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PREFACE

The field of Physical Chemistry has now become widespread that it has invaded all other
branches of Science. This book is written not only to introduce the subject of Physical
Chemistry to the students who aspire to become chemists, but also for many other
students who will find the knowledge of subject matter essential at the later stages of
their carriers.

The author has made every effort to represent the text in a lucid and easy-to-understand
language. Significant time has been devoted for the development of the book so as to provide
a strong foundation of the subject to the students studying it for the first time. Due care
has been taken to ensure the coverage of recent trends in the field of Physical Chemistry.
He has followed his principal objective of presenting the fundamentals of the subject as
clearly as possible. For this reason, the book includes a number of worked out problems,
so that the students apprehend the concepts covered in the respective chapters.

The students using this book are assumed to have a basic knowledge on the subjects
of Chemistry, Physics and Calculus, as they usually gain in H.S. courses affiliated to
different education boards (W.B.C.H.S.E., 1.S.C., CBSE). Although the book is intended
primarily for the conventional undergraduate course in Physical Chemistry; however, it
covers more than that. It is believed to be equally efficient for more advanced courses and
as a general reference book for those working in the fields that require a basic knowledge
of Physical Chemistry.

AsnisH Kumar NaG
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THE EMPIRICAL

CHAPTER Gas Laws

1.1 INTRODUCTION: THE NATURE OF GASES

A gas may be defined as a homogeneous substance whose volume increases without limit
when the pressure on it is reduced continuously, the temperature being kept fixed. Gases are
further characterised by the fact that, when different gases in any proportion, whatsoever,
are brought into contact, they diffuse rapidly into one another and form a homogeneous
mixture. Temperature also has a profound influence on the volume of the gas.

The gaseous state is also characterised by the fact that, it has no bounding surface, and so,
it has no definite shape; it takes the shape of the vessel in which it is contained. However,
there is an important difference between a gas and a liquid. While the former has no surface
at all, the latter has a surface. This places a limit on the volume it can occupy. Under
ordinary conditions, gases are about one-thousandth as dense as liquids; nevertheless,
there are conditions where the densities of the two states become comparable. We are often
inclined to think that air weighs nothing; this is far from truth. If a cylindrical column of
air, same in dimension as that of the Eiffel Tower (built wholly of steel) is imagined, then
this column of air weighs more than the Eiffel Tower itself.

1.2 THE GAS LAWS

A very striking fact about the gases is that, independent of their chemical nature, they
approximately obey certain very simple laws with regard to their physical properties. These
are: (1) Boyle’s law (2) Charles’s or Gay-Lussac’s law (3) Avogadro’s law (4) Dalton’s law of
partial pressure, and (6) Graham’s law of diffusion/effusion.

1.2.1 Boyle’s Law

When the pressure of a gas is increased, at a fixed temperature, the volume decreases;
a simple relation between the volume and the pressure was discovered by Robert Boyle
(1662). He found that at a constant temperature, the volume of a definite mass of a gas is
inversely proportional to the pressure,i.e.,
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1
Voo 7 (for a given mass of a gas at a fixed temperature)

= PV =K, (for a given mass of a gas at a fixed temperature) (1.1)

where K| is a constant depending upon the temperature and the mass of the gas and, also
upon its nature. If V; is the volume of a given mass of gas at pressure P; and, V, is the
volume at pressure P,, temperature remaining the same, then

PV, =K, =P,V,
= P,V =P,V, (for a given mass of a gas at a fixed T) (1.2)

This P-V relation is illustrated in Figure 1.1. Each curve corresponds to a given fixed
temperature, and is called an isotherm (‘iso’ means ‘the same’). The early experiments
were crude, and we now know that gases obey this equation in the limit P — O and T' — o=.

The understanding of the law is very clear. The pressure exerted by a gas is due to the
bombardment of the molecules on the walls of the container. If the volume is doubled, the
number density of the molecules is halved and therefore, the number of impacts on a unit
area of the wall is also halved, and therefore, according to the Boyle’s law, the pressure is
also halved (everything at a fixed temperature).

Pressure

2.0
15 I
E ©
s
Q10 g ,,,,,,,,,,,
o
P 1
= 1
0.5 300 A i
& heilINLINLTLTS
200 & |
¢ :
100 & T
5 2 ) i
V (dmy3 10 15 > Volume | Volume —
(a) (b)

Figure 1.1 (a) The pressure-volume dependence of a perfect gas at different temperatures
(b) The projection of the ideal gas P-V-T surface onto the P-V plane. (T, > T;> T, > T)).

Another way to illustrate the Boyle’s law is to plot 1/P against V (Figure 1.2). The advantage
of this plot over the P-V plot is that, the linear relationship makes it easier to see any
deviations from the law. For an ideal gas the plot of (1/P) versus v should be a straight line,
passing through the origin.
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Figure 1.2 A plot of 1/P against V for Boyle’s original data. This linear plot,
passing through the origin, shows that PV = constant.

Example 1.1

A given mass of gas occupies a volume of 120 mL at a pressure of 2.5 atm at a certain
temperature. By how much the volume would be changed if the pressure were reduced to
1.5 atm under the isothermal condition?

Solution Applying the Boyle’s law, we write
(1.5 atm) V = (2.5 atm) (120 mL)
R Vo 25 atm )(120 mL)
(1.5 atm)
= V =200 mL
The volume is therefore increased by (200 — 120) mL, i.e., 80 mL as a result of the pressure

change.

4[ Test Problem 1.1 ]|

A spherical bubble of radius 1 x 107 cm is formed deep inside the sea, where the pressure is
3.375 atm. Calculate the radius of the bubble when it comes up at the sea—air interface, where the

pressure is 1 atm. Assume the isothermal condition.
(Ans: 1.5 x 1072 cm)




1.4 Physical Chemistry

1.2.2 Charles’s Law; Gay Lussac’s Law

The variation of the volume of a given mass of a gas with temperature, at a fixed pressure,
is expressed by this law. The law states that, at a fixed pressure, the volume of a fixed mass
1 . o
——— of its volume at 0°C for every degree its rise
273.15

(or decrease) in temperature. If V, is the volume of a definite mass of gas at 0°C, then the
volume V, at ¢°C is given by

of a gas increases (or decreases) by

V.
V,=Vy+| —2— |t 1.3
Lo (273.15) (13)

An alternative form of the law may be derived. If V; and V, are the volumes of a fixed mass
of a gas at two temperatures ¢; and ¢,, measured at the same pressure then, it follows from
Eq.(1.3)

Vi=Vy|1+ h
273.15

and Vo= Vo 1+ Ly
273.15

and finally,

V, _ (273.15+¢) (1.4)
V, (273.15+¢,) '

1.2.3 Defining a New Scale of Temperature

Let us construct a new scale of temperature in which one degree is of the same size as one
degree centigrade and, the zero is —273.15° below the zero of the centigrade scale. This
means that the zero on this new scale is at —273.15°C (Figure 1.3).

Temperatures T on this new scale are then obtained by adding 273.15 to the celsius
temperature ¢, viz.,

T/K = t/°C + 273.15°C (1.5)

Temperatures on this new scale of temperature are called absolute temperatures because,
there are reasons to believe that the ‘zero’ on this new scale is the lowest conceivable
temperature. The symbol K is used to represent the absolute temperature, in honour of
Lord Kelvin (Willian Thomson), who deduced an exactly the same scale of temperature
from thermodynamic considerations and, which is shown to be independent of the
thermometric property of the substance used. It is hence, called the Kelvin scale of
temperature.
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Figure 1.3 A plot of volume against temperature for argon, nitrogen and oxygen. The individual curves show
the effect of a change in molar mass for the three gases. In each case one kilogram of gas is used at
1.00 atmosphere.

It may be noted that, according to the Charles’s law, the volume of a gas should be zero
at the absolute zero, i.e., at —273.15°C. However, apart from the fact that the gas would
have liquefied and/or solidified, before this temperature is attained, it will be seen later
that, this law fails to hold at such low temperatures.

Making use of this definition of the Kelvin scale of temperature, Eq. (1.4) changes to

W_ 4
= % =K, (for a fixed mass of a gas at a fixed pressure) (1.6)

where K, is a proportionality constant, depending upon the pressure and the mass of the
gas and, also upon its nature. This equation may also be stated as: the volume of a given
mass of a gas, at a fixed pressure, is directly proportional to the absolute temperature.

According to this law, a plot of V versus T for the given mass of a gas at a fixed pressure
will be a straight line passing through the origin with a slope K, (Figure 1.4a). Such a
line is called an ISOBAR. For each pressure, a different isobar is obtained. Higher the
pressure lower is the slope K, (why?). The variation of the pressure of the fixed mass of a
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gas with temperature (at a fixed volume) is also shown (Figure 1.4b). These variations can
be collectively illustrated as shown in Figure 1.5.

N Q
g g
5 @
[0}
S &
D‘:ecreasi:ng Decreasing
pressure, p volume, V
xtrapolation < ‘Extrapolatian
0 B~
0 0
Temperature, T Temperature, T

The variation of the volume of a fixed amount of The pressure also varies linearly with the
gas with the temperature at constant pressure. temperature at constant volume and extrapolates
Note that in each case the isobars extrapolate to zero at T'= 0 K (-273°C).

to zero volume at T'= 0 K, or ¢t = -273°C.

Figure 1.4 (a) The V-Tisobar at different fixed pressures (b) The P-T isochore (const V) at different fixed volumes.

Figure 1.5
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The variations, for a given mass of gas, of P and V with temperature. Compare this figure with Figure 1.6.
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1.2.4 The Combined Gas Law

The laws of Boyle and Charles may be combined to get an equation of state, which represents
the relationship among the parameters P, T and V for a given amount of a gas.

Let the gas hasinitially a volume V; at pressure P, and temperature T';. Let these parameters
are changed to Vj, Pyand T}. This change can be made in two steps.

At fixed T=T, [ ’ ] At fixed pressure [ ]
|:Vvl ’ R ’ Tl ] P, is changed to Py. v ’ Pf ’ Tl Pr, the temperature is changed Vf ’ Pf ’ Tf
Volume becomes V’ to T ; Volume changes to V

Applying the Boyle’s law to the first step, we write

PV
PV, =PV’ = V= EV) 1.7
Py
Then applying the Charles’s law to the second step, we write
vV (T'v,)
LAa = V=—L1 (1.8)
T. T; T;
from these equations, we get
V. PV
ing =L 4 PV _ K(constant) (1.9)
T. T; T

which shows that, for the given mass of a gas, any change in temperature and/or pressure
will be accompanied by an adjustment of the volume, so that the quotient (PV/T) remains
unaltered. This is demonstrated in Figure 1.6.

Isobars

Isotherms
T3>Tr>T4

Isochores

Pressure ——»
T -

Figure 1.6 P-v-T surface for an ideal gas, showing the isothermals, isobars and isochores. Plot of Equation 1.9.
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Example 1.2

A given mass of gas occupies 240 mL at 15°C and 1 atm. At what temperature will the
volume be 360 mL, pressure remaining the same?

Solution
Using the Charles’s law we write
T _ 288K
360 mL 240 mL
N 7= 288K geh )
(240 ml.)
= T=432K

Test Problem 1.2 ]|

A balloon is inflated to a volume of 1 L at room temperature (27°C) and atmospheric pressure. To
what volume it will shrink if it is kept inside a refrigerator, at the same pressure. The temperature
inside the refrigerator is —3°C. [Ans. 900 mL]

Example 1.3

A given mass of a gas occupies 11.2 L at 0°C and 1 atm. What will be the final pressure if
it is expanded to 22.4 L by heating it to 100°C?

Solution
Using the combined gas [Eq. (1.9)]

p_ [BV)[( L) _ Qatm12 ) 373 K)
RN Q73 K) (224 K)

1

= Pf= 0.683 atm

4‘ Test Problem 1.3 ]|

Starting out for a trip from the mountains (=5°C) you inflate your automobile tyres to arecommended
pressure of 3 X 10° Pa. As you drove into the seashore, the temperature rises to 38°C. Assuming
that the volume of the tyre has increased by 2%, what would be the final pressure of the tyres? The
manufacturer recommended that you should not exceed the pressure by 10%. Have you crossed
the limit? If yes, by how much? [Ans: +13.67%]
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1.2.5 The Ideal Gas Equation

The value of the constant K in Eq. (1.9) depends upon the mass and the nature of the gas;
but, the introduction of the Avogadro’s law makes a remarkable simplification.

Avogadro’s Law Equal number of moles of all gases will occupy the same volume at a
given temperature and pressure. (In the year 1811 !)

4 B\

Mole: An Official Definition by IUPAC

A mole of a substance is defined as that amount of the substance which contains as

many number of stable elementary entities as there are atoms in 0.012 kg of C-12

isotope. An essential feature to note is that, it is not just a number but, a quantity of

a substance. Recently, the ‘mole’ has been included as one of the fundamental units of

our measurements. It is the unit for measurement of the amount of the substance. The

number of elementary units present in a mole is the Avogadro’s number 6.022 x 10%.
L We say, the Avogadro’s constant N, = 6.022 x 102 mol .

Example 1.4

How many moles and molecules are there in 48 g oxygen?

Solution

The molecular weight of oxygen is 32; i.e., its molar mass is 32 g mol™. Therefore, the
number of moles (n) in 48 g oxygen is

mass 48 g

n = =
molar mass 32 ):4 mol !

=1.5 mol.

The number of oxygen molecules N present is then
N =nN, = (1.5 mol) (6.022 x 10%* mol™)
= N =9.033 x 10%

4' Test Problem 1.4 I

How many moles and atoms of sulfur are there in an 8 g sample of sulfur? After a controlled melting
and re-crystallization, each set of eight sulfur atoms unite together to form a unit S. If the entire
sample turns into Sg, then how many moles of Sy will be formed? What will be the molar mass?

[Ans: 0.25 mol; 1.51 X 10 atoms; 0.03125 mol; 256 g mol'1]
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Hence, according to the Avogadro’s law, for a mole of any gas, (PV/T) will be equal to a
universal constant R, known as the gas constant. Its value will be the same for all gases.
The general equation of state for any gas would be then

PV _ g = PV=RT (1.10)

T
where V is the molar volume at the pressure P and temperature 7. If v is the volume for n
moles, then the molar volume is V = v/n; we then write P(v/n) = RT
or, Pv =nRT (1.11)

This is known as the ideal gas law. Another useful relation can be obtained by rearranging
the above equation:

p-nrr.(W)RL_ R
v v M
MP
= — 1.12
= P= v (1.12)

where W is the mass of the gas with molar mass M and p is the density.

This equation is of importance in
(i) calculating the molar masses from density measurements and,
(i1)) determination of pressure high up in the altitudes by measuring the density and
temperature.

Example 1.5

Find the density of NH; gas at 100°C and 1600 mmHg. Also calculate the number of
molecules per unit volume.

Solution
The molar mass of NH;is 17 g mol ™. Using Eq. (1.12)

p_Mp_(17gmcrl/f)(1600gmH§) 1 ptr ( 1 J
RT  (0.082 L atm K mol?) | 760 mmHg || 373 K
= p=117gL™"!

If m be the mass of each molecule and n be the number of molecules per unit volume
then,

p=mn

£y Q1T £17)(6.022 x 10% mmol ™)
M 17 ¢ mot™

= n =4.14 x 10?2 molecules L!

= n=2-
m
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4‘ Test Problem 1.5 |

A cylinder filled with air is connected to a powerful vacuum pump to evacuate it and, the final
pressure registered is 1 x 10~ mm Hg (an excellent vacuum condition) at 27°C. Calculate the
number of molecules present per cm® of the cylinder. Can you find any of the postulates of the
kinetic theory of gas with this result?

(Ans: 3.22 x 10° molecules cm™)

1.2.6 The Absolute Zero of Temperature

19V
The coefficient of volume expansion o = (V?) , measured for a number of gases, at
P

relatively high temperature and under extremely low pressure (this is the condition at
which almost all gases behave ideally) has been found to be 0.0036609 (°C)™'. Anticipating
that V=0as T — O K, we make use of the equation, V= V(1 + at), where ¢ is in (°C) scale.
This implies that, at the absolute zero of temperature

1 1

1+at=0 = t=—=—-———
o 0.0036609

The absolute zero is therefore — 273.15°.

Two different standard conditions are generally used to calculate different thermodynami-
cal properties:
(i) Standard Temperature and Pressure (STP): The temperature is 0°C and the
pressure 1 atm.
Under this condition, the molar volume of an ideal gas is 22.414 L.
(i1)) Standard Ambient Temperature and Pressure (SATP): Here, the temperature
chosen is 298.15 K and the pressure of 1 bar (that is, exactly 10° Pa).
Under this condition, the molar volume of an ideal gas is 24.787 L.

°C=-273.15°C

1.2.7 Evaluation of the Universal Gas Constant R
The most general definition of R is given by Eq. (1.11)
Ro B0
nT
So R has the dimensions of (pressure x volume) divided by the (no. of moles x Kelvin

temperature). The dimensions of pressure are force x (area) and area is (length)2.
Hence,

Pressure = force x (1eng‘|;h)_2



1.12 Physical Chemistry

Since the volume has the dimensions of (length)® and, the temperature is expressed in
degrees, it follows from the above relations that

_ (force)(length)2(length)® B (force)(length)
" (degree)(number of moles) degree)(number of moles)

The product of force and length is energy; so

energy

= (1.13)
(degree)(number of moles)

Itis thus seen that the proper dimension of R is energy per degree per mole. The temperature
is always expressed in kelvin but, the energy may be expressed as follows:
(i) Energy in Litre-Atmosphere

_ (1atm)(22.414L)
T (1moD(273.15K)

0.08205 L atm K *mol™*

(i) Energy in erg (CGS) or joule (SI)
1 atm is equivalent to 76 cm of Hg, whose density is 13.595 g em™ at 0°C.
1 atm = hpg = (76 cm) (13.595 g cm™) (980.66 cm s72)
= 1atm =1.0132 x 10° dyn cm™2; more accurately
1 atm = 1.01325 x 10° dyn cm™
At 0°C and 1 atm, 1 mL = 1.000027 cm?®. Therefore, in this system

p_ (10132x10° dyn em™®) (22414 mL) (1.000027 cm? ]
(1 mol)(273.15 K) 1mL
R =8.314x10" erg K mol™
or, R =8.314 JK ! mol™!
or, R =8.314 Pam® K ! mol™

Again, 1 atm = 1.01325 x 10° Pa = 1.01325 bar (- 1 bar = 1 x 10° Pa)
Therefore, we also have

_ (1.01325 bar) (22.414 dm®)
- (1 mol) (273.15 K)

R

or, R =8.314 %1072 bar dm® K™ mol™

(iii) Energy in calorie
It is known from the joule’s experiment that 1 cal = 4.184 J



The Empirical Gas Laws 1.13

Therefore,

1 cal
R=(8314 ' Kmol™")| ———
(8.314 77 K mo )[4.1841]

= R=1987cal K'mol™ or, roughly
R=2cal K mol™?

1.2.8a Mixture of Gases: Dalton’s Law of Partial Pressure

When different gases are introduced into a container, they diffuse into one another and,
form a homogeneous mixture. The total pressure exerted by this gas mixture in a given
volume at a fixed temperature is given by the Dalton’s law of partial pressure. The law
states that the total pressure of the mixture of gases is equal to the sum of the partial
pressures of the constituent gases. The partial pressure of each gas in the mixture is defined
as the pressure the gas would exert if it alone had occupied the same volume as that of
the mixture and, at the same temperature. Of course, in order for the law to be obeyed,
no chemical reaction between the component gases may occur and, the component gases
must behave ideally. Just to get an idea, let us take n; mole of a gas in a flask of a definite
volume V at temperature 7. The pressure exerted by the gas would be

pl = (nl RT)/V

If now, n, mole of a second gas be taken separately in the same flask (same V) at the same
temperature T, the pressure would be

p2 = (n2 RT)/V
Similarly, if n; mole of another gas be taken separately in the same flask at the same
temperature, the pressure would be

p3 = (n3 RT)/V

Now, if all these three gases of the same number of moles (i.e. nq, ny, n3) are introduced
into the same flask, then the pressure of the gas mixture P_ . (measured at the same 7)) is
given by the Dalton’s law as

mix

P,y =p1+Ds+D3

RT nRT
P.. = =t 1.14
= mix = (1 + g + ng) v % ( )

n, being the total number of moles of the mixture.
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Another form of the equation may be obtained as

P . d P. = A 1.15
P n, X15 an mix sz ( . )

mix

where x; = the mole fraction of component 1 in the mixture; the sum is taken over all the
components.

Example 1.6

A gas mixture consists of 10 g Ar (at. wt. 40) and 2 g He (at. wt. 4). The total pressure is
720 Torr. Calculate the partial pressure of the two components (1 Torr = 1 mmHg).

Solution
10 g .
The number of moles of Ar, ny,, = ——=—— = 0.25 mole and that of He is,
40 g mol”
2
Ne = —’gA = 0.5 mole. The total number of moles in the mixture is:
4 g mol

n, =N, + Ry, = 0.75 mole

The mole fractions of the two gases are:

xAr:nArzo.%;noié:l

n, 0.75 mole 3
. =nHe:0.5;mI€:g
He ™ n,  0.75 mole 3

The partial pressures of the two components are then

Dar=2%s.P = %(720 Torr) = 240 Torr

and DPHe = XpP = % (720 Torr) = 480 Torr

Example 1.7

250 mL of gas A measured at 0.8 atm and 75 mL of another gas B at a pressure 8 atm, both
measured at the same temperature, are introduced into a vessel of 2 L capacity. What is
the total pressure of the mixture?

Solution

The partial pressure of gas A is the pressure the gas A would exert if it alone occupies the
total volume of 2 L. By Boyle’s law

_ (250 pal0) (0.8 atm)
Pa= (2000 paT,)

=0.1atm
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Similarly, the partial pressure of gas B is

_ (75 mL) (8 atm)
(2000 mL)

=0.3 atm

The total pressure, which is the sum of the two partial pressures is then
P=p,+pp=(0.1+0.3) atm = 0.4 atm

Example 1.8

A gas collected over water at 25°C becomes saturated with water vapour. The measured
volume is 190 mL at a total pressure of 740 Torr. The vapour pressure of water at 25°C is
24 Torr. Calculate the volume the dry gas would occupy at a pressure of 760 Torr (1 atm).

Solution

The vapour pressure of water (24 Torr) will be the partial pressure of water vapour. So, the
partial pressure of the dry gas is

p = (740 — 24) Torr = 716 Torr

This is the pressure of the dry gas when it occupies the entire volume of 190 mL. If this
volume becomes V at 760 Torr, then by Boyle’s law

V(760 pata Hg) = (716 mam Hg) (190 mL)
. V=179 mL

Assuming that the dry air contains 79% N, and 21% O, by volume, calculate the density
of moist air at 25% and 1 atm pressure, when the relative humidity is 60%. The vapour
pressure of water at 25°C is 23.76 mm Hg.

[Hint: Relative humidity is 60%; this means that the partial vapour pressure of water in
the atmosphere is PHO = (23.76 Torr) (0.6) = 14.25 Torr.]

The sum of the partial pressures of O, and N is then:
(po, + px,) = (760 — 14.25) Torr = 745.75 Torr.

The partial pressure of N, is then, Py, (745.75 Torr) (0.79) = 589.14 Torr
and, that of Oy is po, = (745.75 Torr)(0.21) = 156.61 Torr.

The mole fractions of the gases are then:

14.25 589.14
xHZO = W = 0019, .’)CN2 = W = 0775,

15661

Xo, =0.206 (check that, Xp,0 + %o, + Xy, = 1).
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The molar mass of air is then
M, =0.019(18 g mol™) + 0.775 (28 g mol ™) + 0.206(32 g mol™)
= M,;, =28.6 g mol™

Then density is

oo MP_ (28.6 ¢ ol 1) (1 atm)
RT  (0.082L atm K mol ) (298 K)

=1.17 gL!

1.2.8b The Concept of Partial Pressure is not Just Mathematical; It
has a Physical Significance.

Palladium foil

Palladium foil 1 atm =76 cm Hg
\\ 1 atml= 76 cm Hg \‘:
Ha(9) Ha(g) at 76 cm H
P =76 cm Hg 2(9)*' ’
vV, T. N2(g) at 76 cm Hg
vV, T.
(a) (b)

Figure 1.7

It is a well known fact that Hy(g) can pass through a palladium foil but, the others
cannot. The mechanism for this passage of Hy(g) through the palladium foil is very much
intersecting; but here, we want to focus to another phenomenon, which would give us the
realization that the concept of partial pressure of a component in a gas mixture is really a
reality.

Consider Figure 1.7a, where a cubical box of a fixed volume V and, at a fixed temperature
T is taken. The box is first filled up with Hy(g) at 1 atm. As shown in Figure 1.7a, a
manometer is attached to the box; the inside mouth being sealed with a thin Pd-foil. The
other end is open to the atmosphere (1 atm).

As H,(g) can pass though the Pd-foil, at constant temperature, the equilibrium of
H,(g) across the Pd-foil demands, equality of the pressure of Hy(g); both of them are 1
atm. The height of the levels of Hg in the two limbs of the manometer will be the same
(Figure 1.7a).

Some volume of Ny(g) is then introduced into the same vessel (volume is fixed), at the same
fixed temperature T, at 1 atm pressure. Ny(g) cannot pass through the Pd-foil. Amazingly,
it is found that, the heights of the Hg level in the two limbs remain the same; nothing
changes.
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The reason is very clear; to attain the equilibrium at a fixed temperature, the partial
pressure of Hy(g) inside the box must be equal to the pressure of Hy(g) on the other side of
the Pd-foil; although the total pressure of the mixture is now 2 atm.

This proves convincingly that the concept of partial pressure of a component in a mixture
is really a reality.

This physical concept, which is a reality, about the partial pressure of a component gas in
a mixture of gases, I have found in the famous book of Physical Chemistry by Gilbert W.
Castellan (3rd edition); slightly I have changed the methodology; nevertheless, I advise all
the readers of this work to go through what has been written there.

1.2.8¢ Amagat’s Law of Partial Volume

This law, which is very similar to the Dalton’s Law of partial pressure, states that the
total volume of a mixture of non-reacting gases is the sum of the partial volumes of the
constituents of the mixture, at a fixed temperature, i.e.,

Vzvl+v2+v3+~-=zvi

where V is the total volume of the mixture and v, is the partial volume of the constituent
7’. The partial volume i of a constituent 7’ is defined as the volume occupied by the pure
constituent 7’ at the total pressure and temperature of the mixture.

From the ideal gas equation of state, we have

RT RT
v, =1y ?; Uy =Ny ?---etc,
where n,, ny, ... are the number of moles of the components 1, 2, ... respectively.
Therefore,
(U1+Uz+):(n1+n2+)%:n%zv (1.16)

n being the total number of moles of the gases in the mixture; V is the total volume of the
mixture. Moreover,

RT
v, =n1?:%v = v =%,V (1.17)

and, similarly, v, =x,V (1.18)
It is noteworthy that these equations are exactly equivalent to the equations of partial
pressure.

Example 1.9

A container of volume 4.157 x 10~ m® maintained at 300 K contains 1.4 x 1072 kg of N,
and 3.2 x 102 kg of O, (it is assumed that at this temperature of 300 K, N, and O, do not
react). Calculate the mole fraction of each gas in the mixture, their partial pressures and,
the total pressure of the gas mixture.
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Solution

W, 1.4x107
Number of moles of Ny, ny, = ALE }Qé = 0.5 mole

- My, 28x107 kg mol™

W, 3.2x107% ke

Number of moles of O,, n, = = =1mole
27% W, 32x107 ke mol!
Total number of moles in the gas mixture is then
np =ny, +no, =1.5mole
The mole fractions of the gases are then
N, 05 1 o, 1
xN2— __=_’x02_ -
np 1 3 np 1.5

Check that: xy, +x,, =1.

The total pressures of the mixture is
RT (1.5 yacl) (0.082 ¥ atm KT mol ') (300 K)

= nT =
\%4 103 Z
(4.157 x 1073 p®) [ J
1)aﬁ/

Pr

= P;=_8.88 atm

The corresponding partial pressure are then:

Py, =xy, Pr= % x 8.88atm =2.96 atm

2

and P, =x, P, =ix8.88atm =5.92 atm
o} 0, 777§

2

Total pressure = 8.88 atm.

This problem is an application of Dalton’s law of partial pressure.

Example 1.10

1.4 x 102 kg of N, and 3.2 x 1072 kg of O,, each taken at 1 atm and 300 K, are mixed
together, so that the pressure of the mixture is also 1 atm and temperature 300 K.
Calculate the partial volume of the components, the total volume, and the mole fraction
of the components.
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Solution
1.4x1072

The number of moles of Ny, 1y, = 2.8 10" /ké = = 0.5 mole
. mo

at 1 atm and 300 K.

3.2x107 ke

=1mol
32x107° kg mol ™

The number of moles of Oy, ng, =

at 1 atm and 300 K.

The partial volume of N, is

RT (0.5 pol) (0.082 L atm KT mol™T) (300 K)
Ny TN, Tp T 1 atm

= vy, =12.3L

The partial volume O, is

RT (1 zaol) (0.082 L atm KT mol™") (300 K)
UO =7’LO =
2 2 P 1%

—% U02 =24.6 L

According to the law of partial volume, the total volume
V, =y, +v0,)=(12.3L+24.6L)=36.9L

The mole fractions are then [using Eq. (1.18)]
Wy, 123K

=N _ ~0.333
N T, 369 K
Vo, 24.6 K
and X0y = U_t = 36.9 Z =0.667

The sum of the XN, and X0, is 0.333 + 0.667 = 1
This problem is an application of the Amagat’s Law of partial volume.

(Students are advised to compare and study Examples 1.9 and 1.10.)
Example 1.11

2 x 102 kg of Hy, and 3.2 x 102 kg O, are taken in a closed vessel of 1 x 102 m? vessel, at
200°C. Calculate the total pressure of the mixture. If a spark ignites the mixture, what
will be the final pressure?
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Solution

2x107 kg

2x107° /ké mol ™

2x107
The number of moles of O,, n,, = 323 1;_3 lé = 1 mole
X mo

The total number of moles of gases in the mixture is then n, = (10 + 1) 11 moles.

n
Ty 10010 650

}x - = -
2 n, 11gel 11

The number of moles of H,, ny, = =10 mole

The mol-fraction of H

The mol-fraction of O,, x, = Bo, 1mdl 1 _ 0.0909
2 np 11mol 11
So that xy, + %, =1

The total pressure is

RT
Pp + Py, + By, =(ng, + n02)7

104 1) el 8.314 J BT mal™") (473 K)

1x1072 m?

10 x8.314 Nm (473) s 1x(8.314 Nm) (473)
1x102 m? 1x102 m?

= Pr=(3.93 x 10° Nm™) + (0.393 x 10 Nm™)
P;=4323Pa
The partial pressures are then: P, = 3.93 x 10% Pa and, Po, = 0.393 x 10° Pa
On sparking, the reaction which takes place is
2H, + 0, - 2H,0
All the three constituents are in the gas phase, since the temperature is 200°C.

According to our problem, 1 mole of O, will react with 2 moles of H,; producing 2 moles
of Hy,O and 8 moles of H, will remain unreacted. Therefore, the total number of moles of
gases (Hy(g) and H,O(g)) is (8 + 2) = 10 mole

nRT _ (10 yuol) (8.314 J K™ mol™) (473 K)

Vv 1x1072 m?

The final pressure is then: P =

= P;=3.93 x 10° Pa
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1.2.9 Diffusion of Gases: Graham's Law

The tendency of any substance to spread uniformly throughout the space available to it is
called diffusion. Diffusion is exhibited by gases, liquids and, even by solids; but it is most
rapid for gases. If a wide-mouthed jar of hydrogen is placed mouth to mouth with a jar of
oxygen, it will be found, after a short time, that the two gases spread uniformly throughout
the two jars. And, this will happen irrespective of whether the lighter gas is at the top or
at the bottom. It is true that gravity has some influence on this distribution but, the effect
is quite negligible unless a long column of gas, e.g., the atmosphere, is considered. A very
similar process is the passage of the molecules of a gas through porous media or through
small holes; this is effusion.

The law governing such diffusion or effusion was first stated by T. Graham (1829). The
law states that at constant temperature and pressure, the rate of diffusion (or effusion)
varies inversely as the square root of the density or the molar mass of the gas. If r; and r,,
represent the rates of diffusion of two gases under a given condition of P and T, whose
densities are p; and p,, respectively, then

n_ [P (1.19)
) P1
As seen in Eq. (1.12), at a given P and T, the density p is directly proportional to the molar
mass of the gas. Equation (1.19) may therefore, also be written as

n_ M, (1.20)
b M,
where M, and M, are the molar masses of the two gases. Equations (1.19) and (1.20) also
reflect that lighter molecules will diffuse more rapidly than heavier gases. This fact was
utilized in the separation of isotopes of different elements. The greatest success has been

achieved in the separation of isotopes of hydrogen. The ratio of the rates of diffusion of
hydrogen to deuterium is /2 :1. It is also being said that the separation of (335 u) and
(338 u) in the making of the atomic bombs had been done by this method of diffusion.

Example 1.12

The time required for a given volume of N, to effuse through an orifice is 35 s. Calculate
the molar mass of a gas, an equal volume of which requires 50 s to effuse through the same
orifice under identical conditions.

Solution
Let the volume of the gas that effuses be v. Then, according to the Graham’s law

w/35s) [ M
(v/508) |28 g mol™

= M =57.14 g mol™!
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Test Problem 1.6 |

The time required for a definite volume of oxygen to effuse through an orifice was found to be
135 s. Under exactly the same conditions, the same volume of another gas took 236 s to pass
through. What is the molecular weight of the gas? (Ans: 97.8)

Example 1.13

A teacher enters a class room from the front door while a student from the back door.
There are fifteen (15) equidistant rows of benches in the class room. The teacher releases
N,0, the laughing gas, from the first row, while the student releases the weeping gas,
CgH;;0Br (Mol. wt 179) from the last row. At which row, the students will starts laughing
and weeping simultaneously?

Solution

From the law of diffusion

(rate)y,o (179 9
(rate)c, u,,08r 44

Therefore N,O diffuses at a rate twice as that of CgH;;OBr.

Letn bethenumber of row from the front where the studentslaugh and weep simultaneously,
then

" __9 = n=30-2n = 3n=30
15—-n

and finally, n = 10.

1.2.10 Limiting Density
From the equation of state of an ideal gas we have Eq. (1.12)

M=LRr
3

For a given gas at a fixed T, it is expected that the ratio (p/P) should be a constant.
Experiments however, showed that, for any gas the ratio (p/P) varies with pressure at
a fixed T. This is due to the non-ideality of the gases. Such a plot is shown for NH; in
Figure 1.7, at 273.15 K. It is found that at pressure below 1 atm, the plot is very close to a
straight line. This behaviour has also been observed for almost all gases. Hence, the line
can be extrapolated to P = 0. In this limit, the gas behaves ideally. From Figure 1.7, it is
found that for NH; at 273.15 K (0°C)

lim (ﬁj =0.75988 g L' atm™

P>o\ P
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0.769 —

Tl

0.766 —

0.763

.-~ _0.75988
0760 "] | | |

0.2 0.4 0.6 0.8
Pressure (atm)

Figure 1.7 Extrapolation of gas densities
Using the standard value of R(0.08205 L atm K mol™) and Eq. (1.12), we find

M= (0.75988 g ¥. " atm )(0.08205 ¥ atm KT mol™)273.15K)

= M =17.03 g mol™!

which gives the accurate molar mass of ammonia. This method of determining the
molecular weight is known as the method of limiting density.

1.2.11 Relative Density (Vapour Density)

The density of a gas measured relative to that of H, at a given P and T is called its relative
density (older name is vapour density).

The relative density of gas D = P , where p and py;_ are, respectively, the densities of the
Hy

Pu,
gas in question and that of H, (both being measured under the same conditions of P and
T). Using Eq. (1.12), we get

D= =

(1.21)

MM
2

where M and MH2 are the molar masses of the gas and H,, respectively. Note that D is

dimensionless as it is a ratio of two molar masses.
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1.2.12 Determination of Gas Density
There are various different methods for the determination of the density of gases. Most

of them are now of historical interest. In the following, we shall look into some of them,
which still are in use.

1.2.12.1 Dumas Method

Let us understand the method with an experimental result (27°C). A bulb made of glass is
weighed (obviously filled with air); the weight is 52.30 g. Some amount of chloroform (whose
density is to be measured) is taken, in the liquid phase, in the bulb and, is heated at least
20°C above the boiling point of the liquid (say, 100°C). It is to be ensured that, complete
vapourisation took place and, which has expelled all the air from the bulb, so that, finally
the bulb contains only the vapour of chloroform. The weight is taken (after cooling, with the
bulb stoppered properly to 27°C). The weight of the bulb filled with the vapour is 52.96 g.
Now the bulb is filled with water (27°C) and weighed. This weight is found to be 302 g.
The atmospheric pressure is 752 Torr and, the density of air under ordinary conditions is
1.29 gL.!. We now calculate the density of chloroform vapour as follows:

Mass of water in the bulb = mass of (bulb + water) — mass of (bulb + air)
=(302-52.3)g=249.Tg=~250¢g

Considering the density of water as 1 g cm™, the volume is v = (250 g)/(1 g cm™) = 250 cm?.

The mass of air in the bulb is (250 cm?®) (1.29 gL.™!) = 0.323 g. Therefore, the mass of the
bulb is (52.30 — 0.323) g = 51.977 g.

The mass of the chloroform vapour in the bulb is then (562.96 — 51.977) g = 0.983 g. We now
have the data set
w=0.983g;,V=025L;T=373K;P =752 Torr.

Using the ideal gas Eq. (1.12)

oRT (0.9832)(0.082 ¥ atfi K mol™) (373 K) . 760 Tort
vP (0.25 ¥) (752 Tofr ) 1 atm

= M =121.54 g mol ™!

The molecular weight of chloroform is then calculated to be 121.54.

M =

1.2.12.2 Victor-Meyer Method

In this method, a known amount of the sample (taken in the liquid phase) is vapourized
completely in a closed flask and, an equal volume of air is expelled. This expelled air is then
collected and the volume is then measured at the corrected pressure and, the temperature
is recorded. Let us understand the method again with a problem.

In Victor-Meyer experiment, 0.241 g of chloroform expelled 47.9 mL air collected over
water at 23°C. At this temperature, the vapour pressure of water is 18 Torr and, the
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pressure recorded is 782 Torr. The corrected pressure of chloroform vapour is (pressure
recorded) — (v.p. of water) = (782 — 18) = 764 Torr using the same equation as before

oRT (0.2412)(0.082 ¥ atmi K~ mol™) (296 K) . (760 Tott)
P (0.0479 ¥)(764 Tofr) 1 atm)

= M =121.48 g mol ™!

M =

This is almost roughly the same value found as in the previous experiment. Students
must also note that, the correction for the pressure would not have been necessary if the
expelled air was collected over mercury.

1.2.13 Abnormal Vapour Density

1.2.13.1 Thermal Dissociation

It has been observed that in some vapour density measurements, the experimental values
of the molecular weight are less than that expected and, the values decrease towards a
limit as the temperature is raised. The vapour of N,O,, NH,Cl and PCl;, for example, gave
molecular weights that approach half the actual value as the temperature is raised. This
is clearly due to thermal dissociation. These gases undergo dissociation as

NH,C1 = NH, + HC;
PCl, = PCl, + Cl,
N,O, = 2NO,

In the vapour state, as the molecules of NH,Cl (or PCl;) dissociate, the total number of
molecules increases and, at a fixed P and T, this increases the volume; but there is no
change in the mass of the substance. This decreases the density and hence M, the mean
molar mass. As the temperature is increased, the extent of dissociation increases and M
decreases. At sufficiently high temperature, when the dissociation goes to 100 percent
completion, M reaches at its lowest value.

Note that, it does not matter, whether the splitted molecules are similar or dissimilar.
The question is, how many molecules are produced from a single molecule; the volume will
increase proportionately. As an example, let one molecule of A splits up into n molecules
of B (similar or dissimilar)

A——nB or, A—mB,+nyBy+...; ny+ny+...=n
Initial no. of mole 1 0

Number of moles at equilibrium are for (1 — &), for A, no for B. the total number of moles
at equilibrium is then [1 + (n — 1)a], where o is the degree of dissociation, i.e. fraction
of the total number of molecular suffering dissociation. Let V be the molar volume at
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the pressure and temperature of the experiment. If M, and M are the theoretical and
experimental molar masses and, p, and p are the corresponding densities, then

M,P MP
V=p[1 - 1]V with py= —2—and p=—-
Po pll +(n )loi| with p, RT and p RT
= &=%=1+(n—1)a
P M
= a:M or QZM (122)
(n-1DM (n-1p

from which the degree of dissociation can be calculated. It is important to note that,
whenever we find a low vapour density or, molecular weight, we suspect the case of
dissociation. However, the opposite is not true. This is because, the decrease in the vapour
density is due to an increase in the number of moles at equilibrium. If there is no change
in the number of moles, e.g., when gaseous hydrogen iodide dissociates to form hydrogen
and iodine vapour,

2HI—H, +1,
the volume, density and molecular weight remain unaffected (Why?).

Example 1.14

The vapour density of a sample of N,O, at 1 atm and 373 K is found to be 25. Calculate the
equilibrium constant of the reaction

Solution

The molecular weight of N,O, is 92. So the relative vapour density should be (92/2) =
46. The experimental value, however, is 25. This indicates that the N,O, molecules have
dissociated partly into NO,. Let the degree of dissociation be o

No. of moles initially 1 0
No. of moles at equilibrium (1 — &) 20

Total number of moles at equilibrium is (1 — o + 2¢) = (1 + ). Therefore

Po 140 = a=084

p
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That is, 84 percent molecules have dissociated. The mole fractions are then:

e _-w 016 20 168
N9 T Qo) 084 N0 T (1ig)  1.84

The partial pressures are then
0.16 0.16
pN204 = xNZO4P 1.84 (1 atm ) (m) atm
1.6 1.68
and PNo, = *no, P = s (1 atm) = (1.84] atm

The equilibrium constant for the thermal dissociation is then

k. _ Pro, _(168)(184)
"7 by, \1.84)10.16

= Kp=9.6 atm

Example 1.15

In a vapour density experiment, 1.35 g N,O, vapour was found to occupy a volume of
0.501 L at 45°C and 795 mm Hg. Calculate the fraction of the N,O, molecules dissociated
into NO, and, the equilibrium constant K of the thermal dissociation.

Solution

Considering the equilibrium

N,0,(g) == 2NO,(g)
1.35
Initial no. of mol _— 0
nitial no. of moles (92J

No. of moles at equilibrium ﬁ(l—a) 2 135 o
92 92

Total number of moles at equilibrium is then
n; =ny,0, ¥ 'No,

= n,= (1925J(1+a) mole

Now using the ideal gas equation

Pv =nRT
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(795 mﬁﬂg)[ﬁ](oml J{){%xammﬁf}

% (0.082 ¥ atm K pasl ")(318 K)

= o=0.37
That is, 37% dissociation took place. The students are now advised to calculate Kp following
the same method given in Example 1.14. [Ans.: 0.664 (atm]

4‘ Test Problem 1.7 I

When PCl; vapour is heated in a closed flask to 200°C and 1.22 atm, the dissociation takes place by

42%. What are the mol-fractions and the partial pressures of the three components, PCl;, PCl; and

Cl,? Also calculate the equilibrium constant of the dissociation process. Also calculate the vapour
density that would have been expected to get experimentally at this temperature.

(Ans: Xpqi, = 0.408; Xpal, = X, = 0.296

Pea, = 0.498 atm; Peci, = Pai, = 0.361 atm

K, =0.262 atm; p = 73.42

1.2.13.2 Molecular Association

There are examples where the molecules in the vapour phase associate pairwise to form
dimers, which are in equilibrium with the monomers. More than two molecules may also
associate, e.g., the formation of Sg. Anyway, due to this kind of molecular association, the
number of molecules in the vapour phase decreases (at a fixed P and 7)) and hence, the
the volume decreases. The experimental vapour densities are then found to be more than
the theoretical values. Formic acid, acetic acid and other carboxylic acids are well known
examples forming dimers in the vapour phase.

Example 1.16

In a molecular weight determination, using acetic acid vapour, the experimental data
suggests 100 g mol™! at 1 atm and 327°C. Calculate the degree of association of the
molecules.

Solution

Let o be the degree of dimerization. Then the number of moles at equilibrium are:
2AcOH—=(AcOH),

Initial no. of moles 1 0
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No. of moles at equilibrium 1-0o)

D[R

2 2

a given P and T and, p, and p are, respectively, the theoretical and experimental vapour
densities, then

Total number of moles at equilibrium is (1 —a+ gj = (1 - Z)_ If V be the molar volume at

poV = p(l—%)V

- M,=M|1-2]; .+ MapatafixedTand P~ =YL
2 RT
N M, _(;_@
M 2
60 o
= - = —_—
100 2

finally, o = 0.8. The association is up to 80%.

—{ Test Problem 1.8 I

A 0.1 g sample of acetic acid vapour was found to occupy 57.2 mL at 600 mm Hg pressure and
327°C. Calculate the degree of dimerisation at this pressure and temperature. Also calculate the
apparent molecular weight and the relative vapour density of this acetic acid vapour.

(Ans.: oc=0.9; 109.09; 54.55)

PROBLEMS

1.1 6 g of C,H; is taken in a closed container of volume 2.46 L at 2 atm and 27°C.
Calculate the gas constant in cm® atm K™ mol ™, m® bar K™ mol™ and JK™ mol™!
units. [Ans.: 82 cm?® atm K™! mol™; 8.2 m® bar K™ mol™!; 8.31 JK™! mol™]

1.2 A cylinder fitted with a piston contains O, at 20°C and a pressure of 15 atm in a
volume of 22 L. The piston is lowered, decreasing the volume of the gas to 16 L,
and simultaneously raising the temperature to 25°C. Assuming ideal behaviour,
calculate the final pressure of the gas. [Ans.: 21 atm]

1.3 Find the density of CO, gas at 77°C when confined by a pressure of 1 bar.

[Ans.: 1.53 x 107 gL ™

1.4 At 0°C and 1000 mm Hg a given mass of N, occupies a volume of 1 L. At
-100°C, the same mass of the gas under same pressure occupies a volume of
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0.6313 L. Calculate the absolute zero in degree centigrade, and give reasons for the
observed difference from the accepted value.
[Ans.: —271.2°C; the data at —100°C are not very reliable because
a gas cannot be expected to behave ideally at as low as —100°C]
Calculate the pressure of the earth’s atmosphere at a point where the barometer
reads 76 cm Hg at 0°C and the acceleration of gravity g is 9.80665 ms™2. The
density of Hg at 0°C is 13.5951 g cm™ or 13.5951 x 10% kg m™.
[Ans.: 101.325 kPa].
An ideal gas cannot be liquefied. Justify/Criticize.
In the derivation of PV = RT from the Boyle’s law, the following steps may be
followed:

@) PV = ky; Gi) % — ky; (i) PT = kg
which step(s) is/are wrong? [Ans.: (iii1) is wrong]

From the relations between the variables for two ideal gases A and B, given below
on the left, what can be concluded regarding the variables on the right?

Given Inference (>; =; <)
(i) EqualP,V,T;M,>M;g ny 2 ny
(i) EqualP,V,;n,>ng T, ? T,
(iii) EqualT,n; P, > Py; V, 2V,

[nA =npg; TA < TB; VA < VB]

A mixture of Hy and O, is analyzed by passing it over hot copper oxide and, through
a drying tube. H, reduces the CuO according to the equation

CuO + Hy - Cu + Hy,O
oxygen then reoxidizes the Cu formed:
Cu + 20, — CuO

100 cm?® of the mixutre measured at 25°C and 750 Torr yields 84.5 cm?® of dry
oxygen measured under the same conditions of T and P after passage over CuO
and the drying agent. What is the original composition of the mixture?

[Ans.: 15.5 mol-percent]
A vessel of volume 30 L contains ideal gas at temperature 0°C. After a portion of
the gas has been let out, the pressure in the vessel decreased by Ap = 0.78 atm (the
temperature remaining the same). Find the mass of the released gas. The density
at 1.01325 atm is p = 1.3 gL ™%, [Ans.: 30 gl
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1.12

1.13

1.14

1.15

A vessel contains a mixture of Ny (m; = 79) and CO, (m, = 11 g) at a temperature
T =290 K and pressure 1 atm. Find the density of the mixture, assuming the gases
to be ideal. [Ans.: 1.513 gL 7]
A vessel of volume V = 7.5 L contains a mixture of ideal gases at a temperature
T = 300 K ; the number of moles of Oy, Ny, and CO, are, respectively, 0.1, 0.2 and
0.3. Assuming the gases to be ideal, find:

(i) the pressure of the mixture, and

(i) the mean molar mass of the mixture.

[Ans.: (i) 1.97 atm (ii) 36.67 g mol™']

Under what condition will a pure sample of an ideal gas not only exhibit a pressure
of 1 atm but also a concentration of 1 mol L™!? [Ans.: 12.2 K]
Compare the times of diffusion through a given orifice, and under the same condition
of P and T, of the gases H,, NH;, CO, relative to that of N,

tNH, tco,

t
M2 _0.268; = 0.779 ;
th N2 NZ

=1.254

At 100°C, the vapour density of N,O, is found to be 25 at 1 atm. Justify the result
and calculate the degree of dissociation (if any) of N,O,.
[Ans.: Degree of dissociation, o = 0.84]






THE KINETIC

CHAPTER THEORY OF (FASES

2.1 INTRODUCTION

Kinetic theory is a microscopic science, where an endeavour is made to explain the
behaviour of gases by recognising that, a sample of a gas is made up of a very many
numbers of elementary particles—atoms/molecules, obeying certain basic laws.

Clearly, the subject is extremely difficult to analyse. This is because, we do not know how
the molecules look like, what are the forces operating between them and, what kind of
laws they obey during their motion. One thing is clear: there is a tremendous irregularity
in the motion of these elementary particles and, they are fantastic in numbers. These two
characteristics will therefore require an extensive use of probability and statistics in the
development of the theory.

A Brief History of Kinetic Theory of Gases

Although the idea of elementary particles and their ceaseless motion dates back to
450 B.c. due to Leukippos and Demokritos, Daniel Bernoulli may be honoured as the
father of the kinetic theory. He first deduced a law, that today we know as the Boyle’s
law, by considering that, a gas is composed of an innumerable number of particles in
ceaseless motion; between which no forces act and, which gives rise to the pressure of
the gas in a container by the bombardment of the particles on the wall of the container
(1738). For over hundred years Bernoulli’s work was left ignored. J.J. Waterstone, a
school teacher in Bombay (India) sent a paper to the Royal Society in 1845, explaining
some concepts of the kinetic theory, but was not deemed worthy for publication until,
Lord Rayleigh rediscovered it in 1892.

However, when Joule introduced the concept firmly that heat is a hidden disordered
motion of the atoms/molecules, the idea of kinetic theory started receiving its
acceptance. Thereafter, an excellent team of mathematical physicists: Clausius,
Maxwell and Boltzmann led to an excellent development of the theory. Nevertheless,
the development of kinetic theory had faced a strong opposition and, it is said that, the
Boltzmann’s suicide by drowning himself in 1906, came from the depression due to the
attacks on the truth of the kinetic theory, which he could not retort.
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Finally, the kinetic theory of gas considers that the atoms or molecules obey newtonian
mechanics. However, since the elementary particles actuallybehave quantum mechanically,
the theory is not fundamentally correct. For example, it cannot explain the temperature
dependence of the heat capacity of gases. Nevertheless, the theory is excellent in explaining
other properties, e.g. pressure, temperature, diffusion, etc.

2.2 BASIC ASSUMPTIONS OF KINETIC THEORY OF GASES

The basic materials behind the building up of the model are:

1. A gas consists of a very many number of molecules, considered as perfectly elastic
hard spheres.

2. The molecules are in a state of complete molecular chaos, in which they move
erratically along all possible directions, with all possible speeds from zero to infinity.

3. These movements are in straight lines (in the absence of any external force, like
gravity), which are occasionally broken by collisions between themselves and, with
the walls of the container. These collisions are all perfectly elastic, i.e., in which the
conservation of momentum as well as the kinetic energy hold.

4. Inthe steady state, the collisions between the molecules do not affect the molecular
density, i.e., the number of molecules per unit volume is uniform everywhere and,
remains the same with time.

5. The distance traversed by a molecule between two successive collisions is called the
free path. It is assumed that the size of the molecules is negligible in comparison to
the mean free path. The molecules are therefore regarded as a point masses.

6. The time during which a collision lasts is negligible in comparison to the time
required by a molecule to traverse the mean free path.

7. The forces between the molecules are neglected entirely, so that the energy of a gas
is totally kinetic.

8. During the bombardment of the molecules on the wall of the container, a certain
momentum is poured on the wall. The net momentum poured normally—per unit
area of the wall per second is defined as the pressure of the gas.

9. The molecules move with different speeds, and hence, with different translation
kinetic energies. The average translational kinetic energy of the molecules of a
sample of gas is directly proportional to the kelvin temperature of the gas.

2.3 EXPERIMENTAL EVIDENCE IN SUPPORT OF THE KINETIC THEORY

That the molecules of a gas are in a state of complete erratic (i.e., random) movement can
be supported by numerous experiments, of which the most conclusive evidence comes from
the study of Brownian motion. While studying microscopic life, Robert Brown in 1827,
noticed the fine particles of plant pollens jiggling all around in the water he was looking
at through a microscope. These motions are perpetual and spontaneous. He correctly
asserted that these motions are not living, and is not due to any chemical or electrical
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action. You can also observe this motion in smoke or dust particles through a microscope.
The motion becomes more vigorous as you decrease the viscosity of the medium or increase
the temperature. Later it was realised that the motions were due to an imbalance of force
exerted by the solvent molecules on the solute particles. Thus, the incessant and random
motion of the fundamental particles in a system becomes very much clear and, the motion
of the molecules of a gas is exactly similar to this. Hence, all the laws of kinetic theory of
gases are applicable to the Brownian particles and in fact, Einstein in 1905 developed a
theory of Brownian motion on the basis of the kinetic theory of gases, which had also been
verified by Perrin in 1908.

2.4

SOME CRITICS ON THE POSTULATES OF THE KINETIC THEORY

1.

The assumption of perfectly elastic collision is necessary in order to account the
following fact:

When an ideal gas is heated isothermally and reversibly, the heat absorbed by the
gas is completely converted into the work of expansion by the gas, and when it is
compressed back to the initial state, again isothermally and reversibly, exactly
the same amount of work is destroyed and converted into heat. If the collisions
were not perfectly elastic, then some of the kinetic energy of the molecules gained
on heating, would lost in deforming the molecules and, this energy could not be
given back into heat when the system is cooled. This is obviously a simplifying
assumption and corresponds to reality only as a rough approximation.

Certainly, there are gravitational forces between the molecules (pair wise); these
forces are very much weak in comparison to the kinetic energy. For example, the

average kinetic energy of the gas molecules at 300 K is about 102! J (; kTJ,

whereas the potential energy of gravitation between two Hy molecules in contact
(r=1A) is about 107°* J (-Gm%r; G = 6.67 x 107! Nm? kg?; m = 3.35 x 102" kg;
r=1x10""m).

2 2
Gravitational force is r;z Gravitational Potential Energy, V = — Gm

r r

2.016 x 1073
My = ———— G =6.67x10"'! Nm?kg?

M2 = 6,023 x 10 m e
=335x10% kg | r=1A=1x101m
2 -11 2 -2 27 2

GPE,V - Gm® _ (6.67x10" Nm®kg™) (3.35 x10*" kg)

P 10x10m
V=-75x107*J
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3
Average translational K.E. = 2 kT =1.5(1.38 x 1072 JK1)(300 K) or, <KE> =6 x 10721.J

Comparing these two results we can safely ignore the potential energy of the gas. However,
the intermolecular forces of attraction are much greater and, the corresponding potential
energy, although small under ordinary condition, becomes of the order of the kinetic
energy near or below the critical temperature. These forces are neglected in the postulates
by definition, which is again a simplifying assumption.

2.5 THE KINETIC INTERPRETATION OF THE PRESSURE OF A GAS

2.5.1 Definition

We know that a gas exerts pressure. Here, we want to know how is this pressure developed
and, how much is that.

To analyse this, we take a gas in a cylindrical box, at one end of which there is a frictionless
piston, which can move along either direction (Figure 2.1). There are a lot of molecules
in perpetual erratic motion and, very often they hit the piston. There is, therefore, a
continuous bombardments on the piston. What is the result then? Each time the piston
receives a certain amount of momentum for each collision, it picks up speed. Let there be
nothing on the other side of the piston, i.e., a vacuum outside.

z

1.

y

«~F

&
Gas Vacuum

Figure 2.1 Fis the normal force required to hold the piston from moving out.
The pressure of the gas P is then F/A, where A is the area of the piston.

Receiving a certain amount of momentum from each collision, the piston starts moving
out of the box. In order to just keep it from moving out, we must therefore hold the piston
with a certain force F. The magnitude of the force applied normally per unit area of the
piston which is just sufficient to keep the piston at its position is defined as the pressure
(P) of the gas.
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2.5.2 Calculation

Let us first calculate how much momentum is poured normally per second on the wall by
the bombarding molecules.

Let us fix-up the reference frame so that the x-axis of the coordinate system is perpendicular
to the piston (Figure 2.1). If C, be the velocity component of a molecule along the x-axis,
then as it hits, the piston receives a momentum mC,. What then? You can think that for
a very short period of time, say 1 ns, the molecule is brought to rest and then, it bangs
off the piston again with the speed C, along the x-axis. During this return, the piston
again receives mC, momentum for the molecule. This thing you can realise if you press
a rubber ball against a hard surface and, leave it; it bounces off. So the momentum the
piston receives per collision is 2mC,. Now, how many collisions take place per second? Let
n be the number of molecules per unit volume. To calculate how many molecules hit the
piston in one second, we realise that the molecules which are beyond a distance C, from
the piston cannot reach in one second. So, all the molecules which are within a distance
C, from the piston will hit in one second (Figure 2.2). If the area of the piston is A, then
all the molecules in the section of the volume C A will reach the piston in one second. The
number is nAC,. So, the total momentum imparted on the piston per second is

Figure 2.2  Only the molecules in the grey portion can reach the wall WW ' in one second;
those in the white region cannot reach the wall in one second.

Force exerted = momentum change per second = (2m C,) (n AC,) = 2mn AC?

The pressure (P) developed is then P = % =2mnC? (2.1)

However, we have left one thing unnoticed; and that is, all the molecules are not moving
with the same velocity component C,. Let there be per unit volume, n; molecules with
x-component velocity C,, n, molecules with C 4 and so on. So the pressure equation must be

P=2m@n, C}+n,C35+-) (2.2)

Now, the average of C? is given by (C?),

where (C2)=

2 2 2 2
n,Ci+n,C+- Zni C, _ Zni C,;
n

ny+ny +- Yon,
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= P=2mn (Cf)

There is another point. In taking the average we have considered all positive C, s (moving
towards the piston) as well as all negative C,’s (moving away from the piston). But, the
force is developed on the piston only by, the molecules which are moving towards the
piston. Due to the isotropicity of the molecular movements, we can correctly say that the
pressure (P) is half (1/2) of the above expression, i.e.,

P =mn{C?) (2.3)
Now, there is nothing special along the x-direction. Molecules are also moving about back

and forth (y direction) with mean squared velocity component (C’i) and also up and down
(z direction) with (Cf} . Again, due to the isotropic movements, we must have

(€2 =(C/)=(C? (2.4)
and, if C be the velocity of a molecule in space, then since

(C?*y=(C}2y+ (Cf) +(C2)y=3(C2 (2.5)
Using Eqs (2.4) and (2.5) in Eq. (2.3), we finally get

lemn(Cz)zlmnC2
3 3

rms

- PV = % mN(C?) = % mN C.2 (2.6)

rms

where N is the total number of molecules contained in a container of volume V. Rewriting
Eq. (2.6) in the form

P:§J‘>7<; mC2> (2.7a)
1 o\ 1
and realising that the average kinetic energy of the molecules is o mC”)  we find
2 2
PV = 3 U (2.7b)

. . . 1 N |
1 The average translational kinetic energy of the molecules is not Em(C)2 ; it 1s§m(Cz). To

- . 1 1
understand this, just write: ¢ = 3 mc” , and then take the mean: (¢) = é m(C?) or (g)= 5 mC,?

rms*

% For a mole of an ideal gas, we may write U = g PV = g RT =N, (2 ij; the average translational

kinetic energy of the molecules is then (KE), ... = % kT. N,is the Avogadro’s constant and % is the

Boltzmann constant.
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where U is the total kinetic energy of translation of the molecules. Equation (2.6) may be
considered as the fundamental equation of the kinetic theory of gases. On the left hand
side of the equations we have the macroscopic parameters P and V which, relate with

microscopic parameters m, N and (C?).

A few interesting points are listed below:

1.

Thermodynamically we know that for n moles of a monoatomic ideal gas

U= ngRT, which by using in Eq. (2.7) gives us the ideal gas equation

PV=nRT

For an ideal gas, the total kinetic energy of translation of the molecules U is a
function of only 7’; there is no potential counterpart. So, isothermally and reversibly
if an ideal gas is compressed, the work done on the gas is absorbed, but cannot be
stored as U (as T'is fixed); therefore, only the number of molecules per unit volume
increases [cf. Eq. (2.6)], and therefore, the number of bombardments per unit area
of the piston per second increases; this increases P.

If you take a sample of Li-vapour and a sample of an equal volume of uranium
vapour at the same pressure, then their total translational kinetic energies are
also equal. This means that the heavier uranium atoms move slowly than the
lighter Li atoms.

SOME CRITICS ON THE PRESSURE EQUATION

Equation (2.6) has been derived with the assumption of perfectly elastic collision.
So, what will be the fate of the equation if we take a gas where the collisions are
not perfectly elastic?

To answer this, let us first take a monoatomic gas. In this case, the collisions had
have to be perfectly elastic, for, if they were not, the piston would be heated up and,
things would change. But eventually when equilibrium is attained, the collisions
will be almost perfectly elastic. A gas does not cool down or, warm up on standing,
provides support to the above discussion.

For a diatomic or triatomic molecule, an inelastic collision might decrease the
translational kinetic energy and could turn up as the rotational and/or vibrational
kinetic energy of the molecules; but the energy transfer can also take place in the
reverse way, viz., from vibration into translation. Thus, the concept of perfectly
elastic collision breaks down.

However, this does notinvalidate the pressure equation. Thisis because the pressure
has been calculated by taking the average over a many number of collisions and over
all the molecules, which is also fantastic in number. This definitely will smoothe
out the irregularities in the translation kinetic energies of the individual molecules
after impact. That means, after collision some molecules will gain translational
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kinetic energy and the other will lose, and, on the average, no one neither gain nor
loses any. Thus Eq. (2.6) still remains valid.

2. We have also assumed that the molecules do not collide with one another while
they are on their way to hit a wall. Under condition of equilibrium, on the average,
any deflection in the path of a molecule will be replenished by another collision
which replaces the molecule.

2.7 WORK OF COMPRESSING A GAS

Here we want to understand from the kinetic theory point of view, the PV relation during
a reversible adiabatic compression of an ideal gas, where there is no heat exchange between
the gas and its surroundings. Our approach is therefore microscopic; later it will be proved
macroscopically in thermodynamics.

Let us again consider a gas in a rectangular box as in Figure 2.1. Total force exerted
by the molecules on the inner face of piston is PA. In order to maintain equilibrium, an
external force of equal magnitude must also be applied on the piston from outside. But, if
the external pressure applied on the piston is more than PA, the piston will move inward.
Let us apply a pressure on the piston slightly more than the pressure P of the gas, so that
the piston moves inward with a speed C’, which is very small compared to the speed of
the molecules. If C, denotes the speed of the molecules along the x-axis, then with respect
to the piston, a molecule hits the piston with the speed (C, + C’) and, it also bounces off
the piston with the same relative speed (C, + C’). But a relative speed of (C, + C’) of the
molecules with respect to the inward moving piston of C’ is equivalent to (C, + 2C’) speed
of the molecule with respect to the box. The increase in the kinetic energy of a molecule
per collision with the moving wall is

X

A (KE) =%m(Cx 207 —%mc2

=2m C,C’ +2mC"*

=2m CxC'[l + ¢ }
C

X

Since C’” << C, (to maintain reversibility), neglecting the second term we get
AKE) = 2m C,C’ per collision
The total kinetic energy change in time dt is therefore obtained by multiplying the above
result by the total number of collisions during the same time d¢; we get
Total change in the kinetic

o } =2m C,C'(n C A) dt
energy in time di¢

=2mn C°C' A dt
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and following the same procedure as before, to account for the different speeds of the
molecules, we have

Total c}?ange in the kinetic _9mn 1 (C.5CAdE
energy in time d¢ 2

- % mn (C*)C'Adt (2.8)
= PC’ A dt

=— PdV (- dV is negative)

So we have the fundamental equation for a reversible adiabatic compression as
dU =-PdV

Since dw = —PdV (no heat exchange), we can say that the increase in the energy of the
gas is equal to the work done on the gas during a reversible adiabatic compression. It is
also clear that if the speed of the piston were not too low so as to be neglected, i.e., if the
compression were carried out irreversibly then, a greater amount of work would have
been required than the reversible work; or conversely, a greater amount of work will be
obtained from a reversible expansion than from an irreversible expansion.

Let us now derive the P-V relation during such a change. Equation (2.8) can be written as
d N1m<Cz> =1mE(Cz>C’Adt
2 3V
1
realising that the total average translational kinetic energy is IV (2 m (C® )j , where N is

the total number of molecules present in volume V. Using Eq. (2.7a), we find

d(g PV] =— PdV (- C’Adt =-dV)
3 3
= EPdV-FEVdP:—PdV
5 3
— PdV +—=VdP =0
- 2 2
5 s 2 e
= 3 dInV+dInP=0 [multiplying by 3 and dividing by —PV]
= PV®3 = constant (2.9)

If we use a standard result that the ratio of the two specific heats Cp and Cy, is 5/3, i.e.,
y=5/3. Equation (2.9) therefore takes the form

PV’ = constant,
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for a reversible adiabatic process with an ideal gas. This is excellent, because
thermodynamically we can also prove this relation but, there we cannot see the internal
machinery.

2.8 A DISTINCTION BETWEEN REVERSIBLE AND IRREVERSIBLE PROCESS

The basic idea is that if we want to compress the gas reversibly, C’ must be made as small
as possible. But if it is significant, the process will become irreversible.

In general, when C’/C, is not negligible, the change in the kinetic energy in time d¢ can
be written as

dU:ém%(C%C’ (1+ ngAdt [from Eq. (2.8)]
dU=-P ¢ dv
- =-P|1+ C. (2.10)
and, if the external pressure required to compress the gas P,, then P, must be
Cl
Pt =P[1i ij (2.11)

where the negative sign is during expansion, when the relative velocity of the molecule
becomes (C, — C’) instead of (C, + C"). From Eq. (2.11), it is also clear that, if the process
is to be conducted reversibly (i.e., C’/C, = 0) then, the external and the internal pressures
must be made virtually equal.

But if you want to compress irreversibly [the positive sign in Eq. (2.11)] an external
pressure of magnitude greater than the internal pressure will be required (P, > P); and
the difference (P, — P) increases as one increases the degree of irreversibility, i.e., to
increase the speed of the piston C’. But, during irreversible expansion, the opposite thing
will happen: P, is now less than P. Since the work is always given by dw = P, dV, we
find

ext

during expansion: work is maximum in a reversible process.
during compression: work is minimum in a reversible process.

2.9 THE KINETIC INTERPRETATION OF TEMPERATURE

Before introducing the concept of temperature, let us put some remark on the nature of
collisions between two gas molecules. These are as follows:
1. The molecules will be assumed to be smooth and perfectly elastic spheres, i.e., the
kinetic energy and the momentum of two colliding molecules are conserved during
a collision.
2. If the centres of two colliding molecules are connected at the moment of collision
by the ‘Line of centres’, the component of two velocities perpendicular to this line
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remain unchanged, while the components along the line of centre after collisions
are given by the expressions®,

c,, =2 i mmy) o
17 (m; + my) z (m; + my) 1
(2.12)
2m1 (m2 - ml)
and sz = 1 2i
(m; + my) (m, + my)
3 Elastic collision between two molecules
m ma mn ma
o — > o —> o————> *—>
! Cyj Coi | I Cir Cor
Before collision After collision
Conservation of the momentum gives
m;Cy; + myCy; = mlclf"' mzczf
Conservation of the kinetic energy gives
1 1 1 1
5’”101? + Emzczg = 5’”101,20 + Emzcz,%
= my(Cyf - 01120) = m2(02,2¢ -Cy)
= my(Cy; = C1p) (Cy; + Crp) = my(Cyp— Cy)) (Cyp + Cy)) ...(2)
Dividing Eq. (2) by Eq. (1),
my(Cy; — le) (Cy; - le) _ mz(czf -Cy) (C2f +Cy;)
my(Cy; - le) mQ(CZf - Cy)
= Cli + le= sz + CZi
. (Cy; = Cg) =~(Cyp=Cyp ...(3)

This equation tells us that in an elastic one-dimensional collision, the relative velocity of approach
before collision is equal and opposite to the relative velocity of separation after collision, no matter
what the masses of the colliding molecules may be.

Multiplying Eq. (3) by m, gives

my(Cy; — Cy) = my(Cyp— Cyp) ..(4)
Equation (1) = ml(Cli - le) = mz(CZf‘— CZL)
Subtracting
myCy; — myCy; — myCy; + myCyp =%€§ - szf‘M +myCy;
= mlclf + mzclf = mlcli + mQCQi - m2Ch- + mzCzi = (m1 - m2)01i+ 2m202i
(my — my) 2m
= Cy= ( 1 25 Cy; + 2 Cy;
my +my) (m; + my)
Similarly, Cyrcan be eliminated to find
(mg —my) 2m
sz =—2 ! Cy; L Cy;

(my +my) ! (my + my)
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where the masses of the colliding molecules 1 and 2 are m, and m,, the velocity
components being Cy; and Cy,; before collision and, C;;and Cy after collision, along
the line joining their centres at the time of impact.

To understand this, let us take an example (Figs 2.3a, 2.3b). Two molecules of mass m,
and m, with speeds 300 ms ! and 500 ms ™, respectively, hit one another as in Figure 2.3a.
The molecule (2) came making an angle 30° with the line of centres and, the molecule
(1) came at a direction of 60° with the line of centres from the opposite side. What will
be their velocities of recoil?

A Direction at
Yoz CoN which my came

30°

"’\
\ 3 . A
G \Direction at which
'\ mq came

C1|

Figure 2.3(a) Cyy = C;cos 30 = 259.8 ms™: C;; = C, cos 60° = 150 ms " C,,, = C,c0s 60 = 250 ms™:
C,; = C, cos 30° = 433 ms™". Where, C, = 300 ms™ and C, = 500 ms™".

Solution

The normal component of velocity of molecule 1, before collision is Cyy = (300 ms™)
cos 30° = 259.8 ms ' and, that of the second molecule is Cyy = (500 ms™) cos 60°
= 250 ms ™. These two components will remain the same after the collision.

The two component velocities along the line of centres, before collision are
C,; = (300 ms™) cos 60° = 150 ms™*

and C,; = (500 ms™) cos 30° = 433 ms™

Therefore, after collision these components will change to

_(my —my,) 2m,,

- (m; + my) 1 (my, + my)

G f Cy;
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1
C,,=——[150 m, +716 st
= Y (m, +m2)[ my my] m
C.. = . C..
and 2f (ml + m2) 2 (ml + mz) 1i
1
C,,=——[433m, —133 m, ] ms™*
= 2f (m, + my) [ 2 1]

Let molecule 1 be a CO, molecule and, molecule 2 be a H, molecule; the masses are then

my =13 x 10 g and m, = 0.33 x 107> g. Therefore, C;,= 174.48 ms™" and C,;=-108.5

ms . Therefore, after collision C;y = 259.8 ms™ and Cqy=174.48 ms ™" and

_1 259.8
74.48

0 = tan =56.11°

and similarly (see Figure 2.3b)

¢=tan™’ 250 _ 66,540
108.5

The two molecules will thus recoil away as shown in Figure 2.3b.

Direction of
recoil of my

Direction of
recoil of my

Figure2.3(b) Thedirections of the recoil between two hard spheres; the collision is supposed to be perfectly elastic.

3. Theuwvelocity of the centre of mass of the two molecules is not changed by their collision.
This is important to understand the nature of the collision. The momentum p of the
system of two molecules can be written as

- — — m — m —
p=mC1 +m,Ca=(m, + m,)| ———C1 + ——2—
1 2 1 2

(m, + my) (my + my)

= ;:(m1+m2)‘7CM
where V¢ is the velocity of the centre of mass. Since p is conserved during a

collision, V ¢y remains constant. This means that the two molecules will recoil
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according to the point 2 but, the centre of mass moves with uniform velocity; no
change in speed; no change in direction.

2.9.1 What Determines the State of Thermal Equilibrium of Mixture of
Two Different Gases?
We define the state of thermal equilibrium as that in which the temperature of the system

is uniform throughout, and is also equal to that of the surroundings.

Let us take a box containing two different kinds of molecule of mass m; and m, with
number density n; and n,. Let the molecules of the first kind were initially moving fast
and, those of the second kind were moving slow. What will be the final picture?

There will be a continuous two body bombardments of all types: m; <> m,, my <> my and
mq <> m,. For all these collisions, the total momentum and the total kinetic energy will
remain the same. But, certainly there will be a continuous exchange of momentum and,
hence of velocity between the molecules. The final picture will therefore be a state in which

thing will not change any more. Let the two molecules approach one another with velocities
(Figure 2.4(a)) C; and Cs. They collide and fly off with a new combination of velocities.

But the main idea is that (already explained) while all these things happen, the centre of
mass goes on moving, without any changes, with the velocity (Vcy) of the centre of mass:

(m1€1 + m252)

(m; +my)

Veu =

Figure 2.4(a) The relative velocity of 1st molecule with respect to the second is V=C1-C,.
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Figure 2.4(b) Assuming m, = 3 and m, = 2 the direction of centre of mass velocity is given by the
vector OP, and its magnitude is given by the length of this OP vector.

-
v
2

v\:
b
> -
V- VCM v
Vewm

Figure 2.4(c) For a given collision, the projection V. C¢y has a finite value.

Figure 2.4 (d) In a given volume, say 1 mL, these projections for the innumerable
collisions are so widely distributed that (V-Ccm)=0.

The relative velocity of their approach for a particular collision is V = C; — 62; and the
direction of this vector 7/ could be at any possible direction with Vou. So, Veu obviously
has a finite projection on 7/ at a single collision, i.e., V. Vcy # 0 Fig 2.4(c). But, in the
final state of equilibrium V and Ve vectors are widely distributed that the average of

V.-Veu,ie., (X_/" . VCM) will be zero. That is

(V-Vem)=0 (2.13)
Now, VVCM _ (61—62)-(171161 +m262)

(m; + my)

= (V- Vou)={{(miC2 = myC8))+ my(Cr-Ca) = my (Ca-Co) p my +my) =0 (g 24(a)
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How much is (61 -52> 2 In the final state of equilibrium, the two vectors C; and Cs

could be oriented at all possible angles. So again, <51 . 62> = (0. Therefore, from the above
equation it is clear that

<m1C12) = <m2022>

1 1
or <2 m1012> = <2 mQC§> (2.14)

This is the equation we are waiting for. If you take a mixture of two different gases under
condition of thermal equilibrium, then the average kinetic energy of the two kinds of
molecule is equal.

Now, instead of the gas mixture, if we take two boxes, one containing the gas A and other
gas B, initially at different degrees of hotness, i.e., at different temperatures and, put
them together into thermal contact, then what will be the final picture? Definitely, heat
will flow from the hot gas (say gas A) to the cold one (gas B), and this exchange of energy
will continue until their temperatures become equal, i.e., when they attain the state of
thermal equilibrium. Now, what determines this state of thermal equilibrium between
two different gases, each being present in the pure state?

We solve it as follows: Let us take a rectangular box (Figure 2.5) with two fixed membranes
PP’ and Q®’. The membrane PP’ is permeable to the A molecules but, not to B, and the
membrane Q@  is permeable to B molecules but, not to A. We first put A-gas molecules
(Figure 2.5) in the left portion of PP’ and the B-gas molecules in the right zone of Q.
Initially they are taken at two different temperatures; say, A molecules were hotter than
the B molecules. Definitely, the situation is not going to last. In the final stage, we will
have a mixture of A and B molecules in the intermediate zone P QQ’P’, the pure gas A to
the left of PP’ and pure gas B to the right of QQ’. But what about their energies?

P Q P Q
o . . : ° [e] [e] H o . : ° [e] [¢]
. . ! o o H o o
*e ” 1o © Bo Thermal equilibrium ° ©o 0 © Bo
eAe H o ° D — A o i ° o
L 17 % o is attained ol % o
o o O 0. 0 9 4 o ° 0 90,
Hot P 0" Cold P o
Initial stage Final stage

Figure 2.5 In the final stage, the average hotness of all the molecules in
all the three sections are equal.
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In the intermediate zone, the hot A molecules will collide with the cold B molecules and,
passing on some energy to the latter will return to the main body with less energy than that
with which they have left. They will now suffer collision with the relatively hot molecules
which have not left the compartment, and will take up a little energy from the latter. So,
the result of this round trip will be a gradual cooling of the A molecules.

On the other hand, the B molecules after receiving energy from the A molecules in
the intermediate zone will enter into their main B body, and again via collisions, will
distribute their excess energy among them. The net result is therefore a gradual cooling
of the A molecules and a gradual heating of the B molecules. This exchange of energy
will continue until the hotness, i.e., the temperature of all parts of the entire system gets
uniform, i.e., until the thermal equilibrium is attained. In this final state, the average
kinetic energy of the A molecules and the B molecules are equal in the intermediate zone
(we have proved it earlier). But since the A molecules in the intermediate zone are in
thermal equilibrium with those in the left portion of PP’, they must also have the same
average kinetic energy (otherwise, thermal equilibrium could not have been established);
and similarly, the average kinetic energy of the B molecules in the intermediate zone and,
in the right portion of @@’ must also become equal.

Thus we have proved a very important concept:

Under condition of thermal equilibrium, i.e., at the same temperature, the average kinetic
energy of the molecules of two gases (like or unlike) are equal.

This, in turn means that, the average kinetic energy of the molecules of a gas is a function
of only temperature, no dependence upon anything, molar mass, atomicity, etc.

The result is amazing! If you take a Hy, gas and a CO, gas at the same temperature, then
the molecules in both the systems will be moving with the same average kinetic energy.

Now, how to set up the temperature scale ? The best way to do it would be to define this
average kinetic energy itself as the temperature. But unfortunately, people have done it

3
in a different way. They had put a constant factor of 9 k (the Boltzmann constant: 1.38 x

10723 JK!) between the average kinetic energy and the temperature in the kelvin scale.
So, if T be the kelvin temperature of the gas, then the average translational kinetic energy

3
of the molecules is equal to 5 kT, i.e.,

1 9. 3
—m{C*Y=—=FkT
5 m{C*) 5 (2.15)

We shall prove this result later. Before going to the next section, we will discuss a little
more about Eq. (2.15).
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3
We have proved that the average kinetic energy of the molecules of a gas is 9 kT (actually

we have not proved it; we have accepted the result logically, and will prove it later). The
problem is we have been discussing only monoatomic gases. Naturally, we are now thinking
about the result of diatomic or triatomic molecule.

The translation of a diatomic molecule may be pictured as the translation of two atoms;
but now the two atoms are tied up with each other by a bond. So, although there are forces
between the atoms of a diatomic molecule, the exchange of energy or momentum between
the two atoms of the two diatomic molecules does not depend on the position of their
counter atoms. So you can say that, if two atoms of masses m, and my are held together
by a bond, then although they may rotate or vibrate, the condition of thermal equilibrium
3
requires that each atom in a molecule has a mean translational kinetic energy of B kT.
.1 oy 1 2\ 3 : . .
That is 5 Ma <CA> = EmB,<CB> = EkT. So what is the mean translational kinetic energy of
the molecule as a whole, i.e., looking up at its motion along the motion of the centre of mass
of my and mg?
The velocity of the centre of mass is

mACA +mBCB

Vem =
(my +mypg)

The average translational kinetic energy of the molecule as a whole is then

1
(KE), = EM <V01\2/[> ; M is the total mass of the molecule M = (m, + mp)

But, Ve =Ven-Veu = (mA(‘jA + mBag) : (mAéA + mBBB)/M2
= MV = (m5C5 + m3Ch +2m, my Ca-Cp)IM

1 1 = =
= §M<Vcﬁ>:w[<mACj>+mB <mBCB2>+2mAmB <CA -CBH

But, what is the value of <5’A -6’3>? Due to their random orientation, <6A -6B>= 0.
Therefore,

<KE>trans = %M<VC§4> = ﬁ[mA (3kT) + mpg (3kT)]

1
= <KE>trans = W (mA + mB) 3kT

3
N (KE) s = o T (2.16)
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The result is amazing. If you have a diatomic molecule, the average translational kinetic

energy is still ng; but where is the rest of the energy? Because, you have calculated a

total of %mA <c§> + % mp ,<c;§> - 3kT.

3 3
The rest of energy 3kT _EkT = ng is now attributed to the rotational and vibrational

kinetic energy of the molecule.

2.10 A MATHEMATICAL INTERLUDE

2.10.1 Spherical Coordinates

Instead of locating a point in space by specifying the Cartesian coordinates x, y and z, we
can also locate the point by specifying the spherical coordinates, r, 0 and ¢. The relations
between the two sets of coordinates are x = r sin 0 cos ¢: ¥y = r sin 6 sin ¢; z = r cos 0
(Figure 2.6).

Figure 2.6 A representation of a point P in a spherical coordinate system.
The length of the vector OP is r.

This coordinate system is called a spherical coordinate system because the graph of the
equation r = ¢ (constant) is a sphere of radius ¢ centred at the origin. The limits of 6 and ¢
are explained in Figure 2.7.
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A

Figure 2.7(a) The radius vector ris rotated from 6=0  Figure 2.7(b) The semicircle in Fig 2.7(a) is then rotated
tof=rmatp=0. about the z-axis through an angle ¢ =0 to
¢ =27 The result is a sphere of radius r.

The differential volume element in the Cartesian coordinates is

dt=dxdydz ..M1
In the spherical polar coordinates it is
dt=r%drsin 6dod¢ (Figure 2.8). M2

You can check the above equation within proper limits of find the volume of a sphere V, of
radius r:

o P M1.dt = dx dy dz
M2 drdx=dydz

= rdr sin 6 d6 d¢

+X

e}

Figure 2.8 O'P=a=0Psin Oa=sinf .. PQ=rsin O0d¢ and PS =rd6 .. area, PQRS, dA = 2 sin6dO6d ¢
If the differential area dA is swept radially by dr, the volume element becomes d7=r*dr sin6 dodg.
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Ve Jdr _ J'Or ,ﬂdrj‘;r sin6 dOJ‘Oz” do = %nr3y3

If we integrate only over 6 and ¢, we get
dv =r?dr|/sin6 de [ do = axr’dr ..M3

which the volume of a spherical shell of radius r and thickness dr: 47? is surface area and
dr is the thickness of the shell.

The area PQRS = A is r’sin0d0d¢
dA = r’sin6d0d¢ M4
If we integrate dA over the entire range of 60 — 7) and ¢(0 — 2n),

A= [dA= [j;”sinedejj”dﬂrz

= A =47xr?
which is the area of the sphere.

We call the solid enclosed by the surface dA connecting the origin, a solid angle d€, for a
sphere of unit radius,

dQ =sin 6d0d¢
The total solid angle is then

T, 2
Q=[dQ= jo smedejo do
Q=A4r ...M5
2.10.2 Even and 0dd Functions
We first define a function y = g(x) even if

g(x) = g(—x) for all x ...M6(a)

The graph of such a function is symmetric with respect to the y-axis (Figure 2.9a). A
function A(x) is odd if

Ve ﬂw/*

(@)

Figure 2.9 (a) Even function (b) Odd function.
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h(—x) = —h(x) (see Figure 2.9b) ...M6(b)

For example, the function cos nx is even while sin nx is odd.
Three key factors for even and odd function are as follows:
1. Ifg(x)is an even function, then

ijL glw)dx = 2_|'0L glo)dx  (geven) M7
2. If h(x) is an odd function, then
[ hdx =0 (h 0dd) .. M8

3. The product of an even and an odd function is odd.
Proof: 1 and 2 are obvious from the graph. We generate a function ¢ = gh with even g and
odd %; g is then odd because

q(—x) = g(—x) h(—=x) = —g(x) h(x) = —q(x)

2.10.3 The Gaussian Integral
It is given by

I= f: efxzdﬂ y=[f(x)= e (Figure 2.10(a)) M9
vt fx)
— X o) X +oo

Figure 2.10(a) The bell-shaped curve. Also called the normal or Gaussian function.

To evaluate this integral, we first square I and, write as

B[ e = [ ddy

)

Which is a double integral of the whole xy-plane. But this can also be written in the plane
polar coordinate with the differential volume element d(m?) = 2mrdr [Figure 2.10(b)]
replacing the differential volume element dxdy in the cartesian coordinate as

I? =J: e”2 2rrdr) = nj: edx=m

= 1=\r
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\ y
t
r dr
T (o] +Xx
Yy

Figure 2.10(b) The circular strip of thickness dr and area 27zrdr replacing the area dxdy.

The integral j:e’x2 dx is therefore %\/; , as the function e is even. Obviously, we can
also write
o 2 1 |n
e ¥dx==,]—,
I 5\ .. M10

where a is a constant.

2.10.4 The Gamma Function

Another important function widely used in physical science introduced by Euler in the
1700s is the gamma function, and is defined by integral

T = [ e*x""dx n>0 .Mi11

Note that the integral is a function x and n, and the resulting integral is a function of n.
If n > 2, we can integrate I'(n) by parts: using e “dx dv and " 'as u

U udv =uv - jvdu}

I'n) = [—x”i Lo ]: +(n - 1)_[:35” “2 07% dx

T(n)=0+(n- l)f:x” “2 67 dx

= IT(n)=(n - D](n - D)| M12
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We can now write I'(n — 1) = (n — 2) |(n — 2) and so on, and finally

I'n)=n-1)(n-2)...T(Q1)

= FW=m-D] = [TD=["e*dc=1 ..M13

Up to this point, Eq. M13 is restricted to integer values of n > 2; but we can also define
factorials for other values of n. For n = 1, I'(1) = 1 = 0!, which is interesting.

For other values of n (nonintegers). For n = %, using Eq. M11, we find

F(lj = jwefx x V2 dx
9 0

Let ut x = u? then x 2 dx = 2du

. F@ —o[ e’ du=x| (ct Eq. M10) - M14

2.10.5 The Error Function

One of the most commonly occurring integrals that cannot be expressed in terms of
elementary functions is the error function: it is defined as:

erf(x) = Cdu o< x <o) .Mi5

2 x
N Joe
Since the function erflx), cannot be expressed in terms of simple functions, it is a perfectly
well-defined function of x and can be evaluated by numerical integration. Starting from
Eq. M14, we can write

2 e
—J. e du=1

\/; 0

which can be broken as

*"Zdu + i J.mefuzdu =1

ijxe
\/;0 \/;x

= erf(x)+ijme*“2du=1
711- X

N
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=1 - erf(x)

e

Defining the complementary error function erfc (x) as

D e _ 2
—| e“du
Tk
we get
erfc (x) = 1—erf (x) ...M16

If the upper limit in the integral M15 is extended to o, the result is: erf («) = 1. Therefore
as x varies from zero to infinity, the erf (x) varies from zero to unity. We also find that

f:e_”Z du = g erfe (x) ..M17

These are illustrated in Figure 2.11 and Figure 2.12, and Table 2.1.

erf x
1

0.5

Lo lvrn bovra iy
-2

Figure 2.11 Error function.

il ’\2_
| | | |

Figure 2.12(a) The error function erf (x) plotted Figure 2.12(b) The complementary error function
against x. erfc (x) plotted against x.
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Table 2.1 Error function

x erf (x) x erf (x)
0.0 0.000 2.0 0.9953
0.2 0.2227 2.2 0.9981
0.4 0.4284 2.4 0.9993
0.6 0.6039 2.6 0.9998
0.8 0.7421 2.8 0.9999
1.0 0.8427 3.0 1.0000
1.2 0.9103 3.2 1.0000
14 0.9523 3.4 1.0000
1.6 0.9763 3.6 1.0000
1.8 0.9891 3.8 1.0000
2.0 0.9953 4.0 1.0000

2.11 HOW MANY MOLECULES STRIKE A UNIT AREA OF THE SURFACE OF
THE CONTAINER?

When you take a gas in a container at a fixed temperature, there will be molecules with all
possible speeds, moving in all possible directions.

Let us attach to each molecule a vector, whose length is equal to the speed of the molecule
and, whose directions is along the direction of the motion. If we do it for all the molecules,
at a particular times, we will get a random collection of as many vectors as there are
molecules.

Figure 2.13 Vectors of all possible lengths (equivalent to molecules of all possible speeds)
oriented in all possible directions (representing the random movement of the molecules).
All these vectors are translated to a common origin.

Now, translate all these vectors (but, DO NOT ROTATE) to the origin of our coordinate
system. The picture will be like that shown in Figure 2.13. Let us now draw two concentric
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spheres, one of radius C and the other of radius C + dC. The number of vector tips lying
in the infinitesimal shell (between the two spheres) will be equal to the number of
molecules moving with speeds in the range C to C + dC (Figure 2.14). If we now consider
an infinitesimal area on the surface of the sphere at angles 6 — 0 + d6 and ¢ — ¢ + d¢
(Figure 2.15), then the solid angle described at the centre is sin 6d6d¢. Since the total N
molecules are distributed uniformly over the total solid angle 47w, the number of molecules
moving with speeds in the range C — C + dC and, at angles 6 and ¢ is

ANy, = % sin 0 d6d¢ (2.17)

Figure 2.14 The number of dots in the spherical shell between radii c and ¢ + dc is equal to the
number of molecules having speeds between ¢ <> ¢ + dc. The dots are actually the tips of
the velocity vectors. The volume of the shell is 47c%dc.

Figure 2.15 The number of vector tips in the solid angle described by 6 and ¢ with
N
tolerances d6 and d¢ is e sin0 dOd¢.
Vo
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Therefore, the number of molecules per unit volume, moving with speeds in the range C —
C + dC and, along the direction described by 6 and ¢ is

dN¢ g, _(N/V)
vV 4r

dngg, = sin 6 dod¢

- dneg, = ﬁ sin 6 d6d¢ (2.18)

where n is the number of molecules per unit volume. How many molecules strike a unit
area placed at the origin on the x—y plane (Figure 2.16) along the 0, ¢ direction? In one
second, the molecules can move over a distance C, and therefore, the number of molecules
which are present in the slant cylinder of length C, positioned along 6, ¢ direction, will
hit the unit area in one second. The volume of this cylinder is C cos 6 x 1 = C cos 6, and
therefore, the number of strike will be

Figure 2.16 The number of molecules present in the slant cylinder of length /, and at angles Oand ¢ is nc

sin 0 cos 0dO do. ar

Number of moleclues striking

a unit area placed at the origin
P gl _ dng g, (volume of the slant cylinder)
on the x — y plane along the 6, w

¢ direction per second

= (n sinf d@ dq)j (C cos0)
4rn

_nC sin6 cosO dOd¢ (2.19)
4r
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Therefore, the total number of striking on this unit area by the molecules moving in the
speed range C — C + dC from all directions in one second, but from one side of the x—y
plane is

nC /2

Striking Rate = — | "sin@ cos 9d9_[2ﬂ do = L nC
4 70 0 4

The angle Ois varied from 0 — 7/2 because we want to cover the surface on one hemisphere;
all directions above the x—y plane (Figure 2.17).

Finally, we realise that there are molecules in different speed ranges: n; molecules per
unit volume in the speed range C; — C; + dC, ny in the range Cy — Cy + dC ... etc., the net
striking rate is then

Figure 2.17 Number of molecules striking a unit area placed at the origin of the x-y plane from
one hemispherical side.

Striking Rate = %[nlc1 +1yCy + -] = i n(C)

where the average speed is

_ (nCy +nyCy +--)

(C)
The wall collision frequency is therefore given by

1
Zwall = Zn<C> (220)
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2.12 CALCULATION OF PRESSURE OF A GAS

What happens when a molecule hits the wall? As shown in Figure 2.18, there is no change
in the tangential component of the velocity of the molecule; only the normal component of
the velocity of the molecule is changed from C cos 0 to —C cos 6.

—C cos 6

Figure 2.18 During a wall collision, the tangential velocity component remains unchanged; only the
normal component of velocity is changed from C cos 6to — C cos 6, for the given collision
shown.

Therefore, per blow the momentum imparted is 2mC cos 6. Hence, the momentum change
dp per second per unit area of the wall along the 6 — ¢ direction is [using Eq. (2.19)]

dp = (2mC cos6) (Z—C sin 6 cos 6d9d¢j
V1

2
dp = m;LC sin 6 cos? 6 dOd¢
/4

and realising that the pressure Pis developed due to the momentum blow of the bombarding
molecules, from all possible directions per unit area per second but, from one side of the
hemisphere, we can write

n/2 21
pP= ezojazodp
= lemnC2

Finally, considering molecules of all possible speeds

PzémZnin

— P:%mn(Cz), orP=%m%ers,orP=%manms (2.21)
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where the root mean square speed defined as

rms

C2, =<3 nCE=(C?)
n

(C?) is the mean squared speed and C,, is the root mean square speed [compare with

Egs (2.15) and (2.16)]. We can, therefore, write the average translational kinetic energy

lm (C?) = lm C.. =§kT
2 2 2

It is mentioned earlier, that the average translational kinetic energy is not Em(C>2; it is

1
(e)= 5m C,.., and the C, . may be defined as the speed with which the molecules move

with the average translational kinetic energy.

o _ [T _ [3RT
= s ,/fm 1/—M (2.22)

m is the molecular mass, M is the molar mass, R = kN, (k is the Boltzmann constant, N,
is the Avogadro’s constant).

Equation (2.21) now can also be transformed as

lemanms zlmnSk—T
3 3 m
or P =nkT

The ideal gas equation.

2.13 DERIVATION OF IDEAL GAS LAWS FROM KINETIC THEORY

2.13.1 Boyle’s Law
Differentiating PV with respect to pressure at constant temperature [Eq. (2.21)]

{B(PV)} =a[1mN(C2>}
oP |, oP|3 .

- (zme)], -3 F)
3 |or\2 , 3 P ),

Since the average translational kinetic energy, %m@? ), is a function of only temperature,

the first differential on the right-hand side is zero. Now, if the molecules do not undergo
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.. . .. . . oN
any association or dissociation, then N is also fixed, i.e., (J =0. So we have, for a
T

[a(PV)} 0
oP |,

which is the Boyle’s law.
2.13.2 Charles’s Law

Again we start by recognising that the average translational kinetic energy of the molecules
of an ideal gas is directly proportional to the kelvin temperature

given mass of a gas

(e)— m(Cz)——kT

9 (1 ) 3
: 3t -2
Therefore,
_i _3 0 9 o[ ON
3], =5 ¥ (]| (5,
—Nk+— (Cz)(aNj
oT

oN

If the molecules do not undergo any association or dissociation then, (E)T

) = 0; hence, for
a given mass of a gas (V is fixed), }

( d(PV)

oT

Under condition of fixed pressure,

P(PV)} =P(8V) = constant
P

) = constant
P

oT oR p
= (BVJ = constant.
aT )p

i.e., the rate of change of the product PV with the kelvin temperature at a fixed pressure is
constant or, if the pressure is held fixed for a given mass of an ideal gas, the volume varies
linearly with the kelvin temperature; this is the Charles’s law.

2.13.3 Avogadro’s Law

If we take equal volumes of two different gases under the same conditions of pressure and
temperature, we have from Eq. (2.7)
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Ul = U2
N, <1m1C12>=N2 <1m2C22>
1 1
But, <2m1012> = <2m2022>
because each of them is equal to ng. This implies
Nl = N2

i.e., they contain an equal number of molecules. This is Avogadro’s law.

2.13.4 Dalton’s Law of Partial Pressure

If several gases are separately contained in a volume V for each, and if Ny, N,,... etc. are
the number of molecules of masses m, m,, etc., then

B =™ (cF) =S Y (G et

2 2
or 1’1=§U1;P2:§U2;...etc.

where P, P,, etc. are the pressures of the gases; <Cl2>, <Cz2> ... etc. are their mean square
speeds and, U;, U,, etc. are their kinetic energies per unit volume. Now, if all the gases
are mixed together to occupy the same volume V, then it is found experimentally that, no
heat is absorbed or liberated (this is actually true for ideal gases)*. The total energy of the
mixture is equal to the sum of those of the separate gases, i.e.,

U,ix=U;+Uy+ ...
If P be the pressure of the mixture, then

§P:§f’1 +§P2+...
2 2 2

= P:P1+P2+...

or P=>P

which is the law we wanted to prove.

2.12.5 Graham’s Law of Diffusion/Effusion

Equation (2.20) gives us the rate of striking of the molecules on the wall. If there be a tiny
hole of area A on the wall, then the molecules which are going to hit the area A, will effuse

* This result was quite expected, because, by definition, there is no interaction between the molecule
of an ideal gas.
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out. The number of molecules effusing out of the hole of area A per second is therefore
aN 1 c)a
dt 4
_1 A PN, |8RT
4 RT \noM

8RT
M

where we have used the equation, (C) =

dN  PN,A
dt  (2rMRT)Y?

The escape of gas molecules through a tiny hole is called effusion. The rate of effusion
is therefore directly proportional to M2, which is the Graham’s law of effusion. Two
conditions are, however, to be mentioned:

=

(i) The hole must be tiny; ifitis big, then there will be a rapid flow of the gas, destroying
the distribution of velocity of the molecules.

(i1) The size of the hole must be much smaller than the average distance traversed by
the molecules between two successive collisions; otherwise, it would not be a free
flow (effusion is a free flow), because the molecules will collide many times with one
another, while passing through the hole and, a hydrodynamic flow would be set up
throughout the container, towards the hole.

2.14 KINETIC THEORY APPLIED TO THE ATMOSPHERE

2.14.1 Barometric Distribution

In this section, we shall learn: how are the molecules distributed in space subjected to a
static field of force, at thermal equilibrium. For example, if we consider our atmosphere as
a column of gas, and which is subjected to the gravity field along the Z axis, say, and which
is at thermal equilibrium then, here we want to know, how the number of molecules per
unit volume changes with altitude?

Before taking up the mathematical steps, let us first analyse the situation by physical
reasoning. When you put a column of gas on the earth surface, two distinct forces act on
the molecules:

(i) The kinetic molecular force and

(i1)) The gravity force

You are well acquainted with the character of the kinetic molecular force; this tends
to randomise the molecules uniformly all over the space available. But the effect of the
gravity force is something different; it tends to pull down all the molecules at the bottom.
So, one tries to bring an order (the gravity force) and the other, the kinetic molecular
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force, tries to bring a disorder in the system. The final picture will therefore be some sort
of compromise between these two opposing forces. While the gravity force will try to pull
down all the molecules to the bottom, the kinetic molecular force will knockout some of
them and kick them off to the higher altitudes. Thus, the number of molecules per unit
volume will decrease as we go up and up and, obviously will be the pressure. We now want
to make the discussion quantitative.

Let us fix up our reference frame so that the z-axis points vertically up. Also, let us consider
a reference level at Z = 0. All these are required to represent the various altitudes of our
atmosphere which is at rest at thermal equilibrium (Figure 2.19).

z
Z+dZ 4 - P+dP
Z P
O,,

Figure 2.19 The isothermal atmosphere.

Consider an element of the fluid of thickness z at an altitude z. The element is like a thin
disc of unit area. Since the element is at rest, the vertical upward force acting on the lower
face of the slab is more than the vertical downward force acting on the upper face by an
amount, which is the force due to the mass of the slab itself. If P be the pressure at height
Z and P + dP at height Z + dZ, then

P—(P+dP)=pgdZ

= dP = —pgdZ (2.23)

where p is the density of the fluid at the height Z. If m be the mass of each molecule and
n be the number of such molecules present per unit volume at the height Z then, p = mn,
with which Eq. (2.23) changes to

dP = —-mngdZ (2.24)
Applying the ideal gas law, we write
P =nkT;= dP = kTdn (k is the Boltzmann constant) (2.25)

Combining Eqs (2.24) and (2.25), we get

a _ mg ., (2.26)
P kT
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and also, —=_—2d7Z (2.27)
n kT

Finally, integration of these two equations between limits: P = Py; n = ny at Z = 0 and, at
an altitude Z the pressure is P and the number density is n, we get

mgZ
P=P -
0 exp[ BT } (2.28)
n=n, exp|— meZ
and =n, exp BT (2.29)

We now got the answer. Two factors are responsible for the pressure: (i) the momentum
blow by each molecule and (ii) the number of molecules per unit volume. As we assumed an
isothermal atmosphere, the momentum blow at any altitude is the same but, the number
density of the molecules decreases exponentially with altitude [Eq. (2.29)]. The second
factor then makes the difference. Remembering that P = nkT, it is clear to understand that
as the number density of the molecules decreases exponentially [Eq. (2.29)], the pressure
also follows the same rule [Eq. 2.28)]. Equation (2.29) is therefore the reason and Eq. (2.28)
is the result.

Another interesting feature of the differential Eq. (2.26) is that the relative decrease in
pressure (—dP/P) is directly proportional to the increase in height dZ. This means that
if you observe a 10% decrease in the atmospheric pressure after 10 km, you will observe
again a 10% decrease after another 10 km, i.e., (1 atm) (0.9) = 0.9 atm at an altitude
10 km, (1 atm) (0.9) (0.9) = 0.81 atm pressure at an altitude 20 km (ground level pressure
is 1 atm) and so on.

2.14.2 Who Keeps the Temperature of the Atmosphere Constant?

A molecule moving vertically up will behave like a stone thrown upwards. It will rise up
with decreasing kinetic energy and with an equal gain in the potential energy. It will
finally come to rest, where its potential energy is maximum and kinetic energy zero; it will
then start falling down when its potential energy will be converted into kinetic energy.
Hence, the atmosphere becomes gradually tenuous with increasing altitude.

However, there is an apparent difficulty: since the mean kinetic energy is proportional
to the kelvin temperature, it might seem that the temperature of the atmosphere should
fall off with height. This difficulty can be removed if we realise that the molecules which
can reach the upper layers have had higher kinetic energies than the average value and,
therefore, the molecules which are in the lower layers have had a lesser kinetic energy

than the average value (; ij . There is thus a compensation; the average kinetic energy

remains throughout the same. Had there been a temperature gradient vertically along the
height of the atmosphere, a Carnot engine could have been operated which would extract
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heat from some lower altitude and, rejects heat at some higher altitude, producing some
work at each cycle. This would be definitely against the second law of thermodynamics.
This is called the ‘Sama Effect’; attempts to detect it has failed, and it is claimed that, a
flow of gas had been detected by a light vane.

Most probably you are thinking that why we really feel cold when we move up to a hill
station? There is a fundamental difference between our atmosphere in this book and, our
real atmosphere. Here, we have assumed that the atmosphere is in thermal equilibrium
and, is not exchanging any energy with the surroundings. But, our real atmosphere is in
continuous energy exchange with the sun; and, if you apply again the barometric formula
[Egs. (2.28) and (2.29)], you may get the answer. At higher altitudes the density of the air
is low and hence, it can hold a very little of the energy it receives from the sun, and hence
we feel cold. Let us make it quantitative:

Considering the cooling of dry atmosphere with altitude as adiabatic, we may write

T7 P17 = constant | y = g—p
Cv

1-y)T"P7dP + yPY VT V4T =0
= (1-y)T"dP + yPT"PdT =0
= A-pT” d?P +yT"VdT =0
Using Eq. (2.26),

—A-p T7 ’;Lﬁdz +yT7DGT =0

. _w-Vmg ., m
Y k
., 4r__y-Dmg
dZ Y k

which on integration
Tar=— -1 mg J’ Z a7
Ty Y k Y0
we find
y-Dmg ,
k

where T is the temperature at an altitude Z and T, is the surface temperature. We got a
nice result. How is then the pressure of our atmosphere varies with altitude?

T=T,- (2.30a)
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Starting from Eq. (2.30) and dividing throughout by T, we find
T _,_ -1 mgZ

T v kT

Again, considering the cooling as adiabatic we may write
(y-1

w5

and, substituting this equation, the above equation reads
(y-1)

Py _1_(7/—1)ng

Yy kT

0

_r
P (1 (-1 ngJ(Vl)

- F0: vy kT

Considering ideal behaviour:

-1 _ (Cp - Cv)/Cv _ (EP: Cv) _R

Y EP/EV Cp EP

and using this, we have

v
P _(, R mgz\r?
P, Cr kT,
4
7-D
- P _ 1- kaO mgZ | ¢+ R=kN,)
P, Cr kI,
Y
(y-1)
= p-p|1-2M8Z (2.30b)
Cp T,

where M is the molar mass: M = mN,. Students must understand that Eqs (2.28) and
(2.29) are applicable only for an isothermal atmosphere. The pair of Eq. (2.30) takes care of
the decrease in temperature in the variation of pressure with altitude.
(i) the pressure of our atmosphere decreases with altitude according to Eq. (2.30b),
and
(i) the temperature of our atmosphere decreases linearly with altitude [Eq. 2.30(a)].
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2.14.3 Barometric Distribution in a Mixture of Gases

The barometric Eqs (2.28) and (2.29) also apply to a mixture of gases like our atmosphere;
but m must now be replaced by the mean molecular mass: m,;, = >x;m;, where x; is the
mole-fraction of the component i, whose molecular mass is m,;. Equation (2.28) can also be
applied to the individual components in a mixture, e.g.

m.gZ
P, =P° exp|-—
1,2 1,2 Xp|: kT :|

(2.31)

where P, ; and Pif)z are the partial pressures of the component i at an altitude Z and at

the ground level.

2.14.4 Effect of Temperature on Distribution
Writing Eq. (2.28) as

P { ng}

L _ exp|-T8Z

P, KT

We find that fraction of the ground level pressure (P/P,) at some altitude Z increases
with increase in temperature. The exponential decrease in pressure with altitude becomes
sluggish with increasing T' (Figure 2.20). The reason is clear: on increasing the temperature,
the kinetic molecular motion increases which, knockout more molecules from the lower
altitudes to higher altitudes against the pull of the gravity.

7z

T,>T,4

T2

Ty

0

0

Z—>

Figure 2.20 Two decays for a given gas at two different temperatures, T, and T, (T, > T,).
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The subject matter may be made a little bit more mathematical: starting from

Eq. (2.28),
P [ mg Z}
L _exp|-EZ
2) kT

We note that the right hand side of the above equation gives the fraction of the ground level
pressure (P;) at height Z. Now, the effect of temperature on the distribution is deduced as
follows: If, instead of the temperature T, the gas is maintained at some higher temperature
Ty (Ty > T)), the height Z, at which the exponent and therefore, the exponential term has
the same value previously determined by Z; and T is given by

mg Z, mg Zf
T T
Since Te>T;, Ze>Z;

which means that, the fall in pressure to some definite fraction of the ground level pressure
at low temperature demands higher altitude at higher temperature.

Example 2.1

Calculate the change in pressure of the atmosphere at a height 8.5 km from the earth
surface due to a change in temperature from 27°C to —36°C. Assume the air to be an ideal
gas with molar mass 0.0289 kg mol . Consider the ground level pressure to be 1 atm.

Solution
Using Eq. (2.28) at the two temperatures

MgZ m mN, M
P, 237K)=PF, 2 == =
Bk ( )=k exp{ RT } [k kN, Rj

=(latm) exp

(0.0289 Jg mol ) (9.8 mis ") (8.5 x 10° )
(8.314 JK ' ol ") (237 ¥))

= Py 5 i (237 K) = (1 atm) exp[-1.2218] = 0.2947 atm

Similarly, Pg 5 ., (300 K) = (1 atm) exp[-0.965] = 0.3810 atm
The change in pressure is
Pg 5 aim (237 K) — Pg 511, (300 K) =(0.2947 — 0.3810) atm = —0.0863 atm

The pressure at 8.5 km altitude is decreased by 0.0863 atm due to the temperature change
from 27°C to —36°C.
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2.14.5 Effect of Molecular Mass on Distribution
Again, starting from Eq. (2.28),

P [ mgZ }

~ =exp|-——2—

F, kT
We find that the pressure falls off more rapidly for a gas of heavier molecules compared to
a gas of lighter molecules (Figure 2.21). The reason is very clear: at a fixed temperature,
the average kinetic energy of the molecules of any gas is the same, i.e. the knocking out

effect is the same. The heavier molecules are therefore more strongly pulled towards the
earth surface compared to the lighter molecules.

You know that N, and O, exist on the earth surface in the mol-ratio 4:1. Since N, molecules
are relatively lighter than the O, molecules, the number density of the latter will drop
down more rapidly than the former with increase in altitude. So we may expect that
the proportion of Ny to O, will increase with altitude. In fact, this does not happen in
our atmosphere, at least at reasonable heights. This is because (i) our atmosphere is not
isothermal and (ii) it is not at rest; they are mixed up again. However, the lightest gases
definitely predominate at upper levels.

PIP,

My > M,
const. T

0

77—

Figure 2.21 Heavier molecules are more denser at the lower levels than the lighter molecules.

Example 2.2

If mol-percentages of O, and He in the air at the earth surface are 20.93 and 0.0001,
respectively, then calculate the height after which He will predominate O,. Temperature
is 300 K.
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Solution
Let their number densities become equal at altitude &. Therefore, we may write

{_ (0.032 kg mol ™) gh}

%100 =20.93 exp

ny, RT
-1
— 0.0001 exp|— (0.004 kg mol™) gh
RT
-1
. 209300 = exp (0.028 kg mol ) gh
RT
(0.028 k¢ mol) (9.8 m %) h
= In 209300 =
(8.314 X'm mol™ K7) (300 K)
8.314 x 300 x In(209300)
= h= m
0.028 x 9.8
or h =111,362.06 m = 111.36 km

Comment Students must always take care of the units and their cancellations to get the
desired unit of the parameter/property asked for.

Example 2.3

Consider an isothermal atmosphere. If the pressure is decreased to 90% of the ground
level pressure after 9 km, then to what extent it would decrease after 27 km?

Solution
Using Eq. (2.28),
_mg(27 km)}

Pyrym =By exp[ LT

27 km/9 km
(9 km)
=P0 {exp|:_ mng = :|}

v

km

3
] =(0.9® =0.729

Example 2.4

The mol-ratio of N, to O, in the atmosphere at the ground level is 4:1. Calculate the total
pressure at 10 km altitude at 27°C, if that at the ground level be 1 atm. Average molar
mass of air is 0.0289 kg mol .
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Solution
The mol-fractions of O, and N, at the ground level are ¥o, =0.2andxy, =0.8,
respectively.

Therefore, the ground level pressures of these two gases are: P02(0)=0.2 atm. and
Py,(0)=0.8, using Eq. (2.31)

(0.028 k¢ ol ) (9.8 m§ ) (10,000 )
(8.314 LK ol ') (300 K)

= PN2 (10 km) = 0.266 atm
and similarly, F, (10 km)=0.057 atm.

The total pressure at an altitude of 10 km is the sum of these two partial pressures, i.e.
0.323 atm.

Example 2.5

A balloon having a capacity of 15,000 m? is filled with He gas at 27°C an 1 atm pressure.
If the balloon is loaded with 90% of the load, that it can lift at the ground level, at what
height will the balloon come to rest? Assume that the volume of the balloon is constant,
with mass 1500 kg and the atmosphere isothermal at 27°C. The molar mass of air is
0.0289 kg mol ™! and the ground level pressure is 1 atm.

Solution

Volume of the balloon = 15,00 m?; 7' = 300 K (isothermal condition) and the ground level
pressure P = 1 atm = 101325 Pa (1 Pa = 1 Nm™).

Mass of the He in the balloon is

_ PuM _ (101325 Xz ) (15,000 u1®) (0.004 kg mol ™)
° RT (8.314 X M K7 mol™) (300 K)

= Whe = 2437.45 kg
Mass of the balloon

Wa

Wg = 1500 kg
Whe + Wy = (2437.45 + 1500) kg = 3937.45 kg
Mass of the displaced air at the ground level

PoM (101325 X x4 ) (15,000 »f ) (0.0289 kg mol™T)
air — =
RT (8.314 X xf BT mol™) (300 K)

= w.

air

= 17,610.6 kg
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lifting power at the ground level is then
(W, — Wy, + Wg) =(17,610.6 — 3937.45) kg = 13673.15 kg

90% of this lifting power = (13673.15 x 0.9) kg = 12,305.84 kg. The net downward load is
then
(Wi + Wy + 12,305.84) kg = 16,243.29 kg ...(a)

The net upward force is then
(W, — 16,243.29 kg] = 1367.31 kg
Let P be the pressure at the altitude i, where the balloon comes to rest. The mass of the
displaced air at this altitude is
P x15,000 x 0.0289

=0.1738 P (P isin Pa) ...(b)
8.314 x 300
Equations (a) and (b) are now equated
0.1738 P = 16,243.29
1latm
= P =93,459.69 P4 [101325}95}
= P =0.922 atm.

Finally, using the barometric equation

h_RTln&_(8.314NmK‘fm<rrf)(3ooK)ln 1 atm

Mg P (0.0289%;1«;14) 9.81 i %)  0.922 atm

= h =714 m.

2.14.6 How to Calculate the Total Number of Molecules
in the Atmosphere?

Equation (2.29) gives us the variation in the number of molecules per unit volume with
altitude (assumed isothermal). We will now calculate the total number of molecules in the
entire atmosphere.

Consider a cylindrical atmosphere of uniform cross-section A, we then focus our attention
to the portion of the atmosphere between heights Z and Z + dZ. The volume of this section
is AdZ. Since dZ is infinitesimally small, the number density of the molecules in this
section can be regarded as constant [Eq. (2.29)]; the total number of molecules in this
section is therefore n AdZ. The total number of molecules present in the entire atmosphere
is therefore

N(0, o) = J:n AdZ =n, AJ: exp(—- mgZ | kT) dZ

= N(0, =) =n, AkT | mg (2.32)
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Similarly, the total number of molecules within an altitude Z from the earth surface is

N, )= "o AT {1 _ exp(— maZ H (2.33)
mg kT

The fraction of the total number of molecules present within the altitude Z is therefore,

f(O,Z)ziN(O’Z) =1-ex ( ngj

N (o, oo)_ - (2.34)

Example 2.6

Calculate the fraction of the total number of O, molecules which lies below an altitude of
8550 m. Consider the atmosphere to be isothermal at 27°C.

Solution
Using Eq. (2.34), the fraction is

(0.032 ke mol ) (9.8 w75 ) (8550 w)
(8.314 JK  yucl ) (300 K)

/(00,8550 m)=1-exp {

= f10, 8550 m) = 0.659

The height of Mt. Everest is about 8550 m. This means that, at the top of Mt. Everest the
percentage of O, goes down to 0.659 factor of that present at the ground level; the drop in
temperature is neglected. Had it been considered the percent factor will become further
lesser.

Example 2.7

Calculate the mass of our atmosphere around our earth. The mean radius of the earth is
6.4 x 10® km and the ground level pressure is 1 atm.

Solution
The total number of molecules present in the atmosphere is obtained from Eq. (2.32):

ART
N(0, =) = M (A is the area of the surface of the earth)
mg
Therefore, the total mass is
ART AP
Mass (0, ) = ny Ak = 0

g
Where we have used the ground level pressure Py = ny kT = 1 atm.

4nr®Py  4(3.14)(6.4x10° m)*(1 atm)
(9.8 ms™?)

= Mass (0, =) =
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4(3.14)(6.4 x10° m)2(1atm) (101325 Pa)
9.8 ms™2 latm

= Mass (0, =) =

Mass (0, ) = 5.32 x 10*® kg
Example 2.8

Calculate the mean potential energy of the molecules in the atmosphere at 300 K.
Solution

The number of molecules in the section of the atmosphere between the altitudes Z to Z+dZ
is n AdZ; each of them has potential energy mgZ. The average potential energy is therefore
given by

< P0t> N(O J‘ SPOth
= (epot) = N(O j (mgZ) AndZ
= (€pot) = Am’g’ng j“’e"”gz’ M zdt  [using Eq. (2.32)]
Pt 7™ ART 0

262 (T 2 ‘ .
= (€pot? = () (using the gamma function;

kT \mg see Sec. 2.10.4; M.11)
= (epy) = kT = (1.38x 72 JKT) (300 K)
= (€poy)=4.14x10721 J

This is sometimes referred to as the thermal energy of the molecules.

Example 2.9

Show that the height H, at which the pressure is (1/e)th of the ground level value is equal
to that imaginary height within which the entire exponential atmosphere is present but,
with the ground level pressure uniform throughout from zero to H.

Solution

RT
The total number of molecules in the exponential atmosphere is given by An, —

mg
[Eq. (2.32)]; and if this is assumed to be present within an altitude H uniformly with the
ground level pressure P, (= nykT), then

An, kT AHn,
mg
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N =t
mg
Using Eq. (2.28),
P=p e T2
kT
1 mg H mg H ) o
= E/P(J/Z/Po/e kT = e kT e =1=e
(mgH - kT)
= e T =1=¢" = mgH-kT=0
and finally, our answer H = kT .
mg

Example 2.10

When Julius Caesar expired, his last exhalation had a volume of about 500 cm?®. This
expelled air was, 1 mol% argon. Assume that the temperature was 300 K and the ground
level pressure 1 atm. Assume that the temperature and pressure are uniform over the
earth’s surface and still have the same values. If Caesar’s argon molecules have all
remained in the atmosphere and have been completely mixed throughout the atmosphere,
how many inhalations, 500 cm?® each, must we make on average to inhale one of Caesar’s
argon molecules? The mean radius of the earth is 6.37 x 10 m.

Solution

If n and n, are the number of Ar molecules per unit volume at an altitude Z and, on the
earth’s surface, respectively, then

zHdz
n=n, exp(— ng) [cf Eq.(2.29)] | .
=
The total number of Ar molecules in the atmosphere
(Z=0toZ — ) is then

Ny otal (Ar) = N(O, °°) = J.nAdZ
0

z=0< =
< naz ——
= Nyota (Ar) =noA Je KT dZ area A
0

ny AT
mg

= Mo (Ar) = [ef Eq. (2.32)] ..(a)

m is mass of a Ar-atm.
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This total number of molecules in his last exhalation may also be written as
Pv
Rtotal) = RT

_a atm) (500 91{”/) (6.022 x 10*® atoms mo‘lz()
(82.05 cm® atm KT mol™) (300 K)

= 1.223 x 10*2 atoms

N,

Therefore, the total number of Ar atoms is

Nioral (AT) = 1.223 x 10?2 x 0.01 = 1.223 x 10%° atoms ...(b)
Now, equating Eqs (a) and (b), we find

ART ART
7 ART _ 1 99310 atoms = "2 AET
mg Mg

_ (1223 %10 atoms) (0.04 kg ol ) (9.81 i 577)
47 (6.37 % 10°m)? (8.314 X'm KT mol™") (300 K)

_3775atomsmf4[ 1" ]

(M is the molar mass of Ar)

10% ecm?
= 37.75 atom 10°® em™ = 37.75 atom/10°® cm?

37.75 atoms of He present in 10° cm?
1 atom of He will be found in 0.0265 x 10% cm® = 2.65 x 10* cm®

To take a single of Caesar’s Ar atoms, number of inhalations required is

2.65><1049r{f=53
500 et

Example 2.11

Calculate the change in the ground level pressure of the atmosphere if the temperature is
increased by x times.

Solution

Let ny be the number of molecules per unit volume at the ground level at temperature 7.
The ground level pressure is then P, = n, £T. The total number of molecules present in
the whole atmosphere is then An, kT /mg [Eq. (2.32)]. If n,” be the population density at
the ground level when, the temperature is increased to x7', then we must have, from the
conservation of the number of molecules:
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Any kT An{ k(xT)
mg mg

n
X

The ground level pressure at this increased temperature is therefore
Py =n{k(xT)=ny kT = P,

The ground level pressure therefore remains unchanged.

Comment When the temperature is increased x times, the gas becomes dilute at the
ground level but, they are now hitting more harder. So the pressure remains the same.

Example 2.12

A balloon having a capacity of 10,000 m? is filled with He at 20°C and 1 atm pressure. If
the balloon is loaded with 80% of the load that it can lift at ground level, at what height
will the balloon come to rest? Assume that the volume of the balloon is constant, the
atmosphere isothermal at 20°C, the molar mass of air is 28.9 g mol}, and the ground level

pressure is 1 atm. The mass of the balloon is 1.3 x 10° g.

Solution
The mass of He in the balloon is
Wi, = PoM
RT

. (101325 X ) (10,000 m®) (0.004 kg mol™T)
e 8.314 X #f k¥ mo™") (293 ¥)

or, Whe = 1663.8 kg
The mass of the balloon Wp is 1300 kg.

The sum of the masses of He and balloon is
Wy + Wp) =(1663.8 + 1300)kg = 2963.8 kg

The mass of the displaced air at the ground level is
_ PuM
air RT

w . - (101325 X ™) (1x10* ar®) (0.0289 kg mol ™)

(8.314 X 26 k" mol™) (293 ¥)

or W, = 12,020.89 kg
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Therefore, the lifting power at the ground level is
(12,020.89 — 2963.8) kg = 9057.1 kg.
The mass of the load is (0.8 x 9057.1) kg = 7245.68 kg.
The net downward load is then W; = (2963.8 + 7245.68) kg wt. = 10,209.48 kg wt.
The net upward force is then
WT=W,, - W, =(12,020.89 — 10,209.48) kg wt

or WT=1,811.41kg wt.

Let h be the altitude where the balloon comes to rest and the pressure at height & be P.
The mass of the displaced air at the altitude 4 is
P x10* x0.0289
8.314 x 293

=0.1186 P (the pressure P is in Pa)

and this must be equal to the net downward load, i.e.
0.1186 P = 10,209.48

= P = 86,083.31 Pa
1 atm
= P=(86,083.31P8)| —— ———
[101325 Pe J
= P =0.8496 atm

We now apply the barometric equation

P=P, exp( gh)

kT
Mg P
. _ (8314 N'm J* ol ) (293 K) | ( 1 atm J
(0.0289 k¢ mol ) (9.8 ;i %)  |0.8496 atm
or h=14019m
or h=14km

Example 2.13

Calculate the change in the ground level pressure of the atmosphere if the temperature is
increased to x times the initial temperature.
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Solution

Let n, be the number of molecules per unit volume at the ground level at temperature 7.
The ground level pressure is then P, = ny kT. The total number of molecules present in the

kT
whole atmosphere is An, mig [cf. Eq. (2.32)]. If the population density at the ground level
be n,” when, the temperature i = increased then, we may write:
Any kT  Ang K(xT)
mg ~ mg

=t ny, =—
X

The ground level pressure at this increased temperature is then
P =n, k(xT)="2 kxT = n,kT = P,
x

The ground level pressure therefore remains unchanged. The reason behind this interesting
result is that, when the temperature is increased x times, the gas becomes dilute at the
ground level but, they are now bombarding more harder; so the pressure remains the
same.

2.14.7 Barometric Distribution as a Special Case of More Generalised
Boltzmann Distribution

In the barometric equation, we note an interesting fact that the number density of the
particles at any altitude is proportional to

exp [— gravitational potential energy of each particle at that altitude/kT]

Now, the question is: do the equation also works when the molecules/particles are subjected
to any potential field other than the gravity?

To find the answer, let us apply the system in a potential field where F force acts on each
particle along the x axis (F is a function of x). As we have done earlier, let us take two
parallel planes of unit area at distances x and x + dx from some reference point. If the
number density of the particles at the level x be n, then the total number of particles
between the two chosen planes is ndx; the net force on this assembly is, therefore, Fn dx;
and this must also be the pressure difference dP across this section; i.e.

Fndx=dP =k Tdn

dn Fdx
= ki
n kT
We know that, for a conservative force, F = — Cciil’ where V is the potential energy at the
X

point x and dV is its change over the distance dx. Then we can write
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dn__dv
n kT
and integrating between limits
ndn __ 1 JVdV
no n kT 0
v
- _ _ 2.35
n=n, exp( kT] (2.35)

which is nothing different from Eq. (2.29), where we had V = mgZ.

Equation (2.35) is the Boltzmann distribution and now we understand that the barometric
distribution is a special case of the more generalised Boltzmann distribution. Suppose, we
take an aqueous solution of NaCl. Concentrate on a particular Na*ion. How are the other
Na™ and Cl ™ ions arranged about this central ion? The answer is given by Eq. (2.35). They
are arranged exponentially: the concentration of the Na* ions increases exponentially and
that of the Cl” ions decreases exponentially with increasing distance from the central
cation. We will find an ingenious application of this principle later.

Example 2.14

The potential energy of the particles of a system in a certain central field depends on
the distance from the centre of the field as V = ar?, where ‘@’ is a positive quantity.
The temperature is T' and the number of particles per unit volume at the centre is n.
Calculate
(i) the number of molecules located between distances r and r+dr from the centre of
the field.
(i) the fraction of the total number of molecules located between distances r and
r+dr.
(iii) the most probable distance separating the molecules from the centre of the field.
(iv) by how many times the number density of the molecules at the centre of the field
changes if the temperature is changed by a factor (1/x)?
(v) the number of particles whose potential energy lies within the interval V -V + dV,
and
(vi) the most probable value of the potential energy of a particle. Compare this value
with the potential energy of a particle located at the most probable distance.

Solution
The distribution of the particles in the space is given by Eq. (2.35)

n=n, exp( ar2j
=n, =
kT
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where n and n, respectively, are the population densities of the particles at the distance
r and at the centre.

@)

(ii)

(iii)

To solve this part, we have first to find the volume of the shell between two
concentric spheres of radii r and r + dr; and then multiply this with the population

density at r. The volume of the shell is d(V)=d (;L 7177‘3) = 47xr’dr. Therefore, the
number of particles located between distances r to r + dr is

2
dN, = (4nr*)n = 47n, exp[— ZF] ridr

To find the fraction, we have to calculate the total number of particles present.
This is

ar2

N0, )= | "dN, =4zn, [ e *T r’dr

3/2
ﬂkT) (see Sec. 1.9.4; M11)

= N(0, o) = n, (
a

The fraction of the total number of particles lying between r to r + dr is therefore
3

= 2
f(r—>r+dr)= dN, =4r a_\? exp _ar ridr
N(0, =) kT kT
3/2 9
dN, =471 N(0, o) LI exp _ar
dr kT kT

Figure 2.22(a) shows that there is an exponential decrease in the density of the
particles with r. Figure 2.22(b) shows the parabolic increase in the volume of
the shell. Figure 2.22(c) gives the combined effect of these two variations. The
function first increases and then, forming a maximum, decays down. The distance
corresponding to this maximum is called the most probable distance, because at
this distance the differential spherical shell contains the maximum number of

r

r

d (aN, =8mn,r ex —ﬁ 1—a—r2 =0
dr \dr )OSR Ty kT |~
Three solutions are there:
1 r=0 (1) r—o and  (iii) r= ==

molecules. To find this distance, we differentiate with respect to r and equate

it to zero:
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You can easily find from Figure 2.22(c) that at r = 0 and as r — «, there are no

particles. So the only physically acceptable solution is r,,, = [—

exp(—ar?/kT)

kT
.

42 >
dN, —

r— / r—
r=JkTla
(b) (c)

Figure 2.22 The combined effect of the two opposing factors.

(iv) Let ng be the concentration at the centre of the field at temperature 7'/x. Then we

can write

3/2 3/2
no(”kT] :n(;[”kT) (of sec.1.9.4; M 11)

a xa

as the total number of particles remain the same.

=

r _ 3/2
ng=ny x

which means that the number of particles per unit volume will change by a factor

of x

3/2

(v) IfVand V +dV are the potential energies of the particles at distances r and r + dr,

then the number is exactly the same as dN,; writing it as dNy, we get

Since

2
dNy =4rn, exp[—(;}] r’dr

1
2aV

Vvyv 1
dN,, =4nn, exp| —— | — dVv
\% 0 P( kT) @ o9JaV

dN, = 27, VY2 exp (— k‘;) dv

a3/2

V=ar? dr= dv
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The distribution function is therefore

dNV 271:710 1/2 vV
v = 7 o

and is shown in Figure 2.23.

dNv
dv

Figure 2.23 Variation of the distribution function with the potential energy V.

(vi) To find the most probable value of the potential energy, we differentiate dNy

and, equate it to zero.

d dNV 27[77,0 1/2 V 1 1
. - 1% Ll =—-—==0
av ( av j 2 TP TRr ) 2v T RT

The physically acceptable solution is

1
Vmp 25 kT

The potential energy at the most probable distance is

V._, =arﬁp=a£=kT
mp a
Vmp zl
V._ 2
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2.15 MAXWELL'S DISTRIBUTION OF MOLECULAR SPEED

2.15.1 Introduction

We have finished a long section of a topic which describes a single feature of a gaseous
sample at rest in thermal equilibrium. The barometric distribution function gives us the
distribution of the particles in a potential field in space, irrespective of their speeds. That
is, it estimates how many particles are here and how many of them are there. But there is
another important feature of the system, that we want to know.

Suppose, we calculate the total number of molecules in between two altitudes 2 and
h + dh from the earth’s surface. We then ask, are all the molecules in this section moving
with the same speed? Definitely not. For, even if we have started off with this section,
having all the molecules therein, moving with the same speed, the random erratic collisions
among the molecules would continuously change their velocities and ultimately, a steady
state will be attained in which the molecules will be distributed indistinguishably over
the entire velocity spectrum. The adjective ‘indistinguishable’ means that a particular
molecule would not become restricted to move in a given speed zone; rather, they will be
certainly, constantly changing their speed but, the number of molecules moving in a given
speed range will be fixed, after the steady state is attained. We now want to find out the
rule according to which the molecules are distributed over the entire speed range: 0 — .
However, before we start, it would be nice to prove that, if all the molecules move with
the same speed, the behaviour of the gas would be quite different from that required by
thermodynamics.

Consider a one-dimensional gas in which all the molecules move vertically up and down,
i.e. along the z-axis only. Suppose the molecules start rising up from the earth’s surface
with velocity V; as they go up, they lose their kinetic energy according to the equation
1 5, 1
—mu, =—mv” + mgZ
2 0 2 g
where v is the velocity of the molecules at height Z from the earth’s surface. Definitely, a
2
height Z,, = ;)—0 will be attained at which, all the molecules would stop and drop down
14

towards the earth’s surface. What is the result?

Firstly, our atmosphere should have a finite sharp upper limit, and secondly, since you
know that the average kinetic energy of the molecules is a linear function of temperature,
the atmosphere will also experience a linear drop in temperature until the upper limit
is reached, where the temperature goes to the absolute zero. Thirdly, the density would
increase with altitude. This is because, in the higher altitudes the molecules move slowly
and require a longer time to traverse a given length. All these conclusions are going against
our knowledge. The first and the third points violate the barometric distribution; and the



The Kinetic Theory of Gases 2.57

second point violates the 2nd and 3rd laws of thermodynamics, according to which, the
attainment of OK is an impossibility. The molecules therefore cannot move with the same
speed.

2.15.2 Postulates and Criticisms

James Clerk Maxwell solved this problem first in 1859. His deduction was based on the
following assumptions:
(i) The distribution of velocity is the same along any direction.
(i1)) The number of molecules per unit volume remains the same in the course of time
in every volume element throughout the gas.
(iii) The probability of occurrence of any velocity component, say v,, is independent of
the values of the other two velocity components v, and v,.

Assumption (iii), which is one form of what has been called the ‘Principle of Molecular
Chaos’, was, however, the main objection raised, against the theory, by the opposite
schools, particularly, the mathematical purists. Moreover, Maxwell’s original proof did not
take account the effect of molecular collisions. Later, Maxwell himself, Boltzmann, Jeans
and others have derived the same equation by taking into account the effect of molecular
collisions and, some assumptions which seemed more plausible. In fact, the best justification
of the distribution law is to consider it as a special case of the more generalised Boltzmann
distribution law, which can be proved from the statistical mechanical principles. Finally,
in spite of so little satisfaction to the mathematical purists, one can just only wonder
at the genius of Maxwell who proposed such a fundamental and accurate physical law,
probably from his intuition. We shall now move to explore the distribution function.

2.15.3 Distribution Law

We consider a sample of a gas where the molecules are moving randomly, i.e. along all
possible direction in space. As we know from our elementary knowledge, a velocity vector
v can be broken into its three rectangular components v,, v, and v,. Let ‘n’ be the total
number of molecules per unit volume.

If dn  be the number of molecules per unit volume whose x-component velocities lie in

the range v, — v, + dv, then, we may write:

The fraction of the total number of molecules whose x-component velocities lie in the range
v, > v, +dv, is (dn,, /n). This fraction must depend on some function of v,, say f(v,)
and, must be directly proportional to the interval dvxi; because, if this interval in the

infinitesimal scale is doubled, the number of molecules must also be doubled. We write for
the velocity distribution along the v, axis as

dn,_

=f(v,) dv,
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and, the velocity distribution function flv,) as

1 dn,
— g @) (2.36)

X

Due to the isotropic nature of the movement of the molecules, the velocity distribution
functions along v, and v, axes will be similar exactly as that along v, axis, i.e.

]_ dnU 1 dn‘v
f,)==—"and f(v,) == —-=
n d

dv, n dv,

If we now define the velocity distribution function F(v,, v,, v,,) representing the
probability of the occurrence of the x-component velocities in the range v, — v, + dv,,
and simultaneously, the y and z component velocities in the ranges v, — v, + dv, and
v, = U, + dv,, respectively, then

dn, ., ,
F(v,,v,,v,) dv, dv, dv, = —=

X > z
Y n

=f)f(,)f(v,)dv, dv,dv,

where dn,  , is the number of molecules per unit volume whose x, y and z component
x2Vy,Vz

velocities lie simultaneously, in the ranges v, - v, + dv,, v, > v, + dv, and v, —> v, + dv,,

respectively.

All the differentials cancel so that we conclude that
F,,v,,v,)=[fw,) fw,) f,) (2.37)

This means that the probability that the velocity v (with components v,, v, and v,) lies in
the range between v and v + dv is just the product of the probabilities that the velocity
components lie in their respective ranges. Thus, the individual velocity components behave
like statistically independent quantities.

Taking the natural logarithm of Eq. (2.37),
InF=Inf{,)+Inf,)+Infl,) (2.38)

Now, taking the derivative with respect v,

JnF _dinfw,)

v, dv,

. _ 2 2 2
and since v =,/v; +v; + v, , we get

0+0 (2.39)
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v _ 20,
v, 2, |2 + vﬁ +0?)

or W b (2.40)
v, v

Equation (2.39) can then be rewritten as

dlnF .i_ dlnf(v,)
dv v, dv

X X

and, using Eq. (2.40)
dinF v, dlnf(v,)

X

dv v dv

X

1dlnF 1 dinf(,)
v dv v dv,

X

= (2.413)

If we have differentiated In F with respect to v, or v,, similar equation (due to isotropicities)
would be obtained:
1dnF 1 dinfw,) 1 dinf@,)

v dv v, de v, dv, 24D
finally leading us to

ldlnF_i dh’lf(vx)_i dlnf(vy)_i dlnf(vz) (2.42)

v dv v, dv, v, du, v, du, .

In Eq. (2.42), v,, v, and v, are completely independent of each other. That is, you can put
in any values you wish for v,, v, and v,, and the equation must remain valid. There is
only one way that this can be true and, that is if all the terms in Eq. (2.42) are equal to

a same constant. For reasons which we will see in a moment, let this constant be (-b),
where b > 0. Therefore

1 dinf(v,)
v, dv,

X

-b

= dlnf(v,)=-bv, dv,
and, on integration with the constant In a

X

lnf(vx)z—gv2 +Ina

b 9
-5 v2

or f(vx) =ae (2.43)
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Equation (2.43) is the functional form of f{lv,). We find that it is Gaussian and hence an
even function. The function goes to zero at v, = + oo, which means that the integral is finite.
If we had made the original constant +b instead of —b (b > 0), then the function would shoot
to infinite at v, = o, and would not be integrable. Our next objective is to find expressions
for ‘@’ and ‘6’. From Eq. (2.36), we find that fv,) dv, is the fraction of the total number of
molecules having velocities in the range v, — v, + dv, (== < v, < ). The sum of all possible

fractions must be unity, i.e.

[T fw)dv, =1
bvz
. u Jjwe—T dv, =1 (using equation 2.43)
2 ..
- a, ’7 =1 (see the Gaussian integral; 2.10.3)

/b
or a=,—
21

Then we calculate (v?); this we obtain as

2

<v§> = f: v f(v,) dv, = af: e_% vZ do,

bv,%

= 2a'[:e 2 p2dv, (. even function)

bvz

= OLJ‘:e_7 (03)5_1 dv’)=a

and simplifying
9y 1
(vir=7

b

The average translational kinetic energy in one dimension is therefore

3

1

1 2
—m =

2

m_
b

1kT
2

)

5"

(2.44)



The Kinetic Theory of Gases 2.61

m
= =—

kT
and, using this result in Eq. (2.44) (2.45)

m
a=
\ 27kT

The Maxwell’s distribution function of molecular velocity along the x-axis is therefore
[using Eqgs (2.43) and (2.45)]

dn 1/2
f(vx) — l U _ m e—mv§/2kT
n dv, 2n kT (2.462)
1/2 ’
or dnv =n m e—mvz/ZkT de
v 2n kT

This equation is one of the most fundamental equations of the kinetic theory.

Again, due to the isotropicity of the movements of the gas molecules (i.e. the molecular
motion is completely random), there is no difference among the velocity distributions
along the three axes. This is also corroborated from the assumption (i) of Maxwell. We can

write, therefore
dn, Ve 02
f(Uy) — l y — [ m ) e y
n

dv, 2nkT 2kT

and L dn N (2.46b)
rer=s g =\amr)
n dv, 2nkT 2rT

Equations (2.46a) and (2.46b) represent the velocity distribution of the molecules in a
gas along the three rectangular axes. Figure 2.24 shows this distribution along the v,
axis for N, at 25°C and 1025°C. The area under the curve within the interval range

Ux

-dv, or 1 dn, , i.e., the fraction of the total number
v n

v, >v, +dv, isfv,) dv,,ie —
n X

of molecules moving with velocities in the range v,” to v,” + dv, along the x axis. The total

area under each curve must therefore be unity. It is noted that the fraction of the total

number of molecules moving along a given axis, say v,, with velocities in the range v,” +

v, +dv, decreases at first, very slowly, and then very rapidly as the velocity is increased.

So far % m(vf) < kT, this decrease is slow but, as % m(vi) becomes of the order of 10 &7,
the fraction becomes almost zero (Figure 2.24). This can therefore be concluded that only

a negligibly few molecules are there in a gas, whose energy is much greater than £T. With
increase in temperature, the distribution becomes more broader and more flatter because
of the normalization.
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- 1.0x10°

0-5x 48 1025°C

1 1

10 5 0 5 10
vix10* [ cMs !

Vy Vi +dvy

Figure 2.24 Molecular velocity distribution in one dimension for N, at 25°C and at 1025°C.

Example 2.15

Show that (v,)=0.

Solution

The number of molecules per unit volume moving with x-component velocities in the range
v, > U, +duv, s

dn, = (total no. of molecules per unit volume) x fraction of the
total no. of molecules having x-component velocities in the
range v, — (v, + dv,)

= dn, =nxf(,)dv,

The average of v, is then

1/2
1 +e Teeo m —mv2/2kT
== dn. = x v d
<vx> nJ._a Uy nvx J-_w (271:ij e U, av,

1.e. <vx > = 0’

Since the function v_ ¢ ™2k is an odd function (Sec. 1.9.2; Eq. M8).

The result is quite expected: number of molecules moving with speeds in the range, say
(50 to 50.001) ms™ to the east, is exactly the same as those to the west. The velocity, being
a vector, therefore cancels out. Although average velocity along the x-axis (v,) is zero,
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we must get a finite value of the x-component velocity along one direction, say, to the east.
The limits of integration are now from 0 to « and, the total number of molecules per unit
volume should be halved as before, i.e. (n/2). Therefore, the average of the x-component

velocity towards east is

— 2 = d _ 2 m 1 < —mv%/thd
<vx:+>_;-[0 v, dn, =—n _[0 v, e v,

n \2nkT
m 1/2 2/
_ < —muy 2kt 2
= (vx,+>—(2nij J.e d@?)
or w. )= [T
’ wm

(2.47a)

The average of x component (or y or, z) velocity along the positive (right) direction is

finite.

It is now a very easy job to find that how many molecules strike a unit area held
perpendicular to the x-axis per second. As shown in Figure 2.25, all the molecules, which

are within the cylinder of unit are and length (v, ,), held normal to the yz plane would

strike per second the result is (Figure 2.25)

-~ <Vx,+> ————1-=>
Unit_» O )—»X
area

y

n
Figure 2.25 The number of molecules in this columnis — (Ux , +> that are moving

2
towards right, and, they will hit the area A (unit).

Number of molecules striking

a unit area of the wall of the | =— <vx +> _1 n 2kT
. 2\ 2 \ mm

container per second

1 [8kT

—n,|——

4 \7mm

1

=1 n{c)

a result, that we got earlier [cf. Eq. (2.20)].

(2.47b)
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2.15.4 Speed Distribution and Energy Distribution in One Dimension

Due to the isotropicity in the movement of the molecules, the number of molecules moving
with speeds in the range C, — C, + dC, towards east must be equal to those moving west.
Therefore, if dn, be the number of molecules per unit volume, found moving in the
velocity range v, — v, + dv, then, the number of molecules per unit volume, moving in the

speed range C, — C, +dC,, where |v,| = C, and dv, =dC, is dn;_=2dn, . We can write,
therefore, dn¢_ = 2dn, . This is explained in Figure 2.26. The speed distribution function
in one dimension is therefore

mCJ%

1/2
m -
dn, =2dn, =2 2tT dC

e o n(2nkTJ ¢ * (2.48)

dn,
A plot of AC)), i.e. 1 d(fx versus C, would be exactly, the same as the right part of
n

X

Figure 2.26, but being multiplied by 2.

Sed

A

(M2 kT2 e ’”"2/2kT\\

N

(vx+dvy) U (0] Vi  Vxtdvg
-~ Vy —>
Figure 2.26 The sum of the two strips is equal to the fraction of the total molecules with velocities in the range

vV, — V, + dv, irrespective of direction; so dn¢_=2(dn, ).

The average speed in one dimension is then

1/2
1 B m * v —mC2/2kT
(C.y=— J;C.dng, = Z(Wj JC.e dc,
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2kT
Cor=\—— (2.49)
m
exactly the same result as in Eq. (2.47).

If the energy corresponding to the speed C, is ¢,, then

€, _1 mC?;de, =mC_,dC, and dC, =#d €, .
2 2m e,
Equation (2.48) then transforms to
1/2
dn. =dn, =2n 1 <M e
* ® 2nkT
1 )2
or dn_ = n(kT) 2 e/t g e, (2.50)
* T

which is the distribution of energy in one dimension. The average kinetic energy of the
molecules in one dimension is therefore

(e,) = % J: €, dnex

- BNER
= (€)= (1j1/2 '[wefex/”(e )gf1 de
*\mkT 0 * *

and, using the gamma function
1
(&) =5 kT (2.51)
Finally, using the isotropicity of the movement of the molecules we may write
1
(e =(e,) =€) =5 kT

and therefore, the total translational kinetic energy of the molecules

(€)=(ey) +(&)) +(&,)

3
=2kT
= (e) 2
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Example 2.16

Calculate the root mean square velocity of the molecules of a gas along the x-axis.

Solution

First, we calculate the mean square velocity of the molecules along the x-axis:

V2 ol
<v>——_[ v? +(v,) du, —rm( ] e 2T y? dy_

2r kT

2
muy

1/2
T ToRT 2
= (v2y = [2 ij J-_werT v dv,

Since the function is even, we may write

1/2 muy
® “orp 2
(V)= 2(2 kT] fo e 2T 2 gy,

and, to apply the rule of gamma function, we rewrite it as

1/2 7”‘7”9% 3 .
W)= [2 7| e T dwd)

1/2 \/g
= <v>[’” 2 o=

2 kT m/2T®%2  m

The root mean square velocity along the x-axis is therefore

O =) = [T

(2.52)

Example 2.17

Calculate the most probable velocity of the molecules along the x-axis.

Solution

The most probable velocity is defined as the velocity at which the velocity distribution
1 dn,

function | , 4, | is maximum. From Figure 2.26, it is clear that the maximum of the

curve occurs at v, = 0. So, the most probable velocity of the molecules along the x-axis is

zero. Mathematically you can prove it by differentiating the function with respect to v, and
then, equating the result to zero. Do it yourself.
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Example 2.18

Calculate the average speed and the root mean square speed of the molecules of N, at
27°C along the x-axis. Note that root mean square speed and root mean square velocity are
the same. Why? How much is the average translational kinetic energy along this axis?

[2kT _ [2RT
Co=\—7=
m oM
_2(8.314 JK ! mol ™) (300 K)
3.14 (0.028 kg mol ™)

Solution
The average speed is

= (C,)=2382ms™

The root mean square speed is

fkT /RT
(vx)rms Y Y
m M

W) - \/(8.314 JK! mol™)(300 K)

=298.46 ms !

= 0.028 kg mol™

You can directly use Eq. (2.51):

(€,)= é kT = %(1.38 %102 JK ) (300 K)

(e,)=2.07x1072" J

We may also do it as

)= = o)

1
(ex)—Em(v :

1 (0.028 kg mol™)

== X (298.46 ms™1)?
2 (6.022 x 10?2 mol™)

(€,)=2.07x107"J
exactly the same result we got earlier. Note that

1 1 (0.028 kg mol™)

S m(C,)2 == x (238.2 ms )2
(o 2 (6.022 x 10?2 mol™)

2

= %m(Cx)Z =1.32x10% J
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is not the average kinetic energy. The average kinetic energy is always obtained from the
rms speed (It has already been mentioned earlier).

2.15.5 Speed Distribution and Energy Distribution in Two Dimension

Speed Distribution We now consider a gas where the molecules are restricted to move on
the x—y plane, i.e. the distribution in two dimension. Again, due to the isotropicity of the
movement of the molecules (postulate (i); 4.8.2), we may write

dn 1/2
Ve _ L e—mvz/ZkT dvx (2.53a)
n 2nkT

dv (2.53b)

and y

dnvy _ ( m )1/2 e_mU§/2kT
2nkT

where Eq. (2.53a) gives the probability that the molecules have their x-component velocities
in the range v, to v, + dv, and Eq. (2.53b) represents the same but, along the y-axis. Since
the probability that a molecule has its x-component velocity in the rang v, to v, + dv, is in
no way dependent on the probability that, its y-component velocity would be in the range
v, to v, + dv, (postulate iii; article: 2.15.2), we may write

dn, , dn, dn,
= = | x - (2.54)
n n n

where dn, , is the number of molecules per unit volume, whose x-component velocities
xVy

n

are in the range v, to v, + dv, and, simultaneously, the y-component velocities in the range
v, to v, + dv,. This is gives us

m(vjzc + u%)
dn =n( m )e_ 2kT  du_dv (2.55)
bxoly 2rkT Y
which is the velocity distribution function in two-dimensions. The equation is exemplified
in Figs 2.27(a) and 2.27(b). In Figure 2.27(a), the v, —v, plane is a two dimensional velocity
space. Each point on the plane represents a simultaneous occurrence of the given v, and v,
and, can also be interpreted as the tip point of the vector, representing the velocity of the
molecule, whose projections on the v, and v, axes are the given specified values of v, and
v,. The number of points in the infinitesimal rectangular area dv, dv, is obviously dnvx

Uy'
1 dn

Figure 2.27(b) shows the two-dimensional velocity distribution function —

n dv,dv,

U, U

v, and v,.
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;
7

yavy
PYEIN
A Tdvx
/ ’
(6] Ve

vy o

Figure 2.27(a) The velocity in two dimension. The number or tip points of the velocity vectors, originating from
the origin (0, 0), that are present in the infinitesimal area dv, dv, is dnv“,,y . The total number of tip

points of the velocity vectors v lying within the annular space between the two concentric circles
of radii Cand C+ dCis dn.

1010

Figure 2.27(b) The velocity distribution function versus v, and v,,.
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As shown in Figure 2.27(a), the distribution of the speed C =,/(v” + vi) is obtained by

collecting all the velocity vector tip points in the two-dimensional velocity space which lie
within the annular space of the two concentric circles of radii C and C + dC (C = |v|). The
area of the annular space is d(7C?), i.e. 22CdC. The number of tip points in this area is

ﬁ x 2rnCdC: If dn be the number of molecules per unit volume, moving with speeds
v, dv,
in the range C — C + dC (irrespective of direction), then it is given by
dng =25t orcac
=——2 x2
e dv,dv, "
= dng =T e 12T o 2.56)

kT

which is the speed distribution of the molecules in two dimensions. A plot of the speed
distribution.

20 b
e 25°C
(&}
w15
N
sl
ole
S 10+t
1025°C
05 |-
| |
0 5 10 15 20

10~" cm, cm sec™!

Figure 2.28 The speed distribution function for N, in two dimensions at 25°C and 1025°C .

function of N, at two different temperatures is shown in Figure 2.28. An important

feature that students should not miss is that as the temperature is increased, the curve

becomes more wider (also compare it with Figure 2.24.) This means that on increasing

the temperature, the molecules move over more wider range of speed. The height of the
. . . _ldn, . . .

maximum is depressed because, the function — e s normalised, i.e. the total area under

. n dc
each curve must be unity.
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The average speed is then evaluated as

1 e Mo i /2kT A2
(C) _;jo cdn, —ﬁjkTe c?dcC
kT
= ()= 7;7 (2.57)
The mean square speed is evaluated as
<C2>=lj‘”c2dnc _2kT
n°o m

and therefore, the rms speed is now

Coms =(C?) = ./% (2.58)

The most probable speed in two dimensions is then obtained by differentiating the speed

e . 1d . .
distribution function — %, with respect to C and then, equating the result to zero.

n
i l dn’c zﬂi[ce—mczﬂkT}
dC\n dC kT dC

d 1 dnc M _mc?/2kT mc2
or B e N 1-
dC\n dC ) kT kT

Equating the left-hand side to zero, two solutions come out: (i) C — « and (i) ¢ = kT / m.

The first solution being physically unacceptable, the most probable speed of the molecules

in two dimensions is
Cpo =L (2.59)
m

£

d
Energy Distribution To find the energy distribution function f{¢), defined as 1 dn
n de

, where
dn,is the number of molecules per unit volume, moving with energy in the range ¢to tde,

€ 1is the energy corresponding to the speed c, i.e. ¢ = % mC? and dC = L de. We then

transform Eq. (2.56) as 2me
mn -= [2¢ 1
dn,(=dn)= T2 ir |26 L g
kT m +/2me
or dn. =1 o ¢/*T g (2.60)

¢ RT
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The nature of this distribution function and the effect of temperature on the distribution
is shown in Figure 2.29.
The average energy of the molecules in two dimensions is then evaluated as

_100 _ 1 (= —e/kT
() = ;_([ede = ﬁjo ge de

_ = _elkT  _2-1
= (€)= T _[O e -7 de
= (€)= kT (using the gamma function) (2.61)

This result was quite expected; for one dimension, we got the average energy as %kT;

therefore, in two dimensions it becomes (% kT + % kT J =kT.

0.0025 T T T T T
T=300K
i
T=900 K cermeereeeeee
0.002 i
- 0.0015 |
I
£
S
2
S 0.001 i
=
0.0005 i
0 L
5000 6000

(ex10%) inJ

Figure 2.29 The effect of temperature on the distribution function of energy with increase in
temperature; the number of molecules in the higher energy zone increases.
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2.15.5.1 Fraction of the Molecules having Energy More than a Specific Value £*

The number of molecules having energy greater than or equal to £* is evaluated from
Eq. (2.60) as

ne") = [ dn, = [ e de

= n(z %) = ne ¢/ (2.62a)
Therefore, the fraction of the total number of molecules with energy more than &* is

n(ze*) _ o~E T

f(>e*) = (2.62b)

Gradually, we shall see the importance of Eq. (2.62b).

2.15.6 Speed Distribution and Energy Distribution in Three Dimension

dn,_

Speed Distribution If ( ] be the probability that the molecules have their x-component

n

dn,
velocities in the range v, - v, + dv,, (y] be the probability of having their y-component
n

dn
velocities in the range v, — v, + dv, and [ ”Z] be the probability of having their
n

z-component velocities in the range v, — v, + dv, , then these probabilities are given by

1/2
d”ux _[_m o MUR/2RT g,
n 2nkT *

dn, 1/2 )
r | = (2 ”;Tj ey, (2.63)
n b4
dn 1/2
and v | _ (2 n]sz efmvglsz dv,
n yi4

dnl} v,V
Therefore, the probability {”Z] of finding a molecule with velocity components,
n

simultaneously in the ranges v, to v, + dv,, v, to v, + dv, and v, to v, + dv, is given by the
product of the individual probabilities

dn, , ., dn, \(dn, dn,
atyte [ o || || P (2.64)
n n n n
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where dnvxvyuz is the number of molecules per unit volume, whose velocity components are

simultaneously in the ranges v, to v, + dv,, v, tov, + dv, and v, to v, + dv,. Using Egs (2.63)
and (2.64) we have

2kT Y

3/2 m ,9 92 92
m ——— (v + vy +03)
dn,,, =n dv, dv, dv, (2.65a)
oyt 2nkT
which is the velocity distribution equation in three dimensions. A three dimensional
velocity space is constructed (Figure 2.30). A point with coordinate values v,, v, and v,
represents a molecule whose velocity components are v,, v, and v,.

. o

Figure 2.30 The number of representative points in the cuboid dtis equal to
the number of molecules given by Eq. (2.65).

In spherical polar coordinate, Eq. (2.65) can also be written as

3/2  mC2
dn. . =n| —2 ¢ 2T C24C sinf dOdo (2.65b)
«0¢ =\ 2mkT

See Section 2.10.1 M2. Here, the volume element dv,, dv, and dv, has just been replaced
by C%dC sin0d6dg.

The cuboid of volume (dv,, dv,, dv,) is drawn at a distance C[z w2 + Ui n 03)1/2} from the
origin, with side lengths dv,, dv, and dv,. The number of representative points in this

cuboid is nothing but dnvxvyvz » i.e. the number of molecules per unit volume whose velocity

components are simultaneously in the ranges v, to v, + dv,, v, tov, + dv, and v, to v, + dv,.
The number of such points per unit volume of the velocity space is

Number density of the velocity representative point p
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: dn’uxvyvz
B= dv,dv,dv,
m % -mC2/2kT
or p= n[w) e (2.66)

It is interesting to see that this number density p does not depend on the direction of the
velocity vectors, but, only on their lengths, i.e. their speed C. This is in accordance with the
isotropicity of the movement of the molecules; all directions are equally probable for their
movement. Therefore, if we count the total number of representative points within the
spherical shell between two concentric spheres of radii C and C + dC (Figure 2.31) then,
we get the number of molecules per unit volume which are moving with speeds in the
range C to C + dC, irrespective of direction. If
the number of such molecules per unit volume
be dn., then dn, = (number density of the
velocity representative points) x (volume of the
shell)

m e C2/2kT 4 3
= dn;= n[2nij e d(gnC)

3/2
m < 2
or dng= 47tn( ) C? e T g (2.67)
2nkT ) Figure 2.31 The spherical shell between two con-
. . , .. . centric spheres of radii C and C + dC.
which is the famous Maxwell’s distribution of Collecting 2l the velactty vectors of
molecular speed. length C, but oriented along all pos-

We shall now discuss about the nature and sible directions in space we get dn.

characteristic features of the distribution:

dn( is the number of molecules per unit volume which move with speeds in the range C

to C + dC. Therefore, 1 c;rg is the fraction of the total number of molecules per unit speed
n

range. This is the speed distribution function flc)

n dC onkT

A plot of flc) versus C is shown in Figure 2.32. There are two opposing functions on the right-
2

hand side: the parabolic function C? and the Gaussian function exp(— Z:T

§ m02
F(O) = 1 dn, =47r( mn )2 C? ¢ 2T (2.68)

]. Initially, the

curve rises from zero at C = 0, a most parabolically, because the factor C? is dominant
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in this region and the Gaussian factor remains almost unity. But, as C is increased, the
Gaussian factor starts becoming the dominant factor. Due to this competing effect of these
two opposing factors, the curve passes through a maximum. The corresponding speed is
called the most probable speed, C.,,.. When C is increased beyond the C,,,;, due to the more
dominant Gaussian factor, the curve decays.

The most probable speed is evaluated as follows.

d (1dn,

The slope of the curve is 4 (n el

3/2 mC>
d (Ldn | _ o m 7 r o g mC
dC\n dC 2nkT kT

], which is

Ozat 300 K

Cms™)— Cc’C+dC

1d
Figure 2.32 A plot of the speed distribution function f(c) = — dnCC against C.
n

The relative positions of C,.,, (c) and . is also shown.

Equating the slope of the curve in Figure 2.32 to zero, we find three solutions: (i) C = 0,
[2kT
(i1) C - o and (iii) ¢ = T The first two solutions are not physically acceptable because,

at these two limits there are no molecules. So, the most probable speed is given by
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[2kT /2RT
C ps = [— = |—
m M

(2.69)

The first two solutions (C = 0 and C — ) are also of importance; they help us to know that
the curve in Figure 2.32 rises with zero slope and, also glances to zero as C — «. The curve

has therefore, altogether three horizontal slopes.

The average speed of the molecules {(c) is evaluated as

3 mC2
2 oo~

- =4 2kT (3
() den n(z ij J, e #T c’de

3

— mC2
_ m 2 e~ ~2\2-1 2
= () Qﬂ(zﬂij [ e 2T ac?)
3
= ©y=2r| | 2
2nkT m \
(QkT)
or (C)y = ,/Sk—T = 8RT (using the gamma function)
m M

The mean square speed (c¢?) is evaluated similarly as follows:

§ mC2
<C2>=1j°"czdn —4an| " 2j°°e 2kT CdC
nJo ¢ kT ) o
9 § mC2 5
= (=22 | 2'[ ¢ 2T (C2) E’ld(c2)
o
3 |9
2
= () ——”( = ) 2
Jr \ 2T m

(2.70)
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or (C*y=""— and the root mean square speed
m

_ Jic?y = 3T _ |3RT (2.71)
Cms_ <C>_ m - M

The relative positions of C,, ,(C) and C

S

mps are shown in Figure 2.32. The root mean
square C,, . has a special feature.

The root mean square speed of the molecules is the speed with which the molecules move
with the average translational kinetic energy:

Cnis :lmﬂ EkT
2 2 m

We now assemble the different features of the speed distribution function as follows:

1. The distribution is dynamic in nature: This means that in the steady state, the
number of molecules moving in a given speed range is constant, but their identities
are constantly changing due to the continuous random elastic collisions between
them. In other words, the number of molecules which fly off from a given speed
range in a given time period is exactly equal to the number of molecules which
come into that region of speed in the same time period.

2. The area under the curve, in Figure 2.32, between C to C + dC is the fraction of the
total number of molecules moving with speeds in the range C — C + dC. The total
area under the curve is then obviously unity.

3. The temperature has a profound influence on the distribution curve. With rise in
temperature, the curve becomes more broader (Figure 2.33); the position of the
maximum (at the most probable speed) is shifted to the right, but the height of the
maximum is depressed. This is because of the fact that the distribution function is
normalized, and therefore, the area under the three curves are equal and is unity.
This is explained in Figure 2.33. With increase in temperature, the number of slow
moving molecules decreases and that of the faster moving molecules increase. The
width of the curve is a direct measure of the absolute temperature.

® The ratio of the there characteristic speeds is then (using equations 2.69, 2.70 and 2.71)
2RT 8RT 3RT
(€): G = T 251

C

mps :

= 1.414 :1.596:1.73
=1:1.29:1.223
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Speed distribution for nitrogen

0.005 1
0.0045 |-
0.004 A
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0.0015+ [1{

0.001
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T
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Figure 2.33 The effect of temperature on the speed distribution function.

Figure 2.34 shows the distribution curve of two different gases at the same

temperature. The curve is narrower for the heavier molecules and broader for the
lighter molecules. This is because the average translational kinetic energy is the

3
same for the molecules of both the gases at the same temperature (5 kT) and this

is %anzns. Therefore, heavier molecules move slowly and the lighter molecules

move faster.

0006 T T T T T
0,atT=300K ——
HeatT=300K ------
0.005 .
0.004 [ 0, .
/'
—— 0.003F .
5%
—I<
— 0.002fF R . He ]
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0 - 1 N I 1 \F‘ ------
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C(ms™') —>

Figure 2.34 Comparison of the speed distribution function of O, and He at the same temperature.
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5.

If the temperature is increased gradually from very low value, the number of

molecules in any given speed range C to C + dC will increase and then it becomes
. mC?
maximum at 7 =

, after which the population decreases monotonously.

Finally, note that the most probable velocity is zero along any direction but the most
probable speed (in three dimensions) is \2RT/M . The reason is that the number

of speed representing points is obtained by multiplying the density of velocity
representing points p with the volume of the spherical shell 47c%dC [see Egs. (2.66)
and (2.67)]. From Eq. (2.66) it is seen that p is maximum at C = 0 and afterwards,
decreases in the Gaussian manner with increase in C. On the other hand, the
volume of the spherical shell increases parabolically. Since this volume element
is zero at C = 0, we conclude that there are no molecules at rest, i.e., with C = 0.
Caught in between these two competing factors (p decreases and 47c? increases),
the speed distribution function first increases, almost parabolically from C = 0 and
then passes through a maximum, where the two opposing factors cancel each other;
thereafter the curve slopes down due to the dominance of the Gaussian factor over

the parabolic factor. We thus get the most probable speed C,,,; corresponding to
the maximum of the curve. This is explained in Figure 2.35.

‘\\ (1/n)(dn¢/dc) x 100 (for scaling) ——

\ p(ca) -----
0.8 \‘\ 4mc T 4

S o6 b ]

g \\
T 04 r \\ .
02 .
(o) PNy P N ) I I 1
0 200 400 600 800 1000 1200
C(ms™)

Figure 2.35 The competing effects of the parabolic factor and the Gaussian factor.

7. Finally, an interpretation of the absolute temperature can be suggested from
the distribution curve. It is seen that the lower the temperature, the narrower
would be the width of the distribution curve. Therefore, if it is possible to reduce
the temperature to 0 K, then the distribution curve would become an infinitely
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long vertical strip of practically zero width. But, this contradicts the Heisenberg’s
uncertainly Principle; ‘attainment of zero kelvin is an impossibility’.

2.15.6.1 Explanation of Some Interesting Facts by the Maxwell’s Speed
Distribution Function

1. The rate of all elementary reactions increases exponentially with increase in
temperature.
For every elementary reaction there is a certain activation energy, which the
reactant molecules must posses in order to be converted into the product molecules.
On increasing the temperature, since the speed distribution curve flattens off, the
number of such activated molecules increases, resulting into an increase in the
reaction rate. You can also present a similar argument to explain the rise of vapour
pressure of a pure liquid on increasing the temperature.

2. The atmosphere of the moon is very dilute compared to that of our atmosphere.
When a particle of mass m leaves the Earth’s surface with escape speed v,, it has

the kinetic energy 1 muv® and the gravitational potential energy (_G Mmj , where
2

G is the gravitational constant (6.67 x 107! Nm? kg™2), M is the mass of the Earth
(M =5.98 x 10** kg) and R its radius (R = 6.37 x 10° m). When the particle reaches
infinity, it stops and has no kinetic energy. It also has no potential energy because
this is our zero-potential energy state. The total energy of the particle at infinity is
therefore, zero. From the conservation of energy principle, its total energy at the
Earth’s surface must also have been zero; therefore

(KE) + (PE) = (1 mvfj + [—GM’"j =0
2 R

- i (2.72)
R

On the earth surface

o |26.67x 107! Nm? kg?) (5.98x10%** kg)
B 6.37 x 10° m

= Uy = 11.2 km st

Similarly, it can be shown that the escape speed on the Moon surface is 2.38 km s™.
. - . 1

Do it yourself: Gravitational acceleration g, ., = G Searth’ M,0n = 7.36 x 10%% kg;

R GM

R?

=1.74x10°m; g=

moon
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= Vi) = 2.38 x km s7"

From the above calculations, we find the escape speed on the Earth’s surface and the
Moon surface as 11.2 km s™! and 2.38 km s}, respectively. Therefore, a substantial
fraction of the total number of molecules leaves the Moon surface, leaving a very
dilute atmosphere on its surface; this fraction present over the Earth’s surface is
relatively much denser.

2.15.7 Extension of the Maxwell’s Distribution Law
to Boltzmann Distribution Law

First, we shall show that the Maxwell's distribution holds in different parts of a force field,
e.g. the gravitational field.

Consider the velocity distribution along the Z-direction and let the law holds at the level
z = h,. We then write

m

2rkT

% o (2.73)
) e 2T dy,

dn, =n, (

as the velocity distribution, as applied to the altitude z = A4; n; is the total number of
molecules per unit volume at height #;. The number of molecules crossing this layer, per
unit area per second, in the upward direction with velocities in the range v, to v, + dv, is
then

1 2 7

nl( m jz e 2T y_du, (2.74)

2rkT

and each of these molecules on reaching an upper altitude z = h, will have an extra potential
energy mg (hy — h,), and hence, if the primed symbols are used for the 4,-level then

%mv? + mg(h, —hq)zémvf (2.75)

= v.dv, =v,dv, (2.76)

GM

6 Hint: g:r—z; &roon :%x9.8 ms?; then from known values of M, and 7., find G, ...

Finally, use Eq. (2.72) to get v,

" (because, a swarm of molecules contained in the volume element (v,-1) will cross this level in one
second)
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Using Eqs (2.75) and (2.76), Eq. (2.74) changes to

1
n, o8k = hy)/KT (Q,Z:TJZ e—muf/QkT v, @.77)

—mg(hg — hy)JET

but n; e =n,, where n, is the number of molecules per unit volume at the

altitude z = h,. Equation (2.77) then changes as

It is now seen that Eqs (2.78) and (2.74) are the same expressions for the conditions which
apply to the heights i, and h,, and hence, Maxwell's law is valid to the altitude &, also.
Not only the gravity field, the velocity and the speed distribution function is also valid for
all field of forces, even those in which the change in the potential energy is large upon
traversing a distance of the order of molecular diameter.

The Maxwell-Boltzmann distribution may then be written as

; (; mu? +£Pj
) viexp| —~"———2|d

m
v
2rkT

dn=4
n nn( T

(2.79)

where ¢p is the potential energy of the molecules, measured from a given reference, and n
is the number of molecules per unit volume at the given reference.

At any given altitude, & is constant, so that . % is also a constant; this constant times 'n'

is the population density at that level (according to the Boltzmann distribution):

3/2 2
dn, = 4n(n e ") M Pexp| 22 | d
2rkT 2T

3/2 _mv
dn, = 47m’( m ) vie 20T dy
2rkT
where n’ is number of molecules per unit volume at the altitude where dn, is estimated;
this equation is simply the Maxwell's speed distribution function at an altitude where
dn, is to be evaluated. This means that at any altitude the speed distribution is always

Maxwellian, irrespective of the potential energy.

For example, if we take a gas and place it on the Earth's surface, then the number density
of the molecules at an upper level is always less than that at a lower level, but the fraction
of the total number of molecules moving in any given speed range is exactly equal at both
the altitudes.
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The distribution function is also applicable to polyatomic molecules for which rotational
and vibrational kinetic energies are present in addition to the translational kinetic energy.

Equation (2.79) is also applicable to real gases; here, & is the potential energy of each
molecule arising out of the attractive and/or repulsive interaction between the molecules.
Since the & term is again a function of position coordinates only, the speed distribution
function of the molecules of a real gas is again Maxwellian.

Example 2.19

Calculate the most probable, average and the root mean square speed of the molecules of
a sample of O, gas at 27°C.

Solution
The most probable speed is [Eq. (2.69)]

o - [2RT _ |2(8.314 JK™ mol™) (300 K)
mps M (0.032 kg mol ™)

Cancellation of the units is important; we do it as

o _ |28314 ke ms? pk " paol ) (300 K)
" (0.032 kg ol )
= C. . =394.83ms!

Note that the desired unit comes out correctly.
The average speed [Eq. (2.70)]

mps

S8RT
(c)= T
8(8.314 JK! mol™) (300 K)
: <C> = _1
(3.14) (0.032 kg mol )
or (c)=445.63 ms™"

Similarly, C, .. is [Eq. (2.71)]

C..= /ﬁ =483.56 ms™!
M
Example 2.20

Calculate the most probable, average and the rms speed of the molecules of a gas whose
density at 1 atm pressure is 1 gL\

rms
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Solution

The pressure—temperature—density relation of an ideal gas is
MP RT P

= = — =
RT M p

Cmps: /2RT: 2£
M N\ p
- Cmps: 2><12itlm
1gL

Cancellation of the units is done as

p

Therefore,

101325 Pa
2x1latm | —————
c - X [ l,atfﬁ J

b agzl)[ullo{mSJ[ulll({)gg/]

=450 ms ' = 0.45 km s7!

= C

you yourself show that all the units finally come to ms™. In the same way, using proper
expressions, show that

mps

(Cy=0.510ms™ and C,,_ = 0.55 km s".

Comment Note that if the pressure and density are given then, your need not require the
molar mass M and the temperature T of the gas.

Example 2.21

Calculate the most probable, average and the root mean square speed of the He atoms at
327°C, where the atoms are restricted to move on the x—y plane.

Solution

Here, the movement of the molecules is on the x—y plane. Therefore, we use Eqs (2.57),
(2.58) and (2.59), as applied to the two-dimensional movements:

The most probable speed [Eq. (2.59)] is
o - [RT _ [(8.314 JK™' mol™) (600 K)
mps M (0.004 kg mol ™)

= C . =112kms™"

mps
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The average speed is [Eq. (2.57)]

(y= |FRT _ |3148.314 JK™' mol™) (600 K)
2 M 2(0.004 kg mol ™)
or (C)=14kms™

The root mean square speed is
o - [2RT _ [2x(8.314 JK™! mol™) (600 K)
rms M 0.004 kg mol™*

or Cope=16kms™

Example 2.22

The Maxwell’s speed distribution function depends on the molar mass of the gas and

the temperature. Show that, in terms of the reduced speed, defined as C, :CL the

bk
mps

distribution function is independent of M and 7.

Solution
C = Cyps Cy; therefore, dC = C,, s dC,, we then write the speed distribution function as
dng (= dng) =dzn[ ) c? e”gTCTZdC
G ¢ 2mkT
§ 2 2
4n m 2 2 2 ~ = Cmps C;
= dncr = ﬁ (Mj Cmps Cr e 2kT Cmps dCr
. d :47n m \2 ( 2kRT 02, C 2T QdC
C = Jr \2kT m )" m :
or dng = An C? e % dc

and, finally in terms of the reduced speed C,, the speed distribution function becomes
1dng, 4 o c

ndC, Jx ’

which is independent of the molar mass of the gas (M) and the temperature 7.

Example 2.23

Find the fraction of the gas molecules whose speeds differ by less then 1.00% from the
value of
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(a) the most probable speed.
(b) the root mean square speed.

Solution
(a) The fraction of the total number of molecules moving with speeds in the range C to
C+dCis
3 2
— mC
e _yn[ V2 e BT gc
n 2nkT

By the problem,

c=C,. =2 L dc=2x001C,, =002/
m m

The factor 2 is taken because the speeds may be less than, as well as more than
Cinps- Therefore,

3 1
dn, _ 4n ( m j2 (Zije_l (0'02)(2kT)2
n  ar \2RT m m

dn, 0.08
= -

n  Nm
(b) Exactly in the same way
3 3 1
dnC: 4r ( m 2 (3kT ¢ 2 (2)(0.01) 3kRT \2
n ar \2kT m m
=0.0185,i.e. 1.85%

Comment Since the range of speed given is very small, we have directly used the differential
form. If the span of speed range is large, we have to integrate dn, (see Example 2.23).

e1=0.0166,i.e.1.66%

Example 2.24

Calculate the temperature at which
(a) the root mean square speed of H, molecules exceeds their most probable speed by

400 ms ™.
(b) the speed distribution function of Oy molecules has its maximum at the speed
C =420 ms ™.
Solution

(a) According to the problem

8RT _ [2RT _, .
VM \ M
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-1 -1 -1 -1
N JT 3(8.314 JK mo} ) |2(8.314 JK moll
(0.002 kg mol ™) (0.002 kg mol ™)

] =400 ms™*

Cancellation of the units gives
1

1
JT [111.67 ms 'K 2-91.18ms ' K2 ] =400 ms ™"

1
= JT =19.52 K2

or T=381K
(b) The speed distribution shows its maximum at the most probable speed; therefore

Cops = ‘/ﬁ =420 ms™!
M

o (420 ms )% (0.032 kg mol ™)
2(8.314 JK! mol™)

or T=33947K

Example 2.25

Calculate the number of O, molecules moving in the range 0 — 200 mst at 1 atm, 0°C.

Solution
Using the speed distribution function [Eq. (2.68)]

3 mC?
dn, = 4nn| - |" C* ¢ % 4C
2nkT

We estimate the number of molecules over the speed range (0 — C'* (C* =200 ms™) as

n(0—CH =" dng

3 2
— " N mC
= n(0— C*)=4rn m_|? _[C C%e 2T dC
2nkT 0
3
5 mCz

[ ce =T dc?)

m
0—->C*)=2
= n(0 — C%*) nn(zﬂij
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2

2
. o m( m )(%Tj e i {[ /16,”
2kT 2kT 2T

05>CH="2 " x e d(x)?  c
= n(0—C*)= j xe P d(x)? ; ST
_ mC#2
= n(o—>c*)=—2T” [ED xde™)
T r=
mC#2 mc*Z

= n(0—C*=—= |xe’x o 2#T 2kT e %

ﬁ

%2 *2 mC><2

= n(0—>C*)=2—n ﬂexp _m¢ 2T g

NEAR A 2kT J

2 1/7mC*2 2 2mC# -me”
= n(0—-C*=n|— _[ 2kT ™% dx — e 2T
Jr o nkT

The first integral is the error function discussed in Section 2.10.5. Therefore

n(0—C*) J mC #2 \/mC #2 mC #2
—=erf - exp| ———
n 2kT kT 2rT

C 2 MC #2 _ (0.032 kg mol” 1y (200 ms-l)2

Now, 1
RT ~ 28.314JK ' mol™)(273K)
%2 #2

mC _05and [ 2mC7 L0

2T kT
Therefore,

*
r0=2CY _ or (0.5)- 0.6 0
n
&
and finally, M=0.521—0.44=0.08. Therefore, about 80 molecules out of one
n

thousand, move in the speed range (0 — 200 ms™).

Example 2.26

Estimate, how the numbers in the above Problem 2.23 changes when the temperature in

the kelvin scale is double i.e. at 546 K.
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Solution
At 546 K,
2 *2
mC™ _014:= |C _0375-04
kT kT
*2
and ,{ch =04
kT
-1
Therefore, nO—=>200ms ) r0.4)- 0491 20,078
n

Therefore, on increasing the temperature from 273 K to 546 K, the number of molecules
moving with speeds in the range 0 — 200 ms™ changes from 80 to 78 out of 1000. This

corresponds to 0.2% decrease.

Comment At 273 K, %mC #221.06 10721 J and kT = 3.77 x 102! J. Within the speed

range 0 — 200 ms ™!, the kinetic energy of the molecules is significantly less than the thermal

energy kT. Remember that, whenever this is the case, i.e.

1
5 me? <kT), the number of

molecules either decreases or remains almost the same as the temperature is increased.

Example 2.27

Calculate the fraction of the O, molecules moving with speeds more than 600 ms™

273 K and find corresponding number at 546 K.
Solution
To solve this problem you could have started as
i -
n(C n—> o) _ % Jc* dn,
but, it is more convenient to find
n0—-C* 1
n n

_[;j* dng

and then, subtract it from unity

2mC *?

(0 — 600 ms™) ( mC 2 ] J
= erf _

n 2kRT

2 w2
where C* = 600 ms ™. Now, me =254, JmC =1.6 and
2T 2T

kT

2mC *2
kT

L at

ex —LC*Z
P\ "ok

=1.8 at 273 K
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Therefore, at 273 K

-1
n0—-600ms ) _ 16 -1.8exp(-254)

=0.836

-1
Therefore. n(>600ms ) =0.164
n
i.e. 164 molecules out of 1000 with speeds more than 600 ms™.

Similarly at 546 K, we find

n(>600 ms™!)
n

=0.477

Therefore, on increasing the temperature from 273 K to 546 K n(> 600 ms™) changes from
164 to 477, out of 1000; it is an increase by 31.3%.

1 5
Comment This is story if |5 mc” > kT | pT.

Example 2.28

Calculate the fraction of the total number of O, molecules moving in the speed range
(o +107%) ms™! at 273 K. Also find out the number at 546 K.

mps —
Solution
Since the range of speed (dC = 2 x 10~ ms™!) is small compared to the speed of interest,
we use the differential form

an _4 ( mn )C 2 o p[ C"i’s)dc
n kT ) P 2kT
3
or % =4.4%x107° (at 273 K)

Similarly, at 546 K

dn _ 3.12x10°®

n
Comment On doubling the temperature, the most probable speed increases to 1.414

times, but the fractional number of molecules moving in that speed range decreases to
0.709 times. (3.12 + 4.4 = 0.709)
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Example 2.29

For gaseous N, find:
(a) thetemperature at which the speeds of the molecules ¢; =300 ms™ and ¢, = 600 ms™
are associated with equal values of Maxwell's speed distribution function.
(b) the speed of the molecules ¢ at which the value of the speed distribution function
at a temperature T will be the same as that for the temperature x times higher.

Solution

(a) Equating the speed distribution function at the speed c; and c, at the same
temperature, we get

3 3
> 2 > 2
ar| = 2cfexp -4 =4nizc§exp L
2rkT 2rT 2rkT 2kT

2 2
mc mc

= i exp (_ 2k:1rj = ¢y exp (_ Zk;’]

2 2 2 1)
- exp m(c; —¢y) (e _ 600 ms | =4

2rT ¢ 300 ms™

2 2
= mic, — ) =In4
2kT

2 _ 2 M 2 _ 2

N T — m(C2 cl) = (Cz CI) ('.' M = mNO and kNO = R)

2k 1n 4 2R1In4

p_ (0.028kg mol ) (600 — 300%) m*s >
2(8.314 JK ' mol ) In 4

= T=328K
(b) According to the problem

3 3
m 2 mC? m )2 4 mC?
dr| —— - =4 _
”(ka) ‘ eXp[ 2kT] ﬂ(27thTj ‘ eXp( 2kxT

ex — mCZ = x_% ex — m02
= P\ "ok | P\ ok

Simplifying, we get

C- 3kT xInx
m (x-1)
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Example 2.30

At what temperature of an N, and O, mixture do the most probable speeds of N, and O,
molecules differ by 30 ms™ ?

Solution
According to the problem

2RT _ [2RT _,
My, \ Mo,

= J2RT L 1 | 3oms?
/MN2 /MO2
11
= J2RT (0.386) kg 2 mol2 =30 ms™!
1 1
= (2x8.314 JK ™ mol' 7)(0.386 kg 2 mol 2)* =900 m?s™2
= 2.478 T m%s 2K =900 m?s~2
= T=363K

Example 2.31

The temperature of a mixture of Hy, and He is 300 K. At what value of the molecular speed
will the speed distribution function yield the magnitude for both the gases?

Solution
Equating the speed distribution functions of the two gases, we find
c* 3
- ——=—1n2=1.039

(e =my,) g =5 10

- o2 _ 1.039 x 2 x 8.314 x 300 22
(0.004 - 0.002)

= C =1.61kms™

Example 2.32

At what temperature of a gas will the number of molecules, whose speeds fall within a
given interval C — C + dC be the greatest?

Solution
The speed distribution function is

3 mC?
1dn"—47r( m ) C? ¢ BT

n dC onkT
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3 2
— 3 mC
= Ldn, g [ m 2 ceps g ur
n dC 2k
3 2
-= mC
Let =T 2 -
e y exp[ ZkT ]
3 mC? 2
- Y e, wr |3 mC
dT 2T  2kT?

At the maximum, the left-hand side is zero; therefore

= T =

Example 2.33

Find the fraction of molecules whose velocity projection on the v, axis falls within the
interval v, to v, + dv,, while the moduli of the perpendicular velocity components fall
within the interval v, tov, + dv,.

Solution
The fraction of the total number of molecules whose x-component velocities fall within the

range v, to v, + dv, is
1
dn m 3 _mv,%
o ( ) e 2T dy
X

n 2rkT

The fraction of the total number of molecules whose y- and z-component velocities lie in
the range in the range v, to v, + dv, and v, to v, + dv, simultaneously along all possible

directions is
(vz+02)
= e d(nvy)

n 2rkT

where v} = vi +v?. Therefore, the required fraction is

dnv v dnv dnu v
1Y — x Yy "z
n n n

or dnvl’”x m_ 2 7?I:T
=\ © (27v, )dv, dv,
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Example 2.34

Using the Maxwell's speed distribution function, calculate the number of molecules
bombarding a unit area of the wall per second.

Solution

The Maxwell's distribution of molecular velocity, [Eq. (2.65)], may be put in terms of the
spherical polar coordinate as
3

— mC2
dn, .. =n| —"—|" ¢ 2T C? dC sin6 d6do
©9,¢ o2nkT

where the volume element in the cartesian coordinate (dv,, dv,, dv,) is replaced by ¢ de
sin 6 dO0d¢ in the spherical polar coordinate (see Figure 2.8).

Referring to Figure 2.16, the volume of the slant cylinder is C cos 6; and it has (C cos
0)dn¢ o , number of molecules. All these molecules will hit the unit area placed on the
v, — v, plane situated at the origin along this 6 — ¢ direction. Therefore, the total number
of bombardments on this unit area from one side of the v, - v, plane is

o w2 j (CeosO)dn,,

mC?

“e 2T CSOZC_[(;T/2 sinf cosOd¢ jjﬂ do

__n [mfj
_7'[7'[ 2rT Oe
3

2
(i) 3l

[

2kT

02)2-1 d(C?) % o

s
=1nﬂ:ln(C)
4\ tm 4

The same result we got earlier in two different ways [Eqgs. (2.20) and (2.47b)].

Example 2.35

From the Maxwell's distribution of molecular speed, arrive at the expression of the pressure
of a gas at temperature T and number density n.

Solution

Again referring to Figure 2.16, we consider a slant cylinder of length C and area unity, at
the direction 6 and ¢.

The speed distribution function in the spherical polar coordinate is

mC2

dn —n| - C2 e 2¢T dC sin6 d6d¢
©00 =\ 27kT
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which is the number of molecules per unit volume moving with speeds in the range C to
C + dC and at the direction determined by the angles 6 and ¢. The volume of this slant
cylinder is C cos 60 and, it contains (C cos 0) dn, 4 , number of molecules. The momentum
delivered normally per strike on a unit area placed at the origin, on the x—y plane is (2m,
C cos 0).

Therefore, remembering that the total momentum blow normally, per unit area on the x—y
plane per second from all possible directions (but, from one side of the x—y plane) and with
all possible speeds is the pressure of the gas, P, we write

P= J‘: L:/Z J:E(C cos0)(dn, 4 ,) (2mC cos6)

§ ch
= P=2mn( mn jz r ct eiWTTch‘”/Z sinGcoszedexJ.Qn do
2nkT ) Je=0 6=0 9=0
3 me? 5 1
mn m 2 pe —oom 51
= P=——|— 26T (¢*)2  d(c®) x = x 2
ﬂﬁ(ngj J e #Te () x 5 % 27
3|5
mn( m )2 2 2r
P= X —
- nﬁ(zk’rj m V2 3
[2ir)

and simplifying
P =nkT

The ideal gas equation.

Example 2.36

The distribution of the molecules of a beam coming out of a hole in a vessel is described by
mc2 8
the function f(c)= Ac® e 2¢7" Find the most probable values of

(a) the speed of the molecules in the beam; compare the result obtained with the most
probable speed of the molecules in the bulk.
(b) the kinetic energy of the molecules in the beam.

Solution

mC?

(@)  flc)=Ac® e 2T

afr , -ne mC"
= —=Ae 2T |3¢% -
dc kT

8 You will find it later in the article 2.15.7.2 and an example of it.
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At the most probable speed, %zO, whose physically acceptable solution is
obtained by

mC*
3C, ———2 =0
3kT

otherwise C has to be infinity. We then have at the surface, C,, . =,[—

m
In the bulk C,, . =, /%
m

(b) The function AC) can be written as

2
1 dn _mC~
O)=——C=AC?e 2T
o= ac ¢
where dn, is the number of molecules per unit volume whose speeds are in the
range C to C + dC.

The corresponding energy distribution function is

2
1 dn _mC
C)=—"26 — AC® ¢ 2kT
= ac ¢
1 1
e=—mC* = de=m(CdC = dC=——-dC
2 mC
3
c2=2%. . c=/|% 5 C3=(§)2
m m m
3
(13=(§]2;d0= L ge=— L ae
m 2¢e 2me
m. |25
m
mC2
Now, dng, =nAC? e 2T dC
= dn, =nA (2)3 e *T # de
m 2me
= dn, =nA (2—82) T e
m
1 dn, 2A -
fle)=— P =( 2}5 kT
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dn,. = e ¥ de

This implies, the energy distribution function

1dn, 2A =

FO=ge w2 "
d 24 —or €
< _ e 1--&%
- A ( ij
To get the most probable value of the kinetic energy &, we set
d
— =0
de Fe)
= Eppe = kT

Example 2.37

Using the Maxwell’s distribution function find the number of molecules striking a unit
area of the wall of the vessel at angles between 6 to 6 + d6. The gas is at temperature T,
population density of the molecules is n and the molecular mass is m.

Solution

In spherical polar coordinates, the speed distribution function of Maxwell is (see
Figure 2.8)

2

dn —n| -2 ? e 2T (2 dc sin0de d¢
«00 "\ 27k T

Therefore, according to the problem, the striking rate on a unit area of the wall between

angles 6to 6+ d0Ois = f:o-[;zo(c cos®) dn, 4 ,

3 mC?
. _ . n m 2| e ToRT (3 2n .
Striking rate gy = [2kTJ [L_Oe 2kT C° dC _[¢:Od¢ sin 6 cos 6 d6
ﬁ( 3 mC2
Striking rate = /’; s [;"Tj [Te 2 ()7 d(C?) (sin6 cos6 dO)
T

3
2 2
= (mT IE(MJ sin O cos6 dO
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and finally, the striking rate is

r sin@ cos8 d6O
m

Example 2.38

Find the number of molecules striking a unit area of the wall with speeds in the range C
to C + dC, irrespective of direction.

Solution
Starting from the expression of the striking rate as obtained in the previous problem;

1 /2 21
Striking rate =Jo_s L} o (CcosO)dn, 4 4

which covers all possible directions but, from one side of the plane. That is

3 2
- mC
the striking rate = P13 e T gC | x qu sin 6 cos 6 d6 JZE do
2kT 0 0

n
N

Working out the integrals, we find

- mC?
striking rate = nz m_? C®e 2T 4C
2nkT

2.15.7.1 Energy Distribution

The Maxwell's energy distribution in three dimensions is obtained as follows.
The speed distribution equation is

3
5 2

dn, =4nn m e exp _m¢ dC
2rkT 2krT

where dn, is the number of molecules per unit volume moving with speeds in the range C
to C + dC and n is the population density of the molecules.

If the corresponding energy range is €to € + de¢, i.e.

e= é mC? and mCdC = de

then, if the number of molecules per unit volume in this energy range ¢ to (¢ + d¢) is dn,
(where de corresponds to dc), we may write

3
dng:dnc=47m( m_|» (2 e #T
2rkT m
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3

- 1 -¢
= dn, =2nn 1y e? efT de (2.80)
kT

n
This is the Maxwell's energy distribution in three dimensions. A plot of (n d;j versus €

is shown in Figure 2.36. There are three main characteristic differences between the speed
distribution and the energy distribution function.

0.20 T
/\298 K
< 015
2
s
€ 010

318
=1z 005
\\w
0 E———
0 5 10 15 20 25 30

Energy, kd/mol

Figure 2.36 The distribution of the translational energies of gas molecules at 298 K and 1000 K.

(i) The initial slope of the energy distribution curve is infinite whereas that of the
speed distribution function is zero.

(i1)) As a consequence of (i), the energy distribution curve rises up more steeply than
the speed distribution curve, and, beyond the maximum the energy distribution
curve falls of more sluggishly than the speed distribution curve.

(iii) The energy distribution function is independent of the molar mass of the gas.

Example 2.39

Show that the average kinetic energy of the molecules of a gas at equilibrium, at a fixed

temperature T is %kT.

Solution
Using the rule of averaging, the average energy (¢) is

3

3
1 (= 1 )2 ¢ = =
<€>:;JO edng :2ﬂ(mj IO e kT g2 dg

3 5

1 )2 po —%  2-1
= (e>=2ﬂ(nij J'Oe T (£)2  de
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Example 2.40

Show that the energy corresponding to the most probable speed is twice that of the most
probable energy.

Solution

Differentiating 1 dn,
n de

[Eq. (2.80)] with respect to € and, equating the result to zero, to

_1 . 2kT
get the most probable energy €,,,. = 5 kT. The most probable speed is Chps =4/~ the
m

corresponding energy is therefore,

1 2kT
<8>Cmps = 5 m(7j =kT

(&)c-
- C=Conps _ kT _9

<€>mpe l kT
2

What fraction of the molecules move with energy more than a specified value £*?
Starting from Eq. (2.80), we write
3

2 1 €
J'°° dng = 27'[(# 2 J‘m£2 e kT dg
& kT ) 7&

n
n>¢e*) 2m 1 % I
= =—(—] _[»,,82 e "de
n am \RT ) e

Substituting ¢ = £Tx?%, so that de = kTd(x?) and Je =ET x, we have

n r

n(>¢e*) 2
= _r ==

n = -[x:\/g*/kT

3
n>e¥) 2 [ 1)2 i )

xe™ d(x?)
and integrating by parts

n(>e>’<)= 2{
n Jr

1)

—X

=3 2
—X
- e’ dx
VeI kT '[ Ve /RT }
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n(>e*) 2 |e*

8* 2 - 2
— i - d.
n Jn kT Xp( kT)JF«/n-[\/S/kTe *

The last integral is the complementary error function (see Eq. M16 of Sec. 2.10.5 and

Table 2.1). Therefore
n e*) e* * e*
=9 | =
n \&T eXp( kT]+erfc(ij

Referring to the Table 2.1, we find that at x = 2.2 erf (2.2) = 0.9981 and therefore, erfc
(2.2) =1-0.9981, i.e. 0.0019. If x is increased further, the erf (x) is increased and the erfc
(n) is decreased and becomes less and less significant. We can thus argue that, if £* is more
than twice of kT (e* > 2kT), then the last integral can be neglected, with the result

1
* ESA Y *
ne ):2( £ j2 exp(—€j§(8*>2kT) (2.81)
n nkT kT

2.15.7.2 The Speed Distribution of the Molecules at the Surface of the Container
is Different from that in the Bulk

In Example 2.33 it was given that the distribution of the speed of the molecules in a beam
mc2
coming out of a tiny hole is given by the function Ac® e 2¢T The reason is very simple:
near the hole at the surface of the vessel, the fraction of the total number of molecules
2

moving with speed in the range C to C + dC varies as ¢ e 2*7 (the Maxwellian way). The

rate of which the molecules will effuse out will therefore depend on this factor and, also
the number of molecules which comes to the surface per second; this number is directly
proportional to the speed of the molecules C. Therefore, the speed distribution of the

mc2 mc2

molecules in the beam should be C times the Maxwellian factor ¢ e 2¢7 i.e.c® e 2¢7. We

have also seen that the most probable speed of the molecules in the beam is , /%—T while,
m
2kT

m

that in the bulk is

Example 2.41

Calculate the average speed of the molecules striking a small surface on the wall of the
container. Compare the result with that in the bulk.

Solution

From the foregoing discussion we found that the speed distribution of the molecules in a
beam is given by
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mCZ

f(c)beam = AC3 e_ﬁ

and this distribution would guide the rate at which the molecules strike an area of the
wall. Therefore, the average speed at which the molecules strike the wall is

o
surface — L,

_[: f(c)beam

the denominator is necessary for the normalization of the function f(c),,,,,- Then

mcz

_[0 Acte 20T dc

<C>surface - me?

jo Ac®e 20T dc

me? 5
= TORT (.22 2
[Te 22 de®)
= <c>surface = 2

j:e'ﬁ 271 d(c?)

2
F m
2 (2ij 97kT
<C>surface = 5 =
m )2
— | 12
(7]
. 8kT
The {C)pu 18 (puc =4[ ——
mm
Therefore, <c>surface — 8nkT m :3_7[
(e V 8m \8ET 8
Example 2.42

Calculate the root mean square speed of the molecules in a molecular beam.

8m

Solution

As we have done in Example 2.39, we first find (c¢?) as

surface

mc2

< 2 < 5

_[ ¢ f(©poam J e 2T ¢°de
<02> _J0 _J0
surface — - 2

J‘: f(c)beam - o

.[o e 2T ¢3de
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_me?
i [[e 2T ()P ld(e?)
= (C >surface = 2

[ e 2T @)

2
) kT )  4RT
= <C >surface = 3 = m
2kT

Therefore’ Crms(surface) = V<02>surface = ﬂ
\ m

2.16 EQUIPARTITION OF ENERGY PRINCIPLE: DEGREES OF FREEDOM

2.16.1 Degrees of Freedom of a Dynamical System

Consider an atom constrained to move along the x-axis. At any instant, the position of the
atom can be specified by a single position coordinate x; the associated momentum p, is
dx

then also defined by the equation, p, = mx (x = dtj We say that the particle (the atom)

has one degree of freedom; because, the specification of one position coordinate and, hence
the corresponding linear momentum mx, the dynamical system of the atom is completely
defined. If the particle is constrained to move on a plane, say, the x — y plane, then we
require {wo position coordinates x and y and hence, two momentum coordinates p, and p,
to define the dynamical state of the system. Extending the story to three dimensions, we
need three position coordinates and hence, three momentum coordinates.

We define the degrees of freedom (f) of an atomic/molecular system as the minimum
number of position coordinates and hence, an equal number of momentum coordinates
required to define the dynamical state of the system.

How many degrees of freedom a diatomic molecule has? For each atom we require three
position coordinates, and hence, altogether we need six position coordinates. Moreover,
the molecule now has rotational and vibrational motion. We analyse the system by looking
at its centre of mass; for this we require three position coordinates (x, y, z) to represent
the translational motion of the centre of mass of the molecule. This specification of the
position of the centre of mass is not sufficient; we did not specify the orientation of the
molecule. We do it as follows: We place one of the two atoms of the molecule at the centre
of the coordinate system and specify the value of the angles 6 and ¢ (Figure 2.37). Still the
description is not complete; because, the two atoms are oscillating against one another
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and are constantly changing their positions relative to the centre of mass. So, we then
specify an extra coordinate r, the distance between the two atoms. Altogether we then
have six position coordinates: x, y, z; r 6 and ¢. This defines completely the dynamical state

of the system (see Figure 2.37).

y

Figure 2.37 Six independent coordinates are required to specify the state and position
of a diatomic molecule. x, y, z,; the coordinates of the centre of mass, and
r, 6 ¢ to define the bond length and the orientation of the molecule in space.

In general, an n-atomic molecule has 3n degrees of freedom (three for each atom and
hence, 3n for the molecule). To define the translation, specification of three position
coordinates of the centre of mass is just sufficient, always. Therefore, the translational
degree of freedom is always 3; f, = 3 for any molecule.

We have just seen that two generalised
coordinates are required to define the rotational
motion of a linear molecule. The rotational
degree of freedom f, is then always two for linear
molecules (f, = 2) The rest (3n — 5) goes to define
the vibrational motion; f, = (3n — 5) for linear
molecules. For non-linear molecules, say a non-
linear tri-atomic molecule (Figure 2.38), we first
choose an axis joining any two atoms and, then
specify 0 and ¢; finally we specify the angle of
rotation ¢ of the third atom about the chosen
axis. Non-linear molecules, therefore, have three
rotational degrees of freedom; f, = 3. The number
of vibrational degrees of freedom is then f, =
(3n —6).

reference point for
measuring v.

y

Figure 2.38 For a non-linear n-atomic
molecule rotation needs 3 degrees of freedom;
number of vibrational degrees of freedom is
then (3n-6).
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2.16.2 Principle of Equipartition of Energy

How much is the translational kinetic energy of a molecule ¢, in space?

_ 2 2, 1 o 2
=_-mu, +_-mu, +_-mv, =_—p, +

1
+7
rTy 2 2 oo P o P P

& om

where v,, v, and v, are the components of the velocity v of the molecule along the three axes
x, y and z and, p,, p, and p, are the corresponding linear momenta along the three axes,

respectively. g,. can therefore be put in the form

€, =a,P} + Py +a3p; (2.82)

where, a,=ay=a3=_-—and, p, =p,; Py = P,; P3 =D,

2m

This is all the energy for a monoatomic molecule (no rotational and vibrational motion
is present). Note that there are three square terms of momentum in the expression of the
translational kinetic energy; recognize that a molecule has only three translational degrees
of freedom (f; = 3). But polyatomic molecules can also rotate and vibrate.

For linear molecules

6. = % (Tw,)? + % (Iw,)? = a,P? + azP?

and, for non-linear molecules

Ero = 7(1 w,)? +7(I w, )2+—(I w,)* (2.83)
oI, I, I,
or €t = 1 P? + 1 PZ + 1 P? = azP? + a,P? + agP?
oI, 21, 21, y

where I, I, and I, are the moments of inertia about the three axes x-, y— and z; w,, w,
and w, are the correspondlng angular velocities and, P,, P, and P, are the correspondlng
angular momenta (all the a-terms are constants).

It is important to note that the rotational kinetic energy expression is given by two square
terms for linear and three for non-linear molecules; these are found to be the same as the
corresponding number of rotational degrees of freedom f,.

The vibrational energy of a bond connecting two atoms of a polyatomic molecule is given by

2 2
€ =a; p; +b4q;

vib/mode

For each mode (assumed to be harmonic); p; is the momentum coordinate and g; is the
corresponding position coordinate. The first term represents the kinetic energy and the
second term represents the potential energy. The total energy of vibration of a polyatomic
molecule is therefore
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(3n-5) (3n-5)
€= 2, @pi+ Y bg’ forlinear molecules
i-1 i=1
(3n-6) (3n-6) (2.84)
and, Ea= 2, @pi+ Y. bg’ for non-linear molecules
i=1 i=1

How much is then the total energy of a molecule on an average? Summing up Eqs (2.82),
(2.83) and (2.84), we find

Etotal = Etr + Erot + Eyib
3n (Bn—-5)or(3n-16)
2 2
= Etotal = D a;p; + > b,q; (2.85)
j=1 Jj=1

where the first term represents the total kinetic energy of translation plus rotation, plus
vibration; the number of square terms is [(3 + 2 + (3n — 5)], i.e. for linear molecules and
[3 + 3 + (3n —6)],i.e. 3n for non-linear molecules. The second term represents the potential
energy (3n — 5 for linear and 3n — 6 for non-linear molecules). Therefore, we find that the
number of square terms required to define the total kinetic energy of a molecule is 3n, the
degrees of freedom of the molecule. The principle of the equipartion of energy indicates that
when the energy is proportional to the square of a given position coordinate or momentum,

. o 1
the average energy due to that coordinate or momentum is simply EkT per molecule.
2
Proof: Suppose ¢, = ; L the average of ¢ is
m

_[..._[Si e " dq,...dq,.dp, ...dp,
JJ e """ dq,...dq,.dp, ...dp,

(gi> =

2) _ 2om
J....I[é)‘}ep‘ﬂ - dq,...dq,dp; ...dp,
m

_[_[ o~Pl/2mAT dq,...dq,dp, ...dp,

Since the first two factors in the integrand of the numerator and the first in the denominator
depend on p; alone, the rest of the variables can be integrated out in both numerator and
denominator without affecting these factors. It is obvious that the result yields factors all
of which cancel from the numerator and denominator; we then have

2
2\ _ pf
j*“(pi]e 2mkT gy
- | 2m
<8i>=
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N

3
N (2nkT)?
=4 Ly
Jr 2nkT 2
The total energy of a dynamical system in thermal equilibrium is equally partitioned

1
among its degrees of freedom and the contribution towards the energy is 2 kT per degree
of freedom.

Itisinteresting, particularly, for the vibrational motion of a molecule. Consider two diatomic
molecules, the bond of one being much stiffer than the other; till then, the vibrational
kinetic energies are exactly equal at the same temperature.

However, note that potential energy of a molecular system is not always quadratic, e.g.
in the gravity field, the gravitational potential energy is mgh; its contribution is then not

lkT.
2

Example 2.43

From the velocity distribution function in three dimensions show that the average

translational kinetic energy of the molecules of a gas is g ET.

Solution
oo ptoo ptoof ]
FIEIL (G,
et ) = it 2 _ ’ [using Eq. (2.65)]
J’_w J._m ~ o dnux Uy UZ
mDZ
R e g O
= € )xineti =
kinetic (¢r) J'+°<’J~+°<>J'+°°e_;rz};dv .
o dl o d e X"y z
mvz
2'[: (; mvzj e 26T 12y Jg sinf d@ .[02” d¢
= <g>kinetic (tr) = 2

2_[: e % vidv J.;r sin6 d6 JOQ” do
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as the functions are even. Therefore,

m _mv_
()J' vte 2T dy
2 0

<8>kinetic (tr) = 2

muv

Jo v2e 26T dy

3
= <g>kinetic (tr) = E kT

Example 2.44

Show that for a one-dimensional harmonic oscillator with a force constant & (= 472v?m),
where v is the frequency of oscillation and m is the mass of the oscillator, the average
energy of vibration is £7T.

Solution

The kinetic energy of the oscillator is 1 muv> (v is the velocity). The potential energy V is
obtained as 2

ﬂ = — (force) = C(Zil = kx (by Hooke’s law)
x

dx

\4 x 1

jdV = k_[xdx or V= 5 kx? (Harmonic)
0 0

The average energy of a one-dimensional harmonic oscillator is then

T 1m02+lkx2 dn
J- J- 2 2 v, X

V=—0c0X =—0c0

<8>Vib = too +oo

[ ] dn,.

UV=—c0 )X =—0c0

= (E)yip == o . % (;ml}:ékxz)
f J- [QEkBT] B dvdx

kg is the Boltzmann constant.
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+ 00 + oo mvz _ﬁ 4 oot oo mv2 ka
2 " 2kgT 2kgT -
J j ( ) B ¢ BT dydx J' J' ( 2] “2sT o 28T g, gy
or (&)yp =—— e
s b mu? + o0 ka? oo U2 oo ke
2kgT 2kgT -
J'e k8T o J‘e kT I J'e 25T 7, J‘e 2kpT g

— oo
— o0 — oo

+oo 1 B mv? +oo 1 B ka?
_[ = mv? e 28T dy J = kx? |e 2k8T gy
2 2

= E)p = — —=
< >Vlb e _mUQ b P
J. e 28T gy j e 28Ty
1 + oo _mv2 + oo kx?
=m j e 28T 2 gy k J 2kpT x? dx
2 — o0
= +
+ o0 7mv2 + oo 7kx2
j e 2Ty .[ e 28T gy
mv? o R

m J.e 2T 2 dv R Je kBT 32

40
|27k, T |27k T
m k

using the Gaussian integral.

o _ mv’ 3
Therefore, (&) = ’; mj 2T 22 p?)
]; f ZkBT (x® )2 " d(x?)

3
_m |_m 2 Lk
2\ 27k, T ER 27rkB
m 2
[5i7) (%BT)

using the gamma function.
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Therefore, (E)yip, = % kT + % kT = kgT

This shows that every vibrational motion has two modes, one kinetic and the other

potential; each of them contributes %kBT. Therefore, unlike the translational and the

rotational component, each vibrational component contributes k5T amount of energy,
i.e. each vibrational motion (or each vibrational degree of freedom) contributes twice
an amount of energy kpT as that from a translational and rotational degree of freedom

1 9
L1

2.17 HEAT CAPACITY OF IDEAL GASES

The molar heat capacity of a substance at constant volume is defined as
U
CU m -
’ oT ),
where U,, is the molar internal energy. By applying the equipartition of energy principle,

we shall first find an expression of U,, and then, differentiating with respect to 7', we will
evaluate C, ,, values.

2.17.1 Monoatomic Molecules

The total degrees of freedom f =3 x 1 = 3 and it is totally the translational degrees of
freedom; f; = 3.

The average energy of a molecule (monoatomic) is then
&) =r, (; kTJ = ; kT per molecule

The molar energy is then

U.y=N, <g>=gRT

= C =i(Um>=§R
oT 2

v, m

and, considering ideal behaviour, the molar heat capacity at constant pressure

Cp,mzC’m+R=gR

1%

% In this section, we have represented Boltzmann constant by % 5 because another £ appears as the
force constant; otherwise, the Bolzmann constant will be represented by the letter %
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The ratio of the two heat capacities yis then

C
_“rm 5 _q6q
C 3

v, m

2.17.2 Diatomic Molecules

Atomicity n = 2; total number of degrees of freedom f is then f = 3n = 3 x 2 = 6; the
translational degrees of freedom f; = 3; rotational degrees of freedom f, = 2 and vibrational
degree of freedom f, = 1. The total average energy of a molecule is

(€) = (€)iin +(EDpot

= (€) = K in(er) + (Eiitrot) + (ENcincvib)}  (EDpot, vib
1 1 1 1
= =f|=RT |+f.|=kT |+f, | =kT |+ [ | =kT
() (547 e (or) 2 (3]
7
= (&)= 5 kT per molecule
7
or U,,»= 3 RT per mole
7 9 9
Therefore, Cpm= 5 RandCp ,, = 5 Rand,y= w= 1.286

2.17.3 Triatomic Molecules (Linear)
Atomicityn =3;f=3x3=9;f,=3; f,=2;f,=4

Following the same procedure

Com =2 R;Cp, =2 Randy =12 - 1.154
’ 2 ’ 2 13

In general, for n-atomic non-linear molecule
f;=3; f,=3 and f, =(38n-6)
Therefore,

(€) = 3(; ij +3 (; ij +(3n—6) kT

= (€)=3(n —-1) kT per molecule
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3
Therefore, C,,=3n-1DRandCp ,, =(Bn—-2)Rand y = =
’ ’ n —
Clearly, v decreases as the atomicity n increase and this is due to the increase in the
number of vibrational modes, and consequently, due to an increase into the vibrational
contribution towards C, ,,. Now, let us look into experimental results.

If we analyse the case of monatomic inert gases, we find that the agreement between the
theory and the experiment is excellent. The inert monoatomic molecules He, Ne, Ar, Kr

and Xe have C, ,, values g R and y =1.67, which are also theoretically predicted.

However, for polyatomic molecules, the experimental C, ,, values at ordinary temperature
are substantially lower than the theoretically predicated values. The disagreement
between the theoretical and experimental results becomes more clear when we examine
the temperature variation of C, ,, and y(Figure 2.38).

Theory suggest that C,,, and hence y values of all gases should be independent of
temperature; but experimentally it is observed that, expecting for monatomic gases, the
C, ., values of all gases increase with increasing temperature and attain the theoretical
value at high enough temperature. For example, at 20 K the C, ,, value of H; is found to be

only g R (Figure 2.39a), which is the theoretically predicted value for monoatomic gases.

Correspondingly yalso changes markedly with change in temperature (Figure 2.39b). At
100°C, the experimental value of yfor H, is 1.404; Oy has 1.399 and HI has 1.4; the results
should have been 1.286.

These results might lead us to believe that the correct result is 1.4. But, when we look at
I,, we are again disappointed; it has y= 1.3, which is very close to 1.286.

The theory is therefore correct for one kind of molecules and wrong for the other; a horrible
result. Take H, the value of ydecreases from 1.6 at 20 K to 1.3 at 2000 K.

All these facts were known to Maxwell, Boltzmann and Jeans, but they could not find out
the way. Jeans, once said, ‘it seems that certain kinds of motion freeze-out, as the temperature
is decreased’. Now, if we assume that the vibrational motion is such that it exists at higher
temperature but stops at a lower temperature then the experimental value of yat 100°C

for Hy, O, and HI can be explained. The C, ,, value is then (2 R+ R), i.e.gR; Cp,, is

then % R and then, y = % =1.4. Similarly, we can explain the value of y for H, (1.66) at

20 K, if we can freeze-out the rotation even (Figure 2.39a).
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" o---o forH,
o— for O,
16f ®
f " .
Cum
A
>R
S
SR e e
3
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10 25 50 100 250 500 1000 2500 5000 0 500 1000 1500 2000
T(K) — {(°C) —

(a) (b)

Figure 2.39 Specific heat at constant volume of hydrogen versus absolute temperature.

In fact, these freezing of vibrational and rotational motions do happen; but classical
mechanics cannot explain how these motions are freezed out as the temperature is lowered.
Only after the development of quantum mechanics, the puzzle was solved.

According to the quantum principles, a bound system has a discrete sets of energy
levels and, as a result it cannot exchange energy with the surroundings in a continuous
manner. Note that according to classical mechanics, you can increase the energy of a
one-dimensional harmonic oscillator continuously by a gradual increase in temperature;
because the energy expression is k7. Moreover, the Boltzamann distribution reads:

Py —-Ae
Pl _ axp| =5
Do p{ kT }

where p; and p, are the probabilities of finding the system in the two states '2' and '1' with
the energy gap (&, — €) = Ac. Clearly, as & > &1, pg < p;.

Let us now take a diatomic molecule and frame it like a one-dimensional harmonic
oscillator; the vibrational energy levels are equispaced; the first being at the zero point

3
energy %hv; the second level is at 9 hv, the third is at ng, and so on and so forth

1
[fivib = (V + 2) hv;v=0,1,2,3, } For H, hv = 8.8 x 1072 J. So, at 100°C, the probability

of finding a molecule in the first excited vibrational state (v = 1) relative to that in the

ground state is

PL_ exp [—hv} ~3.7x10°
Py kT

That is, practically all the molecules are in the ground vibrational state.
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If you slowly increase the temperature, the first and the onward levels will remain
practically vacant, so long as T < hv. All the oscillators are therefore frozen and, do not
contribute to the heat capacity; only the translational and rotational modes of motion will
contribute. The explains the C, ,, values of H, and O, and, also for HI, at 100°C. But what

happens to I,? Iodine is so massive that its frequency of oscillation v£: 2i }k] is very
T \m

low, so that A v is much smaller than k7. For I,, hv = 4.26 x 1072 J and, therefore, at 185°C
the chance of finding the I, molecules in the first excited vibrational level relative to that
in the ground vibrational level is

n 4.26 x 107! }_

ex
ny P (1.38x10% Jk ) (458 k)

In essence, what we find is that due to the very small energy gap between the vibrational
energy levels (~ 102! J) for I,, the excited vibrational levels (v = 1 and onwards) are also
populated significantly, leading to some contribution towards C, ,,. This in turn decreases
y to 1.3 from 1.4, which would have been if there were no vibrational contribution. As
we increase the temperature gradually, the population in the higher vibrational levels
increases; this increases their contribution towards C, ,, and consequently y decreases
further. When the temperature is sufficiently high, nearly all the levels are equally

populated and the classical %kT contribution is fully contributed. C, ,, then assumes

the theoretically predicted value. This is the reason that the theoretically predicted
result of C, ,, is often called the high temperature limiting value. Over this region of high
temperature, y also decreases to the predicted value 1.286 (for diatomic molecules).

The rotational levels are also quantised but the separation between two successive
rotational levels is so small that almost always kv is exceeded by 2T and, there is the full
contribution from the rotational motion towards C, .. H, is the case for which this is not
true at 20 K; the translational motions contribute only.

Example 2.45

P,m

Calculate the value of y (z J for a gaseous mixture consisting of n,; = 2 moles of

v, m

oxygen and n, = 3 moles of carbon dioxide. The gases are assumed to be ideal.

Solution
From thermodynamic considerations, we write

dUzncude+(an dv
’ v )y

= dU:nCUde;as(aU
’ oV

) =0 for ideal gases
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or, U=nC, , T (the neglecting constant of integration)
CU m
or U=nR——T
R
C
N U=nR—t _p-"BT . _“Pmodc, —C =R
R (}/ - 1) CU, m ' '
Cv, m
The total internal energy U is then
U = Ul + U2
= U=RT|1
- (-1
-+ -1
N U= gy a2 =D+ Gy~ 1] o (A)
=Dy -1
U can also be written as
U= (n, + ny) RT
r =1 ..(B)

where yis the ratio of the capacities for the mixture. Comparing Eqs (A) and (B); we find
(ny +ny) _m(yy =D +ny(y, -1

(y-1 (y;-D(yy -1
. -V _ n-DH-D
(ny+ny)  n(ys —D+ny(y; —1)
N j/:1+(’11"'”2)(7/1_1)(7’2_1)
ny(yy =D +ny(y; -1
- y = (s —D+ny(y; —D+ (g +ny) (y; D (Y - 1)

ny (v =D +ny(y; -1
= 7=[n1%—?{+?{7/1_%+n1717’2—/”{72—”17/1+P1/
+ o Ys —NaYe = P71+ 25 VI (yy = D+ ny(y, 1))
= Y =(n, +ny)Y,Ys — 0¥y — oY) [ [n(yy — D + ny(y; — 1]

_ Y1 (Y =D +nyy(y, =1
ny (v =D +ny(y; -1
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2.18 MOLECULAR COLLISIONS AND MEAN FREE PATH

Due to the random erratic motion, the molecules of a gas suffer continuous collisions
among themselves and with the walls of the container. The latter one has already been
taken up in the previous sections. In the section, we shall count the number of collisions
among the molecules.

A molecular collision may be a two body (i.e. binary; two molecules collide) or many body
(e.g. a ternary collision among three bodies, etc.). But since the probability that the centres
of three or more molecules come at a particular point in space at a particular instant is
very small, we consider only the binary collisions. The calculation of the binary molecular
collisions is important because:

1. it helps calculating the rate of chemical reactions in the gas phase.

2. it helps calculating the mean free path of the molecules in a gas.

Moreover, do not forget that the collision between the molecules maintain the Maxwell’s
speed distribution in the steady state. A binary collision, however, should not be taken too
much literally. There may not in fact be any real contact between the two molecules during
a collision. Figure 2.40 shows the variation of intermolecular potential energy between two
neutral molecules against their separation. It is a Lennard-Jones 6-12 potential. Later it
will be shown that the net attractive force varies as [rle) and the repulsive force as (;2),

r being the distance between two molecules; that is why it is called Lennard-Jones'® 6-12
potential.

/

Figure 2.40(a) The two molecules A and B may be deflected from their
original path before any real contact among them.

10 John E. Jones (a physicist) changed his surname to Lennard — Jones after marrying Kathleen
Mary Lennard (1925)
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Figure 2.40(b) If one of the molecules be assumed Figure 2.40(c) Lennard Jones 6-12 potential.

stationary at the origin O, the trajectory of
the other molecule maybe like curve 1234.

As the two molecules approach each other, the potential energy starts falling off from
a distance, say about 8 A, due to attraction (Figure 2.40c), then forming a minimum,
the potential energy curve rises up much steeply due to the repulsive effect. The closest
approach between the two molecules ¢ can therefore be taken as the distance at which the
interactive potential energy is zero (Fig 2.40c). Therefore, the rapidly growing repulsive
force between two approaching molecules changes the direction of their flight even before
any real contact (Figs. 2.40a and 2.40b). This separation o is therefore an approximation
to the sum of the radii of the two molecules.

In kinetic theory, this potential is approximated to the hard sphere potential model
(Figure 2.41):

E—

-— 0 —> A

Figure 2.41 Hard sphere approximation for the variation of potential between two approaching molecules.
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Potential Energy =0forr>0o

= forr<o

We will therefore treat the molecules as hard spheres and the collisions as billiard-ball-
like collisions.

Let us take a mixture of two gases A and B. There are three kinds of collisions: A—A, B-B
and A-B. We define

Zap = Binary collision frequency of a single A molecule with the B molecules in
one second.

Z .z = Number of binary collisions between A and B molecules per unit volume in

one second.
Therefore, Z 5 g times the number of A molecules per unit volume n,, is Z,g; i.e.

Zpag=Zppna (2.86)

The calculation of Z 4 at first sight seems to be a hopelessly complex task; for, you cannot
trace the flight of a particular A molecule after one collision; the picture is completely
random. However, the problem can be simplified if we could have thought of a picture in
which the particular A molecule is moving through a uniform population of stagnant B
molecules; obviously then, the A molecule is moving with the relative speed (relative with
respect to the B molecules). Moreover, at each collision, the A molecule will change its
line of flight; because the collision can take place at any angle from zero to 180 degrees

(Figure 2.42). Therefore, if we let that (v,,) is the average speed of the A molecules

(averaged over all possible directions) relative to the B molecules then, this A molecule can
be assumed to be moving with this relative average speed (v,.;) along a straight trajectory
through the stagnant B molecules. Refer to Figure 2.43, a A molecule will suffer a collision
with a B molecule when the distance between their centres is (o, + o5)/2 where 0, and o
are the molecular diameters of the A and B molecules, respectively. A spherical volume of
radius (o, + op)/2 about the A molecule can be constructed, so that whenever the centre
of any B molecule is, on or inside this volume, there will be a collision. In one second, this
sphere of influence of this moving A molecule traces out a cylinder of length (v_,) and, of

cross sectional are 7[(c, +0p)/ 2]2 . This is called the collision cross-section. Therefore,

rel

the number of B molecules, whose centres are within this cylinder, will be equal to the

number of collisions, this particular A molecule suffers with the B molecules in one second,

2
i.e. to Z 5 p (Figure 2.44). The volume of the cylinder is E(GA;GBJ (V,e1,) and therefore

2
Zipg = ”[GA;GBJ (Uye1) B (2.87)

and the total number of binary A-B collisions is [from Egs. (2.86) and (2.87)].
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Figure 2.42 Collisions may take place at all possible angles 6=0 to 6= 180°.
The average angle of collision is then certainly (0 + 180°)/2 = 90°.
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Figure 2.43 The supposed picture of collion between a A and B molecule.
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just missed the collision
Figure 2.44 The possibilities of hitting the A by the B molecules
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Now, it remains only find an expression for (v, ). As explained in Figure 2.42, from the
triangle law of vector addition, the relative velocity a molecule with respect to a B molecule

18 U, = Up — Up. But we want (v,.). For this, we have to average v, over all possible angles
of collision: zero to 180°; i.e. over an average angle of approach 90°. Furthermore, since,
collisions occur along all possible directions, we may call it the relative average speed:

RT
<vrel>2 = <VA>2 + <VB>2 = 8 n (ﬂllA + ZV}BJ

8RT
Tl
where u is reduced mass and M, and My are, respectively, the molar masses of the two

gases. The final expressions for the collision frequency Z,)z and the collision number Z,5
are then

(Ve = (2.89)

2
O, +O 8RT
Z(A)Bzﬁ( A2 Bj - ng (2.90)
2
O, +0O 8RT
and ZAB:n( A2 Bj poy Ny ng (2.91)

The collision frequency and the collision number for a pure gas, say A, are then

Zipa = / 2) =2 7o? (c)n (2.92)

and Zyp = \/_ no? (¢) n® (2.93)

In the latter case, we have to divide by 2 otherwise, each collision would have been counted
twice

Example 2.46

Calculate the collision frequency and the collision number of oxygen molecules at 27°C
and 1 atm. The collision diameter is 2.5 A. Repeat the calculation at 2 atm and, at 1078
mm Hg pressure, the temperature remaining the same. Also calculate the average time
between two successive collisions.

Solution
The number of molecules per unit volume is

P PN, (101325kPa)(6.022 x 10** mol ™)

ET RT  (8.314 JK 'mol 1)(300 K)

= n=245x10®m™



2.122 Physical Chemistry

The average speed of the molecules is then

SRT [8(8.314 JK! mol™) (300 K)
M 3.14 (0.032 kg mol )

(Cy = =445.6 ms™

Therefore, the collision frequency is
Ziays =N2 16*(C)n

=2(3.14) (2.5 x 10 m?) (445.6 ms ™) (2.45 x 10% m?)

or Zpa =3.03x107 s

The average time between two successive collisions is

7= L 33107 sec
(AA
and, the collision number is
Zaa =é 4= é (3.03x10? s71) (2.45 x 10* m™®)
or Zys =3.71x10** m%s!

You can also use Eq. (2.93) directly to get Z,,. From Eqgs (2.92) and (2.93) we find

or Zpa < pand Zy, o< p

Therefore, Zaa at 2atm = mz( oA at latm
= Z s at 2 atm is 6.06 x 107 57
Similarly,

Zpp at 2 atm is
Zp at 2 atm = 22(Z,, at 1 atm) = 1.48 x 10 m > 5™

Similarly
-6
Z ) (at 107° mm Hg) = 10 mm He) 3 03109 ¢!
(760 mm Hg)
or Zpa (at 10°mm Hg) =4 s

and the average time of collisions is 0.25 s.
Comment The collision frequency is directly o p of the gas but the collision number is
directly o p?. At extremely low pressure, the system becomes almost collision free.
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Example 2.47

Calculate the ratio of the wall collision frequency and the binary collision frequency of
oxygen molecules at 1 atm and 27°C.

Solution
From the previous problem we have
(C) =445.6 ms* and, n = 2.45 x 10® m™®

The wall collision frequency

Zwan = % n(C) = i (2.45 x 102 m™2) (445.6 ms™)

or Zoar = 2.73 x 107" m~2%s7!

The binary collision frequency is (from the previous problem)
Zsa =3.03 x 10° s

The ratio
Z, ., 273x10°"m2gs!

18 .
Z ) 3.03x10% s7! ~1x10" (numerically)

(AA

Comment Wall collision frequency under ordinary conditions of temperature and pressure
is as much as 10'® times more frequent than the collision frequency.

Example 2.48

The average composition of air is x,, = 0.8 and x,, = 0.2 as the mol-fractions of nitrogen

and oxygen, respectively. Calculate at 1 atm and 27°C,

(i) the number of collisions suffered by one nitrogen molecule with the oxygen
molecules in one second.
(i1) the number of collisions suffered by one oxygen molecule with the nitrogen
molecules per second, and
(iii) the number of binary collisions per cm® per second between the nitrogen and oxygen

molecules. oy, :3'7A;002 -95A,and
(iv) the total number of collisions suffered by a single nitrogen molecule in one
second.

Solution

We first calculate the following:
The average speed of the nitrogen molecules
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a —1
(O, = 8(8.314 JK™" mol )(3_?0 K) 4764 ms !
2 3.14(0.028 kg mol ™)
and that of oxygen molecules
a 1
(e, = 8(8.314 JK™" mol )(3_(30 K)  445.6 ms !
2 3.14(0.032 kg mol ™)

Total number of molecules per m?

ne b _ (101325 Pa) ~2.45%10% m™
KT (1.38x10 2JK ) (300 K)

Therefore, the number density of the Ny molecules is
ny, =%y, n =196 X% 10 m™
and, that of the O, molecules is
ng, =%g, - n=0.49 x 10 m™

The reduced mass is

_(0.028 kg mol ™) (0.032 kg mol )
(0.028 + 0.032) kg mol ™

=0.015 kg mol™*

and (V1) = =650.88 ms™’

8RT _ [8(8.314 JK 'mol™) (300 K)
L 3.14 (0.015 kg mol ™)

(i) A single Ny molecule suffers Zy,,,, collisions with the O, molecules in one second

[Eq.( 2.90)].
2
GN + O'O
Zinpo, =T [%) (Vre1) Mo,
~10 . \2
=3.14 ((3‘7 A 2'5)2X 10 m] (650.88 ms1)(0.49 x 10%° m~®)
or, Zxy o, =9-62x10% 57

(i) Similarly,

2
on, + 0o
— 2 2
ZoyNy =T (—2 ] (Hyer) Ty,
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2
-10
3.7+ 2'5)2X 10 mj (650.88ms1)(1.96 x 102 m ™)

or Zio, N~ 3.14[

o Zx, 0, =3.85x10” 571
(iii) Total number of binary collisions per unit volume per second
Zo,,N, = Z0y)N, X o,
o Zo, N, =(3.85% 10°s71) (0.49 x 10%° m™)
- Zo, N, =1.9x10% m~%s7
(iv) The result is
Z = 2,0, T ZingN,

_ 2
Z(N2>Nz =+/2 moy, (cN2) ny,

8(8.314 JK ' mol 1)(300 K)
3.14 (0.028 kg mol ™)

x1.96x10% m™

o Zix, v, =N2(3.14)3.7x107" m)? \/

or Zxyn, =5.7x10% 7!
From (i) Zxy 0, =9-62x10°% 7
Therefore, Z=153x10%s"

2.19 MEAN FREE PATH: FIRST PARADOX OF KINETIC THEORY

According to the kinetic theory, the average speed of the molecules of a gas under ordinary
condition is about 500 ms™, a tremendous speed. This implies that if a dense gaseous
sample is placed at a corner of a closed room, the molecules would instantaneously diffuse
out uniformly all over the space available. In fact, what is observed is that a considerable
time is lapsed for the uniform distribution of the molecules in the room. Take another
example, if you open the stopper of a bottle of perfume, and if no wind blows, then after a
certain time lag the smell of the perfume is detected.

This slow rate of diffusion of the gas molecules was raised as a serious objection against
the kinetic theory at its initial stage of development. Clausius solved the problem by
recognising the fantastic number of molecules in a small volume (of the order of 10°
molecules per cm?®), and the frequent binary collisions between them. Each collision
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deflects a molecule from its otherwise straightforward path and, may even recoil it in the
opposite direction. That is why the rate of diffusion is so slow.

The straight path, a molecule traverses between two successive collisions is called the free
path; it may have values from zero to
infinity. The arithmetic mean of the free
paths is called the mean free path (1).

Refer to Figure 2.45, it shows the A
trajectory of a single molecule in one
second; the breaks at the traject are due

to collisions of a molecule with other
molecules and, [, /o, ... etc. are the free
paths. Clearly, we must have

(C)=l +ly +1lg+...=Z a2

Figure 2.45 Due to random elastic collision a molecule very

where 1is the mean free path and Z ,, is often deflects from its otherwise straight path.
the collision frequency of the molecules.
Therefore
Lo 1
Zya 2mo’n
BT (2.94)
or A= 72 70°P

The mean free path of the molecules of a gas is therefore inversely proportional to the
pressure and directly proportional to its kelvin temperature.
In a mixture of two different gases A and B,

<C>A and AB — <C>B

Ay =——18 /B
A
Zigya tZag Zgp + Zpa

(2.95)
Example 2.49

Calculate the mean free path of the oxygen molecules at 1 atm and at 10® mm Hg pressure.
The temperature is 300 K and o= 2.5 A.

Solution
The number of molecules per unit volume
- P (1atm) y (101,325 Pa)
kT (1.38 %107 JK™) (300 K) (1atm)
or n=245x10®m3

Therefore, the mean free path is (at 1 atm)
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1 1
A — —
J2 mo?n V2(8.14) (2.5 x 107 m)? (2.45 x 10 m™®)
or A=147x10" m = 1470 A

At 1 x 10 mm Hg,

1x10°° mm Hg
760 mm Hg

n=(2.45x10®m™®) x [ ] =3.2x10"% m™

and, A=1126m

Comment

At extremely low pressure, the mean free path becomes longer than the dimensions of the
box. This explains the collision free state of the gas molecules under such a good vacuum
condition. Only the wall collisions occur under such condition.

Under ordinary condition, about 10> molecules are present per m®. Assuming uniform
population density, the distance between two molecules is then (1m)/¥10*, i.e.
1x10®°m=100A.
We, therefore, notice that under ordinary conditions of pressure and temperature:
(i) The mean free path is larger than the separation between the molecules (cf.
Example 2.47)

(i1)) The mean free path is much larger than the molecular diameter and
(iii) The mean free path is smaller than the dimension of the box.

Example 2.50

A molecule traverses an average distance A,
the mean free path, between two successive
collisions. Consider a plane AB of unit area.
The total number of molecules striking this

plane from one side is in(c} (cf. [Eqs (2.20)

_Acos 6

and (2.47b)]. These molecules are coming from

all possible directions (Figure 2.46); but for each

molecule, the distance of the point at which the Figure 2.46 Each molecule traverses a distance 4

molecule strikes the plane AB from the point of before striking the surface, but since
their last collision is A. Show that the average they may come from different angles

with normal to the surface, their per-
perpendicular distance of the plane from the pendicular distance of the plane from

] ) o 9 the point of their last collision A cos 6
point of their last collision is 3 A. is different for different directions.
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Solution
In Section 2.2 [Eq. (2.19)], we have calculated the number of molecules striking a unit area

with all possible speeds (from zero to infinity) but, from one side of the plane, at an angle
6 and ¢ as

dng , = r;(;) sin6 cos6 dOd¢

For these molecules, the perpendicular distance to the unit plane AB, since their last
collision is (A cos 6). Therefore, the average perpendicular distance is
/2 21

J J Acos® -dn, ,
(A cosB) = 9:0¢:01
Zn<c>

/2 2m
= 47 J I cosf n o) sin6 cos6 dO d¢
n<c>9:o¢:o T

A /2 2n
=—= j cos® 0 sin@ do Jd(/)
T 920 )

/2
=21 J cos? 0 sin6 do,
0=0

and finally
(AcosB) = %/1.

This is an important result. The molecules strike a unit area from an average perpendicular

2
distance of gl.

Example 2.51

Prove the result in Example 2.50 from the Maxwell’s distribution of molecular velocity.

Solution
Using Eq.( 2.65b), we write the Maxwell's distribution equation as

m
Moo = n(znkT

—_ ch
)2 e 27T 2dec sin0do do
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where dn, 4 ,1is the number of molecules per unit volume moving with speeds in the range
C to C + dC and at direction determined by 6 and ¢ (Figure 2.47). If we draw a slant
cylinder of length C and of unit area, at the angles 6
and ¢, its volume is ¢ cos 6, and, it contains (C cos 6)
dn, 4 , molecules which will definitely hit the unit
area in one second. For each of these molecules, the
distance covered before the hit is A (along the 6 and
¢ directions) and, therefore, the perpendicular
distance from the unit area is (1 cos 6). The average

+VZ

of this distance is then
1 o /2 21 l /
(A cosf) = —— [ | | (Acos)(Ccost)dn, o, v - e
— n<c> ¢=00=0¢=0
4
Do the integrals yourself and find that -V,
(A cosB) = % A Figure 2.47

2.20 VISCOSITY

2.20.1 Definition

You might have observed that under comparable conditions, honey flows much less readily
than water; glycerol flows with even much more difficulty. Viscosity is a property of a fluid
(gas and liquid) that measures its power to resist flow.

To understand what is viscosity and how it arises, we consider a fluid confined between
two plates, placed parallel to the x—y plane (Figure

V4

2.48a); one at z = 0 and the other at

z = h. The plane at z= 0 is fixed. We now slide the z =

h plane along the x-axis with velocity v,,. If we now u=u,
consider the fluid as a stack of several parallel layers [ [ ===

like the pages of a book, then the layer which is just

adjacent to the z = h plane also moves with the velocity ; —

u,,. Due to the presence of internal friction between ———F7——

adjacent layers, the next lower layer will experience 7
adragging force and will also exert a forward dragging 0l 7 u=0
force on the next lower layer. In this way, a velocity X
gradient (fl.:j’ normal to the direction of flow, will Figure 2.48(a)

be set up and, at the steady state each layer will move
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with a constant velocity v, which is a function of z. The bottom layer which is in contact
with z = 0 plane will remain stagnant.!!

If we now consider a plane at height z, then the frictional force acts on the immediate
underneath layer in the forward direction and an equal frictional force (by the Newton's
3rd law) on the upper layer in the backward direction; both of the them acting parallel
to the surface. This frictional force, or shearing force, acting between the interface of two
layers having a relative velocity is called the viscous force. Experimentally, it has been
observed that viscous force is directly proportional to the area of contact A, between the

two adjacent layers and to the velocity gradient (%) that is
z
. dv
viscous force, F =17 Ad— (2.96)
z

where 7 is a proportionality constant, called the coefficient of viscosity or simply, the
viscosity of the fluid. A faster moving layer thus tends to speed up a slowly moving layer
and a slowly moving layer tends to slow down a faster moving layer. Equation (2.96) is
referred to as the Newton’s equation of viscosity. It is applicable for steady or laminar flow
of incompressible and newtonian fluids. A laminar flow is one in which each small element
of the fluid continues its own track of motion, without penetrating into the other, i.e. each
layer slips past the adjacent layers (Figs. 2.48b and 2.48c). Incompressible fluid means
that the density will remain fixed. A newtonian fluid is one for which 7 is independent of

the velocity gradient d_v Gases are certainly newtonian on their flow; liquids of small
z

molecular size are also newtonian. However, polymers and colloidal suspensions, in which
the long chain molecules cannot be oriented along the planes, are non-newtonian.

Figure 2.48(b) At a certain point the flow of heated gas Figure 2.48(c) The steady flow of fluid around a cylin-
rising from a cigarette changes from steady to turbulent. der, as revealed by a dye tracer.

11 This is called no slip condition; the layer immediately adjacent to the lower plate (which is
stagnant) will have a velocity v = 0; similarly the layer of the fluid just underneath the upper plate
will move with the velocity v,,,.
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The coefficient of viscosity may therefore be defined as the viscous force required to
maintain a unit velocity gradient between two adjacent layers of unit cross-section. In
parallel CGS system, its unit is dyne sec cm™, commonly called 1 poise in honour of the

physicist Poiseuille. In SI system the unit is Nsm™.

2.20.2a The Poiseuille Flow Equation

Let us consider the flow of an incompressible fluid through a long straight tube of uniform
radius r and length L. The velocity of the flow is small so that the flow is laminar if it is a
liquid and a steady state motion if it is a gas. The flow is along the axis of the tube and is
due to the pressure difference AP = (P; — P,); P; and P, are the pressures at the two ends
(P > Py), Figure 2.49. The layer of the fluid just adjacent to the wall of the cylinder is
stagnant and, as the centre is approached the velocity of the cylindrical layers increase.

Direction of flow

[ |
| L !
Figure 2.49 The steady, streamline flow of an incompressible fluid through a narrow tube of length L and radius r.

Let v be the velocity of the layer at a distance z from the centre. Then from Eq. (2.96), we
write for the viscous force F as

F:—n(27z:zL)@ (2.97)
dz

a negative sign is put before the equation because the sign of % is negative. This force
z

is acting along the direction opposite to that of the flow. To maintain the steady condition,
this force must be equal to the driving force 7z> (P — P,y). Equating these two forces, we
get

d
n@2nzL) OTZ =n12> (P, - P,)

V4
= do=-5 - (B-R)dZ
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and integrating between limits
Idv =— (P -B) J.ZdZ
2nL ]
(P -PF) 5
= U= 477L ( ) (2.98)

The velocity profile is then found to be parabolic (Figure 2.50) in nature.

5
*Sgw
g2
:H—
Q%

‘\ Parabolic

profile of
velocity

Cross section
of the tube

Figure 2.50 The parabolic profile of the velocity of an incompressible fluid,

flowing through a narrow tube in a steady state.

The total volume of the fluid flowing through the tube per unit time is then

dV = _[(2717 ZdZ) v

and using Eq. (2.98),

dV_J-ZZ(P P)(2 2yaz T BB
dt 4L 8nL
4
N =% (2.99)
SL[ j
dt

This is the Poiseuille’s equation. It must be remembered that the Eq. (2.99) applies only
to incompressible fluid.
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2.20.2b Viscosity of Gases

Gases are not incompressible; Eq. (2.99) therefore needs some modification for the
compressible character of a gas since a liquid may be considered as almost incompressible,
the volume as well as the mass flowing through any section of the tube per unit time is
constant. But, since gases are compressible, although the mass flowing through any given
section of tube may considered constant, the volume is not.

If V be the volume of the gas flowing across a section per unit time at a distance x from the
entrance point of the tube, and p is density at the pressure P, then

pV = constant

MP
Considering the gas to be ideal, we know p o P ( p= RT) we may write

PV = constant

We now consider a section of thickness dx at a distance x from the entrance point. Let
the pressure difference across this section be dP; then by the Poiseuille Eq. (2.99) we may
write

4
yv=_T" aP (dP is negative )
8n dx
4
_ py o _FT PdP
8n dx

If V; be the volume of the gas entering the tube at pressure P; then, by Boyle’s law (T is
kept fixed)

P1V1 = PV
4
nr® PdP
PV, =—-—
= 1 8n dx
: art B2
= PV,[dx=--— [ PdP
0 8n p
1
and finally
nrt 2 2
BV = 161 (A" - B) (2.100)

Several different methods were employed to estimate 7 for gases; however, the most
commonly used method is that of Rankine (see any standard text). The above equation
may also be written as

n_m'(B’ - B

n ) (2.101)
t 16 nLRT

where n is the number of moles (ideal gas) flowing out in time ¢.
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2.20.3 \Validity of Poiseuille’s Equation

Equations (2.99) and (2.100) hold good when:
(i) the flow is steady and streamline
(i) there is no radial flow
(iii) the layer of the fluid in contact with the wall of the tube is stationary, i.e., there is
no velocity of slip, and
(iv) for gases, the mean free path of the molecules is less than the radius of the tube.

Example 2.52

In an experiment to measure the viscosity of O, at 0°C, the gas is allowed to pass through
a narrow tube of radius 0.21 mm and length 2.5 m. The pressures at the inlet and outlet
are 1.2 and 1 atm, respectively. The volume of the gas collected at the outlet is 24.36 mL
per minute. Calculate the viscosity coefficient of the gas.

Solution
The number of moles of O, at the outlet is

PV _ (101325 Pa) (24.36x 10 m")
RT  (8.314 JK 'mol™) (273 K)

or n =1.087 x 102 mol

Therefore,

-3
n_1087x107 mol _, o1 105 mol s~
t 60 sec

From Eq. (2.103)
ar' (P} ~ B))

=16 RTL(m/t)
or ~(3.14)(0.21x10° m)*(2.2 x 0.2 x 101325 x 101325 P,*)
16 (8.314 JK ' mol ™) (273 K) (2.5 m) (1.81 x 10 mol s™")
or n=1.68 x 10 Ns m~2 (1.68 x 10~ poise)

2.20.4 Viscosity of Gases from Kinetic Theory

Kinetic theory offers an excellent explanation for the viscosity of a dilute gas and also
furnishes a fairly simple method for estimating 7.

Let us first see how viscosity arises during a steady flow of a gas. Consider a gas flowing
parallel to the x—y plane along the x-axis with the mean velocity v (which is assumed
to be very small compared to the mean thermal speed of the molecules); obviously, v is
an increasing function of z. The motion of the molecules along the y- and z-directions
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are random, i.e. (c,)=0={(c,), but along the x-axis, their average component of velocity
(c,) =v, which is the velocity of the mass motion of the gas.

Consider a plane parallel to the x—y plane at z = h. The molecules above this plane have
somewhat greater x-component of velocity than the molecules below this plane. So,
when the molecules cross this plane from above, they carry with themselves a certain
x-component of momentum which is transferred to the gas below the plane. Similarly,
when the molecules cross the z = A plane from below, some x-component of momentum
is transferred to the gas above the plane. Since, the velocity gradient is along the Z-axis,
there is always a net transfer of the x-component of momentum from the upper to the
lower portion across the plane.

The result is that the layer of gas below the plane gains momentum and the gas layer
above the plane loses momentum along the x-axis. The effect is therefore the same as if
the upper layer exerts a forward drag on the lower layer and as a reaction force (Newton's
third law) the lower layer exerts a viscous drag on the upper layer. The picture may be
exemplified by citing two trains moving in the same direction with unequal speeds. As
the faster train overtakes the slower train, workers on each train constantly pick up sand
bags from their train and throw them onto the other train. Then there is a transfer of
momentum between the trains so that the slower train tends to be accelerated and the
faster train to be decelerated. We shall now derive an expression of 1 of a gas from this
concept.

Refer to Figure 2.51, AB is a plane of unit area placed at z = A, parallel to the x—y plane.
Let the velocity of mass motion of the gas at this height be v. The number of molecules
striking this unit area in one second at the 0, ¢ direction is

dng , = ﬁ (c) sin6 cos6 db d¢ (2.104)

where n is the number of molecules per unit volume and (c) is the average speed of the
molecules.

Before striking this area, these molecules have suffered collisions with the other molecules
a number of times but the distance of the plane AB from their point of last collision (along
the z axis) is 4 cos 6. Since the mass motion of the plane AB is v, the velocity of mass

motion of the plane situated at the height A cos 6 from AB is [v + A cosf Zvj ; % being
4 Z

the velocity gradient. Therefore, per unit time, each molecule in Eq. (2.104) transfers a
momentum of m(v + A cosezvj across the plane AB in the 6—¢ direction (it is assumed
z

that the molecular velocity is adjusted at every collision). Hence, the total momentum
transferred across the plane AB from above and from all possible directions is
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The slant cylinder
Pl %

—» Velocity at this height is

dv
+ Acos 6=
v 0 b

B——>vVv

Figure 2.51 dny, is the number of molecules present in the slant cylinder of length (c) oriented
at angles 0 and ¢. Before striking the unit area AB, they have suffered their last collision at point P. So
the distance OP = 4; but the perpendicular distance PQ = A cos 0. If the layer AB moves with velocity v,

the velocity of mass motion of the layer at a height PQ from the AB surface is (v + ) cosO ﬂ]
dz

n(c) /2 2r; dv
pl=" J' j sin6cos9d6d¢[m{v+/lcos6d—H

4 420420 <
mn{c) BE dv
or = 6 cosH AcosO—|d | d
p i J sin @ cos (v + A cos dz) J 0]
1 /2 dU
or pl==mnlc) J sin@ cos@(v+lcos9—) de
2 ° dt

Similarly, the total momentum transfer across the AB plane from below and from all
possible directions per unit time is
/2

pT—Emn(c) jsm()cos@(v lcosej—)de

The net momentum transferred across the unit AB plane per second is
/2

Ap=pl-pT= lmn(c)(d)fsmOcos 6 do

or Ap—%mn(c}l[ji)
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d
This momentum change per second Ap is nothing but the shearing stress, which is 1 (dvj .
Equating these two results we get ‘

n= é mn {c)A
(2.105)
1
or =3P ()2

Equation (2.105) presents some interesting predictions: From Eq. (2.94), substituting the
expression of A, we find

__m{o)
1 32 ro?

which suggests that the viscosity of a gas is independent of n and hence of the pressure
of the gas. The result is remarkable and was not certainly intuitively expected. It means
that the viscous drag on the plane AB at z = & (Figure 2.51) will remain the same if we
increase the pressure say from 1 mm Hg to 100 atm. This apparent paradox is due to the
fact that as the pressure is doubled, the number of molecules per unit volume gets doubled
and, this doubles the number of molecules exchanged between the two layers. At the same
time, on doubling the pressure, the mean free path is halved, and therefore, each molecule
now conveys as much as only half the momentum as before. The net momentum transfer
therefore remains the same. These predictions had in fact been confirmed experimentally
by Maxwell himself (Figure 2.52). From this figure, it is also clear that this independence
does not hold at extremely low and at extremely high pressure. The reason is as follows:

(2.106)

/104 poise —>
N

0.001 0.01 0.1 1 10 100

Platm —>

Figure 2.52 Pressure dependence of 7 of Ar at 300 K.

We have made two assumptions in deriving Eq. (2.105); it is assumed that
(i) o0<< 4, 1i.e.the mean free path is much longer than the molecular diameter and
(i1) A<<L,i.e.the mean free path is much smaller than the smallest linear dimension
L of the container.
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At very low pressure condition (ii) fails and at very high pressure condition (i) fails. Hence
the equation fails at very low and very high pressure. As the pressure is decreased A4
increases until it becomes comparable to L, and thereafter, remains constant. On further
reducing the pressure only the density p decrease which decreases 1. The other way to
understand this is if the gas is made so dilute that the condition A << L is violated, then
the viscosity n must decrease, since in the limiting case when n — 0 (perfect vacuum) the
tangential force on the moving planes must clearly go to zero. On the other hand, the
departure at very high pressure may be due to the fact that the mean free path becomes
of the order of molecular diameter and then the transfer of momentum occurs not over
the distance A but over (A + o cos 6) where o is the molecular diameter and 6 is the angle
between the free path and the normal to the x—y plane. The effect of each molecule is
therefore additive and 1 rises almost proportionately with the pressure of the gas.

Figure 2.53 Due to the softness of the electron cloud there may be an overlap of the so-called hard spheres at high
T; this increases the repulsive interaction between the two molecules.

Kinetic theory suggests that 11 should vary according to the square root of the absolute
temperature, i.e. n o TV2. However, this prediction does not match very well with the
experimental results. The viscosity is found to be increase somewhat more rapidly than

JT . One reason may be that the molecules are not to be regarded as hard spheres, but

to be conceived of being surrounded by a force of field which is repulsive in nature. As
the temperature is increased, the velocity of the molecules increases too, and hence can
penetrate these force fields (Figure 2.53). That is to say that the molecules have some
degree of softness. The effective size of o therefore decreases thereby increasing the value
of A and hence 1 more than the factor 7V2. Another explanation put forward by Sutherland
is to consider the weakly attracting rigid sphere model. The weak attractive force between
the two molecules bends the trajectory (Figure 2.40(b)) of the two approaching molecules.
The result is that some molecules would now collide which would have been missed in
the absence of the forces. The collision frequency being increased, the mean free path 1 is
reduced, and 7, which is proportional to 4, is reduced by the same proportion. According
to this model, detailed calculation shows that

¥z

o (2.107)
1+b/T)

n
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where b is a positive constant to be determined experimentally (ref., R. D. Present; The
Kinetic Theory of Gases). Electric field has got no effect on the viscosity coefficient of a
gas; but 1 values of paramagnetic gases, e.g. Oy, NO, etc. may be decreased by application
of a magnetic field. The mean free path of these molecules decreases in the presence of a
magnetic field.

Example 2.53

Calculate the viscosity coefficient of Oy at 0°C and 1 atm from the kinetic theory expression.
c=25A.

Solution

Using Eq. (2.106),

__m{o)
1 342 no?

we first calculate {c)

(c)y= 8 T =425 ms™!
M

~(0.032/6.022 x 10%°) kg (425 ms™)
3v2 (3.14) (2.5 x 107 m)?

or n=27x10°Nsm™

Therefore,

2.20.5 Alternative Method of for the Expression of 7 of an Ideal Gas

From Eqs (2.20) and (2.47b) we know that the number of molecules striking a unit area
from all directions but from one side of the plane is i n{c).
From Examples 2.48 and 2.49, we also know that the average perpendicular distance a

molecule traverses to hit a plane is % A.

Therefore, the momentum delivered to a reference plane from the upper section, per unit
area per second is

1 [ 2. dv]
l=ml= iy Pt
p m(4n(c)) _v+3 dz
and that from the lower section is
1 [ 2 dv]
Tem[L _2,
D m(4n(c>j _v 34 2|

where v is the velocity of the plane of interest.
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The net momentum delivered is then

Ap=pl-pT= émn (DA % per second.

This is the viscous force; equating the Newton's equation to this, we find

or

n%-mn(c)l%

4

n= %mn (YA

the same as in Eq. (2.105).

PROBLEMS

2.1

2.2

2.3

2.4

2.5
2.6

2.7

2.8

Compare the gravitational forces between two CO, molecules (radius, r = 1.62 x
1078 cm) with their translational kinetic energy at 27°C.

[Ans.:P.F.=1.1x 101 J; (), =6.21 x 10722 J]
Calculate the temperature of a sample of 6 g of He gas whose energy is found to be
11.224 kdJ. [Ans.: 600 K]
Modern vacuum pumps permit the pressure down to P = 4 x 1075 atm to be reached
at room temperature (300 K). Assuming the gas exhausted is N, find the number
of its molecules per cm?. Also find the mean distance between the molecules at this

pressure. [Ans.:n =1 x 10° em™; () = 0.0215 cm]
The normal density of H, is 0.000089 gem . Calculate the root mean square speed
of O, at NTP. [Ans.: 4.6 x 10* cm 571
Calculate the kinetic energy of 1 kg of O, at 227°C. [Ans.: 1.95 x 10° J]

At what temperature will the rms speed of O, be (3/2) times its value at NTP?
[Ans.: 614.25 K]
Calculate the most probable, the mean, and the root mean square speed of the
molecules of a gas, whose density under standard atmospheric pressure (1 atm) is
equal to p = 1 gL ™. [Ans.: Cinps = 0.45 km s ()=051kms™; C, =0.55km s_ol]
A 2 L flask contains two non-reacting gases A and B (the diameters are: g, = 2A;
op = 3A) at a constant temperature 300 K, and at a total pressure of 1 atm. The
number of moles of the gases are 2 moles of A and 3 moles of B. Calculate
(i) the collision frequency of an A molecule with the B molecules
(i) the collision frequency of a B molecule with the A molecules
(ii1) the collision number between the A molecules
(iv) the collision number between the B molecules, and
(v) the total number of binary collisions per cm?® per second (molar mass of A is
4¢ mol™ and that of B is 28 g mol™)
[Ans.: (1) 2.4 x 10" 71 (i) 1.6 x 10 s71; (iii) 4.06 x 10** em ™3 s7%;
(iv) 7.77x 10°" em™ 575 (v) 2.63 x 10°% em™ s7']
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2.9

2.10

2.11

2.12

Two ideal gases A and B at pressures and volumes, respectively, P4, P, V4, and V5,

such that P,V, = PgzV5. Analyze the system.

[Ans.: Two situations may arise:

(i) If N, = Ng then their temperatures are equal, i.e., Ty = Tz N represents the
total number of molecules of the respective gases, and

(i) IfN, > Ngthen T, < Tl

Two flasks A and B have equal volumes. A is maintained at 300 K and B at 600 K.

A contains H, gas and B contains an equal mass of CH,. Assuming ideal behaviour

of both the gases, answer the following:

(i) Which flask contains greater number of molecules and, how many times as
great?

(i1) In which flask is the pressure greater? How many times as great ?

(ii1) In which flask are the molecules moving faster? How many times as fast?

(iv) In which flask are the number of binary collisions greater? How many times
as great? (Assume 20y, =0y, )

(v) In which flask is the mean free path of the molecules greater? How many
times as great? (Assume 20H2 = GCH4)

(vi) In which flask is the viscosity more? How many times as more?
(vii) In which is the kinetic energy per mole greater? How many times as great?
(viii) In which flask is the total kinetic energy greater? How many times as great?

Ans.: () M2 _g.

>

ncn,
1 . _ .
V) Ay, =§/'LCH4; (vi) Mmu, =Tcn, >
u
i) TnHo) Ly M _ g
U, (CHy) 2 Uch,

The viscosity of Hy at 0°C is 8.41 x 10~* poise; determine the mean free path of the
molecules at this temperature and 1 atm pressure. [Ans.: A=1.67 x 107° cm]
One of the methods used to find the molecular diameters is through the
measurements of the coefficient of viscosity.

[Ans.: Let us discuss the method. Using the Eqs (2.94) and (2.105), which are:

1 1
A=——————andn==p{) A
72 no%n n 3p<>

To eliminate A, we do as

n=tp@) =1
3 Joro?n
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o_ P __p [BRT

3V/2. 2rnn 3\/§m7n

= o’ = 2p /ﬂ (a)
3nnn \ tM

At NTP (T = 273 K ; P = 1 atm) the coefficient of viscosity of hydrogen has been

found to be 8.41 x 10~ poise. The number of molecules per unit volume is

_ PN, _ (1pm)(6.022x 10% mol )
RT (32, o5cm3mk/mrf)(273}<)

- 19, —
= n=27x10 ;and P = 22414 ° =89x107 gem™

Using Eq. (a),

) 2x89x 107 ¢ car®
©3(3.14)(8.41x 16° gem's™) (2.7 x 10" car™)

(8.314 x 107 erg KT mol™?) (273 K)
3.14 x 2 g mol™"

o

8.314 x 10" & ecms™ e¢m) (273

= 02 =0.0832 x 107 cms x ( /g( ) 273)
3.14 x 2 /g/

= 62 =0.0832x 10 cm £ (6 x 10* cm 57)

= 0?=0.5x 107 cm?

= 0=223x 108 cm, i.e., o= 2.23 A]

Calculate the high temperature limiting value of the molar heat capacity at
constant pressure for (i) CoH, and (i) NH;.
Also calculate the ratio the heat capacities 7.

[Ans. () Cp,, =20 R; 7= 11053 (i) Cp,,, = 11R; 7= 1.22]

The ratio of the heat capacities at constant pressure and constant volume of H,
gas is 1.32 at 2000°C. Calculate the molar heat capacity (a) at constant pressure,
(b) at constant volume. How much is the combined vibrational and rotational
contribution to the heat capacity at 2000°C?

[Ans.: (a) 8.25 ; (b) 6.25 ; C, ,, = 3.25 cal K" mol ']
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2.17

2.18

2.19

2.20

A 250°C, and 765 mm Hg pressure PCl; vapour is dissociated to the extent of 81%
into PCl; and Cl,. What is the volume of the vessel in which 1.24 g of PCl; vapour
was introduced at the specified temperature and pressure? [0.46 L]
When PCl; vapour is heated at 200°C and 1.22 atm pressure, it undergoes
dissociation to the extent of 0.42. What is (a) the mole fraction, (b) partial pressure
of PCl;, PCl; and Cl,?

[Ans.: (@) xpc), = 0.408; xpg;, = %, =0.296;

Arrange in order of increase value: most probable speed of the molecules of a gas,
rms speed and the average speed. Would you expect the difference between these
three to increase, decrease, or remain the same with increasing temperature?

[Ans.: Cps < (C) < Cyyy; They will all increase accordingly at JT ; their difference

will increase with increasing temperature, because: Cy, s : (C) : Cyps = J2 \/§ NE)
T

=1.414:1.596:1.732]

Assume that for argon and krypton the vapour densities at their respective normal
boiling points are the same. This means that, at their respective normal boiling
points, the molecular velocity in the argon vapour is greater than, or less than,
or same or cannot tell, compared to the corresponding parameters in the krypton

vapour. [Ans.: They are all the same; because C,__ = {% = g]
\j )

Calculate the mole fraction composition of a mixture of H, and O, gases (at STP)
such that equal mass of each gas strikes a unit area of the container per second.
[Ans.: Xy, = 0.8; Xo, = 0.2]
Two containers of equal volume are separated by a fixed barrier with a pinhole of
107 cm? area as shown in the figure below. Initially, side A is vacuum, maintained
at 0°C, and side B contains He at 1 atm pressure at 25°C. Initially, the pinhole was

closed.
A B

0°C = 25°C
He

After the pinhole is opened, calculate:
(i) The initial rate of escape of He from B to A. Under this condition of P and T,
the rate of striking of Xe gas (at. wt = 131) is 0.232 mole cm ™2 s™%.
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2.23

2.24

2.25

2.26

2.27
2.28

2.29

2.30
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(i1) Eventually a steady state is reached in which the effusion from A to B equal
that of B to A. Calculate the ratio P,/Py at the steady state.
[Ans.: (i) 1.828 x 107* mol s7%; (ii) 0.957]
In a sample of gas, the molecules move over the entire speed range (0 — «). We
now divide the total number of molecules into two groups : hot a cold. The cold
group consists of 30% molecules and have an average speed 0.6 (C), and the hot
group consists of 70% molecules and have an average speed 1.4 (C), where (C) is
the average speed. Calculate the ratio of the surface collision frequencies of the hot
to the cold group Z, ,/Z 4. [Ans.: 5.44]
H, gas is taken at 2 atm and 100 K; separately O, gas is taken at 5 atm and 300 K.
In which case there will be greater amount of mass of the two gases hitting a unit
area per second? [Ans.: Mass of H, striking/mass of O, striking = 0.173]
Two separate bulbs are filled with neon and argon gas, respectively, Ar is at twice
the kelvin temperature and hal of the density of the Ne. What is the ratio of their
wall collision frequencies? (At. wt. of Ar = 0.04, Ne = 0.02 kg mol™)
[Ans.: ZnJZy, = 4]
Give the ratio of the average speeds (C); /(C); and of the wall collision frequencies
Z;/Z; for the following changes in condition of an ideal gas: T'is doubled at constant
P and (b) P is doubled at constant 7.

$r _ gy O Zs | _ . [Zf]:g
(a) © =2; () @_1, (a) (ZJ_0.707, (b) |

A2 x 1073 m? flask contains 0.015 kg of an ideal gas at 3 x 10° Pa pressure. Calculate,
how long should take for 2% of the gas to escape through a pinhole of 10® m? in
area. [Ans.: 50 s]
Oxygen gas at STP has a most probable speed C,,,, of 4 x 10* cms™!, and a mean
free path of 7.7 x 10~ cm. Calculate the mean time between the collisions.

[Ans.: 1.7 x 1072 5]
Express the Botzmann constant in units of eVK ™. [Ans.: 8.625 x 107 eVK ]
How much is the average translational kinetic energy (in electron-volt) of O,
molecules in air at room temperature (300 K)? Of the N, molecules?

[Ans.: 0.039 eV]

12

The speed of sound in an ideal gas is given by

Usound = 4 /LRT , wWhere y = Q—P

Calculate the speed of sound in nitrogen at 300 K, and compare this with the rms
speed of N, at the same temperature. [Ans.: Uyyyng = 353 ms™ ; v, = 517 ms™]

Compare the most probable speed of a molecule that collides with a small surface
area with the most probable speed of a molecule in the bulk of the gas phase.

Ans.: (Umps )surface _ §
(vmps )bulk 2



REAL GASES

CHAPTER

3.1 INTRODUCTION

To define the state of a pure gaseous sample of a given mass, we require the specification
of three parameters, viz., pressure, temperature and volume. These three parameters are
not independent. The mathematical relation which interlink these parameters is called
the equation of state and, in general, it can be written as f(P, V, T') = 0. It is so called
because, if any two of these three parameters are known, then the third can be calculated
if their interrelation, i.e., the equation of state is known. The simplest equation of state
is that of an ideal gas: Pv — nRT = 0. This equation fails (except under certain limiting
conditions) for the gases we encounter, i.e., the real (or non-ideal) gases. In this chapter
our objectives will be
(i) To analyse the experimental results regarding the behaviour of real gases
(i1) To point out the reasons behind the departure of real gases from the ideal
behaviour
(iii) To construct equations of state for real gases, and
(iv) To test the validity of these equations of states.

3.2 THE WAY REAL GASES BEHAVE

Even Boyle himself knew very well that the equation Pv — nRT = 0 does not fit
the experimental data except at very low pressure and at very high temperature
P—0;T— ).

The amazing observation by James Watt (1783) that, at sufficiently high temperature
and pressure, the latent heat of vapourisation of water vanishes as the specific volumes
of water and vapour become equal. This report may be marked as the beginning of an
extensive search on the behaviour of gases, which in turn, had started the journey into
finding a suitable equation of state for real gases.

Thomas Andrews (1863) first carried out a series of systematic experiments which threw
much light into the actual behaviour of gases. For each fixed temperature, there is a
definite volume of a given mass of gas corresponding to a fixed pressure. The locus of these
points (P, V) at a fixed temperature is called an isotherm.
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The isotherms obtained by Andrews for CO, are shown in Figure 3.1. Inspection shows
that an isotherm at a low temperature consists of three well defined parts. Consider the
isotherm at 243 K. Definitely, the behaviour is not ideal for otherwise, a rectangular
hyperbola would have been obtained instead of the chair-like curve ABCD. The position
CD however, is almost like a rectangular hyperbola and, it represents the ordinary gas
behaviour. Starting from point D, the volume decreases considerably as the pressure is
increased; this continues up to point C. Then there is a horizontal part BC; this indicates
that the volume decreases considerably without any change in pressure. This is due to the
liquefaction of the gas. Liquefaction begins at point C and ends up at B. In this portion the
gas (more correctly vapour) is in equilibrium with the liquid. The almost vertical portion AB
then corresponds to the liquid state, which also confirms the very low compressibility of the
state. Starting with the liquid CO, and decreasing the pressure, at the fixed temperature,
these changes go in the opposite direction. At point B, the first bubble of vapour is formed
and, thereafter the pressure remains constant until the last drop of liquid is vapourised
at point C; the volume of the vapour then increases with further decrease in pressure.
The pressure corresponding to the portion BC is the saturated vapour pressure at the
corresponding temperature (also called the orthobaric vapour pressure). The volume per
gram of the liquid corresponding to the point B is the specific volume of the liquid and,
that corresponding to point C is the specific volume of the vapour at the corresponding
temperature.

304.12 K

Pressure (bar) —>

— e T T T T T T T T T T
0 0.1 0.2 0.3 0.4 0.5 0.6

Molar volume (L) —>

Figure 3.1 Experimentally obtained isotherms of CO, by Andrews. The dashed curve is that for an ideal gas. The
isotherm at 304.12 K (31.1°C) is at the critical temperature and is called the critical isotherm.
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At a higher temperature, the isotherm follows the same trend; only the length of the
horizontal part is shortened from either side.

The specific volume of the vapour therefore decreases and that of the liquid increases with
increasing temperature. That is, with increase in temperature, the density of the vapour
increases and, that of the liquid decreases. All these changes go on monotonously with
increasing temperature until, at 31.1°C (304.12 K), the specific volumes of the liquid and
the vapour become equal; their densities are then also the same. The two states (vapour
and liquid) thus become identical at this temperature; the horizontal portion merges to
a point and, the curvature changes to positive from negative. This point P is therefore
a point of inflexion and, was called by Andrews, the critical point, and corresponding
temperature as the critical temperature 31.1 °C is therefore the critical temperature of CO,.

Above this temperature there is no horizontal part. This indicates that, above the critical
temperature, no pressure, however high, will suffice to liquefy a gas. We now remark
that the word ‘gas’ is coined when it is above its critical temperature and, vapour when
it is below the critical temperature. The pressure, just required to liquefy a vapour at the
critical temperature (7',) is called the critical pressure P,. The molar volume of the gas at
T, and P, is called the critical volume V.. This is not a unique behaviour of CO,; all gases
behave in the same way (Figure 3.2). The different regions of the PV isotherms of a gas,

e.g., CO, are shown in Figure 3.3.

42 1 L
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Figure 3.2 The P-V isotherms of isopentane.



3.4 Physical Chemistry

198°

1.25-17752

1003

PV ——

0.75+
0.50

0.25- -

0 25 50 75 100 125 150 175 200 225 250

p (atm) ——>

Figure 3.3 The PV vs P isotherms of CO,.

3.3 CONTINUITY OF LIQUID AND VAPOUR STATES

Consider an isotherm, say ABCD, below the critical temperature of a gas (Figure 3.4).
Since there are sharp discontinuities at the two points B and C, where the liquid and the
vapour meet the horizontal line BC, we may think that there is a sharp line of demarcation
between the liquid and the vapour state. In fact, this is not true. This can be shown by
converting the vapour into the liquid or, the liquid into the vapour, without any visible
appearance of a meniscus. To do this, the vapour is first taken at point P. It is now heated
at a constant volume to the point @, which is above the critical temperature. The vapour is
now compressed at constant pressure, until the critical isotherm is crossed to point R; the
system is next cooled to point S (below the critical temperature) at constant volume. The
final state S represents the liquid state; but nowhere in the process there appeared any
liquid-vapour meniscus. Andrews therefore correctly stated: “The vapour and the liquid
states are only widely separated forms of the same condition of matter, and may be made
to pass into one another by a series of gradations so gentle that the passage shall nowhere
present any interruption; the vapour and the liquid are therefore only distant stages of a
long series of continuous physical changes.”

To celebrate this idea of continuity, the term ‘fluid’ is coined to represent both the liquid
and the vapour state. Below the critical temperature a fluid will be considered as liquid
when the molar volume is less than the critical volume of the substance; otherwise it will
be a vapour.
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Figure 3.4 The continuity of states; the two phase equilibrium.

3.4 STATE OF MATTER AT CRITICAL POINT

When a liquid taken in a sealed tube is heated slowly (Cagniard de La Tour method) there
reaches a limit at which the liquid meniscus disappears suddenly; the whole tube is then
filled up with a flickering appearance, due to the mixing of the two phases which then
merge to form a homogeneous fluid. This is the critical point. Similar observation was also
made by Andrews. This smooth passage of liquid into vapour at the critical point and the
homogeneity of of the entire system can be demonstrated by an experiment of the following
type: an empty tube is first kept and balanced horizontally over a knife edge. An amount of
the liquid (the amount must be sufficient so that it does not vapourise completely before T,
is reached) is then introduced, and the tube is maintained on the knife edge (Figure 3.5).
The liquid is now slowly heated until, at the critical temperature the densities become
equal and the tube again swings to the horizontal position.

Figure 3.5 Nadejdines’ experiment
(Source: An Advanced Treatise on Physical Chemistry; J.R. Partington)

The various properties observed at the critical point may be summarised as follows:

1) [g—sj is zero at the critical point; but it is negative on either side of the point.
T

Hence, [a—Vj = —oo atthecritical point. Theisothermal compressibilityis therefore,
T



(ii)

(iii)

(iv)

)
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{ B=- %(%) } , infinity at the critical point. It can be shown that the fluctuation
T

in the number density of particles is directly proportional to . Since B is infinite at
the critical point, there is a large density fluctuation at that point and this leads
to a very large scattering of lights. This explains the flickery appearance of the
substance at the critical point, which is known as the critical point opalescence.

Experiment shows that (£j is a finite positive number at the critical point.
v

Therefore, since [B_Pj =< , the coefficient of thermal expansion « is infinity at
%

the critical point.

2
Cp=Cy + @ Vy ; therefore, Cp also tends to infinity at the critical temperature.

The densities of the liquid and the vapour state are equal at the critical temperature;
the meniscus therefore vanishes and the surface tension goes to zero at this
point.
With rise in temperature, the latent heat of vapourisation decreases and vanishes
at the critical point. This follows directly from the Clausius Clapeyron equation.
AH =T (d—PJ x (V.
dT

~ Vi) as Vi, = Vi, AH — 0

vap ap
However, later works by Cailletet, Colardeau Callendar and many others, showed
that the difference in the densities between the liquid and the vapour phases
persists even up to few degrees above the critical point. This fact seemed acceptable

for it explains the opalescence observed by many workers at the critical point.

DETERMINATION OF CRITICAL CONSTANTS

There are basically two methods for the determination of critical constants. The first is the
Cagniard de La Tour’s method of heating a liquid in a sealed tube and to locate the point
where the liquid meniscus disappears. This method gives only the critical temperature,
and is not free from errors. The second method is the Andrews method of constructing the
isotherms at different temperatures and selecting the one at which the horizontal part
just merges to a point. This method is useful for finding P, and T, exactly, but finding the
exact location of V, is not possible because a slight alteration in temperature will change
the value of V, significantly due to very high o-value of the system at the critical point.
V. can be determined with sufficient accuracy with the help of the so called rectilinear
diameter method of Cailletet and Mathias.
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3.6 LAW OF RECTILINEAR DIAMETER

According to this law, if p; and py are the densities (orthobaric densities) of the liquid and
the saturated vapour respectively, in equilibrium, then their mean value p,, = (p; + py)/2,
would be a linear function of temperature. That is

1
P =5 P+ Py)=py+at 3.1)

where a is a constant and p, is the value of p,, at 0°C. At first, the orthobaric densities
are plotted versus temperature. The wings will be approximately parabolic in nature
(Figure 3.6). Now, the points of the mean densities p,, are located; whose locus will be a
straight line. By extrapolating the line to ¢,, the critical density and hence, the critical
volume is directly read off from the ordinate.

C
T 190° . :
I
— o
o g <
S 170 % 3
pust [«}] L
E & o
© 5
o o] ®
S 1507 & ‘
= ;
1300 A T T T T I"'DI T T IB
0 01 ' 02 03 04 05

Density —>

Figure 3.6 The demonstration of the law of rectilinear diameter.

3.7 AMAGAT'S ISOTHERM

Beside other inferences, the departure of real gases from ideal behaviour becomes also
clear from Andrew’s experiment. If the ideal gas equation is held true we should have
obtained rectangular hyperbolic P-V isotherms. However, it is sometimes much easier to
measure the deviation of a gas from the ideal behaviour with reference to a straight line.
In this context, we define the compressibility factor of a gas Z, as the ratio of its actual
molar volume to the ideal molar volume under a given set of temperature and pressure:

_V_PV (3.2)

"V, RT '
According to Boyle, a plot of PV vs P for a given mass of gas at constant temperature should
be astraight line parallel to the P-axis;i.e.,a plot of Z versus P should be a straight horizontal

line. Amagat carried out an extensive search on different gases and represented his results
by a Z versus P plot at several different constant temperatures. The results on methane
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are shown in Figure 3.7. Different isotherms along with the critical one, the mixed phase
region, the liquid region etc., are marked in the figures. At the inflexion point, we have now
a vertical tangent (0Z/dP) (Figure 3.7). The general trend is that above the critical point,
each isotherm first decreases with increasing P(Z < 1); forms a minimum and then rises
up, even above Z = 1, at high pressures. However, this trend follows up to a temperature,
called the Boyle temperature, which is a characteristic parameter for each gas. This is the

temperature at which the initial slope of the Z versus P curve is zero,i.e., lim (B_ZJ =0. So
P+0
T

at the Boyle temperature, there is an initial horizontal part and hence each gas obeys the
ideal equation fairly accurately up to moderate pressures. Above the Boyle temperature,
each isotherm slopes upward and shows no minimum (Figure 3.7(b)). The locus of the
minima of the isothermals below the Boyle temperature is more or less parabolic in nature
(Figure 3.7(c)). This is now well established that all gases give Z versus P isotherms of
this type, but the scale varies so widely from gas to gas that when the critical temperature
is very low, it may be exceedingly difficult to realise experimentally the lower isotherms.
Thus for H,, the critical temperature is 31 K, and the Boyle temperature is 116 K; for He,
T,=5Kand Ty = 23.8 K; for Ny, T, = 127 K and Ty = 332 K; for CO,, T, = 304.1 K and
Ty =600 K. A comparative Pv versus P isotherms for these gases are shown in Figure 3.8,
at 300 K. Kammerling Onnes suggested an empirical relation.
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Figure 3.7 The Amagat’s isotherm at different pressure regions, for methane
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Figure 3.8 The Pv vs P isotherms of different gases at 300 K
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Z=1+AP+AP? + A,P? + ...
or Z:l+£+&+&+... 3.3)
Vv V2 VS
for the equation of the Z versus P isotherms. This is called the virial equation of state
where A, Ay, As, ... and By, By, Bs, ... are called second, third and fourth virial coefficients
respectively, and have decreasing order of magnitudes.

3.8 REASONS BEHIND THE DEPARTURE OF REAL GASES FROM IDEAL
BEHAVIOUR

This can well be understood with reference to Amagat’s isotherms (Figure 3.7). A gas can be
liquefied by the application of a suitable pressure below the critical temperature. We know
that in the liquid state the molecules are in a compact form with significant attractive
forces among them, which held them tightly together, not as much as that in the solid state
but, much more than that in the gaseous state. So, there must also be attractive forces
among the molecules in the gas phase; but the molecules do not cluster due to increased
thermal motion. The next point is that, you cannot compress a liquid as much as a gas.
Definitely, it must be due to the strong short range repulsive forces among the molecules
which resist them squashing into one another. You can also put it in another way: the
molecules have finite volumes and cannot be compressed indefinitely. Now, consider an
Amagat’s isotherm below the Boyle temperature. At constant temperature, the PV value
first decreases with the increasing pressure. This means that below the Boyle temperature
and at low pressure, a gas is easier to compress compared to an idea gas (Z < 1). Obviously,
this reflects the presence of attractive forces among the molecules which helps the
compression. Then note that the slope of the curve decreases numerically with gradual
increase in pressure. This means that there must be some other effect which becomes
more and more prominent as the molecular separation decreases, and which opposes the
effect of attractive force. Inevitably, this must be the repulsive force. The minimum in the
isotherm is obtained when the rate of change of attractive force with respect to pressure
equals the rate of change of repulsive force with respect to pressure. Thereafter, when the
repulsive force strongly dominates the attractive force, Z becomes greater than unity and
the gas becomes harder to compress than an ideal gas.

Hence, intermolecular attraction and repulsion are responsible for the deviation of gas
behaviour from ideality. However, it is more convenient to speak of the effect of repulsive
force among the molecules in terms of the finiteness of the size of the molecules.

Therefore, the equation of state PV = RT needs two corrections. During the last century,
a large number of equation of states have been put forward by different workers; some of
them are semi-empirical and other purely empirical. In the following section, we will take
up some of them and discuss their triumphs and failures.
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3.9 van der Waals EQUATION OF STATE

The van der Waals equation of state is given by (for 1 mole)

(P+%)(V—b)=RT

where b is the volume correction terms and a/V? is the pressure correction term, sometimes
also called the internal pressure of the gas. Let us now see how the corrections are
introduced.

3.9.1 Volume Correction

If we consider the molecules like the billiard balls (the hard sphere approximation) then
they would definitely occupy some space during their translational motion and as a result,
would collide the walls of the containing vessel more frequently than if they were point
masses. This, in turn, would result in an increase in the pressure of the gas over the ideal
value. This increase in the pressure can be accommodated in the equation. P = RT/V, by
subtracting some positive quantity from the volume V,i.e., P = RT/(V - b).

The constant b can also be correlated to a molecular property as follows. Considering the
molecules of a gas as hard spheres of diameter o, the closest separation between the
centres of two molecules would be at their time of
collision, and is equal to o (Figure 3.9). So, if we
consider a  spherical space of volume

3

é7t0'3=8 4 7 < =8b, (b; is the volume of a

3 3 2

single molecule) round a single molecule then it is

clear that this volume becomes excluded for this pair /

of molecules for their free movement. Therefore, the
volume excluded per mole of gas is b = 4Nyb; (N, is
the Avogadro’s number). Recognising that, by the

volume of a gas we mean the free space which is [igure3.9 The sphere of exclusion. The

available for the free movement of the molecules, we volume of the shaded region is
find the volume of a mole of gas to be equal to the unavailable for the free move-
volume of the container V less this excluded volume ment of the pair of molecules
b. Hence, the volume corrected equation of state is

P(V-b) =RT, (3.4)

where b = 4 x N, x (volume of each molecule).

3.9.2 Pressure Correction

A molecule at the interior is pulled equally along all directions; but near the wall of the
container it should experience a net pull towards the bulk. So, as a molecule approaches the
wall its momentum is reduced gradually; the impulse of the blow on the wall is therefore
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reduced. The attractive force among the molecules therefore reduces the gas pressure
below the ideal value. Now the pressure developed at the wall is directly proportional
to the number of molecules striking per unit area of the wall per second. This number is
proportional to the density of the gas. Now, consider a unit volume of gas just behind this
unit area. The number of molecules in this volume is also proportional to the density. The
cohesive force among the surface molecules and those in the unit volume, must therefore be
proportional to the square of the density of the gas or inversely proportional to the square
of the volume of the gas. The reduction in pressure below the ideal value is therefore given

a
by a/v?, where a is a constant. So we can write Py = P + F’ where P, is the pressure of

the gas and P;; is the ideal pressure, instead of P,; (v — b) = RT, we now therefore write
a
(P +F)(V_b) =RT (3.5)

which is the van der Waals equation of state for 1 mol of gas. Writing this equation in the

form as follows:
_ RT a

We can recognise three different factors:

(i) the thermal motion RT)} it gives the main thrust;
(i1) the repulsive force, or the finiteness in the size of the molecules increases the thrust
and
(i1i) the attractive force, which reduces the thrust.
To write the corresponding equation for n mole of a gas of volume V, we replace V
by v/n and find,

2
(P + %J(u —nb)=nRT (3.6)
v

as the van der Waals equation for n mole of gas.

3.10 DETERMINATION OF THE van der Waals CONSTANT ‘a’ AND ‘b’

(i) Isothermal Method
From the van der Waals equation, we have
__RT _a
- (V-b) V?
( aP) RT 2a
- sk N ——
)y (V-b? V3

and
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from these two equations, both the constants ‘@’ and ‘6’ can be determined from P and

P
(g_Vj values obtained from the Andrew’s isotherms.
T

(ii) Isochoric Method

From the van der Waals equation,

(3_13) __B |y B
oT ), Vb (ap)
T ).,

oP 1 a ) oP
—| ==|P+— =V T|—| -P
and (BT)V T( sz - { (aTJV }
Hence, ‘@’ and ‘b’ can be determined from known values of (B_Pj , Which can be obtained
from constant volume gas thermometer. v
(iii) From Critical Data

In the next section, we will show that the van der Waals constants ‘@’ and ‘b’ are related to
P.,V, and T, by the equations:

27R? T? RT,
= — and b=—-—+
64 P, 8 P,

Thus ‘@’ and ‘b’ can be obtained from the experimental values of P, and T.,.

(iv) From Joule-Thomson Experiment
It can be shown that under ordinary condition of pressure, the inversion temperature of a
gas, T is given by
r-2¢ _ 20
Rb RT,

Hence, the constant ‘6’ can be evaluated from known values of T, and ‘a’.

3.11 NATURE OF van der Waals EQUATION

The equation, P = RT/(V — b) — a/V? is third degree in V; so it follows that for each value
of P, V should have three values. Theory of equation therefore suggests that either all the
three roots are real or one real and two imaginary. It has been found that above the critical
temperature of a gas, only one root is real and below the critical temperature, all the three
roots are real over a certain pressure region (see Figure 3.10).
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Figure 3.10 Theoretical curves for CO, according to van der Waals’ equation

It is further noted that:
(i) Lt P — « as V approaches b
(i) Inthe Lt P=0,V — o and
(iii) any value of V less than ‘b’ is of no physical significance, for otherwise P becomes
negative.

Hence, a straight line parallel to the P axis is an asymptote to the curve at V = 6. The
V-axis is also an asymptote to the curve. To determine the intermediate portions, we
differentiate the equation:

oP RT 2a
1
T

W weer v

For large values of T, the first term on the right hand side is only important in deciding
the sign of the slope, and it is negative. Therefore, the high temperature isotherms have a
concavity upwards. For intermediate values of T, both the terms in Eq. (3.7) are important.
When V — b, the first term is dominant and the curve slopes down with increase in volume.
With further increase in V, a stage is reached at which the two terms in Eq. (3.7) become
equal and the slope becomes zero; thereafter it becomes positive. For large values of V, the
first term again predominates and the slope again changes to negative. To summarise:
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close to V = b, the slope is negative; with gradual increase in V, the slope changes to
zero, then positive and finally again negative. Thus, there must be one minimum and one
maximum to each isotherm (below the critical temperature). This fact can also be seen by
equating Eq. (3.7) to zero; which gives

2a(V - b)®
T a( ! ) (3.8)
RV
The equation is also cubic having either three real roots or one real and two imaginary
roots. In case of three real roots (below the critical temperature), it can be shown that one
root corresponds to a region V < b and has no physical significance.

__RBRT _a
(V-b V?
For V>b,(V-5b)>0
as Vob;, (V-b->0+; RT —> o0
(V-b)

As V goes to b, such that, (V-5) >0

RT . a
dominates —
(V-b) V2
= P>0

Now assume that, V<b=(V-6)<0=®-V)>0

RT a RT a
P=- - == +—
b-V) Vv? (@—m VJ

+2 isa positive quantity when (b — V) > 0.

Since r
b-V) Vv?

Therefore, P is negative if (V — b) < 0 which is unacceptable, as V — b, P — «

The other two corresponds to one minimum and one maximum. These two optimum points
approach each other with increasing temperature and coalesce into one another at the
critical state.

Combining Eq. (3.8) with the van der Waals equation to eliminate T, we can write

a(V —-2b)
P= v (3.9
This represents the locus of the maxima and the minima and is shown by the dotted line
RdAPbHQ in Figure 3.10, where the theoretical isotherms are drawn from known values of

‘a’ and ‘b’ for a gas.
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3.12 DETERMINATION OF CRITICAL CONSTANTS FROM
van der Waals EQUATION

Method 1

The isotherm, for which the maximum and the minimum has merged into one another
and corresponds to the maximum of the parabolic curve RdPbQ [Eq. (3.9)], is the critical
isothermal. The pressure and volume corresponding to the maximum of Eq. (3.9) are
therefore the critical pressure P, and critical volume V.. To find out the critical constants,
we therefore differentiate Eq. (3.9) and equate the result to zero.

(a_P) __3a(V-2b) a
- W ), v V3

t the critical point a—P =0
at the critical point, P T—

This makes

a 3a(V,-2b)
vioovE
= V.=3b
Therefore, from Eq. (3.9)
P=—
27b°
and from equation of van der Waals
_ 8a
¢ 27Rb
Method 2
At the critical point, the curvature changes from negative to positive; and it is also an

P
V2

optimum to the P-V isotherm. The first condition requires that [ J =0 and the second
T

condition requires (G_PJ =0 at the critical state.
T

__RT o
T (V-b) VZ2
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(GPJ RT 2a
N =+ —
v )y (V-b? V3

and

°P) _ 2RT  6a
av?), V-’ V*

Equating the above equations to zero at the critical point,
RT 2a 2RT, 6a

C C

—_— = and —&-—=—
(V'C —b)2 3 (ch _b)3 ch4

c

Dividing these two equations, we get, V, = 3b; and using it in the first, we get,
T, = 8a/27Rb.

a
27b>

Using this T, and V,, we get, from the van der Waals equation, P, =

Method 3

The van der Waals equation is cubic V, and has three roots. These roots are all equal at
the critical point.

(P+%)(V—b)=RT

N V3—(b+%jv2+%vﬂ?f’=o (3.10)

which can be written as

(V-V)2=0 or, V’-3V?V, +3VV2:-V2?=0 (3.11)
where V, is the root at the critical point.
Comparing the coefficients of V, V2 and the constant term, we get,

3V, = b+RT"’
c Pc
2_ @
3V = P
and V03=a—b
P

From the last two equations, V, = 3b; which when applied to the second, yields, P, = a/27 b2
The first then yields T, = 8a/27 Rb.

The critical coefficient of a van der Waals gas is then given by

RT, 8

PV "3 (3.12)
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3.12.1 Boyle Temperature

It has already been discussed in Sec. 3.7. From the van der Waals equation,
a
(P +W)(V — b) =RT

or PV=RT+Ph- %, %0
V' v?

PV Pb a ab
or 7 = =1+ — +
RT RT RTV RTV?

In the low pressure range the term ab/RTV? can be neglected,

Z—1+P_b_i ( . PV =RT . t )
- RT R2T? usimg = as an approximation
oP), RT\  RT
Now, Z) -0 5 1=L (3.13)
P ), Rb

Hence, for a van der Waals gas, the ratio of the Boyle temperature to the critical temperature
is

Ty =3.375
T

c

So, we summarise the results for a van der Waals gas as

Ve _g Ts_g375 Bl g7
b T, PV

c c

3.13 HOW GOOD IS van der Waals EQUATION IN EXPLAINING THE
ANDREW'’S EXPERIMENTAL ISOTHERMS?

In Figure 3.11, the theoretical isotherms (bold lines) are drawn along with the experimental
Andrew’s curves (dotted lines). It is seen that at high temperature, the agreement
between the theory and experiment is encouraging. But, below the critical temperature,
particularly in the region where the liquid and the vapour coexist, there is a remarkable
divergence between the theory and experiment. Let us consider the isotherm at 13.1°C.
CD is the normal gas behaviour, and is along the experimental line. The liquid portion BA
is again along the experimental line. We thus see that the van der Waals equation can also
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Figure 3.11 P-Visothermal of CO, (Dotted lines experimental; bold lines theoretical)

explain the behaviour of a liquid. But, while experiment gives a straight horizontal line
BC, theory gives the curve ABabCD Figure 3.11. The theory therefore fails to explain this
region of the experimental curve. However, this difference can be explained. If a liquid be
taken in a cylinder and the pressure is released gradually under isothermal condition,
then vapourisation would normally start at the correct pressure (corresponding to the
point B). To ensure the process of vapourisation, presence of suitable nuclei is required.
In the absence of any such nuclei, if the above process be conducted, the vapour will not
be formed and the liquid will become superheated. This is indicated by the line Ba. This
is a metastable state. Similarly, if the opposite process of liquefaction be conducted under
mechanically shock free state and in absence of any dust particles, a metastable state
of super cooled or supersaturated vapour, represented by the line Cb6 may be obtained.
However, since these two metastable states are thermodynamically unstable towards
mechanical shocks, presence of dust particles, etc., they cannot be experimentally realised.
Superheating or the formation of supersaturated vapour can occur locally in very limited
regions, but their net effect over any time period corresponds to the straight portion BC. In
fact, the ~ shaped isotherm representing the continuous transition from liquid to vapour
had been recognised by James Thomson in 1871 (before the publication of the van der
Waals equation), and hence it is often called the James Thomson isotherm. Maxwell first
pointed out that if a substance is subjected to a reversible isothermal change round the
cycle BabCB, the net work is zero. This requires: area BaO = area ObC. The experimental
horizontal part BDC therefore divides the James Thomson isotherm BaObCOB in such a
position so as to cut off equal areas from above and below the horizontal part. The existence
of negative pressures in some theoretical isotherms (Figure 3.12) also corresponds to the
formation of metastable state which exists in tension. The van der Waals isotherms at
the lower temperatures cross the v axis and, the part below the v axis corresponds with
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Figure 3.12 Plots of isotherms of carbon dioxide from van der Waals equation
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a negative pressure. Although this cannot exist for a gas, it may represent a metastable
state for the liquids, which would then be in a state of tension. This isotherm, however,
turns up again and re-crosses the v-axis in the direction of increasing pressure, so that it
must have a minimum value of the tension, below which presumably the metastable state
would breakdown into liquid and vapour (An Advanced Treatise on Physical Chemistry;
J.R. Partington). (For a detail of what has been said above, the students are referred to ‘A
Treatise on Heat; Saha and Srivastava’).

3.14 HOW GOOD IS van der Waals EQUATION IN EXPLAINING
THE AMAGAT'S ISOTHERM?

The nature of the Amagat’s isotherm has already been discussed in Sec. 3.7. Now, let us
see how good van der Waals equation can reflect these behaviours.

_RT _a
V-b V*?
or PV=RT ¥ 2
V-6 V
-1
_R T( 1- bj _a
|4 |4
PV 1-6)" @
or Sm=l=—7F"| -
RT \% VRT
2 3
or Z=1+b--L l+b—+b—+ (3.14)
RT)V v? V3
Lo ) B, B, B . . s
which is of the form: Z =1+ 2 + Ve + e + ... the virial equation of state, initially
proposed by Kammerling and Onnes. To convert it into a power series of P, we write
Z=1+AP+A,P*+ AP+ ... (3.15)

where A, A,, etc., are also virial coefficients and are functions of temperature. Equating
Egs (3.14) and (3.15), and dividing by P throughout, we have

a 1 b? b3
+ + + -
RT )PV  pv? py3

3
(ol [ (T
RT )PV \ PV PV

which changes to, after introducing Z = PV/RT,

2 3 12
A+ AP+ AP 4 o= 1 (b— a4 )+( b ) i+(ij L (3.16)
ZRT\" RT) \RT) 7z "\RT) 7°

A+ AP + AP + :(b—
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Now, we know that in the limit P — 0, Z — 1; this limit gives

A= L(b—i (3.17)
RT\" RT

We thus get the first virial coefficient in the power series of P. Using this value of A; in
Eq. (3.16), transferring it on the right hand side, then dividing throughout by P we then
have,

2 3
A2+A3P+...: Al l_l)l+ L) L+(Lj £+
Z P \RT) 7z> \RT) 7
2 3
= A2+A3P+...= _AI(EJL-F( b j i+(i) £+

P )Z

Now, from Eq. (3.15), we see that

lim Z-1_ A
P00 P

Using this value, again with the limiting condition: Z — 1 as P — 0, we get

RT
In this way, theoretically we can derive all the virial coefficients. The virial equation of
state derived from van der Waals equation is therefore,

1o o)) el

RT RT
If the pressure is not too high, the higher order virials can be neglected and we get

1 a
Z=1+——|b———|P
o)

b 2
A2=( j_Af (3.18)

P? + A,P? +-..

For gases, where a/RT > b, i.e., the attractive forces dominates the picture, the

compressibility should first decrease with pressure with a slope %(b - %] having zero
curvature. The decrease has in fact been experimentally verified; but a finite curvature
of the experimental curve (Figure 3.13) reveals that ‘@’ and ‘b’ are not purely constants.
However, for gases, where a/RT < b, i.e., the repulsive force is dominant, we get a steady
increase in Z with P from the very beginning. For example, for H, and He, ‘a’ is almost
zero; we therefore get a nearly straight line for Z versus P curve at ordinary temperature.
Nevertheless H, would also show a minimum, but at extremely low temperature. Using
the expression of the Boyle temperature Tz = a/Rb.



Real Gases 3.23

1.6

1.4.

1.2

1.0

Zr

0.8

0.6

0.4

T —

Figure 3.13 The compressibility factor in the reduced form as a function of the reduced pressure at different 6
values. The curves were calculated using the van der Waals equation of state.

We can write, at ordinary pressure

Z:1+L 1—T—B P
RT T

T

= Z) _ b 1s (3.20)
oP ), RT T

Hence, an Amagat’s isotherm has a positive initial slope above Boyle temperature

(1 — T5/T is positive) and has a negative initial slope below Boyle temperature. However,
this point needs further clarification. Below T';, at low pressure, the term ‘6’ can be neglected

in comparison to V, and then the van der Waals equation changes to (P + %)(V) = RT or

a . op s . a .
PV=RT- v Since with increasing pressure V decreases and v increases, PV decreases

with increasing P. At a certain pressure PV is brought to a minimum but still remain
less than RT. Thereafter, with increasing P, PV increases due to increased molecular
repulsion and crosses the ideal line PV = RT. At fairly high pressure a/V? may be neglected
and we can write

P(V-b)=RT
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or PV =RT + bP

when PV rises up above the ideal line and increases with increasing P. This has in fact
been experimentally verified.

We now set out to prove another characteristic of Amagat’s isotherms.
Writing the van der Waals equation as

pv-rr Y _ 2
Vb V

and differentiating with respect to P at constant 7'
{B(PV)} _| RT __RTV ., a (a_vj
oP |, |V-b (V-b? V2 [\0P),

We have seen that, below the Boyle temperature, each Amagat’s isotherm shows a
minimum. So, applying the condition of minimum, we get

2
RIV _RT _a RT_g(V—b)

— - = =
(V-b? (V-b V2 bl v
or (pely)-2 2P
vZ) b Vv?
= PV2+a=ﬂ—a
b
or P2V? _ %PV +2aP =0 (3.21)

which is a parabolic path when PV is plotted vs. P at constant 7. Thus, van der Waals
equation requires that the locus of the minima of the Amagat’s isotherms below the Boyle
temperature should be parabolic. This has also been experimentally verified (cf - Figure 3.3).

3.15 VALIDITY OF van der Waals EQUATION OF STATE

The equation can be criticized on the following points:

(i) van der Waals’ curves do not fit well with the Andrew’s curves below the critical
temperature. The former suggests a minimum and a maximum, but which are
not present in the experimental curve (obviously there is explanation for this
discrepancy).

(i1)) The van der Waals constants ‘@’ and ‘b’ are supposed to be purely constants for a
given gas. However, experimentally it has been found that both of them, specially
a, vary significantly with temperature.
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(iii)

(iv)

)

To explain the temperature dependence of ‘a’, we can assume that the variation in
‘@’ is due to change in number density of the molecules with change in temperature.
From Boltzmann distribution, we have

n=n exp[ £ }
=n, =
kT

where n is the number density of the molecules at the wall of the vessel in
presence of cohesive forces and n, is the same in absence of cohesive forces. ¢1is the
potential energy of the molecules arising out of this cohesive force. As temperature
is increased, the exponent and hence the exponential factor increases, which
decreases the difference between n and n,. This lowers the value of ‘@’. To explain
the temperature dependence of ‘6’, we have to give up the model of perfectly elastic
hand spheres of the molecules. Actually, the molecules have some softness due
to the existence of repulsive force field around them, and as the temperature is
increased, due to their increased kinetic energy, each of them can penetrate the
others repulsive field zone and the diameter of the excluded volume is lowered.
This lowers the value of ‘0’.

The ratio V. /b should be 3 according to the theory, but the actual value is close
to 2.

According to the equation, the critical coefficient RT,/P.V, has a value of 2.67; but
the experimental value varies from 3 to 5.

The ratio Tp/T is 3.65 for real gases and it is below 3.3 for other gases; while
according to the van der Walls equation, it is 3.375.

3.16 REDUCED EQUATION OF STATE

The van der Waals constants ‘@’ and ‘6’ are different for different gases and hence the plots
of PV versus P at constant temperatures are also different for different gases. Then, how
would we compare different gases? One way to compare them is to compress or extend
suitably the PV and P axes so as to make coincident all the isotherms along one trace.
However, a slightly different way of doing the same thing is to express the equation of
state in terms of the reduced variables, and then to plot the isotherms in terms of the
reduced variables. We define the reduced variables as the ratio of the actual variable to its
critical value, e.g.

the critical pressure, 7 = g
. \%
the critical volume ¢ = A

c

and, the critical temperature, 6 = %

c
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In terms of these reduced variables, 7, ¢ and 6, the van der Waals equation changes to

[n’PC +¢;#](¢Vc ~b)= ROT,

c

Using the values of P,, T, and V, in terms of a and b, we finally have

3
(n +¢—2j(3¢—1) =80 (3.22)
Equation (3.22) is called the reduced equation of state.

Characteristics and Importance
This equation of state is devoid of any characteristic constant, and even of R. So it is of

universal applicability. Thus a plot of 7¢ versus 7w or Z, (z n_q)) at a constant 0 should be

Ro

the same for all gases (see Figure 3.13). It, therefore, follows that, if for any two substances
any two of the three parameters 7, ¢, and 6, possess the same value, the third quantity
must also be the same. This is called the law of corresponding states, and the substances
are said to be in the corresponding states.

Validity

It can be shown classically that any equation of state having only two characteristic
constants, one accounting the intermolecular attraction and the other accounting the
intermolecular repulsion (the finiteness of the size of the molecules), such as the van
der Waals ‘a’ and ‘b’, can always be converted into the corresponding equation of state.
de Boer has proved that the law of corresponding state is also correct from the point of view
of quantum theory if the potential energy of the substance can be expressed as a series of
sums, all of which are inversely proportional to the distance between two molecules, and
if the classical statistics is obeyed.

However, the law has not been found, experimentally to be rigorously true. For example,
according to this principle, the critical coefficient RT,/P,V,, should have been equal for
all substances and should be equal to 2.67. In fact it has been observed to vary from
3 to 5. Nevertheless, the law has been found to be fairly accurate for small, non polar,
spherical molecules; but for polar and oblate molecules the deviations from experiments
are significant.

3.17 DIETERICI'S EQUATIONS OF STATE

In 1899, Dieterici modified the van der Waals equation by replacing the internal pressure
term a/v? by a/v®®. His logic was as follows:
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Let us imagine a molecule to be kept in a cube of side length d in which it just fits. The
volume required to hold the molecule is then d®. If n be the total number of molecules
in volume v, then the number of molecules per unit volume is n/v; this number times
the volume required to hold one molecule, d?, is therefore, unity. That is (n/v)d® = 1 or d
= (n/v)™Y3. Now consider a slice of unit area and thickness d at the surface of the wall.
The number of molecules in this volume slice is (n/v)d = (n/v)?3. Now consider a unit
volume just behind the slice; the number of molecules contained in it is (n/v). The internal
pressure must therefore be proportional to the product of the number of molecules in these
two sections, i.e., to (n/v)”%. We therefore replace the factor a/v? by a/v®?, and write the
Dieterici equation as

(P+ a )(v—b):RT (3.23)
v

5/3

In the same year, Dieterici proposed a second equation of state. Here, the volume correction
is exactly equal to that in van der Waals; the pressure correction term, however, is made
in the following way. A molecule at the bulk is attracted by other molecules from all
possible directions, and is therefore not acted upon by any net force. The pressure of the
gas at the bulk is therefore equal to the ideal pressure, P,. At the surface, the molecules
are, however, attracted only from the rear side and therefore, the pressure felt at the wall
of the container P, is less than P,. Under isothermal condition, the work done by a mole of
gas in coming from the bulk to the wall is therefore given by,

W =RT lnﬁ
P

o

We now recognise that, larger the volume of the gas, greater will be their separation and
lower will be their force of attraction, i.e., lower will be the magnitude of the work. We can

. 1 . .
therefore write, W o v or W= %, where ‘@’ is a constant for a given gas. Therefore,

2 _prmi
v P,
or P, = Pe BTV,

However, an alternative method is as follows:

A molecule at the bulk is acted upon by attractive force from all possible directions and
hence is not acted upon by any net force. However, a molecule at the surface is acted upon
by forces only from one side of it, and is therefore feels a net pull towards the bulk. The
potential energy of the surface molecules is therefore higher than those in the bulk. Let
this excess potential energy per mole be AE. Then, considering a unit volume at the bulk
containing n, molecules, we can write

_AE
n=nye BT
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where n is the number of molecules out of n(, which can succeed in reaching the surface.
The pressure P of the gas, where attractive forces are operating among the molecules is
therefore proportional to n. Now, if the gas is ideal, AE is zero and all the n, molecules
would come and strike the wall. The ideal pressure P;, is therefore proportional to n,. We
can therefore write

AE
B _m _ &
P n
AE
= B:PeRT

The correct equation of state is therefore

AE
PeRT(V —p)=RT
_AE
or P(V—-b)= RTe ET

The excess potential energy of the surface molecules has been found to be inversely
proportional to the volume of the system and therefore, we finally write,

P(V - b)= RTe TV (3.24)
where ‘@’ is a constant for a given gas. Equation (3.24) is the Dieterici’s equation of state
for 1 mole. For n molecules, the equation of state is

na

P(v — nb) = nRTe RTV

You can check easily that the dimensions of van der Waals ‘a’ and the Dieterici’s ‘@’ are
same; the dimensions of the two ‘b’s are also the same. Nevertheless, for a given gas the
two ‘a’s are different; the two ‘6’ values are also different. The Dieterici’s equation of state
has also three real roots below the critical temperature of a gas.

3.17.1 (Critical Constants of Dieterici’s Gas

Remembering that the critical state is a point of inflexion where the first derivative
2

v 2

be evaluated by finding these two differentials and equation them to zero. The Dieterici

Eq. (3.24) can also be written as

- ie_R;'V
(V-0b)

RT { a 1( a )2 }
= P= 1- +—=
(V->b) RTV 2\ RTV

oP
( j » as well as the second derivative, [s J are zero, the critical constants can
T
T




Real Gases 3.29

RT

P= - a , neglecting the higher order terms.
V-6 V(V-b)

At low and moderate pressures, V — b = V; therefore

_ BT _a
T (V-b V2
the van der Waals form. To find the critical parameters, we proceed as follows:
RT —
- RTV
P=vp°
= (B_Pj z_ize_RTv +i( a zje_RTV
oV )r (V-b) (V-b\ RTV
[8_) ___ P N aP
or v ), (V-5 RIV? (3.25)
FP| _ 1 (8_Pj+ P  a (8_P)_2aP
And, vt )~ wv-o\av), v-b? RTVZ\aV ), RIV?
2P _(a_Pj a 1 | pl 1  2a (3.26)
o av? ). \aV ), |RTV? (V-b] " |(V-b? RTV® '
At the critical point, both the differentials are zero.
(a—Pj 0 5>+ _-_¢ 3.27
v )y (V,-b) RTV? (8.27)
2
and CACidy R R (3.28)
Ve ). (V,-b)” RT)V,

Dividing the two equations we get

Then, from Eq. (3.27), we get

T
4bR

The critical pressure is then

¢ (V,-b)
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or P = 2 e

4
and the critical coefficient is

. BT 13695 (3.29)
PV, 2

To get the Boyle temperature Tz, we rewrite the Dieterici equation as

(V-b)
N [a(PV)} _ RT  RTV efR;V+ RTV  «a eiR;’V [a_vj

P |, [\(V-b) (V-b? (V -b) RTV? oP ),

Since (%) # 0 and, at the Boyle temperature, the left-hand side of the above equation
T

is zero, we find
RTy  RTV . RTV  a
V-b (V-b* (V-b) RT,V*

RT,V[1 1 a
V-b)|V V-b RT,V
a _ 1 ' 1__ b
- RT,V2 V-b V V(V-b
. R =4V =DV
%
a
T, =%
- B~ Rb

because, in the limit P — 0 (V-5) = V.

Using the reduced variables, 7, ¢ and 6, and using the expressions for V,, T, and P,, you
can easily arrive at the reduced equation of state, which is

(20 —1) = 9> 2% (3.30)
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Status of the Dieterici’s Equation of State

Comparison shows that the Dieterici’s equation of state gives results which are more closer
to the experimental results than those given by van der Waals. The 7/T', ratio predicted by
Dieterici equation is however a bit more than the experimental value. Nevertheless, it has
not been deemed worthy for use due to its difficult mathematical form.

3.18 BERTHELOT EQUATION OF STATE

The Berthelot equation of state is given as follows:

(P+ T?]QJ(V—I))=RT (3.31)
By applying the criteria of the critical state, you can easily prove that
T
V.=3b T2 2% and p =Tl
27Rb 8b
from which, you can also show that
a=3PV?T, b="c and R=SLYe
3 3 T,

The values are no good than the van der Waals values. To modify the equation, Berthelot
proposed that V, should be equal to 46 instead of 3b. Replacing V, by (4/3)V,, we therefore

have
azﬁPchTc, bzﬁ and R= ﬁ ﬂ
3 4 9 T

c

and therefore

a_ 6ch2 and 2
R R

We now, transform the Berthelot’s equation as

(P+T?/2)(V—b)=RT

ab
2

or PV:RT(1+P—b— ab j

RT  R2T° (neglecting the

term)

B 2
Using the expression % =6bT”, the equation changes to PV = RT l:l 4 Lo —6bPT }

RT RT®
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9 T

and then using the expressions, 7 ﬁé’ we finally get
9 PT,(. 6T’
PV =RT|1+ cl1-—=
sy o)

There has been an extensive use of this equation, specially at low pressures, in finding out
the heat capacity, enthalpy, free energy, etc., of real gases. To find the Boyle temperature,

we find,
(B[PV]) 9 Rﬂ[l—GTEJ—o
oP ), 128 P, T;
= £=2.45
T

c

You can also check yourself that the reduced equation of state of Berthelot equation of
state is

- =§9+1n(1-3j (3.33)
9 4 6>

3.19 SAHA-BASU EQUATION OF STATE

In all the subsequent modifications after the van der Waals equation of state (Dieterici,
berthelot, and many others the change which were made, mainly have focussed into the
effect of cohesive forces among the molecules; the effect of finiteness of the molecular volume,
had, in general, been neglected. Satyendra Nath Basu and Megh Nath Saha highlighted
this neglected part in constructing an equation of state. The readers are requested to go
through the statistical concept of entropy before reading the following derivation.

Neglecting the influence of molecular forces, the probability that a single molecule out of
N molecules. Which initially occupy a volume V,, will be found in a volume V is V/V; for

the second molecule, the probability is V-8 , where B = 8 x volume of each molecule.

0

For the third, the probability is “; — 22ﬁ , and so on. Hence the probability W that all the

0
molecules will be contained in the volume V is
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L v-p V-2 v-(N-1
Vo U—BVo-2B v,—-(N-D
dlnW 1 1 N 1 +...+; (3.34)
dv v v-B v-2B v—-(N-DB '
The first fundamental thermodynamic equation of state
dU = TdS — PdV, from which we may write
P=T (ﬁj (3.35)
v
where, U remains constant with change in volume. Again, from the Boltzmann theory,
S =k In W + constant
aS) _ b oln W
) (3.36)
Combining Egs (3.35) and (3.36),
Po AT dln W
dv

Which, after using the result of Eq. (3.34), changes to,

P= kT|:l+ 1 + 1 +...+;i|

v v-B v-28 v—(N-1p

rzov—rﬁ: v Tol-rB/v

_NkTiNil 1
- v Nr:O 1_rﬁNi

v N

N-1 N-1
KT Y 1 kT 1

where BN = 2b and h = 1/N

Since, by definition, we have
N-1 b
Lt h Y fla+rh)=[f(x)dx
- r=0 a
where Nh = b —a, or a + Nh = b, we can write

NkT} dx
01 2bx
U

v
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1
Because N is very large, and rh = (N — 1) — = 1 at the upper limit and, 0 x i, i.e., zero
at this lower limit. Integration gives: N
P= NET In|1- %)
2b v

In order to account for the influences of cohesive forces, the right hand side of Eq. (3.37)
is now multiplied by ¢ TV (following Dieterici). The complete equation of state is

(3.37)

therefore,
p=-ELy, ( 2—bj e /BTV (3.38)
2b v
which is the Saha—Basu equation of state for real gases. Writing the equation in the form
Pe—a/RTVZ_RTl (1_2_bj (3.38)
2b v

And expanding the log term on the right hand side,

poemrv _ BT _2_b_1(2_bf...
2b V 2\ v

And, neglecting higher order terms,

arrv _ RT | 2b 25>
Pe 2b —t—

v
. x? «8 . .
where the seriesIn (1 —x) = —x — =— - = —... has been used and, neglecting the higher
order terms. 2 3
_nr{L8)
v v
RT ( b) RT 1 RT
= — 1 +—|= 1 =
v v vo(1+0/v) v(l-5/v)
- BT (3.39)
v->

which is the Dietrici equation of state. Now, expanding the exponential term on the left
hand side, and neglecting the higher order terms

P[1+L},£:>(p j(v—b)
RTV [ v-b RTV
(P + ;izj (v — b) = RT (using RT = PV) (3.40)

which is the van der Waals equation of state.
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3.20 CRITICAL CONSTANTS OF SAHA-BASU EQUATION

Starting from the equation of state

P= _ET In (1—2—bje_“/RTV
2b v
aP RT 1 2b —a/RTV RT 2b —a/RTV a
1 s - e e =
v )y (1_) v v RTV
v
a_P _ RT 1 —a/RTV (IP
= (%), - —[ zbJ "RV B
v
9P 2RT ~a/RTV RT 2b)\ _a/rTV
= )T s, 2 2b )\ )
R
v v

. RT e_a/RTV( a )+ a (a_P) _ 2aP
212 rTv2 ) rrve\ov ), RTVv? (342
1% - W
Equating both the differentials [Eqs (3.41) and (3.42)] to zero at the critical point, we
have

from Eq. (3.41)

22
R—T"(Z’yb e—ﬂ/Rchc — PC (3,48)
a(l - ]
Ve
and, from Eq. (3.42)
2m2 _—alRT,YV,
R°T; e 9. 2b 3 R;V —%aP, (3.44)
U, V.

Dividing Eq. (3.44) by (3.42) we get
2b a

" RT
S
U,

c
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or = (3.45)

Using Eq. (3.45) in (3.43)

R2Tg a e_ RTZVC _p
a |2bRT, ¢

= Pg= _132:20 o e RICVe (3.46)

Equating Eq. (3.46) to the Eq. (3.38) at the critical state

_RTC ln 1 _2_b e—a/RTcVC — RTC e—a/RTcVC
2b Ve 2b
= ln(l - &j =-1
Ve
= 1- 261
Ve
26 (e-1)
= _— =
Ve e
or V, = 2eb | o Ve _ 2e 3164 (3.47)
(e—1) b (e-1
From Eq. (3.45)
1 _a
2b) 2bRT,
Ve
a 2b
= o= ——|1-22
2bR Ve
_a _1_ 2b(e —1)
"~ 2bR | 2eb
__a _1 _(e-1
2bR | e
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a
= 3.48
ob € 2¢bR ( )
and finally, using Eq. (3.46)
pp= Blo parrneve (3.49)
2b
a
P=——
= €7 4p%er

The critical coefficient is then
e _ e ?(e—-1)-3.524
FVe

3.21 BOYLE TEMPERATURE OF SAHA-BASU EQUATION
Differentiating PV with respect to P at constant temperature from the equation

PV = —ﬁv In|1- 20 e V/ETV
2b Vv

we have

{G(PV)} - _RT In 1_2_b o~ W/RTV \4 (Z_bj o~ @/RTV
oP |, 2b v (1_21)j \'&

\%4

+vln(1%)( a zje_”/RTV (B_V]
V J\RTV oP ),

At the Boyle temperature T
Lt {a(PV)} o
T

P-o| o/ P
= In 1—2—b v (&)+Vln(1—2—b)L—
% (1_21)) V2 V ) RTzV?
|4

because, e 2E1BY » (0 and (E)_j 0
T
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Approximating the log terms as L(1 — x) = —x, when x is very small, we have

ab 26V ( 26) a
—— | - =0
Vv V2 (1 B %ﬁ)) V ) RTyV

a vV 1 2b

or, = == (- V2—2szV2)
RT, V= V*-2pV V 'V
OI‘, TB = L (349)
2bR
The ratio
- Ry T (3.50)
T.
3.22 REDUCED EQUATION OF STATE
Introducing the reduced variables as
P
reduced pressure T =——
Fe
reduced volume ¢ = v
Ve
T
and reduced temperature 6 = —
T,
2eb
where, P :L;T -_a dV. =
CT g% T 2R T e 1)
Equation, P= _ET Inl1- 2b o~/ RTV
2b \%
Changes to
5 575 01 (1 0.632] exp( 1.718) 550
r=-5. n|l-—— - '
o 09

which is the desired equation.

3.23 NATURE OF MOLECULAR FORCES

From the results of Joule-Kelvin experiment and the existence of cohesive force in liquids,
it is clear that there are attractive and repulsive forces between the molecules. The general
term van der Waals forces is coined to represent the interactions between closed-shell
species. These interactions may be divided into several classes: ion (monopole)-dipole,
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dipole-dipole, dipole-induced dipole and, induced dipole-induced dipole. Interactions may
also result from quadrupoles but, they are of very small magnitudes.

3.24 ION-DIPOLE INTERACTION

From electrostatics we know that the force F' between two point charges @, and Q,,

separated by a distance r is

X
47e, R*
where g, is the vacuum permittivity.
c
A +Q
7’ I[i \\\
/I : \‘\
/, : \‘\
rl’ : \\
II : \\
lll i \\\
1 9 1 \\
A FASEE! B
+Qu<—RI2 —9Q N —-Q
R

Figure 3.14 The interaction between an ion and a dipole

Another classical equation is

F=_-2r
dr

where V is the potential energy of interaction. Integration gives

-U[ _ Q@ Jd’"
0 4re,
or, v- 9@
4drmeyr
As shown in Figure 3.14, a point charge (+Q,) is placed at the point C and, a dipole AB
(with charges +@; and —Q) of length R. The potential energy of interaction is then given

by two pairwise additive terms:

1 {Qle _ Q1Q2}

i Yme, | AC  BC
Now, (AC)? = (AO + ON)? + (CN)?
as, ON =rcos Oand CN =r sin 0

R 2
(AC)? = (E +7r cos 9) + (r sin 9)?

(3.52)

(3.53)
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or, (AC)* = r” {R—z +1+ % cos e}
4r r
9 1/2
or, (AC? = r {1 + g cos 0 + f?} (3.54)
Similarly, (BC)? = (NB)? + (CN)?
or, (BC)? = (OB — ON)? + (CN)?

= (OB)? + (ON)? — 2(0OB)(ON) + (CN)?

2
(gj +(r cos 0)% — 2(%} r cos 0 _ (r sin 6)*

2
r2{1+R—2—£c0s9}

4r r
RZ R 0 1/2
= (BC) = {H (4_2_ cos j] (3.55)
r r
Using Egs (3.54) and (3.55) in Eq. (3.53),
V. = Ql Q2 1 — 1 ]
"4 4re, R R2 V2 R Rcoso)]”
rll1+|—cosf+— ’“1+(2_ j
r 4r? 4r r
Q. Q. R R? o R? Rcos6 ]
or, v, = 2|41+ —cosO+— -1+ —-
’ 4reyr r 4r 4r r

Using the binomial expansion,

Q+x)"=1+nx+ +--for |x|<1

nn-1 5 nb-1Dn-2) 4
X+ 3] x

and hence, (1+x) 2= 1—%x+gx + e

2 2 \2
—— 1—l Ecos9+R— +§ Ecos9+R—
2( r 4r | 8| r 4r*

1(R> Rcos6 3( R? Rcos# ’
— 1__ - 4= — =
2| 472 r 8| 4r2 r
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truncating the series after the second power of x on the approximation R << r. Simplification

gives
3
V., = € Q| Rcoso +§R—30056
’ 4drmeyr r r
3
or, Vid=_M _E+§R_3
’ (4rme,) Rr r 8r
2
or, Vidz_—,ulQZCOSQ 1_§R_
(4rey)r? 8 r?
Since R << r, the equation is further approximated to
A Uy @ c0329
’ (4mey)r

The maximum interaction occurs when @, is collinear with the axis of the dipole, i.e.,
when 0 = 0; the final result is then

Hy @y
V=122 (3.56)
4 (4me,)r?

The negative sign of the interaction energy V; ; means that, there is a net attraction.

Example 3.1

Calculate the energy of interaction between an H' ion and a CH3OH molecule (1 =1.71 D)
separated over a distance of 1 nm; the ion H" is positioned along the bond axis of CH;0H.

Solution

Using Eq. (3.56), we find the interaction energy as

Q
VHl:_“l_z)2
(4mey)r
(1.71D) 16x107% (1.6 x 10 C)
’ 48D '

4(3.14)(8.854 x 102 J1 C?m ) (1 x 107 m)?
=— 8.2 x 1072* J per unit, or

=—(8.2x 10721 J) (6.022 x 10% mol™)

=—4.94 kJ mol™!
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Unit Conversion
The conversion of units is done as follows:
If an electronic charge and a protonic charge are separated by a distance of 1 A, the dipole
moment of the unit is defined as
U=exr=(4.8x10"1%1x 107 cm).

or u=4.8x10" esucm

The (esu cm) is a very large units of dipole moment.

The unit Debye is then used as
1D=1x 108 use cm

The dipole moment of our unit is then

U= 48x1071% egu ﬁm( egu ,em)

1D
1x19718
or u=48D

The units of dipole moment in the SI system is
p=exr=(1.6x10"¢) (1x107"°m)

or m=16x102%cm

1.6 x107%° ¢m

, Which is unity.
48D

A useful conversion factor is then

3.25 DIPOLE-DIPOLE INTERACTION (KEESOM FORCE)

Let us consider two polar molecules AB and CD with dipole moments t; and i, respectively,
separated by a distance r, fixed in orientation and lying in one and the same plane as
shown in Figure 3.15. In the gaseous and liquid state, the molecules can rotate and, the
field of one dipole tends to orient the dipole of a neighbouring molecule. Moreover, the
attractive forces dominate because it is of a longer range than the short range repulsive
forces. The net result is then an attractive force.

L
.

\ ’

(+Q2) .——————2(-Q2)

b

A(+Qq) -Qi)B

«— R—5

Figure 3.15
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Assuming that the dipoles have the same length R, for simplicity, the potential energy of
interaction, according to the orientation in Figure 3.15,

voo_ 1 [20Q 200 Q@
T are, | v AD  BC
_Q6 [E_ 11 } (3.57)
4rey |r AD BC
Now,
(AD)? = (AB + BO)? + (OD)?
=(R +r cos 0)? + r? sin? 0)
R2 2R 1/2
(AD) = r{1+—2+—cos 9} (3.58)
r r
Similarly,
(BC)? = (CN)? + (NB)? = (OD)? + (NB)?
=r? sin® 0 + (AB — AN)?
=r?sin? 0+ (R —r cos 0)
R> oR 1/2
(BC) = 7‘|:1+—2—TCOS 9:| (359)
r
Using Eqgs (3.58) and (3.59) in (3.57),
v Q@2 1 ) 1
dd= 4o & |7 R® 9R 12 R 9R 1/2
r1+—2+—cose r1+—2——cose
r r r r

Q.0 R 9R -1/2 R 9R -1/27]
Vig= 22 2—[1+—2+—cosej —[14————0059]

(4mey)r r r r2 r

Then using the binomial expansion as used earlier:
Qe =1-L: 30,

and truncating the series after the second power of x (as R/r << 1) we have (after a few
lines of algebra)
2 2
VMZQlQ_qa_gmze):_g%}

drey r r
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or Vyg= -2 _(3cos0-1); 1, =QR; 1, =@Q, R (3.60)
drey r

where, again the approximation R << r is used.

Now, an interesting point comes out: if all orientations between the dipoles are equally
probable then the average V,;_; would be

<Vdd>=—#<3 cos? 9—1>=%<1—3c0s2 9>

J(l —3cos? 0)sin 6 do
but <(1 — 3 cos? 0)> _0

}sin 6 do
0

cosf=z
—sin 6d 0 =dz

-1 -1
- [a-382%dz [A-32"dz
1 _ -1

] 1
- jdz _[dz
1

-1

1 1
= j(1—3z)dz
2 -1

- 3[Eh- 521, -0

1
5[1—1]—0

that is, there is no net interaction. But, from statistical considerations it is concluded that
certain orientations must be preferred and, the classical Boltzmann distribution is the
key factor.

Equation (3.60) is then changed to

Hy My 2 ~V/ET
= ——3(3cos 6-1e

Vv,
d-d (4rmey)r

where V is given by Eq. (3.60). Assuming V << kT, we write

V,_
Vd_dz—%(BcosZ@—l) 1- &
(4rey)r kT
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and, the average V,_; is

Uy Uy 2 Uy Uy 2
- ————=—1{(@Bcos“0-1)|1+———=—(3cos“6-1)
= <Vd—d> T Amegyr® < [ 4m gy’ kT Jﬂ
Hq Mg 2 Hy Hy 2 2
=—-——==_1{Bcos”"0-1)+————=—((Bcos“6-1)
s (oo 9-1) A (o007

f(3 cos?60 —1)? sin 6 dO
Now, <(3 cos? 6 — 1)2> =2

jsinede
0

<(3 cos? 0—1)2>—1T(3 cos?0 —1)? sin 6d9—é
or =3 J =5

and since <(3 cos® 6 — 1)> =0, we find finally

(Vi d)- B
d-d 5 (4me,)? r8 kT

A more detailed analysis, for a general case, shows that the factor % should be replaced

by % Hence we write

(V)= 2 mms
d-d 3 (471«'80)2 kTrG (361)

This kind of force is referred to as the Keesom force (W.H. Keesom, 1922). This is the so
called orientation effect. Again we got a negative sign. This means that there is a net
attractive potential.

Example 3.2

Calculate the Keesom interaction energy between two dipoles of the same moment (1 D)
separated by 0.3 nm.

Solution
Using Eq. (3.69), the Keesom (dipole-dipole) interaction energy is

2 mw

<Vd—d> "~ 3 (4mey)? kTrS

For simplicity, we first calculate the different terms separately:

2 2
1.6 x 10 em 1.6 x 10 cm
2 2 _ (P22 | 1D)?2| 22—~
“1“2‘(}5)[ 180 j( )( 489
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= p? 2 =0.0123 x 10716 ¢* m*

and, (4mep)® = (1.112x 1070 J 2 m ™2 =1.237x 1020 J 2 ¢* m ™2
and, ET = (1.38 x 102 JK™) (300 K) = 4.14 x 10721 J

and, r®=(0.3x107 m)® =7.29 x 107°® m®

Finally, accumulating the results together

<V >_ _2 0.0123 x107% ¢* pr*
AT 3 (1.287Tx 107 I g* pr?) (4.14 X107 9) (7.29 x 1070 pr®)

(Vy_4)= —2.196 x 107! J per unit

or <Vd— d> = —(2.196 x 10721 J) (6.022 x 10?® mol™)
or <Vd_d> = 1.3 kJ mol™

It is noteworthy to look into the dependence of V; ; and <Vd_ d> on the factors r and 7.
The dipole-dipole interaction will in general be less than the ion-dipole interaction.

2. The inverse dependence of the dipole-dipole interaction upon temperature means that
the average dipole-dipole interaction energy decreases with increase in temperature. The
tendency of the molecules towards orientation is randomized by the increased thermal
motion of the molecules.

3.26 DIPOLE-INDUCED DIPOLE INTERACTION (DEBYE FORCE)

A polar molecule can induce a moment to an adjacent molecule. Then there is an additional
interaction between the permanent dipole and the induced dipole. This is known as the
induction effect, the Debye force. The magnitude of the resultant energy is given by

20°

ey (3.62)

Vi ia =
The negative sign implies that the net interaction is again attractive (o is the polarizability
of the molecule).

The forces described above have two serious difficulties:

(i) All these interaction energies have been calculated for a pair of molecules, but they
are not additive for all the molecules in a gas or liquid. In fact, since orientations of
different possible molecular arrangements are there, the energies may cancel out;
so there is no net attraction.

(i) All the forces described above involve the permanent dipole moment of the molecules.
What is the story then for molecules like hydrogen, oxygen, carbon dioxide and,
the inert gases; they all have no permanent dipole. In 1930, F. London solved this
problem by a brilliant application of quantum mechanics.
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3.27 INDUCED DIPOLE-INDUCED DIPOLE INTERACTION (LONDON
DISPERSION FORCE)

From the Heisenberg uncertainty principle we know that all molecules must possess some
energy even in their lowest states, i.e., the zero point energy. Now consider a non-polar
molecule, such as argon. The positive nucleus is surrounded symmetrically by a cloud
of negative charge, and, these two are undergoing some kind of vibration against one
another. Therefore, although the time average of this charge distribution is spherically
symmetrical, at any instant it will be somewhat distorted. Thus a snapshot taken of an
argon atom would show a little dipole with a certain orientation. An instant later, the
orientation would be different, and this continues; over a macroscopic period of time these
instantaneous dipole moments would average to zero.

Do not think that these snapshot dipoles interact with those of other molecules to produce
an attractive potential. This cannot happen since there will be repulsion just as often as
attraction; there is no time for the instantaneous dipoles to line up with one another. Each
instantaneous argon dipole induces an appropriately oriented dipole in the neighbouring
atom in phase with themselves and, these moments interact with the original to produce
an instantaneous attraction. Calculation shows that this dispersion’ interaction leads to
an interaction energy.

_ 3 o’ (3.63)
P74 (e, r®

where h is the Planck constant and v is the characteristic frequency of the molecule. An
important difference between the dispersion effect and the other mentioned previously is
not only that the former is applicable to non-polar molecules but, it is additive for all pairs
of molecules in the gas; this accounts for the cohesion between the molecules. Therefore,
for any gas the interaction energy per pair of molecules is the sum of Egs. (3.61), (3.62)
and (3.63):

2 u? 20> 3  o’hv
Vattr = 3 9 2 6 4 2 6 (364)
3 (4mey) kT r*  (4mey)” r° 4 (dmey)“ r
dipole—dipole dipole—induced dispersion
dipole

Relative Magnitudes of Molecular Interaction Effects

Molecule Dipole Moment (D) Orientation Effect Induction Effect Dispersion Effect

H, - - - 11.3
Ar - - - 57
N, - - - 62
CH, - - - 117
(Contd.)

! The name dispersion is used because the oscillation producing the attractive force are also responsible for the

dispersion of light by the molecules.
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cl, - - - 461
co 0.12 0.0034 0.057 67
HCl 1.03 18.6 5.4 105
NH, 15 84 10 93
H,0 18 190 10 47

Source: A Text Book of Phys. Chemistry; S. Glasstone.

From the Eq. (3.64) and the table given, certain points come out:

1. For Non-polar molecules the London dispersion effect is the only contributor towards
the van der Waals interaction between the molecules. It is also clear that this
effect is more for a large molecule than that for a smaller one (smaller molecules
are harder to be polarized than bigger one). For example, at room temperature I,
is solid but F, is a gas. I, being much bigger in size than F, is easily polarizable,
leading to a larger value of o, and hence, a greater dispersion force.

2. For polar molecules, the dispersion effect is also predominating. But for molecules
with high dipole moments the orientation effect (the Keesom force) may predominate
(e.g., NH; and H,0).

3. 'The induction effect (the Debye force) is always very small.

4. All these three contributions [Eq. (3.64)] to the potential energy of intermolecular
attraction display an r® dependence. Since these forces are of radial symmetry,

i.e., no preferred direction in space, we may use the classical equation F = _av to
argue that these attractive forces have an r~' dependence. dr
Equation may now be written as

v, —-4& (3.65)

e
r
where A stands for the sum of the three coefficients of 7 in Eq. (3.64).

There are evidences to acknowledge that there are repulsive forces between the molecules
as well. These forces account for the properties like the collision diameter, the effective
size of the molecules, etc. This repulsive force arises due to the interaction of the electron
clouds of the two approaching molecules; this is also being aided by the strong repulsion
between the two approaching nuclei, probably, due to the Pauli exclusion principle of the
two overlapping electron clouds. For a number of gases this repulsive interaction energy
has been found to be as:

B
Vrep = r? (3.66)

where B is a constant for a given gas. The Repulsive force has an r~*3 dependence.

The mean interaction potential energy V, allowing molecular attraction and repulsion is
therefore.
_A_ B (3.67)

7‘6 7‘12

V=
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where the first term represents the sum of the three attractive potentials Eq. (3.64) and
the second terms represents the repulsive one.

When two molecules are widely apart, they do not interact; so their potential energy in
interaction is zero. As they approach each other, an attraction first develops between the

molecules and, increases as r is decreased.

However, at distances equal to or less than the collision diameter, the interaction potential
energy rises steeply due to the strong repulsion between the two electron cloud and the
nuclei of the two approaching molecules. The superposition of these two curves is of the
form shown in Figure 3.16. There are also simpler potential functions: the hard sphere
(Figure 3.17a) and the square-well (Figure 3.17b) models.

KAk

280 —
240 —
200
160 —
120
80
40—
0

'e 06 08
L L L r/nm

—40-
—80
-120—

Figure 3.16

02 )04 1.0 1.2

—€min

The intermolecular potential energy

against the separation of two molecules.
The so called Lennard-Jones 6-12 model.

Starting form Eq. (3.67), i.e.,

A B
V:_r_6+rj

KAk

280
240
200
160
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80—

40—

o

0
40—
-80—

~120—

Figure 3.17

and realising that at r = ¢, V = 0 (Figure 3.16), we find

A B

= ="_= B=Ac"

0.6 012

1 1 1 1 1 1 r/nm
02 04 06 08 10 1.2

The hard sphere model for the interaction
potential. A discontinuity occurs at the
hard sphere diameter r = ¢. Since there is
no minimum, this model cannot be used
to find the equilibrium properties.

(3.68)
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Using Eq. (3.68) in to (3.67), we find

6
VZA{%_%} (3.69)
r r

Then, differentiating V with respect to r

DV A1265 4677

dr
at the minimum of the curve (Figure 3.16)

av =0; r=r,,

dr
= 1205 r 2 =6r]
or 2 G(;r'm_f1 =1

1
or Tmin = 26 o
(3.70)

= rn?in 20°
S R _ gt

Starting from Eq. (3.69) again and, applying it at the minimum

va{c_ﬁ_i}

P2 6
_A o 1
= TEmin =4 T T T
_rmin rmin

and using Eq. (3.70)

6
(o} 1
i | 40" 206}
_ Ac®
gmin - 4(712

or, A=46%¢ (3.71)
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and using, this in Eq. (3.69)

V=40%¢,, {i—i}

or V=4e . |—75———F

i 12 6
ie., V=de_ (Ej - (EJ } (3.72)
r r

which is known as the 6-12, Lennard Jones potential. The equation can also be transformed
as

1r2 1.8

V:4Emin I:_ min _ — min}

12 6
or V=g, {(rm_m) _ 2[’}11_111) } (3.73)
r r

This Lennard-Jones 6-12 potential function has been found successful over a wide
range of application. For argon and nitrogen ¢_; have been found to be 1.0 kJ mol™ and
3.7 kJ mol ™. The larger value of nitrogen arises because, unlike Ar atoms, N, molecules
have rotational and vibrational atoms modes of motion as well as of translation.

Moreover, the classical thermal energies at 300 K for Ar is (% RTJ 3.74 kJ mol ™! and for

N, is (g RT) 6.24 kJ mol .

It is then clear that under ordinary condition of temperature, the thermal energy of the
molecules is much more than the intermolecular interactive potential energy. This strongly
supports postulates of the kinetic theory.

Finally, the van der Waals contants ‘a’ and ‘b’ are certainly related to these attractive and
repulsive potentials between the molecules. The ‘a’ terms is determined by the attractive
potential and the ‘4’ term depends on both the attraction and repulsion between the
molecules, because the collision diameter is finally determined from the competing effect
of the attraction and repulsion potentials. For a very clear and detailed calculation to
correlate the van der Waals constants a and b, the readers are referred to (1) Phys. Chem.:
A Molecular Approach, by D. A. McQuarrie and J. D. Simon and (2) Phys. Chem., G. W.
Castellan.
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Example 3.3

One mole of CO, gas was found to occupy a volume of 1.32 L at 48°C and pressure of 18.40
atm. Calculate the pressure that would have been expected (i) from the ideal gas equation;
(ii) from the van Waals equation Given: a = 3.6 atm L% mole 2 ; b = 4.28 x 102 L mol ..

Solution
(i) Making use of the ideal gas equation

nRT _ (1 pol) (0.082 K atm K™ mol™) (321.15 X)

P=
v (1.32 X))
= P =19.95 atm.
(i1) From the van der Waals equation
2
p_ nRT _n'a
(V-nb) V2

p_(1moD) (0.082L atm K" mol™") 321.156K) (1 pmo])? (3.6atm & mol?)
1.32 L— (1 mwol) (4.28 x 1072 L mol™) 1.32 K)?

26.33 ¥ atm
p="22°0 970
1.277 ¥

= P =18.55 atm.

Comment: Note that, the pressure calculated from the van der Waals equation is less than
that calculated from the ideal gas equation. Clearly this demonstrates that the attractive
force among the molecules reduced the momentum poured on the wall of the vessel. Under
this condition of P and T, the attractive force dominates the repulsive force.

—2.066 atm

Example 3.4

Two van der Waals gases A and B are taken in separate containers of equal volume,
under identical conditions of P and T the ‘@’ and ‘b’ values of the two gases are: for gas A,
a = 0.2048 Nm* mol™?; b = 0.267 x 1072 m® mol™; for gas B, a = 0.227 Nm* mol? ;
b =0.0428 x 10° m® mol ™.
(i) Which gas has the greater pressure correction term and, how many times as
great?
(i1)) Which gas has the larger molecular size; how may times as great?
(iii) Which gas has the higher value of 7,,? How many times as high?

Solution

(i) The pressure correction term is %; therefore
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(@/V¥p ap 0227 Xour* ol o1
0.0248 X nt* mol™?

@/V?, a,
The gas B has the greater pressure correction term than the gas A, by a factor of9.15.

(ii) b=4N,by, where b, = % zr3; r is the radius of the molecule. Therefore,

®), 0.267x 167 p® mol™

= =6.24
(®)g  0.0428 x }Oﬁ/ﬂf{mo‘ff
4 3 5
. ), _ 4N, 3 A _ (’l]
- 1
= A =(6.23)3 =1.84
g
Therefore, the diameter (o = 2r) of the A molecules is 1.84 times that of the B
molecules.
8a
iii) T, 1is gi by th ion: T, =
(iii) T, is given by the expression : 7, 27 Bb

. (T)y ( ag j ( by j ~ [ 0.227 Nm* mol 2 ) (0.0267 x 107 m® moll]

(Th, \b, )\a, 0.042 x 10~ m? mol™ 0.0248 Nm* mol ™2
= Tp _ g4
(T4

For the gas B, T, is 57.1 times that of the gas A.
Example 3.5

The experimental value of RT/V is 1.10 for 1 mole of a certain non-ideal gas. The gas is at
1 atm and its temperature is below the critical temperature. If the pressure is not halved,
at constant temperature, it is to be expected that the new volume will be (i) more than
twice ; (i1) less than twice the original volume.

Solution

The compressibility factor Z is given by
V. pV p 1

Z: = = =
View RT (RT] 1.10

=091<1

\%
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The compressibility factor will therefore increase with decrease in pressure. Hence the
new volume will be more than twice the original volume. Look at the Amagad’s isotherm,;
you will understand.

Example 3.6

Given the following data for a certain nonideal gas at 25°C:
% @L'atm™) 10 11 10
P (atm) 1 10 20

The critical pressure of the gas must then be:
(i) greater than 10 atm.
(i1) greater than 20 atm.
(iii) between 1 and 20 atm.
(iv) between 1 and 10 atm.
(v) Less than 20 atm.
(vi) Cannot tell.

Solution
: o w
Since the density is given by p = V; then we have
p_W__W
P PV RTZ

Therefore, at a given temperature % varies inversely as the compressibility factor.

P
Therefore, a maximum in % means a minimum in Z. In the plots of Z versus P’ such

minimum occurs only fro 7' < T, and P > P, We know that the minimum of Z occurs
between 1 and 20 tam. Therefore P, could be greater or less than 1 or 10 atm but must be
less than 20 atm.

Example 3.7

At what temperature does the slope of Z versus P curve (at P = 0) have maximum value
for a van der Waals gas? What is the value of the maximum slope?

Solution

The virial equation of state is
Z=1+AP+AP? + A,P? +--.

= (g—IZD)zA1+2A2P+3A3P2+--~
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A =L(5_L)
RT RT

1
9Z)_ L [, @ +2 AP +3 AP? + -
oP RT RT

d (BZ) 1 ( a j 1 ( a j
= It —|—|=- b- + 0+
P—09T | OP RT? RT ) RT RT?

At the maximum, the left hand side is zero; this implies
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" %2a 2) 2a 2
2
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Example 3.8

The critical temperature and pressure for NO gas are 177 K and 64 atm, respectively, and
for CCl, they are 550 K and 45 atm, respectively. Which gas
(i) has the smaller value of the van der Waals constant 5?
(i) the smaller value of the van der Waals constant a?
(iii) has the larger critical volume, and
(iv) is most nearly ideal in behaviour at 300 K and 10 atm?

Solution

Assuming that the gas obeys the van der Waals equation we know that:

8a a

V.=3b; Tn=———; Po=—
¢ CT97TRb’ "¢ 97p?
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To 84276 _8,
P, 2TRbd R

Therefore, smaller the ratio &, smaller will be ‘b’.
C
For NO: &=E=2.77
P. 64
For CCl, Te (550 _ 12.22
P. 45

Therefore NO gas has the smaller value of ‘b’.
(i) Divide T2 by P, ; we get

T2 (8a)84) (27 %) 64a

P, QTRK(2TRE A 21R’
2
[TLJM
PC

T_C2 :E:LLSQ 52
64 '

( T ] _ (550)”

P, cal, 45
Therefore, NO gas has the smaller value of ‘a’.

(iii) As V. = 3b, greater the value of b, larger will be V.. From (a), we find CCl, has the
larger b value. Therefore, CCl, gas will have the larger critical volume.

(iv) Lower the critical temperature, more will be the behaviour at high temperature
and pressure. Therefore, NO will behave more nearly ideally.

=6722.22

Test Problem 3.1 I

The van der Waals constants for HCl are a = 3.67 atm L? mol™ and b = 40.8 cm® mol ™. Find the
critical constant of this substance.
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Ai

Test Problem 3.2 |

A modified form of the van der Waals equation is

where all the terms have their usual significance; oc and 3 are constants. Deduced the expressions
for o, B and R in terms of the critical constants.

(P+ :V‘fj(V—nﬁ):nRT

PROBLEMS

3.1

3.2

3.3

3.4

One mole of ether occupies 741 ecm?® at 300°C. Calculate the pressure (i) assuming
ideal gas ; (ii) from the van der Waals equation. Given: @ = 17.4 atm L2 mol ™%, b =
13.4 x 102 L mol ™.

(the experimental pressure is 48.4 atm) [Ans.: (1) 63.5 atm; (ii) 45.78 atm]
Gases A, B, C and D obey the van der Waals equation with ‘@’ and ‘b’ values as
given (SI):

A B C D
a 0.6 0.6 0.2 0.005
106  0.025 0.15 0.10 0.02

(i) Which gas has the highest critical temperature?
(i1) Which gas has the largest molecules?
(ii1) Which gas exhibits the most nearly ideal behaviour at STP?
[Ans.: (1) Gas A ; (ii) Gas B ; (ii1) Gas D/
A nonideal gas is at its critical temperature and at a pressure 10% greater than its
critical pressure. Doubling the pressure of the gas at constant temperature should
(i) more than (ii) less than half its volume?
[Ans.: (i) less than half]
Three two-dimensional plots, an isotherm, an isobar and, an isochor are given
below for H,O. State the ordinate and abscissa for each of them Explanation must
be given.

(a) (b) (c)
[Ans.: (a) Isobar; T' Vs V; (b) Isochor; P Vs T, (¢) Isothem; P Vs V
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3.5 The values of T and P, for N, are 126 K and 34 atm; for CoHg they are 305 K and
48 atm, respectively.
(i) Which gas has the smaller van der Waals constant 5?
(i) Which has the smaller a value ?
(iii) Which has the larger V, value and
(iv) Which should show the most nearly ideal behaviour at 25°C and 10 atm?
[Ans.: (1) Ny; (ii) Ny; (iii) CoHg; (iii) Ny
3.6 At 0°C and 100 atm the compressibility factor of O, is 0.927. Calculate the weight
of Oy necessary to fill a gas cylinder of 100 L under the given condition.

[Ans.: 15.24 kg]



THE PHYSICS AND
CHEMISTRY OF
CHAPTER INTERFACE

4.1 INTRODUCTION

A solid melts into liquid and the liquid boils into vapour; the liquid state is therefore an
intermediate between the solid and the vapour. In fact, the liquid state has a number of
properties common to both solid and vapour phases. Liquids and solids are sometimes
collectively called the condensed phases. At NTP, the molar volume of a dilute gas is about
22.4 litres, whereas that for solids and liquids is of the order of a few tens or hundreds of a
cm?®; the condensed phase is about thousand times more dense than the gaseous state. This
means that the separation between the molecules in the vapour phase is 10 times more
than that in the condensed phase. There is in general, a very little change in the density,
specific gravity across the melting point, but change over orders across the boiling point;
the heat of fusion is also small compared to the heat of vapourisation. This suggests that
the liquid and the solid phases are closely related to each other compared to the vapour
phase. In the solid, the particles do have only the vibrational motion; in the vapour state,
the particles have all the three kinds of motion; in the liquid state, the molecules are not
as chaotic as in the vapour/gas, and at the same time, not as orderly as that in the solid.
In the solid we have both the short range and long range order in the arrangements of the
molecules; in the vapour, no ordering is there; in the liquid, although long range order does
not exist, a few short range order in arranging the molecules could be found.

There is another characteristic feature of the condensed phase; liquids and solids have
boundaries. A number of interesting properties arise for such a two-phase system, e.g. a
liquid in equilibrium with its vapour across the liquid/vapour interface or boundary, or a
solid in equilibrium with its vapour. In this chapter, we will study some of these properties
of the interfaces.

4.2 SURFACE TENSION

Dry leaves are often found remaining afloat on the surface of a body of water; small insects
are sometimes observed crawling over water surfaces. If you look carefully you would
not find any portion of the leaf or the leg of the insect submerged under water and are
therefore not buoyed up according to the Archimedes’ principle, but if you submerge these
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articles into water they will sink (according to the Archimedes’ principle). So how they
remain afloat? This is actually due to the surface tension of water-air interface. Hold a
razor blade, its surface being kept parallel to the surface of water in a glass, and keep it
carefully over it; it will remain afloat. But if you submerge it, it will sink. How then does the
blade remain afloat? The floating object depresses the liquid layer slightly, and therefore
its underneath surface gets stretched; this stretched surface then exerts a restoring force,
whose vertical component holds the weight of the object.

Consider a body of water in equilibrium with its P

vapour. The number of molecules per unit volume is / ¢ 0 e, ° ¢ N
greater in the liquid than on the vapour side. e ¢ ° o e o
Therefore, the molecules at the water-vapour o e °° . o ° . ®
interface feel a net attraction towards the bulk of the o ¢ o o . ° °
liquid, and the interface behaves as a stretched — ._ _ . N ' — : —
membrane, in the sense that any attempt to increase E LS4 ’:-; f’_“_.’: ‘ ‘e , ‘ '_; -
its area will require some work to be done on it (this , ‘ " s ’ L ' g ,,:‘.-'
is because, increasing area needs some molecules to e e DDA
be brought from the bulk to the surface against this RIS AP R EvANY
inward force) (Figure 4.1). Surface tension v, is then e ',f'.'; “ .",‘: " T Lt . ‘.-‘
defined as the work required to increase the A TR S S

Y "-"""-'-’,"#\-~}.'
interfacial area by unity at constant P and 7. If the Q-fz" e L "‘/
area is increased by dA, the work required is
therefore

Figure 4.1 Much denser swarm of mol-
ecules per unit volume on the
dW = vydA at const. Pand T (4.1) liquid side of the interface than
on the vapour side.
The free energy change associated with a change in

surface area can be written as

dG =VdP - SdT + ydA 4.2)
oG
=|— =G°
= Y (a )P’T (43)

The surface tension ycan therefore be defined as the surface free energy G° per unit area
at constant P and T'. According to this definition, the dimensions of y is mt™2. The units are
erg cm 2 and Jm™2 in cgs and SI systems, respectively. Equation (4.2) also shows that the
attainment of the configuration of minimum possible area assures the state of minimum
free energy at constant P and 7. Small droplets of water assume spherical shape, because
the sphere has the minimum area to volume ratio.

A slightly different, but mathematically equivalent definition of yis now laid here. Take a
thin wire bent into the shape of three sides of a rectangle and fitted with a wire as the
fourth side (Figure 4.2). By dipping the loop into a solution of a detergent, form a film in
the loop. The film will tend to draw the sliding wire; to just stop it to contract, we apply a
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force F on the wire outward, and keep it in equilibrium. Under condition of equilibrium,
the wire is now pulled outward over a distance dx. As Figure 4.2 explains the work
required at constant P and T

F F
dW=Fdx= -2l de=—-dA (44
B 44 %%

(the factor ‘2’ is included to consider interfaces from either W%
side, front and rear). Comparison of Eq. (4.4) with (4.1)
suggests that

A

-

Y

~— dx >

F
Y= 2_l (4.5) Figure 4.2 The film formed tends to

. op . draw the wire inward.
This gives us the second definition of surface tension; the

surface tension may then be defined as the force acting

normally to a unit line segment, along the surface of the liquid. In view of this definition,
the unit of surface tension is dyn cm™ and Nm™ in CGS and SI systems, respectively.
That, really there exists a force along the surface acting normally to any line segment can
be illustrated by the example given in Figure 4.3.

(S

Figure 4.3 A thread longer than the diameter of the circular frame is tied at two opposite ends; after
forming a soap film it is found that the thread convolutes itself over the film. However, when
one side of the film is punctured, the thread stretches itself towards the present film.

Example 4.1

The surface tension of Hg at 20°C is 0.485 Nm™. If two spherical globules of Hg, each of
radius 1 cm stick together to form one globule, then calculate the change in the surface
free energy.

Solution

Let the radius of the final globule be r. Assuming no loss of Hg,

2><é7r (1cem)® = é7rr3
3 3
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= r=1.26 cm

The change in the surface area, AA = 47(1.26 cm)? — 2(47) (1 cm)? = —5.15 x 10~* m?

The surface free energy change is therefore:
AGp = yAA=(0.485 Nm™) (-5.15 x 107* m?)

=-25x10%J

Comment: The decrease in the surface free energy, at constant P and 7, shows that the
process is spontaneous.

Test Problem 4.1 I

By how much the potential energy of each of the above drops would increase if it is broken up into
125 tiny equal sized drops?

4.3 CONTACT ANGLE AND WETTING

Surface tension always exists where there is a discontinuity, the material being different
on the two sides of the surface. Thus mercury in contact with air has a certain surface
tension, but in contact with water it has a different surface tension. More clearly, it can
be said that the surface tension is not the property of the phases on either side of the
boundary, rather it is a property of the interface. Hence, it may or may not be possible to
attain equilibrium with three substances along a line.

Consider a liquid L, in equilibrium with its vapour V, be placed over a solid surface
as shown in Figure 4.4.

S Twv

Figure 4.4 A liquid spreading over a solid surface.

If the vector sum of the three surface tensions, which are tangential to the surfaces at the
point of common contact is zero, then the arrangement is stable.

In this stable arrangement, the contact angle 6 between the given liquid and the solid is
defined as the angle made by the tangent drawn from the point of contact of the liquid
with the solid, along the liquid surface, with the solid surface inside the liquid.
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Ysv = Ys t+ Yov cos 6

= cos 0= Ysv = Vis (4.5)
Yiv

Therefore, the angle of contact between a given pair of liquid and solid depends on

the three interfacial tensions, y.g, Y%y and ;. Although the absolute magnitude of 6

depends on all the three tensions, whether 6 will be acute or obtuse that depends on ¥y

and ;.
If Y5y > 7.5 = cos 0> 0 = 6<90°; acute contact angle
If ygv < 1.5 = cos 6 < 0 = 6>90°; obtuse contact angle

In the first case, we say that the liquid wets the solid, and in the second case, the liquid
does not wet the solid. The contact angle for water on glass at 25°C is approximately 18°,
while that for mercury on glass is 140°. Hence, water spreads over glass while mercury
will gather into a droplet (Figs 4.5a and 4.5b).

/“<H20 C)‘> Hg

Glass Glass

(a) (b)

Figure 4.5 The wetting and non-wetting of a liquid over a solid surface.

4.4 WORK OF ADHESION AND WORK OF COHESION

Referring to Figure 4.6a, when the interface between the two phases o and is decreased
by 1 unit and simultaneously producing two new interfaces a@—v and 8 — v, by 1 unit each,
then the work required for the process at constant 7'and Pis called the work of adhesion W ;.

Waa = You + Yoo = Yap (4.6)
o
o
Wag | e
,,,,,,,,,,,,,,  War
p
,,,,,,,,,,,,, ﬁ

Figure 4.6(a) This process of separation between the two phases o and [ defines W,,.
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N
>

Figure 4.6(b) Separating a column of liquid into two sections, without any lateral contraction

Referring to Figure 4.6b, the work of cohesion of a liquid « is defined as the work required
to pull a column of unit cross-section of the liquid o without any lateral contraction, to
produce two new interfaces of o — v at constant P and T, each of unit cross-sectional
area.

WC(O{) = 2'}/0“) (4:.7)
Applying Eq. (4.6) to the liquid—solid interface and, Eq. (4.7) to the liquid, we find
Wis = %v + %v — Vs (adhesional work between the L and S)

and Wew) = 2%y (cohesional work of the liquid)
and using Eq. (4.5),

Wis=Yv+ Vs + Vv cos 0+ ¥

or Wis = %v(1 + cos 6)
1
or Wis = EWC(l + cos 0)
1
Wes =5 We
or cos 6= ———=— (4.8)
7WC
2

1
This is the Dupré equation. This shows that when W; ¢ > By W, i.e. the attraction between

the solid and the liquid molecules is more than half of that between the liquid molecules,
6 will be acute, i.e. wetting takes place. Furthermore, if 6 = 0, i.e. complete wetting,
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Wis = Weg). This implies that when the work of adhesion between the liquid and the solid
becomes equal to the work of cohesion of the liquid, then the liquid spreads indefinitely on
the surface of the solid. Similarly, if 6 = 180°, W; g = 0.

Example 4.2

Under what condition two liquids mix spontaneously?

Solution

Let the liquids are A and B.
The work of adhesion between the two liquids is

Wap = Yav + Yav — Yas
and, the work of cohesion of the two liquids
Wew) = 27av and Wi = 29y

1
Wy = E(WC(A) + Wew) — 1aB

Therefore, lower the interfacial tension y,5 between the liquids higher is the work of
adhesion between them, i.e. stronger, and more similar is the force of attraction between
the molecules of the two kinds. Finally, when the interface A/B vanishes, i.e. when the two
liquids mix spontaneously, 745 = 0 which makes

1
Wyp = E(WC(A) + Wes)

4.5 CONDITION OF SPREADING OF ONE LIQUID OVER ANOTHER

Let, a liquid S be placed over another liquid o in which it has no solubility (Figure 4.7). At
constant 7" and P, the change in the surface free energy is given by:

G G G
dG =29 laa +] 29 |4a dA
(aAaJ “+[aAﬁ} ﬁ+(aAaﬁ] ap

= yotdAOC + ’}/ﬁdAﬁ + VaﬁdAaﬁ’
where dA,, dAgand dA 4 are the changes in the area of the a-v, f-vap and «-f interfaces,

respectively.
Nl ten,

NN
Figure 4.7 The spreading of one liquid over the other
Now, if the liquid S is to spread over the liquid o then dAgz and dA 4 are positive and dA,,

is negative and moreover,
dAg=dAz=—dA,
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Therefore, we have,
dG = (=Y, + 1 + Yup)dAp

or G ey,
aAﬁ o B of
pP,T

For spontaneous spreading, [EJ must be negative; we then define the spreading
BJ)pr

coefficient of S over « as,

G
Sﬁ/(x =- [E] (4.9a)
PT
or Sﬁ/a =Ya— j/ﬁ — %xﬁ (49b)

So that, when S, is positive, the free energy change is negative and it makes the spreading
spontaneous.

Table 4.1 gives some data of spreading coefficient of different liquids on water at 20°C.
This shows that, when added in little amount, isoamylalcohol, benzene, toluene, etc. will
spread over water but bromoform, methylene iodide will remain as a lens.

TABLE 4.1 Spreading coefficients of liquids on water at 20°C, S50 (in CGS)

Liquid B S0

Isoamyl alcohol 44.0
n-octyl alcohol 35.7
Heptaldehyde 32.2
Oleic acid 24.6
Benzene 8.8
Toluene 6.8
Isopentane 9.4
Nitrobenzene 3.8
Hexane 3.4
Heptane 0.2
Ethylene dibromide -3.2
Carbon disulfide -8.2
Todobenzene -8.7
Bromoform -9.6
Methylene Iodide -26.5
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Initially, benzene spreads over water but eventually form a lens, why?
YoeHs = 28.9, Yu,0 =72 and ye py /m,0 =35 (in ergcem )

When benzene is added in little amount over water,

Scgtgm,o =72 —28.9—35=8.1ergcm™
After the initial spreading, mutual saturation begins. First, the benzene layer gets
saturated with water and this changes v, to28.8 erg cm 2. Then the underneath water
layer gets saturated with benzene, and this change Yy,0 to 62 erg cm 2. The spreading
coefficient also changes accordingly as

Sceng/m,0 = (72— 28.8 - 35) = 8 erg cm ™2
and finally,
St /0 = 62— 28.8 - 35 = -2 erg em™

As the final spreading coefficient becomes negative, the initially spread out film collects
to a lens.

4.6 LIQUID MENISCUS INSIDE A CAPILLARY IS GENERALLY

Capillary means hair-like; a very narrow tube. Let us see what happens to the liquid level
inside the capillary when the latter is dipped into the former.

(@) (b) ()

Figure 4.8 The nature of liquid meniscus inside a capillary

In Figure 4.8, a capillary is dipped vertically down into a liquid. Consider a liquid molecule
at the interface and adjacent to the glass surface. This molecule will be attracted by the
solid particles of the glass, due to the force of adhesion. Let us denote this force of adhesion
by the vector F,, which certainly acts normal to the glass surface. The liquid molecule is
also attracted by its own kind due to the force of cohesion, from all possible sides. Let this
force acting on the molecule be F; this vector acts at an angle 45° to the glass surface and
directs towards the bulk of the liquid. The liquid molecule is therefore acted on by the two
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forces, F, and F, the resultant of which can be found by the law of parallelogram. The
following three cases may come up.

Case I
If the resultant vector R is to be along the glass surface (Figure 4.8a), then
sin 45° = i = ﬂ
V2 F
or Fo=+/2 F,
Case IT
If the resultant is outwardly directed then (Figure 4.8b)
£y = sin6(6 > 45°) > 1
F, J2
= F.,< J2F,
Case IIT
If the resultant is directed inwards, i.e. inside the liquid then (Figure 4.8c)

F
“2 = 5infh(6 < 45°) < 1

F, V2

= F.> ~J2F,

Now, what happens to the molecule considered and to every molecule present over the
circumference in contact with the glass. A liquid can not withstand a permanent shearing
stress and therefore, it will try to get rid of their stress, the resultant vector R, by adjusting
its surface so that R tends to act normally to the surface. Therefore in the first case, the
liquid level will remain flat; in the case II, the liquid level will try to curl up, making the
surface concave upwards and, in case III, it will curl down, making the surface inside the
capillary convex upwards.

4.7 EXCESS PRESSURE ACROSS A CURVED SURFACE

If, across an interface, the pressures are the same on both sides, the surface will be planar.
If the pressure on one side increases, the surface becomes concave on that side. Suppose
that AB is a piece of cylindrical surface of radius r, the length of the cylinder taken at
right angles to the plane of this paper being 1 unit (Figure 4.9). If the pressure below AB
is, P, greater than that above AB then the force on the strip rd0is Pr d 6 and resolving this
parallel to OC, it is Pr cos 6 d6. The whole resolved force on AB acting parallel to OC is
then
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+0 0
J Pr cos 6d6 = 2jPr cos 6dO =2Pr sin 0
0

-0

Pr cos6 dé
Pr dé

Figure 4.9 Excess pressure across a curved surface.

Now, if y be the surface tension, then resolved parallel to OC, the entire force vertically
downward, is ysin 0 + ysin 6 = 2ysin 6. Hence, for equilibrium of the section AB,

2ysin 6 =2 Pr sin 6

= p=r

r
It should be noted that the curvature of the surface at right angles to the plane of this
paper is zero, and does not contribute to P. If, however, there is a curvature of radius r, in
this direction, then there would be a pressure difference, on account of this, of y/ry. Calling
the first radius of curvature as r;, we may then write, for the total pressure difference,

P= y{l+l} (4.10)

non
which is the Laplace-Young relation.

For a spherical surface, r; = ry, and P = 2y/r. Equation (4.10) is applicable to a liquid drop
or a bubble inside a liquid, where there is only one interface. For a soap bubble, there are
two interfaces, each of which contributes 2y/r, and hence the excess pressure inside a soap
bubble is 4y/r. For a cylindrical drop, let one radius of curvature is r; the second radius of
curvature is o; the excess pressure inside a cylindrical drop is therefore y/r.

Take two equal sized glass slides. Put a few drops of water over one, and then keep the
second slide over the first; the water is in between the two slides. It is a common experience
that, a minimum force is required to pull the two glass slides. The reason is as follows: as
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Figure 4.10 given below shows water wetting the glass surface circularly and forms a
concave outward surface, in between the slides. The excess pressure inside the water is then,

P= y{l+(—zﬂ=—2—y (o r>d)
r d

where d is the distance between the two slides.

It is therefore seen that, as P is negative, the excess pressure acts from outside and holds
the two slides tightly.

Figure 4.10

4.7.1 An Alternative Derivation of Laplace-Young Relation
As Figure 4.11 shows, consider a small section of an
arbitrary curved surface with two radii of curvatures
R, and R,. If the surface be moved outwards by a small
displacement dz, the change in area will be

dA =d(xy) = xdy + ydx
The work required to increase the surface area by this
amount is

dW = ydA = ylxdy + ydx]

If P be the excess pressure inside, then this work can also
be written as

dW = P(xy)dZ
and therefore, equating these two expressions, we have
P(xy)dZ = ylxdy + ydx] (4.11)
From the consideration of similar triangles
x+dx x xdZ
———=— =dx=
R +dZ R, R,
+d dZ
and ey =L:>dy=—y
R,+dZ R, R,
Using these relations in Eq. (4.11), we get Figure 4.11 Two different radii of
curvatures are taken to
xydZ  yxdZ find the excess pressure
P(xy)dZ = }’{ R + R across the curved surface.
1 2
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[
or —YRl R,

Example 4.3

Consider two soap bubbles of radii 7; = 1 cm and ry = 4 cm. What is the excess pressure
inside each bubble if the soap solution has a surface tension = 40 dyn cm™. If the two
bubbles collide and stick together, then what is the radius of the film between them, and
on which side is the centre of curvature of the film?

Solution

Excess pressure inside the smaller bubble is (P = 4y/r),
1

P 4 x 40 dyne cm _ 160 dyne cm 2
lcm
and that inside the bigger bubble is
P= 4 x40 =40 dyne cm ™

As Figure 4.12 shows, the greater pressure inside the smaller bubble will blow the film
outwards inside the bigger bubble until

160 dyne cm ™ = 4%+ 40 dyne cm ™2

= R =133cm

©+

Figure 4.12 The sticking of two bubbles of different radius of curvature.
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4.8 CAPILLARY RISE AND CAPILLARY DEPRESSION

We have seen that the liquid surface inside a capillary is either a concave (when 6 < 90°)
or convex (when 6 > 90°) one, and there is also a pressure difference across the curved
surface. The column of liquid inside a capillary therefore acts as a manometer, registers
the pressure difference and either rises up (6 < 90°) or is depressed down (6> 90°). Consider

Figure 4.13, where a capillary, made of glass,
is dipped into water partially.

The pressures at the points 1, 2 and 3 are
equal (P; = Py = P3) because all of them are
the same atmospheric pressure. The liquid
level outside the capillary may be considered
planar and therefore P, = P, and P = Pg. So,

level inside the capillary is concave upwards,

P, > P;, the difference is 2y/r, where r is the
radius of the curved surface. Therefore P, =
Pg > P5; inside water, the pressure outside

Figure 4.13

the capillary is more than inside, and this results into a spontaneous flow of water into the
capillary. The water level therefore rises up along the tube until the hydrostatic pressure
developed balances the pressure difference P, — P5. Now, you try yourself to understand

why the Hg level inside a glass capillary is depressed.

Consider a capillary of very small radius R, so that it forms
a liquid meniscus which is a section of a sphere (radius r). If
the contact angle is 0, then cos 0 = R/r, the excess pressure

2 _ %’CTOSG (Figure 4.14). Tf the
r

capillary rise is &, and p and p, are the densities of the liquid
and the surrounding fluid, respectively, then the hydrostatic
pressure developed is h(p — py)g. As explained above,
equilibrium will be reached when

across the meniscus is

2y cos O
=h(p — py)
R P —pPo)8
N y:w (4.12)
2 cos O '

In many cases, the density p, of the surrounding fluid, e.g. if Figure 4.14 The relation between

it is a vapour, can be neglected in comparison with p, and Eq.
(4.12) can be written as

_ hpgR _ hpgr
4 2 cos 0 2

the surface tension
and the capillary rise.

(4.13)
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where R is the radius of the capillary and r is the radius of curvature of the curved surface.
If 6 is very small then R = r. Also note that if 8 > 90° then cos 6 will be negative, which
implies that now there will be depression.

What happens when a capillary of insufficient length is dipped into water?
From Eq. (4.13),

rh = 2—7/ = constant

pg

When a capillary longer than 4 is dipped into water, it is only the A, in the above, that
changes (as the level of water rises up) to make r x h = constant. But, if the capillary is
shorter than this final value of A, let it be H, then r is now the variable and changes by
spreading of water over the wall of capillary at the top so that, its new value, say R times
H, is now equal to rh; so, there will be no fountain!

4.9 MEASUREMENT OF SURFACE TENSION

Different methods are available for the measurement of y, of which only a few will be
discussed here.

4.9.1 Capillary Rise Method

This method uses Eq. (4.13); a capillary is dipped partially and vertically into the liquid,;
the height of the liquid level inside the capillary is measured with a travelling microscope.
The radius R of the capillary can also be measured easily. For finer results, the ‘4’ in

Eq. (4.13) should be added to %R.

4.9.2 Maximum Bubble Pressure Method

If a bubble is formed at the end of a tube of radius R immersed in the test liquid to a depth
h,the pressure required is given by
P=hpg+ 2y (4.14)
r
where r is the radius of the bubble (Figure 4.15). In the above equation, the first term on

the right hand side is the pressure required to overcome the hydrostatic pressure and the
second term is due to the excess pressure inside the bubble. It is clear from Eq. (4.10), that

the bubble can sustain a maximum excess pressure of 2% So, when the bubble begins to

form, r > R, and the bubble grows in size, i.e. r decreases, and when it reaches R, the radius
of the tube, P becomes maximum, and then r starts increasing.
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So we write

2y
P =hps+ 2L
max pg R

The pressure beyond which the bubble breaks away is measured and the surface tension
is determined from the above equations.

w1y

A
h 1
Y U The bubble begins The bubble at the max. The bubble bursts
to form sustainable pressure
Figure 4.15

4.9.3 Drop Weight Method

When a drop is formed at the tip of a capillary by delivering the liquid through it, a
critical size is reached at which the surface tension cannot hold the drop anymore, and the
drop falls. A rough sequence of the shapes during the formation of the drop is shown in
Figure 4.16. Approximately, we can write

Wigeal = 271y (4.15)

idea

4299¢:

Figure 4.16 High speed photographs during the formation of a drop.

where W, is the weight of the drop which should fall and r is the radius of the capillary.
But as explained in Figure 4.16, the drop leaves behind a considerable portion of the liquid
and therefore the actual weight is

W= Wigea ¢ (4.16)
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where ¢ is a correction factor depending on where v is the volume of the drop. A

r
ISTER
table for a list of the values of ¢ had been prepared by Harkins and Brown.

Equation (4.16) is chiefly used in comparing surface tensions of different liquids. If m; and

mq are the masses of the drops of two liquids 1 and 2 falling from the same capillary,
then.

m _ 1o

my Iy,

Ifthe volumes of the drops of the two liquids are not very different then
/¢, = 1; then we have

Yi_mMy _ Uips .

Ve My Oy, Using Eq. (4.15)
where v’s and p’s are the volumes of each drop and the densities of the
liquids respectively. The stalagmometer, a pipette like tube ending in
a capillary (Figure 4.17) is used for this purpose. The number of drops
(formed slowly and completely before its detachment) falling from the
end is counted in passing the liquid level between two marks on the 10 ml
stalagmometer. Letn; andnybethenumber of dropsfortheliquids 1 and
2,respectively,indraining out Vvolume ofeachliquid. Then V=n,v; and
V = nyv,, and so we write,

Y1 _ Py
Yo TP

So, if the surface tension of one liquid is known then that for the
other can be determined from the above equation. Figure 4.17 A capillary.

4.9.4 du Noily Tensiometer

This method is developed by du Noiiy, and is one of the many detachment methods used
for convenience and accurate measurement of surface tension of liquids. Here, the force
required to pull up a perfectly horizontal ring, of a previously cleaned and dried platinum
from the surface of the test liquid, is measured. As a first approximation, it is assumed
that the minimum force required to pull it up is equal to the weight of the ring plus that
just required to overcome the inward pull on the periphery of the ring by the liquid due to
surface tension.



4.18 Physical Chemistry

Force = W

ring

+2(2n Ry (4.17)

where W, is the weight of the ring and R is its
radius. The multiplier 2 is necessary to account
both the inner and outer periphery of the ring.
Once again, for finer data, a correction factor ¢
called the Harkins and Jordan factor is necessary
to account for the thickness and size of the ring

and the density of the liquid (Figure 4.18).

\
I

Figure 4.18 The du Noiiy method of measur-
ing surface tension of a liquid.

4.10 VAPOUR PRESSURE OF CURVED SURFACE: KELVIN EQUATION

Another interesting manifestation of surface tension is the enhanced vapour pressure of
curved surfaces. Let P be the vapour pressure over a convex drop of radius r and P, be
the vapour pressure of a flat surface (of the same liquid). If we transfer, reversibly and
isothermally, xg of the liquid (molar mass M) from the flat to the convex drop then the

X P
associated free energy change is ﬁRTln?. If this transfer has increased the area of
0

the drop by dA then dA = d(4m?) = 87 rdr. The free energy change therefore can also be
written as ydA = 8arydr. So, we have
dx

ﬁRT In % =8nrydr (4.18)

Since the mass of the drop x = %7177’3 p, where p is density,

dx = 4mr?pdr (4.19)
Using Eq. (4.19) in Eq. (4.18), we get,

P _2V,y M

In— =
"B, " FRT ~ prRT (4.20)

where V,, is the molar volume of the liquid (V,, = M/p). Equation (4.20) is known as the
Kelvin equation. Although it is derived here for a convex drop, it is in general applicable to
any convex surface with radius of curvature r. For concave surface, there will be a minus

sign on the right hand side because the transfer of the liquid now decreases the area by
dA.
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Example 4.4

Calculate the vapour pressure of a tiny water droplet of radius 10™* and 10~ cm at 25°C.
1

Ywater = 12 dyne cm™".

Solution
p 2vV,
—=exp
P, rRT

2x72 dyn em™ x18 cm®mol
10*cm x 8.314 x 107 ergK ' mol ™ x 298 K

For r =10 cm, g = exp{ } =1.001
0

p
Similarly, for r = 107" cm, 7 2.85
0

4.11 SUPER SATURATION OF VAPOUR AND SUPER HEATING OF LIQUIDS:
THEORY OF NUCLEATION

We know that a liquid will be in equilibrium with its vapour, at a fixed temperature, at the
saturated vapour pressure. So it is expected that, if the pressure of the vapour be increased
slightly over this saturation value, spontaneous condensation will take place. Experiments,
however, showed us that in the absence of any foreign surfaces, condensation does not take
place if the vapour pressure is not increased beyond orders of magnitude of the saturated
vapour pressure P,. The vapour phase is then (when the saturation vapour pressure is
exceeded but, the liquid did not appear) said to be super-saturated, a metastable phase,
i.e. thermodynamically unstable, but exists due to some kinetic reasons.

Similarly, a liquid may be cooled below its freezing point without the appearance of the
solid phase. For example, Fahrenheit (1714) had observed that a sample of very pure
water could be cooled down to —40°C at 1 atm without any ice-formation. Such liquids are
called super-cooled liquids. These are also thermodynamically unstable, and exists due to
some kinetic reasons.

We can understand this super-saturation and super-cooling with the help of the Kelvin
equation [Eq. (4.20)]. From Eq. (4.20), the vapour pressure of liquid drops of radius r» may
be written as

2Viy
Pdrop = Iye rRT (4.21)
and the vapour pressure inside a cavity in a liquid as:
_2Vy
Pcavity = POe rRT (422)
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where P, is the saturated vapour pressure of the liquid of molar volume V. In the previous
problem, we calculated the vapour pressure of tiny water droplets. It is 1.001 P, when
the radius is 10™ cm, and almost 3P, when r = 107" cm. The effect is therefore not too
pronounced if the radius is not too small; the vapour pressure of a tiny drop of water of
radius 1077 c¢m is three times its saturated vapour pressure. This drop contains at most
140 molecules in it, and so we cannot rely on this magic number 3; nevertheless, we can
use it to understand the super-saturation.

Moist warm water vapour, from seas and rivers, rises up into higher altitudes of cooler
region and at some altitude, becomes thermodynamically unstable with respect to the
liquid, and we might expect it to form rain. The sequence of steps in the formation of rain
is; first a few molecules form a cluster (called germs) which then grows bigger by accretion
and then come to a size of recognizable droplet (called nuclei) which can then coalesce to
form the liquid bulk. Now, when the tiny clusters of molecules are formed they have a
very small radii and therefore have a much higher vapour pressure than P, and therefore
vapourizes again. The formation of the thermodynamically stable liquid phase is therefore
not allowed due to the increased tendency of the tiny droplets to vapourize. We then say
that, the vapour is super-saturated.

Let us consider the formation of a cluster:
nA (vap,P) > A,

The free energy change of the process is cluster of n molecules of radius r; a small liquid
drop

P,
AG=nErmbe, 4nriy (4.23)

N, P
where P, is the saturated vapour pressure of the liquid, P is the vapour pressure, N, is the
Avogadro’s number and yis the surface tension of the liquid. The number of molecules n,

in the drop of radius r is
4
(3 77«'7'3 )pNO n

n=s————————— —DH—=

7'[7'3

w |

P
M
therefore, Eq. (4.23) can be written as

AG = —éﬂr3 ﬁRTlnﬂ +4nr’y
3 M F,

or AG = ~ 273 P RTInx+4mr?y (4.24)
3" M

where x = P/P, > 1. Equation (4.24) clearly shows that a plot of AG versus r, first increases
and then forming a maximum at some critical size ., decreases (Figure 4.19). It is therefore,
the excess surface free energy of the droplet that makes its formation difficult.
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AG —>

0 2 4 6 8 10 12 14
MA° —>

Figure 4.19 The variation of 4G for the formation of a droplet with its size.

Differentiating AG with respect to r, we get

{B(AG)} — 472 %RT]HJC‘FSTU'Y

or
; JIAG)
at the maximum, = r,, and > =0
2yM
= RTInx= "' (4.95)
rp

which is nothing other than the Kelvin equation. This shows that for each value of x

P
(: F), there is a critical r, which is given by
0
2yM

oo (4.26)
(pRT In x)

beyond which the drops will observe a decrease in the free energy with increase in their
size, and hence will grow up spontaneously. The question that still remains is: how are
the initial tiny drops formed which will eventually move on to r, and then from the rain
spontaneously? In this process, we need the presence of minute dust particles. These
foreign particles provide surfaces, on which the clusters can nucleate and form the rain.
That is why, fine KI solid is sprayed into a dense cloud to form a rain show. Exactly, the
same thing happens in the Wilson Cloud Chamber. Here, the super-saturation is done by
cooling it through adiabatic expansion. Now the passage of elementary charged particles
(¢ or B) ionises the molecules, on which the vapour can condense. The trajectory is then
mapped as a line of flight of the condensed water.
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Exactly, in the same way, superheating of a liquid can be explained. If a very pure water be
heated in a clean beaker, the cavity which is first formed, has a very low vapour pressure
inside it [see Eq. (4.22)] and therefore collapses immediately; the temperature therefore
rises above the boiling point without the formation of the vapour and, the liquid becomes
superheated. To ensure a smooth boiling broken glass or porcelain pieces must be added
to provide surface for the cavity to form.

4.12 SOLUBILITY AND PARTICLE SIZE

Let us consider a substance in equilibrium between the solid
and its saturated solution (Figure 4.20). The condition of SoSTIIoTIIATIIATIS
equilibrium is

Hs = 1y (4.27)

where u, and y; are the chemical potentials of the substance
in the solid and liquid phases respectively. Since the solid
phase is pure, u, can be written as:

= 1l +y8S (4.28)
where y; is the standard chemical potential of the substance

in the solid phase, yis the surface tension at the solid crystal
surface and S is the molar area of the solid. If one mole of

Figure 4.20 A saturated solution
in equilibrium with

the solid is assumed to consist of n small cubes of side length undissolved solid.
x then,
The molar volume V =5 x° orn = K The molar area, S = n6x®) = 13 X 6x% = g;
X x x
therefore we write Eq. (4.28) as
6yV
= 10+ 77 (4.29)
If the solution is considered ideal and C be the solubility then
U = u; + RThC (4.30)
From Eqs (4.27), (4.29) and (4.30), we get
6yV
pe + X — o + RTInC (4.31)

x =
Let C, be the solubility of a giant sized crystal, i.e. with x — o; then we write Eq. (4.31)
as

ug +0=p; +RTInC, (4.32)
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and subtracting Eq. (4.32) from Eq. (4.31), we get

6yV
C = CporiT (4.33)

an equation, exactly similar in form, to the Kelvin equation [Eq. (4.20)]. This shows that as
the particle size decreases, the solubility C increases even more than the vapour pressure
of a similar sized liquid drop (because yfor some solids are five to six times that of liquids).
This in turn, means that what is saturated with respect to fine solid particles is super-
saturated for bigger particles. This is why, when freshly precipitated solution is kept
standing in the hot condition over a period of time, the finer particles gradually grow in
size.

4.13 SURFACE TENSION AND TEMPERATURE

In Section 4.1 of this chapter, we have seen that the surface tensions may be defined as the
surface free energy per unit area of the surface, G°, measured at constant 7 and P.

oG
=& =qg°
4 (aAJT,p !

differentiating the equation with respect to temperature at constant pressure we get
8}/) [aG" J
2 = (4.34)
(aT P aT »

] =—S°, then S can be interpreted as the surface entropy per
P

o

oT

Now, if we write [

unit area of the surface (S° is always positive by the third law of thermodynamics).
Equation (4.34) can therefore be written as

A
(al) 57 (4.35) %
aT )p 80
70
which predicts that, the surface tension decreases with T 60
increasing temperature. This prediction has in fact 5
been experimentally verified with different kinds of g %0
surfaces, and over wide temperature ranges (Figure 1% 40 C1oHsg
4.21). The physical interpretation of this variation is as = 30 AN N ]
follows: as the temperature is increased, the increased 207 CHOHN
thermal motions of the molecules of the liquid seem to 10 A N
make the cohesive forces among the molecules less 0 S >
significant, and now less work is to be done in bringing —200 0 Zooﬂoc ﬁ

the molecules from the bulk to the surface.
Figure 4.21 Variation of y for different

liquids with temperature.
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An important relationship between surface tension and temperature may be deduced as
follows; let v be the specific volume of a liquid; its molar volume is then vM, where M is the
molar mass of the liquid. If the liquid is assumed to be spherical then the molar surface
area is proportional to (tM)?®. So the molar surface energy is y(vM)?3. Experimentally,
this molar surface energy has been found to vary almost linearly with temperature; so we
write:

%[’}/(UM)2/3] =k (4.36)

where % is a constant; the negative sign indicates that y decreases with increase in
temperature t. Integrating this equation between limits and remembering that the surface
tension vanishes at the critical temperature of the liquid, we get,

YV t
[ dlyoMy?|=-k[dt
0 i

or y(M)?3 = k(t, - t)

Since the interface gets diffused at a few degrees (normally 6) below ¢,, the above equation
is modified as
yWM)*® = k(t,—t — 6) (4.37a)

Equation (4.37a) is known as the Ramsay—Shield—Eo6tvos relation. The value of k can be
evaluated by writing Eq. (4.37a) at two different temperature ¢; and ¢, where the specific
volumes and the surface tensions are v,, y; and vy, %, respectively, and then, taking the
difference:

_ 7/2(1)2]‘4)2/3 _ 7/1(01]‘4)2/3
- tl - t2

k

(4.38)

The value of £ has been found to be 2.1 for a number of normal liquids, e.g. carbon
tetrachloride, chloroform, benzene, nitrobenzene, ether, ester, etc. For certain liquids, e.g.
H,0, alcohols, carboxylic acids etc. the value of £ has not only been found to be less than
2.1, it also changes with temperature. It is proposed that, in these liquids, a few molecules
form a cluster due to hydrogen bonding and the effective molar mass is then xM not M,
where x is the average number of molecules in the clusters. Equation (4.37a) therefore,
should now be written as

yWxM)? = k(t,—t — 6) (4.37b)
If the observed value of % for these liquids be %, then
3/2 3/2
F=F o= (i) - (Ej (4.39)
x k k

from which the factor of association x, can be evaluated. Another empirical equation due
to Guggenheim is
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T n
Y= "7 [I—T—CJ (4.40)

where Y, is an empirical parameter characteristic of the liquid and » is very close to 11/9
for many liquids.

4.14 THERMODYNAMICS OF SURFACES

Let us consider a system consisting of the phases « and 8 with the interfacial region o
(Figure 4.22). Although the thickness of the interface due to the short range molecular
forces is not more than a few molecular diameters, the exact

value depends on the positions of the boundary planes AA” and B
BB’. We draw these planes subject to the conditions: (i) all the Bl B
properties are uniform in the o-phase right upto AA’ and also A - [ -A

those of the B-phase upto BB’ (ii) within the interfacial region,
all the properties vary continuously from the pure phase o at
AA’ to the pure phase at BB’. For example, the concentration of

Figure 4.22 Two phases

a component i ¢;, being one of the properties of the system, when aand Bare
plotted versus the length of the system (assuming it to be a separated by
cylindrical of uniform cross-section) gives a plot as shown in thickness o.
Figure 4.23.
o
A c“ i
~ Nz=6 7 i
v :

s

G
4 I I ;
< di g > 7
(0] ! B
(—)I 1 <—>
o Thickness of the 0 Thickness of the
- T 70 o-phase B-phase
N _A4F

Figure 4.23 The placement of the 2-D dividing plane.

There are thermodynamic treatments for this interfacial region of definite thickness, but
here, we will discuss the more simpler treatment of Gibbs in which the interface is modelled
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as 2a-dimensional plane (which has no volume). Now, the question is, where to place this
2-dimensional dividing plane? Before finding out the position of this place, let us make
ourselves clear about two facts. The first is, when we replace the actual 3-dimensional
interface by a 2-dimensional plane, we understand that then the two phases o and 8 are
homogeneous right upto this plane. To understand the second point, let us keep the plane
at OO'. The total number of moles of component i, n;, present in this system, is equal to
the area under the solid curve from Z = 0 to Z = B, times the area of cross-section of the
cylinder A. But in our model-system of 2-dimensional interface, the number of moles of
component i in phase @, n/ is the area of the rectangle abdc times A, area and that in
the phase j, niﬁ is the area of the rectangle defg times A. If we now take the subtraction
n, — (n¥ + nf), then what we get is the number of moles of component i present at the 2-d
interface n;. Thus

n?=n;—mf+np (4.41)

and this is equal to the algebraic sum of the two shaded areas with proper sign. When
this n/ is divided by the area of the dividing plane A, what we get I'; = n/A, is called the
surface excess of the component i. Clearly, the surface excess of a component may be
positive, negative as well as zero; it all depends on the position of the dividing plane. Now
let us come to the point of the placement of the dividing plane. Usually it is placed at a
position for which the surface excess of one specified component, usually the solvent, is
zero. And after fixing the position of the plane, the surface excess of the other components
is evaluated using Eq. (4.41) and with respect to the fixed plane. If the surface excess of a
solute, so obtained, is found positive, the solute molecules are said to be adsorbed at the
interface; on the other hand, if it is found negative, then the solute molecules are said to
be negatively adsorbed at the surface. In the first case, there is an enrichment of the solute
molecules at the interface while in the latter the solute molecules tend to depopulate the
interface and populate the bulk phase. Na™ and K'-salts of long chain fatty acids and
alcohols in aqueous solution are examples of the first kind, while electrolytes are examples
of the second kind. Defining the concept of adsorption (adsorption is the enrichment of a
component at the interface compared with the bulk region) quantitatively as the surface
excess, a thermodynamic relation can be derived between the extent of adsorption and
the change in surface tension of the solution with concentration. This is the famous Gibbs
adsorption equation.

4.15 GIBBS ADSORPTION ISOTHERM

For the system in Figs 4.22 and 4.23 under condition of equilibrium, the first fundamental
equation is:

dU =TdS — PdV + ydA + Zu,dn, (4.42)

where yis the surface tension, y; is the chemical potential of the component i, which is
same everywhere and n, is the number of moles of component ;.
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Equation (4.42), written for the a-phase only, takes the form,

dU,=TdS,— P AV, + Zudn* (4.43)
and that for the § phase is
dUg=TdSy— PV + Zudn’ (4.44)

In the above equations, U, U, and Uy are the internal energy of the whole system, of the
o-phase and of the B-phase, respectively. Similar is the notation for S, V, P and n,. Adding
Eqgs (4.43) and (4.44) and subtracting it from Eq. (4.42), we get

dlU - U,— Uyl =T IS —(S,+Spl-PdV+P,dV ,+PzdV+ydA+Zpdln,—(n,"+ )
If we define the internal energy, U° and entropy, S° of the interface as
U'=U-U"-U" and S°=S-(S,+Sp
then the above equation changes to
dU’=TdS° - PdV + P,dV,, + PgdVs + ydA + Zudn,®

where n,° is the number of moles of component i at the interface. If now the interface is
considered to be planar then P = P, = Pg which gives,

du®=TdS° + ydA + Zudn,°
[+ V=V, + Vg the 2 dimensional interface has no volume] (4.45)
Integrating the above equation while holding 7', yand ; fixed we get,
u®=TS°+ yA + Zun,°
which on complete differentiation gives
du®=TdS° + ydA + Zudn;° + S°dT + Ady+ =n,°dy; (4.46)
and finally comparing Eqs (4.45) and (4.46), we get,
ST + Ady + Zn;°dy; = 0
and under isothermal condition,
Ady+ 2n;°dy; =0 (4.47)

The above equation for a two-component solution in equilibrium with its vapour (one kind
of solute in a solvent) is,

Ady+ n{du+ nydu, =0 [suffix 1is used for the solvent, and 2 for the solute]

As discussed earlier, ny and ngy depend on the position of the 2-dimensional dividing
plane, and hence are not experimentally measurable quantities. As already mentioned
the adsorption of the solute is measured relative to the solvent, as if, there is no adsorption
of the solvent molecules at the 2-D interface. The dividing surface is now chosen to be
situated such n =0, the above equation then reads

Ady + ngy, (D) duy, =0
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where ng(l) is the relative number of moles of the solute at the interface with respect to
the solvent (this quantity can be shown to be independent of the exact location of the
boundary) and is an experimentally measurable quantity. The relative surface excess of

the solute is defined as

o
Ny
FQ(I) - A

which is now expressed as

If the activity of the solute in the solution be a, then,
du,=RTd Ina

and using this in the above equation, we get
1 dy _ a dy

T =— =
U7 RT dlna  RT da
which, in dilute solution can be written as
c dy
Ty = ——— —
2(1) RT de

(4.48)

(4.49)

(4.50)

where C is the molar concentration of the solute. Equations (4.47)—(4.50) are the various
forms of the Gibbs adsorption isotherm, and which has been experimentally verified.

Equation (4.50) suggests that I'y ;, is positive if the surface tension of the solution decreases
with increase in concentration and vice-versa. On the basis of the variation of y versus C,
solutes are generally classified among three categories. In type I, Figure 4.24, the surface

tension increases slowly with increase in concentration.
Examples are aqueous solution of electrolytes. The ions, by
virtue of the ion-dipole forces, pull the water molecules
inside the bulk of the liquid and greater work is to be done
in bringing them at the surface. The surface tension
therefore increases with increase in concentration; and
consequently these species and negatively adsorbed at the
interface.

Type II solutes include most organic compounds that have
some degree of solubility in water. These molecules, e.g.
phenol, have a polar group and a non-polar hydrophobic
part. The polar group is involved in interaction with the
water dipoles and is attracted inside water and projecting
the hydrophobic polar group (Figure 4.25) outwards. Due

A

Yo

C—>

Figure 4.24 Variation of y for
different substances
with concentration.
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to an increase in their concentration at the interface, the surface tension decreases. The
surface excess of these solutes is therefore positive.

Finally, there is the type III solutes; these are Na* or K* NO,
salts of long chain (number of C atoms in the chain > 5) o
fatty acids and alcohols; the surface tension of these
solutions decreases very rapidly and almost linearly with
concentration and thereafter remains almost constant.

For these solutes, 3—2 is large negative and the surface HO

excess is very high. These solutes, which decrease the
surface tension considerably by strongly adsorbing at the
interface are called surface active reagent.

Figure 4.25 These substances
are populated at the
interface.

4.16 SURFACE FILMS ON LIQUIDS

There are a number of compounds (type III solutes) having a long hydrophobic chain,
terminated with a polar head like —COOH, —OH group or
their Na*, K* salts. These compounds are either solids or
liquids with high boiling points: consequently, their vapour
pressure is also a few mm of Hg. On adding such a substance
to water, the molecules spread over the water surface; their
polar heads peep into the water leaving the long hydrophobic
chain afloat over the water surface. On increasing the
concentration, a monomolecular film may be produced
which corresponds to a compact packing of the molecules,
all erected vertically, projecting the hydrophobic tail
upwards (Figure 4.26). This is justified by Figure 4.27,
. . Figure 4.26 Hydrophobic

where Ty, for an aqueous solution of sodium dodecyl molecules in aqueous
sulphate is plotted versus concentration. The saturation of solution at the Pockels
I'1) reveals the formation of monomolecular film. point.

Such a surface film is studied in the PLAWM (Pockels
Langmuir-Adam-Wilson-McBain) through.

A thin rubber membrane attached to a float separates the clean water from its solution.
The portion of the rubber membrane inside water is so convoluted that it can buckle easily
to give an equalisation to any difference of hydrostatic pressure on the either side. Let ¥y,
be the surface tension of pure water and y be that of the solution. Since ¥, > ¥, a force, %,— ¥,
which is purely a surface tension in origin, acts per unit length of the float (Figure 4.28).
This force per unit length is defined as surface pressure 7.
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Figure 4.27 The measurement of a monomolecular film.
u m=71-7, Float
<
Membrane
Solvent Solution
Figure 4.28 The PLAWM trough.
T=Y%—-7v (4.51)

Exactly in the same manner, as we have explained the pressure of a gas due to the impacts
of the molecules on the wall of the container, the surface pressure can also be explained
as due to the bombardment of the solutes on the float during their motion restricted over
the interface. This force on the float can be measured by a torsion wire attached to it. The
experiment involves the determination of the surface pressure with decreasing area of
the solution by moving the rubber membrane to the left. An experimental plot of 7 versus
area is shown in Figure 4.29. As the area decreases, the adsorption I'y;, increases; this
increases the surface pressure. As the area is decreased beyond a certain point, called
the Pockels point, the surface pressure begins to increase very sharply. At this point, the
molecules are almost in contact with each other and strongly resist further compression.
Langmuir found that this area divided by the number of molecules present in the film for
all long chain fatty acids CH; (CH,),, COOH, (n = 14, 16 — 26) is independent of the value
of n and is roughly 21 A2. The cross-sections of these molecules are therefore equal. Figure
4.30 gives another interesting feature. The cross-section of the isostearic acid is slightly
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more than that of stearic acid. This is due to the presence of the bulky tertiary carbon
atom at the end of the chain. It is also seen that the monomolecular film of tri-p-cresyl
phosphate is much more compressible than those of stearic and isostearic acids. This is
probably due to their structural features (Figure 4.31).

/ Area —>
Pockels point

Figure 4.29 The variation of surface pressure with the area.
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Physical Chemistry

4.17 EQUATION OF STATE OF A TWO-DIMENSIONAL IDEAL GAS

For solutes of type III, it is clear from Figure 4.24 that in the low concentration range
(before the formation of the monomolecular film), the surface tension bears almost a linear

relation with concentration:

Let us write, y=%—bc

(4.52)

where yand y, are the surface tensions of the solution at concentration C and, of the pure

water, respectively, and b is a characteristic constant.

dy _
dc
The surface pressure,

T=Y%—-7v=bc
Therefore from the Gibbs adsorption isotherm,
c dy bc T o =&

Ty =——=—Ft=——=—"":;>
27 RT de  RT RT A RT
or A =ny,RT or m=T4,RT

(4.53)

(4.54)

(4.55)
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which is exactly similar in form with the ideal gas equation PV = nRt or P = CRT. As
explained earlier, the existence of this 2-dimensional pressure and the 2-dimensional
concentration and, the similarity of Eq. (4.55) with the equation of state of a ideal gas
prompts us to say that a surface film is an analogue of a 2-dimensional ideal gas (!).
Equation (4.55) is therefore called the equation of state of 2-dimensional ideal gas.
Moreover, again like the gas behaviour, Eq. (4.55) is obeyed only in the limiting condition
of low T (the surface excess). Furthermore, the curves of 7 versus A (at fixed temperature)
in Figure 4.30 show that they are very similar to the Andrew’s isotherm of P versus V of a
gas. A 2-dimensional van der Waals equation

(77: + %j (A—b)=RT (4.56)

may therefore be proposed empirically and tested.

Example 4.5

4.8 mL of glycerol trioleate [olive oil, (C;;H335C00)5 CsHj] is found to form a monomolecular
film of area 2030 m?2. Calculate the thickness of the film and the cross-section of each
molecule. Also calculate Ty, for the film (given, density of glycerol trioleate is 0.9 gm
ml ™.

Solution
Molar mass of the oil = 884 g mol™*
4.8 mL = 2.95 x 10%! molecules (4.89 x 10~ mol)
If the thickness of the film be A, then (2030 m®A = 4.8 cm® = A = 23.6 A

2
.. Cross-section of each molecule = ﬂ =68.80 A2

2.95 x 10%°

4.89 x107°

W mole = 2.4 x 107° mol em 2
m

and Ty =

Example 4.6

The surface tensions of 0.05 M and 0.127 M solutions of a surfactant are 67.7 and 60.1
dyne ecm™, respectively at 20°C. Assuming this lowering of the surface tension with
concentration as a linear calculate the surface excess of the surfactant at a concentration
of 0.053 M at this temperature. Also find out 7 and its equivalent 3-dimensional pressure
(assume that the diameter of the molecule is 4 A).
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Solution
Assuming the variation of surface tension with concentration as linear,

_ _ -1
Ay _Yo=vi_ZT6dynem’ 00400 emt M
dc  ¢y—¢ 0.077M

c dy
T30 =" 7 de
(0.053 M)

== = = =) [-98.7 dyn cm M ]
(8.314x10" erg K™ mol ™) (293 K)

=2.15 x 107 mol em™2

7 =Ty RT=(2.15x 10" mol cm>)(8.314 x 10" erg K" mol ") (293 K)
=5.24 dyn cm™!

The equivalent 3-dimensional pressure is obtained by dividing 7 with the thickness of the
molecule (4 x 107 cm)
n _5.24dyn em™?

P=—=—————=131X 10® dyn cm ™ = 130 atm.
h 4x10" cm

This calculation shows that the lateral compression in the film is alarming at the molecular
level.

4.18 GAS ADSORPTION AT SOLID SURFACES

In the preceding chapters, we studied the adsorption of solute molecules from liquid
solutions at the liquid—vapour interface. In this section, we will study the adsorption of gas
molecules (adsorbate) on the surface of a solid (adsorbent). Intense research in this field
is now undergoing for the technological development with minimum possible pollution,
starting from electrical lamps to three-way automobile catalytic converter.

When a molecule approaches a solid surface it experiences a net attractive potential
energy which is exactly similar to that between two molecules; but at close separation
it is attracted by a number of closely-spaced solid atoms. However, there is a point at
which the net attractive potential is the most negative, and the molecule is then said to be
arrested on the surface, i.e. adsorbed. During this adsorption process,

A

| I
Al@+-S-—-5S-

A
| |
where A is a molecule in the gas phase, —S— is a vacant surface atom and —S- is the

adsorbed state) which is spontaneous (AG < 0 at constant 7' and P), the molecule A
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certainly loses it translational and rotational degrees of freedom; and the entropy change
of adsorption is therefore negative. The heat of adsorption AH, 4, which is equal to AG 4
+ TAS 4, is therefore negative. In general, adsorption is therefore an exothermic process.
An exception is the adsorption of H, on glass, for which AH 4 is positive. One possible
explanation is: after adsorption, H, dissociates and the adsorbed H atoms gain some
translational mobility over the surface. This makes AS,; positive, which in turn makes
AH 4 slightly positive.

4.18.1 Physisorption and Chemisorption

Adsorption in the gas phase is classified either as physisorption or chemisorption. If
the weak, long range and non specific intermolecular van der Waals forces (which are
responsible for the condensation of a vapour into liquid) are responsible for holding the
molecules on the surface, then it is called physisorption. Physisorption is therefore only
important for gases below their critical temperature, i.e. for vapours. On the other hand,
in chemisorption, the molecules are held over the surface by relatively strong chemical
bonds (which are very specific and short range forces) with the surface atoms and may
occur at both above and below the critical temperature.

Physisorption is therefore nonspecific but chemisorption is highly specific. For example,
N, can be physisorbed on any surface, provided the temperature is below its critical
temperature; but N, can be chemisorbed on Fe, W, Ti, etc., but not on Ag, Ni, Cu, etc. Solid
gold can chemisorb O,, C;H,, CO but not H,, CO, or N,

The heat of physisorption AH ., is usually less (<35 kJ mol™) and is of the order of
the heat of condensation of the vapour. On the other hand, the heat of chemisorption is
usually much higher (40 — 400 kJ mol™).

Since during physisorption, there is only a redistribution of the electron density in the
adsorbate and adsorbent, separately, a physisorbed molecule retains its identity. A
physisorbed gas may be desorbed by lowering the pressure and increasing the temperature.
On the other hand, since during chemisorption, there is an exchange of electron density
between the molecules and the surface atoms, the molecule may dissociate and change its
identity in the chemisorbed state. For example, when a system of O, gas adsorbed over
charcoal is heated, the gas comes out as a mixture of CO and CO,.

The chemisorbed layer is only one molecule in thickness whereas a physisorbed layer
is multimolecule in thickness. However, physisorption may take place on the top of a
chemisorbed layer.

The equilibrium of the physisorption is attained very fast whereas the rate of chemisorption
may be slow and can be increased by increasing the temperature. This fact indicates the
presence of an activation energy for chemisorption. In fact, it may happen that, a molecule
first enters into the physisorbed state and then slowly moves into the chemisorbed state.
Figure 4.32 illustrates some special cases, where the potential energy is plotted as a
function of the distance of the molecule from the surface.
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AB Distance from

the surface >

Figure 4.32(a) The molecule AB is first physically adsorbed at point X and then quickly passes on
to the state where dissociation and subsequent adsorption of the atoms A and B
takes place (point Y).

In Figure 4.32(a), the molecule AB is first physically adsorbed (point X) and then quickly
moves into a state, in which the atoms A and B are chemisorbed. This is called dissociative
chemisorption. Here, both the physisorption and chemisorption are fast processes. In
Figure 4.32(b), again the molecule AB is physisorbed and subsequently passes over quickly
into the non-dissociative chemisorbed state. Again, the rate of both the processes are very
fast. In Figure 4.32(c), there is a potential barrier between the physisorbed AB molecule
(point X) and the chemisorbed atoms A and B (point Y). At low temperature, physisorption
takes place and it is fast. Chemsorption cannot take place at this low temperature because
the physisorbed AB molecules can not acquire the energy to surmount the barrier from the
low thermal energy kT. However, when the temperature is increased, the thermal energy
increases and the physisorbed molecules can now shake themselves off, cross the barrier
and move into the dissociative chemisorbed state. This passage is therefore an activated
process and its rate increases with increase in temperature. So, while physisorption is
always fast, chemisorption may be a slow as well as a fast process. These cases can also
be understood with reference to Figure 4.33. Figure 4.33(a), where there is no barrier to
adsorption, is representing the cases in Figure 4.32(a) and 4.32(b). The molecules which
strike the surface with high kinetic energy, even after a loss, bounce back to the gas phase.
As the temperature decreases, the average kinetic energy decreases and now they can be
trapped in the well. In Figure 4.33(b), there is a barrier to adsorption and is a representative
of the case in Figure 4.32(c). At very low temperature, the molecules are only physically
adsorbed. On increasing the temperature, some of the molecules now cross the barrier
and get trapped in the chemisorbed state. Here also, if a molecule strikes the surface
with very high kinetic energy, it just bounces off the surface. An example of the case in
Figure 4.32(c) is Hy and Ni. Figure 4.34 shows the temperature dependence of the extent
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of adsorption. AB is the locus of the normal decrease in the extent of physisorption with
increase in temperature; this happens in the low temperature range. As the temperature
is increased, there is a non equilibrium transition from the physisorbed state (called the
precursor state of chemisorption) to the chemisorbed state, where again the extent of
adsorption decreases with increase in temperature. On cooling, CB is not retraced but
some combination of BC and CC’ is observed.

N e

\ O A
AB  Distance from \’/AB/Distance from
X the surface —> the surface >
X
Y

Figure 4.32(b) The molecule AB is first physically ad- Figure 4.32(c) The passage from physisorption to
sorbed (point X) and is then chemically chemisortption is slow due tho the

adsorbed (nondissociate) at point Y. requirement of the activation energy Y.
This is a fast process.

\Vi — - - € € € < < <—<-—
>

Y

Distance from the surface

Figure 4.33(a) Chemisorption may be a fast as well as a slow process.



4.38 Physical Chemistry
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Figure 4.33(b)
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Figure 4.34

4.18.2 Adsorption Isotherm

Adsorption studies are done over atomically clean surfaces. However, under ordinary
conditions, the surface of a solid remains adsorbed by the different gases of the atmosphere.
Therefore to produce an atomically clean surface, the surface may be heated at ultra high
vacuum (pressure not exceeding 5 x 1071° torr) or a crystal may be cleaved under high
vacuum.
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It is always assumed that, the molecules in the gas phase over the solid are in dynamic
equilibrium with those in the adsorbed layer. The amount or the volume of the gas adsorbed
at a fixed temperature varies with pressure of the overlying gas. An adsorption isotherm
is an equation which gives this variation at a fixed temperature.

4.18.3 Freundlich Adsorption Isotherm

It is one of the earliest adsorption isotherms proposed on purely empirical ground:
v =kP" (4.57)

where v is the volume of the gas adsorbed at the equilibrium pressure P, and k£ and n are
constants (0 < n < 1). This shows that the amount of adsorption increases with P, but not
as rapidly as P. Taking logarithm on Eq. (4.57)

logv =logk + nlog P (4.58)

A plot of log v versus log P is therefore expected to be a straight line with intercept log %
and slope n. The values of 2 and n can therefore be obtained from such a slope (if the
equation is found correct!). The Freundlich adsorption isotherm has however been
found invalid at too high and too low pressures. This isotherm can also be applied to the
adsorption of solutes from solution. Here, the equilibrium concentration C replaces P and
the mass of the solute adsorbed per gram of the adsorbent m replaces v:

m = kC" (4.59)

4.18.4 Langmuir Adsorption Isotherm

In 1918, Langmuir used the kinetic theory to arrive at an equation of adsorption isotherm.
He assumed that:
(i) A solid surface is uniform and has a certain number of equivalent sites each of
which may be occupied by only one molecule of the adsorbate.
(i1) Once adsorbed, the molecules are localised (that is, the activation energy hindering
migration to an adjacent site is much greater than the thermal energy £7").

(iii) The heat of adsorption per site remains constant irrespective of the fraction of the
sites covered. This means that the adsorbed molecules do not interact laterally
with each other.

(iv) Adsorbing molecules are continually colliding the surface. If they impact on a
vacant adsorption site, it may be adsorbed but if it happens to collide a filled site,
it bounces back into the gas phase.

(v) A dynamic equilibrium exists between the molecules in the overlying gas and those
in the adsorbed layer at a fixed temperature and pressure.
A non-dissociative adsorption of a molecule can therefore be represented as
A

| |
A(@) + —S- =2 _§-
kg



4.40 Physical Chemistry

where A is a molecule in the gas phase, —S— is a vacant surface site, — S— is the adsorbed
molecule and, £, and &, are the rate constants for the adsorption and desorption steps,
respectively. Let N be the total number of sites and say 0 be the fraction of these sites
occupied at some instant when the pressure in the gas phase is P. The number of vacant
and filled sites at this instant are therefore, (1 — 8) N and N9, respectively. The rate of
adsorption v, is directly proportional to the rate of striking of the molecules on the surface
and to the number of vacant sites. The first of these two factors depends on the pressure
of the gas at a fixed temperature. Therefore, the rate of adsorption is give by:

v, =k, P(1 - ON (4.60)

The rate of desorption v,; depends (at a fixed temperature) on the number of occupied sites
N6. So,

Ug = kd N9 (461)

At equilibrium, these two rates are equal;
Ug = Vg
k,P(1- 0N =Fk;NO
k
, where K=—%, the equilibrium constant of the adsorption,

1
or =
KP ky
KP

or 0= (4.62)

This 6is called the surface coverage.

Surface coverage, 0 = no. of sites filled up at equilibrium

total number of sites present on the surface

Equation (4.62) is the Langmuir adsorption isotherm which gives the variation of the
surface coverage with pressure.

In the limit P - 0,0 = KP =0
1+ KP
In the limit KP << 1, when the pressure is very low, 9 = ~ KP

1+ very small no. -

In the limit KP >> 1, when the pressure is very high, 6 = 1 KP =1

+ KP
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Figure 4.35 Plots of Ovs p at temperatures 300 K, 400 K and 500 K for CO on charcoal.

These features are shown in Figure 4.35. Initially 6 increases linearly with pressure;
at intermediate pressures, the linearity is broken, but 6 goes on increasing and finally
approaches unity asymptotically at very high pressure. The Langmuir adsorption isotherm
can also be written as

1 1+ L (4.63a)

0 KP
and which can be experimentally verified by plotting 1/6 versus 1/P. Adsorption of different
gases on different solids will have different slopes, but their intercepts are all expected to
be unity. This has experimentally been confirmed for a number of cases (Figure 4.36). More
generally, the adsorption study is made by measuring the volume of the gas adsorbed. If v
be the volume of the gas adsorbed when the surface coverage is 6 and v,, be the volume of
the gas adsorbed when infinitely high pressure is applied, i.e. when 08 = 1, and a complete
monolayer formed then

v KP

0=— = (4.63b)
v, 1+KP
and the Langmuir adsorption isotherm can be put in the form
rP_1 P (4.64)

v v, K v,
An experimental verification of this equation is possible by plotting P/v vs. P. A straight
line with positive slope and intercept is obtained (Figure 4.37). From the inverse of the
slope, v,,, the volume required to form a complete monolayer can be evaluated from which
the surface area of the solid can be estimated.
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1p —

Figure 4.36 Plots of 1/0versus 1/p for O, and CO on silica.

plv

Y

P —>

Figure 4.37 A verification of the Langmuir adsorption isotherm.

4.18.4.1 Determination of the Surface Area of a Solid from Langmuir
Adsorption Isotherm

A plot as given in Figure 4.37 is first made. From its slope, v,, is evaluated and then
reduced to NTP. The number of molecules present in v,, (in ml at NTP) volume of the

V.. (in ml at NTP) N,
22414
of each molecule, A, is known, a priori, then the surface area per gram of the solid is

gas is , where N, is the Avogadro number. If the cross-section
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_v,(inmlat NTP) N, A
B 22414(m)

S is one of the fundamental parameters used in choosing the appropriate surface in
heterogeneous catalysis.

S ; m is the mass of the solid used. This specific surface area

4.18.4.2 Isosteric Heat of Adsorption

It has already been mentioned that adsorption is an exothermic process. The heat of
adsorption is usually measured calorimetrically by determining the amount of heat
evolved when a certain amount of gas is allowed to adsorb on a clean surface. When
this measurement is made at different surface coverages and the heat of adsorption so
obtained, plotted versus 6, a cure as shown in Figure 4.38 is observed. The figure clearly
shows that AH ;4 is not actually independent of the surface coverage (so the third postulate
of Langmuir is not correct). One reason is that as the surface coverage increases, the
closely packed adsorbed molecules may laterally interact with each other and change the
heat of adsorption. In order to take into account the effect of this lateral interaction, the
isosteric heat of adsorption, which is the enthalpy of adsorption at a fixed surface coverage

0, is defined as:
(aanJ :AHad (4.65)
oT ), RT?

Y

60 —>

Figure 4.38 The heat of adsorption varies with the surface coverage

Since the equilibrium constant of adsorption K changes with temperature different
curves of O versus P is obtained at different temperatures (Figure 4.39). This temperature
dependence of K can be used in determining the isosteric heat of adsorption. From
Eq. (4.62), we can write,



taking logarithm on both sides,
InK=In 9 In P
1-6

and differentiating with respect to temperature at constant 6,
( dnK) (dInP
JaT ), JaT ),

and combining with Eq. (4.65), we get,

dn P\ = AH,
of ),  RT?
dlnP AH
or o R
la)
L \T) ]y

Physical Chemistry

(4.66)

As shown in Figure 4.39, from the isotherms at different temperatures, In P data are
plotted versus 1/T corresponding to a fixed 6; the plot will be a straight line (Figure 4.40)
whose slope is AH,4/R. The measurement of the slope of this plot enables us to calculate
the isosteric heat of adsorption. The free energy of adsorption AG,,, can be calculated
directly from the value of K (obtained by dividing the slope of the line in Figure 4.37 by
its intercept) and, this value can be combined with isosteric heat of adsorption to evaluate

the entropy of adsorption.

1.0

0.8
T 0.6
0

0.4

0.2

S

0
0p, P,2 4 6 8 10 12p, 14

P (atm) —>

Figure 4.39 Determination of isosteric heat of adsorption, T, > T, > T; > T,.

P,, P, and P; are the pressures for a fixed at 6 temperatures T;, T, and T,.
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Figure 4.40 Plot of In P versus 1/T the (from the data of Figure 4.39)

4.18.4.3 Langmuir Adsorption Isotherm for a Dissociative Adsorption

As explained earlier, if a diatomic molecule undergoes fragmentation into the atoms
during adsorption then the form of the Langmuir adsorption isotherm would be slightly
different. The process is now represented as:

A A
L

Ay(g) +-S—S-—t>_§_S-
(. kg | |

The rate of adsorption is again proportional to the pressure of the overlying gas, but
now, when two sites are required for adsorption, the rate is second order in N(1 — 0);
therefore,

v, =k, PN*(1- 6)° (4.67)

Similarly, two adsorption sites are required for desorption and therefore, the rate of
desorption

vy =ky N?6? (4.68)
At equilibrium,
Ua = Ud
k, PN*(1- 6)* =k, N*¢°
_ JKP
1++/KP

or 0
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The variation of 6 with pressure is again almost similar to that in the non-dissociative
case (Figure 4.35) but the dependence is now much weaker.

Example 4.7

When two different molecules A and B compete for the same sites of a surface, derive
expressions for the surface coverages 6, and 65 of the two kinds.

Solution

Let the partial pressure of the gas A be P, and that of the gas B be Py Let 6, and 65 are
the fractions of the total sites adsorbed by A and B molecules, respectively, at equilibrium.
Then the condition of equilibrium of the gas A is given as:

and that of gas B is
Solving these two simultaneous equations for 6, and 65, we find
K,P KyP
0, = A4 and 65 = B B
1+ K,P, + KzP, 1+K, P, + Kz Py
where K, = L and K = Fup
kaa kap

4.18.5 BET Isotherm

One of the restrictions in using Langmuir adsorption isotherm is that it does not allow
for the possibility that the adsorbed film thickness may be more than one molecule. There
are ample examples where multilayer formation takes place, and then the enthalpy of
adsorption in the first layer will be certainly different from the enthalpy of adsorption in
the higher stacks (the strength of adsorbent-adsorbate bond is certainly different from
the adsorbate-adsorbate bonds). Langmuir adsorption isotherm is best in analysing the
data of chemisorbed systems where the adsorbed layer can not go beyond one molecule.
In fact, there are five different kinds of adsorption isotherm (Figure 4.41). The type-I can
only be explained by the Langmuir adsorption isotherm. This type is typically observed
in chemisorption. Type-II is very common, particularly in physisorption, where multilayer
formation takes place. Type-III curves are relatively rare and apparently correspond to
situations where the heat of adsorption is either equal or less than the heat of condensation
of the vapour. Examples of type-III are: adsorptions of N, on ice, adsorption of H,O on
graphitized carbons or polyethylene. In both the types (II and III), the curve approaches
the line at P°, asymptotically. The behaviour in types IV and V is indicative of the process
of capillary condensation and may exhibit hysteresis effect. Again, by introducing some
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simplifying assumptions, Brunauer, Emmett and Teller (BET) modified the Langmuir
adsorption isotherm. The assumptions are:
(i) The surface contains some definite number of equivalent sites of uniform energy.
(i1) Stacking of molecular layers can take place on the first layer. That is, second layer
adsorption can take place on the top of the first, third on the top of the second:
fourth on the top third and so on.
(iii) A dynamic equilibrium exists between the molecules of any two successive layers.
(iv) The heat of adsorption in the first layer is AH 4, which depends on the nature of the
adsorbate and the adsorbent, but that in the 2nd, 3rd, 4th, etc. layers are all equal,
and is equal to the heat of condensation of the vapour.

A

<
<
<

p—> p° p—> p° p—> p°
[ 1 1]
A . A . A .
v | v | v |
PP pe pe p°
p—> p—> p—>
v v VI

Figure 4.41 The five kinds of isotherm. P’ is the saturated vapour pressure. The type VI kind is a very
recent type observed for noble gas adsorption on well defined uniform solids such as
highly oriented pyrolytic graphite.
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4.18.5.1 Derivation of BET Adsorption Isotherm

Consider the equilibrium between adsorption and desorption in the first layer:
A(@ +S=AS

If ., and k;; are the rate constants for the adsorption and desorption processes and 6, and
6, are the fractions of the surface sites lying vacant and, filled up by one molecule layer,
respectively, then

ko1 P(6,) = k;; 6;, where P is the pressure of the overlying gas
kal — 91 N Kl — 91
ky, 6,P Po,
If this was the only story then, Eq. (4.69) would be

or (4.69)

P1-6)
where 0 is the surface coverage. Rearrangement of this equation gives:
1-6 1
6 K. P
1 (A+K,P)
= —_—
0 K. P
K. P
or =—"
1+K,P)

the Langmuir adsorption isotherm [(Eq. 4.63(b)].

K; is the equilibrium constant of adsorption in the first layer. Now, consider the formation
of the second layer:

A(g) + AS=A,S
Exactly, as before we find
K, =22 (4.70)
6,P

where 6, is the fraction of the surface sites which are covered with an adsorbed layer of

two molecules in thickness, and K, is the corresponding equilibrium constant. Going on

building stacks one above the other we write:
Al@+AS=A,S : K,;=6,/6,P
:A +:A3S @zAélS : K,=6,/6,P @71

A +A,_S=AS: K,=0,/0, P
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where 6, is the fraction of the surface sites covered by an adsorbed layer of n-molecules in
thickness.

From the fourth postulate, we find that the equilibrium constant K,, Kj, ..., K, are all
equal (this is justified because the force with which a molecule is held on the third layer is
not different from that which holds a molecule in the fourth layer; they are all adsorbate
forces) and equal to that of the condensation of the vapour; that is:

K2=K3= oo =Kn=K
where K is the equilibrium constant of the process:

L. P° is the saturated vapour pressure (4.72)

vap (P°) = Liquid ; K = 70

From Eqs (4.70) and (4.71), we find
6, = 6,KP, 6, = 6, KP = 6,(KP)*; 6, = 6,(KP)?

and hence in general

6, = 6,(KP)" ! (4.73)
The sum of 6, and all the 6,’s is unity, i.e.

1=6,+26,
or 1=6,+ {6, + 6,(KP) + 6, (KP)* + ...}
or 1=6,+ 6, {1+ (KP)+(KP)?+..)}

_ 6 6 _, 1-KP+KP
K,P 1-KP ' K,P1-KP)

or

_ CKP(1-KP)

o 171+ (C - DKP]

[where C = K, / K] (4.74)

where C = K;/K. Let N,, be the total number of surface sites present over the surface, and
N be the total number of molecules adsorbed on the surface, then

or Ni =0,[1+ 2KP + 3(KP)* +---] using Eq. (4.73)
— 91
(1- KP)?
CKP(1- KP)

"1+ (C-DKP](- KPP
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or N/N,,=CKP/[1 +(C-1)KP] [1-KP] (4.75)

If v be the total volume of the gas adsorbed over the solid and v,, be the volume of the gas
required to form a complete monolayer then

with which Eq. (4.75) changes to
v CKP
v, [1+(C -1)KP][1- KP]

m

and using Eq. (4.72),

v C(P/P°)
v, [1+(C-1) P/P°1[1-P/P°]
v,, CP
or U= (476)

(P°-P)[1+(C-1) P/P°]

which is the BET adsorption isotherm. This equation clearly shows that V — o as P —
P° (this is observed in types II and III curves). An immediate explanation is that as the
saturated vapour pressure is approached, the adsorbed layer seems to change into the
liquefied state of the vapour, which would otherwise occur at P° in absence of any surface.
Equation (4.76) can also be written as

P 1 (CDP

= 4.77
vP’-P) v,C v,C P° ( )

which demands that a plot of 0 versus P/P° will be a straight line with slope

v(PY - P)

Cc-1
C

. 1 . . .
and intercept T Taking the inverse of the sum of the slope and intercept,
v

we can get the value of v,,. In many cases, this expectation has been found correct, and

therefore, as we have done earlier, for such surfaces, the specific surface area of the solid
can be estimated if the cross section of each molecule is known, a priori.

The adjustable parameter C, as it is called, can be correlated to the heat of adsorption in
the first layer AH 4, and the heat of condensation AH, as follows:

_AGT AHG%q AST
C:KlzeRT e RT ., R
K AGe, AHG  ASG

e BT o RT .o R
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where AG°, AH° and AS° are the standard free energy, enthalpy and entropy of adsorption.
With suffix 1, they refer to the first layer, and with suffix C, they refer to the next successive
layers, or the process of condensation. Without much error, it can be argued that wherever
a molecule is adsorbed, it always loses the entropy to the same extent irrespective of, in
which layer it is trapped, i.e. AS; = AS;,. The above equation therefore changes to

C = exp {_(AH%——TAHC)} (4.78)

4.18.5.2 Explanation of the Five Kinds of Adsorption Isotherms by BET Equation

Type I We know that the curve of this type represents a purely chemisorbed state
where the thickness of the adsorbed layer is only one-molecule. This happens
at a pressure much lower than the saturated vapour pressure (P° >> P).
Furthermore, the enthalpy of adsorption in the first layer is also much greater
than the entahlpy of condensation, i.e. C >> 1. Moreover, since we have seen
that the Langmuir adsorption isotherm can explain this kind of curve, it is
possible to derive the Langmuir equation from the BET under this condition
of C >>1 and P° >> P. We do it as follows:
P°>>P=P°-P=P°andasC>>1=C-1=C
With these results, Eq. (4.77) changes to

P 1 N 1 P pP_pP P P 1 P

i = + —

_ =
o o
vP° v, C v, P v v,C v v v,K, v

m m m

which is the Langmuir equation.

TypeII  When C is greater than unity which is possible if AH_ 4 > AH, the curves
of Type II are obtained. Adsorption, here takes place, preferentially on the
first layer; and after almost complete formation of the monolayer, which is
indicated by the knee of the curve, multilayer formation takes place.

Type IIl  If AH_ 4 < AH, C will be less then unity. Under this condition, curves of
Type III are observed. Here, multilayer formation takes place from the very
beginning.

Type IV and Type V
These curves are, as such, very difficult to explain from the BET equation.
However, the similarity of Types II and III with the first part of IV and
V, respectively, suggests that AH,_; > AH, for Type IV and AH,; < AH, for
Type V. But, in contrast to the steep increase in adsorption for types II and III
as P° is approached, there is a saturation in Types IV and V well before P°
is reached. This is due to the condensation of the vapour within capillaries
(which may be present in the solid just under its skin) of pore size not exceeding
5 nm. Recall from the Kelvin equation that the vapour condenses at a pressure
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much lower than the saturated vapour pressure inside a capillary if the liquid
wets the surface.

4.19 RATE OF SURFACE ADSORPTION

The surface of a solid has about 10'® atoms per square centimetre, and the Langmuir
equation assumed that each of these atoms, i.e. a surface site, can hold-on one adsorbate
molecule. Now, if a molecule strikes the surface, it is not that it will be immediately
adsorbed. If the energy of the striking molecule could be dissipated as heat, the molecule
will be adsorbed; otherwise, the molecule will translate over the surface until a vibration
knocks it off the surface to the overlying gas again. The sticking probability S, is defined
as the fraction of the total number of strikes on the surface that leads to a successful
adsorption.

_ rate of adsorption of molecules on the surface

- (4.79)
rate of striking of molecules on the surface

The denominator can be calculated using the kinetic theory of gas and the numerator can

be calculated using various techniques, e.g. by measuring the rate of decrease of pressure
of the gas with time. According to Langmuir adsorption isotherm,

k, N1-0)
Zy
where %, is the rate constant of adsorption, N is the total number of sites present on

the surface and Zy is the striking rate of the molecules on the surface; the parameter
k, N/Zy is finally replaced by S, the sticking probability at 6 = 0.

S = =8, (1-6) (4.80)

Example 4.8

Calculate the maximum rate of adsorption of oxygen molecules over a clean metal surface
at 298 K and at a pressure 107 Torr. Assume that there are 10'® atoms per cm? of the
surface.

Solution

Maximum rate of adsorption means striking probability S = 1.

Form the result in kinetic theory, Z;, = i n{c)

_1f10° 6.023x10*° mol . [8%(8.314x10" erg K™ mol ™) (298 K)
" 4( 760 82.05 (cm® atm K mol™ 3.14 x 32 g mol*

=3.6x10%ecm2s™!
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Therefore the maximum rate of adsorption

_36x10" em s

v, 5 5 =0.36 sites per sec.
10 cm™

Therefore in one second, 36 percent of the surface will be covered by the monolayer.

This express the exposure of a surface towards the gas, the surface scientists have defined
the unit: 1 Langmuir = 107° Torr s. The above problem shows that, the exposure of surface
to 1 Langmuir leads to 36 percent of surface coverage. The exposure of the surface to two
Langmuir (i.e., a 2 second exposure at a pressure of 10 Torr or one second exposure
at a pressure of 2 x 107® Torr) would then result in 72 percent surface coverage. In the
above calculation, we have considered the sticking probability to be unit; in fact it is less
than one. So the maximum rate of adsorption is less than the above value. For example,
if the sticking probability is 0.8, then the maximum rate of adsorption would be 36 x 0.8
= 28.8 percent surface coverage at one Langmuir. Moreover, as Eq. (4.80) suggests, the
sticking probability decreases linearly with the surface coverage, and therefore, in the
above example (28.8 x 2 = 57.6 percent surface coverage needs more than two Langmuir,
i.e. longer than 2 seconds at 10~ Torr pressure. Figure 4.42 shows the variation of sticking
probability with surface coverage. It is found that S does not fall linearly with 6; sometimes
it falls off too sharply and sometimes too slowly. The former is generally observed in
dissociative chemisorption, where the adsorption of one molecule fills up two vacant sites.
The slow variation of S with 6 can be explained as follows: Langmuir assumed that when a
molecule strikes a filled site, it rebounds back into the gas phase. But in fact, the molecule
could be physically adsorbed on the chemisorbed layer, spend some time moving over
the surface until either it finds a vacant site and gets adsorbed or really kicked off the
surface.

SIS;

0 9 —>

Figure 4.42 The variation of S with 6.
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Example 4.9

Calculate the rate of adsorption of hydrogen (assume dissociative chemisorption) at a
pressure of 10 Torr and 300 K on the (110) plane of a body-centred cubic lattice. The unit
cell has a side length of 316 pm and the sticking probability is 0.6.

Solution
The rate of striking of the molecules on the surface at 1 x 107 Torr and 300 K is
PN,
Zy zln<c>=l_0 ﬂ
4 4 RT \nM

=143x10%cm™?s™!
The (110) plane of the unit cell of the body centred lattice contains 1 + 1/4 x 4 = 2 atoms.
The area of this plane is \/2¢? which is /2 (316 x1072m)? =1.412 x 10™*® ¢m?
Therefore, the number of sites (i.e. atoms) per unit are