences. They serve not only as a reminder of the central role evolu-
tion plays in the processes of life, but also as a paradigm under which research
in biology should be conducted. When we think about evolutionary phenom-
ena, it is important to remember that they—like all natural phenomena—can be
reduced to events at the molecular scale. Evolutionary change is fueled by mu-
tations: changes in the molecular structure of the genetic material. When these
mutations are expressed, they result in changes to biomolecular structure and en-
ergetics which may in turn alter the abundance or interactions of proteins. Novel
organismal traits stemming forth from these molecular scale changes are then
judged by natural selection. Considering this perspective, it seems that nothing
in evolution makes sense except in the light of biomolecular structure and ener-
getics. It should therefore not come as a surprise that the relationship between
evolution and physical phenomena like these has been an area of interest for some
time. Here we review some of the major theories, models, and empirical evidence
relevant to the relationship between protein structure and evolution at various
scales.

2. DETERMINANTS OF EVOLUTIONARY RATE

Protein evolutionary rates are known to vary widely. In the genome of the model
organism Saccharomyces cerevisiae (baker’s yeast), evolutionary rates among the
roughly 6,000 genes are spread out over three orders of magnitude [2]. Since the
advent of the molecular biology age scientists have been interested in the way that
homologous genes and proteins accumulate changes. It has been observed that
the sequences and structures of some proteins are highly conserved, even when
comparisons are made between distantly diverged species (for example, the his-
tone proteins that package DNA, or the ribosomal proteins responsible for protein
translation) [3]. Other proteins evolve rapidly, either due to relaxed constraint or
positive selection for novel features (for example, proteins involved in immune
systems) [4]. While theories explaining these differences originated alongside their
observation, extracting general determinants of evolutionary rate variation has
only become possible with the advent of the bioinformatics age. Statistical and
machine learning techniques, when applied to massive genomic and phenotypic
datasets (such as protein structures, interaction networks, and expression profiles),
have been able to isolate some of the forces driving evolution at the molecular level
(for general reviews of evolutionary determinants, see [2,5,6]).

Features that are directly connected to protein structure have been shown to
explain roughly 10% of the variation in evolutionary rate [7]. This result seems
initially surprising, given that structure mediates all aspects of a protein’s ex-
istence. In contrast, expression—the frequency and scale at which a protein is
manufactured—may explain up to 40% of evolutionary rate variation [6]. Expres-
sion and evolutionary rate vary inversely, with highly expressed proteins tending
to evolve at very slow rates. A protein’s dispensability (effect on cell growth when
absent) and the number of interactions in which it participates explain additional
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components of evolutionary rate variation; random noise may also be a large con-
tributor [8]. It is worth noting that protein function, historically considered to be
a major target of selection, does not seem to be a good general predictor of evo-
lutionary rate [6]. While much progress has been made in the identification and
ranking of evolutionary determinants, some disputes in this area still remain. We
believe that considering structure is particularly important because of its role as
both a determinant of evolution in its own right, and a medium through which
other determinants act.

As an example, we will consider the role that structure plays in the appar-
ent dominance of expression in the determination of evolutionary rate. Although
several hypotheses have been proposed to explain the significance of expression
[9,10], genomic evidence seems to best support the following conclusion:

Errors made during protein translation can result in misfolded proteins, which
represent a burden to the cell. Mutations that make a protein more susceptible
to error-induced misfolding will result in a loss of fitness. If the mutation occurs
in a highly expressed protein, then translational errors (and misfolding events)
will be more common, resulting in a larger fitness loss. Hence, protein expres-
sion will scale directly with selective constraint, and inversely with evolutionary
rate [11].

Are errors in translation really so common that they can have a profound in-
fluence on the evolutionary trajectory of a protein? Although the machinery of
translation operates with 99.95% accuracy (measured as correctly inserted amino
acids), even a small potential for error becomes rapidly compounded given the
enormous work load it must handle [12]. If we assume that an average protein is
composed of 400 amino acids, roughly 20% of these proteins will contain at least
one translational error. Robustness against error-induced misfolding (i.e., struc-
tural robustness) would presumably be beneficial for any protein, but more so for
the highly expressed among them. Thus, structure, a characteristic of all proteins,
plays an even more critical role in their evolution than is apparent at face value.
A theoretical treatment of the sequence-structure relationship sheds light on the
role of structure in this and other evolutionary phenomena.

3. THEORETICAL ADVANCES

3.1 Key concepts
The essence of most theoretical ideas governing protein structure and evolution
begin with the following relationship:

Genotype
(sequence) → Phenotype

(structure)

Genotype yields phenotype. This is a general biological idea. In the case of proteins,
it can refer to the DNA sequences (genotypes) that encode amino acid chains
that fold to produce three-dimensional proteins (phenotypes). Alternatively we
can bypass the genetic component of the picture and think of the translated se-
quence of amino acids as a genotype, with the notion of a phenotype remaining
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the same. The relation above is simple, but profoundly important. In one sense
it can be thought of as a statement of the central dogma of molecular biology
(the elucidation of which is among the greatest scientific achievements of the 20th
century) [13]. In another sense this relation is a statement of the protein folding
problem, one of the largest challenges facing researchers in computational biology
today [14].

The space of protein phenotypes observed in nature is surprisingly small. Cur-
rent estimates place the number of stable folds in the neighborhood of 1000 to
10,000 [15,16]. We can imagine many other possible folds in the configuration
space of an amino acid chain, but these have either (a) yet to occur in evolution
or (b) been thermodynamically or selectively disfavored. The complete space of
possible genotypes is assumed to be very large. Constraining ourselves to the
size of an average protein (400 amino acids), there are 20400 (≈ 2.6 × 10520) possi-
ble protein sequences. Obviously evolution has sampled only a small fraction of
these sequences, and an even smaller fraction persists on the planet today. Nev-
ertheless, the mapping of genotypes to phenotypes remains many-to-one, with
sets of genes and amino acid sequences producing largely identical protein struc-
tures [17]. We make the assumption that, under a given set of conditions, a single
sequence maps to exactly one structure (governed by the minimization of free en-
ergy). This is a reasonable assumption for natural protein sequences, which tend
to have a marked free energy minimum [18].

These observations are extremely important in light of the neutral theory of
evolution. Simply put, this theory states that the majority of accepted changes
that occur at the genotype level do not have a pronounced effect on the phe-
notype [19]. Silent substitutions in DNA are one example of this phenomenon.
DNA codons GGA and GGG both encode the amino acid glycine, and hence a
GGA → GGG mutation would produce a genotype change, but not a phenotype
change. Note how this idea fits naturally with the observation of the many-to-
one mapping of protein sequences to structures. Since a given structure may be
generated by multiple sequences, mutations that interconvert those sequences do
not have phenotypic consequences, and are therefore selectively neutral. Some
caution is warranted here, as no mutation is likely to be neutral across all envi-
ronments [20]. We can imagine that sequences which produce identical structures
under one temperature regime might produce two different structures under an-
other. Even the canonical silent DNA polymorphisms can evolve non-neutrally in
situations where one synonymous codon is preferred over another for purposes
of transcriptional or translational efficiency [21]. In this review, we frequently
employ the approximation that for most mutations, protein structure directly dic-
tates protein function, i.e. mutations that preserve a protein’s structure will also
preserve its function. This is not always the case, as certain mutations which con-
serve structure may have significant functional consequences (for example, if they
result in changes to key residues in the active site of an enzyme). In spite of
these complications, the notion of structural neutrality in a particular environment
or genetic background remains a useful concept in the study of protein evolu-
tion.
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3.2 Theory: designability
There are two, somewhat conflicting perspectives from which we can consider the
relationship between genotype (sequence) and phenotype (structure). The first of
these is called designability. We noted that the relationship mapping sequences to
structures is many-to-one. What must also be observed is that the sequences are
not evenly partitioned across the structures. Some structures can be generated by
folding any number of a very large set of sequences; other structures are more spe-
cialized, and can only be built up from a few sequences [22]. The structures with
many generative sequences are said to be more designable than those with fewer
generative sequences. Recall that the number of protein folds observed in nature
is relatively small. These folds are likely to vary amongst themselves in terms of
designability; more importantly, designability is expected to vary between the ob-
served folds and “imaginary” folds. In fact, increased designability may contribute
to the dominance of the observed folds [23,24], a fact that we illustrate by example.

Let us consider a hypothetical world with two folds: one which has a useful
structure, but can only be generated by a single sequence (low designability),
and another which is useless, but can be generated by many sequences (high
designability). If selection strongly favors utility, then clearly the first fold will
propagate by virtue of its functional advantage. Designability becomes important
when we introduce mutations into our model. Although the first fold has a selec-
tive advantage in its native form, it is not robust against mutations. Any change in
its underlying sequence will result in a loss of its useful structural characteristics.
Because the second fold is designable, it is robust against mutations, but selec-
tively disadvantaged because it is useless. For the first fold to remain dominant,
its selective advantage must be strong enough to compensate for the losses due to
mutation. Now imagine a third fold, one that is both useful and designable. Selec-
tion will favor this fold like the first, because it can fill a functional role. By virtue
of its designability, this fold will maintain a useful structure even while its under-
lying sequence accumulates mutations. All else being equal, this fold will come to
dominate the population.

The example above assumed that selection acts on structure as a trait in and of
itself. Hence, many mutated variants of the third fold were assumed to be selec-
tively neutral, simply because they result in the same structure. Selection will also
act on a protein’s function, which may be more sensitive to specific changes in the
underlying sequence. As noted above, we have employed structure as a surrogate
for function, but in reality both features are important. Protein structural prop-
erties are more easily generalized than functional properties, and so the former
feature tends to be more amenable to theoretical treatments.

3.3 Theory: evolvability
We can also view the genotype-phenotype (sequence-structure) relationship from
the perspective of evolvability. Simply put, evolvability is concerned with the
generation of new phenotypes from existing phenotypes—a phenomenon that
is central to the evolution of species [25]. This is in stark contrast to designabil-
ity, which stressed the importance of maintaining a single phenotype—avoiding
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change. Change, however, is at the heart of evolution. How does evolvability, and
hence change, relate to the sequence-structure relationship?

Let us consider another hypothetical world for illustrative purposes. There
are two dominant folds in this world, both of which result from many-to-one
sequence-structure mappings. If we were to sample populations of either fold,
we would find that its underlying genotypes were widely varied. We can say
that these genotype sequences belong to the fold’s neutral network—the set of all
genotype sequences which produce the fold [26]. Mutating from one genotype to
another within the neutral network does not change the phenotype, an example
of neutral evolution. The two folds will differ in terms of their evolvabilities.

To understand what this means requires an understanding of the relationships
between neutral networks. Some mutations in a given sequence result in a new
sequence that remains within the neutral network of the original; other mutations
result in a new sequence which belongs to a different neutral network. Mutations
of the first type do not result in a change of phenotype (the fold remains constant),
while mutations of the second type produce a new phenotype (the fold changes).
We are interested not only in the frequency of mutations that leave a given neu-
tral network, but also in the distribution of new networks in which they land. Do
the new mutations always lead to another single network, or one of an ensemble?
This information allows us to establish notions of closeness between neutral net-
works, and this is the essence of evolvability. A neutral network which is close to
other neutral networks is evolvable—its genotypes have the potential to mutate,
producing new genotypes with potentially innovative phenotypes. Conversely,
an isolated neutral network is not evolvable. These ideas have been extensively
tested in the context of the RNA sequence-structure relationship [27–29], in which
the size of neutral networks and transition frequencies can be readily computed.
The underlying theory, however, is applicable to the mapping between protein
sequences and structures.

Returning to our example, assume that the neutral network of the first fold is
close to those of several other folds, while the neutral network of the second fold is
relatively isolated (surrounded by the neutral network of unfolded proteins, per-
haps). Now assume that a change in the environment occurs causing both folds to
be heavily penalized by selection. In our model, the new environment acts as an
agent of selection, but does not affect the genotype-phenotype relationship (hence,
the neutral networks do not change). The descendants of proteins in the second
neutral network are doomed—their mutations cannot produce an innovative so-
lution to the new environment. For the first neutral network there is hope—some
of the genotypes here are likely to mutate into the neutral networks of other folds,
one or more of which may fair better in the new environment.

3.4 Modeling structure and evolution

Direct observation of these theoretical forces in action is difficult due to the long
timescales over which evolution operates. Ideally we would be able to model an
accelerated version of this process using computers, but there are difficulties in-
herent to this as well. The mapping from sequence to structure (protein folding)
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is a spontaneous, natural process in living cells, but a major challenge in simula-
tion. The ability to generate an accurate 3D structure of a protein by computation
alone given only its amino acid sequence is the essence of the protein folding problem
[14,30]. Despite massive amounts of work in this area, we still lack a general effi-
cient solution.

Instead, physical models of protein evolution are usually conducted using sim-
plified representations of proteins (such as strings of balls woven through a regular
lattice) [31,32]. While these models obviously represent a gross simplification, they
capture some of the physical and geometric constraints governing the sequence-
structure relationship in real proteins. Results obtained in these simulations tend
to be more relevant than those derived on a purely conceptual basis; the cost in
terms of computational complexity is also greater. For simple models, the entire
space of genotypes and phenotypes can be sampled [33], something that will likely
never be possible for real proteins. Adding sophistication to these models boosts
the biological relevance to their findings, but often at considerable computational
costs [34–36].

Lattice models have generated a variety of interesting results, relevant to both
the protein folding problem and the relationship between protein structure and
evolution. The distribution of sequences in a neutral network has been explored as
a function of the mutational and selective pressures on the corresponding fold [37,
38]. Similar approaches have concluded that evolution selects for sequences which
can rapidly adopt their final structures [39,40]. Simulations also tend to predict
small sets of dominant protein folds [24]—a result which matches our observa-
tions about the real world. The dominant simulated structures are shown to be
both highly designable and thermodynamically stable, implying that a causal
relationship may exist between these two quantities [18]. Whether or not these
observations are generally true for real proteins is not known. The most convinc-
ing research in this area is able to pair model-based predictions with observations
in a sample of real proteins. For further review of work in this area see [33].

The relationship between designability and evolvability is another area of in-
terest currently being studied with model-based simulations [41,42]. Designable
structures are advantageous because they are robust against change. Evolvable
structures are advantageous because they have the ability to innovate. Do these
forces oppose one another in evolution, or is there a hidden synergy between
them? Lattice-based models have been used to explore the relationship between
the evolution of new functions and the maintenance of stability, which is con-
ceptually related to the designability/evolvability paradox [43,44]. While these
two objectives are antagonistic under some circumstances, a period of enhanced
selection for stability can promote subsequent gain of function. Other modeling
approaches have also shown that evolvability is itself a selectable trait, favorable
in times of rapid environmental change [45].

Clearly theories and models exploring the role of structure in protein evolution
produce a wealth of fascinating ideas, many of which are supported by intuition,
real world examples, and consistency with physical laws. However, observations
on the role of structure in evolution which begin with real proteins in the natural
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world are—almost by definition—the most relevant. Our focus now turns to these
observations.

4. EMPIRICAL RESULTS: SINGLE PROTEINS

4.1 Approaches

Some of the most intriguing observations about natural proteins involve the re-
lationships between explicit physical parameters (e.g., solvent accessibility) and
evolutionary rate. While it is common to think of conceptual “forces” which
influence evolution, these relationships hint at true physical forces that gov-
ern the allowable changes in proteins. All of these analyses are based on real
world sequence data and structures, and thus their results are highly relevant.
The structure of real proteins can be determined using X-ray crystallography or
NMR techniques [46,47]. These procedures are time consuming and have low
throughput, but provide extremely precise (to within angstroms) 3D glimpses
at the structures of real proteins. The RCSB Protein Databank, a major reposi-
tory for this information, contains over 50,000 structures (as of 10/14/2008) [48].
This is a lot of data, but it pales in comparison to the millions of protein cod-
ing sequences contained in the BLAST database [49]. Therefore, another common
strategy is to build models based on known structures and use these to pre-
dict physical features of the sequences whose experimental structures are not
known. Both the real and inferred structural parameters can be explored at a
variety of scales; from smallest to largest these include: individual residues, sec-
ondary structure motifs, protein domains, whole proteins, protein complexes, and
protein networks. We reserve discussion of the last two topics for the next sec-
tion.

4.2 Physical properties

One of the oldest observations linking protein structure to evolution involved
the influence of solvent exposure on residue mutations. The homologous pro-
teins hemoglobin and myoglobin, whose atomic structures had been solved by
1965, were observed to differ far more dramatically on their surfaces than in
their cores [50]. This has since become a well known general feature in protein
evolution. Several recent studies have reexamined the situation using large se-
quence and structure datasets [7,51–53]. These studies universally support the
notion that buried residues in a protein’s core are under tighter constraint, and
therefore evolve more slowly. A protein’s core—and hence, buried residues—play
an important role in stabilizing its folded structure. It is therefore believed that
mutations in the core may result in structure destabilization, potential misfold-
ing, and a consequent loss of fitness. How do things change when we consider
the solvent accessibility of full proteins (rather than residues in a “protein free”
context)? The “functional density hypothesis,” proposed in 1976, states that the
selective constraint that a protein experiences should be proportional to the frac-
tion of its residues involved with its function (e.g., catalytic activity) [54]. Although
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proper folding is not typically thought of as a “function” of a protein, if the protein
does not fold or folds improperly, then its conventional functions will certainly be
impaired. A modified “fitness density hypothesis” posits that a protein’s rate of
evolution should be constrained by the fraction of its residues that, if mutated,
would result in a significant loss of fitness [5,11]. Buried residues would certainly
seem to be among this fraction.

Intuition therefore suggests that a protein’s evolutionary rate should scale with
the fraction of its residues that are buried (or inversely with the fraction of solvent
exposed residues). A study by Bloom and colleagues reported an opposing trend:
proteins with a large fraction of buried residues seem to evolve more rapidly [7].
Their explanation is that proteins with large, stable cores have greater freedom to
accumulate surface mutations, and that these mutations significantly elevate the
overall rate at which the protein appears to be evolving. This study also considered
the effect of atomic contact density on evolutionary constraint. Solvent exposure
and contact density convey similar information about the three dimensional struc-
ture of a protein, and hence correlate well with one another. The Bloom et al.
results regarding contact density are consistent with their solvent exposure find-
ings: proteins with higher average contact densities appear to be evolving faster.
This result is particularly interesting in light of a proposed relationship in which
proteins with high contact density are also more designable [55]. Because struc-
tures with high designability have a large sequence space to explore, we might
expect them to demonstrate accelerated evolution at the sequence level (as this
study has found).

A subsequent study by Lin and colleagues considered both known and pre-
dicted exposure patterns in proteins with variable alignment lengths [51]. They
conjecture that restricting an analysis to proteins with large alignment lengths—
as was the case in the Bloom et al. study—biases results against disordered
proteins, which tend to have smaller alignment lengths. Their results for pro-
teins with smaller alignment lengths demonstrate a positive correlation between
the percent of residues predicted to be solvent exposed and evolutionary rate.
Results for proteins with larger alignments were consistent with the Bloom
et al. findings, using either predicted or known percent exposure. The Lin et
al. study makes the general observation that “proteins with a high [percent-
age of exposed residues] may evolve slowly or fast, whereas proteins with a
low [percentage of exposed residues] almost always have a low evolutionary
rate” [51]. Their conclusions stress the importance of fitness density in constrain-
ing evolutionary rate, a force which opposes designability-driven sequence diver-
gence.

4.3 Constitutional properties

Although solvent exposure gets the most attention as a driving force in protein
evolution, it is not the only physical parameter to be studied in this context. Mul-
tiple studies have considered the role of protein sequence length in evolution
(which corresponds to the final size of the folded protein) [7,56]. Simple organisms
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have evolved with a strong evolutionary pressure for reduced genome size, which
may have evolutionary implications for protein sequences [56]. A significant pos-
itive correlation between length and evolutionary rate does appear to exist, and
it is much more pronounced in short proteins (less than 250 amino acids). Study-
ing protein length also provides a good example of the complexity inherent to
isolating determinants of evolution. Although length appears to correlate with
evolutionary rate, it is also known to be correlated inversely with expression [56]
and directly with contact density [7,56] (both of which are determinants of evolu-
tion in their own right). Carefully controlling or isolating individual factors can be
a challenge, even with advanced statistical techniques.

A protein’s amino acid composition should also be considered as a poten-
tial determinant of evolutionary rate. It is well known that mutations between
amino acids do not occur with equal frequencies. For example, mutations that
swap one hydrophobic residue for another are commonly observed, suggesting
that these mutations are neutral or only slightly deleterious. In contrast, mutations
between hydrophobic and hydrophilic residues are far less common, suggesting
that such transitions are generally disfavored by selection. These types of ob-
servations are the basis for amino acid substitution matrices, such as PAM [57]
and BLOSUM [58], which are key components of sequence alignment and other
bioinformatics algorithms. Recent work has shown that the space of acceptable
mutations widens with protein divergence; this result applies to both general pat-
terns of substitution as well as the specific requirements in buried versus exposed
regions [52]. An early analysis using a small set of sequences suggested that the
evolutionary trajectory of a protein could be inferred based on amino acid com-
position alone [59]. A more recent study with a much larger dataset rejected this
hypothesis, concluding that amino acid composition contributes only weakly to
predictions of evolutionary rate [60]. Thus, as was the case with solvent exposure,
properties at the residue level do not necessarily translate directly to whole pro-
tein behavior. As far as evolution is concerned, proteins appear to be more than
just a sum of their parts.

The next level up in protein organization involves secondary structures
motifs—small structural elements that show up repeatedly within many differ-
ent protein folds. Well-known examples include helices, strands, loops, and turns.
Work in yeast has shown that the secondary structure composition of a protein
does not appear to influence its evolutionary rate [7]. However, in a study of mam-
malian proteins, residues in helices and strands were shown to evolve more slowly
than those in the less ordered loops and turns [53]. This last result highlights an-
other apparent influence on evolution: molecular disorder. Disordered regions of
proteins are generally known to evolve more rapidly than their ordered counter-
parts [61]. Our discussion to this point has assumed that a useful structure and a
stable fold are synonymous—this is not necessarily the case. In fact, many proteins
perform functional roles in the cell despite the fact that they, either in whole or in
part, fail to achieve a fixed three-dimensional fold [62]. The fact that these proteins
also appear to experience relaxed selection raises interesting questions about their
evolutionary potential.
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4.4 Protein domains

Protein domains, the next level up in the hierarchy of protein constitution, are
important enough to warrant a separate discussion. Domains can be defined
based on function, structure, or sequence characterization; in many cases the dif-
ferent approaches are compatible. We naturally adopt a structure-based defini-
tion: a protein domain is a spatially distinct structure (or structural component)
that could conceivably fold and function in isolation [63]. Some proteins con-
sist of a single domain, while others are composed of multiple domains each
folded separately from a subsection of the underlying amino acid chain. To this
point, our notion of the genotype to phenotype relationship has been protein se-
quence → protein structure. Given the discrete spatial nature of domains, protein
subsequence → domain would be an equally valid definition. In fact, the notion
of a protein fold (as in, “this fold is highly designable”) translates naturally to the
protein domain concept.

To our knowledge, “domain constitution” of a protein has not been considered
as a determinant of evolutionary rate. This results from the fact that domains are
large, discrete units of proteins, unlike fine scale properties like buried residues or
secondary structure elements. Instead, domains are typically considered as evo-
lutionary targets in their own right [64]. Domains share a natural history that
is similar in many ways to the phylogenies describing evolution at the level of
whole organisms [63]. Many modern domains are thought to have evolved and
radiated from lineages of ancestral domains, which were in turn derived from pri-
mordial protein folds. Domains without a shared evolutionary history may have
also acquired similar structures due to convergent evolution [65]. Note that this
is highly compatible with notions from designability theory. Classifying domains
based on these principles is the primary mission of databases such as Pfam [17],
CATH [66], and SCOP [15]. Some relationships between domains can be inferred at
the sequence level, but owing to the many-to-one mapping of sequences to struc-
tures, structure comparison methods are often critical for describing connections
between domains from distantly diverged proteins.

The discrete nature of domains has played an important role in protein evo-
lution. After the evolution of a handful of primordial domains, many new func-
tions could be efficiently evolved through their combination and permutation [67].
This process is facilitated by genomic evolution, in which pieces of genetic ma-
terial (such as those encoding amino acid subsequences responsible for protein
domains) are readily duplicated, fused, shuffled, and deleted [68]. In cases of do-
main duplication, while the original template continues to fill its role in the cell,
the duplicate has the freedom to explore sequence and structure space, possi-
bly acquiring new functions in the process [64]. The distribution of domains and
proteins produced in this process follows power law behavior [69,70], which is
emerging as a common trait among large scale biological systems. While inter-
esting, genomic perspectives on domain evolution take us too far afield from our
structural focus.
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4.5 Function

As mentioned in the introduction, it has been suggested that a protein’s func-
tional classification is generally not a good predictor of its evolutionary rate [6].
However, some basic functional attributes of a protein certainly have important
structural and evolutionary implications. For example, Kimura and Ohta demon-
strated as far back as 1973 that residues involved with binding the heme group in α

and β globin (the protein constituents of the hemoglobin molecule) evolve at one
tenth the rate of the background structure [71]. Residues like these contribute to a
protein’s functional density and hence to the revised fitness density as well. Unlike
structural properties that are common to many (or all) proteins, structure-function
properties tend to be highly specialized, and are better reviewed on a case-by-case
basis. A great deal of literature linking specific structure-function relationships to
evolution is available for the interested reader.

5. EMPIRICAL RESULTS: HIGHER ORDER PROPERTIES

5.1 Interfaces

We begin our discussion of higher order structural properties with a final sin-
gle protein property: interfaces. Although interfaces are properties of the unique
protein structure to which they belong, they form a variety of interesting larger
structures—each with evolutionary significance—when we consider them to-
gether. Interfaces are intimately linked with the notions of solvent accessibility
and burial discussed previously, and several studies have investigated both si-
multaneously. We consider this to be a preferred approach, as interfacial residues
and surface area (and their evolutionary contributions) will be wrongly counted
as exposed residues and surface area when proteins are considered independently.

An early study of the cytochrome c protein structure revealed that some por-
tions of the surface seemed to be experiencing unusually high functional con-
straint [72]. These surface residues were determined to be sites of interaction
with other proteins (interfaces). Subsequent studies have generally supported
the notion that interfacial surfaces are more conserved than the remainder of
the protein’s solvent-exposed surface, and slightly less conserved than the pro-
tein’s core [73]. Substitutions that do occur in the interface are heavily skewed
toward more conservative changes [53], as defined by the Grantham classifica-
tion scheme [74]. Exploiting the difference in evolutionary rate between interfacial
and non-interfacial sections of a protein’s surface has been proposed as a means
by which to identify interfaces in newly characterized proteins; this has proven to
be difficult in practice [75].

The notion that evolutionary rate of an “average interface” is intermediate to
those of buried and solvent-exposed portions of a protein seems very intuitive.
Interfaces will likely spend at part of their lives in a buried state (when interact-
ing) and another part in a solvent-exposed state (when not interacting). One might
therefore expect the rate of evolution at an interface to scale inversely with the pro-
portion of time that it is active; indeed, this is precisely what has been found [76].
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Evolutionary rate among residues belonging to transient interfaces is significantly
higher than for those found in constitutive (permanent) interfaces; rates for both
are intermediate to those of buried and solvent-exposed residues. Decreased evo-
lutionary rate at constitutive interaction sites may also reflect specific structural
constraints imposed by the protein’s interaction partner [76]. This represents a case
of coevolution between protein structures, an instance of a higher order structure-
evolution relationship.

5.2 Protein–protein interaction networks

Studying the topological structure (not to be confused with molecular structure) of
protein–protein interaction networks is a hot topic in systems biology research. In
such a network, proteins are represented as vertices, and interactions between pro-
tein pairs are represented as edges. For our purposes, interactions can be thought
of as direct physical connections between the involved proteins (such as those me-
diated by interfaces); other common notions of protein–protein interactions exist
that are equally important, but they lack structural significance. Interactions in
these networks tend to follow a power law distribution, such that a small number
of proteins have a very high degree (many interactions) and a large number have
a very low degree (few interactions) [77]. Proteins with many interaction partners
(hubs) tend to be essential and evolve slowly; whether or not there is a functional
dependence between the number of a protein’s interaction partners and its selec-
tive constraint has been a topic of contention [78]. Integrating network topology
with expression data has also shown that hub proteins can be divided into two
classes based on the timing of their interactions:

(1) party hubs, which interact with several partners simultaneously, and
(2) date hubs, which interact in a “one-partner-at-a-time” fashion [79].

The importance of integrating structural information into biological networks
has been recognized [80], but relatively few studies have actually taken this leap.
One such study related the number and extent of interfacial surfaces on a protein
to its behavior in a network [81]. This approach allowed hubs to be partitioned into
multi-interface and singlish-interface classes, which act as structural analogs of the
temporal party and date hub classifications, respectively (note: singlish implies 1 or
2 interfaces). While singlish-interface hubs can evolve a new interaction through
duplication and divergence of a partner, new interactions in multi-interface hubs
necessitate the creation of a new binding interface. Finally, the study concludes
that the extent of a protein’s surface area involved in interactions is a better predic-
tor of evolutionary rate than its number of interaction partners, in agreement with
previous proposals [82]. Other efforts have directly employed structural informa-
tion in network construction. We mentioned previously that it is difficult to predict
interfacial components of a protein’s surface based on conservation alone. Another
structural approach to interaction prediction involves the consideration of pro-
tein domains [83]. Recall that domains are large subsections of proteins, typically
with well conserved, discrete structures. Imagine that Domain A in Protein 1 and
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Domain B in Protein 2 are found to physically interact. Protein 3, having uncharac-
terized interaction potential, is found to contain Domain B, either by structure or
sequence comparison. It is reasonable to hypothesize that an interaction between
Protein 1 and Protein 3 may occur in the cell. Networks based on domain inter-
actions have been created following this logic with great success [84,85]. These
networks further highlight the importance of structural modularity in the evolu-
tion of single proteins and protein networks. Returning to the example, while it
is possible for Proteins 1 and 3 to interact on the basis of conserved domain rela-
tionships, this interaction is not a given. Conserved domain pairs that violate this
assumption are common, and typically only differ by a few surface mutations;
these subtle changes are enough to dramatically decrease the stability of the inter-
action [86].

Disordered (unfolded) regions of a protein are known to perform important
biological functions, in spite of relaxed constraint on their three dimensional struc-
tures. It has been shown that hub proteins, which are believed to be constrained by
coevolution with their interaction partners, are also more likely to feature intrinsic
disorder [87]. This provides another example of a pair of deterministic forces in
evolution with a paradoxical relationship. A recent work by Kim et al. addresses
this issue by considering the precise physical context of disordered regions that
occur in interacting proteins [88].

5.3 Protein complexes

Proteins seldom perform their functions in isolation. Either for the purpose of
building multi-component architectural structures or streamlining functions, pro-
teins are often grouped in space as complexes. This higher level structure is
metaphorically similar to the way in which domains are grouped to build more
sophisticated individual proteins. Note however that the combination of discrete
proteins into complexes is a purely physical process, whereas domains are linked
both physically and genetically by the underlying protein sequence. This first def-
inition of a protein complex is generally given to groups of proteins which all
interact constitutively. Complexes in this sense are analogs of the party hubs in
expression-based networks and multi-interface hubs in structure-based networks.
Evolutionary insights about these hubs are equally applicable to complexes, and
vice versa.

One of the interesting connections between evolution and structure in com-
plexes relates to the balance hypothesis, as described by Papp et al. [89]. This hypoth-
esis states that changes which affect the proportions of complex-forming proteins
in a cell will be deleterious, and hence purged by selection. A reduction in avail-
ability (either whole or partial) of a complex component limits the number of
complete complexes that the cell can build, which may have obvious fitness con-
sequences. Perhaps less intuitive is the fact that an over-available component may
also represent a fitness loss, either by disrupting the kinetics of proper structure
assembly, or by carrying out some “unsupervised” activity in its lone state. Thus,
evolution acts to maintain fixed stoichiometry among the components of impor-
tant complexes. It is possible, however, for the genomic segment encoding the



Structural Perspectives on Protein Evolution 17

entire complex to be duplicated, as in this case the stoichiometry among complex
components is maintained.

6. SUMMATION

The role that structure plays in protein evolution is evident on many scales. Sin-
gle residues feel differences in selective constraint according to the extent of their
solvent exposure. Whole proteins have a freedom to diverge that varies with the
degree of disorder in their native structures. Cassettes of independent structures
evolve together in order to maintain strict interaction proportions. These are exam-
ples of observations that have been made by considering real protein structures.
Above this level there exists an armamentarium of theory and models to describe
the structurally significant trends or events in protein evolution that we have not
yet been able to observe directly. Much has been learned, and much remains to be
discovered. Several ideas will motivate future work at the interface of structural
and evolutionary biology.

(i) More atomic level structure data is needed. While few would scoff at the
set of structures available in current databases, this represents only a minute frac-
tion of the proteins present in nature today. We have a notion that a small set of
structures is likely to be dominant among the protein universe. This notion lends
itself well to summary and classification, but not to exhaustive description of the
protein universe. As we saw in the case of domain interactions, the difference of
a few amino acids in otherwise identical folds can be enough to significantly dif-
ferentiate their behaviors. Advances in structure determination methods will be
useful for increasing the pool of solved lone and complexed protein structures,
which can then be pipelined into theoretical and empirical studies.

(ii) New ways of considering structure must be developed. Protein structures
mediate biological function, and their evolution is shaped by that relationship. Ap-
proaches that integrate structural information into biological analysis, particularly
analysis at the systems scale, will produce a more complete picture of the mech-
anisms that drive living organisms. Also implicit in this idea is a need for new
methods to describe structures. Designability, evolvability, and fitness density are
significant quantitative structural measures that influence a protein’s evolution.
How to precisely define and determine quantities such as these in real proteins
remains an open question.

(iii) Theoretical and empirical results must keep pace with one another. We
have a wealth of theoretical ideas concerning structure-evolution relationships.
While many of these are very intuitive and have a “sense” of relevance, true rel-
evance must be earned through explorations in real world systems. Advances
in modeling of the sequence-structure relationship—e.g., progress made in the
protein folding problem—will facilitate more realistic in silico models of protein
evolution. Better integration of available data and directed laboratory evolution
experiments will also aid in this goal. From the opposite perspective, theoretical
treatments of structural (and other) determinants of protein evolution must be ad-
vanced to better handle the wealth of data available to them. Thus far, the inherent
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noise and vast interconnections among these biological variables have proven to
be worthy adversaries to state-of-the-art analysis methods.

Current work in protein design and directed evolution promises to produce
exciting new discoveries at the interface of structure and evolution. These ap-
proaches seek to simulate the evolutionary processes we have discussed here in
a laboratory context, providing researchers with a realistically short evolutionary
timescale (the advantage of theoretical work) and the relevance of working with
real proteins (the advantage of empirical observation). For further review of these
approaches, see [90,91].

With continued progress toward these research objectives, we expect that our
knowledge of biology and evolution will continue to strengthen in the light of
molecular structure.
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1. INTRODUCTION

Druggability and selectivity analysis are increasingly performed in early drug dis-
covery for both target assessment and setting lead optimization strategies. This is
necessitated by the high failure rates in the drug discovery process—greater than
60% in early drug discovery screening and lead optimization stages alone [1]. In
target assessment, ideas are rated on target-validation, assay feasibility, drugga-
bility, and selectivity as it relates to toxicity and side-effect potential [2,3]. In lead
optimization, selectivity analysis can suggest both possible selectivity issues, as
well as regions of the binding site that allow the drug discovery team to over-
come these issues. Druggability analysis can be useful in suggesting additional
“hot spots” for increasing potency of lead compounds. This review covers compu-
tational approaches for assessing and predicting selectivity and druggability, and
those interested in computational aspects of target validation may want to read a
recent review by Loging et al. [4].
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2. SELECTIVITY

Selectivity analysis has the goal of identifying potential secondary pharmacology
and suggesting assays for following up predicted selectivity issues, as well as
identifying strategies for improving selectivity of small molecule leads. Profiling
for and optimizing against secondary pharmacology is important to the discov-
ery of compounds with decreased side effects, more desirable therapeutic profiles,
and greater therapeutic differentiation. For example, successful kinase inhibitors
such as imantinib (Gleevec) and sutanimib (Sutent) have a distinct selectivity pro-
file that confers efficacy and safety [5]. In terms of computational approaches,
analyses of increasing sophistication can be performed depending on how much
information is available—this includes protein sequence, protein structure, and
ligand information. The wide availability of these types of information for protein
kinases has allowed for a significant body of selectivity analysis work, which is
covered in reviews such as [6–9]. Readers interested in off-target cytochrome P450
inhibition, transporter-mediated efflux, and ADMET-related prediction for small
molecules may want to consider recent reviews in the Annual Reports in Compu-
tational Chemistry [10–12].

2.1 Ligand analysis
If ligands are known for the biological target, cheminformatics approaches are
useful in identifying potential selectivity issues, especially when they are used
in combination with aggregate compound databases that are annotated with bio-
logical activity. Such databases include historical databases maintained in-house
at biopharmaceutical companies, as well as Jubilant, GVK, MDDR, WOMBAT, and
StARLITe databases [13,14]. The idea of comparing targets by looking at the small
molecules that modulate them has been termed SARAH, for structure-activity re-
lationship homology [15]. In the original SARAH idea, experimentally measured
affinities for a diverse set of compounds represent an “affinity fingerprint” for a
target, and similar pharmacological profiles would indicate target homology in
SAR space [15]. From a drug discovery perspective, this approach is meaningful
since it identifies similarity based on inhibitor or antagonist/agonist profiles, and
an example where this experimental approach is applied to cysteine protease in-
hibitors is described in [16].

Small molecule screening data accumulated in compound databases can also
be used in identifying target homology in SAR space. One approach is to iden-
tify analogs of the known active compounds using similarity searches based on
2D chemical fingerprints [17], and then look at the biological activities of the
identified compounds. Conceptually, the confidence in the predicted selectivity
issue increases as a pair of biological targets share larger numbers of chemo-
types. This approach has traditionally been qualitative and subjective, and re-
cently several groups have sought to make the approach more systematic and
rigorous [18]. One way, termed the similarity ensemble approach (SEA) [19], takes
the summed similarity score over all pairs of ligands that two biological targets
share and compares it to the distribution of scores from random sets of com-
pounds, thus allowing calculation of a statistical confidence value that is similar
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to the E-value used in scoring BLAST [20] sequence searches. Another approach
is to generate a similarity score between two sets of ligands, but use Bayesian
models to weight compound substructures that contribute more to activity [21].
A pure machine learning approach can also be used, and involves training activ-
ity models and then using the models to predict off-target activities. Nidhi et al.
used a naïve Bayesian classifier to train models for 964 biological target activities
and found 77% prediction accuracy when predicting activities for a separate data
set [22].

These chemo-centric similarity approaches can help in identifying a selectivity
panel if there is sufficient a priori data, and can also be used after a high-throughput
screen (HTS) is complete and more ligands are known. The database SARAH ap-
proach has been applied in varying degrees of sophistication to nuclear hormone
receptors [23], kinases [8], and enzymes in general [24].

2.2 Sequence analysis

While ligand information is not always available, protein sequence information
is almost always available. Starting with the protein sequence, related proteins,
or homologs, can be found through sequence similarity searches such as BLAST
[20], where the typical search is a protein BLAST against human sequences in the
non-redundant sequence database [25]. Rat and mouse sequences may also be of
interest depending on the disease model that will be used. Once protein sequences
are identified, multiple sequence alignment of significant BLAST hits can be per-
formed using programs such as Clustal [26].

A variety of methods are available to cluster sequences and identify similarities
starting from the multiple sequence alignment, with the most straightforward of
these being pair-wise measurement of sequence identity or sequence similarity. Se-
quence identity is the percent of the residue positions that match, while sequence
similarity involves a substitution matrix where amino acid residue similarity is
taken into account. A more sophisticated approach to identify significantly related
proteins is to infer a phylogenetic tree based on the multiple sequence alignment.
Closely related proteins in a phylogenetic tree are, in general, likely to be selec-
tivity issues. Similarity and phylogenetic tree calculations can be performed using
software tools such as PFAAT [27], Jalview [28], and Mega [29], which are listed in
Table 2.1.

When information on the protein domain of interest is available, the sequence
analysis can be focused on the domain sequences. An even more detailed inves-
tigation of residues around the binding site can me made if there is information
about the desired drug interaction site from experimental data such as mutagen-
esis results or co-crystal structure information. For instance, in analyzing kinase
selectivity issues, workers often focus on residues lining the ATP binding site
[30,31]. In these binding site analyses, it is important to note that all residues do
not contribute equally to binding, and close inspection of the actual interactions
based on a crystal structure would be prudent [32,33]. For instance, a protein back-
bone interaction to the ligand does not depend strongly on amino acid type, and
prolines can change or rigidify the main chain conformation. An analysis of ki-
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Table 2.1 Some popular tools for performing selectivity analysis using protein sequence

Task Tool/resource Web link

Search for related
protein sequences

Blast http://www.ncbi.nlm.nih.gov/blast

Multiple sequence
alignment

Clustal http://bips.u-strasbg.fr/en/Documentation/
ClustalX/

Analyze a multiple
sequence alignment

PFAAT
Jalview
Mega

http://pfaat.sourceforge.net
http://www.jalview.org
http://www.megasoftware.net

Identifying
domains

NCBI
conserved
domain
database

http://www.ncbi.nlm.nih.gov/Structure/cdd/

nase inhibitors found that two non-conservative, energetically-important, residue
substitutions in the binding site are sufficient for gaining selectivity for a com-
pound [34].

When co-crystal structures are not available, Ortiz et al. have suggested us-
ing functional residue prediction methods to identify selectivity residues [35]. The
most popular of these methods are Evolutionary Trace [36] and ConSurf [37],
which use phylogenetic trees to predict biologically-relevant residues that are then
mapped onto a representative crystal structure.

2.3 Structure-based analysis

One significant limitation of sequence-based approaches is the inability to assess
selectivity issues between targets lacking sequence homology. For instance, pro-
tein kinase sequences cannot be aligned to phosphodiesterase sequences even
though selectivity issues have been observed between the two target classes.
Structure-based approaches can help to identify non-homologous selectivity con-
cerns when co-crystal structures are available. Such approaches can be classified
by whether they are receptor-focused or ligand-focused, as described below.

Receptor-focused approaches involve comparison of the physiochemical prop-
erties of residues that line the binding pocket. CavBase [38], SURFACE [39], and
SitesBase [40] are three examples. CavBase converts the portions of binding site
residues exposed to solvent into sets of points defined by one of five pseudocen-
ter types (aliphatic, donor, acceptor, donor/acceptor, and aromatic). For instance,
a tyrosine is represented by an “aromatic” pseudocenter placed in the middle of
the phenyl ring and a “donor/acceptor” pseudocenter placed at the oxygen of the
hydroxyl. The constellation of pseudocenters representing a binding site is then
compared to those of other binding sites using clique-detection algorithms that
identify matching portions of the constellations. This approach has been applied

http://www.ncbi.nlm.nih.gov/blast
http://bips.u-strasbg.fr/en/Documentation/ClustalX/
http://bips.u-strasbg.fr/en/Documentation/ClustalX/
http://pfaat.sourceforge.net
http://www.jalview.org
http://www.megasoftware.net
http://www.ncbi.nlm.nih.gov/Structure/cdd/
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to classification of the enzyme binding pocket in protein kinases [41]. SURFACE
represents each residue using just two pseudocenters, which represents the back-
bone Cα atom and the side-chain center of mass [39]. Instead of just scoring
for matches, an evolutionary amino acid substitution matrix is used. SitesBase
compares binding sites based on actual atoms and atom types (carbon, nitrogen,
oxygen, sulfur) instead of pseudocenters [40], and the approach was applied to
proteases [42].

Instead of basing comparisons off properties of residues that flank the bind-
ing site, ligand-focused approaches attempt to compare the actual small molecule
binding space. GRID/PCA [43,44], for instance, uses GRID to systematically sam-
ple the binding site with a set of chemical probes, and uses an energy function
to generate molecular interaction fields that represent areas of favorable affinity
for each of the probes. Applying principle component analysis (PCA) to the GRID
values then identifies consistency as well as differences in the interaction fields.
The method has been used to study a set of 13 ephrin receptor tyrosine kinases
[45] as well as a set of ten structures of CDK2 and GSK-3b [46]. Reported applica-
tions of GRID/PCA have generally focused on selectivity issues among proteins
with sequence homology, in part due to the necessity of receptor structure super-
position. The more recent GRIND/PCA method [43] does allow for comparisons
independent of structural alignment, and has been used to compare a homology
model of adenosine receptor A1 to four ribose-binding proteins [38]. The small
number of comparisons is likely due to the compute-intensive nature of GRID cal-
culations. Another approach [47] uses docking to identify a set of predicted active
compounds for the protein of interest, and this set is then docked to possible se-
lectivity targets. Targets with the most similar binding sites were shown to have
the highest docking scores.

For lead optimization, Sheinerman et al. [34] showed in the context of protein
kinases that energetically important residues could be identified using a system-
atic analysis of small-molecule structure-activity relationships in the context of a
protein family sequence alignment and available structures for compound bind-
ing modes. A quantitative method for optimization of electrostatic interactions—
including accounting for desolvation effects—was demonstrated for HIV protease
inhibitor design recently [48]. The approach uses mathematical optimization tech-
niques to define a ligand with maximal potency against a desirable set of targets
(a set of escape mutants for HIV protease) and minimal potency for an undesirable
set of human aspartyl protease “decoys” [48]. A rigorous but decidedly theoreti-
cal biophysical inquiry into the physical basis of selectivity found that polar and
charged groups increase specificity of ligand interactions due to their greater sen-
sitivity to shape complementarity as compared to hydrophobic interactions, and,
in addition, conformational flexibility can increase the specificity of polar and
charged interactions [49].

Molecular analyses are imperfect in that serendipitous binding modes are al-
ways possible. For instance, crystal structures of PXR show that ligands have
multiple binding modes [50], and protein kinases can adopt multiple inactive con-
formations that are druggable [51]. A dramatic example is shown in Figure 2.1,
where a small modification to a non-selective kinase inhibitor yielded 1400× se-
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FIGURE 2.1
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lectivity, most likely because of a flip in the binding of a terminal benzimidazole
group [52]. However, in protein kinases, most, if not all, of the major binding
modes have probably been identified and can be used in selectivity analyses [51],
although there is a possibility that allosteric sites away from the ATP active site
exist [53]. While serendipitous binding modes are an infrequent but important
consideration, computational methods are nevertheless useful as systematic, ob-
jective analyses for assessing the risk of selectivity issues as well as identifying
possible selectivity issues and strategies that should be experimentally consid-
ered.

3. DRUGGABILITY

What is “druggability”? It is ultimately the success of the compound in human
clinical trials. This includes not only compound properties but also aspects of
efficacy, safety, and commercial attractiveness which are difficult to predict. For
scientists engaged in drug discovery prior to clinical trials, ‘druggability’ can be
defined more tangibly in terms of the chemical matter at the high-throughput
screening and lead generation stages.

3.1 Ligand analysis

Traditionally, druggability has been assessed experimentally. At the HTS stage,
teams typically define “druggability” in terms of identifying a “druglike” small
molecule with activity in the one micromolar range, where the term “druglike”
refers to compounds with physical properties ranges similar to known oral drugs
[54–57]. Common “druglike” rules include polar surface area (PSA) less than
140 A2 [55], number of rotateable bonds less than 10 [56], molecular weight less
than about 500 Da, and no more than one rule violation in the Lipinski Rule-of-Five
[54]. For a more complete review of “druglike” properties, please see the recent
Annual Reports in Computational Chemistry review [58]. Project teams may pref-
erentially identify “leadlike” compounds with lower molecular weights and ClogP
values [57]. In the next stage, the lead generation stage, the project team typically
defines druggability as the potential to find a compound with nanomolar po-
tency, drug-like properties, as well as experimentally-measured properties related
to unwanted secondary pharmacology (for example, selectivity in the CEREP or
MDS Panlabs panel), metabolism (microsomal stability, hepatocyte stability, and
cytochrome P450 inhibition), and intestinal absorption (permeability, rodent phar-
macokinetics).

A group at Abbott has demonstrated that hit-rates from NMR-based fragment
screening are a good indicator of the target’s druggability [59,60]. The fragment
library consisted of “fragmentlike” compounds that have an average molecular
weight of 220 and average ClogP of 1.5. Screening a fragment library of around
10,000 compounds using NMR technologies may be more cost effective than
screening a full compound library that commonly contain over a million com-
pounds.
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3.2 Sequence analysis
In addition to the largely experimental screening approaches, druggability can be
assessed based on bioinformatics analysis of the protein sequence. Sequence sim-
ilarity can be used to determine whether the gene of interest is part of a gene
family or sub-family with known druggability status [61]. For instance, aminergic
G-protein-coupled receptors (GPCR) and protein kinases are known to be drug-
gable based on marketed drugs as well as collective HTS and medicinal chemistry
experience, and so a new aminergic GPCR or protein kinase would be expected to
be druggable as well. Hopkins and Groom did a systematic “druggable genome”
analysis to identify 130 gene families that are targeted by rule-of-five compliant
compounds, and they then identified proteins from the human genome that map
to these gene families [61]. The results suggest that only 10% of genes in the hu-
man genome map to precedented druggable gene families, and that only 5% are
both druggable and disease-relevant. The analysis has been updated by Overing-
ton et al. [62] as well as others [63–66], and workers at Novartis have set up a
public web server for running a target sequence query against known druggable
sequences at http://function.gnf.org/druggable/index.html, although the server
is only for academic and non-profit use [66]. Some have pointed out that the much
larger “druggable proteome” or “druggable targetome” is more relevant than the
“druggable genome” [67]. For instance, the proteasome can be inhibited by a small
molecule, and, in addition, there is emerging evidence that protein–protein com-
plexes such as MDM2-p53 are druggable. Nevertheless, the argument that only a
small fraction of targets are druggable is not generally contested, and argues for
the importance of assessing targets systematically [2,3].

3.3 Structure analysis
Whereas small molecule drugs usually bind to pockets, the reverse is not always
true—not all pockets on a biological target are druggable. Upon inspecting crystal
structures of druggable and difficult druggability protein binding sites, it becomes
clear that druggable pockets tend to be deep, hydrophobic, and of a limited size.
Druggable pockets tend to reflect the properties of the drug-like ligands that they
bind, and so they might also be called “drug-like binding sites” or “beautiful bind-
ing sites” [61,68].

How does one identify beautiful binding sites? Available algorithms include
those for identifying ligand-binding “hot spots” on the surface of protein struc-
tures, which include fragment-based approaches as well as statistical approaches
based on structural descriptors. A computational solvent mapping approach was
able to identify known druggable pockets based on known crystal structures, and
can further be used to identify hotspots on protein surfaces [69]. Another ap-
proach precalculates a van der Waals potential at nodes of a grid that envelops
the protein, and then searches for high-scoring grid clusters in order to predict
ligand binding pockets [70,71]. Statistical learning approaches include those de-
veloped for identifying functional sites [72]. One example is a neural net approach
called HotPatch [73] that is based on calculated electrostatic potential, charge, con-
cavity, surface roughness, and hydrophobicity values. HotPatch was successfully

http://function.gnf.org/druggable/index.html
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used by another group to predict an allosteric small-molecule site in caspases [74].
Another algorithmic approach that is easier to interpret combines probabilis-
tic distribution functions (PDFs) for a similar set of properties [75]. SiteMap
(Schrodinger, Inc.) identifies and scores binding sites based on the typical physio-
chemical properties and, additionally, a “hydrophobic enclosure” term, which
accounts for pocket shape in hydrophobic desolvation [76,77].

The approaches discussed so far, however, are focused on predicting pockets
for any ligand, as opposed to predicting sites for druglike ligands or how druggable
a given binding site is. The statistical approaches discussed so far could, in the-
ory, capture druggability given a training set. Work by Hajduk et al. [59] was the
first published approach using a statistical method to directly address druggability
prediction. They derived a druggability scoring function by performing statistical
regression of physiochemical properties calculated for a variety of protein pockets
to hit-rates from NMR screening of “leadlike” fragments. More specifically, pro-
tein pockets defined using an InsightII (Accelrys, Inc.) flood-fill algorithm were
analyzed to generate physiochemical descriptors, including surface area, volume,
roughness, and number of charged residues, as well as descriptors of the pocket
shape—pocket compactness and three principal moment descriptors. These cal-
culated descriptors were then fitted to NMR fragment-screening data to yield a
score, termed the ‘druggability index’ (DI):

Druggability index = −14.0 · XPocketCompactness + 13.6 · log(XPocketCompactness)

+ 2.98 · log(XApolarContactArea) − 0.023 · XApolarContactArea

+ 2.98 · log(XSurfaceArea) − 0.44 · log(XPolarContactArea)

+ 1.2 · log(XThirdPrincipalMoment) − 1.03 · log(XFirstPrincipalMoment)

+ 0.71 · XRoughness

− 0.16 · XNumberChargedResidues

− 1.11.

Other descriptors included in the regression (volume, polar surface area, total
contact area, and second principal moment) were found to be insignificant and
not included in the final equation. With the training set of 23 proteins, the model
yielded an r2 of 0.65 and a q2 of 0.56. On an external test set of 35 proteins, 94% of
the known druggable pockets were correctly predicted as druggable.

In another work, Cheng et al. took an approach that combines a biophysics
model with the concept of drug-like physiochemical properties [78]. Intuitively,
druggable pockets are hydrophobic [68,79], deep, and have a limited size. The
authors used a literature biophysical model for the hydrophobic effect and normal-
ized the equation for drug-like size. The resulting ‘Maximal Affinity Prediction’
(MAP) equation is an estimate of the maximal affinity of a given binding site for a
small molecule with ‘druglike’ properties.
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The MAP score is a continuous score reported as the estimated best Kd achiev-
able by a passively absorbed, non-covalent oral drug:

Maximal drug-like affinity = −γ (r) ·
Atarget

nonpolar

Atarget
total

· 300 Å
2
, where γ (r) = 45 cal

mol·Å2

1 − 1.4
rcurvature

.

The surface areas, A, are the measured nonpolar and total surface areas on the
defined binding pocket, and, for a concave pocket, the γ (r) term represents how
easily water will leave a hydrophobic cavity [80–83]. A deeper pocket would have
a smaller radius of curvature, rcurvature, and thus a larger γ (r), indicating that water
will leave more easily, while a completely flat surface would have an rcurvature of
infinity. The model is based on a physical model describing hydrophobic free ener-
gies of hydrocarbons in water [80,82], from which the authors then normalized the
surface area to account for drug-like properties—in particular, they normalized for
a druglike molecular weight cut-off of about 550 Da, which is equivalent to about
300 Å2 of surface area [78]. Interestingly, drug-like PSA constraints (<140 Å2) are
accounted for in the model if we assume that the protein pocket PSA complements
the ligand PSA. A high polar surface area on the protein pocket will reduce the pre-

dicted maximal druglike affinity, and for a pocket with PSA = 140 Å
2

and fairly
deep rcurvature = 6 Å, the MAP score is 5 µM.

In the MAP model, druggable targets have predicted Kd’s in the nM range,
while difficult targets had predicted Kd’s greater than 100 nM. In the retrospective
analysis, several targets were predicted to be difficult targets despite drugs being
on the market. Through scholarship they found that these predicted difficult tar-
gets were only druggable through a prodrug or active transport approach, point-
ing out that the approach is useful for predicting passively-absorbed, oral drug-
gability, and other approaches for achieving druggability such as covalent adduct
formation, metal chelation, prodrug development, active transport, and allosteric
modulation should be kept in mind for difficult targets. In a forward prediction
experiment, the authors successfully predicted the druggability of two novel drug
targets, fungal homoserine dehydrogenase and haemopoetic prostaglandin D syn-
thase, where druggability was determined by the outcome of a high-throughput
screen and subsequent lead optimization at Pfizer [78]. In theory, the lower the
maximal affinity of the target binding site, the more freedom the team has in
modifying the compound to optimize pharmacodynamic and pharmacokinetic
properties while maintaining efficacious potencies. The druggability boundary of
100 nM is generic, and the quantitative predicted Kd values can be useful where a
nM affinity inhibitor is, based on physiology, not needed [84].

Although the DI and MAP equations have different forms, the dominant terms
are exceptionally consistent. In the MAP model non-polar surface area and curva-
ture are the properties used, while in the DI model the highest-weighted descrip-
tors are surface area and pocket compactness (which correlates with curvature).

Since the methods use static crystal structures, one natural issue is how to cap-
ture protein flexibility. The MAP approach was robust to differences in the binding
site between different co-crystal structures for a set of enzymes where multiple co-
crystals were available at the time. The binding sites, however, were all enzyme
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binding sites that largely consist of stable secondary structure motifs (helices and
sheets), and binding sites that are composed of long unstructured regions will cer-
tainly see larger variations. For more flexible binding sites, molecular dynamics
(MD) simulation could be used. Indeed, applying the DI approach to snapshots
from a MD simulation was necessary and sufficient to correctly predict the drug-
gability of FKBP, Bcl-xL, and AKT-PH domain small-molecule binding sites [85].
These three binding sites involve long loop regions. Another group showed that
for three protein-protein binding sites (Bcl-xl, IL-2, and MDM2), MD simulations
starting from the apo-crystal conformations successfully resulted in sampling of
the known small-molecule bound conformation [86]. Both studies use known
druggable proteins, and it would be useful to know if difficult targets can be cor-
rectly assessed as well. The lesson here might be that even when starting from
ligand-bound structures, care should be taken in assessing druggability of bind-
ing sites involving any loop regions, and static structures should not be used at all
without simulation of their flexibility if the binding site is formed partially by loop
regions. If the experimental conformation in hand is calculated to be sufficiently
druggable however, flexibility becomes a non-issue. Flexible protein surfaces can
reveal more druggable binding sites than the static structures indicate, as been
shown crystallographically in the case of IL-2 [87,88], and calculating the inherent
flexibility or adaptability of a site may help in predicting its druggability [89,90].

For targets assessed or found through experience to be difficult, computational
methods can aid in lead optimization. In general, structure-based design methods,
such as those discussed earlier for identifying hot spots as well as those reviewed
in [91], can be useful in driving potency in a more directed manner. Pockets that are
difficult to drug tend to be polar, and quantitative charge-optimization approaches
can be useful in optimizing leads based on electrostatic interactions, taking into
account ligand and receptor desolvation which can be difficult to visualize [92].
Allosteric modulation is increasingly sought [93], and emerging computational
methods that combine druggable pocket prediction with functional residue pre-
diction may eventually aid allosteric drug identification [53].

4. CONCLUSIONS

This review covered cheminformatics, bioinformatics, and structure-based drug
design approaches and how they aid assessment of selectivity and druggability as
well as setting of lead optimization strategies. While computational approaches
will continue to improve in accuracy, they are nevertheless useful today for bring-
ing together data in a rational, model-based manner to inform experiments and
decision making.
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1. INTRODUCTION

Machine learning is an established tool in many problem domains ranging from
computer vision to stock markets to computational chemistry. A machine learning
algorithm automatically discovers patterns in historical data to improve future
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decisions or actions in complex applications. In biological and medical applica-
tions [1,2], often having large amounts of data, machine learning has shown great
promise in replacing some “wet-lab” experiments, guiding research, and elucidat-
ing underlying interactions within the data. For example, a learner can be trained
to identify functional residues on a protein, which may, in turn, suggest potential
binding mechanisms; such mechanisms can be further validated by mutagenesis
experiments. While a prediction can suggest a potential function of a protein, the
rules learned to make this prediction can provide further insight into underly-
ing mechanisms governing the functional interaction. In other words, these rules
characterize underlying mechanisms or interactions in the form of features [3] and
their relationships.

Machine learning is primarily concerned with developing algorithms that
“learn” and has deep roots in both artificial intelligence and statistics. Recently,
due to the ever increasing amount of available computer power and data storage,
machine learning has increased proportionally in popularity and has become es-
sential in many fields. In particular, neural networks and decision trees represent
two algorithms in machine learning that have been in main stream use for many
years. Many state-of-the-art learning algorithms have been developed on the ba-
sis of these two algorithms. Indeed, neural networks [4] have given rise support
vector networks [5] (support vector machines, SVM), Bayesian networks [6], con-
ditional Markov random fields [7], among others. Likewise, decision trees [8] form
the basis of many methods such as boosting [9], bagging [10], random forests [11],
among others. There exist two fundamental types of machine learning algorithms
derived from differing views in statistics: frequentist and evidential [12]. Decision
trees and neural networks belong to the former whereas Bayesian networks and
conditional Markov random fields belong to the latter.

Machine learning has gained popularity in biology with the analysis of high
throughput experiments such as microarray data analysis [13,14]. In recent years,
the machine learning approach has been extensively used in protein structure and
function modeling, which is the current focus of this review. While the application
of machine learning to protein structure and function modeling is no more difficult
than to microarray data analysis, its later adoption is due partly to a greater focus
on biophysical approaches and previously limited number of examples.

The outline of this chapter is as follows. The second section introduces a num-
ber of important supervised learning problems and illustrates how a biomolec-
ular application can be cast in each problem formulation. Specifically, modeling
protein–DNA interactions serves as the example for each of these formulations.
The third section summarizes recent applications of machine learning to biomolec-
ular modeling. The final section discusses current trends and future directions of
machine learning applications to biomolecular modeling.

2. MACHINE LEARNING PROBLEM FORMULATIONS

Machine learning can be broken down into a number of problem formulations.
The three major categories comprise supervised, unsupervised and reinforcement
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learning. In supervised learning, the algorithm is given a set of input and output
vectors in order to learn a mapping between input and output. In reinforcement
learning, the algorithm searches for appropriate actions for a given situation in
order to maximize some reward; in other words, the learner is not given optimal
outputs as in supervised learning but must learn the outputs under some guid-
ance. In unsupervised learning, the algorithm is only given input vectors and must
find some internal representation of the input data either by clustering similar ob-
jects into groups or estimating the distribution (density) of the data. Each of these
learning formulations has found applications in biology. For instance, both super-
vised and unsupervised learning have been used in the analysis of microarrays
[13,14]. Likewise, reinforcement learning has been applied to the identification of
unique protein fragments [15], which have been applied to ab initio prediction [16]
and homology detection of proteins [17]. Here, we will focus on supervised learn-
ing problems and for clarity each formulism will be accompanied with an example
that involves modeling protein–DNA interactions. Most examples are taken from
published work and ongoing research in the lab.

Before continuing the discussion of machine learning problems, let us first
review the importance of protein–DNA interactions. In a cell, proteins interact
with DNA to replicate, repair and regulate DNA-centric processes; we refer to
these proteins as DNA-binding proteins (Figure 3.1). They comprise roughly 7%
of proteins encoded in the eukaryotic genome and 6% in the prokaryotic genome
[19]. They also represent a diverse set sequences, structures and functions. For
example, Luscombe et al. [20] classified DNA-binding proteins into 54 structural
families. A DNA-binding protein uses specific site(s) (set of residues) to bind to
a DNA sequence; these specific interactions have received commiserate interest
from molecular biologists who have developed a number of techniques to investi-

FIGURE 3.1 A restriction endonuclease BglII bound to DNA (1DFM) rendered in PyMOL [18].
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Table 3.1 Supervised machine learning problems

Problem Input Label Loss

Binarya (�x, y) y ∈ {+1, −1} Pr(h(�x) �= y)
Multi-classa (�x, y) y ∈ {0, 1, . . . , m} Pr(h(�x) �= y)

Ranking (�x, y) y ∈ {+1, −1} E[
∑

i �=j 1(yi>yj)π (xi,xj)∑
i<j 1(yi>yj)

]

Regression (�x, y) y ∈ R E[(h(�x) − y)2]
Importanceb (�x, y, w) y ∈ {+1, −1} E[wI(h(�x) �= y)]
MILc (�x1, . . . , �xn(i), y) y ∈ {+1, −1} Pr(h(B) �= y)
Structuredd (�x, y, �c) y ∈ Y E[ch(x)]

a Classification.

b Importance-weighted classification.

c Multiple-instance learning.

d Structured-prediction.

gate mechanisms governing protein–DNA interactions [21–25]. A computational
approach to identify these sites not only aids in such an investigation but also
serves to guide future experiments.

For the purpose of the discussion on machine learning, we will use the fol-
lowing definitions and notation. Let (�x, y) be a labeled example where xj ∈ �x,
j = 1, . . . , m is a vector of numerical attributes xj and y is an associated label.
Let m be fixed such that every attribute vector has the same length. We denote the
probability of an event as Pr and the probabilistic expectation of an event as E.
In supervised learning, we are given a set of examples (�xi, yi), i = 1, . . . , n called
training data. From this data, a learning algorithm L attempts to find a hypothesis
h minimizing some loss l and maps �x to y, i.e. ŷ ← h(�x). The loss measures how
well the hypothesis maps the input training vectors to the corresponding output
class label; in other words, how many mistakes the hypothesis makes when pre-
dicting the label of an input vector. This hypothesis can then be evaluated on its
ability to generalize the training data to unseen testing data. A supervised learn-
ing problem largely depends on three elements: input vector data (�x), output class
(y) and loss (l) (see Table 3.1). Consider DNA-binding protein prediction, x can be
a 20-dimensional vector describing the composition of amino acids in a protein
and y can be the either binding to DNA or not. The training data comprises the
known DNA binding and non-binding proteins and the loss function can be the
percentage of misclassified proteins.

2.1 Classification

Classification is probably the most common supervised machine learning for-
malism where an example is assigned a grouping based on some hypothe-
sis learned over a set of training examples (�x, y). A classification algorithm (or
classifier) searches for hypothesis h that minimizes the classification error e =
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Pr(h(�x) �= y). One common classification problem is binary classification where
an example is placed in one of two mutually exclusive groups, y ∈ {1, −1}. Note
that many binary classifiers produce a real-valued output such that R ← h(�x).
A threshold is applied to the real value, signt[h(�x)] ∈ {1, −1} such that if the real
value exceeds the threshold t then the output is 1 otherwise the output is −1.

The performance of a classifier may be measured by a number of metrics. We
have four basic counts to tabulate a binary prediction: TP (True Positive), FP (False
Positive), TN (True Negative), and FN (False Negative). Most metrics are calcu-
lated from these four numbers. A standard classifier minimizes the error estimated
by the number of mistakes over the number of predictions; this is often measured
by the accuracy (TP + TN)/(TP + TN + FP + FN). Nevertheless, a binary classifier
can make two types of errors, one for each class. For the positive class it is called
sensitivity TP/(TP+FP). Similarly, the for the negative class it is called specificity:
TN/(TN + FN). Note that each of these metrics depends on the threshold used
for a real-valued classifier, e.g. a higher threshold will lower the sensitivity and
increase the specificity.

An example binary classification task is to predict whether a given protein
binds DNA using sequence- and structure-based information. In this task, the
data set comprises a set of non-homologous proteins where the positive exam-
ples bind DNA and the negatives do not. Each protein can be represented as a
set of features describing sequence- and structure-based characteristics. Typical
features used in protein representation include sequence composition, hydropho-
bic patterns, evolutionary conservation, among others. For the specific nature of
protein–DNA interaction, the features related to electrostatics such as charge of
the protein and the surface positive electrostatic patch play a dominant role in dis-
tinguishing the binding behavior [26]. DNA binding protein prediction has been
tackled by a number of published works using classifiers such as hidden Markov
models [27,28], neural networks [29,30], support vector machines [3,26,31], logistic
regression [32] and boosted trees [3]. In terms of classification, the best published
results are about 86% [26] to 88% [3] accuracy.

A number of works have also explored using only primary sequence to repre-
sent a protein, often using a set of physio-chemical properties [33–35]. Indeed, the
importance of a machine learning approach to sequence function assignment lies,
in that, it works irrespective of sequence similarity. To this end, the data sets in
published work are usually non-redundant: no two sequences share more than a
certain percentage of sequence identity i.e. 40% [35], 25% [33] and 20% [34]. These
approaches achieved 86%, 70% and 77% (RNA/DNA together) accuracy in dis-
tinguishing DNA-binding proteins from non-binding proteins, respectively. Note
that for each work, the data set is significantly different and the only direct com-
parison was carried out between Fujishima et al. [34] and Cai et al. [35] where the
difference in terms of accuracy was about 1%.

Another example binary classification task is to predict whether a given
residue in the protein binds DNA. The data set for this task comprises a set of
non-homologous structures solved in complex with DNA, which are decomposed
into individual residues. The positive examples are surface residues close to DNA
and all other surface residues are negative. Each residue can be represented as
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a set of features comprising residue type, secondary structure or predicted sec-
ondary structures, composition of residues within a predetermined radius, etc.
This problem has also been investigated by a number of published works using
classifiers including neural networks [36] support vector machines [31,37,38] and
Naïve Bayes [39]. The performance of these methods ranges from 70% for sequence
alone [38] to 78% using sequence plus evolution information [39] to 82% using se-
quence and structure and evolution [37].

The problem of classification can be extended to multiple classes where an ex-
ample is assigned to one of several mutually exclusive classes, y ∈ {0, 1, . . . , k}
where k > 2. An example multi-class classification task is to predict the type of in-
teraction between residue and DNA, which can be broken down into three classes:
side-chain sugar, side-chain base and none. The training data remains the same
as the previous example except the label on each example is now one of these
three classes: side-chain sugar, side-chain base and none. Another example can be
the prediction of proteins with properties of DNA binding, RNA binding, and no
binding to nucleic acid.

2.2 Ranking

Ranking is a supervised learning technique that attempts to order predictions such
that the top ranked predictions are more likely to be the class of interest. Since
many classifiers produce a confidence in prediction (e.g. for support vector ma-
chines this is the distance from the margin), these same classifiers can be treated
as ranking algorithms. Thus, the setup of this problem is very similar to classifi-
cation except instead of measuring the results in terms of error, a ranking metric
such as the area under the receiver operating characteristic curve (AUR) is used.
The receiver operating characteristic curve plots the sensitivity versus the one mi-
nus the specificity over all thresholds in a real-valued binary classification system.
A standard ranking algorithm attempts to minimize the expected AUR as follows:

l = E
[∑

i�=j I(yi > yj)π(xi, xj)∑
i<j 1(yi > yj)

]

where I(·) gives one if the expression is true and zero otherwise and π(xi, xj) gives
one if xi, xj are in the correct order and zero otherwise [40].

An example ranking problem is to predict the top n residues most likely to bind
DNA. This is motivated by the problem where an experimentalist wishes to make
several mutations in a protein to find the most important binding site and could
use guidance from a machine learning algorithm. Likewise, one may wish submit
multiple proteins to a server and retrieve a ranking of the top n most likely to bind
DNA. Most classifiers can serve as ranking algorithms (although they do not min-
imize the AUR) such that the method of evaluation determines which problem is
solved. To this end, many publications analyze the AUR or the receiver operating
characteristic plot in order to measure the ability of their technique to rank more
relevant examples (e.g. proteins that bind DNA) higher than irrelevant ones [3,
32]. In terms of ranking, the best published results range from 88% [3] to 93% [32]
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area under the receiving operator curve (on two different data sets) when ranking
potential DNA-binding proteins over non-binding proteins.

2.3 Regression

Regression is a supervised learning technique that attempts to assign a real-valued
output to an example. Similar to classification, a regressor learns a hypothesis over
a set of training examples (�x, y); however, in regression, the class value is some
real number, y ∈ R. A regression algorithm searches for hypothesis R ← h(�x) that
minimizes the mean squared error e = E[(h(�x)−y)2]. Note that this formulation has
been widely used in drug design with QSAR [41], which is short for quantitative
structure-activity relationship.

An example regression task is to predict the affinity of a protein binding to
DNA. There are a number of experimental methods including ChiP-chip [22,23]
and footprinting [21] to ascertain protein–DNA binding affinity. Indeed, an effi-
cient approach to predicting binding affinity involves training a regressor over
example DNA-binding sites where the label corresponds to their affinity for DNA
derived from ChiP-chip data [42]. The results of published work demonstrate that
this method better predicts affinities in 86% of the cases when compared to PSSM
(position-specific position matrix).

2.4 Importance-weighted classification

Importance-weighted classification assigns a higher cost to misclassifying spe-
cific examples over others. In this problem, every training example is given a
weight, (�x, y, w). The resulting classifier searches for hypothesis h that minimizes
the weighted misclassification error e = E[wI(h(�x) �= y)] where I(·) gives one if
the expression is true and zero otherwise. The output of the hypothesis remains
h(�x) ∈ {1, −1} and the test cases are unweighted, (�x, y). Note that a special case of
importance-weighted classification is cost-sensitive classification where each class
is given a weight i.e. the weight on each example depends on its class.

Generally, a residue is classified as DNA-binding if it is found within a specific
radius of DNA. However, under this definition, a residue found in the vicinity
of DNA regardless of actual interaction is assigned as DNA-binding. Assigning a
weight to training examples based on interaction type and/or count biases the
learning algorithm toward residues more likely to bind based on information
known a priori. Likewise, given that there are considerably less binding residues
compared to non-binding, a cost-sensitive classification problem (special case of
importance-weighted) can be used to maintain a balanced accuracy in terms of
sensitivity and specificity. When balancing sensitivity and specificity of a neural
network, published work has achieved a balanced accuracy of 64% [43].

2.5 Multiple-instance learning

In the multiple-instance learning (MIL) problem, examples are organized into
groups called bags and the label is associated with the bag, not the example. A bag
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is labeled positive if at least one example in the bag is positive, otherwise the bag
is negative. Note that it is unknown which example in the positive bag is positive
only that at least one example in the positive bag is positive. Formally, unlabeled
examples �x are organized into bags �x ∈ B and each bag has an associated label
y ∈ {0, 1}. The training data for this problem comprises labeled sets of bags {B, y}.
An MIL algorithm searches for hypothesis h(B) ∈ {0, 1} that minimizes the bag-
level classification error e = Pr(h(B) �= y) where h(B) = h(�x1)∨h(�x2)∨· · ·∨h(�xm) and
h(�x1) ∈ {0, 1}. The symbol ∨ denotes the logical OR operator. Note that multiple-
instance learning can be seen as classification with positive class noise.

Consider the residue–DNA interaction problem where the only available train-
ing data consists of a set of non-homologous proteins consisting of ones known
to bind and not to bind DNA. The interacting residues are not known. In the MIL
problem formulation, the residues form examples and the proteins bags. Note that
a protein, which binds DNA, must have at least one residue (usually more) that
binds DNA and a non-binding protein will not have any such residues; this sat-
isfies the conditions of MIL. Based on this data, an MIL algorithm can learn to
predict which residues bind DNA without having labeled residues in the train-
ing data. This formalism is very attractive since there are many proteins with
known function lacking the information of specific functional residues. Apply-
ing MIL in DNA binding residue prediction can achieve similar accuracy when
compared with binary classification, but requires only the bag level information
(unpublished work).

2.6 Structured-prediction

In the classification setting, every example is assumed to be independent of every
other example. However, there are cases where dependencies exist between exam-
ples and the label corresponding to such dependent examples forms a complex
object. The structured-prediction problem attempts to predict a complex object
such as a protein interaction network, phylogenetic tree, a binding site on a pro-
tein, etc. In short, a structured-prediction problem D is a classification problem
where y ∈ Y (the space of the label on an example) has a structure. For a finite
set of data structures, the learning algorithm searches for the structured output
that minimizes the expected cost E[ch(x)] of example x [44] where cost measures
the dissimilarity between the example and a proposed structured output.

An example of a structured-prediction problem is to predict a DNA-binding
site on the protein where an example comprises an arbitrary set of residues on
the surface and the corresponding label is some graph structure representing the
binding site. For instance, this graph structure could encode the distances between
residues that participate in binding. A number of published works have hit on this
formulation but have used some post-processing technique (rather than a proper
structured-prediction technique) to incorporate basic structural information [38,
45,46]. The accuracy of these methods ranges from 70% [38] to 89% [46] depending
on the post-processing technique.
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3. APPLICATIONS IN PROTEIN STRUCTURE AND FUNCTION MODELING

In this section, we expand our review in protein–DNA interactions to other ma-
chine learning applications to function and structure prediction. While a full
review of machine learning applications in computational biology has been re-
viewed by others [47], here we focus on several popular problems. In the follow-
ing, we review machine learning applications to protein function with interactions
to RNA, membrane, peptide and other protein, as well as the effect of single amino
acid polymorphisms on function and the prediction of protein localization in the
cell. In addition, we review applications of machine learning to structure predic-
tion including secondary structure prediction, homology modeling, fold recogni-
tion and ab initio folding.

3.1 Protein–RNA

Similar to protein–DNA interactions, protein–RNA interactions also perform vital
roles in the cell including protein synthesis, viral replication, cellular defense and
developmental regulation [145,146]. One major direction in the analysis of protein-
RNA interactions is to identify proteins that bind RNA based on features derived
from physio-chemical properties of the sequence. A number of published works
have focused casting this problem as a binary classification problem using the sup-
port vector machines (SVM) classifier to identify proteins that bind RNA [33–35,
51]. Each of these works derived large data sets from the SwissProt database and
applied the support vector machines classifier to discriminate protein sequences
that bind RNA from all other sequences. Since sequence analysis techniques can
identity homologous proteins as having similar function, most of these works re-
duced the redundancy of the data sets below a certain threshold: <40% [35], <25%
[33] and <20% [34] sequence identity, each achieving an accuracy of 92%, 77% and
77%, respectively (the last result combines RNA/DNA).

Other studies have focused on identifying surface residues that bind RNA. For
example, this problem has been cast in the binary classification setting where the
data comprises annotated structures gathered in a fashion similar to DNA-binding
residue prediction; these works have employed a number of classifiers including
neural networks [48,49,52], SVM [53] and Naïve Bayes [54]. This problem has also
been cast in the structured-prediction setting, which is decomposed into a binary
classification problem (solved by neural networks) followed by post-processing
[50]. Likewise, given the imbalance in the number of examples belonging to the
positive class versus the negative class, i.e. one positive to five negative, a few
works have employed the cost-sensitive binary classification setting to achieve a
balanced sensitivity and specificity using SVM [48,49]. These works range in per-
formance depending on the available data. That is, for sequence-based methods
[48,50,52,53] the performance ranges from 74% [48] to 86% [50]. Likewise, the ac-
curacy of structure-based methods [49,54] ranges from 85% to 87%, respectively.
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3.2 Protein–membrane interactions
Protein–lipid interactions are involved in many crucial cellular processes includ-
ing signaling, a critical component of every cell. A large number of cytosolic
proteins bind reversibly to the membrane (specifically or non-specifically) in or-
der to perform their function; e.g. they bind to membrane to meet a signaling
partner. This can reduce a three-dimensional search for a binding partner to a
two-dimensional search on the membrane surface; moreover, this search is fur-
ther restricted to certain lipids according to specific binding interactions. Interest
has grown considerably in recent years in one such group of proteins, known as
peripheral membrane-binding proteins, which localize to the membrane in order
to find their binding partners [147–149]. These membrane-binding proteins re-
versibly bind lipids in the membrane using a number of mechanisms including
specialized domains or just a specialized surface area.

Previous work cast the problem of predicting a protein to bind lipid in the
binary classification setting and applied SVM to solve this problem. Specifically,
Bhardwaj et al. [55] constructed a data set of protein structures carefully anno-
tated to bind (or not to bind) membranes in a reversible fashion. Each protein was
translated into a feature representation using both structure and sequence-based
characteristics. The prediction of the membrane binding behavior of four pre-
viously uncharacterized C2 domains were validated by experiments. This work
achieved over 90% accuracy in discriminating peripheral membrane-binding pro-
teins; it was further improved to 93% accuracy in a later work [3]. In other work,
Lin et al. [56] selected a subset of protein sequences from the SwissProt [150]
database comprising a generalized class of proteins that bind (and not bind) lipids.
They built an SVM model using features derived from physio-chemical properties
of the sequences. Their method is evaluated for both full length sequences and
sequence domains achieving 86.8% and 89% sensitivity (probability an example is
predicted positive given it is positive), respectively.

3.3 Protein–protein interactions
Proteins interact with many polymers (including themselves) in the cell and
protein-protein interactions represent a majority of cellular activity. Interactions
between proteins are more complex than interactions between protein–DNA,
–RNA or –membrane given the wider range of shapes and possible interactions.
Nevertheless, a number of successful approaches have characterized protein-
protein interactions by motifs [102], sequence conservation [96–100], structural
properties [94,151,152] and hot spots [93,153] (a few select residues on the sur-
face that completely characterize binding). For instance, one approach uses a
structured-prediction technique (a probabilistic network similar to Bayesian net-
works) to search for important motifs based on known interactions [102]; this
approach was tested over the MIPS [154] and DIP [155] databases. Other ap-
proaches have cast this problem in the binary classification setting using support
vector machines [96–98,101] and neural networks [94,99,100] over protein–protein
complexes culled from the protein data bank (PDB) [156]. While many of these ap-
proaches represent the proteins using sequence conservation and structure-based
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features [96–98,100] with a performance near 77% accuracy (98% for homodimers
alone [99]), a few approaches use purely structure-based features [94,101] achiev-
ing 44% accuracy. These latter approaches point out that while conservation is a
powerful feature, it often leads to unreliable results [101]. Besides conservation
and structure, a recent approach derives features from sequence alone to repre-
sent proteins and trained a neural network to discriminate interaction hot spots
[95] (rather than full interaction patches); this work claims 89% accuracy in dis-
criminating hot spots using sequence alone.

3.4 Protein–peptide interactions

Immune response is an important cellular process mediated by protein–peptide
interactions; specifically, the interaction between major histocompatibility com-
plex (MHC) class I molecules and short pathogenic peptides has been extensively
studied to better aid vaccine design for pathogens, autoimmune and cancer [157].
The source of data for most published works comes from three sources: the SYF-
PEITHI [158] database, the MHCPEP [159] database and laboratory experiments
[135,144]. The representation of the peptides is less complex than for proteins; usu-
ally the identity and/or physio-chemical properties of a residue at each position
is sufficient. For this task, the goal of the learning algorithm is threefold: to cor-
rectly classify peptides binding (classification) [133–141], order binding by affinity
(ranking) [138–141,143,160] and assign a reasonable affinity (regression) [141–144].
The learning algorithms applied in the classification and ranking settings include
boosting [141], support vector machines [133,138–140,143,160], neural networks
[134,135], decision trees [137] and hidden Markov models [136] while only support
vector machines [142–144] and boosting were applied to the regression setting.
One benchmark [141] suggests boosting Gaussian mixture models performs best
in terms of area under the ROC, which achieved 0.976 compared to SVMHC [140],
which achieved 0.947 on the same data set.

3.5 Subcellular localization

Knowing the location of a protein in a cell helps to narrow its possible functional
characteristics and thusly guide experimental strategies [161]. Subcellular local-
ization is a classic multi-class classification problem where a protein sequence is
assigned to one of four to sixteen compartments depending on the problem ad-
dressed: single organism, single process or all organisms. There seem to be few
consistent data sets in subcellular localization literature where many researchers
choose to create their own from the SwissProt. Indeed, there has been consider-
able research in formulating the subcellular localization problem in the multi-class
classification setting and this has been extensively reviewed for neural networks,
hidden Markov models, self-organizing map and support vector machines [162].
In more recent research, this problem has been tackled by multi-class extensions of
support vector machines (SVM) [103–119]. The two most popular multi-class ex-
tensions used in subcellular localization are one-versus-one [103,105,108,110–112,
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114,119] and one-versus-all [104,106,107,113–118]. That is, in one-versus-one a bi-
nary classifier is trained for every pair of classes and the final prediction belongs
to the class with the highest number of votes; in one-versus-all, a binary classi-
fier is trained on the full data set where one class is selected to be positive and
all other classes are negative; the final prediction is the class predicted positive
when all others are negative. In both of these extensions, a set of predictions may
result in a tie between two or more classes; thus, many of the proposed methods
estimate a vector measuring probability this example belongs to a particular class
and use this probability vector to break any ties [104–107]. Indeed, the probabil-
ity estimation problem is special case of regression where the training examples
have probabilities {0, 1} and predictions are probability estimates that attempt to
reach these target values. Nevertheless, there are a number of other methods to
extend binary classifiers to multi-class classification tasks; one such method is
hierarchical decomposition [109]. This approach to multi-class tasks leverages ex-
tra information often available in many problems. For instance, when classifying
whether a protein is located in one of three compartments: the cytoplasm, mi-
tochondria or chloroplast, we can arrange these categories in a hierarchy, where
classifying cytoplasm/non-cytoplasm is at the root and mitochondria/chloroplast
is the branch followed when non-cytoplasm is predicted. This problem has also
been cast in the cost-sensitive (a special case of importance-weighted) multi-class
classification setting in order to deal with the large discrepancy in the number of
examples belonging to each class [114]. The representation of sequence for many
approaches to subcellular localization includes amino acid composition [103–112],
conservation [104,106–112], sequence order [105,110,113,114,119], physio-chemical
properties [105,108,114–118], presence of motifs [106,107,109], secondary structure
prediction [106,109] and accessible surface area prediction [106]. Given the rather
large number of features, many of which are irrelevant, a number of approaches
utilize feature selection [106,115,118] or train classifiers on sub groups of features
and combine the subgroup predictions using another classifier [105,107,110,112]. It
is hard to estimate the performance in subcellular localization as there is no defini-
tive benchmark; furthermore there are a number of subproblems.

3.6 Single amino acid polymorphisms

With the completion of the human genome project, attention has shifted to human
genomic variation. One type of variation that has received significant interest of
late is the single nucleotide polymorphism (SNP). With an average density of 1
in 300 base pairs, SNPs account for a good deal of the individuality and diversity
in the human population [163–166]. A SNP that causes an amino acid substitu-
tion in the protein product is known as a non-synonymous SNP (nsSNP) or also
as a single amino acid polymorphism (SAP). Indeed, SAPs account for about 50%
of the genetic diseases caused by SNPs [167]. To this end, large scale efforts such
as the HapMap project [163] have accumulated considerable SAP-related data in
databases such as dbSNP [168]. However, these high-throughput experiments fail
to fully characterize SAPs in terms of disease association. Furthermore, the under-
lying mechanisms that lead disease are poorly understood. Thus, computational
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efforts have been employed to classify a given SAP in terms of its disease associ-
ation. Machine learning approaches have cast this problem in the binary classifi-
cation setting and subsequently solved the problem with a variety of algorithms
including Bayesian networks [57], neural networks [58], decision tree [59,60], ran-
dom forests [61] and SVM [60–64]. The best published results in this problem
achieve 82% accuracy using a number of powerful features including structural
neighbor profile, secondary structure and conservation [62]. However, the data
set used in each study is different, thus preventing a straightforward comparison
among those works.

3.7 Protein secondary structure prediction
Predicting the secondary structure from sequence has been a long studied prob-
lem [169,170]. Most currently successful methods employ evolutionary informa-
tion in the form of position specific profiles, which rely on fast, accurate iterative
search tools such as PSI-BLAST [121,123,124,127–132]. Other techniques rely on
physio-chemical representations [126], multiple sequence alignments [120], and
meta-learning (combining outputs of other methods) [125,171]. The secondary
structure prediction problem can be viewed as both a multi-class and a structured-
prediction problem. Firstly, to handle the multi-class problem, many approaches
use multi-class learners such as neural or Bayesian networks [123–125,128,129],
multi-class [172] support vector machines [130,131], and multi-class extensions
of support vector machines such has one-versus-one [126,131] and one-versus-all
[120–122,131,132]. Secondly, whether a particular residue forms a helix, sheet or
coil to a large extent depends on its neighbors; this means each example residue is
dependent on other example residues, a typical structured-prediction task. To this
end, most successful methods use two stages where the first stage makes a multi-
class prediction and the second stage utilizes this and the neighboring predictions
to determine the best class assignment [127–132]. The current performance of sec-
ondary structure algorithms can be found on the EVA web site1 [173].

3.8 Protein tertiary structure prediction
Protein structure prediction is a central problem in molecular biology and accord-
ingly many techniques have been developed to detect the structural class of a
primary sequence. The structure of a protein provides a rich set of features, which
can be used to determine the function of the protein. However, the corresponding
experimental methods such as x-ray crystallography and nuclear magnetic reso-
nance (NMR) spectroscopy are very time consuming (on the order of months to
years) and expensive. Moreover, while there are thousands of protein structures in
the PDB, there are still millions of sequences with structures that are yet unsolved.

There are two main classification systems to organize proteins based on their
structure: CATH [174] and SCOP [175]. These systems are used to label training
data for a number of supervised learning problems found in protein structure pre-
diction. This problem is divided into three subproblems depending on the data

1 http://cubic.bioc.columbia.edu/eva/.

http://cubic.bioc.columbia.edu/eva/


54 R.E. Langlois and H. Lu

available. Firstly, when a sequence shares more than 35% sequence identity to a
sequence with a known structure, a sequence analysis technique is sufficient to as-
sign structure. Secondly, when there is no sequence similarity, a similar structure
may exist and can be found with a fold assignment algorithm. Finally, the structure
can be estimated by first principles using a search (or sampling) algorithm in con-
junction with some measure of the native state. The performance of the techniques
listed below are evaluated every two years in a double blind competition called the
critical assessment of techniques for protein structure prediction (CASP2).

3.8.1 Homology detection
Many successful techniques have been developed to find similar sequences [176,
177], which generally have the same structure. However, when the sequence sim-
ilarity drops below a certain threshold (arguably 40% sequence identity), such
techniques fail to find sequences that share a similar structure. When there is no
result with more than 40% sequence identity, a machine learning technique may
then be employed to find a template sequence (with structure). One approach
casts this problem in the ranking setting and utilizes the efficient representation
of kernel classifiers [66–69,71]. Another approach, called semi-supervised learn-
ing, leverages the large amount unlabeled sequence data to build a more accurate
model similar to PSI-Blast [72–74]. Yet another approach uses sequence-structure
correlations [75,76] or motifs [77] as features in conjunction with kernel methods.
Likewise, this problem can be posed in the multi-class classification setting [65]
where a sequence is assigned to one of a finite set of families. And finally, this prob-
lem has also been cast in the multiple-instance learning setting where an arbitrary
number of motifs found in the sequence are represented as instances belonging to
the sequence bag. Thus, if a protein sequence belongs to a particular fold (e.g. TrX
or Thioredoxin) then one motif must match this fold [78]. This type of problem set-
ting works especially well for folds such as the TrX domain where the existence of
a single motif (in conjunction with other features) is enough to classify the protein
as having this domain.

3.8.2 Fold assignment
The fold assignment problem matches a sequence to a structural fold irrespective
of sequence similarity. One traditional method, called protein threading [178–
180], threads a protein sequence along a structure and evaluates some measure
of “goodness.” In other words, this problem requires the algorithm to search for
the best alignment between the query sequence and the target structure. Select
published work has focused on selecting the best alignment in the binary ranking
setting. Indeed, this work has focused on learning a better scoring function using
neural networks over a set of decoys where near native decoys serve as positive
examples and other decoys as negative [86–89]. Likewise, the problem of select-
ing the best alignment has been cast as a regression problem where each training
example is labeled with its distance to native [90]. Other work has focused on the
alignment as a complex object; in this case, the structured-prediction setting is the

2 http://predictioncenter.gc.ucdavis.edu/.
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appropriate machine learning problem. For example, Yu et al. [91,92] attacked this
problem using a structural SVM algorithm [181].

The previously described threading algorithm can be viewed as a generative
machine learning technique. A generative technique requires only a single exam-
ple whereas a discriminative technique requires a set of both positive and negative
examples. This problem has been cast in the binary classification setting [79] and
used the same kernel classifier for remote homology detection [74]. However, this
setting does not exclusively assign a sequence to a single fold. Indeed, this problem
is more naturally formulated into the multi-class classification setting. Dubchak
et al. [81] investigated binary neural network classifiers extended to multi-class
classification by one-versus-all [182]. This work was further extended to and com-
pared with one-versus-one [183] using both neural networks and SVM [80] as well
as jury voting [82]. A similar approach leverages SVM with a more efficient multi-
class representation, DDAG [184], as well as a more biologically relevant feature
representation [83,84]. Finally, the SVM classifier was also extended to multiple
classes using error-correcting output codes [182], which generally makes a better
transform from binary to multi-class [85].

3.8.3 Ab initio prediction
When a match between a sequence and structure template cannot be found, an
ab initio or protein folding [185,186] approach is taken to find the native conforma-
tion. This approach can be divided into two steps where the first step samples a
conformation and the second step evaluates the energy of the conformation such
as using a statistical potential [187]. Finding the best conformation translates to
finding the lowest energy conformation. Indeed, this problem has been cast in the
binary ranking setting and solved using neural networks [86–89]. While a binary
classifier indicates whether the target conformation is near native, an estimate of
its distance from native is more useful; to this end, the problem of selecting the
best conformation has been cast as a regression problem where each training ex-
ample is labeled with its distance to native [90]. Likewise, the problem of selecting
the native state can also be cast in the structured-prediction setting. One such ap-
proach attempts to find the native conformation of residue side-chains using a
graph-based model [93].

4. DISCUSSION AND FUTURE OUTLOOK

Machine learning continues to become more and more popular in biomolecular
modeling. In this chapter, we described common formalisms to cast modeling ap-
plications into machine learning problems. Subsequently, we reviewed a number
of recent biomodeling applications found in both literature and our own work,
which ranged from structure to localization to interaction to function prediction.
Although machine learning has been shown to be quite useful in recent appli-
cations, it is still in the early stages and has yet been developed into one of the
main tools for computational biophysics. Many of the previous works rely on di-
rect application of available machine learning software in conjunction with simple
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features. Future progress will go beyond the straightforward application of clas-
sification software packages; it will also go beyond the investigation of simple
features.

The current focus and development of machine learning for biomolecular mod-
eling can be grouped into four categories: algorithm assessment, algorithm devel-
opment, knowledge mining and feature representation. That is, in most if not all
areas, it is unclear which protocol (algorithm, feature, etc.) performs best given
the widely different data sets, validation techniques and evaluation metrics. Like-
wise, there are many interesting problems beyond simple classification; however, a
majority of available algorithms only handle (or perform well in) binary classifica-
tion. Moreover, the model learned has more value then just a black box predictor;
the rules learned by the model can be just as important if not more so. Finally, an
overwhelming amount of work has focused on the extracting features from protein
sequences and only recently has work begun to tackle protein structure, although
it is widely believed that structure will yield better performance.

One of the most crucial components missing in current machine learning work
is a unified assessment of performance in specific domains. One of the corner-
stones in laboratory experiments is reproducibility and too many machine learn-
ing papers are not reproducible. This problem could be rectified in three simple
ways. First, published work should be restricted to algorithms in the public do-
main. While few published works violate this first rule in terms of the machine
learning algorithm, the full protocol from feature calculation to parameter selec-
tion is often not in the public domain. Since not every minor detail is covered in
the publication, this can make it difficult to accurately reproduce an experiment.
Second, published work should submit all relevant data sets (features, labels, ob-
jects) to a public repository. This incredibly simple step is rarely taken and results
in later articles creating new data sets rather than reconstructing old data sets for
a fair, unbiased comparison. Third, published work should include every relevant
metric and plot to the problem being solved. Indeed, such metrics and plots are
cheap for the original researcher to calculate but relatively expensive for other
researchers. Moreover, a missing metric may create the impression that there is
something to hide. In sum, the current performance of many proposed approaches
to biomolecular modeling is largely unknown; at least until one organizes a com-
petition for the particular area such as CASP for protein structure prediction.

Another important area of concentration is the development of new machine
learning algorithms and software implementing such algorithms. That is, referring
to Table 3.2, a vast majority of applications rely on binary classification (or ranking
reduced to binary classification) and (not shown in the table) most of these works
rely on support vector machines (SVM). Given the number of available, mature
implementations of SVM, it is not surprising that SVM has dominated biomolecu-
lar modeling applications. However, SVM is not suited to every problem domain
and it is also not the simplest nor the most efficient algorithm available. Thus,
in order to both explore more algorithms and more machine learning problem
formulations, new algorithms and implementations are necessary to encourage
research in new directions toward more sophisticated problems. To this end, the
Journal of Machine Learning Research has started a new publication track devoted
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Table 3.2 Learning formulations in problem domains

Problem BIN MUL RNK REG IWC MIL STRUCT

Protein–DNA [26–31] – [3,32] [42] [43] – [38,45,46]
[33–37,39]

Protein–RNA [33–35] – – – [48,49] – [50]
[51–54]

Protein–Mem. [55,56] – – – – – –
Protein–SAP [57–64] – – – – – –
Protein–Homol. – [65] [66–77] – – [78] –
Protein–Fold. [74,79] [80–85] [86–89] [90] – – [91,92]
Protein–AbIn. – – [86–89] [90] – – [93]
Protein–protein [94–101] – – – – – [102]
Subcellular loc. – [103–119] – – – – -
Secondary struct. – [120–126] – – – – [127–132]
Peptide-binding [133–137] – [138–140] [141–144] – – -

BIN: Binary classification. MUL: Multi-class classification. RNK: Ranking. REG: Regression. IWC: Importance-
weighted classification. MIL: Multiple-instance Learning. STRUCT: Structured-prediction.

to the development of new machine learning workbenches (collections of machine
learning algorithms) [188]. In our own work, we have developed an open source
machine learning workbench [189] aimed at making more algorithms accessible
to other users.3 Moreover, this workbench attempts to standardize metrics and
validation to facilitate a unified assessment among its users.

Most work has focused on building an accurate model but fails to properly
investigate the rules learned from that model. These rules are arguably more im-
portant than the predictions they make, in that, they capture the essence of the
problem often buried deep within the data. If we knew the important rules nec-
essary to make accurate predictions then machine learning would be of little use.
Instead, we rely on machine learning to mine important relationships within the
data, which are then used to make an accurate prediction. Few published works
have dealt with this difficult problem due to, in a large part, the black box nature
of many powerful machine learning algorithms e.g. SVM. Less powerful machine
learning algorithms, e.g. decision trees, often build more interpretable models at
the expense of prediction performance, which results in less interesting rules being
found. In our own work, we have investigated applying the alternating decision
tree [190] algorithm to investigate features important in protein–DNA interactions
since it both performs well and gives an interpretable model. We validated im-
portant relationships found in this model with experimentally derived structures
(unpublished work).

Finally, the real value in many papers is derived from the features developed
in the search for a meaningful representation of protein sequences and structure.
However, too many papers focus on mechanistic feature representations such as

3 http://proteomics.bioengr.uic.edu/malibu/index.html.
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sequence composition, transition frequency, and conservation score rather than
more biologically meaningful features such as electrostatic or hydrophobic inter-
actions. This is symptomatic of the lack of intuitive software available in the public
domain. In general, the search for meaningful features lumbers down two roads:
deriving meaningful characteristics of and similarities between examples. The for-
mer focuses on extracting important characteristics such as electrostatic patches
[26], hydrophobic patches, etc. from a protein. This is particularly important in
deriving useful knowledge from the knowledge mining techniques mentioned
previously as well as building a better prediction model. The latter focuses on
divining a more global measure of similarity between examples, generally in the
form of new kernels for algorithms such as SVM; i.e. the string kernel [67], the
cluster kernel [73], etc.

Overall, machine learning is a powerful tool in computer science and will find
more and more applications in biomolecular modeling. When combined with bio-
chemical and biophysical understanding, this new approach is expected to yield
phenomenal advancement in our understanding of protein structures, functions,
interactions and localizations in the years to come.
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1. INTRODUCTION

It is now increasingly recognized that proteins function in the context of multi-
component complexes. This review aims to cover recent progress in modeling
fundamental properties of proteins in their interactions among themselves and
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with nucleic acids. We pay special attention to computational papers which ap-
peared in the past three years, but experimental papers and earlier computational
papers which we find particularly relevant are also discussed.

We focus on four interrelated aspects of protein–protein and protein–nucleic
acid interactions. Section 2 deals with building structural models for protein com-
plexes. In Section 3 we present an overview of the various methods for computing
contributions to the stability of protein complexes. In Section 4 the focus shifts to
the rates of forming protein complexes. Finally in Section 5 we discuss the impacts
of protein dynamics on the structures, thermodynamics, and kinetics of protein
complexes.

2. BUILDING STRUCTURAL MODELS

As a result of favorable interactions, a protein and its partner(s) will form a stere-
ospecific complex. Under favorable conditions, the structure of this complex can
be determined by X-ray crystallography, NMR, or electron microscopy. The struc-
ture holds the key to understanding the interactions involved and is the basis for
making computations on the stability and rate of complex formation.

In many cases, for practical or technical reasons (as opposed to any fundamen-
tal physical reasons), the structures of protein complexes cannot be determined
experimentally. If the structure of a protein complex with adequate sequence sim-
ilarity is available, one can build the structure of a query complex by homology
modeling [1–3]. The applicability of homology modeling to protein complexes is
still limited because the current structural database provides only a sparse cover-
age of the protein interaction space.

The general approach which aims to build the structure of a complex, start-
ing from the structures of the unbound partners, is now referred to as docking.
A forum that provides a fair and critical assessment of various docking methods
is the CAPRI “experiment” (http://www.ebi.ac.uk/msd-srv/capri/) run by Joël
Janin. We strongly urge method developers to participate in CAPRI, and at the
minimum, use the CAPRI targets as a test set. Interested readers can find the latest
progress report on CAPRI in a special issue of Proteins (Vol. 69, Issue 4, December
2007).

In general, docking methods aim to maximize the shape and/or physiochem-
ical complementarity between binding partners through generation of large sets
of possible poses. Both the sampling of relevant poses and the discrimination of
near native poses from the large number of non-native alternatives present signif-
icant challenges. The task becomes even more daunting when complex formation
is accompanied by rearrangement of loops or relative movement of domains. In
our (admittedly biased) opinion, a fruitful approach is to make use of any experi-
mental information available on the interaction [4–7]. Interaction sites can also be
predicted by various bioinformatics approaches (for a recent review, see [8]), and
from a set of known interfaces by screening [9,10].

We briefly mention two related subjects. For obvious reasons, the interfaces of
protein complexes have been a target for developing drug molecules. This subject

http://www.ebi.ac.uk/msd-srv/capri/
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has been reviewed in this series [11]. In addition, it has now become possible to de-
sign de novo complexes, either by modifying a monomeric protein into a dimeric
form [12] or by grafting from an unrelated protein complex [13].

3. PREDICTION OF BINDING AFFINITIES

The stability of protein complexes is measured by the binding constant (Ka). Ex-
perimentally determined values of Ka span over 10 orders of magnitude (see Fig-
ure 4.1). It is clear that no simple correlations exist between structures of protein
complexes and their binding affinities. General approaches to calculating binding
affinities have been reviewed [14]. Here we focus on aspects specific to protein–
protein and protein–nucleic acid complexes.

The binding constant is given by [14,15]:

(1)Ka =
∫
Γ

dr dω e−W(r,ω)/kBT

where W(r, ω) is the potential of mean force of for the interaction between a pro-
tein and its partner at a relative separation r and relative orientation ω, kBT is
thermal energy, and Γ denotes the region of configurational space defining the
bound state. Contributing factors to W(r, ω) include hydrophobic and electrostatic
interactions, and the change in conformational entropy of the binding partners
upon complex formation. Typically, computations aim to predict the change in the
binding free energy, −kBT ln Ka, e.g., due to a point mutation.

3.1 Electrostatic contribution

It is well understood that hydrophobic interactions make favorable contributions
to binding. However, the effects of electrostatic interactions are subtle. Neglecting
conformational changes, the electrostatic contribution is given by

(2)Wel = Gel(AB) − Gel(A) − Gel(B)

where Gel is the electrostatic free energy of each subunit (A or B) or the complex
(AB), which can be calculated by solving the Poisson–Boltzmann (PB) equation.
The subtlety of the electrostatic contribution can be appreciated by decomposing
it into two components: the desolvation cost Wdesol and the solvent-screened inter-
action energy Wint (Figure 4.2). To obtain Wdesol, the electrostatic solvation energy
of each subunit is calculated twice, first by itself and then in the presence of its part-
ner, which has its partial charges zeroed out. The difference in the results between
these two calculations gives the desolvation cost for that subunit, and adding the
corresponding quantity for its partner gives Wdesol. The difference between Wel
and Wdesol comes from the interactions between the partial charges of the two
subunits in the solvent environment.

It is clear that Wdesol opposes binding. Wint will favor binding when the charges
on the two subunits have complementary charge distributions, which should be
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FIGURE 4.1 The spectrum of protein affinities. The locations of seven protein–protein complexes within the spectrum, along with their
structures, are shown. Adapted from Dong and Zhou [17].
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FIGURE 4.2 Decomposition of the electrostatic contribution to binding affinity into desolvation cost and solvent-screened interaction.
Interactions of protein charges with the solvent (represented by shadows around binding molecules) are indicated by outgoing arrows. Upon
binding, the binding molecules are desolvated within their interface and charge–charge interactions, as indicated by a double-headed arrow,
emerge.
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true in general. There Wel consists of two opposite components. Whether electro-
static interactions make a net positive or net negative contribution to binding rests
on the balance between the two components. In particular, the balance is very sen-
sitive to how the boundary between the protein low dielectric and the solvent high
dielectric is precisely specified. As shown on a large number of protein–protein
and protein–RNA complexes [16–19], when the dielectric boundary is chosen as
the molecular surface (MS), as is often done in the literature, Wdesol outweighs
Wint, leading to net destabilization. However, when the dielectric boundary is
switched to the van der Waals (vdW) surface, the situation is reversed and electro-
static stabilization is now predicted.

How can one then decide on the choice of the dielectric boundary? One possi-
bility is to benchmark PB calculations against explicit-solvent molecular dynamics
(MD) simulations. Most of such efforts have been limited to small solute molecules
[20–22]. However, it has been shown that the difference between MS and vdW
results for electrostatic solvation energies depends on solute size [23]. Therefore
parameterization on small solutes (either against explicit-solvent MD results or
against experimental data) may not be reliable for calculating electrostatic contri-
butions to protein–protein and protein–nucleic acid binding.

One can benchmark PB calculations directly against experimental data on
protein–protein and protein–nucleic acid binding affinities. Potentially one type
of useful data is the dependence of binding affinities on salt concentration. The
screening of electrostatic interactions by salts can be captured by the PB equation
(it should be mentioned that salts can also specifically bind to proteins and nu-
cleic acids; such specific salt effects require special treatment). Unfortunately, it
has been found that the screening effects predicted by MS and vdW calculations
are essentially identical and thus cannot discriminate between the two choices of
the dielectric boundary [16,18]. On the other hand, effects of mutations involving
charged or polar residues have been found to have discriminating power, with
experimental data favoring the vdW surface as the choice for the dielectric bound-
ary [16–18]. Experimental data for mutational effects on binding affinity continue
to accumulate in the literature [24,25], providing opportunities for comprehensive
benchmarking of PB calculation protocols.

In the literature, the MS is still widely chosen as the dielectric boundary. The
difference between this choice and the vdW surface is that, according to the latter
protocol, the many crevices in the protein interior are treated as part of the sol-
vent high dielectric. These crevices are not accessible to a spherical solvent used
in defining the MS, and hence their being treated as part of the solvent dielec-
tric is perceived as unrealistic or undesirable. However, this perception is open
to question. Water molecules can access protein interiors, as demonstrated by
many protein X-ray structures with water occupying interior positions, by the ob-
servation of positionally disordered water molecules in a hydrophobic cavity of
interleukin 1β [26] (Figure 4.3), and by molecular dynamics simulations [27]. In
proteins like myoglobin and acetylcholinesterase (featuring a deeply buried ac-
tive site connected to the exterior only through a narrow gorge), access by small
molecules like water, made possible by the dynamics of the proteins, is essential
for biological functions. We suggest that the vdW protocol provides a way to ac-
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FIGURE 4.3 The presence of water molecules inside a hydrophobic cavity of interleukin 1β .
The cavity is separated from the bulk solution according to the MS criterion but connected to
the bulk solution according to the vdW criterion. When the three water molecules are moved
from separate positions in the bulk solution to the configurations shown inside the cavity, the
MS protocol predicts an increase of 0.9 kcal/mol in electrostatic free energy whereas the vdW
protocol predicts a decrease of −2.2 kcal/mol.

count for water access to protein interiors. Failure to account for this important
property is perhaps the cause for overprediction of pKa shifts by the MS proto-
col (which is often “corrected” by increasing the protein dielectric constant to 20).
In principle the vdW protocol can be mimicked by the MS protocol with appro-
priately reduced atomic radii. However, it has been found the precise amount of
radius reduction varies from protein to protein and thus mimicking one protocol
by the other appears to be a futile exercise [23]. We will come back to the debate
between MS and vdW in Section 4.3.

The generalized Born (GB) model has been developed as a fast substitute of
the PB equation [28–31]. The GB model can be tailored to match PB results for
electrostatic solvation energies obtained by either the MS or the vdW protocol.
The errors of GB results in reproducing the PB counterparts are at least of the
order of typical mutational effects on binding affinities. Therefore caution should
be exercised when applying the GB model to calculate mutational effects.

There is also progress in the opposite direction, i.e., toward more accurate mod-
eling of electrostatic effects, by accounting for electronic polarization via quantum
mechanical treatments [32,33]. Such treatments have not been used to directly pre-
dict the effects of mutations on the binding free energy, but it is already clear



74 H.-X. Zhou et al.

that electronic polarization can significantly influence electrostatic contributions
to binding.

Comparing PB or GB calculations against experimental data for mutational ef-
fects on binding affinity is premised on the assumption that the mutational effects
are assumed to be dominated by electrostatic contributions. That is, possible con-
tributions by hydrophobic interactions and by changes of conformational entropy
are not taken into consideration.

3.2 Other contributions
The limitations listed in the last paragraph are dealt with by the molecular me-
chanics Poisson–Boltzmann surface area (MM-PBSA) method [34,35]. Like before,
the electrostatic contribution is calculated by solving the PB equation, but now
the hydrophobic contribution is also calculated (as a linear function of the buried
surface area), as is the change in conformational entropy [from (quasi)harmonic
analyses of conformational fluctuations]. (There is also a version in which PB is
replaced by GB [36].) In recent applications, this method has been used to validate
homology models of protein–protein complexes [37] and to elucidate molecular
bases of promiscuity and selectivity of protein–protein binding [38,39]. Extensions
include using different protein dielectric constants for different types of mutated
residues [40] and a simplified way of calculating the change in conformational
entropy [41].

Another approach, called linear interaction energy (LIE) [42], is somewhat sim-
ilar to the MM-PBSA method. Here the electrostatic and van der Waals interactions
energies of the residue under mutation with its surroundings are calculated in MD
simulations of the complex and of the subunit. The changes of these two energies
upon binding are then used in a linear regression against a training data set. In this
context, we note that many other quantities, including the various components of
MM-PBSA calculations [43,44] and physical descriptors such the number of inter-
facial salt bridges and hydrogen bonds [45] have been used for linear regression.
A limitation of all these methods is the requirement of a training data set.

Particularly worth mentioning are computational redesigns which have led to
increased protein–protein binding affinities [46–48] or specificity [49]. These re-
design methods use physically-based energy functions. These functions involve a
large number of parameters, but these parameters are pre-fixed and not adjusted
for predicting binding affinities.

4. PREDICTION OF BINDING RATES

The critical role of protein–protein and protein–nucleic acid binding rates is ob-
vious in biological processes in which speed is of the essence [50]. One such
example is provided by the purple cone snail, which captures its prey with re-
markable efficiency and speed through releasing a polypeptide toxin that rapidly
binds to a potassium channel [51]. Compelling arguments can be made for the
biological roles of rapid binding in general [52]. In particular, when several pro-
teins compete for the same receptor or when one protein is faced with alternative
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pathways, kinetic control, not thermodynamic control, dominates for much of the
time. Differences in binding rate between related proteins may serve as an addi-
tional mechanism for specificity. In short, rapid binding may be as important as
high affinity in the proper functioning of proteins. In designing drugs targeting
protein–protein interactions, both binding affinity and binding rate may have to
be taken into consideration.

4.1 Overview of protein binding rates

Experimentally observed binding rates cover a wide spectrum, from < 103 M−1 s−1

to ∼1010 M−1 s−1 (Figure 4.4). To gain an overview on the wide variation in bind-
ing rates, we have considered the binding of two proteins (A and B) as going
through an intermediate state (A*B), in which the two proteins have near-native
separations and orientations [53,54]. We refer to the intermediate state as the tran-
sient complex (its precise specification is given below; a related but more loosely
defined term is encounter complex). It is of interest to note that NMR has enabled
visualization of the transient complex [55]. From the transient complex, conforma-
tional rearrangement can lead to the native complex (AB). Accordingly we have
the kinetic scheme

(3)A + B
kD

A ∗ B
k−D

kc
C .

The overall binding is

(4)ka = kDkc

k−D + kc

which is bounded by the diffusion-controlled rate, kD, for reaching the transient
complex. This limit is reached when conformational rearrangement is fast (i.e.,
kc � k−D), leading to

(5)ka ≈ kD.

At the other end of the spectrum, conformational rearrangement is rate-limiting
(i.e., kc � k−D), and

(6)ka ≈ kckD/k−D ≡ kR.

Note that kD/k−D is the equilibrium constant for forming the transient complex.
In the transient complex the two protein molecules must satisfy transla-

tional/rotational constraints, which severely hinder the diffusion-controlled ra-
te kD. In the absence of any biasing force, theoretical estimates put the basal
value, kD0, in the range of 105 to 106 M−1 s−1 [56–58]. In particular, antibody-
protein binding rates are typically observed in this narrow range [59–61]. The
value 105 M−1 s−1 thus marks the start of the diffusion-controlled regime (Fig-
ure 4.4). A rate much lower than 105 M−1 s−1 is an indication that conformational
change plays a significant role in the association.
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FIGURE 4.4 The spectrum of protein binding rates. The different regimes are indicated by arrows. For protein complexes in the
electrostatically-enhanced regime are shown. Adapted from Alsallaq and Zhou [19].
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To go beyond the basal rate kD0 and reach rates like 108 to 109 M−1 s−1 as
observed for many protein complexes [62–69] (Figure 4.4), intermolecular forces
must be present. For a force to speed up a diffusion-controlled binding, it must
be present in the diffusion process that leads to the transient complex, and thus
be long-ranged. Indeed, analytical results on model systems show that, when the
range of the force is reduced, the resulting rate enhancement decreases drasti-
cally [57,70,71]. For protein–protein and protein–nucleic acid binding, the domi-
nant long-range force is provided by electrostatic interactions. Rates higher than
kD0 require favorable electrostatic interactions, which are manifested by comple-
mentary charge distributions on the two binding partners.

4.2 Brownian dynamics simulations
Many groups have used Brownian dynamics (BD) simulations to calculate the
diffusion-controlled rate kD [56,72–84] or to generate the loosely defined encounter
complex [85–87]. In rate calculations one must specify a precise set of conditions,
which when satisfied signifies the formation of the native complex. Specifying this
set of conditions, typically implemented as an absorbing boundary in BD simula-
tions, is equivalent to defining the transient complex. Rather than being guided
by any theoretical considerations, the location of the absorbing boundary is typ-
ically proposed in an ad hoc way, and often adjusted for best agreement with
experiment. Two alternative algorithms are available for obtaining kD from statis-
tics accumulated on BD trajectories. In one the trajectories of a protein are started
from a spherical surface around the receptor [88]. In the other, the pair of binding
molecules are started in the vicinity of the absorbing boundary [89].

Electrostatic interactions are accounted for by their influence on the transla-
tional and rotational Brownian motion of the binding molecules. In principle, the
electrostatic force and torque on the molecules can be calculated from solving the
PB equation. However, solving the PB equation on the fly during a BD simula-
tion is prohibitively expensive. One thus has to rely on approximations, such as
treating one of the proteins as a set of test charges [72] (which leads to signifi-
cant errors from neglecting the low-dielectric region of the protein interior [73]) or
a more elaborate effective-charge model [90]. Unfortunately, the approximations
are worst when the proteins are in close proximity, precisely where electrostatic
interactions are expected to have the strongest influence on kD.

4.3 Transient-complex theory
From BD simulations [54,73,91,92] and analytical results [57,93], it was discovered
that the diffusion-controlled rate can be accurately approximated as

(7)kD = kD0 e−〈Wel〉∗/kBT

where kD0 is the basal rate, i.e., the rate when electrostatic interactions are turned
off, and the average 〈· · ·〉∗ is over the configurational space of the transient com-
plex. This equation resolves one of the two main obstacles to reliable prediction
of binding rates, by making it possible to rigorously treat electrostatic interac-
tions. The effect of electrostatic interactions is captured by the Boltzmann factor
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e−〈Wel〉∗/kBT, which can be obtained by averaging over a relatively small number
of representative configurations in the transient complex. The basal rate kD0 still
needs to be obtained through force-free BD simulations, but these simulations are
inexpensive.

The remaining obstacle to reliable prediction of protein association rates is
the specification of the transient complex. The ad hoc way by which the set
of conditions for complex formation—which is the equivalent of the transition
complex—is specified in BD simulations is noted above. The application of Eq. (7)
for predicting kD faces a similar situation. In an early application to the binding
of barnase and barstar [94], the transient-complex ensemble was specified by ad-
justing the ranges of translation and rotation between the two proteins to match
the experimental data at high ionic strength. Similarly, Miyashita et al. [95] used
experimental data for the binding of cytochrome c2 and bacterial reaction center
to locate the transient-complex ensemble in the 6-dimensional translation-rotation
configurational space.

For Eq. (7) to have predictive power, the transient-complex ensemble has to be
specified without reference to experiment. A solution to this challenging problem
was proposed in a recent paper [15], based on analyzing the interaction energy
landscape of binding proteins. The basic idea is as follows. In a complete theory,
the overall binding rate ka should not be sensitive to where the transient com-
plex is placed. If it is placed far away from the native complex, then kD will be
large but kc will be small. Conversely, if it is placed very close to the native com-
plex, then kD will be reduced but kc will become very large. Either way, Eq. (4)
is expected to give nearly the same result for ka. However, given the consider-
able difficulty and uncertainty in the calculation of kc, it is highly desirable to use
kD as a good approximation for ka. Then there is an optimal location for placing
the transient complex [96]. If it is placed too far from the native complex, then
the resulting kD would not be a useful approximation for ka. On the other hand,
placing the transient complex too close to the native complex would mean that
short-range interactions and conformational rearrangement have to be dealt with
in calculating kD. The native complex sits in a deep well in the interaction energy
landscape [15]. The optimal placement for the transient-complex ensemble is at
the outer boundary of the native-complex energy well [15,96].

The specific procedure implementing this basic idea was based on the follow-
ing observation: inside the native-complex energy well, translation and rotation
are restricted, but once outside the two proteins gain significant translational and
rotational freedom [15]. Thus the outer boundary of the native-complex energy
well coincides with the onset of translational and rotational freedom. This onset
was located by monitoring the allowed range of a relative rotation angle between
the proteins as they move out of the native-complex energy well.

This structural model for the transient-complex ensemble along with Eq. (7)
constitutes the transient-complex theory for predicting protein binding rates.
In this theory, both of the obstacles faced by the traditional approach of BD
simulations are resolved. Electrostatic interactions can be treated rigorously, and
the transient complex is specified solely based on theoretical consideration.
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In Eq. (7), only the electrostatic contribution to the interaction energy of the
transient complex is included. The neglect of short-ranged non-electrostatic effects
from the Boltzmann factor in Eq. (7) can be understood from two considerations.
First, the transient-complex configurations are typically separated by at least one
layer of solvent [15], therefore short-ranged forces such as hydrophobic and van
der Waals interactions are relatively weak in the diffusion process leading to the
transient complex. Second, as already noted in Section 4.1, compared to long-range
interactions, short-range interactions, even when present within the transient com-
plex, contribute much less to rate enhancement (i.e., kD/kD0). Including their con-
tribution to the interaction energy in the Boltzmann factor will significantly over-
estimate their effect on rate enhancement. However, short-ranged interactions are
essential for determining the location and size of the transient-complex ensemble
in configurational space, which in turn affect the magnitude of kD0. A transient-
complex ensemble that is less restricted in translation and rotation will lead to a
higher kD0. Variation of the restriction in translation and rotation within the tran-
sient complex with solvent conditions or among different protein complexes can
be viewed as a configurational entropy effect. The basal rate kD0 captures this en-
tropy effect.

It has been noted that electrostatically enhanced protein binding exhibits an
interesting tell-tale sign: the binding and unbinding rate constants show disparate
dependences on ionic strength [96,97]. The binding rate decreases significantly
with increasing ionic strength, whereas the unbinding rate is only modestly af-
fected by ionic strength. The structural model for the transient-complex ensemble
provides a nice explanation for the disparate effects of ionic strength. As the tran-
sient complex lies at the outer boundary of the interaction energy well and hence is
close to the native complex, ionic strength is expected to screen electrostatic inter-
actions in the two types of complexes to nearly the same extent. Hence the binding
affinity and the binding rate are expected to have nearly the same dependence on
ionic strength and the dissociation rate would be little affected by ionic strength.

The transient-complex theory has been put to a comprehensive test against ex-
perimental data [62–64,98] for the binding rates of four protein pairs (shown in
Figure 4.4) and 23 of their mutants over wide ranges of ionic strength [52]. The
ionic strength dependences of the binding rates for all the four protein pairs are
predicted well by the theory. Moreover, the predictions for 23 mutants at various
ionic strengths agree closely with experiment. In all there are 81 data points in
the latter comparison, spanning four orders of magnitude in association rate. The
theory thus appears to fulfill the promise of having truly predictive power. It re-
veals that, among the protein pairs and their mutants studied, the basal rate kD0
can differ by ∼20-fold, but the bulk of the variations in kD is due to the variations
in 〈Wel〉∗, which ranges from 0 to −6 kcal/mol (the last value translates into a
104-fold rate enhancement).

The above comparison against experiment was based on calculating the elec-
trostatic interaction energy from the linearized PB equation. It has been found that,
when the full PB equation was used, agreement with experiment improved, albeit
modestly [19]. This underscores the point that a rigorous treatment of electrostatic
interactions is essential for the accuracy of calculated kD.
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FIGURE 4.5 Binding of U1A and U1 RNA. (A) The native complex, with side chains of K20, K22,
K23, and K50 of U1A shown. (B) Representative configurations in the transient complex. (C)
Comparison of calculated and experimental results for the effects of mutating four lysine
residues on the binding rate. Parts (A) and (B) are adapted from Qin and Zhou [71]. The left panel
in (C) is taken from Qin and Zhou [18], and the right panel in (C) is taken from Qin and Zhou [71],
but with the additional result label Schreiber calculated according to Selzer et al. [103].

For the binding between a protein and an RNA, the difference between the
full PB equation and the linearized version is no longer modest because of the
large charge density on the nucleic acid. Then use of the full PB equation be-
comes a necessity. The transient-complex theory has made it possible to realisti-
cally model protein–RNA binding rates for the first time [71]. In this work the
binding of the spliceosomal protein U1A and its target on the U1 small nuclear
RNA (Figure 4.5A) was studied. The binding and unbinding rates of this and
other protein–RNA systems exhibit the disparate dependences on salt familiar to
proteins [99–102], indicating that the structural model for the transient complex
developed for protein–protein binding is applicable to protein–RNA binding. Rep-
resentative configurations in the transient complex of the U1 system are shown in
Figure 4.5B. The binding rates of the wild-type system and eight of its mutants pre-
dicted by the transient-complex theory are in close agreement with experiment [99,
101] (Figure 4.5C).

Comparison of predicted and experimental binding rates also help settle the
debate between MS and vdW as the choice for the dielectric boundary in cal-
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culating the electrostatic interaction energy. The rate predictions summarized
above have all been obtained by using the vdW protocol in calculating 〈Wel〉∗.
With the MS protocol, the sign of 〈Wel〉∗ switches to positive (similar to what
is seen on native complexes [16,17]) and now rate retardation is predicted [19]!
For example, for the barnase–barstar pair, when the ionic strength is varied from
13 mM to 2000 mM, 〈Wel〉∗ calculated with the vdW protocol varied from −3.30
to −0.82 kcal/mol. Correspondingly, 〈Wel〉∗ calculated with MS protocol varied
from 2.50 to 5.13 kcal/mol. For the latter results to be consistent with experiment,
a basal rate in the order of 1010–1011 M−1 s−1 would be required, which clearly
seems unphysical.

While the transient-complex theory is not appropriate for binding processes
that are limited by large-scale conformational rearrangements, it can accommo-
date local conformational fluctuations. In particular, MD simulations have shown
that charged side chains that eventually form cross-interface salt bridges in the na-
tive complex can form intramolecular salt bridges prior to reaching the transient
complex [85]. More generally, local conformation populations in the transient com-
plex will be different from those in the native complex. While applications of the
transient-complex theory have so far assumed native conformations in the tran-
sient complex, more accurate calculations may require conformational sampling
specifically within the transient complex.

4.4 Further approximation and rate enhancement by design

Based on Eq. (7), Schreiber and co-workers have made a further simplifica-
tion [103–105]. Instead of using the transient-complex ensemble, they calculated
〈Wel〉∗ by applying an empirical function directly to the native complex. The em-
pirical function effectively reduces the interaction energy calculated on the native
complex to make it appropriate for the transient complex, and is parameterized
on experimental data. Despite the approximation, the simplified approach has al-
lowed them to design charge mutations that lead to as much as 250-fold increase
in binding rate.

As an estimate for 〈Wel〉∗, a weaken version of the electrostatic interaction en-
ergy of the native complex seems capable of capturing general trends, but it has
limitation in accounting for specific contributions of individual residues. This lim-
itation is illustrated by the effects of mutating four lysine residues on the binding
rate of U1A with U1 RNA. In the native complex (Figure 4.5A), K50 protrudes
deeply into the RNA loop and lies above it, while K20, K22, and K23 lie below
the loop. The four lysines have comparable separations from the RNA and their
neutralizations reduce the binding free energy to similar extents (Figure 4.5C, left
panel). The approach of Schreiber and co-workers would predict that the neutral-
izations reduce the binding rate to similar extents (Figure 4.5C, right panel). In the
transient complex (Figure 4.5B), the RNA moves away from U1A, consequently
K20, K22, and K23 are placed further away from the RNA. In contrast, because
of its protruded position, the separation of K50 from RNA is not significantly re-
duced. As a result, in the transient complex the electrostatic contributions of K20,
K22, and K23 are significantly reduced but that of K50 is nearly unchanged when
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compared to the native complex. This contrast between K20, K22, and K23 on the
one hand and K50 on the other is supported by experimental results [99,101] (Fig-
ure 4.5C, right panel).

5. DYNAMICS WITHIN NATIVE COMPLEXES AND DURING COMPLEX
FORMATION

The foregoing discussions make it clear that protein dynamics presents challenges
for building structural models of protein complexes, makes important contribu-
tions to binding affinity, and is an integral part of the binding process. Recent ex-
periments have presented direct evidence for the contribution of protein dynamics
to binding affinity [106,107]. Changes in conformation and in dynamics upon com-
plex formation have been studied by NMR [108–110] and by MD simulations [111].
Conformational rearrangements leading to native complexes have also been re-
vealed by MD simulations [85,112], which as noted above may be required for
more accurate calculations of binding rates within the transient-complex theory.
These studies have laid the groundwork toward a comprehensive understanding
of the roles of dynamics in protein–protein and protein–nucleic acid interactions.

6. SUMMARY POINTS

1. Structures of protein complexes are the basis for understanding protein in-
teractions. Many of these structures will have to be built by docking. CAPRI
provides a forum for critical assessment of docking methods. Methods making
use of experimental or predicted interface information appear promising.

2. Predicting absolute binding free energy is still formidable, but there is sig-
nificant progress in predicting relative binding free energy. Contributions of
electrostatic interactions are sensitive to model details, in particular the choice
of the boundary between the protein low dielectric and solvent high dielectric.
Experimental data such as mutational effects on binding affinity are useful for
selecting calculation models.

3. The wide variation of binding rates among protein complexes can be under-
stood by considering rate-limiting conformational changes in one extreme and
electrostatic rate enhancement in the opposite extreme. Current theory has
shown predictive power for binding rates in the diffusion-controlled regime
(i.e., those above ∼105 M−1 s−1).

4. Experiments and MD simulations are contributing toward a comprehensive
understanding of the roles of dynamics in the various aspects of protein in-
teractions.
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1. INTRODUCTION

The ability of certain chemical compounds to lose or gain protons has been an ac-
tive area of research since the formulation the concept of pH in 1909 [1] and the
appearance of the Brønsted–Lowry acid–base theory in 1923. According to Brøn-
sted and Lowry an acid is a compound that can donate a proton, whereas a base
is a compound that can accept a proton. The dissociation of a proton from an acid
in solution can be modeled by a simple equilibrium constant

(1)Ka = [H+][A−]
[HA]

,
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which often is rewritten as the Henderson–Hasselbalch (HH) equation:

(2)pH = pKa + log
[A−]
[HA]

,

where

(3)pH = − log[H+],

and

(4)pKa = − log Ka.

The pKa of a compound is thus a description of the tendency of a compound to
donate its titratable proton. A plot of the fractional proton occupancy of an acid
or a base versus pH is called a titration curve and has the familiar sigmoid shape
typical of binding reactions.

The pKa value of a compound is an important characteristic because it gives
information on the protonation state and the charge of a compound as a func-
tion of pH. In proteins, and biomolecules in general, charges play an essential
role in catalyzing reactions, determining solubility and stability, and are critical
determinants of when compounds can interact with each other. The importance
of pKa values throughout last century is demonstrated by the large body of lit-
erature on the general effect of pH on biomolecules [2–4] and countless titration
studies of Hen Egg White Lysozyme and other proteins (e.g. [5–18]), and pH (and
thus charge) arguably constitutes the most tightly constrained and well controlled
property in any biological system in vitro and in vivo. The last two decades has
seen the development of methods for the accurate prediction of electrostatic prop-
erties [19,20] and pKa values [6,21–23] from protein structures, and experimental
scientists have continued to take a strong interest in pH-dependent and electro-
static phenomena of proteins with the publication of several key studies on the
effect of pH on protein structure and function [24–29]. It is not the purpose of
this article to review the general field of protein electrostatics, which has been
reviewed extensively elsewhere [30–32], nor is it the intention to give a detailed
account on the progress in the field of pKa calculations [33–38]. Instead, I will
highlight a number of studies on the analysis of NMR protein titration curves and
discuss the implications and future perspectives that these studies have for our
understanding of pKa values and protein electrostatic effects.

In the following I will give an introduction to the measurement and calcula-
tion of protein residue titration curves, and continue to discuss four key papers
that deal with NMR titration curve fitting: non-Henderson–Hasselbalch curve
fitting [39], general equations for biomolecular titration [40], studies of electric
fields in proteins [41], and studies of pH-induced conformational changes in β-
lactoglobulin [42]. Collectively these studies point to interesting future directions
for the theoretical and experimental study of pH-dependent effects in proteins.

1.1 Measuring protein titration curves
While titration curves can easily be measured for simple acids and bases in dilute
aqueous solutions with simple titration experiments, the titration curves of indi-
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vidual amino acid residues in proteins are more difficult to measure. Although
the overall titration curves for proteins can be measured, this rarely gives infor-
mation on the titration curves of individual amino acid residue side chains since
the measured overall titration curve consists of the combined titration of all the
titratable groups in the protein. It is possible to gain information on the titration of
individual amino acid residues by utilizing difference titration experiments; these
have been performed on several proteins [15,43,44] and have yielded valuable
information on the stability and activity of proteins. The high concentration of pro-
tein needed and the assumptions implicit in this method [45] limit its usefulness,
and presently the preferred method for measuring titration curves of individual
residues in proteins consists of recording the NMR chemical shift of individual
atoms as a function of pH. Other methods such as ITC measurements [46], mass
spectroscopy [47] and FT-IR spectroscopy [7] are also used.

Once titration curves have been measured using one of the above methods,
they are typically fitted to Eq. (2) in the case of a single titration, or to an equation
describing the pH-dependence of the chemical shift due to two or more titrations.
The overall goal of experimental measurements has hitherto been to extract pKa
values from titration curves, and the information published in research publica-
tions (the pKa values) are thus an interpretation of titration curves and not the
primary experimental data.

In the case of titration curves that can be described accurately by Eq. (2), this
is not a problem. However, often researchers accept less-than-perfect fits when ex-
tracting single pKa values using Eq. (2), thus causing loss of experimental detail. In
the case of titration curves displaying two or more titrations it is of particular im-
portance to report the primary data since such titration curves can be interpreted
in many different ways. This is the case for NMR titration curves, where it often is
not possible to attribute a chemical shift change unambiguously to a single titra-
tional event (see later).

The pH-dependence of the atom-specific NMR chemical shift, which is the
property tracked when measuring titration curves by NMR, is influenced by any
change in the chemical environment of the atom being monitored. For atoms
very close (1–2 bonds away) to a titratable group, it is generally assumed that
the change in the chemical shift exclusively reflects a change in the charge of the
titratable group. However, if the chemical shift is measured at the backbone amide
nitrogen or backbone amide hydrogen of a titratable group, the effects of other
titrations can influence the chemical shift of the atom through electrostatic effects
or conformational changes. In these cases it can therefore be difficult to determine
if an observed titration in the chemical shift of a backbone atom of a titratable
residue is due to a titrational event in that residue, due to a conformational change
in the protein structure, or due to a change in the electrostatic field in the protein.
Both of the latter reasons for changes in the chemical shift are ultimately due to the
titration of a protein residue or group of protein residues, but in these cases the ef-
fects of a titration can be felt throughout the protein and are not limited to the
atoms surrounding the titratable group. The studies on the titration curves of the
active site cysteines of E.coli thioredoxin illustrates the difficulty of relating chemi-
cal shift changes to protonation state changes [39,48–51] since it still is unresolved
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if both or just one of the active site cysteines titrate around neutral pH despite a
large amount of NMR titrations and other experiments on the system.

Since the analysis of NMR titration curves is not unambiguous it is important
to report full titration curves in publications to allow for future re-analysis of the
primary data. Fortunately titration curves have been measured for many proteins
and reported in figures which allows for the extraction of the original chemical
shift data using programs like g3data [52], but a large number of titration curves
have been reported only as pKa values and deposited as such in databases [53].
Experimental pKa values are highly valuable for deriving empirical rules on the
determinants of protein residue pKa values [33,54] and for benchmarking protein
pKa calculation methods [55–58], but it is nevertheless desirable to move towards
a situation where NMR titration curves are available in electronic databases. To
facilitate this, we have developed a database system for protein titration curves
[59]. This database allows for the upload, download and analysis of protein titra-
tion curves thus providing access to the primary experimental data produced by
protein titration experiments.

1.2 Theoretical description of a titrating biomolecule

The theoretical description of the titration curves of proteins and polyprotic acids
has been studied since the pioneering work of Linderstrøm-Lang [2] and Tan-
ford [3]. In the following I will introduce the theory presently used in the cal-
culation and analysis of protein residue titration curves.

Consider a protein with N titratable groups that each can exist in a charged and
a neutral protonation state. Such a protein can occupy 2N different protonation
states at any given pH value, and each of the 2N protonation states is associated
with a free energy difference relative to an arbitrary reference state (this is nor-
mally chosen to be the fully protonated state of the protein). The pH-dependent
energy difference between the reference state and a given protonation state is
determined by the local environment of the titratable groups and by how they
interact with each other. This is, in turn, determined by the nature and position
of the titratable groups in the protein, and therefore ultimately determined by the
structure (or ensemble of structures) that the protein occupies at the pH value in
question.

If the relative energies for all the 2N protonation states are known at a given
pH, then the fractional charge for each titratable group ( fi) can be determined
by evaluating the Boltzmann sum for the states that have a specific group in its
charged state:

(5)fi =
∑2N

j=1 γie
−Ex
kT

∑2N

m=1 e
−Ex
kT

.

Here, γi is a parameter that is 1 if group i is charged in state j, Ej and Em are the
energies of protonation states j and m, k is Boltzmann’s constant and T is the tem-
perature. The sum in the numerator only includes contributions from states where
group i is charged.
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Once the fractional charge at a given pH can be evaluated, it is straightfor-
ward to calculate the titration curves of all groups in the system by evaluating
Eq. (5) at all pH values of interest. For many proteins evaluation of Eq. (5) be-
comes impossible due to the large number of possible protonation states, and in
these cases evaluation of Eq. (5) can be substituted with Monte Carlo iterations [60]
or other approximate methods [23,61] to give reliable results. The Tanford–Roxby
algorithm [4] can also be used for weakly coupled systems of titratable groups, but
breaks down when titratable groups interact strongly.

1.3 Describing the energy of a protonation state
It is trivial to evaluate the Boltzmann sum or use one of the approximate methods
to get an accurate description of the protonation state of a protein at a specific pH
once the relative energy for all protonation state are known. It has proven conve-
nient to model the energies of the 2N protonation states using an energy function
which splits the energy into a contribution originating from the intrinsic tendency
for the group to give up its proton within its local non-titrating environment, and a
contribution modeling the interaction of the group with all other titratable groups.
The interaction with the non-titrating environment is modeled by the so-called in-
trinsic pKa value, and the interactions with the titrating environment is modeled
as a sum of pair wise interaction energies. The full energy function for a particular
state thus takes the form:

(6)Ex =
N∑

i=1

γi ln(10)kT(pH − pKa,int,i) +
N∑

i=1

N∑
j=1

γiγjE(i, j)

where Ex is the energy of protonation state x, pKa,int,i is the intrinsic pKa of group i,
E(i, j) is the interaction energy between the charged forms of group i and j, γi and
γj are parameters that are 1 when groups i and j are charged and zero when they
are neutral.

An energy function of this type assumes that the intrinsic pKa does not change
with pH, and that the interactions with other titratable groups can be described
by a sum of pair wise interaction terms. Both of these assumptions break down
when the structure of a protein changes significantly with pH, but Eq. (6) never-
theless provides a convenient function for describing the energy of a protonation
state; not least because all energy terms are intuitively understandable and can be
evaluated from a single protein structure using a minimum of energy calculations.
Despite the simplicity of Eq. (6), titration curves described by this equation can
be remarkably complex. Figure 5.1 shows an example of a hypothetical system of
three titratable groups that interact quite strongly with each other. It is clearly seen
that the behavior of the system is anything but intuitive given the simple arrange-
ment of groups.

Further insight into the behavior of systems of titratable groups comes from
observing the population of individual protonation states. Panel B in Figure 5.1
shows the populations of the eight protonation states for the three-group system,
and it is seen that the titration curves of the system are the sum of several pro-
tonation states populations. Each of the protonation state population curves are
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FIGURE 5.1 (A) Titration curves of a hypothetical system of three acidic titratable groups arranged so that group one (dashed line) interacts
strongly with the two other groups (4 kT with group two, and 6 kT with group three), whereas the interaction between groups two (light gray) and
three (dark gray) is only 2 kT. The intrinsic pKa values of the three groups are one: 4.0, two: 5.0 and three: 4.5. Energies for each protonation state
are calculated with Eq. (5).
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FIGURE 5.1 (B) Populations of the eight protonation states for groups one, two and three. Starting from the left, the first curve tracks the
population of the fully protonated state. Proceeding to the right, the next two sets of three curves represent the three states with one
deprotonated group and two deprotonated groups. The final curve tracks the population of the fully deprotonated state. Note that the shapes of
the non-terminal pH-dependent protonation state populations are identical.
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either sigmoid or bell-shaped. This is always the case, and non-sigmoid titration
curves thus only arise when they represent the sum of several protonation state
population curves.

2. FITTING PROTEIN NMR TITRATION CURVES

Classically, titration curves were fitted to gain information on the pKa values as-
sociated with each titration. Such titration curve fitting procedures are relatively
well established, mostly consist of fitting titration curves to Eq. (2) and extensions
of it, and will not be covered here. Instead I will focus on extracting additional
information from protein NMR pH titration curves.

2.1 Fitting non-Henderson–Hasselbalch titration curves

In the previous section it was demonstrated that protein titration curves can be
calculated once we have knowledge of the intrinsic pKa values and the pair wise
interaction energies in a system. However, since we can experimentally measure
titration curves, it makes sense to investigate if can we gain information on in-
trinsic pKa values and pair wise interaction energies by fitting titration curves to a
model composed of Eqs. (5) and (6). We can expect to gain information from such
a titration curve fit if, and only if, a unique combination of the relevant parameters
(the intrinsic pKa values and pair wise interaction energies) produce the titration
curves we are trying to fit. Since Henderson–Hasselbalch (HH) shaped titration
curves always can be reproduced by an infinite number of parameter combina-
tions, we are left with attempting to fit non-HH shaped titration curves.

Non-HH shaped titration curves are found when two or more groups titrate
in the same pH range if they, at the same time, interact strongly [62]. Since elec-
trostatic interaction energies decrease with 1/r and are much stronger in solvent
inaccessible parts of a protein, we can expect to find non-HH titration curves for
titratable groups that are buried. Most titratable groups in proteins are situated on
the surface, but a significant fraction are situated in active sites, and these are often
removed from solvent, thus producing quite strong electrostatic interactions. Titra-
tion curves have been measured only for a limited number of active site residues,
and only a few of these have been found to be non-HH shaped. This could be
interpreted as proof that only very few enzyme active sites have non-HH titration
curves, but since titration curves have been measured primarily for small enzymes
due to the size limitation of NMR experiments, and since electrostatic interaction
energies are known to be stronger for larger proteins, it is quite conceivable that
a large fraction of enzymes active site titratable groups display non-HH titration
curves.

This is further bolstered by the fact that pKa calculations on large enzymes rou-
tinely produce non-HH titration curves. Indeed the THEMATICS algorithm [63]
for identifying active sites in protein structures has been designed around this
principle, and it has been shown that strong unfavorable electrostatic interaction
energies often are present in enzyme active sites [64]. It is therefore likely that a
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large fraction of enzyme active sites contain titratable groups that titrate in a dis-
tinctly non-HH fashion.

The work of McIntosh and co-workers on Bacillus circulans xylanase (BCX)
[65–68] serves as one of the paradigms for the current understanding of the cou-
pling between titration curves and pH-activity profiles. The catalytic mechanism
of BCX involves a proton donor (E172) and a nucleophile (E78), and the NMR
titration curves measured at atoms very close to the titratable groups of both
residues are distinctly non-HH shaped. We assume that the NMR titration curves
are representative of the real titration curves of the system, and we can therefore
attempt to fit the E78 and E172 titration curves using Eqs. (5) and (6). Søndergaard
et al. [39] implemented such a fitting routine (called Global Fitting of Titration
Events—GloFTE) and were able to fit the titration curves of wild type BCX with
good accuracy. The fit of these titration curves produced two intrinsic pKa val-
ues and a value for the E78–E172 interaction energy as specified by Eq. (5). A full
combinatorial scan of all realistic values for the two intrinsic pKa values and the
interaction energy confirmed that the solution found by the GloFTE fit was unique
and optimal. Of the fitted parameters, the intrinsic pKa values can be influenced
by weak interactions with other titratable groups not included in the fit, and these
therefore cannot be taken as a measure of the true intrinsic pKa values of the titrat-
able groups. Electrostatic interaction energies found by such a fit, are, however,
to a very good estimation variables which uniquely describes the interaction be-
tween the two residues. Søndergaard et al. used the GloFTE algorithm on five
enzyme systems and were able to extract electrostatic interaction energies for 15
residue pairs. Structural information is available for all of the systems, and it thus
straightforward to calculate the effective dielectric constant for the interactions.

The ability to fit titration curves to an energy model based on Eqs. (5) and (6)
also yields information on the population of each protonation state of the system
and, since the catalytic groups in an enzyme active site have to be in a specific
protonation state for catalysis to occur, this means that pH-activity profiles can be
fitted simultaneously with the NMR titration curve. This places a further restraint
on the fitting procedure and results in higher confidence levels for the extracted
electrostatic interaction energies. For the majority of the enzyme systems stud-
ied by Søndergaard et al. it is indeed possible to achieve excellent agreement
simultaneously for titration curves and the pH-activity profile, thus signifying
that the pH-activity profile is determined by the protonation states of the ac-
tive site residues and is not limited by other factors such as protein stability. It
is important to fit the kcat/Km pH-activity profile simultaneously with titration
curves measured for the apo form of the enzyme, while the kcat pH-activity pro-
file must be fitted simultaneously with titration curves for the holo form of the
enzyme-substrate complex. This relationship is due to the pH-dependence of the
Michaelis–Menten parameters and has been explored extensively [69,70].

2.1.1 Linking structure, biophysics and function
Since pairwise electrostatic interaction energies can be calculated from protein
structures using Poisson–Boltzmann Equation (PBE) solvers [71,72], we can at-
tempt to forge a unique link between protein structure and protein titration curves
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by comparing calculated and fitted pair wise electrostatic interaction energies.
Since we already have linked protein titration curves with pH-activity profiles,
we should therefore be able to make the elusive link between protein structure,
biophysics and function. Søndergaard et al. found that it was indeed possible to
uniquely identify the titratable residues in the protein structure using only the fit-
ted pair wise electrostatic interaction energies. This worked particularly well for
wild type BCX and the BCX mutant N35D, whereas in other cases it was not pos-
sible to identify the correct titratable groups in the protein structure. When we
cannot link the biophysics to the protein structure, then it is clear that there some-
thing is wrong. The most likely reasons are:

(1) the fitted electrostatic interaction energies are inaccurate,
(2) the calculated interaction energies are unrealistic,
(3) a change in the NMR chemical shift does not be signify a change in protonation

state, or
(4) the protein occupies multiple protein conformations with different pKa values

or Eq. (6) is otherwise not able to model the energy levels of the system cor-
rectly.

Often things get interesting when they go wrong, and with NMR titration
curve fitting this is indeed the case. Of the four reasons listed above, each rep-
resents a challenge to scientists studying NMR titration curves, but whereas the
accuracy of the fitted interaction energies (possibility (1)) can be solved by careful
statistical analysis, the three remaining possible problems are more challenging
and will be discussed briefly below.

Inaccurate calculated electrostatic energies There are many reasons that PBE-
calculated electrostatic interaction energies can be incorrect. Chief among them is
the infamous protein dielectric constant, which essentially is a fudge-factor that
is used to scale electric fields in proteins to make them agree with experimental
data. A dielectric constant is only properly defined in a macroscopic setting, and
its use on a microscopic scale is problematic as pointed out by Warshel and co-
workers in a number of articles [30,73]. In the study above, a protein dielectric
constant of 8 was used throughout since this value has been found to work well
for protein pKa calculations [58] for a subset of proteins. However, it is entirely
possible that it would be more appropriate to use a different protein dielectric
constant for the proteins where we cannot relate the fitted electrostatic interaction
energies to a protein structure. The problem is that we have no objective way of
determining what the dielectric constant for a specific protein. Nevertheless in
some cases it is clear that a physically unrealistic protein dielectric constant must
be applied in order to obtain agreement between the fitted titration curves and the
protein structure, and in these cases a realistic link between protein structure and
biophysics therefore cannot be formed by adjusting the protein dielectric constant.

The NMR chemical shift does not model the titrational event If it is clear that an
altered protein dielectric constant cannot reconcile the protein structure with the
titration curves, then it is time to examine the NMR titration curves themselves.
Since the NMR chemical shift is very sensitive to small changes in the chemical
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environment, it is possible that a titration of a distant titratable group is mirrored
in the chemical shift of another titratable group. In these cases it is very easy to
mistake the ‘ghost titration’ originating from a distant site for a real titration of the
titratable group itself.

Invalid GloFTE model assumptions Finally, it is possible that the underlying en-
ergy function for the GloFTE method (Eq. (6)) is too simple to accurately describe
the physical reality of the system. Eq. (6) operates with only a single conforma-
tional state and two protonation states for each titratable group, but it is well
known that proteins often exist is several distinct conformations and furthermore
that changes in pH can cause conformational changes to a protein thus invalidat-
ing the single-conformation assumption.

In a more elaborate study of protein titration, Onufriev et al. [40] convinc-
ingly showed that Eq. (6) is unable to reproduce the highly irregular titration
curves for the compound diethylene-triamine-penta-acetate (DTPA) meaning that
in some cases Eq. (6) simply does not describe the physics of the molecule well.
In other words: for some molecules one cannot describe the energy levels of each
protonation state simply by a combination of intrinsic pKa values and pair wise
interaction energies. Onufriev et al. developed the Decoupled Sites Representa-
tion (DSR) model for fitting and analyzing more complicated systems, and were
able to fit the highly irregular titration curves of DTPA using the DSR model. The
DSR model is significant because it allows us to understand the titration of any
molecule in terms of a number of so-called quasi-sites. These quasi-sites do not
represent a real physical titration site, but consist of linear combinations of the real
titrations. This DSR model thus shows that for some compounds, their titrational
behavior is better analyzed by analyzing the titratable properties of the system as
a whole rather than focussing on the behavior of individual groups.

In cases where GloFTE fitting fails to agree with the protein structure via
structure-based PBE calculations, we must be therefore be careful to analyze the
validity of the assumptions underlying the PBE calculations and the GloFTE fit-
ting procedure. In many cases knowledge on the flexibility of the system can lead
to probable explanations that eventually can lead to the reconciliation of structure
and titration curves. The following section highlights two papers that have made
use of the indirect relationship between charge titration curves and NMR titration
curves to study the electric field and conformational changes in proteins.

2.2 Exploiting the sensitivity of the chemical shift
The unique sensitivity of the NMR chemical shift to the chemical environment is,
as illustrated above (possibility no. 3), sometimes an obstacle to understanding of
the titrational properties of a system. However, the high sensitivity can also be
exploited to give us a information on other characteristics of a protein.

2.2.1 The effect of the electrostatic field
An electric field (E) in a protein influences the chemical shift of all nuclei. The
chemical shift of the backbone amide nitrogens is affected primarily by a polariza-
tion of the atoms in the CO-N bond, whereas the chemical shift of the backbone
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amid hydrogen changes due to a polarization of the N-H bond [41,74,75]. The ef-
fect on the chemical shift is maximal when the electric field is parallel to bond in
question, and minimal when the electric field is perpendicular to the bond.

It is often convenient to describe the effect of the chemical shift of a particular
bond as

�chemshift = Aatom�Echarge cos θ ,

where �Echarge is the electric field due to the removal/appearance of a single
charge, θ is the angle describing the alignment of the field relative to the bond
being polarized, and Aatom is a constant describing how much the chemical shift
of the atom in question changes due to a change in the electric field. Values for
Aatom have been calculated using quantum mechanical calculations and the value
of θ can be obtained from an X-ray structure, and it is therefore possible to relate a
change in chemical shift for an atom directly to a change in the electric field.

Thus, one can either predict in which atoms the titration of a certain titratable
group should be observed, or, if one can ascribe the titration in an atom to a spe-
cific titratable group based on e.g. a unique pKa value or other information, then
it is possible to measure the strength of the electric field at an atom due to a spe-
cific charge. Hass et al. [41] exploit this elegantly for two titratable groups and
an ion in plastocyanin, and in their analysis they determine values for Aatom and
site-specific effective dielectric constants for the electric field emanating from each
charge. Moreover, because of the angular dependence of the contribution of the
electric field, the authors demonstrate that it is possible to predict the positions of
the three charges in the protein structure once each chemical shift change has been
attributed to a specific charge.

2.2.2 Structural changes
In a separate study Sakurai and Goto [42] use the sensitivity of the NMR chemical
shift to conformational changes to characterize the pH-dependent conformational
changes in β-lactoglobulin. The authors measure the pH-dependent change in
chemical shift of all backbone amide nitrogen and protons, and perform a global
principal component analysis (PCA) on the data. From the PCA, Sakuri and Goto
find that the first three principal components account for more than 80% of the
variation in the data. The authors furthermore show that the first three principal
components can be represented as a pH-dependent linear combination of four ba-
sis spectra consistent with the existence of several pH-dependent conformational
states of this protein [76,77]. Using the basis spectra, which are derived from the
PCA, the authors are able to identify the regions of β-lactoglobulin that undergo
structural changes with pH. It is found that the three transitions observed in the
NMR spectra are associated with changes in the chemical shift in distinct regions
of the protein, thus giving information on the effect of pH on various regions
of β-lactoglobulin. Moreover, the elegant global analysis of the chemical shifts
produce the same pKa values for the structural transitions found in other stud-
ies [76,77], thus providing a convincing case for the use of PCA of NMR data for
the structural interpretation of pH-dependent conformational changes.
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The study of Sakuri and Goto complement many other studies on the effect of
pH on protein stability and structure [3,4,78–85], but provide much more detail
than conventional studies. The relatively uncomplicated analysis procedure with
its excellent agreement with other methods holds great promise for the use of this
method on other proteins.

2.3 Comprehensive modeling of the pH-dependence of the chemical
shift

The studies of Hass et al. [41] and Sakuri and Goto [42] illustrate that the pH-
dependence of the NMR chemical shift can be used as a sensitive probe to study
the protein electric field and pH-dependent conformational changes in proteins.
The chemical shift of a given atom is thus influenced by the electric field in the
protein, the conformational state of the protein, and any changes in the shielding
of an atom due to through-bond effects originating from the titration of a charge
nearby. In each of the applications discussed in this article (charge titration curve
measurement, measurement of the electric field, and studies of conformational
changes) the pH-dependence of the NMR chemical shift has been interpreted as
being dominated by a single of these components.

While for some proteins the pH-dependence of the NMR chemical shift will be
dominated by either electric field (EF) changes, conformational changes or directly
through-bonds by the titrational event, this cannot be expected in the general case.
Instead, for most proteins the pH-dependence of the NMR chemical shift will be
determined by a combination of EF changes, conformational changes and through-
bonds effects. When analyzing the pH-dependence of the NMR chemical shift as
in the papers discussed in this article, the computational models ought to take
all three effects into account. The ever-increasing sophistication of methods for
predicting chemical shifts based on protein structures [86,87] holds some promise
for producing theoretical models that can decompose the effects of electric fields,
conformational changes and through-bond effects on the NMR chemical shift. In
particular it seems straightforward to include modeling of the effects of the electric
field in these software packages.

3. CONCLUSION AND OUTLOOK

The analysis of protein titration curves can yield a wealth of information on the
biophysical characteristics of proteins and give valuable insights into the energet-
ics underlying these characteristics. Enzymatic activity, protein stability, protein
conformational change and protein binding characteristics are all, to a large extent,
determined by protein charge and thus protein titration curves, and the study of
pH-dependent effects will therefore continue to play a central role in the study of
protein biophysics both in vitro and in vivo.

Coming years will see the construction of more sophisticated methods for an-
alyzing protein titration curves as outlined in the previous section, but there will
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also be a demand for delivering these methods in an easy accessible way to exper-
imentalists. The theoretical community investigating pKa calculations and protein
electrostatics has already made significant efforts to make their technologies ac-
cessible by producing web-based interfaces to many algorithms [33,35,56,88–92]
and as stand-alone clients for the prediction and analysis of titration curves are
beginning to become available [39,93].

In summary, the study of protein titration curves continues to give detailed
insight into the energetics of protein structures. The importance of protein electro-
statics for protein structure and function combined with the interesting behavior
of groups of titratable systems and the unique sensitivity of the NMR chemical
shift arguably makes the study of protein titration and NMR titration curves one
of the most fascinating and promising areas of research in biophysical and com-
putational chemistry.
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1. INTRODUCTION

The application of implicit solvent in simulations of biological macromolecules is
an attractive choice over fully explicit solvent environments [1]. The primary ad-
vantage is a lower computational cost due to the reduced system size with implicit
solvent, while reduced or absent solvent friction and instant solvent relaxation can
further accelerate conformational sampling [2,3]. The mean-field nature of implicit
solvent also results in larger system energy fluctuations which are advantageous
in enhanced sampling methods and in particular in temperature replica exchange
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simulations [4], because a smaller number of replicas can provide sufficient sam-
pling overlap for a given range of temperatures

Numerous simulations with implicit solvent have been reported over the last
decades with increasing levels of realism [5]. Many of these simulations involve
peptides and small proteins over time scales that could not be reached easily with
explicit solvent representations [6–8]. There are many fewer cases where implicit
solvent simulations were used to study larger biomolecules and biomolecular
complexes [9,10]. Such simulations have remained rare for the following reasons:

(1) The computational advantage of implicit solvent diminishes at large system
sizes when the ratio of solvent vs. solute atoms decreases.

(2) Because implicit solvent simulations are typically open, non-periodic systems,
electrostatic interactions are calculated according to standard cutoff schemes
that do not scale as well to large system sizes as the more efficient Ewald sum-
mation method [11,12] that is routinely used in explicit solvent simulations.

(3) Solvation free energies are often estimated less accurately for large solutes be-
cause the approximate methods that are typically used have difficulties with
internal solute cavities [8] and with solute surface charges that are very far
from the center of the solute [13].

As a consequence, the structural integrity of larger biomolecules may not be main-
tained as well with implicit solvent [14].

While the implicit modeling of dilute aqueous solvent is well established, the
realistic modeling of cellular environments presents additional challenges that are
just beginning to be addressed. Cellular environments are densely crowded with
macromolecules and co-solvents [15]. Crowding results in steric hindrance [16] but
also modulates the properties of the remaining aqueous solvent [17]. Furthermore,
many biological processes take place in or near phospholipid bilayer membranes
where physicochemical properties differ drastically from aqueous solvent. Implicit
solvent models of cellular environments need to consider the heterogeneous na-
ture of biological systems on the molecular level while providing a mean-field
model that does not require an explicit representation of solvent or co-solvent. In
general, this can be achieved through spatially varying continuum models as the
basis for calculating the energetic effects of a given environment.

2. THEORY

The mean-field effect of the environment can be included in biomolecular simu-
lations simply by adding an expression for the solvation free energy of an instan-
taneous solute conformation to a given molecular mechanics force field [1]. Such
an implicit solvent potential addresses the thermodynamic component of solute–
solvent interactions. Kinetic and hydrodynamic properties may be reintroduced
through the use of Langevin dynamics where coupling with a temperature bath is
implemented through stochastic collisions and solvent friction [2,3,18].

Solvation free energies can be calculated with a number of empirical for-
malisms [19–21]. A more physical approach involves the decomposition of the
solvation free energy into electrostatic and non-polar components.
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The dominant electrostatic component can be obtained according to the lin-
earized Poisson–Boltzmann equation [22] (Eq. (1)). Poisson theory describes the
solute–solvent system as a two-dielectric continuum where a high dielectric en-
vironment surrounds a low-dielectric solute cavity with embedded partial atomic
charges according to a given force field:

(1)∇ · [
ε(r)∇φ(r)

] − κ2(r)φ(r) = −4πρ(r)

where ρ(r) is the explicit charge distribution, ε(r) is the dielectric constant, and
κ(r) is the modified Debye–Hückel screening factor which captures interactions
with free ions in the environment. In the case of low ionic concentrations, the sec-
ond term on the left side may be neglected. The result is the simplified Poisson
equation. Only static dielectric constants are considered here because the dielec-
tric response is essentially constant over the frequency range corresponding to
conformational fluctuations in biomolecules.

The Poisson equation can be solved for the electrostatic potential using finite
difference techniques [23,24]. Such calculations are straightforward but relatively
expensive [25]. There has been recent progress in improving the accuracy of solva-
tion free energies from Poisson theory [26], but the computational cost for solving
the Poisson equation directly at each simulation step in a molecular dynamics sim-
ulation has remained prohibitive.

A computationally attractive alternative to a direct solution of Eq. (1) is the
popular Generalized Born (GB) formalism [5,27] given in Eq. (2) which empirically
approximates electrostatic solvation free energies from Poisson theory:

(2)�Gelec = −1
2

(
1 − 1

ε

) ∑
i,j

qiqj√
r2

ij + αiαje
−r2

ij/Fαiαj

where qi are partial atomic charges of the solute from a given force field, rij are pair-
wise atomic distances, and F is an adjustable parameter. The key to a successful
implementation of the GB formalism is an efficient and accurate calculation of the
generalized Born radii αi as described in more detail in Chapter 7 of this volume.

The non-polar contribution to the free energy of solvation includes van der
Waals solute-solvent interactions and the cost of cavity formation. The cost of cav-
ity formation can be modeled effectively with a term that is simply proportional to
the solvent accessible surface area or the solvent excluded volume [28–30]. Often,
van der Waals interactions are not considered separately, but new formalisms have
been suggested to include such contributions effectively [31]. Recently, it was also
recognized that the length-scale dependence of non-polar interactions may fur-
ther complicate the development of accurate implicit non-polar models [32]. It is
clear that further studies will be needed to identify the optimal implicit non-polar
formalism.

Cellular environments can be modeled as a first approximation as aqueous
solvent, corresponding to an implicit solvent model with ε = 80. The high concen-
tration of biomolecules and co-solvents inside cells generally attenuates the dielec-
tric response of the remaining water molecules [17]. In a mean field approach, this

http://dx.doi.org/10.1016/S1574-1400(08)00007-8
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corresponds to a uniformly lowered dielectric constant for the environment. In ad-
dition, molecular crowding imposes steric constraints that disfavor more extended
conformations of biomolecules. This may be modeled simply as an increased cost
of cavity formation.

Heterogeneity of cellular environments can be introduced by allowing the en-
vironmental dielectric constant and cost of cavity formation to vary spatially. An
example where this idea has been applied successfully is the implicit modeling of
biological membranes composed of phospholipid bilayers. The lipid tails in the
membrane interior present a highly hydrophobic environment with a dielectric
constant between 1 and 2 [33]. The environmental polarizability increases to in-
termediate values near the glycerol linkage before reaching dielectric constants
comparable to aqueous solvent in the head group region [33]. At the same time,
the cost of cavity formation decreases from a relatively large value in aqueous sol-
vent to nearly zero in the center of the membrane where the lipid tails are easily
moved to accommodate a given solute.

Lowered and spatially varying dielectric constants are readily applied in Pois-
son theory through a suitable definition of ε(r) in Eq. (1). However, it is less obvi-
ous how to modify Eq. (2) to implement such models within the GB formalism. In
fact, there are two separate issues that have to be addressed:

(1) How applicable is the GB formalism in the case of (homogeneous) low dielec-
tric environments?

(2) How can dielectric heterogeneity be introduced?

It has been recognized previously that changing ε in Eq. (2) is not sufficient
to accurately reflect solvation free energies in low dielectric environments [34,35].
The generalized Born radii αi also have to be calculated as a function of ε [35].
This is evidenced by the higher-order terms in the analytical expression for the
electrostatic solvation free energy for a single charge at distance r from the center
of a spherical cavity of radius R according to Kirkwood [36]:

(3)�Gelec = −q2

2

(
1 − 1

ε

)(
1
R

+ 2ε

2ε + 1
r2

R3 + 3ε

3ε + 2
r4

R5 + · · ·
)

The first term in the series expansion in Eq. (3) corresponds to the Coulomb field
approximation that is used in GB formalisms to calculate GB radii [37]. Born radii
calculated solely based on the Coulomb field approximation are therefore not
sensitive to the dielectric environment (as they should be). However, recent GB
implementations that include an additional higher-order correction term [13,38]
allow the ε-dependent calculation of GB radii and consequently an accurate re-
production of solvation energies over the entire range of dielectric constants [35].

To allow for heterogeneous dielectric environments a local dielectric constant
that varies at each charge site can be introduced into the standard GB formalism:

(4)�Gelec = −1
2

∑
i,j

(
1 − 1

(εi + εj)/2

)
qiqj√

r2
ij + αi(εi)αj(εj)e

−r2
ij/Fαi(εi)αj(εj)

.
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In the membrane bilayer example, ε may simply vary with the distance from the
membrane center so that εi = ε(zi). This spatially variable dielectric constant rep-
resents the effective dielectric response at a given charge site that is due to the
entire heterogeneous environment. In the membrane example, this means that the
effective dielectric constant for a solute atom embedded in the hydrophobic region
is not simply equal to the dielectric constant of the hydrophobic lipid tails but also
depends on the higher dielectric regions that are at a distance. The global effect
of a heterogeneous dielectric environment can be captured by solving the Poisson
equation for a charged probe sphere at different sites and back-calculating the cor-
responding effective dielectric constant from the solvation free energy according
to the inverted Born equation:

(5)εeff = 1
1 + 2�GPBa/q2

where a is the radius of the probe sphere and q is its charge.
The formalism outlined so far allows for the implicit modeling of complex cel-

lular environments as long as they can be approximated through spatially varying
dielectric regions. This spatial coarse-graining may be appropriate for many ap-
plications, but neglects further variations in the environment over time. Coming
back to the membrane example, phospholipid bilayers are not static entities but
rather fluctuate both in terms of thickness and height [39]. A temporal variation of
the environment could be realized by allowing the effective dielectric function to
vary with time either driven by an external function or based on interactions with
a solute interacting with the membrane system.

3. APPLICATIONS AND CHALLENGES

3.1 Simulations of biomolecules with implicit solvent
As implicit solvent models have become more realistic, the focus has shifted from
method development and validation to applications. Early applications have ap-
plied implicit solvent models as scoring functions [40] and in particular for the
prediction of binding affinities through the popular MMPB/SA or MMGB/SA ap-
proach where conformational ensembles from explicit solvent are rescored with
an implicit solvent function [41]. More recently, implicit solvent models have also
found wider application in molecular dynamics simulations. Implicit solvent is
generally attractive to study the dynamics of peptides and proteins over long
time scales [7]. The conformational sampling of peptides in implicit solvent has
been studied with conventional, constant-temperature molecular dynamics simu-
lations [42–44] and with multicanonical sampling [45]. Especially popular has been
the use of implicit solvent to study the folding of hairpins [46–51], helices [49,52],
and small proteins such as the WW domain [53] and protein A [54] as well as
the unfolding of transthyretin [55]. Most of these calculations have also employed
enhanced sampling methods, in particular temperature replica exchange simu-
lations, for which implicit solvent is well suited due to the reduced degrees of
freedom of the entire system.
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A recent application of implicit solvent in simulations of larger systems has
been reported for the nucleosome core particle [10], for chemotaxis Y protein [56],
in a study of unfolded states of apomyoglobin [57], and in efforts to model the
structure and dynamics of steroidogenic acute regulatory protein-related lipid
transfer domains [58]. Most implicit solvent simulations that have been reported
involve peptide or protein solutes, but success with implicit solvent simulations
of nucleic acids has also been reported [59,60].

As mentioned above, the use of implicit solvent in conventional simulations
of larger biomolecules is often not as effective because of technical and efficiency
issues [61]. However, implicit solvent may be a good choice in biased or targeted
molecular dynamics simulations where the lack of explicit solvent eliminates the
need for solvent re-equilibration during the course of a simulation, especially
when large conformational changes are involved. In exploratory simulations of
yeast RNA polymerase II that examined a putative DNA/RNA translocation
mechanism the use of implicit solvent allowed the entire translocation step to be
simulated in a semi-realistic fashion over tens to hundreds of picoseconds [62].
This would not have been possible with explicit solvent. Similarly, ligand unbind-
ing simulations of odorant-binding proteins took advantage of implicit solvent
to eliminate the need to simulate solvent reorganization during the binding pro-
cess [63].

An exciting development made possible by implicit solvent is the implemen-
tation of constant pH simulations where the ionization states of ionizable residues
are allowed to vary dynamically in response to interactions with the surrounding
residues and the environment [64,65]. Although the methodology was introduced
only recently, interesting first applications have already been reported [66,67].

Finally, implicit solvent has been found useful in the refinement of protein
structures based on experimental constraints [68] and without restraints from ap-
proximate homology models [69] when combined with replica exchange method-
ology.

Despite the increasing number of successes with implicit solvent simulations,
there are still concerns that the use of implicit solvent systematically biases con-
formational sampling. In particular, studies have suggested increased sampling
of helical structures [70] and an overstabilization of salt bridges [52,56,71]. These
problems may be linked to deficiencies with particular implicit solvent models
or they may reflect uncertainty in defining the dielectric surface based on default
atomic radii, usually taken from the van der Waals radii of the underlying force
field. Consequently, modified atomic radii have been found to improve the agree-
ment between implicit solvent simulations and experimental data and/or explicit
solvent simulations [49,59,71].

3.2 Ensembles, solvent friction, and conformational sampling

Simulations of biomolecules are typically carried out in NVT (constant number of
particles, volume, and temperature) or NPT (constant pressure instead of volume)
ensembles to reflect the conditions of biological environments. While Newtonian
mechanics for a fixed simulation box with a solute and explicit solvent results in
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sampling of an NVE ensemble (constant energy instead of temperature), NVT en-
sembles can be achieved by coupling the simulated system to a temperature bath.
A number of different coupling schemes have been proposed [72], all of which
either rescale or reassign velocities in order to maintain a set target temperature
of the entire system. Widely used choices are Nosé–Hoover [72,73] or Berendsen
thermostats [74], which rescale velocities according to different coupling strengths
with respect to a heat bath.

Implicit solvent simulations at constant temperature may be achieved in a
similar way by coupling the solute to a heat bath. However, the choice of the ther-
mostat has implications for the kinetics of conformational sampling by the solute.
When an explicit solvent system is coupled to a thermostat via a straightforward
velocity rescaling scheme such as Nosé–Hoover dynamics, it is in fact possible
(and likely) that the kinetic energy of the solute alone fluctuates significantly as
long as the kinetic energy of the solvent fluctuates in a compensatory fashion. On
the molecular level, fluctuations of kinetic energy between solute and solvent are
the result of atomic collisions that may occasionally transfer significant amounts
of kinetic energy. Because implicit solvent simulations lack this possibility, direct
coupling of only the solute with Nosé–Hoover or Berendsen thermostats would
therefore lead to reduced fluctuations in kinetic energy compared to the explicit
solvent system. The consequence is a reduced ability to overcome significant ki-
netic barriers as shown recently in a comparison of alanine dipeptide transitions
with implicit and explicit solvent [2].

More realistic kinetic behavior in implicit solvent simulations can be obtained
with the Langevin thermostat [18] where stochastic collisions and friction forces
provide kinetic energy transfer to and from the solute in an analogous fashion
to explicit solute–solvent interactions. As a result, kinetic transition rates similar
to rates from explicit solvent simulations can be recovered with an appropriate
choice of the friction constant [2].

Often, the primary objective of implicit solvent simulations is to explore the
thermodynamics of the accessible conformational space rather than kinetics. In
that case, Langevin dynamics with reduced friction coefficients may be used to
accelerate the rate of kinetic barrier crossings [2,3]. The sampling of conforma-
tional basins without significant barriers (compared to the thermal energy, kT)
is also accelerated by Langevin dynamics with reduced friction coefficients. In-
terestingly, simulations with the Nosé–Hoover thermostat actually cover confor-
mational space even more efficiently in the absence of barriers due to the lack of
friction and the lack of stochastic collisions which randomize motion as a result of
atomic velocity reassignments [2]. Consequently, the thermostat is an important
choice in implicit solvent simulations depending on the type of problem that is
being addressed.

3.3 Crowded cellular environments

As a first approximation, crowded cellular environments may be modeled as a di-
electric continuum with a reduced effective dielectric constant (Figure 6.1A), pos-
sibly in combination with an increased cost of cavity formation to account for the
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FIGURE 6.1 Proposed continuum electrostatic models of cellular environments.

steric constraints on insertion of a solute due to a high concentration of surround-
ing macromolecules. The effective solvent polarization experienced by a solute in
such an environment is reduced because water is partially immobilized [17] when
sandwiched between biomolecules and because less polarizable macromolecules
in the vicinity lower the overall dielectric response due to the long-range nature of
electrostatic interactions. While the average solvent polarizability of cellular envi-
ronments may be highly variable and is difficult to determine experimentally, one
may expect the dielectric constant to fall in a range between 30 and 50 [75–77].

Initial studies of peptide conformational sampling in reduced dielectric en-
vironments indicate that even a moderate reduction of the dielectric constant
can significantly alter conformational preferences [78]. The reduced electrostatic
screening in lower dielectric environments generally favors interactions between
charged and polar groups vs. hydrophobic core formation in high dielectric en-
vironments. This may result in increased helical propensities at low dielectric
constants in a system like poly-alanine but shift conformational equilibria and ag-
gregation propensities in a more complex manner in amphiphilic peptides such as
melittin [78].

An implicit representation of more complex heterogeneous cellular environ-
ments is also possible by assigning different dielectric constants to different spatial
domains and determining an effective dielectric constant throughout space from
solutions to the Poisson equation with a probe sphere according to Eq. (5). One
may for example assume a system consisting of a high dielectric constant in a
spherical cavity surrounded by a low dielectric environment (see Figure 6.1B).
This would be reflective of a hydrated solute with a few solvation layers but sur-
rounded by a shell of macromolecules. In this case, the resulting effective dielectric
would be a radial function that only depends on the distance from the center of the
high dielectric sphere. The model could be refined further by embedding spherical
low dielectric cavities into a high dielectric continuum as shown in Figure 6.1C and
recalculating an effective dielectric function that now varies three-dimensionally.
The model could be augmented with an exclusion potential that keeps a solute of
interest from entering the low dielectric cavities where it would overlap with an-
other macromolecule. In reality, the environment is not fixed, but an independent
dynamic variation of the low dielectric cavities would require a computationally
very expensive recalculation of the effective dielectric profile at every simulation
step. A dynamic variation of the dielectric profile becomes feasible in principle,
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however, if the profile can be altered through a few degrees of freedom such as
stretching of the profile in radial direction to reflect a smaller or larger distance of
the surrounding macromolecules from the center of the system.

3.4 Membrane bilayers

Biological membranes are a special case of heterogeneous cellular environments.
According to the physicochemical characteristics of the constituent ordered phos-
pholipids they consist of a hydrophobic interior, a layer of intermediate polariz-
ability and a polar, zwitterionic, or charged head group region with interspersed
water molecules. Such a system could be approximated with a simple two di-
electric model consisting of a low dielectric slab embedded in a high dielectric
environment. Such a model can be simplified further by assuming that the di-
electric constant of the hydrophobic layer is equal to the internal dielectric of
the solute (usually 1) which greatly simplifies the application of existing GB for-
malisms [79–81]. A more realistic implicit model of a membrane bilayer would
consist of multiple dielectric layers with the interior hydrophobic layer exhibiting
at least some polarizability with ε between 1 and 2 (see Figure 6.1D) [82]. Such a
model results in a smooth effective dielectric profile which can be calculated for a
specific set of layers according to Poisson theory [82] or may be approximated as a
simple Gaussian function [83]. The exact choice of dielectric constants and width
of the dielectric layers depends on the lipid type and is subject to parameterization
with respect to reference data from experiments and explicit lipid simulations.

The non-polar component of the solvation free energy is especially important
for implicit membrane models as it decreases from a significant positive contri-
bution in aqueous solvent to near zero at the center of the phospholipid bilayer.
Without a non-polar term, even hydrophobic solutes would in fact prefer the
high-dielectric environment where the electrostatic solvation free energy is more
favorable than in a low-dielectric medium. The functional form of the non-polar
term may follow a simple switching function [79,80], a calculated free energy in-
sertion profile for molecular oxygen [82,84], or may be parameterized as well with
respect to simulation or experimental data.

Particularly useful data for parameterization of implicit membrane models
are experimental transfer free energies between water and cyclohexane [85] (as
a mimic of the hydrophobic tails) and explicit lipid free energy calculations for
the insertion of amino acid side chain analogs [86,87]. Insertion profiles for amino
acid side chain analogs with implicit and explicit models are shown in Figure 6.2.
The optimized effective dielectric and non-polar profiles for use with the HDGB
(heterogeneous dielectric generalized Born) implicit model [9,82] are shown in Fig-
ure 6.3.

The agreement between the implicit and explicit model and between the calcu-
lated transfer free energies and the experimental data is quite good indicating that
an implicit membrane model can provide a reasonable description of membrane
insertion energetics. Similarly good agreement with experimental transfer free en-
ergies has also been found for another implicit membrane model [83]. Remaining
discrepancies may be attributed to deficiencies in modeling non-polar interactions
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FIGURE 6.2 Amino acid side chain analog insertion profiles with explicit (red) and implicit
(purple, black) membrane models. The explicit lipid profiles were calculated with the OPLS
force field [87], implicit profiles were calculated with both CHARMM [92] and OPLS force
fields [93]. Experimental water-cyclohexane transfer free energies [85] are indicated as red dots.

FIGURE 6.3 Optimized effective dielectric profiles and non-polar profiles to be used in
implicit membrane model.
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(e.g. in the case of tryptophan) and the assumption of a fixed membrane width that
does not allow water defects at the membrane–water interface near polar residues
as seen in the explicit lipid simulations [87].

Implicit membrane models have been used successfully in simulation of mem-
brane proteins [9] and in folding studies of membrane-bound peptides [88–90].
Furthermore, applications of implicit membrane models as scoring functions and
in MMGB/SA-type free energy calculations for membrane-bound biomolecules
are conceivable [91].

4. SUMMARY AND OUTLOOK

Over the recent years implicit solvent models have undergone a transition to rel-
atively mature methodology that is now widely employed in molecular dynamics
simulations and related applications. Most popular are implicit solvent models
based on a decomposition of the solvation free energy into electrostatic and non-
polar components. The electrostatic free energy is typically obtained according to a
continuum electrostatics model that is described by Poisson theory or by the more
approximate but much more efficient Generalized Born formalism.

A new direction is the extension of Generalized Born models to non-aqueous
solvent environments with lowered dielectric constants and possibly a high degree
of heterogeneity e.g. in biological membranes. Implicit solvent provides a mean-
field picture that is useful to study the conformational sampling of biomolecules
in such environments without having to consider specific interactions with spe-
cific constituents. Furthermore, the reduced representation offers computational
advantages that are most pronounced for small solutes. At the same time, the lack
of the specific interactions with the environment is the greatest disadvantage in
cases where such interactions play an important role. Future developments may
therefore focus on the development of effective hybrid methodology where only
selected solvent molecules are represented explicitly in an otherwise implicit en-
vironment.

Another direction that needs to be addressed is the rather limiting assumption
that cellular environments are largely static. Variations in the effective dielectric
constant as a function of both space and time are possible in principle. Future
efforts may address how to parameterize and implement fully variable models in
an effective manner.

Finally, implicit models of complex cellular environments are the first step
towards developing a comprehensive multi-scale modeling framework for sim-
ulating cellular processes in molecular detail and address future challenges in
molecular biology.
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1. INTRODUCTION

The effects of solvent environment must be taken into account for realistic mod-
eling of bio-molecules. Traditionally, this has been accomplished by placing a
sufficiently large number of individual water molecules around the solute, and
simulating their motion on an equal footing with the molecule of interest. While
arguably the most realistic of the current theoretical approaches, this explicit solvent
methodology suffers from considerable computational costs, which often become
prohibitive, especially for large systems or long time-scales, such as those involved
in the folding of proteins. Other problems with the approach include the difficulty,
and often inability to calculate relative free energies of molecular conformations
due to the need to account for very large number of solvent degrees of freedom.

An alternative that is becoming more and more popular—the implicit solvent
model [1–7]—is based on replacing real water environment consisting of discrete
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molecules by an infinite continuum medium with the dielectric and “hydropho-
bic” properties of water. Presented below is a very brief overview of the cur-
rent state of the methodology, with specific focus on the hierarchy of underlying
approximations and the use of corresponding computational models in molec-
ular dynamics (MD) simulations. One specific example—the Generalized Born
model—is discussed in relatively greater detail, reflecting the author’s own ex-
perience with the development of this model.

2. IMPLICIT SOLVENT FRAMEWORK

Implicit solvent models have several advantages over explicit water representa-
tions, especially in molecular dynamics simulations. These include the following.

Lower computational costs for many molecular systems, and better scaling on
parallel machines. The effective cost reduction may be particularly significant if
one takes into account the improved sampling: in contrast to explicit solvent mod-
els, solvent viscosity that slows down conformational transitions can be turned off
completely within implicit representations.

Effective ways to estimate free energies; since solvent degrees of freedom are
taken into account implicitly, estimating free energies of solvated structures is
much more straightforward than with explicit water models.

Since implicit solvent models correspond to instantaneous dielectric response
from solvent, there is no need for the lengthy equilibration of water that is typically
necessary in explicit water simulations. This feature of implicit solvent models
becomes key when charge state of the system is changed many times during the
course of a simulation, as, for example, in constant pH simulations.

Finally, the implicit solvent approach has a clear advantage over explicit sol-
vent in computing and making physical sense of energy landscapes of molecular
structures. Here, implicit averaging over solvent degrees of freedom eliminates the
“noise”—an astronomical number of local minima arising from small variations in
solvent structure.

2.1 The hierarchy of underlying approximations

When contemplating a use of practical techniques based on the implicit solvent
framework, one should be keenly aware of the fact that all of the attractive fea-
tures of the methodology listed above come at a price of making a number of
approximations whose effects are often hard, if not impossible, to estimate. Note
that the discrete → continuum step is not the only deviation from reality: as one
descends the “tree of approximations” that the methodology is based upon, Fig-
ure 7.1, down to models used in practice today, more and more approximations
are made. Also note that some familiar descriptors of molecular interaction, such
as solute–solvent hydrogen bonds, are no longer explicitly present in the model—
instead, they come in implicitly, albeit at a mean-field level, and contribute to the
overall solvation energy.

In many molecular modeling applications, and especially in molecular dy-
namics, the key quantity that needs to be computed is the total energy of the
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FIGURE 7.1 An “approximations tree” of the implicit solvent framework.

molecule in the presence of solvent. This energy is a function of molecular con-
figuration, its gradients with respect to atomic positions determine the forces on
the atoms. The total energy of a solvated molecule can be conveniently written as
Etot = Evac +�Gsolv, where Evac represents molecule’s potential energy in vacuum
(gas-phase), and �Gsolv is defined as the free energy of transferring the molecule
from vacuum into solvent, i.e. solvation free energy.1 In practice, once the choice
of the gas-phase potential function, or force-field, Evac is made, its computation
is relatively straightforward [8]. The difficulty comes from the need to estimate
the effects of solvent, encapsulated by the �Gsolv term in the above equation. At
present, the implicit solvent framework makes the following simplifying approxi-
mation to estimate �Gsolv:

(1)�Gsolv = �Gel + �Gnonpolar,

where �Gnonpolar is the free energy of solvating a molecule from which all charges
have been removed (i.e. partial charges of every atom are set to zero), and �Gel
is the free energy of first removing all charges in the vacuum, and then adding
them back in the presence of a continuum solvent environment. To proceed, one
needs practical methods of computing both �Gel and �Gnonpolar. The “hydropho-
bic” part �Gnonpolar represents the combined effect of two types of interaction:
the favorable van der Waals attraction between the solute and solvent molecules,
and the unfavorable cost of breaking the structure of the solvent (water) around
the solute. The common approximation widely in use today [9] assumes both of
these contributions to be proportional to the total solvent accessible surface area

1 Technically, the above decomposition is already an approximation made by most classical (non-polarizable) force-
fields, as it assumes this specific separability of the Hamiltonian.
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(A) of the molecule, thus taking �Gnonpolar ≈ σ × A, with the proportionality con-
stant derived from experimental solvation energies of small non-polar molecules.
Substantial uncertainty exists in what appropriate value of the surface tension σ

should be used in simulations, which perhaps reflects the limitations of this ap-
proximation itself. Strong arguments for the use of less drastic approximations for
�Gnonpolar, e.g. those that treat solute-solvent van der Waals interactions (“volume
term”) separately from the surface area term, have also been made [10,11]. At the
same time, some researchers choose to neglect the surface area term altogether in
MD simulations, especially if no large conformational changes are expected, for
example in simulations of proteins in their native states. Regardless of the specific
form, computing the hydrophobic term has not so far been the computational bot-
tleneck of a typical MD simulation. Currently, the most time-consuming part is
the computation of the electrostatic contribution to the total solvation free energy,
�Gel. The underlying long-range interactions are critical to function and stability
of many classes of biological and chemical structures, and so it is not surpris-
ing that considerable effort was put into making these computations accurate and
fast.

2.2 The Poisson–Boltzmann model

If one accepts the continuum, linear response dielectric approximation for the
solvent, then the Poisson equation of classical electrostatics provides an exact for-
malism for computing the electrostatic potential φ(r) produced by a molecular
charge distribution ρ(r). The screening effects of salt can be added at this level via
an approximate mean-field treatment, resulting in the so-called Poisson–Boltzmann
(PB) equation [13]. In general, this is a second order non-linear partial differential
equation, but its simpler linearized form is often used in biomolecular applica-
tions:

(2)∇[
ε(r)∇φ(r)

] = −4πρ(r) + κ2ε(r)φ(r),

where ε(r) is the position-dependent dielectric constant, and the screening effects
of salt enter via the Debye–Hückel parameter κ ∼ √

[salt]. Once the φ(r) for a given
molecular configuration is obtained via numerical solution of the PB equation, the
electrostatic part of the solvation energy, �Gel, can be computed. Details of nu-
merical procedures for solving the PB equation along with a discussion of some
of the related technical issues, can be found in recent literature on the subject,
e.g. [12] and references therein. While the numerical PB formalism has been suc-
cessfully applied to “static” structures for the past 20 years, it was not until quite
recently that its use in MD simulations has been reported. In part, this delay was
due to the relatively high costs associated with solving the PB equation at every
MD step. Technical difficulties associated with computing forces due to dielectric
boundary had to be overcome as well. So far, very few, mainly “proof-of-concept”
PB-based MD simulations have been reported [7,14–16]. Still, the approach holds
tremendous potential for MD simulations [13]. This is because the PB model has
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a rigorous physical basis and requires fewer fundamental approximations to phys-
ical reality than most other implicit solvent approaches currently in use. The model
also serves as a natural reference point on the “approximations tree,” Figure 7.1.
Comparisons of results from PB-based simulations with those based on the more
fundamental explicit solvent model helps reveal basic limitations of the implicit
solvent approach itself, while comparisons with even more approximate methods,
such as the widely used generalized Born model discussed below, help assess the
accuracy of the latter [17].

2.3 The Generalized Born model
The need for computationally facile models for dynamical applications requires
further trade-offs between accuracy and speed. Descending from the PB model
down the approximations tree, Figure 7.1, one arrives at the generalized Born
(GB) model that has been developed as a computationally efficient approxima-
tion to numerical solutions of the PB equation. The analytical GB method is an
approximate, relative to the PB model, way to calculate the electrostatic part of the
solvation free energy, �Gel, see [18] for a review. The methodology has become
particularly popular in MD applications [10,19–23], due to its relative simplicity
and computational efficiency, compared to the more standard numerical solution
of the Poisson–Boltzmann equation.

2.3.1 The underlying approximations of the GB model
GB models evaluate electrostatic part of solvation free energy as a sum of pairwise
interaction terms between atomic charges. For a typical case of aqueous solvation
of molecules with interior dielectric of 1, these interactions are approximated by
an analytical function introduced by Still et al. [24]:

(3)�Gel ≈ −1
2

(
1 − 1

εw

) ∑
i,j

qiqj√
r2

ij + RiRj exp(− r2
ij

4RiRj
)

where rij is the distance between atoms i and j, qi and qj are partial charges and
εw � 1 is the dielectric constant of the solvent. Screening effects of monovalent
salt can be introduced at the Debye–Hückel level by a simple, computationally
inexpensive empirical correction to the above equation [25].

The key parameters in the GB function are the effective Born radii of the inter-
acting atoms, Ri and Rj, which represent each atom’s degree of burial within the
solute. More specifically, the effective radius of an atom is defined as the radius of
a corresponding spherical ion having the same �Gel as would the same molecule
with partial charges set to zero for all atoms except the atom of interest. Assum-
ing that effective Born radii can be computed efficiently for every atom in the
molecule, computational advantages of Eq. (3) relative to numerical PB treatment
become apparent: the GB formula is simple, its analytical derivatives with respect
to atomic positions immediately provide the forces. In practice, the effective ra-
dius for each atom is generally calculated by first approximating the electrostatic
energy density due to the atom of interest by some reasonably simple expres-
sion and then integrating over the appropriate volume [26–32] or surface [33].
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The Coulomb field approximation—CFA—is historically the first approximation
of that nature. Although it makes what appears to be a fairly drastic assumption
that the electric field generated by the atomic point charge is unaffected by the
non-homogeneous dielectric environment created by the solute, practical routines
developed on the basis of CFA are still widely used. Fortuitous cancellation of er-
rors [34] and computational efficiency of the approximation have contributed to its
success. Empirical corrections to the CFA based on multiple integrals over solute
have lead to spectacular improvements in accuracy of the GB model relative to PB
treatment [30,31]. Several GB models based on these approximations have been
implemented in CHARMM. Recently, it was shown that the same, and possibly even
better level of accuracy can be achieved with a single integral [35]. It remains to be
seen whether potential advantages of this approximation [36]—termed R6—will
translate into practical gains once implemented in MD codes.

Computationally effective integration over physically realistic [37], but ge-
ometrically complex molecular volume (or surface) presents a set of its own
challenges: routines that match molecular volume closely, such as GBMV mod-
els [30,31] in CHARMM, typically come at a price of noticeably higher computa-
tional costs [38]. Alternative approaches include the use of physically less justified,
but computationally more suitable VDW volume, combined with pairwise de-
screening approach [27], and empirical corrections that bring in some elements
of molecular volume. Such compromise solutions [32,39], e.g. GB-OBC and GBn
models in AMBER, are significantly faster, but at a cost of making additional ap-
proximations to reality.

Currently, a large variety of flavors of the GB model are available in many
molecular simulation packages. The vast majority, if not all, of these models share
the same foundation—Eq. (3)—but may differ substantially in the way the effec-
tive radii are computed. The algorithmic simplicity and reasonable accuracy of
the GB approximation, combined with its availability in popular modeling pack-
ages, have made it the current “workhorse” in many practical applications of the
implicit solvent methodology.

2.3.2 GB-based MD simulations. Examples
Protein folding. Exploring large conformational transitions is one of several areas
where the advantages of implicit solvent framework, and the GB model in particu-
lar, become apparent. Several all-atom MD simulations of ab initio folding of small
proteins have been reported. Examples include 20-residue “trpcage” protein [40],
36-residue villin headpiece [41], and a 46-residue helix bundle [42]. In these sim-
ulations the folded state was predicted to within 2 Å from experiment (Cα rmsd),
and in some cases [40] within 1 Å. Energy landscapes computed within the implicit
solvent framework were used to gain insights into the folding mechanisms [41,43].
Note that experimental folding times for even the fastest folding proteins is of the
order of microseconds, whereas in some of the above simulations [40] the native
state was reached on 10 ns time-scale. The comparison gives a very rough idea of
the magnitude of conformational search speed-ups that one can expect in these
types of simulations through the use of the GB approach.
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Large-scale motions in proteins. The conformational search speed-up allows
one to study large-scale motions in proteins and protein complexes. The use of the
methodology to understand large conformational changes of the active site flaps
in HIV protease [44] is a representative example: it is unlikely that a comparable
explicit solvent study would currently be computationally feasible.

Membrane environment. Membranes are large structures, translocation of
molecular structures through membranes may involve significant conformational
changes, and so these systems are natural candidates for implicit solvent model-
ing. One of the challenges here is accurate and computationally facile representa-
tion of the complex dielectric environment that, in the case of membranes, includes
solvent, solute, and the membrane, all with different dielectric properties. Correc-
tions to the GB model have been introduced [45–47] to account for the effects of
variable dielectric environment. Other implicit membrane models, not based on
the GB, have also been proposed [48].

The DNA. Compared to proteins, implicit solvent MD simulations of nucleic
acids are relatively new, and not as many. A number of methodological issues still
await resolution, in particular that of appropriate treatment of multi-valent ions
that are often critical for nucleic acid function. So far, the GB methodology has been
employed to model free DNA in solution [49,50], binding between proteins and
nucleic acids [51–53], as well as for energetic analysis of conformational changes
such as the A → B transition [21]. The potential of the methodology for modeling
large scale dynamics of the DNA has been demonstrated in a recent all-atom study
of the nucleosome and its 147-bp DNA free in solution [54].

Constant pH simulations. The charge states of all ionizable groups remain
fixed throughout the course of a typical MD simulation, regardless of the con-
formational changes that the structure may undergo. In reality, changes in proto-
nation state and conformational changes are strongly coupled; this coupling may
lead to non-trivial effects. To model these effects, several models have been devel-
oped. One of them employs a continuous protonation state model [55], in which
equations of motion are used to time-evolve the protonation coordinate; conver-
gence to physical protonation state of 1 or 0 is enforced by an adjustable potential
barrier. An alternative approach [56] operates directly in the physical protona-
tion space: protonation states are accepted or rejected on the fly, according to a
Metropolis criterion, during the course of the MD simulation. It is the instanta-
neous dielectric response of the implicit solvent model that makes these on-the-fly
estimates of relative energies possible.

2.3.3 Limitations of the GB model
The generalized Born model is separated from reality by several layers of ap-
proximations, Figure 7.1, each of them adding its own limitations to the method.
The fundamental “discrete → continuum” approximation obviously eliminates
a number of solvent effects that depend on the finite size of water molecule,
such as de-wetting. Likewise, the implicit solvent model cannot describe effects of
tightly bound water molecules, which may be a serious limitation when those are
important for function or stability of the structure of interest. One also wonders
how well the approximation works inside deep binding pockets, where solvent
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can hardly be considered as having properties of the bulk. Also, the additivity
of �Gel and �Gnonpolar in the decomposition of total solvation free energy holds
only approximately: if it were exact, absolute values of solvation energies of ions
of the same size and opposite charge (and the same magnitude) would be iden-
tical, which is not the case in reality [57]. The Poisson–Boltzmann approximation
inherits generic limitations of mean-field theories and linear response approxi-
mations. In particular, the neglect of correlation between counterions, especially
multi-valent ones such as Mg2+, may be a serious problem in the modeling of
nucleic acids.

While all of these limitations are well known, their combined effect is hard,
if not impossible to quantify in realistic biomolecular simulations. Understanding
the effects of a single approximation, such as the PB → GB step, may be somewhat
easier. Note that the GB and PB models share the same physical basis, and so one
can, in principle, “derive” the GB from the PB. For example, it was recently shown
that, without the heuristic exponential term, the key formula of the GB model,
Eq. (3), is the limiting case (εw → ∞) of the exact solution of the Poisson equation
for an arbitrary charge distribution inside an ideal sphere [36,58]. It is also possible
to differentiate the effects of the PB → GB approximation from the more funda-
mental limitations of the PB model itself. For example, it was shown [59] that the
folding landscape of β-hairpin derived from GB-based simulations is substantially
different from that predicted by an explicit solvent model, which is generally more
consistent with experiment. A subsequent study [60] revealed that a significant
part of this discrepancy was already present at the PB level. Direct comparisons of
�Gel between GB, PB, and explicit solvent are especially valuable in the context
of understanding the separate effects of the approximations made. For example, it
was found that even the use of “perfect” [34] effective radii in the GB Eq. (3) did not
match the accuracy of the PB in predicting relative energies of poly-alanine confor-
mational states [61]. The error of the PB itself, relative to explicit solvent treatment,
was found to be smaller, but not negligible. Overall, ensembles of poly-alanine
conformations generated in this study with the GB-based MD showed an over-
abundance of α-helical secondary structure relative to the explicit solvent results.

Raw computational speed has been considered one of the key advantages of
the GB model. However, note that the cost of a calculation based directly on Eq. (3)
is generally O(N2) for a system of N atoms, while the scaling is more favorable,
N log(N), for Ewald-based methods used in explicit solvent simulations. For large
systems, e.g. the nucleosome (25,000 atoms), the number of nanoseconds of MD
per CPU hour may actually be less in a GB-based simulation (without additional
approximations such as cut-offs) than in a comparable explicit solvent run [54],
although the conformational search is still much faster in the implicit solvent.

2.4 Other models based on implicit solvation

While at present the GB models are arguably the most often used practical ap-
proaches in MD simulations based on implicit solvation, they are by no means the
only ones. Some representative alternatives to the GB (and the PB) are listed be-
low, in an order that roughly corresponds to their place on the “approximations
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tree” of Figure 7.1. In an ideal world, models that employ fewer approximations
to reality may be expected to be more accurate, but this expectation may not apply
to practical implementations of the methods.

Historically, MD simulations often relied on the so-called distance-dependent
dielectric model [62] to account for solvation effects. In this approach, electrostatic
effects are modeled by Coulomb’s law with the dielectric being some fixed func-
tion of the charge–charge distance, e.g. ε(r) = r in the most basic form of the
model. Even though the model is generally expected to be less accurate than the
GB [17], its utmost simplicity and computational efficiency keep it in active use
today [63,64].

Several methods for computing �Gel can be placed at roughly the same level
of approximation as the GB. Examples include the generalized reaction field
method [65] and the ALPB [66] model. The latter has a simple functional form
similar to the GB, but contains an extra physical parameter (effective electrostatic
size of the solute) and a more realistic dependence on dielectric constants. Another
example of models in this group are approaches for estimation of �Gel based on
image-charge solutions [67,68]. Yet another approach, AGBNP [10], combines the
basic GB framework with a model for �Gnonpolar that goes beyond the surface area
approximation.

At the “PB level,” a model based on a very different paradigm has recently
been tested in a “proof-of-concept” simulation: Maxwell’s equations for the elec-
tric and magnetic field, coupled with the usual Newton’s equations of motion for
the charges were used to determine time-evolution of the system [69].

Going beyond the mean-field level, several “hybrid” approaches are now be-
ing explored in MD simulations. Examples include a recent model [70] in which
the immediate hydration of the solute is modeled explicitly by a layer of water
molecules, and the GB model is used to treat the bulk continuum solvent outside
the explicit simulation volume. A similar idea was recently found very effective
in the context of replica-exchange simulations [71]. An explicit ion/implicit water
(PB) solvation model for molecular dynamics of nucleic acids has recently been
tested [72].

Some approaches approximate the total solvation energy �Gsolv without ex-
plicitly assuming additivity of the �Gel and �Gnonpolar components. One example
is a Gaussian solvent-exclusion model [73] based on an empirical decomposition of
�Gsolv into contributions from different chemical groups. Models based on “first-
principles” free energy functionals have also been proposed [74].

3. CONCLUSIONS AND OUTLOOK

An accurate description of the solvent environment is essential for realistic
biomolecular modeling, but often becomes prohibitively expensive computa-
tionally if water is treated explicitly. Implicit solvent framework is an attractive
alternative that offers several significant advantages over the explicit water repre-
sentation, including lower computational costs, faster conformational search, and
very effective ways to estimate relative free energies of conformational ensem-
bles. However, these advantages come at a price of making several fundamental,
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hierarchical approximations to reality. Additional accuracy/speed trade-offs are
often made in the development of computationally facile models for practical MD
simulations.

Prominent among these models is the generalized Born (GB) model: although
separated from reality by several layers of approximation, it apparently captures
enough of the key physics of aqueous solvation to be practically useful. Compared
to other models based on implicit solvation, this algorithmically simple model
is arguably the one that is currently used most often in MD simulations. Many
successful applications of the model to challenging problems, such as the protein
folding, or the exploration of large-scale motions in proteins or DNA, have been
reported. For some types of simulations, e.g. constant pH molecular dynamics,
models based on implicit solvation such as the GB appear to be the only ones
currently available in practice.

At the same time, examples where the GB model breaks down are also well
known. Part of the overall error in these cases is attributable to the PB → GB ap-
proximation, while the remainder comes from the more fundamental limitations
of the general implicit solvent framework itself. These examples are extremely im-
portant for defining the current boundaries of applicability of the GB model; they
also suggest directions for future improvements.

A number of alternatives to the GB, both below and above it on the “approx-
imations tree” have been tested in molecular dynamics simulations. Approaches
that make fewer fundamental approximations to reality, such as those based di-
rectly on the Poisson–Boltzmann treatment of solvation or ones that even go be-
yond the mean-field level, are particularly attractive from the accuracy point of
view. More testing is needed to better characterize the overall performance of these
models in practical MD simulations.

In summary, the use of implicit solvation models in molecular simulations
offers considerable rewards, both at conceptual and practical levels. However,
compared to the more established explicit solvent approach, less is known about
the domain of applicability of these models, and so extra care must be taken
when using them in practice. Drawing on the analogy with the development of
the empirical explicit solvent force-fields over the past 30 years, it is likely that
improvements in the implicit solvent framework accompanied by accumulation
of practical experience will eventually make the framework a standard approach
within its reasonably well-defined domain.
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1. INTRODUCTION

Molecular dynamics (MD) simulations of proteins are now about 30 years old [1].
They have become increasingly common and useful as force fields have improved
(providing more realistic descriptions of microscopic forces) and as computers
have become more powerful (allowing longer simulations that explore more of the
available conformational space). It was clear from quite early times that simula-
tions could be useful in interpreting NMR experiments, both for fast motions seen
primarily in NMR relaxation [2–4], and for the much slower motions relevant to
“chemical exchange” [5]. Subsequent development of sophisticated experimental
methods for following spin relaxation, particularly in isotopically-labeled sam-
ples, has led to renewed interest in exploring dynamical connections between
simulation and experiment.

The fundamentals of NMR relaxation theory have been presented in many
places [6–9], and there is no space here to give more than a taste of what is in-
volved. The rate of return of a spin system to equilibrium is determined by the
time-dependent magnetic fields experienced at each atomic nucleus, arising from
molecular motions. The ability of this stochastic, fluctuating field to induce spin
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transitions depends upon its intensity at frequencies that correspond to sums and
differences of the Larmor frequencies of the nuclear spins. These are represented as
“spectral densities” J(ω), which in turn are the Fourier transforms of microscopic
time correlation functions. For example, the ability of an amide proton to relax the
spin of the 15N nucleus to which it is attached can be expressed in terms of the
time correlation function

(1)C(τ ) ≡ 〈
P2

[
μ(t) · μ(t + τ )

]〉

where μ(t) is the (time-dependent) unit vector from the nitrogen to the proton,
P2(cos θ ) ≡ (3 cos2 θ − 1)/2 is a Legendre polynomial, and the brackets indicate
a time- and ensemble-average over all conformations of the system. The spectral
density J(ω) is then the Fourier transform of C(τ ). To be effective in relaxation, J(ω)
needs to be large near the Larmor frequency of the spins or near zero frequency.
As it happens, the most effective molecular motion for biomolecules (from the
standpoint of NMR spin relaxation) is overall rotational diffusion or tumbling. It
is this fact that makes NMR structure determination possible in the first place: to a
good first approximation, proton relaxation (as monitored by nuclear Overhauser
effect measurements) can be interpreted as arising from the rotational Brownian
motion of a rigid molecule, and the atomic coordinates of this hypothetical rigid
structure can be adjusted to optimize agreement with the NMR data. It is impor-
tant to note that this does not mean that internal deformations are not present, but
only that most such motions are fairly inefficient in driving NMR spin relaxation.
In general, a more careful quantitative analysis (usually involving measurements
of “heteronuclear” 13C or 15N relaxation) is required to extract information about
internal motions from NMR data.

In principle, the evaluation of time-correlation functions like that in Eq. (1)
should provide a powerful tool to test the quality of MD simulations. In NMR
experiments, the proteins are in thermal equilibrium (only the spins are out of
equilibrium, and their energies are negligible), and there are (non-invasive) probes
throughout the structure at both backbone and side-chain positions. This facilitates
details and direct comparisons between liquid simulations and experiment. Fur-
thermore, rotational tumbling itself drives the drives the time-correlation function
to zero, so that motions on a time scale slower than rotational tumbling are not rel-
evant for this sort of relaxation. Rotational diffusion times for soluble proteins are
on the order of 10 ns for many systems, and it is now feasible to readily carry out
simulations to this time scale and beyond. In the most favorable cases, which are
small, compact and very stable proteins, we can hope to reduce sampling errors
to an acceptable range, and to ascribe differences between simulation and exper-
iment to biases in the force fields we are using, and to use such comparisons to
help improve the physical realism of MD simulations.

This general subject has been covered in earlier reviews [10,11]. Here, we sum-
marize recent (and significant) progress made possible by faster computers and
longer simulations, and by improvements in protein force fields.
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2. INTERNAL MOTIONS AND FLEXIBILITY

In the past, comparisons between NMR relaxation and MD simulations have con-
centrated on internal motions, since these often involve sub-nanosecond time
scales that could be examined with limited computer resources. In this approach,
overall rotational motion is removed by an rms fitting procedure (for example, on
backbone atoms in regular secondary structure), and computing time-correlation
functions from the result. Typical results are shown in the upper panel of Fig-
ure 8.1; similar plots have been presented many times before [4,12,10,11]. Many
backbone vectors are like Thr 49, and decay in less than 0.1 ns to a plateau value
which can be identified as the order parameter S2 for that vector. Most regions of
regular secondary structure resemble this, although there can be exceptions, and
there is potentially important information in the decay rates and plateau values
that are obtained.

Figure 8.1 also shows two examples of floppier residues, with order parame-
ters less than 0.8 and internal decay times that are comparable to overall tumbling
times, such as residue 41 in GB3, whose internal correlation function decays with
a τe of 2.1 ns. Such slow decays have received less attention, since they can only be
reliably observed with fairly long simulations: as a rule of thumb, simulation times
need to be 50–100 times longer than the examined decay times in order to obtain
reasonably converged time correlation functions [16,17,13]. With 100 ns simula-
tions now becoming available (and which are needed to examine overall rotational
diffusion anyway), better comparisons to experiment for these slower internal mo-
tions are becoming feasible.

Until quite recently, comparisons between calculated and measured order pa-
rameters for backbone NH vectors in proteins had decidedly mixed results. Some
comparisons seemed very promising [18], but many calculations gave results more
like the dotted lines in the lower panel of Figure 8.1. Here, only a handful of
residues show NMR order parameters below 0.8, but many calculated values are
below this value; basically, the protein exhibits more backbone mobility in the sim-
ulation than appears to be warranted. Similar behavior has been noted in many
other simulations [19–21]. Recently, both the CHARMM and Amber force fields
were modified by changes in the energetics of torsion terms for the φ and ψ back-
bone angles in proteins [22–24,20]. Although these changes were motivated by
consideration of short peptides, they have had the effect of considerably reducing
the amount of backbone motion in MD simulations, and systematically improving
the agreement between calculated and observed order parameters [19–21]. Fig-
ure 8.2 shows some new comparisons that complement those already published.
The upper panel compares two simulations using the Amber ff99SB force field,
carried out in different labs. One was 30 ns in length and the other was 100 ns. The
two simulations used similar but not identical water models (TIP3P vs. SPC/E), so
an identical match of results should not be expected. Nevertheless, there is a close
correspondence between the two data sets, showing that the water model seems to
have little effect on order parameters, and that independent simulations can give
very similar results. The largest discrepancy is for residue 69 in lysozyme (marked
in the figure); here we suspect that the longer simulation has a better converged
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FIGURE 8.1 Upper: Internal correlation functions for NH vectors in selected residues in a 200
ns simulation of protein GB3 + SPC/E water [13]. Values of τe show the model-free value for the
decay time of these internal correlation functions [14]. Lower: Order parameters for NH vectors
in binase; experimental values from [15], computed values from simulations described in [13].
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FIGURE 8.2 NH order parameters for ubiquitin (solid circles) and lysozyme (open squares).
Upper: comparison of MD results from [20] to those computed here from data in [13]. Lower:
values derived from NMR compared to the MD simulations of [13].
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correlation function which (as it happens) is in better agreement with the NMR
value of 0.74.

The lower panel of Figure 8.2 compares NMR and simulated order parame-
ters for the same two proteins. This shows a linear correlation coefficient R of
0.91, and a root-mean-square difference between the two data sets of 0.05 over
a wide range of motional amplitudes. Hornak et al. [20] present evidence sug-
gesting that improved order parameters arise from residues in certain regions of
backbone (φ, ψ) space, which were in somewhat unfavorable regions in previous
force fields, which led to structural fluctuations as the backbone terms conflicted
with the topology and side-chain packing that led to that structure in the first
place. Relieving this backbone “strain” removed some of the impetus for the larger
amplitude motions. Overall, Figures 8.1 and 8.2 (and comparable data in the pa-
pers cited here) provide a snapshot of the performance of current simulations as
monitored by backbone motional amplitudes.

Showalter et al. [25] have recently extended this sort of analysis to methyl
side-chain dynamics with encouraging results, including a similar marked im-
provement when using recent force fields (Amber ff99SB) compared to earlier ones
(Amber ff99). The performance of MD simulations for side-chain conformations
can also be compared to experiment for a few small proteins where populations
of side chain conformers can be estimated from NMR data. Fragment B3 of pro-
tein G (see the cartoon at the upper part of Figure 8.3) is an especially favorable
case where both heteronuclear coupling constants and residual dipolar coupling
information has been combined to obtain population estimates for side-chain ro-
tamers for Val, Ile, and Thr residues [26]. The lower part of Figure 8.3 compares
rotamer populations (g+, g− and t) found in a 100 ns simulation (using the Am-
ber ff99SB force field and the TIP4P/EW water model) with those estimated from
NMR. There is clearly a lot of scatter in the comparison, but also a clear division
between predominant conformers (with populations greater than 0.5) and minor
conformers (with populations less than 0.5). In each of the 16 side-chains analyzed,
the predominant conformer is the same in experiment and theory. Furthermore,
three of the 16 residues (Val 42, Thr 11 and Thr 55) started in a conformer (taken
from the X-ray structure) that is different from the most highly populated con-
former determined by the NMR analysis, so that the simulation was able to sample
and favor conformers other than those in the starting structure.

There are two respects in which the discussion so far has been oversimplified.
First, zero-point vibrational motion, a quantum effect that is ignored in classical
simulations, can have a small but noticeable effect on internal order parame-
ters [27,28]. Second, the analysis of NMR relaxation data uses as an input the
N–H distance, which is often treated as an empirical parameter that is slightly
larger than the true average distance. These two features are closely related to
each other: the use of an effective distance slightly larger than the true one rep-
resents an attempt to include the effects of local peptide zero-point motions, so
that the remaining motion (represented by the order parameter) would represent
“interesting” disorder that is beyond that what would be found even in a frozen
peptide at 0 K [28].
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FIGURE 8.3 Upper: Backbone cartoon for GB3. Lower: Comparison of rotamer populations
estimated from NMR data [26] with those computed from the ff99SB, TIP4P/EW trajectory
reported in [13].
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FIGURE 8.4 Quantum effects on the order parameters for the NH vectors in the central helix
of GB3.

Figure 8.4 illustrates some of these features for the central helix of GB3. The top
three curves (centered around 0.9) show “classical” behavior, whereas the bottom
three curves (centered around 0.85) illustrate quantum behavior. The classical cal-
culations, either from standard MD simulations or from a normal mode analysis
of NMA where zero-point motion is not enforced, are compared to results from ex-
periment where the NH bond is assumed to be slightly longer than its true value of
1.01 Å. The quantum calculations are based on path-integral molecular dynamics
calculations [29] or from NMA normal modes that enforce quantum statistics (and
hence zero-point motion); these are compared to an analysis of experiment using
a more correct estimate of the NH bond length. It is encouraging that the quantum
calculations match closely the results extrapolated from NMR with a realistic bond
length. Furthermore, the fact that local normal mode motion (the dotted line with
a value slightly above 0.85) comes close to matching experiment is illuminating.
This implies that a model in which the protein is completely rigid, except for (in-
evitable) local zero-point motions, gives enough motion to explain the relaxation
data for this piece of secondary structure, and that no additional internal fluctua-
tions of the helix are needed to explain the data. This suggests that many pieces of
secondary structure in well-folded proteins are about as rigid as they could pos-
sibly be [30,28], and that earlier simulations (or interpretations of experimental
order parameters) have overstated to some extent the amount of internal motion
in such secondary structure.
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3. OVERALL TUMBLING AND ROTATIONAL DIFFUSION

Overall rotational tumbling is regulated by frequent collisions with light water
molecules. For a nearly rigid protein, this physical model should lead to diffu-
sive rotational behavior, where the reorientation of a unit vector attached to the
molecule undergoes a random walk on the surface a sphere. If c(n, t) is the prob-
ability density for finding the vector pointing direction n at time t, a spherical
molecule should follow a simple diffusion equation [31,32]:

(2)
∂c(n, t)

∂t
= Drot∇2c(n, t) = −DrotÎ2c(n, t).

Here Î is a (dimensionless) angular momentum operator. A non-spherical molecule
will tumble more rapidly about some directions than about others, causing the dif-
fusion constant Drot to become a tensor:

(3)
∂c(Ω , t)

∂t
= −

∑
i,j

Îi · Dij · Îjc(Ω , t).

Here Ω represents the Euler angles that specify the orientation of the macro-
molecule.

The most powerful way to measure macromolecular diffusion is by NMR re-
laxation, since it is very sensitive to both the overall tumbling frequency and its
anisotropy [33,9]. The analysis of NMR relaxation data typically assumes that the
rotational motion of a compact and folded protein follows Eq. (3), so that the goal
of the analysis is to determine the principal values and orientation of the diffusion
tensor D. Deviations from the behavior predicted for a single diffusion tensor are
generally taken as evidence for internal motion (i.e. for non-rigid behavior), most
commonly using a model-free formalism that assumes a statistical independence
of internal and overall motion [14,11]. While there is no question that this over-
all description is qualitatively correct for many well-folded proteins, quantitative
analyses of NMR relaxation data increasingly face questions about the correctness
of these assumptions. Does overall rotation follow diffusion theory (with a single
tensor D), or would it more correct to adopt a model with a distribution of tensors
or correlation times [14,34]? Are typical internal motions of proteins uncorrelated
with overall rotational motion, and can we approximate the full correlation func-
tion as a product of separate overall and internal functions? As proteins become
more disordered (either in toto, or as a result of floppy “tails”) how quickly to these
standard models fail?

In principle, molecular dynamics simulations should have a lot to say about
these questions, since they provide a detailed (albeit approximate) description of
macromolecular structure and dynamics. One can learn some information about
global motion by extrapolations from even short simulations [39], but the longer
time scales now available, which can be many times the mean rotational tumbling
time, are expected to yield more reliable information. However, many popular
water models (such as TIP3P) predict self-diffusion constants (and, presumably,
viscosities) that are far from experiment (see Table 8.1), so that one would not
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Table 8.1 Self-diffusion constants for the models of water
used here. Data for TIP4P/EW from [35]; Amoeba from [36];
SPC/Fw and q-SPC/Fw from [37]; remaining data from [38]

Model D298, 10−9 m2 s−1

Experiment 2.2
TIP3P 5.7
SPC/E 2.8
TIP4P/EW 2.3
TIP5P 2.6
Amoeba 2.0
SPC/Fw 2.3
q-SPC/Fw 2.4

expect good results for rotational or translation diffusion of macromolecules dis-
solved in such solvents. Finally, many biomolecular simulations use thermostats
or barostats that can affect dynamical properties in ways that are not well under-
stood. We have recently started a re-examination of this problem, using 100 to 200
ns simulations of some small, well-folded proteins [13].

For isotropic diffusional motion, solutions to Eq. (2) are easily computed for
any value of 	, and the correlation functions are single exponentials [32]:

(4)C	(τ ) = exp
[−	(	 + 1)Drotτ

]
.

Things are more complex for anisotropic molecules, even though the general so-
lution of the anisotropic rigid body diffusion problem has been known for many
years [31]. It is a straightforward but algebraically complex matter to compute the
time correlation function for a vector fixed to the rigid body using the Green’s
function of the rotational diffusion operator [40,8]. The same result has been ob-
tained without direct use of the diffusion operator eigenfunctions [41]. Rank 2
correlation functions have five exponentials that have be written down in many
places[42,43,41,32,44]. For simplicity, we show here results for a symmetric top
(where Dx = Dy), which has three exponential terms

C2(τ ) = 1
4

{(
3 cos2 θ − 1

)2 exp[−6Dxτ ]

+ 12 cos2 θ sin2 θ exp
[−(5Dx + Dz)τ

]
(5)+ 3 sin4 θ exp

[−(2Dx + 4Dz)τ
]}

.

Hence, for anisotropic rotation, the simple dependence of the decay times on
	(	 + 1) seen in Eq. (4) no longer holds, although it is still on average valid to
first order in the anisotropy (see Eq. (8) below).
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3.1 Fitting diffusion tensors to MD data

In order to determine the diffusion tensor that best fits a given trajectory, we use
a procedure that was developed for the analysis of NMR relaxation data [45–47],
and which is well-suited for adaptation to the analysis of MD simulations. This
uses the average (or “effective”) correlation time for a particular vector, n (e.g.
a backbone N–H bond vector, or a randomly chosen direction in the molecular
frame), which can be defined as

(6)τ	(n) =
∞∫

0

dτ
〈
P	

[
n(0) · n(τ )

]〉

where

(7)
〈
P	

[
n(0) · n(τ )

]〉 = lim
T→∞

1
T

T∫
0

P	

[
n(t) · n(t − τ )

]
dt

is the usual time correlation function of a Legendre polynomial of order 	. Note
that τ (n) ∝ J(0), the zero-frequency component of the corresponding spectral den-
sity function. This correlation time is related to a “local” or effective diffusion
constant by:

(8)dloc(n, 	) ≡ 1
	(	 + 1)τ	(n)

.

For diffusion tensors with small anisotropy, dloc(n, 	) may be written as a
quadratic function in n [45–47]:

(9)dloc(n, 	) = nT · Q · n

where

(10)Q = 3DavI − D
2

.

Since the right-hand side of Eq. (9) is independent of 	, dloc should also be inde-
pendent of 	 when the motion is well characterized as rotational diffusion of n.
Indeed, one test of whether a diffusion model fits the MD data is to examine the
dependence of dloc (or, equivalently τ	) on 	 [32,39].

In NMR experiments, n is typically a backbone N–H bond vector, and
dloc(n, 2) is computed as a function of R2(n)/R1(n) (or related quantities, such
as (2R2 − R1)/R1), where R1 and R2 are longitudinal and transverse relaxation
rates [48,47]. In this way, the local diffusion constants become a key intermediate
quantity that can be estimated from both NMR experiments and from simulations;
in this respect, they play much the same role here as the model-free parameters S2

and τe play in the analysis of internal motions by MD.
From the simulation data, the correlation time is found by integrating the

time correlation function as shown in Eq. (6). While the correlation functions may
be easily computed from the trajectories, statistical errors due to finite trajectory
length limit the useful data to short delay times τ [16,17]. The variance of a Gaus-
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FIGURE 8.5 Semi-log plot of C2(τ ) vs. delay time, for a randomly-chosen direction in the GB3
+ SPC/E simulation (solid black line), with values computed from pieces of the trajectory in dot
and dash-dot lines. Dashed lines are the error bounds from Eq. (11), using T = 200 ns, τ = 2.5 ns,
so that Ts = 80.

sian process may be estimated using the Bartlett formula [49,50], which when
applied to an isotropic rotational diffusion process yields [16,17]:

(11)σ (j) =
{

1
Ts

[
1 − (1 + 2js) exp(−2js)

]}1/2

.

Here, j indexes the data points in the time series, Ts = T/τ is the scaled trajectory
length, and js ≡ j/τ is the scaled delay. Figure 8.5 shows a single 	 = 2 correlation
function generated from a member of the random initial vector set for a 200 ns
simulation of GB3, together with estimates of variance computed using Eq. (11),
and a very simple uncertainty analysis that just used either the first or the second
half of the trajectory. The expected variance is small for short delays, but becomes
larger as C(τ ) decays. For the parameters of the figure, the expected uncertainty
in C(τ ) is about 0.06 at js = 1/2, and grows to 0.09 by the time js = 1, that is, at
a delay time equal to the rotational correlation time; the latter value corresponds
to a 23% relative uncertainty, which clearly has a significant impact on the ability
to estimate the rate at which the true correlation function decays. However, the
analysis of partial trajectories (shown in more detail in [13]) suggest that the un-
certainties estimated by Eq. (11) are wider than they need to be. In any event, it is
clear that long trajectories (of hundreds of nanoseconds) may be required to obtain
good precision in the fitted diffusion tensors.
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3.2 Do the simulations exhibit diffusive motion?
While it is always possible to find the best-fit diffusion tensor from the correlation
functions of a reorienting molecule, the rotational dynamics need not be diffusive.
For example, the rotation of small molecules in solution can be much more inertial
in character than one would ordinarily expect for a macromolecule [32]. A more
relevant scenario to protein dynamics would be instances where a single diffu-
sion tensor cannot describe global tumbling because of conformational transitions
that change the shape of the protein. However, for the small, well-folded proteins
considered in [13] (GB3, ubiquitin, binase and lysozyme), the overall rotation was
well characterized as diffusion, as monitored by the comparisons between MD
and diffusional estimates of dloc(n, l) for l = 1 to 8.

Aside from the TIP3P trajectories, the simulation values of Dav are 10 to 30 per-
cent larger than their experimental counterparts, as might be expected from the
self-diffusion constants given in Table 8.1. One can also look at the anisotropy of
tumbling, as compared to NMR results. As an example, Figure 8.6 shows dloc for
NH bonds as a function of residue for GB3. The “comb-like structure” (between
residues 23 and 39) in the dloc data for GB3 is characterized by slower diffusion
than the remainder of the protein. This is due to alignment of NH bonds within
the central helix along the helix axis, which is also roughly parallel to the diffusion
tensor axis of symmetry [51], as can be seen in Figure 8.3. Overall, the shapes of
the three curves are in rough agreement with one another, but the degree of con-
trast between the central α-helix (residues 25–35) and the surrounding β-sheets is
greater in the simulations than the experiments. It is likely that this is related to

FIGURE 8.6 Local diffusion constants as a function of residue number for GB3; simulation date
from [13], and experimental values are from [51].
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the fact that overall tumbling is also faster in the simulations than in experiment.
As proteins tumble, a rough “hydration shell” travels with them, increasing their
effective size and slowing the motion [52]. This extra shell also tends to make the
effective rotating entity more isotropic, so it is reasonable to speculate that cur-
rent protein/water potentials slightly underestimate the association of water to
the protein surface, leading to rotational diffusion tensors that are both too large
and too anisotropic.

4. CONCLUSIONS

There are many ways in which one might monitor the fidelity of protein MD
simulations to the underlying physical system. Analyses of structures and en-
ergies are common and powerful criteria that have long been used to test and
improve force fields. NMR relaxation also provides a complementary view that
emphasizes time scales and amplitudes of motional excursions about an average
structure. The relevant time scales (bounded by rotational diffusion) are just now
becoming routinely accessible to MD simulation, and it is likely that important in-
formation and constraints on simulation quality will continue to appear from these
sorts of comparisons. Already, there is a noticeable trend away from TIP3P water,
whose dynamical properties are quite far from experiment, in favor of models
with stronger hydrogen-bonding interactions. In a similar fashion, one argument
(among many) for the use of recent adjustments to torsional angle potentials lies
in the reduced amplitude of fluctuations that are seen in simulations using these
newer force fields, and analysis of NMR relaxation has been useful in confirming
that such reductions are warranted. There is certainly much more to be done: for
example, Figures 8.3 and 8.6 still show results with significant deviations from ex-
periment. But results like those outlined here do set the “bar” higher for what we
expect for simulated behavior of well-folded proteins in water.
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1. INTRODUCTION

Understanding enzyme catalysis is one of the grand challenges of both experimen-
tal and computational biochemistry [1]. The past decade has witnessed a dramatic
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growth in the availability of high-resolution enzyme structures that have been
deposited in the protein data bank (PDB). Computational modeling can provide
detailed information about enzyme catalysis that is not readily available from ex-
periment. Given a theoretical model that accurately describes the relative energies
along a reaction path, and a method for finding reaction pathways, it is possi-
ble to find all of the intermediates and transition states that are relevant for a
catalytic process. Once these stationary points have been characterized, simula-
tions can be used to elucidate the details of reaction kinetics. One popular class of
computational enzymology methods are those that use a combination of quantum
mechanics (QM) and molecular mechanics (MM) to represent the reacting system.
In the first part of this paper we review recent applications of QM/MM methods
to investigate reactions in a range of enzyme systems. In the second part we re-
view the development of novel QM/MM sampling methods that should help to
analyze the effect of conformational dynamics on enzyme activity and catalysis.

2. RECENT APPLICATIONS OF QM/MM METHODS TO ENZYMES

Several methods now exist to model an enzyme-catalyzed reaction. With the ex-
pansion of density functional theory (DFT) [2], quantum mechanics (QM) is now
capable of describing reactive chemistry for systems involving dozens of atoms
with a very respectable level of accuracy [3,4]. However, electronic structure calcu-
lations on enzymes (composed of thousands of atoms) require large computational
resources, significantly limiting the size of the system that can be treated. On
the other hand, molecular mechanics (MM) force fields, such as CHARMM22 [5]
or AMBER (PARM99) [6], have been developed to provide a remarkably good
description of conformational energetics and non-bonded interactions in large
systems [7]. MM methods are generally not applicable to the modeling of chem-
ical reactions, because they are designed and parameterized for chemically sta-
ble states [8]. In this context, mixed quantum mechanics/molecular mechanics
(QM/MM) approaches have been developed [9] that can readily join QM and MM
representations of different parts of a complex condensed-phase system [10]. The
combination of these approaches contains the fundamentals necessary to properly
describe the potential energy surfaces relevant to enzymatic chemistry, at least to a
first approximation [11,12]. In the QM/MM framework, the reactive region of the
enzyme active site can be described by a QM method (e.g. semi-empirical, DFT, or
ab initio theory) employing a QM region of sufficient size to include the reacting
groups [13]. Semi-empirical molecular-orbital techniques such as AM1 and PM3
have the advantage that they can model large systems (hundreds of atoms), but
they are often inaccurate and in some cases not easy to use (e.g. for many transition
metals) [14]. Reliable calculations have increasingly been made possible by the de-
velopment of methods based on DFT and on electron correlation approaches, such
as the MP2 perturbation method and coupled-cluster theory [15,16].

With the QM/MM model of the system constructed, a straightforward means
of modeling approximate reaction paths is the ‘adiabatic mapping’ or ‘coordi-
nate driving’ approach. The energy of the system is calculated by minimizing the
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energy at a series of fixed or restrained values of a reaction coordinate, e.g. the dis-
tance between two atoms. This approach has been applied with success to several
systems [17–20]. However it is only valid if one conformation of the protein can
represent the system during the whole reaction. If only one conformation of the
protein appears to be involved in the reaction, a single minimum energy structure
of this conformation may adequately represent the many closely related structures
making up this conformational state. Minimizing the QM/MM potential energy of
such a representative conformation along the reaction coordinate should therefore
provide a reasonable approximation of the enthalpic component of the potential
of mean force (the free energy profile) for the reaction.

Enzyme catalyzed reactions can also be modeled using the empirical valence
bond (EVB) method [21]. EVB methods are central in modeling enzyme reactions
and catalysis. They are reviewed well elsewhere [22,12] and so are not the focus of
this review.

2.1 Chorismate mutase

Chorismate mutase (CM) catalyzes the Claisen rearrangement of chorismate to
prephenate in the shikimic acid pathway used in the biosynthesis of aromatic
amino acids. It represents a reference enzyme to explore the fundamentals of
catalysis and has been the subject of extensive experimental and computational
research. These have shown both that catalysis proceeds without covalent binding
of the substrate to the enzyme, and that the uncatalyzed reaction in water pro-
ceeds by the same mechanism. This makes CM a particularly convenient target for
QM/MM studies.

To date, the majority of applications of QM/MM methods to enzyme reaction
modeling have been carried out by using semi-empirical Hamiltonians, which
do not predict barrier heights with great accuracy [23]. Recently, higher-level
QM/MM calculations have been performed, e.g. at the DFT/MM level [24–26].
The reaction of chorismate to prephenate in CM has also been studied at very
high-level, using coupled cluster theory computations that account properly for
electron correlation [15]. Coupled cluster theory calculations, namely LCCSD(T0)
(the L in the acronym indicates that local approximations were used, and T0
is an approximate triples correction) [27], on CM overcomes the shortcoming
of lower level methods. With the unprecedented combination of LCCSD(T0) re-
sults and thorough sampling (the structures were optimized at the B3LYP/MM
level), the activation enthalpy was calculated with high accuracy. The final value
obtained for CM (average 13.3 kcal mol−1, with a root mean square variation
of 1.1 kcal mol−1 across 16 pathways) can be compared with the experimental
value of 12.7 kcal mol−1. Both DFT and standard (particularly) Hartree–Fock (HF)
methods failed to reproduce the experimental value, suggesting that a proper
treatment of electron correlation is required for quantitative predictions of bar-
rier heights. Similar findings were also reported for another prototypical enzyme,
para-hydroxybenzoate hydroxylase (PHBH) [15,28].
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2.2 Class A β-lactamases
QM/MM adiabatic mapping has been applied, for example, to study the mech-
anism of class A β-lactamases, which are an important class of bacterial enzyme
involved in antibiotic breakdown. Both the acylation [19,20] and deacylation re-
actions [29] of the Escherichia coli TEM1 β-lactamase with benzylpenicillin have
been investigated, and a review [30] of QM/MM applications to the study of
β-lacatamases and ureases has been published recently. Structures and interac-
tions with the protein were modeled by a AM1/CHARMM22 QM/MM approach,
and calculations of reaction energies were performed at a higher level (B3LYP/6–
31+G(d)) to correct the deficiencies of the AM1 semi-empirical method. This
approach identified Glu166 as the general base, which acts by deprotonating a
structurally conserved water molecule, which in turn activates Ser70 for nucle-
ophilic attack on the β-lactam ring. Protonation of the nitrogen of the antibiotic,
performed by Ser130 in combination with Lys73, leads to the formation of the
acylenzyme. This mechanism is consistent with experimental kinetic and struc-
tural data and the calculated energy barrier (9 kcal mol−1) compares well with
the experimental value of 12 kcal mol−1. The first step of the deacylation reaction
was also simulated at the B3LYP/6-31G+(d)//AM1-CHARMM22 QM/MM level.
These calculations showed that Glu166 acts as a base, deprotonating a conserved
water molecule which then acts as a nucleophile, attacking the carbonyl carbon of
the acylated serine. The barrier for deacylation was calculated to be 8.7 kcal mol−1,
which is very close to the value found for acylation. This indicates that the differ-
ent steps in antibiotic breakdown have comparable barriers, with no step being
clearly rate-limiting. The catalytic rate constant therefore depends on several re-
action processes with similar barriers, instead of one dominant rate-determining
step. Modeling of the reaction also identified several interactions at the active site,
both in the acylation and deacylation processes, which may help in the develop-
ment of stable β-lactam antibiotics and in designing new lactamase inhibitors.

2.3 Cysteine proteases
Adiabatic mapping has also been applied to investigate cysteine proteases. These
enzymes are involved in many diseases, and so represent promising drug tar-
gets. Epoxides and aziridines are classical prototypes of cysteine alkylating agents
that irreversibly block cysteine proteases by a ring-opening reaction involving an
attack of the thiolate group of the cysteine on the three-membered rings. The mech-
anism of action of these inhibitors has been elucidated by modeling their reaction
with cathepsin B at the B3LYP/TZVP//BLYP/TZVP-CHARMM22 level [31]. The
calculations suggested that ring opening requires an efficient protonation of the
leaving group. Contrary to what was originally proposed, the calculations ar-
gued against a direct proton shift from the active site histidine to the inhibitor,
but showed that one water molecule is sufficient to establish a very efficient relay
system. This relay system allows an easy proton transfer from the active site his-
tidine residue to the inhibitor and it may thus be essential for the activity of both
types of inhibitors. These findings may help the design of new analogs based on
aziridine and epoxide templates.
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2.4 Cytochromes P450

Drug metabolism is another important aspect of the development and optimiza-
tion of useful, pharmaceutically active compounds, and enzymes involved in
these processes are being studied using QM/MM adiabatic mapping methods.
Cytochromes P450 are key enzymes involved in drug metabolism. A particularly
important reaction is the P450-catalyzed hydroxylation of C–H bonds. This reac-
tion is crucial for drug metabolism as it can be responsible for the activation of
pro-drugs, or influence the pharmacokinetics of many pharmaceuticals. QM/MM
methods can provide a uniquely detailed description of the reactions catalyzed
by cytochrome P450 enzyme family. QM/MM studies of bacterial P450cam have
raised controversial issues about reactivity [32–34]. Different P450 isoenzymes dis-
play very different substrate specificity and hydroxylation patterns, which could
be the result of orientation or binding effects, or the intrinsic reactivity of different
locations in the substrate [35]. For example, calculations on models of aromatic
hydroxylation in P450 have identified two different possible orientations of the
substrate (side-on and face-on) [36,37] either or both of which may be important
in the reactions of different drugs in different P450s. This insight from calculations
has led to the development of new structure-activity relationships (SARs) that
may help in the prediction of metabolite products for drugs containing aromatic
fragments. QM/MM modeling of human cytochrome P450 enzymes (including
complexes with the widely-used drugs diclofenac and ibuprofen) demonstrates
the potential of QM/MM methods to deal with practical questions of xenobiotic
metabolism, for example in identifying and analyzing determinants of reactiv-
ity [38]. At the same time, future developments in the field of pharmacogenetics
will require models to predict the effects of genetic variation on the activity and
specificity of enzymes responsible for drug metabolism.

2.5 Fatty acid amide hydrolase (FAAH)

Other applications of QM/MM methods relevant for medicinal chemistry concern
fatty acid amide hydrolase (FAAH), a key enzyme involved in endocannabinoid
metabolism, and a promising target for the treatment of central and peripheral
nervous system disorders, such as anxiety, pain and depression [39,40]. The mech-
anism of the first crucial steps of the acylation reaction catalyzed by FAAH, with
the substrate oleamide, has been recently modeled with a PM3/CHARMM22
QM/MM potential, with DFT calculations for a reliable description of the re-
action energetics [41]. The calculations revealed a novel mechanism of nucle-
ophile activation showing that the general base Lys142 and the proton shuttle
Ser217 cooperate to activate the key nucleophile Ser241. Characterization of the
B3LYP/6-31G+(d)//PM3-CHARMM22 potential energy surface for the reaction
indicated that the activation of the nucleophile is the rate limiting step, giving
a barrier of 18 kcal mol−1, close to the experimentally deduced activation bar-
rier (16 kcal mol−1). These simulations identified crucial interactions at the active
site, highlighting the role played by the oxyanion hole, which in FAAH is com-
posed by four consecutive residues (Ile238, Gly239, Gly240 and Ser241) arranged
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FIGURE 9.1 Binding modes for the inhibitor URB524 in the active site of the enzyme fatty acid
amide hydrolase (FAAH), showing both orientations I (left) and II (right) used for QM/MM
modeling [43]. Modeling the mechanism of reaction of this covalent inhibitor identified
orientation II as the productive binding mode, with the carbamic group of URB524 placed close
to the nucleophilic hydroxyl group of Ser241.

in a hairpin-like loop. Comparison between QM/MM and in vacuo QM calcula-
tions showed that the highest level of stabilization along the pathway occurs at
the tetrahedral intermediate, due to the hydrogen bonds between the negatively
charged oxygen of oleamide and NH groups of the oxyanion hole residues (i.e. the
tetrahedral intermediate is the species most stabilized by the enzyme during the
reaction). The active site is well organized to achieve this stabilization, and so to
catalyze the reaction effectively.

The interaction between FAAH and carbamic acid aryl ester inhibitors has also
been investigated using QM/MM methods. This class of compounds, including
the compound URB524, has been shown to inactivate FAAH by carbamoylation
of the active nucleophile Ser241 [42]. In general, structure-based drug design de-
pends on the accuracy of ligand docking, and the ability to identify relevant
binding modes. URB524 and its derivatives can be docked within the FAAH cat-
alytic site in two possible orientations (called orientation I and II), both placing
the carbamic group close to Ser241 (Figure 9.1). Traditional computational tools
employed in drug discovery, such as docking and scoring (e.g. by classical inter-
action energies), failed to clearly discriminate between these two binding orienta-
tions [44,45].

The QM/MM approach was applied to model the formation of the covalent
inhibitor complex, employing the PM3/CHARMM22 potential with B3LYP/6-
31G+(d) energy corrections for a reliable description of the reaction energetics.
Potential energy surfaces were calculated for each binding orientation and transi-
tion states and intermediates were identified along the reaction profiles. The calcu-
lations clearly showed that the carbamoylation in orientation II is energetically
preferred, thus identifying II as the productive binding mode [43]. Similar path-
ways were obtained using other snapshots taken from molecular dynamics simu-
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lations, suggesting that the preference observed for binding orientation II is not
affected by the starting conformation. These results provide a theoretical basis
for SAR interpretation of URB524 analogs, highlighting the useful contribution
that mechanistic modeling of enzymes can give in identifying productive bind-
ing modes for covalent inhibitors. QM/MM modeling of reaction mechanisms for
covalent inhibitors in enzyme targets has the potential to provide detailed infor-
mation for drug design in cases where traditional docking alone may fail.

2.6 Recent applications of QM/MM to other enzyme systems

Limited space means that it is not possible to review all of the many recent ap-
plications of QM/MM methods in computational enzymology. QM/MM is now a
mainstream methodology and is the subject of several excellent reviews [46,12,47,
48]. Other excellent examples of its application that are not covered in this review
include the investigation of proton transfer in carbonic anhydrase [49], the hydrol-
ysis of paraoxon by phosphotriesterase [50], investigation of the catalytic pathway
of cathepsin K [51] (also a cysteine protease, like cathepsin B described above), in-
vestigations of the catalytic pathway of catechol-O-methyltransferase [52] and the
modeling of hydride transfer in xylose isomerase [53]. QM/MM methods have
also been used to study protein-ligand interactions, e.g. investigating the protein-
ligand interactions of a range of HIV-1 integrase inhibitors [54].

3. ENZYME CONFORMATIONAL CHANGES AND FLUCTUATIONS:
EFFICIENT SAMPLING IN QM/MM SIMULATIONS

There is growing evidence that an account must in many cases be made for the ef-
fects of protein conformational change when performing computational enzymol-
ogy calculations. Conformational change on a small scale (e.g. of a small number
of amino acid side chains) may occur during catalysis. A recent investigation on
the role of conformational fluctuations on catalysis has been reported for the first
step of the acylation reaction between FAAH and oleamide. Potential energy sur-
faces (PESs) were calculated at the B3LYP/6-31+G(d)//PM3-CHARMM22 level
for multiple conformations of the enzyme-substrate complex. The results showed
that geometrical fluctuations of the active site can significantly affect the overall
energetic barrier. Although conformational fluctuations did not affect the general
shape of the PESs, consistency between experimental and calculated barriers is
observed only with a specific arrangement of the reactants [55]. These findings
strongly suggest that the employment of different protein conformations can be
essential for a meaningful determination of the energetic of enzymatic reactions.
The effect of small conformational changes was also observed by Warshel and
co-workers [56], who investigated the conformational dependence of activation
energies calculated using adiabatic mapping. They investigated a hypothetical
reaction by running adiabatic mapping calculations on several enzyme conforma-
tions taken from a molecular dynamics trajectory. Large differences were observed
for both the energy of the ground state (which varied by up to 30 kcal mol−1)
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and for the activation energy (which varied by up to 6 kcal mol−1). These re-
sults demonstrate clearly that small conformational changes can have a significant
influence on the calculated activation energy, and that extensive conformational
sampling may be required to average out their effects.

It has also been observed that large-scale protein conformational change can
be the rate-determining step of enzyme catalytic turnover. For example, Wolf-
Watz et al. performed an NMR study of mesophilic and thermophilic homologs
of adenylate kinase [57] to study the role of protein dynamics in enzymatic
turnover. They demonstrated that the rate-limiting step was a protein conforma-
tional change (the opening of the nucleotide binding lids), and that the reduced
activity of the hyperthermophilic homolog at ambient temperatures was caused
solely by a slower lid-opening rate [57]. This suggests that the enzyme has evolved
to the point where the chemical reaction is very fast, and the limitation now to the
enzyme’s catalytic power is its ability to change conformation [57]. The importance
of large scale conformational change is now also being shown computationally.
Pentikäinen et al. [58] have recently reported simulations that suggest that com-
plex protein dynamics are central to the function of human scavenger decapping
enzyme (DcpS). The standard view has been that substrate binding caused the
dimer to change from a closed symmetric conformation to an asymmetric open
conformation. The simulations suggested, however, that the apo-form of the en-
zyme undergoes a continuous process of conformational change, with one side
opening and the other closing in a clearly cooperative fashion [58]. This conforma-
tional change occurred over a timescale of approximately 4–13 ns. This observation
may be of wide relevance, as many enzymes function as dimers, and may un-
dergo similar conformational changes in solution, something that X-ray crystal
structures alone cannot show directly [58].

3.1 Direct sampling methods
The effects of protein conformational change can be included via conformational
sampling of the QM/MM Hamiltonian. One well-established method is umbrella
sampling [59], which works by combining the results of several molecular dy-
namics simulations that are restrained to sample overlapping regions across the
reaction coordinate. For example, Bowman et al. [60] used umbrella sampling to
investigate M1-1 glutathione S-transferase, an enzyme that plays an important
role in the detoxification of a large variety of xenobiotic compounds in mam-
mals. Activation free energies calculated by Bowman et al. for this enzyme (using a
specifically parameterized AM1-SRP/CHARMM22 method in umbrella sampling
molecular dynamics simulations) agreed well with experiment. While umbrella
sampling was, in this case, successful, its main drawback is that the amount of
conformational sampling is limited by the significant computational expense of
the evaluation of the QM forces. This has limited QM/MM umbrella sampling ap-
plications to trajectory lengths that are typically measured in picoseconds (30 ps
at each value of the reaction coordinate, in the case of Bowman et al.), generally
using only semi-empirical QM Hamiltonians (e.g. AM1 or PM3).

Jorgensen and co-workers have developed an efficient method of sampling a
QM/MM Hamiltonian that enables them to increase the quality of conformational
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sampling [61–63]. They use the Monte Carlo (MC) [64] method to explore con-
formational space. MC works by performing small moves of randomly chosen
molecules (or parts of molecules). Millions of such moves are required to accu-
rately converge free energy averages. This presents a problem if a standard elec-
tronic embedding [9,12] is used to calculate the electrostatic interaction between
the QM and MM atoms, as every MC move would require a QM energy calcula-
tion. Jorgensen and co-workers solve this problem by calculating the electrostatic
QM/MM interaction using partial charges on the QM atoms that are updated
dynamically throughout the simulation. They have developed a method [61] to
obtain atomic partial charges efficiently from a QM calculation that are compati-
ble with the partial charges from the standard OPLS [65,66] all-atom forcefield. The
charges are calculated using the charge model 1 (CM1A) [67] analysis of an AM1
semi-empirical QM calculation. Jorgensen and co-workers have successfully used
this method to study solution-phase Diels–Alder reactions [68], and to study the
enzyme-catalyzed Claisen rearrangement reaction of chorismate to prephenate in
CM [62]. Jorgensen and co-workers have since adapted this method [69–72] to use
the PDDG/PM3 semi-empirical QM Hamiltonian [73], using the CM3 [74] method
to extract charges. They have also used this method to investigate oleamide and
methyl oleate hydrolysis catalyzed by FAAH [39], and obtained results that com-
pared well with the barriers predicted in the adiabatic mapping study [41,43]
discussed in the last section.

3.2 Indirect sampling methods

The methods described above include the effects of conformational change via
explicit sampling of the QM/MM Hamiltonian. The cost of evaluating the QM
energy makes these methods computationally demanding. An alternative to sam-
pling the QM/MM Hamiltonian directly is to perform the sampling using an MM
Hamiltonian, and to then perform QM/MM calculations using the resulting MM
ensemble. Warshel and co-workers have, over a series of pioneering papers [75,76],
developed a method that allows an MM ensemble to be used to calculate, in the-
ory, exact QM/MM free energies. The aim of this method is to calculate the free
energy difference between two systems, A and B. For example, system A could be
a substrate bound to an enzyme, while system B could be the transition state. The
free energy difference between these two corresponds to the activation free energy
of the enzyme catalyzed reaction. Warshel and co-workers calculated the relative
free energy of A and B by first using a MM type potential. Because an MM poten-
tial was used, molecular dynamics sampling was efficient, and therefore a large
ensemble, and well-converged relative free energy were calculated. This relative
free energy, �GMM(A → B), can only be as good as the MM potential used dur-
ing the calculation. Warshel and co-workers solve this problem by then using the
MM ensembles to calculate the difference in free energy between the QM and MM
representations of A and B. In essence, Warshel and co-workers calculated the free
energy error associated with using the MM forcefield. By calculating these errors,
Warshel and co-workers were able to correct �GMM(A → B) so that it was formally
equal to �GQM(A → B) [76,75] (see Figure 9.2). The correction free energies were
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FIGURE 9.2 The free energy cycle [75,76] used to calculate the QM/MM free energy difference
between systems A and B, �GQM/MM(A → B). The free energy difference between A and B is
first estimated using an approximate potential (e.g. an MM potential), giving �GMM(A → B).
This is then corrected to the QM/MM value by calculating the free energy necessary to perturb
system A from MM to QM/MM (�GMM→QM/MM(A)) and the free energy to perturb system B
from MM to QM/MM (�GMM→QM/MM(B)).

calculated by generating ensembles for systems A and B using the MM model. The
difference in energy between the QM and MM models was calculated for a sub-
set of each ensemble, and the difference between these energies used as input to a
single-step free energy perturbation (FEP) [77,78] between the MM model (the FEP
reference state) and the QM model (the FEP perturbed state). As long as the MM
model is a good approximation of the QM model, i.e. the phase space overlap of
the two models is good, then the average calculated via the FEP equation will con-
verge to an accurate estimate of the correction free energy. The key advantage of
this method is that all of the thermodynamic sampling is performed using only the
MM model of the system. QM or QM/MM calculations are run in parallel with the
MM sampling to estimate the correction free energies. This QM/MM method has
been used to study a variety of systems [79–82], including chorismate mutase [83].

Schemes for efficient QM/MM sampling developed for solvation or binding
free energy calculations also hold great promise for computational enzymology.
For example, we have recently presented a QM/MM free energy method [84] that
uses efficient Monte Carlo sampling and Hamiltonian replica exchange [85,86]
algorithms to calculate the correction free energies required by the Warshel free
energy cycle. The method was tested by calculating the relative hydration free
energy of water and methane at the MP2/AVDZ/OPLS level. Extension of this
method to the calculation of activation free energies is promising.

4. CONCLUSION

There has been significant recent development in the application of QM/MM
methods for computational enzymology, whereby both the detail of the physical
model of the enzyme system, and the quality of conformational sampling have
improved dramatically. This has now led to computational simulations of certain
enzyme systems that are sufficiently accurate to allow direct comparison with ex-
periment. Computer simulations have now reached a level of accuracy, for some
systems, that permits their use as a means of verifying or dismissing proposed
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enzyme reaction mechanisms. This is a significant development, with potential
benefits both for the field of enzymology, and for rational drug design.
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1. INTRODUCTION

Under the typical conditions of equilibrium polymerization [1–16], the envi-
ronmental response is predominantly stationary and the resulting equilibrium
polymer-length distribution is well understood [1–3,6,9–11]. Tobolsky and Eisen-
berg [4] first treated equilibrium polymerization using mechanistic master equa-
tions. De Gennes [7] and des Cloiseaux [8] used renormalization group theory in
interpreting continuum models of polymerization as a phase transition between
small and high polymers. This interpretation was further validated by Wheeler
and Pfeuty [12], who showed that Scott’s generalization [5] of the Tobolsky and
Eisenberg model is equivalent to an Ising spin magnet in the limit that the spin
vector dimension goes to zero. Several groups [17–21] have studied equilibrium
distributions and phase diagrams of living polymers [22–24]—that is, addition
polymerization in which the active sites remain unterminated or active—by ex-
ploiting the isomorphism between continuum and lattice models. Living polymer-
ization [25–39] has been a focus of many statistical models because the sequence
distribution equilibrates at long times.

In typical polymerization schemes, macroscopic kinetic equations provide
a reasonably accurate reaction mechanism [40,41]. But materials, in which the
polymerization—either because of vulcanization in cross-linking reactions or be-
cause of aggregative assembly in chain growth—leads to substantial changes in
the solvation and hence in the reaction rates, exhibit strongly nonlinear (com-
plex) dynamics. For example, nonstationary response has been seen in thermoset-
ting [42–45] polymers. Thermosetting reactions play an important role in reaction-
injected molding [46,47] and have been the subject of large-scale finite-element cal-
culations with semi-empirical kinetic and visco-elastic equations [48]. Throughout
such nonequilibrium processes, the viscosity is changing, and must therefore pro-
vide time-dependent reaction environments (cages). Thus, though the microscopic
elongation reaction in the vacuum may be independent of molecular weight, the
average environment of the cage—the potential of mean force—for polymeriza-
tion will differ as the population of the molecular weight distribution shifts to-
wards higher polymers. The diffusion of the condensate products away from the
reaction sites as well as the diffusion of the reactants towards each other has been
included in the kinetic models only in an averaged sense. However, as the viscos-
ity changes for the reasons explained above, these diffusion processes will also be
affected time-dependently.

Thus far, we have described the time-dependent nature of polymerizing en-
vironments both through stochastic [49–51] and lattice [52,53] models capable of
addressing this kind of dynamics in a complex environment. The current article fo-
cuses on the former approach, but now rephrases the earlier justification of the use
of the irreversible Langevin equation, iGLE, to the polymerization problem in the
context of kinetic models, and specifically the chemical stochastic equation. The
nonstationarity in the solvent response due to the collective polymerization of the
dense solvent now appears naturally. This leads to a clear recipe for the construc-
tion of the requisite terms in the iGLE. Namely the potential of mean force and the
friction kernel as described in Section 3. With these tools in hand, the iGLE is used
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to analyze the kinetics of the polymer size distribution (and other observables) for
two distinct living polymer systems in Section 4.

2. POLYMERIZATION KINETICS MODELED BY THE CHEMICAL
STOCHASTIC EQUATION

2.1 The CSE for polymerization reactions

The usual kinetic description of polymerization reactions can be written as a series
of consecutive reactions,

(1a)I + M → P1,

(1b)Pn + M
kr�
kd

Pn+1,

in which Pn is an “activated” polymer consisting of n monomers, and the first
reaction (1a) denotes the production of the first activated monomer P1—i.e., the
initiation of polymerization. This set of reactions can be trivially generalized by
noting that the reaction rates may differ as the polymer changes—i.e., for different
n—and as the overall system changes in time. Formally, the recombination and
dissociation rates, kr = kr(n, t) and kd = kd(n + 1, t), are written as functions which
depend on the length n (� 1) of the reacting polymer chain and time. This exten-
sion, however, is not so trivial in that it potentially affects the kinetics dramatically,
and it requires additional theory and/or equations of motion to describe the evo-
lution of the rates.

The kinetic master equations associated with the reaction mechanism of Eq. (1)
can be written as

(2a)
d
dt

[P1] = a(t) − kr(1, t)[M][P1] + kd(2, t)[P2],

(2b)
d
dt

[P2] = kr(1, t)[M][P1] − kd(2, t)[P2] + kd(2, t)[P3] − kr(2, t)[M][P2],

. . .

d
dt

[Pn] = kr(n − 1, t)[M][Pn−1] − kd(n, t)[Pn]

(2c)+ kd(n + 1, t)[Pn+1] − kr(n, t)[M][Pn],

where [M] is the concentration of inactivated monomers and [Pn] is the concen-
tration of the activated polymer chains. The function a(t) represents the rate of
activation of monomers by some external (and possibly time-dependent) driving
force. Eq. (1a). Its integral multiplied by volume,

A = V

∞∫
0

a(t) dt,

is the total production of activated monomers during the course of reaction. If no
such activated monomer is ever deactivated to monomer, it also represents the
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total number of polymers (of any size) produced in the solution during the course
of reaction.

For long polymer chains n can be treated as a continuous variable. The polymer
length is connected to n as R = nL, where L is the average monomer length. In this
case, the expansion of the quantities k(n ± 1)[Pn±1] up to second order,

(3)k(n ± 1)[Pn±1] ≈ k(n)[Pn] ± ∂

∂n

(
k(n)[Pn]

) + 1
2

∂2

∂2n

(
k(n)[Pn]

)
,

yields (invoking the generalized notation, P(n, t) ≡ [Pn]) an auxiliary partial dif-
ferential equation,

∂P(n, t)
∂t

= ∂

∂n

[(
kd(n, t) − kr(n, t)[M]

)
P(n, t)

]

(4)+ 1
2

∂2

∂2n

[(
kd(n, t) + kr(n, t)[M]

)
P(n, t)

] + δ(n − 1)a(t).

The initiation mechanism is visible in the last term. The boundary conditions for
Eq. (4) read

(5a)P(∞, t) = 0,

(5b)
∂

∂n
P(n, t)

∣∣∣∣
n=1

= f (n, t)
kBT

P(n, t)
∣∣∣∣
n=1

,

where the effective force is

(5c)
f (n, t)
kBT

= −2
kd(n, t) − kr(n, t)[M]
kd(n, t) + kr(n, t)[M]

− ∂

∂n
ln

(
kd(n, t) + kr(n, t)[M]

)
.

Note that Eq. (4), written in the form

(6)
∂P(n, t)

∂t
= ∂

∂n

[
D̃(n, t)

(
∂P(n, t)

∂n
− f (n, t)

kBT
P(n, t)

)]
+ δ(n − 1)a(t),

describes the diffusional motion along the continuous coordinate n with the force
f (n, t) and “diffusion coefficient”

(7)D̃(n, t) = 1
2

(
kd(n, t) + kr(n, t)[M]

)
.

If we further assume that dynamics of n is a Markov process, then the “diffu-
sional” chemical kinetic equation, Eq. (4) or (6), acquires the form of the chemical
stochastic equation [54,55] (CSE),

(8)ṅ = −(
kd(n, t) − kr(n, t)[M]

) + √
kd(n, t) + kr(n, t)[M]ξ (t),

and should be understood in Itô’s sense [56]. The Gaussian stochastic “force,” ξ (t),
is “δ”-correlated,

(9)
〈
ξ (t)ξ (t′)

〉 = δ(t − t′),
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and the initial condition values, t0 and n0, are distributed in accordance with the
function

ρ(n0, t0) = δ(n0 − 1) a(t0)/A.

The requisite conditions for the general applicability of the CSE have been dis-
cussed extensively by Gillespie [54,55]. In the present case of a growing polymer
chain, this approach is valid in the limit

[Pn]V dnr � 1 and [Pn]V dnd � 1,

where the change in polymer length, dn, during time dt is

(10)dn = dnr − dnd.

The changes dnr and dnd correspond to the number nr of monomers attached to
the polymer and the number nd of dissociated monomers. ([Pn]V is the number of
polymers with length n in the solution.) The quantities in the RHS of Eq. (10) are
Poisson distributed with averages

(11)〈dnr〉 = kr[M] dt and 〈dnd〉 = kd dt.

The validity criteria suggests that the time interval dt must be chosen long enough
so that many reactions occur during dt for every reaction channel. In the thermo-
dynamic limit, in which the number of corresponding polymer molecules is large,
such an approximation is well justified. The Poisson distribution is then approxi-
mated by a Gaussian distribution, and, thus,

(12)dnr,d = 〈dnr,d〉 +
√

〈dnr,d〉ξr,d(t)
√

dt.

The statistically independent Gaussian white-noise processes, ξr and ξd, are delta-
correlated by analogy with Eq. (9). Combining Eqs. (10), (11) and (12), one arrives
at Eq. (8).

In a homogeneous stationary environment the distribution of n is close to
Poisson, which is a narrow function with the average 〈n〉 and width

√〈n〉. Thus,
averaging Eq. (8) over the fluctuating force, one gets the usual kinetic equation,

(13)〈ṅ〉 = −kd
(〈n〉, t

) + kr
(〈n〉, t

)
[M].

Below, we suggest two different approaches to extend the CSE formalism, Eq. (8),
for the case of nonequilibrium polymerization.

2.2 CSE with stationary rate coefficients

In order to complete the set of equations describing polymerization reactions in
dense and concentrated regimes, the rates kr and kd must be specified. In the sta-
tionary regime, in which the environmental responses to the microscopic motion
of the polymer reactants can be assumed to follow the same regression throughout
the reaction, these rates are time-independent. The theory of bimolecular reactions
in liquids can then be applied at every reaction step.
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There exist many different approximations describing various aspects of
diffusion-controlled reversible reactions [57–64]. When the concentration of mo-
nomers is high enough, the modified rate-equation approach [58] describes poly-
merization well. Within the framework of this theory, for freely diffusing reagents,
the steady-state rate coefficients in liquids take the form

(14)kd,r = κd,r

1 + κr/kD
,

where κd(r) is the intrinsic dissociation (association) rate constant and kD is the dif-
fusional rate coefficient defined through the properties of motion and geometry of
the reagents. In the case of two spherically symmetrical reaction centers, A and B,
for example, this diffusion rate coefficient is

kD = 4πDσ ,

where D = DA + DB is their mutual diffusion coefficient and σ is the sum of the
particle radii (contact distance).

The critical assumption behind the use of Eq. (14) is that under steady-state
conditions, the spacial flows of particles—which control the flows through the
reaction channels—are in quasi-equilibrium. When two small particles react, the
time for reaching quasi-equilibrium is about the time for the diffusion of one par-
ticle around another, σ 2/D. If one of the reaction centers belongs to a polymer
molecule, then the slow modes of configurational motion of a molecular chain
will not allow them to reach quasi-equilibrium for a long time, thus, leading to
time-dependent rate coefficients. This kind of nonstationarity, caused by slow re-
laxational mechanisms of polymers, leads to the modified reaction rates (14) which
become explicitly time-dependent, and will be described below within the frame-
work of the theory of diffusion controlled reactions.

Other nonstationary effects could arise from the changes in the density of the
environment that results from the growth of polymer chains. Such a mechanism
is connected to the migration properties of monomers and contributes to the rates
differently: the reaction rates become time-dependent through the state of the sur-
roundings. In homogeneous systems, the state of environment can be determined
by the averaged polymer length, while in inhomogeneous solutions the local en-
vironment and, therefore, the length distribution plays an important role. In this
paper, we assume that the system is homogeneous, and that all nonstationary re-
sponses are homogeneous in space.

2.3 CSE with nonstationary rate coefficients
We now construct the rate expressions in the nonstationary case. The Laplace
transform of the modified rates kd,r(t) yields [62]

(15)sk̃d,r(s) = κd,r

1 + κrp̃(s)
,

recalling that the Laplace transform of a function f (t) is f̃ (s) = ∫ ∞
0 exp(−st)f (t) dt.

The function p̃(s) is the Laplace transform of the partial probability p(t) for finding
two particles in contact at time t after being initially in contact.
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The partial probability density p(t) can be expressed directly as

(16)p(t) = v−1
c

∫
d3rψ

(
r′

2 − r2
) ∫

d3r′ψ
(
r′

1 − r1
)
GM

(
r′

2, r′
1; t

)
GP(r2, r1; t)

in terms of the known propagators for each of the two reactive sites— viz.
the Green’s functions GM(r, r′; t) and GP(r, r′; t). The auxiliary field ψ(r) defines
the “form” of the reaction zone and is a dimensionless function that is nonzero
in a very narrow region near the reaction center. Its normalization,

vc ≡
∫

d3r ψ(r),

is the “reaction volume.”
For diffusional motion, the Green’s functions obey the following equations:

∂

∂t
G(r, r′, t) = L̂(r)G,

with the initial condition

G(r, r′, 0) = δ(r − r′)
and the reflecting boundary condition at contact. The operator L̂(r) defines particle
motion and in the case of free continuous diffusion takes the form

L̂(r) = D∇2
r .

The solution of these Green’s functions and the associated p(t) (or p̃(s)) are known
in a number of cases. For example, in the case of two diffusing noninteracting
spherical particles [65],

(17)p̃(s) = 1

4πDσ (1 +
√

sσ 2/D )
.

The steady-state result, Eq. (14), can be obtained directly from Eq. (17) exploiting
the formula kd,r(t → ∞) = lims→0 sk̃d,r(s).

In the present case of chain-growth polymerization, a Green’s function,
GP(r, r′; t), can be calculated for each addition of a monomer to the reactive group
at the end of a polymer of degree n. Within the framework of the Rouse model,
wherein a polymer chain is represented as a set of n beads connected by harmonic
potentials, the propagator has the Gaussian form [10,66],

(18)GP(r, r′ = 0; t) = (
2πφn(t)

)−3/2 exp
(

− r2

2φn(t)

)
,

where φn(t) is the mean-square displacement,

(19)φn(t) = 6Dnt + 4nl2

π2

∞∑
q=1

1 − exp(−q2t/τn)
q2 .

Here τn = n2L2/(3π2D1) are the Rouse relaxation times, D1 is the diffusion co-
efficient of a monomer, and Dn = D1/n is that of the center of mass of a chain
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of degree n. Larger molecules will necessarily lead to longer relaxation times
contributing to the time scales in the reaction rates. In another limiting case,
when polymer chain configurations reach quasi-equilibrium sufficiently quickly
(as compared with the long time scales of polymerization), the nonconstant be-
havior of the rate coefficients is caused by the changing density of solution. This
alters the apparent diffusion of monomers, and reduces the rates (14) to:

(20)kd,r(t) = κd,rkD(t)
kD(t) + κr

.

Even in dilute solutions, the chain relaxation effect, Eq. (19), included in Eq. (15),
leads to time-dependent rates in Eq. (20) because it alters the diffusion coefficient
of the polymer, DP, in the course of polymerization, so that

DP ≡ lim
t→∞ φn(t)/(6t) = Dn.

In general, when both relaxational and environmental effects take place, they
must be combined to construct the resulting equations for the time-dependent
rates. Regardless of what is causing the time dependence in the rate coefficients,
the CSE, Eq. (8), can be written in the form

(21)ṅ = −h2(t)
(
kd(0) − kr(0)[M]

) + √
kd(0) + kr(0)[M]h(t)ξ (t),

where kd,r(0) denote the initial values of the rate coefficients and the function h(t) =√
kd(r)(t)/kd(r)(0) defines their nonstationarity. If the rates are expressed by Eq. (20),

then

h(t) =
√

kD(t)
kD(t) + κr

.

The nonstationary function h(t) is slowly varying to the extent that it effectively
remains constant during any elementary reaction event.

3. POLYMERIZATION EVENTS MODELED BY LANGEVIN DYNAMICS

3.1 Nonstationary Langevin dynamics
Another promising way of extending the CSE to the nonequilibrium regime is to
introduce a new effective coordinate, R(t), which plays the role of the length of a
polymer chain, so that

(22)
〈
R(t)

〉 = L
〈
n(t)

〉
,

where L is the average monomer length. The “motion” along this variable is de-
scribed by the generalized Langevin equation (GLE),

(23)R̈ = −∂F(R)
∂R

−
t∫

0

γ (t − t′)Ṙ dt′ + ξth(t),

〈
ξth(t)ξth(t′)

〉 = kBTγ (t − t′),
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where γ (t − t′) is the friction kernel, F(R) represents the potential of mean force
(PMF) and ξth(t) is the stochastic Gaussian force. The parameters and functions
in this equation are chosen in order to mimic the behavior of reaction processes
that obey Eq. (22) on a long time scale. The qualitative properties and quantitative
structure of the PMF is critically connected to this behavior, and they are discussed
in detail in the next section.

Nonstationarity can be introduced into the GLE through an auxiliary function
g(t) so as to modulate the amplitude of the stochastic force [49,50]. The resulting
equation of motion has been called the iGLE where the “i” refers to the irreversibly
changing environment, and it takes the form,

(24)R̈ = −∂F(R)
∂R

−
t∫

0

g(t)γ (t − t′)g(t′)Ṙ dt′ + g(t)ξth(t).

The placement of g(·) on both sides of the friction kernel is necessary because the
fluctuation-dissipation relation with modified forces,

〈
g(t)ξth(t)g(t′)ξth(t′)

〉 = kBTg(t)g(t′)γ (t − t′),

must hold in the nonstationary environment [67,68]. Note that the nonstationary
effects defined in Eq. (24) by the function g(t) occur on a time scale that is usually
much longer than the solvent relaxation time.

The growth of the effective polymers from an initial configuration of activated
monomers is clearly visible in the time-dependent average of the polymers, 〈R(t)〉.
The time-dependent distribution of polymer lengths can also be obtained from
these calculations because the length of each of the polymers is known at a given
time t. The iGLE model for polymerization has been seen to be capable of repro-
ducing the rich structure of polymerization correctly in a couple examples of living
polymerization as shown in Section 4.

3.2 The potential of mean force driving polymerizing events

Although the computational integration of the iGLE dynamics is compellingly
simple, its use is predicated on the specification of the potential of mean force
(PMF) and the nonstationary friction kernel. The original articulation—motivated
heuristically using the method of steepest descents—of the PMF for polymer
growth was specified as

(25)e−βF(R) ≡ Q−1
∑

k

∫
Ωk

dr̄ exp
(−βV(r̄)

)
δ

{
R −

k−1∑
i=1

|ri+1 − ri|
}

,

where β = 1/kBT is the inverse temperature; R is a coordinate corresponding
not to the size (or end-to-end distance) of the polymer [69–71] but to its contour
length [49]; R should be interpreted as the effective global reaction path coordinate
for the chain polymerization. V(r̄) is the potential interaction between the n-mers
represented by the 3k-dimensional vector, r̄ ≡ (r1, r2, . . . , rk), where ri denotes the
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position of the ith monomer. Q is the partition function of the monomer. The choice
of Q sets the zero of free energy to be at R near the average monomer length L.
Notice that sum over the space Ωk (which is the space of all phantom polymer
chains with k monomer units) in addition to the δ-function constraint distinguishes
this PMF from the usual polymer PMF [69–71] that characterizes the polymer size
in a constant k ensemble.

The direct calculation of the PMF through Eq. (25) is extremely complicated
even in the case of Gaussian chains and can be performed only numerically. How-
ever, the main features of this potential can be deduced from the common proper-
ties of the polymerization process. Each chain-growth reaction step which leads to
an increase in the chain length, R, by L decreases the free energy by �GL. This can
be mimicked, minimally, by a simple biased potential,

(26)Fb(R) = −fbR,

where the slope fb = �GL/L, complies with this condition. In order to further
obtain a microscopic description of each association or dissociation reaction step,
Eq. (26) can be modified by introducing wells at the typical lengths associated with
each n-mer and barriers between adjoining n- and (n + 1)-polymers. Such a multi-
ple well and barrier structure is known to lead to local activated rates between the
wells from the theory of chemical reactions [72]. This phenomenological potential
called the polymer growth potential (pgp) can be constructed based on a series of
merged double well potentials with barrier heights and an external force fb. Sup-
pose the well frequency is ω0 and the barrier frequency is ω1, then the PMF can be
written as:

(27)Fpgp(R) ≡

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
2ω2

0(R − kL)2 − kfbL

for R < L + a− with k = 1 or kL − a+ < R < kL + a−,

− 1
2ω2

1(R − kL − Rm)2 − kfbL + E†
+

if kL + a− < R < (k + 1)L − a+,

where Rm is the relative position of the potential maximum,

(28)Rm = L
2

− 2fb
ω2

0

− 2fb
ω2

1

,

a± define the sewing points of the piecewise continuous curve (27),

(29)a± = ω2
1L/2

ω2
0 + ω2

1

± 2fb
ω2

0

,

and the barrier height in the forward reaction, E†
+, is expressed through the fre-

quencies, ω0 and ω1, as

(30)E†
+ = (L − 4fb(ω−2

0 + ω−2
1 ))2

8(ω−2
0 + ω−2

1 )
= R2

m

2(ω−2
0 + ω−2

1 )
.

(The barrier height in the backward direction is E†
− = E†

+ + fbL.) The polymer
growth PMF (pgp) is an extension of the double well model of Straub et al. [73].
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Also included in the pgp is the self-similarity of the polymer. Without the wells
and barriers, the polymer PMF is a biased potential which will not exhibit any pref-
erence for the polymer lengths that are commensurate with a multiple of monomer
lengths.

The pgp represents one of the simplest possible choices for the polymer growth
potential of mean force. Nevertheless, the pgp can be generalized by introducing
terms in the potential barrier, E†

+, and the coarse-grained slope, fb, that depend on
the polymer length or time, reflecting the effects of different entropy production
if the environmental conditions change significantly during the polymerization.
Such effects are treated in this work.

The direct substitution of the pgp (27) into the GLE (23) leads to Brownian
motion affected by a constant force. On large time and space scales the steady-
state solution is a drift with constant velocity [74–77]

vss = v+ − v− ≡ 1 − e−βfBL

∫ L
0 I+(x) dx/L

,

where

v+ = 1∫ L
0 I+(x) dx/L

and v− = exp(−βfBL)∫ L
0 I+(x) dx/L

,

and the diffusion coefficient

Dss = D0

∫ L
0 I2+(x)I−(x) dx/L

(
∫ L

0 I+(x) dx/L)3
.

In these equations, we introduced

I±(x) =
L∫

0

exp
(±βFpg(x) ∓ βFpg(x ∓ y)

)
dy/D0,

and the intrinsic diffusion coefficient is derived from the GLE (23) according to the
Einstein relation, D0 = kBT/

∫ ∞
0 γ (t) dt.

Using the mappings vss → ṅL, v+ → kr[M]L, v− → kdL and Dss → D̃L2 (see
Eq. (7)), one obtains CSE (8) in the form

Lṅ = v+ − v− + √
2Dssξ (t),

if the following dependence holds:

Dss = L · (v+ + v−)/2.

As is shown in [77,78], the last equation is valid if the stepwise Brownian motion
can be approximated by a random walk, where the representing particle jumps
randomly between the potential minima. It works well in the case of high potential
barriers, or in other words, when the time during which the chain length retains
unchanged, is much larger than the time of barrier crossing, i.e., the reaction time.
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3.3 Nonstationary friction kernels and dissipative mechanisms in
polymerization

The difference between the GLE and iGLE is that the iGLE has the function g(t)
included in the friction kernel and random force. This g(t) characterizes the am-
plitude of the stochastic force, and its changes allow to describe the irreversible
processes in the nonequilibrium environment.

The chain growth must be retarded as the noise and friction increase. To fulfill
this condition, we suggest the following form for g(t):

(31)g(t) =
(

1 − A〈R〉
NL

)−ζ

=
(

1 − A
N

∫
R
L

P(R, t) dR
)−ζ

,

where A is the number of activated monomers, N is the number of total monomers,
P(R, t) is the normalized probability distribution of polymers at time t, R/L is the
effective number of monomers for a polymer with contour length R, and ζ is a
scaling factor used to characterize the effect of diffusion rate during the polymer-
ization process.

An additional chemical complication can arise from the presence of quenching
reagents which deactivate the reactive polymers. This kinetic quenching mecha-
nism can also be included in the simulations through the random termination of
growth of polymer molecules.

4. NUMERICAL SIMULATIONS OF THE POLYMERIZATION MODELS

In this section we apply the iGLE polymer theory to simulate the dynamics of
experimental systems. Specifically, we consider the living polymerization of α-
methylstyrene and 4-vinylbenzocyclobutene shown schematically in Figure 10.1.
Objective measurables include the identification of time scales, extraction of pa-
rameters directly from experimental data and comparison of our simulation re-
sults with the experiments. To the best of our knowledge, no one has used the
generalized Langevin equation (GLE) or irreversible generalized Langevin equa-
tion (iGLE) to study the dynamics of living polymerization for specific systems,
although our group has previously considered the use of the iGLE to study model
systems of living polymerization [50,51].

4.1 Numerical methods

The simulations have been performed as follows. Each iGLE describes the evo-
lution of one polymer, therefore, the number of equations modeling the whole
system is the number of active monomers, A. In the case when an active monomer
possesses two reaction sites, so that the chain grows in two directions, the number
of iGLEs doubles. The initial length Ri for each polymer i is set to zero. The ith
chain is considered to have n monomers if the coordinate Ri is located near nL, the
potential minimum: (n − 1)L + Rm < Ri < nL + Rm. After crossing a barrier the
number of free monomers, N, changes: it becomes N + 1 [N − 1] if the barrier is
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FIGURE 10.1 The structures of the monomer and the corresponding polymer for
α-methylstyrene (top) and 4-vinylbenzocyclobutene (bottom) are displayed.

passed in the backward [forward] direction. N and the average length, 〈R〉, are up-
dated every timestep. These values are used to compute the function g(t), Eq. (31).
The set of A equations (24) for each polymer chain has been used in dimensionless
form, where L = 1 and the dimensionless timestep, dt, was chosen to be 0.004. The
dimensionless friction kernel is taken to have an exponential decay

γ (t − t′) = γ0 exp
(−γ0|t − t′|),

reflecting the simple assumption of a first-order memory response.
For simplicity, we invoke the assumption of self-similarity in the pgp to claim

that when monomers add to the activated end of a chain during polymerization,
the rates are independent of polymer length. If so, the pgp can be approximated
as a series of self-similar harmonic barriers and well potentials matched to a spec-
ified barrier height and exothermicity at each step. Adjacent well frequencies, ω0

and ω1, are chosen to be equal to each other and are defined through L, E†
+ and fb,

Eq. (30). Their values are specified by the particular system, and are provided
below in each case.

When applying to polymerization processes, the length L and the timestep dt
were rescaled in the following way: L = 5 Å and dt = 0.049 s for α-methylstyrene
and L = 6.5 Å and dt = 0.064 s for 4-vinylbenzocyclobutene, so that every dimen-
sionless time unit corresponds to 12.3 s in the fist case and 15.9 s in the second one.

4.2 Experimental system one: α-methylstyrene

The polymerization of α-methylstyrene has been experimentally studied by Greer
and coworkers [79]. Poly(α-methylstyrene) is a fully flexible linear polymer chain
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joined by covalent bonds. The kinetics of polymerization near the polymerization
line of poly(α-methylstyrene) in the solvent tetrahydrofuran (THF) is initiated by
sodium naphthalide or cesium naphthalide. In this reaction, an electron is trans-
ferred from sodium naphthalide to the α-methylstyrene to form a radical ion,
which immediately dimerises to form the propagating species. The initiation re-
action is:

(32)2I + 2M
k1�
k′

1

M2−
2 ,

where I, M and M2−
2 are the initiator, monomer and activated dimer concentrations

with two activated sites. The propagation and depropagation reactions are:

(33)M2−
n + M

kr�
kd

M2−
n+1,

where n is the number of monomers in a polymer. Since this mechanism results in
activated dimers with two active sites, the number of propagating polymers in the
system is one half the number of initiators. Table 10.1 shows the batch samples of
living poly(α-methylstyrene) in tetrahydrofuran. Based on the experimental data,
it is possible to determine the values of the parameters used in the iGLE model.
To use the iGLE to describe living polymerization systems, we have to know the
total number of monomers, the total number of initiators, the monomer size, the
barrier height, the temperature, the solvent friction and the scaling parameter.

The number of monomers and initiators can be determined from the monomer
concentration, the mole fraction of initial monomers and the mole ratio of initiators
to initial monomers. The monomer concentration is 1.7 mol/l which corresponds

to 1,023,400 molecules in a volume of 109 Å
3
. If the mole fraction of the initial

monomers in solvent is 0.14680 and the mole ratio of the initiator to the initial
monomers is 0.0025, then this corresponds to 2558 initiators. We have 1279 initia-
tors in the system since each activated dimer has two active sites. The size L of
α-methylstyrene is about 5 Å and the molecular weight is 118.18 g/mol. In the

Table 10.1 Batch samples of living poly(α-methylstyrene) in tetrahydrofuran. x0
m is the mole frac-

tion of initial monomer in solvent. [M0] is the concentration of initial monomer. r is the ratio of
moles initiator to moles initial monomer. Te is the equilibrium temperature for the polymeriza-
tion. The data listed in the table are taken from [79]. The rate constants are obtained using the
simple kinetic model of [79]

Sample Initiator x0
m [M0]

mol/l
r Te

K
kr
l/(mol s)

kd
s−1

1 Na 0.14680 1.7 0.0025 267 0.20 0.085
±0.00002 ±0.0001 ±0.01 ±0.005

2 Na 0.145 1.7 0.0024 271 0.18 0.12
±0.001 ±0.0001 ±0.01 ±0.01
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iGLE model, the PMF is expressed by the barrier height which is the ratio of the
activation energy over thermal energy. The activation energy for this polymeriza-
tion process is about 20 kJ/mol and the deactivation energy is 29 kJ/mol [80]. The
ratio of the barrier height over kBT is about 9 and kBT is in units of kJ/mol. The
reference temperature, for which kBT0 = 1 kJ/mol, is 120 K.

With this assignment, numerical simulations of the iGLE can be compared to
the behavior of corresponding physical systems with specified units. In the fol-
lowing text, we call the first set of data (Te = 267 K) sample 1, and the second set
of data (Te = 271 K) sample 2 as shown in Table 10.1. The fraction of monomer
remaining as a function of time for poly(α-methylstyrene) in THF initiated by
sodium naphthalide is shown in Figure 10.2. The dots are the experimental data
(sample 1) and the curve is the best fit of the theoretical model described in this
work. The simulation results fit the experimental data very well with γ0 = 8 and
ζ = 0.95. The equilibrium monomer concentration is reached in a relatively short
amount of time and the extent of polymerization is 75%. For sample 2, we used the
same γ0 value because both of them operate in the same solvent-tetrahydrofuran.
After a temperature quench from above the polymerization temperature to below
the polymerization temperature, the polymerization process was initiated and the
extent of polymerization is 62% at equilibrium at a temperature of 271 K. The high
equilibrium temperature makes the free energy higher since entropy and enthalpy
are all negative for this reaction. We adjust the value of ζ to account for the tem-
perature difference. The result is shown in Figure 10.3. The temperature change

FIGURE 10.2 Experimental and theoretical fraction of monomers remaining as a function of
time for poly(α-methylstyrene) in THF initiated by sodium naphthalide. The two sample batches
are described in Table 10.1. The dots are the experimental data, and the solid curve is the
theoretical model. The simulation parameters for batch sample 1 (dots) are: N = 51,170,
A = 128, T = 2.22T0 , E† = 19.98kBT0 , fb = 10, ζ = 0.95, γ0 = 8.
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FIGURE 10.3 Experimental and theoretical fraction of monomers remaining as a function of
time for poly(α-methylstyrene) in THF initiated by sodium naphthalide. The squares are
experimental data and the solid curve is our theoretical model. The simulation parameters for
Batch sample 2 (squares) are: N = 51170, A = 123, T = 2.26T0 , E† = 19.98kBT0 , fb = 10,
ζ = 1.52, γ0 = 8.

also affects the solvent friction. If there is no reaction, viscosity decreases as tem-
perature increases.

The results of the simulations shown above suggest that the parameter ζ

should be related to the temperature. Greer has studied the extent of polymeriza-
tion as a function of temperature for living poly(α-methylstyrene) in THF initiated
by sodium naphthalide with mole fraction of monomers x0

m = 0.15378, and the
mole ratio of initiators to monomers r = 0.0044. Based on their data, simulations
were completed. The results are shown in Table 10.2. Thus we obtained the relation
between ζ and temperature as shown in Figure 10.4. As temperature increases, the
value of ζ increases monotonically and the extent of polymerization increases too.

4.3 Experimental system two: 4-vinylbenzocyclobutene

The polymerization of 4-vinylbenzocyclobutene in benzene using sec-butyllithium
as the initiator at room temperature has recently been observed [82]. The number
of average molecular weights at different times has been measured using size ex-
clusion chromatography (SEC). These results are shown in the Table 10.3.

The various effective lengths, ik, listed in Table 10.3 have been inferred from
the experimental data using the following three different procedures:

(1) Suppose the measured average molecular weight at t = 53 min is accu-
rate. For living polymerization, the number average molecular weight, Mn, is a
linear function of conversion. (Column 3 of Table 10.3 also shows the recalcu-
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Table 10.2 Batch samples of living poly(α-methylstyrene) in tetrahydrofuran, the table lists the
data of temperature, barrier height, extent of conversion and the corresponding ζ value. The
first and third columns are taken from [81]

Temperature (K) Barrier height (kBT) Conversion ζ

284.753 9.41 0.29 ± 0.02 4.8
282.350 9.487 0.41 ± 0.01 3.0
280.264 9.569 0.39 ± 0.01 3.2
278.317 9.623 0.54 ± 0.01 1.9
275.707 9.715 0.55 ± 0.01 1.85
273.095 9.808 0.668 ± 0.006 1.22
267.789 10.00 0.749 ± 0.004 0.92
263.480 10.165 0.800 ± 0.003 0.75
258.792 10.350 0.858 ± 0.003 0.55
254.677 10.520 0.894 ± 0.003 0.45

FIGURE 10.4 Extent of polymerization as a function of temperature for living
poly(α-methylstyrene) in THF initiated by sodium naphthalide with x0

m = 0.15378, r = 0.0044.
The solid curve is the exponential fit. The corresponding simulation parameters are: A = 204,
N = 46,288, fb = 10, E† = 22.2kBT0 .

lated/corrected Mn in parentheses.) Since the molecular weight of a monomer is
130 g/mol, the polymer length i1 can be calculated by using i1 = Mn/130.
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Table 10.3 Polymerization of 4-vinylbenzocyclobutene in benzene using sec-butyllithium as the
initiator at room temperature. φ is the extent of polymerization, Mn is the number average
molecular weight, i1 , i2 and i3 are the polymer lengths obtained using different experimental
data. The first three columns are taken from [82]

Time
(min)

φ Mn (corrected) i1 i2 i3

53 10% 4100 31.5 31.2 40.02
90 18% 6200 (7380) 56.77 56.16 64.87

182 33% 12,100 (13,530) 104.08 102.96 117.27
470 71% 24,300 (29,100) 223.92 221.52 219.64

(2) Based on the concentration of initiators and monomers, the ratio of
monomers and initiators can be found:

(34)[M0]/[I0] = 311.68.

This value corresponds to the polymer length when conversion is 100%. The poly-
mer length i2 is calculated using the conversion factor multiplied by this maximum
length.

(3) According to Figure 3 in [82], the apparent rate constant is kapp =
0.00259 min−1. Assuming that the reaction follows first-order kinetics, the free
monomer concentration [Mt] can be approximately found at different times by
use of the formula

ln
(
[M0]/[Mt]

) = kappt.

Calculating the conversion factor, 1 − [Mt]/[M0], and multiplying it by the maxi-
mum length, 312, one then obtains the polymer length i3. For the time points taken
from Table 10.3, the results of these calculations are shown in Table 10.4 The length
obtained is larger than that using the other two methods shown in Table 10.3.

In the following simulations, the initial concentrations of monomers and ini-
tiators were taken equal to [M]0 = 0.24 mol/l and [I]0 = 0.00077 mol/l, corre-
spondingly, in accordance with relation (34). For the system volume equated to

3.0 · 108 Å
3
, the number of activated monomers is A = 139, and the total number

of monomers is N = 43,344.
Compared to poly(α-methylstyrene), this polymerization reaction is irre-

versible and there are few monomers left in solution at the end. To test our model,
we use the same parameter values and turn off the back reaction to simulate the
irreversible reaction. As shown in Figure 10.5, the polymer grows faster for an
irreversible reaction as expected.

In order to completely specify the model, there is one remaining unknown
parameter for this system. In particular, the activation energy for the anionic poly-
merization of 4-vinylbenzocyclobutene is not available. Here we use two different
values for the activation energy (20 kJ/mol and 63 kJ/mol) to model the proper-
ties of this living polymerization reaction. These are the activation energies for
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Table 10.4

Time
(min)

[Mt]
(mol/l)

1 − [Mt]/[M0] i3

53 0.21 12.83% 40.02
90 0.19 20.80% 64.87

182 0.15 37.59% 117.27
470 0.07 70.40% 219.64

FIGURE 10.5 The average polymer length is displayed as a function of time for reversible (black)
and irreversible (dark gray in print and blue on-line) polymerization. The simulation parameters
are: A = 139, N = 43,344, ζ = 0.5, γ0 = 180. The irreversible case rises more slowly and is
obtained by turning off the back reaction.

α-methylstyrene [81] and styrene [83], respectively. The use of these values is
motivated by the fact that 4-vinylbenzocyclobutene and α-methylstyrene can be
considered as derivatives of styrene. The polymer length is calculated as a func-
tion of time at two different barrier heights, as shown in Figure 10.6. When using
a low barrier height, a linear first-order time-conversion kinetics is seen. When the
barrier height is as high as 24.3kBT, the polymerization rate is slow at the begin-
ning and then speeds up, showing an “S” shape behavior. This can be seen more
clearly in Figure 10.7.

The SEC results suggest that the number average molecular weight increases
with the polymerization time. The distribution becomes narrower and narrower,
which implies that the polymer is approaching a uniform length. Our length dis-
tribution (Figure 10.8) indicates this as well. It is difficult to obtain the same SEC
curve because we do not know the calibration curve of the polystyrene standard
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FIGURE 10.6 Theoretical and experimental polymer length as a function of time for the
irreversible polymerization with different barrier height. The blue—or black in grayscale—curve
is the simulation result using A = 139, N = 43,344, fB = 30, γ0 = 56, E† = 24.3kBT, ζ = 0.16;
the green—or light gray in grayscale—curve is the simulation result using A = 139, N = 43,344,
fB = 10, γ0 = 75, E† = 8.0kBT, ζ = 0.5. The dots, squares and triangles correspond to the
polymer length calculated using the concentration, Mn and rate constant.

FIGURE 10.7 The kinetics of the anionic polymerization of 4-vinylbenzocyclobutene using
s-BuLi as initiator in benzene at 25 degrees. The squares represent the experimental SEC results,
the green—or gray—curve is the simulation result using fB = 30, γ0 = 56, E† = 24.3kBT,
ζ = 0.16, the red—or dark gray in grayscale—curve is the simulation result using fB = 10,
γ0 = 75, E† = 8.0kBT, ζ = 0.5, and the solid blue—or black in grayscale—curve is first-order
kinetics.
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FIGURE 10.8 Polymer length distribution of poly(4-vinylbenzocyclobutene) at different time
with A = 139, N = 43,344, ζ = 0.5, γ0 = 75, fb = 10, E† = 8kBT.

FIGURE 10.9 Polydispersity index (PDI) of poly(4-vinylbenzocyclobutene)as a function of
conversion with E† = 8kBT. The PDI value decreases with conversion and is close to 1.

under the current experimental conditions. A good way to link the experimental
distribution and theory is to calculate the polydispersity index (PDI). As shown
in Figures 10.9 and 10.10, we obtain different PDI values with different barrier
heights. By using a low barrier height, the PDI value is close to 1. This is consistent
with the experimental data.



194 Y. Qin et al.

FIGURE 10.10 Polydispersity index (PDI) of poly(4-vinylbenzocyclobutene) as a function of
conversion with E† = 24.3kBT. The PDI value decrease with conversion and it is between 10–50.

5. DISCUSSION

The modified iGLE model has been applied to two experimental systems: α-
methylstyrene and 4-vinylbenzocyclobutene. Although the polymerization dy-
namics of these systems vary because of different reagent and operational con-
ditions, the qualitative features of the dynamics between both the experimental
observations and the simulations appear to be in good agreement. The theoretical
model also appears to give rise to qualitative empirical behaviors known to occur
in other polymerizing systems. For example, as shown in Figures 10.6 and 10.7,
the simulations of the theoretical model at high enough barriers even exhibits the
Trommsdorff effect [84] in which there exists an auto-acceleration at the onset of
polymerization.

To test the generality of the iGLE approach, an irreversibly polymerizing sys-
tem, 4-vinylbenzocyclobutene, was chosen. Since there is no data available for
the activation energy of the polymerizing chain-growth steps, two different possi-
ble limits for the activation energy were employed. In either case, the remaining
parameters of the iGLE could be adjusted to fit to the experimental data that is
available. While it is reassuring that the experiments can be described within this
formalism, it does point to the need for more detailed time-dependent data for
these processes in order to be able to specify the model more precisely.

By studying the temperature effect on the polymerization of α-methylstyrene,
the relation between the model parameter ζ and temperature has been obtained.
Knowledge of this parameter allows for further calculations of the polymerization
dynamics at different temperatures. Moreover it suggests an interrelation between
the average size of the polymer distribution and the reaction coordinate between
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the activated ends and a given monomer. The former defines the density of poly-
mer solvent which in turn affects the accessibility of monomers to the reaction
sites. A challenge to future work is the exact determination of this relation either
from specific microscopic interactions, or perhaps even from some universal prop-
erties.

The polymer-length distributions and PDI values have also been obtained. Un-
der the quasi-equilibrium conditions arising from the separation of time scales
described above, these distributions have the structure of a Flory distribution [1].
Through fits of the iGLE distribution with the Flory distribution, the time-
dependent extent of conversion may thus be obtained [49]. If the activation energy
is high, it takes particles more time to cross the self-similar barriers with an aver-
age time that is near the same mean first passage time. Thus it is possible to get
a very narrow distribution if the simulation is long enough to exhaust nearly all
monomers, and the polymer formation is unaffected by termination and transfer
reactions. Thus, just as in living polymerization, the iGLE theory leads to polymer-
growth computational phenomena that initially exhibits narrow polymer-length
distributions.

6. CONCLUSION

In this review, we have emphasized two stochastic methods suitable for simu-
lating polymerizing systems with specific reference to those of involving living
and thermosetting polymerization. In both of these systems the environment is
changing dramatically with the progress of the underlying microscopic polymer-
izing reactions, and hence any theory for these systems must necessarily include
a nonstationary description of the solvation of the effective reaction coordinate. Al-
though the use of this theory has been formally described earlier for the living and
thermosetting systems [49,50], the present work provides explicit applications to
two distinct living polymerizing systems only.

In our first approach, we have modified the CSE method so as to include non-
stationary in the dissipative terms. Although this is a fruitful approach to account
for many different types of nonstationarities, it suffers from the fact that said ac-
counting is not specific in a single unified way. Moreover, the theory requires one
to calculate or compute direct and inverse Laplace transforms of initially unknown
terms so as to include some of the effects correctly. Though a self-consistent iter-
ative procedure may ultimately lead to success, at present, this approach appears
not to be the right choice. Nevertheless, the formalism has been of use in providing
a better understanding of the iGLE approach.

In our second approach, we use a nonstationary version of the GLE—the so-
called iGLE [67]—to propagate an effective polymer length that plays the role of
the reaction coordinate. The forces in this dissipative equation-of-motion are sur-
mised by a PMF which combines the properties of the double-well potential for
forward and backward reactions within one biased periodic potential. The ampli-
tudes of the friction and stochastic forces account for the changing environment
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and define the “diffusion” properties along the reaction path. Using the iGLE for-
malism to model polymerization provides a bridge between simple kinetics and
full dynamics. The new theory reduces to the nonstationary CSE method under
steady-state conditions, and the CSE in its turn produces the kinetic equations at
homogeneous stationary conditions after the averaging over fluctuations.
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1. INTRODUCTION

In recent years we have witnessed an explosion in the volume of data describing
the interactions between small, drug-like molecules and biological targets. The
introduction of automated methods for the synthesis and testing of compounds
is one reason for this growth; a typical compound collection at a large pharma-
ceutical company now numbers at least one million samples and these can be
tested using current high-throughput screening techniques on timescales mea-
sured in days. A second reason can be attributed to the growth in the number
of organisations with the ability to generate such data; this now includes not only
the commercial pharmaceutical sector but also groups funded through the public
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purse or by charities. There has also been a revolution in the mechanisms available
for the publication of results and data, particularly via the Internet, compounded
by a steady growth in the number of journals devoted to drug discovery.

With this data explosion comes the need for electronic mechanisms to store,
search and retrieve relevant information for subsequent analysis—and hopefully
beneficial insights. The relatively new development that is the primary subject
of this review is the availability of databases (which we term “SAR knowledge
bases”) that contain large amounts of quantitative data characterising the activity
of compounds in biological assays. Some of these databases are freely available
over the web; others operate on a commercial basis. Some aim to be “comprehen-
sive”; others limit themselves to a particular type of data, molecule, or biological
target. Our main focus will be on curated databases that contain biological activ-
ity data linked to chemical structures, taken from published sources (including
electronic publications) though we will also indicate some of the other sources
that may be of interest. By no means is ours the first summary of the field; the
interested reader is directed towards other reviews that provide a complemen-
tary perspective [1–3]. Moreover, it is important to recognise that the number of
databases containing chemical and biological information is growing extremely
rapidly and so even with our restricted focus it is inevitable that we can only pro-
vide a partial picture, both in terms of the databases themselves and their content.
Our review is structured as follows. First, we summarise the key features and ca-
pabilities of the main databases currently available. We then indicate some of the
ways in which the information in such databases can be used in drug discovery.
Finally, we consider possible future directions.

2. OVERVIEW OF SAR KNOWLEDGE BASES

2.1 Databases containing “raw” screening data

As indicated above, the focus of this review is on curated databases containing
chemical structure and biological activity taken from literature sources. We never-
theless recognise the existence of a growing number of databases that also contain
such structure and activity data but which do not fall within our primary scope.
Of particular relevance here are databases that contain “raw” screening data, of-
ten generated by publicly-funded research initiatives. Two prominent examples
are Pubchem [4] and Chembank [5].

Pubchem (http://pubchem.ncbi.nlm.nih.gov) is one of the many databases
hosted by the National Centre for Biotechnology Information (NCBI) at the US
National Institutes of Health (NIH) and is a key component of the NIH Roadmap
Initiative on molecular libraries [6] with its focus “on the chemical, structural and
biological properties of small molecules, particularly their application as diagnos-
tic and therapeutic agents”. It contains more than 19 million unique structures and
more than 40 million substances or samples (a given chemical structure may occur
in more than one substance). The biological data in PubChem is obtained from a
variety of sources, prominent among which are the ten centres that comprise the

http://pubchem.ncbi.nlm.nih.gov
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NIH Molecular Libraries Screening Center Network (MLSCN) [7]; currently in ex-
cess of 750,000 substances have biological data from at least one of the more than
1000 assays listed. The primary aim of the MLSCN is not to develop drugs but to
identify small-molecule chemical probes for basic research; as a consequence the
MLSCN screening libraries may contain some molecules that would be consid-
ered “unacceptable” (i.e. not “drug-like” or “lead-like”) by pharmaceutical com-
panies. The data are openly accessible in PubChem immediately available after
deposition. In addition to primary screening results, PubChem acts as a reposi-
tory for results generated as part of any efforts to follow up hits of interest (e.g.
secondary assay data, results from follow-up compound libraries, and synthetic
protocols). Pubchem links via the NCBI’s Entrez system to other databases such
as the PubMed (which contains citations, many with abstracts), PubMed Central
(which contains full-text articles) and various information sources about the bio-
logical targets.

The origins of ChemBank (http://chembank.broad.harvard.edu) lie in a collab-
oration between the National Cancer Institute (its Initiative for Chemical Genetics)
and the Harvard Institute of Chemistry and Cell Biology; it is now hosted at the
Chemical Biology Program and Platform at the Broad Institute of Harvard and
MIT. Uniquely among the publicly-funded efforts it contains raw screening data
primarily from that one institute and has a tightly defined structure with regard to
the way in which the information is organised. As such it is perhaps more akin to
the screening databases contained within the commercial pharmaceutical sector.
PubChem by contrast compiles data from a number of sources and relies upon the
information and interpretation provided by the submitting organisation. Another
difference is ChemBank’s embargo policy; newly generated data are only available
to those scientists who have deposited compounds or performed screening experi-
ments at the two institutions for a one year period. ChemBank contains more than
1.2 million chemical structures with data from more than 2500 high-throughput
assays and approximately 90 small-molecule microarray assays. Detailed infor-
mation is provided, including plate locations; ChemBank also provides a number
of tools for the visualisation and analysis of this data.

Both Pubchem and ChemBank are publicly available over the Internet; as such
they can be considered successors to the databases hosted at the National Cancer
Institute (NCI). The NCI data set contains more than 250,000 molecules together
with biological activity obtained from their anti-cancer and HIV screens. For many
years this data set was the only one of any significant size available publicly and
as such it has been widely used to test new data-mining approaches [8].

2.2 Databases of drugs and drug candidates

Information on drug candidates and marketed drugs has been available for many
years on a commercial basis via data sources such as Pharmaprojects (http://
www.pharmaprojects.com), the World Drug Index from Thompson Scientific
(http://scientific.thompson.com) and the MDL Drug Data Report (MDDR) (http://
www.mdl.com). These databases contain a significant amount of information but
the activity data is reported as activity classes (e.g. “Angiotensin II Antagonist”;

http://chembank.broad.harvard.edu
http://www.pharmaprojects.com
http://www.pharmaprojects.com
http://scientific.thompson.com
http://www.mdl.com
http://www.mdl.com
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“Thrombin inhibitor”; “Antidiabetic”) rather than quantitative activity against a
defined biological target. Nevertheless, they have been very widely used for the
development and assessment of chemoinformatic data-mining techniques. The fo-
cus of these databases means that much of their information comes from sources
other than the primary scientific literature such as patents and conference proceed-
ings. Other databases that contain information useful in drug discovery include
the Comprehensive Medicinal Chemistry database (CMC, also from MDL) and the
MedChem database (http://www.daylight.com), both of which have an emphasis
on the physicochemical properties of molecules.

More recently, efforts have been initiated to provide in a publicly-accessible
manner chemical and biological information on drug molecules and their targets,
leading to a number of databases such as ChEBI [9] (http://www.ebi.ac.uk/chebi)
and DrugBank [10,11] (http://www.drugbank.ca). The latter in particular is a
widely-used resource that contains detailed information on approximately 4900
drug molecules including all drugs approved in North America, Europe and Asia.
For each entry DrugBank may contain up to 100 different pieces of data related
to its chemical structure, properties, biological activity, pharmacology, mechanism
of action and clinical information including toxicity and pharmacokinetics. This
data is drawn from many sources including textbooks, the scientific literature and
on-line resources; key data is manually inspected and checked by relevant experts.
This attention to detail and its attempt to achieve both “breadth” and “depth” of
coverage has led to its use in a variety of areas [11] such as in silico drug discovery,
metabolism prediction, target prediction as well as more general education.

2.3 Databases for structure-based design

Advances in structural biology have resulted in an exponential increase in
the number of proteins and protein–ligand complexes for which detailed 3-
dimensional information is available, typically from X-ray crystallography or
NMR. This has been accompanied by a continual desire to use structural infor-
mation in drug design. Three general applications can be identified [12]:

(1) predicting the binding mode of a known active ligand;
(2) identifying new ligands using virtual screening;
(3) predicting the binding affinities of related compounds from a known active

series (commonly referred to as “scoring”).

As the Protein Databank (PDB) has grown so it has been recognised that there
is a need for tools to analyse and interrogate this data. Some of these tools are
provided by the three international organisations that host the PDB (the Re-
search Collaboratory for Structural Bioinformatics in the US, http://www.rcsb.org,
the European Bioinformatics Institute in Europe, http://www.ebi.ac.uk, and the
Protein Data Bank Japan, http://www.pdbj.org). Other tools have been devel-
oped in academic laboratories and software companies. Of particular relevance
to this review are the various efforts to compile protein–ligand activity data for
those systems where structural information is available. The resulting databases
represent a useful resource, particularly for those research groups attempting

http://www.daylight.com
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to develop new scoring algorithms. As a result of these compilation efforts a
number of such databases are now available over the Internet, including PDB-
Bind [13–15], BindingMOAD [16,17], BindingDB [18–21], the Protein Ligand
Database [22] (http://lpdb.chem.lsa.umich.edu), the Ligand–Protein DataBase [23]
(http://www-mitchell.ch.cam.ac.uk/pld) and AffinDB [24]. Attention here will be
focussed on the first three of these as they contain the largest volumes of data.

PDBBind (http://www.pdbbind.org) and BindingMOAD (MOAD standing for
Mother Of All Databases; http://www.bindingmoad.org) have a very similar aim,
which is to annotate protein–ligand complexes from the PDB with binding or
activity data (indeed, these databases originate from the same institution). Both
groups adopt a similar approach to processing the data, whereby the initial set
of complexes from the PDB is subjected to a series of filters that aim to iden-
tify those complexes of specific interest (typically those containing some form of
drug-like molecule). The literature was then examined to extract the correspond-
ing binding data. Due to variations in the criteria that the two groups use the
number of entries is somewhat different; PDBBind currently contains 3214 entries
(2007 release) whilst BindingMOAD contains 9836 protein–ligand structures (4659
different ligands) for which 2964 have binding data (2006 release). In addition,
PDBBind includes a “refined set” of 1300 protein–ligand complexes which have
been specially selected to provide a set designed for docking and scoring studies.

BindingDB (http://www.bindingdb.org) also has its origins in structure-based
design but uses a rather different philosophy when deciding which data to incor-
porate. Thus whilst PDBBind and BindingMOAD only contain binding data for
those protein/ligand systems where a 3-dimensional structure is available, Bind-
ingDB does not impose any such limitation. Rather, BindingDB takes as its starting
point the collection of biological targets whose structures are available in the PDB
or can be accurately modelled. Having selected a protein, the scientific literature
is searched (with a focus on the Journal of Medicinal Chemistry and Bioorganic
Medicinal Chemistry Letters) to identify relevant data for deposition into the
database. In January 2008 BindingDB contained approximately 38,000 measure-
ments for 18,000 molecules and 400 drug targets with the data being extracted
from approximately 2200 articles. BindingDB also offers experimental groups the
option to deposit results, but so far this has not generated a significant number
of entries. Relaxing the requirement that structural data be available for every
ligand–protein pair explains the difference in size between BindingDB and the
other databases derived from the PDB; in general around 2% of ligands in Bind-
ingDB have an exact match in the PDB with 15% of ligands having 90% similarity
to a ligand in the PDB.

2.4 Other databases with binding or affinity data

By way of contrast to those databases where structural biology has provided a ma-
jor impetus there exist a number of sources where binding and affinity data is pro-
vided on targets such as G-protein coupled receptors (GPCRs) and ion channels.
The GPCR field in particular has benefited from such developments. One widely
used source is the GPCRDB [25] (http://www.gpcr.org/7tm) which contains

http://lpdb.chem.lsa.umich.edu
http://www-mitchell.ch.cam.ac.uk/pld
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a wealth of information on GPCRs, together with some limited binding data.
GLIDA (GPCR-Ligand Database) [26] (http://pharminfo.pharm.kyoto-u.ac.jp/
services/glida) is somewhat similar in scope, also containing a limited amount
of protein–ligand binding data.

The PDSP Ki database (http://pdsp.med.unc.edu/pdsp.php) currently pro-
vides access to approximately 46,000 Ki values for drugs molecules and drug
candidates against GPCRs, ion channels, transporters and enzymes. The data com-
prise those generated within the host laboratory at the University of North Car-
olina (sponsored by the National Institute of Mental Health) together with data
extracted from the literature. The inhibition constant (Ki) values in KiBank [27,28]
(http://kibank.iis.u-tokyo.ac.jp) have been extracted from scientific journals (from
1985 onwards) via PubMed searches. KiBank was originally constructed with a
structural emphasis and it does include information on 3D protein structure where
applicable. However, its collection of more than 16,000 Ki values for more than
5900 chemical structures against more than 100 targets also includes data for pro-
teins without structural information (currently, KiBank covers nuclear receptors,
membrance receptors, enzymes, transporters, ion channels and ion pumps). The
data in the commercial database BioPrint from Cerep (http://www.cerep.fr) were
obtained by systematically profiling approximately 2500 marketed drugs and ref-
erence compounds against a large panel of biological assays (including various
in vitro ADME end-points). This database thus uniquely provides a full matrix
of compounds against biological assays. Applications of BioPrint range from the
development of quantitative structure-activity relationships, the identification of
associations between in vitro and in vivo end-points and the use of in silico methods
to predict potential clinical liabilities.

2.5 Large-scale commercial SAR knowledge bases

In our discussion of commercial knowledge bases we will focus on the follow-
ing: AurScope databases from Aureus Pharma (http://www.aureus-pharma.com),
the ChemBioBase databases from Jubilant Biosys (http://jubilantbiosys.com), the
GOSTAR (GVKBio Structure Activity Relationship) database from GVK Bio-
sciences (http://www.gvkbio.com), the KKB (Kinase Knowledgebase) from Eido-
gen–Sertanty (http://eidogen-sertanty.com), the StARLITe database from BioFocus
DPI (http://www.biofocusdpi.com), and the WOMBAT (World of Molecular Bioac-
tivity) [29] database from Sunset Molecular Discovery (http://sunsetmolecular.
com). With the initial release in 2001, StARLITe was the first of these databases
on the market, followed by the KKB and the AurScope GPCR database in 2002.
Jubilant Biosys and GVK Biosciences released their first databases around 2004.

A common approach taken by the providers of commercial knowledge bases is
to group together data for a specific group of related proteins or target class (e.g. ki-
nases, proteases, GPCR, etc.). Examples include Eidogen–Sertanty’s KKB (Kinase
Knowledgebase) or the various databases offered in Jubilant Biosys’ ChemBioBase
Suite or GVK Biosciences’ GOSTAR. Similarly, Aureus Pharma have developed
target-class focussed AurScope databases. Most commonly offered are databases
for GPCRs, Ion Channels, Kinases, Nuclear Hormone Receptors and Proteases;

http://pharminfo.pharm.kyoto-u.ac.jp/services/glida
http://pharminfo.pharm.kyoto-u.ac.jp/services/glida
http://pdsp.med.unc.edu/pdsp.php
http://kibank.iis.u-tokyo.ac.jp
http://www.cerep.fr
http://www.aureus-pharma.com
http://jubilantbiosys.com
http://www.gvkbio.com
http://eidogen-sertanty.com
http://www.biofocusdpi.com
http://sunsetmolecular.com
http://sunsetmolecular.com
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data against other target classes such as Transporters, Phosphotases, Lipases, and
Phosphodiesterases are only covered by a limited selection of the commercial
knowledge bases. However, not all of the knowledge bases in this section are
structured in a target class manner; StARLITe and WOMBAT exist as one database
where biological activities from various target classes are combined. In addition
to the target-class oriented knowledge bases, other databases are also available
(e.g. an ADME/DDI AurScope database from AUREUS Pharma, an Antibacterial
Database from Jubilant Biosys and a database of pharmacokinetic measurements
from WOMBAT).

A key consideration when comparing the databases is the update frequency.
Here, there is a trade off between the desire for the database to be as up-to-date
as possible and the resources required to install any updates. StARLITe is updated
on a monthly basis, whereas GOSTAR, the KKB, the AurScope databases, and the
GPCR and Kinase ChemBioBase databases are updated quarterly. WOMBAT is
updated twice a year, and the Protease, Ion Channel, and Nuclear Hormone Re-
ceptor ChemBioBase databases are updated once a year. Where on-line versions of
the knowledge bases are available, the update frequency can be greater since no
installation on the part of the customers is required. For example, GVK Biosciences
plan to update their online-accessible version of GOSTAR on a fortnightly basis.

With regard to the coverage of published activity data there are major dif-
ferences in scope across the databases. For example, whereas activity data in
StARLITe and WOMBAT is solely derived from journals, AurScope, ChemBioBase,
GOSTAR, and KKB are populated from both journals and the patent litera-
ture. With minor exceptions, only patents that are filed in English are searched
and subsequently indexed if they contain biological activity data. However,
some databases also include other structures without any associated biologi-
cal activity. For example, the ChemBioBase databases capture all molecules that
are exemplified in a patent. Eidogen–Sertanty go further as they combine the
information about synthetic procedures and reported building blocks to enu-
merate the chemical space of a given patent. With the exception of Eidogen–
Sertanty’s KKB database synthesis-related information is only referenced via links
to the primary publication, which is done, for example, through links to PubMed
(http://www.ncbi.nlm.nih.gov/PubMed) or the use of the DOI (Digital Object
Identifier) System (http://www.doi.org). In the KKB database chemical synthe-
sis steps are captured when detailed experimental procedures are reported in the
primary references.

Considering the number of scientific journals in the area of Drug Discovery, it
is not surprising that only a subset of these journals are comprehensively indexed
by database providers. Generally, they identify a set of core journals from which
every issue is manually analysed with comprehensive coverage being claimed
for a given period. A larger set of journals may also be examined for biological
data, but only in an automated fashion (by keyword searches, for example) and
so comprehensive coverage cannot be realised. Unsurprisingly, the journals that
are considered to be of greatest importance in terms of coverage are the Journal of
Medicinal Chemistry (first published in 1959) together with Bioorganic Medicinal
Chemistry Letters (first published in 1991) and Bioorganic Medicinal Chemistry

http://www.ncbi.nlm.nih.gov/PubMed
http://www.doi.org
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(first published in 1993). However, even for these journals complete coverage of all
volumes is only rarely claimed (e.g. by GVK Biosciences). Jubilant Biosys’ Chem-
BioBase databases cover all three journals comprehensively from 1995 onwards
and Eidogen–Sertanty’s KKB database provides cover of all three journals from
2000 onwards. The practice with regards to journals that are indexed but not nec-
essarily comprehensively covered is again very different. Whereas the content of
the ChemBioBase databases is based on biological activity data from the three
journals mentioned above, GVK Biosciences databases contain biological activities
from more than 2000 journals. Other databases are positioned somewhere between
these two, for example StARLITe and WOMBAT with around 10 journals in total
and the contents of the AurScope databases being compiled from approximately
350 journals.

The coverage of the published biological activity space described above results
in a substantial number of SAR data points: Eidogen–Sertanty’s KKB database
contains more than 350,000 SAR points (for more than 475,000 molecules), WOM-
BAT contains around 417,000 SAR points (for approx. 178,000 unique structures),
the StARLITe database contains around 1.7 million SAR points (for approx. 400,000
unique molecules), the AurScope databases contain around 1.9 million SAR points
(for approx. 471,000 molecules), the ChemBioBase databases contain 2.8 million
SAR points (for approx. 2 million molecules), and GVK Biosciences’ GOSTAR con-
tains around 5 million SAR points (for approx. 2.1 million unique molecules).

In addition to coverage it is also important to consider the annotation of the
biological activity data. For example, a user might only be interested in molecules
whose ion channel activities have been recorded using patch-clamp electrophysi-
ology protocols and that act as antagonists. Not surprisingly, the various providers
have chosen different approaches. Whereas Biofocus DPI have decided to include
brief descriptions of assay protocols Aureus Pharma and GVK Biosciences capture
assay details in approximately 50 individual data fields. This has the advantage of
enabling the user to perform quite elaborate searches and also to access experi-
mental details without immediately having to refer to the primary literature.

3. COMPARISON AND INTEGRATION OF DATABASES

Aside from the quantity of data contained within each database, two obvious ques-
tions that arise concern the accuracy of the information and the overlap between
the various databases. The accuracy is very difficult to quantify but one must as-
sume that such database systems will contain errors and that the primary source
must be accessed to obtain the “definitive” data. Nevertheless, the 1% discrep-
ancy that was found to exist when the PDBBind and BindingMOAD databases
were compared gives some indication as to the possible error rate for a curated
database. With regard to overlap, again this is difficult to quantify, though as many
of the major SAR knowledge bases are based upon the same core set of journals,
one would expect a significant degree of overlap in terms of content.

One attempt to quantify the overlap and complementarity between a number
of public and commercial databases (at least at a structural level) was reported by
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Southan and colleagues [30] at AstraZeneca. They compared GVKBIO, WOMBAT,
DrugBank, PubChem, MDDR, CMC, BioPrint and a database of natural product
molecules (the Dictionary of Natural Products, http://dnp.chemnetbase.com). The
numbers of unique structures in each database was determined using a series of in
silico filters; this then enabled an overlap matrix to be constructed giving the num-
bers of compounds common to any pair of databases. Of particular interest was a
three-way comparison of the PubChem, GVKBIO and WOMBAT databases. The
numbers of unique structures contained within each of these was approximately
7 million, 1.5 million and 130,000 respectively with just over 86,000 structures be-
ing common to all three databases. A large number of the structures were unique
to PubChem (∼ 6.8 million) as might be expected due to the many structures
contributed to that particular database by vendors of compounds for screening.
Also of interest was the number of structures unique to GVKBIO (more than
1 million) which were ascribed to compounds extracted from the patent litera-
ture.

Consistent with the maxim that “the whole is greater than the sum of the
parts” it is often desired to integrate data from a number of sources. A typical
drug discovery organisation will have activity data generated by its own in-house
screening campaigns. Published SAR data may also be available via one or more
of the knowledge bases covered above. The challenge is to combine these data so
that all the relevant information can be presented to a user, whilst retaining the in-
tegrity of the original. One example of the way in which information from several
databases can be used to enhance a corporate collection was described by re-
searchers at Novartis [31] who linked the 2.5 million compounds in the Genomics
Institute of the Novartis Research Foundation to databases including PubChem
and the World Drug Index, together with various biology and genomic databases.
This work enabled potential mechanisms of action to be assigned to compounds
and also facilitated the identification of novel chemical scaffolds for drug discov-
ery projects.

A large-scale integration of SAR data was described by Pfizer scientists, who
constructed a data warehouse of 4.8 million non-redundant chemical structures
together with associated biological data from internal Pfizer sources, the StAR-
LITe database, BioPrint and the Current Drugs Investigational Drugs Database
(IDDB) [32]. The integration was chemo-centric, in that chemical structures (in the
form of SMILES strings) were the key to the storage and retrieval of information.
Other important data were protein sequence (i.e. of the target in a bioassay) and
disease indication. A critical aspect of the work was the cleaning, mapping and
standardisation of the data, commonly referred to as Extraction, Transformation
and Loading (ETL). It is at this stage that data fields were selected, data quality
issues were addressed, different ways of referring to the same entity were ra-
tionalised and controlled vocabularies were introduced. Once complete the data
warehouse was used to investigate the relationships between proteins and chemi-
cal structures (vide infra).

http://dnp.chemnetbase.com
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4. APPLICATIONS OF SAR KNOWLEDGE BASES

We shall say relatively little about the use of SAR knowledge bases as a readily ac-
cessible source of information about compounds and targets, in part because such
use is rarely published and also because it might be considered somewhat “ob-
vious”. Nevertheless, the benefits in terms of time and effort saved when under-
taking such tasks should not be underestimated. An extension beyond the simple
identification and retrieval of individual compounds is the use of such databases
as the “feedstock” for any of a variety of in silico virtual screening methods in order
to create focussed sets of compounds, involving first the identification of relevant
active (and possibly inactive) compounds from the knowledge base. These com-
pounds act as query molecules for subsequent 2D or 3D similarity searches or for
the construction of some form of mathematical model of activity, all of which can
be used to identify compounds from internal or external sources for screening in
relevant biological assays.

Among the most widely reported applications of SAR knowledge bases to date
has been as an aid in the development and evaluation of in silico modelling meth-
ods. In addition to the obvious advantage conferred by not having to construct a
large data set from scratch the use of such databases provides a degree of standard-
isation that enables different methods to be compared. An example is the compari-
son of 14 different scoring functions using the PDBBind data set reported by Wang
and colleagues [14]. By analogy with the curated data sets of protein–ligand com-
plexes that are now widely used for the evaluation of docking algorithms we can
anticipate that certain lists of structures together with the associated binding data
will emerge as “standard” sets that should be used to evaluate any new scoring
algorithm. The challenge, of course, is to avoid over-training such algorithms such
that good performance on the standard set cannot be reproduced on unseen data.
Other recent examples that make use of the SAR knowledge bases highlighted
in this review include the development and evaluation of models of hERG activ-
ity based on data from WOMBAT and PubChem [33] and a similar study using
data from Aureus Pharma [34], the development of 3D pharmacophore models
for histone deacetylase inhibitors based on compounds extracted from the GVK
MediChem database and tested against the NCI database [36], the development
of recursive partitioning models for CYP1A2 and CYP2D6 inhibition based on
data from Aureus Pharma [35], a method for virtual screening that used Self-
Organising Maps to achieve novelty that was evaluated against WOMBAT [37],
the evaluation of a 3D pharmacophore approach for virtual screening that also
used WOMBAT [38], the validation of a naïve Bayes classification method using
the Prous Integrity database, WOMBAT and in-house screening data [39] and a
comparison of ligand-based virtual screening methods in four different scenarios
that used MDDR and WOMBAT [40].

Large-scale integration of chemical and biological data enables a number of in-
teresting chemogenomic analyses to be performed [41,42]. Reduced to its simplest
form, such analyses involve the construction of a two-dimensional matrix of bio-
logical targets against compounds, with elements of the matrix being the binding
constant (or some other measure of biological activity). Invariably, such matrices
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are sparse, as most compounds will have data for just one or at most a few targets.
One notable exception is the BioPrint database which contains percent inhibition
values for molecules at a single high (10 µM) concentration. A data set comprising
1567 structurally diverse molecules against 92 assays from BioPrint was used by
Fliri and colleagues to derive so-called Biospectra [43] that correspond to a vec-
tor of the inhibition values for a given structure. Such descriptors could be used
to cluster compounds into families based on patterns of similar biological activity
and also to cluster proteins based on patterns of similar interaction with the lig-
ands. It was observed in particular that the biospectra-based clustering separated
the compounds into groups that were structurally and pharmacologically related
and as such could be used to provide an indication not only of molecular proper-
ties but also of the biological response. With such data sets it also becomes feasible
to perform “target fishing” [44,45] in which putative targets for a given chemical
structure can be identified, in a reversal of the usual goal in drug discovery (i.e.
to identify compounds for a given target). The large-scale data integration project
described by Paolini and colleagues [32] enabled a number of chemogenomic anal-
yses to be performed, including investigations into the linkages between proteins
and protein families, predictions of compound pharmacology, relationships be-
tween molecular properties and target class and an estimation of the druggability
of a given target.

5. FUTURE PROSPECTS

Whilst Sir Francis Bacon’s maxim that “knowledge is power” is invariably ap-
plied to situations involving personal or political advancement, it is nevertheless
also pertinent to drug discovery, at least insofar as it refers to the extraction of
meaningful insights from the available information. However, access to data is
not sufficient; it is also important to understand the context, to be wary of over-
interpretation and to use appropriate analysis techniques. The development of
the knowledge bases described in this review does nevertheless represent an im-
portant advance because they relieve scientists of the burden associated with
data collection and curation and because the volumes of data they contain en-
able statistically-significant analyses to be performed. Of course, one has to be
careful not to become over-reliant upon such secondary sources; the primary lit-
erature should be consulted where appropriate and indeed any data upon which
critical decisions are to be made should preferably be reproduced in-house. An-
other emerging theme is the free availability of large data sets such as PubChem
and ChemBank which provide large amounts of data hitherto available only
within the commercial pharmaceutical section or from commercial database ven-
dors. Over the next few years we will undoubtedly see further developments,
both of the databases themselves and of methods for their integration and anal-
ysis.
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1. INTRODUCTION

PubChem [1], an open repository for experimental data identifying the biologi-
cal activities of small molecules, is a part of the Molecular Libraries and Imag-
ing (MLI) component of the National Institutes of Health (NIH) Roadmap for
Medical Research initiative [2]. This program includes the Molecular Libraries
Screening Center Network (MLSCN), grant-supported experimental laboratories,
and a shared compound repository, referred to as the Molecular Libraries Small
Molecular Repository (MLSMR) offering biomedical researchers access to chemi-
cal samples.

PubChem archives the molecular structure and bioassay data from the MLSCN
and other contributors. PubChem provides search, retrieval, and data analysis
tools to optimize the utility of these results. PubChem further enhances the re-
search utility of the MLSCN output by including other public sources of chemical
structure and bioactivity information and by integration of this data with other
NIH biomedical knowledgebases. The primary aim of PubChem is to provide a
public on-line resource of comprehensive information on the biological activities
of small molecules accessible to molecular biologists as well as computational and
medicinal chemists.

Initially launched September 2004, PubChem follows the GenBank [3] ap-
proach, whereby investigators make direct data submissions. PubChem depends
on its contributors to help keep the database as comprehensive, current, and accu-
rate as possible. The processing of PubChem is highly automated, as opposed to
being manually curated, keeping the overall database cost low. The open reposi-
tory nature of PubChem has a 25 year precedent in biology, for example, GenBank,
SwissProt [4], PDB [5], etc., but there is less of a precedent for this model in chem-
istry.

The location of PubChem at the National Center for Biotechnology Informa-
tion (NCBI) [6] provides the unique ability to integrate directly with a substantial
wealth of biomedical information, over thirty databases with information rang-
ing from scientific articles to genes, available within the NCBI Entrez search sys-
tem [7]. By leveraging and integrating with these resources, PubChem provides a
powerful, publicly accessible platform for mining biological information of small
molecules.

2. DESCRIPTION

PubChem is organized as three distinct databases: PubChem Substance, Pub-
Chem Compound, and PubChem BioAssay. PubChem Substance contains de-
scriptions of chemical samples, provided by data depositors, and links to informa-
tion on their biological activities. The description includes PubChem Compound
identifiers in cases where the chemical structures of compounds in the sample
are known. Links providing information on biological activity include those to
PubMed [8] citations, protein 3-D structures [9], links to contributor websites, and
to biological testing results available in PubChem BioAssay.
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FIGURE 12.1 Different structural representations of guanine deposited in PubChem.

PubChem Compound contains the unique chemical structure content of Pub-
Chem Substance. Compounds may be searched by computed chemical properties
and are pre-clustered by structure comparison into identity and similarity groups.
Whenever possible, compounds are linked via PubChem Substance to information
on their biological activities.

PubChem BioAssay contains the results of biological activity testing from a
variety of sources. It provides searchable descriptions of each bioassay, including
conditions and readouts specific to the screening procedure. PubChem BioAssay
provides outcomes for the depositor’s tested substances as links to PubChem Sub-
stance. Associations between biological testing results and the unique chemical
structures are also generated to provide a comprehensive overview of the biologi-
cal profile of tested compounds.

Abstracting the unique chemical structure content in PubChem Substance to
create PubChem Compound is not always trivial. Widely adopted standards or
rules for chemical structure representation do not exist, with various groups or in-
dividuals adopting preferences based on their organizational needs. Further com-
plicating matters is that PubChem accepts chemical information from a multitude
of depositors, each with the potential to represent identical chemical structures
in a different way. For example, a molecule as simple as guanine (Figure 12.1)
has a number of equivalent representations readily recognizable by a chemist as
guanine. Programming a computer to recognize such chemical representations as
being the same is nonetheless a challenge.

The normalization method used by PubChem to identify unique chemical con-
tent is referred to here as “standardization.” This procedure involves a series of au-
tomated processing steps, outlined in Figure 12.2, to determine when a provided
chemical structure description is well defined and chemically reasonable. The
standardization processing steps involve: verification that each atom is a known
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FIGURE 12.2 Overview of the processing performed on chemical structures deposited in
PubChem.

element, assignment of implicit hydrogens to organic elements missing valences,
normalization of functional group representations, validation that each atom va-
lence and formal charge is reasonable, valence-bond canonicalization for tautomer
and resonance invariance, extended aromaticity resonance detection and anno-
tation, stereochemical center identification, and conversion of implicit to explicit
hydrogens for unambiguous atom valences. Additional processing is performed
to isolate unique covalent units within the chemical sample description of mix-
tures, which are acid/base neutralized when possible, and reprocessed using the
above procedure. Subsequent processing of each standardized structure involves
computation of 2-D depiction coordinates and calculation of basic chemical prop-
erties (e.g., molecular weight, molecular formula, etc.) and chemical descriptors
(e.g., canonical SMILES [10], InChI [11], IUPAC name [12], etc.).

Contributed substance descriptions that do not include a chemical structure or
that fail the PubChem chemical structure standardization procedure do not enter
or have links to the PubChem Compound database. Prior to analysis or any modi-
fication of chemical structure input, care is taken to preserve the original structure
description. The result of the normalization methodology employed is a uniform
representation of the chemical structure content contained within the PubChem
Substance database.

3. DATA RELATIONSHIPS

The fundamental relationships between the three PubChem databases are straight-
forward. PubChem Substance identifiers (SIDs) relate to PubChem Compound
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identifiers (CIDs) through chemical structure standardization. Each substance, if it
standardizes, will have a corresponding CID that is the main “standardized” form
of that substance, representing the whole structure. There may also be “component
form” CIDs that include unique covalently bonded units, when the substance is a
mixture, or an acid/base charge-neutralized form, when the substance is ionized.
A parent compound is assigned to each CID, when possible, to identify the pri-
mary organic component. PubChem Assay identifiers (AIDs) contain activity data
for SIDs. If a substance is associated with a compound, the assay outcome for the
SID can be associated implicitly with a CID, as well.

A critical concept for the advanced PubChem user is that of combining and
transforming sets of identifiers between the three PubChem databases, based on
the above identifier relationships. For instance, there is a many-to-one relationship
between SIDs and “standardized” CID, as more than one Substance depositor may
have supplied the chemical structure that standardizes to a given CID. (In fact,
even within a particular depositor’s records, there may be redundant structures
because of different sample origins, tautomeric forms, etc.). Also, the perceptive
reader will notice there is not a direct relationship between BioAssay (AID) and
Compound (CID) identifiers. To discover assays linked to a CID, there is an ex-
pansion of that CID to all SIDs for which that CID is the standardized form; AIDs
can be associated with CIDs linked to any of these SIDs.

Many of the PubChem tools perform such transformations of the ID space
implicitly, such as assay tools that work with sets of CIDs, or Entrez searches of
CID chemical property indices in PubChem Substance, like IUPAC name, that ac-
tually come from standardized compounds. It can be important to understand
these implicit relationships when navigating through PubChem, especially when
searching and analyzing records across multiple databases.

As of March 2008, PubChem contains more than: 1,000 bioassays, 28 million
bioassay test outcomes, 40 million substance contributed descriptions, and 19
million unique compound structures contributed from over 70 depositing orga-
nizations. While the majority of screening data were contributed by NIH funded
screening centers under the MLSCN network, PubChem BioAssay database also
contains test outcomes from a number of other organizations, including the sixty
tumor cell line assays from DTP/NCI [13], toxicity data from the DSSTox pro-
gram at EPA [14], and bioactivity data extracted from literature by the BindingDB
project [15].

4. INTERFACE

The primary interface to PubChem data is through the NCBI search engine, Entrez.
This web-based interface is simple, yet powerful, with many features not immedi-
ately apparent to those unfamiliar with the Entrez system. This section is intended
as both an introduction and a guide to the more advanced Entrez features, and the
types of Entrez PubChem queries that can be performed.
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4.1 Entrez

There are a number of entry points to Entrez. The simplest is to go to the NCBI
home page (http://www.ncbi.nlm.nih.gov/) from which one can input a search
term (or terms) and initiate a search by activating the ‘Go’ button. By default, if
a specific database is not selected in the search menu, the search is performed
across all +30 databases available within Entrez, of which PubChem is a part. This
“global query” result lists the count of records for the query in each of the Entrez
databases. To see the PubChem query results, simply select one of the three Pub-
Chem databases (Substance, Compound, or BioAssay), and a detailed report for
records matching the query is displayed for that database. One can also begin at
the PubChem home page (http://pubchem.ncbi.nlm.nih.gov/) where an equiva-
lent search of one of the three PubChem databases may be initiated through the
input form at the top.

Figure 12.3 shows the result of searching for the word “aspirin” in Entrez’s
PubChem Compound database. This default display of multiple records in Entrez
is referred to as a document summary (DocSum) report and is common to all En-
trez databases. At the top are the common Entrez controls (database selection and
search input box) and tabs for other Entrez tools (e.g., Limits, History, etc.) some
of which are described in more detail below. Note that the format of this page
evolves over time, but the basic controls remain the same. Moving down the Doc-
Sum page, the next section contains controls to change the display type; the default
is “Summary” (as shown). Each Entrez database has report styles that vary in type
and detail of information shown, the overall format is the same—a list of records,

FIGURE 12.3 Partial view of an Entrez document summary (DocSum) report page for the
PubChem Compound query “aspirin”.

http://www.ncbi.nlm.nih.gov/
http://pubchem.ncbi.nlm.nih.gov/
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each with report-specific information displayed. Also, controls exist to enable one
to sort the results by various means or to export the DocSum to a file or printer.

PubChem databases have a number of additional controls that operate on a
query result list, such as icon buttons (provided after “Tools”) for assay data anal-
ysis and chemical structure download. There are pop-up link menus (provided
after “Links” on the same line as “Tools”) that provide powerful query result list
operations. Also, the pop-up link menus exist for each record, but they function
only on the individual record. The meaning of these links is detailed further in the
following sections.

The last set of tabs shown in Figure 12.3 (e.g., All, BioAssay, Protein3D, etc.)
before the actual record summaries are filters that apply to the current result list.
For example, in Figure 12.3, the “BioAssay: 12” tab indicates 12 of the 38 results
have associated bioassay data. This tab, if selected, will indicate which 12 records
have associated BioAssay data and will allow the result list to be refocused to con-
sider only the 12 records by clicking the “push pin” icon on the tab that appears.
These filter tabs are in fact customizable through the “MyNCBI” system. One can
create and store new filters in MyNCBI that can be applied to any search in a given
database. As depicted in Figure 12.3, the MyNCBI tool is accessed via the box in
the upper right corner of the page.

The remainder of the Entrez DocSum page contains the paginated list of results
of the current search. While the details will vary according to the specific database
and report style, information is shown for each record matching the query result.
In the case of the example in Figure 12.3, this includes links to the detailed sum-
mary page of each item and other Entrez database records associated with those
in the current database.

4.2 Advanced features

Entrez is basically a multi-database search engine. Under the surface are a vast
number of details on which fields are available to be searched, what the many
types of links mean, how the core Entrez controls function, and so on. All of this
may be a bit daunting to the casual user, but understanding these details unlocks
the true power of Entrez. This section serves as a guide to PubChem’s Entrez
databases, including what indices, links, and filters are available, and how these
combine together to create an advanced query refinement system.

4.2.1 Entrez indices
An index is a piece of information tied to individual records and matched directly
to a user’s query in an Entrez search. Each index consists of text, numeric, or date
values. Each Entrez database has its own set of indices. These indices are named
according to the type of information they contain, for example, the indices “IU-
PACName” or “MolecularWeight” in PubChem Substance and Compound. Some
indices may have multiple values for each record. For example, the index “Syn-
onym” corresponds to chemical or common names of a substance, any number of
which may be supplied by the depositor.
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By default, when one enters a simple query in the Entrez search interface, that
query is matched against all indices in that database. For example, if one searches
“aspirin” in PubChem Compound, Entrez will report back any records with an
index that contain “aspirin” as (any word in) a synonym, a depositor comment,
etc. This is why a text search for “aspirin” also currently brings up the structure
of acetaminophen, considering one of the names supplied by a depositor for ac-
etaminophen is “Aspirin-Free Anacin,” and so an unrestricted search for “aspirin”
will match this record, as well.

It is possible to narrow the search to a particular index by adding the index
name in brackets after the term itself. For example, “aspirin[CompleteSynonym]”
returns only a single record, the actual structure of aspirin, because only that
record has a synonym that matches that query exactly. Also, this shows that some
Entrez indices are configured to require an exact match to the entire index, while
others allow matches to any individual word in the longer text.

For numeric indices, one can perform a search for a range of values by using
minimum and maximum values separated by a colon and followed by the index
name in brackets. For example, to find all chemical structures in PubChem Com-
pound with a count of hydrogen bond donors between 0 and 5, the range query
would be “0:5[HydrogenBondDonorCount].” In the case of floating point range
queries, such as finding all chemical structures with a molecular weight between
214.31456 and 215.0 g/mol, one would use the query “214.31456:215[Molecular-
Weight].”

Multiple indices may be searched simultaneously using Entrez’s Boolean op-
erators. For example, a query in PubChem Compound of “Br[Element] AND
1[CovalentUnitCount]” will find all chemical structures containing the element
bromine and that are not part of a mixture. Please note that Entrez Boolean opera-
tors are capitalized (e.g., “AND,” “OR,” and “NOT”).

By default, Entrez removes whitespace, some punctuation, and other special
characters from the query string. To make sure Entrez treats the query as a single
word or phrase, despite special characters, simply enclose the query in quota-
tion marks. For example, to search the PubChem Compound database using the
InChI string of aspirin, one would use “”InChI=1/C9H8O4/c1-6(10)13-8-5-3-2-4-
7(8)9(11)12/h2-5H,1H3,(H,11,12)/f/h11H”[InChI]” as the query.

Knowing what indices are available in a database is the key to maximizing
the power of an Entrez search. The indices may be listed by going to the “Pre-
view/Index” tab in Entrez, and opening the menu on the bottom left. Also, this
page provides an interface for constructing index-specific queries. A complete list
and description of the Entrez indices available for the three PubChem databases
are detailed in the “Indices and Filters in Entrez” section of the help documenta-
tion: (http://pubchem.ncbi.nlm.nih.gov/help.html).

4.2.2 Entrez links
In addition to index searching, Entrez provides cross links or associations between
records in different Entrez databases, or within the same database. These links may
be applied to an entire search result list, via the links pop-up menus at the top of

http://pubchem.ncbi.nlm.nih.gov/help.html
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a DocSum page (see Figure 12.3), or to an individual record, via link menus on the
right side of each entry in the DocSum.

Links provide a way to discover relevant information in other Entrez databases
based on a user’s specific interests. Equivalently, one may think of this as a way
to transform an identifier list from one database to another based on a particular
criteria. From PubChem Substance, for example, the link “PubChem BioAssays,
Active” provides all assays where that particular substance (or any substance
within a multi-record list) was found to be active, where the meaning of “active” is
specific to and defined by a particular assay depositor. In a similar cross-database
fashion, activating the “PubChem Same Substances” link from a PubChem Com-
pound record will lead to all deposited substances exactly matching that com-
pound, providing a method to see which depositors deposited a particular com-
pound. Some links operate within the same database, going to records that are
related in some way. For example, the “Similar Compounds” link from a structure
in PubChem Compound will take the user to a DocSum display of all compounds
that have a 2-D Tanimoto-based similarity of at least 90% to the structure.

4.2.3 Entrez filters
Filters are essentially Boolean bits (true or false) for all records in a database
that indicate whether or not a given record has a particular property. Filters may
be used to subset other Entrez searches according to this property, by adding
the filter to the query string. For example, the “pcsubstance_pcassay” inter-
database filter has a “true” bit for every substance that has associated PubChem
BioAssay data, such that a search for “100:200[MolecularWeight] AND pcsub-
stance_pcassay[Filter]” in PubChem Substance will return a list of all substances
with molecular weight from 100.0 to 200.0 g/mol and that have associated Pub-
Chem BioAssay data.

Filters are related to links in that the majority of filters in the PubChem
databases are generated automatically based on the presence of links. In the above
example the “pcsubstance_pcassay” filter has a “true” bit for every substance for
which a PubChem BioAssay link is present (e.g., in the pop-up menus of the Entrez
DocSum for that substance).

There are some special filters that are not link-based. The query “all[Filter]”
simply returns every record in a given Entrez database. A database may have other
special filters defined, such as the “has_pharm” filter in PubChem Compound that
indicates whether a given chemical structure has a known pharmacological action.

The filters for each Entrez database may be listed by going to the “Pre-
view/Index” tab in Entrez, opening the menu on the bottom left, selecting
“Filters,” and pressing the “Index” button. Also, this page provides an inter-
face for adding filters to Entrez queries. A complete list and description of
the custom Entrez filters available for the three PubChem databases are de-
tailed in the “Indices and Filters in Entrez” section of the help documentation
(http://pubchem.ncbi.nlm.nih.gov/help.html).

http://pubchem.ncbi.nlm.nih.gov/help.html
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4.2.4 Entrez history
Entrez is a query refinement engine. In addition to enabling complex searches
across databases, as described above, Entrez has a history mechanism (Entrez his-
tory) that automatically keeps track of a user’s searches, temporarily caches them
(for eight hours), and allows one to combine search result sets with Boolean logic.
For example, say a structure search (described elsewhere in this document) has
been completed, resulting in a list of 10,000 compounds. One may wish to narrow
this search by other means, such as to find all compounds in the original search
result that satisfy the “Lipinski Rule of 5” [16]. To do this, one would go to the
“History” tab in Entrez, where all recent searches are listed, and find the history
number in the leftmost column corresponding to the structure search in question
(e.g., something looking like “#5 : 10,000 document(s)”). Then, in the search form,
at the top of the page, one would use this history number to formulate a query
such as “#5 AND lipinski_rule_of_5[Filter],” to narrow the original result to only
those records that satisfy both the original query and the “Lipinski Rule of 5.”

Entrez history is used heavily by PubChem tools (which are not a part of
Entrez) so results of user searches can be used as a subset for further manipu-
lation. For example, the chemical structure download service (described below)
reads Entrez history items, so one can generate an SDF file containing just those
compounds found in a PubChem Compound Entrez result set. For example, the
BioAssay tools (also described below) make frequent use of Entrez history, so that
structure queries can be used to subset assay results in a chemical structure analog
series.

It is important to note that Entrez history is database-specific. One cannot use
it to combine search results between databases (e.g., to ‘AND’ together a CID list
with an AID list). Cross-database links must first be used as set transformation
operators, so all ID lists are in the same database. For example, following the “Pub-
Chem BioAssays” link from a set of CIDs will create a new set of AIDs that have
any test results for the set of CIDs (again with the implicit understanding that CID
is first expanded to SID, which is built into the CID-AID links). From there, one
may combine this set of AIDs with other search results in the BioAssay database
using the Entrez Boolean logic.

Understanding which ID space transformations are implicit and which may be
performed explicitly through links or other tools, is crucial to successful use of the
advanced PubChem tools. With Entrez history, the user has complete control over
the set logic used in sophisticated query refinement. Both of these concepts be-
come even more important when dealing with the PubChem programmatic tools
(described below).

5. TOOLS

We have described how PubChem databases are integrated into Entrez, enabling
detailed and flexible searches across the PubChem data; however, Entrez is es-
sentially a text search engine and is not amenable to more detailed chemical and
bioassay data analysis. Such analysis must be handled by specialized applications.
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As the PubChem data content grows, there is an ever increasing need for facile
methods of efficient large-scale data management and analysis.

Researchers require the ability to obtain comprehensive summaries of the bio-
logical activities of small molecules. In addition, scientists are interested in other
chemicals which share structural or physical property similarities to known bioac-
tive entities, or have similar biological activity profiles. To this end, the PubChem
BioAssay system provides additional data analysis tools for utilizing and analyz-
ing the biological activity data. These include tools for comparison of test results
across multiple experiments, visualizing and exploring structure-activity relation-
ships, and summarizing bioactivity information.

There are two general categories of specialized applications provided by Pub-
Chem: those that deal with chemical structure information and those that deal
with bioassay data. These categories are not totally distinct; however, as several of
the PubChem tools, such as structure-activity analysis and structure clustering, di-
rectly bridge the two. These particular tools are closely integrated with Entrez, as
searches in one may be used as starting points in the other, but they are conceptu-
ally and operationally separate from Entrez. The goal of this section is to describe
available tools and how they combine together to form a unified platform for min-
ing PubChem chemical and biological data.

5.1 Summary pages

The Entrez DocSum reports serve a limited quantity of data to help navigate and
subset records. Detailed information is provided by PubChem summary pages.
Each record in an Entrez DocSum contains a link that leads to the more detailed
information on a specific record. Typically these pages are reached through En-
trez, but one can also navigate to them directly. For PubChem Substance SIDs, the
summary page URL is of the form:

http://pubchem.ncbi.nlm.nih.gov/summary/summary.cgi?sid=1234

where the SID (substance identifier) is provided as an argument. Similarly, for a
PubChem Compound the URL is like:

http://pubchem.ncbi.nlm.nih.gov/summary/summary.cgi?cid=2244.

For a PubChem BioAssay summary page, the URL has the form:

http://pubchem.ncbi.nlm.nih.gov/assay/assay.cgi?aid=910.

In general, summary pages contain the detailed information necessary to under-
stand how individual PubChem records combine information into a comprehen-
sive system of interconnected data.

5.1.1 Compound/substance summary
The layout of the substance and compound summary pages are very similar. The
content of this summary is heavily dependent on the information provided by
depositors and our ability to integrate contributed information with biomedical

http://pubchem.ncbi.nlm.nih.gov/summary/summary.cgi?sid=1234
http://pubchem.ncbi.nlm.nih.gov/summary/summary.cgi?cid=2244
http://pubchem.ncbi.nlm.nih.gov/assay/assay.cgi?aid=910
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FIGURE 12.4 Partial view of a compound summary for aspirin (CID 2244).

resources at NCBI. Summary pages, despite being continually refined as content
is added or usability improved, provide an overall summary of what is known
about a particular substance or compound. In general, a compound or substance
summary will contain these basic aspects: a depiction of a chemical structure; in-
dication of where or how the record originated (e.g., who contributed the record);
links to a set of related inter-database Entrez resources, such as a protein 3-D struc-
tures or literature articles; links to known biomedical information (e.g., pharmaco-
logical actions of a drug); a list of synonyms or names associated with the record;
computed chemical structure properties and descriptors; and record download
controls. Figure 12.4 depicts an example of a compound summary for aspirin.

Substance summary pages are distinctly different from compound summary
pages in two important ways. First, a substance summary provides access to the
depositor’s original structure information as well as the standardized form of
the substance (when applicable), with the standardized form always shown by
default. Second, a substance summary only provides information provided by
a single depositor, whereas a compound summary page aggregates information
across all depositors providing substances that standardize to that compound.
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FIGURE 12.5 Partial view of a bioassay summary for a confirmatory (secondary screen) assay for
ubiquitin-specific protease USP2a (AID 927).

5.1.2 BioAssay summary
A BioAssay summary displays descriptive information and a summary of the as-
say results. This includes an overview and background of what the assay attempts
to achieve, the assay protocol utilized, references, definition of all reported assay
outcomes, indication of the primary result fields, and explanation of the criteria
used when considering samples as active or inactive. One can use the “Related
BioAssay, Depositor” link to find additional screening performed for a particular
assay project. An example bioassay summary is depicted in Figure 12.5.

5.2 Structure search

The PubChem structure search tool enables one to query and subset PubChem
Compound by a variety of chemical structure search types and optional filters.
The chemical structure search service may be directly accessed using the URL:

http://pubchem.ncbi.nlm.nih.gov/search/.

http://pubchem.ncbi.nlm.nih.gov/search/
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The supported query input formats for the structure search tool are SMILES,
SMARTS [17], InChI, CID (PubChem Compound identifier), molecular formula,
and SDF [18]. There is also an online JavaScript-based chemical structure sketcher
through which a query may be manually drawn, edited, or imported. The sketcher
is compatible with modern web browsers and does not require special software to
be downloaded or installed.

Multiple chemical structure search types are available. Identity search en-
ables one to find identical PubChem records at different levels of “sameness”
through consideration of structural connectivity and either the presence or ab-
sence of isotopic and stereochemical information. Similarity searches locate chem-
ical structures similar to a query, using a percent similarity measure employing
the Tanimoto equation [19] and a dictionary-based fingerprint, analogous to the
MACSS structure-based keys [20], that are described on the PubChem FTP site:
(ftp://ftp.ncbi.nlm.nih.gov/pubchem/specifications/pubchem_fingerprints.txt).
Molecular formula searches employ a flexible query containing the count of par-
ticular elements in a chemical structure. Substructure searches locate records that
contain all atoms in a particular chemical structure query pattern. Superstructure
searches locate records that comprise a subset of atoms in a particular chemical
structure query pattern.

While the input query and search type are all that are necessary to perform
a structure search in PubChem, there are numerous choices by which one may
narrow the search to smaller subsets of PubChem. For example, one may search
only within a previous Entrez search result, or even a previous structure search
result, or upload a file of CIDs against which the search is to be performed. One
may filter based on a wide variety of properties, such as molecular weight, heavy
atom count, presence or absence of stereochemistry, assay activity, elemental com-
position, depositor name or category, etc. Most of these subset operations could
be accomplished through appropriate Entrez index queries followed by Boolean
operations on structure search results; however, the structure search tool provides
a convenient one-step interface for chemical search refinement.

All compound structure searches are queued on a set of devoted NCBI servers.
The user is taken to a search status page after submitting a query, with a meter
showing the relative progress of the requested task. By default, a structure-based
query is allowed to take as much time as necessary to complete, but may be limited
in the total count of result structures; however, query time and result limits are
customizable. Another key feature is the ability to import and export PubChem
structure queries to an XML file, which allows one to repeat a particular compound
query without filling out the search form again, to share a complex query with a
colleague, or to serve as an example for constructing queries for the PubChem
Power User Gateway (PUG) interface (described later).

5.3 Structure standardization

Given that PubChem modifies chemical structure information to normalize its rep-
resentation, it is important for contributors and users of PubChem to explore or
understand these changes (e.g., when attempting to integrate external resources

ftp://ftp.ncbi.nlm.nih.gov/pubchem/specifications/pubchem_fingerprints.txt
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with PubChem). With this aim in mind and in the spirit of structure modification
transparency, the PubChem chemical structure standardization tool was created.
Chemical structure standardization may be directly accessed using the URL:

http://pubchem.ncbi.nlm.nih.gov/standardize/.

This service takes as input a chemical structure and (if standardization is possible)
outputs a chemical structure. Allowed structural input and output formats include
SMILES, InChI, or SDF file; however, the input and output formats need not be the
same. As with structure search, the standardization service is queued on PubChem
servers, meaning a request may not start right away or may not complete immedi-
ately. One may also import and export standardization requests to a local XML file
to serve as an example for constructing queries for the PUG interface (described
in detail later).

5.4 Structure downloads
After working with PubChem to achieve a particular subset for a query of interest,
it is often important for a user to export resulting substance or compound records
from PubChem for further local analysis. The structure download tool prepares
PubChem Substance or PubChem Compound records as an export from Entrez
in a number of formats. While all PubChem data is available on the PubChem
FTP site (via the URL ftp://ftp.ncbi.nlm.nih.gov/pubchem/), being able to interact
with a user-selected subset is substantially more convenient. The structure down-
load tool may be directly accessed using the URL:

http://pubchem.ncbi.nlm.nih.gov/pc_fetch/.

Using the download service is straightforward. The user need only perform a
search using any combination of Entrez and PubChem-specific search tools, then
go to the download page from the PubChem Substance or Compound Entrez Doc-
Sum using the download link as indicated by a button with a disk icon. After the
user selects an export format, a file containing the exported records will be pre-
pared (on queued PubChem servers, meaning a download may not start or finish
immediately) and then served to the user as an URL specifying the download
location. It is important to understand that records retrieved from PubChem Sub-
stance contain the original deposited information, whereas those from PubChem
Compound are standardized forms of the deposited structural information.

A number of formats are available for data export. These formats include SDF,
image, small image, SMILES, InChI, XML, and either text or binary ASN.1. The
PubChem native archive data format is ASN.1; all other formats are converted
from the original ASN.1. The XML formatted data is exactly equivalent to the
ASN.1 in content. SDF format is the industry standard for conveyance of chemical
structure information and is readily imported into a large number of chemistry
programs. Unfortunately, the SDF format is unable to handle all aspects of the
ASN.1 data and may not contain all archived information. The PubChem ASN.1
specification, XML schema, and a description of PubChem SDF structure data (SD)
tags are all found on the PubChem FTP site in the “specifications” directory.

http://pubchem.ncbi.nlm.nih.gov/standardize/
ftp://ftp.ncbi.nlm.nih.gov/pubchem/
http://pubchem.ncbi.nlm.nih.gov/pc_fetch/
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ASN.1 is a binary format. NCBI utilizes a textual description of ASN.1 that is
both computer and human readable (to some extent), but that is not a standard
type of ASN.1 data format. This means ASN.1 parsing libraries other than NCBI’s
may be unable to read it. The PubChem ASN.1 text format does provide a rela-
tively facile means for users to find pertinent information stored in the archive
format by simple inspection.

The PubChem download service exports chemical structure images. The im-
ages are either 300 × 300 or 100 × 100 pixels in size. The image format is PNG and
images are packaged as SID or CID-numbered files in a zip (.zip) archive.

Exports of structural descriptors, SMILES and InChI, provide chemical struc-
ture information in a simple tab-delimited text file containing CID or SID and
either the isomeric SMILES or InChI strings. Given the very nature of the for-
mats of SMILES and InChI, not all chemical structure information can be iden-
tically represented. For example, SMILES encodes only covalent bonds, while
PubChem supports the additional concepts of ionic, complex, and dative bonds.
Most small molecules in PubChem can be reproducibly interconverted between
InChI, SMILES, and PubChem ASN.1 formats without loss of chemical structure
information.

Files may optionally be compressed in standard gzip (.gz) or bzip2 (.bz2) for-
mats. Downloads through the structure download tool are limited to a maximum
of 250,000 records per request. Image downloads are limited to 50,000 per request
due to the inherent limitations of the zip (.zip) format. As with the other structure
tools, the structure download service is accessible using the PubChem Power User
Gateway (PUG).

5.5 BioActivity analysis

Beyond a summary description, one would like to view, analyze, and display the
actual bioassay data. PubChem provides an integrated suite of tools, each pre-
sented as an individual tab, for this purpose. One would use the bioactivity sum-
mary tool to, at a glance, be able to examine an overview of the bioassays tested
for a list of substances or compounds. To be able to subset and analyze substances
or compounds tested in a set of bioassays, one would use the structure-activity
analysis tool. To view the actual bioassay outcomes, one would use the data table
tool.

5.5.1 BioActivity summary
The BioActivity summary tool is a powerful data analysis tool that provides a com-
prehensive view of biological activity information available for one or more small
molecules. It allows one to compare and examine biological outcome counts across
multiple assays, enabling common groups of compounds tested in different assays
to be rapidly located (e.g., for Structure–Activity Relationship (SAR) analysis).
Furthermore, it allows one to select specific test results to view via the ‘Data Table’
tab and to perform exploratory data analysis via the ‘Structure–Activity’ tab. Fig-
ure 12.6 depicts an example bioactivity summary.



PubChem: Integrated Platform of Small Molecules and Biological Activities 233

FIGURE 12.6 Partial view of a BioActivity Summary for cytidine (CID 596) and its 2-D similarity
neighbors for all bioassays tested within PubChem.

BioActivity summary provides a set of functions that allows one to revise the
substance/compound and assay sets. For example, one may focus only on a sub-
set of compounds that are active in one or more of the selected assays using the
‘Compound|Select Active’ link, or explore additional screen sets where the given
compounds were considered active using the ‘Assay|Add Active’ link. PubChem
provides multiple access points for this service. For compounds or substances
tested found in Entrez, one can launch this service for each individual record us-
ing the direct “BioActivity Analysis” link, or, for all of the records from an Entrez
search, through the launching point at the “Tool” area.

5.5.2 Structure–Activity Analysis
Structure–Activity Analysis is an exploratory tool which performs single linkage
clustering analysis for small molecules and their biological screening information
in a “heatmap” style display. With this web based tool, a list of assays may be
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provided and clustered based on activity profile of tested compounds or based on
protein target sequence similarity. A set of compounds entered can be clustered
either by activity spectrum or 2-D chemical structure similarity. Facilities are pro-
vided for navigating between various PubChem web tools and Entrez, and can be
accessed throughout the heatmap display. For example, one may identify a com-
pound cluster, click the blue circle near the node of a compound cluster, and select
“Compound in Entrez” from the pop-up menu to send the compounds back to En-
trez for display. One may also “zoom in” on a sub-region in the heatmap display
and request test results generated by multiple screenings for a cluster of com-
pounds, using the embedded tool menu. The service provides various “Revise”
functions allowing one to change the selection of compounds or assays. Using
the “Revise” function, one can continue the analysis by combining additional
screening results. With these versatile functions, the Structure–Activity analysis
tool provides a powerful service for iterative analysis of the complex screening
data and associated chemical and biological information in PubChem and NCBI
resources. An example structure activity analysis is provided in Figure 12.7.

The structure clustering aspect of the Structure–Activity Analysis tool is also
available as a separate standalone service for the examination of the similarity of a
list CIDs. The tool is called Structure Clustering. Considering the functionality is a
subset of the Structure–Activity Analysis tool, it is not described in further detail.

5.5.3 Data Table
To obtain the actual test results in a tabular format, with a single compound or
substance per row, one uses the Data Table tool. Able to handle multiple assays
and multiple compounds or substances, the Data Table provides various means to
“collapse” the data view, including compound (as opposed to substance) specific
operations, ignoring or including stereochemistry, and grouping by parent com-
pound (for compound salt form invariance). One may also choose how to handle
duplicate and conflicting outcomes resulting from the various methods. Pagina-
tion and per column sorting controls are available and all data may be exported in
different ways.

The Data Table tool is multifunctional with separate tabs for views of concise
(only primary results) or all data. Additional controls for plotting bioassay data
columns and for subsetting the displayed data using particular data values or data
ranges are provided by the “Plot” and “Select” tabs, respectively. Figure 12.8 de-
picts an example data table view.

6. PROGRAMMATIC TOOLS

While giving access to all available PubChem data and functionality, interactive
web-based interfaces are not particularly well suited to highly repetitive or auto-
mated tasks. Without programmatic tools, tasks such as performing specific data
lookups for a large number of chemical structures would be tedious if not impossi-
ble to perform and a software tool that integrates with PubChem services and data
would be difficult to create and maintain. With programmatic access to PubChem,



PubChem: Integrated Platform of Small Molecules and Biological Activities 235

FIGURE 12.7 Partial view of a Structure–Activity Analysis for cytidine (CID 596) and it 2-D
similarity neighbors for all bioassays tested within PubChem, with compounds clustered by 2-D
structure similarity and assays clustered based on compound biological response.

data can be utilized in more imaginative and complex ways without the need to
download the entire PubChem content or to duplicate PubChem functionality.

Two sets of synergistic tools are available for programmatic access to PubChem
data, Entrez utilities [21] (eUtils) and the PubChem Power User Gateway (PUG).
Entrez-based access is achieved through the use of eUtils. To provide access to
the capabilities of PubChem tools, PUG is available. Together, these two facilities
enable users to interact with PubChem using XML over HTTP.

6.1 Entrez utilities

Entrez has a suite of associated tools, collectively called eUtils. Together, these
tools provide access to nearly all Entrez functionality, primarily through an XML
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FIGURE 12.8 Partial view of a concise Data Table for cytidine (CID 596) and it 2-D similarity
neighbors for all bioassays tested within PubChem.

over HTTP interface. These tools are described in detail elsewhere:

http://eutils.ncbi.nlm.nih.gov/entrez/query/static/eutils_help.html.

The primary eUtil tools of most interest to PubChem users are eSearch, eFetch,
ePost, eLink, eHistory, and eInfo. eSearch performs an Entrez search, with the
same query syntax as web-based Entrez queries (e.g., to query PubChem Com-
pound for the chemical name “aspirin”). eFetch returns an ID list from a prior
search (e.g., the list of PubChem Compound identifiers (CIDs) from the afore-
mentioned query of “aspirin”). ePost creates a new ID list by upload of a list
of identifiers (e.g., substance identifiers (SIDs)). eLink follows a given link type
to create a new ID list from an existing one (e.g., to find all PubChem BioAssay
identifiers (AIDs) associated with a list of SIDs). eHistory returns information on
current Entrez History entries. eInfo lists available Entrez indices and links for a
given database.

http://eutils.ncbi.nlm.nih.gov/entrez/query/static/eutils_help.html
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Each of these eUtils applications can return data in XML format for automatic
parsing by a script or application. Most eUtil tools have the option to use an Entrez
history key, which include a web-environment (WebEnv) and Entrez history item
(query_key) as arguments, as input or output. This enables Entrez history to store
sets of identifiers temporarily, relieving the user’s application of the burden of
continually sending and receiving potentially large ID lists. The XML specification,
in DTD form, for each eUtil tool can be found at the URL:

http://eutils.ncbi.nlm.nih.gov/entrez/query/DTD/index.html.

6.2 PUG

PubChem’s Power User Gateway (PUG) is a single entry point to a vast array of
PubChem functionality. It is not necessarily intended for the casual user, but rather
for those who are seeking a low-level interface access to PubChem. Outlined here,
PUG is documented with examples at:

http://pubchem.ncbi.nlm.nih.gov/pug/pughelp.html.

The basic design of PUG is simple, a central gateway to multiple PubChem
functions. PUG does not take URL arguments. All communication with PUG is
through XML over HTTP. To perform any request, one formulates input in XML
and then sends it to PUG via an HTTP POST. PUG interprets the incoming request,
initiates the appropriate action, and then returns results in XML format. With this
design, PUG may be used with any scripting or programming language that has
the ability to read and write XML, and to send and receive data via HTTP. The
XML specification for the XML used by PUG may be found, in DTD and XML
schema forms, respectively, at:

http://pubchem.ncbi.nlm.nih.gov/pug/pug.dtd,

http://pubchem.ncbi.nlm.nih.gov/pug/pug.xsd.

Either of these specifications may be used to guide the creation of valid input XML
to send to PUG and to parse the returned results. Because PUG encompasses a
wide variety of functions, its XML structure is necessarily complex. It may be eas-
ier to create input XML data with the help of a tool that can generate program code
from or at least validate XML using a DTD or schema.

PubChem tools for structure search, standardization, and downloads are en-
abled via PUG, with more to be added. In each case, the options available through
PUG are the same as those available through the interactive web pages, including
all the advanced options and filters of the structure search service. In fact, most
of the web tools can write out queries in PUG’s XML format, which can be sent
directly to PUG or used as templates for constructing new PUG requests.

As with the web-based tools, requests through PUG may be queued on Pub-
Chem servers. Thus, PUG may not deliver an answer directly in response to the
initial request. Rather, for cases where execution may take some time, PUG will
return a waiting message, along with a request identifier which is used to poll

http://eutils.ncbi.nlm.nih.gov/entrez/query/DTD/index.html
http://pubchem.ncbi.nlm.nih.gov/pug/pughelp.html
http://pubchem.ncbi.nlm.nih.gov/pug/pug.dtd
http://pubchem.ncbi.nlm.nih.gov/pug/pug.xsd
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PUG periodically for the status of that request. PUG responds with another wait-
ing message if the operation is still in progress, an error message if it failed, or a
success message with the final results, when the task is finished. It is up to the PUG
user to add a periodic status check loop to handle these queued requests properly.

The combination of PUG and Entrez eUtils opens up a wide spectrum of pro-
grammatic tasks that can harness the true power of PubChem inside custom ap-
plications. An advantage to this approach, compared to having a local copy of
PubChem data on the user’s computer, is that the mass of PubChem data and
complexity of the analysis functions are all maintained by PubChem, thus, the
CPU cycles needed to perform the tasks are hosted by PubChem. The user needs
only this basic interface to access PubChem infrastructure, at the relatively small
investment of a little programming.

7. DEPOSITION SYSTEM

PubChem is an open repository. Organizations may contribute information about
small molecules and integrate their public resource with PubChem, in part by pro-
viding URLs back to and from their website to PubChem. The types of PubChem
depositors are greatly varied with contributors from government organizations,
academic groups, chemical reagent and screening library suppliers, scientific jour-
nals, scientific data publishers, physical property databases, and more. To handle
this quantity and diversity of data, PubChem created an on-line data deposition
system for rapid contribution of substance and bioassay data. This system may be
accessed via the URL:

http://pubchem.ncbi.nlm.nih.gov/deposit/.

Any organization may become a PubChem contributor. The deposition system al-
lows potential depositors to obtain a test account quickly, to examine how their
data will look in PubChem and to gain familiarity with the user interface. A test
account is nearly identical to a deposition account except data cannot be added to
PubChem when using a test account. To actually put data into PubChem, poten-
tial depositors must apply for a deposition account. Deposition accounts require
a click-thru data transfer agreement that must be agreed upon prior to allowing
data to be contributed. Essentially, this agreement enables the depositor to retain
all rights to their information while allowing PubChem to display and distribute
any provided information.

Deposition of substance information is performed using the industry standard
SDF format, which may include using the SMILES or InChI formats as the chem-
ical structure. Depositing properly formatted substance data into PubChem is as
simple as uploading a file, via HTTP or FTP.

Deposition of assay information is performed in two parts. Creation of a new
assay involves providing a description, protocol, target, readouts, and other asso-
ciated information using a web-form or via an XML file. After the assay descrip-
tion is completed, assay test results can be readily provided by using the standard
CSV (i.e., comma delimited) file format. Assays provide outcomes for substances.

http://pubchem.ncbi.nlm.nih.gov/deposit/
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As such, PubChem requires these substances to be available in PubChem prior to
providing respective assay information.

Once data is put into PubChem, depositors may update their information at
any time. Updates to existing PubChem records cause versioning to occur. Pub-
Chem is archival, in that retention of previous versions of records allows PubChem
users to access a particular version of a substance or bioassay record, regardless of
its revision history. It should be noted; however, that older version information is
not presented by default.

Bioassays have two levels of versioning, being major and minor updates. Mi-
nor bioassay versions indicate changes to the bioassay textual description. Major
bioassay versions indicate addition or reduction in the count of readouts. Major
bioassay versioning requires all bioassay data to be completely restated by the de-
positor, considering the readouts changed in some way. Bioassay records also have
substance-level outcome versioning. If a bioassay substance outcome is provided
more than once by a depositor, previous reported results are versioned.

8. FUTURE DIRECTIONS

Expansion and enrichment of the bioassay data are ongoing, by adding annota-
tions for small molecules and drugs using publicly available information, such
as that provided at the National Library of Medicine (NLM) or the Food and
Drug Administration (FDA). With efforts from the scientific community, bioas-
say data is becoming better annotated by linking target to protein classification
resources or molecular pathway information. With further integration with NCBI
resources such as PubMed and the Entrez search system, information contained
within PubChem will become more discoverable and useful to a broader audience
of scientists worldwide.

PubChem currently provides 2D-based data analysis and clustering tools.
Small molecules are not flat. They have a rich diversity of 3-D shapes and 3-D
orientation of features possible. Addition of a theoretical 3-D description of the
PubChem Compound database may open new avenues in the understanding of
bioassay outcomes by allowing combination of 2-D and 3-D data analysis and
clustering techniques, thus enabling improved hypothesis generation and trend
recognition implicit with a biological dataset. Neighboring 3-D descriptions of
PubChem Compound, much like the 2-D similarity neighbors currently available,
may help scientists identify and better understand interrelationships of the bio-
logical properties of small molecules. It is, to this end, that a 3-D description of the
PubChem Compound database is in progress.

Programmatic access to PubChem using work-flow automation software
(such as Taverna [22] and Pipeline Pilot [23]) and scripting languages (such as
Python [24], Ruby [25] and PERL [26]), may enable researchers to make exciting
new discoveries and to further leverage and integrate PubChem into their basic re-
search. New interfaces using SOAP-based web services (via WSDL [27]) are in the
making, to make access to PubChem easier and conceptually simpler to achieve.
For those who would rather learn directly about the inner workings of PubChem
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data processing and analysis, a C++ API, based on the NCBI C++ toolkit [28], will
be made available.

PubChem is a significant source of information on the biological properties of
small molecules. The offering of tools and services associated with the access and
mining of this data makes PubChem important to the work of scientists worldwide
as an enabling resource. PubChem continues to grow and evolve as a function of
time. New tools and services are in development and existing offerings are being
refined. Feedback from the user community is an important and welcome part
of this process to ensure the utility of PubChem to the community is maximized.
The NCBI help desk (email: info@ncbi.nlm.nih.gov) is the primary locus for such
input.
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aqueous solubility, 1, 135–137, 162
blood–brain barrier permeation, 1, 140–142
computational prediction, 1, 133–151
cytochrome P450 interactions, 1, 143, 144
drug discovery, 1, 159–162
efflux by P-glycoprotein, 1, 140, 160, 161
intestinal absorption, 1, 137, 138
intestinal permeability, 1, 134, 135, 161
metabolic stability, 1, 142, 143, 162
oral bioavailability, 1, 134, 138, 139, 159, 160
plasma protein binding, 1, 142
toxicity, 1, 144

AGC group of kinases, 1, 196
agrochemicals, 1, 163
AK peptide, 2, 91
“alchemical” free energy transformations, 3,

41–53
alignment-independent molecular

descriptors, 3, 69

AMBER, 2, 91
AMBER force fields, 1, 92, 94–97, 99, 119–121
angular wavefunctions, 1, 225–228
anisotropic polarizability tensors, 3, 180
ANO basis, 3, 201
apparent errors, 3, 196
applicability domain, 2, 113, 118, 120, 123, 125
aqueous solubility, 1, 135–137, 162
aromatic cluster, 3, 212, 221
asymmetric top notation, 3, 159
atomic orbital representations, 1, 225–228
atomistic simulation

boundary conditions, 1, 80
experimental agreement, 1, 77, 78
force fields, 1, 77, 79–82
methodological advances, 1, 79
nucleic acids, 1, 75–89
predictive insights, 1, 78, 79
sampling limitations, 1, 80–82

atomistic simulations
time scale, 3, 15
transition path methods, 3, 16

ATP see adenosine triphosphate
aug-cc-pVnZ, 3, 198
AUTODOCK, 1, 122, 123; 2, 184

B-factors, 3, 32, 34, 35
B3LYP functional, 1, 32, 48–50
back-propagation neural networks (BPNN), 1,

136, 137
Bad, 2, 197, 203
bagging, 2, 136
Bak, 2, 197, 198, 203–205
barrier heights, 2, 64, 73
base pair opening, 1, 77
basis set superposition errors (BSSE), 2, 68, 74,

76, 78
basis sets, 1, 13–15, 32, 33; 3, 195
Bax, 2, 197, 198, 203, 204
Bayes model, 2, 157
Bayesian methods, 2, 132

245
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Bcl-2, 2, 197, 198, 201, 203–206
Bcl-xL, 2, 197, 203–206
Bennett acceptance ratio, 3, 44, 45
benzene dimers, 3, 188
benzene–water, 3, 186
Bessel-DVR, 3, 167
Betanova, 1, 248, 249
Bethe–Salpeter equation, 1, 27
bias potential, 2, 224–226, 229, 230
Bid, 2, 197, 203, 205
Bim, 2, 197, 203
binding affinities, 1, 78
binding free energy

calculating, 1, 114–119
protein–ligand interactions, 1, 113–130
scoring functions, 1, 119–126

bio-molecular simulation
atomistic simulation, 1, 75–82
nonequilibrium approaches, 1, 108
protein force fields, 1, 91–102
protein–ligand interactions, 1, 113–130
water models, 1, 59–74

bioavailability, 1, 134, 138, 139, 159, 160
biospectrum similarity, 2, 150
Bleep, 2, 162
blood–brain barrier permeation, 1, 140–142,

160, 161
BO approximation, 3, 158
body-fixed frame, 3, 166
bond breaking

configuration interaction, 1, 51
coupled cluster methods, 1, 52, 53
generalized valence bond method, 1, 47, 48
Hartree–Fock theory, 1, 46, 48–51
multireference methods, 1, 51–53
perturbation theory, 1, 51, 52
potential energy surface, 1, 54
quantum mechanics, 1, 45–56
self-consistent field methods, 1, 46, 47, 53
spin-flip methods, 1, 53

bond vector(s), 3, 167, 168
boost energy, 2, 225–227
boosting, 2, 136, 151
Born–Oppenheimer approximation, 1, 3, 54
Born–Oppenheimer (BO), 3, 156
Boss program, 2, 264
boundary conditions, 1, 80
Boyer Commission, 1, 206, 207
BPNN see back-propagation neural networks
Bragg’s Law, 3, 89, 90, 97
Breit, 3, 164
Breit term, 3, 163
Bridgman tables, 1, 224
BSSE see basis set superposition errors

CAMK group of kinases, 1, 186, 196
Carnegie Foundation, 1, 206, 207
casein kinase 2 (CK2), 1, 197
Casida’s equations, 1, 21, 22, 25
caspase-3, 2, 206
caspase-9, 2, 206, 208
CASSCF see complete-active-space

self-consistent field
CATS3D, 2, 149
CBS-n methods, 1, 36, 37
CC see coupled cluster
cc-pCVnZ, 3, 198, 199
cc-pV(n+d)Z, 3, 197
cc-pVnZ, 3, 196, 199, 202
cc-pVnZ-DK, 3, 200, 202
cc-pVnZ-PP, 3, 201, 202
cc-pwCVnZ, 3, 198, 199
CCSD(T), 3, 160
CD see circular dichroism
CDKs see cyclin-dependent kinases
central nervous system (CNS) drugs, 1, 160,

161
CH2 radical, 3, 156
chance correlations, 2, 153
charge transfer (CT), 1, 26
charge transfer interactions, 3, 180
CHARMM force fields, 1, 77, 79, 92–95, 97–99,

119, 120
chemical amplification, 2, 11
Chemical Kinetics Simulator, 2, 4
Chemical Markup Language (CML), 3, 116,

126
chemical space (size of), 2, 143
chemical vapor deposition (CVD), 1, 232, 233
ChemScore, 2, 162
circular dichroism (CD) spectra, 1, 22–24
circular fingerprints, 2, 144
cis-trans isomerization, 2, 228, 229
Cl see configurational interaction
cluster-based computing, 1, 113
CMAP see correction maps
CMGC group of kinases, 1, 186, 192–194
CMS see central nervous system
CO2, 3, 162, 168
cold shock proteins (CSP), 3, 24
combinatorial QSAR, 2, 113, 120
CoMFA, 2, 152
compartmentalization, 2, 11
complete basis set, 3, 196
complete basis set (CBS) full configuration

interaction (FCI), 3, 156
complete-active-space self-consistent field

(CASSCF) method, 1, 47, 53
compound equity, 1, 171
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computational protein design (CPD), 1,
245–253

degrees of freedom, 1, 246
energy function, 1, 246, 247
examples, 1, 248–250
search methods, 1, 247, 248
solvation and patterning, 1, 247
target structures, 1, 246

computational thermochemistry
ab initio methods, 1, 33, 37, 45
CBS-n methods, 1, 36, 37
density functional theory, 1, 32, 33
empirical corrections, 1, 34–36
explicitly correlated methods, 1, 39
G1, G2, G3 theory, 1, 34–36
hybrid extrapolation/correction, 1, 36, 37
isodesmic/isogyric reactions, 1, 34
nonempirical extrapolation, 1, 37–39
quantum mechanics, 1, 31–43
semi-empirical methods, 1, 31, 32
Weizmann-n theory, 1, 37–39

configurational interaction (Cl), 1, 9, 10, 48, 51
configurational space, 2, 84
conformational change(s), 3, 32–36
conformational changes, substrate induced

P450, 2, 173
conformational flexibility, 1, 173
conformational flooding, 2, 221, 223, 224
conformational restraints, 3, 49, 50
conformational sampling, 3, 48, 49
conformational transitions, 2, 221, 222, 227
consensus approaches, 1, 145
consensus scoring, 2, 158
continuum solvation models, 3, 181
core correlation, 3, 198, 203
core-valence, 3, 199, 202
correction maps (CMAP), 1, 95, 96, 98
correlating functions, 3, 197
correlation energy, 2, 53, 54, 59–62, 64–71, 73,

74, 76
correlation methods, 1, 8–11
correlation-consistent, 3, 160, 196
Council for Chemical Research, 1, 240
Council on Undergraduate Research (CUR),

1, 206–208
coupled cluster (CC) methods, 1, 10, 11,

37–40, 48–50, 52, 53
CPD see computational protein design

cross-validation, 2, 153, 154
CPHMD, 3, 6
Crooks relationship, 3, 45
cross validation

leave-group-out, 3, 67
leave-one-out, 3, 67

Crystallographic Courseware, 3, 96

CT see charge transfer
Cu, Zn superoxide dismutase (SOD), 3, 24, 25
CUR see Council on Undergraduate Research
current density, 1, 27
curvilinear, 3, 166
CVD see chemical vapor deposition

cyclin-dependent kinases (CDKs), 1, 186,
192–194

CVRQD, 3, 161–164
CYP inhibitor, 3, 65, 71
CYP substrate, 3, 65, 71
cytochrome c, 3, 22
cytochrome P450, 2, 171; 3, 63, 64

2C5, 2, 172
2C9, 2, 172
3A4, 2, 172
BM-3, 2, 174
eryF, 2, 174
terp, 2, 174

cytochrome P450 interactions, 1, 143, 144

D-Score, 2, 161
D/ERY motif, 3, 211
D2.50, 3, 211
D&C see divide and conquer
DA see discriminant analysis
database, 3, 169
database mining, 2, 114, 121–125
databases

drug-likeness, 1, 155, 156
ligand-based screening, 1, 172–175
self-extracting, 1, 223, 225
symbolic computation engines, 1, 223–225

Davidson correction, 3, 163
DBOC, 3, 160, 163
de novo protein design, 1, 245
dead-end elimination (DEE), 1, 247–249
degrees of freedom, 1, 246
density fitting, 2, 55, 74, 77
density functional theory (DFT)

bond breaking, 1, 48, 49
computational thermochemistry, 1, 32, 33
protein–ligand interactions, 1, 116
state of the art, 1, 4, 11–15
time-dependent, 1, 20–30

descriptor binarization effect, 2, 152
DEWE, 3, 168
DEZYMER algorithm, 1, 249
DF-LCCSD(T), 2, 55
DF-LMP2, 2, 55, 73, 75
DFT see density functional theory

discriminant analysis (DA), 1, 138
diagonal Born–Oppenheimer corrections

(DBOC), 3, 158
digital repository, 3, 103, 107, 108, 125, 129
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dipole polarizability, 3, 179
discrete path sampling (DPS), 3, 16
discrete variable representation (DVR), 3, 166
displacement coordinates, 3, 168
dissipative MD, 3, 139
distant pairs, 2, 54, 62, 63
distributed computing, 1, 113
distributed multipolar expansion, 3, 179
distribution see ADMET properties
divide and conquer (D&C) algorithm, 1, 116,

117
DKH, 3, 200
DMA gyrase, 2, 280
DMS, 3, 156
DMSs, 3, 163, 165
DOCK, 2, 157, 159, 161, 179, 184–186, 299–303,

308, 314–317, 319, 320
DOCK program, 1, 173, 174, 177, 178, 189
docking, 1, 79, 114, 119, 121, 155, 169, 172–174,

178, 189–196; 2, 141, 145, 157, 159, 161,
162, 284, 297–303, 305–307, 309, 311,
313–321, 323

Docklt, 2, 299, 300, 317
DockScore, 2, 161
DockVision, 2, 299, 300, 315–317
domain approximation, 2, 53, 64, 73–76, 78
domain extensions, 2, 54, 59, 62, 63, 77
DOPI, 3, 166, 168
drug discovery, 1, 155–168; 3, 64

agrochemicals, 1, 163
aqueous solubility, 1, 162
chemistry quality, 1, 157
CMS drugs, 1, 160, 161
databases, 1, 155, 156
drug-likeness, 1, 155–157
intestinal permeability, 1, 161
lead-likeness, 1, 159
metabolic stability, 1, 162
oral drug activity, 1, 159, 160
positive desirable chemistry filters, 1, 158,

159
promiscuous compounds, 1, 162, 163

drug-drug interactions, 3, 63
drug-likeness, 1, 155–157; 2, 160
DrugScore, 2, 161, 162
Dublin-core metadata (DC), 3, 104, 107, 108,

125
DVR, 3, 167

E6.30, 3, 211
Eckart–Watson Hamiltonians, 3, 167
education

research-based experiences, 1, 205–214
stochastic models, 1, 215–220
symbolic computation engines, 1, 221–235

effective core potentials, 3, 200
effective fragment potential (EFP), 3, 178
efflux by P-glycoprotein, 1, 140, 160, 161
EFP, 2, 267; 3, 178, 190

EFP-QM, 3, 182
EFP/PCM, 3, 181
induced dipoles, 3, 181

elastic network model(s), 3, 31–37
electron correlation methods, 1, 8–11
electronic embedding, 2, 37
electronic Schrödinger equation, 1, 3–15
electrostatic interaction, 3, 179
empirical force fields, 1, 91–102
empirical PESs, 3, 164
empirical scoring functions, 1, 122, 123
energy function, 1, 246, 247
enrichment, 2, 297, 302, 303, 305–309, 313–319
essential dynamics, 2, 233, 236, 242–244, 247
Euler angles, 3, 168
Ewald summation, 2, 265
Ewald summation techniques, 1, 59, 62, 75
exact exchange, 1, 26, 27
exchange repulsion, 3, 179, 180
excited state structure/dynamics, 1, 24
excretion see ADMET properties
explicit solvent, 2, 98, 99, 101, 102, 104–106
exponential damping functions, 3, 180
extended systems, 1, 26
extensible metadata platform (XMP), 3, 104,

107, 109–111

F-Score, 2, 161
FCI, 3, 160
feature selection, 2, 151, 153
FEP see free energy perturbation
FEPOPS, 2, 146
few-body systems, 3, 158
few-electron systems, 3, 156
Fingal, 2, 148
first-principles thermochemistry, 3, 160
FIS3, 3, 161, 162, 164
FKBP, 3, 52
FlexX, 1, 173, 178, 189; 2, 157, 159, 184, 186,

299, 300, 308, 313–319
Flo+, 1, 299, 300, 317
FLO99, 1, 178
Florida Memorial College, 1, 212
fluctuation theorem, 1, 109
fluid properties, 1, 239–244
focal-point approach, 1, 39
focal-point approach (FPA), 3, 160
folding intermediate states, 3, 9
force fields, 3, 162

molecular simulations, 1, 239, 240
nucleic acids, 1, 77, 79–82
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protein–ligand interactions, 1, 116, 119–121
proteins, 1, 91–102
structure-based lead optimization, 1, 177

FPA, 3, 160
fragment positioning, 1, 175–177
FRED, 2, 148, 161, 299, 300, 313, 314, 317, 319
free energy, 1, 96, 103–111, 113–130
free energy calculations, 3, 41–53
free energy perturbation (FEP), 1, 104, 106; 2,

265
functional microdomains, 3, 211
fuzzy clustering, 2, 160
fuzzy logic, 1, 218

G-protein coupled receptors (GPCRs), 3, 209
G-Score, 1, 123; 2, 161
G1, G2, G3 theory, 1, 34–36
GAMESS, 3, 190
Gaussian Geminal Methods, 2, 25
Gaussian quadratures, 3, 166
GB-1 beta hairpin, 2, 91, 92
generalized Born, 2, 222
generalized conductor-like screening model

(GCOSMO), 2, 266
generalized finite basis representation

(GFBR), 3, 167
generalized gradient approximation (GGA),

1, 12
generalized valence bond (GVB) method, 1,

47, 48
Ghose/Crippen descriptors, 2, 160
Glide, 2, 161, 299, 300, 302, 303, 313–319
global matrices, 1, 116, 117
glutathione peroxidase, 2, 47
GOLD, 2, 161, 162, 184–186, 299, 300, 313–319
GRAFS, 3, 210
graphical representations, 1, 225–228, 232, 233
GRID, 2, 148, 149
GRIND, 2, 148
GROMACS, 2, 89, 91
GROMOS, 2, 91
GROMOS force fields, 1, 97
GVB see generalized valence bond

[H,C,N], 3, 163
H2, 3, 158
H+

2 -like systems, 3, 158
H2

16O, 3, 160, 164
H2

17O, 3, 159, 160, 164
H2

18O, 3, 164
H2O, 3, 162, 163, 168
H2S, 3, 163
H+

2 , 3, 158
Hartree–Fock (HF), 3, 160

Hartree–Fock (HF) method, 1, 4–11, 13–15, 20,
21, 46, 48–51

HDM2, 2, 209
HEAT (High-accuracy Extrapolated Ab initio

Thermochemistry), 3, 160
Hellmann–Feynman theorem, 1, 21
HF limit, 3, 197
hierarchical protein design, 1, 245
high throughput docking (HTD), 2, 298–302,

304–306, 308, 309, 317–320
high-resolution spectra, 3, 157
high-throughput screening (HTS), 1, 171, 172
HINT, 2, 162
Hohenberg–Kohn (HK) theorem, 1, 11, 20
homodesmotic reactions, 1, 34
homology models, 1, 170, 188, 189; 3, 211
HTD see high throughput docking
HTS data analysis, 2, 156
HTS Data Mining and Docking Competition,

2, 159
HTS see high-throughput screening
hybrid quantum and molecular mechanical

simulation (QM/MM), 2, 263–268
hybrid solvent, 2, 106
hybridization, structure-based, 1, 191, 192
hydration free energies, 1, 103
Hylleraas Method, 2, 21
Hylleraas-CI method, 2, 24
hyperdynamics, 2, 221, 224, 225

IAPs, 2, 206
ICM, 2, 299, 300, 308, 313, 314, 318, 319
ICMRCI, 3, 163
IL-2, 2, 214
implicit solvent, 2, 99, 100; 3, 5
Induced Fit, 3, 218
information triple, 3, 109, 110, 128, 131
intermolecular potential functions, 1, 241, 242
internal coordinates, 3, 166
intestinal absorption, 1, 137, 138
intestinal permeability, 1, 134, 135, 161
intrinsic errors, 3, 196
iron chelation, modeling of, 2, 185
isodesmic/isogyric reactions, 1, 34

Jacobi coordinates, 3, 158
Jarzynski relationship, 1, 103–110; 3, 45, 46
Jmol, 3, 99, 113–117, 119–121, 125, 126

Kemp decarboxylation, 2, 263, 264, 271–273,
275

kinome targeting, 1, 185–202
applications, 1, 192–197
ATP site recognition, 1, 187, 188
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homology models, 1, 188, 189
kinase family, 1, 186, 187
methodology, 1, 188–192
selectivity, 1, 190, 191
structure-based hybridization, 1, 191, 192
virtual screening, 1, 189, 190

knowledge-based scoring functions, 1,
123–125

Kohn–Sham (KS) equations, 1, 11, 20–22, 25
Kohonen maps, 2, 181
Kriging, 2, 151

laboratory course modules, 1, 7
Lamb-shift, 3, 163, 164
lambda dynamics, 3, 6
Lanczos technique, 3, 166
Langevin, 3, 140, 144, 145
LCCSD(T), 1, 54, 62, 71, 78
LCCSD(TO), 1, 64
lead optimization see structure-based lead

optimization
lead-likeness, 1, 159
Lennard–Jones (LJ) potential, 1, 93, 94, 116,

121
LES see locally enhanced sampling
level density, 3, 156
library enumeration, 1, 178
ligand binding, 1, 103; 3, 42, 43, 51
ligand-based screening, 1, 172–175, 178, 179
LigandFit, 2, 299, 300, 302, 303, 315–317, 319
LigScore2, 2, 161
linear interaction energy, 1, 117
Linear R12 methods, 2, 28
linear scaling, 2, 54, 55, 62, 64, 77
LINGO, 2, 146
link atoms, 2, 37
LJ see Lennard–Jones
LMP2, 2, 55, 60–78
local correlation, 2, 53, 77
local coupled cluster, 2, 54
local spin density approximation, 1, 11, 12
localized orbitals, 2, 53, 54, 57
locally enhanced sampling (LES), 1, 79
LOOPSEARCH, 3, 216
LUDI scoring function, 1, 123, 173
lysozyme, 2, 199

many-body perturbation theory, 1, 10
Maple, 1, 228, 230–232
MARVEL, 3, 157–162, 165
master equations, 1, 115, 116, 119, 120
Mathematical Association of America, 1, 215,

216
MaxFlux, 3, 16

maximum common substructure, 2, 160
maximum likelihood methods, 3, 44
MC see Monte Carlo
MCSCF see multi-configurational

self-consistent field
MCSS program, 1, 173, 174, 177
MD see molecular dynamics
MDM2, 2, 197, 200, 209–211
mechanical embedding, 2, 37
MEMBSTRUCK, 3, 220
Menshutkin reaction, 2, 263, 265–268, 275
metabolic stability, 1, 142, 143, 162

see also ADMET properties
metal surface, 3, 137
Miller indices h, k, l, 3, 91
MLR, 3, 67
MLR see multiple linear regression
MM see molecular mechanics
model applicability domain, 3, 68, 74
model scope, 2, 155
MODELLER, 3, 213
MODLOOP, 3, 216
MOE, 3, 214
MOEDock, 2, 299, 300, 317
MOIL, 3, 19
molecular descriptors, 2, 141, 144–146, 151; 3,

66
molecular dynamics, 2, 98, 99, 221–224,

227–230, 233–238, 243, 244, 246, 247; 3,
140

atomistic models, 3, 143
coarse-grained, 3, 138, 144
with electronic friction, 3, 143

molecular dynamics (MD) simulation, 1,
75–78, 217, 239, 242

molecular interaction field, 3, 66
molecular mechanics (MM), 1, 119–122
molecular modeling, 1, 59–130

atomistic simulation of nucleic acids, 1,
75–89

free energy, 1, 103–111, 113–130
nonequilibrium approaches, 1, 103–111
protein force fields, 1, 91–102
protein–ligand interactions, 1, 113–130
water models, 1, 59–74

TIP4P, 1, 62–64, 69–72
TIP4P-EW, 1, 64, 65, 69–72
TIP5P, 1, 65–67, 69–72
TIP5P-E, 1, 67–72

molecular orbital representation, 1, 229–231
molecular similarity, 2, 141
molecular simulations, 1, 177, 178, 239–244
Møller–Plesset form, 1, 10, 48–50
MOLPRINT 2D, 2, 145
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Monte Carlo methods, 1, 216–218, 239, 242,
247, 248

Monte Carlo simulation (MC), 2, 263–268,
270, 271, 273, 275

multi-configurational self-consistent field
(MCSCF) method, 1, 9, 10, 46, 47

multicanonical methods, 3, 48
MULTIMODE, 3, 166
multiple excitations, 1, 25
multiple linear regression (MLR), 1, 136
multiple sequence alignment, 3, 211–213
multipole approximations, 2, 62
multireference methods, 1, 51–53
MV, 3, 163
MVD1, 3, 164
MVD2, 3, 163

n-mode representation, 3, 167
N2O, 3, 162
N1.50, 3, 211
N7.49, 3, 211, 212
National Science Foundation (NSF), 1, 206,

207, 209
neural networks, 2, 181
nonadiabatic, 3, 158
nonequilibrium approaches

computational uses, 1, 109
experimental applications, 1, 108
free energy calculations, 1, 103–111
Jarzynski relationship, 1, 103–110
theoretical developments, 1, 108, 109

nonequilibrium work, 3, 45, 46
nonlinear models, 2, 152
normal coordinates, 3, 163, 167, 168
normal mode, 3, 159
NPXXY motif, 3, 212
NR, 2, 211
NSF see National Science Foundation
nuclear hormone receptor, 2, 211
nuclear motion computations, 3, 166
nuclear-motion, 3, 169
nucleic acids, 1, 75–89
nucleophilic aromatic substitution (SNAr), 2,

263, 264
nudged-elastic-band (NEB) method, 3, 16
nuisance compounds, 1, 162, 163, 190

objectives for teaching crystallography, 3,
86–89

OMTKY3, 3, 189
ONIOM, 2, 35
Onsager-Machlup action, 3, 17, 18
OPLS-VA/VA force fields, 2, 265, 273
OPLS/AA force fields, 1, 92–94, 97

optical interference, 3, 96
oral bioavailability, 1, 134, 138, 139, 159, 160
oral drug activity, 1, 159, 160
orbital domains, 2, 58, 59, 61–63
orbital representations, 1, 225–231
orthogonal coordinates, 3, 166
oscillating systems, 1, 232, 233
overfilling, 2, 154

p-glycoprotein, 1, 140, 160, 161
p53, 2, 197, 200, 209–211
PAO, 2, 53–62, 68
parallel computing, 1, 242
PARAM force fields, 1, 97
partial least squares (PLS), 3, 67
partial least squares (PLS) analysis, 1, 134,

135, 138
patterning, 1, 247
PB see Poisson–Boltzmann
PCM, 2, 266, 271, 275
PCM induced charges, 3, 181
PDB see Protein Data Bank
PDBbind, 2, 161
PDDG/PM3, 2, 263–265, 267, 268, 273–275
PDF inhibitor, 2, 288
periodic boundary conditions, 3, 181
permeability, intestinal, 1, 134, 135, 161
perturbation theory, 1, 10, 51, 52
perturbation theory (PT), 3, 156
PES see potential energy surface
pH-coupled molecular dynamics, 3, 4
pH-modulated helix-coil transitions, 3, 9
pharmaceutical chemicals

ADMET properties, 1, 133–151
drug discovery, 1, 155–168
structure-based lead optimization, 1,

169–183
virtual screening protocols, 1, 114, 120, 125

pharmacophore models, 1, 172–174
pharmacophores, 2, 182, 183
PhDOCK, 1, 173, 174, 177
physical chemistry, 1, 215–217
Pipek–Mezey localization, 2, 56, 68
pKa, 3, 4, 188
pKa prediction, 3, 4
plasma protein binding (PPB), 1, 142
PLOP, 3, 216
PLP2, 2, 161
PLS see partial least squares
PMF, 2, 161, 162, 263, 266
PMFScore, 1, 124, 125
Podcast, 3, 99, 118–121, 131
point group symmetry, 3, 94
Poisson–Boltzmann (PB) equation, 1, 117–122
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polarizable continuum model (PCM), 2, 264,
266, 271

polarization consistent, 3, 196
polymer-source chemical vapor deposition

(PS-CVD), 1, 232, 233
poly(organo)silanes, 1, 232, 233
positive desirable chemistry filters, 1, 158, 159
PostDOCK, 2, 157
potential energy landscape, 2, 221–224, 227,

229, 230
potential energy surface (PES), 1, 3, 4, 54
potential functions, 1, 241, 242
potential of mean force (PMF), 2, 263–268
PPB see plasma protein binding
PREDICT, 3, 219
predictive modeling, 1, 133–151, 240
PRIME, 3, 214
principal component analysis, 2, 233, 235, 236
privileged structures, 1, 158
probabilistic protein design, 1, 249, 250
problem-solving templates, 1, 228
process design, 1, 231, 232
projected atomic orbitals, 2, 53
projective models, 3, 144
proline, 3, 213, 216, 221
promiscuous compounds, 1, 162, 163, 190
protein A, 3, 22
Protein Data Bank (PDB), 1, 113, 117, 123, 124
protein design, 1, 245–253

degrees of freedom, 1, 246
energy function, 1, 246, 247
examples, 1, 248–250
search methods, 1, 247, 248
solvation and patterning, 1, 247
target structures, 1, 246

protein folding, 3, 22
protein force fields, 1, 91–102

condensed-phase, 1, 94–96
free energies of aqueous solvation, 1, 96
gas-phase, 1, 94–96
optimization, 1, 96–99
united-atom, 1, 97

protein kinases see kinome targeting
protein misfolding and aggregation, 3, 9
protein–ligand interactions, 1, 113–130
protein–protein interaction, 2, 197, 198, 200,

202, 203, 205, 211, 214, 215
PS-CVD see polymer-source chemical vapor

deposition
pseudopotentials, 3, 200

QED, 3, 158, 163
QM/EFP/PCM, 3, 181

QM/MM, 2, 35, 263–268, 270, 271, 273–275; 3,
182, 188, 190

QSAR, 3, 66
QSAR/QSPR models, 1, 133–151
quantum electrodynamics (QED), 3, 155
quantum mechanics, 1, 3–56

basis sets, 1, 13–15, 32, 33
bond breaking, 1, 45–56
computational thermochemistry, 1, 31–43
configurational interaction, 1, 9, 10, 48, 51
coupled cluster methods, 1, 10, 11, 37–40,

48–50, 52, 53
density functional theory, 1, 4, 11–15, 32,

33, 48, 49
electron correlation methods, 1, 8–11
generalized valence bond method, 1, 47, 48
Hartree–Fock method, 1, 4–11, 13–15, 20,

21, 46, 48–51
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