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PREFACE

The fi eld of Physical Chemistry has now become widespread that it has invaded all other 

branches of Science. This book is written not only to introduce the subject of Physical 

Chemistry to the students who aspire to become chemists, but also for many other 

students who will fi nd the knowledge of subject matter essential at the later stages of 

their carriers.

The author has made every effort to represent the text in a lucid and easy-to-understand 

language. Signifi cant time has been devoted for the development of the book so as to provide 

a strong foundation of the subject to the students studying it for the fi rst time. Due care 

has been taken to ensure the coverage of recent trends in the fi eld of Physical Chemistry. 

He has followed his principal objective of presenting the fundamentals of the subject as 

clearly as possible. For this reason, the book includes a number of worked out problems, 

so that the students apprehend the concepts covered in the respective chapters.

The students using this book are assumed to have a basic knowledge on the subjects 

of Chemistry, Physics and Calculus, as they usually gain in H.S. courses affi liated to 

different education boards (W.B.C.H.S.E., I.S.C., CBSE). Although the book is intended 

primarily for the conventional undergraduate course in Physical Chemistry; however, it 

covers more than that. It is believed to be equally effi cient for more advanced courses and 

as a general reference book for those working in the fi elds that require a basic knowledge 

of Physical Chemistry.

ASHISH KUMAR NAG
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1.1 INTRODUCTION: THE NATURE OF GASES
A gas may be defi ned as a homogeneous substance whose volume increases without limit 

when the pressure on it is reduced continuously, the temperature being kept fi xed. Gases are 

further characterised by the fact that, when different gases in any proportion, whatsoever, 

are brought into contact, they diffuse rapidly into one another and form a homogeneous 

mixture. Temperature also has a profound infl uence on the volume of the gas.

The gaseous state is also characterised by the fact that, it has no bounding surface, and so, 

it has no defi nite shape; it takes the shape of the vessel in which it is contained. However, 

there is an important difference between a gas and a liquid. While the former has no surface 

at all, the latter has a surface. This places a limit on the volume it can occupy. Under 

ordinary conditions, gases are about one-thousandth as dense as liquids; nevertheless, 

there are conditions where the densities of the two states become comparable. We are often 

inclined to think that air weighs nothing; this is far from truth. If a cylindrical column of 

air, same in dimension as that of the Eiffel Tower (built wholly of steel) is imagined, then 

this column of air weighs more than the Eiffel Tower itself.

1.2 THE GAS LAWS
A very striking fact about the gases is that, independent of their chemical nature, they 

approximately obey certain very simple laws with regard to their physical properties. These 

are: (1) Boyle’s law (2) Charles’s or Gay-Lussac’s law (3) Avogadro’s law (4) Dalton’s law of 

partial pressure, and (6) Graham’s law of diffusion/effusion.

1.2.1  Boyle’s Law
When the pressure of a gas is increased, at a fi xed temperature, the volume decreases; 

a simple relation between the volume and the pressure was discovered by Robert Boyle 

(1662). He found that at a constant temperature, the volume of a defi nite mass of a gas is 

inversely proportional to the pressure, i.e.,

THE EMPIRICAL

GAS LAWS
1

CHAPTER
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1

V
P

μ  (for a given mass of a gas at a fi xed temperature)

fi  PV = K1 (for a given mass of a gas at a fi xed temperature) (1.1)

where K1 is a constant depending upon the temperature and the mass of the gas and, also 

upon its nature. If V1 is the volume of a given mass of gas at pressure P1 and, V2 is the 

volume at pressure P2, temperature remaining the same, then

 P1V1 = K1 = P2V2

fi  P1V1 = P2V2  (for a given mass of a gas at a fi xed T) (1.2)

This P-V relation is illustrated in Figure 1.1. Each curve corresponds to a given fi xed 

temperature, and is called an isotherm (‘iso’ means ‘the same’). The early experiments 

were crude, and we now know that gases obey this equation in the limit P Æ O and T Æ μ.

The understanding of the law is very clear. The pressure exerted by a gas is due to the 

bombardment of the molecules on the walls of the container. If the volume is doubled, the 

number density of the molecules is halved and therefore, the number of impacts on a unit 

area of the wall is also halved, and therefore, according to the Boyle’s law, the pressure is 

also halved (everything at a fi xed temperature).

(a) (b)

Figure 1.1  (a) The pressure-volume dependence of a perfect gas at diff erent temperatures

(b) The projec  on of the ideal gas P-V-T surface onto the P-V plane. (T4 > T3 > T2 > T1).

Another way to illustrate the Boyle’s law is to plot 1/P against V (Figure 1.2). The advantage 

of this plot over the P-V plot is that, the linear relationship makes it easier to see any 

deviations from the law. For an ideal gas the plot of (1/P) versus v should be a straight line, 

passing through the origin.
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Figure 1.2  A plot of 1/P against V for Boyle’s original data. This linear plot,

passing through the origin, shows that PV = constant.

Example 1.1
A given mass of gas occupies a volume of 120 mL at a pressure of 2.5 atm at a certain 

temperature. By how much the volume would be changed if the pressure were reduced to 

1.5 atm under the isothermal condition?

Solu  on Applying the Boyle’s law, we write

 (1.5 atm) V = (2.5 atm) (120 mL)

fi  V = 
(2.5 atm )(120 mL)

(1.5 atm )

fi  V = 200 mL

The volume is therefore increased by (200 – 120) mL, i.e., 80 mL as a result of the pressure 

change.

A spherical bubble of radius 1 ¥ 10–2 cm is formed deep inside the sea, where the pressure is 
3.375 atm. Calculate the radius of the bubble when it comes up at the sea–air interface, where the 

pressure is 1 atm. Assume the isothermal condi  on.

(Ans: 1.5 ¥ 10–2 cm)

Test Problem 1.1
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1.2.2  Charles’s Law; Gay Lussac’s Law
The variation of the volume of a given mass of a gas with temperature, at a fi xed pressure, 

is expressed by this law. The law states that, at a fi xed pressure, the volume of a fi xed mass 

of a gas increases (or decreases) by 
1

273.15
 of its volume at 0°C for every degree its rise 

(or decrease) in temperature. If V0 is the volume of a defi nite mass of gas at 0°C, then the 

volume Vt at t°C is given by

 Vt = 
Ê ˆ

+ Á ˜Ë ¯
0

0
273.15

V
V t  (1.3)

An alternative form of the law may be derived. If V1 and V2 are the volumes of a fi xed mass 

of a gas at two temperatures t1 and t2, measured at the same pressure then, it follows from 

Eq. (1.3)

 V1 = 1
0 1

273.15

t
V

Ê ˆ
+Á ˜Ë ¯

and V2 = 2
0 1

273.15

t
V

Ê ˆ
+Á ˜Ë ¯

and fi nally,

 1

2

V

V
 = 1

2

(273.15 )

(273.15 )

t

t

+
+

 (1.4)

1.2.3 Defi ning a New Scale of Temperature
Let us construct a new scale of temperature in which one degree is of the same size as one 

degree centigrade and, the zero is –273.15° below the zero of the centigrade scale. This 

means that the zero on this new scale is at –273.15°C (Figure 1.3).

Temperatures T on this new scale are then obtained by adding 273.15 to the celsius 

temperature t, viz., 

 T/K = t/°C + 273.15°C (1.5)

Temperatures on this new scale of temperature are called  absolute temperatures because, 

there are reasons to believe that the ‘zero’ on this new scale is the lowest conceivable 

temperature. The symbol K is used to represent the absolute temperature, in honour of 

Lord Kelvin (Willian Thomson), who deduced an exactly the same scale of temperature 

from thermodynamic considerations and, which is shown to be independent of the 

thermometric property of the substance used. It is hence, called the  Kelvin scale of 

temperature.
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Figure 1.3  A plot of volume against temperature for argon, nitrogen and oxygen. The individual curves show 

the eff ect of a change in molar mass for the three gases. In each case one kilogram of gas is used at 

1.00 atmosphere.

It may be noted that, according to the Charles’s law, the volume of a gas should be zero 

at the absolute zero, i.e., at –273.15°C. However, apart from the fact that the gas would 

have liquefi ed and/or solidifi ed, before this temperature is attained, it will be seen later 

that, this law fails to hold at such low temperatures.

Making use of this defi nition of the Kelvin scale of temperature, Eq. (1.4) changes to

 1

2

V

V
 = 1

2

T

T

fi  
V

T
 = K2 (for a fi xed mass of a gas at a fi xed pressure) (1.6)

where K2 is a proportionality constant, depending upon the pressure and the mass of the 

gas and, also upon its nature. This equation may also be stated as: the volume of a given 

mass of a gas, at a fi xed pressure, is directly proportional to the absolute temperature. 

According to this law, a plot of V versus T for the given mass of a gas at a fi xed pressure 

will be a straight line passing through the origin with a slope K2 (Figure 1.4a). Such a 

line is called an ISOBAR. For each pressure, a different isobar is obtained. Higher the 

pressure lower is the slope K2 (why?). The variation of the pressure of the fi xed mass of a 
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gas with temperature (at a fi xed volume) is also shown (Figure 1.4b). These variations can 

be collectively illustrated as shown in Figure 1.5.

The variation of the volume of a fi xed amount of 

gas with the temperature at constant pressure. 

Note that in each case the isobars extrapolate 

to zero volume at T = 0 K, or t = –273°C.

The pressure also varies linearly with the 

temperature at constant volume and extrapolates 

to zero at T = 0 K (–273°C).

Figure 1.4 (a) The V–T isobar at diff erent fi xed pressures (b) The P–T isochore (const V) at diff erent fi xed volumes.

Figure 1.5 The varia  ons, for a given mass of gas, of P and V with temperature. Compare this fi gure with Figure 1.6.
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1.2.4 The Combined Gas Law
The laws of Boyle and Charles may be combined to get an  equation of state, which represents 

the relationship among the parameters P, T and V for a given amount of a gas.

Let the gas has initially a volume Vi at pressure Pi and temperature Ti. Let these parameters 

are changed to Vf, Pf and Tf. This change can be made in two steps.

At fixed At fixed pressure

is changed to . , the temperature is changed

Volume becomes to ; Volume changes to

, , , , , ,i

fi f

f f

T T

i i i f i f f fP P P

V T V

V P T V P T V P T
=

¢

È ˘ È ˘ææææææææÆ ¢ æææææææææææÆÈ ˘Î ˚ Î ˚ Î ˚

Applying the Boyle’s law to the fi rst step, we write

 PiVi = PfV¢;   fi  V¢ = 
( )i i

f

PV

P
 (1.7)

Then applying the Charles’s law to the second step, we write

 
i

V

T

¢
 = 

( )f i f

f f

V T V
V

T T
fi ¢ =  (1.8)

from these equations, we get

 i i

i

PV

T
 = ; (constant)

f f

f

P V PV
K

T T
fi =  (1.9)

which shows that, for the given mass of a gas, any change in temperature and/or pressure 

will be accompanied by an adjustment of the volume, so that the quotient (PV/T) remains 

unaltered. This is demonstrated in Figure 1.6.

Figure 1.6 P-v-T surface for an ideal gas, showing the isothermals, isobars and isochores. Plot of Equa  on 1.9.
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Example 1.2
A given mass of gas occupies 240 mL at 15°C and 1 atm. At what temperature will the 

volume be 360 mL, pressure remaining the same?

Solu  on

Using the Charles’s law we write

 
360 mL

T
 = 

288 K

240 mL

fi  T = 
(288 K)

(360 mL)
(240 mL)

fi  T = 432 K

A balloon is infl ated to a volume of 1 L at room temperature (27°C) and atmospheric pressure. To 

what volume it will shrink if it is kept inside a refrigerator, at the same pressure. The temperature 

inside the refrigerator is –3°C. [Ans. 900 mL]

Example 1.3
A given mass of a gas occupies 11.2 L at 0°C and 1 atm. What will be the fi nal pressure if 

it is expanded to 22.4 L by heating it to 100°C?

Solu  on

Using the combined gas [Eq. (1.9)]

 Pf = 
fi i

i f

TPV

T V

Ê ˆÊ ˆ
Á ˜Á ˜Ë ¯ Ë ¯

 = 
(1 atm)(11.2 L) (373 K )

(273 K ) (22.4 L)

fi  Pf = 0.683 atm

Star  ng out for a trip from the mountains (–5°C) you infl ate your automobile tyres to a recommended 

pressure of 3 ¥ 105 Pa. As you drove into the seashore, the temperature rises to 38°C. Assuming 
that the volume of the tyre has increased by 2%, what would be the fi nal pressure of the tyres? The 

manufacturer recommended that you should not exceed the pressure by 10%. Have you crossed 

the limit? If yes, by how much? [Ans: +13.67%]

Test Problem 1.2

Test Problem 1.3
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1.2.5 The Ideal Gas Equation
The value of the constant K in Eq. (1.9) depends upon the mass and the nature of the gas; 

but, the introduction of the Avogadro’s law makes a remarkable simplifi cation.

Avogadro’s Law Equal number of moles of all gases will occupy the same volume at a 

given temperature and pressure. (In the year 1811 !)

Mole: An Offi cial Defi nition by IUPAC

A mole of a substance is defi ned as that amount of the substance which contains as 

many number of stable elementary entities as there are atoms in 0.012 kg of C-12 

isotope. An essential feature to note is that, it is not just a number but, a quantity of 

a substance. Recently, the ‘mole’ has been included as one of the fundamental units of 

our measurements. It is the unit for measurement of the amount of the substance. The 

number of elementary units present in a mole is the Avogadro’s number 6.022 ¥ 1023. 

We say, the Avogadro’s constant N0 = 6.022 ¥ 1023 mol–1.

Example 1.4
How many moles and molecules are there in 48 g oxygen?

Solu  on

The molecular weight of oxygen is 32; i.e., its molar mass is 32 g mol–1. Therefore, the 

number of moles (n) in 48 g oxygen is

 n = 
1

48gmass
1.5 mol.

molar mass 32 g mol-= =

The number of oxygen molecules N present is then

 N = nN0 = (1.5 mol) (6.022 ¥ 1023 mol–1)

fi  N = 9.033 ¥ 1023

How many moles and atoms of sulfur are there in an 8 g sample of sulfur? A  er a controlled mel  ng 

and re-crystalliza  on, each set of eight sulfur atoms unite together to form a unit S8. If the en  re 

sample turns into S8, then how many moles of S8 will be formed? What will be the molar mass?

 [Ans: 0.25 mol; 1.51 ¥ 1023 atoms; 0.03125 mol; 256 g mol–1]

Test Problem 1.4
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Hence, according to the Avogadro’s law, for a mole of any gas, (PV/T) will be equal to a 

universal constant R, known as the gas constant. Its value will be the same for all gases. 

The general equation of state for any gas would be then 

 
PV

T
 = R;   fi  PV = RT (1.10)

where V is the molar volume at the pressure P and temperature T. If v is the volume for n 

moles, then the molar volume is V = v/n; we then write P(v/n) = RT

or, Pv = nRT (1.11)

This is known as the  ideal gas law. Another useful relation can be obtained by rearranging 

the above equation:

 P = r
Ê ˆ= =Á ˜Ë ¯

n W RT RT
RT

v M v M

fi  r = 
MP

RT
 (1.12)

where W is the mass of the gas with molar mass M and r is the density.

This equation is of importance in

 (i) calculating the molar masses from density measurements and,

 (ii) determination of pressure high up in the altitudes by measuring the density and 

temperature.

Example 1.5
Find the density of NH3 gas at 100°C and 1600 mmHg. Also calculate the number of 

molecules per unit volume.

Solu  on

The molar mass of NH3 is 17 g mol–1. Using Eq. (1.12)

 r = 

1(17 g molMP

RT

-

=
)(1600 mmHg )

(0.082 L atm 1K- 1mol-

1 atm

) 760 mmHg

1

373 K

Ê ˆ
Á ˜
Ë ¯

Ê ˆ
Á ˜Ë ¯

fi r = 1.17 gL–1

If m be the mass of each molecule and n be the number of molecules per unit volume 

then,

 r = mn

fi n = 0

(1.17 g
N

m M

r r
= =

1 23 1L )(6.022 10 mol- -¥ )

17 g 1mol-

fi  n = 4.14 × 1022 molecules L–1
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A cylinder fi lled with air is connected to a powerful vacuum pump to evacuate it and, the fi nal 

pressure registered is 1 × 10
–7
 mm Hg (an excellent vacuum condi  on) at 27°C. Calculate the 

number of molecules present per cm
3
 of the cylinder. Can you fi nd any of the postulates of the 

kine  c theory of gas with this result?

(Ans: 3.22 × 109 molecules cm–3)

1.2.6 The Absolute Zero of Temperature

The coeffi cient of volume expansion a = 
1

,
P

V

V t

∂Ê ˆ
Á ˜Ë ¯∂

 measured for a number of gases, at 

relatively high temperature and under extremely low pressure (this is the condition at 

which almost all gases behave ideally) has been found to be 0.0036609 (°C)–1. Anticipating 

that V = 0 as T Æ O K, we make use of the equation, V = V0(1 + a t), where t is in (°C) scale. 

This implies that, at the absolute zero of temperature

 1 + at = 0 fi t = 
1 1

C 273.15 C
0.0036609a

- = - ∞ = - ∞

The absolute zero is therefore – 273.15°.

Two different standard conditions are generally used to calculate different thermodynami-

cal properties:

 (i) Standard Temperature and Pressure (STP): The temperature is 0°C and the 

pressure 1 atm.

  Under this condition, the molar volume of an ideal gas is 22.414 L.

 (ii) Standard Ambient Temperature and Pressure (SATP): Here, the temperature 

chosen is 298.15 K and the pressure of 1 bar (that is, exactly 105 Pa).

  Under this condition, the molar volume of an ideal gas is 24.787 L.

1.2.7 Evaluation of the Universal Gas Constant R
The most general defi nition of R is given by Eq. (1.11)

 R = 
Pv

nT

So R has the dimensions of (pressure ¥ volume) divided by the (no. of moles ¥ Kelvin 

temperature). The dimensions of pressure are force ¥ (area)–1 and area is (length)2. 

Hence,

 Pressure = force ¥ (length)–2

Test Problem 1.5
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Since the volume has the dimensions of (length)3 and, the temperature is expressed in 

degrees, it follows from the above relations that

 R = 
2 3(force)(length) (length) (force)(length)

(degree)(number of moles) degree)(number of moles)

-

=

The product of force and length is energy; so

 R = 
energy

(degree)(number of moles)
 (1.13)

It is thus seen that the proper dimension of R is energy per degree per mole. The temperature 

is always expressed in kelvin but, the energy may be expressed as follows:

 (i) Energy in Litre-Atmosphere

 R = - -= 3 1(1 atm)(22.414L)
0.08205 L atm K mol

(1 mol)(273.15 K)

 (ii) Energy in erg (CGS) or joule (SI)

  1 atm is equivalent to 76 cm of Hg, whose density is 13.595 g cm–3 at 0°C.

  1 atm = hrg = (76 cm) (13.595 g cm–3) (980.66 cm s–2)

 fi  1 atm = 1.0132 ¥ 106 dyn cm–2; more accurately

  1 atm = 1.01325 ¥ 106 dyn cm–2

  At 0°C and 1 atm, 1 mL = 1.000027 cm3. Therefore, in this system

 R = 
6 2 3(1.0132 10 dyn cm ) (22414 mL) 1.000027 cm

(1 mol)(273.15 K) 1 mL

- Ê ˆ¥
Á ˜Ë ¯

 R = 8.314 ¥ 107 erg K–1 mol–1

or, R = 8.314 JK–1 mol–1

or, R = 8.314 Pa m3 K–1 mol–1

  Again, 1 atm = 1.01325 ¥ 105 Pa = 1.01325 bar (∵ 1 bar = 1 × 105 Pa)

  Therefore, we also have

 R = 
3(1.01325 bar) (22.414 dm )

(1 mol) (273.15 K)

  or, 2 3 1 18.314 10 bar dm K molR - - -= ¥

 (iii) Energy in calorie

  It is known from the joule’s experiment that 1 cal = 4.184 J
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  Therefore,

 R = 1 1 1 cal
(8.314 J K mol )

4.184 J

- - Ê ˆ
Á ˜Ë ¯

  fi  - -

- -

=

=

1 1

1 1

1.987 cal K mol or, roughly

2 cal K mol

R

R

1.2.8a Mixture of Gases: Dalton’s Law of Partial Pressure

When different gases are introduced into a container, they diffuse into one another and, 

form a homogeneous mixture. The total pressure exerted by this gas mixture in a given 

volume at a fi xed temperature is given by the  Dalton’s law of partial pressure. The law 

states that the total pressure of the mixture of gases is equal to the sum of the partial 

pressures of the constituent gases. The partial pressure of each gas in the mixture is defi ned 

as the pressure the gas would exert if it alone had occupied the same volume as that of 

the mixture and, at the same temperature. Of course, in order for the law to be obeyed, 

no chemical reaction between the component gases may occur and, the component gases 

must behave ideally. Just to get an idea, let us take n1 mole of a gas in a fl ask of a defi nite 

volume V at temperature T. The pressure exerted by the gas would be

 p1 = (n1 RT)/V

If now, n2 mole of a second gas be taken separately in the same fl ask (same V) at the same 

temperature T, the pressure would be

 p2 = (n2 RT)/V

Similarly, if n3 mole of another gas be taken separately in the same fl ask at the same 

temperature, the pressure would be

 p3 = (n3 RT)/V

Now, if all these three gases of the  same number of moles (i.e. n1, n2, n3) are introduced 

into the same fl ask, then the pressure of the gas mixture Pmix (measured at the same T) is 

given by the Dalton’s law as

 Pmix = p1 + p2 + p3

fi  Pmix = (n1 + n2 + n3) = tn RTRT

V V
 (1.14)

nt being the total number of moles of the mixture.
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Another form of the equation may be obtained as

  = = = Â1 1
1 mix

mix

; and i
t

p n
x P p

P n
 (1.15)

where x1 = the mole fraction of component 1 in the mixture; the sum is taken over all the 

components.

Example 1.6 

A gas mixture consists of 10 g Ar (at. wt. 40) and 2 g He (at. wt. 4). The total pressure is

720 Torr. Calculate the partial pressure of the two components (1 Torr = 1 mmHg).

Solu  on 

The number of moles of Ar, nAr = 
1

10 g

40 g mol-  = 0.25 mole and that of He is, 

nHe = 
1

2 g

4 g mol-  = 0.5 mole. The total number of moles in the mixture is:

 nt = nAr + nHe = 0.75 mole

The mole fractions of the two gases are:

 xAr = Ar 0.25 mole

t

n

n
=

0.75 mole

1

3
=

 xHe = =He 0.5 mole

t

n

n 0.75 mole
=

2

3

The partial pressures of the two components are then

 pAr = xAr P = 
1

(720 Torr) 240 Torr
3

=

and pHe = xHeP = 
2

(720 Torr) 480 Torr
3

=

Example 1.7

250 mL of gas A measured at 0.8 atm and 75 mL of another gas B at a pressure 8 atm, both 

measured at the same temperature, are introduced into a vessel of 2 L capacity. What is 

the total pressure of the mixture?

Solu  on

The partial pressure of gas A is the pressure the gas A would exert if it alone occupies the 

total volume of 2 L. By Boyle’s law

 pA = 
(250 mL ) (0.8 atm)

(2000 mL
0.1 atm

)
=
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Similarly, the partial pressure of gas B is

 pB = 
(75 mL) (8 atm)

0.3 atm
(2000 mL)

=

The total pressure, which is the sum of the two partial pressures is then

 P = pA + pB = (0.1 + 0.3) atm = 0.4 atm

Example 1.8 
A gas collected over water at 25°C becomes saturated with water vapour. The measured 

volume is 190 mL at a total pressure of 740 Torr. The vapour pressure of water at 25°C is 

24 Torr. Calculate the volume the dry gas would occupy at a pressure of 760 Torr (1 atm).

Solu  on 

The vapour pressure of water (24 Torr) will be the partial pressure of water vapour. So, the 

partial pressure of the dry gas is

 p = (740 – 24) Torr = 716 Torr

This is the pressure of the dry gas when it occupies the entire volume of 190 mL. If this 

volume becomes V at 760 Torr, then by Boyle’s law

 (760 mmV Hg)  = (716 mm Hg) (190 mL)

fi  V = 179 mL

Assuming that the dry air contains 79% N2 and 21% O2 by volume, calculate the density 

of moist air at 25% and 1 atm pressure, when the relative humidity is 60%. The vapour 

pressure of water at 25°C is 23.76 mm Hg.

[Hint: Relative humidity is 60%; this means that the partial vapour pressure of water in 

the atmosphere is pH2O = (23.76 Torr) (0.6) = 14.25 Torr.]

The sum of the partial pressures of O2 and N2 is then:

 (pO2
 + pN2

) = (760 – 14.25) Torr = 745.75 Torr.

The partial pressure of N2 is then, pN2
 (745.75 Torr) (0.79) = 589.14 Torr

and, that of O2 is  pO2
 = (745.75 Torr)(0.21) = 156.61 Torr.

The mole fractions of the gases are then:

 xH2O = 
2N

14.25 589.14
0.019; 0.775;

760 760
x= = =

 xO2
 = = + + =

2 2 2H O O N

156.61
0.206 (check that, 1).

760
x x x
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The molar mass of air is then

 Mair = 0.019(18 g mol–1) + 0.775 (28 g mol–1) + 0.206(32 g mol–1)

fi  Mair = 28.6 g mol–1

Then density is

 r = =
(28.6 g molMP

RT

-1
) (1 atm )

(0.082 L atm -1K mol
-1

)(298 K )
 = 1.17 gL–1

1.2.8b  The Concept of Partial Pressure is not Just Mathematical; It 
has a Physical Signifi cance.

 (a) (b)

Figure 1.7

It is a well known fact that H2(g) can pass through a palladium foil but, the others 

cannot. The mechanism for this passage of H2(g) through the palladium foil is very much 

intersecting; but here, we want to focus to another phenomenon, which would give us the 

realization  that the concept of partial pressure of a component in a gas mixture is really a 

reality.

Consider Figure 1.7a, where a cubical box of a fi xed volume V and, at a fi xed temperature 

T is taken. The box is fi rst fi lled up with H2(g) at 1 atm. As shown in Figure 1.7a, a 

manometer is attached to the box; the inside mouth being sealed with a thin Pd-foil. The 

other end is open to the atmosphere (1 atm).

As H2(g) can pass though the Pd-foil, at constant temperature, the equilibrium of 

H2(g) across the Pd-foil demands, equality of the pressure of H2(g); both of them are 1 

atm. The height of the levels of Hg in the two limbs of the manometer will be the same 

(Figure 1.7a).

Some volume of N2(g) is then introduced into the same vessel (volume is fi xed), at the same 

fi xed temperature T, at 1 atm pressure. N2(g) cannot pass through the Pd-foil. Amazingly, 

it is found that, the heights of the Hg level in the two limbs remain the same; nothing 

changes.
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The reason is very clear; to attain the equilibrium at a fi xed temperature, the partial 

pressure of H2(g) inside the box must be equal to the pressure of H2(g) on the other side of 

the Pd-foil; although the total pressure of the mixture is now 2 atm.

This proves convincingly that the concept of partial pressure of a component in a mixture 

is really a reality.

This physical concept, which is a reality, about the partial pressure of a component gas in 

a mixture of gases, I have found in the famous book of Physical Chemistry by Gilbert W. 

Castellan (3rd edition); slightly I have changed the methodology; nevertheless, I advise all 

the readers of this work to go through what has been written there.

1.2.8c  Amagat’s Law of Partial Volume
This law, which is very similar to the Dalton’s Law of partial pressure, states that the 

total volume of a mixture of non-reacting gases is the sum of the partial volumes of the 

constituents of the mixture, at a fi xed temperature, i.e.,

  1 2 3 iV v v v v= + + + = Â 

where V is the total volume of the mixture and vi is the partial volume of the constituent 

‘i’. The partial volume i of a constituent ‘i’ is defi ned as the volume occupied by the pure 

constituent ‘i’ at the total pressure and temperature of the mixture.

From the ideal gas equation of state, we have

  
1 1 2 2; etc,

RT RT
v n v n

P P
= =  

where n1, n2, ... are the number of moles of the components 1, 2, ... respectively. 

Therefore,

  
1 2 1 2( )) (

RT RT
v v n n V

P P
n+ + + + = =◊◊◊ =   (1.16)

n being the total number of moles of the gases in the mixture; V is the total volume of the 

mixture. Moreover,

  
1

1 1 1 1

nRT
v n V v x V

P n
= = fi =  (1.17)

and, similarly,  vi = xiV (1.18)

It is noteworthy that these equations are exactly equivalent to the equations of partial 

pressure.

Example 1.9
A container of volume 4.157 × 10–3 m3 maintained at 300 K contains 1.4 × 10–2 kg of N2 

and 3.2 × 10–2 kg of O2 (it is assumed that at this temperature of 300 K, N2 and O2 do not 

react). Calculate the mole fraction of each gas in the mixture, their partial pressures and, 

the total pressure of the gas mixture.
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Solu  on

Number of moles of 2

2

2

2
N

2 N
N

1.4 10 kg
N ,

W
n

M

-¥
= =

328 10 kg-¥ 1
0.5 mole

mol- =

Number of moles of 2

2

2

2
O

2 O
O

3.2 10 kg
O ,

W
n

W

-¥
= =

332 10 kg-¥ 1
1 mole

mol- =

Total number of moles in the gas mixture is then

  2 2T N O 1.5 molen n n= + =

The mole fractions of the gases are then

  

2 2

2 2

N O

N O

0.5 1 1
;

1.5 3 1.5T T

n n
x x

n n
= = = = =

Check that: 
2 2N O 1.x x+ =

The total pressures of the mixture is

  

(1.5 mol
T T

RT
P n

V
= =

) (0.082 L 1atm K- mol
1
) (300 K

-

3 3

)

(4.157 10 m-¥
310 L

)
31 m

Ê ˆ
Á ˜
Ë ¯

fi  PT = 8.88 atm

The corresponding partial pressure are then:

2 2

2 2

N N

O O

1
8.88 atm 2.96 atm

3

1
and 8.88atm 5.92 atm

1.5

Total pressure 8.88 atm.

T

T

P x P

P x P

= = ¥ =

= = ¥ =

=

This problem is an application of Dalton’s law of partial pressure.

Example 1.10

1.4 × 10–2 kg of N2 and 3.2 × 10–2 kg of O2, each taken at 1 atm and 300 K, are mixed 

together, so that the pressure of the mixture is also 1 atm and temperature 300 K. 

Calculate the partial volume of the components, the total volume, and the mole fraction 

of the components.
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Solu  on

The number of moles of N2, 2

2

H

1.4 10 kg
n

-¥
=

32.8 10 kg-¥ 1
0.5 mole

mol- =

at 1 atm and 300 K.

The number of moles of 
2

2

2 O

3.2 10 kg
O , n

-¥
=

332 10 kg-¥ 1
1 mol

mol- =

at 1 atm and 300 K.

The partial volume of N2 is

  
2 2N N

(0.5 molRT
v n

P
= =

) (0.082 L atm 1K- 1mol- ) (300 K )

1 atm

fi  
2N 12.3 Lv =

The partial volume O2 is

  
2 2O O

(1 molRT
v n

P
= =

) (0.082 L atm 1K- 1mol- ) (300 K )

1 atm

fi  vO2
 = 24.6 L

According to the law of partial volume, the total volume

  2 2N O( ) (12.3 L 24.6 L) 36.9 LtV v v= + = + =

The mole fractions are then [using Eq. (1.18)]

  

2

2

N

N

12.3 L
0.333

36.9 Lt

v
x

v
= = =

and  
2

2

O

O

24.6 L
0.667

36.9 Lt

v
x

v
= = =

The sum of the xN2
 and xO2

 is 0.333 + 0.667 = 1

This problem is an application of the Amagat’s Law of partial volume.

(Students are advised to compare and study Examples 1.9 and 1.10.)

Example 1.11

2 × 10–2 kg of H2 and 3.2 × 10–2 kg O2 are taken in a closed vessel of 1 × 10–2 m3 vessel, at 

200°C. Calculate the total pressure of the mixture. If a spark ignites the mixture, what 

will be the fi nal pressure?
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Solution

The number of moles of 
2

2

2 H

2 10 kg
H , n

-¥
=

32 10 kg-¥ 1
10 mole

mol- =

The number of moles of 
2

2

2 O

3.2 10 kg
O , n

-¥
=

332 10 kg-¥ 1
1 mole

mol- =

The total number of moles of gases in the mixture is then nT = (10 + 1) 11 moles.

The mol-fraction of 2

2

H

2 H

10 mol
H ,

T

n
x

n
= =

11 mol

10
0.9091

11
= =

The mol-fraction of 2

2

O

2 O

1 mol
O ,

T

n
x

n
= =

11 mol

1
0.0909

11
= =

So that 
2 2H O 1x x+ =

The total pressure is

    
2 2 2 2H O H O( )T

RT
P P P n n

V
+ + = +

  

(10 1) mol= +
1(8.314 J K- 1mol- ) (473 K

2 3

)

1 10 m-¥

  
2 3 2 3

10 8.314 Nm (473) 1 (8.314 Nm) (473)

1 10 m 1 10 m- -

¥ ¥
= +

¥ ¥

fi PT = (3.93 × 106 Nm–2) + (0.393 × 106 Nm–2)

 PT = 4.323 Pa

The partial pressures are then: pH2
 = 3.93 × 106 Pa and, pO2

 = 0.393 × 106 Pa

On sparking, the reaction which takes place is

  2 H2 + O2 Æ 2 H2O

All the three constituents are in the gas phase, since the temperature is 200°C.

According to our problem, 1 mole of O2 will react with 2 moles of H2; producing 2 moles 

of H2O and 8 moles of H2 will remain unreacted. Therefore, the total number of moles of 

gases (H2(g) and H2O(g)) is (8 + 2) = 10 mole

The fi nal pressure is then: (10 mol
f

nRT
P

V
= =

1) (8.314 J K- 1mol- ) (473 K
2 3

)

1 10 m-¥

fi  Pf = 3.93 × 106 Pa
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1.2.9 Diffusion of Gases:  Graham’s Law
The tendency of any substance to spread uniformly throughout the space available to it is 

called diffusion. Diffusion is exhibited by gases, liquids and, even by solids; but it is most 

rapid for gases. If a wide-mouthed jar of hydrogen is placed  mouth to mouth with a jar of 

oxygen, it will be found, after a short time, that the two gases spread uniformly throughout 

the two jars. And, this will happen irrespective of whether the lighter gas is at the top or  

at the bottom. It is true that gravity has some infl uence on this distribution but, the effect 

is quite negligible unless a long column of gas, e.g., the atmosphere, is considered. A very 

similar process is the passage of the molecules of a gas through porous media or through 

small holes; this is effusion.

The law governing such diffusion or effusion was fi rst stated by T. Graham (1829). The 

law states that at constant temperature and pressure, the rate of diffusion (or effusion) 

varies inversely as the square root of the density or the molar mass of the gas. If r1 and r2 

represent the rates of diffusion of two gases under a given condition of P and T, whose 

densities are r1 and r2, respectively, then

 1 2

2 1

r

r

r

r
=  (1.19)

As seen in Eq. (1.12), at a given P and T, the density r is directly proportional to the molar 

mass of the gas. Equation (1.19) may therefore, also be written as

 1 2

2 1

r M

r M
=  (1.20)

where M1 and M2 are the molar masses of the two gases. Equations (1.19) and (1.20) also 

refl ect that lighter molecules will diffuse more rapidly than heavier gases. This fact was 

utilized in the separation of isotopes of different elements. The greatest success has been 

achieved in the separation of isotopes of hydrogen. The ratio of the rates of diffusion of 

hydrogen to deuterium is 2 : 1.  It is also being said that the separation of 
92
235u( )  and 

92
238u( )  in the making of the atomic bombs had been done by this method of diffusion.

Example 1.12 
The time required for a given volume of N2 to effuse through an orifi ce is 35 s. Calculate 

the molar mass of a gas, an equal volume of which requires 50 s to effuse through the same 

orifi ce under identical conditions.

Solu  on 

Let the volume of the gas that effuses be v. Then, according to the Graham’s law

 
1

( /35 s)

( /50 s) 28 g mol

v M

v -=

fi  M = 57.14 g mol–1
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The   me required for a defi nite volume of oxygen to eff use through an orifi ce was found to be 

135 s. Under exactly the same condi  ons, the same volume of another gas took 236 s to pass 

through. What is the molecular weight of the gas? (Ans: 97.8)

Example 1.13

A teacher enters a class room from the front door while a student from the back door. 

There are fi fteen (15) equidistant rows of benches in the class room. The teacher releases 

N2O, the laughing gas, from the fi rst row, while the student releases the weeping gas, 

C6H11OBr (Mol. wt 179) from the last row. At which row, the students will starts laughing 

and weeping simultaneously?

Solu  on

From the law of diffusion

  

2

6 11

N O

C H OBr

(rate) 179
2

(rate) 44
= ª

Therefore N2O diffuses at a rate twice as that of C6H11OBr.

Let n be the number of row from the front where the students laugh and weep simultaneously, 

then

  
2 30 2 3 30

15

n
n n n

n
= fi = - fi =

-
and fi nally, n = 10.

1.2.10  Limiting Density
From the equation of state of an ideal gas we have Eq. (1.12)

 M = RT
P

r

For a given gas at a fi xed T, it is expected that the ratio (r/P) should be a constant. 

Experiments however, showed that, for any gas the ratio (r/P) varies with pressure at 

a fi xed T. This is due to the non-ideality of the gases. Such a plot is shown for NH3 in 

Figure 1.7, at 273.15 K. It is found that at pressure below 1 atm, the plot is very close to a 

straight line. This behaviour has also been observed for almost all gases. Hence, the line 

can be extrapolated to P = 0. In this limit, the gas behaves ideally. From Figure 1.7, it is 

found that for NH3 at 273.15 K (0°C)

 
r

Æ

Ê ˆ
Á ˜Ë ¯0

lim
P P

 = 0.75988 g L–1 atm–1

Test Problem 1.6
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0.769

0.766

0.763

0.760 0.75988

0.2 0.4 0.6 0.8

Pressure (      )atm

r

Figure 1.7 Extrapola  on of gas densi  es

Using the standard value of R(0.08205 L atm K–1 mol–1) and Eq. (1.12), we fi nd

 M = (0.75988 g L
1

atm
- 1

)(0.08205 L
-

atm 1K- 1mol )(273.15 K- )

fi  M = 17.03 g mol–1

which gives the accurate molar mass of ammonia. This method of determining the 

molecular weight is known as the method of limiting density.

1.2.11  Relative Density (Vapour Density)
The density of a gas measured relative to that of H2 at a given P and T is called its relative 

density (older name is vapour density).

The relative density of gas D = 

2H

r

r
, where r and rH2

 are, respectively, the densities of the 

gas in question and that of H2 (both being measured under the same conditions of P and 

T). Using Eq. (1.12), we get

 D = 

2H 2

M M

M
=  (1.21)

where M and MH2
 are the molar masses of the gas and H2, respectively. Note that D is 

dimensionless as it is a ratio of two molar masses.
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1.2.12 Determination of Gas Density
There are various different methods for the determination of the density of gases. Most 

of them are now of historical interest. In the following, we shall look into some of them, 

which still are in use.

1.2.12.1 Dumas Method

Let us understand the method with an experimental result (27°C). A bulb made of glass is 

weighed (obviously fi lled with air); the weight is 52.30 g. Some amount of chloroform (whose 

density is to be measured) is taken, in the liquid phase, in the bulb and, is heated at least 

20°C above the boiling point of the liquid (say, 100°C). It is to be ensured that, complete 

vapourisation took place and, which has expelled all the air from the bulb, so that, fi nally 

the bulb contains only the vapour of chloroform. The weight is taken (after cooling, with the 

bulb stoppered properly to 27°C). The weight of the bulb fi lled with the vapour is 52.96 g.

Now the bulb is fi lled with water (27°C) and weighed. This weight is found to be 302 g. 

The atmospheric pressure is 752 Torr and, the density of air under ordinary conditions is 

1.29 gL–1. We now calculate the density of chloroform vapour as follows:

 Mass of water in the bulb = mass of (bulb + water) – mass of (bulb + air)

 = (302 – 52.3) g = 249.7 g ª 250 g

Considering the density of water as 1 g cm–3, the volume is v = (250 g)/(1 g cm–3) = 250 cm3.

The mass of air in the bulb is (250 cm3) (1.29 gL–1) = 0.323 g. Therefore, the mass of the 

bulb is (52.30 – 0.323) g = 51.977 g.

The mass of the chloroform vapour in the bulb is then (52.96 – 51.977) g = 0.983 g. We now 

have the data set

 w = 0.983 g; V = 0.25 L; T = 373 K; P = 752 Torr.

Using the ideal gas Eq. (1.12)

 M = 
(0.983 g)(0.082 LRT

vP

w
=

atm K
1 1mol ) (373 K

- - )

(0.25 L ) (752 Torr

760 Torr

)
¥

1 atm

fi  M = 121.54 g mol–1

The molecular weight of chloroform is then calculated to be 121.54.

1.2.12.2 Victor-Meyer Method

In this method, a known amount of the sample (taken in the liquid phase) is vapourized 

completely in a closed fl ask and, an equal volume of air is expelled. This expelled air is then 

collected and the volume is then measured at the corrected pressure and, the temperature 

is recorded. Let us understand the method again with a problem.

In Victor-Meyer experiment, 0.241 g of chloroform expelled 47.9 mL air collected over 

water at 23°C. At this temperature, the vapour pressure of water is 18 Torr and, the 
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pressure recorded is 782 Torr. The corrected pressure of chloroform vapour is (pressure 

recorded) – (v.p. of water) = (782 – 18) = 764 Torr using the same equation as before

 M = 
(0.241 g)(0.082 LRT

vP

w
=

atm K
1 1mol ) (296 K

- - )

(0.0479 L )(764 Torr

(760 Torr

)
¥

)

(1 atm )

fi  M = 121.48 g mol–1

This is almost roughly the same value found as in the previous experiment. Students 

must also note that, the correction for the pressure would not have been necessary if the 

expelled air was collected over mercury.

1.2.13  Abnormal Vapour Density

1.2.13.1  Thermal Dissociation

It has been observed that in some vapour density measurements, the experimental values 

of the molecular weight are less than that expected and, the values decrease towards a 

limit as the temperature is raised. The vapour of N2O4, NH4Cl and PCl5, for example, gave 

molecular weights that approach half the actual value as the temperature is raised. This 

is clearly due to thermal dissociation. These gases undergo dissociation as

NH4Cl   NH3 + HCl;

PCl5   PCl3 + Cl2

N2O4   2NO2

In the vapour state, as the molecules of NH4Cl (or PCl5) dissociate, the total number of 

molecules increases and, at a fi xed P and T, this increases the volume; but there is no 

change in the mass of the substance. This decreases the density and hence M, the mean 

molar mass. As the temperature is increased, the extent of dissociation increases and M 

decreases. At suffi ciently high temperature, when the dissociation goes to 100 percent 

completion, M reaches at its lowest value.

Note that, it does not matter, whether the splitted molecules are similar or dissimilar. 

The question is, how many molecules are produced from a single molecule; the volume will 

increase proportionately. As an example, let one molecule of A splits up into n molecules 

of B (similar or dissimilar)

      + + + + =                1 1 2 2 1 2or, ...; ...A nB A n B n B n n n

Initial no. of mole  1 0

Number of moles at equilibrium are for (1 – a), for A, na for B. the total number of moles 

at equilibrium is then [1 + (n – 1)a], where a is the degree of dissociation, i.e. fraction 

of the total number of molecular suffering dissociation. Let V be the molar volume at 
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the pressure and temperature of the experiment. If M0 and M are the theoretical and 

experimental molar masses and, r0 and r are the corresponding densities, then

 r0V = r[1 + (n – 1)a]V with r0 = 0 and
M P MP

RT RT
r =

fi  0r

r
 = 0 1 ( 1)

M
n

M
a= + -

fi  a = 0 0( ) ( )
or

( 1) ( 1)

M M

n M n

r r
a

r

- -
=

- -
 (1.22)

from which the degree of dissociation can be calculated. It is important to note that, 

whenever we fi nd a low vapour density or, molecular weight, we suspect the case of 

dissociation. However, the opposite is not true. This is because, the decrease in the vapour 

density is due to an increase in the number of moles at equilibrium. If there is no change 

in the number of moles, e.g., when gaseous hydrogen iodide dissociates to form hydrogen 

and iodine vapour, 

  
2 22HI H I+        

the volume, density and molecular weight remain unaffected (Why?).

Example 1.14 

The vapour density of a sample of N2O4 at 1 atm and 373 K is found to be 25. Calculate the 

equilibrium constant of the reaction

  
2 4 2N O (g) 2NO (g)        

Solu  on

The molecular weight of N2O4 is 92. So the relative vapour density should be (92/2) = 

46. The experimental value, however, is 25. This indicates that the N2O4 molecules have 

dissociated partly into NO2. Let the degree of dissociation be a

    
2 4 2N O (g) 2NO (g)        

No. of moles initially  1 0

No. of moles at equilibrium (1 – a) 2a

Total number of moles at equilibrium is (1 – a + 2a) = (1 + a). Therefore

 0r

r
 = 1 + a,  fi  a = 0.84
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That is, 84 percent molecules have dissociated. The mole fractions are then:

 xN2O4
 = 

2NO

(1 ) 0.16 2 1.68
;

(1 ) 0.84 (1 ) 1.84
x

a a

a a

-
= = =

+ +

The partial pressures are then

 pN2O4
 = 

Ê ˆ= = Á ˜Ë ¯2 4N O

0.16 0.16
(1 atm) atm

1.84 1.84
x P

and pNO2
 = 

Ê ˆ= = Á ˜Ë ¯2NO

1.68 1.68
(1 atm) atm

1.84 1.84
x P

The equilibrium constant for the thermal dissociation is then

 KP = 
Ê ˆ Ê ˆ= Á ˜ Á ˜Ë ¯ Ë ¯

2

2 4

2 2
NO

N O

1.68 1.84
atm

1.84 0.16

p

p

fi  KP = 9.6 atm

Example 1.15 

In a vapour density experiment, 1.35 g N2O4 vapour was found to occupy a volume of

0.501 L at 45°C and 795 mm Hg. Calculate the fraction of the N2O4 molecules dissociated 

into NO2 and, the equilibrium constant KP of the thermal dissociation.

Solu  on

Considering the equilibrium

Initial no. of moles

    
Ê ˆ
Á ˜Ë ¯

        2 4 2N O (g) 2NO (g)

1.35
0

92

No. of moles at equilibrium 
1.35 1.35

(1 ) 2
92 92

a a
Ê ˆ- Á ˜Ë ¯

Total number of moles at equilibrium is then

 nt = nN2O4
 + nNO2

fi  nt = 
1.35

(1 ) mole
92

a
Ê ˆ +Á ˜Ë ¯

Now using the ideal gas equation

 Pv = ntRT
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(795 mm Hg
1 atm

)
760 mm Hg

(0.501 L
Ê ˆ
Á ˜
Ë ¯

1.35
) (1 ) mol

92
a= ¥ +

(0.082 L

È ˘
Í ˙Î ˚

¥ atm K
1

mol
- 1

)(318 K
-

)

fi  a = 0.37

That is, 37% dissociation took place. The students are now advised to calculate KP following 

the same method given in Example 1.14. [Ans.: 0.664 (atm]

When PCl5 vapour is heated in a closed fl ask to 200°C and 1.22 atm, the dissocia  on takes place by 

42%. What are the mol-frac  ons and the par  al pressures of the three components, PCl5, PCl3 and 

Cl2? Also calculate the equilibrium constant of the dissocia  on process. Also calculate the vapour 

density that would have been expected to get experimentally at this temperature.

(Ans:  xPCl5
 = 0.408;  xPCl3

 = xCl2
 = 0.296

 pPCl5
 = 0.498 atm; pPCl3

 = pCl2
 = 0.361 atm

 KP = 0.262 atm; r = 73.42

1.2.13.2  Molecular Association

There are examples where the molecules in the vapour phase associate pairwise to form 

dimers, which are in equilibrium with the monomers. More than two molecules may also 

associate, e.g., the formation of S8. Anyway, due to this kind of molecular association, the 

number of molecules in the vapour phase decreases (at a fi xed P and T) and hence, the 

the volume decreases. The experimental vapour densities are then found to be more than 

the theoretical values. Formic acid, acetic acid and other carboxylic acids are well known 

examples forming dimers in the vapour phase.

Example 1.16

In a molecular weight determination, using acetic acid vapour, the experimental data 

suggests 100 g mol–1 at 1 atm and 327°C. Calculate the degree of association of the 

molecules.

Solu  on

Let a be the degree of dimerization. Then the number of moles at equilibrium are:

   22AcOH (AcOH)        

Initial no. of moles  1    0

Test Problem 1.7
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No. of moles at equilibrium (1 – a)  
2

a

Total number of moles at equilibrium is 1 1 .
2 2

a a
a

Ê ˆ Ê ˆ- + = -Á ˜ Á ˜Ë ¯ Ë ¯
 If V be the molar volume at 

a given P and T and, r0 and r are, respectively, the theoretical and experimental vapour 

densities, then

 r0V = 1
2

V
a

r
Ê ˆ-Á ˜Ë ¯

fi  M0 = 1 ; at a fixed and
2

MP
M M T P P

RT

a
a r

Ê ˆ Ê ˆ- =Á ˜ Á ˜Ë ¯ Ë ¯
∵ ∵

fi  0M

M
 = 1

2

aÊ ˆ-Á ˜Ë ¯

fi  
60

100
 = 1

2

a
-

fi nally, a = 0.8. The association is up to 80%.

A 0.1 g sample of ace  c acid vapour was found to occupy 57.2 mL at 600 mm Hg pressure and 

327°C. Calculate the degree of dimerisa  on at this pressure and temperature. Also calculate the 

apparent molecular weight and the rela  ve vapour density of this ace  c acid vapour.

 (Ans.: a = 0.9; 109.09; 54.55)

PROBLEMS
 1.1 6 g of C2H6 is taken in a closed container of volume 2.46 L at 2 atm and 27°C. 

Calculate the gas constant in cm3 atm K–1 mol–1, m3 bar K–1 mol–1 and JK–1 mol–1 

units. [Ans.: 82 cm3 atm K–1 mol–1; 8.2 m3 bar K–1 mol–1; 8.31 JK–1 mol–1]

 1.2 A cylinder fi tted with a piston contains O2 at 20°C and a pressure of 15 atm in a 

volume of 22 L. The piston is lowered, decreasing the volume of the gas to 16 L, 

and simultaneously raising the temperature to 25°C. Assuming ideal behaviour, 

calculate the fi nal pressure of the gas. [Ans.: 21 atm]

 1.3 Find the density of CO2 gas at 77°C when confi ned by a pressure of 1 bar.

 [Ans.: 1.53 × 10–5 gL–1]

 1.4 At 0°C and 1000 mm Hg a given mass of N2 occupies a volume of 1 L. At 

–100°C, the same mass of the gas under same pressure occupies a volume of 

Test Problem 1.8
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0.6313 L. Calculate the absolute zero in degree centigrade, and give reasons for the 

observed difference from the accepted value.

  [Ans.: –271.2°C; the data at –100°C are not very reliable because

a gas cannot be expected to behave ideally at as low as –100°C]

 1.5 Calculate the pressure of the earth’s atmosphere at a point where the barometer 

reads 76 cm Hg at 0°C and the acceleration of gravity g is  9.80665 ms–2. The 

density of Hg at 0°C is 13.5951 g cm–3 or 13.5951 × 103 kg m–3.

  [Ans.: 101.325 kPa].

 1.6 An ideal gas cannot be liquefi ed. Justify/Criticize.

 1.7 In the derivation of PV = RT from the Boyle’s law, the following steps may be 

followed:

 (i) PV = k1; (ii) 2

V
k

T
= ; (iii) PT = k3

  which step(s) is/are wrong? [Ans.: (iii) is wrong]

 1.8. From the relations between the variables for two ideal gases A and B, given below 

on the left, what can be concluded regarding the variables on the right?

Given Inference (>; = ; <)

(i) Equal P, V, T ; MA > MB
A ? Bn n

(ii) Equal P, V, ; nA > nB
A ? BT T

(iii) Equal T, n ; PA > PB ;
A ? BV V

[nA = nB; TA < TB; VA < VB]

 1.9 A mixture of H2 and O2 is analyzed by passing it over hot copper oxide and, through 

a drying tube. H2 reduces the CuO according to the equation

  CuO + H2 Æ Cu + H2O

  oxygen then reoxidizes the Cu formed:

  Cu + ½O2 Æ CuO

  100 cm3 of the mixutre measured at 25°C and 750 Torr yields 84.5 cm3 of dry 

oxygen measured under the same conditions of T and P after passage over CuO 

and the drying agent. What is the original composition of the mixture?

 [Ans.: 15.5 mol-percent]

 1.10 A vessel of volume 30 L contains ideal gas at temperature 0°C. After a portion of 

the gas has been let out, the pressure in the vessel decreased by Dp = 0.78 atm (the 

temperature remaining the same). Find the mass of the released gas. The density 

at 1.01325 atm is p = 1.3 gL–1. [Ans.: 30 g]
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 1.11 A vessel contains a mixture of N2 (m1 = 79) and CO2 (m2 = 11 g) at a temperature 

T = 290 K and pressure 1 atm. Find the density of the mixture, assuming the gases 

to be ideal. [Ans.: 1.513 gL–1]

 1.12 A vessel of volume V = 7.5 L contains a mixture of ideal gases at a temperature 

T = 300 K ; the number of moles of O2, N2 and CO2 are, respectively, 0.1, 0.2 and 

0.3. Assuming the gases to be ideal, fi nd:

 (i) the pressure of the mixture, and

 (ii) the mean molar mass of the mixture.

 [Ans.: (i) 1.97 atm (ii) 36.67 g mol–1]

 1.13 Under what condition will a pure sample of an ideal gas not only exhibit a pressure 

of 1 atm but also a concentration of 1 mol L–1 ? [Ans.: 12.2 K]

 1.14 Compare the times of diffusion through a given orifi ce, and under the same condition 

of P and T, of the gases H2, NH3, CO2 relative to that of N2.

  

32 2

2 2 2

NHH CO

N N N

0.268 ; 0.779 ; 1.254
tt t

t t t

È ˘
= = =Í ˙

Í ˙Î ˚

 1.15 At 100°C, the vapour density of N2O4 is found to be 25 at 1 atm. Justify the result 

and calculate the degree of dissociation (if any) of N2O4.

   [Ans.: Degree of dissociation, a = 0.84]





2.1 IntroductIon
Kinetic theory is a microscopic science, where an endeavour is made to explain the 
behaviour of gases by recognising that, a sample of a gas is made up of a very many 
numbers of elementary particles—atoms/molecules, obeying certain basic laws.

Clearly, the subject is extremely difficult to analyse. This is because, we do not know how 
the molecules look like, what are the forces operating between them and, what kind of 
laws they obey during their motion. One thing is clear: there is a tremendous irregularity 

in the motion of these elementary particles and, they are fantastic in numbers. These two 

characteristics will therefore require an extensive use of probability and statistics in the 
development of the theory.

A Brief History of Kinetic theory of Gases

Although the idea of elementary particles and their ceaseless motion dates back to 
450 b.c. due to Leukippos and Demokritos, Daniel Bernoulli may be honoured as the 
father of the kinetic theory. He first deduced a law, that today we know as the Boyle’s 
law, by considering that, a gas is composed of an innumerable number of particles in 
ceaseless motion; between which no forces act and, which gives rise to the pressure of 
the gas in a container by the bombardment of the particles on the wall of the container 
(1738). For over hundred years Bernoulli’s work was left ignored. J.J. Waterstone, a 
school teacher in Bombay (India) sent a paper to the Royal Society in 1845, explaining 
some concepts of the kinetic theory, but was not deemed worthy for publication until, 
Lord Rayleigh rediscovered it in 1892.

However, when Joule introduced the concept firmly that heat is a hidden disordered 

motion of the atoms/molecules, the idea of kinetic theory started receiving its 
acceptance. Thereafter, an excellent team of mathematical physicists: Clausius, 
Maxwell and Boltzmann led to an excellent development of the theory. Nevertheless, 
the development of kinetic theory had faced a strong opposition and, it is said that, the 
Boltzmann’s suicide by drowning himself in 1906, came from the depression due to the 
attacks on the truth of the kinetic theory, which he could not retort.

CHAPTER



Finally, the kinetic theory of gas considers that the atoms or molecules obey newtonian 
mechanics. However, since the elementary particles actually behave quantum mechanically, 
the theory is not fundamentally correct. For example, it cannot explain the temperature 
dependence of the heat capacity of gases. Nevertheless, the theory is excellent in explaining 
other properties, e.g. pressure, temperature, diffusion, etc.

2.2 BAsIc AssumptIons of KInetIc tHeory of GAses
The basic materials behind the building up of the model are:
 1. A gas consists of a very many number of molecules, considered as perfectly elastic 

hard spheres.

 2. The molecules are in a state of complete molecular chaos, in which they move 
erratically along all possible directions, with all possible speeds from zero to infinity.

 3. These movements are in straight lines (in the absence of any external force, like 
gravity), which are occasionally broken by collisions between themselves and, with 
the walls of the container. These collisions are all perfectly elastic, i.e., in which the 
conservation of momentum as well as the kinetic energy hold.

 4. In the steady state, the collisions between the molecules do not affect the molecular 
density, i.e., the number of molecules per unit volume is uniform everywhere and, 
remains the same with time.

 5. The distance traversed by a molecule between two successive collisions is called the 
free path. It is assumed that the size of the molecules is negligible in comparison to 
the mean free path. The molecules are therefore regarded as a point masses.

 6. The time during which a collision lasts is negligible in comparison to the time 
required by a molecule to traverse the mean free path.

 7. The forces between the molecules are neglected entirely, so that the energy of a gas 
is totally kinetic.

  8. During the bombardment of the molecules on the wall of the container, a certain 
momentum is poured on the wall. The net momentum poured normally—per unit 

area of the wall per second is defined as the pressure of the gas.
 9. The molecules move with different speeds, and hence, with different translation 

kinetic energies. The average translational kinetic energy of the molecules of a 

sample of gas is directly proportional to the kelvin temperature of the gas.

2.3 experImentAl evIdence In support of tHe KInetIc tHeory
That the molecules of a gas are in a state of complete erratic (i.e., random) movement can 
be supported by numerous experiments, of which the most conclusive evidence comes from 
the study of Brownian motion. While studying microscopic life, Robert Brown in 1827, 
noticed the fine particles of plant pollens jiggling all around in the water he was looking 
at through a microscope. These motions are perpetual and spontaneous. He correctly 
asserted that these motions are not living, and is not due to any chemical or electrical 



action. You can also observe this motion in smoke or dust particles through a microscope. 
The motion becomes more vigorous as you decrease the viscosity of the medium or increase 
the temperature. Later it was realised that the motions were due to an imbalance of force 
exerted by the solvent molecules on the solute particles. Thus, the incessant and random 
motion of the fundamental particles in a system becomes very much clear and, the motion 
of the molecules of a gas is exactly similar to this. Hence, all the laws of kinetic theory of 
gases are applicable to the Brownian particles and in fact, Einstein in 1905 developed a 
theory of Brownian motion on the basis of the kinetic theory of gases, which had also been 
verified by Perrin in 1908.

2.4 some crItIcs on tHe postulAtes of tHe KInetIc tHeory
 1. The assumption of perfectly elastic collision is necessary in order to account the 

following fact:
  When an ideal gas is heated isothermally and reversibly, the heat absorbed by the 

gas is completely converted into the work of expansion by the gas, and when it is 
compressed back to the initial state, again isothermally and reversibly, exactly 
the same amount of work is destroyed and converted into heat. If the collisions 
were not perfectly elastic, then some of the kinetic energy of the molecules gained 
on heating, would lost in deforming the molecules and, this energy could not be 
given back into heat when the system is cooled. This is obviously a simplifying 
assumption and corresponds to reality only as a rough approximation.

 2. Certainly, there are gravitational forces between the molecules (pair wise); these 
forces are very much weak in comparison to the kinetic energy. For example, the 

average kinetic energy of the gas molecules at 300 K is about 10–21 J 
3

,
2

kT  

whereas the potential energy of gravitation between two H2 molecules in contact 
(r = 1 Å) is about 10–54 J (–Gm2/r; G = 6.67 × 10–11 Nm2 kg–2; m = 3.35 × 10–27 kg; 
r = 1 × 10–10 m).

Gravitational force is 
2

2

Gm

r
 Gravitational Potential Energy, 

2Gm
V

r

  2

3
11 2 2

H 23

27 10

2.016 10
kg 6.67 10 Nm kg

6.023 10

3.35 10 kg 1A 1 10 m

m G

r

  
11 2 2 27 22

10

(6.67 10 Nm kg ) (3.35 10 kg)
GPE,

10 10 m
Gm

V
r

V = –7.5 × 10–54 J



Average translational K.E. = 
3
2

kT  = 1.5 (1.38 × 10–23 JK–1)(300 K) or, <KE> = 6 × 10–21 J

Comparing these two results we can safely ignore the potential energy of the gas. However, 
the intermolecular forces of attraction are much greater and, the corresponding potential 
energy, although small under ordinary condition, becomes of the order of the kinetic 
energy near or below the critical temperature. These forces are neglected in the postulates 
by definition, which is again a simplifying assumption.

2.5 tHe KInetIc InterpretAtIon of tHe pressure of A GAs

2.5.1 definition

We know that a gas exerts pressure. Here, we want to know how is this pressure developed 
and, how much is that.

To analyse this, we take a gas in a cylindrical box, at one end of which there is a frictionless 
piston, which can move along either direction (Figure 2.1). There are a lot of molecules 
in perpetual erratic motion and, very often they hit the piston. There is, therefore, a 
continuous bombardments on the piston. What is the result then? Each time the piston 
receives a certain amount of momentum for each collision, it picks up speed. Let there be 
nothing on the other side of the piston, i.e., a vacuum outside.

Receiving a certain amount of momentum from each collision, the piston starts moving 
out of the box. In order to just keep it from moving out, we must therefore hold the piston 
with a certain force F. The magnitude of the force applied normally per unit area of the 
piston which is just sufficient to keep the piston at its position is defined as the pressure 
(P) of the gas.



2.5.2 calculation
Let us first calculate how much momentum is poured normally per second on the wall by 
the bombarding molecules.

Let us fix-up the reference frame so that the x-axis of the coordinate system is perpendicular 
to the piston (Figure 2.1). If Cx be the velocity component of a molecule along the x-axis, 
then as it hits, the piston receives a momentum mCx. What then? You can think that for 
a very short period of time, say 1 ns, the molecule is brought to rest and then, it bangs 
off the piston again with the speed Cx along the x-axis. During this return, the piston 
again receives mCx momentum for the molecule. This thing you can realise if you press 
a rubber ball against a hard surface and, leave it; it bounces off. So the momentum the 
piston receives per collision is 2mCx. Now, how many collisions take place per second? Let 
n be the number of molecules per unit volume. To calculate how many molecules hit the 
piston in one second, we realise that the molecules which are beyond a distance Cx from 
the piston cannot reach in one second. So, all the molecules which are within a distance 
Cx from the piston will hit in one second (Figure 2.2). If the area of the piston is A, then 
all the molecules in the section of the volume CxA will reach the piston in one second. The 
number is nACx. So, the total momentum imparted on the piston per second is

  Force exerted = momentum change per second = (2m Cx) (n ACx) 
22 xmn AC

The pressure (P) developed is then 22 x

F
P mnC

A
 (2.1)

However, we have left one thing unnoticed; and that is, all the molecules are not moving 
with the same velocity component Cx. Let there be per unit volume, n1 molecules with 
x-component velocity Cx1, n2 molecules with Cx2 and so on. So the pressure equation must be

  2 2
1 1 2 22 ( )x xP m n C n C  (2.2)

Now, the average of 2
xC  is given by 2 ,xC

where  
2 22 2

2 1 1 2 2

1 2

i xi i xix x
x

i

n C n Cn C n C
C

n n n n



22 xP mn C

There is another point. In taking the average we have considered all positive Cx s (moving 
towards the piston) as well as all negative Cx’s (moving away from the piston). But, the 
force is developed on the piston only by, the molecules which are moving towards the 
piston. Due to the isotropicity of the molecular movements, we can correctly say that the 
pressure (P) is half (1/2) of the above expression, i.e.,

  2
xP mn C  (2.3)

Now, there is nothing special along the x-direction. Molecules are also moving about back 
and forth (y direction) with mean squared velocity component 2

yC  and also up and down 
(z direction) with 2

zC . Again, due to the isotropic movements, we must have

  
2 2 2

x y zC C C  (2.4)

and, if C be the velocity of a molecule in space, then since

  2 2 2 2 23x y z xC C C C C  (2.5)

Using Eqs (2.4) and (2.5) in Eq. (2.3), we finally get

  
2 2

rms
1 1
3 3

P mn C mn C

or  2 2
rms

1 1
3 3

PV mN C mN C  (2.6)

where N is the total number of molecules contained in a container of volume V. Rewriting 
Eq. (2.6) in the form

  22 1
3 2

N
P mC

V
 (2.7a)

and realising that the average kinetic energy of the molecules is 
21

2
mC

1

, we find

  
2
3

PV U  (2.7b)2

1. The average translational kinetic energy of the molecules is not 2 21 1
; it is .

2 2
m C m C  To 

understand this, just write: 21
2

mc , and then take the mean: 21
2

m C  or 2
rms

1
.

2
mC

2. For a mole of an ideal gas, we may write 
3 3 3

kT ;
2 2 2oU PV RT N  the average translational 

kinetic energy of the molecules is then trans
3

KE .
2

kT  No is the Avogadro’s constant and k is the 

Boltzmann constant.



where U is the total kinetic energy of translation of the molecules. Equation (2.6) may be 
considered as the fundamental equation of the kinetic theory of gases. On the left hand 
side of the equations we have the macroscopic parameters P and V which, relate with 

microscopic parameters m, N and 2 .C

A few interesting points are listed below:

 1. Thermodynamically we know that for n moles of a monoatomic ideal gas 
3

,
2

U n RT  which by using in Eq. (2.7) gives us the ideal gas equation

  PV = n RT

 2. For an ideal gas, the total kinetic energy of translation of the molecules U is a 
function of only T; there is no potential counterpart. So, isothermally and reversibly 
if an ideal gas is compressed, the work done on the gas is absorbed, but cannot be 
stored as U (as T is fixed); therefore, only the number of molecules per unit volume 
increases [cf. Eq. (2.6)], and therefore, the number of bombardments per unit area 
of the piston per second increases; this increases P.

 3. If you take a sample of Li-vapour and a sample of an equal volume of uranium 
vapour at the same pressure, then their total translational kinetic energies are 
also equal. This means that the heavier uranium atoms move slowly than the 
lighter Li atoms.

2.6 some crItIcs on tHe pressure equAtIon
 1. Equation (2.6) has been derived with the assumption of perfectly elastic collision. 

So, what will be the fate of the equation if we take a gas where the collisions are 
not perfectly elastic?

  To answer this, let us first take a monoatomic gas. In this case, the collisions had 
have to be perfectly elastic, for, if they were not, the piston would be heated up and, 
things would change. But eventually when equilibrium is attained, the collisions 
will be almost perfectly elastic. A gas does not cool down or, warm up on standing, 
provides support to the above discussion.

  For a diatomic or triatomic molecule, an inelastic collision might decrease the 
translational kinetic energy and could turn up as the rotational and/or vibrational 
kinetic energy of the molecules; but the energy transfer can also take place in the 
reverse way, viz., from vibration into translation. Thus, the concept of perfectly 
elastic collision breaks down.

  However, this does not invalidate the pressure equation. This is because the pressure 
has been calculated by taking the average over a many number of collisions and over 
all the molecules, which is also fantastic in number. This definitely will smoothe 
out the irregularities in the translation kinetic energies of the individual molecules 
after impact. That means, after collision some molecules will gain translational 



kinetic energy and the other will lose, and, on the average, no one neither gain nor 
loses any. Thus Eq. (2.6) still remains valid.

 2. We have also assumed that the molecules do not collide with one another while 
they are on their way to  hit a wall. Under condition of equilibrium, on the average, 
any deflection in the path of a molecule will be replenished by another collision 
which replaces the molecule.

2.7 WorK of compressInG A GAs
Here we want to understand from the kinetic theory point of view, the PV relation during 
a reversible adiabatic compression of an ideal gas, where there is no heat exchange between 

the gas and its surroundings. Our approach is therefore microscopic; later it will be proved 
macroscopically in thermodynamics.

Let us again consider a gas in a rectangular box as in Figure 2.1. Total force exerted 
by the molecules on the inner face of piston is PA. In order to maintain equilibrium, an 
external force of equal magnitude must also be applied on the piston from outside. But, if 
the external pressure applied on the piston is more than PA, the piston will move inward. 
Let us apply a pressure on  the piston slightly more than the pressure P of the gas, so that 
the piston moves inward with a speed C , which is very small compared to the speed of 
the molecules. If Cx denotes the speed of the molecules along the x-axis, then with respect 
to the piston, a molecule hits the piston with the speed (Cx + C ) and, it also bounces off 
the piston with the same relative speed (Cx + C ). But a relative speed of (Cx + C ) of the 
molecules with respect to the inward moving piston of C  is equivalent to (Cx + 2C ) speed 
of the molecule with respect to the box. The increase in the kinetic energy of a molecule 
per collision with the moving wall is 

 ∆ (KE) 2 21 1
( 2 )

2 2x xm C C mC

  
22 2xm C C mC

  
2 1x

x

C
m C C

C

Since C << Cx (to maintain reversibility), neglecting the second term we get 
 ∆(KE) = 2m CxC  per collision

The total kinetic energy change in time dt is therefore obtained by multiplying the above 
result by the total number of collisions during the same time dt; we get

 

Total change in the kinetic
2 ( )

energy in time x xm C C n C A dt
dt

    = 2 mn Cx
2C  A dt



and following the same procedure as before, to account for the different speeds of the 
molecules, we have

      

2

2

Total change in the kinetic 1
2

energy in time 2

1
3

( is negative)

xmn C C A dt
dt

mn C C A dt

PC A dt

PdV dV

 (2.8)

So we have the fundamental equation for a reversible adiabatic compression as
 dU = –PdV

Since dw = – PdV (no heat exchange), we can say that the increase in the energy of the 
gas is equal to the work done on the gas during a reversible adiabatic compression. It is 
also clear that if the speed of the piston were not too low so as to be neglected, i.e., if the 
compression were carried out irreversibly then, a greater amount of work would have 
been required than the reversible work; or conversely, a greater amount of work will be 
obtained from a reversible expansion than from an irreversible expansion.

Let us now derive the P–V relation during such a change. Equation (2.8) can be written as

  
2 21 1

2 3
N

d N m C m C C Adt
V

realising that the total average translational kinetic energy is 21
2

N m C , where N is 

the total number of molecules present in volume V. Using Eq. (2.7a), we find

  
3

( )
2

d PV PdV C Adt dV

3 3
2 2

PdV VdP PdV

5 3
0

2 2
PdV VdP

5
ln ln 0

3
d V d P multiplying by 

2
3

 and dividing by –PV

PV5/3 = constant (2.9)

If we use a standard result that the ratio of the two specific heats CP and CV is 5/3, i.e.,  
 = 5/3. Equation (2.9) therefore takes the form

  PV constant,



for a reversible adiabatic process with an ideal gas. This is excellent, because 
thermodynamically we can also prove this relation but, there we cannot see the internal 
machinery.

2.8 A dIstInctIon BetWeen reversIBle And IrreversIBle process
The basic idea is that if we want to compress the gas reversibly, C  must be made as small 
as possible. But if it is significant, the process will become irreversible.

In general, when C /Cx is not negligible, the change in the kinetic energy in time dt can 
be written as 

  21
1

3 x

N C
dU m C C A dt

V C
 [from Eq. (2.8)]

1
x

C
dU P dV

C

and, if the external pressure required to compress the gas Pext, then Pext  must be 

   ext 1
x

C
P P

C  (2.11)

where the negative sign is during expansion, when the relative velocity of the molecule 
becomes (Cx – C ) instead of (Cx + C ). From Eq. (2.11), it is also clear that, if the process 
is to be conducted reversibly (i.e., C /Cx ≈ 0) then, the external and the internal pressures 
must be made virtually equal.
But if you want to compress irreversibly [the positive sign in Eq. (2.11)] an external  
pressure of magnitude greater than the internal pressure will be required (Pext > P); and 
the difference (Pext – P) increases as one increases the degree of irreversibility, i.e., to 
increase the speed of the piston C . But, during irreversible expansion, the opposite thing 
will happen: Pext is now less than P. Since the work is always given by dw = –Pext dV, we 
find
  during expansion: work is maximum in a reversible process.

  during compression: work is minimum in a reversible process.

2.9 tHe KInetIc InterpretAtIon of temperAture
Before introducing the concept of temperature, let us put some remark on the nature of 
collisions between two gas molecules. These are as follows:
 1. The molecules will be assumed to be smooth and perfectly elastic spheres, i.e., the 

kinetic energy and the momentum of two colliding molecules are conserved during 

a collision.

 2. If the centres of two colliding molecules are connected at the moment of collision 
by the ‘Line of centres’, the component of two velocities perpendicular to this line 



remain unchanged, while the components along the line of centre after collisions 
are given by the expressions3,

  

2 1 2
1 2 1

1 2 1 2

1 2 1
2 1 2

1 2 1 2
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( ) ( )

2 ( )
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( ) ( )

f i i
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m m m m

m m m
C C C

m m m m

 (2.12)

3 Elastic collision between two molecules

Conservation of the momentum gives
  m1C1i + m2C2i = m1C1f + m2C2f

m1(C1i – C1f) = m2(C2f – C2i) …(1)
Conservation of the kinetic energy gives

  
2 2 2 2

1 1 2 2 1 1 2 2
1 1 1 1
2 2 2 2i i f fm C m C m C m C

2 2 2 2
1 1 1 2 2 2( ) ( )i f f im C C m C C

m1(C1i – C1f) (C1i + C1f) = m2(C2f – C2i) (C2f + C2i) …(2)
Dividing Eq. (2) by Eq. (1),

  

1 1 1 1 1 2 2 2 2 2

1 1 1 2 2 2

( ) ( ) ( ) ( )

( ) ( )
i f i f f i f i

i f f i

m C C C C m C C C C

m C C m C C

C1i + C1f = C2f + C2i

(C1i – C2i) = –(C1f – C2f) …(3)
This equation tells us that in an elastic one-dimensional collision, the relative velocity of approach 
before collision is equal and opposite to the relative velocity of separation after collision, no matter 
what the masses of the colliding molecules may be.
Multiplying Eq. (3) by m2 gives

m2(C1i – C2i) = m2(C2f – C1f) …(4)
Equation (1) m1(C1i – C1f) = m2(C2f – C2i)
Subtracting
  m2C1i – m2C2i – m1C1i + m1C1f = m2C2f – m2C1f – m2C2f + m2C2i

  m1C1f + m2C1f = m1C1i + m2C2i – m2C1i + m2C2i  = (m1 – m2)C1i+ 2m2C2i 

C1f = 1 2 2
1 2

1 2 1 2

( ) 2
( ) ( )i i

m m m
C C

m m m m

Similarly, C1f can be eliminated to find

  

2 1 1
2 2 1

1 2 1 2

( ) 2
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  where the masses of the colliding molecules 1 and 2 are m1 and m2, the velocity 
components being C1i and C2i before collision and, C1f and C2f after collision, along 
the line joining their centres at the time of impact.

To understand this, let us take an example (Figs 2.3a, 2.3b). Two molecules of mass m1 
and m2 with speeds 300 ms–1 and 500 ms–1, respectively, hit one another as in Figure 2.3a. 
The molecule (2) came making an angle 30° with the line of centres and, the molecule 
(1) came at a direction of 60° with the line of centres from the opposite side. What will 
be their velocities of recoil?

The normal component of velocity of molecule 1, before collision is C1N = (300 ms–1) 
cos 30° = 259.8 ms–1 and, that of the second molecule is C2N = (500 ms–1) cos 60° 
= 250 ms–1. These two components will remain the same after the collision.

The two component velocities along the line of centres, before collision are
  C1i = (300 ms–1) cos 60° = 150 ms–1

and  C2i = (500 ms–1) cos 30° = 433 ms–1

Therefore, after collision these components will change to
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Let molecule 1 be a CO2 molecule and, molecule 2 be a H2 molecule; the masses are then 
m1 = 7.3 × 10–23 g and m2 = 0.33 × 10–23 g. Therefore, C1f = 174.48 ms–1 and C2f = –108.5 
ms–1. Therefore, after collision C1N = 259.8 ms–1 and C1f = 174.48 ms–1 and

  
1 259.8

tan 56.11
174.48

and similarly (see Figure 2.3b)

  
1 250

tan 66.54
108.5

The two molecules will thus recoil away as shown in Figure 2.3b.

 3. The velocity of the centre of mass of the two molecules is not changed by their collision. 

This is important to understand the nature of the collision. The momentum p of the 
system of two molecules can be written as

  

1 2
1 2 1 21 2 1 2

1 2 1 2

( )
( ) ( )

m m
p m C m C m m C C

m m m m

CM1 2( )p m m V

where CMV  is the velocity of the centre of mass. Since p  is conserved during a 

collision, CMV  remains constant. This means that the two molecules will recoil 



according to the point 2 but, the centre of mass moves with uniform velocity; no 
change in speed; no change in direction.

2.9.1  What determines the state of thermal equilibrium of mixture of 
two different Gases?

We define the state of thermal equilibrium as that in which the temperature of the system 
is uniform throughout, and is also equal to that of the surroundings.

Let us take a box containing two different kinds of molecule of mass m1 and m2 with 
number density n1 and n2. Let the molecules of the first kind were initially moving fast 
and, those of the second kind were moving slow. What will be the final picture?

There will be a continuous two body bombardments of all types: m1  m1, m2  m2  and 
m1  m2. For all these collisions, the total momentum and the total kinetic energy will 
remain the same. But, certainly there will be a continuous exchange of momentum and, 

hence of velocity between the molecules. The final picture will therefore be a state in which 

thing will not change any more. Let the two molecules approach one another with velocities 

(Figure 2.4(a)) 1 2andC C . They collide and fly off with a new combination of velocities. 

But the main idea is that (already explained) while all these things happen, the centre of 

mass goes on moving, without any changes, with the velocity CM( )V  of the centre of mass:

  

1 21 2
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V

m m

C

C

C

–C
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The relative velocity of their approach for a particular collision is 1 2;V C C  and the 

direction of this vector V  could be at any possible direction with CM CM. So,V V  obviously 

has a finite projection on V  at a single collision, i.e., CM. 0V V  Fig 2.4(c). But, in the 

final state of equilibrium CMandV V  vectors are widely distributed that the average of 

CMV V , i.e., CMV V  will be zero. That is

  CM 0V V  (2.13)

Now,  1 2 1 21 2

1 2

( ) ( )
( )

CM
C C m C m C

V V
m m

V V m C m C m C C m C C m mCM 1 1
2

2 2
2

2 1 2 1 2 1 1( 22 0 24) (fig (d))



  

2 2
CM 1 21 1 2 2 1 2

1 2

1
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( )
V V m C m C m m C C

m m

How much is 1 2 ?C C  In the final state of equilibrium, the two vectors 1 2andC C  

could be oriented at all possible angles. So again, 1 2 0.C C  Therefore, from the above 
equation it is clear that

  2 2
1 1 2 2m C m C

or  2 2
1 1 2 2

1 1
2 2

m C m C  (2.14)

This is the equation we are waiting for. If you take a mixture of two different gases under 

condition of thermal equilibrium, then the average kinetic energy of the two kinds of 

molecule is equal.

Now, instead of the gas mixture, if we take two boxes, one containing the gas A and other 
gas B, initially at different degrees of hotness, i.e., at different temperatures and, put 
them together into thermal contact, then what will be the final picture? Definitely, heat 
will flow from the hot gas (say gas A) to the cold one (gas B), and this exchange of energy 
will continue until their temperatures become equal, i.e., when they attain the state of 
thermal equilibrium. Now, what determines this state of thermal equilibrium between 
two different gases, each being present in the pure state?

We solve it as follows: Let us take a rectangular box (Figure 2.5) with two fixed membranes 
PP  and QQ . The membrane PP  is permeable to the A molecules but, not to B, and the 
membrane QQ  is permeable to B molecules but, not to A. We first put A-gas molecules 
(Figure 2.5) in the left portion of PP  and the B-gas molecules in the right zone of QQ . 
Initially they are taken at two different temperatures; say, A molecules were hotter than 
the B molecules. Definitely, the situation is not going to last. In the final stage, we will 
have a mixture of A and B molecules in the intermediate zone P QQ P , the pure gas A to 
the left of PP  and pure gas B to the right of QQ . But what about their energies?



In the intermediate zone, the hot A molecules will collide with the cold B molecules and, 
passing on some energy to the latter will return to the main body with less energy than that 
with which they have left. They will now suffer collision with the relatively hot molecules 
which have not left the compartment, and will take up a little energy from the latter. So, 
the result of this round trip will be a gradual cooling of the A molecules.

On the other hand, the B molecules after receiving energy from the A molecules in 
the intermediate zone will enter into their main B body, and again via collisions, will 
distribute their excess energy among them. The net result is therefore a gradual cooling 
of the A molecules and a gradual heating of the B molecules. This exchange of energy 
will continue until the hotness, i.e., the temperature of all parts of the entire system gets 
uniform, i.e., until the thermal equilibrium is attained. In this final state, the average 
kinetic energy of the A molecules and the B molecules are equal in the intermediate zone 
(we have proved it earlier). But since the A molecules in the intermediate zone are in 
thermal equilibrium with those in the left portion of PP , they must also have the same 
average kinetic energy (otherwise, thermal equilibrium could not have been established); 
and similarly, the average kinetic energy of the B molecules in the intermediate zone and, 
in the right portion of QQ  must also become equal.

Thus we have proved a very important concept:

Under condition of thermal equilibrium, i.e., at the same temperature, the average kinetic 

energy of the molecules of two gases (like or unlike) are equal.

This, in turn means that, the average kinetic energy of the molecules of a gas is a function 

of only temperature, no dependence upon anything, molar mass, atomicity, etc.

The result is amazing! If you take a H2 gas and a CO2 gas at the same temperature, then 
the molecules in both the systems will be moving with the same average kinetic energy.
Now, how to set up the temperature scale ? The best way to do it would be to define this 
average kinetic energy itself as the temperature. But unfortunately, people have done it 

in a different way. They had put a constant factor of 
3
2

k  (the Boltzmann constant: 1.38 × 

10–23 JK–1) between the average kinetic energy and the temperature in the kelvin scale. 
So, if T be the kelvin temperature of the gas, then the average translational kinetic energy 

of the molecules is equal to 
3

,
2

kT  i.e.,

  21 3
2 2

m C kT  (2.15)

We shall prove this result later. Before going to the next section, we will discuss a little 
more about Eq. (2.15).



We have proved that the average kinetic energy of the molecules of a gas is 
3
2

kT  (actually 

we have not proved it; we have accepted the result logically, and will prove it later). The 
problem is we have been discussing only monoatomic gases. Naturally, we are now thinking 
about the result of diatomic or triatomic molecule.

The translation of a diatomic molecule may be pictured as the translation of two atoms; 
but now the two atoms are tied up with each other by a bond. So, although there are forces 
between the atoms of a diatomic molecule, the exchange of energy or momentum between 
the two atoms of the two diatomic molecules does not depend on the position of their 
counter atoms. So you can say that, if two atoms of masses mA and mB are held together 
by a bond, then although they may rotate or vibrate, the condition of thermal equilibrium 

requires that each atom in a molecule has a mean translational kinetic energy of 
3

.
2

kT  

That is 2 21 1 3
, .

2 2 2A A B Bm C m C kT  So what is the mean translational kinetic energy of 

the molecule as a whole, i.e., looking up at its motion along the motion of the centre of mass 

of mA and mB?

The velocity of the centre of mass is
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The average translational kinetic energy of the molecule as a whole is then
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ut, what is the value of A BC C ? Due to their random orientation, 0.A BC C  
Therefore,
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The result is amazing. If you have a diatomic molecule, the average translational kinetic 

energy is still 
3

;
2

kT  but where is the rest of the energy? Because, you have calculated a 

total of 2 21 1
, 3 .

2 2A A B Bm C m C kT  

The rest of energy 
3 3

3
2 2

kT kT kT  is now attributed to the rotational and vibrational 

kinetic energy of the molecule.

2.10 A mAtHemAtIcAl Interlude

2.10.1 spherical coordinates
Instead of locating a point in space by specifying the Cartesian coordinates x, y and z, we 
can also locate the point by specifying the spherical coordinates, r, and . The relations 
between the two sets of coordinates are x = r sin  cos : y = r sin  sin ; z = r cos  
(Figure 2.6).

This coordinate system is called a spherical coordinate system because the graph of the 
equation r = c (constant) is a sphere of radius c centred at the origin. The limits of  and  
are explained in Figure 2.7.



The differential volume element in the Cartesian coordinates is
 d  = dx dy dz ...M1

In the spherical polar coordinates it is
 d  = r2dr sin  d d  (Figure 2.8). ...M2

You can check the above equation within proper limits of find the volume of a sphere V, of 
radius r:

+
–

–

+ sin

+

M1.dt =

M2

= sin



  

22 3 3
0 0 0

4
sin

3
r

V d r dr d d r

If we integrate only over  and , we get

  22 2
0 0

sin 4dV r dr d d r dr  …M3

which the volume of a spherical shell of radius r and thickness dr: 4 r2 is surface area and 
dr is the thickness of the shell.

The area PQRS = A is r2sin d d

 dA = r2sin d d  ...M4

If we integrate dA over the entire range of (0  ) and (0  2 ),

 A = 
2 2

0 0
sindA d d r

 A = 4 r2

which is the area of the sphere.

We call the solid enclosed by the surface dA connecting the origin, a solid angle d , for a 
sphere of unit radius,

 d  = sin d d

The total solid angle is then

  
2

0 0
sind d d

 = 4  ...M5

2.10.2 even and odd functions
We first define a function y = g(x) even if
  g(x) = g(–x) for all x ...M6(a)

The graph of such a function is symmetric with respect to the y-axis (Figure 2.9a). A 
function h(x) is odd if



  h(–x) = –h(x) (see Figure 2.9b) ...M6(b)

For example, the function cos nx is even while sin nx is odd.
Three key factors for even and odd function are as follows:
 1. If g(x) is an even function, then

  
0

( ) 2 ( )
L L

L
g x dx g x dx  (g even) ...M7

 2. If h(x) is an odd function, then

  ( ) 0
L

L
h x dx   (h odd) ...M8

 3. The product of an even and an odd function is odd.
Proof: 1 and 2 are obvious from the graph. We generate a function q = gh with even g and 

odd h; q  is then odd because 
 q(–x) = g(–x) h(–x) = –g(x) h(x) = –q(x)

2.10.3 the Gaussian Integral
It is given by

  
2 2

; ( )x xI e dx y f x e  (Figure 2.10(a)) ...M9

To evaluate this integral, we first square I and, write as

  

2 2 2 22 ( )x y x yI e dx e dy e dxdy

Which is a double integral of the whole xy-plane. But this can also be written in the plane 
polar coordinate with the differential volume element d( r2) = 2 rdr [Figure 2.10(b)] 
replacing the differential volume element dxdy in the cartesian coordinate as

  22
0 0

(2 )r xI e rdr e dx

I



The integral 
2

0
xe dx  is therefore 

1
,

2
 as the function 

2xe  is even. Obviously, we can 
also write 

  
2

0

1
,

2
axe dx

a
 ...M10

where a is a constant.

2.10.4 the Gamma function
Another important function widely used in physical science introduced by Euler in the 
1700s is the gamma function, and is defined by integral 

  1
0

( ) 0x nn e x dx n  ...M11

Note that the integral is a function x and n, and the resulting integral is a function of n.

If n ≥ 2, we can integrate (n) by parts: using e –xdx dv and xn–1as u

  udv uv vdu

  1 2
00

( ) ( 1)n x n xn x e n x e dx

  2
0

( ) 0 ( 1) n xn n x e dx

( 1) ( 1)n n n  ...M12



We can now write ( 1) ( 2) ( 2)n n n  and so on, and finally

  ( ) ( 1) ( 2) (1)n n n

0
( ) ( 1)! (1) 1xn n e dx  ...M13

Up to this point, Eq. M13 is restricted to integer values of n  2; but we can also define 
factorials for other values of n. For n = 1, (1) = 1 = 0!, which is interesting.

For other values of n (nonintegers). For 
1

,
2

n  using Eq. M11, we find

  

1/2
0

1
2

xe x dx

Let ut x = u2; then x–1/2 dx = 2du

2

0

1
2

2
ue du cf. Eq. M10) ...M14

2.10.5 the error function

One of the most commonly occurring integrals that cannot be expressed in terms of 
elementary functions is the error function: it is defined as:

  
2

0

2
( ) [ ]

x uerf x e du x  ...M15

Since the function erf(x), cannot be expressed in terms of simple functions, it is a perfectly 
well-defined function of x and can be evaluated by numerical integration. Starting from 
Eq. M14, we can write

  

2

0

2
1ue du

which can be broken as

2 2

0

2 2
1

x u u

x
e du e du

22
( ) 1u

x
erf x e du



22
1 ( )u

x
e du erf x

Defining the complementary error function erfc (x) as

  
22 u

x
e du

we get
  erfc (x) = 1– erf (x) ...M16

If the upper limit in the integral M15 is extended to ∞, the result is: erf (∞) = 1. Therefore 
as x varies from zero to infinity, the erf (x) varies from zero to unity. We also find that

  
2

( )
2

u

x
e du erfc x  ...M17

These are illustrated in Figure 2.11 and Figure 2.12, and Table 2.1.

( )

1 2–1–2

1.0

–1.0 1 2–1–2

1

2

( )



x erf (x) x erf (x)

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0

0.000
0.2227
0.4284
0.6039
0.7421
0.8427
0.9103
0.9523
0.9763
0.9891
0.9953

2.0
2.2
2.4
2.6
2.8
3.0
3.2
3.4
3.6
3.8
4.0

0.9953
0.9981
0.9993
0.9998
0.9999
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000

2.11  HoW mAny molecules strIKe A unit AreA of tHe surfAce of 
tHe contAIner?

When you take a gas in a container at a fixed temperature, there will be molecules with all 
possible speeds, moving in all possible directions.

Let us attach to each molecule a vector, whose length is equal to the speed of the molecule 
and, whose directions is along the direction of the motion. If we do it for all the molecules, 
at a particular times, we will get a random collection of as many vectors as there are 
molecules.

Now, translate all these vectors (but, DO NOT ROTATE) to the origin of our coordinate 
system. The picture will be like that shown in Figure 2.13. Let us now draw two concentric 



spheres, one of radius C and the other of radius C + dC. The number of vector tips lying 
in the  infinitesimal shell (between the two spheres) will be equal to the number of 
molecules moving with speeds in the range C to C + dC (Figure 2.14). If we now consider 
an infinitesimal area on the surface of the sphere at angles andd d  

(Figure 2.15), then the solid angle described at the centre is sin d d . Since the total N 
molecules are distributed uniformly over the total solid angle 4 , the number of molecules 
moving with speeds in the range C  C + dC and, at angles  and  is

  , , sin
4C

N
dN d d  (2.17)



Therefore, the number of molecules per unit volume, moving with speeds in the range C  
C + dC and, along the direction described by  and  is

  

, ,
, ,

( / )
sin

4
C

C

dN N V
dn d d

V

 , , sin
4C

n
dn d d  (2.18)

where n is the number of molecules per unit volume. How many molecules strike a unit 
area placed at the origin on the x–y plane (Figure 2.16) along the ,  direction? In one 
second, the molecules can move over a distance C, and therefore, the number of molecules 
which are present in the slant cylinder of length C, positioned along ,  direction, will 
hit the unit area in one second. The volume of this cylinder is C cos  × 1 = C cos , and 
therefore, the number of strike will be

, ,

Number of moleclues striking
a unit area placed at the origin

(volume of the slant cylinder)
on the plane along the ,

direction per second

Cdn
x y

 sin ( cos )
4
n

d d C

 sin cos
4
nC

d d  (2.19)



Therefore, the total number of striking on this unit area by the molecules moving in the 
speed range C  C + dC from all directions in one second, but from one side of the x–y 
plane is

  Striking Rate = 
/2 2

0 0

1
sin cos

4 4
nC

d d nC

The angle  is varied from 0 /2  because we want to cover the surface on one hemisphere; 

all directions above the x–y plane (Figure 2.17).

Finally, we realise that there are molecules in different speed ranges: n1 molecules per 
unit volume in the speed range C1  C1 + dC, n2 in the range C2  C2 + dC ... etc., the net 
striking rate is then

Striking Rate = 1 1 2 2
1 1

[ ]
4 4

n C n C n C

where the average speed is

  
1 1 2 2( )n C n C

C
n

The wall collision frequency is therefore given by 

  wall
1
4

z n C  (2.20)



2.12 cAlculAtIon of pressure of A GAs
What happens when a molecule hits the wall? As shown in Figure 2.18, there is no change 

in the tangential component of the velocity of the molecule; only the normal component of 

the velocity of the molecule is changed from C cos  to –C cos .

Therefore, per blow the momentum imparted is 2mC cos . Hence, the momentum change 
dp per second per unit area of the wall along the  –  direction is [using Eq. (2.19)]

  
(2 cos ) sin cos

4
nC

dp mC d d

2
2sin cos

2
mnC

dp d d

and realising that the pressure P is developed due to the momentum blow of the bombarding 
molecules, from all possible directions per unit area per second but, from one side of the 
hemisphere, we can write

  

/2 2

0 0
P dp

21
3

P mnC

Finally, considering molecules of all possible speeds

  
21

3 i iP m n C

2 22
rms rms

1 1 1
, or , or

3 3 3
N

P mn C P m C P mnC
V

 (2.21)



where the root mean square speed defined as

  
2 22

rms
1

i iC n C C
n

2C  is the mean squared speed and Crms is the root mean square speed [compare with 
Eqs (2.15) and (2.16)]. We can, therefore, write the average translational kinetic energy

  
2 2

rms
1 1 3
2 2 2

m C m C kT

It is mentioned earlier, that the average translational kinetic energy is not 21
;

2
m C  it is 

2
rms

1
,

2
m C  and the Crms may be defined as the speed with which the molecules move 

with the average translational kinetic energy.

  rms
3 3kT RT

C
m M

 (2.22)

m is the molecular mass, M is the molar mass, R = kN0 (k is the Boltzmann constant, N0 
is the Avogadro’s constant).

Equation (2.21) now can also be transformed as

  
2
rms

1 1 3
3 3

kT
P mnC mn

m

or  P = nkT

The ideal gas equation.

2.13 derIvAtIon of IdeAl GAs lAWs from KInetIc tHeory

2.13.1 Boyle’s law
Differentiating PV with respect to pressure at constant temperature [Eq. (2.21)]

  

2( ) 1
3T T

PV
m N C

P P

        

2 22 1 1
3 2 3 TT

N
N m C m C

P P

Since the average translational kinetic energy, 21
,

2
m C is a function of only temperature, 

the first differential on the right-hand side is zero. Now, if the molecules do not undergo 



any association or dissociation, then N is also fixed, i.e., 0.
T

N

P
 So we have, for a 

given mass of a gas

  

( )
0

T

PV

P

which is the Boyle’s law.

2.13.2 charles’s law
Again we start by recognising that the average translational kinetic energy of the molecules 
of an ideal gas is directly proportional to the kelvin temperature 

  
21 3

2 2
m C kT

  
21 3

2 2
P

m C k
T

Therefore,

  
2 2

2

3 1 1
( )

2 2 3

1
3

P PP

P

N
PV N m C m C

T T T

N
Nk m C

T

If the molecules do not undergo any association or dissociation then, 
P

N

T
0; hence, for 

a given mass of a gas (N is fixed),

  
( )

P

PV

T
 constant

Under condition of fixed pressure,

  
( )

P P

PV V
P

T R
 constant

  
P

V

T
 constant.

i.e., the rate of change of the product PV with the kelvin temperature at a fixed pressure is 
constant or, if the pressure is held fixed for a given mass of an ideal gas, the volume varies 
linearly with the kelvin temperature; this is the Charles’s law.

2.13.3 Avogadro’s law
If we take equal volumes of two different gases under the same conditions of pressure and 
temperature, we have from Eq. (2.7)



  U1 = U2

  

2 2
1 1 1 2 2 2

1 1
2 2

N m C N m C

But,  2 2
1 1 2 2

1 1
2 2

m C m C

because each of them is equal to 
3

.
2

kT  This implies

  N1 = N2

i.e., they contain an equal number of molecules. This is Avogadro’s law.

2.13.4 dalton’s law of partial pressure
If several gases are separately contained in a volume V for each, and if N1, N2,... etc. are 
the number of molecules of masses m1, m2, etc., then

  
2 21 1 2 2

1 1 2 2
1 1

; etc.
3 3

m N m N
P C P C

V V

or   1 1 2 2
2 2

; ; ... etc.
3 3

P U P U

where P1, P2, etc. are the pressures of the gases; 2 2
1 2,C C ... etc. are their mean square 

speeds and, U1, U2, etc. are their kinetic energies per unit volume. Now, if all the gases 
are mixed together to occupy the same volume V, then it is found experimentally that, no 

heat is absorbed or liberated (this is actually true for ideal gases)4. The total energy of the 
mixture is equal to the sum of those of the separate gases, i.e.,
  Umix = U1 + U2 + …

If P be the pressure of the mixture, then

  
1 2

3 3 3
2 2 2

P P P

  P = P1 + P2 + …

or   
iP P

which is the law we wanted to prove.

2.12.5 Graham’s law of diffusion/effusion
Equation (2.20) gives us the rate of striking of the molecules on the wall. If there be a tiny 
hole of area A on the wall, then the molecules which are going to hit the area A, will effuse 

4 This result was quite expected, because, by definition, there is no interaction between the molecule 
of an ideal gas.



out. The number of molecules effusing out of the hole of area A per second is therefore

  

1
4

dN
n C A

dt

      

01 8
4

P N RT
A

RT M

where we have used the equation, 8RT
C

M

0
1/2(2 )

P N AdN

dt MRT

The escape of gas molecules through a tiny hole is called effusion. The rate of effusion 
is therefore directly proportional to M–1/2, which is the Graham’s law of effusion. Two 
conditions are, however, to be mentioned:

 (i) The hole must be tiny; if it is big, then there will be a rapid flow of the gas, destroying 
the distribution of velocity of the molecules.

 (ii) The size of the hole must be much smaller than the average distance traversed by 
the molecules between two successive collisions; otherwise, it would not be a free 
flow (effusion is a free flow), because the molecules will collide many times with one 
another, while passing through the hole and, a hydrodynamic flow would be set up 
throughout the container, towards the hole.

2.14 KInetIc tHeory ApplIed to tHe AtmospHere

2.14.1 Barometric distribution
In this section, we shall learn: how are the molecules distributed in space subjected to a 

static field of force, at thermal equilibrium. For example, if we consider our atmosphere as 
a column of gas, and which is subjected to the gravity field along the Z axis, say, and which 
is at thermal equilibrium then, here we want to know, how the number of molecules per 

unit volume changes with altitude?

Before taking up the mathematical steps, let us first analyse the situation by physical 
reasoning. When you put a column of gas on the earth surface, two distinct forces act on 
the molecules:
 (i) The kinetic molecular force and
 (ii) The gravity force

You are well acquainted with the character of the kinetic molecular force; this tends 
to randomise the molecules uniformly all over the space available. But the effect of the 
gravity force is something different; it tends to pull down all the molecules at the bottom. 
So, one tries to bring an order (the gravity force) and the other, the kinetic molecular 



force, tries to bring a disorder in the system. The final picture will therefore be some sort 
of compromise between these two opposing forces. While the gravity force will try to pull 
down all the molecules to the bottom, the kinetic molecular force will knockout some of 
them and kick them off to the higher altitudes. Thus, the number of molecules per unit 
volume will decrease as we go up and up and, obviously will be the pressure. We now want 
to make the discussion quantitative.

Let us fix up our reference frame so that the z-axis points vertically up. Also, let us consider 
a reference level at Z = 0. All these are required to represent the various altitudes of our 
atmosphere which is at rest at thermal equilibrium (Figure 2.19).

Consider an element of the fluid of thickness z at an altitude z. The element is like a thin 
disc of unit area. Since the element is at rest, the vertical upward force acting on the lower 
face of the slab is more than the vertical downward force acting on the upper face by an 
amount, which is the force due to the mass of the slab itself. If P be the pressure at height 
Z and P + dP at height Z + dZ, then

  ( )P P + dP gdZ

  dP = – gdZ (2.23)

where  is the density of the fluid at the height Z. If m be the mass of each molecule and 
n be the number of such molecules present per unit volume at the height Z then,  = mn, 
with which Eq. (2.23) changes to
  dP = –mngdZ (2.24)

Applying the ideal gas law, we write
  ;P nkT dP kTdn  (k is the Boltzmann constant) (2.25)

Combining Eqs (2.24) and (2.25), we get

  
dP mg

dZ
P kT

 (2.26)



and also,   dn mg
dZ

n kT
 (2.27)

Finally, integration of these two equations between limits: P = P0; n = n0 at Z = 0 and, at 
an altitude Z the pressure is P and the number density is n, we get

  0 exp
mgZ

P P
kT

 (2.28)

and  0 exp
mgZ

n n
kT

 (2.29)

We now got the answer. Two factors are responsible for the pressure: (i) the momentum 
blow by each molecule and (ii) the number of molecules per unit volume. As we assumed an 

isothermal atmosphere, the momentum blow at any altitude is the same but, the number  

density of the molecules decreases exponentially with altitude [Eq. (2.29)]. The second 
factor then makes the difference. Remembering that P = nkT, it is clear to understand that 
as the number density of the molecules decreases exponentially [Eq. (2.29)], the pressure 
also follows the same rule [Eq. 2.28)]. Equation (2.29) is therefore the reason and Eq. (2.28) 

is the result.

Another interesting feature of the differential Eq. (2.26) is that the relative decrease in 
pressure (–dP/P) is directly proportional to the increase in height dZ. This means that 
if you observe a 10% decrease in the atmospheric pressure after 10 km, you will observe 
again a 10% decrease after another 10 km, i.e., (1 atm) (0.9) = 0.9 atm at an altitude 
10 km, (1 atm) (0.9) (0.9) = 0.81 atm pressure at an altitude 20 km (ground level pressure 
is 1 atm) and so on.

2.14.2 Who Keeps the temperature of the Atmosphere constant?
A molecule moving vertically up will behave like a stone thrown upwards. It will rise up 
with decreasing kinetic energy and with an equal gain in the potential energy. It will 
finally come to rest, where its potential energy is maximum and kinetic energy zero; it will 
then start falling down when its potential energy will be converted into kinetic energy. 
Hence, the atmosphere becomes gradually tenuous with increasing altitude.

However, there is an apparent difficulty: since the mean kinetic energy is proportional 
to the kelvin temperature, it might seem that the temperature of the atmosphere should 
fall off with height. This difficulty can be removed if we realise that the molecules which 
can reach the upper layers have had higher kinetic energies than the average value and, 
therefore, the molecules which are in the lower layers have had a lesser kinetic energy 

than the average value 
3
2

kT . There is thus a compensation; the average kinetic energy 

remains throughout the same. Had there been a temperature gradient vertically along the 
height of the atmosphere, a Carnot engine could have been operated which would extract 



heat from some lower altitude and, rejects heat at some higher altitude, producing some 
work at each cycle. This would be definitely against the second law of thermodynamics. 
This is called the ‘Sama Effect’; attempts to detect it has failed, and it is claimed that, a 
flow of gas had been detected by a light vane.

Most probably you are thinking that why we really feel cold when we move up to a hill 
station? There is a fundamental difference between our atmosphere in this book and, our 

real atmosphere. Here, we have assumed that the atmosphere is in thermal equilibrium 
and, is not exchanging any energy with the surroundings. But, our real atmosphere is in 
continuous energy exchange with the sun; and, if you apply again the barometric formula 
[Eqs. (2.28) and (2.29)], you may get the answer. At higher altitudes the density of the air 
is low and hence, it can hold a very little of the energy it receives from the sun, and hence 
we feel cold. Let us make it quantitative:

Considering the cooling of dry atmosphere with altitude as adiabatic, we may write

  

(1 ) constant p

V

C
T P

C

(1 ) ( 1)(1 ) 0T P dP P T dT

( 1)(1 ) 0T dP PT dT

( 1)(1 ) 0
dP

T T dT
P

Using Eq. (2.26),

  
( 1)(1 ) 0

mg
T dZ T dT

kT

  
( 1) mg

dZ dT
k

( 1)dT mg

dZ k

which on integration

  0 0

( 1)T Z

T

mg
dT dZ

k

we find

  0
( 1) mg

T T Z
k

 (2.30a)

where T is the temperature at an altitude Z and T0 is the surface temperature. We got a 
nice result. How is then the pressure of our atmosphere varies with altitude?



Starting from Eq. (2.30) and dividing throughout by T0 we find

  0 0

( 1)
1

T mgZ

T kT

Again, considering the cooling as adiabatic we may write 

  

( 1)

0 0

T P

T P

and, substituting this equation, the above equation reads

  

( 1)

0 0

( 1)
1

P mgZ

P k T

  
( 1)

0 0

( 1)
1

mg ZP

P k T

Considering ideal behaviour:

  

1) ( )/ ( )

/
P V V P V

P V P P

C C C C C R

C C C C

and using this, we have

  

( 1)

0 0

1
P

mg ZP R

P kTC

  
( 1)

0
0

0 0

1 ( )
P

k N mg ZP
R = kN

P kTC

  
( 1)

0
0

1
P

MgZ
P P

C T
 (2.30b)

where M is the molar mass: M = mN0. Students must understand that Eqs (2.28) and 

(2.29) are applicable only for an isothermal atmosphere. The pair of Eq. (2.30) takes care of 
the decrease in temperature in the variation of pressure with altitude.
 (i) the pressure of our atmosphere decreases with altitude according to Eq. (2.30b), 

and
 (ii) the temperature of our atmosphere decreases linearly with altitude [Eq. 2.30(a)].



2.14.3 Barometric distribution in a mixture of Gases
The barometric Eqs (2.28) and (2.29) also apply to a mixture of gases like our atmosphere; 
but m must now be replaced by the mean molecular mass: mmix = ximi, where xi is the 
mole-fraction of  the component i, whose molecular mass is mi. Equation (2.28) can also be 
applied to the individual components in a mixture, e.g.

  
0

, , exp i
i Z i Z

m gZ
P P

kT
 (2.31)

where Pi,Z and 0
,i ZP  are the partial pressures of the component i at an altitude Z and at 

the ground level.

2.14.4 effect of temperature on distribution
Writing Eq. (2.28) as

  0

exp
P mgZ

P kT

We find that fraction of the ground level pressure (P/P0) at some altitude Z increases 
with increase in temperature. The exponential decrease in pressure with altitude becomes 
sluggish with increasing T (Figure 2.20). The reason is clear: on increasing the temperature, 
the kinetic molecular motion increases which, knockout more molecules from the lower 
altitudes to higher altitudes against the pull of the gravity.



The subject matter may be made a little bit more mathematical: starting from  
Eq. (2.28),

  0

mg
exp

ZP

P kT

We note that the right hand side of the above equation gives the fraction of the ground level 
pressure (P0) at height Z. Now, the effect of temperature on the distribution is deduced as 
follows: If, instead of the temperature Ti, the gas is maintained at some higher temperature 
Tf (Tf > Ti), the height Zf, at which the exponent and therefore, the exponential term has 
the same value previously determined by Zi and Ti is given by

  

mgmg fi

i f

ZZ

T T

Since  Tf > Ti,  Zf > Zi

which means that, the fall in pressure to some definite fraction of the ground level pressure 
at low temperature demands higher altitude at higher temperature.

example 2.1
Calculate the change in pressure of the atmosphere at a height 8.5 km from the earth 
surface due to a change in temperature from 27°C to –36°C. Assume the air to be an ideal 
gas with molar mass 0.0289 kg mol–1. Consider the ground level pressure to be 1 atm.

Using Eq. (2.28) at the two temperatures

      

0
8.5 km 0

0

(237 K) exp ;
mNMgZ m M

P P
RT k kN R

  

(0.0289 kg
(1atm) exp

mol
1
) (9.8 ms

2 3) (8.5 10 m )

(8.314 JK
1

mol
1
) (237 k ))

    P8.5 atm (237 K) = (1 atm) exp[–1.2218] = 0.2947 atm

 Similarly, P8.5 km (300 K) = (1 atm) exp[–0.965] = 0.3810 atm

The change in pressure is
P8.5 atm (237 K) – P8.5 km (300 K) =(0.2947 – 0.3810) atm = –0.0863 atm

The pressure  at 8.5 km altitude is decreased by 0.0863 atm due to the temperature change 
from 27°C to –36°C.



2.14.5 effect of molecular mass on distribution
Again, starting from Eq. (2.28),

  0

exp
P mgZ

P kT

We find that the pressure falls off more rapidly for a gas of heavier molecules compared to 
a gas of lighter molecules (Figure 2.21). The reason is very clear: at a fixed temperature, 
the average kinetic energy of the molecules of any gas is the same, i.e. the knocking out 
effect is the same. The heavier molecules are therefore more strongly pulled towards the 
earth surface compared to the lighter molecules.

You know that N2 and O2 exist on the earth surface in the mol-ratio 4:1. Since N2 molecules 
are relatively lighter than the O2 molecules, the number density of the latter will drop 
down more rapidly than the former with increase in altitude. So we may expect that 
the proportion of N2 to O2 will increase with altitude. In fact, this does not happen in 
our atmosphere, at least at reasonable heights. This is because (i) our atmosphere is not 
isothermal and (ii) it is not at rest; they are mixed up again. However, the lightest gases 

definitely predominate at upper levels.

example 2.2

If mol-percentages of O2 and He in the air at the earth surface are 20.93 and 0.0001, 
respectively, then calculate the height after which He will predominate O2. Temperature 
is 300 K.



Let their number densities become equal at altitude h. Therefore, we may write

  

1

0

(0.032 kg mol ) gh
100 20.93 exp

n

n RT

  

1(0.004 kg mol ) gh
0.0001 exp

RT

  
1(0.028 kg mol ) gh

209300 exp
RT

  
(0.028 kg

ln 209300
1mol ) (9.8 m 2s )

(8.314 N

h

1m mol 1K ) (300 K )

  
8.314 300 ln(209300)

m
0.028 9.8

h

or  h = 111,362.06 m = 111.36 km

Comment Students must always take care of the units and their cancellations to get the 
desired unit of the parameter/property asked for.

example 2.3
Consider an isothermal atmosphere. If the pressure is decreased to 90% of the ground 
level pressure after 9 km, then to what extent it would decrease after 27 km?

Using Eq. (2.28),

  
27 km 0

(27 km)
exp

mg
P P

kT

     

27 km/9 km

0
(9 km)

exp
mg

P
kT

  0

3
9 km 3

27 km/
0

(0.9) 0.729P

P
P

P

example 2.4
The mol-ratio of N2 to O2 in the atmosphere at the ground level is 4:1. Calculate the total 
pressure at 10 km altitude at 27°C, if that at the ground level be 1 atm. Average molar 
mass of air is 0.0289 kg mol–1.



The mol-fractions of O2 and N2 at the ground level are 2 2O N0.2 and 0.8,x x  
respectively.

Therefore, the ground level pressures of these two gases are: 
2O (O) 0.2 atm. andP  

2N (O) 0.8,P  using Eq. (2.31)

  
2 2N N

(0.028 kg
(O) expP P

mol
1
) (9.8 ms

2
) (10,000 m )

(8.314 J K
1

mol
1
) (300 k )

  
2
(10 km) 0.266 atmNP

and similarly, 
2O (10 km) 0.057 atm.P

The total pressure at an altitude of 10 km is the sum of these two partial pressures, i.e. 
0.323 atm.

example 2.5
A balloon having a capacity of 15,000 m3 is filled with He gas at 27°C an 1 atm pressure. 
If the balloon is loaded with 90% of the load, that it can lift at the ground level, at what 
height will the balloon come to rest? Assume that the volume of the balloon is constant, 
with mass 1500 kg and the atmosphere isothermal at 27°C. The molar mass of air is 
0.0289 kg mol–1 and the ground level pressure is 1 atm.

Volume of the balloon = 15,00 m3; T = 300 K (isothermal condition) and the ground level 
pressure P = 1 atm = 101325 Pa (1 Pa = 1 Nm–2).

Mass of the He in the balloon is

  
He

(101325 NPvM
W

RT

m
2 3) (15,000 m 1) (0.004 kg mol )

(8.314 N M 1K 1mol ) (300 K )

  WHe = 2437.45 kg

Mass of the balloon

  WB = 1500 kg

WHe + WB = (2437.45 + 1500) kg = 3937.45 kg

Mass of the displaced air at the ground level

  
air

(101325 NPvM
W

RT

m
2
) (15,000 m

3 1) (0.0289 kg mol )

(8.314 N m 1K 1mol ) (300 K )

  Wair = 17,610.6 kg



lifting power at the ground level is then
  [Wair – (WHe + WB) = (17,610.6 – 3937.45) kg = 13673.15 kg

90% of this lifting power = (13673.15 × 0.9) kg = 12,305.84 kg. The net downward load is 
then
  (WHe + WB + 12,305.84) kg = 16,243.29 kg ...(a)

The net upward force is then
  [Wair – 16,243.29 kg] = 1367.31 kg

Let P be the pressure at the altitude h, where the balloon comes to rest. The mass of the 
displaced air at this altitude is

  15,000 0.0289
0.1738 P (P is in Pa)

8.314 300
P  ...(b)

Equations (a) and (b) are now equated
  0.1738 P = 16,243.29

  93,459.69 PaP
1 atm

101325 Pa

  P = 0.922 atm.

Finally, using the barometric equation

  

0 (8.314 N
ln

PRT
h

Mg P

1m K 1mol ) (300 K )

(0.0289 kg 1mol ) (9.81 m 2s

1 atm
ln

) 0.922 atm

  h = 714 m.

2.14.6  How to calculate the total number of molecules 
in the Atmosphere?

Equation (2.29) gives us the variation in the number of molecules per unit volume with 
altitude (assumed isothermal). We will now calculate the total number of molecules in the 
entire atmosphere.

Consider a cylindrical atmosphere of uniform cross-section A, we then focus our attention 
to the portion of the atmosphere between heights Z and Z + dZ. The volume of this section 
is AdZ. Since dZ is infinitesimally small, the number density of the molecules in this 
section can be regarded as constant [Eq. (2.29)]; the total number of molecules in this 
section is therefore n AdZ. The total number of molecules present in the entire atmosphere 
is therefore

  00 0
(0, ) exp( / )N n AdZ n A mgZ kT dZ

  
0(0, ) /N n AkT mg  (2.32)



Similarly, the total number of molecules within an altitude Z from the earth surface is

  0(0, ) 1 exp
n AkT mgZ

N Z
mg kT

 (2.33)

The fraction of the total number of molecules present within the altitude Z is therefore,

  
(0, )

0, 1 exp
0,

N Z mgZ
f Z

N kT  (2.34)

example 2.6
Calculate the fraction of the total number of O2 molecules which lies below an altitude of 
8550 m. Consider the atmosphere to be isothermal at 27°C.

Using Eq. (2.34), the fraction is

  

(0.032 kg
(0,8550 m) 1 expf

mol
1
) (9.8 ms

1
) (8550 m )

(8.314 J K
1

mol
1
) (300 k )

  f(0, 8550 m) = 0.659

The height of Mt. Everest is about 8550 m. This means that, at the top of Mt. Everest the 
percentage of O2 goes down to 0.659 factor of that present at the ground level; the drop in 
temperature is neglected. Had it been considered the percent factor will become further 
lesser.

example 2.7

Calculate the mass of our atmosphere around our earth. The mean radius of the earth is 
6.4 × 103 km and the ground level pressure is 1 atm.

The total number of molecules present in the atmosphere is obtained from Eq. (2.32):

  0(0, )
n AkT

N
mg

 (A is the area of the surface of the earth)

Therefore, the total mass is

  

0 0Mass (0, )
n AkT A P

g g

Where we have used the ground level pressure P0 = n0 kT = 1 atm.

  
2 3 2

0
2

4 4(3.14)(6.4 10 m) (1 atm)
Mass (0, )

(9.8 ms )
r P

g



  
6 2

2

4(3.14)(6.4 10 m) (1atm) (101325 Pa)
Mass (0, )

1 atm9.8 ms

  Mass (0, ∞) = 5.32 × 1018 kg

example 2.8

Calculate the mean potential energy of the molecules in the atmosphere at 300 K.

The number of molecules in the section of the atmosphere between the altitudes Z to Z+dZ 
is n AdZ; each of them has potential energy mgZ. The average potential energy is therefore 
given by 

  
Pot Pot0

1
(0, )

dN
N

  Pot 0

1
( )

(0, )
mgZ AndZ

N

  
2 2

/0
Pot 0

0

mgZ kTAm g n
e Zdt

n AkT
 [using Eq. (2.32)]

  
22 2

Pot
m g kT

kT mg
  (using the gamma function; 

 see Sec. 2.10.4; M.11)

  23 1
Pot (1.38 J KkT x ) (300 K )

  21
Pot 4.14 10 J

This is sometimes referred to as the thermal energy of the molecules.

example 2.9
Show that the height H, at which the pressure is (1/e)th of the ground level value is equal 
to that imaginary height within which the entire exponential atmosphere is present but, 
with the ground level pressure uniform throughout from zero to H.

The total number of molecules in the exponential atmosphere is given by 0
kT

An
mg

 

[Eq. (2.32)]; and if this is assumed to be present within an altitude H uniformly with the 
ground level pressure P0 (= n0kT), then

  
0 0

kT
An A H n

mg



  
kT

H
mg

Using Eq. (2.28),

  
0

mg Z
P P e

kT

  0
1

P
e

0P 1 01
mg H mg H

kT kTe e e e

  
( )

01 0
mgH kT

kTe e mgH kT

and finally, our answer kT
H

mg
.

example 2.10
When Julius Caesar expired, his last exhalation had a volume of about 500 cm3. This 
expelled air was, 1 mol% argon. Assume that the temperature was 300 K and the ground 
level pressure 1 atm. Assume that the temperature and pressure are uniform over the 
earth’s surface and still have the same values. If Caesar’s argon molecules have all 
remained in the atmosphere and have been completely mixed throughout the atmosphere, 
how many inhalations, 500 cm3 each, must we make on average to inhale one of Caesar’s 
argon molecules? The mean radius of the earth is 6.37 × 106 m.

If n and n0 are the number of Ar molecules per unit volume at an altitude Z and, on the 
earth’s surface, respectively, then

  0 exp
mgZ

n n
kT

  [cf. Eq. (2.29)]

The total number of Ar molecules in the atmosphere 
(Z = 0 to Z ) is then

  
total

0

( ) N(0, )n Ar nAdZ

  total 0
0

( )
mgZ

kTn Ar n A e dZ

  0
total ( )

n AkT
n Ar

mg
  [cf Eq. (2.32)] ...(a)

m is mass of a Ar-atm.



This total number of molecules in his last exhalation may also be written as

  
(total) 0

Pv
n N

RT

   

(1 atm 3) (500 cm 23 1) (6.022 10 atoms mol
3

)

(82.05 cm atm 1K 1mol ) (300 K )

   = 1.223 × 1022 atoms

Therefore, the total number of Ar atoms is

  ntotal (Ar) = 1.223 × 1022 × 0.01 = 1.223 × 1020 atoms ...(b)

Now, equating Eqs (a) and (b), we find

  200 01.223 10 atoms
n AkT n ART

mg Mg
 (M is the molar mass of Ar)

           

20 1

0
(1.223 10 atoms) (0.04 kg mol

n
) (9.81 m 2s

6 2

)

4 (6.37 10 m) (8.314 N 1m K 1mol ) (300 K )

  

337.75 atoms m
31 m

6 310 cm

  = 37.75 atom 10–6 cm–3 = 37.75 atom/106 cm3

37.75 atoms of He present in 106 cm3

1 atom of He will be found in 0.0265 × 106 cm3 = 2.65 × 104 cm3

To take a single of Caesar’s Ar atoms, number of inhalations required is

  

4 32.65 10 cm
3500 cm

53

example 2.11
Calculate the change in the ground level pressure of the atmosphere if the temperature is 
increased by x times.

Let n0 be the number of molecules per unit volume at the ground level at temperature T. 

The ground level pressure is then P0 = n0 kT. The total number of molecules present in 
the whole atmosphere is then An0 kT/mg [Eq. (2.32)]. If n be the population density at 
the ground level when, the temperature is increased to xT, then we must have, from the 
conservation of the number of molecules:



  

0 0 ( )An kT An k xT

mg mg

  0
0

n
n

x

The ground level pressure at this increased temperature is therefore

  0 0 0 0( )P n k xT n kT P

The ground level pressure therefore remains unchanged.

Comment When the temperature is increased x times, the gas becomes dilute at the 
ground level but, they are now hitting more harder. So the pressure remains the same.

example 2.12

A balloon having a capacity of 10,000 m3 is filled with He at 20°C and 1 atm pressure. If 
the balloon is loaded with 80% of the load that it can lift at ground level, at what height 
will the balloon come to rest? Assume that the volume of the balloon is constant, the 
atmosphere isothermal at 20°C, the molar mass of air is 28.9 g mol–1, and the ground level 
pressure is 1 atm. The mass of the balloon is 1.3 × 106 g.

The mass of He in the balloon is

  
He

PvM
W

RT

  
He

(101325 N
W

2m 3) (10,000 m 1) (0.004 kg mol )

(8.314 N m 1k 1mol ) (293 k )

or,   WHe = 1663.8 kg

The mass of the balloon WB is 1300 kg.

The sum of the masses of He and balloon is
  (WHe + WB) = (1663.8 + 1300)kg = 2963.8 kg

The mass of the displaced air at the ground level is

  
air

PvM
W

RT

  Wair = (101325 N 2m 4 3) (1 10 m 1) (0.0289 kg mol )

(8.314 N m 1k 1mol ) (293 k )

or   Wair = 12,020.89 kg



Therefore, the lifting power at the ground level is 
  (12,020.89 – 2963.8) kg = 9057.1 kg.

The mass of the load is (0.8 × 9057.1) kg = 7245.68 kg.

The net downward load is then WL = (2963.8 + 7245.68) kg wt. = 10,209.48 kg wt.

The net upward force is then

  W = Wair – WL = (12,020.89 – 10,209.48) kg wt

or  W  = 1,811.41 kg wt.

Let h be the altitude where the balloon comes to rest and the pressure at height h be P. 

The mass of the displaced air at the altitude h is

  
410 0.0289

0.1186
8.314 293

P
P  (the pressure P is in Pa)

and this must be equal to the net downward load, i.e.
  0.1186 P = 10,209.48

  P = 86,083.31 Pa

  (86,083.31 PaP
1 atm

)
101325 Pa

  P = 0.8496 atm

We now apply the barometric equation

  
0 exp

mgh
P P

kT

  0ln
PRT

h
Mg P

    
(8.314 N 1m k mol

1
) (293 k )

(0.0289 kg mol
1
) (9.8 m 2s

1
ln

)

atm
0.8496 atm

or  h = 1,401.9 m

or  h ≈ 1.4 km

example 2.13
Calculate the change in the ground level pressure of the atmosphere if the temperature  is 
increased to x times the initial temperature.



Let n0 be the number of molecules per unit volume at the ground level at temperature T. 
The ground level pressure is then P0 = n0 kT. The total number of molecules present in the 

whole atmosphere is 0
kT

An
mg

 [cf. Eq. (2.32)]. If the population density at the ground level 

be n0  when, the temperature i = increased then, we may write:

  

0 0 ( )An kT An K xT

mg mg

  0
0

n
n

x

The ground level pressure at this increased temperature is then

  
0

0 0 0 0( )
n

P n k xT kxT n kT P
x

The ground level pressure therefore remains unchanged. The reason behind this interesting 
result is that, when the temperature is increased x times, the gas becomes dilute at the 
ground level but, they are now bombarding more harder; so the pressure remains the 
same.

2.14.7  Barometric distribution as a special case of more Generalised 
Boltzmann distribution

In the barometric equation, we note an interesting fact that the number density of the 
particles at any altitude is proportional to

exp [– gravitational potential energy of each particle at that altitude/kT]

Now, the question is: do the equation also works when the molecules/particles are subjected 
to any potential field other than the gravity?

To find the answer, let us apply the system in a potential field where F force acts on each 

particle along the x axis (F is a function of x). As we have done earlier, let us take two 
parallel planes of unit area at distances x and x + dx from some reference point. If the 
number density of the particles at the level x be n, then the total number of particles 
between the two chosen planes is ndx; the net force on this assembly is, therefore, Fn dx; 
and this must also be the pressure difference dP across this section; i.e.
  Fndx = dP = k Tdn

  
dn Fdx

n kT

We know that, for a conservative force, ,
dV

F
dx

 where V is the potential energy at the 

point x and dV is its change over the distance dx. Then we can write



   

dn dV

n kT

and integrating between limits

  0 0

1n V

n

dn
dV

n kT

  0 exp
V

n n
kT

 (2.35)

which is nothing different from Eq. (2.29), where we had V = mgZ.

Equation (2.35) is the Boltzmann distribution and now we understand that the barometric 
distribution is a special case of the more generalised Boltzmann distribution. Suppose, we 
take an aqueous solution of NaCl. Concentrate on a particular Na+ ion. How are the other 
Na+ and Cl– ions arranged about this central ion? The answer is given by Eq. (2.35). They 

are arranged exponentially: the concentration of the Na+ ions increases exponentially and 
that of the Cl– ions decreases exponentially with increasing distance from the central 
cation. We will find an ingenious application of this principle later.

example 2.14

The potential energy of the particles of a system in a certain central field depends on 
the distance from the centre of the field as V = ar2, where ‘a’ is a positive quantity. 
The temperature is T and the number of particles per unit volume at the centre is n0. 
Calculate
 (i) the number of molecules located between distances r and r+dr from the centre of 

the field.
 (ii) the fraction of the total number of molecules located between distances r and 

r + dr.

 (iii) the most probable distance separating the molecules from the centre of the field.
 (iv) by how many times the number density of the molecules at the centre of the field 

changes if the temperature is changed by a factor (1/x)?
 (v) the number of particles whose potential energy lies within the interval V  V + dV, 

and
 (vi) the most probable value of the potential energy of a particle. Compare this value 

with the potential energy of a particle located at the most probable distance.

The distribution of the particles in the space is given by Eq. (2.35)

  

2

0 exp
ar

n n
kT



where n and n0, respectively, are the population densities of the particles at the distance 
r and at the centre.
 (i) To solve this part, we have first to find the volume of the shell between two 

concentric spheres of radii r and r + dr; and then multiply this with the population 

density at r. The volume of the shell is 3 24
( ) 4 .

3
d V d r r dr  Therefore, the 

number of particles located between distances r to r + dr is

  

2
2 2

0(4 ) 4 expr

ar
dN r n n r dr

kT

 (ii) To find the fraction, we have to calculate the total number of particles present. 
This is

  

2

2
00 0

(0, ) 4
ar

kT
rN dN n e r dr

  
3/2

0(0, )
kT

N n
a

 (see Sec. 1.9.4; M11)

  The fraction of the total number of particles lying between r to r + dr is therefore

  

3
22 2( ) 4 exp

(0, )
rdN a ar

f r r dr r dr
N kT kT

 (iii) 
3/2 2

24 (0, ) exprdN a ar
N r

dr kT kT

  Figure 2.22(a) shows that there is an exponential decrease in the density of the 
particles with r. Figure 2.22(b) shows the parabolic increase in the volume of 
the shell. Figure 2.22(c) gives the combined effect of these two variations. The 
function first increases and then, forming a maximum, decays down. The distance 
corresponding to this maximum is called the most probable distance, because at 
this distance the differential spherical shell contains the maximum number of 

molecules. To find this distance, we differentiate rdN

dr
 with respect to r and equate 

it to zero:

  

2 2

08 exp 1 0rdNd ar ar
n r

dr dr kT kT

  Three solutions are there:
 (i) r = 0 (ii) r  ∞ and (iii) kT

r
a



  You can easily find from Figure 2.22(c) that at r = 0 and as r  ∞, there are no 

particles. So the only physically acceptable solution is .mp

kT
r

a

 (iv) Let n0 be the concentration at the centre of the field at temperature T/x. Then we 
can write

  

3/2 3/2

0 0 (of sec. 1.9.4; M 11)
kT kT

n n
a xa

 as the total number of particles remain the same.

  3/2
0 0n n x

which means that the number of particles per unit volume will change by a factor 

of 3/2.x

 (v) If V and V + dV are the potential energies of the particles at distances r and r + dr, 

then the number is exactly the same as dNr; writing it as dNV, we get 

  

2
2

04 expV

ar
dN n r dr

kT

Since  2 1
,

2
V ar dr dV

aV

0
1

4 exp
2V

V V
dN n dV

kT a aV

  1/20
3/2

2
expV

n V
dN V dV

kTa



  The distribution function is therefore 

  

1/20
3/2

2
expVdN n V

V
dV kTa

  and is shown in Figure 2.23.

 (vi) To find the most probable value of the potential energy, we differentiate VdN

dV
 

and, equate it to zero.

  

1/20
3/2

2 1 1
exp 0

2
VdN nd V

V
dV dV kT V kTa

  The physically acceptable solution is

  

1
2mpV kT

  The potential energy at the most probable distance is
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2.15 mAxWell’s dIstrIButIon of moleculAr speed

2.15.1 Introduction
We have finished a long section of a topic which describes a single feature of a gaseous 
sample at rest in thermal equilibrium. The barometric distribution function gives us the 
distribution of the particles in a potential field in space, irrespective of their speeds. That 
is, it estimates how many particles are here and how many of them are there. But there is 
another important feature of the system, that we want to know.

Suppose, we calculate the total number of molecules in between two altitudes h and 
h + dh from the earth’s surface. We then ask, are all the molecules in this section moving 
with the same speed? Definitely not. For, even if we have started off with this section, 
having all the molecules therein, moving with the same speed, the random erratic collisions 
among the molecules would continuously change their velocities and ultimately, a steady 
state will be attained in which the molecules will be distributed indistinguishably over 
the entire velocity spectrum. The adjective ‘indistinguishable’ means that a particular 
molecule would not become restricted to move in a given speed zone; rather, they will be 
certainly, constantly changing their speed but, the number of molecules moving in a given 
speed range will be fixed, after the steady state is attained. We now want to find out the 
rule according to which the molecules are distributed over the entire speed range: 0  ∞. 
However, before we start, it would be nice to prove that, if all the molecules move with 
the same speed, the behaviour of the gas would be quite different from that required by 
thermodynamics.

Consider a one-dimensional gas in which all the molecules move vertically up and down, 
i.e. along the z-axis only. Suppose the molecules start rising up from the earth’s surface 
with velocity V0; as they go up, they lose their kinetic energy according to the equation

  
2 2
0

1 1
2 2

mv mv mgZ

where v is the velocity of the molecules at height Z from the earth’s surface. Definitely, a 

height 
2
0

2m

v
Z

g
 will be attained at which, all the molecules would stop and drop down 

towards the earth’s surface. What is the result?

Firstly, our atmosphere should have a finite sharp upper limit, and secondly, since you 
know that the average kinetic energy of the molecules is a linear function of temperature, 
the atmosphere will also experience a linear drop in temperature until the upper limit 
is reached, where the temperature goes to the absolute zero. Thirdly, the density would 
increase with altitude. This is because, in the higher altitudes the molecules move slowly 
and require a longer time to traverse a given length. All these conclusions are going against 
our knowledge. The first and the third points violate the barometric distribution; and the 



second point violates the 2nd and 3rd laws of thermodynamics, according to which, the 
attainment of OK is an impossibility. The molecules therefore cannot move with the same 
speed.

2.15.2 postulates and criticisms
James Clerk Maxwell solved this problem first in 1859. His deduction was based on the 
following assumptions:
 (i) The distribution of velocity is the same along any direction.
 (ii) The number of molecules per unit volume remains the same in the course of time 

in every volume element throughout the gas.
 (iii) The probability of occurrence of any velocity component, say vx, is independent of 

the values of the other two velocity components vy and vz.

Assumption (iii), which is one form of what has been called the ‘Principle of Molecular 
Chaos’, was, however, the main objection raised, against the theory, by the opposite 
schools, particularly, the mathematical purists. Moreover, Maxwell’s original proof did not 
take account the effect of molecular collisions. Later, Maxwell himself, Boltzmann, Jeans 
and others have derived the same equation by taking into account the effect of molecular 
collisions and, some assumptions which seemed more plausible. In fact, the best justification 
of the distribution law is to consider it as a special case of the more generalised Boltzmann 
distribution law, which can be proved from the statistical mechanical principles. Finally, 
in spite of so little satisfaction to the mathematical purists, one can just only wonder 
at the genius of Maxwell who proposed such a fundamental and accurate physical law, 
probably from his intuition. We shall now move to explore the distribution function.

2.15.3 distribution law
We consider a sample of a gas where the molecules are moving randomly, i.e. along all 
possible direction in space. As we know from our elementary knowledge, a velocity vector 

v can be broken into its three rectangular components vx, vy and vz. Let ‘n’ be the total 
number of molecules per unit volume.

If 
vx

dn  be the number of molecules per unit volume whose x-component velocities lie in 

the range vx  vx + dvx then, we may write:

The fraction of the total number of molecules whose x-component velocities lie in the range 

vx  vx + dvx is ( ).
xvdn n  This fraction must depend on some function of vx, say ( )xf v  

and, must be directly proportional to the interval 
ixdv ; because, if this interval in the 

infinitesimal scale is doubled, the number of molecules must also be doubled. We write for 
the velocity distribution along the vx axis as

  
( )xv

x x

dn
f v dv

n



and, the velocity distribution function f(vx) as

  
1

( )xv

x
x

dn
f v

n dv  (2.36)

Due to the isotropic nature of the movement of the molecules, the velocity distribution 
functions along vy and vz axes will be similar exactly as that along vx axis, i.e.

  

1 1
( ) and ( )y z

v v

y z
y z

dn dn
f v f v

n dv n dv

If we now define the velocity distribution function F(vx, vy, vz,) representing the 
probability of the occurrence of the x-component velocities in the range vx  vx + dvx, 

and simultaneously, the y and z component velocities in the ranges vy  vy + dvy and 
vz  vz + dvz, respectively, then

  

, ,
( , , )

( ) ( ) ( )

x y zv v v

x y z x y z

x y z x y z

dn
F v v v dv dv dv

n

f v f v f v dv dv dv

where 
,,x y zv v vdn  is the number of molecules per unit volume whose x, y and z component 

velocities lie simultaneously, in the ranges vx  vy + dvx, vy  vy + dvy and vz  vz + dvz, 
respectively.

All the differentials cancel so that we conclude that

  ( , , ) ( ) ( ) ( )x y z x y zF v v v f v f v f v  (2.37)

This means that the probability that the velocity v (with components vx, vy and vz) lies in 
the range between v and v + dv is just the product of the probabilities that the velocity 
components lie in their respective ranges. Thus, the individual velocity components behave 

like statistically independent quantities.

Taking the natural logarithm of Eq. (2.37),

  ln ln ( ) ln ( ) ln ( )x y zF f v f v f v  (2.38)

Now, taking the derivative with respect vx

  
ln ( )ln

0 0x

x x

d f vF

v dv  (2.39)

and since 2 2 2 ,x y zv v v v  we get



  
2 2 2

2

2 ( )
x

x x y z

vv

v v v v

or  x

x

vv

v v
 (2.40)

Equation (2.39) can then be rewritten as

  

ln ( )ln x

x x

d f vd F v

dv v dv

and, using Eq. (2.40)

  

ln ( )ln x x

x

v d f vd F

dv v dv

  
ln ( )1 ln 1 x

x x

d f vd F

v dv v dv
 (2.41a)

If we have differentiated ln F with respect to vy or vz, similar equation (due to isotropicities) 
would be obtained:

  
ln ( ) ln ( )1 ln 1 1y z

x y z z

d f v d f vd F

v dv v dv v dv
 (2.41b)

finally leading us to

  
ln ( )ln ( ) ln ( )1 ln 1 1 1yx z

x x y y z z

d f vd f v d f vd F

v dv v dv v dv v dv
 (2.42)

In Eq. (2.42), vx, vy and vz are completely independent of each other. That is, you can put 
in any values you wish for vx, vy and vz, and the equation must remain valid. There is 
only one way that this can be true and, that is if all the terms in Eq. (2.42) are equal to 
a same constant. For reasons which we will see in a moment, let this constant be (–b), 
where b > 0. Therefore

  

ln ( )1 x

x x

d f v
b

v dv

  ln ( )x x xd f v bv dv

and, on integration with the constant ln a

  
2ln ( ) ln

2x x

b
f v v a

or  
2

2( )
x

b
v

xf v a e  (2.43)



Equation (2.43) is the functional form of f(vx). We find that it is Gaussian and hence an 
even function. The function goes to zero at vx = ∞, which means that the integral is finite. 
If we had made the original constant +b instead of –b (b > 0), then the function would shoot 
to infinite at vx = ∞, and would not be integrable. Our next objective is to find expressions 
for ‘a’ and ‘b’. From Eq. (2.36), we find that f(vx) dvx is the fraction of the total number of 
molecules having velocities in the range vx  vx + dvx (–∞ ≤ vx ≤ ∞). The sum of all possible 
fractions must be unity, i.e.

  
( ) 1x xf v dv

  
2

2 1
xbv

xa e dv    (using equation 2.43)

  
2

1a
b

 (see the Gaussian integral; 2.10.3)

or  
2
b

a  (2.44)

Then we calculate 2 ;xv  this we obtain as

          

2

2 2 22( )
xbv

x x x x x xv v f v dv a e v dv

   

2

22
0

2 ( even function)
xbv

x xa e v dv

  

2 3
12 22 2

3/20

3
2

( ) ( )

2

xbv

x xa e v d v a
b

and simplifying

  
2 1
xv

b

The average translational kinetic energy in one dimension is therefore

  

21 1 1
2 2 2x

m
m v kT

b



 and, using this result in Eq. (2.44)

2

m
b

kT

m
a

kT

 (2.45)

The Maxwell’s distribution function of molecular velocity along the x-axis is therefore 
[using Eqs (2.43) and (2.45)]

  

2

2

1/2
/2

1/2
/2

1
( )

2

2

x x

x

x

v mv kT
x

x

mv kT
v x

dn m
f v e

n dv kT

m
dn n e dv

kT

 (2.46a)

or

This equation is one of the most fundamental equations of the kinetic theory.

Again, due to the isotropicity of the movements of the gas molecules (i.e. the molecular 
motion is completely random), there is no difference among the velocity distributions 
along the three axes. This is also corroborated from the assumption (i) of Maxwell. We can 
write, therefore

and  

21/2

1/2 2

1
( )

2 2

1
( )

2 2

y

z

v y
y

y

v z
z

z

dn mvm
f v e

n dv kT kT

dn mvm
f v e

n dv kT kT

 (2.46b)

Equations (2.46a) and (2.46b) represent the velocity distribution of the molecules in a 
gas along the three rectangular axes. Figure 2.24 shows this distribution along the vx 

axis for N2 at 25°C and 1025°C. The area under the curve within the interval range 
1 1

is ( ) , i.e. or ,x

x

v
x x x x x x v

x

dn
v v dv f v dv dv dn

n dv n
 i.e., the fraction of the total number 

of molecules moving with velocities in the range vx to vx dvx along the x axis. The total 
area under each curve must therefore be unity. It is noted that the fraction of the total 
number of molecules moving along a given axis, say vx, with velocities in the range vx  + 

vx dvx decreases at first, very slowly, and then very rapidly as the velocity is increased. 

So far 21
,

2 xm v kT  this decrease is slow but, as 21
2 xm v  becomes of the order of 10 kT, 

the fraction becomes almost zero (Figure 2.24). This can therefore be concluded that only 

a negligibly few molecules are there in a gas, whose energy is much greater than kT. With 

increase in temperature, the distribution becomes more broader and more flatter because 

of the normalization.



example 2.15

Show that 0xv .

The number of molecules per unit volume moving with x-component velocities in the range 

vx  vx + dvx is

xvdn   (total no. of molecules per unit volume) × fraction of the 
total no. of molecules having x-component velocities in the 
range vx  (vx + dvx)

  ( )
xv x xdn n f v dv

The average of vx is then

  

2
1/2

21
.

2
x

x

mv kT
x x v x x

m
v v dn e v dv

n kT

i.e.  0,xv

Since the function 
2 /2xmv kt

xv e  is an odd function (Sec. 1.9.2; Eq. M8).

The result is quite expected: number of molecules moving with speeds in the range, say 
(50 to 50.001) ms–1 to the east, is exactly the same as those to the west. The velocity, being 
a vector, therefore cancels out. Although average velocity along the x-axis xv  is zero, 



we must get a finite value of the x-component velocity along one direction, say, to the east. 

The limits of integration are now from 0 to ∞ and, the total number of molecules per unit 
volume should be halved as before, i.e. (n/2). Therefore, the average of the x-component 

velocity towards east is

  

2
1/2

2
, 0 0

2 2
2

x

x

mv kt
x x v x x

m
v v dn n v e dv

n n kT

  
2

1/2
2 2

, 0
( )

2
xmv kt

x x

m
v e d v

kT

or  ,
2

x

kT
v

m
 (2.47a)

The average of x component (or y or, z) velocity along the positive (right) direction is 
finite.

It is now a very easy job to find that how many molecules strike a unit area held 
perpendicular to the x-axis per second. As shown in Figure 2.25, all the molecules, which 

are within the cylinder of unit are and length , ,xv  held normal to the yz plane would 
strike per second the result is (Figure 2.25)

,2 x

n
v

 

,

Number of molecules striking
1 2

a unit area of the wall of the
2 2

container per second

1 8
4
1
4

x

n kT
v n

m

kT
n

m

n c  (2.47b)

a result, that we got earlier [cf. Eq. (2.20)].



2.15.4 speed distribution and energy distribution in one dimension
Due to the isotropicity in the movement of the molecules, the number of molecules moving 
with speeds in the range Cx  Cx + dCx towards east must be equal to those moving west. 
Therefore, if 

xvdn  be the number of molecules per unit volume, found moving in the 
velocity range vx  vx + dvx then, the number of molecules per unit volume, moving in the 

speed range Cx  Cx + dCx, where |vx| = Cx and dvx = dCx is 2 .
x xC vdn dn  We can write, 

therefore, 2 .
x xC vdn dn  This is explained in Figure 2.26. The speed distribution function 

in one dimension is therefore

  

21/2
22 2

2

x

x x

mC

kT
C v x

m
dn dn n e dC

kT
 (2.48)

A plot of f(Cx), i.e. 
1 xC

x

dn

n dC
 versus Cx would be exactly, the same as the right part of 

Figure 2.26, but being multiplied by 2. 

The average speed in one dimension is then

  

2
1/2

2

0 0

1
2

2
x

x

mC kT
x x C x x

m
C C dn C e dC

n kT



  
2

x

kT
C

m
 (2.49)

exactly the same result as in Eq. (2.47).
If the energy corresponding to the speed Cx is x, then

  

21 1
; and .

2 2x x x x x x x

x

mC d mC dC dC d
m

Equation (2.48) then transforms to

  
1/21

2
2

x

x x

kT
C xdn dn n e d

kT

or  
1/2

1/21
x

x

kT
x xdn n e d

kT
 (2.50)

which is the distribution of energy in one dimension. The average kinetic energy of the 
molecules in one dimension is therefore

  
0

1
xx x dn

n

  
1/2

/1/2
0

1
x kT

x x xe d
kT

  
1/2 3

1/ 2
0

1
( )x kT

x x xe d
kT

and, using the gamma function

  
1
2x kT  (2.51)

Finally, using the isotropicity of the movement of the molecules we may write

  

1
2x y z kT

and therefore, the total translational kinetic energy of the molecules

  x y z

  
3
2

kT



example 2.16

Calculate the root mean square velocity of the molecules of a gas along the x-axis.

First, we calculate the mean square velocity of the molecules along the x-axis:

  

21/2
2 2 221 1

( )
2

xmv

kT
x x x x x x

m
v v v dv e v dv

x n kT

  

21/2
2 22

2

xmv

kT
x x x

m
v e v dv

kT

Since the function is even, we may write

  

21/2
2 22

0
2

2

xmv

kT
x x x

m
v e v dv

kT

and, to apply the rule of gamma function, we rewrite it as

  

21/2 3
12 2 22 2

0
( ) ( )

2

xmv

kT
x x x

m
v e v d v

kT

  
1/2

2
3/2

3
2

2 ( /2 )x

m kT
v

kT mm kT

The root mean square velocity along the x-axis is therefore

  

2
rms( )x x

kT
v v

m  (2.52)

example 2.17

Calculate the most probable velocity of the molecules along the x-axis.

The most probable velocity is defined as the velocity at which the velocity distribution 

function 
1 xv

x

dn

n dv  is maximum. From Figure 2.26, it is clear that the maximum of the 

curve occurs at vx = 0. So, the most probable velocity of the molecules along the x-axis is 
zero. Mathematically you can prove it by differentiating the function with respect to vx and 
then, equating the result to zero. Do it yourself.



example 2.18
Calculate the average speed and the root mean square speed of the molecules of N2 at 
27°C along the x-axis. Note that root mean square speed and root mean square velocity are 
the same. Why? How much is the average translational kinetic energy along this axis?

The average speed is

  

2 2
x

kT RT
C

m M

    

1 1

1

2(8.314 JK mol ) (300 K)
3.14 (0.028 kg mol )

1238.2 msxC

The root mean square speed is

  rms( )x

kT RT
v

m M

  
1 1

1
rms -1

(8.314 JK mol )(300 K)
( ) 298.46 ms

0.028 kg molxv

You can directly use Eq. (2.51):

  
231 1

(1.38 10 JK
2 2x kT

1
) (300 K )

  212.07 10 Jx

We may also do it as

  
2 2

rms
1 1

( )
2 2x x xm v m v

      

1
1 2

23 1

(0.028 kg mol )1
(298.46 ms )

2 (6.022 10 mol )

  
212.07 10 Jx

exactly the same result we got earlier. Note that 

  

1
2 1 2

23 1

(0.028 kg mol )1 1
(238.2 ms )

2 2 (6.022 10 mol )xm C

  2 211
1.32 10 J

2 xm C



is not the average kinetic energy. The average kinetic energy is always obtained from the 
rms speed (It has already been mentioned earlier).

2.15.5 speed distribution and energy distribution in two dimension

speed distribution We now consider a gas where the molecules are restricted to move on 
the x–y plane, i.e. the distribution in two dimension. Again, due to the isotropicity of the 
movement of the molecules (postulate (i); 4.8.2), we may write

  
2

1/2
/2

2
x x

v mv kT
x

dn m
e dv

n kT
 (2.53a)

and  
2

1/2
/2

2
y y

v mv kT

y

dn m
e dv

n kT
 (2.53b)

where Eq. (2.53a) gives the probability that the molecules have their x-component velocities 
in the range vx to vx + dvx and Eq. (2.53b) represents the same but, along the y-axis. Since 
the probability that a molecule has its x-component velocity in the rang vx to vx + dvx is in 
no way dependent on the probability that, its y-component velocity would be in the range   
vy to vy + dvy (postulate iii; article: 2.15.2), we may write

  
x y yx

v v vv
dn dndn

n n n
 (2.54)

where 
x yv vdn  is the number of molecules per unit volume, whose x-component velocities 

are in the range vx to vx + dvx and, simultaneously, the y-component velocities in the range 
vy to vy + dvy. This is gives us

  

2 2( )

2
, 2

x y

x y

m v v

kT
v v x y

m
dn n e dv dv

kT
 (2.55)

which is the velocity distribution function in two-dimensions. The equation is exemplified 
in Figs 2.27(a) and 2.27(b). In Figure 2.27(a), the vx   – vy plane is a two dimensional velocity 
space. Each point on the plane represents a simultaneous occurrence of the given vx and vy 
and, can also be interpreted as the tip point of the vector, representing the velocity of the 
molecule, whose projections on the vx and vy axes are the given specified values of vx and 
vy. The number of points in the infinitesimal rectangular area dvx dvy is obviously .

x yv vdn  

Figure 2.27(b) shows the two-dimensional velocity distribution function 
1 x yv v

x y

dn

n dv dv
 versus 

vx and vy.
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As shown in Figure 2.27(a), the distribution of the speed 2 2( )x yC v v  is obtained by 

collecting all the velocity vector tip points in the two-dimensional velocity space which lie 
within the annular space of the two concentric circles of radii C and C + dC (C = |v|). The 
area of the annular space is d( C2), i.e. 2 CdC. The number of tip points in this area is

2 :x yv v

x y

dn
CdC

dv dv
 If dnC be the number of molecules per unit volume, moving with speeds 

in the range C  C + dC (irrespective of direction), then it is given by

  
2x yv v

C
x y

dn
dn CdC

dv dv

  
2 /2mc kT

C

mn
dn e CdC

kT
 (2.56)

which is the speed distribution of the molecules in two dimensions. A plot of the speed 
distribution.
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function of N2 at two different temperatures is shown in Figure 2.28. An important 
feature that students should not miss is that as the temperature is increased, the curve 
becomes more wider (also compare it with Figure 2.24.) This means that on increasing 
the temperature, the molecules move over more wider range of speed. The height of the 

maximum is depressed because, the function 
1 cdn

n dc
 is normalised, i.e. the total area under 

each curve must be unity.



The average speed is then evaluated as

  

2 /2 2
0

1 mc kT
C kT

m
C cdn e C dC

n kT

  
2
kT

C
m

 (2.57)

The mean square speed is evaluated as 

  2 2
0

1 2
c

kT
C c dn

n m

and therefore, the rms speed is now 

  2
rms

2kT
C C

m
 (2.58)

The most probable speed in two dimensions is then obtained by differentiating the speed 

distribution function 
1

,Cdn

n dC
 with respect to C and then, equating the result to zero.

  

2 /21 mc kTcdnd m d
Ce

dC n dC kT dC

or  
2

2
/21

1mc kTcdnd m mc
e

dC n dC kT kT

Equating the left-hand side to zero, two solutions come out: (i) C  ∞ and (ii) / .C kT m  

The first solution being physically unacceptable, the most probable speed of the molecules 
in two dimensions is

  mps
kT

C
m

 (2.59)

energy distribution To find the energy distribution function f( ), defined as 
1

,
dn

n d
 where 

dn  is the number of molecules per unit volume, moving with energy in the range  to td , 

is the energy corresponding to the speed c, i.e. 21 1
and .

2 2
mC dC d

m
We then 

transform Eq. (2.56) as

  

2 1
( )

2
kT

c

mn
dn dn e d

kT m m

or  /kTn
dn e d

kT
 (2.60)



The nature of this distribution function and the effect of temperature on the distribution 
is shown in Figure 2.29.
The average energy of the molecules in two dimensions is then evaluated as

  

/
0

0

1 1 kTd e d
n kT

/ 2 1
0

1 kTe d
kT

kT  (using the gamma function) (2.61)

This result was quite expected; for one dimension, we got the average energy as 
1

;
2

kT  

therefore, in two dimensions it becomes 
1 1

.
2 2

kT kT kT



2.15.5.1 Fraction of the Molecules having energy More than a Specific Value *

The number of molecules having energy greater than or equal to * is evaluated from 
Eq. (2.60) as

  
*/

* *
( *) kTn

n dn e d
kT

  */( *) kTn ne  (2.62a)

Therefore, the fraction of the total number of molecules with energy more than is

  */( *)
( *) kTn

f e
n

 (2.62b)

Gradually, we shall see the importance of Eq. (2.62b).

2.15.6 speed distribution and energy distribution in three dimension

speed distribution If xvdn

n
 be the probability that the molecules have their x-component 

velocities in the range vx  vx + dvx,
yvdn

n
 be the probability of having their y-component 

velocities in the range vy  vy + dvy and zvdn

n
 be the probability of having their 

z-component velocities in the range vz  vz + dvz , then these probabilities are given by

2

2

2

1/2
/2

1/2
/2

1/2
/2

2

2

and
2

x x

y y

z z

v mv kT
x

v mv kT

y

v mv kT
z

dn m
e dv

n kT

dn m
e dv

n kT

dn m
e dv

n kT

 (2.63)

Therefore, the probability x y zv v vdn

n
 of finding a molecule with velocity components, 

simultaneously in the ranges vx to vx + dvx, vy to vy + dvy and vz to vz + dvz is given by the 
product of the individual probabilities

  x y z yx z
v v v vv v

dn dndn dn

n n n n
 (2.64)



where 
x y zv v vdn  is the number of molecules per unit volume, whose velocity components are 

simultaneously in the ranges vx to vx + dvx, vy to vy + dvy and vz to vz + dvz. Using Eqs (2.63) 
and (2.64) we have

  
2 2 23/2

( )
2

2
x y z

x y z

m
v v v

kT
v v v x y z

m
dn n e dv dv dv

kT
 (2.65a)

which is the velocity distribution equation in three dimensions. A three dimensional  
velocity space is constructed (Figure 2.30). A point with coordinate values vx, vy and vz 
represents a molecule whose velocity components are vx, vy and vz.

In spherical polar coordinate, Eq. (2.65) can also be written as

  

23/2
22

, , sin
2

mC

kT
c

m
dn n e C dC d d

kT
 (2.65b)

See Section 2.10.1 M2. Here, the volume element dvx , dvy and dvz has just been replaced 

by 2 sin .C dC d d

The cuboid of volume (dvx , dvy, dvz) is drawn at a distance 2 2 2 1/2( )x y zC v v v  from the 

origin, with side lengths dvx , dvy and dvz. The number of representative points in this 

cuboid is nothing but ,
x y zv v vdn  i.e. the number of molecules per unit volume whose velocity 

components are simultaneously in the ranges vx to vx + dvx, vy to vy + dvy and vz to vz + dvz. 
The number of such points per unit volume of the velocity space is 

Number density of the velocity representative point 



x y zv v v

x y z

dn

dv dv dv

or  
2

3/2
/2

2
mC kTm

n e
kT

 (2.66)

It is interesting to see that this number density  does not depend on the direction of the 

velocity vectors, but, only on their lengths, i.e. their speed C. This is in accordance with the 
isotropicity of the movement of the molecules; all directions are equally probable for their 

movement. Therefore, if we count the total number of representative points within the 
spherical shell between two concentric spheres of radii C and C + dC (Figure 2.31) then, 
we get the number of molecules per unit volume which are moving with speeds in the 
range C to C + dC, irrespective of direction. If 
the number of such molecules per unit volume 
be dnC, then dnC = (number density of the 
velocity representative points)  (volume of the 
shell)

 
2

3/2
/2 34

2 3
mC kT

C

m
dn n e d C

kT

or 
2

3/2
2 /24

2
mC kT

C

m
dn n C e dC

kT  (2.67)

which is the famous Maxwell’s distribution of 
molecular speed.

We shall now discuss about the nature and 
characteristic features of the distribution:

dnC is the number of molecules per unit volume which move with speeds in the range C 

to C + dC. Therefore, 
1 cdn

n dC
 is the fraction of the total number of molecules per unit speed 

range. This is the speed distribution function f(c)

  
23

2 2 21
( ) 4

2

mC
c kT

dn m
f C C e

n dC kT
 (2.68)

A plot of f(c) versus C is shown in Figure 2.32. There are two opposing functions on the right- 

hand side: the parabolic function C2 and the Gaussian function 
2

exp .
2
mC

kT
 Initially, the 

curve rises from zero at C = 0, a most parabolically, because the factor C2 is dominant 



in this region and the Gaussian factor remains almost unity. But, as C is increased, the 
Gaussian factor  starts becoming the dominant factor. Due to this competing effect of these 
two opposing factors, the curve passes through a maximum. The corresponding speed is 
called the most probable speed, Cmps. When C is increased beyond the Cmps, due to the more 
dominant Gaussian factor, the curve decays.
The most probable speed is evaluated as follows.

The slope of the curve is 
1

,cdnd

dC n dC
 which is 

23/2 2
21

4 2
2

mC
c kT

dnd m mC
e C

dC n dC kT kT

<c>

1

(m
s)

–1

at 300 KO2

(ms )–1 C C + dC

Equating the slope of the curve in Figure 2.32 to zero, we find three solutions: (i) C = 0, 

(ii) C ∞ and (iii)  
2

.
kT

c
m

 The first two solutions are not physically acceptable because, 

at these two limits there are no molecules. So, the most probable speed is given by



  mps
2 2kT RT

C
m M

 (2.69)

The first two solutions (C = 0 and C ∞) are also of importance; they help us to know that 
the curve in Figure 2.32 rises with zero slope and, also glances to zero as C ∞. The curve 
has therefore, altogether three horizontal slopes.

The average speed of the molecules c  is evaluated as 

  

23
2 32

0 0

1
4

2

mC

kT
c

m
C Cdn e C dC

n kT
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2 2 2 1 22
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2 ( ) ( )
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C e C d C
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kT m

kT

or  
8 8kT RT

C
m M

 (using the gamma function) (2.70)

The mean square speed 2c  is evaluated similarly as follows:

  

23
22 2 42
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2
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kT
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m
C C dn e C dC

n kT
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or 2 3
,

kT
C

m
 and the root mean square speed

  2 3 3
rms

kT RT
C C

m M

5
 (2.71)

The relative positions of ,rmsC C  and Cmps are shown in Figure 2.32. The root mean 

square Crms has a special feature.
The root mean square speed of the molecules is the speed with which the molecules move 

with the average translational kinetic energy:

  
2

rms
1 1 3 3
2 2 2

kT
mC m kT

m

We now assemble the different features of the speed distribution function as follows:

 1. The distribution is dynamic in nature: This means that in the steady state, the 
number of molecules moving in a given speed range is constant, but their identities 
are constantly changing due to the continuous random elastic collisions between 
them. In other words, the number of molecules which fly off from a given speed 
range in a given time period is exactly equal to the number of molecules which 
come into that region of speed in the same time period.

 2. The area under the curve, in Figure 2.32, between C to C + dC is the fraction of the 
total number of molecules moving with speeds in the range C  C + dC. The total 
area under the curve is then obviously unity.

 3. The temperature has a profound influence on the distribution curve. With rise in 
temperature, the curve becomes more broader (Figure 2.33); the position of the 
maximum (at the most probable speed) is shifted to the right, but the height of the 
maximum is depressed. This is because of the fact that the distribution function is 
normalized, and therefore, the area under the three curves are equal and is unity. 
This is explained in Figure 2.33. With increase in temperature, the number of slow 
moving molecules decreases and that of the faster moving molecules increase. The 
width of the curve is a direct measure of the absolute temperature.

5 The ratio of the there characteristic speeds is then (using equations 2.69, 2.70 and 2.71)

  

2 8 3
: : : :

1.414 : 1.596 : 1.73
1 : 1.29 : 1.223

mps rms

RT RT RT
C C C

M M M



 4. Figure 2.34 shows the distribution curve of two different gases at the same 
temperature. The curve is narrower for the heavier molecules and broader for the 
lighter molecules. This is because the average translational kinetic energy is the 

same for the molecules of both the gases at the same temperature 
3
2

kT  and this 

is 2
rms

1
.

2
mC  Therefore, heavier molecules move slowly and the lighter molecules 

move faster.

O at T = 300 K
He at T = 300 K
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 5. If the temperature is increased gradually from very low value, the number of 
molecules in any given speed range C to C + dC will increase and then it becomes 

maximum at 
2

3
mC

T
k

, after which the population decreases monotonously.

 6. Finally, note that the most probable velocity is zero along any direction but the most 

probable speed (in three dimensions) is 2 / .RT M  The reason is that the number 

of speed representing points is obtained by multiplying the density of velocity 
representing points  with the volume of the spherical shell 4 c2dC [see Eqs. (2.66) 
and (2.67)]. From Eq. (2.66) it is seen that  is maximum at C = 0 and afterwards, 
decreases in the Gaussian manner with increase in C. On the other hand, the 
volume of the spherical shell increases parabolically. Since this volume element 
is zero at C = 0, we conclude that there are no molecules at rest, i.e., with C = 0. 
Caught in between these two competing factors (  decreases and 4 c2 increases), 
the speed distribution function first increases, almost parabolically from C = 0 and 
then passes through a maximum, where the two opposing factors cancel each other; 
thereafter the curve slopes down due to the dominance of the Gaussian factor over 
the parabolic factor. We thus get the most probable speed Cmps corresponding to 
the maximum of the curve. This is explained in Figure 2.35.
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 7. Finally, an interpretation of the absolute temperature can be suggested from 
the distribution curve. It is seen that the lower the temperature, the narrower 
would be the width of the distribution curve. Therefore, if it is possible to reduce 
the temperature to 0 K, then the distribution curve would become an infinitely 



long vertical strip of practically zero width. But, this contradicts the Heisenberg’s 

uncertainly Principle; ‘attainment of zero kelvin is an impossibility’. 

2.15.6.1  explanation of Some interesting Facts by the Maxwell’s Speed 

Distribution Function

 1. The rate of all elementary reactions increases exponentially with increase in 
temperature.

  For every elementary reaction there is a certain activation energy, which the 
reactant molecules must posses in order to be converted into the product molecules. 
On increasing the temperature, since the speed distribution curve flattens off, the 
number of such activated molecules increases, resulting into an increase in the 
reaction rate. You can also present a similar argument to explain the rise of vapour 
pressure of a pure liquid on increasing the temperature.

 2. The atmosphere of the moon is very dilute compared to that of our atmosphere.
  When a particle of mass m leaves the Earth’s surface with escape speed ve, it has 

the kinetic energy 21
2

mv   and the gravitational potential energy 
–G Mm

R
, where 

G is the gravitational constant (6.67 × 10–11 Nm2 kg–2), M is the mass of the Earth 
(M = 5.98 × 1024  kg) and R its radius (R = 6.37 × 106 m). When the particle reaches 
infinity, it stops and has no kinetic energy. It also has no potential energy because 
this is our zero-potential energy state. The total energy of the particle at infinity is 
therefore, zero. From the conservation of energy principle, its total energy at the 
Earth’s surface must also have been zero; therefore

  
21

(KE) + (PE) 0
2 e

GMm
mv

R

  
2

e

GM
v

R
 (2.72)

  On the earth surface

  

11 2 2 24

( ) 6

2(6.67 10 Nm kg ) (5.98 10 kg)
6.37 10 me Ev

 
1

( ) 11.2 km se Ev

  Similarly, it can be shown that the escape speed on the Moon surface is 2.38 km s–1.  

Do it yourself: Gravitational acceleration moon earth
1

;
6

g g  Mmoon = 7.36 1022 kg; 

Rmoon = 1.74 106 m; 2 .
GM

g
R



 1
( ) 2.38 km se mv

6

  From the above calculations, we find the escape speed on the Earth’s surface and the 
Moon surface as 11.2 km s–1 and 2.38 km s–1, respectively. Therefore, a substantial 
fraction of the total number of molecules leaves the Moon surface, leaving a very 
dilute atmosphere on its surface; this fraction present over the Earth’s surface is 
relatively much denser.

2.15.7  extension of the maxwell’s distribution law 
to Boltzmann distribution law

First, we shall show that the Maxwell's distribution holds in different parts of a force field, 
e.g. the gravitational field.

Consider the velocity distribution along the Z-direction and let the law holds at the level 
z = h1. We then write

  21
2

2
1 2

z

z

mv

kT
v z

m
dn n e dv

kT

 (2.73)

as the velocity distribution, as applied to the altitude z = h1; n1 is the total number of 
molecules per unit volume at height h1. The number of molecules crossing this layer, per 
unit area per second, in the upward direction with velocities in the range vz to vz + dvz is 
then

  

21
2

2
1 2

zmv

kT
z z

m
n e v dv

kT

7

 (2.74)

and each of these molecules on reaching an upper altitude z = h2 will have an extra potential 
energy mg (h2 – h1), and hence, if the primed symbols are used for the h2-level then

  2 2
2 1

1 1
( )

2 2z zmv mg h h mv  (2.75)

  z z z zv dv v dv  (2.76)

6 Hint: 2
moon2

1
; 9.8 ms ;

6
GM

g g
r

 then from known values of Mmoon and rmoon, find Gmoon. 

Finally, use Eq. (2.72) to get ve(m).

7  (because, a swarm of molecules contained in the volume element (vz
.1) will cross this level in one 

second)



Using Eqs (2.75) and (2.76), Eq. (2.74) changes to 

  
2

2 1

1
2 2( )

1 2
zmv kTmg h h kT

z z

m
n e e v dv

kT  (2.77)

but 2 1( )
1 2

mg h h kTn e n , where n2 is the number of molecules per unit volume at the 

altitude z = h2. Equation (2.77) then changes as

  

21
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zmv

kT
z z

m
n e v dv

kT
 (2.78)

It is now seen that Eqs (2.78) and (2.74) are the same expressions for the conditions which 
apply to the heights h1 and h2, and hence, Maxwell's law is valid to the altitude h2 also. 
Not only the gravity field, the velocity and the speed distribution function is also valid for 
all field  of forces, even those in which the change in the potential energy is large upon 
traversing a distance of the order of molecular diameter.
The Maxwell-Boltzmann distribution may then be written as

  

23
2 2

1
24 exp –

2

Pmv
m

dn n v dv
kT kT

 (2.79)

where P is the potential energy of the molecules, measured from a given reference, and n 
is the number of molecules per unit volume at the given reference.

At any given altitude, P is constant, so that P

kTe
 is also a constant; this constant times 'n' 

is the population density at that level (according to the Boltzmann distribution):

  

3/2 2
/ 24 ( ) exp

2 2
P kT

v

m mv
dn n e v dv

kT kT

  

23/2
2 24

2

mv

kT
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m
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where n  is number of molecules per unit volume at the altitude where dnv is estimated; 
this equation is simply the Maxwell's speed distribution function at an altitude where 
dnv  is to be evaluated. This means that at any altitude the speed distribution is always 
Maxwellian, irrespective of the potential energy.

For example, if we take a gas and place it on the Earth's surface, then the number density 
of the molecules at an upper level is always less than that at a lower level, but the fraction 
of the total number of molecules moving in any given speed range is exactly equal at both 
the altitudes.



The distribution function is also applicable to polyatomic molecules for which rotational 
and vibrational kinetic energies are present in addition to the translational kinetic energy.

Equation (2.79) is also applicable to real gases; here, P is the potential energy of each 
molecule arising out of the attractive and/or repulsive interaction between the molecules. 
Since the P term is again a function of position coordinates only, the speed distribution 

function of the molecules of a real gas is again Maxwellian.

example 2.19 
Calculate the most probable, average and the root mean square speed of the molecules of 
a sample of O2 gas at 27°C.

The most probable speed is [Eq. (2.69)]

  

1 1

mps 1
2 2(8.314 JK mol ) (300 K)

(0.032 kg mol )
RT

C
M

Cancellation of the units is important; we do it as

  
mps

2(8.314 kg
C

2ms mk
1

mol
1
) (300 K )

(0.032 kg mol
1
)

  Cmps  = 394.83 ms–1

Note that the desired unit comes out correctly.
The average speed [Eq. (2.70)]

  

8RT
c

M

  
1 1

1
8(8.314 JK mol ) (300 K)

(3.14) (0.032 kg mol )
c

or  1445.63 msc

Similarly, Crms is [Eq. (2.71)]

  

1
rms

3
483.56 ms

RT
C

M

example 2.20
Calculate the most probable, average and the rms speed of the molecules of a gas whose 
density at 1 atm pressure is 1 gL–1.



The pressure–temperature–density relation of an ideal gas is

  

MP RT P

RT M

Therefore,

  
mps

2
2

RT P
C

M

  mps 1
2 1 atm

1 gL
C

Cancellation of the units is done as

  

mps

2 1 atm
C

101325
1 atm

Pa

(1 g L
1 1 L
) 3 3 3

1 kg
1 10 m 1 ×10 g

Cmps=450 ms–1 = 0.45 km s–1

you yourself show that all the units finally come to ms–1. In the same way, using proper 
expressions, show that 

  
1 1

rms0.510 ms and 0.55 km s .C C

Comment Note that if the pressure and density are given then, your need not require the 
molar mass M and the temperature T of the gas.

example 2.21

Calculate the most probable, average and the root mean square speed of the He atoms at 
327°C, where the atoms are restricted to move on the x–y plane.

Here, the movement of the molecules is on the x–y plane. Therefore, we use Eqs (2.57), 
(2.58) and (2.59), as applied to the two-dimensional movements:
The most probable speed [Eq. (2.59)] is 

  

1 1

mps 1
(8.314 JK mol ) (600 K)

(0.004 kg mol )
RT

C
M

  Cmps = 1.12 km s–1



The average speed is [Eq. (2.57)]

  

1 1

1

3.14(8.314 JK mol ) (600 K)
2 2(0.004 kg mol )

RT
C

M

or  11.4 km sC

The root mean square speed is

  

1 1

rms 1
2 2 (8.314 JK mol ) (600 K)

0.004 kg mol
RT

C
M

or  Crms = 1.6 km s –1

example 2.22

The Maxwell’s speed distribution function depends on the molar mass of the gas and 

the temperature. Show that, in terms of the reduced speed, defined as 
mps

,r

C
C

C
 the 

distribution function is independent of M and T.

C = Cmps Cr; therefore, dC = Cmps dCr, we then write the speed distribution function as
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and, finally in terms of the reduced speed Cr, the speed distribution function becomes

  

221 4r r
C C

r
r

dn
C e

n dC

which is independent of the molar mass of the gas (M) and the temperature T.

example 2.23
Find the fraction of the gas molecules whose speeds differ by less then 1.00% from the 
value of



 (a) the most probable speed.
 (b) the root mean square speed.

 (a) The fraction of the total number of molecules moving with speeds in the range C to 
C + dC is

  

23
2 2 24

2

mC
c kT

dn m
C e dC

n kT

  By the problem,

  
mps mps

2 2
; 2 0.01 0.02

kT kT
C C dC C

m m

  The factor 2 is taken because the speeds may be less than, as well as more than 
Cmps. Therefore,

  

3 1
2 214 2 2

(0.02)
2

cdn m kT kT
e

n kT m m

  10.08
0.0166, i.e.1.66%cdn

e
n

 (b) Exactly in the same way

  

3 1
3

2 2
24 3 3

(2) (0.01)
2

cdn m kT kT
e

n kT m m

    = 0.0185, i.e. 1.85%

Comment Since the range of speed given is very small, we have directly used the differential 
form. If the span of speed range is large, we have to integrate dnC (see Example 2.23).

example 2.24
Calculate the temperature at which
 (a) the root mean square speed of H2 molecules exceeds their most probable speed by 

400 ms–1.
 (b) the speed distribution function of O2 molecules has its maximum at the speed  

C = 420 ms–1.

 (a) According to the problem

  

13 2
400 ms

RT RT

M M



  
1 1 1 1

1
1 1

3(8.314 JK mol ) 2(8.314 JK mol
400 ms

(0.002 kg mol ) (0.002 kg mol )
T

  Cancellation of the units gives

  

1 1
1 1 12 2111.67 ms K 91.18 ms K 400 msT

  
1
219.52 KT

or  T = 381 K

 (b) The speed distribution shows its maximum at the most probable speed; therefore

  
12

420 msmps

RT
C

M

  
1 2 1

1 1
(420 ms ) (0.032 kg mol )

2 (8.314 JK mol )
T

or  T = 339.47 K

example 2.25
Calculate the number of O2 molecules moving in the range 0 – 200 ms–1 at 1 atm, 0°C.

Using the speed distribution function [Eq. (2.68)]
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We estimate the number of molecules over the speed range 10 * ( * 200 ms ) asC C
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The first integral is the error function discussed in Section 2.10.5. Therefore

  

2 2 2(0 *) * * *
exp

2 2
n C mC mC mC

erf
n kT kT kT

Now,   
1 1 22 2

1 1

(0.032 kg mol ) (200 ms )* *
0.3

2 2 2(8.314 JK mol ) (273 K)
mC MC

kT RT

2 2* 2 *
0.5 and 0.6

2
mC mC

kT kT

Therefore,

  
0.3(0 *)

(0.5) 0.6
n C

erf e
n

and finally, 
(0 *)

0.521 0.44 0.08.
n C

n
 Therefore, about 80 molecules out of one 

thousand, move in the speed range (0 – 200 ms–1).

example 2.26 
Estimate, how the numbers in the above Problem 2.23 changes when the temperature in 

the kelvin scale is double i.e. at 546 K.



At 546 K,

  

2 2* *
0.14 ; 0.375 0.4

2 2
mC mC

kT kT

and  
22 *

0.4
mC

kT

Therefore,  
1

0.14(0 200 ms )
(0.4) 0.4 0.078

n
erf e

n

Therefore, on increasing the temperature from 273 K to 546 K, the number of molecules 
moving with speeds in the range 0 – 200 ms–1 changes from 80 to 78 out of 1000. This 
corresponds to 0.2% decrease.

Comment At  273 K, 2 211
* 1.06 10 J

2
mC  and kT = 3.77 10–21 J. Within the speed 

range 0 – 200 ms–1, the kinetic energy of the molecules is significantly less than the thermal 

energy kT. Remember that, whenever this is the case, i.e. 21
,

2
mc kT  the number of 

molecules either decreases or remains almost the same as the temperature is increased.

example 2.27

Calculate the fraction of the O2 molecules moving with speeds more than 600 ms–1 at 
273 K and find corresponding number at 546 K.

To solve this problem you could have started as

  *

( * ) 1
CC

n C
dn

n n

but, it is more convenient to find

  

*

0

(0 *) 1 C

C

n C
dn

n n

and then, subtract it from unity

  

1 2 2 2(0 600 ms ) * 2 * *
exp

2 2
n mC mC mC

erf
n kT kT kT

where C* = 600 ms–1. Now, 
2 2 2* * 2 *

2.54 ; 1.6 and 1.8
2 2

mC mC mC

kT kT kT
 at 273 K 



Therefore, at 273 K

  

1(0 600 ms )
(1.6) 1.8 exp( 2.54)

0.836

n
erf

n

Therefore.  
1( 600 ms )

0.164
n

n

i.e. 164 molecules out of 1000 with speeds more than 600 ms–1.
Similarly at 546 K, we find

  

1( 600 ms )
0.477

n

n

Therefore, on increasing the temperature from 273 K to 546 K n(> 600 ms–1) changes from 
164 to 477, out of 1000; it is an increase by 31.3%.

Comment This is story if 
21

.
2

mc kT kT.

example 2.28

Calculate the fraction of the total number of O2 molecules moving in the speed range 
(Cmps  ± 10–3) ms–1 at 273 K. Also find out the number at 546 K.

Since the range of speed (dC = 2 10–3 ms–1) is small compared to the speed of interest, 
we use the differential form

  

3
2

2 mps2
mps4 exp

2 2

mCdn m
C dC

n kT kT

or  

3
2 32

4 exp ( 1)2 10
2

dn m kT

n kT m

or  64.4 10 (at 273 K)
dn

n

Similarly, at 546 K

  
63.12 10

dn

n

Comment On doubling the temperature, the most probable speed increases to 1.414 
times, but the fractional number of molecules moving in that speed range decreases to 
0.709 times. (3.12  4.4 = 0.709)



example 2.29
For gaseous N2 find:
 (a) the temperature at which the speeds of the molecules c1 = 300 ms–1 and c2 = 600 ms–1 

are associated with equal values of Maxwell's speed distribution function.
 (b) the speed of the molecules c at which the value of the speed distribution function 

at a temperature T will be the same as that for the temperature x times higher.

 (a) Equating the speed distribution function at the speed c1 and c2 at the same 
temperature, we get

  

3 3
2 22 22 21 2

1 24 exp 4 exp
2 2 2 2

mc mcm m
c c

kT kT kT kT

  
2 2

2 21 2
1 2exp exp

2 2
mc mc

c c
kT kT

  
222 2 1
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m c c c

kT c

  
2 2
2 1( )

ln 4
2

m c c

kT

  
2 2 2 2
2 1 2 1( ) ( )

2 ln 4 2 ln 4
m c c M c c

T
k R

    (  M = mN0 and kN0 = R)

  
1 2 2 2 2

1 1
(0.028 kg mol ) (600 300 ) m s

2(8.314 JK mol ) ln 4
T

 T = 328 K

 (b) According to the problem

  

33
2 222 2 24 exp 4 exp

2 2 2 2
m mC m mC

c c
kT kT kxT kxT

  
32 2
2exp exp

2 2
mC mC

x
kT kxT

  Simplifying, we get

  

3 ln
( 1)

kT x x
C

m x



example 2.30
At what temperature of an N2 and O2 mixture do the most probable speeds of N2 and O2 
molecules differ by 30 ms–1 ?

According to the problem

  2 2

1

N O

2 2
30 ms

RT RT

M M

  
2 2

1

N O

1 1
2 30msRT

M M

  
1 1

12 22 (0.386) kg mol 30 msRT

  
1 1

1 1 2 2 22 2(2 8.314 JK mol ) (0.386 kg mol ) 900 m sT

  2 2 1 2 22.478 m s K 900 m sT

  T = 363 K

example 2.31
The temperature of a mixture of H2 and He is 300 K. At what value of the molecular speed 
will the speed distribution function yield the magnitude for both the gases?

Equating the speed distribution functions of the two gases, we find

  
2

2

He H
3

( ) ln 2 1.039
2 2
C

m m
kT

  
2 2 21.039 2 8.314 300

m s
(0.004 0.002)

C

  C = 1.61 kms–1

example 2.32
At what temperature of a gas will the number of molecules, whose speeds fall within a 
given interval C C + dC be the greatest?

The speed distribution function is

  

23
2 2 21

4
2

mC
c kT

dn m
C e

n dC kT



  

23
3

2 2 221
4

2

mC
c kT

dn m
C T e

n dC k

Let  
3 2
2 exp

2
mC

y T
kT

  

23 2
22

2

3
2 2

mC

kT
dy mC

T e
dT T kT

At the maximum, the left-hand side is zero; therefore

  

2

2

3
0

2 2
mC

T kT

  
2

3
mC

T
k

example 2.33

Find the fraction of molecules whose velocity projection on the vx axis falls within the 
interval vx to vx + dvx, while the moduli of the perpendicular velocity components fall 
within the interval v  to v  + dv .

The fraction of the total number of molecules whose x-component velocities fall within the 
range vx to vx + dvx is

  

21
2

2

2

x
x

mv
v kT

x

dn m
e dv

n kT

The fraction of the total number of molecules whose y- and z-component velocities lie in 
the range in the range vy to vy + dvy and vz to vz + dvz simultaneously along all possible 
directions is

  

2 2( )
22 ( )

2

y z
y z

v v
v v

kT
dn m

e d v
n kT

where 2 2 2.y zv v v  Therefore, the required fraction is

  

, y zx x
v vv v v

dndn dn

n n n

or  
23

2, 2 (2 )
2

x

mv
v v kT

x

dn m
e v dv dv

n kT



example 2.34
Using the Maxwell's speed distribution function, calculate the number of molecules 
bombarding a unit area of the wall per second.

The Maxwell's distribution of molecular velocity, [Eq. (2.65)], may be put in terms of the 
spherical polar coordinate as

  

23
2 22

, , sin
2

mC

kT
c

m
dn n e C dC d d

kT

where the volume element in the cartesian coordinate (dvx, dvy, dvz) is replaced by c2 dc 
sin d d  in the spherical polar coordinate (see Figure 2.8).

Referring to Figure 2.16, the volume of the slant cylinder is C cos  and it has (C cos 
)dnC, ,  number of molecules. All these molecules will hit the unit area placed on the  

vx – vy plane situated at the origin along this  –  direction. Therefore, the total number 
of bombardments on this unit area from one side of the vx – vy plane is

  

/2 2

0 0 0
( cos )

C, ,C
C dn

  

23
2 /2 232

0 0 0
sin cos

2

mC

kT
n m

e C dC d d
kT

  

2

2

3
2 2 2 1 2

0

1 1
( ) ( ) 2

2 2 2

mc

kTn m
e C d C

kT

  

1 8 1
4 4

n
kT

n C
m

The same result we got earlier in two different ways [Eqs. (2.20) and (2.47b)].

example 2.35
From the Maxwell's distribution of molecular speed, arrive at the expression of the pressure 
of a gas at temperature T and number density n.

Again referring to Figure 2.16, we consider a slant cylinder of length C and area unity, at 
the direction  and .

The speed distribution function in the spherical polar coordinate is

  

23
2 2 2

, , sin
2

mC

kT
c

m
dn n C e dC d d

kT



which is the number of molecules per unit volume moving with speeds in the range C to 
C + dC and at the direction determined by the angles  and . The volume of this slant 
cylinder is C cos  and, it contains (C cos ) dnc, ,  number of molecules. The momentum 
delivered normally per strike on a unit area placed at the origin, on the x–y plane is (2m, 
C cos ).

Therefore, remembering that the total momentum blow normally, per unit area on the x–y 
plane per second from all possible directions (but, from one side of the x–y plane) and with 
all possible speeds is the pressure of the gas, P, we write 

  
/2 2

, ,0 0 0
( cos )( ) (2 cos )cP C dn mC

  
23

2 /2 24 22
0 0 0

2 sin cos
2

mc

kT

c

m
P mn c e dc d d

kT

  
23

5
12 2 22 2

0

1
( ) ( ) 2

2 3

mc

kT
mn m

P e c d c
kT

  

3
2

5/2

5
22

2 3

2

mn m
P

kT m

kT
and simplifying
  P = nkT

The ideal gas equation.

example 2.36
The distribution of the molecules of a beam coming out of a hole in a vessel is described by 

the function 
2

.3 2( )
mC

kTf c Ac e

8

 Find the most probable values of 

 (a) the speed of the molecules in the beam; compare the result obtained with the most 
probable speed of the molecules in the bulk.

 (b) the kinetic energy of the molecules in the beam.

(a) 
2

.3 2( )
mC

kTf c Ac e

 

2
4

22 3
mC

kT
df mC

Ae c
dc kT

8 You will find it later in the article 2.15.7.2 and an example of it.



  At the most probable speed, 0,
df

dC
 whose physically acceptable solution is 

obtained by

  

4
23 0mps
mps

mC
C

kT

  otherwise C has to be infinity. We then have at the surface, mps
3kT

C
m

  In the bulk mps
2

.
kT

C
m

(b) The function f(C) can be written as

  

2

3 21
( )

mC
c kT

dn
f C A C e

n dC

  where dnc is the number of molecules per unit volume whose speeds are in the 
range C to C + dC.

  The corresponding energy distribution function is

  

2

3 21
( )

mC
c kT

dn
f C AC e

n dC

  
21 1

2
mC d mC dC dC dC

mC

  

3
22 32 2 2

;C C C
m m m

  

3
23 2 1 1

;
2 2

C dC d d
m m

m
m

Now, 

2

3 2
mC

kT
Cdn nAC e dC

  

2
32 1

2
kTdn nA e d

m m

  2

2
kTdn nA e d

m

  2

1 2
( ) kT

dn A
f e

n d m



  
/

2
2 kTnA

dn e d
m

  This implies, the energy distribution function

  
2

1 2
( ) kT

dn A
f e

n d m

  2
2

( ) 1kT
d A

f e
d kTm

  To get the most probable value of the kinetic energy , we set

  
( ) 0

d
f

d

  mp  = kT

example 2.37
Using the Maxwell’s distribution function find the number of molecules striking a unit 
area of the wall of the vessel at angles between  to + d . The gas is at temperature T, 
population density of the molecules is n and the molecular mass is m.

In spherical polar coordinates, the speed distribution function of Maxwell is (see 
Figure 2.8)

  

23
2 22

, , sin
2

mc

kT
c

m
dn n e c dc d d

kT

Therefore, according to the problem, the striking rate on a unit area of the wall between 

angles  to + d is = 
2

, ,0 0
( cos ) cc
C dn

Striking rate   = 

23
2 232

0 0
sin cos

2

mC

kT

c

n m
e C dC d d

kT

Striking rate  = 
n

23
2 2 (2 1) 22

0
( ) ( ) (sin cos )

2

mC

kT
m

e C d C d
kT

  = 

3
2

2 2
2 sin cos

2
n m kT

d
kT m



and finally, the striking rate is

  

2
sin cos

kT
n d

m

example 2.38
Find the number of molecules striking a unit area of the wall with speeds in the range C 

to C + dC, irrespective of direction.

Starting from the expression of the striking rate as obtained in the previous problem;

Striking rate  
/2 2

, ,0 0
( cos ) cC dn

which covers all possible directions but, from one side of the plane. That is

the striking rate  

23
2 /2 23 2

0 0
sin cos

2

mC

kT
n m

c e dC d d
kT

Working out the integrals, we find

 striking rate 
23

2 3 2

2

mC

kT
m

n C e dC
kT

2.15.7.1 energy Distribution

The Maxwell's energy distribution in three dimensions is obtained as follows.
The speed distribution equation is

  

3
22 24 exp

2 2c

m mC
dn n C dC

kT kT

where dnc is the number of molecules per unit volume moving with speeds in the range C 

to C + dC and n is the population density of the molecules.

If the corresponding energy range is  to + d , i.e.

  
21

and
2

mC mCdC = d

then, if the number of molecules per unit volume in this energy range  to ( d ) is dn  
(where d  corresponds to dc), we may write

  

3
2 2

4
2

kT
c

m
dn dn n e

kT m



 

3
–1

2
21

2 kTdn n e e d
kT

 (2.80)

This is the Maxwell's energy distribution in three dimensions. A plot of 
1 dn

n d
 versus  

is shown in Figure 2.36. There are three main characteristic differences between the speed 

distribution and the energy distribution function.

 (i) The initial slope of the energy distribution curve is infinite whereas that of the 
speed distribution function is zero.

 (ii) As a consequence of (i), the energy distribution curve rises up more steeply than 
the speed distribution curve, and, beyond the maximum the energy distribution 
curve falls of more sluggishly than the speed distribution curve.

 (iii) The energy distribution function is independent of the molar mass of the gas.

example 2.39
Show that the average kinetic energy of the molecules of a gas at equilibrium, at a fixed 

temperature T is 
3

.
2

kT

Using the rule of averaging, the average energy  is

  

3
3

2
2

0 0

1 1
2 kTdn e d

n kT

  

3
5

12
2

0

1
2 ( )kTe d

kT



  

3
2

5
2

3 1
1 32 22

2
1

kT
kT

kT

example 2.40
Show that the energy corresponding to the most probable speed is twice that of the most 
probable energy.

Differentiating 
1 dn

n d
 [Eq. (2.80)] with respect to  and, equating the result to zero, to 

get the most probable energy 
1

.
2mp kT  The most probable speed is 

2
;mps

kT
C

m
 the 

corresponding energy is therefore,

  

1 2
2mpsC

kT
m kT

m

  2
1
2

mpsC C

mpe

kT

kT

What fraction of the molecules move with energy more than a specified value *?
Starting from Eq. (2.80), we write

  

3
1

2
2

* *

1
2 kT

dn
e d

n kT

  

3
1

2
2

*

( *) 2 1
kT

n
e d

n kT

Substituting 2,kTx  so that 2( ) and ,d kTd x kT x  we have

  

2

3
2 2

*/

( *) 2 1
( )x

x kT

n
kT x e kT d x

n kT

  
2 2

*/

( *) 2
( )x

x kT

n
x e d x

n

and integrating by parts

  

2 2

*/*/

( *) 2 x x

kTkT

n
xe e dx

n



  
2

* /

( *) 2 * * 2
exp

x

kT

n
e dx

n kT kT

The last integral is the complementary error function (see Eq. M16 of Sec. 2.10.5 and  
Table 2.1). Therefore

  

( *) * * *
2 exp

n
erfc

n kT kT kT

Referring to the Table 2.1, we find that at x = 2.2 erf (2.2) = 0.9981 and therefore, erfc  

(2.2) = 1 – 0.9981, i.e. 0.0019. If x is increased further, the erf (x) is increased and the erfc 

(n) is decreased and becomes less and less significant. We can thus argue that, if * is more 
than twice of kT ( * > 2kT), then the last integral can be neglected, with the result

  

1
2( *) * *

2 exp ; ( * 2 )
n

kT
n kT kT

 (2.81)

2.15.7.2  the Speed Distribution of the Molecules at the Surface of the Container 

is Different from that in the Bulk
In Example 2.33 it was given that the distribution of the speed of the molecules in a beam 

coming out of a tiny hole is given by the function 

2

3 2 .
mc

kTAc e  The reason is very simple: 
near the hole at the surface of the vessel, the fraction of the total number of molecules 

moving with speed in the range C to C + dC varies as 

2

2 2
mc

kTc e  (the Maxwellian way). The 

rate of which the molecules will effuse out will therefore depend on this factor and, also 
the number of molecules which comes to the surface per second; this number is directly 
proportional to the speed of the molecules C. Therefore, the speed distribution of the 

molecules in the beam should be C times the Maxwellian factor 
2 2

2 32 2, i.e. .
mc mc

kT kTc e c e  We 

have also seen that the most probable speed of the molecules in the beam is 
3kT

m
 while, 

that in the bulk is 
2

.
kT

m

example 2.41
Calculate the average speed of the molecules striking a small surface on the wall of the 
container. Compare the result with that in the bulk.

From the foregoing discussion we found that the speed distribution of the molecules in a 
beam is given by



  

2

3 2
beam( )

mc

kTf c Ac e

and this distribution would guide the rate at which the molecules strike an area of the 
wall. Therefore, the average speed at which the molecules strike the wall is 

  

beam0
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( )

( )

cf c
c

f c

the denominator is necessary for the normalization of the function beam( ) .f c  Then

  

2

2

4 2
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A c e dc
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2
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5
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m
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kT

The bulk bulk
8

is
kT

c c
m

Therefore,  surface

bulk

8 3
8 8 8

c kT m

c m kT

example 2.42
Calculate the root mean square speed of the molecules in a molecular beam.

As we have done in Example 2.39, we first find 2
surfacec  as

  

2

2

2 52
beam2 0 0

surface

beam 320
0

( )

( )

mc

kT

mc

kT

c f c e c dc
c

f c
e c dc
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2 3 1 22
2 0

surface

2 2 1 22
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kT

e c d c
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e c d c
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2
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3
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2
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kT

Therefore, 2
rms(surface) surface

4kT
C c

m

2.16 equIpArtItIon of enerGy prIncIple: deGrees of freedom

2.16.1 degrees of freedom of a dynamical system

Consider an atom constrained to move along the x-axis. At any instant, the position of the 
atom can be specified by a single position coordinate x; the associated momentum px is 

then also defined by the equation, .x

dx
p mx x

dt
 We say that the particle (the atom) 

has one degree of freedom; because, the specification of one position coordinate and, hence 
the corresponding linear momentum ,mx  the dynamical system of the atom is completely 
defined. If the particle is constrained to move on a plane, say, the x – y plane, then we 
require two position coordinates x and y and hence, two momentum coordinates px and py 
to define the dynamical state of the system. Extending the story to three dimensions, we 
need three position coordinates and hence, three momentum coordinates.

We define the degrees of freedom (f) of an atomic/molecular system as the minimum 
number of position coordinates and hence, an equal number of momentum coordinates 
required to define the dynamical state of the system.

How many degrees of freedom a diatomic molecule has? For each atom we require three 
position coordinates, and hence, altogether we need six position coordinates. Moreover, 
the molecule now has rotational and vibrational motion. We analyse the system by looking 
at its centre of mass; for this we require three position coordinates (x, y, z) to represent 
the translational motion of the centre of mass of the molecule. This specification of the 
position of the centre of mass is not sufficient; we did not specify the orientation of the 
molecule. We do it as follows: We place one of the two atoms of the molecule at the centre 
of the coordinate system and specify the value of the angles  and (Figure 2.37). Still the 
description is not complete; because, the two atoms are oscillating against one another 



and are constantly changing their positions relative to the centre of mass. So, we then 
specify an extra coordinate r, the distance between the two atoms. Altogether we then 
have six position coordinates: x, y, z; r  and . This defines completely the dynamical state 
of the system (see Figure 2.37). 

In general, an n-atomic molecule has 3n degrees of freedom (three for each atom and 
hence, 3n for the molecule). To define the translation, specification of three position 

coordinates of the centre of mass is just sufficient, always. Therefore, the translational 
degree of freedom is always 3; ft = 3 for any molecule.

We have just seen that two generalised  
coordinates are required to define the rotational 
motion of a linear molecule. The rotational 

degree of freedom fr is then always two for linear 

molecules (fr = 2) The rest (3n – 5) goes to define 
the vibrational motion; fv = (3n – 5) for linear 

molecules. For non-linear molecules, say a non-
linear tri-atomic molecule (Figure 2.38), we first 
choose an axis joining any two atoms and, then 
specify  and ; finally we specify the angle of 
rotation  of the third atom about the chosen 
axis. Non-linear molecules, therefore, have three 
rotational degrees of freedom; fr = 3. The number 
of vibrational degrees of freedom is then fv =  
(3n – 6).



2.16.2 principle of equipartition of energy

How much is the translational kinetic energy of a molecule tr in space?

  
2 2 2 2 2 21 1 1 1 1 1

2 2 2 2 2 2tr x y z x y zmv mv mv p p p
m m m

where vx, vy and vz are the components of the velocity v of the molecule along the three axes 
x, y and z and, px, py and pz are the corresponding linear momenta along the three axes, 
respectively. tr can therefore be put in the form

  2 2 2
1 1 2 2 3 3tr a p a p a p  (2.82)

where,  1 2 3 1 2 3
1

and, ; ;
2 x y za a a p p p p p p

m

This is all the energy for a monoatomic molecule (no rotational and vibrational motion 
is present). Note that there are three square terms of momentum in the expression of the 

translational kinetic energy; recognize that a molecule has only three translational degrees 
of freedom (ft = 3). But polyatomic molecules can also rotate and vibrate.

For linear molecules

  
2 2 2 2

rot 4 4 5 5
1 1

( ) ( )
2 2x yIw Iw a P a P

I I

and, for non-linear molecules

  2 2 2
rot

1 1 1
( ) ( ) ( )

2 2 2x x y y z z
x y z

I w I w I w
I I I

 (2.83)

or  2 2 2 2 2 2
rot 6 7 8

1 1 1
2 2 2x y z x y z

x y z

P P P a P a P a P
I I I

where Ix, Iy and Iz are the moments of inertia about the three axes x–, y– and z; wx, wy 

and wz are the corresponding angular velocities and, Px, Py and Pz are the corresponding 
angular momenta (all the a-terms are constants).

It is important to note that the rotational kinetic energy expression is given by two square 
terms for linear and three for non-linear molecules; these are found to be the same as the 
corresponding number of rotational degrees of freedom fr.
The vibrational energy of a bond connecting two atoms of a polyatomic molecule is given by

  2 2
vib/mode i i i ia p b q

For each mode (assumed to be harmonic); pi is the momentum coordinate and qi is the 
corresponding position coordinate. The first term represents the kinetic energy and the 
second term represents the potential energy. The total energy of vibration of a polyatomic 
molecule is therefore



and,  

(3 5) (3 5)
2 2

vib
1 1

(3 6) (3 6)
2 2

vib
1 1

for linear molecules

for non-linear molecules

n n

i i i i
i i

n n

i i i i
i i

a p b q

a p b q  
(2.84)

How much is then the total energy of a molecule on an average? Summing up Eqs (2.82),  
(2.83) and (2.84), we find

  total tr rot vib

  
(3 5) or (3 6)3

2 2
total

1 1

n nn

j j j j
j j

a p b q  (2.85)

where the first term represents the total kinetic energy of translation plus rotation, plus 
vibration; the number of square terms is [(3 + 2 + (3n – 5)], i.e. for linear molecules and  
[3 + 3 + (3n – 6)], i.e. 3n for non-linear molecules. The second term represents the potential 
energy (3n – 5 for linear and 3n – 6 for non-linear molecules). Therefore, we find that the 
number of square terms required to define the total kinetic energy of a molecule is 3n, the 
degrees of freedom of the molecule. The principle of the equipartion of energy indicates that 
when the energy is proportional to the square of a given position coordinate or momentum, 

the average energy due to that coordinate or momentum is simply 
1
2

kT  per molecule.

Proof: Suppose 
2

;
2

i
i

p

m
 the average of i is

  

/
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kT
i r r

i kT
r r

e dq dq dp dp

e dq dq dp dp
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1 1
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p mkTi
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i p mkT
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p
e dq dq dp dp

m

e dq dq dp dp

Since the first two factors in the integrand of the numerator and the first in the denominator 
depend on pi alone, the rest of the variables can be integrated out in both numerator and 
denominator without affecting these factors. It is obvious that the result yields factors all 
of which cancel from the numerator and denominator; we then have

  

2
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2
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2
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p

i mkT
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i p

mkT
i

p
e dp

m

e dp



  

3
2(2 ) 14

22i

kT
kT

kT

The total energy of a dynamical system in thermal equilibrium is equally partitioned 

among its degrees of freedom and the contribution towards the energy is 
1
2

kT  per degree 
of freedom.

It is interesting, particularly, for the vibrational motion of a molecule. Consider two diatomic 
molecules, the bond of one being much stiffer than the other; till then, the vibrational 
kinetic energies are exactly equal at the same temperature.

However, note that potential energy of a molecular system is not always quadratic, e.g. 
in the gravity field, the gravitational potential energy is mgh; its contribution is then not 
1
2

kT .

example 2.43
From the velocity distribution function in three dimensions show that the average 

translational kinetic energy of the molecules of a gas is 3
.
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 [using Eq. (2.65)]
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as the functions are even. Therefore,
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example 2.44
Show that for a one-dimensional harmonic oscillator with a force constant k (= 4 2 2m), 
where  is the frequency of oscillation and m is the mass of the oscillator, the average 
energy of vibration is kT.

The kinetic energy of the oscillator is 21
2

mv  ( v is the velocity). The potential energy V is 
obtained as

  (force)
dV dV

kx
dx dx

 (by Hooke’s law)

  2

0 0

1
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2

V x

dV k xdx V kx  (Harmonic)

The average energy of a one-dimensional harmonic oscillator is then
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kB is the Boltzmann constant.



or 

2 2

2 2

2 22

vib

2 2

1
2

B B

B B

mv kx

k T k T

mv kx

k T k T

mv e e dv dx

e dv e dx

2 2

2 2

2 22

2 2

1
2

B B

B B

mv kx

k T k T

mv kx

k T k T

kx e e dv dx

e dv e dx

     

2 2

2 2

2 22 2

vib

2 2

1 1
2 2

B B

B B

mv kx

k T k T

mv kx

k T k T

mv e dv kx e dx

e dv e dx

  

2 2

2 2

2 22 2

2 2

1 1
2 2

B B

B B

mv kx

k T k T

mv kx

k T k T

m e v dv k e x dx

e dv e dx

  

2 2

2 22 2

0 0

2 2

B B

mv kx

k T k T

B B

m e v dv k e x dx

k T k T

m k

using the Gaussian integral.

Therefore,  

2

2

3
12 2 22

vib
0

3
12 2 22

0

( ) ( )
2 2

( ) ( )
2 2

B

B

mv

k T

B

kx

k T

B

m m
e v d v

k T

k k
e x d x

k T

  

3 3
2 2

3 3
2 2

2 2 2 2

2 2

B B

B B

m m k k

k T k T
m k

k T k T

using the gamma function.



Therefore,  vib
1 1
2 2B B Bk T k T k T

This shows that every vibrational motion has two modes, one kinetic and the other 

potential; each of them contributes 
1

.
2 Bk T  Therefore, unlike the translational and the 

rotational component, each vibrational component contributes kBT amount of energy,  
i.e. each vibrational motion (or each vibrational degree of freedom) contributes twice 
an amount of energy kBT as that from a translational and rotational degree of freedom 

1
.

2 Bk T
9

2.17 HeAt cApAcIty of IdeAl GAses
The molar heat capacity of a substance at constant volume is defined as

  
,

m
v m

v

U
C

T

where Um is the molar internal energy. By applying the equipartition of energy principle, 
we shall first find an expression of Um and then, differentiating with respect to T, we will 
evaluate Cv, m values.

2.17.1 monoatomic molecules
The total degrees of freedom f = 3 × 1 = 3 and it is totally the translational degrees of 
freedom; ft = 3.

The average energy of a molecule (monoatomic) is then

  
1 3
2 2tf kT kT  per molecule

The molar energy is then

  
0

3
2mU N RT

  ,
3
2v m mC U R

T

and, considering ideal behaviour, the molar heat capacity at constant pressure

  
, ,

5
2P m v mC C R R

9 In this section, we have represented Boltzmann constant by kB because another k appears as the 
force constant; otherwise, the Bolzmann constant will be represented by the letter k



The ratio of the two heat capacities  is then

  

,

,

5
1.67

3
P m

v m

C

C

2.17.2 diatomic molecules
Atomicity n = 2; total number of degrees of freedom f is then f = 3n = 3 × 2 = 6; the 
translational degrees of freedom ft = 3; rotational degrees of freedom fr = 2 and vibrational 
degree of freedom fv = 1. The total average energy of a molecule is

  kin pot

kin( ) kit(rot) kin(vib) pot, vib{ }tr

1 1 1 1
2 2 2 2t r v vf kT f kT f kT f kT

7
2

kT  per molecule

or  7
2mU RT  per mole

Therefore,  , ,
7 9 9

and and, 1.286
2 2 7v m P mC R C R

2.17.3 triatomic molecules (linear)

Atomicity n = 3; f = 3 × 3 = 9; ft = 3;  fr = 2; fv = 4

Following the same procedure

  
, ,

13 15 15
; and 1.154

2 2 13v m P mC R C R

In general, for n-atomic non-linear molecule

  3; 3 (3 6)t rf f and f n

Therefore,

  

1 1
3 3 (3 6)

2 2
kT kT n kT

3 ( 1) per moleculen kT



Therefore,  
, ,

3 2
3( 1) and (3 2) and

3 3v m P m

n
C n R C n R

n

Clearly,  decreases as the atomicity n increase and this is due to the increase in the 
number of vibrational modes, and consequently, due to an increase into the vibrational 
contribution towards Cv, m. Now, let us look into experimental results.

If we analyse the case of monatomic inert gases, we find that the agreement between the 
theory and the experiment is excellent. The inert monoatomic molecules He, Ne, Ar, Kr 

and Xe have Cv, m values 
3

and 1.67,
2

R  which are also theoretically predicted.

However, for polyatomic molecules, the experimental Cv, m values at ordinary temperature 
are substantially lower than the theoretically predicated values. The disagreement 
between the theoretical and experimental results becomes more clear when we examine 
the temperature variation of Cv, m  and  (Figure 2.38).

Theory suggest that Cv,m and hence  values of all gases should be independent of 
temperature; but experimentally it is observed that, expecting for monatomic gases, the 
Cv,m values of all gases increase with increasing temperature and attain the theoretical 
value at high enough temperature. For example, at 20 K the Cv,m value of H2 is found to be 

only 
3
2

R  (Figure 2.39a), which is the theoretically predicted value for monoatomic gases.  

Correspondingly also changes markedly with change in temperature (Figure 2.39b). At 
100°C, the experimental value of  for H2 is 1.404; O2 has 1.399 and HI has 1.4; the results 
should have been 1.286.

These results might lead us to believe that the correct result is 1.4. But, when we look at 
I2, we are again disappointed; it has  = 1.3, which is very close to 1.286.

The theory is therefore correct for one kind of molecules and wrong for the other; a horrible 
result. Take H2 the value of  decreases from 1.6 at 20 K to 1.3 at 2000 K.

All these facts were known to Maxwell, Boltzmann and Jeans, but they could not find out 
the way. Jeans, once said, ‘it seems that certain kinds of motion freeze-out, as the temperature 

is decreased’. Now, if we assume that the vibrational motion is such that it exists at higher 
temperature but stops at a lower temperature then the experimental value of  at 100°C 

for H2, O2 and HI can be explained. The Cv,m value is then 
3 5

, i.e. ;
2 2

R R R  CP,m is 

then 
7
2

R  and then, 7
1.4.

5
 Similarly, we can explain the value of  for H2 (1.66) at 

20 K, if we can freeze-out the rotation even (Figure 2.39a).



In fact, these freezing of vibrational and rotational motions do happen; but classical 
mechanics cannot explain how these motions are freezed out as the temperature is lowered. 
Only after the development of quantum mechanics, the puzzle was solved.

According to the quantum principles, a bound system has a discrete sets of energy 
levels and, as a result it cannot exchange energy with the surroundings in a continuous 
manner. Note that according to classical mechanics, you can increase the energy of a 
one-dimensional harmonic oscillator continuously by a gradual increase in temperature; 
because the energy expression is kT. Moreover, the Boltzamann distribution reads:

  

1

2

exp
p

p kT

where p1 and p2 are the probabilities of finding the system in the two states '2' and '1' with 
the energy gap ( 2 – 1) = . Clearly, as 2 > 1, p2 < p1.

Let us now take a diatomic molecule and frame it like a one-dimensional harmonic 
oscillator; the vibrational energy levels are equispaced; the first being at the zero point 

energy 
1

;
2

h  the second level is at 
3

,
2

h  the third is at 
5

,
2

kT  and so on and so forth 

vib
1

; 0,1, 2, 3, .
2

h  For H2 h  = 8.8 × 10–20 J. So, at 100°C, the probability 

of finding a molecule in the first excited vibrational state (  = 1) relative to that in the 
ground state is

  

81

0

exp 3.7 10
p h

p kT

That is, practically all the molecules are in the ground vibrational state.



If you slowly increase the temperature, the first and the onward levels will remain 
practically vacant, so long as T < h . All the oscillators are therefore frozen and, do not 
contribute to the heat capacity; only the translational and rotational modes of motion will 
contribute. The explains the Cv, m values of H2 and O2 and, also for HI, at 100°C. But what 

happens to I2? Iodine is so massive that its frequency of oscillation 1
2

k

m
 is very 

low, so that h  is much smaller than kT. For I2, h  = 4.26 × 10–21 J and, therefore, at 185°C 
the chance of finding the I2 molecules in the first excited vibrational level relative to that 
in the ground vibrational level is

  

21
1

23 1
0

4.26 10
exp 0.51

(1.38 10 Jk ) (458 k)

n

n

In essence, what we find is that due to the very small energy gap between the vibrational 
energy levels (~ 10–21 J) for I2, the excited  vibrational levels (v = 1 and onwards) are also 
populated significantly, leading to some contribution towards Cv, m. This in turn decreases 
 to 1.3 from 1.4, which would have been if there were no vibrational contribution. As 

we increase the temperature gradually, the population in the higher vibrational levels 
increases; this increases their contribution towards Cv, m and consequently  decreases 
further. When the temperature is sufficiently high, nearly all the levels are equally 

populated and the classical 
1
2

kT  contribution is fully contributed. Cv, m then assumes 

the theoretically predicted value. This is the reason that the theoretically predicted 
result of Cv, m is often called the high temperature limiting value. Over this region of high 
temperature,   also decreases to the predicted value 1.286 (for diatomic molecules).

The rotational levels are also quantised but the separation between two successive 
rotational levels is so small that almost always h  is exceeded by kT and, there is the full 
contribution from the rotational motion towards Cv, m. H2 is the case for which this is not 
true at 20 K; the translational motions contribute only.

example 2.45

Calculate the value of ,

,

P m

v m

C

C
 for a gaseous mixture consisting of n1 = 2 moles of 

oxygen and n2 = 3 moles of carbon dioxide. The gases are assumed to be ideal.

From thermodynamic considerations, we write

  
,v m

T

U
dU nC dT dV

V

  , ; as 0v m

U
dU n C dT

V
 for ideal gases



or,  ,v mU nC T  (the neglecting constant of integration)

or  ,v mC
U nR T

R

  
,

, ,
,

,

1
; and

( 1)
P m

P m v m
v m

v m

CnRT
U nR T C C R

CR

C

The total internal energy U is then
  U = U1 + U2

  1 2

1 2( 1) ( 1)
n n

U RT

  1 2 2 1

1 2

( 1) ( 1)

( 1) ( 1)

n n
U RT  ... (A)

U can also be written as

  

1 2( )
( 1)

n n RT
U

 ... (B)

where  is the ratio of the capacities for the mixture. Comparing Eqs (A) and (B); we find

  
1 2 1 2 2 1

1 2

( ) ( 1) ( 1)
( 1) ( 1) ( 1)
n n n n

  1 2

1 2 1 2 2 1

( 1) ( 1)( 1)
( ) ( 1) ( 1)n n n n

  1 2 1 2

1 2 2 1

( ) ( 1) ( 1)
1

( 1) ( 1)
n n

n n

  1 2 2 1 1 2 1 2

1 2 2 1

( 1) ( 1) ( ) ( 1) ( 1)
( 1) ( 1

n n n n

n n

  1 2[n 1n 2n 1 2n 1 1 2 1n n 2 1 1 1– n n

2 1 2 2 2 2n n n 1 2n 1 2 2 1]/[ ( 1) ( 1)]n n

  1 2 1 2 1 1 2 2 1 2 2 1( ) ) / [ ( 1) ( 1)]n n n n n n

  1 1 2 2 2 1

1 2 2 1

( 1) ( 1)
( 1) ( 1)

n n

n n



2.18 moleculAr collIsIons And meAn free pAtH
Due to the random erratic motion, the molecules of a gas suffer continuous collisions 
among themselves and with the walls of the container. The latter one has already been 
taken up in the previous sections. In the section, we shall count the number of collisions 
among the molecules.

A molecular collision may be a two body (i.e. binary; two molecules collide) or many body 
(e.g. a ternary collision among three bodies, etc.). But since the probability that the centres 
of three or more molecules come at a particular point in space at a particular instant is 
very small, we consider only the binary collisions. The calculation of the binary molecular 
collisions is important because:
 1. it helps calculating the rate of chemical reactions in the gas phase.
 2. it helps calculating the mean free path of the molecules in a gas.

Moreover, do not forget that the collision between the molecules maintain the Maxwell’s 
speed distribution in the steady state. A binary collision, however, should not be taken too 
much literally. There may not in fact be any real contact between the two molecules during 
a collision. Figure 2.40 shows the variation of intermolecular potential energy between two 
neutral molecules against their separation. It is a Lennard-Jones 6-12 potential. Later it 

will be shown that the net attractive force varies as 6

1
r

 and the repulsive force as 12

1
,

r
 

r being the distance between two molecules; that is why it is called Lennard-Jones10 6-12 
potential.

10 John E. Jones (a physicist) changed his surname to Lennard – Jones after marrying Kathleen 
Mary Lennard (1925)



As the two molecules approach each other, the potential energy starts falling off from 
a distance, say about 8 Å, due to attraction (Figure 2.40c), then forming a minimum, 
the potential energy curve rises up much steeply due to the repulsive effect. The closest 
approach between the two molecules  can therefore be taken as the distance at which the 
interactive potential energy is zero (Fig 2.40c). Therefore, the rapidly growing repulsive 
force between two approaching molecules changes the direction of their flight even before 
any real contact (Figs. 2.40a and 2.40b). This separation  is therefore an approximation 
to the sum of the radii of the two molecules.

In kinetic theory, this potential is approximated to the hard sphere potential model  
(Figure 2.41):



Potential Energy   = 0 for r  

  = ∞ for r < 

We will therefore treat the molecules as hard spheres and the collisions as billiard-ball-
like collisions.
Let us take a mixture of two gases A and B. There are three kinds of collisions: A–A, B–B 
and A–B. We define

  (A)BZ  Binary collision frequency of a single A molecule with the B molecules in 

one second.

  ABZ  Number of binary collisions between A and B molecules per unit volume in 

one second.
Therefore, Z(A)B times the number of A molecules per unit volume nA, is ZAB; i.e.

  ZAB = Z(A)B nA (2.86)

The calculation of Z(A)B at first sight seems to be a hopelessly complex task; for, you cannot 
trace the flight of a particular A molecule after one collision; the picture is completely 
random. However, the problem can be simplified if we could have thought of a picture in 
which the particular A molecule is moving through a uniform population of stagnant B 
molecules; obviously then, the A molecule is moving with the relative speed (relative with 
respect to the B molecules). Moreover, at each collision, the A molecule will change its 
line of flight; because the collision can take place at any angle from zero to 180 degrees  

(Figure 2.42). Therefore, if we let that rel  is the average speed of the A molecules 

(averaged over all possible directions) relative to the B molecules then, this A molecule can 
be assumed to be moving with this relative average speed rel  along a straight trajectory 
through the stagnant B molecules. Refer to Figure 2.43, a A molecule will suffer a collision 
with a B molecule when the distance between their centres is ( A + B)/2 where A and B 
are the molecular diameters of the A and B molecules, respectively. A spherical volume of 
radius ( A + B)/2 about the A molecule can be constructed, so that whenever the centre 
of any B molecule is, on or inside this volume, there will be a collision. In one second, this 
sphere of influence of this moving A molecule traces out a cylinder of length relv  and, of 

cross sectional are 
2

A B( ) / 2 . This is called the collision cross-section. Therefore, 

the number of B molecules, whose centres are within this cylinder, will be equal to the 

number of collisions, this particular A molecule suffers with the B molecules in one second, 

i.e. to Z(A)B (Figure 2.44). The volume of the cylinder is 
2

A B
rel,2

 and therefore

  
2

A B
(A) B rel B2

Z v n  (2.87)

and the total number of binary A–B collisions is [from Eqs. (2.86) and (2.87)].



2
A B

AB rel A B2
Z v n n  (2.88)



Now, it remains only find an expression for relv . As explained in Figure 2.42, from the 

triangle law of vector addition, the relative velocity a molecule with respect to a B molecule 

is vrel = vA – vB. But we want rel .v  For this, we have to average vrel over all possible angles 
of collision: zero to 180°; i.e. over an average angle of approach 90°. Furthermore, since, 
collisions occur along all possible directions, we may call it the relative average speed:

  

2 2 2
rel A B

A B

8 1 1RT

M M

  rel
8 RT

 (2.89)

where  is reduced mass and MA and MB are, respectively, the molar masses of the two 
gases. The final expressions for the collision frequency Z(A)B and the collision number ZAB 

are then

  
2

A B
(A)B B

8
2

RT
Z n  (2.90)

and  
2

A B
AB A B

8
2

RT
Z n n  (2.91)

The collision frequency and the collision number for a pure gas, say A, are then

  2 2
(A) A

8
2

( / 2)
RT

Z n c n
M

 (2.92)

and  2 2
AA

1
2

Z c n  (2.93)

In the latter case, we have to divide by 2 otherwise, each collision would have been counted 
twice

example 2.46
Calculate the collision frequency and the collision number of oxygen molecules at 27°C 
and 1 atm. The collision diameter is 2.5 Å. Repeat the calculation at 2 atm and, at 10–6 
mm Hg pressure, the temperature remaining the same. Also calculate the average time 
between two successive collisions.

The number of molecules per unit volume is

  

23 1
0

1 1
(101325 kPa) (6.022 10 mol )

(8.314 JK mol )(300 K)
PNP

n
kT RT

  n = 2.45 × 1025 m–3



The average speed of the molecules is then

  

1 1
1

1

8 8(8.314 JK mol ) (300 K)
445.6 ms

3.14 (0.032 kg mol )
RT

C
M

Therefore, the collision frequency is

  
2

(A)A 2Z C n

     
10 2 1 25 32(3.14) (2.5 10 m ) (445.6 ms ) (2.45 10 m )

or  
9 1

(A)A 3.03 10 sZ

The average time between two successive collisions is

  

10

(A)A

1
3.3 10 sec

Z

and, the collision number is

  
9 1 25 3

AA ( )
1 1

(3.03 10 s ) (2.45 10 m )
2 2A AZ Z n

or  34 3 1
AA 3.71 10 m sZ

You can also use Eq. (2.93) directly to get ZAA. From Eqs (2.92) and (2.93) we find

or  2
(A)A AAandZ Z

Therefore,  (A)A (A) A
(2 atm)

at 2 atm at 1 atm
(1 atm)

Z Z

  Z(A)A at 2 atm is 6.06 × 109 s–1

Similarly,
  ZAA at 2 atm is

  ZAA at 2 atm = 22 (ZAA at 1 atm) = 1.48 × 1035 m –3 s–1

Similarly

  

6
6 9 1

(A)A
(10 mm Hg)

(at 10 mm Hg) 3.03 10 s
(760 mm Hg)

Z

or  Z(A)A (at 10–6 mm Hg) = 4 s–1

and the average time of collisions is 0.25 s.
Comment The collision frequency is directly   of the gas but the collision number is 
directly  2. At extremely low pressure, the system becomes almost collision free.



example 2.47
Calculate the ratio of the wall collision frequency and the binary collision frequency of 
oxygen molecules at 1 atm and 27°C.

From the previous problem we have
  C  ms–1 and, n = 2.45 × 1025 m

The wall collision frequency

  
25 3 1

Wall
1 1

(2.45 10 m ) (445.6 ms )
4 4

Z n C

or  ZWall = 2.73 × 1027 m–2s–1

The binary collision frequency is (from the previous problem)
  Z(A)A = 3.03 × 109 s–1

The ratio

  

Wall

(A)A

27 2 1
18

9 1
2.73 10 m s

1 10 (numerically)
3.03 10 s

Z

Z

Comment Wall collision frequency under ordinary conditions of temperature and pressure 
is as much as 1018 times more frequent than the collision frequency.

example 2.48
The average composition of air is 

2 2
0.8 and 0.2N Ox x  as the mol-fractions of nitrogen 

and oxygen, respectively. Calculate at 1 atm and 27°C,

 (i) the number of collisions suffered by one nitrogen molecule with the oxygen 
molecules in one second.

 (ii) the number of collisions suffered by one oxygen molecule with the nitrogen 
molecules per second, and

 (iii) the number of binary collisions per cm3 per second between the nitrogen and oxygen 

molecules. 
2 2

° °
N O3.7 A ; 2.5 A , and

 (iv) the total number of collisions suffered by a single nitrogen molecule in one 
second.

We first calculate the following:
The average speed of the nitrogen molecules



  
2

1 1
1

N 1
8(8.314 JK mol ) (300 K)

476.4 ms
3.14(0.028 kg mol )

c

and that of oxygen molecules

  
2

1 1
1

O 1
8(8.314 JK mol ) (300 K)

445.6 ms
3.14(0.032 kg mol )

c

Total number of molecules per m3

  

25 3
23 1

(101325 Pa)
2.45 10 m

(1.38 10 JK ) (300 K)
P

n
kT

Therefore, the number density of the N2 molecules is

  2 2

25 3
N 1.96 10 mNn x n

and, that of the O2 molecules is

  2 2

25 3
O O 0.49 10 mn x n

The reduced mass is

  

1 1
1

1

(0.028 kg mol ) (0.032 kg mol )
0.015 kg mol

(0.028 0.032) kg mol

and  
1 1

1
rel 1

8(8.314 JK mol ) (300 K)8
650.88 ms

3.14 (0.015 kg mol )
RT

v

 (i) A single N2 molecule suffers 
2 2(N ) OZ   collisions with the O2 molecules in one second 

[Eq.( 2.90)].

  

2 2
2 2 2

2
N O

(N )O rel O2
Z v n

  

210
1 25 3(3.7 2.5) 10 m

3.14 (650.88 ms )(0.49 10 m )
2

or,  
2 2

8 1
(N ) O 9.62 10 sZ

 (ii) Similarly,

  

2 2
2 2 2

2
N O

(O ) N rel N2
Z n



or  
2 2

210
1 25 3

(O ) N
(3.7 2.5) 10 m

3.14 (650.88ms )(1.96 10 m )
2

Z

or  
2 2

9 1
(N )O 3.85 10 sZ

 (iii) Total number of binary collisions per unit volume per second

  2 2 2 2 2O , N (O ) N OZ Z n

or  
2 2

9 1 25 3
O , N (3.85 10 s ) (0.49 10 m )Z

  
2 2

34 3 1
O ,N 1.9 10 m sZ

 (iv) The result is
 

 2 2 2 2(N )O (N )NZ Z Z

  2 2 2 2 2

2
(N )N N N N2Z c n

or  
2 2

1 1
–10 2

(N )N 1

25 3

8(8.314 JK mol )(300 K)
2(3.14)(3.7 10 m)

3.14 (0.028 kg mol )

1.96 10 m

Z

or  
2 2

9 1
(N )N 5.7 10 sZ

From (i)    
2 2

8 1
(N ) O 9.62 10 sZ

Therefore,  Z = 1.53 × 109 s–1

2.19 meAn free pAtH: fIrst pArAdox of KInetIc tHeory
According to the kinetic theory, the average speed of the molecules of a gas under ordinary 
condition is about 500 ms–1, a tremendous speed. This implies that if a dense gaseous 
sample is placed at a corner of a closed room, the molecules would instantaneously diffuse 
out uniformly all over the space available. In fact, what is observed is that a considerable 
time is lapsed for the uniform distribution of the molecules in the room. Take another 
example, if you open the stopper of a bottle of perfume, and if no wind blows, then after a 
certain time lag the smell of the perfume is detected.

This slow rate of diffusion of the gas molecules was raised as a serious objection against 
the kinetic theory at its initial stage of development. Clausius solved the problem by 
recognising the fantastic number of molecules in a small volume (of the order of 1019 
molecules per cm3), and the frequent binary collisions between them. Each collision 



deflects a molecule from its otherwise straightforward path and, may even recoil it in the 
opposite direction. That is why the rate of diffusion is so slow.

The straight path, a molecule traverses between two successive collisions is called the free 
path; it may have values from zero to 
infinity. The arithmetic mean of the free 
paths is called the mean free path ( ).

Refer to Figure 2.45, it shows the 
trajectory of a single molecule in one 
second; the breaks at the traject are due 
to collisions of a molecule with other 
molecules and, l1, l2, ... etc. are the free 
paths. Clearly, we must have

1 2 3 ( ) A... AC l l l Z

where  is the mean free path and Z(A)A is 
the collision frequency of the molecules. 
Therefore

2
( )

2

1

2

or
2

A A

c

Z n

kT

P

 (2.94)

The mean free path of the molecules of a gas is therefore inversely proportional to the 
pressure and directly proportional to its kelvin temperature.
In a mixture of two different gases A and B,

  
( ) ( ) ( ) ( )

andA B
A B

A A A B B B B A

C C

Z Z Z Z
 (2.95)

example 2.49
Calculate the mean free path of the oxygen molecules at 1 atm and at 10 –6  mm Hg pressure. 
The temperature is 300 K and  = 2.5 Å.

The number of molecules per unit volume

  23 1
(1 atm) (101,325 Pa)

(1 atm)(1.38 10 JK ) (300 K)
P

n
kT

or  n = 2.45 × 1025 m–3

Therefore, the mean free path is (at 1 atm)



2 10 2 25 3

1 1

2 2(3.14) (2.5 10 m) (2.45 10 m )n

or   = 1.47 × 10–7 m = 1470 Å

At 1 × 10–6 mm Hg,

  

6
25 3 16 31 10 mm Hg

(2.45 10 m ) 3.2 10 m
760 mm Hg

n

and,   = 112.6 m

Comment

At extremely low pressure, the mean free path becomes longer than the dimensions of the 
box. This explains the collision free state of the gas molecules under such a good vacuum 
condition. Only the wall collisions occur under such condition.

Under ordinary condition, about 1024 molecules are present per m3. Assuming uniform 

population density, the distance between two molecules is then 3 24(1m) / 10 ,  i.e. 

1 × 10–8 m = 100 Å.

We, therefore, notice that under ordinary conditions of pressure and temperature:
 (i) The mean free path is larger than the separation between the molecules (cf. 

Example 2.47)
 (ii) The mean free path is much larger than the molecular diameter and
 (iii) The mean free path is smaller than the dimension of the box.

example 2.50
A molecule traverses an average distance , 
the mean free path, between two successive 
collisions. Consider a plane AB of unit area. 
The total number of molecules striking this 

plane from one side is 
1
4

n c  (cf. [Eqs (2.20) 

and (2.47b)]. These molecules are coming from 

all possible directions (Figure 2.46); but for each 
molecule, the distance of the point at which the 
molecule strikes the plane AB from the point of 
their last collision is . Show that the average 

perpendicular distance of the plane from the 

point of their last collision is 
2

.
3



In Section 2.2 [Eq. (2.19)], we have calculated the number of molecules striking a unit area 
with all possible speeds (from zero to infinity) but, from one side of the plane, at an angle 
 and  as

  
, sin cos

4
n c

dn d d

For these molecules, the perpendicular distance to the unit plane AB, since their last 
collision is (  cos ). Therefore, the average perpendicular distance is

        

/2 2

,
0 0

cos

cos
1
4

dn

n c

  

/2 2

0 0

4
cos sin cos

4
n c

d d
n c

  

/2 2
2

0

cos sin d d

  

/2
2

0

2 cos sin ,d

 
and finally

  

2
cos .

3

This is an important result. The molecules strike a unit area from an average perpendicular 

distance of 
2

.
3

example 2.51
Prove the result in Example 2.50 from the Maxwell’s distribution of molecular velocity.

Using Eq.( 2.65b), we write the Maxwell's distribution equation as
23

2 22
, , sin

2

mc

kT
c

m
dn n e c dc d d

kT



where dnc, ,  is the number of molecules per unit volume moving with speeds in the range 
C to C + dC and at direction determined by  and (Figure 2.47). If we draw a slant 
cylinder of length C and of unit area, at the angles  
and  its volume is c cos , and, it contains (C cos ) 
dnc, , molecules which will definitely hit the unit 
area in one second. For each of these molecules, the 
distance covered before the hit is  (along the  and 
 directions) and, therefore, the perpendicular 

distance from the unit area is (  cos ). The average 
of this distance is then

/2 2

, ,
0 0 0

1
cos ( cos ) ( cos )

1
4

c

c

C dn

n c

Do the integrals yourself and find that

       

2
cos

3

2.20 vIscosIty

2.20.1 definition
You might have observed that under comparable conditions, honey flows much less readily 
than water; glycerol flows with even much more difficulty. Viscosity is a property of a fluid 
(gas and liquid) that measures its power to resist flow.

To understand what is viscosity and how it arises, we consider a fluid confined between 
two plates, placed parallel to the x–y plane (Figure 
2.48a); one at z = 0 and the other at 
z = h. The plane at z= 0 is fixed. We now slide the z = 

h plane along the x-axis with velocity vm. If we now 
consider the fluid as a stack of several parallel layers 
like the pages of a book, then the layer which is just 
adjacent to the z = h plane also moves with the velocity 
um. Due to the presence of internal friction between 
adjacent layers, the next lower layer will experience 
a dragging force and will also exert a forward dragging 
force on the next lower  layer. In this way, a velocity 

gradient ,
du

dz
 normal to the direction of flow, will 

be set up and, at the steady state each layer will move 



with a constant velocity v, which is a function of z. The bottom layer which is in contact 
with z = 0 plane will remain stagnant.11

If we now consider a plane at height z, then the frictional force acts on the immediate 
underneath layer in the forward direction and an equal frictional force (by the Newton's 
3rd law) on the upper layer in the backward direction; both of the them acting parallel 
to the surface. This frictional force, or shearing force, acting between the interface of two 
layers having a relative velocity is called the viscous force. Experimentally, it has been 
observed that viscous force is directly proportional to the area of contact A, between the 

two adjacent layers and to the velocity gradient 
dv

dz
 that is

  viscous force, dv
F A

dz
 (2.96)

where  is a proportionality constant, called the coefficient of viscosity or simply, the 
viscosity of the fluid. A faster moving layer thus tends to speed up a slowly moving layer 
and a slowly moving layer tends to slow down a faster moving layer. Equation (2.96) is 
referred to as the Newton’s equation of viscosity. It is applicable for steady or laminar flow 
of incompressible and newtonian fluids. A laminar flow is one in which each small element 
of the fluid continues its own track of motion, without penetrating into the other, i.e. each 
layer slips past the adjacent layers (Figs. 2.48b and 2.48c). Incompressible fluid means 
that the density will remain fixed. A newtonian fluid is one for which  is independent of 

the velocity gradient .
dv

dz
 Gases are certainly newtonian on their flow; liquids of small 

molecular size are also newtonian. However, polymers and colloidal suspensions, in which 
the long chain molecules cannot be oriented along the planes, are non-newtonian.

11 This is called no slip condition; the layer immediately adjacent to the lower plate (which is 
stagnant) will have a velocity v = 0; similarly the layer of the fluid just underneath the upper plate 
will move with the velocity vm.



The coefficient of viscosity may therefore be defined as the viscous force required to 
maintain a unit velocity gradient between two adjacent layers of unit cross-section. In 
parallel  CGS system, its unit is dyne sec cm–2, commonly called 1 poise in honour of the 
physicist Poiseuille. In SI system the unit is Nsm–2.

2.20.2a the poiseuille flow equation
Let us consider the flow of an incompressible fluid through a long straight tube of uniform 
radius r and length L. The velocity of the flow is small so that the flow is laminar if it is a 
liquid and a steady state motion if it is a gas. The flow is along the axis of the tube and is 
due to the pressure difference P = (P1 – P2); P1 and P2 are the pressures at the two ends 
(P1 > P2), Figure 2.49. The layer of the fluid just adjacent to the wall of the cylinder is 
stagnant and, as the centre is approached the velocity of the cylindrical layers increase.

Let v be the velocity of the layer at a distance z from the centre. Then from Eq. (2.96), we 
write for the viscous force F as

  (2 )
dv

F zL
dz

 (2.97)

a negative sign is put before the equation because the sign of dv

dz
 is negative. This force 

is acting along the direction opposite to that of the flow. To maintain the steady condition, 
this force must be equal to the driving force z2 (P1 – P2). Equating these two forces, we 
get

  
2

1 2(2 ) ( )
dv

zL z P P
dz

  1 2( )
2

z
dv P P dZ

L



and integrating between limits

  

1 2

0

( )
2

v z

r

P P
dv Z dZ

L

  2 21 2( )
( )

4
P P

v r z
L

 (2.98)

The velocity profile is then found to be parabolic (Figure 2.50) in nature.

The total volume of the fluid flowing through the tube per unit time is then

  0

(2 )
r

dV
ZdZ v

dt

and using Eq. (2.98),

  

2 2 41 2 1 2

0

( ) ( )
2 ( )

4 8

r P P P PdV
Z r z dZ r

dt L L

  
4

1 2( )

8

P P r

dV
L

dt

 (2.99)

This is the Poiseuille’s equation. It must be remembered that the Eq. (2.99) applies only 
to incompressible fluid.



2.20.2b viscosity of Gases

Gases are not incompressible; Eq. (2.99) therefore needs some modification for the 
compressible character of a gas since a liquid may be considered as almost incompressible, 
the volume as well as the mass flowing through any section of the tube per unit time is 
constant. But, since gases are compressible, although the mass flowing through any given 
section of tube may considered constant, the volume is not.

If V be the volume of the gas flowing across a section per unit time at a distance x from the 
entrance point of the tube, and  is density at the pressure P, then
  V = constant

Considering the gas to be ideal, we know   P 
MP

RT
 we may write

  PV = constant

We now consider a section of thickness dx at a distance x from the entrance point. Let 
the pressure difference across this section be dP; then by the Poiseuille Eq. (2.99) we may 
write

  
4

8
r dP

V
dx

 (dP is negative )

  
4

8
P dPr

PV
dx

If V1 be the volume of the gas entering the tube at pressure P1 then, by Boyle’s law (T is 
kept fixed)
  P1V1 = PV

  
4

1 1 8
r PdP

P V
dx

  
2

1

1 4

1 1
0 8

P

P

r
P V dx PdP

and finally

  
4

2 2
1 1 1 2( )

16
r

P V P P
L

 (2.100)

Several different methods were employed to estimate  for gases; however, the most 
commonly used method is that of Rankine (see any standard text). The above equation 
may also be written as

  
2 24

1 2( )
16

r P Pn

t LRT
 (2.101)

where n is the number of moles (ideal gas) flowing out in time t.



2.20.3 validity of poiseuille’s equation
Equations (2.99) and (2.100) hold good when:
 (i) the flow is steady and streamline
 (ii) there is no radial flow
 (iii) the layer of the fluid in contact with the wall of the tube is stationary, i.e., there is 

no velocity of slip, and
 (iv) for gases, the mean free path of the molecules is less than the radius of the tube.

example 2.52
In an experiment to measure the viscosity of O2 at 0°C, the gas is allowed to pass through 
a narrow tube of radius 0.21 mm and length 2.5 m. The pressures at the inlet and outlet 
are 1.2 and 1 atm, respectively. The volume of the gas collected at the outlet is 24.36 mL 
per minute. Calculate the viscosity coefficient of the gas.

The number of moles of O2 at the outlet is

  

6 3

1 1
(101325 Pa) (24.36 10 m )

(8.314 JK mol ) (273 K)
PV

n
RT

or  n = 1.087 × 10–3
 mol

Therefore,

  

3
5 11.087 10 mol

1.81 10 mol s
60 sec

n

t

From Eq. (2.103)

  

1
4 2 2

2( )

16 ( / )

r P P

RTL n t

or  
3 4 2

a
1 1 5 1

(3.14)(0.21 10 m) (2.2 0.2 101325 101325 P )
16 (8.314 JK mol ) (273 K) (2.5 m) (1.81 10 mol s )

or   = 1.68 × 10–5 Ns m–2 (1.68 × 10–4 poise)

2.20.4 viscosity of Gases from Kinetic theory
Kinetic theory offers an excellent explanation for the viscosity of a dilute gas and also 
furnishes a fairly simple method for estimating .

Let us first see how viscosity arises during a steady flow of a gas. Consider a gas flowing 
parallel to the x–y plane along the x-axis with the mean velocity v (which is assumed 
to be very small compared to the mean thermal speed of the molecules); obviously, v is 
an increasing function of z. The motion of the molecules along the y- and z-directions 



are random, i.e. 0 ,y zc c  but along the x-axis, their average component of velocity 

,xc v  which is the velocity of the mass motion of the gas.

Consider a plane parallel to the x–y plane at z = h. The molecules above this plane have 
somewhat greater x-component of velocity than the molecules below this plane. So, 
when the molecules cross this plane from above, they carry with themselves a certain 
x-component of momentum which is transferred to the gas below the plane. Similarly, 
when the molecules cross the z = h plane from below, some x-component of momentum 
is transferred to the gas above the plane. Since, the velocity gradient is along the Z-axis, 
there is always a net transfer of the x-component of momentum from the upper to the 
lower portion across the plane.

The result is that the layer of gas below the plane gains momentum and the gas layer 
above the plane loses momentum along the x-axis. The effect is therefore the same as if 
the upper layer exerts a forward drag on the lower layer and as a reaction force (Newton's 
third law) the lower layer exerts a viscous drag on the upper layer. The picture may be 
exemplified by citing two trains moving in the same direction with unequal speeds. As 
the faster train overtakes the slower train, workers on each train constantly pick up sand 
bags from their train and throw them onto the other train. Then there is a transfer of 
momentum between the trains so that the slower train tends to be accelerated and the 
faster train to be decelerated. We shall now derive an expression of  of a gas from this 
concept.

Refer to Figure 2.51, AB is a plane of unit area placed at z = h, parallel to the x–y plane. 
Let the velocity of mass motion of the gas at this height be v. The number of molecules 
striking this unit area in one second at the ,  direction is

  , sin cos
4
n

dn c d d  (2.104)

where n is the number of molecules per unit volume and c  is the average speed of the 
molecules.

Before striking this area, these molecules have suffered collisions with the other molecules 
a number of times but the distance of the plane AB from their point of last collision (along 
the z axis) is  cos . Since the mass motion of the plane AB is v, the velocity of mass 

motion of the  plane situated at the height  cos  from AB is cos ;
dv dv

v
dz dz

 being 

the velocity gradient. Therefore, per unit time, each molecule in Eq. (2.104) transfers a 

momentum of cos
dv

m v
dz

 across the plane AB in the –  direction (it is assumed 

that the molecular velocity is adjusted at every collision). Hence, the total momentum 
transferred across the plane AB from above and from all possible directions is



/2 2

0 0

sin cos cos
4

n c dv
p d d m v

dz

or  
/2 2

0 0

sin cos cos
4

mn c dv
p v d d

dz

or  
/2

0

1
sin cos cos

2
dv

p mn c v d
dt

Similarly, the total momentum transfer across the AB plane from below and from all 
possible directions per unit time is

  

/2

0

1
sin cos cos

2
dv

p mn c v d
dz

The net momentum transferred across the unit AB plane per second is

  

/2
2

0

sin cos
dv

p p p mn c d
dz

or  1
3

dv
p mn c

dz



This momentum change per second p is nothing but the shearing stress, which is .
dv

dz
 

Equating these two results we get

or  

1
3
1
3

mn c

c  
(2.105)

Equation (2.105) presents some interesting predictions: From Eq. (2.94), substituting the 
expression of , we find

  
23 2

m c
 (2.106)

which suggests that the viscosity of a gas is independent of n and hence of the pressure 
of the gas. The result is remarkable and was not certainly intuitively expected. It means 
that the viscous drag on the plane AB at z = h (Figure 2.51) will remain the same if we 
increase the pressure say from 1 mm Hg to 100 atm. This apparent paradox is due to the 
fact that as the pressure is doubled, the number of molecules per unit volume gets doubled 
and, this doubles the number of molecules exchanged between the two layers. At the same 
time, on doubling the pressure, the mean free path is halved, and therefore, each molecule 
now conveys as much as only half the momentum as before. The net momentum transfer 
therefore remains the same. These predictions had in fact been confirmed experimentally 
by Maxwell himself (Figure 2.52). From this figure, it is also clear that this independence 
does not hold at extremely low and at extremely high pressure. The reason is as follows:

We have made two assumptions in deriving Eq. (2.105); it is assumed that
 (i)  << , i.e. the mean free path is much longer than the molecular diameter and
 (ii)  << L, i.e. the mean free path is much smaller than the smallest linear dimension 

L of the container.



At very low pressure condition (ii) fails and at very high pressure condition (i) fails. Hence 
the equation fails at very low and very high pressure. As the pressure is decreased  
increases until it becomes comparable to L, and thereafter, remains constant. On further 
reducing the pressure only the density  decrease which decreases . The other way to 
understand this is if the gas is made so dilute that the condition  << L is violated, then 
the viscosity  must decrease, since in the limiting case when n  0 (perfect vacuum) the 
tangential force on the moving planes must clearly go to zero. On the other hand, the 
departure at very high pressure may be due to the fact that the mean free path becomes 
of the order of molecular diameter and then the transfer of momentum occurs not over 
the distance  but over (  +  cos ) where  is the molecular diameter and  is the angle 
between the free path and the normal to the x–y plane. The effect of each molecule is 
therefore additive and  rises almost proportionately with the pressure of the gas.

Kinetic theory suggests that  should vary according to the square root of the absolute 
temperature, i.e.   T1/2. However, this prediction does not match very well with the 
experimental results. The viscosity is found to be increase somewhat more rapidly than 

.T  One reason may be that the molecules are not to be regarded as hard spheres, but 

to be conceived of being surrounded by a force of field which is repulsive in nature. As 
the temperature is increased, the velocity of the molecules increases too, and hence can 
penetrate these force fields (Figure 2.53). That is to say that the molecules have some 
degree of softness. The effective size of  therefore decreases thereby increasing the value 
of  and hence  more than the factor T1/2. Another explanation put forward by Sutherland 
is to consider the weakly attracting rigid sphere model. The weak attractive force between 
the two molecules bends the trajectory (Figure 2.40(b)) of the two approaching molecules. 
The result is that some molecules would now collide which would have been missed in 
the absence of the forces. The collision frequency being increased, the mean free path  is 
reduced, and , which is proportional to , is reduced by the same proportion. According 
to this model, detailed calculation shows that

  
(1 / )b T

 (2.107)



where b is a positive constant to be determined experimentally (ref., R. D. Present; The 

Kinetic Theory of Gases). Electric field has got no effect on the viscosity coefficient of a 
gas; but  values of paramagnetic gases, e.g. O2, NO, etc. may be decreased by application 
of a magnetic field. The mean free path of these molecules decreases in the presence of a 
magnetic field.

example 2.53
Calculate the viscosity coefficient of O2 at 0°C and 1 atm from the kinetic theory expression. 

 = 2.5 Å.

Using Eq. (2.106),

  
23 2

m c

we first calculate c

  

18
425 ms

RT
c

M

Therefore,  
23 1

10 2

(0.032 / 6.022 10 ) kg (425 ms )

3 2 (3.14) (2.5 10 m)

or   = 2.7 × 10–5 Ns m–2

2.20.5  Alternative method of for the expression of  of an Ideal Gas
From Eqs (2.20) and (2.47b) we know that the number of molecules striking a unit area 

from all directions but from one side of the plane is 
1

.
4

n c

From Examples 2.48 and 2.49, we also know that the average perpendicular distance a 

molecule traverses to hit a plane is 2
.

3
Therefore, the momentum delivered to a reference plane from the upper section, per unit 
area per second is

  

1 2
4 3

dv
p m n c v

dz

and that from the lower section is

  

1 2
4 3

dv
p m n c v

dz

where v is the velocity of the plane of interest.



The net momentum delivered is then

  1
3

dv
p p p mn c

d
 per second.

This is the viscous force; equating the Newton's equation to this, we find

  

dv dv
mn c

dz d

or  
1
3

mn c

the same as in Eq. (2.105).

proBlems
 2.1 Compare the gravitational forces between two CO2 molecules (radius, r = 1.62 × 

10–8 cm) with their translational kinetic energy at 27°C.
 [Ans.: P.F. = 1.1 × 10–51 J; tr 6.21 × 10–22 J]
 2.2 Calculate the temperature of a sample of 6 g of  He gas whose energy is found to be 

11.224 kJ. [Ans.: 600 K]
 2.3 Modern vacuum pumps permit the pressure down to P = 4 × 10–15 atm to be reached 

at room temperature (300 K). Assuming the gas exhausted is N2, find the number 
of its molecules per cm3. Also find the mean distance between the molecules at this 
pressure. [Ans.: n = 1 × 105 cm–3; l = 0.0215 cm] 

 2.4 The normal density of H2 is 0.000089 gcm–3. Calculate the root mean square speed 
of O2 at NTP. [Ans.: 4.6 × 104 cm s–1]

 2.5 Calculate the kinetic energy of 1 kg of O2 at 227°C. [Ans.: 1.95 × 105 J]
 2.6 At what temperature will the rms speed of O2 be (3/2) times its value at NTP?
 [Ans.: 614.25 K]
 2.7 Calculate the most probable, the mean, and the root mean square speed of the 

molecules of a gas, whose density under standard atmospheric pressure (1 atm) is 
equal to  = 1 gL–1. [Ans.: Cmps = 0.45 km s–1; c  = 0.51 km s–1; Crms = 0.55 km s–1]

 2.8 A 2 L flask contains two non-reacting gases A and B (the diameters are: A = 2Å; 
B = 3Å) at a constant temperature 300 K, and at a total pressure of 1 atm. The 

number of moles of the gases are 2 moles of A and 3 moles of B. Calculate
 (i) the collision frequency of an A molecule with the B molecules
 (ii) the collision frequency of a B molecule with the A molecules
 (iii) the collision number between the A molecules
 (iv) the collision number between the B molecules, and
 (v) the total number of binary collisions per cm3 per second (molar mass of A is 

4 g mol–1 and that of B is 28 g mol–1)
[Ans.: (i) 2.4 × 1011 s–1; (ii) 1.6 × 1011 s–1 ; (iii) 4.06 × 1031 cm–3 s–1; 

(iv) 7.77× 1031 cm–3 s–1; (v) 2.63 × 1032 cm–3 s–1]



 2.9 Two ideal gases A and B at pressures and volumes, respectively, PA, PB, VA and VB, 
such that PAVA = PBVB. Analyze the system.

  [Ans.: Two situations may arise:
 (i) If NA = NB then their temperatures are equal, i.e., TA = TB N represents the 

total number of molecules of the respective gases, and
 (ii) If NA > NB then TA < TB]
 2.10 Two flasks A and B have equal volumes. A is maintained at 300 K and B at 600 K. 

A contains H2 gas and B contains an equal mass of CH4. Assuming ideal behaviour 
of both the gases, answer the following:

 (i) Which flask contains greater number of molecules and, how many times as 
great?

 (ii) In which flask is the pressure greater? How many times as great ?
 (iii) In which flask are the molecules moving faster? How many times as fast?
 (iv) In which flask are the number of binary collisions greater? How many times 

as great? (Assume 
2 4H CH2 )

 (v) In which flask is the mean free path of the molecules greater? How many 
times as great? (Assume 

2 4H CH2 )

 (vi) In which flask is the viscosity more? How many times as more?
 (vii) In which is the kinetic energy per mole greater? How many times as great?
 (viii) In which flask is the total kinetic energy greater? How many times as great?

[Ans.: (i) 2

4

H

CH

8 ;
n

n
 (ii) 

2 4H CH4 ;P P

 (iii) 
2 2H CH2 ;v v  (iv) 

2 4H CH32Z Z

 (v) 
2 4H CH

1
;

2
 (vi) 2 4H CH ;

 (vii) 2

2

( ) 1
(CH ) 2

m

m

U

U
 (viii) 2

2

H

CH

4
u

u
]

 2.11 The viscosity of H2 at 0°C is 8.41 × 10–15 poise; determine the mean free path of the 
molecules at this temperature and 1 atm pressure. [Ans.:  = 1.67 × 10–5 cm]

 2.12 One of the methods used to find the molecular diameters is through the 
measurements of the coefficient of viscosity. 

  [Ans.: Let us discuss the method. Using the Eqs (2.94) and (2.105), which are:

  2

1 1
and

32
c

n

  To eliminate , we do as

     
2

1 1
3 2

c
n



2 8

3 2 3 2

RTc

Mn n

2 2
3

RT

n M
a

  At NTP (T = 273 K ; P = 1 atm) the coefficient of viscosity of hydrogen has been 
found to be 8.41 × 10–5 poise. The number of molecules per unit volume is

  

0 (1 atmN
n

RT

23 1) (6.022 10 mol
3

)

(82.05 cm atm 1K 1mol ) (273 K )

 n = 2.7 × 1019 cm–3 ; and 
32

gcm
22414  = 8.9 × 10–5 gcm–3.

  Using Eq. (a),

    

5
2 2 8.9 10 g 3cm

53(3.14) (8.41 10 g 1 1 19 3cm s ) (2.7 10 cm

7 1

)

(8.314 10 erg K 1mol ) (273 K
1

)

3.14 2 g mol

7
2 19 (8.314 10 g

0.0832 10 cms
2cms cm) (273)

3.14 2 g

2 190.0832 10 cm s 4 1(6 10 cm s )

2 = 0.5 × 10–15 cm2

   = 2.23 × 10–8 cm, i.e.,  = 2.23 Å]

 2.13 Calculate the high temperature limiting value of the molar heat capacity at 
constant pressure for (i) C2H2 and (ii) NH3.

  Also calculate the ratio the heat capacities .

 [Ans.: (i) ,
21

;
2P mC R   = 1.105 ; (ii) ,P mC  = 11 R ;  = 1.22]

 2.14 The ratio of the heat capacities at constant pressure and constant volume of H2 
gas is 1.32 at 2000°C. Calculate the molar heat capacity (a) at constant pressure, 
(b) at constant volume. How much is the combined vibrational and rotational 
contribution to the heat capacity at 2000°C?

 [Ans.: (a) 8.25 ; (b) 6.25 ; Cv,m = 3.25 cal K–1 mol–1]



 2.15 A 250°C, and 765 mm Hg pressure PCl5 vapour is dissociated to the extent of 81% 
into PCl3 and Cl2. What is the volume of the vessel in which 1.24 g of PCl5 vapour 
was introduced at the specified temperature and pressure? [0.46 L]

 2.16 When PCl5 vapour is heated at 200°C and 1.22 atm pressure, it undergoes 
dissociation to the extent of 0.42. What is (a) the mole fraction, (b) partial pressure 
of PCl5, PCl3 and Cl2?

 [Ans.: (a) 
5 3 2PCl PCl Cl0.408; 0.296;x x x  

 (b) 
5 3 2PCl PCl Cl0.498 atm ; 0.361 atm]P P P

 2.17 Arrange in order of increase value: most probable speed of the molecules of a gas, 
rms speed and the average speed. Would you expect the difference between these 
three to increase, decrease, or remain the same with increasing temperature?

  [Ans.: Cmps < C  < Crms; They will all increase accordingly at ;T  their difference 

will increase with increasing temperature, because: Cmps : C  : Crms = 8
2 : : 3  

= 1.414 : 1.596 : 1.732]

 2.18 Assume that for argon and krypton the vapour densities at their respective normal 
boiling points are the same. This means that, at their respective normal boiling 
points, the molecular velocity in the argon vapour is greater than, or less than, 
or same or cannot tell, compared to the corresponding parameters in the krypton 

vapour. [Ans.: They are all the same; because rms
3 3

]
RT P

C
M

 2.19 Calculate the mole fraction composition of a mixture of H2 and O2 gases (at STP) 
such that equal mass of each gas strikes a unit area of the container per second.

 [Ans.: xH2
 = 0.8; xO2

 = 0.2]
 2.20 Two containers of equal volume are separated by a fixed barrier with a pinhole of 

10–4 cm2 area as shown in the figure below. Initially, side A is vacuum, maintained 
at 0°C, and side B contains He at 1 atm pressure at 25°C. Initially, the pinhole was 
closed.

  After the pinhole is opened, calculate:
 (i) The initial rate of escape of He from B to A. Under this condition of P and T, 

the rate of striking of Xe gas (at. wt = 131) is 0.232 mole cm–2 s–1.



 (ii) Eventually a steady state is reached in which the effusion from A to B equal 
that of B to A. Calculate the ratio PA / PB at the steady state.

 [Ans.: (i) 1.328 × 10–4 mol s–1; (ii) 0.957]
 2.21 In a sample of gas, the molecules move over the entire speed range (0  ). We 

now divide the total number of molecules into two groups : hot a cold. The cold 
group consists of 30% molecules and have an average speed 0.6 C , and the hot 
group consists of 70% molecules and have an average speed 1.4 C , where C  is 
the average speed. Calculate the ratio of the surface collision frequencies of the hot 
to the cold group Zhot / Zcold. [Ans.: 5.44]

 2.22 H2 gas is taken at 2 atm and 100 K; separately O2 gas is taken at 5 atm and 300 K. 
In which case there will be greater amount of mass of the two gases hitting a unit 
area per second? [Ans.: Mass of H2 striking/mass of O2 striking = 0.173]

 2.23 Two separate bulbs are filled with neon and argon gas, respectively, Ar is at twice 
the kelvin temperature and hal of the density of the Ne. What is the ratio of their 
wall collision frequencies? (At. wt. of Ar = 0.04, Ne = 0.02 kg mol–1)

 [Ans.: ZNe/ZAr = 4]
 2.24 Give the ratio of the average speeds C f  / C i and of the wall collision frequencies 

Zf / Zi for the following changes in condition of an ideal gas: T is doubled at constant 
P and (b) P is doubled at constant T.

  (a) 2f

i

C

C
; (b) 1 ;f

i

C

C
 (a) 0.707 ;f

i

Z

Z
 (b) 2f

i

Z

Z

 2.25 A 2 × 10–3 m3 flask contains 0.015 kg of an ideal gas at 3 × 105 Pa pressure. Calculate, 
how long should take for 2% of the gas to escape through a pinhole of 10–8 m2 in 
area. [Ans.: 50 s]

 2.26 Oxygen gas at STP has a most probable speed Cmps of 4 × 104 cms–1, and a mean 
free path of 7.7 × 10–8 cm. Calculate the mean time between the collisions.

 [Ans.: 1.7 × 10–12 s]
 2.27 Express the Botzmann constant in units of eVK–1. [Ans.: 8.625 × 10–5 eVK–1]
 2.28 How much is the average translational kinetic energy (in electron-volt) of O2 

molecules in air at room temperature (300 K)? Of the N2 molecules?
 [Ans.: 0.039 eV]
 2.29 The speed of sound in an ideal gas is given by

  
sound , where P

V

CRT
v

T C

  Calculate the speed of sound in nitrogen at 300 K, and compare this with the rms 
speed of N2 at the same temperature. [Ans.: vsound = 353 ms–1 ; vrms = 517 ms–1]

 2.30 Compare the most probable speed of a molecule that collides with a small surface 
area with the most probable speed of a molecule in the bulk of the gas phase.

  

mps surface

mps bulk

( ) 3
.:

( ) 2

v
Ans

v



3.1  INTRODUCTION
To defi ne the state of a pure gaseous sample of a given mass, we require the specifi cation 
of three parameters, viz., pressure, temperature and volume. These three parameters are 
not independent. The mathematical relation which interlink these parameters is called 
the  equation of state and, in general, it can be written as f (P, V, T ) = 0. It is so called 
because, if any two of these three parameters are known, then the third can be calculated 
if their interrelation, i.e., the equation of state is known. The simplest equation of state 
is that of an ideal gas: Pv – nRT = 0. This equation fails (except under certain limiting 
conditions) for the gases we encounter, i.e., the real (or non-ideal) gases. In this chapter 
our objectives will be
 (i) To analyse the experimental results regarding the behaviour of real gases
 (ii) To point out the reasons behind the departure of real gases from the ideal 

behaviour
 (iii) To construct equations of state for real gases, and
 (iv) To test the validity of these equations of states.

3.2 THE WAY REAL GASES BEHAVE
Even Boyle himself knew very well that the equation Pv – nRT = 0 does not fi t 
the experimental data except at very low pressure and at very high temperature
(P Æ 0; T Æ •).

The amazing observation by James Watt (1783) that, at suffi ciently high temperature 
and pressure, the latent heat of vapourisation of water vanishes as the specifi c volumes 
of water and vapour become equal. This report may be marked as the beginning of an 
extensive search on the behaviour of gases, which in turn, had started the journey into 
fi nding a suitable equation of state for real gases.

Thomas Andrews (1863) fi rst carried out a series of systematic experiments which threw 
much light into the actual behaviour of gases. For each fi xed temperature, there is a 
defi nite volume of a given mass of gas corresponding to a fi xed pressure. The locus of these 
points (P, V) at a fi xed temperature is called an  isotherm.

REAL GASES3
CHAPTER
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The isotherms obtained by Andrews for CO2 are shown in Figure 3.1. Inspection shows 
that an isotherm at a low temperature consists of three well defi ned parts. Consider the 
isotherm at 243 K. Defi nitely, the behaviour is not ideal for otherwise, a rectangular 
hyperbola would have been obtained instead of the chair-like curve ABCD. The position 
CD however, is almost like a rectangular hyperbola and, it represents the ordinary gas 
behaviour. Starting from point D, the volume decreases considerably as the pressure is 
increased; this continues up to point C. Then there is a horizontal part BC; this indicates 
that the volume decreases considerably without any change in pressure. This is due to the 
liquefaction of the gas. Liquefaction begins at point C and ends up at B. In this portion the 
gas (more correctly vapour) is in equilibrium with the liquid. The almost vertical portion AB 
then corresponds to the liquid state, which also confi rms the very low compressibility of the 
state. Starting with the liquid CO2 and decreasing the pressure, at the fi xed temperature, 
these changes go in the opposite direction. At point B, the fi rst bubble of vapour is formed 
and, thereafter the pressure remains constant until the last drop of liquid is vapourised 
at point C; the volume of the vapour then increases with further decrease in pressure. 
The pressure corresponding to the portion BC is the saturated vapour pressure at the 
corresponding temperature (also called the  orthobaric vapour pressure). The volume per 
gram of the liquid corresponding to the point B is the specifi c volume of the liquid and, 
that corresponding to point C is the specifi c volume of the vapour at the corresponding 
temperature.

Figure 3.1  Experimentally obtained isotherms of CO2 by Andrews. The dashed curve is that for an ideal gas. The 

isotherm at 304.12 K (31.1°C) is at the cri  cal temperature and is called the cri  cal isotherm.
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At a higher temperature, the isotherm follows the same trend; only the length of the 
horizontal part is shortened from either side.

The specifi c volume of the vapour therefore decreases and that of the liquid increases with 

increasing temperature. That is, with increase in temperature, the density of the vapour 

increases and, that of the liquid decreases. All these changes go on monotonously with 
increasing temperature until, at 31.1°C (304.12 K), the specifi c volumes of the liquid and 
the vapour become equal;  their densities are then also the same. The two states (vapour 
and liquid) thus become identical at this temperature; the horizontal portion merges to 
a point and, the curvature changes to positive from negative. This point P is therefore 
a  point of infl exion and, was called by Andrews, the critical point, and corresponding 
temperature as the critical temperature 31.1 °C is therefore the critical temperature of CO2.

Above this temperature there is no horizontal part. This indicates that, above the critical 
temperature, no pressure, however high, will suffi ce to liquefy a gas. We now remark 
that the word ‘gas’ is coined when it is above its critical temperature and, vapour when 
it is below the critical temperature. The pressure, just required to liquefy a vapour at the 
critical temperature (Tc) is called the critical pressure Pc. The molar volume of the gas at 
Tc and Pc is called the critical volume Vc. This is not a unique behaviour of CO2; all gases 
behave in the same way (Figure 3.2). The different regions of the PV isotherms of a gas, 
e.g., CO2 are shown in Figure 3.3. 

Figure 3.2 The P–V isotherms of isopentane.
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Figure 3.3 The PV vs P isotherms of CO2.

3.3 CONTINUITY OF LIQUID AND VAPOUR STATES
Consider an isotherm, say ABCD, below the critical temperature of a gas (Figure 3.4). 
Since there are sharp discontinuities at the two points B and C, where the liquid and the 
vapour meet the horizontal line BC, we may think that there is a sharp line of demarcation 
between the liquid and the vapour state. In fact, this is not true. This can be shown by 
converting the vapour into the liquid or, the liquid into the vapour, without any visible 
appearance of a meniscus. To do this, the vapour is fi rst taken at point P. It is now heated 
at a constant volume to the point Q, which is above the critical temperature. The vapour is 
now compressed at constant pressure, until the critical isotherm is crossed to point R; the 
system is next cooled to point S (below the critical temperature) at constant volume. The 
fi nal state S represents the liquid state; but nowhere in the process there appeared any 
liquid-vapour meniscus. Andrews therefore correctly stated: “The vapour and the liquid 
states are only widely separated forms of the same condition of matter, and may be made 
to pass into one another by a series of gradations so gentle that the passage shall nowhere 
present any interruption; the vapour and the liquid are therefore only distant stages of a 
long series of continuous physical changes.”

To celebrate this idea of continuity, the term ‘fl uid’ is coined to represent both the liquid 
and the vapour state. Below the critical temperature a fl uid will be considered as liquid 
when the molar volume is less than the critical volume of the substance; otherwise it will 
be a vapour.
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Figure 3.4 The con  nuity of states; the two phase equilibrium.

3.4 STATE OF MATTER AT CRITICAL POINT
When a liquid taken in a sealed tube is heated slowly (Cagniard de La Tour method) there 
reaches a limit at which the liquid meniscus disappears suddenly; the whole tube is then 
fi lled up with a fl ickering appearance, due to the mixing of the two phases which then 
merge to form a homogeneous fl uid. This is the critical point. Similar observation was also 
made by Andrews. This smooth passage of liquid into vapour at the critical point and the 
homogeneity of of the entire system can be demonstrated by an experiment of the following 
type: an empty tube is fi rst kept and balanced horizontally over a knife edge. An amount of 
the liquid (the amount must be suffi cient so that it does not vapourise completely before Tc 
is reached) is then introduced, and the tube is maintained on the knife edge (Figure 3.5). 
The liquid is now slowly heated until, at the critical temperature the densities become 
equal and the tube again swings to the horizontal position.

Figure 3.5 Nadejdines’ experiment 

(Source: An Advanced Trea  se on Physical Chemistry; J.R. Par  ngton)

The various properties observed at the critical point may be summarised as follows:

 (i) 
T

P

V

∂Ê ˆ
Á ˜Ë ¯∂

 is zero at the critical point; but it is negative on either side of the point. 

Hence, ∂Ê ˆ = - •Á ˜Ë ¯∂ T

V

P
 at the critical point. The isothermal compressibility is therefore,
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1

T

V

V P
b

È ˘∂Ê ˆ= -Í ˙Á ˜Ë ¯∂Î ˚
, infi nity at the critical point. It can be shown that the fl uctuation 

in the number density of particles is directly proportional to b. Since b is infi nite at 
the critical point, there is a large  density fl uctuation at that point and this leads 
to a very large scattering of lights. This explains the fl ickery appearance of the 
substance at the critical point, which is known as the  critical point opalescence.

 (ii) Experiment shows that 
V

P

T

∂Ê ˆ
Á ˜Ë ¯∂

 is a fi nite positive number at the critical point. 

Therefore, since a

b

∂Ê ˆ =Á ˜Ë ¯∂ V

P

T
, the coeffi cient of thermal expansion a is infi nity at 

the critical point.

 (iii) 
2

;T
P V

V
C C

a

b
= +  therefore, CP also tends to infi nity at the critical temperature.

 (iv) The densities of the liquid and the vapour state are equal at the critical temperature; 
the meniscus therefore vanishes and the surface tension goes to zero at this  
point.

 (v) With rise in temperature, the latent heat of vapourisation decreases and vanishes 
at the critical point. This follows directly from the Clausius Clapeyron equation.

  

Ê ˆD = ¥ - Æ D ÆÁ ˜Ë ¯ vap liq vap liq( ) as , 0
dP

H T V V V V H
dT

  However, later works by Cailletet, Colardeau Callendar and many others, showed 
that the difference in the densities between the liquid and the vapour phases 
persists even up to few degrees above the critical point. This fact seemed acceptable 
for it explains the opalescence observed by many workers at the critical point.

3.5 DETERMINATION OF CRITICAL CONSTANTS
There are basically two methods for the determination of critical constants. The fi rst is the 
Cagniard de La Tour’s method of heating a liquid in a sealed tube and to locate the point 
where the liquid meniscus disappears. This method gives only the critical temperature, 
and is not free from errors. The second method is the Andrews method of constructing the 
isotherms at different temperatures and selecting the one at which the horizontal part 
just merges to a point. This method is useful for fi nding Pc and Tc exactly, but fi nding the 
exact location of Vc is not possible because a slight alteration in temperature will change 
the value of Vc signifi cantly due to very high a-value of the system at the critical point. 
Vc can be determined with suffi cient accuracy with the help of the so called rectilinear 
diameter method of Cailletet and Mathias.
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3.6 LAW OF RECTILINEAR DIAMETER
According to this law, if rI and rV are the densities (orthobaric densities) of the liquid and 
the saturated vapour respectively, in equilibrium, then their mean value rm = (rI + rV)/2, 
would be a linear function of temperature. That is

  0
1

( )
2m I V atr r r r= + = +  (3.1)

where a is a constant and r0 is the value of rm at 0°C. At fi rst, the orthobaric densities 
are plotted versus temperature. The wings will be approximately parabolic in nature
(Figure 3.6). Now, the points of the mean densities rm are located; whose locus will be a 
straight line. By extrapolating the line to tc, the critical density and hence, the critical 
volume is directly read off from the ordinate. 
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Figure 3.6 The demonstra  on of the law of rec  linear diameter.

3.7 AMAGAT’S ISOTHERM
Beside other inferences, the departure of real gases from ideal behaviour becomes also 
clear from Andrew’s experiment. If the ideal gas equation is held true we should have 
obtained rectangular hyperbolic P-V isotherms. However, it is sometimes much easier to 
measure the deviation of a gas from the ideal behaviour with reference to a straight line. 
In this context, we defi ne the compressibility factor of a gas Z, as the ratio of its actual 
molar volume to the ideal molar volume under a given set of temperature and pressure: 

  
id

V PV
Z

V RT
= =  (3.2)

According to Boyle, a plot of PV vs P for a given mass of gas at constant temperature should 
be a straight line parallel to the P-axis; i.e., a plot of Z versus P should be a straight horizontal 
line. Amagat carried out an extensive search on different gases and represented his results 
by a Z versus P plot at several different constant temperatures. The results on methane 
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are shown in Figure 3.7. Different isotherms along with the critical one, the mixed phase 
region, the liquid region etc., are marked in the fi gures. At the infl exion point, we have now 
a vertical tangent (∂Z/∂P)T (Figure 3.7). The general trend is that above the critical point, 
each isotherm fi rst decreases with increasing P(Z < 1); forms a minimum and then rises 
up, even above Z = 1, at high pressures. However, this trend follows up to a temperature, 
called the  Boyle temperature, which is a characteristic parameter for each gas. This is the 

temperature at which the initial slope of the Z versus P curve is zero, i.e., 
+

∂Ê ˆ =Á ˜Ë ¯∂0
lim 0.
P

T

Z

P
 So 

at the Boyle temperature, there is an initial horizontal part and hence each gas obeys the 
ideal equation fairly accurately up to moderate pressures. Above the Boyle temperature, 
each isotherm slopes upward and shows no minimum (Figure 3.7(b)). The locus of the 

minima of the isothermals below the Boyle temperature is more or less parabolic in nature

(Figure 3.7(c)). This is now well established that all gases give Z versus P isotherms of 
this type, but the scale varies so widely from gas to gas that when the critical temperature 
is very low, it may be exceedingly diffi cult to realise experimentally the lower isotherms. 
Thus for H2, the critical temperature is 31 K, and the Boyle temperature is 116 K; for He,
Tc = 5 K and TB = 23.8 K; for N2, Tc = 127 K and TB = 332 K; for CO2, Tc = 304.1 K and
TB = 600 K. A comparative Pv versus P isotherms for these gases are shown in Figure 3.8, 
at 300 K. Kammerling Onnes suggested an empirical relation.
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Figure 3.7 The Amagat’s isotherm at diff erent pressure regions, for methane

40

30

20

10

0

H2 O2

N 2

CH4 Ideal gas

P
V

(l
it
re

-a
tm

)

CO2

T = 300 K

200 400 600 800 1000

P (atm)

Figure 3.8 The Pv vs P isotherms of diff erent gases at 300 K



3.10 Physical Chemistry

2 3
1 2 3

31 2
2 3

1

or 1

Z A P A P A P

BB B
Z

V V V

¸= + + + +
Ô
˝

= + + + + Ô
˛

 

 
 (3.3)

for the equation of the Z versus P isotherms. This is called the virial equation of state 
where A1, A2, A3, ... and B1, B2, B3, ... are called second, third and fourth virial coeffi cients 
respectively, and have decreasing order of magnitudes.

3.8  REASONS BEHIND THE DEPARTURE OF REAL GASES FROM IDEAL 
BEHAVIOUR

This can well be understood with reference to Amagat’s isotherms (Figure 3.7). A gas can be 
liquefi ed by the application of a suitable pressure below the critical temperature. We know 
that in the liquid state the molecules are in a compact form with signifi cant attractive 
forces among them, which held them tightly together, not as much as that in the solid state 
but, much more than that in the gaseous state. So, there must also be attractive forces 
among the molecules in the gas phase; but the molecules do not cluster due to increased 
thermal motion. The next point is that, you cannot compress a liquid as much as a gas. 
Defi nitely, it must be due to the strong short range repulsive forces among the molecules 
which resist them squashing into one another. You can also put it in another way: the 
molecules have fi nite volumes and cannot be compressed  indefi nitely. Now, consider an 
Amagat’s isotherm below the Boyle temperature. At constant temperature, the PV value 
fi rst decreases with the increasing pressure. This means that below the Boyle temperature 
and at low pressure, a gas is easier to compress compared to an idea gas (Z < 1). Obviously, 
this refl ects the presence of attractive forces among the molecules which helps the 
compression. Then note that the slope of the curve decreases numerically with gradual 
increase in pressure. This means that there must be some other effect which becomes 
more and more prominent as the molecular separation decreases, and which opposes the 
effect of attractive force. Inevitably, this must be the repulsive force. The minimum in the 
isotherm is obtained when the rate of change of attractive force with respect to pressure 
equals the rate of change of repulsive force with respect to pressure. Thereafter, when the 
repulsive force strongly dominates the attractive force, Z becomes greater than unity and 
the gas becomes harder to compress than an ideal gas.

Hence, intermolecular attraction and repulsion are responsible for the deviation of gas 

behaviour from ideality. However, it is more convenient to speak of the effect of repulsive 

force among the molecules in terms of the fi niteness of the size of the molecules.

Therefore, the equation of state PV = RT needs two corrections. During the last century, 
a large number of equation of states have been put forward by different workers; some of 
them are semi-empirical and other purely empirical. In the following section, we will take 
up some of them and discuss their triumphs and failures.
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3.9 van der Waals EQUATION OF STATE
The van der Waals equation of state is given by (for 1 mole) 

  
2 ( )

a
P V b RT

V

Ê ˆ+ - =Á ˜Ë ¯

where b is the volume correction terms and a/V2 is the pressure correction term, sometimes 
also called the internal pressure of the gas. Let us now see how the corrections are 
introduced.

3.9.1 Volume Correction
If we consider the molecules like the billiard balls (the hard sphere approximation) then 
they would defi nitely occupy some space during their translational motion and as a result, 
would collide the walls of the containing vessel more frequently than if they were point 
masses. This, in turn, would result in an increase in the pressure of the gas over the ideal 
value. This increase in the pressure can be accommodated in the equation. P = RT/V, by 
subtracting some positive quantity from the volume V, i.e., P = RT/(V – b).

The constant b can also be correlated to a molecular property as follows. Considering the 
molecules of a gas as hard spheres of diameter s, the closest separation between the 
centres of two molecules would be at their time of 
collision, and is equal to s (Figure 3.9). So, if we 
consider a spherical space of volume 

3
3

1
4 4

8 8
3 3 2

b
s

ps p
Ê ˆ Ê ˆ= =Á ˜ Á ˜Ë ¯ Ë ¯

 (b1 is the volume of a 

single molecule) round a single molecule then it is 
clear that this volume becomes excluded for this pair 
of molecules for their free movement. Therefore, the 
volume excluded per mole of gas is b = 4N0b1 (N0 is 
the Avogadro’s number). Recognising that, by the 
volume of a gas we mean the free space which is 
available for the free movement of the molecules, we 
fi nd the volume of a mole of gas to be equal to the 
volume of the container V less this excluded volume 
b. Hence, the volume corrected equation of state is
 P(V – b) = RT, (3.4)

where b = 4 × N0 × (volume of each molecule).

3.9.2 Pressure Correction
A molecule at the interior is pulled equally along all directions; but near the wall of the 
container it should experience a net pull towards the bulk. So, as a molecule approaches the 
wall its momentum is reduced gradually; the impulse of the blow on the wall is therefore 

s

Figure 3.9  The sphere of exclusion. The 

volume of the shaded region is 

unavailable for the free move-

ment of the pair of molecules
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reduced. The attractive force among the molecules therefore reduces the gas pressure 
below the ideal value. Now the pressure developed at the wall is directly proportional 
to the number of molecules striking per unit area of the wall per second. This number is 
proportional to the density of the gas. Now, consider a unit volume of gas just behind this 
unit area. The number of molecules in this volume is also proportional to the density. The 
cohesive force among the surface molecules and those in the unit volume, must therefore be 
proportional to the square of the density of the gas or inversely proportional to the square 
of the volume of the gas. The reduction in pressure below the ideal value is therefore given 

by a/v2, where a is a constant. So we can write = + 2 ,id

a
P P

V
 where P, is the pressure of 

the gas and Pid is the ideal pressure, instead of Pid (v – b) = RT, we now therefore write 

  
Ê ˆ+ - =Á ˜Ë ¯2 ( )

a
P V b RT

V
 (3.5)

which is the van der Waals equation of state for 1 mol of gas. Writing this equation in the 
form as follows:

  = -
- 2

RT a
P

V b V

We can recognise three different factors:

 (i) the thermal motion RT; it gives the main thrust;
 (ii) the repulsive force, or the fi niteness in the size of the molecules increases the thrust 

and
 (iii) the attractive force, which reduces the thrust.
  To write the corresponding equation for n mole of a gas of volume V, we replace V 

by v/n and fi nd, 

  
2

2 ( )
n a

P v nb nRT
v

Ê ˆ
+ - =Á ˜Ë ¯

 (3.6)

  as the van der Waals equation for n mole of gas.

3.10 DETERMINATION OF THE van der Waals CONSTANT ‘a’ AND ‘b’

(i) Isothermal Method
From the van der Waals equation, we have

  = -
- 2( )

RT a
P

V b V

and  
∂Ê ˆ = - +Á ˜Ë ¯∂ - 2 3

2
( )T

P RT a

V V b V
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from these two equations, both the constants ‘a’ and ‘b’ can be determined from P and 

T

P

V

∂Ê ˆ
Á ˜Ë ¯∂

 values obtained from the Andrew’s isotherms.

(ii) Isochoric Method
From the van der Waals equation,

  

È ˘
Í ˙∂Ê ˆ Í ˙= fi = -Á ˜ Í ˙Ë ¯ ∂∂ - Ê ˆ
Í ˙Á ˜Ë ¯∂Î ˚

V

V

P R R
b V

PT V b

T

and  2
2

1

V V

P a P
P a V T P

T T TV

È ˘∂ ∂Ê ˆ Ê ˆ Ê ˆ= + fi = -Í ˙Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯∂ ∂Î ˚

Hence, ‘a’ and ‘b’ can be determined from known values of ,
V

P

T

∂Ê ˆ
Á ˜Ë ¯∂

 which can be obtained 

from constant volume gas thermometer.

(iii) From Critical Data
In the next section, we will show that the van der Waals constants ‘a’ and ‘b’ are related to 
Pc, Vc and Tc by the equations: 

  
= =

2227
and

64 8
c c

c c

T TR R
a b

P P

Thus ‘a’ and ‘b’ can be obtained from the experimental values of Pc and Tc.

(iv) From Joule–Thomson Experiment
It can be shown that under ordinary condition of pressure, the inversion temperature of a 
gas, Ti is given by

  

2 2
i

i

a a
T b

Rb RT
= fi =

Hence, the constant ‘b’ can be evaluated from known values of Ti and ‘a’. 

3.11 NATURE OF van der Waals EQUATION
The equation, P = RT/(V – b) – a/V2 is third degree in V; so it follows that for each value 
of P, V should have three values. Theory of equation therefore suggests that either all the 
three roots are real or one real and two imaginary. It has been found that above the critical 
temperature of a gas, only one root is real and below the critical temperature, all the three 
roots are real over a certain pressure region (see Figure 3.10).
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It is further noted that:
 (i) Lt P Æ • as V approaches b
 (ii) In the Lt P = 0, V Æ • and
 (iii) any value of V less than ‘b’ is of no physical signifi cance, for otherwise P becomes 

negative. 

Hence, a straight line parallel to the P axis is an asymptote to the curve at V = b. The 
V-axis is also an asymptote to the curve. To determine the intermediate portions, we 
differentiate the equation:

  
∂Ê ˆ = - +Á ˜Ë ¯∂ - 2 3

2
( )T

P RT a

V V b V
 (3.7)

For large values of T, the fi rst term on the right hand side is only important in deciding 
the sign of the slope, and it is negative. Therefore, the high temperature isotherms have a 
concavity upwards. For intermediate values of T, both the terms in Eq. (3.7) are important. 
When V Æ b, the fi rst term is dominant and the curve slopes down with increase in volume. 
With further increase in V, a stage is reached at which the two terms in Eq. (3.7) become 
equal and the slope becomes zero; thereafter it becomes positive. For large values of V, the 
fi rst term again predominates and the slope again changes to negative. To summarise: 
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close to V = b, the slope is negative; with gradual increase in V, the slope changes to 
zero, then positive and fi nally again negative. Thus, there must be one minimum and one 
maximum to each isotherm (below the critical temperature). This fact can also be seen by 
equating Eq. (3.7) to zero; which gives 

  
2

3

2 ( )a V b
T

RV

-
=  (3.8)

The equation is also cubic having either three real roots or one real and two imaginary 
roots. In case of three real roots (below the critical temperature), it can be shown that one 
root corresponds to a region V < b and has no physical signifi cance. 

  
= -

- 2( )
RT a

P
V b V

For  V > b, (V – b) > 0

as  ; ( ) 0 ;
( )

RT
V b V b

V b
Æ - Æ + Æ •

-

As V goes to b, such that, (V – b) > 0

  
2dominates

( )
RT a

V b V-

fi  P > 0

Now assume that, V < b fi (V – b) < 0 fi (b – V) > 0

fi  
Ê ˆ

= - - = - +Á ˜- -Ë ¯2 2( ) ( )
RT a RT a

P
b V b VV V

Since 2( )
RT a

b V V
+

-
 is a positive quantity when (b – V) > 0.

Therefore, P is negative if (V – b) < 0 which is unacceptable, as V Æ b, P Æ μ

The other two corresponds to one minimum and one maximum. These two optimum points 
approach each other with increasing temperature and coalesce into one another at the 
critical state. 

Combining Eq. (3.8) with the van der Waals equation to eliminate T, we can write

  3

( 2 )a V b
P

V

-
=  (3.9)

This represents the locus of the maxima and the minima and is shown by the dotted line 
RdPbQ in Figure 3.10, where the theoretical isotherms are drawn from known values of 
‘a’ and ‘b’ for a gas.
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3.12  DETERMINATION OF CRITICAL CONSTANTS FROM
van der Waals EQUATION

Method 1
The isotherm, for which the maximum and the minimum has merged into one another 
and corresponds to the maximum of the parabolic curve RdPbQ [Eq. (3.9)], is the critical 
isothermal. The pressure and volume corresponding to the maximum of Eq. (3.9) are 
therefore the critical pressure Pc and critical volume Vc. To fi nd out the critical constants, 
we therefore differentiate Eq. (3.9) and equate the result to zero.

  

-
= 3

( 2 )a V b
P

V

fi  4 3

3 ( 2 )

T

P a V b a

V V V

∂ -Ê ˆ = - +Á ˜Ë ¯∂

at the critical point,  0
T

P

V

∂Ê ˆ =Á ˜Ë ¯∂

This makes

  
3 4

3 ( 2 )c

c c

a V ba

V V

-
=

fi  Vc = 3b

Therefore, from Eq. (3.9)

  
227c

a
P

b
=

and from equation of van der Waals

  

8
27c

a
T

Rb
=

Method 2
At the critical point, the curvature changes from negative to positive; and it is also an 

optimum to the P–V isotherm. The fi rst condition requires that 
2

2 0
T

P

V

Ê ˆ∂
=Á ˜∂Ë ¯

 and the second 

condition requires 0
T

P

V

∂Ê ˆ =Á ˜Ë ¯∂
 at the critical state.

  
2( )

RT a
P

V b V
= -

-
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2 3

2
( )T

P RT a

V V b V

∂Ê ˆ = - +Á ˜Ë ¯∂ -

and   
2

2 3 4

2 6
( )

T

P RT a

V V b V

Ê ˆ∂
= -Á ˜∂ -Ë ¯

Equating the above equations to zero at the critical point,

  
2 3 3 4

22 6
and

( ) ( )
c c

c c c c

RT RTa a

V b V V b V
= =

- -

Dividing these two equations, we get, Vc = 3b; and using it in the fi rst, we get, 
Tc = 8a/27Rb.

Using this Tc and Vc, we get, from the van der Waals equation, Pc = 227
a

b

Method 3

The van der Waals equation is cubic V, and has three roots. These roots are all equal at 
the critical point.

  
2 ( )

a
P V b RT

V

Ê ˆ+ - =Á ˜Ë ¯

fi  3 2 0
RT a ab

V b V V
P P P

Ê ˆ- + + - =Á ˜Ë ¯  (3.10)

which can be written as
 (V – Vc)

3 = 0 or, V3 – 3V2Vc + 3VVc
2 – Vc

3 = 0 (3.11)
where Vc is the root at the critical point.
Comparing the coeffi cients of V, V2 and the constant term, we get,

  3Vc = c

c

RT
b

P
+

  3Vc
2 = 

c

a

P

and  Vc
3 = 

ab

P

From the last two equations, Vc = 3b; which when applied to the second, yields, Pc = a/27b2. 
The fi rst then yields Tc = 8a/27 Rb.

The critical coeffi cient of a van der Waals gas is then given by 

  
8
3

c

c c

RT

P V
=  (3.12)
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3.12.1 Boyle Temperature
It has already been discussed in Sec. 3.7. From the van der Waals equation,

  
2 ( )

a
P V b RT

V

Ê ˆ+ - =Á ˜Ë ¯

or  PV = RT + Pb – 2

a ab

V V
+

or  Z = = + - + 21
PV Pb a ab

RT RT RTV RTV

In the low pressure range the term ab/RTV2 can be neglected,

  = + - 2 21
Pb aP

Z
RT R T

  (using PV = RT as an approximation)

\  
1

T

Z a
b

P RT RT

∂Ê ˆ Ê ˆ= -Á ˜ Á ˜Ë ¯ Ë ¯∂

Now,  0 B

T

Z a
T

P Rb

∂Ê ˆ = fi =Á ˜Ë ¯∂
 (3.13)

Hence, for a van der Waals gas, the ratio of the Boyle temperature to the critical temperature 
is

  
= 3.375B

c

T

T

So, we summarise the results for a van der Waals gas as 

  
3; 3.375; 2.67c cB

c c c

V RTT

b T P V
= = =

3.13  HOW GOOD IS van der Waals EQUATION IN EXPLAINING THE 
ANDREW’S EXPERIMENTAL ISOTHERMS?

In Figure 3.11, the theoretical isotherms (bold lines) are drawn along with the experimental 
Andrew’s curves (dotted lines). It is seen that at high temperature, the agreement 
between the theory and experiment is encouraging. But, below the critical temperature, 
particularly in the region where the liquid and the vapour coexist, there is a remarkable 
divergence between the theory and experiment. Let us consider the isotherm at 13.1°C. 
CD is the normal gas behaviour, and is along the experimental line. The liquid portion BA 
is again along the experimental line. We thus see that the van der Waals equation can also 
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Figure 3.11 P-V isothermal of CO2 (Do  ed lines experimental; bold lines theore  cal)

explain the behaviour of a liquid. But, while experiment gives a straight horizontal line 
BC, theory gives the curve ABabCD Figure 3.11. The theory therefore fails to explain this 
region of the experimental curve. However, this difference can be explained. If a liquid be 
taken in a cylinder and the pressure is released gradually under isothermal condition, 
then vapourisation would normally start at the correct pressure (corresponding to the 
point B). To ensure the process of vapourisation, presence of suitable nuclei is required. 
In the absence of any such nuclei, if the above process be conducted, the vapour will not 
be formed and the liquid will become superheated. This is indicated by the line Ba. This 
is a metastable state. Similarly, if the opposite process of liquefaction be conducted under 
mechanically shock free state and in absence of any dust particles, a metastable state 
of super cooled or supersaturated vapour, represented by the line Cb may be obtained. 
However, since these two metastable states are thermodynamically unstable towards 
mechanical shocks, presence of dust particles, etc., they cannot be experimentally realised. 
Superheating or the formation of supersaturated vapour can occur locally in very limited 
regions, but their net effect over any time period corresponds to the straight portion BC. In 
fact, the ~ shaped isotherm representing the continuous transition from liquid to vapour 
had been recognised by James Thomson in 1871 (before the publication of the van der 
Waals equation), and hence it is often called the  James Thomson isotherm. Maxwell fi rst 
pointed out that if a substance is subjected to a reversible isothermal change round the 
cycle BabCB, the net work is zero. This requires: area BaO = area ObC. The experimental 
horizontal part BDC therefore divides the James Thomson isotherm BaObCOB in such a 
position so as to cut off equal areas from above and below the horizontal part. The existence 
of negative pressures in some theoretical isotherms (Figure 3.12) also corresponds to the 
formation of metastable state which exists in tension. The van der Waals isotherms at 
the lower temperatures cross the v axis and, the part below the v axis corresponds with 
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a negative pressure. Although this cannot exist for a gas, it may represent a metastable 
state for the liquids, which would then be in a state of tension. This isotherm, however, 
turns up again and re-crosses the v-axis in the direction of increasing pressure, so that it 
must have a minimum value of the tension, below which presumably the metastable state 
would breakdown into liquid and vapour (An Advanced Treatise on Physical Chemistry; 
J.R. Partington). (For a detail of what has been said above, the students are referred to ‘A 

Treatise on Heat; Saha and Srivastava’).

3.14  HOW GOOD IS van der Waals EQUATION IN EXPLAINING
THE AMAGAT’S ISOTHERM?

The nature of the Amagat’s isotherm has already been discussed in Sec. 3.7. Now, let us 
see how good van der Waals equation can refl ect these behaviours.

  
2

RT a
P

V b V
= -

-

or  

11

V a
PV RT

V b V

b a
RT

V V

-

= -
-

-Ê ˆ= -Á ˜Ë ¯

or  
11PV b a

Z
RT V VRT

--Ê ˆ= = -Á ˜Ë ¯

or  
2 3

2 3

1
1

a b b
Z b

RT V V V

Ê ˆ= + - + + +Á ˜Ë ¯
  (3.14)

which is of the form: 31 2
2 31

BB B
Z

V V V
= + + + +  the virial equation of state, initially 

proposed by Kammerling and Onnes. To convert it into a power series of P, we write

  Z = 1 + A1P + A2P
2 + A3P

3 +   (3.15)
where A1, A2, etc., are also virial coeffi cients and are functions of temperature. Equating 
Eqs (3.14) and (3.15), and dividing by P throughout, we have

 A1 + A2P + A3P
2 +   

2 3

2 3

3
2

1

1

a b b
b

RT PV PV PV

a b b
b P P

RT PV PV PV

Ê ˆ= - + + +Á ˜Ë ¯

Ê ˆ Ê ˆ Ê ˆ= - + + +Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯

 

 

which changes to, after introducing Z = PV/RT,

 A1 + A2P + A3P
2 +   = 

2 3 2

2 3

1 a b P b P
b

ZRT RT RT RTZ Z

Ê ˆ Ê ˆ Ê ˆ- + + +Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯
  (3.16)
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Now, we know that in the limit P Æ 0, Z Æ 1; this limit gives 

   A1 = 
1 a

b
RT RT

Ê ˆ-Á ˜Ë ¯
 (3.17)

We thus get the fi rst virial coeffi cient in the power series of P. Using this value of A1 in
Eq. (3.16), transferring it on the right hand side, then dividing throughout by P we then 
have,

 A2 + A3P +   = 
2 3

1 2 3

1 1 1
1

b b P
A

Z P RT RTZ Z

Ê ˆ Ê ˆ Ê ˆ- + + +Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯
 

fi A2 + A3P +   = 
2 3

1 2 3

1 1 1Z b b P
A

P Z RT RTZ Z

-Ê ˆ Ê ˆ Ê ˆ- + + +Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯
 

Now, from Eq. (3.15), we see that

  Æ

-
= 10

1
lim
P

Z
A

P

Using this value, again with the limiting condition: Z Æ 1 as P Æ 0, we get

  
2

2
2 1

b
A A

RT

Ê ˆ= -Á ˜Ë ¯
 (3.18)

In this way, theoretically we can derive all the virial coeffi cients. The virial equation of 
state derived from van der Waals equation is therefore,

22
2 3

3
1 1

1
a b a

Z b P b P A P
RT RT RT RT RT

È ˘Ï ¸Ê ˆ Ê ˆ Ê ˆÍ ˙= + - + - - + +Ì ˝Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯Í ˙Ó ˛Î ˚
 

If the pressure is not too high, the higher order virials can be neglected and we get

  
1

1
a

Z b P
RT RT

Ê ˆ= + -Á ˜Ë ¯  (3.19)

For gases, where a/RT > b, i.e., the attractive forces dominates the picture, the 

compressibility should fi rst decrease with pressure with a slope 
1 a

b
RT RT

Ê ˆ-Á ˜Ë ¯
 having zero 

curvature. The decrease has in fact been experimentally verifi ed; but a fi nite curvature 
of the experimental curve (Figure 3.13) reveals that ‘a’ and ‘b’ are not purely constants. 
However, for gases, where a/RT < b, i.e., the repulsive force is dominant, we get a steady 
increase in Z with P from the very beginning. For example, for H2 and He, ‘a’ is almost 
zero; we therefore get a nearly straight line for Z versus P curve at ordinary temperature. 
Nevertheless H2 would also show a minimum, but at extremely low temperature. Using 
the expression of the Boyle temperature TB = a/Rb.
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We can write, at ordinary pressure

  
1 1 BTb

Z P
RT T

Ê ˆ
= + -Á ˜Ë ¯

fi  1 B

T

TZ b

P RT T

∂ Ê ˆÊ ˆ = -Á ˜ Á ˜Ë ¯ Ë ¯∂
 (3.20)

Hence, an Amagat’s isotherm has a positive initial slope above Boyle temperature
(1 – TB/T is positive) and has a negative initial slope below Boyle temperature. However, 
this point needs further clarifi cation. Below TB, at low pressure, the term ‘b’ can be neglected 

in comparison to V, and then the van der Waals equation changes to 2 ( )
a

P V RT
V

Ê ˆ+ =Á ˜Ë ¯
 or 

PV = 
a

RT
V

- . Since with increasing pressure V decreases and 
a

V
 increases, PV decreases 

with increasing P. At a certain pressure PV is brought to a minimum but still remain 
less than RT. Thereafter, with increasing P, PV increases due to increased molecular 
repulsion and crosses the ideal line PV = RT. At fairly high pressure a/V2 may be neglected 
and we can write
 P(V – b) = RT
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or  PV = RT + bP

when PV rises up above the ideal line and increases with increasing P. This has in fact 
been experimentally verifi ed. 

We now set out to prove another characteristic of Amagat’s isotherms.

Writing the van der Waals equation as

 PV = 
V a

RT
V b V

-
-

and differentiating with respect to P at constant T

  
2 2

( )
( )T T

PV RT RTV a V

P V b PV b V

È ˘∂ ∂È ˘ Ê ˆ= - + Á ˜Í ˙Í ˙ Ë ¯∂ - ∂-Î ˚ Î ˚

We have seen that, below the Boyle temperature, each Amagat’s isotherm shows a 
minimum. So, applying the condition of minimum, we get

  

2

2 2( )( )
RTV RT a a V b

RT
V b b VV b V

-Ê ˆ- = fi = Á ˜Ë ¯--

or  2 2

( )a a V b
P

bV V

-Ê ˆ+ =Á ˜Ë ¯

fi  2 aV
PV a a

b
+ = -

or  2 2 2 0
a

P V PV aP
b

- + =  (3.21)

which is a parabolic path when PV is plotted vs. P at constant T. Thus, van der Waals 
equation requires that the locus of the minima of the Amagat’s isotherms below the Boyle 
temperature should be parabolic. This has also been experimentally verifi ed (cf - Figure 3.3).

3.15 VALIDITY OF van der Waals EQUATION OF STATE
The equation can be criticized on the following points:
 (i) van der Waals’ curves do not fi t well with the Andrew’s curves below the critical 

temperature. The former suggests a minimum and a maximum, but which are 
not present in the experimental curve (obviously there is explanation for this 
discrepancy).

 (ii) The van der Waals constants ‘a’  and ‘b’ are supposed to be purely constants for a 
given gas. However, experimentally it has been found that both of them, specially 
a, vary signifi cantly with temperature.
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  To explain the temperature dependence of ‘a’, we can assume that the variation in 
‘a’ is due to change in number density of the molecules with change in temperature. 
From Boltzmann distribution, we have 

  
0 expn n

kT

eÈ ˘= -Í ˙Î ˚

  where n is the number density of the molecules at the wall of the vessel in 
presence of cohesive forces and n0 is the same in absence of cohesive forces. e is the 
potential energy of the molecules arising out of this cohesive force. As temperature 
is increased, the exponent and hence the exponential factor increases, which 
decreases the difference between n and n0. This lowers the value of ‘a’. To explain 
the temperature dependence of ‘b’, we have to give up the model of perfectly elastic 
hand spheres of the molecules. Actually, the molecules have some softness due 
to the existence of repulsive force fi eld around them, and as the temperature is 
increased, due to their increased kinetic energy, each of them can penetrate the 
others repulsive fi eld zone and the diameter of the excluded volume is lowered. 
This lowers the value of ‘b’.

 (iii) The ratio Vc/b should be 3 according to the theory, but the actual value is close
to 2.

 (iv) According to the equation, the critical coeffi cient RTc/PcVc has a value of 2.67; but 
the experimental value varies from 3 to 5.

 (v) The ratio TB/TC is 3.65 for real gases and it is below 3.3 for other gases; while 
according to the van der Walls equation, it is 3.375.

3.16 REDUCED EQUATION OF STATE
The van der Waals constants ‘a’ and ‘b’ are different for different gases and hence the plots 
of PV versus P at constant temperatures are also different for different gases. Then, how 
would we compare different gases? One way to compare them is to compress or extend 
suitably the PV and P axes so as to make coincident all the isotherms along one trace. 
However, a slightly different way of doing the same thing is to express the equation of 
state in terms of the reduced variables, and then to plot the isotherms in terms of the 
reduced variables. We defi ne the reduced variables as the ratio of the actual variable to its 
critical value, e.g.

the critical pressure, p = 
c

P

P

the critical volume  f = 
c

V

V

and, the critical temperature, q = 
c

T

T
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In terms of these reduced variables, p, f and q, the van der Waals equation changes to 

  
p f q

f

Ê ˆ
+ - =Á ˜

Ë ¯2 2 ( )c c c

c

a
P V b R T

V

Using the values of Pc, Tc and Vc in terms of a and b, we fi nally have

  2

3
(3 1) 8p f q

f

Ê ˆ
+ - =Á ˜Ë ¯

 (3.22)

Equation (3.22) is called the reduced equation of state.

Characteristics and Importance
This equation of state is devoid of any characteristic constant, and even of R. So it is of 

universal applicability. Thus a plot of pf versus p or rZ
R

pf

q

Ê ˆ=Á ˜Ë ¯
 at a constant q should be 

the same for all gases (see Figure 3.13). It, therefore, follows that, if for any two substances 
any two of the three parameters p, f, and q, possess the same value, the third quantity 
must also be the same. This is called the law of corresponding states, and the substances 
are said to be in the corresponding states.

Validity
It can be shown classically that any equation of state having only two characteristic 
constants, one accounting the intermolecular attraction and the other accounting the 
intermolecular repulsion (the fi niteness of the size of the molecules), such as the van 
der Waals ‘a’ and ‘b’, can always be converted into the corresponding equation of state.
de Boer has proved that the law of corresponding state is also correct from the point of view 
of quantum theory if the potential energy of the substance can be expressed as a series of 
sums, all of which are inversely proportional to the distance between two molecules, and 
if the classical statistics is obeyed.

However, the law has not been found, experimentally to be rigorously true. For example, 
according to this principle, the critical coeffi cient RTc/PcVc, should have been equal for 
all substances and should be equal to 2.67. In fact it has been observed to vary from 
3 to 5. Nevertheless, the law has been found to be fairly accurate for small, non polar, 
spherical molecules; but for polar and oblate molecules the deviations from experiments 
are signifi cant.

3.17  DIETERICI’S EQUATIONS OF STATE
In 1899, Dieterici modifi ed the van der Waals equation by replacing the internal pressure 
term a/v2 by a/v5/3. His logic was as follows:
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Let us imagine a molecule to be kept in a cube of side length d in which it just fi ts. The 
volume required to hold the molecule is then d3. If n be the total number of molecules 
in volume v, then the number of molecules per unit volume is n/v; this number times 
the volume required to hold one molecule, d3, is therefore, unity. That is (n/v)d3 = 1 or d 
= (n/v)–1/3. Now consider a slice of unit area and thickness d at the surface of the  wall. 
The number of molecules in this volume slice is (n/v)d = (n/v)2/3. Now consider a unit 
volume just behind the slice; the number of molecules contained in it is (n/v). The internal 
pressure must therefore be proportional to the product of the number of molecules in these 
two sections, i.e., to (n/v)5/2. We therefore replace the factor a/v2 by a/v5/2, and write the 
Dieterici equation as

  5/3 ( )
a

P v b RT
V

Ê ˆ+ - =Á ˜Ë ¯
 (3.23)

In the same year, Dieterici proposed a second equation of state. Here, the volume correction 
is exactly equal to that in van der Waals; the pressure correction term, however, is made 
in the following way. A molecule at the bulk is attracted by other molecules from all 
possible directions, and is therefore not acted upon by any net force. The pressure of the 
gas at the bulk is therefore equal to the ideal pressure, Pi. At the surface, the molecules 
are, however, attracted only from the rear side and therefore, the pressure felt at the wall 
of the container P, is less than Pi. Under isothermal condition, the work done by a mole of 
gas in coming from the bulk to the wall is therefore given by,

  
ln i

o

P
W RT

P
=

We now recognise that, larger the volume of the gas, greater will be their separation and 
lower will be their force of attraction, i.e., lower will be the magnitude of the work. We can 

therefore write, 
1

or ,
a

W W
V V

μ =  where ‘a’ is a constant for a given gas. Therefore,

  
= ln i

o

Pa
RT

V P

or  / .a RTV
i oP P e=

However, an alternative method is as follows:

A molecule at the bulk is acted upon by attractive force from all possible directions and 
hence is not acted upon by any net force. However, a molecule at the surface is acted upon 
by forces only from one side of it, and is therefore feels a net pull towards the bulk. The 
potential energy of the surface molecules is therefore higher than those in the bulk. Let 
this excess potential energy  per mole be DE. Then, considering a unit volume at the bulk 
containing n0 molecules, we can write 

  0

E

RTn n e

D
-

=
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where n is the number of molecules out of n0, which can succeed in reaching the surface. 
The pressure P of the gas, where attractive forces are operating among the molecules is 
therefore proportional to n. Now, if the gas is ideal, DE is zero and all the n0 molecules 
would come and strike the wall. The ideal pressure Pi, is therefore proportional to n0. We 
can therefore write

  
0

E

i RT
P n

e
P n

D

= =

fi  
E

RT
iP Pe

D

=

The correct equation of state is therefore

  
D

- =( )
E

RTPe V b RT

or  P(V – b) = 
E

RTRTe

D
-

The excess potential energy of the surface molecules has been found to be inversely 
proportional to the volume of the system and therefore, we fi nally write,

  
-

- =( )
a

RTVP V b RTe  (3.24)

where ‘a’ is a constant for a given gas. Equation (3.24) is the Dieterici’s equation of state 
for 1 mole. For n molecules, the equation of state is

  P(v – nb) = 
na

RTVnRTe
-

You can check easily that the dimensions of van der Waals ‘a’ and the Dieterici’s ‘a’ are 
same; the dimensions of the two ‘b’s are also the same. Nevertheless, for a given gas the 
two ‘a’s are different; the two ‘b’ values are also different. The Dieterici’s equation of state 
has also three real roots below the critical temperature of a gas.

3.17.1 Critical Constants of Dieterici’s Gas
Remembering that the critical state is a point of infl exion where the fi rst derivative 

,
T

P

V

∂Ê ˆ
Á ˜Ë ¯∂  as well as the second derivative, 

2

2
T

P

V

Ê ˆ∂
Á ˜∂Ë ¯

 are zero, the critical constants can 

be evaluated by fi nding these two differentials and equation them to zero. The Dieterici
Eq. (3.24) can also be written as

 P = 
( )

a

RTV
RT

e
V b

-

-

fi P = 
21

1
( ) 2

RT a a

V b RTV RTV

È ˘Ê ˆ- +Í ˙Á ˜Ë ¯- Í ˙Î ˚
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fi P = 
( ) ( )

RT a

V b V V b
-

- -
, neglecting the higher order terms.

At low and moderate pressures, V – b ª V; therefore

 P = 2( )
RT a

V b V
-

-

the van der Waals form. To fi nd the critical parameters, we proceed as follows:

 P = 
( )

a

RTV
RT

e
V b

-

-

fi        2 2( )( )

a a

RTV RTV

T

P RT RT a
e e

V V bV b RTV

- -∂Ê ˆ Ê ˆ= - +Á ˜ Á ˜Ë ¯ Ë ¯∂ --

or       2( )T

P P aP

V V b RTV

∂Ê ˆ = - +Á ˜Ë ¯∂ -  (3.25)

And,      
Ê ˆ∂ ∂ ∂Ê ˆ Ê ˆ= - + + -Á ˜ Á ˜Á ˜ Ë ¯ Ë ¯- ∂ ∂∂ -Ë ¯

2

2 2 2 3

1 2
( ) ( )T TT

P P P a P aP

V b V VV V b RTV RTV

or     
2

2 2 2 3

1 1 2
( ) ( )TT

P P a a
P

V V bV RTV V b RTV

È ˘Ê ˆ È ˘∂ ∂Ê ˆ= - + -Í ˙Í ˙Á ˜Á ˜ Ë ¯∂ -∂ -Ë ¯ Í ˙Î ˚ Î ˚
 (3.26)

At the critical point, both the differentials are zero.

  2

1
0

( )cT c c

P a

V V b RT V

∂Ê ˆ = fi =Á ˜Ë ¯∂ -  (3.27)

and  
Ê ˆ∂

= fi =Á ˜∂ -Ë ¯

2

2 2 3

1 2
0

( )c c cT

P a

V V b RT V
 (3.28)

Dividing the two equations we get

  
= 2cV b

Then, from Eq. (3.27), we get

  
=

4c

a
T

bR

The critical pressure is then

  

-
=

-( )
c c

a

RT Vc
c

c

RT
P e

V b
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or  -= 2
24c

a
P e

b

and the critical coeffi cient is

  = = =21
3.695

2
c

c
c c

RT
Z e

P V
 (3.29)

To get the Boyle temperature TB, we rewrite the Dieterici equation as 

  ( )

a

RTV
RTV

PV e
V b

-
=

-

fi        
2 2

( )
( ) ( )( )

a a

RTV RTV

T T

PV RT RTV RTV a V
e e

P V b V b PV b RTV

- -Ï ¸Ê ˆ∂ ∂È ˘ Ê ˆÔ Ô= - +Ì ˝Á ˜Á ˜Í ˙ Ë ¯∂ - - ∂-Ë ¯Î ˚ Ô ÔÓ ˛

Since 0
T

V

P

∂Ê ˆ πÁ ˜Ë ¯∂
 and, at the Boyle temperature, the left-hand side of the above equation 

is zero, we fi nd 

  
2 2 0

( ) ( )( )
B B B

B

RT RT V RT V a

V b V bV b RT V
- + =

- --

fi
  

2

1 1
0

( )
B

B

RT V a

V b V V b RT V

È ˘
- + =Í ˙

- -Í ˙Î ˚

fi  2

1 1
( )

B

a b

V b V V V bRT V
= - =

- -

fi  
2

( )
B

a V b V
RT

bV

-
=

fi  B

a
T

Rb
=

because, in the limit P Æ 0 (V – b) ª V.

Using the reduced variables, p, f and q, and using the expressions for Vc, Tc and Pc, you 
can easily arrive at the reduced equation of state, which is

  2 2/(2 1) e qfp f q -- =  (3.30)
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Status of the Dieterici’s Equation of State
Comparison shows that the Dieterici’s equation of state gives results which are more closer 
to the experimental results than those given by van der Waals. The T/Tc ratio predicted by 
Dieterici equation is however a bit more than the experimental value. Nevertheless, it has 
not been deemed worthy for use due to its diffi cult mathematical form.

3.18  BERTHELOT EQUATION OF STATE
The Berthelot equation of state is given as follows:

  2 ( )
a

P V b RT
TV

Ê ˆ+ - =Á ˜Ë ¯
 (3.31)

By applying the criteria of the critical state, you can easily prove that

= =2 8
3 , and

27 8
c

c c c

RTa
V b T P

Rb b

from which, you can also show that

= = =2 8
3 , and

3 3
c c c

c c c
c

V P V
a P V T b R

T

The values are no good than the van der Waals values. To modify the equation, Berthelot 
proposed that Vc should be equal to 4b instead of 3b. Replacing Vc by (4/3)Vc, we therefore 
have

  

Ê ˆÊ ˆ= = = Á ˜ Á ˜Ë ¯ Ë ¯
216 32

, and
3 4 9

c c c
c c c

c

V P V
a P V T b R

T

and therefore

  
= =2 9

6 and
128

c
c

c

Ta b
bT

R R P

We now, transform the Berthelot’s equation as

  
2 ( )

a
P V b RT

TV

Ê ˆ+ - =Á ˜Ë ¯

or  2 31
Pb aP

PV RT
RT R T

Ê ˆ= + -Á ˜Ë ¯
 

2neglecting the term
ab

TV

Ê ˆ
Á ˜Ë ¯

Using the expression = 26 ,c

a
bT

R
 the equation changes to 

2

3

6
1 cbPTPb

PV RT
RT RT

È ˘-
= +Í ˙

Í ˙Î ˚
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2

2

6
1 1 cTPb

PV RT
RT T

È ˘Ê ˆ
= + -Í ˙Á ˜

Ë ¯Í ˙Î ˚

and then using the expressions, =
9

,
128

c

c

Tb

R P
 we fi nally get

  
È ˘Ê ˆ

= + -Í ˙Á ˜
Ë ¯Í ˙Î ˚

2

2

69
1 1

128
c c

c

PT T
PV RT

TP T
 (3.32)

There has been an extensive use of this equation, specially at low pressures, in fi nding out 
the heat capacity, enthalpy, free energy, etc., of real gases. To fi nd the Boyle temperature, 
we fi nd,

  

Ê ˆ∂Ê ˆ = - =Á ˜ Á ˜Ë ¯∂ Ë ¯

2

2

6[ ] 9
1 0

128
c c

cT B

RT TPV

P P T

fi  = 2.45B

c

T

T

You can also check yourself that the reduced equation of state of Berthelot equation of 
state is

  
2

32 1 6
1

9 4
pf q p

q

Ê ˆ= + -Á ˜Ë ¯
 (3.33)

3.19  SAHA–BASU EQUATION OF STATE
In all the subsequent modifi cations after the van der Waals equation of state (Dieterici, 
berthelot, and many others the change which were made, mainly have focussed into the 
effect of cohesive forces among the molecules; the effect of fi niteness of the molecular volume, 
had, in general, been neglected. Satyendra Nath Basu and Megh Nath Saha highlighted 
this neglected part in constructing an equation of state. The readers are requested to go 
through the statistical concept of entropy before reading the following derivation.

Neglecting the infl uence of molecular forces, the probability that a single molecule out of 
N molecules. Which initially occupy a volume V0, will be found in a volume V is V/V0; for 

the second molecule, the probability is 
0

V

V

b

b

-
-

, where b = 8 ¥ volume of each molecule. 

For the third, the probability is 
0

2
2

V

V

b

b

-
-

, and so on. Hence the probability W that all the 

molecules will be contained in the volume V is
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 W = 
0 0 0 0

2 ( 1)
2 ( 1)

v V v Nv

v v V v N

b b b

b b b

- - - -
◊

- - - -
 

\         
ln 1 1 1 1

2 ( 1)
d W

dv v v v v Nb b b
= + + + +

- - - -
  (3.34)

The fi rst fundamental thermodynamic equation of state
 dU = TdS – PdV, from which we may write

 P = 
S

T
v

∂Ê ˆ
Á ˜Ë ¯∂

 (3.35)

where, U remains constant with change in volume. Again, from the Boltzmann theory,
 S = k ln W + constant

\  
ln

u

WS
k

v v

∂∂Ê ˆ =Á ˜Ë ¯∂ ∂  (3.36)

Combining Eqs (3.35) and (3.36),

 P = 
ln W

kT
v

∂
∂

Which, after using the result of Eq. (3.34), changes to,

 P = 1 1 1 1
2 ( 1)

kT
v v v v Nb b b

È ˘
+ + + +Í ˙- - - -Î ˚
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Â  where bN = 2b and h = 1/N

Since, by defi nition, we have

  

1

0 0

Lt ( ) ( )
bN

h
r a

h f a rh f x dx
-

Æ =
+ =Â Ú

where Nh = b – a, or a + Nh = b, we can write

 P = 
1

0
2

1

NkT dx

bxv

v
-

Ú
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Because N is very large, and rh = (N – 1) 
1
N

ª  1 at the upper limit and, 0 ¥ 1
N

, i.e., zero 
at this lower limit. Integration gives:

 P = 
2

ln 1
2

N kT b

b v

Ê ˆ-Á ˜Ë ¯
 (3.37)

In order to account for the infl uences of cohesive forces, the right hand side of Eq. (3.37)
is now multiplied by e–a/RTV (following Dieterici). The complete equation of state is 
therefore,

 P = /2
ln 1

2
a RTVRT b

e
b v

-Ê ˆ- -Á ˜Ë ¯
 (3.38)

which is the Saha–Basu equation of state for real gases. Writing the equation in the form

        / 2
ln 1

2
a RTV RT b

Pe
b v

- Ê ˆ= - -Á ˜Ë ¯
 (3.38)

And expanding the log term on the right hand side,

 Pea/RTV = 
22 1 2

2 2
RT b b

b V v

È ˘Ê ˆ- - -Í ˙Á ˜Ë ¯Í ˙Î ˚
 

And, neglecting higher order terms,

 P ea/RTV = 
2

2

2 2
2
RT b b

b v v

È ˘
+Í ˙

Î ˚

where the series ln (1 – x) = –x – 
2 3

2 3
x x

- -  has been used and, neglecting the higher 
order terms.

  = 2

1 b
RT

v v

Ê ˆ+Á ˜Ë ¯

  = 
( ) ( )1

1
1

1 /1 /

RT b RT RT

v v v v b vv v
-

Ê ˆ+ = ªÁ ˜Ë ¯ -+

  = 
RT

v b-
 (3.39)

which is the Dietrici equation of state. Now, expanding the exponential term on the left 
hand side, and neglecting the higher order terms

  
1 , ( )

a RT aP
P p v b RT

RTV v b RTV

È ˘ Ê ˆ+ fi + - =Á ˜Í ˙ Ë ¯-Î ˚

  
Ê ˆ+ - = ªÁ ˜Ë ¯2 ( ) (using )

a
P v b RT RT PV

v
 (3.40)

which is the van der Waals equation of state.



Real Gases 3.35

3.20 CRITICAL CONSTANTS OF SAHA–BASU EQUATION
Starting from the equation of state

 P = /2
ln 1

2
a RTVRT b

e
b v

-Ê ˆ- -Á ˜Ë ¯
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 (3.41)
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 (3.42)

Equating both the differentials [Eqs (3.41) and (3.42)] to zero at the critical point, we 
have

from Eq. (3.41)

  
2 2

/

2
1

C Ca RT VC
C

C

R T
e P

b
a

v

- =
Ê ˆ

-Á ˜Ë ¯

 (3.43)

and, from Eq. (3.42)

  
/2 2 2

2 2
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1 1

c ca RT V
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c
c c

c
c c

R T e b a
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RT Vb b
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 (3.44)

Dividing Eq. (3.44) by (3.42) we get

  

2

2
1 c
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RTb
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=
Ê ˆ

-Á ˜Ë ¯
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or  
1

22
1 c

c

a

b RTb

v

=
Ê ˆ

-Á ˜Ë ¯

 (3.45)

Using Eq. (3.45) in (3.43)
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C
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a b RT

-Ê ˆ
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C Ca RT VCRT
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Equating Eq. (3.46) to the Eq. (3.38) at the critical state
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From Eq. (3.45)
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or,           
2C

a
T

ebR
=  (3.48)

and fi nally, using Eq. (3.46)

 PC = /

2
C Ca RT VCRT

e
b

-  (3.49)

fi          24C e

a
P

b e
=

The critical coeffi cient is then

  

( 2) ( 1) 3.524eC

C C
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e e

P V

-= - -

3.21 BOYLE TEMPERATURE OF SAHA–BASU EQUATION

Differentiating PV with respect to P at constant temperature from the equation
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PV V e
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we have
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At the Boyle temperature TB
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Approximating the log terms as L(1 – x) ª – x, when x is very small, we have
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or,  
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a
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=  (3.49)

The ratio

 B

C

T

T
 = e = 2.718 (3.50)

3.22 REDUCED EQUATION OF STATE

Introducing the reduced variables as

 reduced pressure 
C

P

P
p =

 reduced volume 
C

V

V
f =

and reduced temperature 
C

T

T
q =

where, 
2

2
; and

2 ( 1)4C C Ce

a a eb
P T V

ebR eb e
= = =

-

Equation,  /2
ln 1

2
a RTVRT b

P e
b V

-Ê ˆ= - -Á ˜Ë ¯
Changes to

 p = – 5.575 q ln 
0.632 1.718

1 exp
f qf

Ê ˆ Ê ˆ
- -Á ˜ Á ˜Ë ¯ Ë ¯

 (3.51)

which is the desired equation.

3.23  NATURE OF MOLECULAR FORCES
From the results of Joule-Kelvin experiment and the existence of cohesive force in liquids, 
it is clear that there are attractive and repulsive forces between the molecules. The general 
term van der Waals forces is coined to represent the interactions between closed-shell 
species. These interactions may be divided into several classes: ion (monopole)-dipole, 
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dipole-dipole, dipole-induced dipole and, induced dipole-induced dipole. Interactions may 
also result from quadrupoles but, they are of very small magnitudes.

3.24  ION–DIPOLE INTERACTION
From electrostatics we know that the force F between two point charges Q1 and Q2, 
separated by a distance r is

  
1 2

2
04

Q Q
F

Rpe
=

where e0 is the vacuum permittivity.

Figure 3.14 The interac  on between an ion and a dipole 

Another classical equation is

 F = 
d
d
V

r
-

where V is the potential energy of interaction. Integration gives

  
1 2

2
00

d
d

4

v r
Q Q r

V
rpe •

= -Ú Ú

or, V = 1 2

04
Q Q

rpe
 (3.52)

As shown in Figure 3.14, a point charge (+ Q2) is placed at the point C and, a dipole AB 
(with charges +Q1 and –Q1) of length R. The potential energy of interaction is then given 
by two pairwise additive terms:

 Vi,d = 1 2 1 2

0

1
4

Q Q Q Q

AC BCpe

È ˘
-Í ˙

Î ˚
 (3.53)

Now, (AC)2 = (AO + ON)2 + (CN)2

as,  ON = r cos q and CN = r sin q

 (AC)2 = 
2

2( sin )cos
2
R

rr qq
Ê ˆ ++Á ˜Ë ¯
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or, (AC)2 = 
2

2
2 1 cos

4
R R

r
rr

q
È ˘

+ +Í ˙
Î ˚

or, (AC)2 = 
1/22

21 cos
4

R R
r

r r
q

È ˘
+ +Í ˙

Î ˚
 (3.54)

Similarly, (BC)2 = (NB)2 + (CN)2

or, (BC)2 = (OB – ON)2 + (CN)2

  = (OB)2 + (ON)2 – 2(OB)(ON) + (CN)2

  = 
2

2 2( cos ) 2 cos _ ( sin )
2 2
R R

r r rq q q
Ê ˆ Ê ˆ+ -Á ˜ Á ˜Ë ¯ Ë ¯

  = 
2

2
21 cos

4
R R

r
rr

q
È ˘

+ -Í ˙
Î ˚

fi (BC) = 
1/2

2

2

cos
1

4
RR

r
rr

qÈ ˘Ê ˆ
+ -Í ˙Á ˜Ë ¯Í ˙Î ˚

 (3.55)

Using Eqs (3.54) and (3.55) in Eq. (3.53),

 vi, d = 1 2
1/2 1/2

20

22

1 1
4 cos

11 cos
44

Q Q

RRR R rr
rrr r

p e q
q
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Using the binomial expansion,

 (1 + x)n = 1 + nx + 2 3( 1) ( 1)( 2)
for | |< 1

2! 3!
n n n b n

x x x
- - -

+ + 

and hence, (1 + x)–1/2 = 21 3
1

2 8
x x- + + 
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truncating the series after the second power of x on the approximation R << r. Simplifi cation 
gives

 Vi, d = 
3

1 2
3

0

cos 3
cos

4 8
Q Q R R

r r r

q
q

pe

È ˘
- +Í ˙

Î ˚

or, Vi, d = –
3

1 2
3

0

cos 3
(4 ) 8

Q R R

Rr r r

m q

pe

È ˘
- +Í ˙

Î ˚

or, Vi, d = –
2

1 2
2 2

0

cos 3
1

8(4 )

Q R

r r

m q

pe

È ˘
-Í ˙

Î ˚

Since R << r, the equation is further approximated to

 Vi, d = – 1 2
2

0

cos

(4 )

Q

r

m q

pe

The maximum interaction occurs when Q1 is collinear with the axis of the dipole, i.e., 
when q = 0; the fi nal result is then

 Vi, d = – 1 2
2

0(4 )

Q

r

m

pe
 (3.56)

The negative sign of the interaction energy Vi, d means that, there is a net attraction.

Example 3.1

Calculate the energy of interaction between an H+ ion and a CH3OH molecule (m = 1.71 D)
separated over a distance of 1 nm; the ion H+ is positioned along the bond axis of CH3OH.

Solu  on

Using Eq. (3.56), we fi nd the interaction energy as

 Vi–d = – 1 2
2

0(4 )

Q

r

m

pe

  = 

29
19

12 1 2 1 9 2

1.6 10
(1.71 D) cm (1.6 10 C)

4.8 D

4(3.14)(8.854 10 J C m ) (1 10 m)

-

- - -

Ê ˆ¥
¥Á ˜Ë ¯

-
¥ ¥

  = – 8.2 ¥ 10–24 J per unit, or

  = – (8.2 ¥ 10–21 J) (6.022 ¥ 1023 mol–1)

  = – 4.94 kJ mol–1
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Unit Conversion
The conversion of units is done as follows:

If an electronic charge and a protonic charge are separated by a distance of 1 Å, the dipole 
moment of the unit is defi ned as
 m = e ¥ r = (4.8 ¥ 10–10)(1 ¥ 10–8 cm).

or m = 4.8 ¥ 10–18 esu cm

The (esu cm) is a very large units of dipole moment.

The unit Debye is then used as
 1 D = 1 × 10–18 use cm

The dipole moment of our unit is then

 m = 18
18

1 D
4.8 10 esu cm esu cm

1 10
-

-

Ê ˆ
¥ Á ˜¥Ë ¯

or m = 4.8 D

The units of dipole moment in the SI system is
 m = e ¥ r = (1.6 ¥ 10–19 c) (1 ¥ 10–10 m)

or m = 1.6 ¥ 10–29 cm

A useful conversion factor is then 
291.6 10 cm

,
4.8 D

-¥ which is unity.

3.25  DIPOLE-DIPOLE INTERACTION ( KEESOM FORCE)
Let us consider two polar molecules AB and CD with dipole moments m1 and m2 respectively, 
separated by a distance r, fi xed in orientation and lying in one and the same plane as 
shown in Figure 3.15. In the gaseous and liquid state, the molecules can rotate and, the 
fi eld of one dipole tends to orient the dipole of a neighbouring molecule. Moreover, the 

attractive forces dominate because it is of a longer range than the short range repulsive 

forces. The net result is then an attractive force.

Figure 3.15 
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Assuming that the dipoles have the same length R, for simplicity, the potential energy of 
interaction, according to the orientation in Figure 3.15,

 Vd–d = 1 2 1 2 1 2

0

2 21
4

Q Q Q Q Q Q

r AD BCp e

È ˘
- -Í ˙

Î ˚

  = 1 2

0

2 1 1
4
Q Q

r AD BCp e

È ˘- -Í ˙Î ˚
 (3.57)

Now,
 (AD)2 = (AB + BO)2 + (OD)2

  = (R + r cos q)2 + r2 sin2 q)

 (AD) = 
1/22

2

2
1 cos

R R
r

rr
q

È ˘
+ +Í ˙

Î ˚
 (3.58)

Similarly,
 (BC)2 = (CN)2 + (NB)2 = (OD)2 + (NB)2

  = r2 sin2 q + (AB – AN)2

  = r2 sin2 q + (R – r cos q)2

  (BC) = 
1/22

2

2
1 cos

R R
r

rr
q

È ˘
+ -Í ˙

Î ˚
 (3.59)

Using Eqs (3.58) and (3.59) in (3.57),

 Vd–d = 1 2
1/2 1/22 20

2 2

2 1 1
4 2 2

1 cos 1 cos
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r R R R R
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Then using the binomial expansion as used earlier:

 (1 + x)–1/2 = 21 3
1

2 8
x x- + + 

and truncating the series after the second power of x (as R/r << 1) we have (after a few 
lines of algebra)

 Vd–d = 
2 2

21 2
3 2

0

3
(1 3 cos )

44

Q Q R R
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q

p e

È ˘
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or Vd–d = 21 2
1 1 2 23

0

(3 cos 1); ;
4

Q R Q R
r

m m
q m m

p e
- - = =  (3.60)

where, again the approximation R << r is used.

Now, an interesting point comes out: if all orientations between the dipoles are equally 
probable then the average Vd–d would be

       

2 21 2 1 2
3 3

0 0

3 cos 1 1 3 cos
4 4d dV

r r
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q q

p e p e
- = - - = -
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1

[1 1] 0
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- =

that is, there is no net interaction. But, from statistical considerations it is concluded that 
certain orientations must be preferred and, the classical Boltzmann distribution is the 
key factor.

Equation (3.60) is then changed to

 Vd–d = 2 /1 2
3

0

(3 cos 1)
(4 )

V kTe
r

m m
q

p e

-- -

where V is given by Eq. (3.60). Assuming V << kT, we write

 Vd–d = 21 2
3

0

(3 cos 1) 1
(4 )

d dV

kTr

m m
q

p e

-Ê ˆ
- - -Á ˜Ë ¯



Real Gases 3.45

and, the average Vd–d is

fi d dV -  = 
2 21 2 1 2

3 3
0 0

(3 cos 1) 1 (3 cos 1)
(4 ) 4r r kT

m m m m
q q

p e p e

È ˘Ê ˆ
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Now,  
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2 2 0
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(3 cos 1) sin
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q q q
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q q
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or   2 2 2 2
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1 4
(3 cos 1) (3 cos 1) sin

2 5
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p

q q q q- = - =Ú

and since 2(3 cos 1) 0,q - =  we fi nd fi nally

 d dV - =  

2 2
1 2

2 6
0

4
5 (4 ) r kT

m m

p e
-

A more detailed analysis, for a general case, shows that the factor 
4
5

 should be replaced 

by 
2
3

. Hence we write

 d dV - =  
2 2
1 2

2 6
0

2
3 (4 ) kTr

m m

p e
-  (3.61)

This kind of force is referred to as the  Keesom force (W.H. Keesom, 1922). This is the so 
called  orientation effect. Again we got a negative sign. This means that there is a net 
attractive potential.

Example 3.2

Calculate the Keesom interaction energy between two dipoles of the same moment (1 D) 
separated by 0.3 nm.

Solu  on

Using Eq. (3.69), the Keesom (dipole-dipole) interaction energy is

 d dV - =  
2 2
1 2

2 6
0

2
3 (4 ) kTr

m m

p e
-

For simplicity, we fi rst calculate the different terms separately:

 2 2
1 2m m  = 

2 229 29
2 21.6 10 cm 1.6 10 cm

( D) (1 D)
4.8 D 4.8 D

I
- -Ê ˆ Ê ˆ¥ ¥

Á ˜ Á ˜Ë ¯ Ë ¯
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fi 2 2
1 2m m  = 0.0123 ¥ 10–116 c4 m4

and, (4pe0)
2 = (1.112 ¥ 10–10 J–1 c2 m–1)2 = 1.237 ¥ 10–20 J–2 c4 m–2

and,  kT = (1.38 ¥ 10–23 JK–1) (300 K) = 4.14 ¥ 10–21 J

and,  r6 = (0.3 ¥ 10–9 m)6 = 7.29 ¥ 10–58 m6

Finally, accumulating the results together

 d dV - =  
116 4 4

20 2 4 2 21 58 6

0.0123 10 c m2
3 (1.237 10 J c m ) (4.14 10 J) (7.29 10 m )

-

- - - - -

¥
-

¥ ¥ ¥

 d dV - =  –2.196 ¥ 10–21 J per unit

or 
d dV - =  –(2.196 ¥ 10–21 J) (6.022 ¥ 1023 mol–1)

or 
d dV - =  –1.3 kJ mol–1

It is noteworthy to look into the dependence of Vi, d and d dV -  on the factors r and T.

The dipole-dipole interaction will in general be less than the ion-dipole interaction.

2. The inverse dependence of the dipole-dipole interaction upon temperature means that 
the average dipole-dipole interaction energy decreases with increase in temperature. The 
tendency of the molecules towards orientation is randomized by the increased thermal 
motion of the molecules.

3.26  DIPOLE-INDUCED DIPOLE INTERACTION ( DEBYE FORCE)

A polar molecule can induce a moment to an adjacent molecule. Then there is an additional 
interaction between the permanent dipole and the induced dipole. This is known as the 
induction effect, the Debye force. The magnitude of the resultant energy is given by

  
2

2 2
0

2
(4 )d idV

r

am

pe
- = -  (3.62)

The negative sign implies that the net interaction is again attractive (a is the polarizability 
of the molecule).

The forces described above have two serious diffi culties:
 (i) All these interaction energies have been calculated for a pair of molecules, but they 

are not additive for all the molecules in a gas or liquid. In fact, since orientations of 
different possible molecular arrangements are there, the energies may cancel out; 
so there is no net attraction.

 (ii) All the forces described above involve the permanent dipole moment of the molecules. 
What is the story then for molecules like hydrogen, oxygen, carbon dioxide and, 
the inert gases; they all have no permanent dipole. In 1930, F. London solved this 
problem by a brilliant application of quantum mechanics. 
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3.27  INDUCED DIPOLE-INDUCED DIPOLE INTERACTION ( LONDON 
DISPERSION FORCE)

From the Heisenberg uncertainty principle we know that all molecules must possess some 
energy even in their lowest states, i.e., the zero point energy. Now consider a non-polar 
molecule, such as argon. The positive nucleus is surrounded symmetrically by a cloud 
of negative charge, and, these two are undergoing some kind of vibration against one 
another. Therefore, although the time average of this charge distribution is spherically 
symmetrical, at any instant it will be somewhat distorted. Thus a snapshot taken of an 
argon atom would show a little dipole with a certain orientation. An instant later, the 
orientation would be different, and this continues; over a macroscopic period of time these 
instantaneous dipole moments would average to zero.

Do not think that these snapshot dipoles interact with those of other molecules to produce 
an attractive potential. This cannot happen since there will be repulsion just as often as 
attraction; there is no time for the instantaneous dipoles to line up with one another. Each 
instantaneous argon dipole induces an appropriately oriented dipole in the neighbouring 
atom in phase with themselves and, these moments interact with the original to produce 
an instantaneous attraction. Calculation shows that this dispersion1 interaction leads to 
an interaction energy.

  
2

2 6
0

3
4 (4 )D

h
V

r

a n

pe
= -  (3.63)

where h is the Planck constant and n is the characteristic frequency of the molecule. An 
important difference between the dispersion effect and the other mentioned previously is 
not only that the former is applicable to non-polar molecules but, it is additive for all pairs 
of molecules in the gas; this accounts for the cohesion between the molecules. Therefore, 
for any gas the interaction energy per pair of molecules is the sum of Eqs. (3.61), (3.62) 
and (3.63):

  

dipole

2 2 2

attr 2 2 6 2 6
0 0 0

dipole dipole dipole induced dispersion

2 2 3
3 4(4 ) (4 ) (4 )

h
V

kT r r r

m am a n

pe pe pe

- -

= - - -
                   

 (3.64)

Rela  ve Magnitudes of Molecular Interac  on Eff ects

Molecule Dipole Moment (D) Orientation Effect Induction Effect Dispersion Effect

H2 – – – 11.3

Ar – – – 57

N2 – – – 62

CH4 – – – 117

1  The name dispersion is used because the oscillation producing the attractive force are also responsible for the 

dispersion of light by the molecules.

(Contd.)
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Cl2 – – – 461

CO 0.12 0.0034 0.057 67

HCl 1.03 18.6 5.4 105

NH3 1.5 84 10 93

H2O 1.8 190 10 47
Source: A Text Book of Phys. Chemistry; S. Glasstone.

From the Eq. (3.64) and the table given, certain points come out:
 1. For Non-polar molecules the London dispersion effect is the only contributor towards 

the van der Waals interaction  between the molecules. It is also clear that this 
effect is more for a large molecule than that for a smaller one (smaller molecules 
are harder to be polarized than bigger one). For example, at room temperature I2 
is solid but F2 is a gas. I2 being much bigger in size than F2 is easily polarizable, 
leading to a larger value of a, and hence, a greater dispersion force.

 2. For polar molecules, the dispersion effect is also predominating. But for molecules 
with high dipole moments the orientation effect (the Keesom force) may predominate 
(e.g., NH3 and H2O).

 3. The induction effect (the Debye force) is always very small.
 4. All these three contributions [Eq. (3.64)] to the potential energy of intermolecular 

attraction display an r–6 dependence. Since these forces are of radial symmetry, 

i.e., no preferred direction in space, we may use the classical equation dV
F

dr
= -  to 

argue that these attractive forces have an r–7 dependence.

  Equation may now be written as

  
attr 6

A
V

r
= -  (3.65)

  where A stands for the sum of the three coeffi cients of r–6 in Eq. (3.64).

There are evidences to acknowledge that there are repulsive forces between the molecules 
as well. These forces account for the properties like the collision diameter, the effective 
size of the molecules, etc. This repulsive force arises due to the interaction of the electron 
clouds of the two approaching molecules; this is also being aided by the strong repulsion 
between the two approaching nuclei, probably, due to the Pauli exclusion principle of the 
two overlapping electron clouds. For a number of gases this repulsive interaction energy 
has been found to be as:

  rep 12

B
V

r
=  (3.66)

where B is a constant for a given gas. The Repulsive force has an r–13 dependence.

The mean interaction potential energy V, allowing molecular attraction and repulsion is 
therefore.

  
6 12

A B
V

r r
= - +  (3.67)
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where the fi rst term represents the sum of the three attractive potentials Eq. (3.64) and 
the second terms represents the repulsive one.

When two molecules are widely apart, they do not interact; so their potential energy in 
interaction is zero. As they approach each other, an attraction fi rst develops between the 
molecules and, increases as r is decreased.

However, at distances equal to or less than the collision diameter, the interaction potential  
energy rises steeply due to the strong repulsion between the two electron cloud and the 
nuclei of the two approaching molecules. The superposition of these two curves is of the 
form shown in Figure 3.16. There are also simpler potential functions: the hard sphere 

(Figure 3.17a) and the square-well (Figure 3.17b) models.

Figure 3.16  The intermolecular poten  al energy 

against the separa  on of two molecules. 

The so called Lennard-Jones 6-12 model.

Figure 3.17  The hard sphere model for the interac  on 

poten  al. A discon  nuity occurs at the 

hard sphere diameter r = s. Since there is 
no minimum, this model cannot be used 

to fi nd the equilibrium proper  es.

Starting form Eq. (3.67), i.e.,

  
6 12

A B
V

r r
= - +

and realising that at r = s, V = 0 (Figure 3.16), we fi nd

  6
6 12

A B
B As

s s
= fi =  (3.68)
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Using Eq. (3.68) in to (3.67), we fi nd

  
6

12 6

1
V A

r r

sÈ ˘
= -Í ˙

Î ˚
 (3.69)

Then, differentiating V with respect to r

  
6 13 7[ 12 6 ]

dV
A r r

dr
s - -= - +

at the minimum of the curve (Figure 3.16)

  
min0 ;

dV
r r

dr
= =
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 (3.70)
fi  6 6

min 2r s=

fi  12 12
min 4r s=

Starting from Eq. (3.69) again and, applying it at the minimum
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and using Eq. (3.70)
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1
4 2

A
s

e
s s

È ˘
= - -Í ˙

Í ˙Î ˚
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4
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e
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=

or,  A = 4 s6 emin (3.71)
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and using, this in Eq. (3.69)

  

6
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1
4V

r r

s
s e

È ˘
= -Í ˙

Î ˚

or  
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e
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i.e.,  
12 6

min4V
r r

s s
e

È ˘Ê ˆ Ê ˆ= -Í ˙Á ˜ Á ˜Ë ¯ Ë ¯Í ˙Î ˚
 (3.72)

which is known as the 6-12,  Lennard Jones potential. The equation can also be transformed 
as

  

e
È ˘

= -Í ˙
Í ˙Î ˚

12 6
min min

min 12 6

1 1
4

4 2
r r

V
r r

or  
12 6

min min
min 2

r r
V

r r
e

È ˘Ê ˆ Ê ˆÍ ˙= -Á ˜ Á ˜Ë ¯ Ë ¯Í ˙Î ˚
 (3.73)

This Lennard-Jones 6-12 potential function has been found successful over a wide 
range of application. For argon and nitrogen emin have been found to be 1.0 kJ mol–1 and
3.7 kJ mol–1. The larger value of nitrogen arises because, unlike Ar atoms, N2 molecules 
have rotational and vibrational atoms modes of motion as well as of translation.

Moreover, the classical thermal energies at 300 K for Ar is 
3
2

RT
Ê ˆ
Á ˜Ë ¯

 3.74 kJ mol–1 and for 

N2 is 
5
2

RT
Ê ˆ
Á ˜Ë ¯

 6.24 kJ mol–1. 

It is then clear that under ordinary condition of temperature, the thermal energy of the 

molecules is much more than the intermolecular interactive potential energy. This strongly 
supports postulates of the kinetic theory.

Finally, the van der Waals contants ‘a’ and ‘b’ are certainly related to these attractive and 
repulsive potentials between the molecules. The ‘a’ terms is determined by the attractive 
potential and the ‘b’ term depends on both the attraction and repulsion between the 
molecules, because the collision diameter is fi nally determined from the competing effect 
of the attraction and repulsion potentials. For a very clear and detailed calculation to 
correlate the van der Waals constants a and b, the readers are referred to (1) Phys. Chem.: 
A Molecular Approach, by D. A. McQuarrie and J. D. Simon and (2) Phys. Chem., G. W. 
Castellan.
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Example 3.3

One mole of CO2 gas was found to occupy a volume of 1.32 L at 48°C and pressure of 18.40 
atm. Calculate the pressure that would have been expected (i) from the ideal gas equation; 
(ii) from the van Waals equation Given: a = 3.6 atm L2 mole–2 ; b = 4.28 × 10–2 L mol–1.

Solu  on

 (i) Making use of the ideal gas equation

             

(1 molnRT
P

V
= =

) (0.082 L 1atm K- 1mol- ) (321.15 K )
(1.32 L )

  fi  P = 19.95 atm.
 (ii) From the van der Waals equation

   

2

2( )
nRT n a

P
V nb V

= -
-

  fi 
(1 mol

P =
1) (0.082L atm K- 1mol- ) (321.15 K )

1.32 L (1 mol- 2 1) (4.28 10 L mol- -¥

(1 mol

)
-

2 2) (3.6atm L 2mol- )
(1.32 L 2)

  fi 26.33 L
P =

atm
1.277 L

2.066 atm-

  fi P = 18.55 atm.

Comment: Note that, the pressure calculated from the van der Waals equation is less than 
that calculated from the ideal gas equation. Clearly this demonstrates that the attractive 
force among the molecules reduced the momentum poured on the wall of the vessel. Under 
this condition of P and T, the attractive force dominates the repulsive force.

Example 3.4

Two van der Waals gases A and B are taken in separate containers of equal volume, 
under identical conditions of P and T. the ‘a’ and ‘b’ values of the two gases are: for gas A, 
a = 0.2048 Nm4 mol–2; b = 0.267 × 10–3 m3 mol–1; for gas B, a = 0.227 Nm4 mol–2 ; 
b = 0.0428 × 10–3 m3 mol–1.
 (i) Which gas has the greater pressure correction term and, how many times as 

great?
 (ii) Which gas has the larger molecular size; how may times as great?
 (iii) Which gas has the higher value of Tc? How many times as high?

Solu  on

 (i) The pressure correction term is 2 ;
a

V
 therefore
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2

2

( / ) 0.227 N
( / )

B B

AA

a V a

aa V
= =

4m 2mol-

0.0248 N 4m 2mol-
9.15=

  The gas B has the greater pressure correction term than the gas A, by a factor of 9.15.

 (ii) b = 4 N0 b1, where 3
1

4
;

3
b r rp=  is the radius of the molecule. Therefore,

   

3( ) 0.267 10
( )

A

B

b

b

-¥
=

3m 1mol-

30.0428 10¥ 3m 1mol-
6.24=

 fi  

3 3
0

3
0

4
4( ) 3

4( ) 4
3

A
A A

B B
B

N r
b r

b r
N r

p

p

Ê ˆ
= = Á ˜Ë ¯

 fi  
1
3(6.23) 1.84A

B

r

r
= =

  Therefore, the diameter (s = 2r) of the A molecules is 1.84 times that of the B 
molecules.

 (iii) Tc is given by the expression : 
8

27c

a
T

Rb
=

  fi  
4 2 3 3 1

3 3 1 4 2

( ) 0.227 Nm mol 0.0267 10 m mol
( ) 0.042 10 m mol 0.0248 Nm mol

c B B A

c A A A

T a b

T b a

- - -

- - -

Ê ˆ Ê ˆÊ ˆ Ê ˆ ¥
= = Á ˜ Á ˜Á ˜ Á ˜Ë ¯ Ë ¯ ¥Ë ¯ Ë ¯

  fi  
( )

57.1
( )

c B

c A

T

T
=

For the gas B, Tc is 57.1 times that of the gas A.

Example 3.5

The experimental value of RT / V is 1.10 for 1 mole of a certain non-ideal gas. The gas is at 
1 atm and its temperature is below the critical temperature. If the pressure is not halved, 
at constant temperature, it is to be expected that the new volume will be (i) more than 
twice ; (ii) less than twice the original volume.

Solu  on

The compressibility factor Z is given by

  

ideal

1
0.91 1

1.10
V V

Z
RTV RT

V

r r
= = = = = <

Ê ˆ
Á ˜Ë ¯
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The compressibility factor will therefore increase with decrease in pressure. Hence the 
new volume will be more than twice the original volume. Look at the Amagad’s isotherm; 
you will understand.

Example 3.6

Given the following data for a certain nonideal gas at 25°C:

  

1 1(gL atm ) 10 11 10

(atm) 1 10 20
P

P

r - -

The critical pressure of the gas must then be:
 (i) greater than 10 atm.
 (ii) greater than 20 atm.
 (iii) between 1 and 20 atm.
 (iv) between 1 and 10 atm.
 (v) Less than 20 atm.
 (vi) Cannot tell.

Solu  on

Since the density is given by ;
W

V
r =  then we have

  

W W

P PV RTZ

r
= =

Therefore, at a given temperature 
P

r
 varies inversely as the compressibility factor. 

Therefore, a maximum in 
P

r
 means a minimum in Z. In the plots of Z versus ,

cP

r
 such 

minimum occurs only fro T < Tc and P > Pc. We know that the minimum of Z occurs 
between 1 and 20 tam. Therefore Pc could be greater or less than 1 or 10 atm but must be 
less than 20 atm.

Example 3.7

At what temperature does the slope of Z versus P curve (at P = 0) have maximum value 
for a van der Waals gas? What is the value of the maximum slope?

Solu  on

The virial equation of state is

  
2 3

1 2 31Z A P A P A P= + + + + 

fi  2
1 2 32 3

Z
A A P A P

P

∂Ê ˆ = + + +Á ˜Ë ¯∂
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  1
1 a

A b
RT RT

Ê ˆ= -Á ˜Ë ¯

\  2
2 3

1
2 3

Z a
b A P A P

P RT RT

∂Ê ˆ Ê ˆ= - + + +Á ˜ Á ˜Ë ¯ Ë ¯∂
 

fi  
2 20

1 1
lt 0

P

Z a a
b

T P RT RTRT RTÆ

∂ ∂Ê ˆ Ê ˆ Ê ˆ= - - + +Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯∂ ∂

At the maximum, the left hand side is zero; this implies

  
2 2

1 1a a
b

RT RTRT RT

Ê ˆ- = ¥Á ˜Ë ¯

fi  2a a a
b b

RT RT RT
- = fi =

fi  2a
T

Rb
=

Slope = 
1Z a

b
P RT RT

∂Ê ˆ Ê ˆ= -Á ˜ Á ˜Ë ¯ Ë ¯∂

  
2

aRb
b

R a
= -

R b

R 2 a◊

Ê ˆ
Á ˜Ë ¯

  2 2 2 2
b b b b

b
a a

Ê ˆ= - =Á ˜Ë ¯

\  
2

maximum slope
4
b

a
=

Example 3.8

The critical temperature and pressure for NO gas are 177 K and 64 atm, respectively, and 
for CCl4 they are 550 K and 45 atm, respectively. Which gas
 (i) has the smaller value of the van der Waals constant b?
 (ii) the smaller value of the van der Waals constant a?
 (iii) has the larger critical volume, and
 (iv) is most nearly ideal in behaviour at 300 K and 10 atm?

Solu  on

Assuming that the gas obeys the van der Waals equation we know that:

  
2

8
3 ; ;

27 27C C C

a a
V b T P

Rb b
= = =
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 (i) 
8C

C

T a

P
=

( 27 2)
27

b

Rb a

8
b

R
=

  Therefore, smaller the ratio ,C

C

T

P
 smaller will be ‘b’.

  For NO:  
177

2.77
64

C

C

T

P
= =

  For CCl4  
550

12.22
45

C

C

T

P
= =

  Therefore NO gas has the smaller value of ‘b’.
 (ii) Divide TC

2 by PC ; we get

  

2 (8 ) (8C

C

T a a

P
=

) ( 27 2b )
(27 R b ) ( 27 R b ) a 2

64
27

a

R
=

  \  
2

C

C

T
a

P
a

Ê ˆ
Á ˜
Ë ¯

  

2 2

NO

(177)
489.52

64
C

C

T

P

Ê ˆ
= =Á ˜

Ë ¯

  4

2 2

CCl

(550)
6722.22

45
C

C

T

P

Ê ˆ
= =Á ˜

Ë ¯

  Therefore, NO gas has the smaller value of ‘a’.
 (iii) As VC = 3b, greater the value of b, larger will be VC. From (a), we fi nd CCl4 has the 

larger b value. Therefore, CCl4 gas will have the larger critical volume.
 (iv) Lower the critical temperature, more will be the behaviour at high temperature 

and pressure. Therefore, NO will behave more nearly ideally.

The van der Waals constants for HCl are a = 3.67 atm L
2
 mol

–2
 and b = 40.8 cm

3
 mol

–1
. Find the 

cri  cal constant of this substance.

Test Problem 3.1
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A modifi ed form of the van der Waals equa  on is

  

a
b

Ê ˆ
+ - =Á ˜Ë ¯

2

2
( )

n
P V n nRT

TV

where all the terms have their usual signifi cance; a and b are constants. Deduced the expressions 

for a, b and R in terms of the cri  cal constants.

PROBLEMS
 3.1 One mole of ether occupies 741 cm3 at 300°C. Calculate the pressure (i) assuming 

ideal gas ; (ii) from the van der Waals equation. Given: a = 17.4 atm L2 mol–2; b = 
13.4 × 10–2 L mol–1.

  (the experimental pressure is 48.4 atm) [Ans.: (i) 63.5 atm; (ii) 45.78 atm]
 3.2 Gases A, B, C and D obey the van der Waals equation with ‘a’ and ‘b’ values as 

given (SI):

  
3

0.6 0.6 0.2 0.005

10 0.025 0.15 0.10 0.02

A B C D

a

b

  (i) Which gas has the highest critical temperature?
  (ii) Which gas has the largest molecules?
 (iii) Which gas exhibits the most nearly  ideal behaviour at STP?
  [Ans.: (i) Gas A ; (ii) Gas B ; (iii) Gas D]

 3.3 A nonideal gas is at its critical temperature and at a pressure 10% greater than its 
critical pressure. Doubling the pressure of the gas at constant temperature should 
(i) more than (ii) less than half its volume?

  [Ans.: (ii) less than half]
 3.4 Three two-dimensional plots, an isotherm, an isobar and, an isochor are given 

below for H2O. State the ordinate and abscissa for each of them Explanation must 
be given. 

  [Ans.: (a) Isobar; T Vs V; (b) Isochor; P Vs T; (c) Isothem; P Vs V

Test Problem 3.2
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 3.5 The values of TC and PC for N2 are 126 K and 34 atm; for C2H6 they are 305 K and 
48 atm, respectively.

 (i) Which gas has the smaller van der Waals constant b?
 (ii) Which has the smaller a value ?
 (iii) Which has the larger VC value and
 (iv) Which should show the most nearly ideal behaviour at 25°C and 10 atm?

[Ans.: (i) N2; (ii) N2; (iii) C2H6; (iii) N2]
 3.6 At 0°C and 100 atm the compressibility factor of O2 is 0.927. Calculate the weight 

of O2 necessary to fi ll a gas cylinder of 100 L under the given condition.
  [Ans.: 15.24 kg]



4.1  INTRODUCTION
A solid melts into liquid and the liquid boils into vapour; the liquid state is therefore an 
intermediate between the solid and the vapour. In fact, the liquid state has a number of 
properties common to both solid and vapour phases. Liquids and solids are sometimes 
collectively called the condensed phases. At NTP, the molar volume of a dilute gas is about 
22.4 litres, whereas that for solids and liquids is of the order of a few tens or hundreds of a 
cm3; the condensed phase is about thousand times more dense than the gaseous state. This 
means that the separation between the molecules in the vapour phase is 10 times more 
than that in the condensed phase. There is in general, a very little change in the density, 
specifi c gravity across the melting point, but change over orders across the boiling point; 
the heat of fusion is also small compared to the heat of vapourisation. This suggests that 
the liquid and the solid phases are closely related to each other compared to the vapour 
phase. In the solid, the particles do have only the vibrational motion; in the vapour state, 
the particles have all the three kinds of motion; in the liquid state, the molecules are not 
as chaotic as in the vapour/gas, and at the same time, not as orderly as that in the solid. 
In the solid we have both the short range and long range order in the arrangements of the 
molecules; in the vapour, no ordering is there; in the liquid, although long range order does 
not exist, a few short range order in arranging the molecules could be found.

There is another characteristic feature of the condensed phase; liquids and solids have 
boundaries. A number of interesting properties arise for such a two-phase system, e.g. a 
liquid in equilibrium with its vapour across the liquid/vapour interface or boundary, or a 
solid in equilibrium with its vapour. In this chapter, we will study some of these properties 
of the interfaces.

4.2  SURFACE TENSION
Dry leaves are often found remaining afl oat on the surface of a body of water; small insects 
are sometimes observed crawling over water surfaces. If you look carefully you would 
not fi nd any portion of the leaf or the leg of the insect submerged under water and are 
therefore not buoyed up according to the Archimedes’ principle, but if you submerge these 
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articles into water they will sink (according to the Archimedes’ principle). So how they 
remain afl oat? This is actually due to the surface tension of water-air interface. Hold a 
razor blade, its surface being kept parallel  to the surface of water in a glass, and keep it 
carefully over it; it will remain afl oat. But if you submerge it, it will sink. How then does the 
blade remain afl oat? The fl oating object depresses the liquid layer slightly, and therefore 
its underneath surface gets stretched; this stretched surface then exerts a restoring force, 
whose vertical component holds the weight of the object.

Consider a body of water in equilibrium with its 
vapour. The number of molecules per unit volume is 
greater in the liquid than on the vapour side. 
Therefore, the molecules at the water-vapour 
interface feel a net attraction towards the bulk of the 
liquid, and the interface behaves as a stretched 
membrane, in the sense that any attempt to increase 
its area will require some work to be done on it (this 
is because, increasing area needs some molecules to 
be brought from the bulk to the surface against this 
inward force) (Figure 4.1). Surface tension g, is then 
defi ned as the work required to increase the 
interfacial area by unity at constant P and T. If the 
area is increased by dA, the work required is 
therefore
      dW = g dA at const. P and T (4.1)

The free energy change associated with a change in 
surface area can be written as
 dG = VdP – SdT + g dA (4.2)

fi g = s∂Ê ˆ =Á ˜Ë ¯∂ ,P T

G
G

A
 (4.3)

The surface tension g can therefore be defi ned as the surface free energy Gs per unit area 
at constant P and T. According to this defi nition, the dimensions of g  is mt–2. The units are 
erg cm–2 and Jm–2 in cgs and SI systems, respectively. Equation (4.2) also shows that the 
attainment of the confi guration of minimum possible area assures the state of minimum 
free energy at constant P and T. Small droplets of water assume spherical shape, because 
the sphere has the minimum area to volume ratio.

A slightly different, but mathematically equivalent defi nition of g is now laid here. Take a 
thin wire bent into the shape of three sides of a rectangle and fi tted with a wire as the 
fourth side (Figure 4.2). By dipping the loop into a solution of a detergent, form a fi lm in 
the loop. The fi lm will tend to draw the sliding wire; to just stop it to contract, we apply a 

Figure 4.1  Much denser swarm of mol-

ecules per unit volume on the 

liquid side of the interface than 

on the vapour side.
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force F on the wire outward, and keep it in equilibrium. Under condition of equilibrium, 
the wire is now  pulled outward over a distance dx. As Figure 4.2 explains the work 
required at constant P and T;

 dW = Fdx = 2
2 2
F F

l dx dA
l l

◊ =  (4.4)

(the factor ‘2’ is included to consider interfaces from either 
side, front and rear). Comparison of Eq. (4.4) with (4.1) 
suggests that

 g = 
2
F

l
 (4.5)

This gives us the second defi nition of surface tension; the 
surface tension may then be defi ned as the force acting 
normally to a unit line segment, along the surface of the liquid. In view of this defi nition, 
the unit of surface tension is dyn cm–1 and Nm–1 in CGS and SI systems, respectively. 
That, really there exists a force along the surface acting normally to any line segment can 
be illustrated by the example given in Figure 4.3.

Figure 4.3  A thread longer than the diameter of the circular frame is   ed at two opposite ends; a  er 

forming a soap fi lm it is found that the thread convolutes itself over the fi lm. However, when 

one side of the fi lm is punctured, the thread stretches itself towards the present fi lm.

Example 4.1

The surface tension of Hg at 20°C is 0.485 Nm–1. If two spherical globules of Hg, each of 
radius 1 cm stick together to form one globule, then calculate the change in the surface 
free energy.

Solu  on

Let the radius of the fi nal globule be r. Assuming no loss of Hg,

      
3 34 4

2 (1 cm)
3 3

rp p¥ =

dx

l

Figure 4.2  The fi lm formed tends to 

draw the wire inward.
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fi r = 1.26 cm

The change in the surface area, DA = 4p (1.26 cm)2 – 2(4p) (1 cm)2 = –5.15 × 10–4 m2

The surface free energy change is therefore:
 DGP,T = g DA = (0.485 Nm–1) (–5.15 × 10–4 m2)

  = –2.5 × 10–4 J

Comment: The decrease in the surface free energy, at constant P and T, shows that the 
process is spontaneous.

By how much the poten  al energy of each of the above drops would increase if it is broken up into 

125   ny equal sized drops?

4.3 CONTACT ANGLE AND WETTING
Surface tension always exists where there is a discontinuity, the material being different 
on the two sides of the surface. Thus mercury in contact with air has a certain surface 
tension, but in contact with water it has a different surface tension. More clearly, it can 
be said that the surface tension is not the property of the phases on either side of the 
boundary, rather it is a property of the interface. Hence, it may or may not be possible to 
attain equilibrium with three substances along a line.

Consider a liquid L, in equilibrium with its vapour V, be placed over a solid surface
as shown in Figure 4.4.

Figure 4.4 A liquid spreading over a solid surface.

If the vector sum of the three surface tensions, which are tangential to the surfaces at the 
point of common contact is zero, then the arrangement is stable.

In this stable arrangement, the contact angle q between the given liquid and the solid is 
defi ned as the angle made by the tangent drawn from the point of contact of the liquid 
with the solid, along the liquid surface, with the solid surface inside the liquid.

Test Problem 4.1
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 gSV = gLS + gLV cos q

fi cos q = SV LS

LV

g g

g

-
 (4.5)

Therefore, the angle of contact between a given pair of liquid and solid depends on 
the three interfacial tensions, gLS, gSV and gLV. Although the absolute magnitude of q 
depends on all the three tensions, whether q will be acute or obtuse that depends on gSV 
and gLS.

If gSV > gLS fi cos q > 0 fi q < 90∞; acute contact angle

If gSV < gLS fi cos q < 0 fi q > 90∞; obtuse contact angle

In the fi rst case, we say that the liquid wets the solid, and in the second case, the liquid 
does not wet the solid. The contact angle for water on glass at 25°C is approximately 18°, 
while that for mercury on glass is 140°. Hence, water spreads over glass while mercury 
will gather into a droplet (Figs 4.5a and 4.5b).

Glass Glass

H O2 Hg

(a) (b)

Figure 4.5 The we   ng and non-we   ng of a liquid over a solid surface.

4.4  WORK OF ADHESION AND  WORK OF COHESION

Referring to Figure 4.6a, when the interface between the two phases a and b is decreased 
by 1 unit and simultaneously producing two new interfaces a – v and b – v, by 1 unit each, 
then the work required for the process at constant T and P is called the work of adhesion Wad.
 Wad = ga v + gb v – gab  (4.6)

Figure 4.6(a) This process of separa  on between the two phases a and b defi nes W
ad
.
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a

a

a

WC

Figure 4.6(b) Separa  ng a column of liquid into two sec  ons, without any lateral contrac  on

Referring to Figure 4.6b, the work of cohesion of a liquid a is defi ned as the work required 
to pull a column of unit cross-section of the liquid a without any lateral contraction, to 
produce two new interfaces of a – v at constant P and T, each of unit cross-sectional 
area.
 WC(a) = 2ga v (4.7)

Applying Eq. (4.6) to the liquid–solid interface and, Eq. (4.7) to the liquid, we fi nd

 WLS = gLV + gSV – gLS (adhesional work between the L and S)

and WC(L) = 2gLV   (cohesional work of the liquid)

and using Eq. (4.5),
 WLS = gLV + gLS + gLV cos q + gLS

or WLS = gLV (1 + cos q)

or WLS = 
1
2

WC (1 + cos q)

or cos q = 

1
2

1
2

LS C

C

W W

W

-
 (4.8)

This is the  Dupré equation. This shows that when WLS > 
1
2

WC, i.e. the attraction between 

the solid and the liquid molecules is more than half of that between the liquid molecules,  
q will be acute, i.e. wetting takes place. Furthermore, if q = 0, i.e. complete wetting,
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WLS = WC(L). This implies that when the work of adhesion between the liquid and the solid 
becomes equal to the work of cohesion of the liquid, then the liquid spreads indefi nitely on 
the surface of the solid. Similarly, if q = 180°, WLS = 0.

Example 4.2
Under what condition two liquids mix spontaneously?

Solu  on

Let the liquids are A and B.
The work of adhesion between the two liquids is
 WAB = gAV + gBV – gAB

and, the work of cohesion of the two liquids 
 WC(A) = 2gAV and WC(B) = 2gBV

\ WA(B) = 
1
2

(WC(A) + WC(B)) – gAB

Therefore, lower the interfacial tension gAB between the liquids higher is the work of 
adhesion between them, i.e. stronger, and more similar is the force of attraction between 
the molecules of the two kinds. Finally, when the interface A/B vanishes, i.e. when the two 
liquids mix spontaneously, gAB = 0 which makes

 WAB = 
1
2

(WC(A) + WC(B))

4.5  CONDITION OF SPREADING OF ONE LIQUID OVER ANOTHER
Let, a liquid b be placed over another liquid a in which it has no solubility (Figure 4.7). At 
constant T and P, the change in the surface free energy is given by:

 dG = 
G G G

dA dA dA
A A A

a b ab
a b ab

Ê ˆ Ê ˆÊ ˆ∂ ∂ ∂
+ +Á ˜ Á ˜Á ˜∂ ∂ ∂Ë ¯ Ë ¯ Ë ¯

  = ga dAa + gb dAb + gab dAab

where  dAa, dAb and dAab are the changes in the area of the a-v, b-vap and a-b interfaces, 
respectively.

Figure 4.7 The spreading of one liquid over the other

Now, if the liquid b is to spread over the liquid a then dAb and dAab are positive and dAa 
is negative and moreover,
 dAb = dAab = –dAa
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Therefore, we have,
 dG = (–ga + gb + gab)dAb

or 

,P T

G

Ab

Ê ˆ∂
Á ˜∂Ë ¯

 = –ga + gb + gab

For spontaneous spreading, 
,P T

G

Ab

Ê ˆ∂
Á ˜∂Ë ¯

 must be negative; we then defi ne the spreading 

coeffi cient of b over a as,

 Sb/a = – 
,P T

G

Ab

Ê ˆ∂
Á ˜∂Ë ¯

 (4.9a)

or Sb/a = ga – gb – gab (4.9b)

So that, when Sb/a is positive, the free energy change is negative and it makes the spreading 
spontaneous.

Table 4.1 gives some data of spreading coeffi cient of different liquids on water at 20°C. 
This shows that, when added in little amount, isoamylalcohol, benzene, toluene, etc. will 
spread over water but bromoform, methylene iodide will remain as a lens.

TABLE 4.1 Spreading coeffi  cients of liquids on water at 20°C, Sb/H2O
 (in CGS)

Liquid B Sb/H2O

Isoamyl alcohol 44.0

n-octyl alcohol 35.7

Heptaldehyde 32.2

Oleic acid 24.6

Benzene 8.8

Toluene 6.8

Isopentane 9.4

Nitrobenzene 3.8

Hexane 3.4

Heptane 0.2

Ethylene dibromide –3.2

Carbon disulfi de –8.2

Iodobenzene –8.7

Bromoform –9.6

Methylene Iodide –26.5
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Initially, benzene spreads over water but eventually form a lens, why?

6 6 2 6 6 2

2
C H H O C H /H O28.9, 72 and 35 (in erg cm )g g g -= = =

When benzene is added in little amount over water,

 
6 6 2C H /H OS  = 72 – 28.9 – 35 = 8.1 erg cm–2

After the initial spreading, mutual saturation begins. First, the benzene layer gets 
saturated with water and this changes 

6 6C Hg  to 28.8 erg cm–2. Then the underneath water 
layer gets saturated with benzene, and this change 

2H Og  to 62 erg cm–2. The spreading 
coeffi cient also changes accordingly as

 
6 6 2C H /H OS  = (72 – 28.8 – 35) = 8 erg cm–2

and fi nally,

 
6 6 2C H /H OS  = 62 – 28.8 – 35 = –2 erg cm–2

As the fi nal spreading coeffi cient becomes negative, the initially spread out fi lm collects 
to a lens.

4.6  LIQUID MENISCUS INSIDE A CAPILLARY IS GENERALLY
Capillary means hair-like; a very narrow tube. Let us see what happens to the liquid level 
inside the capillary when the latter is dipped into the former.

Figure 4.8 The nature of liquid meniscus inside a capillary

In Figure 4.8, a capillary is dipped vertically down into a liquid. Consider a liquid molecule 
at the interface and adjacent to the glass surface. This molecule will be attracted by the 
solid particles of the glass, due to the force of adhesion. Let us denote this force of adhesion 
by the vector Fa, which certainly acts normal to the glass surface. The liquid molecule is 
also attracted by its own kind due to the force of cohesion, from all possible sides. Let this 
force acting on the molecule be FC; this vector acts at an angle 45° to the glass surface and 
directs towards the bulk of the liquid. The liquid molecule is therefore acted on by the two 
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forces, FA and FC, the resultant of which can be found by the law of parallelogram. The 
following three cases may come up.

Case I

If the resultant vector R is to be along the glass surface (Figure 4.8a), then

 sin 45° = 
1

2
A

C

F

F
=

or FC = 2 AF

Case II

If the resultant is outwardly directed then (Figure 4.8b)

 A

C

F

F
 = q q > ∞ >

1
sin ( 45 )

2

fi FC < 2 AF

Case III

If the resultant is directed inwards, i.e. inside the liquid then (Figure 4.8c)

 A

C

F

F
 = q q < ∞ <

1
sin ( 45 )

2

fi FC > 2 AF

Now, what happens to the molecule considered and to every molecule present over the 
circumference in contact with the glass. A liquid can not withstand a permanent shearing 
stress and therefore, it will try to get rid of their stress, the resultant vector R, by adjusting 
its surface so that R tends to act normally to the surface. Therefore in the fi rst case, the 
liquid level will remain fl at; in the case II, the liquid level will try to curl up, making the 
surface concave upwards and, in case III, it will curl down, making the surface inside the 
capillary convex upwards.

4.7  EXCESS PRESSURE ACROSS A CURVED SURFACE
If, across an interface, the pressures are the same on both sides, the surface will be planar. 
If the pressure on one side increases, the surface becomes concave on that side. Suppose 
that AB is a piece of cylindrical surface of radius r, the length of the cylinder taken at 
right angles to the plane of this paper being 1 unit (Figure 4.9). If the pressure below AB 
is, P, greater than that above AB then the force on the strip rdq is Pr dq and resolving this 
parallel to OC, it is Pr cos q dq. The whole resolved force on AB acting parallel to OC is 
then
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  0

Pr cos 2 Pr cos 2Pr sind d
q q

q

q q q q q
+

-

= =Ú Ú

Figure 4.9 Excess pressure across a curved surface.

Now, if g be the surface tension, then resolved parallel to OC, the entire force vertically 
downward, is g sin q + g sin q = 2g sin q. Hence, for equilibrium of the section AB,

  2g sin q = 2 Pr sin q

fi P = 
r

g

It should be noted that the curvature of the surface at right angles to the plane of this 
paper is zero, and does not contribute to P. If, however, there is a curvature of radius r2 in 
this direction, then there would be a pressure difference, on account of this, of g /r2. Calling 
the fi rst radius of curvature as r1, we may then write, for the total pressure difference,

 P = 
1 2

1 1
r r

g
È ˘

+Í ˙
Î ˚

 (4.10)

which is the  Laplace-Young relation.

For a spherical surface, r1 = r2, and P = 2g /r. Equation (4.10) is applicable to a liquid drop 
or a bubble inside a liquid, where there is only one interface. For a soap bubble, there are 
two interfaces, each of which contributes 2g /r, and hence the excess pressure inside a soap 
bubble is 4g /r. For a cylindrical drop, let one radius of curvature is r; the second radius of 
curvature is μ; the excess pressure inside a cylindrical drop is therefore g /r.

Take two equal sized glass slides. Put a few drops of water over one, and then keep the 
second slide over the fi rst; the water is in between the two slides. It is a common experience 
that, a minimum force is required to pull the two glass slides. The reason is as follows: as
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Figure 4.10 given below shows water wetting the glass surface circularly and forms a 
concave outward surface, in between the slides. The excess pressure inside the water is then,

 P = 
1 2 2

( )r d
r d d

g
g

È ˘Ê ˆ+ - = - >>Í ˙Á ˜Ë ¯Î ˚
∵

where d is the distance between the two slides.

It is therefore seen that, as P is negative, the excess pressure acts from outside and holds 
the two slides tightly.

Figure 4.10

4.7.1 An Alternative Derivation of  Laplace-Young Relation
As Figure 4.11 shows, consider a small section of an 
arbitrary curved surface with two radii of curvatures 
R1 and R2. If the surface be moved outwards by a small 
displacement dz, the change in area will be
 dA = d(xy) = xdy + ydx

The work required to increase the surface area by this 
amount is

 dW = g dA = g [xdy + ydx]

If P be the excess pressure inside, then this work can also 
be written as
 dW = P(xy)dZ

and therefore, equating these two expressions, we have

 P(xy)dZ = g [xdy + ydx] (4.11)

From the consideration of similar triangles

  1 1 1

x dx x xdZ
dx

R dZ R R

+
= fi =

+

and  
2 2 2

y dy y ydZ
dy

R dZ R R

+
= fi =

+

Using these relations in Eq. (4.11), we get

 P(xy)dZ = 
1 2

xydZ yxdZ

R R
g

È ˘
+Í ˙

Î ˚

Figure 4.11   Two diff erent radii of 

curvatures are taken to 

fi nd the excess pressure 

across the curved surface.
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or P = 
1 2

1 1
R R

g
È ˘

+Í ˙
Î ˚

Example 4.3
Consider two soap bubbles of radii r1 = 1 cm and r2 = 4 cm. What is the excess pressure 
inside each bubble if the soap solution has a surface tension = 40 dyn cm–1. If the two 
bubbles collide and stick together, then what is the radius of the fi lm between them, and 
on which side is the centre of curvature of the fi lm?

Solu  on

Excess pressure inside the smaller bubble is (P = 4g /r),

 P = 
1

24 40 dyne cm
160 dyne cm

1 cm

-
-¥

=

and that inside the bigger bubble is

 P = 24 40
40 dyne cm

4
-¥

=

As Figure 4.12 shows, the greater pressure inside the smaller bubble will blow the fi lm 
outwards inside the bigger bubble until

 160 dyne cm–2 = 24 40 dyne cm
R

g -+

fi R = 1.33 cm

Figure 4.12 The s  cking of two bubbles of diff erent radius of curvature.
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4.8  CAPILLARY RISE AND  CAPILLARY DEPRESSION

We have seen that the liquid surface inside a capillary is either a concave (when q < 90°) 
or convex (when q > 90°) one, and there is also a pressure difference across the curved 
surface. The column of liquid inside a capillary therefore acts as a manometer, registers 
the pressure difference and either rises up (q < 90°) or is depressed down (q > 90°). Consider 
Figure 4.13, where a capillary, made of glass, 
is dipped into water partially.

The pressures at the points 1, 2 and 3 are 
equal (P1 = P2 = P3) because all of them are 
the same atmospheric pressure. The liquid 
level outside the capillary may be considered 
planar and therefore P1 = P4 and P3 = P6. So, 
P1 = P2 = P3 = P4 = P5 = P6; but, as the water 
level inside the capillary is concave upwards, 
P2 > P5, the difference is 2g /r, where r is the 
radius of the curved surface. Therefore P4 = 
P6 > P5; inside water, the pressure outside 
the capillary is more than inside, and this results into a spontaneous fl ow of water into the 
capillary. The water level therefore rises up along the tube until the hydrostatic pressure 
developed balances the pressure difference P2 – P5. Now, you try yourself to understand 
why the Hg level inside a glass capillary is depressed.

Consider a capillary of very small radius R, so that it forms 
a liquid meniscus which is a section of a sphere (radius r). If 
the contact angle is q, then cos q = R/r, the excess pressure 

across the meniscus is 
2 cos2

r R

g qg
=  (Figure 4.14). If the 

capillary rise is h, and r and r0 are the densities of the liquid 
and the surrounding fl uid, respectively, then the hydrostatic 
pressure developed is h(r – r0)g. As explained above, 
equilibrium will be reached when

 2 cos
R

g q  = h(r  – r0)g

fi g = 0( )
2 cos

h gRr r

q

-
 (4.12)

In many cases, the density r0 of the surrounding fl uid, e.g. if 
it is a vapour, can be neglected in comparison with r, and Eq. 
(4.12) can be written as 

 g = 
2 cos 2
h gR h grr r

q
=  (4.13)

Figure 4.13

Figure 4.14  The rela  on between 

the surface tension 

and the capillary rise.
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where R is the radius of the capillary and r is the radius of curvature of the curved surface. 
If q is very small then R ª r. Also note that if q > 90° then cos q will be negative, which 
implies that now there will be depression.

What happens when a capillary of insuffi cient length is dipped into water?

From Eq. (4.13),

 rh = 
2

constant
g

g

r
=

When a capillary longer than h is dipped into water, it is only the h, in the above, that 
changes (as the level of water rises up) to make r × h = constant. But, if the capillary is 
shorter than this fi nal value of h, let it be H, then r is now the variable and changes by 
spreading of water over the wall of capillary at the top so that, its new value, say R times 
H, is now equal to rh; so, there will be no fountain!

4.9  MEASUREMENT OF SURFACE TENSION

Different methods are available for the measurement of g, of which only a few will be 
discussed here.

4.9.1  Capillary Rise Method
This method uses Eq. (4.13); a capillary is dipped partially and vertically into the liquid; 
the height of the liquid level inside the capillary is measured with a travelling microscope. 
The radius R of the capillary can also be measured easily. For fi ner results, the ‘h’ in

Eq. (4.13) should be added to 
1

.
3

R

4.9.2  Maximum Bubble Pressure Method
If a bubble is formed at the end of a tube of radius R immersed in the test liquid to a depth 
h, the  pressure required is given by

 P = 
2

h g
r

g
r +  (4.14)

where r is the radius of the bubble (Figure 4.15). In the above equation, the fi rst term on 
the right hand side is the pressure required to overcome the hydrostatic pressure and the 
second term is due to the excess pressure inside the bubble. It is clear from Eq. (4.10), that 

the bubble can sustain a maximum excess pressure of 
2

.
R

g
 So, when the bubble begins to 

form, r > R, and the bubble grows in size, i.e. r decreases, and when it reaches R, the radius 
of the tube, P becomes maximum, and then r starts increasing.
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So we write

 Pmax = hrg + 
2
R

g

The pressure beyond which the bubble breaks away is measured and the surface tension 
is determined from the above equations.

Figure 4.15

4.9.3  Drop Weight Method
When a drop is formed at the tip of a capillary by delivering the liquid through it, a 
critical size is reached at which the surface tension cannot hold the drop anymore, and the 
drop falls. A rough sequence of the shapes during the formation of the drop is shown in
Figure 4.16. Approximately, we can write
 Wideal =  2p rg (4.15)

Figure 4.16 High speed photographs during the forma  on of a drop.

where Wideal is the weight of the drop which should fall and r is the radius of the capillary. 
But as explained in Figure 4.16, the drop leaves behind a considerable portion of the liquid 
and therefore the actual weight is
 W = Wideal f (4.16)
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where f is a correction factor depending on 1/3

r

v
, where v is the volume of the drop. A 

table for a list of the values of f had been prepared by Harkins and Brown.

Equation (4.16) is chiefl y used in comparing surface tensions of different liquids. If m1 and 
m2 are the masses of the drops of two liquids 1 and 2 falling from the same capillary, 
then.

  

1 1 1

2 2 2

m r

m r

f

f
=

If the volumes of the drops of the two liquids are not very different then
f1/f2 = 1; then we have

  
g r

g r
= =1 1 1 1

2 2 2 2

m v

m v
 Using Eq. (4.15)

where v’s and r’s are the volumes of each drop and the densities of the 
liquids respectively. The stalagmometer, a pipette like tube ending in 
a capillary (Figure 4.17) is used for this purpose. The number of drops 
(formed slowly and completely before its detachment) falling from the 
end is counted in passing the liquid level between two marks on the 
stalagmometer. Let n1 and n2 be the number of drops for the liquids 1 and 
2, respectively, in draining out V volume of each liquid. Then V = n1v1 and
V = n2v2, and so we write,

  

1 2 1

2 1 2

n

n

g r

g r
=

So, if  the surface tension of one liquid is known then that for the 
other can be determined from the above equation.

4.9.4  du Noüy Tensiometer
This method is developed by du Noüy, and is one of the many detachment methods used 
for convenience and accurate measurement of surface tension of liquids. Here, the force 
required to pull up a perfectly horizontal ring, of a previously cleaned and dried platinum 
from the surface of the test liquid, is measured. As a fi rst approximation, it is assumed 
that the minimum force required to pull it up is equal to the weight of the ring plus that 
just required to overcome the inward pull on the periphery of the ring by the liquid due to 
surface tension.

10 ml

Figure 4.17 A capillary.
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 Force = Wring + 2(2p Rg) (4.17)

where Wring is the weight of the ring and R is its 
radius. The multiplier 2 is necessary to account 
both the inner and outer periphery of the ring. 
Once again, for fi ner data, a correction factor f 
called the Harkins and Jordan factor is necessary 
to account for the thickness and size of the ring 
and the density of the liquid (Figure 4.18).

4.10  VAPOUR PRESSURE OF CURVED SURFACE:  KELVIN EQUATION
Another interesting manifestation of surface tension is the enhanced vapour pressure of 
curved surfaces. Let P be the vapour pressure over a convex drop of radius r and P0 be 
the vapour pressure of a fl at surface (of the same liquid). If we transfer, reversibly and 
isothermally, x g of the liquid (molar mass M) from the fl at to the convex drop then the 

associated free energy change is 
0

ln .
dx P

RT
M P

 If this transfer has increased the area of 

the drop by dA then dA = d(4pr2) = 8p rdr. The free energy change therefore can also be 

written as g dA = 8prg dr. So, we have

  
0

ln 8
dx P

RT r dr
M P

p g=  (4.18)

Since the mass of the drop x = 34
,

3
rp r  where r is density,

 dx = 4pr2rdr (4.19)

Using Eq. (4.19) in Eq. (4.18), we get,

  
g g

r
= =

0

2 2
ln mVP M

P rRT rRT
 (4.20)

where Vm is the molar volume of the liquid (Vm = M/r). Equation (4.20) is known as the 
Kelvin equation. Although it is derived here for a convex drop, it is in general applicable to 
any convex surface with radius of curvature r. For concave surface, there will be a minus 
sign on the right hand side because the transfer of the liquid now decreases the area by 
dA.

2R

To balance

Figure 4.18  The du Noüy method of measur-

ing surface tension of a liquid.
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Example 4.4
Calculate the vapour pressure of a tiny water droplet of radius 10–4 and 10–7 cm at 25°C. 
gwater = 72 dyne cm–1.

Solu  on

  0

2
exp mVP

P rRT

gÏ ¸
= Ì ˝

Ó ˛

For r = 10–4 cm, 
1 3 1

4 7 1 1
0

2 72 dyn cm 18 cm mol
exp 1.001

10 cm 8.314 10 ergK mol 298 K
P

P

- -

- - -

Ï ¸¥ ¥Ô Ô= =Ì ˝
¥ ¥ ¥Ô ÔÓ ˛

Similarly, for r = 10–7 cm, 
0

2.85
P

P
=

4.11   SUPER SATURATION OF VAPOUR AND  SUPER HEATING OF LIQUIDS: 
THEORY OF  NUCLEATION

We know that a liquid will be in equilibrium with its vapour, at a fi xed temperature, at the 
saturated vapour pressure. So it is expected that, if the pressure of the vapour be increased 
slightly over this saturation value, spontaneous condensation will take place. Experiments, 
however, showed us that in the absence of any foreign surfaces, condensation does not take 
place if the vapour pressure is not increased beyond orders of magnitude of the saturated 
vapour pressure P0. The vapour phase is then (when the saturation vapour pressure is 
exceeded but, the liquid did not appear) said to be super-saturated, a metastable phase, 
i.e. thermodynamically unstable, but exists due to some kinetic reasons.

Similarly, a liquid may be cooled below its freezing point without the appearance of the 
solid phase. For example, Fahrenheit (1714) had observed that a sample of very pure 
water could be cooled down to –40°C at 1 atm without any ice-formation. Such liquids are 
called super-cooled liquids. These are also thermodynamically unstable, and exists due to 
some kinetic reasons.

We can understand this super-saturation and super-cooling with the help of the Kelvin 
equation [Eq. (4.20)]. From Eq. (4.20), the vapour pressure of liquid drops of radius r may 
be written as 

 Pdrop = 
2

0

mV

rRTP e

g

 (4.21)

and the vapour pressure inside a cavity in a liquid as:

 Pcavity = 
2

0

mV

rRTP e

g
-

 (4.22)
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where P0 is the saturated vapour pressure of the liquid of molar volume Vm. In the previous 
problem, we calculated the vapour pressure of tiny water droplets. It is 1.001 P0 when 
the radius is 10–4 cm, and almost 3P0 when r = 10–7 cm. The effect is therefore not too 
pronounced if the radius is not too small; the vapour pressure of a tiny drop of water of 
radius 10–7 cm is three times its saturated vapour pressure. This drop contains at most 
140 molecules in it, and so we cannot rely on this magic number 3; nevertheless, we can 
use it to understand the super-saturation.

Moist warm water vapour, from seas and rivers, rises up into higher altitudes of cooler 
region and at some altitude, becomes thermodynamically unstable with respect to the 
liquid, and we might expect it to form rain. The sequence of steps in the formation of rain 
is; fi rst a few molecules form a cluster (called germs) which then grows bigger by accretion 
and then come to a size of recognizable droplet (called nuclei) which can then coalesce to 
form the liquid bulk. Now, when the tiny clusters of molecules are formed they have a 
very small radii and therefore have a much higher vapour pressure than P0, and therefore 
vapourizes again. The formation of the thermodynamically stable liquid phase is therefore 
not allowed due to the increased tendency of the tiny droplets to vapourize. We then say 
that, the vapour is super-saturated.

Let us consider the formation of a cluster:
 nA (vap, P) Æ An

The free energy change of the process is cluster of n molecules of radius r; a small liquid 
drop

 DG = 20

0

ln 4
PR

n T r
N P

p g+  (4.23)

where P0 is the saturated vapour pressure of the liquid, P is the vapour pressure, N0 is the 
Avogadro’s number and g is the surface tension of the liquid. The number of molecules n, 
in the drop of radius r is

 n = 
p r

r
p

Ê ˆ
Á ˜Ë ¯

fi =

3
0

3

0

4
43
3

r N
n

r
M N M

therefore, Eq. (4.23) can be written as

 DG = 3 2

0

4
ln 4

3
P

r RT r
M P

r
p p g- +

or DG = 3 24
ln 4

3
r RT x r

M

r
p p g- +  (4.24)

where x = P/P0 > 1. Equation (4.24) clearly shows that a plot of DG versus r, fi rst increases 
and then forming a maximum at some critical size rc, decreases (Figure 4.19). It is therefore, 
the excess surface free energy of the droplet that makes its formation diffi cult. 



The Physics and Chemistry of Interface 4.21

Figure 4.19 The varia  on of 4G for the forma  on of a droplet with its size.

Differentiating DG with respect to r, we get

  

2( )
4 ln 8

G
r RT x r

r M

r
p p g

∂ DÈ ˘ = - +Í ˙∂Î ˚

at the maximum, r = rc, and 
( )

0
G

r

∂ DÈ ˘ =Í ˙∂Î ˚

fi RT ln x = 
2 M

r

g

r
 (4.25)

which is nothing other than the Kelvin equation. This shows that for each value of x 

0

,
P

P

Ê ˆ
=Á ˜Ë ¯

 there is a critical rc which is given by

 rc = 
2

( ln )
M

RT x

g

r
 (4.26)

beyond which the drops will observe a decrease in the free energy with increase in their 
size, and hence will grow up spontaneously. The question that still remains is: how are 
the initial tiny drops formed which will eventually move on to rc and then from the rain 
spontaneously? In this process, we need the presence of minute dust particles. These 
foreign particles provide surfaces, on which the clusters can nucleate and form the rain. 
That is why, fi ne KI solid is sprayed into a dense cloud to form a rain show. Exactly, the 
same thing happens in the Wilson Cloud Chamber. Here, the super-saturation is done by 
cooling it through adiabatic expansion. Now the passage of elementary charged particles 
(a or b) ionises the molecules, on which the vapour can condense. The trajectory is then 
mapped as a line of fl ight of the condensed water.
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Exactly, in the same way, superheating of a liquid can be explained. If a very pure water be 
heated in a clean beaker, the cavity which is fi rst formed, has a very low vapour pressure 
inside it [see Eq. (4.22)] and therefore collapses immediately; the temperature therefore 
rises above the boiling point without the formation of the vapour and, the liquid becomes 
superheated. To ensure a smooth boiling broken glass or porcelain pieces must be added 
to provide surface for the cavity to form.

4.12 SOLUBILITY AND PARTICLE SIZE

Let us consider a substance in equilibrium between the solid 
and its saturated solution (Figure 4.20). The condition of 
equilibrium is
 ms = ml (4.27)

where ms and mi are the chemical potentials of the substance 
in the solid and liquid phases respectively. Since the solid 
phase is pure, ms can be written as:

 ms = m g+o
s S  (4.28)

where mo
s  is the standard chemical potential of the substance 

in the solid phase, g is the surface tension at the solid crystal 
surface and S  is the molar area of the solid. If one mole of 
the solid is assumed to consist of n small cubes of side length 
x then,

The molar volume = =3

3

or .
V

V n x n
x

 The molar area, S  = 2 2
3

6
(6 ) 6 ;

V V
n x x

xx
= ¥ =  

therefore we write Eq. (4.28) as

 ms = 
g

m +
6o

s

V

x
 (4.29)

If the solution is considered ideal and C be the solubility then

 ms = m +o
l RThC  (4.30)

From Eqs (4.27), (4.29) and (4.30), we get

  
g

m m+ = +
6

lno o
s l

V
RT C

x
 (4.31)

Let C0 be the solubility of a giant sized crystal, i.e. with x Æ •; then we write Eq. (4.31) 
as

  m m+ = + 00 lno o
s l RT C  (4.32)

Figure 4.20  A saturated solu  on 

in equilibrium with 

undissolved solid.
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and subtracting Eq. (4.32) from Eq. (4.31), we get

  
6

0

V

xRTC C e

g

=  (4.33)

an equation, exactly similar in form, to the Kelvin equation [Eq. (4.20)]. This shows that as 
the particle size decreases, the solubility C increases even more than the vapour pressure 
of a similar sized liquid drop (because g for some solids are fi ve to six times that of liquids). 
This in turn, means that what is saturated with respect to fi ne solid particles is super-
saturated for bigger particles. This is why, when freshly precipitated solution is kept 
standing in the hot condition over a period of time, the fi ner particles gradually grow in 
size.

4.13  SURFACE TENSION AND TEMPERATURE
In Section 4.1 of this chapter, we have seen that the surface tensions may be defi ned as the 
surface free energy per unit area of the surface, Gs, measured at constant T and P.

 g = s∂Ê ˆ =Á ˜Ë ¯∂ ,

,
T P

G
G

A

differentiating the equation with respect to temperature at constant pressure we get

  
P P

G

T T

sg Ê ˆ∂ ∂Ê ˆ =Á ˜ Á ˜Ë ¯∂ ∂Ë ¯
 (4.34)

Now, if we write ,
P

G
S

T

s
s

Ê ˆ∂
= -Á ˜∂Ë ¯

 then Ss can be interpreted as the surface entropy per 

unit area of the surface (Ss is always positive by the third law of thermodynamics).
Equation (4.34) can therefore be written as

  
P

S
T

sg∂Ê ˆ = -Á ˜Ë ¯∂
 (4.35)

which predicts that, the surface tension decreases with 
increasing temperature. This prediction has in fact 
been experimentally verifi ed with different kinds of 
surfaces, and over wide temperature ranges (Figure 
4.21). The physical interpretation of this variation is as 
follows: as the temperature is increased, the increased 
thermal motions of the molecules of the liquid seem to 
make the cohesive forces among the molecules less 
signifi cant, and now less work is to be done in bringing 
the molecules from the bulk to the surface.

Figure 4.21  Varia  on of g  for diff erent 
liquids with temperature.
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An important relationship between surface tension and temperature may be deduced as 
follows; let v be the specifi c volume of a liquid; its molar volume is then vM, where M is the 
molar mass of the liquid. If the liquid is assumed to be spherical then the molar surface 
area is proportional to (vM)2/3. So the molar surface energy is g (vM)2/3. Experimentally, 
this molar surface energy has been found to vary almost linearly with temperature; so we 
write:

  2/3( )
d

vM k
dt

gÈ ˘ = -Î ˚  (4.36)

where k is a constant; the negative sign indicates that g decreases with increase in 
temperature t. Integrating this equation between limits and remembering that the surface 
tension vanishes at the critical temperature of the liquid, we get, 

  

2/3

0

( )
c

V t

t

d vM k dt

g

gÈ ˘ = -Î ˚Ú Ú

or              g  (vM)2/3 = k(tc – t)

Since the interface gets diffused at a few degrees (normally 6) below tc, the above equation 
is modifi ed as
           g  (vM)2/3 = k(tc – t – 6) (4.37a)

Equation (4.37a) is known as the  Ramsay–Shield–Eötvös relation. The value of k can be 
evaluated by writing Eq. (4.37a) at two different temperature t1 and t2 where the specifi c 
volumes and the surface tensions are v1, g1 and v2, g2, respectively, and then, taking the 
difference:

 k = 
2/3 2/3

2 2 1 1

1 2

( ) ( )v M v M

t t

g g-
-

 (4.38)

The value of k has been found to be 2.1 for a number of normal liquids, e.g. carbon 
tetrachloride, chloroform, benzene, nitrobenzene, ether, ester, etc. For certain liquids, e.g. 
H2O, alcohols, carboxylic acids etc. the value of k has not only been found to be less than 
2.1, it also changes with temperature. It is proposed that, in these liquids, a few molecules 
form a cluster due to hydrogen bonding and the effective molar mass is then xM not M, 
where x is the average number of molecules in the clusters. Equation (4.37a) therefore, 
should now be written as
      g  (vxM)2/3 = k(tc – t – 6) (4.37b)

If the observed value of k for these liquids be k¢, then

 k¢ = 
3/2 3/2

2/3

2.1
or

k k
x

k kx

Ê ˆ Ê ˆ= =Á ˜ Á ˜Ë ¯ Ë ¯¢ ¢
 (4.39)

from which the factor of association x, can be evaluated. Another empirical equation due 
to Guggenheim is 
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 g = 0 1
n

C

T

T
g

Ê ˆ
-Á ˜Ë ¯

 (4.40)

where g0 is an empirical parameter characteristic of the liquid and n is very close to 11/9 
for many liquids.

4.14 THERMODYNAMICS OF SURFACES
Let us consider a system consisting of the phases a and b with the interfacial region s
(Figure 4.22). Although the thickness of the interface due to the short range molecular 
forces is not more than a few molecular diameters, the exact 
value depends on the positions of the boundary planes AA¢ and 
BB¢. We draw these planes subject to the conditions: (i) all the 
properties are uniform in the a-phase right upto AA¢ and also 
those of the b-phase upto BB¢ (ii) within the interfacial region, 
all the properties vary continuously from the pure phase a at 
AA¢ to the pure phase b at BB¢. For example, the concentration of 
a component i ci, being one of the properties of the system, when 
plotted versus the length of the system (assuming it to be a 
cylindrical of uniform cross-section) gives a plot as shown in
Figure 4.23.

Figure 4.23 The placement of the 2-D dividing plane.

There are thermodynamic treatments for this interfacial region of defi nite thickness, but 
here, we will discuss the more simpler treatment of Gibbs in which the interface is modelled 

Figure 4.22  Two phases 

a and b are 
separated by 

thickness s.
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as 2a-dimensional plane (which has no volume). Now, the question is, where to place this 
2-dimensional dividing plane? Before fi nding out the position of this place, let us make 
ourselves clear about two facts. The fi rst is, when we replace the actual 3-dimensional 
interface by a 2-dimensional plane, we understand that then the two phases a and b are 
homogeneous right upto this plane. To understand the second point, let us keep the plane 
at OO¢. The total number of moles of component i, ni, present in this system, is equal to 
the area under the solid curve from Z = 0 to Z = B, times the area of cross-section of the 
cylinder A. But in our model-system of 2-dimensional interface, the number of moles of 
component i in phase a, ni

a is the area of the rectangle abdc times A, area and that in 
the phase b, ni

b is the area of the rectangle defg times A. If we now take the subtraction
ni – (ni

a + ni
b), then what we get is the number of moles of component i present at the 2-d 

interface ni
s. Thus

 ni
s = ni – (ni

a + ni
b) (4.41)

and this is equal to the algebraic sum of the two shaded areas with proper sign. When 
this ni

s is divided by the area of the dividing plane A, what we get Gi = ni
s/A, is called the 

surface excess of the component i. Clearly, the surface excess of a component may be 
positive, negative as well as zero; it all depends on the position of the dividing plane. Now 
let us come to the point of the placement of the dividing plane. Usually it is placed at a 
position for which the surface excess of one specifi ed component, usually the solvent, is 
zero. And after fi xing the position of the plane, the surface excess of the other components 
is evaluated using Eq. (4.41) and with respect to the fi xed plane. If the surface excess of a 
solute, so obtained, is found positive, the solute molecules are said to be adsorbed at the 
interface; on the other hand, if it is found negative, then the solute molecules are said to 
be negatively adsorbed at the surface. In the fi rst case, there is an enrichment of the solute 
molecules at the interface while in the latter the solute molecules tend to depopulate the 
interface and populate the bulk phase. Na+ and K+-salts of long chain fatty acids and 
alcohols in aqueous solution are examples of the fi rst kind, while electrolytes are examples 
of the second kind. Defi ning the concept of adsorption (adsorption is the enrichment of a 
component at the interface compared with the bulk region) quantitatively as the surface 
excess, a thermodynamic relation can be derived between the extent of adsorption and 
the change in surface tension of the solution with concentration. This is the famous Gibbs 
adsorption equation.

4.15  GIBBS ADSORPTION ISOTHERM

For the system in Figs 4.22 and 4.23 under condition of equilibrium, the fi rst fundamental 
equation is:
 dU = TdS – PdV + g dA + Smidni (4.42)

where g is the surface tension, m1 is the chemical potential of the component i, which is 
same everywhere and ni is the number of moles of component i.
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Equation (4.42), written for the a-phase only, takes the form,

 dUa = TdSa – PadVa + Smidni
a (4.43)

and that for the b phase is

 dUb = TdSb – PbdVb + Smidni
b (4.44)

In the above equations, U, Ua and Ub are the internal energy of the whole system, of the 
a-phase and of the b-phase, respectively. Similar is the notation for S, V, P and ni. Adding 
Eqs (4.43) and (4.44) and subtracting it from Eq. (4.42), we get

 d[U – Ua – Ub] = Td[S – (Sa + Sb)] – PdV + Pa dVa + Pb dVb + g dA + Smid[ni – (ni
a + ni

b)]

If we defi ne the internal energy, Us and entropy, Ss of the interface as

 Us = U – (Ua – Ub) and Ss = S – (Sa + Sb)

then the above equation changes to

 dUs = TdSs – PdV + Pa dVa + Pb dVb + g dA + Smidni
s

where ni
s is the number of moles of component i at the interface. If now the interface is 

considered to be planar then P = Pa = Pb which gives,

 dus = TdSs + g dA + Smidni
s

 [∵ V = Va + Vb; the 2 dimensional interface has no volume]   (4.45)

Integrating the above equation while holding T, g and mi fi xed we get,

 us = TSs + g A + Smini
s

which on complete differentiation gives

 dus = TdSs + g dA + Smidni
s + SsdT + Adg + Sni

sdmi (4.46)

and fi nally comparing Eqs (4.45) and (4.46), we get,
 SsdT + Adg  + Sni

sdmi = 0

and under isothermal condition,
 Adg + Sni

sdmi = 0 (4.47)

The above equation for a two-component solution in equilibrium with its vapour (one kind 
of solute in a solvent) is,
 Adg + n1

sdmi+ n2
sdm2 = 0 [suffi x 1 is used for the solvent, and 2 for the solute]

As discussed earlier, n1
s and n2

s depend on the position of the 2-dimensional dividing 
plane, and hence are not experimentally  measurable quantities. As already mentioned 
the adsorption of the solute is measured relative to the solvent, as if, there is no adsorption 
of the solvent molecules at the 2-D interface. The dividing surface is now chosen to be 
situated such n1

s = 0, the above equation then reads

 
sg m+ =2(1) 2  (1) 0Ad n d
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where n2
s

(1) is the relative number of moles of the solute at the interface with respect to 

the solvent (this quantity can be shown to be independent of the exact location of the 
boundary) and is an experimentally measurable quantity. The relative surface excess of 
the solute is defi ned as

 

s

G = 2(1)
2(1)

n

A

which is now expressed as

       2(1)
2

d

d

g

m
G = -  (4.48)

If the activity of the solute in the solution be a, then,
 dm2 = RTd ln a

and using this in the above equation, we get

  
g g

G = - = -2(1)
1

ln
d a d

RT d a RT da
 (4.49)

which, in dilute solution can be written as

       2(1)
c d

RT dc

g
G = -  (4.50)

where C is the molar concentration of the solute. Equations (4.47)–(4.50) are the various 
forms of the  Gibbs adsorption isotherm, and which has been experimentally verifi ed.

Equation (4.50) suggests that G2(1) is positive if the surface tension of the solution decreases 
with increase in concentration and vice-versa. On the basis of the variation of g  versus C, 
solutes are generally classifi ed among three categories. In type I, Figure 4.24, the surface 
tension increases slowly with increase in concentration. 
Examples are aqueous solution of electrolytes. The ions, by 
virtue of the ion-dipole forces, pull the water molecules 
inside the bulk of the liquid and greater work is to be done 
in bringing them at the surface. The surface tension 
therefore increases with increase in concentration; and 
consequently these species and negatively adsorbed at the 
interface.

Type II solutes include most organic compounds that have 
some degree of solubility in water. These molecules, e.g. 
phenol, have a polar group and a non-polar hydrophobic 
part. The polar group is involved in interaction with the 
water dipoles and is attracted inside water and projecting 
the hydrophobic polar group (Figure 4.25) outwards. Due 

I

II

III

g

g 0

C

Figure 4.24  Varia  on of g  for 
diff erent substances 

with concentra  on.
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to an increase in their concentration at the interface, the surface tension decreases. The 
surface excess of these solutes is therefore positive.

Finally, there is the type III solutes; these are Na+ or K+ 
salts of long chain (number of C atoms in the chain > 5) 
fatty acids and alcohols; the surface tension of these 
solutions decreases very rapidly and almost linearly with 
concentration and thereafter remains almost constant. 

For these solutes, 
d

dC

g
 is large negative and the surface 

excess is very high. These solutes, which decrease the 
surface tension considerably by strongly adsorbing at the 
interface are called surface active reagent.

4.16 SURFACE FILMS ON LIQUIDS

There are a number of compounds (type III solutes) having a long hydrophobic chain, 
terminated with a polar head like —COOH, —OH group or 
their Na+, K+ salts. These compounds are either solids or 
liquids with high boiling points: consequently, their vapour 
pressure is also a few mm of Hg. On adding such a substance 
to water, the molecules spread over the water surface; their 
polar heads peep into the water leaving the long hydrophobic 
chain afl oat over the water surface. On increasing the 
concentration, a monomolecular fi lm may be produced 
which corresponds to a compact packing of the molecules, 
all erected vertically, projecting the hydrophobic tail 
upwards (Figure 4.26). This is justifi ed by Figure 4.27, 
where T2(1) for an aqueous solution of sodium dodecyl 
sulphate is plotted versus concentration. The saturation of 
G2(1) reveals the formation of monomolecular fi lm.

Such a surface fi lm is studied in the  PLAWM (Pockels 
Langmuir-Adam-Wilson-McBain) through.

A thin rubber membrane attached to a fl oat separates the clean water from its solution. 
The portion of the rubber membrane inside water is so convoluted that it can buckle easily 
to give an equalisation to any difference of hydrostatic pressure on the either side. Let g0 
be the surface tension of pure water and g  be that of the solution. Since g0 > g, a force, g0 - g, 
which is purely a surface tension in origin, acts per unit length of the fl oat (Figure 4.28). 
This force per unit length is defi ned as surface pressure p.

HO

NO2

Figure 4.25  These substances 

are populated at the 

interface.

Figure 4.26  Hydrophobic 

molecules in aqueous 

solu  on at the Pockels 

point.
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Figure 4.27 The measurement of a monomolecular fi lm.

Figure 4.28 The PLAWM trough.

 p = g0 – g  (4.51)

Exactly in the same manner, as we have explained the pressure of a gas due to the impacts 
of the molecules on the wall of the container, the surface pressure can also be explained 
as due to the bombardment of the solutes on the fl oat during their motion restricted over 
the interface. This force on the fl oat can be measured by a torsion wire attached to it. The 
experiment involves the determination of the surface pressure with decreasing area of 
the solution by moving the rubber membrane to the left. An experimental plot of p versus 
area is shown in Figure 4.29. As the area decreases, the adsorption G2(1) increases; this 
increases the surface pressure. As the area is decreased beyond a certain point, called 
the Pockels point, the surface pressure begins to increase very sharply. At this point, the 
molecules are almost in contact with each other and strongly resist further compression. 
Langmuir found that this area divided by the number of molecules present in the fi lm for 
all long chain fatty acids CH3 (CH2)n COOH, (n = 14, 16 – 26) is independent of the value 
of n and is roughly 21 Å2. The cross-sections of these molecules are therefore equal. Figure 
4.30 gives another interesting feature. The cross-section of the isostearic acid is slightly 
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more than that of stearic acid. This is due to the presence of the bulky tertiary carbon 
atom at the end of the chain. It is also seen that the monomolecular fi lm of tri-p-cresyl 
phosphate is much more compressible than those of stearic and isostearic acids. This is 
probably due to their structural features (Figure 4.31).

Figure 4.29 The varia  on of surface pressure with the area.
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Figure 4.31 Tri-p-cresyl phosphate.

4.17 EQUATION OF STATE OF A TWO-DIMENSIONAL IDEAL GAS

For solutes of type III, it is clear from Figure 4.24 that in the low concentration range 
(before the formation of the monomolecular fi lm), the surface tension bears almost a linear 
relation with concentration:

 Let us write, g = g0 – bc (4.52)

where g and g0 are the surface tensions of the solution at concentration C and, of the pure 
water, respectively, and b is a characteristic constant.

 
g

= -
d

b
dc

 (4.53)

The surface pressure,

 p = g0 - g = bc (4.54)

Therefore from the Gibbs adsorption isotherm,

or

  
2 (1)

2(1)

2(1) 2(1)

;

or

nc d bc

RT dc RT RT A RT

A n RT RT

g p p

p p

¸
G = - = = fi = Ô

˝
Ô= = G ˛

 (4.55)
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which is exactly similar in form with the ideal gas equation PV = nRt or P = CRT. As 
explained earlier, the existence of this 2-dimensional pressure and the 2-dimensional 
concentration and, the similarity of Eq. (4.55) with the equation of state of a ideal gas 
prompts us to say that a surface fi lm is an analogue of a 2-dimensional ideal gas (!). 
Equation (4.55) is therefore called the equation of state of 2-dimensional ideal gas. 
Moreover, again like the gas behaviour, Eq. (4.55) is obeyed only in the limiting condition 
of low G (the surface excess). Furthermore, the curves of p versus A (at fi xed temperature) 
in Figure 4.30 show that they are very similar to the Andrew’s isotherm of P versus V of a 
gas. A 2-dimensional van der Waals equation

  2 ( )
a

A b RT
A

p
Ê ˆ+ - =Á ˜Ë ¯

 (4.56)

may therefore be proposed empirically and tested.

Example 4.5

4.8 mL of glycerol trioleate [olive oil, (C17H33COO)3 C3H5] is found to form a monomolecular 
fi lm of area 2030 m2. Calculate the thickness of the fi lm and the cross-section of each 
molecule. Also calculate T2(1) for the fi lm (given, density of glycerol trioleate is 0.9 gm 
ml–1.

Solu  on

Molar mass of the oil = 884 g mol–1

\  4.8 mL  = 2.95 ¥ 1021 molecules (4.89 ¥ 10-3 mol)

If the thickness of the fi lm be h, then (2030 m2)h = 4.8 cm3 fi h = 23.6 Å

\ Cross-section of each molecule = =
¥

 
2

2
19

2030 m
68.80 A

2.95 10

and 
-

- -¥
G = = ¥

3
10 2

2(1) 2

4.89 10
mole 2.4 10 mol cm

2030 m

Example 4.6

The surface tensions of 0.05 M and 0.127 M solutions of a surfactant  are 67.7 and 60.1 
dyne cm–1, respectively at 20°C. Assuming this lowering of the surface tension with 
concentration as a linear calculate the surface excess of the surfactant at a concentration 
of 0.053 M at this temperature. Also fi nd out p and its equivalent 3-dimensional pressure 
(assume that the diameter of the molecule is 4 Å).
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Solu  on

Assuming the variation of surface tension with concentration as linear,

          g gg -
- -- -

= = = -
-

1
1 12 1

2 1

7.6 dyn cm
98.7 dyn cm M

0.077 M
d

dc c c

\        g

- -
- -

G = -

= - -
¥

2(1)

1 1
7 1 1

(0.053 M)
[ 98.7 dyn cm M ]

(8.314 10 erg K mol ) (293 K)

c d

RT dc

  = 2.15 ¥ 10–10 mol cm–2

\ p =  G2(1)RT = (2.15 ¥ 10–10 mol cm–2)(8.314 ¥ 107 erg K–1 mol–1) (293 K)

  = 5.24  dyn cm–1

The equivalent 3-dimensional pressure is obtained by dividing p with the thickness of the 
molecule (4 × 10–8 cm)

\          
1

8 2
8

5.24 dyn cm
1.31 10 dyn cm 130 atm.

4 10 cm
P

h

p -
-

-= = = ¥ ª
¥

This calculation shows that the lateral compression in the fi lm is alarming at the molecular 
level.

4.18 GAS ADSORPTION AT SOLID SURFACES
In the preceding chapters, we studied the adsorption of solute molecules from liquid 
solutions at the liquid–vapour interface. In this section, we will study the adsorption of gas 
molecules (adsorbate) on the surface of a solid (adsorbent). Intense research in this fi eld 
is now undergoing for the technological development with minimum possible pollution, 
starting from electrical lamps to three-way automobile catalytic converter.

When a molecule approaches a solid surface it experiences a net attractive potential 
energy which is exactly similar to that between two molecules; but at close separation 
it is attracted by a number of closely-spaced solid atoms. However, there is a point at 
which the net attractive potential is the most negative, and the molecule is then said to be 
arrested on the surface, i.e. adsorbed. During this adsorption process,

  + - - ææÆ - -
| |

A

A(g) S S

where A is a molecule in the gas phase, 
|

S- -  is a vacant surface atom and - -
|
A

S  is the 
adsorbed state) which is spontaneous (DG < 0 at constant T and P), the molecule A 
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certainly loses it translational and rotational degrees of freedom; and the entropy change 
of adsorption is therefore negative. The heat of adsorption DHad, which is equal to DGad 
+ TDSad, is therefore negative. In general, adsorption is therefore an exothermic process. 
An exception is the adsorption of H2 on glass, for which DHad is positive. One possible 
explanation is: after adsorption, H2 dissociates and the adsorbed H atoms gain some 
translational mobility over the surface. This makes DSad positive, which in turn makes 
DHad slightly positive.

4.18.1  Physisorption and  Chemisorption

Adsorption in the gas phase is classifi ed either as physisorption or chemisorption. If 
the weak, long range and non specifi c intermolecular van der Waals forces (which are 
responsible for the condensation of a vapour into liquid) are responsible for holding the 
molecules on the surface, then it is called physisorption. Physisorption is therefore only 
important for gases below their critical temperature, i.e. for vapours. On the other hand, 
in chemisorption, the molecules are held over the surface by relatively strong chemical 
bonds (which are very specifi c and short range forces) with the surface atoms and may 
occur at both above and below the critical temperature.

Physisorption is therefore nonspecifi c but chemisorption is highly specifi c. For example, 
N2 can be physisorbed on any surface, provided the temperature is below its critical 
temperature; but N2 can be chemisorbed on Fe, W, Ti, etc., but not on Ag, Ni, Cu, etc. Solid 
gold can chemisorb O2, C2H2, CO but not H2, CO2 or N2.

The heat of physisorption DHphys, is usually less (<35 kJ mol–1) and is of the order of 
the heat of condensation of the vapour. On the other hand, the heat of chemisorption is 
usually much higher (40 – 400 kJ mol–1).

Since during physisorption, there is only a redistribution of the electron density in the 
adsorbate and adsorbent, separately, a physisorbed molecule retains its identity. A 
physisorbed gas may be desorbed by lowering the pressure and increasing the temperature. 
On the other hand, since during chemisorption, there is an exchange of electron density 
between the molecules and the surface atoms, the molecule may dissociate and change its 
identity in the chemisorbed state. For example, when a system of O2 gas adsorbed over 
charcoal is heated, the gas comes out as a mixture of CO and CO2.

The chemisorbed layer is only one molecule in thickness whereas a physisorbed layer 
is multimolecule in thickness. However, physisorption may take place on the top of a 
chemisorbed layer.

The equilibrium of the physisorption is attained very fast whereas the rate of chemisorption 
may be slow and can be increased by increasing the temperature. This fact indicates the 
presence of an activation energy for chemisorption. In fact, it may happen that, a molecule 
fi rst enters into the physisorbed state and then slowly moves into the chemisorbed state. 
Figure 4.32 illustrates some special cases, where the potential energy is plotted as a 
function of the distance of the molecule from the surface.
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Figure 4.32(a)  The molecule AB is fi rst physically adsorbed at point X and then quickly passes on

to the state where dissocia  on and subsequent adsorp  on of the atoms A and B

takes place (point Y).

In Figure 4.32(a), the molecule AB is fi rst physically adsorbed (point X) and then quickly 
moves into a state, in which the atoms A and B are chemisorbed. This is called dissociative 

chemisorption. Here, both the physisorption and chemisorption are fast processes. In
Figure 4.32(b), again the molecule AB is physisorbed and subsequently passes over quickly 
into the non-dissociative chemisorbed state. Again, the rate of both the processes are very 
fast. In Figure 4.32(c), there is a potential barrier between the physisorbed AB molecule 
(point X) and the chemisorbed atoms A and B (point Y). At low temperature, physisorption 
takes place and it is fast. Chemsorption cannot take place at this low temperature because 
the physisorbed AB molecules can not acquire the energy to surmount the barrier from the 
low thermal energy kT. However, when the temperature is increased, the thermal energy 
increases and the physisorbed molecules can now shake themselves off, cross the barrier 
and move into the dissociative chemisorbed state. This passage is therefore an activated 
process and its rate increases with increase in temperature. So, while physisorption is 
always fast, chemisorption may be a slow as well as a fast process. These cases can also 
be understood with reference to Figure 4.33. Figure 4.33(a), where there is no barrier to 
adsorption, is representing the cases in Figure 4.32(a) and 4.32(b). The molecules which 
strike the surface with high kinetic energy, even after a loss, bounce back to the gas phase. 
As the temperature decreases, the average kinetic energy decreases and now they can be 
trapped in the well. In Figure 4.33(b), there is a barrier to adsorption and is a representative 
of the case in Figure 4.32(c). At very low temperature, the molecules are only physically 
adsorbed. On increasing the temperature, some of the molecules now cross the barrier 
and get trapped in the chemisorbed state. Here also, if a molecule strikes the surface 
with very high kinetic energy, it just bounces off the surface. An example of the case in 
Figure 4.32(c) is H2 and Ni. Figure 4.34 shows the temperature dependence of the extent 
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of adsorption. AB is the locus of the normal decrease in the extent of physisorption with 
increase in temperature; this happens in the low temperature range. As the temperature 
is increased, there is a non equilibrium transition from the physisorbed state (called the 
precursor state of chemisorption) to the chemisorbed state, where again the extent of 
adsorption decreases with increase in temperature. On cooling, CB is not retraced but 
some combination of BC and CC¢ is observed.

Figure 4.32(b)  The molecule AB is fi rst physically ad-

sorbed (point X) and is then chemically 

adsorbed (nondissociate) at point Y. 

This is a fast process.

Figure 4.32(c)  The passage from physisorp  on to 

chemisortp  on is slow due tho the 

requirement of the ac  va  on energy Y.

Figure 4.33(a) Chemisorp  on may be a fast as well as a slow process.
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Figure 4.33(b)

Figure 4.34

4.18.2  Adsorption Isotherm

Adsorption studies are done over atomically clean surfaces. However, under ordinary 
conditions, the surface of a solid remains adsorbed by the different gases of the atmosphere. 
Therefore to produce an atomically clean surface, the surface may be heated at ultra high 
vacuum (pressure not exceeding 5 ¥ 10–10 torr) or a crystal may be cleaved under high 
vacuum.
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It is always assumed that, the molecules in the gas phase over the solid are in dynamic 
equilibrium with those in the adsorbed layer. The amount or the volume of the gas adsorbed 
at a fi xed temperature varies with pressure of the overlying gas. An adsorption isotherm 
is an equation which gives this variation at a fi xed temperature.

4.18.3  Freundlich Adsorption Isotherm

It is one of the earliest adsorption isotherms proposed on purely empirical ground:
 v = kPn (4.57)

where v is the volume of the gas adsorbed at the equilibrium pressure P, and k and n are 
constants (0 < n < 1). This shows that the amount of adsorption increases with P, but not 
as rapidly as P. Taking logarithm on Eq. (4.57)
 log v = log k + n log P (4.58)

A plot of log v versus log P is therefore expected to be a straight line with intercept log k
and slope n. The values of k and n can therefore be obtained from such a slope (if the 
equation is found correct!). The Freundlich adsorption isotherm has however been 
found invalid at too high and too low pressures. This isotherm can also be applied to the 
adsorption of solutes from solution. Here, the equilibrium concentration C replaces P and 
the mass of the solute adsorbed per gram of the adsorbent m replaces v:
  m = kCn (4.59)

4.18.4  Langmuir Adsorption Isotherm

In 1918, Langmuir used the kinetic theory to arrive at an equation of adsorption isotherm. 
He assumed that:
 (i) A solid surface is uniform and has a certain number of equivalent sites each of 

which may be occupied by only one molecule of the adsorbate.
 (ii) Once adsorbed, the molecules are localised (that is, the activation energy hindering 

migration to an adjacent site is much greater than the thermal energy kT).
 (iii) The heat of adsorption per site remains constant irrespective of the fraction of the 

sites covered. This means that the adsorbed molecules do not interact laterally 
with each other.

 (iv) Adsorbing molecules are continually colliding the surface. If they impact on a 
vacant adsorption site, it may be adsorbed but if it happens to collide a fi lled site, 
it bounces back into the gas phase.

 (v) A dynamic equilibrium exists between the molecules in the overlying gas and those 
in the adsorbed layer at a fi xed temperature and pressure.

  A non-dissociative adsorption of a molecule can therefore be represented as

  
+ - - - -        

A
| |

A(g) S Sa

d

k

k
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where A is a molecule in the gas phase, 
|

S- -  is a vacant surface site, - -
|
A

S  is the adsorbed 
molecule and, ka and kd are the rate constants for the adsorption and desorption steps, 
respectively. Let N be the total number of sites and say q be the fraction of these sites 
occupied at some instant when the pressure in the gas phase is P. The number of vacant 
and fi lled  sites at this instant are therefore, (1 – q) N and Nq, respectively. The rate of 
adsorption va is directly proportional to the rate of striking of the molecules on the surface 
and to the number of vacant sites. The fi rst of these two factors depends on the pressure 
of the gas at a fi xed temperature. Therefore, the rate of adsorption is give by:
  va = ka P(1 – q)N (4.60)

The rate of desorption vd depends (at a fi xed temperature) on the number of occupied sites 
Nq. So,
  vd = kd Nq (4.61)

At equilibrium, these two rates are equal;
  va = vd

  ka P(1 – q)N = kd Nq

or 
1 1

, where ,a

d

k
K

KP k

q

q

-
= =  the equilibrium constant of the adsorption,

or  
1

KP

KP
q =

+
 (4.62)

This q is called the surface coverage.

Surface coverage, q 
no. of sites filled up at equilibrium 

total number of sites present on the surface
=

Equation (4.62) is the Langmuir adsorption isotherm which gives the variation of the 
surface coverage with pressure.

In the limit 0, 0
1

KP
P

KP
qÆ = =

+

In the limit KP << 1, when the pressure is very low, q = ª
+1 very small no.

KP
KP

In the limit KP >> 1, when the pressure is very high, 1
1

KP

KP
q = ª

+
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Figure 4.35 Plots of q vs r at temperatures 300 K, 400 K and 500 K for CO on charcoal.

These features are shown in Figure 4.35. Initially q increases linearly with pressure; 
at intermediate pressures, the linearity is broken, but q goes on increasing and fi nally 
approaches unity asymptotically at very high pressure. The Langmuir adsorption isotherm 
can also be written as

  1 1
1

KPq
= +  (4.63a)

and which can be experimentally verifi ed by plotting 1/q versus 1/P. Adsorption of different 
gases on different solids will have different slopes, but their intercepts are all expected to 
be unity. This has experimentally been confi rmed for a number of cases  (Figure 4.36). More 
generally, the adsorption study is made by measuring the volume of the gas adsorbed. If v 
be the volume of the gas adsorbed when the surface coverage is q and vm be the volume of 
the gas adsorbed when infi nitely high pressure is applied, i.e. when q = 1, and a complete 
monolayer formed then

  
1m

v KP

v KP
q = =

+
 (4.63b)

and the Langmuir adsorption isotherm can be put in the form

  
1

m m

P P

v v K v
= +  (4.64)

An experimental verifi cation of this equation is possible by plotting P/v vs. P. A straight 
line with positive slope and intercept is obtained (Figure 4.37). From the inverse of the 
slope, vm, the volume required to form a complete monolayer can be evaluated from which 
the surface area of the solid can be estimated.
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Figure 4.36 Plots of 1/q versus 1/r for O2 and CO on silica.

P

p/n

Figure 4.37 A verifi ca  on of the Langmuir adsorp  on isotherm.

4.18.4.1  Determination of the Surface Area of a Solid from Langmuir 

Adsorption Isotherm

A plot as given in Figure 4.37 is fi rst made. From its slope, vm is evaluated and then 
reduced to NTP. The number of molecules present in vm (in ml at NTP) volume of the 

gas is 0(in ml at NTP)
,

22414
mV N

 where N0 is the Avogadro number. If the cross-section 

of each molecule, A, is known, a priori, then the surface area per gram of the solid is  
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= 0(in ml at NTP) A
22414(m)

mv N
S ; m is the mass of the solid used. This specifi c surface area 

S is one of the fundamental parameters used in choosing the appropriate surface in 
heterogeneous catalysis.

4.18.4.2  Isosteric Heat of Adsorption

It has already been mentioned that adsorption is an exothermic process. The heat of 
adsorption is usually measured calorimetrically by determining the amount of heat 
evolved when a certain amount of gas is allowed to adsorb on a clean surface. When 
this measurement is made at different surface coverages and the heat of adsorption so 
obtained, plotted versus q, a cure as shown in Figure 4.38 is observed. The fi gure clearly 
shows that DHad is not actually independent of the surface coverage (so the third postulate 
of Langmuir is not correct). One reason is that as the surface coverage increases, the 
closely packed adsorbed molecules may laterally interact with each other and change the 
heat of adsorption. In order to take into account the effect of this lateral interaction, the 
isosteric heat of adsorption, which is the enthalpy of adsorption at a fi xed surface coverage 
q, is defi ned as:

  
q

D∂Ê ˆ =Á ˜Ë ¯∂
ad
2

ln HK

T RT
 (4.65)

q

DHad

Figure 4.38 The heat of adsorp  on varies with the surface coverage

Since the equilibrium constant of adsorption K changes with temperature different 
curves of q versus P is obtained at different temperatures (Figure 4.39). This temperature 
dependence of K can be used in determining the isosteric heat of adsorption. From
Eq. (4.62), we can write,
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1
1

K
P

q

q
=

-

taking logarithm on both sides,

  ln ln ln
1

K P
q

q
= -

-

and differentiating with respect to temperature at constant q,

  
ln lnK P

T Tq q

∂ ∂Ê ˆ Ê ˆ= -Á ˜ Á ˜Ë ¯ Ë ¯∂ ∂

and combining with Eq. (4.65), we get,

  q
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ad
2

ln HP

T RT
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È ˘
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adln
1
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R

T

 (4.66)

As shown in Figure 4.39, from the isotherms at different temperatures, ln P data are 
plotted versus 1/T corresponding to a fi xed q; the plot will be a straight line (Figure 4.40) 
whose slope is DHad/R. The measurement of the slope of this plot enables us to calculate 
the isosteric heat of adsorption. The free energy of adsorption DGad, can be calculated 
directly from the value of K (obtained by dividing the slope of the line in Figure 4.37 by 
its intercept) and, this value can be combined with isosteric heat of adsorption to evaluate 
the entropy of adsorption.

Figure 4.39 Determina  on of isosteric heat of adsorp  on, T1 > T2 > T3 > T4.

            P1, P2 and P3 are the pressures for a fi xed at q temperatures T3, T2 and T1.
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Figure 4.40 Plot of ln P versus 1/T the (from the data of Figure 4.39)

4.18.4.3 Langmuir Adsorption Isotherm for a Dissociative Adsorption

As explained earlier, if a diatomic molecule undergoes fragmentation into the atoms 
during adsorption then the form of the Langmuir adsorption isotherm would be slightly 
different. The process is now represented as:

  
+ - - - - - -        

| |

2
| | | |

A A

A (g) S S S Sa

d

k

k

The rate of adsorption is again proportional to the pressure of the overlying gas, but 
now, when two sites are required for adsorption, the rate is second order in N(1 – q); 
therefore,
  va = ka PN2(1 – q)2 (4.67)

Similarly, two adsorption sites are required for desorption and therefore, the rate of 
desorption

  vd = kd N2q2 (4.68)

At equilibrium,
  va = vd

  ka PN2(1 – q)2 = kd N2q2

or  
1

KP

KP
q =

+
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The variation of q with pressure is again almost similar to that in the non-dissociative 
case (Figure 4.35) but the dependence is now much weaker.

Example 4.7

When two different molecules A and B compete for the same sites of a surface, derive 
expressions for the surface coverages qA and qB of the two kinds.

Solu  on

Let the partial pressure of the gas A be PA and that of the gas B be PB. Let qA and qB are 
the fractions of the total sites adsorbed by A and B molecules, respectively, at equilibrium. 
Then the condition of equilibrium of the gas A is given as:
  (1 )dA A aA A A Bk N k P Nq q q= - -  (I)

and that of gas B is
  q q q= - -(1 )dB B aB B A Bk N k P N  (II)

Solving these two simultaneous equations for qA and qB, we fi nd

  

and
1 1

A A B B
A B

A A B B A A B B

K P K P

K P K P K P K P
q q= =

+ + + +

where  = =andaA aB
A B

dA dB

k k
K K

k k

4.18.5  BET Isotherm
One of the restrictions in using Langmuir adsorption isotherm is that it does not allow 
for the possibility that the adsorbed fi lm thickness may be more than one molecule. There 
are ample examples where multilayer formation takes place, and then the enthalpy of 
adsorption in the fi rst layer will be certainly different from the enthalpy of adsorption in 
the higher stacks (the strength of adsorbent-adsorbate bond is certainly different from 
the adsorbate-adsorbate bonds). Langmuir adsorption isotherm is best in analysing the 
data of chemisorbed systems where the adsorbed layer can not go beyond one molecule. 
In fact, there are fi ve different kinds of adsorption isotherm (Figure 4.41). The type-I can 
only be explained by the Langmuir adsorption isotherm. This type is typically observed 
in chemisorption. Type-II is very common, particularly in physisorption, where multilayer 
formation takes place. Type-III curves are relatively rare and apparently correspond to 
situations where the heat of adsorption is either equal or less than the heat of condensation 
of the vapour. Examples of type-III are: adsorptions of N2 on ice, adsorption of H2O on 
graphitized carbons or polyethylene. In both the types (II and III), the curve approaches 
the line at P0, asymptotically. The behaviour in types IV and V is indicative of the process 
of capillary condensation and may exhibit hysteresis effect. Again, by introducing some 
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simplifying assumptions, Brunauer, Emmett and Teller (BET) modifi ed the Langmuir 
adsorption isotherm. The assumptions are:
 (i) The surface contains some defi nite number of equivalent sites of uniform energy.
 (ii) Stacking of molecular layers can take place on the fi rst layer. That is, second layer 

adsorption can take place on the top of the fi rst, third on the top of the second: 
fourth on the top third and so on. 

 (iii) A dynamic equilibrium exists between the molecules of any two successive layers.
 (iv) The heat of adsorption in the fi rst layer is DHad, which depends on the nature of the 

adsorbate and the adsorbent, but that in the 2nd, 3rd, 4th, etc. layers are all equal, 
and is equal to the heat of condensation of the vapour.

Figure 4.41  The fi ve kinds of isotherm. P0 is the saturated vapour pressure. The type VI kind is a very 

recent type observed for noble gas adsorp  on on well defi ned uniform solids such as 

highly oriented pyroly  c graphite.
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4.18.5.1 Derivation of BET Adsorption Isotherm

Consider the equilibrium between adsorption and desorption in the fi rst layer:
  A(g) + S   AS

If ka1 and kd1 are the rate constants for the adsorption and desorption processes and q0 and 
q1 are the fractions of the surface sites lying vacant and, fi lled up by one molecule layer, 
respectively, then

  ka1 P(q0) = kd1 q1, where P is the pressure of the overlying gas

or           1 1 1
1

1 0

a

d o

k
K

k P P

q q

q q
= fi =  (4.69)

If this was the only story then, Eq. (4.69) would be 

  q

q
=

-1 (1 )
K

P

where q is the surface coverage. Rearrangement of this equation gives:
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the Langmuir adsorption isotherm [(Eq. 4.63(b)].

K1 is the equilibrium constant of adsorption in the fi rst layer. Now, consider the formation 
of the second layer:
  A(g) + AS   A2S

Exactly, as before we fi nd

  2
2

1

K
P

q

q
=  (4.70)

where q2 is the fraction of the surface sites which are covered with an adsorbed layer of  
two molecules in thickness, and K2 is the corresponding equilibrium constant. Going on 
building stacks one above the other we write:
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where qn is the fraction of the surface sites covered by an adsorbed layer of n-molecules in 
thickness.

From the fourth postulate, we fi nd that the equilibrium constant K2, K3, ..., Kn are all 
equal (this is justifi ed because the force with which a molecule is held on the third layer is 
not different from that which holds a molecule in the fourth layer; they are all adsorbate 
forces) and equal to that of the condensation of the vapour; that is:
  K2 = K3 = … = Kn = K

where K is the equilibrium constant of the process:

 0 0
0

1
vap ( ) Liquid ; ;P K P

P
=  is the saturated vapour pressure (4.72)

From Eqs (4.70) and (4.71), we find
  q2 = q1KP, q3 = q2 KP = q1(KP)2; q4 = q1(KP)3

and hence in general
  qn = q1(KP)n – 1 (4.73)

The sum of q0 and all the qn¢s is unity, i.e.
  1 = q0 + Sqn

or  1 = q0 + {q1 + q1(KP) + q1 (KP)2 + …}

or  1 = q0 + q1 {1 + (KP) + (KP)2 + …}

or  1 1 1
1

1 1

1
1
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q
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 (4.74)

where C = K1/K. Let Nm be the total number of surface sites present over the surface, and 
N be the total number of molecules adsorbed on the surface, then

  N = Nm [1.q1 + 2q2 + 3q3 + …]

or        2
1[1 2 3( ) ] using Eq.

m

N
KP KP

N
q= + + +  (4.73)
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or  N/Nm = CKP/[1 + (C – 1) KP] [1 – KP] (4.75)

If v be the total volume of the gas adsorbed over the solid and vm be the volume of the gas 
required to form a complete monolayer then

  m m

N v

N v
=

with which Eq. (4.75) changes to

  
=

+ - -[1 ( 1) ][1 ]m

v CKP

v C KP KP

and using Eq. (4.72),
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or  0 0( ) [1 ( 1) / ]
mv C P

v
P P C P P

=
- + -

 (4.76)

which is the BET adsorption isotherm. This equation clearly shows that V Æ a as P Æ 

P0 (this is observed in types II and III curves). An immediate explanation is that as the 
saturated vapour pressure is approached, the adsorbed layer seems to change into the 
liquefi ed state of the vapour, which would otherwise occur at P0 in absence of any surface. 
Equation (4.76) can also be written as

  0 0

1 (C 1)
( ) m m

P P

v C v Cv P P P

-
= +

-
 (4.77)

which demands that a plot of 0( )
P

v P P-
 versus P/P0 will be a straight line with slope 

( 1)

m

C

v C

-
 and intercept 

1
.

mv C
 Taking the inverse of the sum of the slope and intercept, 

we can get the value of vm. In many cases, this expectation has been found correct, and 
therefore, as we have done earlier, for such surfaces, the specifi c surface area of the solid 
can be estimated if the cross section of each molecule is known, a priori.
The adjustable parameter C, as it is called, can be correlated to the heat of adsorption in 
the fi rst layer DHad, and the heat of condensation DHC as follows:
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where DG°, DH° and DS° are the standard free energy, enthalpy and entropy of adsorption. 
With suffi x 1, they refer to the fi rst layer, and with suffi x C, they refer to the next successive 
layers, or the process of condensation. Without much error, it can be argued that wherever 
a molecule is adsorbed, it always loses the entropy to the same extent irrespective of, in 
which layer it is trapped, i.e. 1 .CS S∞ ∞D ª D  The above equation therefore changes to

  ( )
exp ad CH H

C
RT

∞ ∞Ï ¸D - DÔ Ôª -Ì ˝
Ô ÔÓ ˛

 (4.78)

4.18.5.2 Explanation of the Five Kinds of Adsorption Isotherms by BET Equation

Type I  We know that the curve of this type represents a purely chemisorbed state 
where the thickness of the adsorbed layer is only one-molecule. This happens 
at a pressure much lower than the saturated vapour pressure (P° >> P). 
Furthermore, the enthalpy of adsorption in the fi rst layer is also much greater 
than the entahlpy of condensation, i.e. C >> 1. Moreover, since we have seen 
that the Langmuir adsorption isotherm can explain this kind of curve, it is 
possible to derive the Langmuir equation from the BET under this condition 
of C >> 1 and P° >> P. We do it as follows:

  P° >> P fi P° – P ª P° and as C >> 1 fi C – 1 ª C
  With these results, Eq. (4.77) changes to

  1

1 1 1

m m m m m m

P P P P P P P

vP v C v P v v C v v v K v

∞
= + fi = + fi = +

∞ ∞

  which is the Langmuir equation.
Type II When C is greater than unity which is possible if DHad > DHC, the curves 

of Type II are obtained. Adsorption, here takes place, preferentially on the 
fi rst layer; and after almost complete formation of the monolayer, which is 
indicated by the knee of the curve, multilayer formation takes place.

Type III If DHad < DHC, C will be less then unity. Under this condition, curves of 
Type III are observed. Here, multilayer formation takes place from the very 
beginning.

Type IV and Type V
  These curves are, as such, very diffi cult to explain from the BET equation. 

However, the similarity of Types II and III with the fi rst part of IV and 
V, respectively, suggests that DHad > DHC for Type IV and DHad < DHC for
Type V. But, in contrast to the steep increase in adsorption for types II and III
as P° is approached, there is a saturation in Types IV and V well before P° 
is reached. This is due to the condensation of the vapour within capillaries 
(which may be present in the solid just under its skin) of pore size not exceeding 
5 nm. Recall from the Kelvin equation that the vapour condenses at a pressure 
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much lower than the saturated vapour pressure inside a capillary if the liquid 
wets the surface.

4.19 RATE OF SURFACE ADSORPTION

The surface of a solid has about 1015 atoms per square centimetre, and the Langmuir 
equation assumed that each of these atoms, i.e. a surface site, can hold-on one adsorbate 
molecule. Now, if a molecule strikes the surface, it is not that it will be immediately 
adsorbed. If the energy of the striking molecule could be dissipated as heat, the molecule 
will be adsorbed; otherwise, the molecule will translate over the surface until a vibration 
knocks it off the surface to the overlying gas again. The sticking probability S, is defi ned 
as the fraction of the total number of strikes on the surface that leads to a successful 

adsorption.

  
rate of adsorption of molecules on the surface

rate of striking of molecules on the surface
S =  (4.79)

The denominator can be calculated using the kinetic theory of gas and the numerator can 
be calculated using various techniques, e.g. by measuring the rate of decrease of pressure 
of the gas with time. According to Langmuir adsorption isotherm,

  0
(1 )

(1 )a
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k N
S S

Z

q
q

-
= = -  (4.80)

where ka is the rate constant of adsorption, N is the total number of sites present on 
the surface and ZW is the striking rate of the molecules on the surface; the parameter
ka N/ZW is fi nally replaced by S0, the sticking probability at q = 0.

Example 4.8

Calculate the maximum rate of adsorption of oxygen molecules over a clean metal surface 
at 298 K and at a pressure 10–6 Torr. Assume that there are 1015 atoms per cm2 of the 
surface.

Solu  on

Maximum rate of adsorption means striking probability S = 1.

Form the result in kinetic theory, 1
4WZ n c= · Ò

 

- - --
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Therefore the maximum rate of adsorption

  
14 2 1

15 2

3.6 10 cm s
0.36

10 cmav
- -

-

¥
= =  sites per sec.

Therefore in one second, 36 percent of the surface will be covered by the monolayer.

This express the exposure of a surface towards the gas, the surface scientists have defi ned 
the unit:  1 Langmuir = 10–6 Torr s. The above problem shows that, the exposure of surface  
to 1 Langmuir leads to 36 percent of surface coverage. The exposure of the surface to two 
Langmuir (i.e., a 2 second exposure at a pressure of 10–6 Torr or one second exposure 
at a pressure of 2 ¥ 10–6 Torr) would then result in 72 percent surface coverage. In the 
above calculation, we have considered the sticking probability to be unit; in fact it is less 
than one. So the maximum rate of adsorption is less than the above value. For example, 
if the sticking probability is 0.8, then the maximum rate of adsorption would be 36 ¥ 0.8 
= 28.8 percent surface coverage at one Langmuir. Moreover, as Eq. (4.80) suggests, the 
sticking probability decreases linearly with the surface coverage, and therefore, in the 
above example (28.8 ¥ 2 = 57.6 percent surface coverage needs more than two Langmuir, 
i.e. longer than 2 seconds at 10–6 Torr pressure. Figure 4.42 shows the variation of sticking 
probability with surface coverage. It is found that S does not fall linearly with q; sometimes 
it falls off too sharply and sometimes too slowly. The former is generally observed in 
dissociative chemisorption, where the adsorption of one molecule fi lls up two vacant sites. 
The slow variation of S with q can be explained as follows: Langmuir assumed that when a 
molecule strikes a fi lled site, it rebounds back into the gas phase. But in fact, the molecule 
could be physically adsorbed on the chemisorbed layer, spend some time moving over 
the surface until either it fi nds a vacant site and gets adsorbed or really kicked off the 
surface.

Figure 4.42 The varia  on of S with q.
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Example 4.9

Calculate the rate of adsorption of hydrogen (assume dissociative chemisorption) at a 
pressure of 10–9 Torr and 300 K on the (110) plane of a body-centred cubic lattice. The unit 
cell has a side length of 316 pm and the sticking probability is 0.6.

Solu  on

The rate of striking of the molecules on the surface at 1 ¥ 10–9 Torr and 300 K is

  

01 1 8
4 4W

P N RT
Z n C

RT Mp
= · Ò =

  = 1.43 ¥ 1012 cm–2 s–1

The (110) plane of the unit cell of the body centred lattice contains 1 + 1/4  ¥ 4 = 2 atoms. 

The area of this plane is 22a  which is 12 2 15 22 (316 10 m) 1.412 10 cm- -¥ = ¥

Therefore, the number of sites (i.e. atoms) per unit area of 110 plane is

  

15 2
15

number of atoms 2
1.416 10 sites cm

area 1.412 10
-

-= = ¥
¥

Assuming the striking probability to be unity, the rate of adsorption is then

  

12 2 1
3 1

15 2

rate of hit per unit area1.43 10 cm s
1 10 s

no. of sites per unit area1.416 10 cmav
- -

- -
-

Ê ˆ¥
= ª ¥ =Á ˜Ë ¯¥

Now remember that the striking probability is not unity, it is 0.6. So the rate will be 
lower,
  va = 0.6 ¥1 ¥ 10–3 s–1 = 6 ¥ 10–4 s–1

and fi nally, since the adsorption is dissociative, each molecule on adsorption occupies two 
vacant sites. So, the rate of formation of the monolayers in one second is 1.2 ¥ 10–3 s–1.

4.20 RATE OF DESORPTION AND RESIDENCE TIME

The rate constant of desorption kd, has a special signifi cance. If an adsorbed molecule is to 
bounce off the surface, it has to have an energy greater than or equal to the depth of the 
potential well of the adsorbed state, i.e. –DHad. Let us call this energy Eact. The desorption 
therefore needs an activation energy, and the temperature dependence can be expected to 
be Arrhenius type:

  
act adE H

RT RT
dk A e A e

D
-

= =  (4.81)
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where A is a constant. Assuming the desorption process to be fi rst order, the average life 
time of a molecule in the adsorbed state is therefore

  0
1 adH

RT

d

e
k

t t

D
-

= =  (4.82)

where t0 is some constant (mind that, DHad contains its own sign). This average life time 
of a molecule in the adsorbed state is called the residence time t. It is also clear from the 
above equation that the residence time in the chemisorbed state is much longer than that 
in the physisorbed state, and, in any case, the residence time decreases with increase in 
the temperature.

Example 4.10

Calculate the residence time of CO on palladium surface when it is (a) physically adsorbed 
and (ii) chemically adsorbed at 300 K. Given DHphy = 25 kJ mol–1 and DHchem = –146 kJ 
mol–1. The value of t0 is 1 ps for the physisorbed state and 100 ps in the chemisorbed 
state.

Solu  on

When it is physically adsorbed the residence time is given by:
 t = (1 ps) exp {25000/8.314 ¥ 300}

  = 2.3 ¥ 10–8 s

when it is chemically adsorbed,
 t = (100 ps) exp {146000/8.314 ¥ 300}

  = 2.6 ¥ 1015 s

4.21  TEMPERATURE PROGRAMMED DESORPTION (TPD)

Today, a number of different surface sensitive spectroscopic techniques are available to 
make the study of surface science more clear at the atomic and molecular level. Temperature 
programmed desorption (TPD) is one of such techniques. In the TPD, a gradual change in 
temperature is applied to the system and the rate of desorption is measured as a function 
of temperature. The fi nal analysis of the data depends on the kinetics of desorption. In 
the following we give an outline of this novel experiment assuming a fi rst order desorption 
rate.

The temperature of the sample of a solid covered with the adsorbed layer is increased by 
heating the sample in such a manner that the temperature T bears a linear relation with 
time t.
  T = T0 + bt (4.83)



4.56 Physical Chemistry

where T0 is the initial temperature and b is the constant rate at which the temperature is 
increased with time. There is also a provision of measuring this temperature continuously 
(a thermocouple junction is normally used). Finally, there is also a detector (the most 
modern laboratories have a quadrupole mass spectrometer for this purpose) to monitor 
the rate of desorption of the molecules from the surface. The thermocouple output (X) and 
the mass spectrometer output data (Y) are then fed into an X–Y recorder (Figure 4.43). The 
mass spectrometer data basically give the rate of desorption and apparently it may seem 
that this rate would increase in an Arrhenius manner with the increase in temperature. 
However, the actual result is that the count fi rst increases and then forming a maximum 
decrease. This is due to the following reason. The rate of desorption (assuming a fi rst order 
rate law) is given by:

  
| |
A

S S A(g)- - Æ - - +

  

[ ]
[ ]d

d SA
k SA

dt
- =

Figure 4.43 Spectrum of a TDP experiment.

With increase in temperature, kd increases exponentially but the surface coverage 
decreases (because adsorption is exothermic); so the net variation is convolutions of these 
tow factors (Figure 4.44).

Using Eq. (4.82), the above equation can be written as:

  
ad

1
0 ad

[ ]
[ ] ( contains its own sign)

H

RT
d SA

SA e H
dt

t

D
-- = D  (4.84)
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Figure 4.44 A TDP spectrum.

Now  
d dT d

dt dt dT
=

or  [(from Eq. (4.83)]
d d

dt dT
b=

Therefore from Eq. (4.84),

  
ad1

0[ ]
[ ]

H

RT
d SA

SA e
dT

t

b

D-

= -  (4.85)

As we have already mentioned, the rate desorption, i.e. 
[ ]

,
d AS

dT
-  shows a maximum, 

when plotted versus T. Differentiating Eq. (4.84), with respect to temperature T, we get

  

ad
1 ad

0 2

[ ] [ ]
[ ]

H

RT
SA Hd d d AS

AS e
dT dt dtRT

t

D
- DÈ ˘Ê ˆ- = - +Á ˜ Í ˙Ë ¯ Î ˚

and using Eq. (4.85),
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1 ad 0

0 2

[ ]
[ ] [ ]

H H

RT RT
Hd ASd

e AS AS e
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b

D D-
-
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at the maximum, where T = Tmax, the left hand side of the above equation is zero. This 
gives us:

  

ad1
ad 0

2
m

H

RT

m

H
e

RT

t

b

D-D
= -

or  
act2

act
act1

0

[ ]m

E

RTm
ad

E T
e E H

R bt

D

- = = - D∵

or  act act
1

0

ln 2 ln lnm
m

E E
T

RTR
b

t - = - -

fi  act act
1

0

2 ln ln lnm
m

E E
T

RT R
b

t -- = +  (4.86)

The experiment is repeated at several different fi xed rates of increase in temperature with 
time b, and the corresponding Tmax is noted. Then from a plot of (2 ln Tmax – ln b) versus
(1/Tmax), which is expected to be linear, Eact and hence DHads Had, is evaluated from the 
slope. The parameter t0 can also be evaluated from the slope and intercept of the plot.

PROBLEMS
 4.1 Calculate the minimum work required to expand the surface of water from 10 to 15 

cm2 at 27°C. At this temperature, the surface tension of water is 72 dyn cm–1.
   [Ans.: (360 erg)]
 4.2 One cm3 of Hg, initially in the spherical shape is broken down into 125 tiny droplets 

of equal size. Calculate the Gibbs free energy change of the process. The surface 
tension of Hg at 25°C is 0.484 Nm–1. [Ans.: 9.36 × 10–4 J]

 4.3 A glass capillary of internal diameter 0.5 mm is dipped into water vertically. If the 
surface tension of water be 72 dyn cm–1 then calculate the capillary rise (q = 14° 
and rwater = 1 g cm–3. [Ans.: 5.7 cm]

 4.4 Repeat problem 3 by assuming q = 0 and compare the results. [Ans.: 5.87 cm]
 4.5 For Hg-air interface on glass, q = 140°. Calculate the depression of Hg inside a 

capillary of internal radius 2 mm at 20°C; rHg = 13.6 g cm–3 and g = 490 dyn cm–1. 
 [Ans.: –0.28 cm]

 4.6 At 25°C, methanol has g = 22 dyn cm–1, r = 0.7914 g cm–3. If a capillary of internal 
diameter 0.6 mm be dipped into methanol obliquely making an angle of 30° with 
the liquid surface then calculate the length of the capillary through which methanol 
rises up. [Ans.: 3.8 cm]

 4.7 Two glass sheets, kept parallel to each other at 0.2 mm separation, are dipped into 
water vertically. Neglecting the effects at the edge, calculate the height through 
which water rises up.

  g = 72 dyn cm–1, rwater = 0.987 g cm–3 and q = 14°. [Ans.: 14.4 cm]
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 4.8 Consider Problem 4.4; after the water rises up along the capillary, a glass rod of 
diameter 0.4 mm is put into the capillary axially. Now calculate the capillary rise 
between the inner surface of the capillary and the glass rod. Use the same data as 
in Problem 4.4. [Ans.: 32.62 cm]

 4.9 What happens to the level of water inside a capillary of 0.4 mm diameter when 
another capillary of diameter 0.6 mm is dipped into the same bulk of water? At 
20°C, rW = 0.9942 g cm–3 and g = 72 dyn cm–1. [Ans.: Dh = 2.46 cm]

 4.10 Two bubbles of radii 1 and 4 cm are connected by a hollow tube. Will the arrangement 

be stable? If not, what happens? 
È ˘=Í ˙Î ˚

4
cm

3
Ans.: R

 4.11 At 20°C, the surface tension at the interface between n-butylalcohol and 
water is 1.8 dyn cm–1. The densities of n-butylalcohol and water are 0.81 and
0.990 g cm–3 respectively. Assuming q = 0, calculate the capillary rise for an internal 
diameter 0.5 mm, inserted vertically into this two phase water-n-butylalcohol 
system. [Ans.: 0.815 cm]

 4.12 A capillary of radius 0.5 mm is dipped into water so that its tip is at 1 m under the 
water-air interface. What is the maximum pressure required to form a cavity of 
radius equal to that of the capillary? = 72 dyn cm–1, r = 1 g cm–3.

   [Ans.: 0.0996 atm]
 4.13 Under 1 atm external pressure and isothermally at 25°C, two bubbles of a soap 

solution of radii r1 and r2 stick together, with a fi lm between them of radius r. 

Express r in terms of 
Ê ˆ

= -Á ˜Ë ¯1 2
1 2

1 1 1
andr r

r r r
.

 4.14 At 20°C, the interfacial tension between diethylene glycol and water is 57 dyn 
cm–1. If for water–vapour and diethylene glycol—vapour interfaces, g are 72 and 
31 dyn cm–1, respectively, then calculate:

  (i) the work of adhesion between diethylene glycol and water.
 [Ans.: 46 erg cm–2]
  (ii) the work of cohesion of the two liquids.
   [Ans.: 62 erg cm–2; 144 erg cm–2]
 (iii) the spreading coeffi cient of diethylene glycol on water. [Ans.: –16 erg cm–2]

 4.15 Show that 
, ,A T P T

V

P A

g∂ ∂Ê ˆ Ê ˆ=Á ˜ Á ˜Ë ¯ Ë ¯∂ ∂

  A–area, V–volume, g –surface tension.
 4.16 Eighty four drops of water are formed from a stalagmometer, while 92 drops of 

another liquid are formed from the same stalagmometer. If the densities of water 
and the liquid are 0.9987 and 0.6632 g cm–3, respectively, and if gwater = 72 dyn 
cm–1, then calculate the surface tension of the liquid.

   [Ans.: 43.65 dyn cm–1]
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 4.17 Liquid benzene has a surface tension of 28.88 dyn cm–1 at 20°C, which decreases 
to 23.61 at 61°C. The densities at these two temperatures are 0.8787 and 
0.8330 g cm–3, respectively. Calculate the Ramsay Shield Eötvös constant and the 
critical temperature of benzene.  [Ans.: 2.14]

 4.18 Calculate the net force required to pull up a ring of diameter 5 cm from just under 
the surface of water if g = 72 dyn cm–1. 

   [Ans.: mg + 2260.8 dyn; m is the mass of the ring]
 4.19 Calculate the vapour pressure of a spherical droplet of water of radius 1000 Å at 

20°C. The saturated vapour pressure of water at this temperature is 2.3 kPa and 
its density is 0.9982 g cm–3 and g = 72 dyn cm–1. [Ans.: 2.325 kPa) or (17 mm Hg]

 4.20 What is the vapour pressure of water inside a cavity of radius 0.1 mm produced 
inside a bulk of water at 20°C. Use the other required data from Problem 4.19.

   [Ans.: 2.3 kPa]
 4.21 At 20°C, the vapour pressure of bulk water is 2.3 kPa. The surface tension is 72 

dyn cm–1 and density is 0.9982 g cm–3. Calculate the vapour pressure of tiny water 
droplets of radius 10–7 cm. What is the critical size of the droplet beyond which 
condensation will take place spontaneously?  [Ans.: 6.68 kPa; 10.66 Å]

 4.22 If the solubility of the course crystals of AgI be 1 × 10–8 M at 25°C then calculate 
the same for fi ner crystals (assumed to be of cubical shape) of edge length 100 Å. 
At this temperature, g = 0.6 Nm–1 and r = 5 g cm–3. [Ans.: 9.21 × 10–6 M]

 4.23 The surface tension of a 0.05 M aqueous solution of sodium dodecyl sulfate is 54.5 
dyn cm–1 whereas that of pure water is 72 dyn cm–1 at 20°C. Calculate the surface 
excess of a 0.03 M solution, assuming that a plot of g    versus C is linear. Also 
calculate the surface pressure at this concentration.

   [Ans.: 4.2 × 10–10 mol m–2, 0.733 atm]
 4.24 Stearic acid CH3(CH2)16 COOH, has a density of 0.94 g cm–3. 10 mg of the acid 

forms monomoleculer fi lm of area 4.452 × 104 cm2. Calculate the cross-sectional 
area and length of the hydrocarbon chain. [Ans.: 21 Å; 23.8 Å]

 4.25 The adsorption of a diatomic gas on a solid surface is described by the Langmuir 
adsorption isotherm with K = 10 atm–1. Calculate the surface coverage at 1 atm. 
Calculate the pressure at which the surface coverage is 25% and 75% considering 
(i) non-dissociative, and (ii) dissociative process. Compare the results. 

   [Ans.: (i) 0.33 atm for 25% and 0.3 atm for 75%
   (ii) 0.111 atm for 25% and 0.9 atm for 75%]
 4.26 At 300 K, a certain solid adsorbs 0.572 mg of CO when the equilibrium pressure is 

0.4 atm. At the same temperature, the adsorption increases to 0.75 mg when the 
equilibrium pressure is 0.6 atm considering the Langmuir adsorption isotherm 
(non dissociative) to apply, calculate the equilibrium constant of the adsorption 
and the surface coverages at these two pressures.

   [Ans.: K = 1.016 atm–1; q1 = 0.289; q2 = 0.379]  
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 4.27 At 200 K, a solid adsorbs 50 ml (measured at NTP) of N2 when the equilibrium 
pressure is 30 mm Hg. The pressure required to adsorb the same volume of gas 
(again measured at NTP) is now found to be 74 mm Hg at 250 K. Calculate the 
isosteric heat of adsorption.  [Ans.: –7.51 kJ mol–1]

 4.28 The pressure of O2 required to give a particular coverage of adsorbed oxygen atoms 
on the silver surface at 700 K was 1 m bar. At 800 K, a pressure of 36 m bar was 
required to establish the same surface coverage. Estimate the isosteric heat of 
adsorption. [Ans.: –166.28 kJ mol–1]

 4.29 The volume of N2 gas (measured at NTP) adsorbed on 1 g of charcoal is 45 mL at 
10 Torr pressure, and 60.2 mL at 30 torr pressure. Calculate the volume required 
to form a complete monolayer. Also fi nd out the surface area of charcoal if the 
diameter of a nitrogen molecule is 0.4 mm 

   [Ans.: vm = 72.46 mL; 2.45 × 106 cm2 g–1]
 4.30 The data below are for the chemisorption of N2 on charcoal at 25°C. Test graphically 

the applicability of the Freundlich and Langmuir adsorption isotherms.

  

2

2

Mass / Nm 0.28 0.40 0.61 0.95 1.7 3.4
adsorbed

per unit gm 0.140 0.176 0.221 0.278 0.328 0.384
area

P -

-

  Also check the validity of BET isotherm. Calculate the Vm from the Langmuir and 
BET plot and compare them.

 4.31 It is known that O3 is adsorbed on the surface of charcoal and the process can be 
described by the Langmuir adsorption isotherm. How will you proceed to establish 
that the adsorption is nondissociative or dissociative as 

 (i) 
2

| | | |

3

OO

O (g) – S S – S – S+ - -         

OR

 (ii) 
2

| | | | | |

3

OO O

O (g) – S S S – S – S S+ - - -        

 4.32 Express one Langmuir in units of Pascals instead of torr. [Ans.: 1.33 × 10–4 PaS]
 4.33 Solid nickel is face centred cubic with a unit cell of side length 350 pm. Calculate 

the rate of adsorption of H2 on the (100), (110) and (111) planes, when exposed to 
0.1 Langmuir at 25°C. Assume the stiking probability to be 60%, 70% and 80% of 
the planes (100), (110) and (111), respectively.

   [Ans.: For 100-plane: 7.06 × 10–2 s–1; for 110-plane: 0.35 s–1;
for 111-plane: 0.245 s–1]
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 4.34 The average life time of an adsorbed oxygen atom over tungsten is 0.4 s at 2500 K 
and 3.5 s at 2300 K. Find the activation energy for desorption. Do you think this 
adsorption to be physical or chemical?

   [Ans.: –518.46 kJ mol–1; Chemisorption]
 4.35 The enthalpy of adsorption of H atom over a solid surface is 15 kJ mol–1 when it is 

physically adsorbed, and 150 kJ mol–1 when it is chemically adsorbed. Calculate 
the half life time of an adsorbed H-atom in the two states of adsorption at 300 K, if 
t0 = 0.2 Ps. and 20 Ps for physisorbed and chemisorbed rituals, respectively. How 
long, on an average, the atoms spend over the surface at 600 K? 

 [Ans.: 56.7 Ps; 1.82 × 1015 s] 
 4.36 In a TPD study, the maximum rate of desorption of CO from Pb surface occurs 

at 650 K when the heating rate is 15 K s–1. Calculate the activation energy of 
desorption if t0 = 1.4 Ps.

Solution to Problem 4.36

According to the problem, Tm = 650 K; b = 15 K s–1 and, t0 = 1.4 × 10–12 s.

Using Eq. (4.86),

  

act act
12 12 ln (650) ln (15) ln

(650) (1.4 10 )

E E

R R - -- = +
¥

  - = +
¥

act act
012.95 2.71 ln

5.4 5.94 10

E E

where Eact is in kJ mol–1 therefore,

 10.24 = 0.185 Eact – 22.5 + ln Eact

fi 0.185 Eact + ln Eact – 12.26 = 0

This equation is to be solved numerically.

There are different numerical methods to solve equations. The Newton–Raphson method 

of iteration is a very commonly used method because of its simplicity and speed.

Newton–Raphson Method of Iteration

In this method, for solving equations, y = f (x) = 0, where it is assured that, f has a 
continuous derivative f¢. The fundamental idea is that, we approximate the graph of f 
by suitable tangents. Then using an approximate value x0 obtained from the graph of f, 
we let x1 be the point of intersection on the x-axis, by the tangent to the curve of f at x0
(Figure 4.45), then

 

0 0
1 0

0 1

( ) ( )
tan or

( ) tan
f x f x

x x
x x

b
b

= = -
-
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Figure 4.45

fi 0
1 0

0

( )
( )

f x
x x

f x
= -

¢

In the second step, we write

 
= -

¢
1

2 1
1

( )
;

( )
f x

x x
f x

in the third step, = -
¢

2
3 2

2

( )
;

( )
f x

x x
f x

and so on, until we get a constant value of xn.

We construct the function as 

 f = 0.185 Eact + ln Eact –12.26 = 0

using x for Eact, the equation is

 f = 0.185x + ln x – 12.26 = 0  (4.87)

and 
1

0.185f
x

= +¢   (4.88)

First Step: n = 0; and let x0 = 150 as our fi rst choice. Therefore,

  f(x0) = (0.185) (150) + ln (150) – 12.26

or   f(x0) = 20.5

using Eq. (4.88)

  
0

1
( ) 0.185 0.1917

150
f x = + =¢
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Therefore,  0
1 0

0

( ) 20.5
150 43.06

( ) 0.1917
f x

x x
f x

= - = - =
¢

Then,

  f(x1) = 0.185 (43.06) + ln (43.06) – 12.26

or   f(x1) = –0.5313

and   1
1

( ) 0.185 0.208
43.06

f x = + =¢

Therefore, 1
2 1

1

( ) 0.5313
43.06 45.6

( ) 0.208
f x

x x
f x

= - = + =
¢

Then,   f(x2) = 0.185(45.6) + ln (45.6) –12.26 = –0.004

and   2
1

( ) 0.185 0.207
45.6

f x = + =¢

Therefore,  2
3 2

2

( )
( )

f x
x x

f x
= -

¢

or  3
0.004

45.6
0.207

x = +

or  
3 45.6 0.019 45.62x = + =

almost the same as x2. This is the fi nal result: x = 45.6.



5.1 INTRODUCTION
Chemical kinetics is the study of reaction rates and, thereby, focusing on the pathways 

through which reactions proceed. A reacting system is not certainly at the equilibrium 

position, and therefore, its study is not thermodynamic but, kinetic in nature i.e. the time 

parameter comes into play as a variable. When an arbitrary mixture of N2, H2 and NH3 

is taken in a closed vessel of constant volume V at a fi xed temperature, the direction in 

which the reaction will take place and, to what extent to attain the equilibrium position 

are the concerns of thermodynamic study. But, the rate at which the process takes place 

is the concern of chemical kinetics. This is important because, it may be that the yield of 

NH3 is favourable but, the rate is so poor that the process is not economically good. In that 

case, we have to fi nd out now the rate of production of NH3 could be increased by changing 

the temperature, changing the concentration of a particular component or, by introducing 

a suitable catalyst, etc. These informations come from the study of reaction rates; fi nally, 

the reaction pathways are also illuminated.

Figure 5.1  Varia  on of the concentra  ons of N2, H2 and NH3. The tangents at t = 0 give

0the ini  al rate of produc  on and consump  on of the components.

CHEMICAL KINETICS5
CHAPTER
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5.2 ADVANCEMENT OF A REACTION: RATE OF REACTION

5.2.1 Rate of Change of Concentration of the Reacting Species
Let us consider a homogeneous gas phase reaction

  + ææÆ2 2 3  N 3H 2NH

It is clear that, as the time marches on, the concentrations of N2 and H2 decreases and, 
that of the product NH3 increases (Figure 5.1). The rate of change of the concentration of 
the three species are

  - - 32 2 NHN H
; and

dCdC dC

dt dt dt
 (5.1)

These three differential rates may be obtained from the slopes of the concentration-time 
profi les (Figure 5.1). But, from the stoichiometry of the reaction, we may write

  
Ê ˆÊ ˆ

- = - =Á ˜ Á ˜Ë ¯ Ë ¯
32 2 NHN H1 1

3 2

dCdC dC

dt dt dt
 (5.2)

The rates of consumption and production of the different reacting species are different. 

Their units are, however, mol L–1 s–1 or, atm min–1 or likewise.

Example 5.1
The rate of formation of NH3 at a fi xed temperature (600 K) is found to be 1.5 × 10–3 mol 

dm–3 min–1. Calculate this rate in terms of (i) molecule cm–3 s–1; (ii) mol m–3 min–1; (iii) atm 

min–1; (iv) Torr s–1 and (v) rate of decrease of H2 concentration.

Solu  on 

 

- - -= ¥3NH 3 3 11.5 10 mol dm min
dC

dt

 (i) -= ¥3NH 31.5 10 mol
dC

dt
dm

-3
min

- ¥ 23
1 6.022 10 molecule
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Ê ˆ
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3

3
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Ê ˆ
Á ˜
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Ê ˆ
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fi = ¥3NH 161.506 10
dC

dt
 molecule cm–3 s–1

 (ii) 
-= ¥3NH 3(1.5 10 mol dm

dC

dt

- -
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3 1 10 dm
min ) - -

Ê ˆ
=Á ˜

Ë ¯

3
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3
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 (iii) Assuming that the component gases behave ideally, we may write for the partial 
pressure of NH3 as

        3 3NH NH
P C RT=

Therefore, - - -= = ¥
3 3

3 3 1
NH NH

1
( ) 1.5 10 mol dm min

d d
C P

dt RT dt

fi    
- - -= ¥3NH 3 3 1(1.5 10 mol dm min )

dP
RT

dt

     
3(0.082 dm-= 1atm K- 1mol- 1) (600 K- 3 3) (1.5 10 mol dm- -¥ 1min- )

     = 7.38 × 10–2 atm min–1

 (iv)  
-= ¥3NH 27.38 10 atm

d P

dt
min

-1 760 Torr

1 atm

Ê ˆ
Á ˜Ë ¯

1 minÊ ˆ
Á ˜Ë ¯60 s

fi   -=3NH 10.9348 Torr s
d P

dt

 (v) - = 3

2

NH

H

3
( )

2

dCd
C

dt dt
  [using Eq. (5.2)]

fi   - - - -- = ¥ =2H 3 1 3 11.5 1.5 mol m min 2.25 mol m min
dC

dt

5.2.2  Advancement of a Reaction

Consider a chemical reaction, represented stoichiometrically as

  aA + bB ææÆ  g C + d D 

where A and B are the reactants and, C and D are the products. The stoichiometric 
coeffi cients are then, –a, –b, g and d, respectively. By one mole of this reaction (x = 1 mol), 
we mean that the indicated number of moles of the reactants (as given in the stoichiometric 
representation of the reaction) reacts to produce the indicated number of moles of the 
products. Therefore, if the above reaction is said to be advanced to x = 1 mol, then, the 
changes in the number of moles of the reacting species are

  DnA = – aDx = – a(1 mol) = – a mol, and similarly

  DnB = – bDx = – b(1 mol) = – b mol,

  DnC = +gDx =  g (1 mol) = g mol and

  DnD = +dDx =  d (1 mol) = d mol,
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Now, during the course of the reaction, if the reaction be advanced from x to (d + x) over the 
time period t Æ t + dt then the changes in the number of moles of the reacting components 
over this time period are

   dnA = – adx ; dnB = –bdx ; dnC = g dx ; dnD = ddx

The rates of change of the number of moles of the components with time are then

  ; ; andCA B Ddndn dn dnd d d d

dt dt dt dt dt dt dt dt

x x x x
a b g d= - = - = =  (5.3)

fi  
1 1 1 1CA B Ddndn dn dnd

dt dt dt dt dt

x

a b g d
= - = - = =  (5.4)

We now defi ne the rate of the reaction as the rate of change of the advancement with time 

per unit volume of the reaction mixture. At constant volume V, we may write, the rate of 
the reaction (v) as

  

x

a b g d
= = - = - = =

( / )( / ) ( / ) ( / )1 1 1 1 1CA B Dd n Vd n V d n V d n Vd
v

V dt dt dt dt dt

or  
1 1 1 1 1CA B DdCdC dC dCd

v
V dt dt dt dt dt

x

a b g d
= = - = - = =  (5.5)

Example 5.2

Gaseous N2O5 decomposes at 600 K as

  ææÆ2 5 2 22 N O (g) 4 NO (g) + O (g)

The rate of the reaction is found to be 4 × 10–6 mol dm–3 s–1. Calculate the values of

  

2 5 2 2N O NO O
, and

dC dC dC

dt dt dt

Solu  on From Eq. (5.5), we fi nd the rate of the reaction as

  

- - -= - = = = ¥2 5 2 2N O NO O 6 3 11 1
4 10 mol dm s

2 4

dC dC dC
v

dt dt dt

Therefore,

  

- - -= - = - ¥2 5N O 6 3 12 2(4 10 mol dm s )
dC

v
dt

or  - - -= - ¥2 5N O 6 3 18 10 mol dm s
dC

dt
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Similarly,  - - -= = ¥2NO 5 3 14 1.6 10 mol dm s
dC

v
dt

and,  - - -= ¥2O 6 3 14 10 mol dm s
dC

dt

Example 5.3

Calculate the rate of advancement of the reaction with time for the reaction in Example 
5.2 at an instant if the rate at that instant is found to be 4 × 10–6 mol dm–3 s–1. The volume 
of the reaction mixture is 3 L. 

Solu  on Using Eq. (5.5), we write

  
6 3 1 3(4 10 mol dm s ) (3 dm )

d
v V

dt

x - - -= ◊ = ¥  
3( 1 dm 1 L)=∵

or  5 11.2 10 mol s
d

dt

x - -= ¥

Example 5.4

Equation (5.5) gives the expression of the rate of a reaction carried out at a constant 
volume and temperature. Find the rate expression if the volume is allowed to change 
during the course of the reaction.

Solu  on The number of moles of a reactant A is nA = CA V, where CA is the molar 
concentration of the reactant A and, V is the volume of the reaction mixture. On 
differentiating, we get 

  dnA = CAdV + VdCA

The rate of the reaction v is then [cf. Eq. (5.5)]

  

1 1 1A A
A

dn dCdV
v C V

V dt V dt dta a

È ˘
= - = - +Í ˙Î ˚

fi  
1 1 A

A

dCdV
v C

V dt dta a
= - -

Note that the above expression changes to Eq. (5.5), if V is held fi xed.

5.3 RATE LAW AND  ORDER OF A REACTION

The  rate law is an experimentally obtained equation, which shows how the rate of the 

reaction depends on the concentration terms of the reactive species. Very often, but not 
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always, the rate law of a reaction

  aA + bB ææÆ  g C + dD

has been found to be of the form

  a b
BAv kC C= …  (5.6)

where, CA, CB,... are the concentration of the species A, B,... etc. The proportionality constant 
k is called the rate constant of the reaction or, the specifi c reaction rate. k depends on both 
the temperature and pressure; but, the pressure dependence is usually very small, and is 
neglected.

On the basis of the above rate law [Eq. (5.6)], the reaction is said to have the order ‘a’ with 
respect to the component A, ‘b’ with respect to B, ... etc. The overall order of the reaction ‘n’ 
is then; n = a + b + ... . Note that, the concept of order is reserved only for those reactions 
for which the rate law contains the concentration terms (or, the partial pressures) in a 
multiplicative form as given in Eq. (5.6). Some empirical rate laws are

 1. 2 2H + I 2HIææÆ  
2 2H IC Cv k=

 2. 2 2H + Br 2HBrææÆ  =
Ê ˆ+ ¢Á ˜Ë ¯

2 2

2

1

2
H Br

HBr

Br

1

kC C
v

C
k

C

 3. 2 5 2 22 N O 4 NO + OææÆ  
2 5N Ov k P=

 4 
2 22 NO + O 2 NOææÆ  =

2

2
ONOv k C C

 5. 
3 4CH CHO CH + COææÆ  

3

3

2
CH CHOv k C=

 6. - ææÆ -2 2H Hp o  
2

3

2
Hpv k P -=

 7. NO
2 2 32 SO + O 2SOæææÆ  

2

2
O NOv k P P=

 8. 2 2 2 2H O 2 I 2H 2H O I- ++ + ææÆ +  - ¢= + +2 2 2 21 H O 2 H O II H
v k C C k C C C

 9. 
+ + ++ ææÆ +2 3+ 2

2Hg Tl 2Hg Tl  
+

+

¥
=

2 3+
2

2

Hg Tl

Hg

k C C
v

C

 10. 3 2 22NH N 3HWææÆ +  
3NHv k P=  (at low pressure)
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    = >
3

1

NH ( 1)nv k P n  at intermediate 

    pressure v= k (at high enough 

    pressure)

The order of reaction (2) cannot be defi ned. However, the order of a very similar reaction 

(1) can be defi ned; it is fi rst order with respect to each of H2 and I2, and hence, overall 

second order. The overall order of the reaction (4) is three; second order with respect of 

NO, and fi rst order with respect to O2. From Examples 3, 5 and 6, we fi nd that there is no 

correspondence between the stoichiometry and the order of a reaction. Moreover, the order 

of a reaction may be fractional. Example 8 shows that, although the order of the overall 

reaction cannot be defi ned, at very low concentration of H2O2, and, if k1 is very small, the 

overall reaction is overall third order (considering only the second term).

Example 9 shows that the order of a reaction with respect to a particular component, here 

the Hg2+ ion, may be negative and, both the concentrations of the reactant and product 

may appear in the rate law. Finally, Example 10 shows that the order of a reaction may 

change due to a change in the reaction condition.

5.4  ELEMENTARY REACTION AND  MOLECULARITY

A reaction is not as simple as that written on paper, e.g. there is a much belief that the gas 

phase decomposition of N2O5 into NO2 as O2 occurs as follows:

 (a) N2O5 Æ NO2 + NO3

 (b) NO2 + NO3 Æ NO + NO2 + O2

 (c) NO + NO3 Æ 2 NO2

However, step (a) has to take place twice per occurrence of the steps (b) and (c). These 

steps, through the sequence of which the reactants are converted into the fi nal products, 

are called the elementary steps. A reaction, in which there is only one elementary step, is 

called an elementary reaction. Most of the reactions are not elementary, as they consist of 

a number of elementary steps; these are called complex reactions.

The species involved in an elementary step of a reaction may be a molecule, a free 

radical, an atom or an ion. The number of species which takes an active role in leading 

an elementary step is called the molecularity of that elementary step. The concept of 

molecularity is restricted only to the elementary step and should not be used to describe 
an overall reaction and, should not be confused with the order of the reaction. For example, 
the nucleophilic substitution reaction of R2CHBr in aqueous medium.

  R2CHBr + OH– Æ R2CHOH + Br–

has been found to be fi rst order in the alkyl halide, i.e.

  v = k CR2CHBr
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The mechanism is believed to be:

++ +
-

-æææÆ æææÆ æææÆ2H O Hslow
2 2 2 2 2Br fast fast

R CHBr R CH R CH(OH ) R CHOH

There are therefore three elementary steps with molecularity 1, 2 and 1, respectively, 
(note that Br does not take any active role in the second elementary step). So, the 
concept of molecularity is used to describe an elementary step but, the order, which is 
an experimental parameter is used to describe the overall reaction. Nevertheless, it is 
noteworthy that, the order of an elementary step and its molecularity are all the same. For 
example, the rate of the fi rst step may be written as k1CR2CHBr that of the second step as 

+
22 R CHCk  CH2O and that of the third as +

2 2R CH(OH ).3Ck  Therefore, for an elementary step the 

order can be written according to its stoichiometry.

5.5  PSEUDO ORDER

Sometime it is found that the concentration of a particular component remains constant 
or almost constant during a particular run of a reaction. In that case, that concentration 
term is included in the rate constant k, and the reaction is then said to have pseudo-nth 
order, where n is the sum of the exponents of the remaining concentration terms. For 
example, in the hydrolysis of sucrose, catalysed by H+ ions.

The rate law has the form

  
+¢¢

2 sucroseH O H
C C Cn

v = k

Since the reaction is carried out in aqueous medium, in which CH2O
 is much greater than 

that of sucrose, it may be supposed that CH2O
 remains virtually constant and therefore, 

the rate law may be written as

  
= =¢ ¢¢ ¢+

2sucrose H OH
C C ; n

v k k C k

Moreover, in a particular run, the concentration of the catalyst H+ does not change; so 
including CH+ within k¢ we write the rate law as

  
+¢sucrose H

C Cv = k ; k = k

The reaction is therefore referred to as a pseudo fi rst order reaction.
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5.6  ORDER WITH RESPECT TO CONCENTRATION (THE  TRUE ORDER): 
 ORDER WITH RESPECT TO TIME

It has already been mentioned that the order of a reaction is determined experimentally. 
There are two different approaches: (1) The differential method, and (2) The method of 
integration. In the following section we fi rst consider the differential method. The method 
of integration will be treated later separately.

5.6.1 Differential Method

This was fi rst suggested by van’t Hoff (1884). The concentration-time profi le of a reactant 
is fi rst made. If the reaction is of nth order with respect to a particular reactant then,

  

ndC
v kC

dt
= - =

fi  log v = log k + n log C (5.7)

We, then measure v at several different concentrations C (v is measured from the slopes 
of the concentration-time curve. The fi nal plot is made by plotting log v versus log C. A 
straight line is expected according to the Eq. (5.7). The slope of this plot gives the order n. 

This procedure is done in two different ways. In this fi rst method, the concentration-time 

profi le is made with several different initial concentrations (Figure 5.2).

Figure 5.2  The concentra  on-  me curve with diff erent ini  al concentra  ons.

The slope of the curve at t = 0 is the ini  al rate.

Then, the tangents are drawn for each curve at t = 0; this gives the initial rates. These 

rates are then used in Eq. (5.7) and, a plot of log v versus log C (C being the initial 
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concentration for each set) is made. A straight line is expected whose slope gives the order nC

(Figure 5.3).* Analytical methods may also be used. In the second method, a single run is 

made with a given initial concentration, and from the concentration-time profi le (Figure 

5.4) so obtained, a plot of log v versus log C made; again a straight line is expected (Figure 

5.5), the slope of which is the order with respect to time nt, (because the slopes are taken 

at different instants during the course of a single run).

Figure 5.3  The plot of log v versus log C; all v’s are 

measured at t = 0. The slope gives the true 

order.

Figure 5.4  The slopes at diff erent instants give the 

rate of the reac  on at the corresponding 

instants of   me.

Figure 5.5 The slope gives the order with respect to   me.

* This is referred to as the order with respect to concentration or, the true order nC.
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Since the true order nC is obtained from the data of the initial (t = 0) slopes, it is devoid of 

any complication which may arise during the course of the reaction. These two orders, nC 

and nt are sometimes found to be different.

If nC is found to be more than nt (nC > nt), then it means that the rate falls off more less 

rapidly with time then that it should have been. Auto-catalytic process may be one of the 

reasons. On the other hand, if nC is found to be less than nt (nC < nt), then it means that 

the reaction rate falls off more rapidly with time than that it should have been. Inhibition 

may be one of the reasons.

The differential method may also be applied in another tricky way. This is explained in 

the following section.

5.6.1.1 The  Method of Isolation
This method is particularly important when two or more reactant concentration terms 

appear in the rate law. The main objective is to fi x one or another concentration so as 

isolate (or, remove) the dependence of the rate on each species in turn. This is usually done 

by using a large excess of the fi rst reactant, and then with the second reactant, and so on.

Consider the reaction

  2 NO + H2 ææÆ  N2O + H2O

Suppose that in the fi rst run, we use a large excess concentration of NO such as P0
NO = 800 

Torr and PH2

0 = 20 Torr.

The rate law then becomes

  
a b b a= = =¢ ¢

2 2NO NOH H ( )v k p p k p k k p

because PNO remains almost constant with respect to PH2
.

b is then evaluated by the method discussed earlier. We then reverse the situation by 
using a large excess of H2 such as P0

H2
 = 800 Torr and P0

NO = 20 Torr. The rate law then 
becomes

  
a b a b= = =¢¢ ¢¢

2 2NO NOH H( )v k p p k p k k p

a is then fi nally determined.

There is another witty method to fi nd the order of a reaction whose rate depends upon two 
or more concentration terms. We exemplify this by the following problem.

Example 5.5

Under certain condition, the reaction H2 + Br2 Æ 2HBr obeys the rate law of the form

  2 2HBr HBrH Br
a b cd

C k C C C
dt

=
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At a certain fi xed temperature T, the reaction rate is found to be R when CHBr = 2 M and, 

CH2
 and CBr2

 are both 0.1 M. The rate varies with concentration as follows:

Concentra  on (M)

CH2
CBr2

CHBr Rate

0.1 0.1 2 R

0.1 0.4 2 8 R

0.2 0.4 2 16 R

0.1 0.2 3 1.88 R

Find a, b and c.

Solu  on

Using the fi rst two entries

  R = (0.1)a(0.1)b(2)c (1)

  8 R = (0.1)a(0.4)b(2)c (2)

Dividing Eq. (2) by Eq. (1), we get

 8 = 4b

fi  3 ln 2 = 2 b ln 2

or 
3(ln 2)

1.5
2(ln 2)

b = =  (3)

Dividing the 3rd entry by the 2nd.

  

16 (0.2) (0.4) (2)

8 (0.1) (0.4) (2)

a b c

a b c

R k

R k
=

fi  2 = 2a

fi  a = 1

Finally, dividing 4th entry by the 1st entry

  

3

2

3

2

1.88 (0.1) (0.2) (3)

(0.1) (0.1) (2)

c

c

R k

R
k

=

fi  1.88 = 
3

22 (1.5)c

or  c = –1

The orders are then 1, 
3

2
 and –1 with respect to H2, Br2 and HBr, respectively.
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Example 5.6

The rate law for the reaction 2 NO + H2 ææÆ  N2 + 2 H2O is determined by measuring the 

initial rate. If the initial pressure of NO is 400 Torr, the rate is found to be 1.35 Torr s–1 

and 0.92 Torr s–1 for initial pressures of H2 of 290 and 200 Torr, respectively. If the initial 

H2 pressure is 400 Torr, then the rate is 1.5 and 1.04 Torr s–1 for initial NO pressure of 360 

and 300 Torr, respectively. Show what a and b are in the rate law: 
2

NO
NO H ,a bd P

k P P
dt

- =  
and calculate the rate constant k.

Solu  on 

Using the rate law

  2NO H
a b

v k C C=

we write

  
2

1.35 (400) (290)

0.92 (400) (200)

a b

b

k

k
=

fi  1.467 = 1.45b

fi  b = 1

Similarly, 
1.5 (360) (400)

1.04 (300) (400)

a b

a b

k

k
=

fi 1.44 = (1.2)a

fi  a = 2

The rate constant is then obtained as

  1.35 Torr s–1 = k (400 Torr)2 (290 Torr)

  = 4.64 × 107 k Torr3

fi  k = 2.9 × 10–8 Torr –2 s–1

5.6.2  Method of Integration: Integrated Rate Laws
In this method, the differential rate laws are fi rst integrated, and the experimentally 

obtained concentration data with time are tested for the integrated rate equations for 

different orders.
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The primary objective is therefore to get the concentrations of the reacting components as 

a function of time. Today, a number of software packages are available to solve even the 

most complex differential rate laws. In the following we give some simple cases, where the 

solutions can be found analytically. In all these cases, it is supposed that

 (i) the reaction is carried out at a fi xed temperature, and

 (ii) the reaction is carried out at constant volume.

5.6.2.1  First Order Reaction

Suppose the reaction

  a A ææÆ  Product (s)

is fi rst order with respect to the reactant A; the differential rate law is:

  
1 A

A

dC
k C

dta
- = ¢  (5.8a)

or  a- = ¢( )A
A

dC
k C

dt

or  A
A

dC
kC

dt
- =  (5.8b)

here, k¢ is the rate constant of the reaction and, k is the rate constant of the disappearance 
of A. If  CA

0 be the initial concentration of A and CA be the concentration at time t, then 
integration between limits gives

  
0 0

A

A

C t
A

AC

dC
k dt

C
= -Ú Ú

fi  
0

0 0; ln ln ; lnkt A
A A A A

A

C
C C e C C kt kt

C

-= = - =  (5.9)

The concentration of the reactant in a fi rst order reaction decreases exponentially with 
time; the reaction goes to completion after infi nite time. Moreover, greater the value of k, 
faster is the decay rate (Figure 5.6).

A more convenient plot is that of 
0

ln A

A

C

C

Ê ˆ
Á ˜Ë ¯

 versus t. A straight line is expected with a 

negative slope of –k (Figure 5.7).
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Figure 5.6  The fi rst order decay of the concentra  on of the reactant with   me. As the rate constant 

k increases, the decay becomes more faster. For a, b, c and d, the rate constants are a: 

0.125 s–1; b: 0.250 s–1; c: 0.05 s–1 and d: 0.1 s–1.

Figure 5.7  The logarithmic version of the plots in Figure 5.6.

Example 5.7

A fi rst order reaction is 20% complete in 50 minutes at 300 K. Calculate the time required 
to fi nish 99.99% reaction.

Solu  on

Using Eq. (5.9),

  

0 0
3 1

0

1 1
ln ln 4.46 10 min

(50 min) (0.8 )

A A

A A

C C
k

t C C

- -= = = ¥
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Therefore t for 99.99% reaction is

  

0

0.9999 0 3 1

1 9.21
ln 2065 min

0.0001 (4.46 10 min )

A

A

C
t

k C - -= = =
¥

The half life time t0.5 of a reaction is defi ned as the time span after which the reactant 

concentration CR goes down to half its initial concentration CR
0; i.e. at t = t0.5 

01
.

2
R RC C=   

Using Eq. (5.9), we fi nd

  
0

0.5
0

1 1 0.693
ln ln 2

1

2

R

R

C
t

k k k
C

= = =
Ê ˆ
Á ˜Ë ¯

 (5.10)

The half life time of a fi rst order reaction is therefore independent of the initial concentration 

of reactant. This means that after every span of 1/2,t  the concentration of the reactant 
becomes half of its initial concentration. This is exemplifi ed in Figures 5.8(a) and 5.8(b).

Figure 5.8(a) The varia  on of concentra  on of the reactant with   me for a fi rst order process in two formats.
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Figure 5.8(b) It shows the signifi cance of half life   me.

The fi rst order rate constant has the unit of time–1, and therefore, the value of the rate 

constant is independent of the scale of the concentration chosen. Moreover, the fi rst order 
rate constant k has two interesting signifi cances

 (1) From Eq. (5.9), we write

  
0 0kt kt

A A A A AC C e dC kC e dt kC dt- -= fi = - = -

fi  

A

A

dC

C
k

dt

Ê ˆ-Á ˜Ë ¯
=

i.e. the fractional decrease in the reactant concentration per unit time is a constant, and is 

equal to the rate constant of the reaction. Let us see an example.

Example 5.8

It takes 10 minutes for a certain fi rst-order reaction, R Æ P, to go 20% towards completion. 
What are k and t0.5 and, how long should it take for 75% reaction?

Solu  on Using Eq. (5.9)
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0 0
1

0

1 1
ln ln 0.0223 min

(10 min) 0.8

A A

A A

C C
k

t C C

-= = =

Then using Eq. (5.10)

  
0.5

0.693
min 31.07 min

0.0223
t = =

Using the fi rst order rate law

  

0

75% 0

1
ln

(0.25 )

A

A

C
t

k C
=

or 75% 0.5

ln 21
ln 4 2 2 62.14 mint t

k k
= = = =

Note that t75% = 2 t0.5

Comment: There is nothing special for a fi rst order reaction, about the half-life time. The 
time required for the reactant concentration to drop down to the fraction f of its initial 
concentration is

  

0

0

ln1
ln R

f

R

C f
t

k kf C
= = -

which is independent of the initial concentration of the reactant.

 (2) The average life time of the reactants is

  av 0
0

1
R

R

t t dC
C

•-
= Ú * = 

0

0
0

1
( )kt

R

R

t d C e
C

•
--

Ú

fi  av 0
0 0

( )kt kt ktt td e t e e dt
• ••- - -È ˘= - = - +Î ˚Ú Ú

  
0

1 1kte
k k

•--
= =

It is noteworthy that, this tav is the time span after which the reactant concentration 

becomes 

th
1

e

Ê ˆ
Á ˜Ë ¯  of its initial concentration:

  

0

ln ln 1R

R

C
kt e

C

Ê ˆ
= = =Á ˜Ë ¯

* The negative sign is included to make tav positive as dCR is itself negative.
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fi  1

1
av

e

t t
k

= =  (5.11)

Example 5.9

At 100°C, the gaseous reaction A ææÆ  2B + C is observed to be fi rst order. On starting 

with pure A it is found that at the end of 10 minutes the total pressure of the system is 176 

Torr, and after a long time it is 270 Torr. From these data, fi nd

 (a) the initial pressure of A;

 (b) the pressure of A at the end of 10 minutes;

 (c) the rate constant of the reaction and,

 (d) The half life time of A.

Solu  on

The reacting system is analysed as:

  A ææÆ   2B  + C

Initially PA
0 0 0

At time t PA
0 – p 2p p ; total pressure at time t is then PA

0 + 2p

After a long time 0 2PA
0 PA

0  total pressure after a long time is then 3PA
0

According to the problem

 3PA
0 = 270 Torr fi PA

0 = 90 Torr

and PA
0 + 2p = 176 Torr

fi p = 43 Torr

The pressure of A at the end of 10 minutes is then

  pA = PA
0 – p = (90 – 43) Torr = 47 Torr

The rate constant is then calculated as:

  

0 (90 Torr1 1
ln ln

(10 min)
A

A

P
k

t P
= =

)

(47 Torr

10.065 min
)

-=

The half life time is then

  
0.5 1

0.693 0.693
10.66 min

(0.065 min )
t

k -= = =

5.6.2.2  Integrated Rate Law of a First Order Reaction at Constant Pressure
Consider a fi rst order reaction

  A BnææÆ
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Let us start with nA
0 mole of the reactant A. If the reaction be advanced by x mole at time 

t then, the number of mole of A at time t is nA = nA
0 (1 – x), and the number of mole of B at 

time t is nB = vnA
0 x. The total number of mole at time t is then, n = nA + nB

  n = nA
0 (1 – x) + nnA

0 x

or  n = nA
0 + (n – 1) nA

0x (5.12)

Since the reaction is conducted at constant pressure condition, constant T condition is to 

be understood always, the volume changes proportionately with the number of mole in the 

reaction vessel. If V0 and V are the volumes, respectively, at t = 0 and at time t, then,

  PV = nA
0[1 + (n – 1)x]RT (5.13)

and  PV0 = nA
0
 RT (5.14)

Dividing Eq. (5.13) by (5.14), we get

  V = V0[1 + (n – 1)x] (5.15)

For a fi rst order process we may write

  
0 kt

A An n e-=

k is the rate constant of the reaction. Dividing the above equation by V, we fi nd

  

0
ktA An n

e
V V

-=

fi  
n x

-=
+ -

0

0[1 ( 1) ]
ktA

A

n
C e

V

fi  
0

[1 ( 1) ]
ktA

A

C
C e

n x
-=

+ -

fi  
0

[1 ( 1) ] ktA

A

C
e

C
n x= + -

fi  
0

( 1)kt ktA

A

C
e e

C
n x= + -

Using the relation 0 (1 ),A An n x= -  we fi nd

0
1 (1 ),ktA

A

n
e

n
x -= - = -  and substituting in the above equation, the result is

  

0

( 1) (1 )kt kt ktA

A

C
e e e

C
n -= + - -
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  ( 1)e ( 1)kt kte n n= + - - -

  ( 1)kt kt kte e en n= + - - -

or  

0

( 1)ktA

A

C
e

C
n n= - -  (5.16)

which is the integrated rate equation for a fi rst order reaction, carried out at constant 
pressure conditions.

For n = 2, Eq (5.16) changes to

  
0

2 1ktA

A

C
e

C
= -  (5.17)

which is completely different from that, if the reaction is conducted at constant volume 

[cf. Eq. (5.9)].

 The  Compounded Interest on a Loan Taken from a Bank: A First-Order Process

Let us do it with a problem.

A family buys a micro-oven for ` 8500, paying ` 2500 down, so that P0, the initial principal 

on their loan is ` 6000. Let P be the monthly payment and i be the interest rate in % per 

month. Derive an equation relating P0, P, i and n, where n is the number of payments to 

pay off the loan.

The fi rst premium P paid after the fi rst month goes to P(1 + i)n–1 at the end; the second 

premium goes to P(1 + i)n–2; the third premium goes to P(1 + i)n–3, ..., and the last premium 

to P(1 + i)0. This is exemplifi ed in the following scale

The net amount paid PT is therefore

  PT = P(1 + i)n–1 + P(1 + i)n–2 + ... + P(1 + i)0

fi  PT = P[(1 + i)n–1 + P(1 + i)n–2 + ... + 1]

This is a G.P. series; the sum is therefore

  
1

1

(1 ) [1 (1 ) ]

1 (1 )

n n

T

P i i
P

i

- -

-

+ - +
=

- +
 (i)
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On the other hand, the initial principal P0 has grown up to PT = P0(1+i)n at the end of the 
time span. We therefore write

  

1 1

0 1

(1 ) [1 (1 ) ] (1 ) [1 (1 ) ]
(1 )

11 (1 ) 1
1

n n n n
n P i i P i i

P i
i

i

- - - -

-

+ - + + - +
+ = =

- + -
+

  

1(1 ) [1 (1 ) ]

(1 )

n nP i i

i

i

- -+ - +
=

+

fi  
1

0

(1 ) [1 (1 ) ]
(1 )

n n
n P i i

P i
i

- -+ - +
+ =

fi  
0

[1 (1 ) ]nP i
P

i

-- +
=

It is simply a fi rst order process.

5.6.2.3  Second Order Reaction

Second order reactions are of two types:

 (a) second order with respect to a particular reactant and, 

 (b) fi rst order with respect to two reactants.

(a) Considering the First, Let the Reaction be

  2R ææÆ  P

The differential rate law is

  

21

2
R

R

dC
v k C

dt
= - = ¢

fi  - = = ¢2 ( 2 )R
R

dC
kC k k

dt

where k¢ is the rate constant of the reaction and k is the rate constant for the rate of 
disappearance of the reactant R. Integrating between limits

  
0

2
0

R

R

C t
R

RC

dC
k dt

C
- =Ú Ú

fi  
0

1 1

R R

kt
C C

= +  (5.18)
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The equation may be tested by plotting 
1

RC
 versus t; a straight line is obtained with slope 

k and intercept 0

1
.

RC

Ê ˆ
Á ˜Ë ¯

. This is shown in Figure 5.9. The half life time is evaluated as 

[using Eq. (5.18)]

Figure 5.9 An expected plot of (1/CR) versus t for a second order reac  on involving a

single reactant or two reactants of equal ini  al concentra  ons.

  
0.50 0

1 1

( / 2)R R

kt
C C

= +

fi  0.5 0

1

R

t
kC

=  (5.19)

The half life time of a second order reaction is therefore inversely proportional to the 
initial concentration of the reactant. This is in contrast to a fi rst order reaction. For a 
second order reaction t0.5 is doubled after the fi rst 50% reaction, further doubled after 
the second 50% reaction, i.e. from 50 to 75% and so on. But for a fi rst order reaction t0.5 
remains the same (Figure 5.10). A second order reaction therefore gets more slower than a 
fi rst-order decay with the passage of time. In fact, with the same rate constant, the decay 
of the reactant concentration becomes more and more slower as the order increases. The 
units of the second order rate constant are that of conc–1 time–1, e.g. mol–1 Ls–1, molecule–1 
cc min–1, atm–1 s–1and so on.
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Figure 5.10 A comparison between the decay of the reactant in a fi rst order process and a second order process.

Example 5.10

At 330°C acrolein and 1,3-butadiene undergo Diels-Alder reaction to form 

tetrahydrobenzaldehyde, and the reaction goes essentially to completion. The two reactants 
are taken in equimolar amounts. Initially, the total pressure of the reaction mixture was 
480 Torr. The total pressure of the reaction mixture was then measured at different time 

intervals. The data recorded is shown in the following table.
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Time (s) 0 63 181 384 542 745 925 1145 1374 1627 1988

Total 

Pressure 

(Torr)

240 476.52 470.4 460.26 453.22 444.08 437.63 429.39 421.82 414.22 404.20

Confi rm that the reaction follows a second-order kinetic process and, fi nd out the rate 

constant of the reaction.

Solu  on 

Since the two reactants are taken at equimolar amounts, their initial partial pressures 
are equal, i.e. for each reactant the initial partial pressure is (480 Torr)/2 = 240 Torr. Using
Eq. (5.18), we write

  
0

1 1

R R

kt
P P

= +  (5.20)

where PR is the partial pressure of each reactant at time t, and PR
0 = 240 Torr

If x be the partial pressure of the product at time t, then the partial pressures of the 

reactants are (PR
0 – x) each. The total pressure of the reaction mixture is then:

  PT = (PR
0 – x) + (PR

0 – x) + x

or,  PT = 2PR
0 – x (5.21)

fi  x = 2PR
0 – PT

The partial pressure of each reactant PR is then

  PR = (PR
0 = x)

or,  PR = [PR
0 – (2PR

0 – PT)]

or,  PR = (PT – PR
0) (5.22)

Using this equation we then calculate PR and (1/PR) at different time intervals; the result 

is:

t(s) 0 63 181 384 542 745 925 1145 1374 1627 1988

PR(Torr) 240 236.52 230.4 220.26 213.22 204.08 197.63 189.39 181.82 174.22 164.20

1

RP
 

(Torr–1)

4.228 × 
10–3

4.34 × 
10–3

4.54 × 
10–3

4.69 × 
10–3

4.9 × 
10–3

5.06 × 
10–3

5.28 × 
10–3

5.5 × 
10–3

5.7 × 
10–3

6.09 × 
10–3



We now make a plot of 1/PR versus t; it is shown in Figure 5.11. The smooth fi tting of the 
data on a straight line, as being demanded by Eq. (5.20), confi rms that the reaction follows 
a second-order kinetics. Moreover, from the intercept we fi nd

Figure 5.11 The plot of 1/PR versus t [Eq. (5.20)].

  

3

0

1
10 83.5 0.05 4.175

RP
¥ = ¥ =

fi  0 239.5 240 TorrRP = ª

exactly the same as that given in the problem.

The slope of the straight line is then evaluated

  Slope = 

3 5

2

1 1
10 10

35 0.05
0.09358

93.5 0.210

R RP P

tt -

Ê ˆ Ê ˆ¥ ¥Á ˜ Á ˜Ë ¯ Ë ¯ ¥
= = =

¥¥

fi     - - -= = ¥ 7 1 1

1

9.4 10 Torr sRP
k

t

The rate constant of the reaction.
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(b) We now consider the second type of the second order reaction, where two different 
reactants A and B are involved

  A B P+ ææÆ

If the initial concentrations of A and B are equal, then, the rate process can be analysed 
as discussed in the previous section. Here we concern when the initial concentrations of A,  
CA

0 and B, CB
0 are different, and the reaction is fi rst order with respect to each reactant, 

i.e. the rate law is

          A B
A B

dC dC
v k C C

dt dt
= - = - =  (5.23)

Where v is the rate of the reaction at time t when the concentrations of A and B are CA and 
CB, respectively. From the stoichiometry of the reaction we may write

       0 0
A B BAC C C C- = -  (5.24)

Equation (5.23) then becomes [using Eq. (5.24)]

        

0 0( )A
A B AA

dC
kC C C C

dt
- = - +

fi     0 0

1

( )
A

A B AA

dC kdt
C C C C

È ˘- =Í ˙- +Î ˚
 (5.25)

Then using the method of partial fractions we write

    = +
- + - +0 0 0 0

1

( ) ( )AA B A B AA A

p Q

CC C C C C C C
 (5.26)

fi  0 01 ( )B A AAP C C C QC= - + +

fi  0 01 ( ) ( )B AAP C C P Q C= - + +

fi  P + Q  = 0 ; or P = – Q, and

  P(CA
0 – CB

0) = 1

Therefore,

  
0 0 0 0

1 1
and

( ) ( )B BA A

P Q
C C C C

= = -
- -

Using these results in Eq. (5.25) with Eq. (5.26), we have

  

0 0

0 0 0 0 0 0

( )1 1

( ) ( ) ( )

B AA A

AB B B AA A A

d C C CdC
kdt

CC C C C C C C

- +
- + =

- - - +
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Integrating between limits:

  
0 0

0 0

0 0 0 0 0 0
0

( )1 1

( ) ( ) ( )

A A

A A

C C t
B AA A

AB B B AA A AC C

d C C CdC
k dt

CC C C C C C C

- +
- + =

- - - +Ú Ú Ú

fi  

0 0 0

0 0 0

( )1
ln ln

( )

B AA A

AB BA

C C C C
kt

CC C C

È ˘- +
+ =Í ˙

- Í ˙Î ˚

fi  
0 0 0

0 0 0

( )1
ln

( )

B AA A

B A BA

C C C C
kt

C C C C

- +
=

-

or  

0

0 0 0

1
ln

( )

BA

B A BA

C C
kt

C C C C
=

-
 [using (Eq. 5.24)] (5.27)

which is the fi nal form of the integrated rate law. In terms of the variable x, representing 

the decrease in the concentration of the components, i.e.

  
0 0

A B BAC C x C C- = = -

The above Eq. (5.27) may be rewritten as

  

( )1
ln ( )

( ) ( )

a b x
kt a b

b a b a x

-
= π

- -

or  
( )1

ln ( )
( ) ( )

b a x
kt a b

a b a b x

-
= π

- -
 (5.28)

Where 0 0and BAC a C b= =  are used for simplicity

Example 5.11

Equation (5.28) is an indeterminate for a = b. Nevertheless, show as b Æ a, Eq. (5.28) that 

switches on to Eq. (5.18).

Solu  on 

Equation (5.28) may be written as

  

( )1
ln ln

( ) ( )

a xb
kt

a b a b x

-È ˘+ =Í ˙- -Î ˚

fi  
( ) ( )1

ln 1 ln 1
( ) ( )

a b a b
kt

a b a b x

È ˘Ï ¸- -Ï ¸- + + =Í ˙Ì ˝ Ì ˝- -Ó ˛Í ˙Ó ˛Î ˚



Chemical Kine  cs 5.29

In the limit b Æ a, (a – b) is a very small number; we then approximate the above equation 

using:

ln (1 )x x+ ª  for very small x, i.e. 1,x  

  

( ) ( )1

( ) ( )

a b a b
kt

a b a a x

- -È ˘- + =Í ˙- -Î ˚

fi  
1 1

kt
a x a

= +
-

or  
0

1 1

R R

kt
C C

= +

Example 5.12

Formulate the integrated rate law of a second order reaction between two reactants A 
and B (the reaction being fi rst order with respect to each of A and B) when the reaction is 
stoichiometry

  ProductsaA bB+ ææÆ

Solu  on

  aA  + bB ææÆ  Products

at t = 0    0 0 0BAC C

at time t  -0 0( ) ( ) ...BA

b
C x C x

a

The rate of the reaction is then

   
1 A

A B

dC
v kC C

a dt
= - =  (5.29)

  

0 ; A
A A

dC dx
C C x

dt dt

-
= - fi =

The rate law is therefore,

  

0 0( ) BA

dx b
ak C x C x

dt a

Ê ˆ= - -Á ˜Ë ¯

fi  
0 0( ) BA

dx
ak dt

b
C x C x

a

=
Ê ˆ- -Á ˜Ë ¯
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Using the method of partial fraction and integrating with the lower limit as: x = 0 at 

t = 0, we fi nd

  

-
=

Ê ˆ- -Á ˜Ë ¯

0 0

0 0
0 0

( )1
ln

( )

B A

BA
BA

C C x
kt

bbC aC
C C x

a

fi     
0

0 0 0

1
ln

( )

AB

BBA A

C C
kt

bC aC C C
=

-
 (5.30)

It may be checked that if a = b = 1, then the above Eq. (5.30) changes to Eq. (5.27), derived 

earlier.

Two special cases may appear:

 (I) If 0 0,BAC C  then very small amount/concentration of B is consumed compared to 

A, during the course of the reaction; CB is then essentially the constant 0.BC  Under 

this condition, Eq. (5.29) changes as

  0
app( )A

B A A

dC
ak C C k C

dt
- = =  (5.31)

The reaction then behaves as a fi rst-order kinetic process. This is a pseudo-fi rst-order rate 
law.

 (II) If bCA
0 = aCB

0, Eq. (5.30) again becomes indeterminate. Since 0 0,BAbC aC=  it follows 

that bCA = aCB at all times, and Eq. (5.29) changes to

  

2 2(const)A
A A A A

dC b
akC C bkC C

dt a

Ê ˆ- = = =Á ˜Ë ¯

a form similar to that of a second order reaction of the type: 2A Æ Products (s).

Example 5.13

The rate law for the reaction A + B ææÆ  Product (s) is

  

A
A B

dC
kC C

dt
- =

with k = 0.02 M–1 min–1. What percent of A has reacted after 15 minutes if

 (a) 0 00.1 M and 0.3 MBAC C= =

 (b) 0 0 0.1 M and,BAC C= =

 (c) 0 00.001 M and 0.3 M?BAC C= =
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Solu  on

 (a) Since 0 0
BAC Cπ , we use Eq. (5.27);

  

0

0 0 0

1
ln

( )

BA

B A BA

C C
kt

C C C C
=

-

using the data we get

  

1

(0.3 0.1) M-
(0.1)

ln (0.02 M
(0.3)

B

A

C

C
=

1 1min
- - ) (15 min)

fi  
31

ln 0.3
0.2

A

B

C

C
= -

fi  
3

ln 0.06A

B

C

C
= -

fi  
3

exp( 0.06)A

B

C

C
= -

or  0.3139A

B

C

C
=

Now,  
(0.1 )

(0.3 )
A

B

C x

C x

-
=

-

where x is the concentration of the two reactants reacted at time t = 15 minutes. Equating 

the two results for ,A

B

C

C
 we fi nd x = 8.45 × 10–3 M. With respect to A, the reaction has 

therefore approached by

  

3(8.45 10 M-¥ )

(0.1 M
100 8.45%

)
¥ =

 (b) Since, 0 0 0.1 M,BAC C= =  we now use Eq. (5.18)

  
11 1

(0.02 M min
(0.1 M)AC

-= +
1
) (15 min

-
)

fi  11
10.3 M

AC

-=

or  CA = 0.09709 M
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The percent of A(and B) reacted is then

      

(0.1 0.09709) M-
0.1 M

100 2.91%¥ =

 (c) Since 0 0.3
is ,

0.001
BC

Ê ˆ
Á ˜Ë ¯  300 times 0,AC  this is a pseudo-fi rst-order process. Using

Eq. (5.31), we fi nd, after integration,

         

0

0
ln ( ) (0.02 MA

B

A

C
kC t

C
= - = -

1
min

- 1
) (0.3 M

-
) (15 min )

fi  
0

ln 0.09A

A

C

C
= -

fi  
0

0.9139A

A

C

C
=

The percent reaction is therefore

        
0

1 100 8.61A

A

C

C

Ê ˆ
- =Á ˜Ë ¯

Example 5.14

Consider a second order reaction, fi rst-order with respect to the analyte A, and fi rst-order 

with respect to the reagent R:

  A + R ææÆ  P

The rate law is

 v = kCA CR

If ,R AC C  so that the change in the concentration of R  is very little, compared to CA, 

during the course of the reaction, we can write kCR = k¢ = constant, we then get a pseudo-

fi rst-order rate law

   v = k¢CA

For a given run if CR = 100 CA, fi nd the relative error from the assumption that k¢ is 
constant when the reaction is 40% complete.

Solu  on 

According to the problem

  
0 0100R AC C=
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after 40% reaction

  
0 0 0 00( 0.4 ) 0.6 and 0.4A A R RA A AC C C C C C C= - = = -

or  
0 0 0(100 0.4 ) 99.6R A A AC C C C= - =

Assuming pseudo-fi rst-order kinetics

  = = =0 0 0 0 2(100 ) (0.6 ) 60 ( )R A A A Av kC C k C C k C  ...(i)

The true rate is

  = =0 0 0 2(99.6 ) (0.6 ) 59.76 ( )A A Av k C C k C  ...(ii)

The relative error is then (60 – 59.76)/59.76

  = + 0.004, i.e. + 0.4%

5.6.2.4  Zeroth Order Reaction

A reaction is referred to as a zeroth-order reaction when the rate of the reaction has no 

dependence on any concentration term of the reactant(s). Now, when the reaction proceeds 

as the time marches on, defi nitely the reactant concentration(s) must change with time.

Therefore, no dependence on any concentration term means no dependence on time. 

Therefore, for a zeroth order reaction

  A Æ product(s)

the rate v is

  – AdC
k

dt
=  (5.32)

On integration between limits:

            
0 0

A

A

C t

A

C

dC k dt= -Ú Ú

              
0 –A AC C kt=  (5.33)

where CA is the reactant concentration at time t and CA
0 is the initial concentration. A plot 

of CA versus t would then be a straight line with a negative slope of (–k), (Figure 5.12).

These reactions should more properly be called pseudo-zero-order reactions because there 

must be some mechanistic pathway through which the reaction proceeds in such a way that 

the overall rate becomes independent of any concentration term. This may be explained 

as follows:

 (a) During a photochemical reaction, the initial step is the photo excitation, where 

each reactant molecule absorbs a single photon from the incident radiation. The 

intensity of the incident radiation measures the number of photons per unit 
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volume per unit time. If Iabs be the intensity of the absorbed radiation and I0 be the 

intensity of the incident beam then, according to the Beer’s law

  
abs 0 (1 )clI I e a-= -  (5.34)

  where a is the absorption coeffi cient, C is the molar concentration of the absorbing 

solute particles and, l is the path length. The rate of the photochemical reaction 

will be

  v = fIabs (5.35)

  where f is an effi ciency factor, called the quantum yield of the reaction. Now, in 

the limit of very high concentration of the reactant molecules, the factor e–acl may 

be neglected and, Eq. (5.34) then gives us: Iabs = I0 and Eq. (5.35) changes as 

  v = fI0 (5.36)

  a rate law which is of zeroth order. Thus, although the rate is independent of the 

reactant concentration, it does depend on the Iabs. Probably, suffi cient number of 

absorbing molecules are present in comparison to I0.

  But, if the concentration is lowered, Eq. (5.34) will change as 

  

2 2 2

abs 0 1 1
2!

C l
I I cl

a
a

È ˘Ï ¸Ô Ô= - - + -Í ˙Ì ˝
Ô ÔÍ ˙Ó ˛Î ˚

 

  fi     
abs 0 ( )I I l Ca=  (5.37)

  the rate law then switches on to a fi rst order process.

 (b) There are ample examples of zeroth order reactions in heterogeneous catalysis. For 

such a reaction like

  

A
| | |

(g) — S — — S — Product(s) — S—
| | |

A + ææÆ +    
    

where A(g) is a reactant molecule in the gas phase, S is a vacant surface atom on the solid 

catalyst used and 

A
|

— S —
|

 is the adsorbed state of the reactant molecule. These adsorbed 

molecules shake-off to form the product(s). If q be the fraction of the surface sites occupied 

at an equilibrium pressure P, then the rate of the reaction would be

  v = k¢Aq (5.38)

where A is the effective surface area and k¢ is a rate constant. For the simplest case, it can 

be shown that (the Langmuir equation)

  
(1 )

KP

KP
q =

+  (5.39)
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where K is the adsorption–desorption equilibrium constant, and P is the pressure of the 
overlying gas. The rate then becomes

  
(1 )

k A KP
v

KP

¢
=

+
 (5.40)

a rate law whose order cannot be defi ned. However, two limiting conditions may be 
considered. At very low pressure, (1 + KP) ª 1 and we have

   v = k¢AKP = k1P (5.41)

a fi rst order kinetics. On the other hand, at very high pressure (1 + KP) ª KP; we then 

have

  v = k¢A = k2 (5.42)

which a zeroth order rate law. Thus, the order of the reaction changes from 1 to zero 
as the pressure is gradually increased. The reason is that, at very low pressure there is 
an affl uence of surface sites for the reactant molecules to get adsorbed; hence, the rate 
increases proportionately with pressure [Eq. (5.41)]. As the pressure is gradually increased, 
this proportionality is broken; the rate slows down. At suffi ciently high pressure, q becomes 
almost unity; all the surface sites are now occupied, and we get the maximum rate.

Further increase in the pressure is then of no use; the reaction then goes as zeroth-order. 
It is noteworthy that a zeroth order reaction unlike fi rst and second order, goes to 100% 
completion within a fi nite time of [using Eq. (5.33)]

  
0

100%
AC

t
k

=    (∵ CA = 0) (5.43)

This is also confi rmed from Figure 5.12; the straight line will intersect the time axis at 
t100%. The half life time t0.5 is then

  

0

0.5
2

AC
t

k
=  (5.44)

Figure 5.12 A zero order rate plot for a reac  on where [A]0 = 0.75 M and k = 0.012 mol/1.
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5.6.2.5 Third Order Reaction with Three Reactants

Let the stoichiometry of the reaction be 

  Product(s)A B C+ + ææÆ

and the reaction is of third-order; fi rst-order with respect to each of A, B and C, i.e. the 
rate law is

  – A
A B C

dC
k C C C

dt
=  (5.45)

Since     0 0 0– – , we findA A B B C CC C C C C C= = -

   
0 0 0 0– and –B B A A C C A AC C C C C C C C= + = +

Therefore, 

      

0 0 0 0( – ) ( – )A
A B A A C A A

dC
k C C C C C C C

dt
- = + +

and integrating by partial fractions, we fi nd

0 00 0 0 0 ( )( ) ( )

0 0 0 0 0 0 0 0 0

1
ln

( ) ( ) ( )

BB AC C A
C CC C C C

CA B

A B B C C A A B C

CC C
kt

C C C C C C C C C

-- -È ˘Ê ˆÊ ˆ Ê ˆÍ ˙ =Á ˜Á ˜ Á ˜Í ˙- - - Ë ¯ Ë ¯ Ë ¯Í ˙Î ˚

 (5.46)

5.6.2.6  Third Order Reaction with Two Reactants
Let the stoichiometry be

      2 Product(s)A B+ ææÆ

the rate law is then 

         

2– A
A B

dC
kC C

dt
=

Here,      
0

0 0 02( ) and ;
2 2
A A

A A B B B B

C C
C C C C C C- = - = - +

then         
0

2 0–
2 2

A A A
A B

dC C C
kC C

dt

Ê ˆ
= - +Á ˜Ë ¯

The form of the partial fractions is then 

   

= + +
Ê ˆ

- + - +Á ˜Ë ¯

0 2 0
2 0 0

1

(
2 2 2 2

AA A A A A
A B B

P Q R

CC C C C C
C C C
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Evaluating constants P, Q and R, the fi nal integrated rate law comes out as

      

0
0 0

0 0 0 0 0 02

2 1 1 2
ln ; (2 )

(2 ) (2 )

B A
B A

AB B BA A A A

C C
kt C C

CC C C C C C C

Ê ˆ- + = πÁ ˜- -Ë ¯
 (5.47)

Examples of this kind of reaction are reactions between NO and O2, Cl2 or Br2.

5.6.2.7  Third Order Reaction with a Single Reactant

      3A ææÆ  Products(s)

The rate law is

 

3A
A

dC
kC

dt
- =

Integrating between limits

  
0

3

0

A

A

C t

AA

C

C dC k dt
- = -Ú Ú

fi  
Ê ˆ- =Á ˜Ë ¯2 0 2

1 1
2

( )AA

kt
CC

 (5.48)

A plot of 
2

1

AC
 versus time should be linear and have a slope of 2k. After the fi rst half life 

t0.5, 
01
.

2
A AC C=  Using Eq. (5.48) we then get

  

= - =0.5 0 2 0 2 0 2

4 1 3
2

( ) ( ) ( )A A A

kt
C C C

or  =0.5 0 2

3

2 ( )A

t
k C

 (5.49)

Example 5.15

For the reaction

  3 2 2 42FeCl SnCl 2 FeCl SnCl+ ææÆ +

in aqueous medium the following data were obtained at 25°C.

  

(min) 1 3 7 11 40

( ) 0.01434 0.02664 0.03612 0.04102 0.05058

t

y M
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where y is the amount of FeCl3 reacted in M. The initial concentrations of SnCl2 and FeCl3 
were 0.03125 M and 0.0625 M, respectively. Show that the reaction is third-order and, 
calculate the average rate constant.

Solu  on 

The reaction is of the type given in Section 5.8.6; but, we cannot use the corresponding 

integrated rate law given in Eq. (5.47). This is because, 0 02 B AC C=  for our problem 
[2(0.03125) = 0.0625]; the equation becomes indeterminate. It should now be represented 
by Eq. (5.48). Let the reaction be represented as

at t = 0  

3 3 2 2 4FeCl + FeCl + SnCl 2FeCl + SnCl

0.3125 0.03125 0.03125

ææÆ
- -

The integrated rate law, Eq. (5.48), is then used to calculate k at different time intervals. 

In our calculation we then use 0 0.03125 M.RC =
Let the amount of SnCl2 reacted at time t be x. At t = 1 min

  

0.01434 M
0.00717 M,

2 2

y
x = = =

\  0 (0.03125 0.00717)M 0.02408 MR RC C x= - = - =

fi  2

1
1724.59,

RC
=  and therefore

  

- - -= - =2 2 11
[1724.59 1024] M 350.3 M min

2(1min)
k

At  t = 3 min  
0.02664

0.03125 M 0.01793 M
2

RC
Ê ˆ= - =Á ˜Ë ¯

fi  
2

1
3110.57

RC
=

fi  

2 2 11
[3110.57 1024] M 347.8 M min

6 min
k - - -= - =

At t = 7 min; proceeding along same manner
 k = 337.4 M–2 min–1

At t = 11 min; k = 347.5 M–2 min–1

and at t = 40 min; k = 339.1 M–2 min–1

The values of k obtained are of the same order in magnitudes; the reaction is therefore a 

third-order process with the average rate constant 344.4 M–2 min–1.
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5.6.2.8 A General  n-th Order Reaction

Finally, we consider an n-th order reaction involving a single reactant, or different 

reactants of equal concentration

  nR ææÆ  Product (s) or R1 + R2 + ... ææÆ  Product (s)

Let 0
RC  be the concentration of the reactant initially (t = 0), and CR be the reactant 

concentration at time t; the rate law is then

  
nR

R

dC
v kC

dt
= - =

which on integration between limits gives

  
--

È ˘= - πÍ ˙- Í ˙Î ˚
11 0

1 1 1
( 1)

( 1) nn
R R

k n
t n C C

 (5.50)

The half life time t0.5 for such a process is then

  -
-= - π

-
1

1
0.5

0

1
[2 1] ( 1)

( 1)
n

n

R

t n
n kC

 (5.51)

Now, let us see, for what values of n, the reaction may go to 100% completion, 100% 

completion means, CR = 0. Rearranging Eq. (5.50) as

  

(1 ) 10

0
1

( 1)

n n

R R

R

C C
t

k n C

- -È ˘Ê ˆÍ ˙= -Á ˜- Í ˙Ë ¯Î ˚

fi  

(1 )0

100%
( 1)

n

RC
t

k n

-

= -
-

 (5.52)

From Eq. (5.52) it is clear that, for t100% to be a fi nite and positive (n – 1) must be negative. 
The required condition is then

  n – 1 < 0

fi  n< 1 (5.53)

Previously we found that zeroth order reactions also go to completion. Therefore, reactions 
with order n(0 £ n < 1) will go to 100% completion within a fi nite time.

Example 5.16

The catalysed decomposition of H2O2 in aqueous solution is followed by removing equal 

volume samples at various time intervals and titrating them with KMnO4 to determine 

the undecomposed H2O2. The results obtained are
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Time (min) 5 10 20 30 50

KMnO4 (mL) 37.1 29.8 19.6 12.3 5

Find the order of the reaction, and the value of the rate constant. Also estimate the volume 

of KMnO4 required for the titration of the sample at t = 0.

Solu  on 

This kind of problem is generally solved by the method of trial-and-error. A particular 

order is suspected and then checked whether the given data gives a concurrent value of k. 

Intuition suggests that the reaction is fi rst-order:

  
2 2 2 2

1
H O H O O

2

kææÆ +

The integrated rate law is

  

0
1

ln R

R

C
k

t C
=

where CR
0 is the initial concentration of the reactant and CR  is its concentration at time t.

There is no data given to fi nd CR
0, because, the volume of KMnO4 consumed at time t refers 

to the amount of the undecomposed H2O2 at that time t*. We therefore rewrite the above 

equation as

  

1

2 1 2

1
ln

( )
R

R

C
k

t t C
=

-

where CR1 and CR2 are the concentrations of the undecoposed H2O2 at time intervals t1 and 

t2, respectively. Using the data we fi nd

 (i) for t = 5 min and t2 = 10 min

  

(37.1 mL1
ln

(10 5) min
k =

-
)

(29.8 mL

10.0438 min
)

-=

 (ii) for t = 10 min and t2 = 20 min

  

-= = 11 29.8
ln 0.0419 min

10 min 19.6
k

 (iii) for t1 = 20 min and t2 = 30 min

  

11 19.6
ln 0.0466 min

10 min 12.3
k -= =

* There is no data at t = 0.
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 (iv) for t1 = 30 min and t2 = 50 min

  

11 12.3
ln 0.0450 min

20 min 5
k -= =

Within the limit of experimental error, the constancy of the values of k confi rms that the 

reaction follows a fi rst-order kinetics with an average rate constant of 0.044 min–1.

Once the value of the rate constant is obtained, we may now write

  

01
ln

t

V
k

t V
=

fi  
0

kt
tV V e=

Using the data for t = 5 min ; Vt = 37.1 mL, we fi nd

  
(0.044 min

0 (37.1 mL) [V e=
1

. 5 min
-

)

or,   V0 = 46.2 mL

Example 5.17

In the vapour phase, ethylene oxide decomposes into methane and carbon monoxide at 

415°C. The pressure of the reaction vessel with time is given below.

t (min) 0 5 7 9 12 18

p (Torr) 116.1 122.56 125.72 128.74 133.23 141.37

Show that the reaction follows a fi rst-order kinetics and, calculate the rate constant.

Solu  on

The reaction is

As shown above, the initial pressure is P0 = 116.51 Torr.

At time t, the total pressure PT is

 0 0( )TP P P P P P P= - + + = +

From the given data we the fi nd

at t = 5 min, P0 + P = 122.56 Torr;

fi P = 6.05 Torr; i.e. P0 – P = 110.46 Torr
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using the integrated fi rst order rate law

 

= =
-0

116.51 (Torr)1 1
ln ln

(5 min)
oP

k
t P P 110.46 (Torr)

- -= ¥ 2 11.07 10 min

at t = 7 min, P0 + P = 125.72 Torr;

fi P = 9.21 Torr ; i.e. P0 – P = 107.3 Torr

Therefore, 
116.51 (Torr)1

ln
(7 min)

k =
107.3 (Torr)

2 11.18 10 min- -= ¥

at  t = 9 min, P0 + P = 128.74 Torr; 

fi P = 12.23 Torr ; i.e. P0 – P = 104.28 Torr

Therefore, 
116.51 (Torr)1

ln
(9 min)

k =
104.28 (Torr)

2 11.23 10 min- -= ¥

at  t = 12 min, P0 + P = 133.23 Torr; 

fi P = 16.72 Torr ; i.e. P0 – P = 99.79 Torr

Therefore, 
116.51 (Torr)1

ln
(12 min)

k =
99.79 (Torr)

2 11.29 10 min- -= ¥

at  t = 18 min, Po + P = 141.37 Torr; 

fi P = 24.86 Torr ; i.e. P0 – P = 91.65 Torr

Therefore 
116.51 (Torr)1

ln
(18 min)

k =
91.65 (Torr)

2 11.33 10 min- -= ¥

The almost constant value of k confi rms that the reaction follows a fi rst order kinetics with 

an average rate constant of 1.22 × 10–2 min–1.

Example 5.18

At 25°C methylacetate is saponifi ed by mixing the ester and NaOH (aq), both at the 

concentration 0.01 M fi nally. Small aliquots of the reaction mixture are then titrated at 

different time intervals with a standardised HCl solution. The data obtained are:

Time (min) 3 5 7 10 15 21 25

Conc. of base (M) 0.00740 0.00634 0.00550 0.00464 0.00363 0.00288 0.00254

Find the order of the reaction and determine the rate constant of the reaction.
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Solu  on

Saponifi cation is a second-order process, fi rst-order with respect to each of the ester and 

OH– ion. For equal initial concentration of both the reactants, we will use Eq. (5.18)

  
0

1 1

R R

kt
C C

= +

fi  
0

0

( )R R

R R

C C
k

t C C

-
=  (i)

CR
0 is the initial concentration of each reactant, i.e. CR

0 = 0.01 M, and CR is the concentration 

at time t. Since we are titrating the aliquot with a standard HCl, the titre values given in 

the 2nd period represent the amount of unreacted NaOH (and the ester) at that time, i.e. 

CR. We now check the Eq. (i) with the given data (C R
0 = 0.01 M):

 1. 03 min; 0.00740 ; ( ) 0.0026 MR R Rt C M C C= = fi - =

  fi (0.0026 M
k =

)

(0.01 M

1 111.7 M min
) (3 min) (0.00740 M)

- -=

 2. = = fi - =05 min; 0.00634 M; ( ) 0.0037 MR R Rt C C C

  fi =
(0.0037 M

k
)

(0.01 M

- -= 1 111.67 M min
) (5 min) (0.00634 M)

 3. 07 min; 0.0055 M; ( ) 0.0045 MR R Rt C C C= = fi - =

  fi =
(0.0045 M

k
)

(0.01 M

- -= 1 111.69 M min
) (7 min) (0.0055 M)

 4. 010 min; 0.00464 M; ( ) 0.0054 MR R Rt C C C= = fi - =

  fi (0.0054 M
k =

)

(0.01 M

1 111.64 M min
) (10 min) (0.00464 M)

- -=

 5. 015 min; 0.00363 M; ( ) 0.0064 MR R Rt C C C= = fi - =

  fi 
(0.0064 M

k =
)

(0.01 M

1 111.75 M min
) (15 min) (0.00363 M)

- -=

 6. 021 min; 0.00288 M; ( ) 0.0071 MR R Rt C C C= = fi - =

  fi 
(0.0071 M

k =
)

(0.01 M

1 111.74 M min
) (21 min) (0.00288 M)

- -=
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 7. 025 min; 0.00254 M; ( ) 0.0075 MR R Rt C C C= = fi - =

  fi (0.0075 M
k =

)

(0.01 M

1 111.81 M min
) (25 min) (0.00254 M)

- -=

The constancy in the values of k proves that the reaction follows the second-order kinetics. 

The average rate constant is then k = 11.72 M–1min–1.

Example 5.19

The hydrolysis of 1-chloro-1-methylcycloundecane in 80% ethanol has been studied. The 

extent of hydrolysis was measured by titrating the acid formed at different time intervals 

with a solution of NaOH. The data reported are

time/h 0 1 3 5 9 12 μ

vol. of NaOH 
reqd (mL)

0.035 0.295 0.715 1.055 1.505 1.725 2.197

 (a) What is the order of the reaction?

 (b) Calculate the rate constant, and

 (c) How much of the reactant is left unhydrolyzed after 8 hours?

Solu  on

In acid medium, hydrolysis is generally fi rst-order. Let us check it with the given data. The 

volume of NaOH required at t = 0 should have been zero; but the little volume required 

may be due to the acidic character of the alcohol. Therefore, every data for the consumed 

NaOH volume should be subtracted from 0.035. At infi nite time the reaction is complete; 

therefore if a is the initial concentration of the reactant and x be the hydrolyzed time t, 

then μ - fi μ(2.197 0.035) mL, 2.162 mLa a

at = μ - fi μ μ1h, (0.295 0.035)mL, 0.26 mL and ( - ) 1.902 mLt x x a x

therefore, using the equation =
-

1
ln ; (the proportionality constants cancel out)

( )

a
k

t a x

fi 
(2.162 mL1

ln
(1h)

k =
)

(1.902 mL

10.128 h
)

-=

at 3h; (0.715 0.035) mL 0.68 mLt x= μ - μ

and, ( ) 1.482 mLa x- μ

therefore, 
(2.162 mL1

ln
(3h)

k =
)

(1.482 mL

10.126 h
)

-=

at = μ - μ5 h (1.055 0.035) 1.02 mLt x
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\ ( ) 1.142 mLa x- =

fi (2.162 mL1
ln

(5h)
k =

)

(1.142 mL

10.128 h
)

-=

at 9 h; (1.055 0.035)mL 1.47 mLt x= μ - μ

\ ( ) 0.692 mLa x- μ

fi =
(2.162 mL1

ln
(9h)

k
)

(0.692 mL

-= 10.127 h
)

at 12 h (1.725 0.035)mL 1.69 mLt x= μ - μ

and ( ) 0.472 mLa x- μ

fi 
(2.162 mL1

ln
(12h)

k =
)

(0.472 mL

10.127 h
)

-=

The constancy in the values of k suggests that the reaction is of fi rst-order with an average 

rate constant of k = 0.127 h–1. The fraction  remaining unhydroyzed after 8 hours is then

 

(0.127

0

kt hR

R

C
e e

C

- -= =
1

) (8 h
-

) 0.362=

Example 5.20

Equimolar quantities of A and B are added to a litre of a suitable solvent. At the end of 

500s, half of A has reacted according to the reaction A + B Æ P. How much of A will be 

reacted at the end of 800s if the reaction is

 (a) zeroth-order with respect to both A and B

 (b) fi rst-order with respect to A and zeroth-order with respect to B

 (c) fi rst-order with respect to both A and B

Solu  on 

 (a) The rate law is:

  

0A
A A

dC
k C C kt

dt
- = fi = -

Therefore,      
0 0 0 0

10.5
s

500s 1000
AA A A AC C C C C

k
t

-- -
= = =

Therefore, at 800s

           0 0 0 0310 (800) 0.2A A A A AC C kt C C C-= - = - =

i.e. 80% of A will be consumed.



5.46 Physical Chemistry

 (b) The rate law is

  
A

A

dC
kC

dt
- =

using the integrated rate law

  
10.693

s
500

k -=

Therefore, at 800s

           

0.693
s

0 500
A AC C e

-
=

1
(800 s

-Ê ˆ
Á ˜Ë ¯ )

fi  00.33A AC C=

i.e. 67% of A will be consumed.

 (c) The integrated rate law is

     

0 0
1

0 0 0 0 0

( ) 0.51 1 1
s

500(500s) (0.5 )

AA A

A AAA A A A

C C C
kt k

C CC tC C C C

--
= + fi = = =

Therefore, at 800s

     
0 0 0

1 1 8 13

5 5A A A A
C C C C

= + =

fi    = =0 05
0.385 , i.e.

13
A A AC C C  61.5% of A will be consumed.

Example 5.21

Sucrose (cane-sugar) is dextrorotatory, its specifi c rotation being + 66.5° (25°C). On 

hydrolysis with dilute acids, sucrose yields an equimolar mixture of D(+) glucose and D(–) 

fructose

  

HCl
12 22 11 2 6 12 6 6 12 6

glucose fructose

C H O + H O C H O C H OæææÆ +

Since D(–) fructose has a greater specifi c rotation than D(+) glucose, the resulting mixture 

gradually changes from dextrorotatory to laevorotatory with time. For this reason, the 
hydrolysis of cane-sugar is known as the inversion of cane-sugar. In an experiment the 
polarimetric readings are

t/min 0 30 90 330 μ

Angle of rota  on, μ 46.75 41.00 30.75 2.75 –18.75

Show that the reaction follows a fi rst-order kinetics and, estimate the rate constant.
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Solu  on 

We shall use the equation

  

1
ln

( )

a
k

t a x
=

-

where a is the initial concentration of the sugar, and x is the portion hydrolyzed at 
time t.

Over the entire course of the reaction from t = 0 to t Æ •, the total sugar has reacted; so 
we write

  0( ) aa a a•-

and, since x is the concentration of sugar reacted at time t

  0( )t xa a a-

fi  ( ) ( )t a xa a a•- -

The expression of the rate constant then can be written as

  

0

0

( )1
ln

( )
k

t

a a

a a
•

•

-
=

-

We now use the data at different time intervals to fi nd k.

At t = 30 min, 3 1(46.75 18.75)1
ln 3.06 10 min

(30 min) (41.00 18.75)
k - -+

= = ¥
+

at t = 90 min, 3 11 65.5
ln 3.11 10 min

(90 min) (30.75 18.75)
k - -= = ¥

+

at t = 330 min, 3 11 65.5
ln 3.38 10 min

(330 min) (2.75 18.75)
k - -= = ¥

+

The constancy in the values of k confi rms that the reaction follows a fi rst order kinetics for 
a given catalyst concentration, and the average rate constant is 3.18 × 10–3

 min–1.

Example 5.22

At a fi xed temperature 30°C, a mixture is prepared by adding 10 mL 2 volume H2O2, 

10 mL 12 N H2SO4 acid, 2 mL of a freshly prepared starch solution and the volume is 

made up to 200 mL by distilled water. 50 mL of 4% (w/v) KI is then added to the reaction 

mixture, and, a stop-watch is immediately started. This moment refers to t = 0 for the 

reaction. The colour of the mixture turns blue. A small volume of sodium thiosulphate

(0.1 N) is then added as fast as possible to the reaction mixture. The time of appearance 

of the blue colour is recorded. Another small volume of the thio-solution is then added, so 
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that the colour goes off; the time of the second appearance of the blue colour is recorded. 

In this way, the time of appearance of the blue colour of the reaction mixture is noted after 

gradual addition of small volume of the thio-solution. The results are given in the table 

below.

Vol. of thio 

added (mL)

6.2 10.2 15.1 17.8 20.3

Time (s) 64 117 193 246 298

In a separate fl ask, the same composition, except the starch solution, is taken and kept in 

the dark for 15 minutes. The iodine liberated is then titrated with the same thio-solution 
with starch as an indicator. The volume required is found to be 40.4 mL. Calculate the 
pseudo-fi rst-order rate constant of the reaction.

Solu  on 

According to discussion, V0 = 40.4 mL.

at t = 64s: 3 11 40.4
ln 2.6 10 min

(64s) (40.4 6.2)
k - -= = ¥

-

at t = 117s: 3 11 40.4
ln 2.5 10 min

(117s) (40.4 10.2)
k - -= = ¥

-

at t = 193 s: 3 11 40.4
ln 2.4 10 min

(193s) (40.4 15.1)
k - -= = ¥

-

at t = 246 s: 3 11 40.4
ln 2.4 10 min

(246s) (40.4 17.8)
k - -= = ¥

-

at t = 298 s: 3 11 40.4
ln 2.3 10 min

(298s) (40.4 20.3)
k - -= = ¥

-

The constancy of the values of k for the given sets of data confi rms that the reaction 
is a pseudo-fi rst-order reaction with respect to H2O2, with an average rate constant

2.4 × 10–3 min–1. The students are advised to plot 
0

0

ln
( )t

V

V V-
 versus t on their own from 

the given data of this problem, and then, to fi nd k from the slope. The straight line should 
meet the origin.

5.7  COMPLEX REACTION

Most of the reactions occurring in nature or in the laboratory are not one step act; as 

if, two reactant molecules collide and give the fi nal product(s) in a single step. There 

is a mechanistic pathway, a series of steps, through which the reaction occurs. These 
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are called the elementary steps. Such reactions are called complex reactions. There basic 

kinds of complex reactions are

 (1) Parallel Reaction

 (2) Consecutive Reaction and

 (3) Opposing Reaction

5.7.1  Parallel Reaction

From our elementary chemistry we know that, when phenol is nitrated, we get two 

products: o-nitrophenol and p-nitrophenol. This means that, during the reaction some 

phenol molecules give the ortho-product and the rest give the p-product. We say that the 

reaction is a parallel reaction.

Suppose a reactant R undergoes a parallel reaction to give three products P1, P2 and P3 at 

different rates and with different rate constants k1, k2 and k3.

The reaction scheme is then

For the simplest case, we consider that all the three routes are of fi rst-order with rate 

constant  k1, k2, and k3. If the initial concentration, i.e. at t = 0, of the reactant R be CR
0 

and C1, C2 and C3 are the concentration of the three products P1, P2 and P3 at time t, when 

R concentration is CR, we may write

  CR
0 = CR + C1 + C2 + C3 (5.54)

The rate of disappearance of R is the sum of the rates of the three processes,

  
1 2 3 1 2 3( )R

R R R R

dC
k C k C k C k k k C

dt
- = + + = + +

Integration with limits give

  1 2 30 ( )k k k t
R RC C e- + +=  (5.55)

The rate of formation of the product P1 is

  
1 2 301

1 1

( )k k k

R R

dC t
k C k C e

dt

- + += =

fi  1 2 30 ( )
1 1

k k k t
RdC k C e dt- + +=



5.50 Physical Chemistry

and on integration

  

1 2 3

0
( )1

1
1 2 3( )

k k kRk C
C e z

k k k

- + += - +
+ +

The integration constant z is evaluated as at t = 0, C1 = 0. This gives us

  

0
1

1 2 3( )
Rk C

t
k k k

=
+ +

  1 2 3

0
( )1

1
1 2 3

1
( )

k k k tRk C
C e

k k k

- + +È ˘= -Î ˚+ +
 (5.56)

and, similarly we fi nd

  1 2 3

0
( )2

2
1 2 3

1
( )

k k k tRk C
C e

k k k

- + +È ˘= -Î ˚+ +
 (5.57)

and,  1 2 3

0
( )3

3
1 2 3

1
( )

k k k tRk C
C e

k k k

- + +È ˘= -Î ˚+ +
 (5.58)

The concentration-time profi le of the reactant and the three products P1, P2 and P3 is 
shown in Figure 5.13. To construct the fi gure, we have used : CR

0 = 1 M and k1 = 0.03 min–1; 

k2 = 0.03 min–1 and k3 = 0.01 min–1.

Figure 5.13 Varia  on of the concentra  on of the reactant and the products with   me.

It is also noteworthy to fi nd that at any time t

  

3 3 3 32 2

1 1 2 2 1 1

and or,
C k C kC k

C k C k C k
= = =

or C1 : C2 : C3 = k1 : k2 : k3 (5.59)
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The products are in constant ratio to one another, which is independent of time and the 

initial concentration of the reactant. Furthermore, you can also check that at any time t

 CR + C1 + C2 + C3 = CR
0 (5.60)

From Eq. (5.55), the average life time of may be expressed as

  
0.5

1 2 3

0.693

( )
t

k k k
=

+ +
 (5.61)

5.7.1.1 Investigation of the Reaction 
22 2+ ææÆ +2 2 2H O HI I H O

This reaction is kinetically of second order—not, as might be expected, third order. The 
mechanism is probably an initial, rate determining step

  2 2 2H O I H O IO (slow)- -+ ææÆ +

followed by a rapid reaction

  2 2IO 2H I H O I (fast)- ++ + ææÆ +¢

The latter presumably also occurs by steps, not by a simultaneous collision among four 
ions. The rate of the reaction is then

  
2 2H OI

v k C C-= ¢  (i)

The order of the reaction with respect to H2O2 can be studied conveniently by choosing 

conditions such that there is a constant excess of I– (or HI). The rate law (i) then follows a 

pseudo-fi rst-order kinetics:

  
2 2H O I

( )v kC k k C -= = ¢  (ii)

Experimentally, this is achieved by continually adding small volumes of sodium 

thiosulphate solution to remove the iodine as soon as it is liberated, and to regenerate 

I– ions according to the reaction

  2Na2S2O3 + I2 ææÆ  Na2S4O6 + 2NaI

By using a large volume of solution and adding small amount of concentrated thiosulphate 

solution, one can neglect the small increase in the volume of the solution, and making 

CI
– as a constant. At a fi xed temperature the rate of the reaction then depends only on 

CH2O2
. The course of the reaction can readily be followed by timing the appearance of 

iodine with its blue colour (indicated by a small value of starch solution added to the 

reaction mixture at the start) after a small known volume Vt of thiosulphate solution has 

been added. Another addition of thiosulphate is immediately made, the moment the blue 

colour appears. In this way, the set of Vt values is recorded versus time. Since 1 mole of 

H2O2 is destroyed for every mole of I2 liberated, the Vt values provide the CH2O2
 reacted at 
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different instants of time t. If V0 be the volume of thiosulphate required to react with the 

total I2 produced by the reaction mixture (it is to be found separately) then the fi rst order 

rate law may be written as

  

0

0

ln
( )t

V
kt

V V
=

-

A plot of 0

0

ln
t

V

V V

Ê ˆ
Á ˜-Ë ¯

 versus t may now be made to fi nd k.

Example 5.23

Potassiun-argon dating is used in geology and archeology rocks. Potassium–40 decays by 

two different paths:

The overall half life for the decay of potassium–40 is 1.3 × 109 years. Estimate the age of 

sedimentary rocks with an Ar – 40 to K – 40 ratio of 0.0102.

Solu  on 

Using Eq. (5.61), the overall half life time of 40
19 K  is

  
0.5

1 2

0.693

( )
t

k k
=

+

fi  10 1
1 2 9

0.693
( ) 5.33 10

1.3 10
k k y

y

- -+ = = ¥
¥

Starting with nk(0) mole of K (at t = 0), number of moles of 40
19 K  left at time t is

  nK(t) = nK(0)  exp (– 5.33 × 10–10t) (5.62)

Therefore, the number of moles 40
19 K  decayed nd,K(t) at time t is

  nd,K (t) = nK(0) – nK(t)

fi  
-- ¥= -
105.33 10

,K K K( ) (0) (0) t
dn t n n e  (5.63)
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or  
-- ¥= -
105.33 10

,K K( ) (0) [1 ]t
dn t n e  (5.64)

Number of moles of 40
18 Ar  produced is then (at time t)

  
-- ¥= -
105.33 10

Ar K( ) 0.107 (0)[1 ]tn t n e  (5.65)

Therefore, according to the problem

  

-

-

- ¥

- ¥

-
=

10

10

5.33 10
Ar K

5.33 10
K K

( ) 0.107 (0) [1 ]

( ) (0)

t

t

n t n e

n t n e

fi  
105.33 100.0102 0.107 [ 1]te

-¥= -

and solving for t we get

  t = 1.71 × 108 y.

The rock is about 1.71 × 108 years old.

5.7.2  Consecutive Reaction and  Steady State Approximation

Consider the (4n + 2) series of 238
92 U

  
a bb- -æææÆ ææÆ æææÆ ææÆ238 234 234 234

92 90 91 92U Th Pa U

fi nally ending up to 206
82 Pb.

This is a consecutive process. We take the simplest consecutive reaction where the reactant 
R produces an intermediate I, which in turn, produces the fi nal product P; both the steps 
being fi rst-order with rate constants k1 and k2.

  
1 2k k

R I PææÆ ææÆ

at t = 0 0 0 0RC

at t 
R I PC C C

The concentrations of the species initially, and at time t are shown above. In any kinetic 
study the most important thing is the concentration-time profi le of the reacting species. 
We fi rst do it for R.

The rate of decrease in the reactant concentration at time t is

  

10
1

k tR
R R R

dC
k C C C e

dt

--
= fi =

 (5.66)
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The reactant concentration CR is therefore decreased exponentially; the usual fi rst order 

decay.

The rate of accumulation of the intermediate I at time t is

  
1 2

I
R I

dC
k C k C

dt
= -  (5.67a)

and using Eq. (5.66), the rate law is

  10
2 1

k tI
I R

dC
k C k C e

dt

-+ =  (5.67b)

This is an imperfect differential. We therefore multiply Eq. (5.67b) by the integrating 
factor ek2t to make it perfect.

  

2 1 20 ( )
2 1

k t k k tI
I R

dC
e k C k C e

dt

- -Ê ˆ
+ =Á ˜Ë ¯

fi  2 1 20 ( )
1( )k t k k t

I Rd C e k C e dt- -=

then integrating between limits

  

2 1 20 ( )
1

0 0

( )
IC t

k t k k t
I Rd C e k C e dt- -=Ú Ú

fi  - -- È ˘= -Î ˚-
2 1 2

0
( )1

1 2

1
( )

k t k k tR
I

k C
C e e

k k

fi  2 1 2

0
( )1

1 2

1
( )

k t k k tR
I

k C
C e e

k k

- -È ˘= -Î ˚-

and fi nally,

  2 1

0
1

1 2( )
k t k tR

I

k C
C e e

k k

- -È ˘= -Î ˚-
 (5.68)

The concentration-time profi le for the product P is then obtained from the equation

  
0

P R R IC C C C= - -

which is

  2 10 1 2

1 2 2 1

1
( ) ( )

k t k t
P R

k k
C C e e

k k k k

- -È ˘
= - -Í ˙- -Î ˚

 (5.69)

The concentration-time profi les of R, I and P [Eqs. (5.66), (5.68) and (5.69)] are now shown 

in Figure 5.14, with CR
0 = 1 M, k2 = 0.2 min–1 and k1 = 0.1 min–1. Such a case is generally 
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unusual because the intermediate is more reactive then the reactant. However, the location 

of maximum of the CI vs t curve is of interest. The intermediate concentration-time profi le 

is given by Eq. (5.68)

  

2 1

0
1

1 2

[ ]
( )

k t k tR
I

k C
C e e

k k

- -= -
-

fi  2 1

0
1

2 1
1 2

[ ]
( )

k t k tRI k CdC
k e k e

dt k k

- -= - +
-

Figure 5.14 A consecu  ve reac  on where CR
0 = 1.00 M, k1 = 0.200 min

–1 and k2 = 0.100 min
–1.

at the maximum, 0;IdC

dt
=  this gives us

  2 max 1 max
2 1

k t k tk e k e- -=

fi  1 2
max

1 2

(ln ln )

( )

k k
t

k k

-
=

-
 (5.70)

tmax is the time at which CI goes to its maximum. The concentration of CI at its maximum 
is then [using Eq. (5.68)]

         

Ê ˆ Ê ˆ
Á ˜ Á ˜Ë ¯ Ë ¯

- -
- -

È ˘
Í ˙
Í ˙= -Î ˚-

1 1

2 2
2 1

1 2 1 2

ln ln
0

( ) ( )1
max

1 2

( )
( )

k k

k k
k k

k k k kR
I

k C
C e e

k k

   

2 1 1 1

1 2 2 1 2 2

0 ln ln
( ) ( )1

1 2( )

k k k k

k k k k k kRk C
e e

k k

Ê ˆ Ê ˆ
- -Á ˜ Á ˜- -Ë ¯ Ë ¯

È ˘
Í ˙= -Î ˚-
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2 1

1 11 2 1 2

2 2

0 ln ln
1

1 2( )

k k

k k k kk k

k kRk C
e e

k k

- -
- -Ê ˆ Ê ˆ

Á ˜ Á ˜Ë ¯ Ë ¯

È ˘
Í ˙

= -Í ˙Î ˚-

  

12

1 21 21

2

0
1 1

( )1 2 2

k

kk

kk kR
k C kk
k k k k

-
--

È ˘-Í ˙Ê ˆÊ ˆ
Í ˙Á ˜Á ˜ Á ˜Í ˙Ë ¯ Ë ¯Î ˚

= -
-

fi  

2 1

2 1 2 1
0

( ) ( )
1 1 1

max
1 2 2 2

( )
( )

k k

k k k k
R

I

k C k k
C

k k k k

- -
È ˘
Ê ˆ Ê ˆÍ ˙= -Á ˜ Á ˜Í ˙- Ë ¯ Ë ¯Î ˚

  

-
- È ˘Ê ˆ Ê ˆÍ ˙= -Á ˜ Á ˜- Ë ¯ Ë ¯Í ˙Î ˚

2

2 1
10

1 1 1

1 2 2 2

1
( )

k

k k
Rk C k k

k k k k

  
- -Ê ˆ

= Á ˜- Ë ¯

2

2 1
0

( )
1 1 1 2

1 2 2 1

( )
,

( )

k

k k
Rk C k k k

k k k k
 and fi nally

  
-Ê ˆ

= Á ˜Ë ¯

2

2 1( )0 1
max

2

( )

k

k k

I R

k
C C

k
 (5.71)

It is to be noted carefully that, as k2 increases for a given value of k1, both the tmax and

(CI)max
 decrease. This is shown in Figures 5.15(a) and (b).

Figure 5.15(a) A consecu  ve reac  on where CR
0 = 1.00 M, k1 = 0.100 min

–1 and k2 = 0.200 min
–1.
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Figure 5.15(b) A consecu  ve reac  on where CR
0 = 1.00 M, k1 = 0.100 min

–1, and k2 = 1.00 min
–1.

5.7.2.1 The  Parent-Daughter Relation

At the outset, it is said that a radioactive decay series is consecutive. Considering the 

simplest case of the so called parent-daughter relation

  A B CææÆ ææÆ

A being the parent, B is the daughter, and C is the fi nal product. Signifi cant differences 

may arise depending on the relative half lives of the parent and the daughter. A very 

important difference between a radioactive decay and chemical reactions is that the 

former goes essentially to completion but the latter tends to an equilibrium. If NA, NB and 

NC represent the number of nuclei of the parent A, the daughter B and, the fi nal product 

C, respectively, at time t, then

  10 k t
A AN N e-=   [by Eq. (5.66)] and, (5.72)

  2 1

0
1

1 2

[ ]
( )

k t k tA
B

k N
N e e

k k

- -= -
-

 [(by Eq. 5.68)] (5.73)

Notice, that the second group of terms represents the growth of the daughter from the 

parents and the fi rst represents the decay of these daughters.

Case-1:  Transient Equilibrium

If the parent is long lived than the daughter, i.e. k2 > k1, a state of so-called radioactive 

equilibrium is reached. Therefore, after a long span of the time, the term 2k te-  becomes 

negligible compared to 1 .k te-  Therefore, neglecting this terms 2( ),k te-  we have at a time t

  1

0
1 1

2 1 2 1( ) ( )
k tA A

B

k N k N
N e

k k k k

-= =
- -

 [(using Eq. (5.72)]
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fi  2 1

1

A

B

N k k

N k

-
=  (5.74)

If the counting effi ciencies of the parent and daughter are the same, the numbers of nuclei 
can be replaced by the corresponding activities; this gives us

  2 1

1

A

B

A k k

A k

-
=  (5.75)

Since k2 > k1, the daughter B is decaying faster than the relatively long lived parent A, 
which decays to produce the daughter. After a very short span of time, therefore, the total 
activity passes through a maximum and then decreases at approximately a constant rate. 
Moreover, at this stage of transient equilibrium, both the activities decay with parent’s 
half-life. This interesting story is shown in Figure 5.16, where the logarithms of the total 
activity and the activities of the parent and daughter are plotted versus time.

Figure 5.16  Ac  vity of parent and daughter and total ac  vity during transient equilibrium. Note how the ac  vity of 

the daughter becomes virtually equal to that of the parent at longer   mes. Data are based on a parent 

having a half-life of 10 hours and a daughter having a half life of 1.0 hour. Ac  vity is in arbitrary units.

Case II:  Secular Equilibrium

If 2 1,k k  the half life of the parent A is much greater than that of the daughter B. Under 
this condition, the activity from the decay of the parent does not decrease measurably 
during many daughter half lives. Using Eq. (5.74) we then fi nd

  2
1 2

1

or,A
A B

B

N k
k N k N

N k
= =  (5.76)
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5.7.2.2  Steady State Approximation

Consider the consecutive reaction given in Sec. 5.6.2.2

  1 2k k
R I PææÆ ææÆ

After a long mathematical journey, there we have arrived at for the concentration of the 

fi nal product P as [(Eq. 5.69)]

  

2 10 1 2

1 2 2 1

1
( ) ( )

k t k t
P R

k k
C C e e

k k k k

- -È ˘
= - -Í ˙- -Î ˚

If k1 is much greater than 
2 1 2( ),k k k  then the intermediate concentration CI grows up to 

a signifi cant concentration and, thereafter slopes down. The variation of the concentration 

of R, I and P with time are then as shown in Figure 5.17. However, if k2 is much much 

greater than k1 (k2   k1), the story is completely different. Since the intermediate I is 

very short-lived, the moment the intermediate I is produced, it takes practically no time 

to give P. The fi rst step (R Æ I) then determines the rate of the overall reaction. This may 

be checked from the equation for Cp:

Figure 5.17 Concentra  on in a consecu  ve reac  on when k1 = 10 k2.

in the limit k2   k1, Eq. (5.69) changes to

  10 (1 )k t
P RC C e-= -  (5.77)

as (k2 – k1) ª k2 and e–k2t ª 0.
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This condition is shown in Figure 5.18.

We have arrived at Eq. (5.77), after a long mathematical journey. Let us now see that, how 
the same result could be obtained by the Steady State Approximation.

The basic point is that, k2   k1; the specifi c rate at which the intermediate I is destroyed  

is very much faster than, that at which it is produced. The result is then, the intermediate 

concentration CI grows to its maximum over a very short period of time (the induction 

period) to a very little concentration (Figure 5.18) and then, decays down to zero. It is 

evident from Figure 5.18, that, after the induction period

  
and

pRI I
dCdCdC dC

dt dt dt dt

Ê ˆ
·· - ··Á ˜Ë ¯

Figure 5.18 Concentra  on in consecu  ve reac  on when k2 = 10k1.

and, IdC

dt
 is so much smaller than the other two rates 

-Ê ˆ
Á ˜Ë ¯and ,R PdC dC

dt dt
 we can safely 

make the approximation

  0IdC

dt
=  (5.78)

which implies that the concentration of the intermediate remains fi xed over, practically, the 

entire course of the reaction. The rate at which the intermediate is produced is equal (on an 

approximation) to the rate of its destruction. Let us now see that how this approximation 

can save our mathematical volume.
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From Eq. (5.67a) and using the steady state approximation [Eq. (5.78)], we fi nd

  

1

2
I R

k
C C

k
=

fi  101

2

k t
I R

k
C C e

k

-=  [using Eq. (5.66)]

and therefore

          
0

P R R IC C C C= - -

  

1 10 0 01

2

k t k t
R R R

k
C C e C e

k

- -= - -

  

10 1

2

1 1k t
R

k
C e

k

-È ˘Ê ˆ
= - +Í ˙Á ˜Ë ¯Î ˚

  

10 1 2

2

( )
1 k t

R

k k
C e

k

- +È ˘
= -Í ˙

Î ˚

or,         10 [1 ]k t
P RC C e-= -

on approximation, k1 + k2 ª k2. This is exactly the same as derived earlier [(Eq. (5.77)].

Example 5.24

Ozone depletion in the stratosphere is one of the most important siren-calls for life 

on the  earth’s surface. The gas-phase decomposition of ozone is believed to follow the 

mechanism

  
1

–1
3 2I: O + M O + O + M

k

k
     
     

  2
3 2II : O + O 2O

kææÆ

where M is any molecule present in the reaction vessel. Applying the steady state 

approximation, analyse the overall kinetics of the O3 depletion.

Solu  on

The rate of formation of O2 is 

  -= - +2

3 2 3

O

1 O 1 O O 2 O O2M M

dC
k C C k C C C k C C

dt
 (i)

the multiplier 2 is required for the last term because for each step (II), two O2 molecules 

are produced.
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The rate of destruction of ozone is

  3

3 2 3

O

1 O 1 O O 2 O O

–
M M

dC
k C C k C C C k C C

dt
-= - +  (ii)

The rate of the reaction v is given by

  3 2O O1 1

2 3

dC dC
v

dt dt
= - =  (iii)

Applying the steady state approximation on the concentration of the transient species O, 
we get

  
3 3 3

O
1 O –1 O O 2 O O 0M M

dC
k C C k C C C k C C

dt
= - - =  (iv)

    =
+

3

3 3

1 O

O
–1 O 2 O( )

M

M

k C C
C

k C C k C
 (v)

The rate of formation of O2 is [from Eq. (i)]

 2

3

O

2 O O3
dC

k C C
dt

=  [using Eq. (iv)] 

and, then using the expression of CO [Eqn. (v)]

  -

=
+

32

2 3

2
1 2 OO

1 O 2 O

3

( )

M

M

k k C CdC

dt k C C k C

Therefore, the rate of the reaction v is

  
-

= =
+

32

2 3

2
1 2 OO

1 O 2 O

1

3 (

M

M

k k C CdC
v

dt k C C k C
 (vi)

The rate of destruction of O3 is

  
3

3 2 3

O

1 O 1 O O 2 O O

–
M M

dC
k C C k C C C k C C

dt
-= - +

      = 2 k2CO3
CO

and fi nally,

  
-

- =
+

3 3

2 3

2
O 1 2 O

1 O 2 O

2

( )

M

M

dC k k C C

dt k C C k C

and, the rate of reaction

  
-

= - =
+

3 3

2 3

2
O 1 2 O

1 O 2 O

1

2 ( )

M

M

dC k k C C
v

dt k C C k C
 (vii)
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using (vi) and (vii), we then write

  -

= - = =
+

3 32

2 3

2
O 1 2 OO

1 O 2 O

1 1

2 3 ( )

M

M

dC k k C CdC
v

dt dt k C C k C

At very high pressure, CM is large enough, so that, 2 3 31 O 2 O 1 O( )M Mk C C k C k C C- -+ ª

The rate law then becomes

  

-

-

=
3 2

2 11 2
O O

1

k k
v C C

k

an example, where a reaction may have a negative order with respect to a component.

5.7.3   Opposing Reaction

Perhaps the most basic mechanism in chemical kinetics is the opposing reaction; as 

the reactant R produces the product P, the P can also react back to give R. Basically 

the mechanism is an outcome of the  principle of microscopic reversibility, fi rst noted by 

R.C. Tolman. It says that in the microscopic world there is no one-way traffi c; what can 

happen in one direction can also happen in the reverse direction. It is a consequence of the 

time-reversal symmetry of classical and quantum mechanics. Considering the simplest 

opposing reaction, where both the forward and backward processes are fi rst-order with 

rate constants k1 and k–1

1

1

0

0

at 0

at ;

k

k

R

R P R P R

R P

t C O

t C C C C C

-

æææÆ¨æææ

=

+ =

where CR
0 is the initial concentration of the reactant, and CR and CP are the concentrations 

of the reactant and product at time t, respectively.

In terms of the reactant concentration the rate law is

  0
1 1 1 1 ( )RP

R P R R R

dCdC
k C k C k C k C C

dt dt
- -

-
= = - = - -  (5.79a)

fi  

0
1 1 1

1 10
1 1 1

[( ) ]
( )

[( ) ]

R R

R R

d k k C k C
k k dt

k k C k C

- -
-

- -

+ -
= - +

+ -
 (5.79b)

on integration we fi nd

  
0

1 1 1 1 1ln [( ) ] ( ) (integration const.)R Rk k C k C k k t z- - -+ - = - + +

using the fact that at t = 0, CR = CR
0, we get
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  z = ln k1CR
0

using this, we fi nd

  

0
1 1 1

1 10
1

( )
ln ( )R R

R

k k C k C
k k t

k C

- -
-

+ -
= - +

and simplifying the reactant concentration at time t is

  1 1

0
( )

1 1
1 1

[ ]
( )

k k tR
R

C
C k k e

k k
-- +

-
-

= +
+

 (5.80)

The product concentration at time t is then

  CP = CR
0 – CR

fi  1 1

0
( )1

1 1

[1 ]
( )

k k tR
P

k C
C e

k k
-- +

-

= -
+

 (5.81)

The concentration-time profi le of the reactant R and the product P are shown in the 

Figures 5.19(a) and (b) for two different cases. The reactant concentration CR decays 

exponentially, with a fi xed residue (CR)e which is attained at equilibrium (CR)e. CP also 

grows exponentially, and gives the fi nal equilibrium residue (CP)e as the equilibrium is 

attained. The equilibrium is attained when the two opposing rates are equal.

Figure 5.19(a) k1 > k–1 ; keqm > 1. Product concentra  on is more than the reactant concentra  on at equilibrium.
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Figure 5.19(b) k1 < k-1 ; keqm < 1. Product concentra  on is more than the reactant concentra  on at equilibrium.

  1 1( ) ( )R e P ek C k C-=

fi  1
eqm

1

( )

( )
P e

R e

Ck
k

k C-

= =  (5.82)

when k1 > k–1, Keqm > 1; the equilibrium is favoured with respect to the product P (Figure 

5.19a). If k1 < k–1, Keqm < 1; at equilibrium only a small amount of the product P is formed 

(Figure 5.19b)

The Integrated Rate Equation of an opposing reaction, fi rst order in either direction can 

be put into a form, which is very similar of a uni-directional fi rst-order process.

Using the Eq. (5.79a) we may write

  0 0
1 1 1 1 1( ) ( )R R

dx
k C x k x k C k k x

dt
- -= - - = - +  (5.83)

where x is the concentration of the product formed at time t.

At equilibrium, 0
dx

dt
=

fi  0
1 1 1( )R ek C k k x-= +

xe being the equilibrium value of x. Using this identity in Eq. (5.83), we get

  
1 1( ) ( )e

dx
k k x x

dt
-= + -
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and integrating between limits

  
1 1

0 0

( )
( )

( )

x t
e

e

d x x
k k dt

x x
-

-
= - +

-Ú Ú

fi  
1 1ln ( )

( )
e

e

x
k k t

x x
-= +

-
 (5.84)

a fi rst-order-like equation.

5.8 THE  EQUILIBRIUM APPROXIMATION

Besides the steady state approximation, another approximation is also used judiciously to 

solve the differential rate law of a complex reaction. Let us consider the reaction 

  2 product(s)A B+ ææÆ

which goes through the mechanism

 (i) 1

1
(fast)

k

k
A B I

-
+           

 (ii) 2 (slow)
k

I A P+ ææÆ

The process (i) cannot be considered as a true equilibrium as there is the drainage process 

(ii) which drifts the intermediate I to produce the product P. However, if the situation is 

such that k1, k–1 >> k2, i.e. the equilibrium (i) is tend to be attained very fast, compared to 

the decay process (ii), then on a fi rst approximation we may write (using Eq. (5.82)]

  -

= =1
eqm

1

I

A B

k C
K

k C C

  
= eqmI A BC K C C

The rate of the reaction is the rate at which the product P is formed, and is therefore

  

-

¸= =
Ô
˝Ê ˆ

= ÔÁ ˜Ë ¯ Ǫ̂

2
2 2 eqm

21 2

1

or,

I A A B

BA

v k C C k K C C

k k
v C C

k

 (5.85)

an overall third order reaction, second order with respect to A and fi rst order with respect 

to B.
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5.9  EFFECT OF TEMPERATURE ON REACTION RATE
Reaction rates have been found to depend on temperature in various different ways. Three 

most common variations are shown in Figure 5.20.

Figure 5.20 The most common three types of varia  ons of reac  on rate with temperature.

All elementary reactions and most of the complex reactions follow the type A (Figure 5.20); 

the rate increases exponentially with temperature. Type B represents an explosive process, 

where the rate increases sluggishly over a low temperature range, and then shoots to 

infi nity on explosion. The third type C represents the enzyme catalyzed metabolic processes 

in living bodies. The later two types will be taken up in due course; we fi rst take up the 

type A variation. This is referred to as the  Arrhenius-type temperature dependence.

Svante August Arrhenius* suggested in the late 1800s that the rate of most reactions vary 

with temperature (as shown in Figure 5.20A) in an exponential way

  /E RTk Ae-=  (5.86)

where k is the rate constant, A is the frequency factor (or, pre-exponential factor), R is the 

universal gas constant and T is the temperature in the kelvin scale; E is the activation 

energy of the process. An easier way to testify the law is to take the natural logarithm on 

both sides

  ln ln
E

k A
RT

= -  …(5.87)

A plot of ln k versus 
Ê ˆ
Á ˜Ë ¯

1

T
 should be a straight line, with slope –

E

R

Ê ˆ
Á ˜Ë ¯

 and intercept ln A. 

Such a plot is shown in Figure 5.21. The activation energy E and the frequency factor A 

can be evaluated from such a plot. Any non-linearity in the plot may be attributed to the 

temperature dependence of the activation energy E. The Arrhenius equation is sometimes 

written in the differential form

* Svante August Arrhenius* (1859–1927; Stockholm, (Sweden) have an interesting academic career. 
He was turned away from chemistry twice in his career, once as a under graduate and  once when 
his Ph.D. thesis was awarded only as a fourth-class. He then went on to join as a school teacher 
and started working under Van’t Hoff’, at his own cost. Eventually, due to his research work on 
electrolytic solutions, he was rewarded with a Nobel prize in Chemistry in 1903.



5.68 Physical Chemistry

Figure 5.21  An Arrhenius plot of ln k versus 1/T.

  
2

lnd k E

dT RT
=  (5.88)

or, in the integrated form at two different temperatures T1 and T2 as (considering E to be 

independent of temperature)

  2 2 1

1 2 1

( )
ln

k T TE

k R T T

-
=  (5.89)

k1 and k2 are the rate constants at the temperatures T1 and T2, respectively The increase 

in the rate constant of a reaction due to change in temperature then depends obviously on 

the activation energy of the reaction. Nevertheless, a common rule of thumb is that the 

rate doubles itself for every 10°C rise in temperature. This is illustrated in Figures 5.22 

and 5.23.

Figure 5.22 is drawn using the Eq. (5.89).

Figure 5.22 The eff ect of 10°C rise in temperature.
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=

-
1 2 2

2 1 1

ln
( )

R T T k
E

T T k

Choosing T2 = 305 K and T1 = 295 K, the ratio 2

1

k

k

Ê ˆ
Á ˜Ë ¯

 is plotted for different activation 

energies. From Figure 5.22 it is seen that 2

1

2
k

k

Ê ˆ
=Á ˜Ë ¯

 (which means that the rate doubles) 

only if the activation energy is about 50 kJ mol–1. But, for reactions with high activation 

energy, say E = 100 kJ mol–1, the ratio 2

1

k

k

Ê ˆ
Á ˜Ë ¯

 is about 4. This dependence is more clearly 

demonstrated in Figure 5.23. For three different activation energies, the ratio 2

1

k

k

Ê ˆ
Á ˜Ë ¯

 is 

now plotted versus T. The distinct dependence of the variation of k with T on the activation 

energy now becomes more clear.

Although the Arrhenius equation [Eq. (5.86)] has been found excellent to fi t with the 

experimental data, some systematic deviations from the straight line (Figure 5.21) have 

been observed. A better fi t is obtained by an equation of the form

Figure 5.23  The dependence of the varia  on of k with T on the ac  va  on energy of the reac  on.

For the curves a, b and c, the corresponding ac  va  on energies are: 100, 75 and 50 kJ mol–1.

  = ¢
– /E RT

k A T e

This equation  will be justifi ed later by a theory of reaction rate (see the collision theory).
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Example 5.25

For the gas phases reaction, H2 + I2 Æ 2HI at 373.15 K, the rate constant is found to be 

8.74 × 10–15 L mol–1s–1. At 473.15 K the rate constant increases to 9.53 × 10–10 L mol–1s–1. 

Find the activation energy E and the pre-exponential factor A.

Solu  on 

Using Eq. (5.89), we fi nd

  

1 2 2

2 1 1( )

R T T k
E ln

T T k
=

-

or, 
1(8.314 J K

E
-

=
–1mol ) (373.15 K ) (473.15 K )

(473. 15 373.15) K-

10(9.53 10
ln

M-¥
–1

s
–1

15

)

(8.74 10 M-¥
1

s
- 1

)
-

or,  E = 1.70 × 105 Jmol–1

Then using the equation

  /E RTk Ae-=

and using the fi rst set of data

  
/E RTA ke=

or,  
5

15 1 1 (1.70 10 J
(8.74 10 expA M s- - - ¥

= ¥
mol

1
)

(8.314 J

-

K
1

mol
- 1

) (373.15 K
-

)

È ˘
Í ˙
Í ˙Î ˚

or,  A = 5.5 × 109 M–1s–1

Example 5.26

Find the activation energy of a reaction whose rate constant doubles itself if the temperature 

is raised from 20 to 30°C and, if the temperature rise is from 90 to 100°C.

Solu  on

Using Eq. (5.89), we fi nd for 20 to 30°C temperature gap 

  

1 2 2

2 1 1

ln
( )

R T T k
E

T T k
=

-

or   (8.314 J K
E =

1 1mol ) (293 K
- - ) (303 K )

(10 K

1ln 2 51.2 kJ mol
)

-=
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Similarly, for 90 to 100°C temperature gap

  

(8.314 J K
E =

1 1mol ) (363 K
- - ) (373 K )

(10 K

1ln 2 78 kJ mol
)

-=

Example 5.27

The rate constant of a reaction increases by 2.4% per kelvin rise in temperature at 227°C. 

Calculate the activation energy of the reaction at 227°C.

Solu  on

This kind of problem is solved by using the differential form of the Arrhenius equation [Eq. 

5.88)]. If k be the rate constant at temperature T and, it increases to k + dk on increasing 

the temperature by dT, then (dk/k) = d ln k is the fractional change in the rate constant 

due to the change in temperature by dT. Therefore, according to the problem

  

1
2

0.024
E

K
RT

-=

fi  -= 1(0.024 KE -1) (8.314 J K -1mol ) (500 K 2)

or  149.9 kJ molE -=

Example 5.28

The expiry time on some milk-product cartons are as follows: 1/3 day at 299.8 K; 1/2 day 

at 294.26 K; 1 day at 288.71 K and, 2 days at 283.15 K. Calculate the activation energy for 

the process that spoils the milk-product.

Solu  on

This is a case of bacterial decay which usually follows a fi rst order kinetics. The expiry 

time that is generally given for a certain defi nite fraction f of the product is lost. From

Eq. (5.9) we may write

  

1 1 1
ln ln

(1 )

Co
k

t Co Co tf f
= =

- -

For our problem f is a fi xed number; therefore, 
1

ln
(1 )f-

 is a constant; let it be z. The 

above equation then changes to 

  z
k

t
=  (i)

The Arrhenius equation [Eq. (5.86)] is

  
/E RTk Ae-=
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which, on using Eq. (i) changes to

  

/E RTz
Ae

t

-=

fi  
Ê ˆ= +Á ˜Ë ¯

ln ln
z E

t
A RT

 (ii)

A plot of ln t versus 
1

T
 should then be a straight line with slope ,

E

R

Ê ˆ
Á ˜Ë ¯

 from which 

the activation energy E may be estimated. From the given data such a plot is made

(Figure 5.24). The slope is found to be 9900 K.

Figure 5.24 The plot of ln t versus (1/T).
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Therefore, the activation energy of the reaction is 

  E = (9900 K) (8.314 JK–1 mol–1)

or  E = 82.3 kJ mol–1 

5.10 SOME APPLICATIONS OF ARRHENIUS LAW

The Arrhenius rate law [Eq. (5.86)] has some interesting applications beside the elementary 

chemical reactions. One such example is given already in Example 28.

5.10.1  Bacterial Colony 
Consider the bacterial decay of a food product. Cell division produces a bacterial colony, 

and, as the colony increases, the quality of the food product decreases. A bacterial colony 

grows like a compound interest on an investment. If Po be the initial purity of the food 

product and P at instant t, then following the fi rst-order rate law we may write 

  P = Poe
–kt (5.91)

If r be the percent decay of the food product per unit time interval t1, then the purity 

after time t1 goes down to Po(1 – rt1); after the second period of t1, it goes down to

Po(1 – rt1) (1 – rt1), i.e. Po(1 – rt1)
2. After n such periods the purity drops down to 

  P = Po(1 – rt1)
n (5.92)

If the total time elapsed is t, then 
1

t
n

t
= ; we then have

  
1

1(1 )

t

t
oP P rt= -

    

1

1

1

1
1

t

t

o

r
P

t

È ˘
Ê ˆÍ ˙
Á ˜Í ˙
Á ˜Í ˙= -
Á ˜Í ˙Ê ˆ
Á ˜Í ˙Á ˜Ë ¯Ë ¯Í ˙

Î ˚

 (5.93)

By defi nition, we know that

  ±

Æ μ

Ê ˆ± =Á ˜Ë ¯
lt 1

n

x

n

x
e

n
 (5.94)

by selecting the time period t1 infi nitesimally small, which is rational, we write

Eq. (5.93) as
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Ê ˆ
Æ μÁ ˜Ë ¯

È ˘
Í ˙

Ê ˆÍ ˙= -Í ˙Á ˜Ê ˆÍ ˙Á ˜Á ˜Á ˜Í ˙Ë ¯Ë ¯Î ˚

1

1

1

1

1

lt 1
1

t

t

o

t

n
P P

t

or  
0 [using Eq. (5.94)]rtP P e-=

The quality of the food product therefore, decreases exponentially.

5.10.2  Flashing of Firefl y
The frequency of fl ashing of fi refl y is recorded as a function of temperature. The experimental 

data is given below. 

Let us calculate the activation energy of the process

Frequency (min–1) 15.9 14.8 12.5 12 11.5 10 8

T(K) 302 301 300 299 297 296 292

Applying the Arrhenius equation

  = -ln ln
E

k A
RT

A plot of ln k versus 1

T

Ê ˆ
Á ˜Ë ¯

 is made; (Figure 5.25). From the slope –
E

R

Ê ˆ
Á ˜Ë ¯

 it is found that the 

activation energy of the fl ashing of fi refl y is 57.4 kJ mol–1.

Figure 5.25 Arrhenius plot for the fl ashing of fi refl y.
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5.10.3  Terrapin’s Heart Beat*

Terrapin is a small turtle; the heart beat of terrapin has been studied under a variety of 

conditions. Figure 5.26 shows an Arrhenius plot of one set of data. It is observed that the 

Arrhenius law is obeyed satisfactorily with an activation energy of 18.3 kcal mol–1, in the 

temperature range 18 to 34°C. Below 18°C the activation energy is much higher. In this 

region of temperature the terrapin was presumably not feeling quite himself. For more 

interesting facts, students are referred to the original paper by K.J. Laidler.

Figure 5.26 Arrhenius plot for the rate of a terrapin’s heart beat.

5.11  ACTIVATION ENERGY OF A REACTION

In order for the reactant molecules to be transformed into the product molecules, the former 

must pass through an energy state which is higher than that corresponding to either the 

reactant or product. Consider, the transformation: cis-2-butene to trans-2-butene.

For the transformation to occur, it is necessary that the p-bond is broken, and then the 

unit –CH(CH3) is rotated by 180°; during this rotation there is no overlap between the 

two atomic p-orbitals. Finally, after 180° rotation, again there is an overlap between the 

two p-orbitals and the bond is formed leading to the trans-product. The essential idea is 

then: the reactant molecules must fi rst be excited, so as to bent, stretch or even break 

some bonds, and produce an excited state of the reactant, often called, the transition state 

or, the activated complex, which then produces the fi nal product. This is illustrated in

Figure 5.27. Similarly, if the product molecules are to be converted into the reactant 

* K.J. Laidler; J.Chem. Edu.; 49, 343, 1972.
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molecules, the former must again have to climb up to the top of the barrier, and then,  

slopes down to the reactant valley. The minimum energy which is required to climb up to 

the top of the potential energy hill is called the activation energy. As Figure 5.27(a) shows 

the activation energy of the forward process E1 is less than that (E–1) for the backward 

process; it is then an exothermic reaction because, the net energy change DE = (E1 – E–1) 

is negative. Figure 5.27b represents an endothermic process for which DE = (E1 – E–1) is 

positive. This concept of activation energy may also be put forward as follows:

Figure 5.27(a) The energy profi le of an exothermic reac  on E1 < E–1; DE < 0.

Figure 5.27(b) The energy profi le of an endothermic reac  on E1 > E–1; DE > 0.

Every stable molecule has its own potential energy well; it is constituted by a manifold 

of vibrational levels, which gradually becomes closer and closer as the vibrational energy 

increases and, fi nally forms the continuum. Considering a simple elementary reaction 

R Æ P: the potential energy versus the reaction coordinate (a qualitative axis representing 

the progress of the reaction) of R and P, and their crossing is shown in Figure 5.28. It is 

clear that the R molecules must fi rst be excited to the crossing point O, and then slides 

down to the product valley. Can you give an example where the activation energy for a 

chemical process is zero?
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Figure 5.28 The passage of the reactant R into the product P.

5.12  CHEMICAL DYNAMICS: THEORY OF REACTION RATES

Several different theories have been proposed to account for the experimentally observed 

rate of the processes and their dependence on various factors like concentration of the 

reacting species, temperature, etc. The trivial and perhaps the most simple  one is the 

Collision Theory.

5.12.1   Collision Theory of Reaction Rate 
( Hard Sphere Collision Theory)

The rate of a bi-molecular gas phase reaction

  (g) (g) product(s)rk
A B+ ææÆ

is given by v = krCACB. (5.95)

Hard Sphere Collision Theory (HSCT) is now used to estimate rate constant.

If one uses the naive assumption that every collision between a A and B molecule leads to 

a fruitful reaction, then we may write the rate of the reaction as 

 v = ZAB = sAB <vr> nAnB (5.96)

where, ZAB = number of binary A–B collisions per unit volume per second.

<vr> is the relative average speed of the colliding A and B molecules.

nA and nB are the numbers of A and B molecules, respectively, per unit volume.

sAB is the hard sphere collision cross-section

and 

2
28

; ;
( ) 2

A B A B
r AB AB

A B

m mkT
v d

m m

s s
m s p p

pm

+Ê ˆ
= = = = Á ˜Ë ¯+
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Two molecules of masses mA and mB may collide at any angle from 0 to 180° (Figure 
5.29). The relative average speed is therefore, calculated as

Figure 5.29

  
2 2 2

rel A B

88 8 1 1

A B A B

kTkT kT
v v v

m m m mp p p

Ê ˆ
= + = + = +Á ˜Ë ¯

or,  
rel

8 1 1 1
;

A B

kt
v

M Mpm m
= = +

    The rela  ve average speed <vrel>

the rate constant kr of the reaction would then be

  
r AB rk vs=  (5.97)

Let us take a simple reaction

  2 2 4 2 6H (g) + C H (g) C H (g)ææÆ

The molecular diameters are sH2
 = 270 pm and sc2H4

 = 430 pm. sAB is therefore 3.85 × 

10–19 m2. The reduced mass is m = 3 × 10–27 kg. The relative average speed is (at 298.15 K) 

<vr> = 1830 ms–1. The value of kr (in units of mol–1 dm3 s–1) is then 
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  11 1 3 1
0 4 10 mol dm sr AB rk N vs - -= = ¥

Per litre, roughly 1012 mole of reactants are consumed every second. This is unbelievable 

because, experiments suggest a very low value of kr, about 10–26 mol–1 dm3 s–1.

Moreover, this part of the theory suggests that the rate constant should have a temperature 

dependence as T1/2 (contained within <vr>); the experimental results, on the other hand, 

shows an exponential increases like exp(–const./T). Our immediate conclusion is then All 

collisions cannot take away the reaction successfully.

In this naive approach, we assumed that each pair of reactant molecules approach each 

other at a relative speed (whose average value is <vr>) and make a hit; and the reaction 

is done. But, in the real situation this cannot happen because, the molecules are moving 

along all possible directions with speeds in the range 0 to μ, and , when they come closer, 

their valence  electrons must repel one another. Therefore, no collision can give us reaction 

unless, their relative speed of approach is suffi ciently high to overcome this repulsion. We 

may solve this problem in two different ways.

Method 1

Let the minimum energy required by the couple of the reacting molecules in order to 
overcome the electronic cloud repulsion and make the collision successful be e0, and let 

the corresponding relative speed be v0(i.e. e0 = 2
0

1

2
vm  ; m is the reduced mass). Therefore, 

only those collisions per unit volume per second are to be counted as equal to the rate of the 

reaction, in which the relative average energy exceeds e0.

From the kinetic theory we know that the frequency of collision of molecules moving with 
speeds in the range v Æ v + dv on a unit area of the wall is given by vf(v) dv, not just by 
f(v)dv because, f(v)dv gives the probability that the molecules have their speeds in the 
range v Æ v + dv at any point, say near the wall. The frequency must also depend on how 
many of them can arrive at that point in one second from other regions. This last factor is 
proportional to v, because they can move over a distance v in one second; there is a sweep 
or swarm of molecules through a distance v. Drawing the same analogy, we can write 

vrf(vr)dvr or, 
mÊ ˆ

-Á ˜Ë ¯

2
3 exp

2
r

r r

v
v dv

kT
 as the frequency of collision between molecules moving 

with relative speeds in the range vr Æ vr + dvr. The only change we have made is to replace 

the mass of a molecule m by its reduced mass .A B

A B

m m

m m
m

Ê ˆ
Á ˜+Ë ¯

 This is a molecule-molecule 

collision; the masses are comparable. For a molecule-wall collision, the wall is of infi nite 
mass; therefore only m was there

  wall wall

1 1 1 1
; 0m

m m m
m

m
= + fi ª ª∵
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Therefore, we may write

  

m
-

=

2

3 2( )
rv

kT
AB r r rdZ v Av e dv  (5.98)

as the number of collisions between A and B molecules per unit volume per second, with 
relative speeds in the range vr to vr + dvr. The normalization constant A may be evaluated 
if we recall that the integral of dZAB (vr) for all possible values of vr (from 0 to μ) must give 
ZAB [Eq. (5.96)]. This gives us (assuming the molecules as hard spheres of collision cross-
section sAB = pdAB

2)
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 (5.99)

Equation (5.98) then becomes
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2 3 2
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( ) ( )
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kT
AB r AB A B r rdZ v n n v e dv

kT

m
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s
p

-Ê ˆ= ◊ Á ˜Ë ¯

or  ( ) ( . ) ( )AB r AB A B r rdZ v n n F v dvs=  (5.100)

F(vr)dvr is the fraction of the total number of A – B collisions in which the relative speeds 
are in the range vr to vr + dvr. We then write

  

23

2 3 2
2

( )
rv

kT
r r r rF v dv v e dv

kT

m
m

p

-Ê ˆ= Á ˜Ë ¯
 (5.101)

2
2

1

2
vm  is the kinetic energy of the relative motion, i.e. the relative kinetic energy of the two 

colliding molecules. For the corresponding energy distribution we set

  

21

2
r r r r rv d v dve m e m= fi =
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or  2 2 1
or,r

r r r rv v dv d
e

e
m m

= =

combining these two equations we fi nd

  

3

2

2 r
r r rv dv d

e
e

m
=

Equation (5.101) may be written as, setting F(er)der = F(vr)dvr
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 (5.102)

as the fraction of the total number of binary collisions in which the relative kinetic energy 

of translation is in the range er Æ er + der . Equation (5.100) may now be written as

  ( ) ( ) ( )AB r AB r AB A B r rdZ dZ v n n F de s e e= = ◊
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e s e e
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-Ê ˆ= ◊ Á ˜Ë ¯
 (5.103)

Therefore, according to our postulate laid down in the fi rst paragraph (Method 1), the rate 

of the reaction is obtained by integrating Eq. (5.103) from e0 to μ.
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To evaluate the integral in Eq. (5.104), we set
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Therefore,
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Using the L’Hospital’s rule, we get
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Equation (5.104) then fi nally takes the form
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 (5.105)

We have incorporated an approximation that will make clear our next approach.

Method 2

Here we do the same thing exactly that we have done in method 1, but slightly in a 
different way. Here, we replace the hard sphere collision cross-section sAB by the reaction 

cross-section s(vr)
*, that depends on the relative speed vr of the two colliding molecules. 

Rewriting Equation (5.100) as

  s=( ) [ ( ) ( ) ]AB r r r r A BdZ v v F v dv n n  (5.106)

as the frequency of collision between A and B molecules per unit volume with relative 
speeds in the range vr to vr + dvr or, in terms of the relative energy er (cf. Eq. 5.102) as

* The reaction cross-section is supposed to be a cross-sectional area about the target molecule on which, 

if the projectile molecule hits, there will be fruitful reaction.
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  dZAB(er) = [s(er) F(er)der] nA . nB = dv(er) (5.107)

We correctly identify dZAB(er) as equal dv(er), i.e. the rate of the reaction between the 
molecule A and B colliding with the relative energy er. The net rate is then obtained by 
integrating dv(er) for all possible values of er :

  
0 0

( ) [ ( ) ( ) ]r r r r A Bv dv F d n ne s e e e
• •

= = ◊Ú Ú  (5.108)

The overall rate-constant of the reaction kr is therefore given by

  0

( ) ( )r r r rk F ds e e e
•

= Ú
 (5.109)

We now impose the Hard Sphere Collision Cross-section, the simplest one as
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( for
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r

AB rABd

e e
s e

s p e e

= <Ï ¸Ô Ô
Ì ˝

= = >Ô ÔÓ ˛
 (5.110)

i.e. the collision cross-section is zero for all relative energy er < e0, and it is constant and, 
equal to the hard sphere collision cross-section sAB for all er > e0. Equation (5.109) then 
becomes
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• -Ê ˆ= Á ˜Ë ¯ Ú   [using Eq. (5.102)]
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 (5.111)

Exactly the same as in Eq. (5.105). This is quite expected that only those collisions in 

which  er > e0 are effective for the reaction, and for all these collisions the reaction cross-

section s(er) is equal to the hard sphere collision cross-section sAB. The energy requirement 

of the reaction is then looked upon as the energy dependence of s(er). For all value of

er < e0, s(er) = 0, and for er > e0, s(er) = sAB. This is the hard sphere collision cross-section 

model.

5.12.2  Line-of-Centres (LOC) Model

In the hard sphere collision model it is assumed that for any energy er > e0, the reaction 

takes place. This is clearly an overestimation. It is not diffi cult to understand, why? In 
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Figure 5.30, two set of collisions are shown. Consider the collision shown in Figure 5.30a. 

There is a head-on-collision between the two molecules A and B, and it is legitimate to 
believe that the entire relative translational kinetic energy er of the two molecules along 
the line they are approaching will be used up in overcoming the electron cloud repulsion. 

But if the collision was like that in Figure 5.30b. Then it is not the entire relative kinetic 

energy er but, only that part of er which is along the line-of-centres of the two colliding 

molecules at the time of impact. The rest part goes to sideswiping of the molecules, and 

would not be expected to be useful for the reaction (Figure 5.30 b).

Figure 5.30 (a)  En  rely, the total transla  onal kine  c energy of the two colliding molecules 
Ê ˆ+Á ˜Ë ¯

2 21 1

2 2
A A BBm v m v  

may be used in overcoming the electron repulsion as, momentarily the molecules come to a stop 

on collision.

Figure 5.30 (b)  Only a part of the transla  onal kine  c energy of the two colliding molecules along the line AB joining 

their centres at the   me of impact will be used because the two molecules con  nue their mo  on 

even a  er they collide; some energy is retained for this mo  on and could not be used for the reac  on

as in (a).

5.12.2.1 How to Express s(er)?

Let vr be the relative speed of the molecule A with respect to the B (assumed stationary) at 

the time of impact. Not the whole of vr would be used for the reaction. Only the component 

of vr along the line-of-centres (vr(loc)) may be used for the reaction. From Figure 5.31, we 

proceed as
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Figure 5.31 The dependence of vr,loc on the rela  ve speed vr.
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The corresponding kinetic energy along the line-of-centres is therefore
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 (5.112)

where m is the reduced mass.

The fi rst point to note is that, ¢a¢ >|  ¢d¢, for then, there will be no collision Figure 5.32a. So, 
a must be less than ¢d¢ ; ¢a¢ < ¢d¢.
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 Figure 5.32(a) Figure 5.32(b) Figure 5.32(c)

If ‘a’ is zero, then the situation cannot be even more favourable for the reaction because, 
it is a head-on-collision; the entire of er goes to er,loc. To fi nd the maximum permissible 
value of ‘a’, we recognize the requirement of the minimum threshold energy e0 which, the 
er,loc must succeed. Naturally, there is a maximum value of a (amax) for a given value er 
(er may vary from 0 to μ) corresponding to the critical e0, and this is obtained as [using
Eq. (5.112)]
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0 2

1r
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d
e e

Ê ˆ
= -Á ˜Ë ¯

 (5.113)

As because e0 and d are fi xed constants, it is observed form Eq. (5.113) that, amax increases 
with er. Students may get a feeling of this from Figures 5.32 (b) and (c). Solving for amax, 
we get
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We defi ne the left hand side as the reaction cross-section s(er). We have then

  0
0( ) 1 (for )r AB r

r

e
s e s e e

e

Ê ˆ
= - >Á ˜Ë ¯

 (5.114)

For er < e0, there is no chance of any reaction. Let us analyze Figures 5.32 (a), (b) and c.

In Figure 5.32a there is no collision; therefore no reaction because a > d.

For er = 200 J and e0 = 100 J ; for Figure 5.32(b)

Let a < d; say, 
2

2
0.75,

a

d
=  then [using Eq. (5.112)]
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  0(1 0.75) 200 J (0.25) 50 J ( 100 J)re e- = = < =

The result is no reaction as ‘a’ is too high.

Let  
2

2
0.5

a

d
=  (Fig 5.32c)

fi er(1 – 0.5) = 100 J; just equal to the threshold energy e0.

The maximum permissible a is then given by max 0.5 for 200 J.ra d e= =  All collisions 

with ‘a’ less then this value are reactive for er = 200 J. As er increases, amax also needs to 

be increased because, e0 is fi xed for a given reaction. Greater cross-section s(er) is available 

for the reaction between molecules moving with greater er.

Figure 5.33 shows the variation of the reaction cross-section with the relative kinetic 

energy. s(er) increases with er. No reaction for er < e0. In the region of er > e0, s(er) increases 

with er. For low er the collision must be more closer to the head-on situation (i.e. q must be 

more acute) for the reaction to occur; s(er) is then small. For collisions with high er, a slight 

touch between the molecules may give rise to the product(s); s(er) is then large.

Figure 5.33 The varia  on of the reac  on cross-sec  on with rela  ve kine  c energy er.

5.12.2.2 Final Calculation of kr

Starting from Eq. (5.109) and using Eq. (5.114) for s(er), and Eq. (5.102) for F(er)der, we 

get,
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where the lower limit is put at e0 (for all collisions with er < e0, there is no reaction).
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 (5.115)

which was the equation fi rst derived by Lewis and Trautz. This result differs from the 

hard-sphere-collision theory by the factor 01
kT

eÊ ˆ
+Á ˜Ë ¯  [cf. Eq. (5.111)]. This is quite expected. 

The hard-sphere-collision theory considers the entire er for any value of q, going to be used 
for the reaction. This is clearly an overestimation. On the other hand, the LOC model uses 
only that part of er which is along their centre joining line; this is more realistic.

5.13 HOW GOOD IS COLLISION THEORY OF REACTION RATE?
When the theoretically calculated rate constants from the collision theory are compared 

with those experimentally observed rate constants, it is found that the theory gives excellent 

result for reactions between atoms and, between geometrically simple molecules. But, as 

the geometry of the reactant molecules becomes complex, the theoretically calculated 

values of k are found to be much more than those experimentally observed. The theory is 

therefore counting more successful encounters between the reactant molecules than what 

is happening in fact. To account for this Eq. (5.115) has been modifi ed as

 k = e es r
pm

- -Ê ˆ
= ¢Á ˜Ë ¯

0 0

1/2

/ /8 kT kT
AB

kT
P e z e

*  (5.116)

* z¢ is the number of binary collision at the hypothetical concentration of 1 molecule per unit 
volume.
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where P is called the  probability factor or, the  steric factor. Naturally P is much less than 

unity, e.g., for the reaction between C2H4 + butadiene Æ cyclohexane, P has been found to 

be 4 ¥ 10–5. This is explained as follows:

The acquirement of the activation energy during a collision between the reactant 

molecules is not only necessary for the reaction to occur; the collision must take place 

at the vulnerable point. It may happen that the two colliding molecules have acquired 

the required activation energy but, they were not property oriented during the collision 

so as to form the product. Certainly, it is a useless collision. Hence, a fraction of the 

activated collisions becomes fruitless just because of the proper geometric orientation of 

the two colliding molecules. For atoms and geometrically simple molecules, this factor 

of orientation is not important; therefore we got the theoretical k matching with the 

experimental k. But, when the reactant molecules are geometrically complex, there may 

be a number of collisions, which acquires the activation energy but, they were not properly 

geometrically oriented; such an energetic collision yields nothing.

There are also examples where, the experimental value of the rate constant is much higher 

than the theoretical value. This anomaly is explained as follows: 

We have considered, in the collision theory, the contribution of only the translational 

mode of energy towards acquiring the activation energy. If, however, the rotational and 

vibrational modes also contribute in the process of acquiring the activation energy then, 

naturally the reaction rate would be more faster.

5.14 THEORY OF  UNIMOLECULAR REACTION

The Collision Theory of Reaction Rate fails apparently, to explain the elementary fi rst 

order reactions. The theory requires two molecules to collide, suggesting that such 

reactions should be second-order. The decomposition of N2O5 follows a fi rst-order kinetics 

at suffi ciently  high pressure of N2O5, however, at low pressure, the reaction follows a 

second-order kinetics. Lindemann proposed a satisfactory explanation of these observations 

(1922).

Energy transfer between two molecules occurs during a collision; according to Lindemann, 

the translational energy of one molecule is transferred onto the other into its vibrational 

mode (during the collision) and, the second molecule gets vibrationally excited. The 

activation of molecules can thus be made.

This activated molecule now has two fates. It may become deactivated again by suffering 

a collision with another molecule. On the other hand, it may also happen that, the 

vibrationally activated molecule has concentrated the energy into one of its vibrational 

mode, which ruptures and give the product.

The whole scheme may be represented as:
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1

*
k

k
A A A A

-

æææÆ+ +¨æææ
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A ææÆ2* Product (s)
k

where A* is the vibrationally activated reactant molecule A. 

The rate of the reaction is

 v = k2 CA* (5.116)

CA* is then evaluated by applying the steady state approximation to CA*; we get

        
-= - - =2

* 1 1 * 2 * 0A A A A A

d
C k C k C C k C

dt

fi CA* = 
+

2
1

1 2( )

A

A

k C

k C k
 (5.117)

Substituting this result in Eq. (5.116), we fi nd 

 v = 
+

2
1 2

1 2( )

A

A

k k C

k C k
 (5.118)

At high enough pressure, the number density of A molecules is large, and therefore, the 

possibility is that, the activated molecule A* makes frequent collision with the other A 

molecules in their ground state and, becomes quenched. Under this condition, we will 

consider the rate of deactivation of A* to be large compared to its decomposition to form 

the product. This means that, k1CA >> k2 and therefore Eq. (5.118) changes to

 v = =1 2
obs

1
A A

k k
C k C

k
 (5.119)

where kobs = 1 2

1

k k

k
. It then shows that at high pressure of A, the reaction follows a fi rst-

order kinetics (unimolecular). At low pressure, fewer molecules of A is available for the A* 

molecules to strike, and therefore A* gets the chance to concentrate its excess energy into 

that particular mode of vibration to be ruptured; the bond breaking happens and, we get 

the fi nal product(s). Under this condition k1 >> k1CA, and the rate law goes to

 v = k1C
2
A (5.120) 

a second order process (bimolecular). It is thus predicted as a second order dependence 

at low pressure, and a fi rst order dependence at high pressure. The mechanism involves, 

however, the activation of molecules by collision. It can also be concluded that at low 

pressure, the life time of A* is longer at low pressure than that it has at high enough 

pressure.

In the above section, we have considered the excitation of a A molecule with collision with 

another A molecule. It is however possible that, there is a third body M (non-reacting) 

which collides with a A molecule and, excites it vibrationally. The reaction scheme is 

then
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  -
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A

The rate of the reaction is

 v = k2CA* (5.121)

We fi nd CA* by applying the steady state approximation:

 k1CACM – k–1CA*CM – k2CA* = 0

fi CA* = 
- +

1

1 2( )

A M

M

k C C

k C k

Using this result in Eq. (5.121), we get

 v = 
- +
1 2

1 2( )

A M

M

k k C C

k C k
 (5.122)

Comparison between the activation of A by its own kind, and by a third body M is now 

compared.

At high pressure the deactivation of A* by M is more likely than its decomposition to give 

the product(s); i.e., k1CM >> k2. The rate law [Eq. (5.122)] then becomes

 v = =1 2
obs

1
A A

k k
C k C

k
 (5.123)

which shows that the reaction follows a fi rst-order kinetics. 

At low pressure, the concentration of the quenching particles (M) is low; therefore, k–1CM 

<< k2. Equation (5.122) then becomes

 v = k1CACM (5.124)

The reaction then becomes fi rst-order in A and fi rst-order in M. If M is now a A molecule, 

Eq. (5.124) becomes the same as Eq. (5.120).

5.15  TRANSITION STATE THEORY
The collision theory of reaction rates is not totally satisfactory, particularly with the steric 

factor P, which is evaluated empirically as P = kexpt/ktheo.

Henry Eyring proposed the transition state theory which takes a somewhat different 

approach.

According to this theory, it is proposed  that the reactant molecule(s) fi rst form an activated 

complex which may then breaks up to give the product(s). The theory cleverly evades how 

is the complex is formed. It may be formed by some loose association among the reactant 

molecules. If it is a unimolecular reaction, the complex could be formed by a stretching or 

bending of some bonds.
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The essential feature of the transition state theory is that, there is a potential barrier 

between the reactant and the product. Not all the  activated complexes can lead to the 

product; only those complexes which are at the cole point of the potential energy diagram 

can form the products. These activated complexes are said to be at the  transition state.

These activated complexes at the transition state are assumed to be in equilibrium with 

the reactant molecules. It is also postulated that the activated complexes at the transition 

state are considered as a transient  species, having all the normal modes of motion, 

excepting one vibrational mode, along  which it breaks open to form the products. This 

vibration happens to have a large amplitude and a low frequency such that the vibrational 

energy is of the order of the thermal energy kT, i.e., hn = kT. The basic idea is that when 
the bond vibrating with energy hn breaks open, it produces two translational modes, each 

of energy 
1

2
kT , i.e., a total of 

Ê ˆ =Á ˜Ë ¯
1

2
2
kT kT  (if a vibrating string is cut at any point, the 

two ends just translate). So we may write

  hn = kT, or n = 
kT

h
 (5.125)

Now, according to our postulates the reaction scheme may be represented as

  # Product(s)A B AB+ Æ    
     (5.126)

For the formation of the transition state, the equilibrium constant is

          
[AB ]

[A][B]
k

π
π =  (5.127)

and, we fi nd the concentration of the transition state is

  [ABπ] + Kπ [A][B] (5.128)

 The concentration of the transition state is not the only factor involved; the frequency of 

its dissociation must come into play because, the rate at which it decomposes must also be 

considered. Therefore, the rate v can be expressed as

 v = (Transition state concentration) ¥ (frequency of decomposition)

fi v = Kπ [A][B] ◊ n

then using Eq. (5.125),

 v = [A][B]
kT

K
h

π

If kr be the rate constant of the reaction, then we fi nd

 kr = 
kT

K
h

π  (5.129)

k is the Boltzmann constant and h is the Planck’s constant. This is the famous

 Eyring equation. The equilibrium constant can be expressed either in terms of 
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thermodynamic quantities or it terms of partition functions. In the following, we take the 

fi rst approach.

  / / /G RT S R H RTK e e e
π π ππ -D D -D= = ◊  (5.130)

where, DGπ, DSπ and DHπ are the standard free energy change, the standard entropy 

change and, the standards enthalpy change for one mole of the complex to be formed. 

Equation (5.129) then changes to 

  / /S R H RT
r

kT
k e e

h

π π-D D= ◊  (5.131)

From Eq. (5.129), we may write

 ln kr  = π+ +ln ln ln
k

T K
h

fi  
π

= +
ln 1 lnrd k d K

dT T dT

then using the Arrhenius equation, we get

  

π

= +
2

1 lnE d K

T dTRT

fi E = RT + RT2 
πlnd K

dT

fi E = RT + Duπ (from the van’t Hoff isochore)

fi E = RT + DHπ – DnπRT

where Dnπ is the change in the number of moles during the complex formation step. 

Therefore,

 DHπ = E – RT + DnπRT = E + (Dnπ – 1) RT (5.132)

Substituting this into Eq. (5.131), we get

 kr = / (1 ) /S R n E RTkT
e e e

h

π πD - D -  (5.133)

Comparing with the Arrhenius equation, we fi nd the frequency factor A as

  
π πD - D= / (1 )S R nkT

A e e
h

 (5.134)

For a unimolecular reaction, Dn = 0

  / /S R E RT
r

kT
k e e e

h

πD -=  (5.135)

For a bimolecular process,

 kr = 2 / /S R E RTkT
e e e

h

πD -  (5.136)
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Equation (5.133) can be written as

 ln kr = 
π

πÈ ˘D
- + + + - DÍ ˙

Î ˚
ln ln (1 )

E S k
T n

RT R h
 (5.137)

Since DSπ is almost independent of temperature and, the variation of ln T is negligible 

in comparison to ,
E

RT
 a plot of ln kr versus 1/T would be linear. This has already been 

established by Arrhenius.

5.16  COMPARISON OF COLLISION THEORY WITH TRANSITION STATE 
THEORY

The collision theory starts with the assumption that, there is a binary collision between 

two reactant molecules to initiate the reaction. This concept faces the problem of explaining 

the unimolecular reactions; however, with the Lindemann hypothesis, the theory could 

have enabled to explain how a reaction may be unimolecular. On the other hand, the great 

advantage of the transition state theory is that, it evades the question of how the complex 

is formed and, how many atoms/molecules will have to be there.

Comparing Eqs (5.116) and (5.133) we may write 

  

πDª¢ /S RkT
Pz e

h

Since z¢ is constant, and kT/h is constant, it is clear that for different reactions, the 

probability factor P is related to the entropy of activation DSπ. If DSπ is positive, then P is 

large and the reaction will be fast. But if DSπ is negative the reaction will be a slow one.  

For gaseous reaction DSπ is generally negative. This may be understood as: when two 

molecules unite and form a complex, the translational degrees of freedom is reduced from 

6 to 3; the rotational degrees of freedom is also reduced; This may however be compensated 

by an increase of the vibrational degrees of freedom. But, the defi nite orientation required 

to form the complex will inevitably reduce the entropy.

When the reactant molecules are simple, e.g., for a reaction between two atoms or, between 

two simple molecules, there is a little rearrangement of energy among the various degrees 

of freedom during the formation of the activated complex. Under this condition DSπ has 

a small negative value. The transition state theory and the collision theory give results 

of the same order. But when complex molecules are involved in forming the activated 

complex, there would be a large decrease in entropy; naturally the reaction rate will be 

slow [cf. Eq. (5.133)]. This has been explain in the collision theory by making P much 

less than unity; for the reaction to occur the molecules are to be properly oriented, which 

then makes some energetic collision fruitless due to improper geometric orientation of the 

reactant molecules.



Chemical Kine  cs 5.95

5.17  CHAIN REACTIONS
A complex reaction pathway may sometimes include a cycle of reactions, such that certain 

reaction intermediates consumed in one step are regenerated in another. The intermediates 

may be atoms, free radicals, or ions. If such a cycle is repeated more than once, the reaction 

is said as a chain reaction. The ending of the chain is being done by the combination of the 

atoms or free radicals. For example, if H2 and Br2 react and the product HBr is removed as 

fast as it is formed, then the following scheme may be given for the reaction:

 

1

2

3

4

2

2

2

2

Br 2Br Initiation

Br H HBr + H
Chain propagation

H Br HBr + Br

Br Br Br Termination

k

k

k

k

ææÆ

¸+ ææÆ Ô
˝

+ ææÆ Ǫ̂

+ ææÆ

In the initiating step two Br atoms are formed; one of them reacts with H2 to produce a 

product (HBr) and a chain carrier H atom; this in turns reacts with Br2 to produce the 

product HBr, and the chain carrier Br atom. If this cycle continues a number of times, the 

reaction is said to be a chain reaction. This sequence is called the chain propagation step. 

Finally, two atoms of Br may unite to bring an end of this chain. This process is called 

termination. In the following we shall discuss some of its special kinds.

(i) Decomposition of Acetaldehyde

CH3CHO Æ CH4 + CO

Rice and Herzfeld proposed a mechanism for this thermal decomposition:

 

ææÆ +

¸+ ææÆ Ô
˝

ææÆ Ǫ̂

+ ææÆ

1

2

3

4

3 3

3 3 4 3

3 3

3 3 2 6

CH CHO CH CHO Initiation

CH CH CHO CH + CH CO
Propagation

CH CO CO + CH

CH CH C H Termination

k

k

k

k

The rate of the reaction v, may be expressed as the rate at which the product(s) is formed; 

we write

  = =4 2 3 3[CH ] [CH CHO][CH ]
d

v k
dt

 (5.138)

Applying the steady state concept to the methyl radicals

 k1[CH3CHO] – k2[CH3CHO][CH3] + k3[CH3CO] – 2 k4[CH3]
2 = 0 (5.139)

and for the CH3CO radicals

 k2[CH3CHO][CH3] – k3[CH3CO] = 0 (5.140)
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Adding these two equations, we get

 k1[CH3CHO] = 2 k4[CH3]
2

fi [CH3] = 
Ê ˆ
Á ˜Ë ¯

1/2

21
3

4

[CH CHO]
2

k

k
 (5.141)

Using this in Eq. (5.138) we have, for the rate of the reaction

 v = 
Ê ˆ
Á ˜Ë ¯

1/2

3/21
2 3

4

[CH CHO]
2

k
k

k
 (5.142)

fi v = kobs[CH3CHO]3/2 (5.143)

Thus, the mechanism predicts the three-halves order; this has been experimentally 

verifi ed. The radical CHO undergoes further reaction:

 CHO Æ CO + H

H + CH3CHO Æ H2 + CH3CO

These two steps are ignored for, their inclusion complicates the mathematical steps but, at 

the end, it is found that equation for the rate [Eq. (5.143)] is just multipled by a constant 

factor.

The overall rate constant kobs is related to those of the elementary steps as

  

Ê ˆ
= Á ˜Ë ¯

1/2

1
obs 2

42

k
k k

k

fi ln kobs = ln k2 + 1
2 1 4

4

1 1 1 1
ln ln ln ln2 ln

2 2 2 2 2

k
k k k

k

Ê ˆ
= + - -Á ˜Ë ¯

fi       = + -obs 2 1 4ln ln ln ln1 1

2 2

d k d k d k d k

dT dT dT dT

fi        2 1 4
2 2 2

1

2

E E EE

RT RT RT

-Ê ˆ= + Á ˜Ë ¯

or E = + -2 1 4

1
( )

2
E E E  (5.144)

That is how, the overall activation energy E is related to the activation energies of the 

elementary steps.

The  chain length g of a chain reaction is defi ned as:

 g = 
rate of the overall reaction

rate of the initiation step
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For the thermal decomposition of CH3CHO, the chain length is then

 g = 

Ê ˆ
Á ˜Ë ¯

1/2

3/21
2 3

4

1 3

[CH CHO]
2

[CH CHO]

k
k

k

k

fi g = 
1/22

3

1 4

[CH CHO]
2

k

k k
 (5.145)

The chain length then depends on the concentration of the reactant.

This reaction changes its order if the termination step is changed. Thus, for the scheme

 ææÆ1
3 3CH CHO CH + CHO

k

 ææÆ2
3 3 4 3CH + CH CHO CH + CH CO

k

 ææÆ3
3 3CH CO CO + CH

k

 ææÆ4
3 3 32 CH CO CH COCOCH

k

The steady state equation for CH3 is

 k1[CH3CHO] – k2[CH3CHO][CH3] – 2 k3[CH3CO] = 0 (5.146)

and for CH3CO,

 k2[CH3CHO][CH3] – k3[CH3CO] – 2 k4[CH3CO]2 = 0 (5.147)

Addition of these two equations, we get

 k1[CH3CHO] = 2 k4[CH3CO]2

fi [CH3CO] = 
Ê ˆ
Á ˜Ë ¯

1/2

1/21
3

4

[CH CHO]
2

k

k
 (5.148)

The rate of formation of CO* is therefore

 v = = 3 3[CO] [CH CO]
d

k
dt

fi v = 
Ê ˆ

= Á ˜Ë ¯

1/2

1/21
3 3

4

[CO] [CH CHO]
2

kd
k

dt k
 (5.149)

* In these schemes the rate of formation of CO and CH4 are very close to each other, but are not 
identical. In the present scheme it is simpler to considered the rate of formation of CO, whereas in 
the three-halves order scheme, it was better to consider the rate of formation of CH4.
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The overall activation energy is now 

 E = + -3 1 4

1
( )

2
E E E  (5.150)

and the chain length is

 g = 

Ê ˆ
Á ˜Ë ¯

1/2

1/21
3 3

4

1 3

[CH CHO]
2

[CH CHO]

k
k

k

k

fi g = 
-1/23

3

1 4

[CH CHO]
2

k

k k
 (5.151)

(ii)  Goldfi nger-Letort-Niclause Rules

The above examples show that the order of the overall reaction depends on the manner 

in which the chains are broken. The problem has been solved by Goldfi nger, Letort and 

Niclause, who distinguished between two types of radicals:

 1. Radicals that are involved in second-order propagation are referred to as b radicals. 

In the above examples CH3 is a b radical.

 2. Radicals that are involved in fi rst-order propagation are referred to as m radicals. 

CH3CO is a m radical. 

Their proposal is given as the following.

 Termination Overall order

 bb 3/2

 bm 1

 mm 1/2

(iii)  Hydrogen-Bromine Reaction
M. Bodenstein and S.C. Lind (1906) fi rst addressed the gas phase reaction between H2 

and Br2. For this thermal reaction over the temperature range 205–302°C, they found 

empirically that the rate of consumption of H2 or Br2 as:

 v = 
=

2
2 2

2

[H ][Br ]

[HBr] / [Br ]

k

m
 (5.152)

There was no interpretation of this curious rate law for thirteen years. Then the problem 

was solved independently and almost simultaneously by Christiansen, Herzfeld and 

Polani. They proposed a chain of reactions as follows:
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Chain initiation (1) 1
2 2Br + H 2 Br

kææÆ

Chain propagation 
Ï ææÆÔ
Ì

ææÆÔÓ

2

3

2

2

(2) Br + H HBr + H

(3) H + Br HBr + Br

k

k

Chain inhibition (4) ææÆ +4
2H + H Br H Br

k

Chain termination (5) + ææÆ5
2Br Br Br

k

The reaction is initiated by the formation of bromine atom from the thermal dissociation 

of Br2. The chain propagating steps (2) and (3) form two molecules of HBr and regenerate 

the Br atom, ready for another cycle. Step (4) is introduced to account for the observed 

inhibition by HBr. Since this inhibition is proportional to the ratio [HBr]/[Br2] [cf. Eq. 

(5.152)], it is evident that HBr and Br2 compete, so that the atom being removed must be 

H rather than Br.

Applying the steady state approximation to [Br], we have

 
[Br]d

dt
 = 2 k1[Br2] – [Br][H2] + k3[H][Br2] + k4[H][HBr] – 2 k5[Br]2 = 0 (5.153)

and for [H], we have

 
[ ]d H

dt
 = k2 [Br][H2] – k3[H][Br2] – k4[H][HBr] = 0 (5.154)

Adding these two equations, we get

 2 k1[Br2] = 2 k5[Br]2

fi [Br] = 1/21
2

5

[Br ]
k

k
 (5.155)

From Eq. (5.154), we may write

 [H] = 
+

+
2 2

3 2 4

[Br] H ]

[Br ] [HBr]

k

k k

and using Eq. (5.155) for [Br] we get,

 [H] = 

+

+

1/21
2 2

5

3 2 4

[Br] [H ]

[Br ] [HBr]

k
k

k

k k
 (5.156)

The rate of formation of HBr is,

 
[HBr]d

dt
 = k2 [Br][H2] + k3[H][Br2] – k4[H][HBr]

Using Eq. (5.154) 

 
[HBr]d

dt
 = 2 k3[H][Br2]
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and, fi nally using the expression of [H] from Eq. (5.156)

 
[HBr]d

dt
 = 

Ê ˆ
Á ˜Ë ¯

+

1/2

1/21
2 2 2

5
3 2

3 2 4

[Br ] [H ]

2 [Br ]
[Br ] [HBr]

k
k

k
k

k k

fi 
[HBr]d

dt
 = 

1/2

1/2 1/21
2 2 2 1/2

5 2 2

4 4 3 2

3 2

2 [H ] [Br ]
[H ][Br ]

[HBr] 1 [HBr] / [Br ]
1

[Br ]

k
k

k k

k k k

k

Ê ˆ
Á ˜Ë ¯

=
++

This  agrees exactly with the empirical expression [Eq. (5.152)]. The second term in the 

denominator is just the ratio of rates of step (3) to that of (4)

  = =4 4 4

3 3 2 3 2

[H][HBr] [HBr]

[H][Br ] [Br ]

v k k

v k k
 (5.158)

which indicates that, to what extent the reaction is inhibited. As this quotient increases, 

the rate decreases.

(iv)  Hydrogen-Chlorine Reaction
The reaction between H2 and Cl2 occurs both thermally a photochemically; only the thermal 

reaction is considered here. The mechanism is not as clear-cut as in the H2–Br2 reaction, 

and a large number of elementary steps play a signifi cant role. Only an approximate 

interpretation of the overall kinetic law can be given in terms of a reaction scheme.

The thermal reaction between H2 and Cl2 occurs at conveniently measurable rates above 

200°C. The rate is strongly affected by O2, and is extremely great in its complete absence. 

Most workers have therefore worked using a small but known concentration of O2. This 

effect of O2 was not found in the H2–Br2 reaction.

The rate of the thermal reaction approximately obeys the rate law

  ( )=
+ +

2
2 2

2 2 2 2

[H ][Cl ][HCl]

[Cl ] [O ] [H [Cl ]

kd

dt m n
 (5.159)

where k, m and n are constants. The rate is quite sensitive to the shape and size of the 

vessel, and to the nature of the surface. A mechanism that gives a reasonably satisfactory 

interpretation of this empirical law is

 1. 1
2Cl M 2Cl M

k+ ææÆ +

 2. + ææÆ +2
2Cl H HCl H

k

 3. + ææÆ +3
2H Cl HCl Cl

k

 4. + ææÆ4
2 2H O HO

k
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 5. + ææÆ5
2 2Cl O ClO

k

 6. 6Cl X ClX+ ææÆk

Here, M is any third boy (including the surface) that aids the dissociation of the Cl2 

molecule, and X is another third body that removes Cl atoms. Except in the complete 

absence of O2, the reaction

 2 Cl Æ Cl2

does not play a prominent role as a chain-terminating step. The above reaction scheme 

gives, with the neglect of some small terms, a rate equation that agrees approximately 

with the empirical Eq. (5.159).

The H2—I2 reaction does not follow a chain mechanism.

The reason is that activation energy of the process I + H2 Æ HI + H is relatively high (E = 

33 k cal mol–1) and hence it follows the easier path of bimolecular collision*.

5.18  DECOMPOSITION OF OZONE
The gas phase decomposition of ozone

 2O3 Æ 3O2

is believed (according to Benson and Axworthy) to have the mechanism

  

1

1
3 2O M O O M

k

k-
+ + +     

     

  + ææÆ2
3 2O O 2O

k

where M is any third body.

The rate of formation of O2 is given by

 2[O ]d

dt
 = 2 k2 [O][O3] + k1[O3][M] – k1[O2][O][M] (5.160)

and of consumption of O3 as

 - 3[O ]d

dt
 = k1[O3][M] – k1[O2][O][M] + k2[O][O3] (5.161)

Applying the steady state approximation to [O], we have

 
[O]d

dt
 = k1[O3][M] – k1[O2][O][M] – k2[O][O3] = 0 (5.162)

fi  =
+

1 3

1 2 2 3

[O ][M]
[O]

[O ][M] [O ]

k

k k
 (5.163)

From Eq. (5.162) we get

* see K.J. Laidler; Chemical Kinetics.
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 k1[O3][M] – k1[O2][O][M] – k2[O][O3]

and using this is Eq. (5.160)

 2[O ]d

dt
 = 3 k2[O]O3] (5.164)

Similarly, using Eq. (5.162)

 - 3[O ]d

dt
 = 2 k2[O][O3] (5.165)

The rate of formation of O2 is then

 2[O ]d

dt
 = 

- +

2
1 2 3

1 2 2 3

3 [O ] [M]

[O ][M] [O ]

k k

k k

The rate of the reaction is then

 v = =
+

2
1 2 32

1 2 2 3

[O ] [ ][O ]1

3 [O ][ ] [O ]

k k Md

dt k M k
 (5.166)

5.19  DECOMPOSITION OF N2O5

The mechanism now accepted for N2O5 decomposition was fi rst proposed by R.A. Ogg 

(1950) and is as follows:

  -
+     

     
1

1
2 5 2 3N O NO NO

k

k

  ææÆ + +2
2 3 2 2NO + NO NO O NO

k

  ææÆ3
2 5 2NO + N O 3NO

k

  _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

giving us fi nally, 2 N2O5 Æ 4 NO2 + O2.

The intermediates NO3 and NO are present is smaller amounts than N2O5; the steady 

state approximation applied to these species gives

 3[NO ]d

dt
 = O = k1[N2O5] – k1 [NO2][NO3] – k2 [NO2][NO3]

fi  k1[N2O5 ] – (k1 + k2) [NO2][NO3] = 0 (5.167)

 
[NO]d

dt
 = k2[NO2] [NO3] – k3 [NO][N2O5]  = 0 (5.168)

The rate of consumption of N2O5 is

 - 2 5[N O ]d

dt
 = k1[N2O5] – k–1 [NO2]NO3] + k3[NO][N2O5]

with Eq. (5.168), this becomes
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 - 2 5[N O ]d

dt
 = k1[N2O5] + (k2  – k–1)[NO2]NO3] (5.169)

Using Eq. (5.167) (eliminating [NO2][NO3])

 - 2 5[N O ]d

dt
 = 

-

+ -
+
1

1 2 5 2 1 2 5
1 2

[N O ] ( ) [N O ]
( )

k
k k k

k k

  = 
- +

1 2 2 5

1 2

2 [N O ]

( )

k k

k k
 (5.170)

The mechanism thus explains the fi rst order kinetics. The rate constant k2 is expected to 

be much smaller than k–1, so that to a good approximation 

  
-

- =2 5 1 2
2 5

1

[N O ] 2
[N O ]

d k k

dt k
 (5.171)

Under this condition, the overall activation energy E is related to those of the elementary 

steps as

 E = (E1 + E2 – E–1) (5.172)

5.20  THERMAL PARA-ORTHO HYDROGEN CONVERSION
The rate of conversion of para-hydrogen into ortho-hydrogen takes place homogeneously 

between 700 – 800°C. The mechanism suggested is

 1.     
    2H 2H (fast)

K

 2. ææÆ2
2 2H + -H -H + H (slow)

k
p o

The equilibrium constant of the step (1) is

  = fi =
2

2

2
2H
H H

H

C
C KC

C
K  (5.173)

The rate of the reaction is therefore

  
fi =

2 2

1/2 3/22
2 H -H 2 -H

[ -H ]
C Cp p

d o
k k K C

dt

The activation energy of the process is given by

 E = E2 + 
1

2
D  (5.174)

where D is the dissociation energy of H2 ; it is about 435–1. E2 is about 38 kJ mol–1. It then 

follows that the overall activation energy is about 256 kJ mol–1, which has experimentally 

been found.
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5.21  BRANCHING CHAIN: EXPLOSION
In the chain reactions, so far considered, during a propagation step, one free radical (or 

atom) reacts with a reactant molecule, producing the product and another free radical, the 

chain carrier; this chain carrier then combines with another reactant producing a product 

molecule and another chain carrier, i.e., a radical or atom. Under ordinary condition, the 

concentration of these chain carriers are very small and, the steady state approximation 

is used to express their concentrations.

For some gas phase reactions, e.g., the oxidation of H2, CO, PH3, CS2 etc., the reaction 

proceeds through a chain mechanism, but, in these cases when a free radical combines 

with the reactant molecule to produce a product molecule, it produces more than one free 

radical (chain carrier). This results into an increase of these free radicals very rapidly 

with time, naturally with a consequent increase in the reaction rate. This, in turn, will 

increase the reaction rate further, producing more and more free radicals, which are ready 

to carry on the reaction more faster. This is said to be a branching chain. Eventually, the 

reaction may go to so fast a rate that, an explosion may occur.

The mechanism of H2 and O2 is believed to be as:

 1. H2 Æ 2 H Initiation

  

Æ ¸
˝Æ ˛

2

2

2. H + O OH + O
Branching

3. O + H OH + H

 4. OH + H2 Æ H2O + H Propagation

In the steps (2) and (3) it is seen that two radicals are produced at the cost of one; this is 

branching. These radicals propagate the reaction to a large extent, than normally observed. 

In this way the concentrations of the chain carriers increase to such an extent and, as a 

result increases the reaction rate so fast, that explosion occurs. The chain carriers may 

also be destroyed, mainly by collision with the walls of the container.

It is observed that (Figure 5.34), the rate increases smoothly, as the pressure is increased. 

Suddenly the reaction comes to an explosion (1st limit); this continues upto a 2nd limit, 

where the reaction again comes down to a smooth rate; a steady reaction is followed. 

Figure 5.34 Explosion limits.
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This continues with increase in pressure, until the fi nal 3rd limit is attained, where the 

rate again shoots to infi nity.

It is easy to understand the reason. At low pressure the radicals get a free access to collide 

with the walls, and are destroyed there. This counterbalances the increase in the rate of 

production of the radical from the branching steps. The reaction proceeds smoothly.

As the pressure is gradually increased, through the branching, the concentration of the 

radical increases tremendous and their journey towards the wall is diminished. The 

destruction of the radicals cools down. A pressure eventually is reached, where the rate 

of branching is much more rapid than the slow rate of destruction of the radicals at the 

walls. We get the fi rst explosion limit. Obviously, this pressure limit depends upon the 

shape and size of the vessel. At further higher pressure, the radicals are destroyed in the 

gas phase than at the walls. This is because of the three body collisions:

 H + O2 + X Æ HO2

a kind of quenching, where X may be any foreign gas or H2, or O2 molecule, resulting into 

a reduction of the free radicals. The reaction then comes down to a smooth rate.

Finally, we get the third limit due to thermal explosion. In these exothermic reactions, the 

heat generated cannot be conducted out; and the temperature rises. This increases the 

rate further, and eventually we get the third explosion limit, which is thermal.

The mechanistic scheme of a branched chain reaction may then be represented as:

 1. ææÆ1kA R

 2. a+ ææÆ +2kA R P R

 3. ææÆ3 destruction
k

R

where A is the reactant; branching occurs in step (2) and, fi nally, the radicals are destroyed 

in step (3). The chain carriers are destroyed in two ways: (i) diffusing to the walls and 

combining with a surface atom and, (ii) by a three-body collision in the gas phase. This 

means that the rate constant k3 is the sum of two rate constants, kg for the gas phase 

destruction and kw for wall destruction.

The steady state condition, = 0RdC

dt
, must be there to get a smooth reaction; hence

 RdC

dt
 = k1CA – k2CACR + a k2CACR – k3 CR = 0

fi  
a

=
+ -

1

3 2 (1 )

A
R

A

k C
C

k k C

fi  
a

=
+ + -

1

2 (1 )

A
R

w g A

k C
C

k k k C
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Normally, in chain reactions a = 1 and CR = k¢CA.

Branching occurs when a > 1. Very soon from the start of the reaction, a increases to 

such an extent that k2CA(a – 1) become equal to (kw + kg); CR then shoots to infi nity. The 

extremely high concentration of the chain carriers is responsible for the rapid rate of the 

reaction, and explosion occurs.

When the pressure is low, the diffusion of the carriers to the wall is an easy access and 

hence, kw is large. Over the period of pressure, when (kw + kg) is greater than k2CA (a – 1), 

i.e., the rate of destruction is more than that of the formation of the carriers, we observe 

a smooth reaction. As the pressure is increased, the journey of the radicals towards the 

walls decreases and kw falls; k2CA(a – 1) then becomes relatively large and fi nally explosion 

occurs; the fi rst limit is reached. 

If the pressure is gradually increased kw decreases and kg will increase. Finally, when the 

destructive collisions in the gas phase overcomes the branching of chain, the concentration 

of the radicals decreases, and we then get a slow rate of the reaction. This is how the 

second limit is reached.

PROBLEMS
 5.1  (i)  Show that for a fi rst order reaction the time required for 75% reaction is twice 

the time for 50% reaction.

  (ii)  A fi rst order reaction is 25% complete at the end of 20 minutes. How long will 

it take to complete 75% reaction [Ans.: 96.27 min]

 5.2 The fi rst order decomposition of H2O2 in a suitable medium has the rate constant

3 × 10–2 min–1. Find the time to complete one-third of the reaction.

 [Ans.: 13.5 min]

 5.3 For the reaction 2NO + Cl2 Æ 2 NOCl, it was found that on doubling the 

concentration of both the reactants, the rate increases eight fold. But on doubling 

the concentration of Cl2 alone, the rate only doubles itself. What are the orders of 

the reaction with respect to the reactants. [Ans.: 2 for NO; 1 for Cl2]

 5.4 The decomposition of azomethane is a fi rst-order reaction.

 CH3 – N = N – CH3  Æ  N2 + C2H6

  the rate constant is 4 ¥ 10–4 s–1. If initially azomethane be taken at 200 Torr 

pressure, what will be the partial pressures of the components after half an hour?

[Ans.: Pazo = 97.35 Torr; PN2
 = PC2H6

 = 102.65 Torr]

 5.5 The gas phase reaction 2 NO2 + O3 Æ N2O5 + O2 has the rate constant k = 2 ¥ 104 

dm3 mol–1 at 300 K. What is the order of the reaction.  [Ans.: 2nd order]

 5.6 The rate of decomposition of HI is given by, - = 2HI
HI

dC
C ,k

dt
 where k = 4 ¥ 10–6 L 

mol–1 s–1, at 327°C. How many molecules of HI would decompose per second at 1 

atm pressure? [Ans.: 9.93 ¥ 1014 molecule L–1]
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 5.7 At 100°C the gaseous reaction A ¥ 2B + C is observed to be fi rst-order. On starting 

with pure A it is found that at the end of 10 minutes the total pressure of the 

system is 176 Torr, and after a long time 270 Torr. From these data fi nd

 (i) the initial pressure of A

 (ii) the pressure of A at the end of 10 minutes

 (iii) the rate constant of the reaction

 (iv) the half life period of the reaction

 [Ans.: (i) 90 Torr; (ii) 47 Torr; (iii) 0.065 min–1; (iv) 10.7 min]

 5.8 For the gas phase reaction 2N2O5 Æ 4NO2 + O2, the rate constant k is 1.73 ¥ 10–5 
s–1 at 25°C. The observed rate low is v = k[N2O5].

 (i) Calculate v and 
n

Ê ˆ=Á ˜Ë ¯
1 dnt

J
dt

 for the reaction in a 12 dm3 container with 

=
2 5N O 0.1 atmP  at 25°C.

 (ii) Calculate 2 5[N O ]d

dt
 for the condition of part (a).

 (iii) Calculate the number of N2O5 molecules decomposed per second for the 
condition of (a).

 (iv) What are k, v and J for the condition of (a) if the reaction is written as N2O5 

Æ 
2 2

1
2NO + O

2
?

[Ans.: (i) v = 7.1 ¥ 10–8 mol L-1 s–1; J = 5.12 ¥ 1017 molecules s–1;

(ii) –1.42 ¥ 10–7 mol L–1 s–1; (iii) 8.6 ¥ 1016 molecules L–1s–1;

(iv) k remains the same; v and J will be half of the above values] 

 5.9 The stoichiometric equation for the oxidation of bromide ions by H2O2 in acid 

solution is:

 2 Br– + H2O2 + 2H+ Æ Br2 + 2 H2O

  the rate equation has been found to be

 v = k[H2O2] [H
+][Br–]

 (i) If the concentration of H2O2 in increased by a factor of 3; by what factor the 

rate of consumption of Br– ions increased?

 (ii) If the rate of consumption of Br– ions is 7.2 ¥ 10–3 mol dm–3s–1, what is the 

rate of consumption of H2O2? What is the rate of production of Br2?

 (iii) What is the effect on the rate constant k of increasing  the concentration of 

bromide ions?

 (iv) If by the addition of water to the reaction mixture, the total volume were 

doubled, what would be the effect on the rate of change of the concentration 

of Br–? What would be the effect on the rate constant k?

[Ans.: (i) 3; (ii) both rates are 3.6 ¥ 10–3 mol dm–3s–1; (iii) No effect;

(iv) decreased by a factor of 8; nothing]
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 5.10 A reaction has the stoichiometric equation

 A + 2B Æ 2z

  The rates of formation of z at various concentrations of A and B are as follows:

[A]/mol L–1 [B]/mol L–1 Rate/mol L–1 s–1

3.5 ¥ 10–2 2.3 ¥ 10–2 5.0 ¥ 10–7

7.0 ¥ 10–2 4.6 ¥ 10–2 2.0 ¥ 10–6

7.0 ¥ 10–2 9.2 ¥ 10–2 4.0 ¥ 10–6

  what are a and b in the rate equation 

 v = k[A]a [B]b

  and what is the rate constant k?

 [Ans.: a = 1; b = 1; k = 6.21 L mol–1s–1]

 5.11 The half life for the disintegration of Ra is 1590 years. Calculate the mate constant. 

In how many years will three-quarter of a given amount of Ra have disappeared?

 [Ans.: 1.38 ¥ 10–11s–1; 3180 years]

 5.12 Find out the rate constant in the decomposition of a gas which is of three-halves 

order, when 60% decomposition took place in an hour; the initial pressure is 1 

atm.

 [Ans.: 1.162 atm–1/2 h–1]

 5.13 At 327°C, for the second order decomposition of NO2, k = 6 ¥ 102 cm3mol–1s–1. 

Calculate the time required for 75% decomposition of a sample of NO2 at 300 Torr 

at the same temperature. [Ans.: 624.5 s]

 5.14 In the thermal decomposition of malonic acid

 CH2(COOH)2  Æ  CH3COOH + CO2

  the pressure at different time intervals are

t(min) 10 20 35 56 μ

p(Torr) 37 67 108 155 303

  what is the order of the reaction. Also fi nd out the rate constant.

 [Ans.: 1st order; 0.013 min]

 5.15 When ethyl acetate is saponifi ed by NaOH, the progress of the reaction can 

be followed by titrating unchanged alkali with a standard acid. Using equal 

concentrations of ester and alkali, the following results were obtained.

t(min) 0 5 25 55 120 μ

vol. of acid (cm
3
) 16 10.24 4.32 2.31 1.1 0

  Show that the reaction is of the second order. What is the value of the rate constant? 

What fraction of the ester will be saponifi ed at the end of 30 minutes?

 [Ans.: 6.9 ¥ 10–3 min–1; 0.77]

 5.16 At 25°C, the rate constant for the hydrolysis of ethyl acetate by NaOH is 6.36 

mol–1L min–1. Starting with concentrations of base and ester of 0.02 mol L–1, what 

proportion of the ester will be hydrolyzed in 10 minutes? [Ans.: 0.56]
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 5.17 For the reduction 2 FeCl3 + SnCl2 Æ 2FeCl2 + SnCl4 in aqueous solution the 

following data were obtained at 25°C.

t(min) 1 3 7 1 40

y 0.01434 0.02664 0.03612 0.04102 0.05058

  where y is the amount of FeCl3 reacted in moles per liter. The initial concentrations 

of SnCl2 and FeCl3 were respectively 0.03125 and 0.0625 molL–1. Show that the 

reaction is third order, and calculate the rate constant.

 [Ans.: 86 (mol L–1) –2 mim–1]

 5.18 The rate constant of a reaction at 30°C is found to be exactly twice the value at 

20°C. Calculate the activation energy. [Ans.: 51.2 kJ mol–1]

 5.19 Two second order reactions have identical preexponential factors and activation 

energies differing by 20 kJ mol–1. Calculate the ratio of their rate constants at 0°C.

 [Ans.: 1.48 × 10–4]

 5.20 The water fl ea Daphnia performs a constant number of heartbeats and then dies. 

The fl ea lives twice as long at 15°C as at 25°C. Calculate the activation energy for 

the reaction that controls the rate of its heartbeat. [Ans.: 49.5 kJ mol–1]

 5.21 A sampling of milk kept at 25°C is found to sour 40 times as rapidly as when it is 

kept at 4°C. Estimate the activation energy for the souring process.

 [Ans.: 120.6 kJ mol–1]

 5.22 For a parallel reaction from the reactant R.

  with rate constants and activation energies for the formation of P1 and P2 as k1, E1 

and K2, E2, respectively, show that the overall activation energy is

 

+1 1 2 2=
k E k E

E
k

  where k = k1 + k2.

 5.23 Two reactions of the same order have identical activation energies and their 

entropies of activation differ by 50 JK–1mol–1. Calculate the ratio of their rate 

constants at any temperature. [Ans.: 409]

 5.24 The gas phase reaction

 H2 + I2 Æ 2HI

  is second order. The rate constant at 400°C is 2.34 ¥ 10–2 L mol–1s–1, and its 

activation energy is 150 kJ mol–1. Calculate DHπ, DSπ and DGπ at 400°C, and the 

preexponential factor.

[138.8 kJmol–1; –76.7 JK–1 mol–1; 190.4 kJmol–1; 1.02 ¥ 1010 L mol–1s–1]





6.1 INTRODUCTION

It was known from the early part of the nineteenth century that some substances can 
increase the rate of a chemical reaction, and can be removed chemically unchanged at the 
end of the process. Such substances are called catalysts and the process as catalysis.
Some defi nitions of catalysts are given below:
 ∑ A catalyst is any substance that alters the rate of a chemical reaction without 

modifi cation of the energy factors of the reaction. —W. Ostwald (1895)
 ∑ A catalyst is any substance that alters the rate of a chemical reaction without 

appearing in the end product of the reaction. —W. Ostwald (1902)
 ∑ A substance is said to be a catalyst for a reaction when its concentration occurs in 

the rate expression to a higher power than it does in the stoichiometric equation.

6.2 CHARACTERISTIC FEATURES OF A CATALYST

Some of the characteristic features of catalyst are as follows:
 (i) A catalyst only increases the rate of chemical reaction but remains chemically 

unchanged at the end of the process; its physical form may be changed. For example, 
a catalyst initially introduced as a solid metallic chunk may be regenerated in a 
fi nely powdered form.

 (ii) A catalyst cannot start a reaction, nor can it affect the magnitude of the standard 
free energy change of the reaction DG°. Since DG° = –RT ln Keqm, it follows therefore 
that the equilibrium constant Keqm, also remains unaffected.

    Therefore the equilibrium yields are also remained unchanged; only the 
attainment of the equilibrium is hastened up.

 (iii) Since for an elementary opposing reaction, the equilibrium constant Keqm is related 
to the rate constants k1 and k–1 for the forward and the backward processes as 
Keqm = k1/k–1, and since the Keqm remains unaltered during catalysis, both the rate 
constants are increased by the same factor. Therefore a catalyst does not only 
increase the forward rate, it also increases the rate of the backward reaction by the 
same factor.

CATALYST6
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 (iv) Generally, it is found that a very minute amount of the catalyst may bring about 
a large increase in the reaction rate, e.g. colloidal platinum at a concentration of 
10–8 M can catalyse the decomposition of H2O2 at a considerable rate.

6.2.1  Thermodynamic Proof of that a  Catalyst cannot Modify

the Value of Keqm

Let us start the reaction at any arbitrary composition in absence of the catalyst, and 

attain the equilibrium position. We now add the catalyst and let it affect the equilibrium 

by shifting it further to the right. If the reaction is exothermic to the right, then during 

this shift an amount of heat would be liberated, that can be converted completely into 

work; let it be done. Since the catalyst remains unchanged, it is now taken off the system; 

the reaction will then be back home to its original position of equilibrium by absorbing, 

from the surroundings, exactly the same amount of heat it has released before. At the end 

of this cyclic process, nothing changes permanently except the conversion of an amount 

of heat into work under isothermal condition. This certainly is going to violate the Kelvin 

Planck statement of the second law of thermodynamics.

6.3 MECHANISM OF CATALYSIS

Although a catalyst remains chemically unchanged at the end of the chemical reaction, it 

does involve itself into the actual chemical union and is regenerated at the end of process. In 

fact, the catalyst fi nds an alternative path for the reaction in which the required activation 

energy is less than that of the uncatalysed path; that is how the rate is increased.

There are a number of different mechanisms through which catalysed reactions take place. 

Among these, an important type is the reaction of a single substrate catalysed by solid 

surfaces, enzymes, acids and bases. At the start, we undertake a reaction scheme that can 

focus on the similarities among reactions being catalysed by different kinds of catalyst.

The scheme proposed is

  -

¸
Ô
˝
Ô+ ææÆ + ˛

          
1

1

2

(i) + +

(ii)

k

k

k

C S X Y

X W P Z
 (6.1)

C is catalyst, and X and Y are intermediates; the species X then reacts with a species W to 

produce the product P with an additional substance Z. The species Y and Z may undergo 

other processes, but these have hardly any effect on our reaction of interest.

In the step (ii) of Eq. (6.1), if the product P is removed from the reaction vessel, as soon 

as it is formed, then the reverse process of step (ii) can be neglected. There is a possibility 

that the intermediate X undergoes the step (ii) very slowly, and so much so, that the step 

(i) may be considered to be at equilibrium. The corresponding condition is

  -<<2 1[ ][ ] [ ][ ]k X W k X Y  (6.2)
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It is the Arrhenius-concept of equilibrium between the reactant (s) with the intermediates. 
These intermediates are called Arrhenius intermediates.

On the other hand, if k2[X] [W] >> k–1 [X] [Y] then the concentration of X is very small, 

and the steady state approximation may be applied to [X]. This is called the van’t Hoff 

intermediate.

6.3.1   Arrhenius Intermediate: Applying Equilibrium Approximation

From (i) of Eq. (6.1), we may write

  1

1

[ ][ ]

[ ][ ]

kX Y
K

C S k-

= =  (6.3)

(applying equilibrium approximation). The concentrations of C, S and X are related to 
their initial concentrations as

  [C]0 = [C] + [X] (6.4)

and  [S]0 = [S] + [X] (6.5)

If we are interested to the initial rates, Eq. (6.3) then becomes

  =
- -0 0

[ ][ ]

([ ] [ ])([ ] [ ])

X Y
K

C X S X
 (6.6)

Equation (6.6), being quadratic in [X] can be solved for [X], and then the rate of the 
reaction v = k2[X] [W] can be evaluated. However, two special cases make the problem 
easier.

Case 1:  If the initial concentration of the substrate is much greater than that of the 
catalyst, i.e. [S]0 >> [C]0, then [S]0 – [X] ª [S] (∵  [X] cannot exceed [C]0). Equation 
(6.6) then changes to

  
0 0

[ ][ ]

([ ] [ ]) [ ]

X Y
K

C X S
=

-
 (6.7)

fi  0 0[ ][ ] [ ] ([ ] [ ])X Y K S C X= -

fi  0 0 0[ ][ ] [ ] [ ] [ ][ ]X Y K C S K X S= -

fi  0 0 0[ ][ ] [ ][ ] [ ] [ ]K X S X Y K C S+ =

and fi nally,  0 0

0

[ ] [ ]
[ ]

[ ] [ ]

K C S
X

K S Y
=

+
 (6.8)

The rate of the reaction v, is then [step (ii); Eq. (6.1)]

  2 0 0
2

0

[ ] [ ] [ ]
[ ][ ]

[ ] [ ]

k K C S W
v k X W

K S Y
= =

+
 (6.9)
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The variation of the rate v versus [S]0 is shown in Figure 6.1(a). At lower region of [S]0, 
K[S]0 << [Y], v varies almost linearly with [S]0. At higher initial concentration of the 
substrate, [S]0, K[S]0 >> [Y], the rate becomes independent of [S]0. Moreover, as long as 
[S]0 >> [C]0, the rate v varies linearly with [C]0.

The reactions between a single substrate on solid surfaces and with enzymes show this 
kind of characteristic behaviour. For both of these catalysts, Y and W have no role to play; 
Eq. (6.9) changes to

Figure 6.1(a) The rate of the reac  on v versus ini  al substrate concentra  on for the condi  on [S]0 >> [C]0.

Figure 6.1(b) A plot of v versus the ini  al concentra  on of the catalyst. Here  [C]0 >> [S]0.
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  2 0 0

0

[ ] [ ]

[ ] 1

k K C S
v

K S
=

+
 (6.10)

Case 2:   If the initial concentration of the catalyst is much more than that of [S]0, i.e. [C]0 
>> [S]0, then Eq. (6.6) changes to

  
0 0

[ ][ ]

[ ] ([ ] [ ])

X Y
K

C S X
=

-
 (6.11)

After fi nding out the expression of [X], as done just earlier, the rate of the reaction v (using 

the expression of [X]) is given by

  
2 0 0

0

[ ] [ ] [ ]

[ ] [ ]

k K C S W
v

K C Y
=

+
 (6.12)

As long as the condition [C]0 >> [S]0, v now varies with the initial concentration of the 
substrate, [S]0; the variation of v with [C]0 is shown in the Figure 6.1(b).

6.3.2  Van’t Hoff Intermediates: Applying Steady-state Treatment

From Eq. (6.1), it is clear that if k2[W] >> k–1[Y], then althroughout the entire period of the 
reaction, the concentration of X is very small, and we apply the steady-state approximation. 
The corresponding equation using Eq. (6.1) is

  1 1 2[ ] [ ][ ] [ ][ ] [ ][ ] 0
d

X k C S k X Y k X W
dt

-= - - =  (6.13)

But  [C] = [C]0 – [X] and [S] = [S]0 – [X]

Equation (6.13) then becomes

  1 0 0 1 2([ ] [ ])([ ] [ ]) [ ][ ] [ ][ ] 0k C X S X k X Y k X W-- - - - =

fi  2
1 0 0 0 0 1 2{[ ] [ ] [ ] [ ] [ ] [ ] [ ] } [ ][ ] [ ][ ] 0k C S C X S X X k X Y k X W-- - + - - =  (6.15)

fi  -- - - + + =1 0 1 0 1 2 1 0 0( [ ] [ ] )[ ] ( [ ] [ ])[ ] [ ] [ ] 0k C k S X k Y k W X k C S  (6.15)

fi  1 0 0 1 2 1 0 0{ ([ ] [ ] ) ( [ ] [ ])}[ ] [ ] [ ]k C S k Y k W X k C S-+ + + =

and fi nally,

  1 0 0

1 0 0 1 2

[ ] [ ]
[ ]

([ ] [ ] ) [ ] [ ]

k C S
X

k C S k Y k W-

=
+ + +

 (6.16)

[X] being a very small concentration, the term [X]2 is further smaller and is neglected.

The rate of the reaction [(Eq. (6.1)] is then

  2[ ][ ]v k X W=
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Using Eq. (6.16), we get

  
1 2 0 0

1 0 0 1 2

[ ] [ ] [ ]

([ ] [ ] ) [ ] [ ]

k k C S W
v

k C S k Y k W-

=
+ + +

 (6.17)

In catalytic processes on solid surface, and by enzymes, the species W and Y are not 
present; the rate then becomes

  
1 2 0 0

1 0 0 1 2

[ ] [ ]

([ ] [ ] )

k k C S
v

k C S k k-

=
+ + +  (6.18)

6.3.3 Activation Energy of Catalysed Reactions

Let us consider the case of an Arrhenius complex. When the initial concentration of the 

reactant [S]0 is low, the rate constant of the reaction [(Eq. (6.9)] is given by

  k = k2 Keqm = (k1k2/k–1) (6.19)

If E1, E2 and E–1 are the activation energies of the elementary steps [cf: Figure 6.2(a)], 

and A1, A2 and A–1 are the corresponding frequency factors, then using the Arrhenius 

equation, we have

  k = (A1 A2 / A–1) exp{–(E1 + E2 – E–1)/RT} (6.20)

The net activation energy is then given by

  Elow = E2 + (E1 – E–1) = E1 + E2 – E–1 (6.21)

On the other hand, when the initial concentration of the reactant is very high the rate 

is k2[C]0 and the rate constant of the reaction becomes equal to k2, and therefore the 

activation energy of the reaction is

  Ehigh = E2 (6.22)

The interpretation of Eqs (6.21) and (6.22) is as follows:

When the reactant concentration is low, almost every reactant molecule is in its own 

potential well and hence in order to surmount the fi nal barrier E2, it has to form the 

complex fi rst which is an exothermic process (note that E2 > E1 – E–1). The net activation 

energy required is therefore less than E2 by an amount E–1 – E1. This is shown in

Figure 6.2(a). On the other hand, when the reactant concentration is high, most of 

the molecules are in the complex state, and therefore the activation energy is now E2

[Figure 6.2(b)]
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Figure 6.2(a)  The poten  al energy diagram for Arrhenius model of catalysed reac  ons. From Figure 6.2(a) it is 

clear that k–1 >> k2. The rate-determining step is the surmoun  ng of the second barriers.

Figure 6.2(b) The poten  al energy diagram for the van’t Hoff  model of catalysed reac  ons. From this Figure 6.2(b)

   it is clear that k–1 << k2. To surmount the fi rst barrier is now the rate-determining step.

Equations (6.21) and (6.22) are equivalent to Figure 6.3. In the van’t Hoff’s model, 

where the steady state approximation is applied, Eq. (6.18) is applied. At high substrate 

concentration, the activation energy is Ehigh = Elow [(Eq. (6.22)].
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Figure 6.3  Energy diagram for a unimolecular surface reac  on. The diff erence DE between the

energy of R – S and the R + S is always nega  ve (adsorp  on is exothermic). R is the

reactant.

Under the condition that, both the concentrations of the substrate and the catalyst are 

low, Eq. (6.18) changes to

  1 2
0 0

1 2

[ ] [ ]
( )

k k
v C S

k k-

=
+

 (6.23)

The Arrhenius rate law does not apply to the above equation; nevertheless, Eq. (6.23) can 

be recasted, so that the Arrhenius equation appears.

Case 1: If k2 >> k–1, Eq. (6.23) becomes

  vlow = k1[C]0[S]0 (an Arrhenius type) (6.24)

The activation energy is then

  1 /
low 1 1 1( )E RTE E k A e-= =∵  (6.25)

Figure 6.2(b) represents this situation.

Case 2: If k–1 >> k2, Eq. (6.23) becomes

  1 2
low 0 0

1

[ ] [ ] ;
k k

v C S
k-

=  again an Arrhenius type (6.26)

The activation energy is then

  Elow = E1 + E2 – E–1.

It is also interesting to note that the condition, k–1 >> k2, the steady-state treatment and 

the equilibrium treatment are the same.
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Example 6.1

 (a) Show that, for a reaction occurring by the mechanism

  

1 2

1

k k

k
C + S C + Y

-
¥ ææÆ          

  where total catalyst concentration [C]0 is much less than the substrate concentration 

[S], the rate equation at low substrate concentration is

  

1 2
low 0

1 2

[ ] [ ]
( )

k k
v C S

k k-

=
+

 (b) Prove that the observed activation energy under these conditions is

  

1 2
low 1 2 1 1

1 2 1 2

( )
( ) ( )

k k
E E E E E

k k k k
-

-
- -

= + - +
+ +

Solu  on

 (a) The condition imposed is [C]0 << [S]0

Applying the steady-state approximation to [X], we fi nd

  k1[C][S] – k–1[X] – k2[X] = 0

fi  k1 ([C]0 – [X]) [S] = (k–1 + k2)[X]

and fi nally,  1 0

1 2

([ ] [ ])[ ]
[ ]

( )

k C X S
X

k k-

-
=

+
 (1)

The rate of the reaction v is then

  

1 2 0
2

1 2

([ ] [ ])[ ]
[ ]

( )

k k C X S
v k X

k k-

-
= =

+

fi  
- -

¥
= - = -

+ +
1 2 1 2

0 0
1 2 1 2

([ ] [ ]) [ ] ([ ] [ ] [ ][ ])
( ) ( )

k k k k
v C X S C S X S

k k k k
 (2)

Since the equilibrium constant of the fi rst equilibrium is given by,

  

1

1

[ ]
; [ ] [ ][ ]

[ ][ ]

k X
K X K C S

k C S-

= = fi =

fi  [X] [S] = K[C] [S]2 (3)

Since [S] is very small, [S]2 is further smaller and the term can be neglected. Therefore,

  
1 2

low 2 0
1 2

[ ] ([ ] [ ] [ ][ ])
( )

k k
v k X C S X S

k k-

= = -
+

 (4)
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Therefore, using Eq. (3), which is neglected, we have

  1 2
low 0

1 2

[ ] [ ];
( )

k k
v C S

k k-

=
+

 where Eq. (3) is utilized.

 (b) 1 2
low 0

1 2

[ ] [ ]
( )

k k
v C S

k k-

=
+

Moreover, we can write

  vlow = klow f (concentration terms)

Therefore,  1 2
low

1 2

;
( )

k k
k

k k-

=
+

 (5)

and the Arrhenius equation can be written as 
2

dk kE

dT RT
=  (6)

Then,  
1 2 1 2 1 2 1 2

low
2

1 2

( ) ( ) ( )

( )

d d
k k k k k k k k

d k dT dT

dT k k

- -

-

È ˘+ - +Í ˙Î ˚=
+

fi  

1 2 1 2
1 2 2 1 1 2

low 2
1 2

( )

( )

dk dk dk dk
k k k k k k

dT dT dT dTd
k

dT k k

-
-

-

Ï ¸Ê ˆ Ê ˆ+ + - +Ì ˝Á ˜ Á ˜Ë ¯ Ë ¯Ó ˛=
+

fi  

2
2 1 1 1 2 2 1 2 1 1 1 2 2

1 2 2 2 2 2

low low
2 2

1 2

( )

( )

k k E k k E k k k E k k E
k k

RT RT RT RTk E

RT k k

- -
-

-

Ï ¸Ï ¸Ê ˆ Ô Ô+ + - +Ì ˝ Ì ˝Á ˜Ë ¯ Ô ÔÓ ˛ Ó ˛=
+

fi  - - - -

-

+ + + - -
=

+

22 2
low low 1 1 2 1 1 1 2 2 1 2 1 1 2 2 1 2 1 1 1 2 2

2 2 2
1 2( )

k E k k k E k k k E k k E k k E k k k E k k E

RT RT k k

using Eq. (5)

  

2low1 2
1 1 2 1 1 22 2 2

1 2 1 2

1
[

( ) ( )( )

Ek k
k k k E k k

k k RT RT k k
-

- -

= +
+ + 1 1 1 2 2

2 2
1 2 2 1 2 1 1 1 2

E k k k E

k k E k k k E k k

-

- -

+

+ - - 2 ]E

fi  
low1 2

1 2( ) (

Ek k

k k RT- + 2

1

) ( RT
= 2

1 1 2 1 2 1 1 2 12 2
1 2

[ ( ) ]
) ( )

k k k E E E k k E
k k

- -

-

+ - +
+
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fi  1 2
1 2 low 1 1 2 1 2 1

1 2

[ ( ) ]
( )

k k
k k E k E E E k E

k k
- -

-

= + - +
+

fi  1 2
low 1 2 1 1

1 2 1 2

( )
( ) ( )

k k
E E E E E

k k k k
-

-
- -

= + - +
+ +

6.4  CATALYSIS BY ACIDS AND BASES

Reactions catalysed by acids and bases were studied in the earliest part of the development 

of this subject. In fact, the kinetic investigations of these reactions and the work on the 

electrolytic dissociation theory were undergoing at the same time. Ostwald and Arrhenius 

fi rst suggested that the rates of acid catalysed reactions are independent of the nature of 

the anion, but are directly proportional to the electrical conductivity of the solution. Their 

interpretation was that the conductivity of these solutions was a measure of the strength 

of the acid, i.e. the degree of dissociation of the acid solution. The catalysing species were 

therefore regarded as H+ ions. Similarly, it was shown that the rates of the base catalysed 

reactions are directly proportional to the concentration of OH– ions, but are independent 

of the nature of the cation. In fact, they had identifi ed a number of reactions in which H+ 

and OH+ ions are the only catalysts.

In a very strong acidic solution, where the concentration of OH– ions is very small so that 

we can neglect any catalysis by the OH– ions, the rate of the reaction may be written as

  +
+=

H
[H ][R]v k  (6.27)

where kH+ is the catalytic coeffi cient of the hydrogen ions for the reactions and [R] is the 

reactant concentration. The rate is therefore directly proportional to the concentration of 

the hydrogen ion. However, in a particular run, the concentration of the species H+ is kept 

fi xed; the reaction then follows a pseudo-fi rst kinetics.

  v = k[R] (6.28)

where the pseudo-fi rst order rate constant k is related to the catalytic coeffi cient kH+ as 

  k = kH+[H+] (6.29)

Similarly, in a very strong basic solution the rate is given by

  v = kOH–[OH–] [R] (6.30)

which, in a particular run, follows a pseudo-fi rst order kinetics v = k[R]; the pseudo-fi rst 

order rate constant is given by,

  k = kOH–[OH–] (6.31)

Now, if the acidity of the solution be such that catalysis by both H+ and OH– ions is 
signifi cant, and moreover, if the spontaneous part of the reaction rate be important then 
the overall rate is given by
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  v = k0 [R] + kH+[H+] [R] + kOH–[OH–] [R] (6.32)

and the pseudo-fi rst order rate constant is given by

  k = k0 + kH+[H+] + kOH–[OH–] (6.33)

Depending on the acidity or basicity, one or more terms in the above expression may be 

important. The various possibilities that may arise have been considered by Scrabal who 

potted log k versus the pH of the solution (Figure 6.4). In suffi ciently acidic solution,

Figure 6.4 

  k = kH+[H+] (neglecting the spontaneous and the base catalysed part)

or,    log k = log kH+
 – pH (6.34)

A plot of log k versus pH would then be a straight line with slope – 1; plot a. Similarly, in 

suffi ciently basic solution

  k = kOH–[OH–] = kOH– Kw/[H+]

or,     log k = log (kOH–
 Kw) + pH (6.35)

The plot will then have a slope +1 (plot b). The most general type of behaviour is shown 

by plot c. The regions of H+ and OH– ions catalysis (with slopes 1 and –1, respectively) 

are separated by a horizontal slope, where the spontaneous part of the rate is the only 

important. This has been experimentally verifi ed by the mutarotation of glucose (plot c). 

If, however, the spontaneous part is very small then the two slopes meet fairly sharply

(plot d). If, on the other hand, kH+ is very small then plot e is obtained when the spontaneous 

part is considerable. Plot f is obtained when kOH– is very small, and the spontaneous part 

is considerable. Examples of all these cases are known.

6.4.1  Generalized Acid-base Catalysis

H.S. Taylor, H.M. Dawson and F. Powis fi rst showed clearly that there may be some 

other species which are acids and bases according to the more general concepts by the 
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same, which can catalyse the reaction in addition to H+ and OH– ions. The results of the 

iodination of acetone at high iodine concentration may be taken as an illustration. One 

probable mechanism of the reaction is

  
2slow

3 3 3 2 3 2/
CH COCH CH C(OH) CH CH C(OH)(I)CH I

I

r d
æææÆ = ææÆ

They carried out the reaction in a series of chloroacetic acid solutions of increasing 

concentrations and measured the initial rates of the reaction. It was found that the 

experimentally observed rate constant, i.e. the pseudo-fi rst order rate constant, increases 

steadily with increase in the concentration of chloroacetic acid. This result by itself is not 

alarming; what is alarming is that K/[H+] increases steadily with increase in the chloroacetic 

acid concentration. A plot of K/[H+] versus [acid]/[H+] (K is the ionization constant of 

chloroacetic acid) is shown in Figure 6.4. If H+ ions were the only catalysing species then 

K/[H+] should have remained constant with increase in the total acid concentration. It was 

therefore concluded that besides H+ ions, the undissociated chloroacetic acid molecules 

could also catalyse the reaction. Neglecting the spontaneous part, the pseudo-fi rst order 

rate constant is, therefore, given by

  k = kH 
+[H+] + kacid [acid] (6.36)

It is now clear that as the concentration of the acid is increased, the ratio K/[H+] increases 

linearly with [acid]/[H+].

Example 6.2

The half life time for the inversion of cane sugar has been found to be 50 min at pH 3. 
What will be its half life time at pH 4? Also fi nd out the value of kH+.

Solu  on

This is an example of H+ ion catalysis, where [Eq. (6.29)] will be applied. The pseudo-fi rst 

order rate constant is related to the half life time as

  
+

+

H
1/2

0.693
[H ]k k

t
= =

and at two different H+ ion concentrations, [H+]1 and [H+]2, with half life times (t1/2)1 and 
(t1/2)2, respectively, we have,

  

3
1/2 2 1 1

1/2 2 1/2 1 4
1/2 1 2 2

( ) [H ] [H ] 10 M
( ) ( ) (50 min) 500 min.

( ) [H ] [H ] 10 M

t
t t

t

+ + -

+ + -= fi = = =

Using any acid solution, say of pH 3, kH+ is now calculated as

  

+ 1

3H H
1/2

0.693 0.693
[H ] 13.86 min M .

(50 min) 10 M
k k

t
+ +

-
-= fi = =
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Exactly in the same way the catalysis by basic species BOH other than OH– ions has been 

identifi ed. If, in general, a acid-base catalysis is taking place then the pseudo-fi rst order 

rate constant, say in an acid solution HA, would be given by, where the base BOH is also 

present,

  k = k0 + kH+[H+] + kOH–[OH–] [BOH] + kA–[A–]+ kHA[HA] kBOH (6.37)

6.5  AUTOCATALYSIS

A reaction is said to be auto-catalysed when one of the products of the reaction can catalyse 

the same. A classical example of such a reaction may be the hydrolysis of ester catalysed 

by a weak acid. When methyl acetate is hydrolysed by an acetic acid the reaction that 

follows is

  CH3CO2CH3 + H2O H+
æææÆ  CH3CO2H + CH3OH

Apart from the H+ ion catalysis, the produced acetic acid may also catalyse the reaction

Let the initial concentration of the ester be [Ester], and that of acetic acid be [AcOH]. If [x] 
be the concentration of the ester hydrolysed at time t, then

  
= - + -

[ ]
[AcOH]([Ester] [ ]) [ ]([Ester] [ ])

d x
k x k x x

dt

  [(Ester) [ ]) ([AcOH] [ ])k x x= - +

[Later it will be shown that the rate of a homogeneous catalysis is directly proportional 
to the catalyst concentration.] On integration of the above equation, with the lower limit,
at t = 0, [x] = 0, we have

  

+

+
+

=
+ -
1 [Ester][AcOH (H )]

ln
([Ester] [AcOH]) [AcOH]([Ester] [H ])

k
t

The general example may be like, R Æ P, with the P as the product as well as the 
autocatalyst. The rate law, in the simplest form is

  [ ][ ]v k R P=

Let [R]0 and [P]0 are the initial concentrations of R and P, respectively, and let [R]0 – x and 

[P]0 + x are the corresponding concentrations at time t, then

  0 0([ ] )([ ] )
dx

v k R x P x
dt

= = - +
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or,  
0 0([ ] )([ ] )

dx
kdt

R x P x
=

- +

which on integration by partial fraction gives

  
+

+ =
-

0 0
0 0

0 0

([ ] )[ ]
([ ] [ ] ) ln

([ ] )[ ]

P x R
k R P t

R x P
 (6.38)

writing, k([R]0 + [P]0) as m, we fi nd

  0 0

0 0

([ ] )[ ]
ln

([ ] )[ ]

P x R
mt

R x P

+
=

-
 (6.39)

fi  0 0 0 0

0 0 0 0

([ ] )[ ] [ ] ([ ] )

([ ] )[ ] [ ] ([ ] )
mt mtP x R P P x

e e
R x P R R x

+ +
= fi =

- -

fi  0 0

0 0

([ ] ) [ ]
; where,

([ ] ) [ ]
mt P x P

ne n
R x R

+
= =

-

fi  0 0

0

([ ] [ ] )
1

[ ]
mt R P

ne
R x

+
+ =

-
 (6.40)

As already shown, 
+

=
-

0 0

0 0

([ ] )[ ]

([ ] )[ ]
mt P x R

e
R x P

fi  
+

- =
-
0 0

0 0

([ ] [ ] )
1

([ ] )[ ]
mt x R P

e
R x P

 (6.41)

Dividing Eq. (6.27) by Eq. (6.26), we get

  

0 0

0 0

0 0

0

([ ] [ ] )

([ ] ) [ ]( 1)

([ ] [ ] )1
([ ] )

mt

mt

x R P

R x Pe

R Pne

R x

+
--

=
++

-

or,  
0

( 1)

[ ](1 )

mt

mt

e x

Pne

-
=

+
 (6.42)

where n = [P]0/[R]0. A plot of x/[P]0 versus mt is shown in Figure 6.5. Initially, the rate is 

slow, because a little P is present; then increases due to autocatalysis, and fi nally becomes 

slow again when R has almost disappeared. It can also be shown that the time at which 

the rate becomes maximum is given by
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Figure 6.5 The plot of 
x

P 0[ ]
 versus mt where 0 0([ ] [ ] ) .m R P k= +

  tmax = m–1 ln(n–1) (6.43)

Other examples of autocatalytic reaction are

 (i) Oxidation of oxalic acid by KMnO4; the product Mn++ is the autocatalyst.

 (ii) Dissolution of Cu in nitric acid; the product HNO2 is the autocatalyst.

Figure 6.6  Undissociated acids also catalyse the reac  on in addi  on of H+ ions.

Example 6.3

Show that the time at which the rate becomes maximum is given tmax = 
1 1

ln .
m n

Ê ˆ
Á ˜Ë ¯

Solu  on

The rate of the autocatalysed reaction may be written as

  v = k([R]0 – x)([P] + x)
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[R]0 and [P]0 are the initial concentrations of the reactant and product, respectively, and 
x is the amount reacted at time t, when the rate is v.

Differentiating v with respect to time t,

  
0 0([ ] ) ([ ] )

dv dx dx
k R x k P x

dt dt dt
= - - +

at the maximum, 0 ;
dv

dt
=  this gives us

  
k 0([ ] )

dx
R x

dt
- k= 0([ ] )

dx
P x

dt
+

fi  [R]0 – x = [P]0 + x

fi  0 0[ ] [ ]

2

R P
x

-
=  (7)

From Eq. (6.28), we write

  
max

max

0[ ] ( 1)

(1 )

mt

mt

P e
x

ne

-
=

+
 (8)

Equating Eqs. (7) and (8), we write

  

max

max

0 0

0

[ ] [ ] ( 1)

2[ ] (1 )

mt

mt

R P e

P ne

- -
=

+

  

max

max

0

0

[ ] ( 1)1
1 1 1

2 [ ] (1 )

mt

mt

R e

P ne

Ê ˆ -
- + = +Á ˜Ë ¯ +

  

max
0

0

[ ] 11 1
1

2 [ ] 2

mtR e

P

Ê ˆ -
- + =Á ˜Ë ¯

1+ max

max(1 )

mt

mt

ne

ne

+
+

fi  
(1 )1

2

n+ (1 )n

n

+
=

max

max(1 )

mt

mt

e

ne+

fi  
max

max

1
2

mt

mt

ne
n

e

+
=

fi  maxmte n- =

fi  max

1
lnmt

n
=
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and fi nally,

  max

1 1
lnt

m n

Ê ˆ= Á ˜Ë ¯  (9)

6.6  PRIMARY KINETIC SALT EFFECT

The infl uence of the ionic strength of the medium by the addition of inert electrolytes onto 

the rates of reactions between ions is known as the primary kinetic salt effect. The effect 

arises due to the change in the activity coeffi cients of the participating ions.

Bronsted, Bjerrum and Christiansen gave the fi rst successful theoretical treatment of this 

effect. The most general scheme is:

  

++
ææÆ 2Z Z (Z + Z )M + N X Product(s)m n m n

K k

where MZm and NZn are the reactants, carrying electrical charges Zm and Zn; X is an 

activated complex. The pre-equilibrium approximation is used to fi nd the concentration 

of X, and the basis of the treatment is that the rate of the reaction is directly proportional 

to the concentration of the complex not to its activity. The equilibrium constant for the 

formation of the complex K
++  is given by

  
x x x m n

x m n
m n m n m n x

a C
K C K C C

a a C C

g g g

g g g
++ ±= = fi =

The rate of the reaction is therefore given by,

  2 2
m n

x m n
x

v k C k K C C
g g

g
±= =

The observed rate constant of the reaction is therefore given by

  
obs 2

m n

x

k k K
g g

g
±=  (6.44a)

If k0 be the rate constant of the reaction at zero ionic strength, i.e. when all the activity 

coeffi cients are unity, then Eq. (6.44a) changes to

  obs
obs 0

0

log log log logm n
m n x

x

k
k k

k

g g
g g g

g

Ê ˆ
= fi = + -Á ˜Ë ¯

 (6.44b)

If the concentration of the ions in the solution is not too high then the Debye-Hückel 

limiting law can be used in correlating the activity coeffi cients with the ionic strength of 

the medium I.

  g g g= - = - = - +2 2 2log log and log ( )m m n n x m nAZ I AZ I A Z Z I  (6.45)
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where the value of A at 25°C in aqueous solution is 0.509. Using these relations in

Eq. (6.44b), we fi nd

  obs

0

log 2 m n

k
AZ Z I

k

Ê ˆ
=Á ˜Ë ¯

 (6.46)

Three cases are there. If both the reactant ions are of like charges (+, + or –, –) then the 

right hand side of Eq. (6.46) is positive. The rate of such reactions will therefore increase 

on increasing the ionic strength. Such a prediction can be experimentally tested by plotting 

log(kobs/k0) versus ;I  a straight line with slope 2AZmZn will be observed. This has been 

really confi rmed experimentally (Figure 6.7). On the other hand, if the two reactant ions 

are of two opposing charges then the rate decreases with increase in I. Finally, if either 

of the reactant ions is neutral then the rate remains unaffected with the changing ionic 

strength.

Figure 6.7 Plot of log 

0

vsobs
k

I
K

 of some ionic reac  ons.

 1. 2 2 3
3 5 2 3 5 2CO(NH ) Br Hg H O Co(NH ) (H O) HgBr+ + - ++ + Æ +

 2. - - - - - -+ + + Æ +2 2 2
2 8 4 4 2 4S O I (SIO SO ) I 2SO

 3. - - -+ Æ + +2
2 2 5 2 3 2 5O N— N— COOC H OH N O CO C H OH

 4. cane sugar + OH
–
 Æ invert sugar

 5. - Æ ++ 1
2 2 2 2 2H O + H + Br H O Br ( )not balanced

 6. + - + -+ Æ +2 2
3 5 3 5CO(NH ) Br OH CO(NH ) (OH) Br

 7. + - + -+ Æ +2 3 3 3
2 4 3 2 4 4Fe CO(C O ) Fe CO(C O )
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The physical interpretation of this is as follows: for ions of like charges, the charge density 

of the activated complex is more than that of the either ion and this makes the complex 

more stable by increased solvation. A higher concentration of the complex is thereby 

produced due to the lowering of gx, and the rate therefore increases. Just the opposite 

thing happens in case of reacting ions of opposite charges. When one of the reactant ions 

is neutral there is no change in the charge density during the formation of the complex, 

and therefore the rate remains unaltered.

6.7  SECONDARY KINETIC SALT EFFECT

A change in the concentration of the catalytically active ions may have an effect on the rate 

of reaction in solution, particularly between ions. This is the secondary kinetic salt effect. 

The effect is pronounced when the catalytic ions are produced from a weak electrolyte; but 
it is negligible when a strong acid or base is the catalyst.

Let us have a mixture of a weak acid HA and its salt at defi nite concentrations; the H+ ions 
are the catalyst. For the acid ionisation we may write

  2 3HA + H O H O A+ -+ 

The ionisation constant Ka is then

  

_ _ _
3 3 3H O A H O A H O A

HA HA HA
a

a a C C
K

a C

g g

g

+ + +

= =

fi  
3

3

HA HA

H O
A H O A

a

C
C K

C

g

g g
+

- + -

=

In a buffered solution, the quotient 
HA

A

C

C ¢
 is constant, and therefore, at a fi xed temperature 

the quantity HA

A

a

C
K

C -

 is constant; let it be represented by K. We then have

   
3

3

HA

H O
H O A

C K
g

g g
+

+ -

=  (6.47)

Since the activity coeffi cient terms vary with the ionic strength of the solution, 
+

3H O
C  will 

also vary; this produces the secondary kinetic salt effect.

Since the rate of the reaction is directly proportional to the catalyst +
3H O ,  and if there is 

no primary kinetic salt effect, the rate constant of the reaction may be written as

  

3

HA
0

H O A

k k
g

g g+ -

=  (6.48)

where k0 is a constant, the value of k is at infi nite dilution where all the activity coeffi cients 

are unity.



Catalyst 6.21

Using the Debye-Hückel limiting law for the variation of activity coeffi cients with ionic 

strength in dilute solution

  g = - 2log 0.509i iZ I  at 25°C and in aqueous solution.

From Eq. (6.48)

  
g g g+ -= + - -

3
0 HA H O A

log log log log logk k

fi  0log log 0 0.509 0.509k k I I= + + +

It is assumed that for the undissociated acid, gHA = 1. Therefore,

  0log log 1.018k k I= +  [at 25°C in aqueous solution] (6.49)

Therefore, in an acid-salt mixture the secondary salt effect will increase the rate constant 
with increasing concentration of the elelctrolyte (i.e. increasing I).

If the catalysing species are, e.g. NH4
+ or 3

2 6[Fe(H O) ] ,+  then the effects are fairly 
interesting.

For NH4
+ ion, we write the equilibrium as

  
3 3 4 2NH H O NH H OaK +++ +         (6.50)

fi  4

3 3

NH4

NH3 3 H O

[NH ]

[NH ][H O ]
aK

g

g g

+

+

+

+=  (6.51)

fi  
3 3

4

NH H O

4 3 3

NH

[NH ] [NH ][H O ]aK
g g

g

+

+

+ +=

as previously explained, we write

  3 3

+
4

NH H O

0

NH

k k
g g

g

+

=  (6.52)

fi  
3 3 4

0 NH H O NH
log log log log logk k g g g+ += + + -

fi  
0log log 0 0.509k k= + - 0.509I + 0logI k=  (at 25°C; aqueous solution)

(NH3 being a neutral undissociated molecule, it is assumed that gNH3
 to be unity.)

The specifi c rate constant will be independent of the ionic-strength (I) of the medium, 

provided the solution is not too concentrated; obviously, it is assumed that there is no 

primary-salt effect.



6.22 Physical Chemistry

For the catalyzing species 3
2 6[Fe(H O) ] ,+  we write the equilibrium as

  2 3+
2 5 3 2 6 2[Fe(H O) (OH )] H O [Fe(H O) ] + H O

K- + ++         

The equilibrium constant K is then

  

g

g g-= ¥
+

3

3+
2 6 3

2+ +
22 5 3 H O

[Fe(H O) ]

[Fe(H O) OH ] [H O ]
K

This equation can be rewritten as (explained earlier)

  
g

g g
=

+
3

3
0

2 H O

k k  (6.53)

where k0 is the rate constant k at infi nite dilution, i.e. when all the activity-coeffi cients are 

unity. Taking logarithm on Eq. (6.53), we have

  
+

3
0 3 2 H O

log log log logk k g g g= + - -

fi  
0log log 0.509(9) 0.509(4) 0.509k k I I I= - + +

fi  
0log ( 9 4 1) 0.509k k I= + - + +

and fi nally,  0log log 2.04k k I= -  (6.54)

at 25°C and in aqueous solution. Here, we fi nd that the secondary kinetic salt effect is 
negative. Other examples of secondary kinetic salt effect are (i) catalytic decomposition 
of nitrosotriacetoneamine by OH– ions, (ii) hydrolysis of ethyl acetate with H+ ions as the 
catalyst, among many others.

6.8  ENZYME CATALYSIS

Enzymes are proteins; they are called biological catalysts, and are responsible of 
carrying out a number of metabolic processes. They function in a much more specifi c 
way; for example, urease can catalyse only the hydrolysis of urea. Some enzymes show 
group specifi city that they can catalyse the hydrolysis of any peptide linkage provided 
certain groups are present nearby. Some enzymes show stereo-specifi city in that they can 
hydrolyse the peptide linkage in which the amino acid groups are of L-confi guration. It is 
now evident that the catalytic activity of an enzyme is confi ned over a very small region of 

the protein molecule which is usually referred to as the active centre.

Up to date, only a little information is accumulated regarding their structure, reactivity 
and kinetics. In the following we will discuss very briefl y on the dependence of the rate 
of enzyme catalysed reaction on the substrate concentration, temperature and pH of the 
medium.



Catalyst 6.23

In general, the characteristic features of an enzyme may be summarized as

 1. Absolute Specifi city: In this type of behaviour, an enzyme can catalyse a single 

reaction.

 2. Group Specifi city: A reaction having single type of functional group is catalysed by 

the enzyme.

 3. Linkage Specifi city: In this type, the enzyme makes a specifi c type of bond labile.

 4. Stereochemical Specifi city: They catalyse the reaction of one stereochemical form 

and not the other; the proteolytic enzymes, for example, only catalyse the hydrolysis 

of peptides made up from amino acids in the L-confi guration.

 5. The turn-over number*: of an enzyme is much more than any inorganic catalyst. A 

comparative fi gure of the three cases in given in fi gure.

Figure 6.8 A comparison of uncatalysed, chemically catalysed and enzyme cataly  c process.

In order to avoid possible complications, measuring the initial rate of the reaction at 

different substrate concentrations keeping the enzyme concentration fi xed generally 

does the kinetic study of enzyme-catalysed reactions. The result is shown in Figure 6.9. 

Normally, the substrate concentration is much higher than that of the enzyme; and under 

this condition, it is found that the rate increases linearly with the substrate concentration 

(fi rst order kinetics) in the low concentration range, and becomes independent of the 

substrate concentration (zero order kinetics) in the higher concentration range. Apart 

from this behaviour, it is found that at any substrate concentration, [S]0 >> [E]0, the rate 

is directly proportional to [E]0. Michaelis and Menten fi rst attempted to account for these 

observations successfully.

* The turnover number is defi ned as the number of molecules transformed per minute by one 
molecule of the catalyst.
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6.8.1  Michaelis-Menten Analysis

In this method, at a fi xed enzyme concentration, a series of the substrate with increasing 

concentration is made. This is done over a wide range of concentration of the substrate; in 

every case the initial rate v is measured. It is observed that the rate v increases linearly 

in the low substrate concentration range; this is a fi rst order process. Thereafter, the 

increase in v slows down; and at higher substrate concentration, the rate saturates to 

vmax; it becomes a zeroth-order kinetics.

Since [S]0 >> [E]0 at low concentration of the substrate, the enzyme-substrate complex ES 
is formed, and the decomposition of the complex to produce the fi nal product along with the 

free enzyme takes place. As the substrate concentration increases, the ratio 
0

0

[ ]

[ ]

S

E
 increases; 

the probability of the binding of S and E decreases. At large substrate concentration all 

the enzyme molecules are complexed ([S]0 >> [E]0). Therefore any further increase in the 
substrate concentration cannot form any further enzyme-substrate complex any more; 
there comes a kind of saturation, and the rate saturates to its maximum value, vmax. This 
is clarifi ed in Figure 6.9.

The reaction pathway may be written as

  
- -

+                     
1 2

1 2
+

k k

k k
E S ES P E  (6.55)

where S is the substrate, P is the product, E is the enzyme and ES is the enzyme-substrate 

complex. k1 and k–1 are the rate constants for the forward and backward process for the 

fi rst step and, k2 and k–2 are the corresponding rate constants for the second step.

In most of the kinetic studies of enzyme catalysed reactions [S]0 >> [E]0, and consequently 

the enzyme-substrate concentration [ES] is much less than that of [S]0. Therefore, the steady 

state approximation may be applied to the species ES. Secondly, since the concentration of 

ES at the early stage of the reaction is very small, we can neglect the backward reaction 

P + E Æ ES with rate constant k–2. Applying the steady state approximation to [ES], we 
fi nd

  -
= = - -

1 1 2
[ ] 0 [ ][ ] [ ] [ ]

d
ES k E S k ES k ES

dt

fi  1 1 2[ ][ ] ( ) [ ]k E S k k ES-= +

Since it is diffi cult to estimate [E] during the reaction but, its initial concentration is 
known exactly, we rewrite the above equation as

  1 0 1 2([ ] [ ])[ ] ( ) [ ]k E ES S k k ES-- = +

fi  1 0 1 1 2[ ] [ ] [ ][ ] [ ] [ ]k E S k ES S k ES k ES-- = +
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fi  1 0 1 2 1[ ] [ ] [ ] [ ] [ ][ ]k E S k ES k ES k ES S-= + +

fi    1 0

1 2 1

[ ] [ ]
[ ]

[ ]

k E S
ES

k k k S-

=
+ +

 (6.56)

The rate of the reaction is then

  

1 2 0
2

1 2 1

[ ] [ ]
[ ]

[ ]

k k E S
v k ES

k k k S-

= =
+ +

or  2 0

1 2

1

[ ] [ ]

[ ]

k E S
v

k k
S

k
-

=
+

+
 (6.57)

or  =
+

2 0[ ] [ ]

[ ]m

k E S
v

K S
 (6.58)

This is the Michaelis-Menten equation, and the constant 
1 2

1

k k

k
- +

 is called the Michaelis 
constant Km.

The addition of Km to a concentration term [S] indicates that Km also has the units of 
concentration

units of  
- -

--
- -

+ +
= = =

1 1
11 2

1 1
1

mol
L mol s

m

k k s s
K L

k

At high substrate concentration, as [S] >> Km, Km + [S] ª [S]. Equation (6.58) then changes 

to

  2 0
2 0

[ ] [ ]
[ ]

[ ]

k E S
v k E

S
= =  (6.59)

This is the maximum attainable rate. vmax (Figure 6.7).

We then write

  vmax = k2 [E]0 (6.60)

The physical interpretation of this equation is that, at high enough substrate concentra-
tion [S], all the enzyme molecules are complexed; therefore any further increase in the 
substrate concentration is useless. The maximum rate will be given when all the enzyme 
molecules are blocked.

Using Eqs. (6.58) and (6.60), we may write

  =
+

max[ ]

[ ]m

v S
v

K S
 (6.61)
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The Michaelis constant Km has a special signifi cance. It has already shown that Km has 

the units of concentration. If, during the reaction Km becomes equal to [S], i.e. Km = [S], 

then Eq. (6.61) changes to

  max
max

[ ] 1

[ ] [ ] 2

v S
v v

S S
= =

+
 (6.62)

Therefore, we fi nd that Km is equal to that substrate concentration at which the rate of 

the process is half of maximum attainable rate (Figure 6.9). It has earlier been shown that 

under condition [S] >> Km we get the maximum attainable rate

  vmax = k2[E]0

The rate follows a zero-order rate law with respect to the substrate concentration. But, 

when Km >> [S], the rate law becomes

  = 2 0[ ] [ ]

m

k E S
v

K
 (6.63)

The reaction then follows a fi rst-order kinetics with respect to the substrate concentration 

[S]. The regions of fi rst-order kinetics and zero-order kinetics with respect to the substrate 

are also shown in Figure 6.9. The Mechaelis constant bears two important features about 

the enzyme which are discussed as follows:

Figure 6.9 Reac  on rate versus substrate concentra  on for a reac  on following Michaelis-Menten kine  cs.

It gives the concentration of the substrate just required to bind the half of the available 

sites of the enzyme, and it gives a qualitative strength to the binding affi nity of the 

substrate on the active sites of the enzyme.
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The Michaelis-Menten model of enzyme catalysed reactions bears a close similarity with 

the heterogeneous catalysis; this will be taken up in the topic of heterogeneous catalysis, 

Eq. (6.55) may also be written as

  

2 0[ ] [ ]
[ ]

[ ]m

k E Sd
S

dt K S
- =

+

fi  2 0

( [ ])[ ]
[ ]

[ ]
mK Sd S

k E
dt S

+
- =

fi  2 0[ ] 1 [ ]
[ ]

mK
d S k E dt

S

Ê ˆ
- + =Á ˜Ë ¯

fi  
2 0

[ ]
[ ] [ ]

[ ]
m

d S
K d S k E dt

S
- - =

Integrating between limits

  0 0

[ ] [ ]

2 0

[ ] [ ] 0

[ ]
[ ] [ ]

[ ]

S S t

m

S S

d S
K d S k E dt

S
- - =Ú Ú Ú

fi  0
0 2 0

[ ]
ln ([ ] [ ]) [ ]

[ ]
m

S
K S S k E t

S
+ - =  (6.64)

The fi rst term on the left hand side represents a fi rst-order kinetic and, the second term 

representing a zero-order kinetic; it has already been seen in Figure 6.9.

6.8.2  Lineweaver-Burk and Eadie Plots

The data of enzyme catalysed reactions have been analyzed in a number of methods. One 

most commonly used method is to take the reciprocal of Eq. (6.58)

  
2 0 2 0 2 0

[ ]1 1

[ ] [ ] [ ] [ ] [ ]
m mK S K

v k E S k E S k E

+
= = +  (6.65)

Therefore a plot of 
1

v
 versus 

1

[ ]S
 will give a straight line with slope 

2 0[ ]
mK

k E
 and intercept 

of 
2 0

1
.

[ ]k E
 Such a plot is known as Lineweaver-Burk plot, shown in Figure 6.10(a).
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Figure 6.10(a) A Lineweaver-Burk plot for an enzyme-catalysed reac  on (vmax = k2[E]0).

Figure 6.10(b) The Eadie plot of v / [S] versus v.

Multiplying Eq. (6.65) by [S], we get

  
2 0 2 0

[ ] [ ]

[ ] [ ]
mKS S

v k E k E
= +  (6.66)

Therefore a plot of 
[ ]S

v
 versus [S] will be a straight line with slope 

max

1

v
 and intercept 

max

.mK

v
 This type of plot is known as Hanes-Wolff plot (Figure 6.11).

Figure 6.11 A Hanes-Wolff  (single reciprocal) plot.
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The parameters vmax (= k2[E]0) and Km can be obtained from such a plot. If the 

initial concentration of the enzyme [E]0 is known, k2 can also be evaluated because 

vmax = k2[E]0.

The Michaelis-Menten Eq. (6.61) can be rewritten as

  max[ ] [ ]mv K v S v S+ =  (6.67)

fi  max
[ ]

m

v
K v v

S
+ =

fi  = -max

[ ] m m

vv v

S K K
 (6.68)

Therefore a plot of 
[ ]

v

S
 versus v, would have an intercept of 

max

m

v

K
 and a slope of 

1
.

mK
-  

This is shown in Figure 6.10(b). This kind of plot was fi rst suggested by Eadie (1942); it 
has the advantage over the Lineweaver-Burk plot in that, it can spread out the points to 
a greater extent.

Another way of plotting the data for enzyme-catalysed reaction is as follows:

Using Eq. (6.68), we may write

  2 0(K [ ]) [ ] [ ]mv S k E S+ =

fi  2 0[ ] [ ] [ ]mv K v S k E S+ =

Dividing althrought by [S]

  
2 0[ ]

[ ]
mv K

v k E
S

+ =

fi  2 0[ ]
[ ]

mvK
v k E

S
= -

fi  max
[ ]

m

v
v v K

S
= -  (6.69)

Therefore a plot of v versus 
[ ]

v

S
 would be a straight line with slope –Km and intercept vmax. 

This is called Eadie-Hofstee plot (Figure 6.12).
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Figure 6.12 An Eadi-Hofstee (single reciprocal) plot.

6.8.3 Effect of Temperature

Enzymes generally function by complexing to the substrate. The phenomenon is called the 

‘lock and key’ model; this is shown in Figure 6.13. The active sites of an enzyme are the 

locations where the spatial geometry of the enzyme and the substrate match. This is one 

of the reasons as to why enzymes are highly specifi c.

Figure 6.13 The ‘lock and key’ model for the enzyme-substrate complex.

Enzymes may undergo denaturation even at temperatures around 40°C; this is because, 

enzymes are proteins which are highly temperature sensitive. If there is a slight change 

in the confi guration of the enzyme, the enzyme-substrate complex would not be formed 

resulting into a decrease in the reaction rate. Generally, the rate fi rst increases with 

temperature and then forming a maximum slows down due to denaturation. This is 
shown in Figure 6.14. There is a common saying that, enzymes act most effi ciently at that 
temperature which favours life.
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Figure 6.14 Varia  on of enzyme ac  vity with temperature.

6.8.4 Effect of pH

The pH of the medium has a great infl uence on the activity of an enzyme. A detailed 
explanation of the effect of pH may be made by Michaelis-Menten model. In general, an 
enzyme has one or more active sites from where H+ ion can be removed or added. This 
depends upon the pH of the solution. Representing the enzyme as EH, the deprotonated 
form as E– and the protonated form as EH2

+, the net equilibria may be constructed as

  
1 2

1
EH S EHS EH P

k k

k-
+ ææÆ +          

nK2

E– + H+

H+K1

EH2
+

 (6.70)

The total enzyme concentration is

   +
0 2[E] = [EH] [E ] [EH ] [EHS]-+ + +   (6.71)

Three equilibrium constants are to be considered

    
-

= =
+ +

1 2+
2

[EH][H ] [E ][H ] [EH][S]
; ;

[EH] [EHS][EH ]
SK K K  (6.72)

Using Eqs. (6.69) and (6.70), we have

   
-

+= + +
+ +

2
0

2 1

[EH][E ][H ] [EH][H ]
[E] + [EHS]

[H ]

K

K K
 (6.73)
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Dividing althoughout by [EHS], we get

  
+ +

0 2
+

2 1

[ ] [EH][E ][H ] [EH][H ]
1

[EHS] [EHS] [EHS][H ][EHS]

E K

K K

-

= + + +  (6.74)

Substituting 
[EH][S]

SK
 for [EHS] on the right and side, we get

  
- + +

+= + + +0 2

2 1

[E] [E ][H ] [EH] [EH][H ]
1

[EHS] [EH][S] [EH][S][H ][EH][S]

S S SK K K K

K K
 (6.75)

fi  
- + +

+= + + +0 2

2 1

[E] [E ][H ] [H ]
1

[EHS] [EH][S] [S][H ][S]

S S SK K K K

K K
 (6.76)

Recognising that 
2

[E ][H ]
1,

[EH]K

- +

=  we get

  

+

+= + ◊ + ◊ +0 2

1

[E] [H ]
1

[EHS] [S] [S] [S][H ]

S S SK K KK

K

fi  
+

+

Ê ˆ
= + + +Á ˜Ë ¯

0 2

1

[E] [H ]
1 1

[EHS] [S] [H ]

SK K

K
 (6.77)

fi  +

+

=
Ê ˆ

+ + +Á ˜Ë ¯

0

2

1

[E]
[EHS]

[H ]
1 1

[S] [H )
S

K K

K

The rate of the reaction for the formation of the product P is [cf. Eq. (6.55)]

    = =
Ê ˆ

+ + +Á ˜Ë ¯

2 0
2 +

2
+

1

[E]
[EHS]

[H ]
1 1

[S] [H ]
S

k
v K

K K

K

 (6.78)

writing 
[S]

1 =
[S]

 in the denominator, and simplifying we get

    
+

+

=
Ê ˆ

+ + +Á ˜Ë ¯

2 0

2

1

[E] [S]

[H ]
[S] 1

[H ]
s

k
v

K
K

K

 (6.79)
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This equation resemblance the Michaelis-Menten [Eq. (6.58)] with

   
+

+

Ê ˆ
= + +Á ˜Ë ¯

2

1

[H ]
1

[H )
m s

K
K K

K
 (6.80)

In the numerator of Eq. (6.79), there is no [H+] term; therefore the maximum rate vmax 

does not depend on pH. At low pH where [H+] is suffi ciently high, the term 2
+

1

[H ]
.

[H ]

K

K

+

<<
Equation (6.79) therefore changes to

    +
= =

Ê ˆ
+ +Á ˜Ë ¯

max
max 2 0

1

[S]
( [E] )

[H ]
[S] 1S

v
v v K

K
K

 (6.81)

Later on, it will be shown that Eq. (6.81) is similar to the equation of competitive inhibition, 
where H+ acts as the inhibitor.

A plot of pKm versus pH can be made [(using Eq. (6.65)] to fi nd, how does the Michaelis 

constant Km vary with pH Standard value of KS, K1 and K2 which are taken as 5 × 10–4, 

10–5 and 10–7, respectively. The plot of pKm versus pH is shown in Figure 6.15. The pH 

scale is scanned from 1 to 11. Quite expectedly pKm fi rst increases, forms a maximum and 

then decreases. The maximum occurs at pH 6. If the experiment is carried at different pH 

values, pKm gives a horizontal line touching the maximum of the curve. The tangents from 

either sides intersect this horizontal line. It may be shown that the intersecting points 

correspond to pK1 and pK2.

Figure 6.15  A plot of the logarithm of the apparent K
m
 versus pH for the enzyme-catalysed 

process shown in Eq. (6.68), the dissocia  on constant for the EHS complex was 

taken as 5.0 × 10–4, K1 as 10
–5 mol/L, and K2 as 10

–7 mol/L.
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6.9  INHIBITION OF ENZYME ACTION

Enzymes are molecules of high molecular weights, whereas substrates are molecules of 

relatively very low molecular weights. For example, the decomposition of H2O2 (mol. wt. 34)

is catalysed by the enzyme catalyse whose molecular weight is about 2,50,000. The 

enzyme lowers the activation energy for the decomposition from 75 to only 8 kJ mol–1 

(Figure 6.8). Generally, the active site is located to a small region of the large enzyme 

molecule. If some foreign substance gets bound to the active sites then the enzyme loses its 

activity fully or partially. This is the inhibition of enzyme action.

In the following, three simplest kinetic models of enzyme inhibition will be discussed; 

(1) competitive inhibition, (2) non-competitive inhibition and (3) uncompetitive 
inhibition.

6.9.1  Competitive Inhibition

In this kind of inhibition, a foreign substance, i.e. the inhibitor I competes with the substrate 

S to get bound to the active sites of the enzyme; this reduces the activity of the enzyme. 
This is called competitive inhibition. There is a competition between the I and S to occupy 
the active sites of the enzyme.

The two equilibria involved are

  21

21

E + S ES P + E
kk

kk --

                     (6.82)

and   
3

3

E I EI
k

k-
+            (6.83)

In this system, the free enzyme concentration can be written as

  [E] = [E]0 – [ES] – [EI] (6.84)

The equilibrium constant of the equilibrium [Eq. (6.83)] is

  
-

= = =
- -

3

3 0

[EI] [EI]

[E][I] ([E] [ES] [EI]) [I]

k
K

k
 (6.85)

If Ki is the equilibrium constant for the dissociation of the EI complex then 
1

iK
K

= . 
Solving for [EI] goes as follows. Starting from Eq. (6.85), we write

  0

1 [EI]

([E] [ES] [EI]) [I]iK
=

- -

fi  0([E] [ES] [EI]) [I]

[EI]
iK

- -
=

fi  0[E] [ES]
1 [I]

[EI]
iK

-È ˘
= -Í ˙

Î ˚



Catalyst 6.35

fi  0[I] ([E] [ES])
[I]

[EI]
iK

-
= -

fi  0[I]([E] [ES])
[I]

[EI]
iK

-
+ =

and fi nally        0[I] ([E] [ES])
[EI]

[I]iK

-
=

+
 (6.86)

The enzyme-substrace complex is very short lived, i.e., transient; hence we can apply the 

steady state approximation, and neglect the step 2P E ES.
k-+ æææÆ  The equation is then

  
1 1 2

[ES]
[E][S] [ES] [ES] 0

d
k k k

dt
-= - - =

fi  1 0 1 2([E] [ES] [EI])[S] ( ) [ES]k k k-- - = +

fi  1 2
0

1

( )
([E] [ES] [EI])[S] [ES] [ES]m

k k
K

k
- +

- - = =

Using the expression of [EI] from Eq. (6.86), we get

fi  + - + - -
= +

0 0[E] [S] ( [I]) [ES][S] ( [I] ([E] [ES]) [I][S]

[ES] ( [I])

i i

m i

K K

K K

fi  +0 0[E] [S] [E] [S]iK - -[I] [ES][S] [ES][S]iK - 0[I] [E] [I][S] + [ES][I]

= +

[S]

[ES] [ES][I]m i mK K K

fi  - = +0[E] [S] [ES][S] [ES] [ES][I]i i m i mK K K K K

fi  0[E] [S] ( [I] [S]) [ES]i m i m iK K K K K= + +

and fi nally

  0[E] [S]
[ES]

[S] [I]
i

i m i m

K

K K K K
=

+ +
 (6.87)

The rate of formation of the product is

  v = k2 [ES]

and using the expression of [ES] from Eq. (6.87), we get

  
2 0[E] [S]

[S] [I]
i

i m i m

k K
v

K K K K
=

+ +
 (6.88)

The maximum rate vmax is obtained when [S] is large enough, so that all the enzyme 

molecules are complexed; therefore, vmax = k2 [E]0. Equation (6.88) then changes to
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max [S]

[S] [I]
i

i m i m

v K
v

K K K K
=

+ +
 (6.89)

Note that this Eq. (6.89) is equivalent to Eq. (6.81), where l/H+ ion is the catalyst.

Taking the inverse of Eq. (6.89), we fi nd

  
max max max max

[S] [I] [S] [I]1

[S] [S] [S] [S]
i m i m i m i m

i i i i

K K K K K K K K

v v K v K v K v K

+ +
= = + +

fi  
max max max

[I]1 1

[S] [S]
m m

i

K K

v v v v K
= + +

fi  
Ê ˆ

= + +Á ˜Ë ¯max max

[I]1 1 1 1

[S]
m

m
i

K
K

v v K v
 (6.90)

fi  
max max

1 [I] 1 1
1

[S]
m

i

K

v v K v

Ê ˆ
= + +Á ˜Ë ¯

 (6.91)

Therefore, a plot of 
1

v
 versus 

1

[S]
 should be linear with slope 

max

[I]
1m

i

K

V K

Ê ˆ
+Á ˜Ë ¯

 and intercept 

max

1
.

v
 For different concentrations of the inhibitor I, different straight lines will be obtained 

but all with the same intercept on the ordinate whereas the slopes will be different; higher 
the concentration of the inhibitor, greater will be the slope. This has been confi rmed 
experimentally. This is shown in Figure 6.16.

Figure 6.16 The Linewever-Burk plot of compe    ve enzyme inhibi  on at

three diff erent inhibitor concentra  ons.
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6.9.2  Noncompetitive Inhibition

In a noncompetitive inhibition, the inhibitor does not bind to an active site; it binds at 

some other sites. This changes the conformation of the enzyme molecule, and therefore the 

binding of the substrate to the active sites becomes a hindered process.

The inhibition of urease by Ag+, Pb2+ or Hg2+ is due to the binding of these metal ions to 

the – SH groups on the enzyme. The following equilibria may be written as

  E I EI+   (6.92)

  ES I ESI+   (6.93)

where both the complexes EI and ESI are inactive to form the product. Let Ki (EI) and Ki  

(ESI) are the dissociation constants of the complexes EI and ESI, respectively. Following 

the same procedure as done in the previous section, it can be shown that

  
max max

1 [I] 1 1 [I]
1 1

[S]
m

i i

K

v v K v K

Ê ˆ Ê ˆ
= + + +Á ˜ Á ˜Ë ¯ Ë ¯

 (6.94)

Here, Ki represents the combined effects of both Ki (EI) and Ki (ESI). Therefore a plot of 
1

v
  

versus 
1

[S]
 will be a straight line with slope 

max

[I]
1m

i

K

v K

È ˘
+Í ˙

Î ˚
 and intercept 

max

1 [I]
1 .

iv K

È ˘
+Í ˙

Î ˚
 

Different inhibitor concentrations will give different straight lines but with the same 

intercept along the 
1

[S]
 axis; we work it out as follows:

From Eq. (6.94), we may write

  max max

[I] 1 1 [I]
0 1 1

[S]
m

i i

K

v K v K

Ê ˆ Ê ˆ
= + + +Á ˜ Á ˜Ë ¯ Ë ¯

fi  
max

mK

v

[I]
1

iK
+

max

1 1

[S] v

Ê ˆ
= -Á ˜

Ë ¯

[I]
1

iK
+

Ê ˆ
Á ˜
Ë ¯

fi  
1 1

[S] mK
= -  (6.95)

This is shown in Figure 6.17; and this has been experimentally proved.
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Figure 6.17  The Lineweaver-Burk plot for a noncompe    ve inhibi  on 

at three diff erent [I].

6.9.3  Uncompetitive Inhibition

In this category, the inhibitor combines with the enzyme-substrate complex reversibly, 

and the combined complex is so much stable that it cannot form the expected product. If 

the complexes were not so strong then the situation would have been the noncompetitive 

inhibition. The formation if the ESI complex may be written as

  ES + I ESI  (6.96)

and the equilibrium constant K is

  
[ESI]

[ES][I]
K =  (6.97)

Following the same procedure as done earlier, it can be shown that

  
max max

1 1 1 [I]
1

[S]
m

i

K

v v v K

Ê ˆ
= + +Á ˜Ë ¯

 (6.98)

According to Eq. (6.98), a plot of 
1

v
 versus 

1

s
 will be straight line with slope 

max

mK

v
 and  

an intercept of 
max

1 [I]
1 .

iv K

Ê ˆ
+Á ˜Ë ¯

 For a series of concentrations of the inhibitor a series of 

parallel lines with the same slope 
max

mK

v
 will be obtained; the intercepts are also dependent 

on [I]. This is shown in Figure 6.18.
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Figure 6.18  A Lineweaver-Burk plot for the case of uncompe    ve inhibi  on

at three concentra  ons of inhibitor.

Finally, the kinetics of enzyme-catalysed reactions may be more complex. Sometimes it 

may happen that the product forms a stable complex with the enzyme. The result is a 

decrease in the rate of the reaction due to: (i) some substrate is consumed and, (ii) the 

effective concentration of the enzyme is decreased.

6.10  HETEROGENEOUS CATALYSIS: REACTIONS ON SURFACE

Reaction between gases in the presence of solid surface is a very common kind, and most 

general catalytic processes are of this kind. The process is supposed to consist of fi ve 

consecutive steps.

 1. Diffusion of the reactant molecules towards the surface.

 2. Adsorption of these molecules on the surface.

 3. Reaction on the surface.

 4. Desorption of the product molecules off the surface and

 5. Diffusion of the desorbed products into the bulk of the gas.

Initially it was thought that the steps 1 and 5 are the slowest and therefore are rate 

determining. However, detailed study has shown that this could not be the case because 

heterogeneous catalytic processes involve appreciable activation energies, whereas 

diffusion in the gas phase requires no activation energy. Today, it is proved that one of the 

steps among 3, 4 and 5 could be the rate determining. However, since one cannot measure 

the rate of desorption, the step 3, i.e. the reaction of the adsorbed reactant on the surface is 

considered to be the rate-determining step. A comparison of the potential energy diagram 

of a simple heterogeneous reaction of a gas with the corresponding homogeneous process 

is given in Figure 6.19.
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Figure 6.19  Poten  al-energy diagram for a reac  on occurring homogeneously

(solid curve) and heterogeneously (dashed curve).

6.10.1 A Single Reacting Gas

The scheme which is widely used to explain the reaction of a single reactant molecule R 

on the surface is

  2

R
| | |

R(g) S S P(g) S
a

d

k
k

k

+ - - - - ææÆ + - -  (6.99)

The Langmur adsorption is used to fi nd the surface coverage of R on the surface, and it is 

assumed that the slow reaction of the adsorbed reactant does not disturb the adsorption 

equilibrium. Under this condition, the rate of the reaction is proportional to the surface 

coverage q, i.e. v = k2q. In Chapter 4 we found q to be given by Eq. (4.63b)

  ;
1

a

d

kKP
K

KP k
q = =

+
 (6.100)
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The rate of the reaction is therefore given by

  
2

1

k K P
v

K P
=

+
 (6.101)

where P is the pressure of the overlying reactant at equilibrium. There are two limiting 

cases: (1) at suffi ciently low pressure, when KP << 1

  v = k2KP ; v = kP : (6.102)

We get a fi rst-order kinetics. On the other hand, at extremely high pressure, when

KP >> 1

  v = k2 (6.103)

gives a zero-order kinetics. At the intermediate pressures, the order of the reaction n, is then 

between 0 and 1. The explanation to the change in order is as follows. At low pressure, the 

surface is only sparsely covered, and an increase in the pressure of the overlying reacting 

gas increases the surface coverage proportionately; this increases the rate linearly with 

pressure. When the pressure is very high, almost all the surface sites are occupied and 

therefore, a further increase in the pressure of the overlying reacting gas cannot change 

q anymore and hence v. Examples include decomposition of NH3 on electrically heated 

tungsten (Figure 6.20), decomposition of PH3, AsH3 on glass, etc.

Figure 6.20  The varia  on of the rate with change in the overlying gas pressure for a 

simple unimolecular process.

6.10.2  Inhibition

Inhibition is frequently encountered in heterogeneously catalysed processes. Sometimes 

a nonreacting gaseous substance I, or a product P gets adsorbed on the surface, thereby 

reducing the number of available active sites for the reactant molecules. This will inevitably 

reduce the rate of the reaction, which is then said to be inhibited. The nonreacting substance 

is an inhibitor or a poison. If q be the surface coverage of the reactant molecules and P and 

Pi, respectively, are the partial pressure of the overlying reactant and I then q is given as 

follows.
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Competitive Adsorption

If two substances adsorb on the same surface, then regarding inhibition and the kinetics 
of surface reaction adsorbing two substances, the subject is of great importance. Let qA 
be the fraction of the sites occupied by molecules of type A, and qB be the same for the 
molecules of types B. The vacant fraction is (1 – qA – qB). If both the adsorptions of A and 
B are nondissociative then the rates of adsorption of A and B are

  ( ) ( ) [ ] (1 )a A a A A Bv k A q q= - -  (a)

  ( ) ( ) [ ](1 )a B a B A Bv k B q q= - -  (b)

The rate of desorptions are

  ( ) ( )d A d A Av k q=  (c)

  ( ) ( )d B d B Bv k q=  (d)

At equilibrium, the rates of adsorption and desorption [Eqs. (a) and (c)] are equal; therefore, 
equating these two expressions, we get

  ( ) ( )[ ] (1 )a A A B d A Av A kq q q- - =  (e)

fi        
( )

( )

[ ] [ ]
1

a AA
A

A B d A

k
A K A

k

q

q q
= =

- -
 (f)

where the equilibrium constant for the adsorption of A is = ( )

( )

.
a A

A
d A

k
K

k

In the same way, equating Eq. (b) and (d), we fi nd,

         
q

q q
= = =

- -
( )

( )

[ ]
1

a BB
B B

A B d B

k
K B K

k
 (g)

Solving the two simultaneous Eqs. (f) and (g), we get

  q =
+ +

[ ]

1 [ ] [ ]
A

A
A B

K A

K A K B
 (h)

and  
[ ]

1 [ ] [ ]
B

B
A B

K B

K A K B
q =

+ +
 (i)

It is note worthy to see that, if either [B] = 0 or KB = 0, which means that B is not adsorbed, 

then Eq. (h) goes to Eq. (4.63b), where [A] is replaced by the pressure P. Another interesting 

feature about Eqs. (h) and (i) is that, if the surface is predominantly adsorbed by A then 

the adsorption of the other component B is decreased, and vice-versa. The reason is that 
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the substances A and B are competing with each other for a limited number of active sites; 

hence it is called competitive adsorption.

  q =
+ +1 I I

KP

KP K P
 (6.104)

where K and KI are the adsorption-desorption equilibrium constants for the reactant and 
the inhibitor I. The rate of the reaction is therefore given by

  2

I I1

k KP
v

KP K P
=

+ +
 (6.105)

A simplest case may be as follows. If the pressure of the reactant is very low then

  =
+

2

I I1

k KP
v

K P
 (6.106)

and furthermore, if the inhibitor is strongly adsorbed then

  2

I I

k KP
v

K P
=  (6.107)

The rate is then fi rst-order with respect to the reactant concentration and inversely 
proportional to the partial pressure of the inhibitor. Exactly the same kinetics is followed 
when one of the products is adsorbed; PI is then replaced by the partial pressure of the 
product. P and PI, respectively, which are the partial pressures of the overlying reactant 
and I. For example, Hinshelwood found that the decomposition of ammonia over platinum 
was inhibited by the hydrogen produced in the reaction and by externally added hydrogen; 
the rate law obtained is

  3

2

NH

H

kP
v

P
=  (6.108)

6.10.3 Activation Energy

The constant k2 and K in Eq. (6.101) vary with temperature as

From Arrhenius rate equation: 2 2
2

lnd k E

dT RT
=  (6.109)

From van’t Hoff isochore: 
D

=
2

ln adEd K

dT RT
 (6.110)

Where E2 is the activation energy of the step in which the adsorbed reactant reacts and 

DEad is the heat of adsorption at constant volume. With these equations, the temperature 

dependence of the rate in Eq. (6.102) can be deduced at two limiting conditions.
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In the low-pressure region, the rate constant of the reaction is given by

  

2
2

lnln lnd kd k d K
k k K

dT dT dT
= fi = +

fi         ad2
2 2

ln EEd k

dT RT RT

D
= +  [using Eq. (6.109) and (6.110)]

fi         2 ad
2

ln E Ed k

dT RT

+ D
=  (6.111)

The activation energy of the reaction is then lowered by DEad from the true activation 

energy E2: E = E2 + DEad (note that DEad is negative).

In the high-pressure region, the rate becomes zero-order and under this condition the rate 

constant of the reaction is k2, i.e.

     2 2
2 2

lnln lnd k Ed k d k
k k

dT dT dT RT
= fi = fi =  [using Eq. (6.109)] (6.112)

At high pressure, the activation energy of the reaction is therefore E2. This is shown 

in Figure 6.21. The physical interpretation of these two results is exactly the same as 

discussed earlier.

Figure 6.21  Energy diagram for a unimolecular surface reac  on. The diff erence DU° between 

the energy of R – S and R + S is always nega  ve (adsorp  on is exothermic).
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6.10.4 Reaction between Two Adsorbed Molecules

Here the reaction takes place between two reactant molecules adsorbed on neighbouring 
sites:

  2
| | | |

A(g) + B(g) S— S S(A) — S(B) P S- - - -S
k+ - - - ææÆ + - -  (6.113)

If q A and q B are the surface coverages of A and B, and if PA and PB are the partial pressures 
of A and B, respectively, in the overlying gas, then as shown in Eq. (6.104), q A and q B are 
given by

  
; and

1 1
A A B B

A B
A A B B A A B B

K P K P

K P K P K P K P
q q= =

+ + + +

For the above reaction the rate is proportional to the product of qA and qB, i.e., the rate is

  2 A Bv k q q=

  2
2(1 )

A B A B

A A B B

k K K P P
v

K P K P
=

+ +
 (6.114)

If the pressure of one reactant, say PB, is held fi xed and the other PA is varied, then the 
rate initially increases, then forms a maximum and fi nally decreases. This is shown in 
Figure 6.22. The maximum of the curve corresponds to the situation, when maximum 
equal number of A and B molecules are adsorbed.

Figure 6.22 Biomolecular process occurring by a Langmuir-Hinshelwood model.

At extremely high pressure of A some adsorbed B molecules are replaced by A molecules, 
and since the reaction demands simultaneous existence of A and B molecules, the rate 
drops down. Two special cases can now be discussed

 1. The surface coverage of both the reactants are low When the partial 
pressures of both A and B are suffi ciently low, so that both KAPA and KBPB can be 
neglected in comparison to unity, Eq (6.114) changes to

  2 A B A Bv k K K P P=  (6.115)
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  Under this condition, the rate is overall second-order, being fi rst-order with respect 

to each of A and B. An example is the reaction between NO and O2 over glass.
 2. One reactant in weakly adsorbed If the reactant A is very weakly adsorbed, 

KA[A] in the denominator of Eq. (6.114) may be neglected, and the rate equation 
becomes

  
2

2

[ ][ ]
;

(1 [ ])

A B

B

k K K A B
v

K B
=

+
  (where the partial pressure terms are replaced by 

molar concentration) (6.116)

Here, also the rate passes through a maximum as [B] increases; however, as long as the 

condition KA[A] << 1 + KB [B] holds, the rate is proportional to [A].

A classic example of this kind of behaviour has been observed in the reaction between H2 

and CO2 on Pt-surface.

If the reactant B is strongly adsorbed, while [A] is adsorbed weakly so that KB [B] >> 1, 

Eq. (6.114) becomes

  
2 [A]

[B]
A

B

k K
v

K
=  (6.117)

The order of the reaction with respect to B is –1. Common examples are the reaction 

between CO and O2 on quartz, and on platinum.

Example 6.4

Consider a surface catalysed bimolecular reaction between molecules A and B, which has 
a rate law of the form v = k3 qA qB, where qA is the fraction of surface sites occupied by 
reactant A, and qB is the fraction of surface sites occupied by reactant B. The mechanism 
proposed is as follows

  
| |( )

( )
A(g) S S

a

d

A

k A

k A
+ - - - -             (fast equilibrium) (10)

  

B
|( )

( )
B(g) S S

a

d

k B

k B
+ - - - -             (fast equilibrium) (11)

  3

A B
| |

S S Product(s)
k- - + - - ææÆ  (12)

If KA and KB are the equilibrium constants for reactions 10 and 11, respectively, derive 
expressions for qA and qB in terms of [A], [B], KA and KB. Finally, show that the rate law 
can be written as

  
3

2

[A][B]

(1 [A] [B])

A B

A B

k K K
v

K K
=

+ +
 (13)
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Solu  on

At any instant, the fraction of the vacant surface sites is (1 – qA – qB). From Eq. (10), 

equating the rate of adsorption and desorption at equilibrium

  0 ( ) 0( ) ( )[A] (1 ) ( )a a A B d A d Av A k A v k Aq q s q s= - - ¥ = =  (14)

where s0 is the concentration of surface sites (active) in units of m–2.

fi        ( ) ( ) [A] (1 )d A a A Bk A k Aq q q= - -

fi      
q

q q
= =

- -

( )
[A] [A]

(1 ) ( )

aA
A

A B d

k A
K

k A
 (15)

Similarly for B,   [B]
1

B
B

A B

K
q

q q
=

- -
 (16)

Solving Eqs. (15) and (16) simultaneously, e.g. Eq. (16), we write

  

1 1 1 1
1

[B] [B]
A B A

B B B B BK K

q q q

q q q

- -
= fi - - =

fi      
[A] [B] [A] 11 1

1
[B] [B] [B]

A B A

B B B B

K K K

K K Kq

+ +
= + + =

fi      
[B]

; and similarly
1 [A] [B]

[A]

1 [A] [B]

B
B

A B

A
A

A B

K

K K

K

K K

q

q

¸
= Ô+ + Ô

˝
Ô=
Ô+ + ˛

 (17)

Using these expressions for qA and qB in the rate law gives

        

3
2

[A][B]

(1 [A] [B])

A B

A B

k K K
v

K K
=

+ +  

Example 6.5

Consider the surface-catalysed bimolecular process in Example 6.4. If A(g) and B(g) do not 
compete for similar surface sites, but each molecule binds uniquely to different types of 
surface site, show that the rate law is given by

  3 [A][B]

(1 [A]) (1 [B])
A B

A B

k K K
v

K K
=

+ +
 (18)
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Solu  on

In this case, A can adsorb only on its specifi c sites; similar is also for case B. The fraction of 

the sites available to A is (1 – qA) and that for B is (1 – qB).* Equating the adsorption and 

desorption rates at equilibrium for both the species A and B, we have

 and  
( )[A] (1 ) ( )

( )[B] (1 ) ( )

a A d A

a B d B

k A k A

k B k B

q q

q q

- = ¸
˝- = ˛

 (19)

To solve for qA, we proceed as

  

( )(1 ) 1
( )[A] ( ) [A] 1 1

( )
aA

a d
A d A

k A
k A k A

k A

q

q q

Ê ˆ-
= fi - =Á ˜Ë ¯

fi  
1 [A]1 1 1 1

[A] 1 1 ; 1 ;
[A] [A]

A
A

A A A A A

K
K

K Kq q q

Ê ˆ +
- = fi - = fi =Á ˜Ë ¯

and fi nally, q q= =
+ +

[A] [B]
; and similarly,

1 [A] 1 [B]
A B

A B
A B

K K

K K

The rate law is

  v = k3 qA qB

Substituting qA and qB in the above equation, we get the fi nal result

  
=

+ ¥ +
3 [A][B]

(1 [A]) (1 [B])
A B

A B

k K K
v

K K

6.11  LANGMUIR-HINSHELWOOD MECHANISM

A model for bimolecular reactions on a surface catalyst

The rate expression for the reaction between two gaseous reactants A and B, forming 
product(s) may be developed by assuming an irreversible adsorption of both A and B, 
bimolecular surface reaction

 (i) 

A
| |

A S S+ - - - -    (quasi-equilibrated adsorption of A)

 (ii) 

B
| |

B S S+ - - - -    (quasi-equilibrated adsorption of B)

 (iii) - - + - - + - - ææÆ

+ ææÆ

2

A B
| | |

S S 2( S )

A B Product(s)

k   (reaction on the surface; the rate-determining step) 
(overall reaction)

* Where q
A
 and q

B
 are, respectively, the fraction of the total number of sites occupied by A and B.



Catalyst 6.49

A and B to react on the catalyst surface, they have to be adsorbed fi rst. Then there is an 
elementary step through which the adsorbed species react; this step is referred to as the 
Langmuir-Hinshelwood step. Let us understand the concept through a problem.

Example 6.6

The rate law for the oxidation reaction

  2 2 22CO (g) O (g) 2CO (g)+ ææÆ  (20)

is given by

  2 2

2 2

1/2 1/2
3 CO O CO O

1/2 2
O O CO CO(1 ( ) )

k b b P P
v

b P b P
=

+ +
 (21)

Assuming that the reaction occurs by the Langmuir-Hinshelwood model, prove the above 

rate law. The overall rate law for this mechanism is

  v = k3 qCO qO2

Also show that

  

2

2

2

1/2
O 2

O 1/2
O 2 CO

( [O ])

1 ( [O ]) [CO]

K

K K
q =

+ +

and  

2

CO
CO 1/2

O 2 CO

[CO]

1 ( [O ]) [CO]

K

K K
q =

+ +

Use these expressions and the relation = C
C

K
b

kT
 to obtain the rate expression (Assume 

ideal gas behaviour).

Solu  on The Langmuir-Hinshelwood mechanism for the reaction (20) is as follows:

 1. CO (g) CO (ads)   (fast-equilibrium)

 2. 
2O (g) 2 O(ads)   (fast-equilibrium)

 3. 3
2CO(ads) O(ads) CO (g)

k+ ææÆ

For the step (1), 
2CO O CO(CO)[CO] (1 ) (CO)a dk kq q q- - =  (22)

For the step (2), since two O atoms are produced

  
2 2

2 2 22
2 2 CO O 0 0O(O ) [O ] (1 )a dk kq q s q s- - =  (23)



6.50 Physical Chemistry

A pictorial diagram of Eq. (23) may be as follows:

  

....O O
| | |

2O (g) S S S S+ - - - - - -
 

  (S represent the surface atom).

s0 is the total number of surface sites (active).

Cancelling s0
2 from either side of Eq. (23), we get

  
2 2

22
2 2 CO O O(O )[O ] (1 ) (CO)a dk kq q q- - =  (24)

taking the square root on both sides of this equation,

  
2 2

1/2 1/2
2 2 CO O 2 O[ (O ) [O ]] (1 ) ( (O )a dk kq q q- - =  (25)

Using the adsorption-desorption equilibrium constant as

  
2

2
CO O

2

(CO) (O )
and, ,

(CO) (O )
a a

d d

k k
K K

k k
= =

Equation (25) gives

      

2

2

1/2
O1/22

2
2 CO O

(O )
[O ]

(O ) 1
a

d

k

k

q

q q

Ê ˆ
=Á ˜ - -Ë ¯

fi         2

2

2

O1/2
O 2

CO O

( [O ]
1

K
q

q q
=

- -
 (26)

and,         

2

CO
CO

CO O

[CO]
1

K
q

q q
=

- -
 [using Eq. (22)] (27)

Adding Eqs. (26) and (27) with 1, we get

   

2

2

2 2

1/2 CO
O 2 CO

CO O CO O

1 ( [O ] [CO] 1
1 1

K K
q q

q q q q

O+ + = + +
- - - -

fi  
q q q q

q q q q

- - + -
+ + = =

- - - -2

2 2

1/2 2 2
O 2 CO

CO O CO O

1 / / O / O / CO 1
1 ( [O ]) [CO]

(1 ) (1 )

CO
K K  (28)

From Eq. (26),   
2 2 2

1/2
O O 2 CO O( [O ]) (1 )Kq q q= - -

and using Eqs. (25) and (28)
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  2

2

2

1\2
O 2

O 1/2
O 2 CO

( [O ])

1 ( [O ]) [CO]

K

K K
q =

+ +
 (29)

and, in the same way,

  
2

CO
CO 1/2

O 2 CO

[CO]

1 ( [O ]) [CO]

K

K K
q =

+ +  

QED

¸
Ô
Ô
ÔÔ
˝
Ô
Ô
Ô
Ǫ̂

 (30)

Substituting these results in the equation given

  q q= =
È ˘+ +Î ˚

2

2

2

1/2 1/2
3 CO 2O

3 CO CO 2
1/2

O 2 CO

[CO] [O ]
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k K K
v k

K K
 (31)

Since ideal gas behaviour is to be assumed for O2 and CO, we may write

  2O CO
2[O ] and [CO]

B B

P P

k T k T
= =  (kB is the Boltzmann constant),

and since,  
2

2

OCO
CO Oand ,

B B

KK
b b

k T k T
= =  substituting these results in Eq. (31) changes 

to
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and fi nally,

        

2 2
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CO COO O
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COk b P b P
v

b P b P
=
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 (23)

6.11.1  Rideal-Fley Mechanism: Another Model for bi-molecular 

Reactions on Surface Catalyst

A fairly rare elementary reaction between A and B, often called a Rideal-Eley step, occurs 
by direct reaction of gaseous B with adsorbed A according to the following sequence:

* A Latin word: quod erat demonstrandum;  That is what I wanted to prove, and I have proved 
it.
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A
| |

S SA + - - - -  (Reversible adsorption of A)

  

- - + ææÆ

+ - - + ææÆ

A
|

|

S B Product(s) (Rideal- Eley step)

(A S ) B Product(s) (overall reaction)

Normally, if reactions are able to proceed through either a Rideal-Eley step or a Langmuir-
Hinshelwood step, the latter route is much more preferred due to the extremely short time 
scale (~ picosecond) of a gas-surface collision. The Rideal-Eley step can however become 
important at extreme conditions.

One of the classical examples of Rideal-Eley mechanism is the oxidation of CO to CO2, 
which occurs by three steps

 1. O2(g)   2O (ads)

 2. CO(g)   CO (ads)

 3. CO(g) + O(ads) 3kææÆ  CO2(g) ; or 2CO(g) + 2O(ads)

Although, both CO(g) and O2(g) adsorb on the surface, the reaction does not occur between 

the adsorbed reactants. In the Rideal-Eley model, the O2(g) chemisorbs dissociatively 

on the surface. Then, there is a subsequent collision between a CO(g) molecule and an 

adsorbed O-atom to generate CO2(g). Effectively a CO(g) molecule captures an O atom 

from the surface.

If we assume ideal gas behaviour, then the fi rst two steps are in fast equilibrium during 

the course of the reaction and, the 3rd-step is the rate determining. The rate law is now 

evaluated as

The rate law for the oxidation reaction 2CO(g) + O2(g) Æ 2CO2(g); assuming that the 

reaction occurs by the Rideal-Eley model, the overall rate law is

  v = k3 qO2
 [CO]

The step of the mechanism for the adsorption of O2 is the same as that discussed in 

Example 6.5. Therefore,

  
2

2

1/2
2 2

O 1/2
O 2 CO

( [O ])

1 ( [O ]) [CO]

k

K K
q =

+ +

Assuming ideal behaviour, 
2 2

2

O OCO CO
2 CO O[O ] ; [CO] ; and .

B B B B

P kP K
b b

k T k T k T k T
= = = =

Substituting this qO2
 in the above equation one gets the fi nal expression of v;

  =
È ˘+ +Î ˚2

1/2
2 2

3 1/2
O 2 CO
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1 ( [O ]) [CO]

k
v k

K K
 (24)
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6.11.2  Negative Catalysis and  Inhibition

When a substance is able to decrease the rate of a reaction, it is said to be a negative 

catalyst or an inhibitor. For example, the oxidation of sodium sulfi te solution by oxygen 

gas is inhibited by small amounts of mannitol, benzyl alcohol, aniline, benzaldehyde 

and certain alkaloids, particularly brucine. The explanation fi rst proposed to account 

for inhibition was that the inhibitor combined with and so removed a positive catalyst 

already present. A Titoff showed that a very minute concentration of cupric ions was able 

to catalyse the reaction between sulfi te solution and oxygen, and the effect of the positive 

catalyst could be counteracted by the addition of mannitol or cyanide ions; these act as 

inhibitors.

We have seen that in a reaction between two gases on a surface, if one component is 

strongly adsorbed, then it would reduce the reaction rate. The strongly adsorbed component 

inhibits the reaction.

There are also examples where the product is also adsorbed on the surface of the catalyst. 

We then have a competitive adsorption between the reactant and the product for the 

active sites on the surface. In the dissociation of NH3 on platinum surface: 2NH3 Æ N2 + 

3H2, there is a keen rivalry between NH3 and H2; the latter being strong by adsorbed. The 

kinetic equation is then given by

3

2

NH

H

PdP
k

dt P
- =

Foreign substances may also inhibit a reaction. These are called poisons. Generally the 

poisons are adsorbed on the active sites of the surface, retarding the reaction, for it could 

have been effective in bringing about the reaction. Moreover, a poison may form defi nite 

chemical compounds with the atoms of the catalyst. For example, minute quantities of 

As destroy the catalytic activity of Pt, by forming platinum arsenide at the surface in the 

manufacture of H2SO4.

6.11.3  Induced Reactions

Sodium sulphite is spontaneously oxidized in air, but sodium arsenite is not. However, 

a mixture of a sodium sulphite and sodium arsenite, when kept in air, both of them are 

found to be oxidised. These are called induced reactions.

6.11.4  Promoters

The catalytic effect of a mixture is often greater than the sum of the separate effects 

of the constituents. In the extreme case, a small quantity of a material, which itself is 

noncatalytic on a feeble catalyst, is able to increase appreciably the activity of a given 

catalyst. Such a substance is called a promoter. For example, in the combination of N2 

and H2 the catalyst is iron, promoted by the addition of small amounts of potassium and 

aluminium oxides.
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6.11.5  Catalysis in Industry

A number of industrial preparations depend on catalytic reactions. To mention a few, 

we may give the examples of the production of H2, NH3, H2SO4, HNO3, synthetic liquid 

fuels, cracking of petroleum, polymers, hydrogenated oils, etc. Enzymes are used in 

the production of wine, vinegar, curd, cheese, etc. Sodium benzoate is used as a food 

preservative; barbituric acid preserves H2O2. As anti-knocks, lead tetraethyl is used in 

motor fuels.

PROBLEMS

 6.1 What is meant by catalysis? Discuss the general characteristics of a catalyst.

 6.2 Differentiate between homogeneous and heterogeneous catalysis. Explain the 

following on the basis of heterogeneous catalysis:

  (i) Active centers; (ii) specifi city of a catalyst; (iii) the action of catalytic poisons;

(iv) the action of promoters; (v) the activity of fi nely divided catalyst.

 6.3 Select the correct statements from the following for a catalysed reaction.

 (i) The use of a catalyst provides an alternative path of lower activation energy.

 (ii) The catalyst does not change the position of equilibrium.

 (iii) The equilibrium position is attained earlier.

 (iv) An enzyme has an optimum temperature at which its catalytic action is 

maximum.

 (v) The use of a catalyst changes the rate constant of the reaction.

 (vi) The catalyst remains unchanged at the end of the reaction. It may, however, 

undergo a change in its physical state [True statements: (i), (ii), (iv), (vi)]

 6.4 When oxalic acid is added to an acidifi ed solution of KMnO4, no appreciable 

decolourization occurs for a long period of time. But once decolourization occurs, it 

proceeds rapidly.
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