
PHYSICAL CONSTANTS

Quantity Symbol Value

Universal gravitational constant  G 6.674 × 10−11 m3/(kg⋅s2)

Speed of light in vacuum c 2.998 × 108 m/s

Elementary charge e 1.602 × 10−19 C

Planck’s constant h 6.626 × 10−34 J⋅s

  4.136 × 10−15 eV⋅s

 ℏ = h/(2p) 1.055 × 10−34 J⋅s

  6.582 × 10−16 eV⋅s

Universal gas constant R 8.314 J/(mol⋅K)

Avogadro’s number NA 6.022 × 1023 mol−1

Boltzmann constant  kB 1.381 × 10−23 J/K

  8.617 × 10−5 eV/K 

Coulomb force constant  k = 1/(4pϵ0) 8.988 × 109 N⋅m2/C2

Permittivity of free space (electric constant) ϵ0 8.854 × 10−12 C2/(N⋅m2)

Permeability of free space (magnetic constant)  m0 4p  × 10−7 T⋅m/A 

Electron mass  me 9.109 × 10−31 kg

  0.000 548 580 u

Electron rest energy mec
2 0.5110 MeV

Proton mass mp 1.673 × 10−27 kg

  1.007 276 5 u

Proton rest energy mpc
2 938.272 MeV

Neutron mass mn 1.675 × 10−27 kg

  1.008 664 9 u

Neutron rest energy mnc
2 939.565 MeV

Compton wavelength of electron lC 2.426 × 10−12 m

Stefan-Boltzmann constant s 5.670 × 10−8 W/(m2
⋅K4) 

Rydberg constant R 1.097 × 107 m−1

Bohr radius of hydrogen atom a0 5.292 × 10−11 m

Ionization energy of hydrogen atom −E1 13.61 eV
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     Preface 

Physics  is intended for a two-semester college course in introductory physics using 

algebra and trigonometry. Our main goals in writing this book are

   • to present the basic concepts of physics that students need to know for later 

courses and future careers,  

  • to emphasize that physics is a tool for understanding the real world, and  

  • to teach transferable problem-solving skills that students can use throughout their 

lives.   

We have kept these goals in mind while developing the main themes of the book. 

  NEW TO THIS EDITION  

 Although the fundamental philosophy of the book has not changed, detailed feedback 

from almost 60 reviewers (many of whom used the first edition in the classroom) has 

enabled us to fine-tune our approach to make the text even more user-friendly, concep-

tually based, and relevant for students. The second edition also has some added features 

to further facilitate student learning.           

 A greater emphasis has been placed on fundamental physics concepts:

   •  Connections identify areas in each chapter where important concepts are 

revisited.  A marginal Connections heading and summary adjacent to the coverage 

in the main text help students easily recognize that a previously introduced concept 

is being applied to the current discussion. Knowledge is being revisited and further 

developed—not newly introduced.  

  •  Checkpoint  questions have been added to applicable sections of the text to  allow 

students to pause and test their understanding of the concept  explored within 

the current section. The answers to the Checkpoints are found at the end of the 

chapter so that students can confirm their knowledge without jumping too quickly 

to the provided answer.  

  • The exercises in the  Review & Synthesis sections  have been revised to concentrate 

even more heavily on  helping students to realize through practice problems how 

the concepts in the previously covered group of chapters are interrelated.  The 

number of problems in the Review & Synthesis sections has also been increased in 

the new edition. (The MCAT review problems have been retained to also help pre-

med students focus on the concepts covered in the upcoming exam.)  

  •  Nonessential coverage and derivations have been moved to the text’s website.

This will help students not only to focus further on the fundamental, core concepts 

in their reading of the text but also allow them to go online for additional informa-

tion or explanation on topics of interest.  identifiers in the text direct students 

to additional information online.    

 In addition, the following general revisions occur in chapters of the text:

   • The topical question from the chapter-opening vignette now appears in the margin 

(along with a reduced version of the chapter-opening image) to help students iden-

tify where in the main text the answer to the chapter-opening question is addressed.  

  • Applications have been clearly identified as such in the text with a complete listing 

in the front matter.  

  • Many helpful subheadings have been added to the text to help students quickly 

identify new subtopics.  

  • Portions of the text now caption images to establish a visual connection between 

the text’s concepts and terms and the art and photos.  

“G/R/R is as good as it gets as far 

as a college textbook in physics 

goes. One of the coauthors of this 

book has been teaching a course at 

this level for 30 years. This book is 

a direct result of her 30 years’ 

worth of personal experience, and 

there is no better substitute for that. 

It is, without any doubt, one of the 

best of its kind.”  

Dr.  Abu   Fasihuddin , University of 

Connecticut



  • Great care was taken by both the authors and the contributors to the second edition 

to revise the end-of-chapter and Review & Synthesis problems. Approximately 150 

problems are new, and an emphasis has been placed on progressing difficulty 

level to help students gain confidence and reinforce new skills before tackling more 

challenging problems.    

 The following lists major chapter-specific revisions to the text:      

  Chapter 2:   Vector notation has been removed from Chapter 2. Discussion of vectors 

and components of vectors now begins in Chapter 3.  

Chapter 3: A discussion of Unit Vectors has been added to Section 3.2. A new 

example for finding average velocity has been added.

  Chapter 4:   A more concise section on air resistance is provided with a more detailed 

discussion available online.   A new Figure 4.20 emphasizes the normal and frictional 

forces as perpendicular components of a contact force.

  Chapter 7 :  Section 7.6 Motion of the Center of Mass has been simplified.  

  Chapter 8 :  Example 8.1 has been replaced with a new problem on the rotational 

inertia of a barbell.  

  Chapter 10:   Section 10.8 The Pendulum has been made much more concise with a 

more detailed discussion of the physical pendulum available online.  

  Chapter 11 :  A new “law box” highlights the physical properties that determine wave 

speed. The discussion on interference has been expanded for added clarity.  

  Chapter 12 :  In Section 12.9, the discussion of shock waves has been shortened. A 

more detailed discussion is available online.  

  Chapter 14 :  A detailed discussion of convection and Example 14.12 Roller Blading 

in Still Air have been moved online. Section 14.7 is now a brief, conceptual description 

of convection. Section 14.8 Thermal Radiation has been revised with a clearer descrip-

tion of solar radiation and global warming.  

  Chapter 15 :  Section 15.5 Heat Engines has been revised to include a more accurate 

description of the development of the steam engine. The process of the internal combus-

tion engine is now illustrated in Figure 15.12. Details of the Carnot cycle and discussion 

of the statistical interpretation of entropy are available online.  

  Chapter 16 :  A new Example 16.7 Electric Field due to Three Point Charges has been 

added.  

  Chapter 22 :  Section 22.1 has been simplified and is now titled Maxwell’s Equations 

and Electromagnetic Waves. A more detailed discussion appears online. The material on 

antennas has been made more concise.  

  Chapter 27 :  The derivation of the radii of the Bohr orbits has been moved online. The 

section on atomic energy levels has been revised and made more concise.  

  Chapter 28 :  Section 28.8 Electron Energy Levels in a Solid has been made much 

more concise with a more detailed discussion available online.   

  Chapter 30 :  The discussions of quarks and leptons have been expanded and clari-

fied. The discussion of the standard model is significantly more concise. Twenty-first-

century particle physics has been updated, and the most recent information will be 

provided online. 

 Please see your McGraw-Hill sales representative for a more detailed list of 

revisions.     

ORGANIZATION OF CHAPTERS 2 THROUGH 4 

In spite of the more traditional organization, Chapters 2–4 retain much of the flavor 

of the approach in College Physics. In particular, we use correct vector notation, 

diagrams, terminology, and methods from the very beginning. For example, we care-

fully distinguish components from magnitudes by writing “vx = −5 m/s” and never 

“v = −5 m/s,” even if the object moves only along the x-axis.
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  COMPREHENSIVE COVERAGE  

 Students should be able to get the whole story from the book. The text works well in 

our self-paced course, where students must rely on the textbook as their primary 

learning resource. Nonetheless, completeness and clarity are equally advantageous 

when the book is used in a more traditional classroom setting.  Physics  frees the 

instructor from having to try to “cover” everything. The instructor can then tailor 

class time to more important student needs—reinforcing difficult concepts, working 

through example problems, engaging the students in cooperative learning activities, 

describing applications, or presenting demonstrations.   

  INTEGRATING CONCEPTUAL PHYSICS INTO A 
QUANTITATIVE COURSE  

 Some students approach introductory physics with the idea that physics is just the 

memorization of a long list of equations and the ability to plug numbers into those 

equations. We want to help students see that a relatively small number of basic phys-

ics concepts are applied to a wide variety of situations. Physics education research has 

shown that students do not automatically acquire conceptual understanding; the con-

cepts must be explained and the students given a chance to grapple with them. Our 

presentation, based on years of teaching this course, blends conceptual understanding 

with analytical skills. The  Conceptual Examples  and  Conceptual Practice 

Problems  in the text and a variety of Conceptual and Multiple-Choice Questions at 

the end of each chapter give students a chance to check and to enhance their concep-

tual understanding.           

  INTRODUCING CONCEPTS INTUITIVELY  

 We introduce key concepts and quantities in an informal way by establishing why the 

quantity is needed, why it is useful, and why it needs a precise definition. Then we 

make a transition from the informal, intuitive idea to a formal definition and name. 

Concepts motivated in this way are easier for students to grasp and remember than are 

concepts introduced by seemingly arbitrary, formal definitions. 

 For example, in Chapter 8, the idea of rotational inertia emerges in a natural way 

from the concept of rotational kinetic energy. Students can understand that a rotating 

rigid body has kinetic energy due to the motion of its particles. We discuss why it is use-

ful to be able to write this kinetic energy in terms of a single quantity common to all the 

particles (the angular speed), rather than as a sum involving particles with many different 

speeds. When students understand why rotational inertia is defined the way it is, they are 

better prepared to move on to the concepts of torque and angular momentum. 

 We avoid presenting definitions or formulas without any motivation. When an equa-

tion is not derived in the text, we at least describe where the equation comes from or give 

a plausibility argument. For example, Section 9.9 introduces Poiseuille’s law with two 

identical pipes in series to show why the volume flow rate must be proportional to the 

pressure drop per unit length. Then we discuss why Δ V /Δ t  is proportional to the fourth 

power of the radius (rather than to  r  2 , as it would be for an ideal fluid). 

    WRITTEN IN CLEAR AND FRIENDLY STYLE  

 We have kept the writing down-to-earth and conversational in tone—the kind of language 

an experienced teacher uses when sitting at a table working one-on-one with a student. 

We hope students will find the book pleasant to read, informative, and accurate without 

seeming threatening, and filled with analogies that make abstract concepts easier to 

grasp. We want students to feel confident that they can learn by studying the textbook. 

  “Conceptual ideas are important, 

ideas must be motivated, physics 

should be integrated, a coherent 

problem-solving approach should 

be developed. I’m not sure other 

books are as explicit in these goals, 

or achieve them as well as 

Giambattista, Richardson, and 

Richardson.”  

Dr.  Michael G.   Strauss , 

University of Oklahoma

  “Conceptual ideas are important, 

ideas must be motivated, physics 

should be integrated, a coherent 

problem-solving approach should 

be developed. I’m not sure other 

books are as explicit in these goals, 

or achieve them as well as 

Giambattista, Richardson, and 

Richardson.”  

Dr.  Michael G.   Strauss , 

University of Oklahoma
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  “The authors are clearly very able 

to communicate in written English. 

The text is well written, not concise 

to the point of density, but not 

discursive to the point of long-

windedness. A real pleasure to 

read.”  

Dr.  Galen T.   Pickett , California 

State University, Long Beach



 While learning correct physics terminology is essential, we avoid all  unnecessary  

jargon—terminology that just gets in the way of the student’s understanding. For 

example, we never use the term  centripetal force,  since its use sometimes leads students 

to add a spurious “centripetal force” to their free-body diagrams. Likewise, we use 

 radial component of acceleration  because it is less likely to introduce or reinforce mis-

conceptions than  centripetal acceleration.                

  ACCURACY ASSURANCE  

 The authors and the publisher acknowledge the fact that inaccuracies can be a source 

of frustration for both the instructor and students. Therefore, throughout the writing and 

production of this edition, we have worked diligently to eliminate errors and inaccura-

cies. Bill Fellers of Fellers Math & Science conducted an independent accuracy check 

and worked all end-of-chapter questions and problems in the final draft of the manu-

script. He then coordinated the resolution of discrepancies between accuracy checks, 

ensuring the accuracy of the text, the end-of-book answers, and the solutions manuals. 

Corrections were then made to the manuscript before it was typeset.         

 The page proofs of the text were double-proofread against the manuscript to ensure 

the correction of any errors introduced when the manuscript was typeset. The textual 

examples, practice problems and solutions, end-of-chapter questions and problems, and 

problem answers were accuracy checked by Fellers Math & Science again at the page 

proof stage after the manuscript was typeset. This last round of corrections was then 

cross-checked against the solutions manuals.   

  PROVIDING STUDENTS WITH THE TOOLS THEY NEED  

  Problem-Solving Approach 

 Problem-solving skills are central to an introductory physics course. We illustrate these 

skills in the example problems. Lists of problem-solving strategies are sometimes use-

ful; we provide such strategies when appropriate. However, the most elusive skills—

perhaps the most important ones—are subtle points that defy being put into a neat list. 

To develop real problem-solving expertise, students must learn how to think critically 

and analytically. Problem solving is a multidimensional, complex process; an algorith-

mic approach is not adequate to instill real problem-solving skills. 

  Strategy   We begin each example with a discussion—in language that the students 

can understand—of the  strategy  to be used in solving the problem. The strategy illus-

trates the kind of analytical thinking students must do when attacking a problem: How 

do I decide what approach to use? What laws of physics apply to the problem and which 

of them are  useful  in this solution? What clues are given in the statement of the ques-

tion? What information is implied rather than stated outright? If there are several valid 

approaches, how do I determine which is the most efficient? What assumptions can I 

make? What kind of sketch or graph might help me solve the problem? Is a simplifica-

tion or approximation called for? If so, how can I tell if the simplification is valid? Can 

I make a preliminary estimate of the answer? Only after considering these questions can 

the student effectively solve the problem.              

  Solution   Next comes the detailed  solution  to the problem. Explanations are inter-

mingled with equations and step-by-step calculations to help the student understand the 

approach used to solve the problem. We want the student to be able to follow the math-

ematics without wondering, “Where did that come from?”  

  Discussion   The numerical or algebraic answer is not the end of the problem; our 

examples end with a  discussion.  Students must learn how to determine whether their 

answer is consistent and reasonable by checking the order of magnitude of the answer, 

“The major strength of this text is 

its approach, which makes students 

think out the problems, rather than 

always relying on a formula to get 

an answer. The way the authors 
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whether the answer makes sense, 
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answer with common sense is good 
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Dr.  Jose   D’Arruda , 
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comparing the answer to a preliminary estimate, verifying the units, and doing an inde-

pendent calculation when more than one approach is feasible. When there are several 

different approaches, the discussion looks at the advantages and disadvantages of each 

approach. We also discuss the implications of the answer—what can we learn from it? 

We look at special cases and look at “what if” scenarios. The discussion sometimes 

generalizes the problem-solving techniques used in the solution.                

  Practice Problem   After each Example, a Practice Problem gives students a chance 

to gain experience using the same physics principles and problem-solving tools. By 

comparing their answers to those provided at the end of each chapter, they can gauge 

their understanding and decide whether to move on to the next section. 

 Our many years of experience in teaching the college physics course in a one-on-

one setting has enabled us to anticipate where we can expect students to have difficulty. 

In addition to the consistent problem-solving approach, we offer several other means 

of assistance to the student throughout the text. A boxed problem-solving strategy 

gives detailed information on solving a particular type of problem, while an icon    for 

problem-solving tips draws attention to techniques that can be used in a variety of con-

texts. A hint in a worked example or end-of-chapter problem provides a clue on what 

approach to use or what simplification to make. A warning icon    emphasizes an expla-

nation that clarifies a possible point of confusion or a common student misconception. 

 An important problem-solving skill that many students lack is the ability to extract 

information from a graph or to sketch a graph without plotting individual data points. 

Graphs often help students visualize physical relationships more clearly than they can 

do with algebra alone. We emphasize the use of graphs and sketches in the text, in 

worked examples, and in the problems.           

Review & Synthesis with MCAT Review®

Eight Review & Synthesis sections appear throughout the text, following groups of 

related chapters. The MCAT® Review includes actual reading passages and questions 

written for the Medical College Admission Test (MCAT). The Review Exercises are 

intended to serve as a bridge between textbook problems that are linked to a particular 

chapter and exam problems that are not. These exercises give students practice in 

formulating a problem-solving strategy without an external clue (section or chapter 

number) that indicates which concepts are involved. Many of the problems draw on 

material from more than one chapter to help the student integrate new concepts and 

skills with what has been learned previously.

  Using Approximation, Estimation, and Proportional Reasoning 

  Physics  is forthright about the constant use of simplified models and approximations in 

solving physics problems. One of the most difficult aspects of problem solving that stu-

dents need to learn is that some kind of simplified model or approximation is usually 

required. We discuss how to know when it is reasonable to ignore friction, treat  g  as con-

stant, ignore viscosity, treat a charged object as a point charge, or ignore diffraction. 

 Some Examples and Problems require the student to make an estimate—a useful 

skill both in physics problem solving and in many other fields. Similarly, we teach 

proportional reasoning as not only an elegant shortcut but also as a means to under-

standing patterns. We frequently use percentages and ratios to give students practice in 

using and understanding them.          

  Showcasing an Innovative Art Program 

 To help show that physics is more than a collection of principles that explain a set of 

contrived problems, in every chapter we have developed a system of illustration’s, rang-

ing from simpler diagrams to ellaborate and beautiful illustrations, that brings to life the 
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connections between physics concepts and the complex ways in which they are applied. 

We believe these illustrations, with subjects ranging from three-dimensional views of 

electric field lines to the biomechanics of the human body and from representations of 

waves to the distribution of electricity in the home, will help students see the power and 

beauty of physics.  

  Helping Students See the Relevance of Physics in Their Lives 

 Students in an introductory college physics course have a wide range of backgrounds and 

interests. We stimulate interest in physics by relating the principles to applications relevant 

to students’ lives and in line with their interests. The text, examples, and end-of-chapter 

problems draw from the everyday world; from familiar technological applications; and 

from other fields such as biology, medicine, archaeology, astronomy, sports, environmental 

science, and geophysics. (Applications in the text are identified with a text heading or mar-

ginal note. An icon (  ) identifies applications in the biological or medical sciences.) 

 The  Physics at Home  experiments give students an opportunity to explore and see 

physics principles operate in their everyday lives. These activities are chosen for their 

simplicity and for the effective demonstration of physics principles. 

 Each  Chapter Opener  includes a photo and vignette, designed to capture student 

interest and maintain it throughout the chapter. The vignette describes the situation 

shown in the photo and asks the student to consider the relevant physics. A reduced 

version of the chapter opener photo and question marks where the topic from the 

vignette is addressed within the chapter.  

  Focusing on the Concepts 

 To focus on the basic, core concepts of physics and reinforce for students that all of 

physics is based on a few, fundamental ideas, within chapters we have developed 

 Connections  to identify areas where important concepts are revisited. A marginal 

Connections heading and summary adjacent to the coverage in the main text help 

students easily recognize that a previously introduced concept is being applied to the 

current discussion. Knowledge is being built-up—not newly introduced. 

 The exercises in the  Review & Synthesis sections  have been revised to increase 

the number of available exercises and to also concentrate even more heavily on helping 

students to realize through practice problems how the concepts in the previously cov-

ered group of chapters are interrelated. 

  Checkpoint  questions have been added to applicable sections of the text to allow 

students to pause and test their understanding of the concept explored within the current 

section. The answers to the Checkpoints are found at the end of the chapter so that 

students can confirm their knowledge without jumping too quickly to the provided 

answer. 

  Applications  are clearly identified as such in the text with a complete listing in the 

front matter. With Applications, students have the opportunity to see how physics con-

cepts are experienced through their everyday lives. 

    icons identify opportunities for students to access additional information or 

explanation of topics of interest online. This will help students to focus even further on 

just the very fundamental, core concepts in their reading of the text.    

  ADDITIONAL RESOURCES FOR INSTRUCTORS AND STUDENTS  

     Online Homework and Resources     

 McGraw-Hill’s  Physics  website offers online electronic homework along with a 

myriad of resources for both instructors and students. Instructors can create homework 
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with easy-to-assign algorithmically generated problems from the text and the simplic-

ity of automatic grading and reporting:  

• The end-of-chapter problems and Review & Synthesis exercises appear in the 

online homework system in diverse formats and with various tools.

• The online homework system incorporates new and exciting interactive tools and 

problem types: ranking problems, a graphing tool, a free-body diagram drawing 

tool, symbolic entry, a math palette, and multi-part problems.

Instructors also have access to PowerPoint lecture outlines, an Instructor’s Resource 

Guide with solutions, suggested demonstrations, electronic images from the text, clicker 

questions, quizzes, tutorials, interactive simulations, and many other resources directly 

tied to text-specific materials in Physics. Students have access to self-quizzing, interactive 

simulations, tutorials, selected solutions for the text’s problems, and more.

See www.mhhe.com/grr to learn more and to register.

  Electronic Media Integrated with the Text     

 McGraw-Hill is proud to bring you an assortment of outstand-

ing interactives and tutorials like no other. These activities 

offer a fresh and dynamic method to teach the physics basics 

by providing students with activities that work with real data. 

 icons identify areas in the text where additional under-

standing can be gained through work with an interactive or 

tutorial on the text website. 

 The interactives allow students to manipulate parameters 

and gain a better understanding of the more difficult physics 

concepts by watching the effect of these manipulations. Each 

interactive includes:

   • Analysis tool (interactive model)  

  • Tutorial describing its function  

  • Content describing its principle themes    

 The text website contains accompanying interactive quizzes. 

An instructor’s guide for each interactive with a complete over-

view of the content and navigational tools, a quick demonstration description, further 

study with the textbook, and suggested end-of-chapter follow-up questions is also pro-

vided as an online instructor’s resource. 

 The tutorials, developed and integrated by Raphael Littauer of Cornell University, 

provide the opportunity for students to approach a concept in steps. Detailed feed-

back is provided when students enter an incorrect response, which encourages 

students to further evaluate their responses and helps them progress through the 

problem.        

  Electronic Book Images and Assets for Instructors 

  Build instructional materials wherever, whenever, and however you want!  

 Accessed from the  Physics  website,   an online digital library containing photos, artwork, 

interactives, and other media types can be used to create customized lectures, visually 

enhanced tests and quizzes, compelling course websites, or attractive printed support mate-

rials. Assets are copyrighted by McGraw-Hill Higher Education, but can be used by 

instructors for classroom purposes. The visual resources in this collection include

   •  Art  Full-color digital files of all illustrations in the book can be readily incorporated 

into lecture presentations, exams, or custom-made classroom materials. In addition, 

all files are preinserted into PowerPoint slides for ease of lecture preparation.  
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  •  Active Art Library  These key art pieces—formatted as PowerPoint slides—allow 

you to illustrate difficult concepts in a step-by-step manner. The artwork is broken 

into small, incremental pieces, so you can incorporate the illustrations into your 

lecture in whatever sequence or format you desire.  

  •  Photos  The photos collection contains digital files of photographs from the text, 

which can be reproduced for multiple classroom uses.  

  •  Worked Example Library, Table Library, and Numbered Equations Library  

Access the worked examples, tables, and equations from the text in electronic for-

mat for inclusion in your classroom resources.  

•    Interactives  Flash files of the physics interactives described earlier are included so 

that you can easily make use of the interactives in a lecture or classroom setting.   

Also residing on your textbook’s website are

   •  PowerPoint Lecture Outlines  Ready-made presentations that combine art and 

lecture notes are provided for each chapter of the text.  

  •  PowerPoint Slides  For instructors who prefer to create their lectures from scratch, 

all illustrations and photos are preinserted by chapter into blank PowerPoint slides.     

  Computerized Test Bank Online 

 A comprehensive bank of over 2000 test questions in multiple-choice format at a variety 

of difficulty levels is provided within a computerized test bank powered by McGraw-

Hill’s flexible electronic testing program—EZ Test Online ( www.eztestonline.com ). 

EZ Test Online allows you to create paper and online tests or quizzes in this easy-to-use 

program! 

 Imagine being able to create and access your test or quiz anywhere, at any time 

without installing the testing software. Now, with EZ Test Online, instructors can select 

questions from multiple McGraw-Hill test banks or create their own, and then either 

print the test for paper distribution or give it online. See www.mhhe.com/grr for more 

information.              

  Electronic Books  

 If you or your students are ready for an alternative version of the traditional textbook, 

McGraw-Hill brings you innovative and inexpensive electronic textbooks. By purchasing 

E-books from McGraw-Hill, students can save as much as 50% on selected titles deliv-

ered on the most advanced E-book platforms available. 

 E-books from McGraw-Hill are smart, interactive, searchable, and portable, with 

such powerful built-in tools as detailed searching, highlighting, note taking, and 

student-to-student or instructor-to-student note sharing. E-books from McGraw-Hill 

will help students to study smarter and quickly find the information they need. E-books 

also saves students money. Contact your McGraw-Hill sales representative to discuss 

E-book packaging options.  

   Personal Response Systems 

 Personal response systems, or “clickers,” bring interactivity into the classroom or 

lecture hall. Wireless response systems give the instructor and students immediate 

feedback from the entire class. The wireless response pads are essentially remotes 

that are easy to use and engage students, allowing instructors to motivate student 

preparation, interactivity, and active learning. Instructors receive immediate feedback 

to gauge which concepts students understand. Questions covering the content of the 

 Physics  text (formatted in PowerPoint) are available on the website for  Physics.   
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  Instructor’s Resource Guide 

 The  Instructor’s Resource Guide  includes many unique assets for instructors, such as 

demonstrations, suggested reform ideas from physics education research, and ideas for 

incorporating just-in-time teaching techniques. It also includes answers to the end-of-

chapter conceptual questions and complete, worked-out solutions for all the end-of-

chapter problems from the text. The Instructors Resource Guide is available in the 

Instructor Resources on the text’s website.  

  ALEKS ®  

 Help students master the math skills needed to understand difficult physics problems. 

ALEKS ®  [Assessment and LEarning in Knowledge Spaces] is an artificial intelligence–

based system for individualized math learning available via the World Wide Web. 

 ALEKS ®  is

   • A robust course management system. It tells you exactly what your students know 

and don’t know.  

  • Focused and efficient. It enables students to quickly master the math needed for 

college physics.  

  • Artificial intelligence. It totally individualizes assessment and learning.  

  • Customizable. Click on or off each course topic.  

  • Web based. Use a standard browser for easy Internet access.  

  • Inexpensive. There are no setup fees or site license fees.    

 ALEKS ®  is a registered trademark of ALEKS Corporation.  

  Student Solutions Manual 

 The  Student Solutions Manual  contains complete worked-out solutions to selected 

end-of-chapter problems and questions, selected Review & Synthesis problems, and 

the MCAT Review Exercises from the text. The solutions in this manual follow the 

problem-solving strategy outlined in the text’s examples and also guide students in 

creating diagrams for their own solutions. 

 For more information, contact a McGraw-Hill customer service representative at 

(800) 338–3987, or by email at  www.mhhe.com.  To locate your sales representative, go 

to  www.mhhe.com  for Find My Sales Rep.     
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  To the Student 

  HOW TO SUCCEED IN YOUR PHYSICS CLASS 

 It’s true—how much you get out of your studies depends on how much you put in. 

Success in a physics class requires:

   • Commitment of time and perseverance  

  • Knowing and motivating yourself  

  • Getting organized  

  • Managing your time    

 This section will help you learn how to be effective in these areas, as well as offer guid-

ance in:

   • Getting the most out of your lecture  

  • Finding extra help when you need it  

  • Getting the most out of your textbook  

  • How to study for an exam     

  Commitment of Time and Perseverance 

 Learning and mastering takes time and patience. Nothing worthwhile comes easily. Be 

committed to your studies and you will reap the benefits in the long run. A regular, 

sustained effort is much more effective than sporadic bouts of cramming.        

  Knowing and Motivating Yourself 

 What kind of learner are you? When are you most productive? Know yourself and your 

limits, and work within them. Know how to motivate yourself to give your all to your 

studies and achieve your goals.       

 There are many types of learners, and no right or wrong way of learning. Which 

category do you fall into?

   •  Visual learner  You respond best to “seeing” processes and information. Focus on 

text illustrations and graphs. Use course handouts and the animations on the course 

and text websites to help you. Draw diagrams in your notes to illustrate concepts.  

  •  Auditory learner  You work best by listening to—and possibly recording—the 

lecture and by talking information through with a study partner.  

  •  Tactile/Kinesthetic Learner  You learn best by being “hands on.” You’ll benefit by 

applying what you’ve learned during lab time. Writing and drawing are physical 

activities, so don’t neglect taking notes on your reading and the lecture to explain 

the content in your own words. Try pacing while you read the text. Stand up and 

write on a chalkboard during discussions in your study group.    

 Identify your own personal preferences for learning and seek out the resources that will 

best help you with your studies. Also remember, even though you have a preferred style 

of learning, most learners benefit when they engage in all styles of learning.  

  Getting Organized 

 It’s simple, yet it’s fundamental. It seems the more organized you are, the easier things 

come. Take the time before your course begins to analyze your life and your study habits. 

Get organized now and you’ll find you have a little more time—and a lot less stress.

   •  Find a calendar system that works for you.  The best kind is one that you can take 

with you everywhere. To be truly organized, you should integrate all aspects of 

your life into this one calendar—school, work, and leisure. Some people also find 

it helpful to have an additional monthly calendar posted by their desk for “at a 

A good rule of thumb is to 

allow 2 hours of study time 

for every hour you spend in lecture. 

For instance, a 3-hour lecture 

deserves 6 hours of study time per 

week. If you commit to studying for 

this course daily, you’re investing a 

little less than one hour per day, 

including the weekend.

Begin each of the tasks 

assigned in your course with 

the goal of understanding the mate-

rial. Simply completing the assign-

ment does not mean that learning 

has taken place. Your fellow stu-

dents, your instructor, and this text-

book can all be important resources 

in broadening your knowledge.
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glance” dates and to have a visual planner. If you do this, be sure you are consis-

tently synchronizing both calendars so as not to miss anything.  More tips for orga-

nizing your calendar can be found in the time management discussion below.   

  • By the same token,  keep everything for your course or courses in one place —and 

at your fingertips. A three-ring binder works well because it allows you to add or 

organize handouts and notes from class in any order you prefer. Incorporating your 

own custom tabs helps you flip to exactly what you need at a moment’s notice.  

  •  Find your space.  Find a place that helps you be organized and focused. If it’s 

your desk in your dorm room or in your home, keep it clean. Clutter adds confu-

sion and stress and wastes time. Perhaps your “space” is at the library. If that’s 

the case, keep a backpack or bag that’s fully stocked with what you might 

need—your text, binder or notes, pens, highlighters, Post-its, phone numbers of 

study partners. [ Hint:  A good place to keep phone numbers is in your “one place 

for everything calendar.”]     

  Managing Your Time 

 Managing your time is the single most important thing you can do to help yourself, but 

it’s probably one of the most difficult tasks to successfully master. 

 In college, you are expected to work much harder and to learn much more than you 

ever have before. To be successful you need to invest in your education with a commit-

ment of time. We all lead busy lives, but we all make choices as to how we spend our 

time. Choose wisely.

   •  Know yourself and when you’ll be able to study most efficiently.  When are you 

most productive? Are you a night owl? Or an early bird? Plan to study when you 

are most alert and can have uninterrupted segments. This could include a quick 5-

minute review before class or a one-hour problem-solving study session with a 

friend.  

  •  Create a set daily study time for yourself.  Having a set schedule helps you com-

mit to studying and helps you plan instead of cram. Find—and use—a planner that 

is small enough that you can take it with you everywhere. This may be a simple 

paper calendar or an electronic version. They all work on the same premise:  orga-

nize   all   of your activities in one place.   

  •  Schedule study time using shorter, focused blocks with small breaks.  Doing 

this offers two benefits: (1) You will be less fatigued and gain more from your effort 

and (2) Studying will seem less overwhelming, and you will be less likely to pro-

crastinate.  

  •  Plan time for leisure, friends, exercise, and sleep.  Studying should be your main 

focus, but you need to balance your time—and your life.        

  •  Log your homework deadlines and exam dates  in your personal calendar.  

  • Try to  complete tasks ahead of schedule.  This will give you a chance to carefully 

review your work before it is due. You’ll feel less stressed in the end.  

  •  Know where help can be found.  At the beginning of the semester, find your 

instructor’s office hours, your lab partner’s contact information, and the “Help 

Desk” or Learning Resource Center if your course offers one. Make use of all of 

the support systems that your college or university has to offer. Ask questions both 

in class and during your instructor’s office hours. Don’t be shy—your instructor is 

there to help you learn.  

  •  Prioritize!  In your calendar or planner, highlight or number key projects; do them 

first, and then cross them off when you’ve completed them. Give yourself a pat on 

the back for getting them done!  

  •  Review your calendar and reprioritize   daily.   

  •  Resist distractions by setting and sticking to a designated study time.   

  •  Multitask when possible.  You may find a lot of extra time you didn’t think you 

had. Review material in your head or think about how to tackle a tough problem 

while walking to class or doing laundry.     

Plan to study and plan for 

leisure. Being well balanced 

will help you focus when it is time 

to study.

Try combining social time 

with studying in a group, or 

social time with mealtime or exer-

cise. Being a good student doesn’t 

mean you have to be a hermit. It 

does mean you need to know how to 

smartly budget your time.

Add extra “padding” into 

your personal deadlines. If 

you have a report due on Friday, set 

a goal for yourself to have it done 

on Wednesday. Then, take time on 

Thursday to look over your project 

with a fresh eye. Make any correc-

tions or enhancements and have it 

ready to turn in on Friday.
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  Getting the Most Out of Lectures 

 Your instructors want you to succeed. They put a lot of effort 

into preparing their lectures and other materials designed to 

help you learn. Attending class is one of the simplest, most 

valuable things you can do to help yourself. But it doesn’t 

end there—getting the most out of your lectures means being 

organized. Here’s how: 

  Prepare Before You Go to Class   Study the text on the 

lecture topic  before  attending class. Familiarizing yourself 

with the material gives you the ability to take notes selec-

tively rather than scrambling to write everything down. 

You’ll be able to absorb more of the subtleties and difficult 

points from the lecture. You may also develop some good 

questions to ask your instructor. 

 Don’t feel overwhelmed by this task. Spend time the 

night before class gaining a general overview of the topics 

for the next lecture using your syllabus. If your schedule does 

not allow this, plan to arrive at class 5–15 minutes before 

lecture. Bring your text with you and skim the chapter before 

lecture begins. 

 Don’t try to read an entire chapter in one sitting; study 

one or two sections at a time. It’s difficult to maintain your 

concentration in a long session with so many new concepts 

and skills to learn.  

  Be a Good Listener   Most people think they are good lis-

teners, but few really are. Are you? 

 Important points to remember:

   • You can’t listen if you are talking.  

  • You aren’t listening if you are daydreaming or con-

stantly distracted by other concerns.  

  • Listening and comprehending are two different things. 

Listen carefully in class. The language of science is pre-

cise; be sure you understand your instructor. If you don’t 

understand something your instructor is saying, ask a 

question or jot a note and visit the instructor during 

office hours. You are likely doing others a favor when 

you ask questions because there are probably others in 

the class who have the same questions.     

  Take Good Notes 

   • Use a standard size notebook, or better yet, a three-ring 

binder with loose leaf notepaper. The binder will allow 

you to organize and integrate your notes and handouts, 

integrate easy-to-reference tabs, and the like.  

  • Color-code your notes. Use one color of ink pen to take 

your initial notes. You can annotate later using a pencil, 

which can be erased if need be.  

  • Start a new page with each lecture or note-taking 

session.  

  • Label each page with the date and a heading for each 

day.  

  • Focus on main points and try to use an outline format to 

take notes to capture key ideas and organize sub-points.  

  • Take your text to lecture, and keep it open to the topics 

being discussed. You can also take brief notes in your 

textbook margin or reference textbook pages in your 

notebook to help you study later.  

  • Review and edit your notes shortly after class—within 

24 hours—to make sure they make sense and that you’ve 

recorded core thoughts. You may also want to compare 

your notes with a study partner later to make sure neither 

of you have missed anything.  

  • This is a very IMPORTANT point:  You can and should 

also add notes from your reading of the textbook.     

  Get a Study Partner   Find a few study partners and get 

together regularly. Four or five study partners to a group is a 

good number. Too many students make the group unwieldy, 

but you want enough students to ensure the group can meet 

even if one or two people can’t make it. Having study part-

ners has many benefits. First, they can help you keep your 

commitment to this class. By having set study dates, you can 

combine study and social time, and maybe even make it fun! 

In addition, you now have several minds to help digest the 

information from the lecture and the text:

   • Talk through concepts and go over the difficulties you 

may be having. Take turns explaining things to each 

other. You learn a tremendous amount when you teach 

someone else.  

  • Compare your notes and solutions with the Practice 

Problems.  

  • Try a new approach to a problem or look at the problem 

from the perspective of your partner. There are often 

many ways to do the same problem. You can benefit 

from the insights of others—and they from you—but 

resist the temptation to simply copy solutions. You need 

to learn how to solve the problem yourself.  

  • Quiz each other and discuss some of the Conceptual 

Questions from the end of the chapter.  

  • Don’t take advantage of your study partner by skipping 

class or skipping study dates. You obviously won’t have 

a study partner—or a friend—much longer if it’s not a 

mutually beneficial arrangement!      

  Getting the Most Out of Your Textbook 

 We hope that you enjoy your physics course using this text. 

While studying physics does require hard work, we have tried 

to remove the obstacles that sometimes make introductory 

physics unnecessarily difficult. We have also tried to reveal 

the beauty inherent in the principles of physics and how these 

principles are manifest all around you. 

 In our years of teaching experience, we have found that 

studying physics is a skill that must be learned. It’s much 

more effective to  study  a physics textbook, which involves 

active participation on your part, than to read through 
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passively. Even though active study takes more time initially, in the long 

run it will save you time; you learn more in one active study session than 

in three or four superficial readings. 

 As you study, take particular note of the following elements: 

 Consider the  chapter opener.  It will help you make the connection 

between the physics you are about to study and how it affects the world 

around you. Each chapter opener includes a photo and vignette designed 

to pique your interest in the chapter. The vignette describes the situation 

shown in the photo and asks you to consider the relevant physics. The 

question is then answered within the chapter. Look for the reduced 

opener photo and question on the referenced page. 

 

 C H A P T E R 

 24  Optical Instruments  

  T he Hubble Space Telescope, 

orbiting Earth at an alti-

tude of about 600 km, was 

launched in 1990 by the crew 

of the Space Shuttle  Discov-

ery.  What is the advantage of 

having a telescope in space 

when there are telescopes 

on Earth with larger light-

gathering capabilities? What 

justifies the cost of $2 billion 

to place this 12.5-ton instru-

ment into orbit? (See p. 910 

for the answer.)  

 Evaluate the  Concepts & Skills to 

Review  on the first page of each chapter. It 

lists important material from previous 

chapters that you should understand before 

you start reading. If you have problems 

recalling any of the concepts, you can 

revisit the sections referenced in the list.       

 • distinction between real and virtual images (Section 23.6) 

 • magnification (Section 23.8) 

 • refraction (Section 23.3) 

 • thin lenses (Section 23.9) 

 • finding images with ray diagrams (Section 23.6) 

 • small-angle approximations (Appendix A.7)   

Concepts & Skills to Review
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 Study the figures and graphs carefully.  Some elaborate illustrations  and 

more straightforward  diagrammatic illustrations  are used in combination 

throughout the text to help you grasp concepts. Complex illustrations help you 

visualize the most difficult concepts. When looking at graphs, try to see the wealth 

of information displayed. Ask yourself about the physical meaning of the slope, 

the area under the curve, the overall shape of the graph, the vertical and horizon-

tal intercepts, and any maxima and minima.     
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tor; the length of the arrow is proportional to the magnitude of the vector. By contrast, a 

  scalar    quantity can have magnitude, algebraic sign, and units, but not a direction in 

space. It wouldn’t make sense to draw an arrow to represent a scalar such as mass!     

 In this book, an arrow over a boldface symbol indicates a vector quantity     (r ⃗).   (Some 

books use boldface without the arrow or the arrow without boldface.)  When writing 

by hand, always draw an arrow over a vector symbol to distinguish it from a scalar. 

When the symbol for a vector is written without the arrow and in italics rather than 

boldface (  r  ), it stands for the   magnitude   of the vector (which is a scalar).  Absolute value 

bars are also used to stand for the magnitude of a vector, so     r =  r ⃗ .   The magnitude of a 

vector may have units and is never negative; it can be positive or zero. 

 Marginal  Connections  headings and summaries adjacent to the coverage in the 

main text identify areas where important concepts are revisited. Consider the notes 

carefully to help you recognize how a previously introduced concept is being applied 

to the current discussion. 

  Checkpoint  questions appear in applicable sections of the text to allow you to test 

your understanding of the concept explored within the current section. The answers to 

the Checkpoints are found at the end of the chapter so that you can confirm your knowl-

edge without jumping too quickly to the provided answer. 

    icons identify opportunities for you to access additional information or explana-

tion of topics of interest online. 

 Various  Reinforcement Notes  appear in the margin to 

emphasize the important points in the text.   

Important  Equations  are numbered for easier reference. Equations that correspond to 

important laws are boxed for quick identification. 

 Statements of important physics 

 Rules and Laws  are boxed to 

highlight the most important and 

central concepts.         

 Boxed  Problem-Solving Strategies  give 

detailed information on solving a particular 

type of problem. These are supplied for the 

most fundamental physical rules and laws. 

Problem-Solving Strategy for Newton’s Second Law

• Decide what objects will have Newton’s second law applied to them.

• Identify all the external forces acting on that object.

• Draw an FBD to show all the forces acting on the object.

• Choose a coordinate system. If the direction of the net force is known, choose 

axes so that the net force (and the acceleration) are along one of the axes.

• Find the net force by adding the forces as vectors.

• Use Newton’s second law to relate the net force to the acceleration.

• Relate the acceleration to the change in the velocity vector during a time 

interval of interest.

             A  warning note  describes possible points 

of confusion or any common misconcep-

tions that may apply to a particular concept. 

             A  problem-solving tip  will guide you 

in applying problem-solving techniques.     

CONNECTION: 

Rotational and translational 

kinetic energies have the 

same form:   1 _ 
2
   inertia × spee d 2 .

CONNECTION: 

Rotational and translational 

kinetic energies have the 

same form:   1 _ 
2
   inertia × spee d 2 .

The Law of Conservation of Energy

The total energy in the universe is unchanged by any physical process:

total energy before = total energy after.

CHECKPOINT 8.2

You are trying to loosen a nut, without success. Why might it help to switch to a 

wrench with a longer handle?

v ⃗ =   lim    
Δt→0

    Δr ⃗ ___ 
Δt

   (3-12)

(Δr ⃗ is the displacement during a very short time interval Δt)

If an object moves along a curved 

path, the direction of the velocity 

vector at any point is tangent to the 

path at that point.

If an object moves along a curved 

path, the direction of the velocity 

vector at any point is tangent to the 

path at that point.

   When scalars are added or subtracted, they do so in the usual way: 3 kg of water 

plus 2 kg of water is equal to 5 kg of water. Adding or subtracting vectors is different. 

Vectors follow rules of addition and subtraction that take into account the  directions

of the vectors as well as their magnitudes.  Whenever you need to add or subtract 

quantities, check whether they are vectors. If so, be sure to add or subtract them cor-

rectly   as vectors.   Do not just add or subtract their magnitudes.   
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 When you come to an  Example,  pause 

after you’ve read the problem. Think about the 

strategy you would use to solve the problem. 

See if you can work through the problem on 

your own. Now study the  Strategy, Solution,  

and  Discussion  in the textbook. Sometimes 

you will find that your own solution is right on 

the mark; if not, you can focus your attention 

on the areas of misunderstanding or any mis-

takes you may have made.     

 Work the  Practice Problem  after each 

Example to practice applying the physics con-

cepts and problem-solving skills you’ve just 

learned. Check your answer with the one given 

at the end of the chapter. If your answer isn’t 

correct, review the previous section in the text-

book to try to find your mistake. 

CHECKPOINT 6.3

Kinetic energy and work are related. Can kinetic energy ever be negative? Can 

work ever be negative?

6.4  GRAVITATIONAL POTENTIAL ENERGY (1) 

   Gravitational Potential Energy When Gravitational Force Is Constant 

 Toss a stone up with initial speed  v  i . Ignoring air resistance, how high does the stone 

go? We can solve this problem with Newton’s second law, but let’s use work and energy 

instead. The stone’s initial kinetic energy is      K 
i
  =   1 _ 

2
  m v  

i
  2 .   For an upward displacement Δ y,  

gravity does negative work  W   grav   =   −  mg  Δ y.  No other forces act, so this is the total work 

done on the stone. The stone is momentarily at rest at the top, so  K   f   =  0. Then

Then the work done by gravity is

 W g  = −(780 N) × (−114 m) = +89 kJ

The work done by the cord is Wc = Wtotal − Wg = −89 kJ.

Discussion The work done by gravity is positive, since 

the force and the displacement are in the same direction 

(downward). If not for the negative work done by the 

cord, the jumper would have a kinetic energy of 89 kJ after 

falling 114 m.

The length of the bungee cord is not given, but it does not 

affect the answer. At first the jumper is in free fall as the cord 

plays out to its full length; only then does the cord begin to 

stretch and exert a force on the jumper, ultimately bringing 

him to rest again. Regardless of the length of the cord, the 

total work done by gravity and by the cord must be zero 

since the change in the jumper’s kinetic energy is zero.

Practice Problem 6.4 The Bungee Jumper’s Speed

Suppose that during the jumper’s descent, at a height of 

111 m above the bottom of the gorge, the cord has done 

−21.7 kJ of work on the jumper. What is the jumper’s speed 

at that point?

Example 6.4

Bungee Jumping

A bungee jumper makes a jump in the Gorge du Verdon in 

southern France. The jumping platform is 182 m above the 

bottom of the gorge. The jumper weighs 780 N. If the jumper 

falls to within 68 m of the bottom of the gorge, how much 

work is done by the bungee cord on the jumper during his 

descent? Ignore air resistance.

Strategy Ignoring air resistance, only two forces act on 

the jumper during the descent: gravity and the tension in the 

cord. Since the jumper has zero kinetic energy at both the 

highest and lowest points of the jump, the change in kinetic 

energy for the descent is zero. Therefore, the total work done 

by the two forces on the jumper must equal zero.

Solution Let Wg and Wc represent the work done on the 

jumper by gravity and by the cord. Then

 W 
total

  =  W g  +  W c  = ΔK = 0

The work done by gravity is

 W g  =  F y  Δy = −mg Δy

where the weight of the jumper is mg = 780 N. With y = 0 at 

the bottom of the gorge, the vertical component of the dis-

placement is

Δy =  y 
f
  −  y 

i
  = 68 m − 182 m = −114 m

Banked Curves   To help prevent cars from going into a skid or losing control, the 

roadway is often banked (tilted at a slight angle) around curves so that the outer por-

tion of the road—the part farthest from the center of curvature—is higher than the 

inner portion. Banking changes the angle and magnitude of the normal force,     N⃗,  so 

that it has a horizontal component  N   x   directed toward the center of curvature (in the 

Application of radial accelera-

tion and contact forces: banked 

roadways

Application of radial accelera-

tion and contact forces: banked 

roadways

  Application headings  iden-

tify places in the text where 

physics can be applied to 

other areas of your life. 

Familiar topics and interests 

are discussed in the accom-

panying text, including examples from biology, archaeology, astronomy, sports, and the 

everyday world. The biology/life science examples have a special icon.     Application of the 

manometer: measuring 

blood pressure

Application of the 

manometer: measuring 

blood pressure

 Try the  Physics at Home  experiments in your dorm room or at home. They reinforce 

key physics concepts and help you see how these concepts operate in the world around 

you.     

PHYSICS AT HOME

Drop a very tiny speck of dust or lint into a container of water and push the 

speck below the surface. The motion of the speck—called Brownian motion—is 

easily observed as it is pushed and bumped about randomly by collisions with 

water molecules. The water molecules themselves move about randomly, but at 

much higher speeds than the speck of dust due to their much smaller mass.
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 Write your  own  chapter summary or outline, 

adding notes from class where appropriate, and 

then compare it with the  Master the Concepts  

provided at the end of the chapter. This will 

help you identify the most important and fun-

damental concepts in each chapter.     

 Along with working the problems assigned 

by your instructor, try quizzing yourself on the 

 Multiple-Choice Questions.  Check your 

answers against the answers at the end of the 

book. Consider the  Conceptual Questions  to 

check your qualitative understanding of the key 

ideas from the chapter. Try writing some 

responses to practice your writing 

skills and to help prepare for any 

essay problems on the exam. 

 When working the  Problems  

and  Comprehensive Problems  

assigned by your instructor, pay spe-

cial attention to the explanatory para-

graph below the Problem heading 

and the keys accompanying each 

problem.

   •  Paired Problems  are connected

 with a bracket. Your instructor 

 may assign the even-numbered 

However, working the connected odd-numbered problem 

will allow you to check your answer at the back of the 

book and apply what you have learned to working the 

even-numbered problem.  

  •     Problem numbers highlighted in blue have a solution 

available in the  Student Solutions Manual  if you need 

additional help or would like to double-check your work.  

  •     The  difficulty level  for each problem is indicated. The least 

difficult problems and problems of intermediate difficulty 

have no diamond. The more challenging problems have one 

diamond ✦.   

 Read through all of the assigned problems and 

budget your time accordingly.  

  •     indicates a combination  Conceptual 

and Quantitative  problem.  

  •   indicates a problem with a biological or 

medical application.  

  •      indicates a problem that has an 

accompanying interactive or tutorial 

online.        

   Master the Concepts 

    • Fluids are materials that flow and include both liquids 

and gases. A liquid is nearly incompressible, whereas a 

gas expands to fill its container.  

   • Pressure is the perpendicular force per unit area that a 

fluid exerts on any surface with which it comes in con-

tact ( P   =   F / A ). The SI unit of pressure is the pascal 

(1 Pa  =  1 N/m 2 ).  

   • The average air pressure at sea level is 1 atm  =  101.3 kPa.  

   • Pascal’s principle: A change in pressure at any point in 

a confined fluid is transmitted everywhere throughout 

the fluid.  

   • The average density of a substance is the ratio of its 

mass to its volume

  r  =   m __ 
V

         (9-2)    

   • The specific gravity of a material is the ratio of its den-

sity to that of water at 4   °C.   

   • Pressure variation with depth in a static fluid:

       P  2  =         

  where point 2 is a depth    

   • 

and the barometer. 

sure of the atmosphere. 

pressure difference.  

equal in magnitude to the weight of the vol-

ume of fluid displaced by the object:

       F  B  = rgV   (9-7)  

  where  V  is the volume of the part of the 

object that is submerged and  r  is the density 

of the fluid.  

   • In steady flow, the velocity of the fluid  at any point  is con-

stant in time. In laminar flow, the fluid flows in neat layers 

so that each small portion of fluid that passes a particular 

point follows the same path as every other portion of fluid 

that passes the same point. The path that the fluid follows, 

starting from any point, is called a streamline. Laminar 

flow is steady. Turbulent flow is chaotic and unsteady. 

The viscous force opposes the flow of the fluid; it is the 

counterpart to the frictional force for solids.  

   • An ideal fluid exhibits laminar flow, has no viscosity, 

and is incompressible. The flow of an ideal fluid is gov-

erned by two principles: the continuity equation and 

 

   

                               

FB

mg

 While working your solutions to problems, try to  keep your 

work in symbolic form  until the very end. Symbolic solu-

tions will allow you to view which factors affect the results 

and how the answer would change should any one of the 

variables in the problem change their value. In this fashion, 

your solution to any one problem becomes a solution to a 

whole series of similar problems. 

 Substituting values into your final symbolic solution will 

then enable you to judge if your answer is reasonable and 

provide greater ease in troubleshooting your error if it is not. 

Always perform a “reality check” at the end of each prob-

lem. Did you obtain a reasonable answer given the question 

being asked?     

  5.1 Description of Uniform Circular Motion 

     1.  A carnival swing is fixed on the end of an 8.0-m-long 

beam. If the swing and beam sweep through an angle of 

120 ° , what is the distance through which the riders 

move?  

    2.  A soccer ball of diameter 31 cm rolls without slipping 

at a linear speed of 2.8 m/s. Through how many revolu-

tions has the soccer ball turned as it moves a linear dis-

tance of 18 m?  

    3.  Find the average angular speed of the second hand of a 

  Problems 

 Combination conceptual/quantitative problem  

 Biological or medical application  

✦ Challenging problem  

Blue #  Detailed solution in the Student Solutions Manual  

1  2  Problems paired by concept  

 Text website interactive or tutorial   

  5.1 Description of Uniform Circular Motion 

     1.  A carnival swing is fixed on the end of an 8.0-m-l

 

mo
   114. A student’s head is bent over her physics book. The 

head weighs 50.0 N and is supported by the muscle 

force      F⃗m   exerted by the neck extensor muscles and by 

the contact force      F⃗c   exerted at the atlantooccipital joint. 

Given that the magnitude of      F⃗m   is 60.0 N and is directed 

35 °  below the horizontal, find (a) the magnitude and 

(b) the direction of  F⃗c         .

✦✦
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 We hope that these suggestions will help you get the most out of your physics course. 

After many years working with students, both in the classroom and one-on-one in a 

self-paced course, we wrote this book so you could benefit from our experience. In 

 Physics,  we have tried to address the points that have caused difficulties for our students 

in the past. We also wish to share with you some of the pleasure and excitement we have 

found in learning about the physical laws that govern our world. 

 Alan Giambattista 

 Betty Richardson 

 Bob Richardson   

Review & Synthesis: Chapters 1−5

  Review Exercises 

    1. From your knowledge of Newton’s second law and 

dimensional analysis, find the units (in SI base units) of 

the spring constant  k  in the equation  F   =   kx,  where  F  is 

a force and  x  is a distance.  

   2. Harrison traveled 2.00 km west, then 5.00 km in a direc-

tion 53.0 °  south of west, then 1.00 km in a direction 60.0 °  

north of west. (a) In what direction, and for how far, 

should Harrison travel to return to his starting point? 

(b) If Harrison returns directly to his starting point with a 

speed of 5.00 m/s, how long will the return trip take?  

   3. (a) How many center-stripe road reflectors, separated by 

17.6 yd, are required along a 2.20-mile section of curving 

mountain roadway? (b) Solve the same problem for a road

his rapid descent and lost control? (It turns out that air-

craft altitudes are given in feet throughout the world 

except in China, Mongolia, and the former Soviet states 

where meters are used.)  

   8. Paula swims across a river that is 10.2 m wide. She can 

swim at 0.833 m/s in still water, but the river flows with a 

speed of 1.43 m/s. If Paula swims in such a way that she 

crosses the river in as short a time as possible, how far 

downstream is she when she gets to the opposite shore?  

      9.  Peter is collecting paving stones from a quarry. He har-

nesses two dogs, Sandy and Rufus, in tandem to the 

loaded cart. Sandy pulls with force     F⃗  at a 15 °  angle to the 

north of east; Rufus pulls with 1.5 times the force of 

Sandy and at an angle of 30.0 °  south of east. Use a ruler 

✦✦

 After a group of related chapters, you will find a 

 Review & Synthesis  section. This section will provide 

 Review Exercises  that require you to combine two or 

more concepts learned in the previous chapters. Working 

these problems will help you to prepare for cumulative 

exams. This section also contains  MCAT Review  exer-

cises. These problems were written for the actual 

MCAT exam and will provide additional practice if this 

exam is part of your future plans. 

  How to Study for an Exam 

   • Be an active learner:

   • read  

  • be an active participant in class; ask questions  

  • apply what you’ve learned; think through scenarios rather than memorizing 

your notes     

  • Finish reading all material—text, notes, handouts—at least three days prior to the 

exam.  

  • Three days prior to the exam, set aside time each day to do self-testing, work prac-

tice problems, and review your notes. Useful tools to help:

   • end-of-chapter summaries  

  • questions and practice problems  

  • text website  

  • your professor’s course website  

  • the Student Solutions Manual  

  • your study partner     

  • Analyze your weaknesses, and create an “I don’t know this yet” list. Focus on 

strengthening these areas and narrow your list as you study.  

  • If you find that you were unable to allow the full three days to study for the exam, 

the most important thing you can do is try some practice problems that are similar 

to those your instructor assigned for homework. Choose odd-numbered problems 

so that you can check your answer. The Review & Synthesis problems are designed 

to help you prepare for exams. Try to solve each problem under exam condi-

tions—use a formula sheet, if your instructor provides one with the exam, but don’t 

look at the book or your notes. If you can’t solve the problem, then you have found 

an area of weakness. Study the material needed to solve that problem and closely 

related material. Then try another similar problem.  

  • VERY IMPORTANT—Be sure to sleep and eat well before the exam. Staying up late 

and memorizing the night before an exam doesn’t help much in physics. On a physics 

exam, you will be asked to demonstrate reasoning and analytical skills acquired by 

much practice. If you are fatigued or hungry, you won’t perform at your highest level.    
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 C H A P T E R 

 1  Introduction 

   I n 2004, the exploration rovers Spirit  and Opportunity  landed on 

sites on opposite sides of Mars. The primary goal of the mission was 

to examine a wide variety of rocks and soils that might provide evi-

dence of the past presence of water on Mars and clues to where the 

water went. The mission sent back tens of thousands of photographs 

and a wealth of geologic data. By contrast, in a previous mission to 

Mars, a simple mistake caused the loss of the Mars Climate Orbiter 

as it entered orbit around Mars. In this chapter, you will learn how to 

avoid making this same mistake. (See p. 9.) 

    The Mars Exploration Rover 

Opportunity looks back toward 

its lander in “Eagle Crater” on 

the surface of Mars.  
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  • algebra, geometry, and trigonometry (Appendix A) 

 • To the Student: How to Succeed in Your Physics Class (p. xxii)   

    1.1  WHY STUDY PHYSICS? 

  Physics is the branch of science that describes matter, energy, space, and time at the 

most fundamental level. Whether you are planning to study biology, architecture, medi-

cine, music, chemistry, or art, some principles of physics are relevant to your field. 

 Physicists look for patterns in the physical phenomena that occur in the universe. 

They try to explain what is happening, and they perform experiments to see if the pro-

posed explanation is valid. The goal is to find the most basic laws that govern the uni-

verse and to formulate those laws in the most precise way possible. 

 The study of physics is valuable for several reasons:

   • Since physics describes matter and its basic interactions, all natural sciences are built 

on a foundation of the laws of physics. A full understanding of chemistry requires a 

knowledge of the physics of atoms. A full understanding of biological processes in 

turn is based on the underlying principles of physics and chemistry. Centuries ago, 

the study of  natural philosophy  encompassed what later became the separate fields of 

biology, chemistry, geology, astronomy, and physics. Today there are scientists who 

call themselves biophysicists, chemical physicists, astrophysicists, and geophysicists, 

demonstrating how thoroughly the sciences are intertwined. 

   • In today’s technological world, many important devices can be understood correctly 

only with a knowledge of the underlying physics. Just in the medical world, think of 

laser surgery, magnetic resonance imaging, instant-read thermometers, x-ray imag-

ing, radioactive tracers, heart catheterizations, sonograms, pacemakers, microsur-

gery guided by optical fibers, ultrasonic dental drills, and radiation therapy.  

  • By studying physics, you acquire skills that are useful in other disciplines. These 

include thinking logically and analytically; solving problems; making simplifying 

assumptions; constructing mathematical models; using valid approximations; and 

making precise definitions.  

  • Society’s resources are limited, so it is important to use them in beneficial ways 

and not squander them on scientifically impossible projects. Political leaders and 

the voting public are too often led astray by a lack of understanding of scientific 

principles. Can a nuclear power plant supply energy safely to a community? What 

is the truth about the greenhouse effect, the ozone hole, and the danger of radon in 

the home? By studying physics, you learn some of the basic scientific principles 

and acquire some of the intellectual skills necessary to ask probing questions and to 

formulate informed opinions on these important matters.  

  • Finally, by studying physics, we hope that you develop a sense of the beauty of the 

fundamental laws governing the universe.      

   1.2  TALKING PHYSICS 

  Some of the words used in physics are familiar from everyday speech. This familiarity 

can be misleading, since the scientific definition of a word may differ considerably 

from its common meaning. In physics, words must be precisely defined so that anyone 

reading a scientific paper or listening to a science lecture understands exactly what is 

meant. Some of the basic defined quantities, whose names are also words used in every-

day speech, include time, length, force, velocity, acceleration, mass, energy, momen-

tum, and temperature. 

 In everyday language,  speed  and  velocity  are synonyms. In physics, there is an 

important distinction between the two. In physics,  velocity  includes the  direction  of 

motion as well as the distance traveled per unit time. When a moving object changes 

 Concepts & Skills to Review 

  A patient being prepared for 

magnetic resonance imaging 

(MRI). MRI provides a detailed 

image of the internal structures 

of the patient’s body.  



direction, its velocity changes even though its speed may not have changed. Confusion 

of the scientific definition of  velocity  with its everyday meaning will prevent a correct 

understanding of some of the basic laws of physics and will lead to incorrect answers. 

  Mass,  as used in everyday language, has several different meanings. Sometimes 

 mass  and  weight  are used interchangeably. In physics, mass and weight are  not  inter-

changeable. Mass is a measure of inertia—the tendency of an object at rest to remain at 

rest or, if moving, to continue moving with the same velocity. Weight, on the other 

hand, is a measure of the gravitational pull on an object. (Mass and weight are discussed 

in more detail in Chapter 4.) 

 There are two important reasons for the way in which we define physical quanti-

ties. First, physics is an experimental science. The results of an experiment must be 

stated unambiguously so that other scientists can perform similar experiments and 

compare their results. Quantities must be defined precisely to enable experimental mea-

surements to be uniform no matter where they are made. Second, physics is a mathe-

matical science. We use mathematics to quantify the relationships among physical 

quantities. These relationships can be expressed mathematically only if the quantities 

being investigated have precise definitions.   

   1.3  THE USE OF MATHEMATICS 

  A working knowledge of algebra, trigonometry, and geometry is essential to the study 

of introductory physics. Some of the more important mathematical tools are reviewed in 

Appendix A. If you know that your mathematics background is shaky, you might want 

to test your mastery by doing some problems from a math textbook. You may find it 

useful to visit www.mhhe.com to explore the Schaum’s Outline series, especially the 

Schaum’s Outlines of  Precalculus, College Physics,  or  Physics for Pre-Med, Biology, 

and Allied Health Students.  

 Mathematical equations are shortcuts for expressing concisely in symbols relation-

ships that are cumbersome to describe in words. Algebraic symbols in the equations 

stand for quantities that consist of numbers  and units.  The number represents a mea-

surement and the measurement is made in terms of some standard; the unit indicates 

what standard is used.  In physics,  a number to specify a quantity is useless unless we 

know the unit attached to  the number.  When buying silk to make a sari, do we need a 

length of 5 millimeters, 5 meters, or 5 kilometers? Is the term paper due in 3 minutes, 

3 days, or 3 weeks? Systems of units are discussed in Section 1.5.   

      There are  not enough letters in the alphabet to assign a unique letter to each quan-

tity. The same letter  V  can represent volume in one context and voltage  in another.  

 Avoid attempting  to solve problems by picking equations that seem to have the correct 

letters. A skilled problem-solver understands  specifically  what quantity each symbol in 

a particular equation represents, can specify correct units for each quantity, and under-

stands the situations to which the equation  applies.   

      Ratios and Proportions   In the language of physics, the word  factor  is used fre-

quently, often in a rather idiosyncratic way. If the power emitted by a radio transmitter 

has doubled, we might say that the power has “increased by a factor of two.” If the con-

centration of sodium ions in the bloodstream is half of what it was previously, we might 

say that the concentration has “decreased by a factor of two,” or, in a blatantly inconsis-

tent way, someone else might say that it has “decreased by a factor of one-half.” The 

 factor  is the number by which a quantity is multiplied or divided when it is changed 

from one value to another. In other words, the factor is really a ratio. In the case of the 

radio transmitter, if  P  0  represents the initial power and  P  represents the power after new 

equipment is installed, we write

  P ___ 
P0

   = 2

 1.3 THE USE OF MATHEMATICS 3
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    It is also common to talk about “increasing 5%” or “decreasing 20%.”  If a quantity  

increases  n %, that is the same as saying that it is multiplied by a factor of  1  +  (  n  /100).  

If a quantity decreases  n %, then it is multiplied by a factor of 1  −  ( n /100). For example, 

an increase of 5% means something is 1.05 times its original value and a decrease of 

4% means it is 0.96 times the original value. 

 Physicists talk about increasing “by some factor” because it often simplifies a 

problem to think in terms of proportions. When we say that  A  is proportional to  B

(written  A  ∝  B ), we mean that if  B  increases by some factor, then  A  must increase by 

the same factor. For instance, the circumference of a circle equals 2p times the radius: 

C   =  2 p   r.  Therefore  C  ∝  r.  If the radius doubles, the circumference also doubles. The 

area of a circle is proportional to the  square  of the radius ( A   =   p     r  2 , so  A  ∝  r  2 ). The area 

must increase by the same factor as the radius  squared,  so if the radius doubles, the area 

increases by a factor of 2 2   =  4. 

    A  ∝  B  means  A  1 / A  2   =   B  1 / B  2       A  ∝  B  means  A  1 / A  2   =   B  1 / B  2   

  Example 1.1 

Effect of Increasing Radius on the Volume 
of a Sphere 

 The volume of a sphere is given by the equation

V =   4 _ 
3
   p r  3 

    where  V  is the volume and  r  is the radius of the sphere. If a 

basketball has a radius of 12.4 cm and a tennis ball has a 

radius of 3.20 cm, by what factor is the volume of the bas-

ketball larger than the volume of the tennis ball? 

  Strategy   The problem gives the values of the radii for the 

two balls. To keep track of which ball’s radius and volume 

we mean, we use subscripts “b” for basketball and “t” for 

tennis ball. The radius of the basketball is  r  b  and the radius 

of the tennis ball is  r  t . Since       4 _ 
3
     and  p  are constants, we can 

work in terms of proportions.  

  Solution   The ratio of the basketball radius to that of the 

tennis ball is

  
rb __ rt

   =   
12.4 [cm]

 ________ 
3.20 [cm]

   = 3.875

    The volume of a sphere is proportional to the cube of its 

radius:

V ∝  r 3 

Since the basketball radius is larger by a factor of 3.875, and 

volume is proportional to the cube of the radius, the new 

volume should be bigger by a factor of 3.875 3   ≈  58.2  .

  Discussion   A slight variation on the solution is to write 

out the proportionality in terms of ratios of the correspond-

ing sides of the two equations:

  
Vb ___ 
Vt

   =    
   4 _ 
3
  p rb

3

 _____ 
  4 _ 
3
  p rt

3
   = (  rb

 
__

 rt
  )

3

Substituting the ratio of  r  b  to  r  t  yields

  
Vb ___ 
Vb

   =  3.875 3  ≈ 58.2

which says that  V  b  is approximately 58.2 times  V  t .  

  Practice Problem 1.1   Power Dissipated 
by a Lightbulb 

 The electric power  P  dissipated by a lightbulb of resistance 

R  is  P   =   V    2 / R,  where  V  represents the line voltage. During a 

brownout, the line voltage is 10.0% less than its normal 

value. How much power is drawn by a lightbulb during the 

brownout if it normally draws 100.0 W (watts)? Assume that 

the resistance does not change.   

 CHECKPOINT  1.3

 If the radius of the sphere is increased by a factor of 3, by what factor does the 

volume of the sphere change? 
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   1.4  SCIENTIFIC NOTATION AND SIGNIFICANT FIGURES 

  In physics, we deal with some numbers that are very small and others that are very 

large. It can get cumbersome to write numbers in conventional decimal notation. In  sci-

entific notation,  any number is written as a number between 1 and 10 times an integer 

power of ten. Thus the radius of Earth, approximately 6 380 000 m at the equator, can be 

written 6.38  ×  10 6  m; the radius of a hydrogen atom, 0.000 000 000 053 m, can be written 

5.3  ×  10  − 11  m. Scientific notation eliminates the need to write zeros to locate the decimal 

point correctly.

  In science, a measurement or the result of a calculation must indicate the  precision

to which the number is known. The precision of a device used to make a measurement 

is limited by the finest division on the scale. Using a meterstick with millimeter divi-

sions as the smallest separations, we can measure a length to a precise number of milli-

meters and we can estimate a fraction of a millimeter between two divisions. If the 

meterstick has centimeter divisions as the smallest separations, we measure a precise 

number of centimeters and estimate the fraction of a centimeter that remains.  

      Significant Figures   The most basic way to indicate the precision of a quantity is to 

write it with the correct number of  significant figures.  The significant figures are all the 

digits that are known accurately plus the one estimated digit. If we say that the distance 

from here to the state line is 12 km, that does not mean we know the distance to be  exactly  

12 kilometers. Rather, the distance is 12 km  to the nearest kilometer.  If instead we said 

that the distance is 12.0 km, that would indicate that we know the distance to the nearest 

tenth  of a kilometer. More significant figures indicate a greater degree of precision. 

  Rules for Identifying Significant Figures 

    1. Nonzero digits are always significant.  

   2. Final or ending zeros written to the right of the decimal point are significant.  

   3. Zeros written to the right of the decimal point for the purpose of spacing the 

decimal point are not significant.  

   4. Zeros written to the left of the decimal point may be significant, or they may 

only be there to space the decimal point. For example, 200 cm could have one, 

two, or three significant figures; it’s not clear whether the distance was mea-

sured to the nearest 1 cm, to the nearest 10 cm, or to the nearest 100 cm. On 

the other hand, 200.0 cm has four significant figures (see rule 5). Rewriting the 

number in scientific notation is one way to remove the ambiguity. In this book, 

when a number has zeros to the left of the decimal point, you may  assume a 

minimum of two significant figures.   

   5. Zeros written between significant figures are significant.    

  Example 1.2 

   Identifying the Number of Significant Figures 

 For each of these values, identify the number of significant 

figures and rewrite it in standard scientific notation.

   (a) 409.8 s  

  (b) 0.058700 cm  

  (c) 9500 g  

  (d) 950.0  ×  10 1  mL    

  Strategy   We follow the rules for identifying significant 

figures as given. To rewrite a number in scientific notation, 

we move the decimal point so that the number to the left of 

the decimal point is between 1 and 10 and compensate by 

multiplying by the appropriate power of ten.  

continued on next page

Learn how to use the button 

on your calculator (usually 

labeled EE) to enter a number in 

scientific notation. To enter 

1.2 × 108, press 1.2, EE, 8.



6  CHAPTER 1  Introduction

  Significant Figures in Calculations 

    1. When two or more quantities are added or subtracted, the result is as precise 

as the  least precis  e of the quantities ( Example 1.3 ). If the quantities are  written 

in scientific notation with different powers of ten, first rewrite them with the 

same power of ten. After adding or subtracting, round the result, keeping only 

as many decimal places as are significant in  all  of the quantities that were 

added or subtracted.  

   2. When quantities are multiplied or divided, the result has the same number of 

significant figures as the quantity with the  smallest number of significant fig-

ures  ( Example 1.4 ).  

   3.  In a series  of calculations, rounding to the correct number of significant figures 

should be done only at the end,  not   at each step.  Rounding at each step would 

increase the chance that roundoff error could snowball and have an adverse 

effect on the accuracy of the final answer. It’s a good idea to keep  at least two

extra significant figures in calculations, then round at the end.    

  Example 1.3 

   Significant Figures in Addition 

 Calculate the sum 44.56005 s  +  0.0698 s  +  1103.2 s. 

  Strategy   The sum cannot be more precise than the least 

precise of the three quantities. The quantity 44.56005 s is 

known to the nearest 0.00001 s, 0.0698 s is known to the 

nearest 0.0001 s, and 1103.2 s is known to the nearest 0.1 s. 

Therefore the least precise is 1103.2 s. The sum has the same 

precision; it is known to the nearest tenth of a second.  

  Solution   According to the calculator,

44.56005 + 0.0698 + 1103.2 = 1147.82985

continued on next page

  Solution     (a) All four digits in 409.8 s are significant. The 

zero is between two significant figures, so it is significant. 

To write the number in scientific notation, we move the dec-

imal point two places to the left and compensate by multi-

plying by 10 2 : 4.098  ×  10 2  s.  

  (b) The first two zeros in 0.058700 cm are not significant; 

they are used to place the decimal point. The digits 5, 8, and 

7 are significant, as are the two final zeros. The answer has 

five significant figures: 5.8700  ×  10  − 2  cm.  

  (c) The 9 and 5 in 9500 g are significant, but the zeros are 

ambiguous. This number could have two, three, or four sig-

nificant figures. If we take the most cautious approach and 

assume the zeros are not significant, then the number in sci-

entific notation is 9.5  ×  10 3  g.  

  (d) The final zero in 950.0  ×  101 mL is significant since it 

comes after the decimal point. The zero to its left is also sig-

nificant since it comes between two other significant digits. 

The result has four significant figures. The number is not in 

 standard  scientific notation since 950.0 is not between 1 and 

10; in scientific notation we write 9.500  ×  10 3  mL.    

  Discussion   Scientific notation clearly indicates the num-

ber of significant figures since all zeros are significant; 

none are used only to place the decimal point. In (c), if we 

want to show that the zeros were significant, we would 

write 9.500  ×  10 3  g.  

  Practice Problem 1.2    Identifying Significant 
Figures 

 State the number of significant figures in each of these 

measurements and rewrite them in standard scientific 

notation.

   (a) 0.000 105 44 kg       (b) 0.005 800 cm       (c) 602 000 s      

Example 1.2 continued
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  Example 1.4 

   Significant Figures in Multiplication 

 Find the product of 45.26 m/s and 2.41 s. How many signifi-

cant figures does the product have? 

  Strategy   The product should have the same number of 

significant figures as the factor with the least number of sig-

nificant figures.  

  Solution   A calculator gives

45.26 × 2.41 = 109.0766

Since the answer should have only three significant figures, 

we round the answer to

45.26 m/s × 2.41 s = 109 m

    Discussion   Writing the answer as 109.0766 m would give 

the false impression that we know the answer to a precision 

of about 0.0001 m, whereas we actually have a precision of 

only about 1 m.

Note that although both factors were known to two deci-

mal places, our solution is properly given with no decimal 

places. It is the number of significant figures that matters in 

multiplication or division. In scientific notation, we write 

1.09  ×  10 2  m.  

  Practice Problem 1.4   Significant Figures in Division 

 Write the solution to 28.84 m divided by 6.2 s with the cor-

rect number of significant figures.   

or subtraction, we are concerned with the precision rather 

than the number of significant figures. The three quantities 

to be added have seven, three, and five significant figures, 

respectively, while the sum has five significant figures.  

  Practice Problem 1.3    Significant Figures 
in Subtraction 

 Calculate the difference 568.42 m  −  3.924 m and write the 

result in scientific notation. How many significant figures 

are in the result?   

Example 1.3 continued

We do  not  want to write all of those digits in the answer. That 

would imply greater precision than we actually have. Round-

ing to the nearest tenth of a second, the sum is written

= 1147.8 s

and there are five significant figures in the result.  

    Discussion    Note that  the least precise measure-

ment is not necessarily the one with the fewest num-

ber of  significant figures.  The least precise is the one whose 

rightmost significant figure represents the largest unit: the 

“2” in 1103.2 s represents 2 tenths of a second. In addition 

When an integer,  or a fraction of integers, is used in an equation, the precision of 

the result is not affected by the integer or the fraction; the number of significant figures 

is limited only by the measured values  in the problem.  The fraction       1 _ 
2
     in an equation is 

exact;  it does not reduce the number of significant figures to one. In an equation such 

as  C   =  2 p   r  for the circumference of a circle of radius  r,  the factors 2 and p are exact. We 

use as many digits for p as we need to maintain the precision of the other quantities.  

  Order-of-Magnitude Estimates   Sometimes a problem may be too complicated to 

solve precisely, or information may be missing that would be necessary for a precise 

calculation. In such a case, an  order-of-magnitude  solution is the best we can do. By 

 order of magnitude,  we mean “roughly what power of ten?” An order of magnitude cal-

culation is done to at most one significant figure. Even when a more precise solution is 

feasible, it is often a good idea to start with a quick, “back-of-the-envelope estimate.” 

Why? Because we can often make a good guess about the correct order of magnitude of 

the answer to a problem, even before we start solving the problem. If the answer comes 

out with a different order of magnitude, we go back and search out an error. Suppose a 

problem concerns a vase that is knocked off a fourth-story window ledge. We can guess 

by experience the order of magnitude of the time it takes the vase to hit the ground. It 

might be 1 s, or 2 s, but we are certain that it is  not  1000 s or 0.00001 s. 

     Back-of-the-envelope estimate:   

a calculation so short that it could 

easily fit on the back of an envelope    

     Back-of-the-envelope estimate:   

a calculation so short that it could 

easily fit on the back of an envelope    
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  CHECK POINT 1.4 

  What are some of the reasons for making order-of-magnitude estimates?   

  Figure 1.1   Scientific notation uses powers of ten to express quantities that have a wide range of values.  

Silicon atoms (radius 10–10 m) A child (height 100 m) Earth (diameter 107 m) A spiral galaxy

(diameter 1019 m) 

10–15 10–10 10–5 100 105 1010 1015 1020 1025

HIV (diameter 10–7 m)
invading a T lymphocyte
(a type of white blood cell) 

The Duomo (cathedral) in
Florence, Italy (height 102 m) 

The Sun (diameter 109 m) 

Distance to quasar
observed by Hubble
Telescope (1026 m) 

Hydrogen
nucleus
(radius 10–15 m) 

       1.5  UNITS 

  A  metric system  of units has been used for many years in scientific work and in European 

countries. The metric system is based on powers of ten ( Fig. 1.1 ). In 1960, the General 

Conference of Weights and Measures, an international authority on units, proposed a 

revised metric system called the  Système International d’Unités  in French (abbreviated 

SI), which uses the meter (m) for length, the kilogram (kg) for mass, the second (s) for 

time, and four more base units ( Table 1.1 ).  Derived units  are constructed from combina-

tions of the base units. For example, the SI unit of force is kg⋅m/s 2 ; the combination of 

kg⋅m/s 2  is given a special name, the newton (N), in honor of Isaac Newton. The newton is 

a derived unit because it is composed of a combination of base units. When units are 

named after famous scientists, the name of the unit is written with a lowercase letter, even 

though it is based on a proper name; the  abbreviation  for the unit is written with an upper-

case letter. The inside front cover of the book has a complete listing of the derived SI units 

used in this book. 

     As an alternative to explicitly writing powers of ten, SI uses prefixes for units to 

indicate power of ten factors.  Table 1.2  shows some of the powers of ten and the SI pre-

fixes used for them. These are also listed on the inside front cover of the book.  N ote that 

when an SI unit with a prefix is raised to a power, the prefix is  also  raised to that power. 

For example, 8 cm 3   =  2 cm  ×   2 cm  ×  2 cm. 

  SI units are preferred in physics and are emphasized in this book. Since other units 

are sometimes used, we must know how to convert units. Various scientific fields, even 

in physics, do use units other than SI units, whether for historical or practical reasons. 

  kg⋅m/s 2  can also be written kg⋅m⋅s  − 2     kg⋅m/s 2  can also be written kg⋅m⋅s  − 2   



For example, in atomic and nuclear physics, the SI unit of energy (the joule, J) is rarely 

used; instead the energy unit used is usually the electron-volt (eV). Biologists and 

chemists use units that are not familiar to physicists. One reason that SI is preferred is 

that it provides a common denominator—all scientists are familiar with the SI units. 

   In most of the world, SI units are used in everyday life and in industry. In the 

United States, the U.S. customary units—sometimes called English units—are still 

used. The base units for this system are the foot, the second, and the pound. The pound 

is legally defined in the United States as a unit of mass, but it is also commonly used 

as a unit of force (in which case it is sometimes called    pound-force ). Since mass and 

force are entirely different concepts in physics, this inconsistency is one good reason to 

use SI units.

  In the autumn of 1999, to the chagrin of NASA, a $125 million spacecraft was 

destroyed as it was being maneuvered into orbit around Mars. The company building 

the booster rocket provided information about the rocket’s thrust in U.S. customary 

units, but the NASA scientists who were controlling the rocket thought the figures pro-

vided were in metric units. Arthur Stephenson, chairman of the Mars Climate Orbiter 

Mission Failure Investigation Board, stated that, “The ‘root cause’ of the loss of the 

spacecraft was the failed translation of English units into metric units in a segment of 

ground-based, navigation-related mission software.” After a journey of 122 million 

miles, the Climate Orbiter dipped about 15 miles too deep into the Martian atmosphere, 

causing the propulsion system to overheat. The discrepancy in units unfortunately 

caused a dramatic failure of the mission.  

      Converting Units   If the statement of a problem includes a mixture of different units, 

the units must be converted to a single, consistent set before the problem is solved. 

Quantities to be added or subtracted  must be expressed in the same units.  Usually the 

best way is to convert everything to SI units. Common conversion factors are listed on 

the inside front cover of this book. 

  Examples 1.5  and  1.6  illustrate the technique for converting units. The quantity to 

be converted is multiplied by one or more conversion factors written as a fraction equal 

to 1. The units are multiplied or divided as algebraic quantities. 

 1.5 UNITS 9

  Table 1.1   SI Base Units 

Quantity Unit Name Symbol Definition

Length meter m The distance traveled by light in vacuum during a time interval of 

1/299 792 458 s.

Mass kilogram kg The mass of the international prototype of the kilogram.

Time second s The duration of 9 192 631 770 periods of the radiation corresponding to the 

transition between the two hyperfine levels of the ground state of the 

cesium-133 atom.

Electric current ampere A The constant current in two long, thin, straight, parallel conductors placed 

1 m apart in vacuum that would produce a force on the conductors of 

2 × 10−7 N per meter of length.

Temperature kelvin K The fraction 1/273.16 of the thermodynamic temperature of the triple point 

of water.

Amount of substance mole mol The amount of substance that contains as many elementary entities as there 

are atoms in 0.012 kg of carbon-12.

Luminous intensity candela* cd The luminous intensity, in a given direction, of a source that emits radia-

tion of frequency 540 × 1012 Hz and that has a radiant intensity in that 

direction of 1/683 watts per steradian.

*Not used in this book

What happened to the 

Mars Climate Orbiter?

  Table 1.2   SI 
Prefixes 

          Prefix  Power
(abbreviation)       of Ten     

     peta- (P)     10 15    

    tera- (T)     10 12    

    giga- (G)     10 9    

    mega- (M)     10 6    

    kilo- (k)     10 3    

    deci- (d)     10  − 1    

    centi- (c)     10  − 2    

    milli- (m)     10  − 3    

    micro- ( μ )     10  − 6    

    nano- (n)     10  − 9    

    pico- (p)     10  − 12    

    femto- (f  )     10  − 15       
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   Some conversions are exact by definition. One meter is defined to be  exactly  equal to 

100 cm; all SI prefixes are exactly a power of ten.  The use of  an exact conversion factor 

such as 1 m  =  100 cm, or 1 foot  =  12 inches, does not affect the precision of the result; 

the number of significant figures is limited only by the other quantities in the  problem.  

  Example 1.5 

   Buying Clothes in a Foreign Country 

 Michel, an exchange student from France, is studying in the 

United States. He wishes to buy a new pair of jeans, but the 

sizes are all in  inches.  He does remember that 1 m  =  3.28 ft 

and that 1 ft  =  12 in. If his waist size is 82 cm, what is his 

waist size in inches? 

  Strategy   Each conversion factor can be written as a frac-

tion. If 1 m  =  3.28 ft, then

  3.28 ft ______ 
1 m

   = 1

We can multiply any quantity by 1 without changing its 

value. We arrange each conversion factor in a fraction and 

multiply one at a time to get from centimeters to inches.  

  Solution   We first convert cm to meters.

82 —cm ×   1 m _______ 
100 —cm

  

Now, we convert meters to feet.

82 —cm ×   1 m– _______ 
100 —cm

   ×   3.28 ft ______ 
1 m–

  

Finally, we convert feet to inches.

82 —cm ×   1 m– _______ 
100 —cm

   ×   3.28 ft ______ 
1 m–

   ×   12 in _____ 
1 ft–

   = 32 in

In each case, the fraction is written so that the unit we are 

converting  from  cancels out. 

 As a check:

—cm ×   m– ___ —cm   ×   ft– __ m–   ×   in __ 
ft–

   = in

    Discussion   This problem could have been done in one 

step using a direct conversion factor from inches to cm 

(1 in  =  2.54 cm). One of the great advantages of SI units is 

that all the conversion factors are powers of ten (see 

 Table 1.2 ); there is no need to remember that there are 

12 inches in a foot, 4 quarts in a gallon, 16 ounces in a 

pound, 5280 feet in a mile, and so on.  

  Practice Problem 1.5    Driving on the Autobahn 

 A BMW convertible travels on the German autobahn at a 

speed of 128 km/h. What is the speed of the car (a) in meters 

per second? (b) in miles per hour?   

  Example 1.6 

   Conversion of Volume 

 A beaker of water contains 255 mL of water. (1 mL  =  1 mil-

liliter; 1 L  =  1000 cm 3 .) What is the volume of the water in 

(a) cubic centimeters? (b) cubic meters? 

  Strategy   First convert milliliters to liters; then convert 

liters to cubic centimeters. To convert cubic centimeters to 

cubic meters, use 100 cm  =  1 m. Since there are  three  factors 

of centimeters to convert, we have to multiply by      (   1 m _______ 
100 cm

   )    
 three times.   

  Solution   (a) The prefix milli- means 10  − 3 , so 1 mL  =  

10  − 3  L. Then

255 —mL ×    10 −3  L– ______ 
1 —mL

   ×   1000  cm 3  ________ 
1 L–

   = 255  cm 3 

 (b) 1 m  =  100 cm. Since we need to convert  cubic  centime-

ters to  cubic  meters, we must raise the conversion factor to 

the third power:

255  cm 3  ×   (   1 m _______ 
100 cm

   )  3  = 255  cm 3  ×   
 (1 m) 3 

 _________ 
 (100 cm) 3 

  

255 —cm3 ×   1  m 3  ________ 
 100 3  — cm 3 

   = 2.55 ×  10 −4   m 3 

   Discussion   Be careful when a unit is raised to a power 

other than one; the conversion factor must be raised to the 

same power. Writing out the units to make sure they cancel 

prevents mistakes. When a quantity is raised to a power, both 

the number and the unit must be raised to the same power. 

(100 cm) 3  is equal to 100 3  cm 3   =  10 6  cm 3 ; it is  not  equal to 

100 cm 3 , nor is it equal to 10 6  cm.  

  Practice Problem 1.6    Surface Area of Earth 

 The radius of Earth is 6.4  ×  10 3  km. Find the surface area of 

Earth in square meters and in square miles. (Surface area of 

a sphere  =  4 p     r  2 .)   
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    Whenever  a calculation is performed, always write out the units with each quantity. 

Combine the units algebraically to find the units of the  result.  This small effort has three 

important benefits:

    1. It shows what the units of the result are. A common mistake is to get the correct 

numerical result of a calculation but to write it with the wrong units, making the 

answer wrong.  

   2. It shows where unit conversions must be done. If units that should have canceled 

do not, we go back and perform the necessary conversion. When a distance is 

calculated and the result comes out with units of meter-seconds per hour (m⋅s/h), 

we should convert hours to seconds.  

   3. It helps locate mistakes. If a distance is calculated and the units come out as m/s, 

we know to look for an error.        

  CHECKPOINT  1.5

  If 1 fluid ounce (fl oz) is approximately 30 mL, how many liters are in a half gal-

lon (64 fl oz) of milk?   

   1.6  DIMENSIONAL ANALYSIS 

Dimensions  are basic  types  of units, such as time, length, and mass. ( Warning:  The 

word  dimension  has several other meanings, such as in “three-dimensional space” or 

“the dimensions of a  soccer field.”)  Many different units of length exist: meters, inches, 

miles, nautical miles, fathoms, leagues, astronomical units, angstroms, and cubits, just 

to name a few. All have dimensions of length; each can be converted into any other. 

 We can add, subtract, or equate quantities only if they have the same dimensions 

(although they may not necessarily be given in the same units). It is possible to add 

3 meters to 2 inches (after converting units), but it is not possible to add 3 meters to 

2 kilograms. To analyze dimensions, treat them as algebraic quantities, just as we did 

  Example 1.7 

   Dimensional Analysis for a Distance Equation 

 Analyze the dimensions of the equation  d   =   vt,  where  d  is 

distance traveled,  v  is speed, and  t  is elapsed time. 

  Strategy   Replace each quantity with its dimensions. Dis-

tance has dimensions [L]. Speed has dimensions of length 

per unit time [L/T]. The equation is dimensionally consis-

tent if the dimensions are the same on both sides.  

  Solution   The right side has dimensions

  
[L]

 ___ 
[T]

   × [T] = [L]

Since both sides of the equation have dimensions of length, 

the equation is dimensionally consistent.  

  Discussion   If, by mistake, we wrote  d   =   v / t  for the rela-

tion between distance traveled and elapsed time, we could 

quickly catch the mistake by looking at the dimensions. On 

the right side,  v / t  would have dimensions [L/T 2 ], which is 

not the same as the dimensions of  d  on the left side. 

 A quick dimensional analysis of this sort is a good way to 

catch algebraic errors. Whenever we are unsure whether an 

equation is correct, we can check the dimensions.  

  Practice Problem 1.7   Testing Dimensions 
of Another Equation 

 Test the dimensions of the following equation:

d =   1 __ 
2
   at

where  d  is distance traveled,  a  is acceleration (which has SI 

units m/s 2 ), and  t  is the elapsed time. If incorrect, can you 

suggest what might have been omitted?   
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with units in Section 1.5. Usually [M], [L], and [T] are used to stand for mass, length, 

and time dimensions, respectively. Equivalently, we can use the SI base units: kg for 

mass, m for length, and s for time. 

     Applying Dimensional Analysis   Dimensional analysis is good for more than just 

checking equations. In some cases, we can completely solve a problem—up to a dimen-

sionless factor like 1/(2 p ) or      √
__

 3    —using dimensional analysis. To do this, first list all the 

relevant quantities on which the answer might depend. Then determine what combina-

tions of them have the same dimensions as the answer for which we are looking. If only 

one such combination exists, then we have the answer, except for a possible dimensionless 

multiplicative constant. 

  Example 1.8 

   Violin String Frequency 

 While it is being played, a violin string produces 

a tone with frequency  f  in s  − 1 ; the frequency is 

the number of vibrations  per second  of the string. 

The string has mass  m,  length  L,  and tension  T.  If 

the tension is increased 5.0%, how does the fre-

quency change? Tension has SI unit kg⋅m/s 2 . 

  Strategy   We could make a study of violin strings, but let 

us see what we can find out by dimensional analysis. We 

want to find out how the frequency  f  can depend on  m,   L,  

and  T.  We won’t know if there is a dimensionless constant 

involved, but we can work by proportions so any such con-

stant will divide out.  

  Solution   The unit of tension  T  is kg⋅m/s 2 . The units of  f  

do not contain kg or m; we can get rid of them from  T  by 

dividing the tension by the length and the mass:

  T ___ 
mL

   has SI unit  s −2 

That is almost what we want; all we have to do is take the 

square root:

 √
____

   T ___ 
mL

     has SI unit  s −1 

Therefore,

f = C √
____

   T ___ 
mL

    

where  C  is some dimensionless constant. To answer the 

question, let the original frequency and tension be  f  and  T  

and the new frequency and tension be  f   ′  and  T   ′ , where 

 T   ′   =  1.050 T.  Frequency is proportional to the square root of 

tension, so

  
f ′

 __ 
f
   =  √

___

   T ′ ___ 
T

     =  √
_____

 1.050   = 1.025

The frequency increases 2.5%.  

  Discussion   We’ll learn in Chapter 11 how to calculate 

the value of  C, which  is 1/2. That is the  only  thing we can-

not get by dimensional analysis. There is  no  other way to 

combine  T,   m,  and  L  to come up with a quantity that has 

the units of frequency.  

  Practice Problem 1.8   Increase in Kinetic Energy 

 When a body of mass  m  is moving with a speed  v,  it has 

kinetic energy associated with its motion. Energy is mea-

sured in kg⋅  m  2 ⋅s  − 2 . If the speed of a moving body is increased 

by 25% while its mass remains constant, by what percentage 

does the kinetic energy increase?   

  CHECKPOINT  1.6

  If two quantities have different dimensions, is it possible to (a) multiply; 

(b) divide; (c) add; (d) subtract them?   
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  General Guidelines for Problem Solving 

    1. Read the problem  carefully  and  all the way through.   

   2. Reread the problem one sentence at a time and draw a sketch or diagram to 

help you visualize what is happening.  

   3. Write down and organize the given information. Some of the information can 

be written in labels on the diagram. Be sure that the labels are unambiguous. 

Identify in the diagram the object, the position, the instant of time, or the time 

interval to which the quantity applies. Sometimes information might be use-

fully written in a table beside the diagram. Look at the wording of the problem 

again for information that is implied or stated indirectly.  

   4. Identify the goal of the problem. What quantities need to be found?  

   5. If possible, make an estimate to determine the order of magnitude of the answer. 

This estimate is useful as a check on the final result to see if it is reasonable.  

   6. Think about how to get from the given information to the final desired informa-

tion. Do not rush this step. Which principles of physics can be applied to the 

problem? Which will help get to the solution? How are the known and unknown 

quantities related? Are all of the known quantities relevant, or might some of 

them not affect the answer? Which equations are relevant and may lead to the 

solution to the problem? This step requires skills developed only with much 

practice in problem solving.  

   7. Frequently, the solution involves more than one step. Intermediate quantities 

might have to be found first and then used to find the final answer. Try to map 

out a path from the given information to the solution. Whenever possible, a good 

strategy is to divide a complex problem into several simpler subproblems.  

   8. Perform algebraic manipulations with algebraic symbols (letters) as far as pos-

sible. Substituting the numbers in too early has a way of hiding mistakes.  

   9. Finally, if the problem requires a numerical answer, substitute the known 

numerical quantities,  with their units,  into the appropriate equation. Leaving 

out the units is a common source of error. Writing the units shows when a unit 

conversion needs to be done—and also may help identify an algebra mistake.  

   10. Once the solution is found, don’t be in a hurry to move on. Check the 

answer—is it reasonable? Try to think of other ways to solve the same prob-

lem. Many problems can be solved in several different ways. Besides provid-

ing a check on the answer, finding more than one method of solution deepens 

our understanding of the principles of physics and develops problem-solving 

skills that will help solve other problems.    

       1.7  PROBLEM-SOLVING TECHNIQUES 

  No single method can be used to solve every physics problem. We demonstrate useful 

problem-solving techniques in the examples in every chapter of this text. Even for a 

particular problem, there may be more than one correct way to approach the solution. 

Problem-solving techniques are  skills  that must be  practiced  to be learned. 

 Think of the problem as a puzzle to be solved. Only in the easiest problems is the 

solution method immediately apparent. When you do not know the entire path to a solu-

tion, see where you can get by using the given information—find whatever you can. 

Exploration of this sort may lead to a solution by suggesting a path that had not been 

considered. Be willing to take chances. You may even find the challenge enjoyable! 

 When having some difficulty, it helps to work with a classmate or two. One way to 

clarify your thoughts is to put them into words. After you have solved a problem, try to 

explain it to a friend. If you can explain the problem’s solution, you really do under-

stand it. Both of you will benefit. But do not rely too much on help from others; the 

goal is for each of you to develop your own problem-solving skills. 



14  CHAPTER 1  Introduction

1.8  APPROXIMATION 

  Physics is about building conceptual and mathematical models and comparing observa-

tions of the real world with the model. Simplified models help us to analyze complex 

situations. In various contexts we assume there is no friction, or no air resistance, no 

heat loss, or no wind blowing, and so forth. If we tried to take all these things into con-

sideration with every problem, the problems would become vastly more complicated to 

solve. We never can take account of  every  possible influence. We freely make approxi-

mations whenever possible to turn a complex problem into an easier one, as long as the 

answer will be accurate enough for our purposes. 

 A valuable skill to develop is the ability to know when an assumption or approxima-

tion is reasonable. It might be permissible to ignore air resistance when dropping a stone, 

but not when dropping a beach ball. Why? We must always be prepared to justify any 

approximation we make by showing the answer is not changed very much by its use. 

 As well as making simplifying approximations in models, we also recognize that 

measurements are approximate. Every measured quantity has some uncertainty; it is impos-

sible for a measurement to be exact to an arbitrarily large number of significant figures. 

Every measuring device has limits on the precision and accuracy of its measurements.  

      Approximating the Surface Area of the Human Body   Sometimes it is difficult or 

impossible to measure precisely a quantity that is needed for a problem. Then we have 

to make a reasonable estimate. Suppose we need to know the surface area of a human 

being to determine the heat loss by radiation in a cold room. We can estimate the height 

of an average person. We can also estimate the average distance around the waist or hips. 

Approximating the shape of a human body as a cylinder, we can estimate the surface area 

by calculating the surface area of a cylinder with the same height and circumference 

( Fig. 1.2a ). 

 If we need a better estimate, we use a slightly more refined model. For instance, 

we might approximate the arms, legs, trunk, and head and neck as cylinders of various 

sizes ( Fig. 1.2b) . How different is the sum of these areas from the original estimate? 

That gives an idea of how close the first estimate is. 

  Figure 1.3 

 Scanning electron micro-

graph of a precursor 

T lymphocyte (a type of 

white blood cell in the 

human body). The cell is 

approximately 12  μ m in 

diameter.  

  Example 1.9 

   Number of Cells in the Human Body 

 Average-sized cells in the human body are about 10  μ m in 

length ( Fig. 1.3 ). How many cells are in the human body? 

Make an order-of-magnitude estimate. 

  Strategy   We divide this problem into three subproblems: 

estimating the volume of a human, estimating the volume of 

the average cell, and finally estimating the number of cells. 

 To find the volume of a human body, we approximate the 

body as a cylinder, as previously discussed. Next we assume 

the cells are cubical to find the volume of a cell. Third, the 

ratio of the two volumes (volume of the body to volume of 

the cell) shows how many cells are in the body.  

  Solution   Model the body as a cylinder. A typical height is 

about 2 m. A typical  maximum  circumference (think hip 

size) is about 1 m. The corresponding radius is 1/(2 p ) m, or 

about 1/6 m. The  average  radius is somewhat smaller; say 

0.1 m. The volume of a cylinder is the height times the cross-

sectional area:

    V = Ah = p r 2 h ≈ 3 × (0.1 m ) 2  × (2 m) = 0.06  m 3   

continued on next page

(b)(a)

  Figure 1.2   Approximation of 

human body by one or more 

cylinders.  
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Example 1.9 continued

The volume of a cube is  V   =   s  3 . Then the volume of an average 

cell is about

     V  cell  ≈ (1 × 10−5 m ) 3  = 1 × 10−15  m 3   

The number of cells is the ratio of the two volumes:

N =   
volume of body

  ___________________  
average volume of cell

   ≈   6 × 1 0 −2   m 3  ___________ 
1 ×  10 −15   m 3 

   ≈ 6 ×  10 13 

    Discussion   Based on this rough estimate, we cannot rule 

out the possibility that a better estimate might be 3  ×  10 13 . 

On the other hand, we  can  rule out the possibility that the 

number of cells is, say, 100 million ( =  10 8 ).  

  Practice Problem 1.9   Drinking Water Consumed 
in the United States 

 How many liters of water are swallowed by the people living 

in the United States in one year? This is a type of problem 

made famous by the physicist Enrico Fermi (1901–1954), 

who was a master at this sort of back-of-the-envelope calcu-

lation. Such problems are often called  Fermi problems  in his 

honor. (1 liter  =  10  − 3  m 3  ≈ 1 quart.)   

       1.9  GRAPHS 

  Graphs are used to help us see a pattern in the relationship between two quantities. It is 

much easier to see a pattern on a graph than to see it in a table of numerical values. 

When we do experiments in physics, we change one quantity (the  independent vari-

able ) and see what happens to another (the  dependent variable ). We want to see how 

one variable  depends on  another. The value of the independent variable is usually plot-

ted along the horizontal axis of the graph. In a plot of  p  versus  q,  which means  p  is plot-

ted on the vertical axis and  q  on the horizontal axis, normally  p  is the dependent variable 

and  q  is the independent variable. 

 Some general guidelines for recording data and making graphs are given next.  

   Recording Data and Making Data Tables 

    1. Label columns with the names of the data being measured and be sure to include 

the units for the measurements. Do not erase any data, but just draw a line through 

data that you think are erroneous. Sometimes you may decide later that the data 

were correct after all.  

   2. Try to make a realistic estimate of the precision of the data being taken when 

recording numbers. For example, if the timer says 2.3673 s, but you know your 

reaction time can vary by as much as 0.1 s, the time should be recorded as 2.4 s. 

When doing calculations using measured values, remember to round the final 

answer to the correct number of significant figures.  

   3. Do not wait until you have collected all of your data to start a graph. It is much 

better to graph each data point as it is measured. By doing so, you can often iden-

tify equipment malfunction or measurement errors that make your data unreli-

able. You can also spot where something interesting happens and take data points 

closer together there. Graphing as you go means that you need to find out the 

range of values for both the independent and dependent variables.    

  Graphing Data 

    1. Make  large, neat  graphs. A tiny graph is not very illuminating. Use at least half a 

page. A graph made carelessly obscures the pattern between the two variables.  

   2. Label axes with the name of the quantities graphed and their units. Write a mean-

ingful title.  
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3. When a linear relation is expected, use a ruler or straightedge to draw the best-fit 

straight line. Do not  assume  that the line must go through the origin—make a 

measurement to find out, if possible. Some of the data points will probably fall 

above the line and some will fall below the line.  

 4.   Determine the slope of a best-fit line by measuring the ratio Δ y /Δ x  using as large 

a range of the graph as possible.  Do not choose  two data points to calculate the 

slope; instead, read values from two points on the  best-fit line.  Show the calcula-

tions. Do not forget to write the units; slopes of graphs in physics have units, 

since the quantities graphed have units.  

5. When a nonlinear relationship is expected between the two variables, the best 

way to test that relationship is to manipulate the data algebraically so that a linear 

graph is expected. The human eye is a good judge of whether a straight line fits 

a set of data points. It is not so good at deciding whether a curve is parabolic, 

cubic, or exponential. To test the relationship x =   1 _ 
2
   at 2 ,     where  x  and  t  are the quan-

tities measured, graph  x  versus  t  2  instead of  x  versus  t.   

   6. If one data point does not lie near the line or smooth curve connecting the other 

data points, that data point should be investigated to see whether an error was 

made in the measurement or whether some interesting event is occurring at that 

point. If something unusual is happening there, obtain additional data points in 

the vicinity.  

   7. When the slope of a graph is used to calculate some quantity, pay attention to the 

equation of the line and the units along the axes. The quantity to be found may be 

the inverse of the slope or twice the slope or one half the slope. For example, if 

you wish to find the value of  a  in the relationship     x =   1 _ 
2
   at 2  ,  and you make a graph 

of  x  versus  t  2 , then the slope of the line is       1 _ 
2
    a. The value of  a  you seek is twice 

the slope.   

  The equation of a straight line on a 

graph of  y  versus  x  can be written 

y   =   mx   +   b,  where  m  is the slope and 

b  is the  y -intercept (the value of  y  

corresponding to  x   =  0).  

  The equation of a straight line on a 

graph of  y  versus  x  can be written 

y   =   mx   +   b,  where  m  is the slope and 

b  is the  y -intercept (the value of  y  

corresponding to  x   =  0).  

  The symbol Δ, the Greek uppercase 

letter delta, stands for the differ-

ence between two measurements. 

The notation Δ y  is read aloud as 

“delta  y ” and represents a change 

in the value of  y.   

  The symbol Δ, the Greek uppercase 

letter delta, stands for the differ-

ence between two measurements. 

The notation Δ y  is read aloud as 

“delta  y ” and represents a change 

in the value of  y.   

  Example 1.10 

   Length of a Spring 

 In an introductory physics laboratory experiment, students are 

investigating how the length of a spring varies with the weight 

hanging from it. Various weights (accurately calibrated to 

0.01 N) ranging up to 6.00 N can be hung from the spring; then 

the length of the spring is measured with a meterstick ( Fig. 1.4 ). 

The goal is to see if the weight  F  and length  L  are related by

    F = kx  

where  x   =  ( L   −   L  0 ),  L  0  is the length of the spring when no 

weight is hanging from it, and  k  is called the  spring constant

of the spring. Graph the data in the table and calculate  k  for 

this spring. 

       F  (N):     0     0.50     1.00     2.50     3.00     3.50     4.00     5.00     6.00   

    L  (cm):     9.4     10.2     12.5     17.9     19.7     22.5     23.0     28.8     29.5      

  Strategy   Weight is the independent variable, so it is plotted 

on the horizontal axis. After plotting the data points, we draw 

the best-fit straight line. Then we calculate the slope of the 

line, using two points on the line that are widely separated 

and that cross gridlines of the graph (so the values are easy to 

read). The slope of the graph is not  k;  we must solve the equa-

tion for  L,  since length is plotted on the vertical axis.  
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  Figure 1.4 

 A weight causes an extension in the length of a spring.  

continued on next page



Example 1.10 continued  

Solution    Figure 1.5  shows a graph with data points and a 

best-fit straight line. There is some scatter in the data, but a 

linear relationship is plausible. 

 Two points where the line crosses gridlines of the graph 

are (0.80 N, 12.0 cm) and (4.40 N, 25.0 cm). From these, we 

calculate the slope:

    slope =   ΔL ___ 
ΔF

   =   25.0 cm − 12.0 cm  ________________  
4.40 N − 0.80 N

   = 3.61   cm ___ 
N

     

 By analyzing the units of the equation  F   =   k ( L   −   L  0 ), it is 

clear that the slope cannot be the spring constant;  k  has the 

same units as weight divided by length (N/cm). Is the slope 

equal to 1/ k?  The units would be correct for that case. To be 

sure, we solve the equation of the line for  L: 

    L =   F __ 
k
   + L0  

We recognize the equation of a line with a slope of 1/ k.  

Therefore,

    k =   1 _________ 
3.61 cm/N

   = 0.277 N/cm    

  Discussion   As discussed in the graphing guidelines, the 

slope of the straight-line graph is calculated from two 

widely spaced values  along the best-fit line.  We do not 

subtract values of actual data points. We are looking for an 

average value from the data; using two data points to find 

the slope would defeat the purpose of plotting a graph or 

of taking more than two data measurements. The values 

read from the graph, including the units, are indicated in 

 Fig. 1.5 . The units for the slope are cm/N, since we plotted 

centimeters versus newtons. For this particular problem the 

 inverse  of the slope is the quantity we seek, the spring con-

stant in N/cm.  

  Practice Problem 1.10   Another Weight on Spring 

 What is the length of the spring of  Example 1.10  when a 

weight of 8.00 N is suspended? Assume that the relationship 

found in  Example 1.10  still holds for this weight.   

F (N)

0 1.00 2.00 3.00 4.00 5.00 6.00

L (cm)

0.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0

∆L = 13.0 cm

∆F = 3.60 N

(4.40 N, 25.0 cm)

(0.80 N, 12.0 cm)

  Figure 1.5 

 Spring length versus weight hanging.  

continued on next page

       Master the Concepts 

    • Terms used in physics must be precisely defined. A term 

may have a different meaning in physics from the mean-

ing of the same word in other contexts.  

   • A working knowledge of algebra, geometry, and trigo-

nometry is essential in the study of physics.  

   • The  factor  by which a quantity is increased or decreased 

is the ratio of the new value to the original value.  

   • When we say that  A  is  proportional  to  B  (written  A  ∝  B ), 

we mean that if  B  increases by some factor, then  A  must 

increase by the same factor.  

   • In  scientific notation,  a number is written as the product 

of a number between 1 and 10 and a whole-number 

power of ten.  

   •  Significant figures  are the basic  grammar  of precision. 

They enable us to communicate quantitative informa-

tion and indicate the precision to which that information 

is known.  

   • When two or more quantities are added or subtracted, the 

result is as precise as the  least precise  of the quantities. 

When quantities are multiplied or divided, the result has 

1.9  GRAPHS 17
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  Conceptual Questions 

    1. Give a few reasons for studying physics.  

   2. Why must words be carefully defined for scientific use?  

   3. Why are simplified models used in scientific study if 

they do not exactly match real conditions?  

   4. By what factor does tripling the radius of a circle 

increase (a) the circumference of the circle? (b) the area 

of the circle?  

   5. What are some of the advantages of scientific notation?  

   6. After which numeral is the decimal point usually placed 

in scientific notation? What determines the number of 

numerical digits written in scientific notation?  

   7. Are all the digits listed as “significant figures” precisely 

known? Might any of the significant digits be less pre-

cisely known than others? Explain.  

   8. Why is it important to write quantities with the correct 

number of significant figures?  

   9. List three of the base units used in SI.  

   10. What are some of the differences between the SI and 

the customary U.S. system of units? Why is SI preferred 

for scientific work?  

   11. Sort the following units into three groups of dimensions 

and identify the dimensions: fathoms, grams, years, kilo-

meters, miles, months, kilograms, inches, seconds.  

   12. What are the first two steps to be followed in solving 

almost any physics problem?  

   13. Why do scientists plot graphs of their data instead of 

just listing values?  

   14. A student’s lab report concludes, “The speed of sound 

in air is 327.” What is wrong with that statement?  

   15. Once the solution of a problem has been found, what should 

be done before moving on to solve another problem?    

  Multiple-Choice Questions 

    1. One kilometer is approximately

    (a) 2 miles     (b) 1/2 mile     (c) 1/10 mile     (d) 1/4 mile     

   2. 55 mi/h is approximately

    (a) 90 km/h     (b) 30 km/h     (c) 10 km/h     (d) 2 km/h     

   3. By what factor does the volume of a cube increase if the 

length of the edges are doubled?

    (a) 16     (b) 8     (c) 4     (d) 2     (e)      √
__

 2         

   4. If the length of a box is reduced to one third of its origi-

nal value and the width and height are doubled, by what 

factor has the volume changed?

    (a) 2/3     (b) 1     (c) 4/3     (d) 3/2     

 (e) depends on relative proportion of length to height 

and width     

   5. If the area of a circle is found to be half of its original 

value after the radius is multiplied by a certain factor, 

what was the factor used?

    (a) 1/(2 p )     (b) 1/2     (c)      √
__

 2         (d)     1/ √
__

 2         (e) 1/4     

   6. In terms of the original diameter d, what new diameter 

will result in a new spherical volume that is a factor of 

eight times the original volume?

    (a) 8 d      (b) 2 d      (c)  d /2     (d)     d ×   3  √
__

 2         (e)  d /8     

   7. An equation for potential energy states  U   =   mgh.  If  U  is 

in kg⋅m 2 ⋅s  − 2 ,  m  is in kg, and  g  is in m⋅s  − 2 , what are the 

units of  h? 

    (a) s     (b) s 2      (c) m  − 1      (d) m     (e) g  − 1      

the same number of significant figures as the quantity 

with the  smallest number of significant figures.   

   • Order-of-magnitude estimates and calculations are made 

to be sure that the more precise calculations are realistic.  

   • The units used for scientific work are those from the 

Système International  ( SI ). SI uses seven  base units,  

which include the meter (m), the kilogram (kg), and the 

second (s) for length, mass, and time, respectively. 

Using combinations of the base units, we can construct 

other  derived units.   

   • If the statement of a problem includes a mixture of dif-

ferent units, the units should be converted to a single, 

consistent set before the problem is solved. Usually the 

best way is to convert everything to SI units.  

   • Dimensional analysis is used as a quick check on the 

validity of equations. Whenever quantities are added, 

subtracted, or equated, they must have the same dimen-

sions (although they may not necessarily be given in the 

same units).  

   • Mathematical approximations aid in simplifying com-

plicated problems.  

   • Problem-solving techniques are  skills  that must be  prac-

ticed  to be learned.  

   • A graph is plotted to give a picture of the data and to 

show how one variable changes with respect to another. 

Graphs are used to help us see a pattern in the relation-

ship between two variables.  

   • Whenever possible, make a careful choice of the vari-

ables plotted so that the graph displays a linear 

relationship.    

Master the Concepts continued
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   8. The equation for the speed of sound in a gas states that 

    v =  √
_______

 g  k  B T/m  .   Speed  v  is measured in m/s,  g   is a dimen-

sionless constant,  T  is temperature in kelvins (K), and 

 m  is mass in kg. What are the units for the Boltzmann 

constant,  k  B ?

    (a) kg⋅m 2 ⋅s 2 ⋅K     (b) kg⋅m 2 ⋅s  − 2 ⋅K  − 1      (c) kg  − 1 ⋅m  − 2 ⋅s 2 ⋅K     

(d) kg⋅m/s     (e) kg⋅m 2 ⋅s  − 2      

   9. How many significant figures should be written in the 

sum 4.56 g  +  9.032 g  +  580.0078 g  +  540.439 g?

    (a) 3     (b) 4     (c) 5     (d) 6     (e) 7     

   10. How many significant figures should be written in the 

product 0.007 840 6 m  ×  9.450 20 m?

    (a) 3     (b) 4     (c) 5     (d) 6     (e) 7       

  Problems 

       Combination conceptual/quantitative problem  

      Biological or medical application  

 ✦     Challenging problem  

 Blue #     Detailed solution in the Student Solutions Manual  

 1  2      Problems paired by concept  

      Text website interactive or tutorial   

  1.3 The Use of Mathematics 

    1. The gardener is told that he must increase the height of 

his fences 37% if he wants to keep the deer from jump-

ing in to eat the foliage and blossoms. If the current 

fence is 1.8 m high, how high will the new fence be?  

   2. What is the ratio of the number of seconds in a day to 

the number of hours in a day?  

   3. A spherical balloon expands when it is taken from the 

cold outdoors to the inside of a warm house. If its sur-

face area increases 16.0%, by what percentage does the 

radius of the balloon change?  

   4. A spherical balloon is partially blown up and its surface 

area is measured. More air is then added, increasing the 

volume of the balloon. If the surface area of the balloon 

expands by a factor of 2.0 during this procedure, by 

what factor does the radius of the balloon change? (    

tutorial: car on curve)  

   5. For any cube with edges of length  s,  what is the ratio of 

the surface area to the volume?  

   6. Samantha is 1.50 m tall on her eleventh birthday and 

1.65 m tall on her twelfth birthday. By what factor has 

her height increased? By what percentage?  

   7. The “scale” of a certain map is 1/10 000. This means 

the length of, say, a road as represented on the map is 

1/10 000 the actual length of the road. What is the ratio 

of the  area  of a park as represented on the map to the 

actual area of the park? (   
 
tutorial: scaling)  

   8. On Monday, a stock market index goes up 5.00%. On 

Tuesday, the index goes down 5.00%. What is the net 

percentage change in the index for the two days?   

   9. According to Kepler’s third law, the orbital period  T  of 

a planet is related to the radius  R  of its orbit by  T  2  ∝  R  3 . 

Jupiter’s orbit is larger than Earth’s by a factor of 5.19. 

What is Jupiter’s orbital period? (Earth’s orbital period 

is 1 yr.)  

   10. If the radius of a circular garden plot is increased by 25%, 

by what percentage does the area of the garden increase?  

   11. A poster advertising a student election candidate is too 

large according to the election rules. The candidate is 

told she must reduce the length and width of the poster 

by 20.0%. By what percentage will the area of the poster 

be reduced?  

   12. An architect is redesigning a rectangular room on the 

blueprints of the house. He decides to double the width 

of the room, increase the length by 50%, and increase 

the height by 20%. By what factor has the volume of the 

room increased?    

  1.4 Scientific Notation and Significant Figures 

    13. Perform these operations with the appropriate number 

of significant figures.

    (a) 3.783  ×  10 6  kg  +  1.25  ×  10 8  kg  

   (b) (3.783  ×  10 6  m)  ÷  (3.0  ×  10  − 2  s)     

   14. Write these numbers in scientific notation:    (a) the U.S. 

population, 290 000 000;     (b) the diameter of a helium 

nucleus, 0.000 000 000 000 003 8 m.     

   15. In the following calculations, be sure to use an appro-

priate number of significant figures.

    (a) 3.68  ×  10 7  g  −  4.759  ×  10 5  g  

   (b)       6.497 ×  10 4   m 2   _____________  
5.1037 ×  10 2  m       

     16. Write your answer to the following problems with the 

appropriate number of significant figures.

    (a) 6.85  ×  10  − 5  m  +  2.7  ×  10  − 7  m  

   (b) 702.35 km  +  1897.648 km  

   (c) 5.0 m  ×  4.3 m  

   (d) (0.04/ p ) cm  

   (e) (0.040/ p ) m     

   17. Solve the following problem and express the answer in 

scientific notation with the appropriate number of signifi-

cant figures: (3.2 m)  ×  (4.0  ×  10  − 3  m)  ×  (1.3  ×  10  − 8  m).  

   18. How many significant figures are in each of these 

measurements?

    (a) 7.68 g      (b) 0.420 kg  

   (c) 0.073 m      (d) 7.68  ×  10 5  g  

   (e) 4.20  ×  10 3  kg     (f) 7.3  ×  10  − 2  m  

   (g) 2.300  ×  10 4  s     
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   19. Solve the following problem and express the answer in 

meters per second (m/s) with the appropriate number of 

significant figures. (3.21 m)/(7.00 ms)  =  ? [ Hint:  Note 

that ms stands for milliseconds.]  

   20. Solve the following problem and express the answer in 

meters with the appropriate number of significant fig-

ures and in scientific notation:

    3.08 ×  10 −1  km + 2.00 ×  10 3  cm      

  1.5 Units 

    21. A cell membrane is 7.0 nm thick. How thick is it in 

inches?      

   22. The label on a small soda bottle lists the volume of the 

drink as 355 mL. (a) How many fluid ounces are in 

the bottle? A competitor’s drink is labeled 16.0 fl oz. 

(b) How many milliliters are in that drink?        

   23. The length of the river span of the Brooklyn Bridge is 

1595.5 ft. The total length of the bridge is 6016 ft. Find 

the length and the order of magnitude in meters of 

(a) the river span and (b) the total bridge length?  

   24. Convert 1.00 km/h to meters per second (m/s).  

   25. A sprinter can run at a top speed of 0.32 miles per min-

ute. Express her speed in (a) m/s and (b) mi/h.  

   26. The first modern Olympics in 1896 had a marathon dis-

tance of 40 km. In 1908, for the Olympic marathon in 

London, the length was changed to 42.195 km to pro-

vide the British royal family with a better view of the 

race. This distance was adopted as the official marathon 

length in 1921 by the International Amateur Athletic 

Federation. What is the official length of the marathon 

in miles?      

   27. At the end of 2006 an expert economist from the Global 

Economic Institute in Kiel, Germany, predicted a drop 

in the value of the dollar against the euro of 10% over 

the next 5 years. If the exchange rate was $1.27 to 

1 euro on November 5, 2006, and was $1.45 to 1 euro 

on November 5, 2007, what was the actual drop in the 

value of the dollar over the first year?

     28. The intensity of the Sun’s radiation that reaches Earth’s 

atmosphere is 1.4 kW/m 2  (kW  =  kilowatt; W  =  watt). 

Convert this to W/cm 2 .  

   29. Density is the ratio of mass to volume. Mercury has a 

density of 1.36  ×  10 4  kg/m 3 . What is the density of mer-

cury in units of g/cm 3 ?  

   30. A molecule in air is moving at a speed of 459 m/s. How 

many meters would the molecule move during 7.00 ms 

(milliseconds) if it didn ’ t collide with any other 

molecules?  

   31. Express this product in units of km 3  with the appropri-

ate number of significant figures: (3.2 km)  ×  (4.0 m)  ×  

(13  ×  10  − 3  mm).  

   32. (a) How many square centimeters are in 1 square foot? 

(1 in.  =  2.54 cm.) (b) How many square centimeters 

are in 1 square meter? (c) Using your answers to parts 

(a) and (b), but without using your calculator, roughly 

how many square feet are in one square meter?  

   33. A snail crawls at a pace of 5.0 cm/min. Express the 

snail’s speed in (a) ft/s and (b) mi/h.  

   34. An average-sized capillary in the human body has a 

cross-sectional area of about 150  μ m 2 . What is this area 

in square millimeters (mm 2 )?      

  1.6 Dimensional Analysis 

    35. An equation for potential energy states  U   =   mgh.  If  U  is 

in joules, with  m  in kg,  h  in m, and  g  in m/s 2 , find the 

combination of SI base units that are equivalent to 

joules.  

   36. One equation involving force states that  F  net   =   ma,  

where  F  net  is in newtons,  m  is in kg, and  a  is in m⋅s  − 2 . 

Another equation states that  F   =   −  kx,  where  F  is in 

newtons,  k  is in kg⋅s  − 2 , and  x  is in m. (a) Analyze 

the dimensions of  ma  and  kx  to show they are equiva-

lent. (b) What are the dimensions of the force unit 

newton?  

   37. An equation for the period  T  of a planet (the time to 

make one orbit about the Sun) is 4 p     2  r  3 /( GM ), where  T  is 

in s,  r  is in m,  G  is in m 3 /(kg⋅s 2 ), and  M  is in kg. Show 

that the equation is dimensionally correct.  

   38. The relationship between kinetic energy  K  (SI unit 

kg⋅m 2⋅ s  − 2 ) and momentum  p  is  K   =   p  2 /(2 m ), where  m  

stands for mass. What is the SI unit of momentum?       

   39. An expression for buoyant force is  F  B   =   r  gV,  where  F  B  

has dimensions [MLT  − 2 ],  r  (density) has dimensions 

[ML  − 3 ], and  g  (gravitational field strength) has dimen-

sions [LT  − 2 ]. (a) What must be the dimensions of  V?  

(b) Which could be the correct interpretation of  V:  

velocity or volume?  

   40. Use dimensional analysis to determine how the linear 

speed ( v  in m/s) of a particle traveling in a circle depends 

on some, or all, of the following properties:  r  is the 

radius of the circle;  w  is an angular frequency in s  − 1  with 

which the particle orbits about the circle, and  m  is the 

mass of the particle. There is no dimensionless constant 

involved in the relation.    

  1.8 Approximation 

    41. What is the approximate distance from your eyes to a 

book you are reading?  

   42. What is the approximate volume of your physics text-

book in cubic centimeters (cm 3 )?  

   43.    (a) Estimate the average mass of a person’s leg.  

    (b) Estimate the length of a full-size school bus.     



   44. Estimate the number of times a human heart beats dur-

ing its lifetime.  

   45. Estimate the number of automobile repair shops in the 

city you live in by considering its population, how 

often an automobile needs repairs, and how many cars 

each shop can service per day. Then look in the yel-

low pages of your phone directory to see how accu-

rate your estimate is. By what percentage was your 

estimate off?  

   46. What is the order of magnitude of the number of sec-

onds in one year?  

   47. What is the order of magnitude of the height (in meters) 

of a 40-story building?    

  1.9 Graphs 

    48. You have just performed an experiment in which you 

measured many values of two quantities,  A  and  B.  Accord-

ing to theory,  A   =   cB  3   +   A  0 . You want to verify that the 

values of  c  and  A  0  are correct by making a graph of your 

data that enables you to determine their values from a 

slope and a vertical axis intercept. What quantities do you 

put on the vertical and horizontal axes of the plot?  

49. A nurse recorded the values shown in the temperature 

chart for a patient’s temperature. Plot a graph of tem-

perature versus elapsed time and from the graph find 

(a) an estimate of the temperature at noon and (b) the 

slope of the graph. (c) Would you expect the graph to 

follow the same trend over the next 12 hours? Explain.

        Time       Temp ( ° F)     

     10:00  a.m.      100.00   

    10:30  a.m.      100.45   

    11:00  a.m.      100.90   

    11:30  a.m.      101.35   

    12:45  p.m.      102.48        

   50. A graph of  x  versus  t  4 , with  x  on the vertical axis and  t  4

on the horizontal axis, is linear. Its slope is 25 m/s 4  and 

its vertical axis intercept is 3 m. Write an equation for  x  

as a function of  t.   

     51. A patient’s temperature was 97.0 ° F at 8:05  a.m.  and 

101.0 ° F at 12:05  p.m.  If the temperature change with 

respect to elapsed time was linear throughout the day, 

what would the patient’s temperature be at 3:35  p.m.?   

52. The weight of a baby measured over an 11-mon period 

is given in the weight chart for this problem. (a) Plot the 

baby’s weight versus age over the 11 mon. (b) What 

was the average monthly weight gain for this baby over 

the period from birth to 5 mon? How do you find this 

value from the graph? (c) What was the average monthly 

weight gain for the baby over the period from 5 mon to 

10 mon? (d) If a baby continued to grow at the same 

rate as in the first five months of life, what would the 

child weigh at age 12 yr?

        Weight (lb)       Age (mon)     

     6.6     0 (birth)   

    7.4     1.0   

    9.6     2.0   

    11.2     3.0   

    12.0     4.0   

    13.6     5.0   

    13.8     6.0   

    14.8     7.0   

    15.0     8.0   

    16.6     9.0   

    17.5     10.0   

    18.4     11.0        

   53. A physics student plots results of an experiment as  v  

versus  t.  The equation that describes the line is given by 

 at   =   v   −   v  0 . (a) What is the slope of this line? (b) What 

is the vertical axis intercept of this line?  

   54. A linear plot of speed versus elapsed time has a slope of 

6.0 m/s 2  and a vertical intercept of 3.0 m/s. (a) What is 

the change in speed in the time interval between 4.0 s 

and 6.0 s? (b) What is the speed when the elapsed time 

is equal to 5.0 s?  

   55. In a laboratory you measure the decay rate of a sample 

of radioactive carbon. You write down the following 

measurements:

       Time (min)      0     15     30     45     60     75     90   

    Decays/s      405     237     140     90     55     32     19      

     (a) Plot the decays per second versus time. (b) Plot the 

natural logarithm of the decays per second versus the 

time. Why might the presentation of the data in this 

form be useful?     

   56. An object is moving in the  x -direction. A graph of the 

distance it has moved as a function of time is shown. 

(a) What are the slope and vertical axis intercept? (Be 

sure to include units.) (b) What physical significance do 

the slope and intercept on the vertical axis have for this 

graph?         
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  Comprehensive Problems 

    57. It is useful to know when a small number is negligible. 

Perform the following computations. (a) 186.300  +  

0.0030 (b) 186.300  −  0.0030 (c) 186.300  ×  0.0030 

(d) 186.300/0.0030 (e) For cases (a) and (b), what percent 

error will result if you ignore the 0.0030? Explain why you 

can never ignore the smaller number, 0.0030, for case (c) 

and case (d)? (f) What rule can you make about ignoring 

small values?  

     58. The weight of an object at the surface of a planet is pro-

portional to the planet’s mass and inversely proportional 

to the square of the radius of the planet. Jupiter’s radius 

is 11 times Earth’s and its mass is 320 times Earth’s. An 

apple weighs 1.0 N on Earth. How much would it weigh 

on Jupiter?  

     59. In cleaning out the artery of a patient, a doctor 

increases the radius of the opening by a factor of 2.0. 

By what factor does the cross-sectional area of the 

artery change?  

       60. A scanning electron micrograph of xylem vessels in a 

corn root shows the vessels magnified by a factor of 

600. In the micrograph the xylem vessel is 3.0 cm in 

diameter. (a) What is the diameter of the vessel itself? 

(b) By what factor has the cross-sectional area of the 

vessel been increased in the micrograph?  

     61. The average speed of a nitrogen molecule in air is pro-

portional to the square root of the temperature in kel-

vins (K). If the average speed is 475 m/s on a warm 

summer day (temperature  =  300.0 K), what is the aver-

age speed on a cold winter day (250.0 K)?  

   62. A furlong is 220 yd; a fortnight is 14 d. How fast is 

1 furlong per fortnight (a) in  μ m/s? (b) in km/day?  

   63. Given these measurements, identify the number of sig-

nificant figures and rewrite in scientific notation.

    (a) 0.00574 kg     (b) 2 m     (c) 0.450  ×  10  − 2  m    

 (d) 45.0 kg     (e) 10.09  ×  10 4  s     (f) 0.09500  ×  10 5  mL     

   64. A car has a gas tank that holds 12.5 U.S. gal. Using the 

conversion factors from the inside front cover, (a) deter-

mine the size of the gas tank in cubic inches. (b) A cubit is 

an ancient measurement of length that was defined as the 

distance from the elbow to the tip of the finger, about 18 in. 

long. What is the size of the gas tank in cubic cubits?  

     65. You are given these approximate measurements: (a) the 

radius of Earth is 6  ×  10 6  m, (b) the length of a human 

body is 6 ft, (c) a cell’s diameter is 10  − 6  m, (d) the width 

of the hemoglobin molecule is 3  ×  10  − 9  m, and (e) the 

distance between two atoms (carbon and nitrogen) is 

3  ×  10  − 10  m. Write these measurements in the simplest 

possible metric prefix forms (in either nm, Mm,  μ m, or 

whatever works best).  

     66. A typical virus is a packet of protein and DNA (or 

RNA) and can be spherical in shape. The influenza A 

virus is a spherical virus that has a diameter of 85 nm. 

✦✦

✦✦

✦✦

If the volume of saliva coughed onto you by your friend 

with the flu is 0.010 cm 3  and 10  − 9  of that volume con-

sists of viral particles, how many influenza viruses have 

just landed on you?  

     67. The smallest “living” thing is probably a type of infec-

tious agent known as a viroid. Viroids are plant patho-

gens that consist of a circular loop of single-stranded 

RNA, containing about 300 bases. (Think of the bases 

as beads strung on a circular RNA string.) The distance 

from one base to the next (measured along the circum-

ference of the circular loop) is about 0.35 nm. What is 

the diameter of a viroid in (a) m, (b)  μ m, and (c) in.?  

   68. The largest living creature on Earth is the blue whale, 

which has an average length of 70 ft. The largest blue 

whale on record (and therefore the largest animal ever 

found) was 1.10  ×  10 2  ft long. (a) Convert this length 

to meters. (b) If a double-decker London bus is 8.0 m 

long, how many double-decker-bus lengths is the 

record whale?  

   69. The record blue whale in Problem 68 had a mass of 

1.9  ×  10 5  kg. Assuming that its average density was 

0.85 g/cm 3 , as has been measured for other blue whales, 

what was the volume of the whale in cubic meters (m 3 )? 

(Average density is the ratio of mass to volume.)  

   70. A sheet of paper has length 27.95 cm, width 8.5 in., and 

thickness 0.10 mm. What is the volume of a sheet of 

paper in m 3 ? (Volume  =  length  ×  width  ×  thickness.)  

     71. An object moving at constant speed  v  around a circle of 

radius  r  has an acceleration  a  directed toward the center 

of the circle. The SI unit of acceleration is m/s 2 . (a) Use 

dimensional analysis to find  a  as a function of  v  and  r.  

(b) If the speed is increased 10.0%, by what percentage 

does the radial acceleration increase?  

     72. The speed of ocean waves depends on their wavelength 

 l  (measured in meters) and the gravitational field 

strength  g  (measured in m/s 2 ) in this way:

v  = Kl pgq

  where  K  is a dimensionless constant. Find the values of 

the exponents  p  and  q.   

   73. In the United States, we often use miles per hour (mi/h) 

when discussing speed, but the SI unit of speed is m/s. 

What is the conversion factor for changing m/s to 

mi/h? If you want to make a quick approximation of the 

speed in mi/h given the speed in m/s, what might be the 

easiest conversion factor to use?  

✦✦

✦✦



     74. How many cups of water are required to fill a bathtub?  

     75. Without looking up any data, make an order-of-

magnitude estimate of the annual consumption of gas-

oline (in gallons) by passenger cars in the United 

States. Make reasonable order-of-magnitude estimates 

for any quantities you need. Think in terms of average 

quantities. (1 gal ≈ 4 L.)  

   76. Some thieves, escaping after a bank robbery, drop a sack 

of money on the sidewalk. (a) Estimate the mass of the 

sack if it contains $5000 in half-dollar coins. (b) Estimate 

the mass if the sack contains $1 000 000 in $20 bills.  

   77. The weight  W  of an object is given by  W   =   mg,  where  m  

is the object’s mass and  g  is the gravitational field 

strength. The SI unit of field strength  g,  expressed in SI 

base units, is m/s 2 . What is the SI unit for weight, 

expressed in base units?  

   78. Kepler’s law of planetary motion says that the square of 

the period of a planet ( T     2 ) is proportional to the cube of 

the distance of the planet from the Sun ( r   3 ). Mars is 

about twice as far from the Sun as Venus. How does the 

period of Mars compare with the period of Venus?  

     79. One morning you read in the  New York Times  that the 

net worth of the richest man in the world, Carlos Slim 

Helu of Mexico, is $59 000 000 000. Later that day you 

see him on the street, and he gives you a $100 bill. What 

is his net worth now? (Think of significant figures.)  

     80. Estimate the number of hairs on the average human 

head. [ Hint:  Consider the number of hairs in an area of 

1 in.2   and then consider the area covered by hair on the 

head.]  

   81. Suppose you have a pair of Seven League Boots. These 

are magic boots that enable you to stride along a distance 

of 7.0 leagues with each step. (a) If you march along at a 

military march pace of 120 paces/min, what will be your 

speed in km/h? (b) Assuming you could march on top of 

the oceans when you step off the continents, how long (in 

minutes) will it take you to march around the Earth at the 

equator? (1 league  =  3 mi  =  4.8 km.)  

     82. The electrical power  P  drawn from a generator by a 

lightbulb of resistance  R  is  P   =   V  2 / R,  where  V  is the line 

voltage. The resistance of bulb B is 42% greater than 

the resistance of bulb A. What is the ratio  P  B / P  A  of the 

power drawn by bulb B to the power drawn by bulb A if 

the line voltages are the same?  

     83. Three of the fundamental constants of physics are the 

speed of light,  c   =  3.0  ×  10 8  m/s, the universal gravita-

tional constant,  G   =  6.7  ×  10  − 11  m 3 ⋅kg  − 1 ⋅s  − 2 , and Planck’s 

constant,     h = 6.6 ×  10 −34  kg⋅ m 2 ⋅ s −1   .

  (a) Find a combination of these three constants that has 

the dimensions of time. This time is called the  Planck 

time  and represents the age of the universe before which 

the laws of physics as presently understood cannot be 

applied. (b) Using the formula for the Planck time 

derived in part (a), what is the time in seconds?  

✦✦

✦✦

✦✦

✦✦

✦✦

     84. Use dimensional analy-

sis to determine how 

the period  T  of a swing-

ing pendulum (the 

elapsed time for a com-

plete cycle of motion) 

depends on some, or 

all, of these properties: 

the length  L  of the pen-

dulum, the mass  m  of 

the pendulum bob, and 

the gravitational field 

strength  g  (in m/s 2 ). Assume that the amplitude of the 

swing (the maximum angle that the string makes with the 

vertical) has no effect on the period.      

     85. The Space Shuttle astronauts use a  massing chair  to 

measure their mass. The chair is attached to a spring 

and is free to oscillate back and forth. The frequency of 

the oscillation is measured and that is used to calculate 

the total mass  m  attached to the spring. If the spring 

constant of the spring  k  is measured in kg/s 2  and the 

chair’s frequency  f  is 0.50 s  − 1  for a 62-kg astronaut, 

what is the chair’s frequency for a 75-kg astronaut? 

The chair itself has a mass of 10.0 kg. [ Hint:  Use 

dimensional analysis to find out how  f  depends on  

m  and  k. ]  

     86. The average depth of the oceans is about 4 km, 

and oceans cover about 70% of Earth’s surface. Make 

an order-of-magnitude estimate of the volume of water 

in the oceans. Do not look up any data in books. (Use 

your ingenuity to estimate the radius or circumference 

of Earth.)  

     87. The population of a culture of yeast cells is studied in 

the laboratory to see the effects of limited resources 

(food, space) on population growth. At 2-h intervals, 

the size of the population (measured as total mass of 

yeast cells) is recorded (see table on p. 24). (a) Make 

a graph of the yeast population as a function of elapsed 

time. Draw a best-fit smooth curve. (b) Notice from 

the graph of part (a) that after a long time, the popula-

tion asymptotically approaches a maximum known as 

the  carrying capacity.  From the graph, estimate the 

carrying capacity for this population. (c) When the 

population is much smaller than the carrying capacity, 

the growth is expected to be exponential:  m ( t )  =   m  0  e   rt  , 

where  m  is the population at any time  t,   m  0  is the ini-

tial population,  r  is the  intrinsic growth rate  (i.e., the 

growth rate in the absence of limits), and  e  is the base 

of natural logarithms (see Appendix A.3). To obtain a 

straight line graph from this exponential relationship, 

we can plot the natural logarithm of  m / m  0 :

ln   m ___  m  0 
   = ln  e rt  = rt

  Make a graph of     ln (m/ m  0 )   versus  t  from  t   =  0 to 

 t   =  6.0 h, and use it to estimate the intrinsic growth 

✦✦

✦✦

✦✦
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rate  r  for the yeast population. (The term ln stands for 

the natural logarithm; see Appendix A.3 if you need 

help with natural logs.)

        Time (h)       Mass (g)     

     0.0     3.2   

    2.0     5.9   

    4.0     10.8   

    6.0     19.1   

    8.0     31.2   

    10.0     46.5   

    12.0     62.0   

    14.0     74.9   

    16.0     83.7   

    18.0     89.3   

    20.0     92.5   

    22.0     94.0   

    24.0     95.1          

  Answers to Practice Problems 

    1.1  81.0 W 

 1.2  (a) five; 1.0544  ×  10  − 4  kg; (b) four; 5.800  ×  10  − 3  cm; 

(c) ambiguous, three to six; if three, 6.02  ×  10 5  s 

 1.3  The least precise value is to the nearest hundredth of a 

meter, so we round the result to the nearest hundredth of a 

meter: 564.50 m or, in scientific notation, 5.6450  ×  10 2  m; 

five significant figures. 

 1.4  4.7 m/s 

 1.5  (a) 35.6 m/s; (b) 79.5 mi/h  

1.6  5.1  ×  10 14  m 2 ; 2.0  ×  10 8  mi 2   

1.7  The equation is dimensionally inconsistent; the right 

side has dimensions [L/T]. To have matching dimensions we 

must multiply the right side by [T]; the equation must involve 

time squared:     d =   1 _ 
2
   at 2 .   

 1.8  kinetic energy  =  (constant)  ×   mv  2 ; kinetic energy increases 

by 56%.  

1.9  10 11  L (Make a rough estimate of the population to be 

about 3  ×  10 8  people, each drinking about 1.5 L/day.)  

1.10  38.3 cm    

  Answers to Checkpoints 

   1.3 The volume increases by a factor of 27.  

  1.4 Order-of-magnitude estimates provide a quick method 

for obtaining limited precision solutions to problems. Even 

if greater accuracy is required, order-of-magnitude calcula-

tions are still useful as they provide a check as to the accu-

racy of the higher precision calculation.  

  1.5 1.9 L   

  1.6 (a) and (b) It is possible to multiply or divide quantities 

with different dimensions. (c) and (d) To be added or sub-

tracted, quantities must have the same dimensions.     



 C H A P T E R 

 2  Motion Along a Line      

PART ONE Mechanics

 Despite its enormous mass (425 to 900 kg), the Cape buffalo is capa-

ble of running at a top speed of about 55 km/h (34 mi/h). Since the 

top speed of the African lion is about the same, how is it ever possible 

for a lion to catch the buffalo, especially since the lion typically makes 

its move from a distance of 20 to 30 m from the buffalo? (See p. 34 

for the answer.)    
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 • scientific notation and significant figures (Section 1.4) 

 • converting units (Section 1.5) 

 • problem-solving techniques (Section 1.7) 

 • meaning of  velocity  in physics (Section 1.2)   

    2.1  POSITION AND DISPLACEMENT 

   Position 

 To describe motion unambiguously, we need a way to say  where  an object is located. 

Suppose that at 3:00  p.m.  a train stops on an east-west track as a result of an engine 

problem. The engineer wants to call the railroad office to report the problem. How can 

he tell them where to find the train? He might say something like “three kilometers east 

of the old trestle bridge.” Notice that he uses a point of reference: the old trestle bridge. 

Then he states how far the train is from that point and in what direction. If he omits any 

of the three pieces (the reference point, the distance, and the direction), then his descrip-

tion of the train’s whereabouts is ambiguous. 

 The same thing is done in physics. First, we choose a reference point, called the 

   origin.    Then, to describe the location of something, we give its distance from the origin 

and the direction. For motion along a line, we can choose the line of motion to be the 

 x -axis of a coordinate system. The origin is the point  x   =  0. The position of an object can 

be described by its  x -coordinate, which tells us both how far the object is from the ori-

gin and on which side. For the train in  Fig. 2.1 , we choose the origin at the center of the 

bridge and the  +  x -direction to the east. Then  x   =   + 3 km means the train is 3 km east of 

the bridge and  x   =   − 26 km means the train is 26 km west of the bridge.      

  Displacement 

 Once the train’s engine is repaired and it goes on its way, we might want to describe its 

motion. At 3:14  p.m.,  it leaves its initial position, 3 km east of the origin (see  Fig. 2.1 ). 

At 3:56  p.m.,  the train is 26 km west of the origin, which is 29 km to the west of its ini-

tial position.    Displacement    is defined as the change of the position—the final position 

minus the initial position. The displacement is written Δ x  where the symbol Δ (the 

uppercase Greek letter delta) means  the change in  the quantity that follows.

                       

Displacement:

 Δx =  x  f  −  x  i  (2-1)

Concepts & Skills to ReviewConcepts & Skills to Review

Displacement:  final position minus 

initial position 

Displacement:  final position minus 

initial position 

+x

Trestle
bridge

Initial position
3:14 P.M.

3 km

10 km

–26 km

OriginFinal position
3:56 P.M.

xf = –26 km
0

W E
xi = +3 km

Figure 2.1 Initial (xi) and final (xf) positions of a train. (Train not to scale.)

CONNECTION: 

The topic of Chapters 2 and 3 

is kinematics: the mathemat-

ical description of motion. 

Beginning in Chapter 4, we 

will learn the principles of 

physics that predict and 

explain why objects move the 

way they do.



 We can subtract  x -coordinates to find the displacement of the train. If we choose 

the  x -axis to the east, then  x  i   =   + 3 km and  x  f   =   − 26 km. The displacement is

    Δx =  x  f  −  x  i  = (−26 km) − (+3 km) = −29 km  

The displacement is 29 km in the − x -direction (west) ( Fig. 2.2 ).       

   Displacement Versus Distance        Notice that the magnitude of the displacement is 

not necessarily equal to the   distance traveled.  Suppose the train first travels 7 km to the 

east, putting it 10 km east of the origin, and then reverses direction and travels 36 km to 

the west. The total distance traveled in that case is (7 km  +  36 km)  =  43 km, but the 

magnitude of the displacement—which is the distance between the initial and final 

positions—is 29 km. The displacement depends only on the starting and ending posi-

tions, not on the path taken.  

Then the mule goes 7.2 km west to reach the market at posi-

tion x3. The displacement from the neighbor’s farm to the 

market is x3 − x2 = −7.2 km (negative because the displace-

ment is in the −x-direction). The problem asks for the dis-

placement of the mule from x1 to x3.

Solution We can eliminate x2, the intermediate position, 

by adding the two displacements:

( x  3  −  x  2 ) + ( x  2  −  x  1 ) = −7.2 km + 4.3 km

 x  3  −  x  1  = −2.9 km

The displacement is 2.9 km west.

Discussion When we added the two displacements, the 

intermediate position x2 dropped out, as it must since the 

displacement is independent of the path taken from the ini-

tial position to the final position. The result does not depend 

on the choice of origin.

Practice Problem 2.1 A Nervous Squirrel

A nervous squirrel, trying to cross a road, first moves 3.0 m 

east, then 4.0 m west, then 1.2 m west, then 6.0 m east. What 

is the squirrel’s total displacement?

Example 2.1

A Mule Hauling Corn to Market

A mule hauls the farmer’s wagon along a straight road for 

4.3 km directly east to the neighboring farm where a few bush-

els of corn are loaded onto the wagon. Then the farmer drives 

the mule back along the same straight road, heading west for 

7.2 km to the market. Find the displacement of the mule from 

the starting point to the market. (The train first travels 7 km to 

the east, then reverses direction and travels 36 km to the west.) 

Strategy The problem gives us two successive displace-

ments along a straight line. Let’s choose the +x-axis to point 

east and an arbitrary point along the road to be the origin. 

Suppose the mule starts at position x1 (Fig. 2.3). It goes east 

until it reaches the neighbor’s farm at position x2. The dis-

placement to the neighbor’s farm is x2 − x1 = 4.3 km east. 

Initial position
3:14 P.M.

xi = +3 km

Final position
3:56 P.M.

xf = –26 km

∆x = xf – xi = –29 km (29 km west) x

Figure 2.2 With the x-axis pointing east, Δx = xf − xi = −26 km − (+3 km) = −29 km. The train’s displacement is 

29 km west.

Origin

y

x
East

x3 x1 x2

North

x3 – x1

x3 – x2

x2 – x1

Figure 2.3

The total displacement is the sum of two successive displacements.

2.1  POSITION AND DISPLACEMENT 27
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   Adding Displacements    Generalizing the result of Example 2.1, the total displace-

ment for a trip with several parts is the sum of the displacements for each part of the 

trip. Although  x -coordinates depend on the choice of origin, displacements ( changes  in 

x -coordinates) do  not  depend on the choice of origin.     

CHECKPOINT 2.1

In Example 2.1, is the magnitude of the displacement equal to the distance trav-

eled? Explain.

   2.2  VELOCITY: RATE OF CHANGE OF POSITION 

  We introduced  velocity  as a quantity with magnitude and direction in Section 1.2. The 

magnitude is the speed with which the object moves and the direction is the direction of 

motion. Now we develop a mathematical definition of velocity that fits that description. 

Note that displacement indicates by how much and in what direction the position has 

changed, but implies nothing about  how long  it took to move from one point to the 

other. Velocity depends on both the displacement and the time interval.  

   Average Velocity 

 When a displacement Δ x  occurs during a time interval Δ t,  the    average velocity    during 

that time interval is

Average velocity:

  v  av,x  =   Δx ___ 
Δt

   (2-2)

 Since Δ t  is always positive, the direction of the average velocity is the same as the direc-

tion of the displacement .

   The symbol Δ does not stand alone and cannot be canceled in equations because it 

modifies  the quantity that follows it;       Δx ___ 
Δt

     means   
     x  f  −  x  i  ______ 
 t  f  −  t  i 

  ,   which is  not  the same as  x / t.  

Solution The time interval is Δt = 56 min −14 min = 42 min. 

Converting to hours,

Δt = 42 min ×   1 h ______ 
60 min

   = 0.70 h

The average velocity is

 v  av,x  =   Δx ___ 
Δt

   =   −29 km _______ 
0.70 h

   = −   41 km/h

The negative sign means that the average velocity is directed 

along the negative x-axis, or to the west.

Example 2.2

Average Velocity of a Train

Find the average velocity in kilometers per hour of the train 

shown in Fig. 2.1 during the time interval between 3:14 p.m., 

when the train is 3 km east of the origin, and 3:56 p.m., when 

it is 26 km west of the origin.

Strategy We choose the +x-axis to the east, as before. 

Then the displacement is Δx = −29 km, which means 29 km 

to the west. The average velocity is also to the west, so vav,x 

is negative. We convert Δt to hours to find the average veloc-

ity in kilometers per hour.

continued on next page

Reminder: the symbol Δ stands for 

the change in. If the initial value of 

a quantity Q is Qi and the final value 

is Qf, then ΔQ = Qf − Qi. ΔQ is read 

“delta Q.”



   Average Speed Versus Average Velocity    The  average  velocity does not convey 

detailed information about the motion during the corresponding time interval Δ t.  The 

average velocity would be the same for any other motion that takes the object through 

the same displacement in the same amount of time. However, the average  speed,  

defined as the total  distance  traveled divided by the time interval, depends on the path 

traveled.     

CHECKPOINT 2.2

Can average speed ever be greater than the magnitude of the average velocity? 

Explain.

   Instantaneous Velocity 

The speedometer of a car does not indicate the average speed for an entire trip.  When 

a speedometer reads 55 mi/h, it does   not   necessarily mean that the car travels 55 miles 

in the next hour; the car could change its speed or direction or stop during that hour.  

The speedometer reading can be used to calculate how far the car travels during a  

very short time interval —short enough that the speed does not change appreciably. 

For instance, at 55 mi/h ( =  25 m/s), we can calculate that in 0.010 s the car moves 

25 m/s  ×  0.010 s  =  0.25 m—as long as the speed does not change significantly during 

that 0.010-s interval. 

 Similarly, the    instantaneous velocity    is a quantity whose magnitude is the speed 

and whose direction is the direction of motion. The instantaneous velocity can be used 

to calculate the  displacement  of the object  during a very short time interval,  as long as 

neither the speed nor the direction of motion  change significantly during that time inter-

val. Repeating the word  instantaneous  can get cumbersome. When we refer simply to 

the velocity,  we always mean the  instantaneous  velocity. 

Discussion If the train had started at the same instant of 

time, 3:14 p.m., and had traveled directly west at a constant 

41 km/h, it would have ended up in exactly the same place—

26 km west of the trestle bridge—at 3:56 p.m.

Had we started measuring time from when we first spot-

ted the motionless train at 3:00 p.m., instead of 3:14 p.m., we 

would have found the average velocity over a different time 

interval, changing the average velocity. The average 

velocity depends on the time interval considered.

The magnitude of the train’s average velocity is not equal 

to the total distance traveled divided by the time interval for 

the complete trip. The latter quantity is called the average 

speed:

average speed =   distance traveled  ______________  
total time

   =   43 km ______ 
0.70 h

   = 61 km/h

The distinction arises because the average velocity is the 

constant velocity that would result in the same displacement 

(during the given time interval), while the average speed is 

the constant speed that would result in the same distance 

traveled (during the same time interval).

Practice Problem 2.2 Average Velocity for a 
Different Time Interval

What is the average velocity of the same train during 

the time interval from 3:28 p.m., when it is at x = 10 km, to 

3:56 p.m., when it is at x = −26 km?

Example 2.2 continued

2.2  VELOCITY: RATE OF CHANGE OF POSITION 29
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 Thus, the velocity at some instant of time  t  is the average velocity during a  very 

short  time interval:

 

Instantaneous velocity:

 vx =   lim    
Δt→0

    Δx ___ 
Δt

   (2-3)

(Δx is the displacement during a very short time interval Δt)

 The notation lim  
 
 is read “the limit, as Δ t  approaches zero, of . . . .” In other words, 

let the time interval get smaller and smaller,  approaching —but never reaching—zero. 

This notation in Eq. (2-3) reminds you that Δ t  must be a  very short  time interval. How 

short a time interval is short enough? If you use a shorter time interval and the calcula-

tion of  v   x   always gives the same value (to within the precision of your measurements), 

then Δ t  is short enough. In other words, Δ t  must be short enough that we can treat the 

velocity as constant during that time interval. When  v   x   is constant, cutting Δ t  in half also 

cuts the displacement in half, giving the same value for Δ x /Δ t.   

  Graphical Relationships Between Position and Velocity 

 For motion along the  x -axis, the displacement is Δ x.  The average velocity can be repre-

sented on the graph of  x ( t ) as the slope of a line connecting two points (called a  chord ). 

In  Fig. 2.4a , the displacement Δ x   =   x  3  −  x  1  is the  rise  of the graph (the change along the 

vertical axis) and the time interval Δ t   =   t  3  −  t  1  is the  run  of the graph (the change along 

the horizontal axis). The slope of the chord is the rise over the run:

     slope of chord =   rise ____ 
run

   =   Δx ___ 
Δt

   =  v  av,x     (2-4)   

The slope of the chord is the average velocity for that time interval.       

Δ t →0Δ t →0

Time (t)
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x
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t1 t3t2

Slope of chord
gives average
velocity over
time interval
from t1 to t3

x3
x2

x1

Slope of tangent gives
instantaneous velocity

Slope of chord
gives average
velocity over
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interval
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Figure 2.4 A graph of x(t) for an object moving along the x-axis. (a) The average velocity vx,av for the time interval t1 to t3 

is the slope of the chord connecting those two points on the graph. (b) The average velocity measured over a shorter time 

interval. As the time interval gets shorter and shorter, the average velocity approaches the instantaneous velocity vx at the 

instant t2. The slope of the tangent line to the graph is vx at that instant.

CONNECTION: 

Couldn’t we omit “x” sub-

scripts in average (vav,x) and 

instantaneous (vx) velocity? If 

we wanted to understand only 

motion along a line, then we 

certainly would. However, in 

Chapter 3 we generalize the 

definitions of position, dis-

placement, velocity, and 

acceleration as vector quanti-

ties in three dimensions. 

Using the “x” subscripts now 

lets us carry forward every-

thing in Chapter 2 without 

requiring a change in nota-

tion. Then, when you look 

back to review Chapter 2, you 

won’t have to remember dif-

ferent definitions for the 

same symbol. For example, 

in Chapter 3 we’ll learn that v 

(without the subscript) stands 

for the magnitude of the 

velocity (the speed), which 

can never be negative.



   Finding   v   x    on a Graph of   x  (  t  )    To find the  instantaneous  velocity at some time  t   =   t  2 , 

we draw lines showing the average velocity for shorter and shorter time intervals. As the 

time interval is reduced ( Fig. 2.4b ), the average velocity changes. As Δ t  gets shorter and 

shorter, the chord approaches a tangent line to the graph at  t  2 . Thus,  v   x   is the  slope of the 

line tangent to the graph of x ( t ) at the chosen time.     

 In  Fig. 2.5 , the position of the train considered in Example 2.2 is graphed as a func-

tion of time, where 3:00  p.m.  is chosen as  t   =  0. 

  The graph of position versus time shows a curving line, but that does not mean 

the train travels along a curved path.  The motion of the train is along a straight line 

since the track runs in an east-west direction. The graph shows the train’s position as 

a function of time.   

 A horizontal portion of the graph (as from  t   =  0 to  t   =  14 min and from  t   =  23 min 

to  t   =  28 min) indicates that the position is not changing during that time interval and, 

therefore, it is at rest (its velocity is zero). Sloping portions of the graph indicate that the 

train is moving. The steeper the graph, the larger the speed of the train. The sign of the 

slope indicates the direction of motion. A positive slope ( t   =  14 min to  t   =  23 min) indi-

cates motion in the  +  x -direction, and a negative slope ( t   =  28 min to  t   =  56 min) indi-

cates motion in the − x -direction.  

The slope of the tangent line on a 

graph of  x ( t ) is  v   x  .

The slope of the tangent line on a 

graph of  x ( t ) is  v   x  .

The velocity is approximately 89 km/h in the –x-direction 

(west).

Discussion Since the slope of a line is constant, any two 

points on the tangent line would give the same value for the 

slope. Using widely spaced points tends to give a more accu-

rate estimate for the slope.

Practice Problem 2.3 Maximum Eastward Velocity

Estimate the maximum velocity of the train in kilometers 

per hour during the time it moves east (t = 14 min to 

t = 23 min).

Example 2.3

Velocity of the Train

Use Fig. 2.5 to estimate the velocity of the train in kilome-

ters per hour at t = 40 min.

Strategy Figure 2.5 is a graph of x(t). The slope of a line 

tangent to the graph at t = 40 min is vx at that instant. After 

sketching a tangent line on the graph, we find its slope from 

the rise divided by the run.

Solution Figure 2.6 shows a tangent line drawn on the 

graph. Using the endpoints of the tangent line, the rise is 

(−25 km) − (15 km) = −  40 km. The run is approximately 

(57 min) − (30 min) = 27 min = 0.45 h. Then

vx ≈ −40 km/(0.45 h) ≈ −89 km/h
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Figure 2.5

Graph of position x versus time t for the train. The positions of the 

train at various times are marked with a dot. The position of the 

train would have to be measured at more frequent time intervals to 

accurately trace out the shape of the graph.
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On the graph of x(t), the slope of a line tangent to the graph at 

t = 40 min is vx at t = 40 min.
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   Finding ∆  x   with Constant Velocity    What about the other way around? Given a 

graph of  v   x  ( t ), how can we determine the displacement (change in position)? If  v   x   is 

constant during a time interval, then the average velocity is equal to the instantaneous 

velocity:

     vx = vav,x =   Δx ___ 
Δt

   (for constant vx)    (2-5)   

and therefore

     Δx = vx Δt (for constant vx)    (2-6)    

 The graph of  Fig. 2.7  shows  v   x   versus  t  for an object moving along the  x -axis with 

constant velocity  v  1  from time  t  1  to  t  2 . The displacement Δ x  during the time interval 

Δ t   =   t  2  −  t  1  is  v  1 Δ t.  The shaded rectangle has “height”  v  1  and “width” Δ t.  Since the area 

of a rectangle is the product of the height and width, the displacement Δ x  is represented 

by the area of the rectangle between the graph of  v   x  ( t ) and the time axis for the time 

interval considered.       

    When we speak of the area under a graph, we are not talking about the literal num-

ber of square centimeters of paper or computer screen.  The figurative area under a graph 

usually does not have dimensions of an ordinary area [L 2 ]. In a graph of  v   x  ( t ),  v   x   has 

dimensions [L/T] and time has dimensions [T]; areas on such a graph have dimensions 

[L/T]  ×  [T]  =  [L], which is correct for a displacement. The  units  of Δ x  are determined 

by the units used on the axes of the graph. If  v   x   is in meters per second and  t  is in sec-

onds, then the displacement is in meters.  

   Finding ∆  x   with Changing Velocity    What if the velocity is not constant? The dis-

placement Δ x  during a  very small  time interval Δ t  can be found in the same way as for 

constant velocity since, during a short enough time interval, the velocity does not change 

appreciably. Then  v   x   and Δ t  are the height and width of a narrow rectangle ( Fig. 2.8a ) 

and the displacement during that short time interval is the area of the rectangle. To find 

the total displacement during any time interval, the areas of all the narrow rectangles are 

added together ( Fig. 2.8b ). To improve the approximation, we let the time interval Δ t  

approach zero and find that the displacement Δ x  during any time interval equals the area 

under the graph of  v   x  ( t ) ( Fig. 2.8c ). When  v   x   is negative,  x  is decreasing and the dis-

placement is in the − x -direction, so we must count the area as negative when it is below 

the time axis.       

 The magnitude of the train’s displacement is represented as the shaded areas in 

 Fig. 2.9 . The train’s displacement from  t   =  14 min to  t   =  23 min is  + 7 km (area  above  

the  t -axis means displacement in the  +  x -direction) and from  t   =  28 min to  t   =  56 min 

it is  − 36 km (area  below  the  t -axis means displacement in the − x -direction). The total 

displacement from  t   =  0 to  t   =  56 min is Δ x   =  ( + 7 km)  +  ( − 36 km)  =   − 29 km.               

Δ x  is the area under the graph of 

 v   x  ( t ). The area is negative when the 

graph is beneath the time axis 

( v   x   < 0).

Δ x  is the area under the graph of 

 v   x  ( t ). The area is negative when the 

graph is beneath the time axis 

( v   x   < 0).
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Figure 2.7 Displacement Δx 

between t1 and t2 is represented 

by the shaded area under the red 

vx(t) graph.
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Figure 2.8 (a) Displacement Δx during a short time interval is approximately the 

area of a rectangle of height vx and width Δt. (b) During a longer time interval, the 

displacement is approximately the sum of the areas of the rectangles. (c) The area 

under the vx versus t graph for any time interval represents the displacement during 

that interval.
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Figure 2.9 A graph of train velocity versus time. The train’s displacement from t = 14 min to t = 23 min is the shaded area 

under the graph during that time interval. To estimate the area, count the number of grid boxes under the curve, estimating the 

fraction of the boxes that are only partly below the curve. Each box is 2 m/s in height and 5 min (= 300 s) in width, so each 

box represents an “area” (displacement) of 2 m/s × 300 s = 600 m = 0.60 km. The total number of shaded boxes for this time 

interval is about 12, so the displacement is about Δx ≈ 12 × 0.60 km = +7.2 km, which is close to the actual value of 7 km 

(during this time interval the train went from +3 km to +10 km). The shaded area for the time interval t = 28 min to t = 56 min 

is below the time axis; this negative area represents displacement in the −x-direction (west). The number of shaded grid boxes 

in this interval is about 60, so the displacement during this time interval is Δx ≈ −(60) × 0.60 km = −36 km.
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   2.3  ACCELERATION: RATE OF CHANGE OF VELOCITY 

  The rate of change of the velocity is called the    acceleration.     The use of the word   accel-

eration   in everyday language is often imprecise and not in accord with its scientific def-

inition.  In everyday language, it usually means “an increase in speed” but sometimes is 

used almost as a synonym for speed itself. In physics, acceleration does not necessarily 

indicate an increase in speed. Acceleration can indicate any kind of change in velocity.       

 The concept of acceleration is much less intuitive for most people than the concept 

of velocity. Keep reminding yourself that the acceleration tells you how the velocity  is 

changing.   The direction of the   change   in velocity is not necessarily the same as the 

direction of either the initial or final velocities.     

   Average Acceleration 

 The    average acceleration    during a time interval Δ t  is:

     aav,x =   
Δvx ___ 
Δt

      (2-7)   

Since average acceleration is the change in velocity divided by the corresponding time 

interval, the SI units of acceleration are (m/s)/s  =  m/s 2 , read as “meters per second 

squared.” Thinking of m/s 2  as (m/s)/s can help you develop an understanding of what 

acceleration is. Suppose an object has a constant acceleration  a   x    =   + 3.0 m/s 2 . Then  v   x   

increases 3.0 m/s during every second of elapsed time (the change in  v   x   is  + 3.0 m/s per 

second). If  a   x    =   − 2.0 m/s 2 , then  v   x   would decrease 2.0 m/s during every second (the 

change in  v   x   is  − 2.0 m/s per second). 

 For example, suppose it takes 30 s for a truck to slow down from 25 m/s to 10 m/s 

while traveling east. With the  x -axis pointing east, the truck’s average acceleration dur-

ing that time interval is

    aav,x =   
Δvx ___ 
Δt

   =   −15 m/s _______ 
30 s

   = −0.50 m/ s 2   

or 0.50 m/s 2  to the west.          

CONNECTION: 

Compare average accelera-

tion [Eq. (2-7)] and average 

velocity [Eq. (2-2)]. Each is 

the change in a quantity 

divided by the time interval 

during which the change 

occurs. Each can have differ-

ent values for different time 

intervals.

CONNECTION: 

Compare average accelera-

tion [Eq. (2-7)] and average 

velocity [Eq. (2-2)]. Each is 

the change in a quantity 

divided by the time interval 

during which the change 

occurs. Each can have differ-

ent values for different time 

intervals.
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smaller. To reduce the magnitude of a negative number, we 

have to add a positive number. Therefore, the change in vx is 

positive (Δvx > 0). In other words, vx is increasing. Since Δvx

is positive, ax is positive. The acceleration is in the 

+x-direction.

Conceptual Practice Problem 2.4 Continuing on 
His Way

As Damon pulls away from the stop sign, continuing in the 

−x-direction, his speed gradually increases. What is the sign 

of ax? What is the direction of the acceleration?

Conceptual Example 2.4

Direction of Acceleration While Slowing Down

Damon moves in the −x-direction on his motor scooter. He 

“decelerates” as he approaches a stop sign. While slowing 

down, is the scooter’s acceleration ax positive or negative? 

What is the direction of the acceleration?

Strategy The acceleration has the same direction as the 

change in the velocity.

Solution and Discussion The term decelerate is not a sci-

entific term. In common usage it means the scooter is slow-

ing: the scooter’s velocity is decreasing in magnitude. 

Damon is moving in the −x-direction, so vx is negative. He is 

slowing down, so the absolute value of vx,  vx , is getting 

  Instantaneous Acceleration 

 To find the    instantaneous acceleration,    we calculate the average acceleration during a 

 very short time interval: 

Definition of instantaneous acceleration:

 ax =   lim    
Δt→0

    
Δvx ___ 
Δt

   (2-8)

(Δvx is the change in velocity during a very short time interval Δt)

The time interval Δ t  must be short enough that we can treat the acceleration as constant 

during that time interval. Just as with instantaneous velocity, the word  instantaneous  is not 

always repeated.  Acceleration  without the adjective means  instantaneous  acceleration.  

The chapter opener asked how an African lion can ever catch a Cape buffalo. 

Although Cape buffaloes and African lions have about the same top  speed,  lions are 

capable of much larger  accelerations  than are buffaloes. Starting from rest, it takes a 

buffalo much longer to get to its top speed. On the other hand, lions have much less 

stamina. Once the buffalo reaches its top speed, it can maintain that speed much longer 

than can the lion. Thus, a Cape buffalo is capable of outrunning a lion unless the stalk-

ing lion can get fairly close before charging.

  The Direction of the Acceleration 

 Generalizing Example 2.4, suppose an object moves along the  x -axis. When the acceler-

ation is in the same direction as the velocity, the object is speeding up. If  v   x   and  a   x   are 

both positive, the object is moving in the  +  x -direction and is speeding up. If they are 

both negative, the object is moving in the − x -direction and is speeding up.     

 When the acceleration and velocity are in opposite directions, the object is slowing 

down. When  v   x   is positive and  a   x   is negative, the object is moving in the positive 

x -direction and is slowing down. When  v   x   is negative and  a   x   is positive, the object is 

moving in the negative  x -direction and is slowing down. 

 In straight-line motion, the acceleration is always in the same direction as the veloc-

ity, in the direction opposite to the velocity, or zero.  

Can the lion catch the 

buffalo?



  Graphical Relationships Between Velocity and Acceleration 

 Both velocity and acceleration measure rates of change: velocity is the rate of change 

of position and acceleration is the rate of change of velocity. Therefore, the graphical 

relationship of acceleration to velocity is the same as the graphical relationship of 

velocity to position:  a   x   is the slope on a graph of  v   x  ( t ) and Δ v   x   is the area under a 

graph of  a   x  ( t ).       

  Figure 2.10  shows a graph of  v   x   versus  t  for Damon slowing down on his scooter. 

He is moving in the − x -direction, so  v   x   < 0, and his speed is decreasing, so   v   x    is decreas-

ing. The slope of a tangent line to the graph is  a   x   at that instant. Three tangent lines are 

drawn, showing that  a   x   is positive (the slopes are positive) and is not constant (the 

slopes are not all the same).    
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Example 2.5

Acceleration of a Sports Car

A sports car starting at rest can achieve 30.0 m/s in 4.7 s 

according to the advertisements. Figure 2.11 shows data for 

vx as a function of time as the sports car starts from rest and 

travels in a straight line in the +x-direction. (a) What is the 

average acceleration of the sports car from 0 to 30.0 m/s? 

(b) What is the maximum acceleration of the car? (c) What 

is the car’s displacement from t = 0 to t = 19.1 s (when it 

reaches 60.0 m/s)? (d) What is the car’s average velocity 

during the entire 19.1 s interval?

Strategy (a) To find the average acceleration, the change 

in velocity for the time interval is divided by the time inter-

val. (b) The instantaneous acceleration is the slope of the 

velocity graph, so it is maximum where the graph is steep-

est. At that point, the velocity is changing at a high rate. We 

expect the maximum acceleration to take place early on; the 

magnitude of acceleration must decrease as the velocity gets 

higher and higher—there is a maximum velocity for the car, 

after all. (c) The displacement Δx is the area under the vx(t) 

graph. The graph is not a simple shape such as a triangle or 

rectangle, so an estimate of the area is made. (d) Once we 

have a value for the displacement, we can apply the defini-

tion of average velocity.
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Figure 2.11

Data table and graph of vx(t) for a sports car.
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Figure 2.10 In this graph of 

vx versus t, as Damon is stop-

ping, vx is negative, but ax (the 

slope) is positive. The value of 

vx is increasing, but—since it is 

less than zero to begin with and 

is getting closer to zero as time 

goes on—the speed is decreas-

ing. The slopes of the three tan-

gent lines shown represent the 

instantaneous accelerations (ax) 

at three different times.

CONNECTION: 

On a graph of any quantity Q 

as a function of time, the slope 

of the graph represents the 

instantaneous rate of change 

of Q. On a graph of the rate of 

change of Q as a function of 

time, the area under the graph 

represents ΔQ.
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Given: Graph of vx(t) in Fig. 2.11.

To find:  (a) aav,x for vx = 0 to 30.0 m/s; (b) maximum value 

of ax; (c) Δx from vx = 0 to 60.0 m/s; (d) vav,x from 

t = 0 to 19.1 s

Solution  (a) The car starts from rest, so vxi = 0. It reaches 

vx = 30.0 m/s at t = 4.9 s, according to the data table. Then 

for this time interval,

aav,x =   
Δvx ___ 
Δt

   =   30.0 m/s − 0 m/s  ______________  
4.9 s − 0 s

   = 6.1 m/ s 2 

The average acceleration for this time interval is 6.1 m/s2 in 

the +x-direction.

(b) The acceleration ax, at any instant of time, is the slope of 

the tangent line to the vx(t) graph at that time. To find the 

maximum acceleration, we look for the steepest part of the 

graph. In this case, the largest slope occurs near t = 0, just as 

the car is starting out. In Fig. 2.11, a tangent line to the vx(t) 

graph at t = 0 passes through t = 0. Values for the rise and run 

to calculate the slope of the tangent line are read from the 

graph. The tangent line passes through the two points 

(t = 0, vx = 0) and (t = 6.0 s, vx = 55.0 m/s) on the graph, so 

the rise is 55.0 m/s for a run of 6.0 s. The slope of this line is

ax =   rise ____ 
run

   =   55.0 m/s − 0 m/s  ______________  
6.0 s − 0 s

   = +9.2 m/ s 2 

The maximum acceleration is 9.2 m/s2 in the +x-direction.

(c) Δx is the area under the vx(t) graph shown shaded in 

Fig. 2.11. The area can be estimated by counting the number 

of grid boxes under the curve. Each box is 5.0 m/s in height 

and 2.0 s in width, so each represents an “area” (displace-

ment) of 10 m. When counting the number of boxes under 

the curve, a best estimate is made for the fraction of the 

boxes that are only partly below the curve. Approximately 

75 boxes lie below the curve, so the displacement is 

Δx = 75 × 10 m = 750 m. Since the car travels along a 

straight line and does not change direction, 750 m is also the 

distance traveled. (d) The average velocity during the 19.1-s 

interval is

vav, x =   Δx ___ 
Δt

   =   750 m ______ 
19.1 s

   = 39 m/s

Discussion The graph of velocity as a function of 

time is often the most helpful graph to have when 

solving a problem. If that graph is not given in the problem, it 

is useful to sketch one. The vx(t) graph shows displacement, 

velocity, and acceleration at once: the velocity vx is given by 

the points or the curve graphed, the displacement Δx is the 

area under the curve, and the acceleration ax is the slope of 

the curve.

Why is the average velocity 39 m/s? Why is it not half-

way between the initial velocity (0 m/s) and the final veloc-

ity (60 m/s)? If the acceleration were constant, the average 

velocity would indeed be   1 _ 
2
  (0 + 60 m/s) = 30 m/s. The actual 

average velocity is somewhat higher than that—the acceler-

ation is greater at the start, so less of the time interval is 

spent going (relatively) slow and more is spent going fast. 

The speed is less than 30 m/s for only 4.9 s, but is greater 

than 30 m/s for 14.2 s.

Practice Problem 2.5 Braking a Car

An automobile is traveling along a straight road heading to 

the southeast at 24 m/s when the driver sees a deer begin to 

cross the road ahead of her. She steps on the brake and brings 

the car to a complete stop in an elapsed time of 8.0 s. A data 

recording device, triggered by the sudden braking action, 

records the following velocities and times as the car slows. 

Let the positive x-axis be directed to the southeast. Plot a 

graph of vx versus t and find (a) the average acceleration as 

the car comes to a stop and (b) the instantaneous accelera-

tion at t = 2.0 s.

vx (m/s) 24 17.3 12.0 8.7 6.0 3.5 2.0 0.75 0

t (s) 0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0

Example 2.5 continued
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Data table and graph of vx(t) for a sports car.
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CHECKPOINT 2.3

What physical quantity does the slope of the tangent to a graph of vx versus time 

represent?

   2.4  MOTION ALONG A LINE WITH CONSTANT 

ACCELERATION 

  The graphical and mathematical relationships between position, velocity, and accelera-

tion presented so far apply regardless of whether the acceleration is changing or is con-

stant. In the important special case of an object whose acceleration is  constant  (both in 

magnitude and direction), we can write these relationships as algebraic equations. First, 

let us agree on a consistent notation:

   • Choose an origin and a direction for the positive axis. (For vertical motion, it is 

conventional to use the  y -axis instead of the  x -axis, where the  +  y -direction is up.)  

  • At an initial time  t  i , the initial position and velocity are  x  i  and  v  i x  .  

  • At a later time  t  f   =   t  i   +  Δ t,  the final position and velocity are  x  f  and  v  f x  .    

 From the following two essential relationships the others can be derived:

    1. Since the acceleration  a   x   is constant, the change in velocity over a given time 

interval Δ t   =   t  f  −  t  i  is the acceleration—the rate of change of velocity—times the 

elapsed time:

 Δvx = vfx − vix = ax Δt (2-9)

(if ax is constant during the entire time interval)

      

 Equation (2-9) is the definition of  a   x   [Eq. (2-8)] with the assumption that a  x   is 

constant.  

   2. Since the velocity changes linearly with time, the average velocity is given by:

     vav,x =   1 _ 
2
  (vfx + vix) (constant ax)    (2-10)   

   Equation (2-10) is   not   true   in general,   but it is true for constant acceleration.  To 

see why, refer to the  v   x  ( t ) graph in  Fig. 2.12a . The graph is linear because the 

acceleration—the slope of the graph—is constant. The displacement during any time 

interval is represented by the area under the graph. The average velocity is found by 

forming a rectangle with an area equal to the area under the curve in  Fig. 2.12a , because 

the average velocity should give the same displacement in the same time interval. 

 Figure 2.12b  shows that, to make the excluded area above  v  av, x   (triangle 1) equal to the 

extra area under  v  av, x   (triangle 2), the average velocity must be exactly halfway between the 

initial and final velocities. Combining Eq. (2-10) with the definition of average velocity,   

  Δx =  x  f  −  x  i  = vav,x Δt    (2-2)   

gives our second essential relationship for constant acceleration:

 Δx =   1 _ 
2
  ( v  fx  +  v  ix ) Δt (2-11)

(if ax is constant during the entire time interval)

            

    If the acceleration is   not   constant, there is no reason why the average velocity has 

to be exactly halfway between the initial and the final velocity.  As an illustration, 

imagine a trip where you drive along a straight highway at 80 km/h for 50 min and 
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then at 60 km/h for 30 min. Your acceleration is zero for the entire trip  except  during 

the few seconds while you slowed from 80 km/h to 60 km/h. The magnitude of your 

average velocity is  not  70 km/h. You spent more time going 80 km/h than you did 

going 60 km/h, so the magnitude of your average velocity would be greater than 

70 km/h.      

   Other Useful Relationships for Constant Acceleration    Two more useful relation-

ships can be formed between the various quantities (displacement, initial and final 

velocities, acceleration, and time interval) by eliminating some quantity from Eqs. (2-9) 

and (2-11). For example, suppose we don’t know the final velocity  v  f x  . Then we can 

solve Eq. (2-9) for  v  f x  , substitute into Eq. (2-11), and simplify:

    Δx =   1 _ 
2
  ( v  fx  +  v  ix ) Δt =   1 _ 

2
  [( v  ix  + ax Δt) +  v  ix ] Δt   

 Δx =  v  ix  Δt +   1 _ 
2
   ax(Δt ) 2  (constant  a  x ) (2-12)

 We can interpret Eq. (2-12) graphically.  Figure 2.13  shows a  v   x  ( t ) graph for motion 

with constant acceleration. The displacement that occurs between  t   i   and a later time  t  f  is 

the area under the graph for that time interval. Partition this area into a rectangle plus a 

triangle. The area of the rectangle is

    base × height =  v  ix  Δt  

The height of the triangle is the change in velocity, which is equal to  a   x   Δ t.  The area of 

the triangle is

      1 _ 
2
  base × height =   1 _ 

2
  Δt × ax Δt =   1 _ 

2
  ax(Δt ) 2   

Adding these areas gives Eq. (2-12).           

 Another useful relationship comes from eliminating the time interval Δ t: 

    Δx =   1 _ 
2
  ( v  fx  +  v  ix ) Δt =   1 _ 

2
  ( v  fx  +  v  ix )  (    v  fx  −  v  ix  _______ 

ax

   )  =   
 v  fx  

2
   −  v  ix  

2
  
 _______ 

2ax

    

Rearranging terms,

  v  fx  
2
   −  v  ix  

2
   = 2ax Δx (constant ax) (2-13)

CHECKPOINT 2.4

At 3:00 P.M., an airplane is moving due west at 460 km/h. At 3:05 P.M., it is 

moving due west at 480 km/h. Is its average velocity during the time interval nec-

essarily 470 km/h west? Explain.

Example 2.6

A Sliding Brick

Starting from rest, a brick slides along a straight line 

down an icy roof with a constant acceleration of magnitude 

4.9 m/s2 (Fig. 2.14). How fast is the brick moving when it 

reaches the edge of the roof 0.90 s later?

vfx

vx

vix

vix

ti tf
t

∆vx = ax ∆t

∆t

Figure 2.13 Graphical inter-

pretation of Eq. (2-12).

continued on next page

Strategy What is the direction of the acceleration? It has 

to be downward along the roof, in the same direction as the 

brick’s velocity. An acceleration opposite the velocity would 

make the brick slow down, but since it starts from rest, a 



The boat is always headed to the east, so we choose east as 

the positive x-direction.

Subproblem 1:

Known:  v1x = 0; a1x = +2.8  m/s2; 

Δx21 = x2 − x1 = 140 m.

To fi nd: v2x.

For subproblem 2, we know acceleration, final veloc-

ity v3x, and we have just found the initial velocity v2x from 

subproblem 1. Because the boat is slowing down, its 

acceleration is in the direction opposite its velocity; 

therefore, a2x < 0. From these three quantities we can find 

the displacement of the boat during the second time 

interval.

Subproblem 2:

Known:  v2x from subproblem 1; 

a2x = −1.2 m/s2; v3x = +16 m/s.

To fi nd: Δx32 = x3 − x2.

Adding the displacements for the two time intervals gives 

the total displacement. The magnitude of the total displace-

ment is the distance between the dock and the buoy.

Example 2.7

Displacement of a Motorboat

A motorboat starts from rest at a dock and heads due 

east with a constant acceleration of magnitude 2.8 m/s2. 

After traveling for 140 m, the motor is throttled down to 

slow down the boat at 1.2 m/s2 (while still moving east) 

until its speed is 16 m/s. Just as the boat attains the speed 

of 16 m/s, it passes a buoy due east of the dock. (a) Sketch 

a qualitative graph of vx(t) for the motorboat from the 

dock to the buoy. Let the +x-axis point east. (b) What is 

the distance between the dock and the buoy?

Strategy This problem involves two different values 

of acceleration, so it must be divided into two subprob-

lems. The equations for constant acceleration cannot be 

applied to a time interval during which the acceleration 

changes. But for each of two time intervals, the accelera-

tion of the boat is constant: from t1 to t2, a1x = +2.8  m/s2; 

from t2 to t3, a2x = −1.2 m/s2. The two subproblems are 

connected by the position and velocity of the boat at the 

instant the acceleration changes. This is reflected in the 

graph of vx(t): It consists of two different straightline seg-

ments with different slopes that connect with the same 

value of vx at time t2.

For subproblem 1, the boat speeds up with a constant 

acceleration of 2.8 m/s2 to the east. We know the accelera-

tion, the displacement (140 m east), and the initial veloc-

ity: the boat starts from rest, so the initial velocity v1x is 

zero. We need to calculate the final velocity v2x, which then 

becomes the initial velocity for the second subproblem. 

continued on next page
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Figure 2.14

A brick sliding down an icy 

roof.

constant acceleration can only make it speed up. We choose 

the +x-axis in the direction of the acceleration. Then we use 

the acceleration to find how the velocity changes during the 

time interval.

Solution With the x-axis in the direction of the accelera-

tion, ax = +4.9 m/s2. The brick is initially at rest so vix = 0. 

We want to know vfx at the end of the time interval Δt = 0.90 s. 

Since ax is constant, vx changes at a constant rate:

Δ v  x  =  v  fx  −  v  ix  = ax Δt = (+4.9 m/ s 2 ) × (0.90 s) = 4.4 m/s

At the edge of the roof, the brick is moving at 4.4 m/s paral-

lel to the roof.

Discussion Conceptual check: ax = +4.9 m/s2 means that vx

increases 4.9 m/s every second. The brick slides for a bit less 

than 1 s, so the increase in vx is a bit less than 4.9 m/s.

Practice Problem 2.6 Displacement of the Brick

How far from the edge of the roof was the brick when it 

started sliding?

Example 2.6 continued
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   2.5  VISUALIZING MOTION ALONG A LINE WITH 

CONSTANT ACCELERATION     

   Motion Diagrams    In  Fig. 2.16 , three carts move in the same direction with three dif-

ferent values of constant acceleration. The position of each cart is depicted in a    motion 

diagram    as it would appear in a stroboscopic photograph with pictures taken at equal 

time intervals (here, the time interval is 1.0 s).       

 The yellow cart has zero acceleration and, therefore, constant velocity. During 

each 1.0-s time interval its displacement is the same: 1.0 m/s  ×  1.0 s  =  1.0 m to the 

right. 

x (m)

Positions of the carts at 1.0-s intervals

0 1 2 3 4 5 6 7 8

ax = 0.2 m/s2,
vix = 1.0 m/s

ax = –0.2 m/s2,
vix = 2.0 m/s

ax = 0,
vix = 1.0 m/s

1.0 m/s 1.0 m/s 1.0 m/s 1.0 m/s 1.0 m/s1.0 m/s

1.0 m/s 1.2 m/s 1.4 m/s 1.6 m/s 1.8 m/s 2.0 m/s

2.0 m/s 1.8 m/s 1.6 m/s 1.4 m/s 1.2 m/s 1.0 m/s

0 s

0 s

0 s 1 s 2 s 3 s 4 s 5 s

1 s 2 s 3 s 4 s 5 s

1 s 2 s 3 s 4 s 5 s

Figure 2.16 Each cart is shown as if photographs were taken at 1.0-s time intervals of 1.0 s. The arrows above each cart 

indicate the instantaneous velocities. 

Example 2.7 continued

Solution (a) The graph starts with vx = 0 at t = t1. We 

choose t1 = 0 for simplicity. The graph is a straight line with 

slope +2.8 m/s2 until t = t2. Then, starting from where the graph 

left off, the graph continues as a straight line with slope 

−1.2 m/s2 until the graph reaches vx = 16 m/s at t = t3. Fig-

ure 2.15 shows the vx(t) graph. It is not quantitatively accu-

rate because we have not calculated the values of t2 and t3.

(b1) To find v2x without knowing the time interval, we elimi-

nate Δt from Eqs. (2-9) and (2-11) for constant 

acceleration:

Δ x  21  =   1 __ 
2
  ( v  2x  +  v  1x ) Δt =   1 __ 

2
  ( v  2x  +  v  1x )  (    v  2x  −  v  1x  ________  a  

1x
    )  =   

 v  2x
  

2
   −  v  1x

  
2
  
 ________ 

2 a  1x 
  

Solving for v2x,

 v  2x  = ± √
___________

     v  1x
  

2
   + 2 a  1x  Δx   = ± √

_____________________

    0 + 2 × 2.8 m/ s 2  × 140 m  

= ± 28 m/s

The boat is moving east, in the +x-direction, so the correct 

sign here is positive: v2x = +28 m/s.

(b2) The final velocity for the first interval (v2x) is the ini-

tial velocity for the second interval. The final velocity is 

v3x. Using the same equation just derived for this time 

interval,

Δ x  32  =   
 v  3x

  
2
   −  v  2x

  
2
  
 ________ 

2 a  
2x

 
   =   

(16 m/s ) 2  − (28 m/s ) 2 
  __________________  

2 × (−1.2 m/ s 2 )
   = +220 m

The total displacement is

 x  3  −  x  1  = ( x  3  −  x  2 ) + ( x  2  −  x  1 ) = 220 m + 140 m = +360 m

The buoy is 360 m from the dock.

Discussion The natural division of the problem into two 

parts occurs because the boat has two different constant 

accelerations during two different time periods. In problems 

that can be subdivided in this way, the final velocity and 

position found in the first part becomes the initial velocity 

and position for the second part.

Practice Problem 2.7 Time to Reach the Buoy

What is the time required by the boat in Example 2.7 to 

reach the buoy?tt3t1 = 0 t2

vx

v2x

16 m/s
(v3x) Figure 2.15

Graph of vx versus t for 

the motorboat.
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Figure 2.17 Graphs of posi-

tion, velocity, and acceleration 

for the carts of Fig. 2.16.

 The red cart has a constant acceleration of 0.2 m/s 2  to the right. Although m/s 2  is 

normally read “meters per second squared,” it can be useful to think of it as “m/s per 

second”: the cart’s velocity changes by 0.2 m/s during each 1.0-s time interval. In this 

case, acceleration is in the same direction as the velocity, so the velocity increases. 

The displacement of the cart during successive 1.0-s time intervals gets larger and 

larger. 

 The blue cart experiences a constant acceleration of 0.2 m/s 2  in the − x -direction—

the direction  opposite  to the velocity. The magnitude of the velocity then decreases; 

during each 1.0-s interval, the speed decreases by 0.2 m/s. Now the displacements dur-

ing 1.0-s intervals get smaller and smaller.  

   Graphs     Figure 2.17  shows graphs of  x ( t ),  v   x  ( t ), and  a   x  ( t ) for each of the carts. The 

acceleration graphs are horizontal since each of the carts has a constant acceleration. All 

three  v   x   graphs are straight lines. Since  a   x   is the rate of change of  v   x  , the slope of the  v   x   

graph at any value of  t  is  a   x   at that value of  t.  With constant acceleration, the slope is the 

same everywhere and the graph is linear.  Remember that a positive   a   x    does mean that   v   x   

 is increasing, but not necessarily that the   speed  is increasing. If  v   x    is negative, then a 

positive   a   x    indicates a   decreasing   speed. (See Conceptual Example 2.4.)  Speed is 

increasing when the acceleration and velocity are in the same direction ( a   x   and  v   x   both 

positive  or  both negative). Speed is decreasing when acceleration and velocity are in 

opposite directions—when  a   x   and  v   x   have opposite signs.         

 The position graph is linear for the yellow cart because it has constant velocity. For 

the red cart, the  x ( t ) graph curves with increasing slope, showing that  v   x   is increasing. 

For the blue cart, the  x ( t ) graph curves with decreasing slope, showing that  v   x   is 

decreasing.     
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(b) Figure 2.18 shows the vx(t) graphs with ti = 0. Note that 

the area under the graphs from ti to tf is the same in the two 

graphs: the spaceships have the same displacement during 

that interval.

(c) Equation (2-12) can be used to find the position of each 

spaceship as a function of time. Choosing xi = 0, ti = 0, and 

t = tf, the position at time t is

x(t) = 0 +  v  ix t +   1 _ 
2
   a  x  t 

2 

Figure 2.19 shows the data table calculated this way and the 

corresponding motion diagram.

Discussion Quick check: the two ships must have the 

same displacement at Δt = 10.0 s.

Δ   x  s  =  v  isx  Δt +   1 _ 
2
   a  sx (Δt ) 2 

= 2.00 km/s × 10.0 s +   1 _ 
2
   × 0.400 km/ s 2  × (10.0 s ) 2 

= 40.0 km

Δ   x  b  =  v  ibx  Δt +   1 _ 
2
   a  bx (Δt ) 2 

= 6.00 km/s × 10.0 s +   1 _ 
2
   × (−   0.400 km/ s 2 ) × (10.0 s ) 2 

= 40.0 km

Example 2.8

Two Spaceships

Two spaceships are moving from the same starting point in 

the +x-direction with constant accelerations. The silver 

spaceship has an initial velocity of +2.00 km/s and an accel-

eration of +0.400 km/s2. The black spaceship has an initial 

velocity of +6.00 km/s and an acceleration of −0.400 km/s2. 

(a) Find the time at which the silver spaceship just overtakes 

the black spaceship. (b) Sketch graphs of vx(t) for the two 

spaceships. (c) Sketch a motion diagram (similar to Fig. 2.16) 

showing the positions of the two spaceships at 1.0-s 

intervals.

Strategy We can find the positions of the spaceships at 

later times from the initial velocities and the accelerations. 

At first, the black spaceship is moving faster, so it pulls out 

ahead. Later, the silver ship overtakes the black ship at the 

instant their positions are equal.

Solution (a) The position of either spaceship at a later 

time is given by Eq. (2-12):

 x  f  =  x  i  + Δx =  x  i  +  v  ix  Δt +   1 _ 
2
  ax(Δt ) 2 

We set the final position of the silver spaceship equal to that 

of the black spaceship (xfs = xfb):

 x  is  +  v  isx  Δt +   1 _ 
2
  asx (Δt ) 2  =  x  ib  +  v  ibx  Δt +   1 _ 

2
   a  bx (Δt ) 2 

Subscripts are useful for preventing you from mixing 

up similar quantities. The subscripts s and b stand for 

silver and black, respectively. The subscripts i and f stand 

for initial and final, respectively. A skilled problem-solver 

must be able to come up with algebraic symbols that are 

explicit and unambiguous.

The initial positions are the same: xis = xib. Subtracting 

the initial positions from each side, moving all terms to one 

side, and factoring out one power of Δt yields

Δ t ( v  isx  +   1 _ 
2
  asx Δt −  v  ibx  −   1 _ 

2
   a  bx  Δt) = 0

This equation has two solutions—there are two times at 

which the spaceships are at the same position. One solution 

is Δt = 0. We already knew that the two spaceships started at 

the same initial position. The other solution, which gives the 

time at which one spaceship overtakes the other, is found by 

setting the expression in parentheses equal to zero. Solving 

for Δt,

Δt =   
2( v  isx  −  v  ibx ) __________  a  bx  −  a  sx 

   =   
2 × (2.00 km/s − 6.00 km/s)

   _______________________   
−  0.400 km/ s 2  − 0.400 km/ s 2 

   = 10.0 s

The silver spaceship overtakes the black spaceship 10.0 s 

after they leave the starting point.

t (s)100

vx (km/s)

Silver

6

t (s)100

vx (km/s)

Black

6

2

0

2

0

Figure 2.18

Graphs of vx versus t for the silver and black spaceships. The 

shaded area under each graph represents the displacement Δx dur-

ing the time interval.

continued on next page



   2.6  FREE FALL 

Suppose you are standing on a bridge over a deep gorge. If you drop a stone into the 

gorge, how fast does it fall? You know from experience that it does not fall at a constant 

velocity; the longer it falls, the faster it goes. A better question is: What is the stone’s 

acceleration? 

 First, let us simplify the problem. If the stone were moving very fast, air resistance 

would oppose its motion. When it is not falling so fast, the effect of air resistance is neg-

ligibly small. In  free fall,  no forces act on an object other than the gravitational force 

that makes the object fall. On Earth, free fall is an idealization since there is always 

some  air resistance. We also assume that the stone’s change in altitude is small enough 

that Earth’s gravitational pull on it is constant.      

   Free-fall Acceleration      An object in free fall has a constant downward acceleration, 

called the  free-fall acceleration.   The magnitude of this acceleration varies a little from 

one place to another near Earth’s surface, but at any given place, it has the same value 

for every object, regardless of the mass of the object.  Unless another value is given in a 

particular problem, please assume that the magnitude of the free-fall acceleration near 

Earth’s surface is

      a  free fall  = g = 9.80 m/ s 2     (2-14)   

The symbol  g  represents the magnitude of the free-fall acceleration. 

 When dealing with vertical motion, the  y -axis is usually chosen to be positive pointing 

upward. The direction of the free-fall acceleration is down, so  a   y    =  − g.  The same tech-

niques and equations used for other constant acceleration situations are used with free fall.     

    Earth’s gravity always pulls downward, so the acceleration of an object in free fall 

is always downward and constant in magnitude,   regardless of whether the object is 

moving up, down, or is at rest, and independent of its speed.  If the object is moving 

downward, the downward acceleration makes it speed up; if it is moving upward, the 

downward acceleration makes it slow down.  

CONNECTION: 

Free fall is an example of 

motion with constant 

acceleration.

CONNECTION: 

Free fall is an example of 

motion with constant 

acceleration.

In free fall,  a   y    =  − g  (if the  y -axis 

points up).

In free fall,  a   y    =  − g  (if the  y -axis 

points up).

x (km)0 10 20 30 40

t (s)
xs (km)
xb (km)

0
0
0

1.0
2.2
5.8

2.0
4.8

11.2

3.0
7.8

16.2

4.0
11.2
20.8

5.0
15.0
25.0

6.0
19.2
28.8

7.0
23.8
32.2

8.0
28.8
35.2

9.0
34.2
37.8

10.0
40.0
40.0

0

0 1.0 s 2.0 s 3.0 s 4.0 s 5.0 s 6.0 s 7.0 s 8.0 s 9.0 s10.0 s

1.0 s 2.0 s 3.0 s 4.0 s 5.0 s 6.0 s 7.0 s 8.0 s 9.0 s 10.0 s

Figure 2.19

Calculated positions of the spaceships at 1.0-s time intervals and a motion diagram.

Example 2.8 continued

2.6  FREE FALL 43

Practice Problem 2.8 Time to Reach the Same 
Velocity

When do the two spaceships have the same velocity? What 

is the value of the velocity then?
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Solving for viy,

v  iy  =   
Δy

 ___ 
Δt

   −   1 __ 
2
  ay Δt (1)

=   −   44.1 m ________ 
4.00 s

   −   1 __ 
2
  (−9.80 m/ s 2  × 4.00 s)

= −11.0 m/s + 19.6 m/s = 8.6 m/s

The initial velocity is 8.6 m/s upward.

(b) The change in vy is ay  Δ t from Eq. (2-9):

 v  fy  =  v  iy  + ay Δt

Substituting the expression for viy in the preceding equation,

v  fy  =  (   Δy
 __ 

Δt
   −   1 _ 

2
   a  y  Δt )  + ay Δt =   

Δy
 __ 

Δt
   +   1 _ 

2
   ay Δt (2)

 =   −   44.1 m ________ 
4.00 s

   +   1 __ 
2
  (−9.80 m/ s 2  × 4.00 s)

 = −11.0 m/s − 19.6 m/s = −30.6 m/s

The final velocity is 30.6 m/s downward.

Example 2.9

Throwing Stones

Standing on a bridge, you throw a stone straight upward. 

The stone hits a stream, 44.1 m below the point at which you 

release it, 4.00 s later. (a) What is the velocity of the stone 

just after it leaves your hand? (b) What is the velocity of the 

stone just before it hits the water? (c) Draw a motion dia-

gram for the stone, showing its position at 0.1-s intervals 

during the first 0.9 s of its motion. (d) Sketch graphs of y(t) 

and vy(t). The positive y-axis points up.

Strategy Ignoring air resistance, the stone is in free 

fall once your hand releases it and until it hits the water. 

For the time interval during which the stone is in free 

fall, the initial velocity is the velocity of the stone just 

after it leaves your hand and the final velocity is the velocity 

just before it hits the water. During free fall, the stone’s accel-

eration is constant and assumed to be 9.80 m/s2 downward. 

Known: ay = −9.80 m/s2; Δy = −   44.1 m at Δt = 4.00 s. To find: 

viy and vfy.

Solution (a) Equation (2-12) can be used to solve for viy

since all the other quantities in it (∆y, ∆t, and ay) are known 

and the acceleration is constant.

Δy =  v  iy  Δt +   1 _ 
2
   ay (Δt ) 2 

continued on next page

   Acceleration at Highest Point    If an object is thrown straight up, its velocity is zero 

at the highest point of its flight. Why? On the way up, its velocity  v   y   is positive (if the 

positive  y -axis is pointing up). On the way down,  v   y   is negative. Since  v   y   changes con-

tinuously, it must pass through zero to change sign ( Fig. 2.20 ).  At the highest point, the 

velocity is zero but the   acceleration   is   not   zero.  If the acceleration were to suddenly 

become zero at the top of flight, the velocity would no longer change; the object would 

get  stuck at the top  rather than fall back down. The velocity is zero at the top but it does 

not  stay  zero; it keeps changing at the same rate.         

CHECKPOINT 2.6

Is it possible for an object in free fall to be moving upward? Explain.

 

vy

t
0

Slope = –g

Moving
down

vy < 0

Moving
up

vy > 0

Top of
flight

vy = 0

Figure 2.20 Graph of vy ver-

sus t for an object thrown 

upward.
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Figure 2.21

Motion diagram for a stone moving 

straight up.

t (s)

t (s)

4.0

4.0

y (m)

vy (m/s)

0

0

–44.1

–30.6

+8.6

Figure 2.22

Graphs of y(t) and vy(t) for the 

stone.

Master the Concepts

      • Displacement is the change in position: Δ x   =   x  f  −  x  i . The 

displacement depends only on the starting and ending 

positions, not on details of the motion. The magnitude 

of the displacement is not necessarily equal to the total 

distance traveled; it is the straight-line distance from the 

initial position to the final position.  

   • Average velocity is the constant velocity that would 

cause the same displacement in the same amount of 

time.

      vav,x =   Δx ___ 
Δt

   (for any time interval Δt)   (2-2)

   • Velocity is a measure of how fast and in what direction 

something moves. Its direction is the direction of the 

object’s motion and its magnitude is the instantaneous 

speed. It is the instantaneous rate of change of the 

position.

     vx =   lim    
Δt→0

    Δx ___ 
Δt

   (for a very short time interval Δt)   (2-3)    

   • Average acceleration is the constant acceleration that 

would cause the same velocity change in the same 

amount of time.

      aav,x =   
Δ v  x  ____ 
Δt

   (for any time interval Δt)   (2-7)    

   • Acceleration is the instantaneous rate of change of the 

velocity.

     ax =   lim    
Δt→0

    
Δ v  x  ____ 
Δt

   (for a very short time interval Δt)   (2-8)   

   Acceleration does not necessarily mean speeding up. 

A velocity can change by decreasing speed or by chang-

ing direction.  

   • Interpreting graphs: On a graph of  x ( t ), the slope at 

any point is  v   x  . On a graph of  v   x  ( t ), the slope at any 

point is  a   x  , and the area under the graph during any 

time interval is the displacement Δ  x  during that time 

interval. If  v   x   is negative, the displacement is also 
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(c) Choosing yi = 0 and ti = 0, the position of the stone as a 

function of time is

y(t) =  v  iy t +   1 _ 
2
  ay t 

2 

The motion diagram is shown in Fig. 2.21.

(d) The graphs are shown in Fig. 2.22.

Discussion The final speed is greater than the initial 

speed, as expected. Equations (1) and (2) have a direct 

interpretation, which is a good check on their validity. 

The first term, Δy/Δt, is the average velocity of the stone 

during the 4.00 s of free fall. The second term,   1 _ 
2
   a  y  Δt, is 

half the change in vy since Δvy = ay Δt. Because the accel-

eration is constant, the average velocity is halfway between 

the initial and final velocities. Therefore, the initial veloc-

ity is the average velocity minus half of the change, while 

the final velocity is the average velocity plus half of the 

change.

Practice Problem 2.9 Height Attained by Stone

(a) How high above the bridge does the stone go? [Hint: 

What is vy at the highest point?] (b) If you dropped the stone 

instead of throwing it, how long would it take to hit the 

water?

continued on next page
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negative, so we must count the area as negative when 

it is below the time axis. 

vx

tt1 t2

∆x = area

  On a graph of  a   x   ( t ), the area under the curve is Δ v   x  , the 

change in  v   x   during that time interval.

    • Essential relationships for constant acceleration prob-

lems: if  a   x   is constant during the entire time interval Δ t  

from  t  i  until a later time  t  f   =   t  i   +  Δ t, 

     Δvx =  v  fx  −  v  ix  = ax Δt   (2-9)  

     Δx =   1 _ 
2
   (  v  fx  +  v  ix  )  Δt   (2-11)  

Δx =  v  ix  Δt +   1 _ 
2
  ax(Δt ) 2    (2-12)  

      v  fx  
2
   −  v  ix  

2
   = 2ax Δx   (2-13)  

  These same relationships hold for position, velocity, 

and acceleration along the  y -axis if  a   y   is constant. 

vfx

vx

vix

vix

ti tf
t

∆vx = ax ∆t

∆t

    • An object in free fall has a constant downward accelera-

tion. The magnitude of the acceleration  g  varies a little 

from place to place near Earth’s surface. A typical value 

is  g   =  9.80 m/s 2 .   

  Conceptual Questions 

    1. Explain the difference between distance traveled, dis-

placement, and displacement magnitude.  

   2. Explain the difference between speed and velocity.  

   3. On a graph of  v   x   versus time, what quantity does the 

area under the graph represent?  

   4. On a graph of  v   x   versus time, what quantity does the 

slope of the graph represent?  

   5. On a graph of  a   x   versus time, what quantity does the 

area under the graph represent?  

   6. On a graph of  x  versus time, what quantity does the 

slope of the graph represent?  

   7. What is the relationship between average velocity 

and instantaneous velocity? An object can have differ-

ent instantaneous velocities at different times. Can 

the same object have different average velocities? 

Explain.  

   8. Can the velocity of an object be zero and the accelera-

tion be nonzero at the same time? Explain.  

   9. You are bicycling along a straight north-south road. Let 

the  x -axis point north. Describe your motion in each of 

the following cases. Example:  a   x   > 0 and  v   x   > 0 means 

you are moving north and speeding up. 

(a)  a   x   > 0 and  v   x   < 0. (b)  a   x    =  0 and  v   x   < 0. (c)  a   x   < 0 and 

vx    =  0. (d)  a   x   < 0 and  v   x   < 0. (e) Based on your answers, 

explain why it is not a good idea to use the expression 

“negative acceleration” to mean slowing down.  

   10. When a coin is tossed straight up, what can you say 

about its velocity and acceleration at the highest point 

of its motion?    

  Multiple-Choice Questions 

    1. A ball is thrown straight up into the air. Ignore air resis-

tance. While the ball is in the air its acceleration

    (a) increases.  

   (b) is zero.  

   (c) remains constant.  

   (d)  decreases on the way up and increases on the way 

down.  

   (e) changes direction.     

   2. Which car has a westward acceleration?

    (a) a car traveling westward at constant speed  

   (b) a car traveling eastward and speeding up  

   (c) a car traveling westward and slowing down  

   (d) a car traveling eastward and slowing down  

   (e)  a car starting from rest and moving toward 

the east      

  Questions 3 and 4.  A toy rocket is propelled straight upward 

from the ground and reaches a height Δ y.  After an elapsed 

time Δ t,  measured from the time the rocket was first fired 

off, the rocket has fallen back down to the ground, landing at 

the same spot from which it was launched.    

   Answer choices:

    (a) zero      (b)     2  
Δy

 ___ 
Δt

         

 (c)       
Δy

 ___ 
Δt

          (d)       1 __ 
2
     
Δy

 ___ 
Δt

         

 3. What is the magnitude of the average velocity of the 

rocket during this time?

   4. What is the average speed of the rocket during this 

time?  
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   5. A leopard starts from rest at  t   =  0 and runs in a straight 

line with a constant acceleration until  t   =  3.0 s. The 

distance covered by the leopard between  t   =  1.0 s and 

 t   =  2.0 s is

    (a)  the same as the distance covered during the first 

second.  

   (b)  twice the distance covered during the first second.  

   (c)  three times the distance covered during the first 

second.  

   (d)  four times the distance covered during the first 

second.       

  Multiple-Choice Questions 6–15.  A jogger is exercising 

along a long, straight road that runs north-south. She starts 

out heading north. A graph of  v   x  ( t ) follows Question 10.

    6. What is the displacement of the jogger from  t   =  18.0 min 

to  t   =  24.0 min?

    (a) 720 m, south     

 (b) 720 m, north  

   (c) 2160 m, south     

 (d) 3600 m, north     

   7. What is the displacement of the jogger for the entire 

30.0 min?

    (a) 3120 m, south     

 (b) 2400 m, north  

   (c) 2400 m, south     

 (d) 3840 m, north     

   8. What is the total distance traveled by the jogger in 

30.0 min?

    (a) 3840 m     (b) 2340 m     (c) 2400 m     (d) 3600 m     

   9. What is the average velocity of the jogger during the 

30.0 min?

    (a) 1.3 m/s, north     

 (b) 1.7 m/s, north 

  (c) 2.1 m/s, north     

 (d) 2.9 m/s, north     

   10. What is the average speed of the jogger for the 30 min?

    (a) 1.4 m/s     

 (b) 1.7 m/s     

 (c) 2.1 m/s     

 (d) 2.9 m/s         

   11. In what direction is she running at time  t   =  20 min?

    (a) south     

 (b) north     

 (c) not enough information     

   12. In which region of the graph is  a   x   positive?

    (a) A to B     

 (b) C to D     

 (c) E to F     

 (d) G to H     

   13. In which region is  a   x   negative?

    (a) A to B     

 (b) C to D     

 (c) E to F     

 (d) G to H     

   14. In which region is the velocity directed to the south?

    (a) A to B     

 (b) C to D     

 (c) E to F     

 (d) G to H     

15. What distance does the jogger travel during the first 

10.0 min ( t   =  0 to 10.0 min)?

    (a) 8.5 m     

 (b) 510 m     

 (c) 900 m     

 (d) 1020 m     

   16. The figure shown here has four graphs of  x  versus time. 

Which graph shows a constant, positive, nonzero 

velocity? 

(a) (b) (c) (d)

Multiple-Choice Questions 16 and 17

        17. The four graphs show  v   x   versus time. (a) Which graph 

shows a constant velocity? (b) Which graph shows  a   x
constant and positive? (c) Which graph shows  a   x   con-

stant and negative? (d) Which graph shows a changing 

ax   that is always positive?     

  Problems 

 Combination conceptual/quantitative problem

 Biological or medical application

✦ Challenging problem

Blue # Detailed solution in the Student Solutions Manual

1  2  Problems paired by concept

 Text website interactive or tutorial

✦✦
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Multiple-Choice Questions 6–15

t (min)
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  2.1 Position and Displacement 

    1. A displacement of magnitude 32 cm toward the east is 

followed by displacements of magnitude 48 cm to the 

east and then 64 cm to the west. What is the total 

displacement?  

   2. A squirrel is trying to locate some nuts he buried for the 

winter. He moves 4.0 m to the right of a stone and digs 

unsuccessfully. Then he moves 1.0 m to the left of his 

hole, changes his mind, and moves 6.5 m to the right of 

that position and digs a second hole. No luck. Then he 

moves 8.3 m to the left and digs again. He finds a nut at 

last. What is the squirrel’s total displacement from its 

starting point?  

   3. A runner, jogging along a straight line path, starts at a 

position 60 m east of a milestone marker and heads 

west. After a short time interval he is 20 m west of the 

mile marker. Choose east to be the positive  x -direction. 

(a) What is the runner’s displacement from his starting 

point? (b) What is his displacement from the milestone? 

(c) The runner then turns around and heads east. If at a 

later time the runner is 140 m east of the milestone, 

what is his displacement from the starting point at this 

time? (d) What is the total distance traveled from the 

starting point if the runner stops at the final position 

listed in part (c)?  

   4. Johannes bicycles from his dorm to the pizza shop 

that is 3.00 mi east. Darren’s apartment is located 

1.50 mi west of Johannes’s dorm. If Darren is able to 

meet Johannes at the pizza shop by bicycling in a 

straight line, what is the distance and direction he 

must travel?  

   5. At 3  p.m.  a car is located 20 km south of its starting 

point. One hour later it is 96 km farther south. After 

two more hours, it is 12 km south of the original start-

ing point. (a) What is the displacement of the car 

between 3  p.m.  and 6  p.m.?  (b) What is the displace-

ment of the car from the starting point to the location 

at 4  p.m.?  (c) What is the displacement of the car 

between 4  p.m.  and 6  p.m.?     

  2.2 Velocity: Rate of Change of Position 

    6. For the train of Example 2.2, find the average velocity 

between 3:14  p.m.  when the train is at 3 km east of the 

origin and 3:28  p.m.  when it is 10 km east of the 

origin.    

   7. A cyclist travels 10.0 km east in a time of 11 min 40 s. 

What is his average velocity in meters per second?    

   8. In a game against the White Sox, baseball pitcher 

Nolan Ryan threw a pitch measured at 45.1 m/s. If it 

was 18.4 m from Nolan’s position on the pitcher’s 

mound to home plate, how long did it take the ball 

to get to the batter waiting at home plate? Treat the 

ball’s velocity as constant and ignore any gravitational 

effects.  

   9. Jason drives due west with a speed of 35.0 mi/h for 

30.0 min, then continues in the same direction with a 

speed of 60.0 mi/h for 2.00 h, then drives farther west at 

25.0 mi/h for 10.0 min. What is Jason’s average veloc-

ity for the entire trip?  

   10. Two cars, a Toyota Yaris and a Jeep, are traveling in the 

same direction, although the Yaris is 186 m behind the 

Jeep. The speed of the Yaris is 24.4 m/s and the speed of 

the Jeep is 18.6 m/s. How much time does it take for the 

Yaris to catch the Jeep? [ Hint:  What must be true about 

the displacement of the two cars when they meet?] 

(    tutorial: catchup)  

   11. Speedometer readings are obtained and graphed as a car 

comes to a stop along a straight-line path. How far does 

the car move between  t   =  0 and  t   =  16 s? (    tutorial: 

start/stop traffic) 

     

t (s)
0

0 4 8 12 162 6 10 14

5

10

15

20

25
vx

(m/s)

Problems 11 and 29

   12. A graph is plotted of the vertical velocity  v   y   of an eleva-

tor versus time. The  y -axis points up. (a) How high is 

the elevator above the starting point ( t   =  0) after 20 s 

has elapsed? (b) When is the elevator at its highest loca-

tion above the starting point? 

     

t (s)

vy

(m/s)

40 8 12 16 20

0

2

–2

   13. A bicycle is moving along a straight line. The graph in 

the figure shows its position from the starting point 

as a function of time. (a) In which section(s) of the 

graph does the object have the highest speed? (b) At 

which time(s) does the object reverse its direction of 



motion? (c) How far does the object move from  t   =  0 

to  t   =  3 s? 

t (s)0 2 4 61 3 5
0

B

A

C

D

E

F

40

30

20

10

x (m)

   14. A ball thrown by a pitcher on a women’s softball team 

is timed at 65.0 mph. The distance from the pitching 

rubber to home plate is 43.0 ft. In major league baseball 

the corresponding distance is 60.5 ft. If the batter in the 

softball game and the batter in the baseball game are to 

have equal times to react to the pitch, with what speed 

must the baseball be thrown? Assume the ball travels 

with a constant velocity. [ Hint:  There is no need to con-

vert units; set up a ratio.]  

   15. A motor scooter travels east at a speed of 12 m/s. The 

driver then reverses direction and heads west at 15 m/s. 

What is the change in velocity of the scooter? Give 

magnitude and direction.  

     16. To pass a physical fitness test, Massimo must run 

1000 m at an average rate of 4.0 m/s. He runs the first 

900 m in 250 s. Is it possible for Massimo to pass the 

test? If so, how fast must he run the last 100 m to pass 

the test? Explain.  

17. The graph shows speedometer readings, in meters per 

second (on the vertical axis), obtained as a skateboard 

travels along a straight-line path. How far does the 

board move between  t   =  3.00 s and  t   =  8.00 s? 

18. The graph shows values of  x ( t ) in meters, on the vertical 

axis, for a skater traveling in a straight line. (a) What is 

v  av, x   for the interval from  t   =  0 to  t   =  4.0 s? (b) from  t   =  0 

to  t   =  5.0 s?  

   19. The graph shows values of  x ( t ) in meters for a skater 

traveling in a straight line. What is  v   x   at  t   =  2.0 s?  

   20. The graph shows values of  x ( t ) in meters for an object 

traveling in a straight line. Plot  v   x   as a function of time 

for this object from  t   =  0 to  t   =  8 s.  

t (s)40 8
0

4

8

Problems 17, 18, 19, and 20

21. A chipmunk, trying to cross a road, first moves 80 cm 

to the right, then 30 cm to the left, then 90 cm to the 

right, and finally 310 cm to the left. (a) What is the 

chipmunk’s total displacement? (b) If the elapsed time 

was 18 s, what was the chipmunk’s average speed? 

(c) What was its average velocity?  

   22. Rita Jeptoo of Kenya was the first female finisher in 

the 110th Boston Marathon. She ran the first 10.0 km 

in a time of 0.5689 h. Assume the race course to be 

along a straight line. (a) What was her average speed 

during the first 10.0 km segment of the race? (b) She 

completed the entire race, a distance of 42.195 km, in 

a time of 2.3939 h. What was her average speed for 

the race?  

23. A relay race is run along a straight-line track of 

length 300.0 m running south to north. The first run-

ner starts at the south end of the track and passes the 

baton to a teammate at the north end of the track. The 

second runner races back to the start line and passes 

the baton to a third runner who races 100.0 m north-

ward to the finish line. The magnitudes of the aver-

age velocities of the first, second, and third runners 

during their parts of the race are 7.30 m/s, 7.20 m/s, 

and 7.80 m/s, respectively. What is the average veloc-

ity of the baton for the entire race? [ Hint:  You will 

need to find the time spent by each runner in com-

pleting her portion of the race.]    

  2.3 Acceleration: Rate of Change of Velocity 

    24. If a pronghorn antelope accelerates from rest in a 

straight line with a constant acceleration of 1.7 m/s 2 , 

how long does it take for the antelope to reach a speed 

of 22 m/s?  

25. If a car traveling at 28 m/s is brought to a full stop in 

4.0 s after the brakes are applied, find the average accel-

eration during braking.  

   26. An 1100-kg airplane starts from rest; 8.0 s later it 

reaches its takeoff speed of 35 m/s. What is the aver-

age acceleration of the airplane during this time?  

   27. A rubber ball is attached to a paddle by a rubber band. 

The ball is initially moving away from the paddle with a 

speed of 4.0 m/s. After 0.25 s, the ball is moving toward 

the paddle with a speed of 3.0 m/s. What is the average 

acceleration of the ball during that 0.25 s? Give magni-

tude and direction.  

   28. (a) In  Fig. 2.11 , what is the instantaneous acceleration 

of the sports car of Example 2.5 at the time of 14 s from 

the start? (b) What is the displacement of the car from 

t   =  12.0 s to  t   =  16.0 s? (c) What is the average velocity 

of the car in the 4.0-s time interval from 12.0 s to 

16.0 s?  

✦✦
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29. The graph with Problem 11 shows speedometer read-

ings as a car comes to a stop. What is the magnitude of 

the acceleration at  t   =  7.0 s?  

     30. The figure shows a plot of  v   x  ( t ) for a car traveling in a 

straight line. (a) What is  a  av, x   between  t   =  6 s and 

t   =  11 s? (b) What is  v  av, x   for the same time interval? 

(c) What is  v  av, x   for the interval  t   =  0 to  t   =  20 s? 

(d) What is the increase in the car’s speed between 

10 s and 15 s? (e) How far does the car travel from time 

t   =  10 s to time  t   =  15 s? 

t (s)0 5 10 15 20

20

15

10

5

0

vx (m/s)

   31. The graph shows  v   x   versus  t  for a body moving along a 

straight line. (a) What is  a   x   at  t   =  11 s? (b) What is  a   x   at 

 t   =  3 s? (c) How far does the body travel from  t   =  12 s to 

 t   =  14 s? (    tutorial:  x, v, a )        

t (s)0 4 862 10 1412

20

0

40

vx (m/s)

  2.4 Motion Along a Line with Constant 
Acceleration; 2.5 Visualizing Motion Along a 
Line with Constant Acceleration 

      32. A toboggan is sliding in a straight line down a snowy 

slope. The table shows the speed of the toboggan at 

various times during its trip. (a) Make a graph of the 

speed as a function of time. (b) Judging by the graph, 

is it plausible that the toboggan’s acceleration is con-

stant? If so, what is the acceleration?   

   

Time Elapsed, t (s) Speed of Toboggan, v (m/s)

0 0

1.14 2.8

1.62 3.9

2.29 5.6

2.80 6.8

✦✦

33. The St. Charles streetcar in New Orleans starts from 

rest and has a constant acceleration of 1.20 m/s 2  for 

12.0 s. (a) Draw a graph of  v   x   versus  t.  (b) How far has 

the train traveled at the end of the 12.0 s? (c) What is 

the speed of the train at the end of the 12.0 s? (d) Draw 

a motion diagram, showing the streetcar’s position at 

2.0-s intervals.  

   34. An airplane lands and starts down the runway with a 

southwest velocity of 55 m/s. What constant accelera-

tion allows it to come to a stop in 1.0 km?  

   35. A train is traveling south at 24.0 m/s when the brakes 

are applied. It slows down with a constant acceleration 

to a speed of 6.00 m/s in a time of 9.00 s. (a) Draw a 

graph of  v   x   versus  t  for a 12-s interval (starting 2 s 

before the brakes are applied and ending 1 s after the 

brakes are released). Let the  x -axis point to the north. 

(b) What is the acceleration of the train during the 

9.00-s interval? (c) How far does the train travel dur-

ing the 9.00 s?  

     36. A 1200-kg airplane starts from rest and moves forward 

with a constant acceleration of magnitude 5.00 m/s 2

along a runway that is 250 m long. (a) How long does it 

take the plane to reach a speed of 46.0 m/s? (b) How far 

along the runway has the plane moved when it reaches 

46.0 m/s?     

37. A car is speeding up and has an instantaneous velocity 

of 1.0 m/s in the  +  x -direction when a stopwatch reads 

10.0 s. It has a constant acceleration of 2.0 m/s 2  in the 

+  x -direction. (a) What change in speed occurs between 

t   =  10.0 s and  t   =  12.0 s? (b) What is the speed when the 

stopwatch reads 12.0 s?  

   38. You are driving your car along a country road at a speed 

of 27.0 m/s. As you come over the crest of a hill, you 

notice a farm tractor 25.0 m ahead of you on the road, 

moving in the same direction as you at a speed of 

10.0 m/s. You immediately slam on your brakes and 

slow down with a constant acceleration of magnitude 

7.00 m/s 2 . Will you hit the tractor before you stop? How 

far will you travel before you stop or collide with the 

tractor? If you stop, how far is the tractor in front of you 

when you finally stop?  

   39. A train is traveling along a straight, level track at 

26.8 m/s (60.0 mi/h). Suddenly the engineer sees a 

truck stalled on the tracks 184 m ahead. If the maxi-

mum possible braking acceleration has magnitude 

1.52 m/s 2 , can the train be stopped in time?  

   40. In a cathode ray tube in an old TV, electrons are accel-

erated from rest with a constant acceleration of magni-

tude 7.03  ×  10 13  m/s 2  during the first 2.0 cm of the 

tube’s length; then they move at essentially constant 

velocity another 45 cm before hitting the screen. 

(a) Find the speed of the electrons when they hit the 

✦✦



screen. (b) How long does it take them to travel the 

length of the tube?  

41. The graph is of  v   x   versus  t  for an object moving along 

the  x -axis. How far does the object move between 

t   =  9.0 s and  t   =  13.0 s? Solve using two methods: a 

graphical analysis and an algebraic solution. 

t (s)0 4 862 10 1412

20

0

40

vx (m/s)

Problems 41–42

   42. The graph is of  v   x   versus  t  for an object moving along 

the  x -axis. What is the average acceleration between 

t   =  5.0 s and  t   =  9.0 s? Solve using two methods: a 

graphical analysis and an algebraic solution.  

   43. A train, traveling at a constant speed of 22 m/s, comes 

to an incline with a constant slope. While going up the 

incline, the train slows down with a constant accelera-

tion of magnitude 1.4 m/s 2 . (a) Draw a graph of  v   x
versus  t  where the  x -axis points up the incline. (b) What 

is the speed of the train after 8.0 s on the incline? 

(c) How far has the train traveled up the incline after 

8.0 s? (d) Draw a motion diagram, showing the trains 

position at 2.0-s intervals.    

  2.6 Free Fall 

 In the problems, please assume the free-fall acceleration 

g   =  9.80 m/s 2  unless a more precise value is given in the 

problem statement. Ignore air resistance. 

    44. A brick is thrown vertically upward with an initial speed 

of 3.00 m/s from the roof of a building. If the building is 

78.4 m tall, how much time passes before the brick 

lands on the ground?  

45. A penny is dropped from the observation deck of the 

Empire State building (369 m above ground). With what 

velocity does it strike the ground?  

   46. (a) How long does it take for a golf ball to fall from rest 

for a distance of 12.0 m? (b) How far would the ball fall 

in twice that time?  

   47. Grant Hill jumps 1.3 m straight up into the air to slam-

dunk a basketball into the net. With what speed did he 

leave the floor?  

   48. During a walk on the Moon, an astronaut accidentally 

drops his camera over a 20.0-m cliff. It leaves his hands 

with zero speed, and after 2.0 s it has attained a velocity 

of 3.3 m/s downward. How far has the camera fallen 

after 4.0 s?  

49. Glenda drops a coin from ear level down a wishing 

well. The coin falls a distance of 7.00 m before it 

strikes the water. If the speed of sound is 343 m/s, how 

long after Glenda releases the coin will she hear a 

splash?  

   50. A stone is launched straight up by a slingshot. Its initial 

speed is 19.6 m/s and the stone is 1.50 m above the 

ground when launched. (a) How high above the ground 

does the stone rise? (b) How much time elapses before 

the stone hits the ground?  

 51. A 55-kg lead ball is dropped from the leaning tower of 

Pisa. The tower is 55 m high. (a) How far does the ball 

fall in the first 3.0 s of flight? (b) What is the speed of 

the ball after it has traveled 2.5 m downward? (c) What 

is the speed of the ball 3.0 s after it is released? (d) If 

the ball is thrown vertically upward from the top of the 

tower with an initial speed of 4.80 m/s, where will it be 

after 2.42 s?  

     52. A balloonist, riding in the basket of a hot air balloon 

that is rising vertically with a constant velocity of 

10.0 m/s, releases a sandbag when the balloon is 40.8 m 

above the ground. What is the bag’s speed when it hits 

the ground?  

53. Superman is standing 120 m horizontally away from 

Lois Lane. A villain throws a rock vertically downward 

with a speed of 2.8 m/s from 14.0 m directly above 

Lois. (a) If Superman is to intervene and catch the rock 

just before it hits Lois, what should be his minimum 

constant acceleration? (b) How fast will Superman be 

traveling when he reaches Lois?  

     54. A student, looking toward his fourth-floor dormitory 

window, sees a flowerpot with nasturtiums (originally 

on a window sill above) pass his 2.0-m high window 

in 0.093 s. The distance between floors in the dormi-

tory is 4.0 m. From a window on which floor did the 

flowerpot fall?  

     55. You drop a stone into a deep well and hear it hit the 

bottom 3.20 s later. This is the time it takes for the 

stone to fall to the bottom of the well, plus the time it 

takes for the sound of the stone hitting the bottom to 

reach you. Sound travels about 343 m/s in air. How 

deep is the well?     

  Comprehensive Problems 

In the problems, please assume the free-fall acceleration 

g   =  9.80 m/s 2  unless a more precise value is given in the 

problem statement. Ignore air resistance.

    56. (a) If a freestyle swimmer traveled 1500 m in a time of 

14 min 53 s, how fast was his average speed? (b) If the 

pool was rectangular and 50 m in length, how does the 

✦✦

✦✦

✦✦

✦✦

COMPREHENSIVE PROBLEMS 51



52  CHAPTER 2  Motion Along a Line

speed you found compare with his sustained swimming 

speed of 1.54 m/s during one length of the pool after he 

had been swimming for 10 min? What might account 

for the difference?    

   57. While passing a slower car on the highway, you acceler-

ate uniformly from 17.4 m/s to 27.3 m/s in a time of 

10.0 s. (a) How far do you travel during this time? 

(b) What is your acceleration magnitude?  

     58. A cheetah can accelerate from rest to 24 m/s in 2.0 s. 

Assuming the acceleration is constant over the time 

interval, (a) what is the magnitude of the acceleration of 

the cheetah? (b) What is the distance traveled by the 

cheetah in these 2.0 s? (c) A runner can accelerate from 

rest to 6.0 m/s in the same time, 2.0 s. What is the mag-

nitude of the acceleration of the runner? By what factor 

is the cheetah’s average acceleration magnitude greater 

than that of the runner?  

   59. A rocket is launched from rest. After 8.0 min, it is 160 km 

above the Earth’s surface and is moving at a speed of 

7.6 km/s. Assuming the rocket moves up in a straight 

line, what are its (a) average velocity and (b) average 

acceleration?  

   60. A streetcar named Desire travels between two stations 

0.60 km apart. Leaving the first station, it accelerates 

for 10.0 s at 1.0 m/s 2  and then travels at a constant speed 

until it is near the second station, when it brakes at 

2.0 m/s 2  in order to stop at the station. How long did 

this trip take? [ Hint:  What’s the average velocity?]  

   61. An unmarked police car starts from rest just as a speed-

ing car passes at a speed of  v.  If the police car speeds up 

with a constant acceleration of magnitude  a,  what is the 

speed of the police car when it catches up to the speeder, 

who does not realize she is being pursued and does not 

vary her speed?  

   62. A stone is thrown vertically downward from the roof of 

a building. It passes a window 16.0 m below the roof 

with a speed of 25.0 m/s. It lands on the ground 3.00 s 

after it was thrown. What was (a) the initial velocity of 

the stone and (b) how tall is the building?  

   63. A car traveling at 29 m/s (65 mi/h) runs into a bridge abut-

ment after the driver falls asleep at the wheel. (a) If the 

driver is wearing a seat belt and comes to rest within a 

1.0-m distance, what is his acceleration (assumed con-

stant)? (b) A passenger who isn’t wearing a seat belt is 

thrown into the windshield and comes to a stop in a dis-

tance of 10.0 cm. What is the acceleration of the 

passenger?  

   64. To pass a physical fitness test, Marcella must run 

1000 m at an average speed of 4.00 m/s. She runs the 

first 500 m at an average of 4.20 m/s. (a) How much 

time does she have to run the last 500 m? (b) What 

should be her average speed over the last 500 m in 

order to finish with an overall average speed of 

4.00 m/s?  

   65. At 3:00  p.m.,  a bank robber is spotted driving north 

on I-15 at milepost 126. His speed is 112.0 mi/h. At 

3:37  p.m.,  he is spotted at milepost 185 doing 105.0 mi/h. 

During this time interval, what are the bank robber’s 

displacement, average velocity, and average accelera-

tion? (Assume a straight highway.)  

       66. Based on the information given in Problem 59, is it pos-

sible that the rocket moves with constant acceleration? 

Explain.  

       67. An elevator starts at rest on the ninth floor. At  t   =  0, a 

passenger pushes a button to go to another floor. The 

graph for this problem shows the acceleration  a   y   of the 

elevator as a function of time. Let the  y -axis point 

upward. (a) Has the passenger gone to a higher or lower 

floor? (b) Sketch a graph of the velocity  v   y   of the eleva-

tor versus time. (c) Sketch a graph of the position  y  of 

the elevator versus time. 
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       68. The graph for this problem shows the vertical velocity 

 v   y    of a bouncing ball as a function of time. The   y -axis 

points up. Answer these questions based on the data in 

the graph. (a) At what time does the ball reach its maxi-

mum height? (b) For how long is the ball in contact with 

the floor? (c) What is the maximum height of the ball? 

(d) What is the acceleration of the ball while in the air? 

(e) What is the average acceleration of the ball while in 

contact with the floor? 
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     69. A rocket engine can accelerate a rocket launched from 

rest vertically up with an acceleration of 20.0 m/s 2 . 

However, after 50.0 s of flight the engine fails. (a) What 

is the rocket’s altitude when the engine fails? (b) When 

does it reach its maximum height? (c) What is the maxi-

mum height reached? [ Hint:   A graphical solution may 

be easiest.] (d) What is the velocity of the rocket just 

before it hits the ground?   

     70. The graph shows the position  x  of a switch engine in a 

rail yard as a function of time  t.  At which of the labeled 

times  t  0  to  t  7  is (a)  a   x   < 0, (b)  a   x    =  0, (c)  a   x   > 0, (d)  v   x    =  0, 

(e) the speed decreasing? 

     

x

t0 t1

t3 t5t4

t2 t6 t7

t

     71. An airtrack glider, 8.0 cm long, blocks light as it goes 

through a photocell gate. The glider is released from 

rest on a frictionless inclined track and the gate is posi-

tioned so that the glider has traveled 96 cm when it is in 

the middle of the gate. The timer gives a reading of 

333 ms for the glider to pass through this gate. Friction 

is negligible. What is the acceleration (assumed con-

stant) of the glider along the track? 

     

8.0 cm

96 cm

Photogate

vfxx

vix = 0

     72. Find the point of no return for an airport runway of 

1.50 mi in length if a jet plane can accelerate at 10.0 ft/s 2  

and decelerate at 7.00 ft/s 2 . The point of no return occurs 

when the pilot can no longer abort the takeoff without 

running out of runway. What length of time is available 

from the start of the motion in which to decide on a 

course of action?  

       73. In the human nervous system, signals are transmitted 

along neurons as  action potentials  that travel at speeds 

of up to 100 m/s. (An action potential is a traveling 

✦✦

✦✦

✦✦

✦✦

✦✦

influx of sodium ions through the membrane of a 

neuron.) The signal is passed from one neuron to 

another by the release of neurotransmitters in the 

synapse. Suppose someone steps on your toe. The 

pain signal travels along a 1.0-m-long sensory neu-

ron to the spinal column, across a synapse to a sec-

ond 1.0-m-long neuron, and across a second synapse 

to the brain. Suppose that the synapses are each 

100 nm wide, that it takes 0.10 ms for the signal to 

cross each synapse, and that the action potentials 

travel at 100 m/s. (a) At what average speed does the 

signal cross a synapse? (b) How long does it take the 

signal to reach the brain? (c) What is the average 

speed of propagation of the signal?    

  Answers to Practice Problems 

    2.1  3.8 m east  

   2.2  77 km/h in the − x -direction (west)  

   2.3  About 100 to 110 km/h in the  +  x -direction (east)  

   2.4  The velocity is increasing in magnitude, so the accelera-

tion is in the same direction as the velocity (the − x -direction). 

Thus,  a   x   is negative; the acceleration is in the − x -direction.  

   2.5  

     

t (s)0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0
0

5.0

10

vx

(m/s)

15

20

Instantaneous
acceleration
at t = 2.0 s

ax = = –4.3 m/s20 m/s – 20.5 m/s

4.8 s – 0 s

aav,x = = –3.0 m/s2–24 m/s

8.0 s

Slope at
t = 2.0 s

=

 (a)   a  av, x    =   − 3.0 m/s 2  where the negative sign means the aver-

age acceleration is directed to the northwest; 

(b)  a   x    =   − 4.3 m/s 2  (northwest)

   2.6  2.0 m  

   2.7  20 s  

   2.8  5.00 s after they leave the starting point; 4.00 km/s in 

the  +  x -direction  

   2.9  (a) 3.8 m; (b) 3.00 s    
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  Answers to Checkpoints 

   2.1 No. The magnitude of the displacement is the shortest 

distance between two points. The distance traveled can be 

greater than or equal to the displacement, depending on the 

path taken. In Example 2.1 the displacement is 2.9 km to the 

west, and the distance traveled is 11.5 km.  

  2.2 Yes. Average speed is the distance traveled divided by the 

time interval in moving from point A to point B. Average 

velocity is the displacement from point A to point B divided 

by the same time interval. The magnitude of the displacement 

is the shortest possible distance from A to B. Thus the average 

velocity magnitude is less than or equal to the average speed.  

  2.3 The slope of the tangent to a graph of  v   x   versus time is 

the instantaneous acceleration  a   x   at the time.  

  2.4 Only if the plane’s acceleration is constant must its aver-

age velocity be 470 km/h west. If its acceleration is not con-

stant, the average velocity is not necessarily 470 km/h west. 

To find the average velocity, we would divide the plane’s 

displacement by the time interval.  

  2.6 Yes. If you throw a ball upward, it is in free fall as soon 

as it loses contact with your hand.      



C H A P T E R

 3   Motion in a Plane      

 A gull scoops up a clam and takes it high above the ground. While fly-

ing parallel to the ground, the gull lets go of the clam. The clam lands 

on a rock below and cracks open. Then the gull alights and enjoys 

lunch. A beachcomber on the beach sees the clam fall along a para-

bolic path, just as a projectile would. Why does the clam not drop 

straight down? What does the path of the falling clam look like to the 

gull? (See pp. 73 and 76–77 for the answers.) 
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• trigonometric functions: sine, cosine, and tangent (Appendix A.7) 

 • Pythagorean theorem (Appendix A.6) 

 • position, displacement, velocity, and acceleration (Sections 2.1–2.3) 

 • average and instantaneous quantities (Sections 2.2–2.3) 

 • motion along a line with constant acceleration (Sections 2.4–2.6)   

3.1  GRAPHICAL ADDITION AND SUBTRACTION 
OF VECTORS 

Chapter 2 introduced the quantities position, displacement, velocity, and acceleration to 

describe motion along a line—that is, motion in one dimension of space. To describe 

motion in more than one dimension, we need a full treatment of vector addition and 

subtraction because position, displacement, velocity, and acceleration are vectors. 

(Other vectors you will study in this book include force, momentum, angular momen-

tum, torque, and the electric and magnetic fields.)    

Vectors and Scalars    All    vectors    have a direction as well as a magnitude. The direc-

tion of any vector is always a  physical direction in space  such as up, down, north, or 35 °
south of west. 

 Vector quantities are usually drawn as arrows pointing in the direction of the vec-

tor; the length of the arrow is proportional to the magnitude of the vector. By contrast, a 

  scalar    quantity can have magnitude, algebraic sign, and units, but not a direction in 

space. It wouldn’t make sense to draw an arrow to represent a scalar such as mass!     

 In this book, an arrow over a boldface symbol indicates a vector quantity     (r ⃗).   (Some 

books use boldface without the arrow or the arrow without boldface.)  When writing 

by hand, always draw an arrow over a vector symbol to distinguish it from a scalar. 

When the symbol for a vector is written without the arrow and in italics rather than 

boldface (  r  ), it stands for the   magnitude   of the vector (which is a scalar).  Absolute value 

bars are also used to stand for the magnitude of a vector, so     r =  r ⃗ .   The magnitude of a 

vector may have units and is never negative; it can be positive or zero. 

Concepts & Skills to ReviewConcepts & Skills to Review

CONNECTION:

Vector quantities must be 

added and subtracted accord-

ing to special rules that take 

their directions into account. 

All vector quantities follow 

the same rules of addition 

and subtraction.

CONNECTION:

Vector quantities must be 

added and subtracted accord-

ing to special rules that take 

their directions into account. 

All vector quantities follow 

the same rules of addition 

and subtraction.

Vector quantities have both magni-

tude and direction.

Vector quantities have both magni-

tude and direction.

southwest direction.” “The temperature is up 5 degrees today,” 

means that it has increased, not that it is pointing vertically 

upward. Temperature is a scalar, not a vector. 

Conceptual Practice Problem 3.1 Bank Balance

When you deposit a paycheck, the balance of your checking 

account “goes up.” When you pay a bill, it “goes down.” Is 

the balance of your account a vector quantity?

Conceptual Example 3.1

Vector or Scalar?

Is temperature a vector quantity?

Strategy If a quantity is a vector, it must have both a mag-

nitude and a physical direction in space.

Solution and Discussion Does temperature have a direc-

tion? A temperature in Fahrenheit or Celsius can be above or 

below zero—is that a direction? No. A vector must have a  

physical direction in space. It does not make sense to say that 

the temperature of your coffee is “85 degrees Celsius in the 

   When scalars are added or subtracted, they do so in the usual way: 3 kg of water 

plus 2 kg of water is equal to 5 kg of water. Adding or subtracting vectors is different. 

Vectors follow rules of addition and subtraction that take into account the  directions

of the vectors as well as their magnitudes.  Whenever you need to add or subtract 

quantities, check whether they are vectors. If so, be sure to add or subtract them cor-

rectly   as vectors.   Do not just add or subtract their magnitudes.   



   Graphical Vector Addition      We start with a graphical method to help develop your 

intuition. To add two vectors graphically, first draw an arrow to represent one of them 

( Fig. 3.1a ). (It does not matter in what order vectors are added;      A⃗ +  B⃗ =  B⃗ +  A⃗.  ) The 

arrow points in the direction of the vector and its length is proportional to the magnitude 

of the vector.  It doesn’t matter where you start drawing the arrow. The value of a vector 

is not changed by moving it as long as its direction and magnitude are not changed.          

   Now draw the second vector arrow starting where the first ends. In other words, 

place the “tail” of the second arrow at the “tip” of the first ( Fig 3.1b ). Finally, draw an 

arrow starting from the  tail  of the first and ending at the  tip  of the second. This arrow 

represents the sum of the two vectors ( Fig. 3.1c ).  A common error is to draw the sum 

from the tip of the second to the tail of the first (   Fig. 3.1d   ).  If the lengths and directions 

of the vectors are drawn accurately to scale, using a ruler and a protractor, then the 

length and direction of the sum can be determined with the ruler and protractor. To add 

more than two vectors, continue drawing them tip to tail.  

   Vector Subtraction     To subtract a vector is to add its opposite  (that is, a vector with 

the same magnitude but opposite direction):      r ⃗  f  −  r ⃗  i  =  r ⃗  f  + (− r ⃗  i ).   Multiplying a vector by 

the scalar  − 1 reverses the vector’s direction while leaving its magnitude unchanged, so 

    − r ⃗  i  = −1 ×  r ⃗  i    is a vector equal in magnitude and opposite in direction to      r ⃗  i .    

   Using Compass Headings    It is common to use compass headings to specify vector 

directions in a horizontal plane. For example, the direction of the vector in  Fig. 3.2  is 

“20 °  north of east,” which means that the vector makes a 20 °  angle with the east direc-

tion and is on the north (rather than the south) side of east. The same direction could be 

described as “70 °  east of north,” although it is customary to use the smaller angle. 

Northeast means “45 °  north of east” or, equivalently, “45 °  east of north.”       

  Position and Displacement 

 The position     r ⃗   of an object can be represented as a vector arrow drawn from the origin 

to the location of the object ( Fig. 3.3 ). Its magnitude is the distance from the origin. The 

displacement is literally the  change in position  (the final position vector minus the ini-

tial position vector):

     Δr ⃗ =  r ⃗  f  −  r ⃗  i    (3-1)           

  Figure 3.4  shows the graphical subtraction of two position vectors to illustrate the 

displacement for a trip from Killarney to Kenmare. This same procedure is used to sub-

tract any kind of vector quantity (velocity, acceleration, etc.).         

   Addition of Displacement Vectors    As in Example 2.1, the total displacement for a trip 

with several parts is the vector sum of the displacements for each part of the trip because    

  r ⃗  3  −  r ⃗  1  = ( r ⃗  3  −  r ⃗  2 ) + ( r ⃗  2  −  r ⃗  1 )   (3-2)   

 Example 3.2 explores this idea further.     

A plus sign (+) between 

vector quantities indicates 

vector addition, not ordinary addi-

tion. An equals sign (=) between 

vector quantities means that the vec-

tors are identical in magnitude and 

direction, not simply that their mag-

nitudes are equal.

A plus sign (+) between 

vector quantities indicates 

vector addition, not ordinary addi-

tion. An equals sign (=) between 

vector quantities means that the vec-

tors are identical in magnitude and 

direction, not simply that their mag-

nitudes are equal.

20°

N

S

EW

Figure 3.2 Measuring angles 

with respect to compass head-

ings. The direction of this vector 

is 20° north of east (20° N of E).

r

y

xOrigin

Figure 3.3 A position vector r ⃗.
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Figure 3.1 Adding two vectors graphically. (a) Draw one vector arrow. (b) Draw the 

second, starting where the first arrow ended. (c) The sum of the two. (d) A common 

mistake.

Vector Subtraction:   A⃗ −  B⃗ =
 A⃗ + (−  B⃗), where −  B⃗ has the same 

magnitude as  B⃗ but is opposite in 

direction. Note that the order 

matters:  B⃗ −  A⃗ = −( A⃗ −  B⃗).
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18 km ×   0.2 cm ______ 
1 km

   = 3.6 cm

Similarly, the arrows for  B⃗ and  C⃗ should be 3.4 cm and 

9.6 cm long, respectively.

After drawing the three vector arrows tip to tail, the arrow 

from the tail of the first vector to the tip of the last vector 

represents the sum (Fig. 3.5). This arrow is measured to have 

length 8.9 cm and its direction is 30° south of east. The total 

displacement has magnitude

8.9 cm ×   1 km ______ 
0.2 cm

   = 44.5 km

Rounding to two significant figures, the total displacement  
 A⃗ +  B⃗ +  C⃗ has magnitude 45 km and is directed 30° south 

of east.

Discussion Note that the answer includes both the magni-

tude and direction of the displacement. If a home-

work or exam question has you calculate a vector 

quantity such as position or velocity, don’t forget to specify 

the direction as well as the magnitude in your answer. One 

without the other is incomplete.

Although the magnitude and direction of a position 

vector depends on the choice of origin, the magnitude and 

Example 3.2

An Irish Adventure (1)

In a trip from Killarney to 

Cork, Charlotte and Shona 

drive at a compass head-

ing of 27° west of south 

for 18 km to Kenmare, 

then directly south for 

17 km to Glengariff, then 

at a compass heading of 

13° north of east for 48 km 

to Cork. Find the displace-

ment vector for the entire 

trip by adding the three 

displacements graphically.

Strategy To add the displacement vectors, place the tail of 

each successive vector at the tip of the preceding vector. The 

value of a vector is not changed by moving it as long as its 

direction and magnitude are not changed, so a vector can be 

drawn starting at any point. The sum of the three displace-

ments is then drawn from the tail of the first vector to the tip 

of the last vector. To add vectors graphically and get an 

accurate result, we use a ruler and a protractor. The protrac-

tor is used to draw the vector arrows in the correct directions 

and the ruler is used to draw them with the correct lengths. 

Then the length and direction of the sum can be determined 

with the ruler and protractor.

Solution Let’s call the four positions  r ⃗  1  (Killarney),  r ⃗  2
(Kenmare),  r ⃗  3  (Glengariff), and  r ⃗  4  (Cork). The displace-

ment for the whole trip is  r ⃗  4  −  r ⃗  1 . The problem gives the 

displacements for the three parts of the trip; let’s call them  
 A⃗ =  r ⃗  2  − r  ⃗  1  = 18 km, 27° west of south;  B⃗ =  r ⃗  3  −  r ⃗  2  = 17 km, 

south; and   C⃗ =  r ⃗  4  − r  ⃗  3  = 48 km, 13° north of east. The sum of 

these three displacements is the total displacement because

 A⃗ +  B⃗ +  C⃗ = ( r ⃗  2  −  r ⃗  1 ) + ( r ⃗  3  −  r ⃗  2 ) + ( r ⃗  4  −  r ⃗  3 ) =  r ⃗  4  −  r ⃗  1 

Next we choose a convenient scale for the lengths of the 

vector arrows. Here we choose to represent 1 km as an arrow 

length of 0.2 cm, so the length of the vector arrow for  A⃗
should be

Blarney castle.
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Figure 3.5

Graphical addition of the displacement vectors for the trip 

from Killarney to Cork via Kenmare and Glengariff.

Killarney

Origin

ri

rf

(a)

Killarney

Cork

–ri

(b)

rf

∆r = –ri + rf

Origin

Cork

Figure 3.4 (a) Two position 

vectors,  r ⃗  i  and  r ⃗  f , drawn from 

an arbitrary origin to the start-

ing point (Killarney) and to the 

ending point (Cork) of a trip. 

(b) The final position vector 

minus the initial position vector 

is the displacement Δr ⃗, found 

by adding − r ⃗  i  +  r ⃗  f .

continued on next page



3.2  VECTOR ADDITION AND SUBTRACTION USING 
COMPONENTS 

   Components of a Vector 

 Any vector can be expressed as the sum of vectors parallel to the  x -,  y -, and (if needed) 

z -axes. The  x -,  y-,  and  z- components of a vector indicate the magnitude and direction 

of the three vectors along the three perpendicular axes. The sign of a component indi-

cates the direction along that axis. The  x-,   y-,  and  z -components of vector      A⃗   are writ-

ten with subscripts as follows:  A   x  ,  A   y  , and  A   z  . One exception to this otherwise 

consistent notation is that the  x-,   y-,  and  z -components of a position vector     r ⃗   are usu-

ally written  x,   y,  and  z  (instead of  r   x  ,  r   y  , and  r   z  ). For now we will deal only with vec-

tors in the  xy -plane. 

 The  x -component of a position vector     r ⃗   is  x,  the  x -coordinate. For all other vectors, 

the  x -component is designated by a subscript  x.  For example, the  x -component of a 

velocity vector     v ⃗   is written  v   x  . Components of vectors have magnitude, units, and an 

algebraic sign. The sign indicates the direction: a positive  x -component indicates the 

direction of the positive  x -axis, while a negative  x -component indicates the opposite 

direction (the negative  x -axis). 

   Finding Components    The process of finding the components of a vector is called

resolving the vector into its components. Consider the velocity vector     v ⃗   in  Fig. 3.6 . We 

can think of     v ⃗   as the sum of two vectors, one parallel to the  x- axis and the other parallel 

to the  y- axis. The magnitudes of these two vectors are the  magnitudes  (absolute values) 

of the  x - and  y -components of     v ⃗.   We can find the magnitudes of the components using 

the right triangle in  Fig. 3.6  and the trigonometric functions in  Fig. 3.7 . The length of 

the arrow represents the magnitude of the vector ( v   =  9.4 m/s), so

     cos 58° =   
adjacent

 __________ 
hypotenuse

   =    
 |  v  x  |  ___ 
v
   and sin 58° =   

opposite
 __________ 

hypotenuse
   =   

 |  v  y  |  ___ 
v
     (3-3)

 Now we must determine the correct algebraic sign for each of the components. 

From  Fig. 3.6 , the vector along the  x -axis points in the  positive   x -direction and the vec-

tor along the  y -axis points in the  negative   y -direction, so in this case,

      v  x  = +v cos 58° = 5.0 m/s and  v  y  = −v sin 58° = −8.0 m/s   (3-4)

 Using the right triangle in  Fig. 3.8  gives the same values for the  x - and  y -components of 

v ⃗   since cos 32 °   =  sin 58 °  and sin 32 °   =  cos 58 ° .      

direction of a displacement (change of position) does not

depend on the choice of origin.

The total distance traveled by Charlotte and Shona is 

18 km + 17 km + 48 km = 83 km, which is not equal to the 

magnitude of the total displacement. Finding the total dis-

tance involves adding three scalars, while finding the total 

displacement involves adding three vectors. The magnitude 

of the total displacement is the straight-line distance from 

Killarney to Cork.

Practice Problem 3.2 A Traveling Executive

An executive flies from Kansas City to Chicago (displace-

ment = 400 mi in the direction 30° north of east) and then 

from Chicago to Tulsa (600 mi, 45° south of west). Add the 

two displacements graphically to find the total displacement 

from Kansas City to Tulsa.

Figure 3.6 Resolving a 

velocity vector v ⃗ into x- and 

y-components.

vy

vx

v

x

y

58°

q

f = 90° – q

f

90°

b
c

a

Right triangle

______________sin q  = =
hypotenuse

side opposite ∠q _
c

b

______________cos q  = =
hypotenuse

side adjacent ∠q _
c

a

______________tan q  = =
side adjacent ∠q

side opposite ∠q _
a

b

Figure 3.7 Trigonometric 

functions (see Appendix A.7 for 

more information).

32°

x

y

vy

vx

v

Figure 3.8 Resolving the 

velocity vector into components 

using a different right triangle.
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Problem-Solving Strategy: Finding the x- and y-Components of a 
Vector from Its Magnitude and Direction

 1. Draw a right triangle with the vector as the hypotenuse and the other two sides 

parallel to the x- and y-axes.

 2. Determine one of the unknown angles in the triangle.

 3. Use trigonometric functions to find the magnitudes of the components. Make 

sure your calculator is in “degree mode” to evaluate trigonometric functions of 

angles in degrees and “radian mode” for angles in radians.

 4. Determine the correct algebraic sign for each component.

   Finding Magnitude and Direction    We must also know how to reverse the process 

to find a vector’s magnitude and direction from its component. 

Problem-Solving Strategy: Finding the Magnitude and Direction of a 
Vector A⃗ from Its x- and y-Components

 1. Sketch the vector on a set of x- and y-axes in the correct quadrant, according 

to the signs of the components.

 2. Draw a right triangle with the vector as the hypotenuse and the other two sides 

parallel to the x- and y-axes.

 3. In the right triangle, choose which of the unknown angles you want to deter-

mine.

 4. Use the inverse tangent function to find the angle. The lengths of the sides 

of the triangle represent  Ax  and  Ay . If q  is opposite the side parallel to the 

x-axis, then tan q  = opposite/adjacent =  Ax/Ay . If q  is opposite the side paral-

lel to the y-axis, then tan q  = opposite/adjacent =  Ay/Ax . If your calculator is 

in “degree mode,” then the result of the inverse tangent operation will be in 

degrees. [In general, the inverse tangent has two possible values between 0 and 

360° because tan a  =  tan (a + 180°). However, when the inverse tangent is 

used to find one of the angles in a right triangle, the result can never be greater 

than 90°, so the value the calculator returns is the one you want.]

 5. Interpret the angle: specify whether it is the angle below the horizontal, or the 

angle west of south, or the angle clockwise from the negative y-axis, etc.

 6. Use the Pythagorean theorem to find the magnitude of the vector.

 A =  √
_______

  A  x  
2
  +  A  y  

2
    (3-5)

 Suppose we knew the components of the velocity vector in  Fig. 3.6 , but not the 

magnitude and direction. Let us find the angle  q    between     v ⃗   and the  +  x -axis:  

 q  =  tan −1    
opposite

 _______ 
adjacent

   =  tan −1     
 vy 

 ___ 
 vx 

    =  tan −1    8.0 m/s _______ 
5.0 m/s

   = 58°   (3-6)   

 The magnitude of     v ⃗   is

    v =  √
_______

  v  x  
2
  +  v  y  

2
    =  √

_____________________

   (+5.0 m/s) 2  +  (−8.0 m/s) 2    = 9.4 m/s     

  Adding Vectors Using Components 

 It is generally easier and more accurate to add vectors algebraically rather than graphi-

cally. The algebraic method relies on adding the components of the vectors. Remember 

that each vector is thought of as the sum of vectors parallel to the axes ( Fig. 3.9a ). When 



adding vectors, we can add them in any order and group them as we please. So we can 

sum the  x -components to find the  x -component of the sum ( Fig. 3.9b ) and then do the 

same with the  y -components ( Fig. 3.9c ):

      C⃗ =   A⃗ +  B⃗ if and only if Cx = Ax + Bx and Cy = Ay + By    (3-7)    

   In Eq. (3-7), remember that  A   x    +   B   x   represents ordinary addition since the signs of the 

components carry the direction information. 

Problem-Solving Strategy: Adding Vectors Using Components

 1. Find the x- and y-components of each vector to be added.

 2. Add the x-components (with their algebraic signs) of the vectors to find the 

x-component of the sum. (If the signs are not correct, the sum will not be 

correct.)

 3. Add the y-components (with their algebraic signs) of the vectors to find the 

y-component of the sum.

 4. If necessary, use the x- and y-components of the sum to find the magnitude and 

direction of the sum.

   Estimation Using Graphical Addition       Even when using  the component method to 

add vectors, the graphical method is an important first step.  A rough sketch of vector 

addition, even one made without carefully measuring the lengths or the angles, has 

important benefits. Sketching the vectors makes it much easier to get the signs of the 

components correct. The graphical addition also serves as a check on the answer—it 

provides an estimate of the magnitude and direction of the sum, which can be used to 

check the algebraic answer. Graphical addition gives you a mental picture of what is 

going on and an intuitive feel for the algebraic calculations.      

 

CHECKPOINT 3.2

Two displacements   A⃗ and   B⃗ have x- and y-components as follows: Ax = +3.0 km, 

Ay = − 6.0 km, Bx = − 8.5 km, By = −1.2 km. The total displacement is   C⃗ =  A⃗ +  B⃗. 

What are the x- and y-components of   C⃗?

   Choosing  x - and  y -Axes 

 A problem can be made easier to solve with a good choice of axes. We can choose any 

direction we want for the  x - and  y- axes, as long as they are perpendicular to one another. 

Three common choices are

   •  x -axis horizontal and  y -axis vertical, when the vectors all lie in a vertical plane;  

  •  x- axis east and  y -axis north, when the vectors all lie in a horizontal plane; and  

  •  x -axis parallel to an inclined surface and  y -axis perpendicular to it.     

Cx

AxBx

A
B

Cx

Cy

By

Ay

Cy

By

Ay

AxBx

(a) (c)(b)

C A B= +

Figure 3.9 (a)   C⃗ =  A⃗ +  B⃗, 

shown graphically with the x- and 

y-components of each vector 

illustrated. (b) Cx = Ax + Bx; 

(c) Cy = Ay + By.
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Cx = +C cos 13° = +48 km × 0.974 = +46.8 km

Cy = +C sin 13° = +48 km × 0.225 = +10.8 km

Now we sum the x- and y-components separately to find 

the x- and y-components of the total displacement:

 Δx = Ax + Bx + Cx

 = (−8.17 km) + 0 + 46.8 km = +38.63 km

 Δy = Ay + By + Cy

= (−16.0 km) + (−17 km) + 10.8 km = −22.2 km

The magnitude and direction of Δr ⃗ can be found from the 

right triangle in Fig. 3.11. The magnitude is represented by 

the hypotenuse:

Δr =  √
___________

 (Δx ) 2  + (Δy ) 2    =  √
______________________

   (38.63 km ) 2  + (−22.2 km ) 2   

 = 45 km

The angle q  is

q  = ta n −1    
opposite

 _______ 
adjacent

   = ta n −1    22.2 km ________ 
38.63 km

   = 30°

Since +x is east and −y is 

south, the direction of the 

displacement is 30° south 

of east. The magnitude 

and direction of the dis-

placement found using 

components agree with the 

displacement found graph-

ically in Fig. 3.5.

Discussion Note that the x-component of one displacement 

was found using the sine function while another was found 

using the cosine. The x-component (or the y-component) of 

the vector can be related to either the sine or the cosine, 

depending on which angle in the right triangle is used.

Practice Problem 3.3 Changing the Coordinate 
Axes

Find the x- and y-components of the displacements for the 

three legs of the trip if the x-axis points south and the y-axis 

points east.

Example 3.3

An Irish Adventure (2)

In the trip of Example 3.2, Charlotte and Shona drive at a 

compass heading of 27° west of south for 18 km to Kenmare, 

then directly south for 17 km to Glengariff, then at a com-

pass heading of 13° north of east for 48 km to Cork. Use the 

component method to find the magnitude and direction of 

the displacement vector for the entire trip.

Strategy As before, let’s call the three successive dis-

placements  A⃗,  B⃗, and  C⃗, respectively. To add the vectors 

using components, we first choose directions for the 

x- and y-axes. Then we find the x- and y-components of the 

three displacements. Adding the x- or y-components of 

the three displacements gives the x- or y-component of the 

total displacement. Finally, from the components we find 

the magnitude and direction of the total displacement.

Solution A good choice is the conventional one: x-axis to 

the east and the y-axis to the north. The first displacement 

(  A⃗) is directed 27° west of south. Both of its components are 

negative since west is the −x-direction and south is the 

−y-direction. Using the right triangle in Fig. 3.10, the side of 

the triangle opposite the 27° angle is parallel to the x-axis. 

The sine function relates the opposite side to the hypotenuse:

Ax = −A sin 27° = −18 km × 0.454 = −8.17 km

where A is the magnitude of   A⃗. The cosine relates the adja-

cent side to the hypotenuse:

Ay = −A cos 27° = −18 km × 0.891 = −16.0 km

Displacement   B⃗ has no x-component since its direction is 

south. Therefore,

Bx = 0 and By = −17 km

The direction of   C⃗ is 13° north of east. Both its compo-

nents are positive. From Fig. 3.10, the side of the right trian-

gle opposite the 13° angle is parallel to the y-axis, so

Figure 3.10

Resolving  A⃗,  B⃗, and  C⃗ into x- and y-components.

A = 18 km 27°

13°

A Ay
Cy

CxAx

B = 17 km

B

C = 48 km

C

y

x

Figure 3.11

Finding the magnitude and 

direction of Δr ⃗.

38.63 km

y

x

–22.2 km

r∆

q

  Unit Vectors 

 The connection between a vector and its components may be expressed using the    unit 

vectors        x̂   (read aloud as “x hat”),     ŷ,   and     ẑ,   which are defined as vectors of magnitude 1 that 

point in the  +  x -,  +  y -, and  +  z -directions, respectively. (In some books, you may see them 



written as     î, ĵ,   and     k̂ .  )     They are called   unit   vectors because the magnitude of each is the 

pure number 1—they do   not   have physical units such as kilograms or meters.  Any vector 

     A⃗   can be written as the sum of three vectors along the coordinate axes:

      A⃗ = Axx̂ + Ayŷ + Azẑ   (3-8)   

 Here  A   x   is the  x -component of       A⃗,   which has physical units and can be positive or negative. 

    Axx̂   is a vector of magnitude | A   x  | directed in the  +  x -direction if  A   x   > 0 and in the − x -direction 

if  A   x   < 0. For example, consider the velocity vector     v ⃗   of  Fig. 3.8 .     v ⃗   has  x -component 

 v   x    =   + 5.0 m/s and  y -component  v   y    =   − 8.0 m/s, so     v ⃗ = (+5.0 m/s)x̂ + (−8.0 m/s)ŷ.   

 Using unit vector notation is one way to keep track of vector components in vector 

addition and subtraction without writing separate equations for each component. Adding 

two vectors in the  xy -plane looks like this:

        A⃗  1  +   A⃗  2  =  (  A  1x x̂ +  A  1y ŷ )  +  (  A  2x x̂ +  A  2y ŷ )    (3-9)   

 Regrouping the terms shows that the  x -component of the sum is the sum of the  

x -components and likewise for the  y -components:

       A⃗  1  +   A⃗  2  =  (  A  1x  +  A  2x  )  x̂ +  (  A  1y  +  A  2y  )  ŷ   (3-10)      

   3.3  VELOCITY 

  The definitions of average velocity, instantaneous velocity, average acceleration, and 

instantaneous acceleration from Chapter 2 still apply when the motion is not in a straight 

line as long as we add and subtract them as vectors. Suppose we want to know the 

instantaneous velocity of a race car at point  P  as it goes around a curved section of a 

racetrack ( Fig. 3.12a ). At a slightly later time the race car is at point  Q.  Let      r ⃗  i    be the 

position of the car at  P  and      r ⃗  f    be the position at point  Q.           

   Average Velocity    The displacement     Δr ⃗ =  r ⃗  f  −  r ⃗  i    is represented as an arrow from  

P  to  Q.  Alternatively, to subtract      r ⃗  i    from      r ⃗  f ,   the two vectors can be drawn with their tails 

at the same point. After reversing the direction of      r ⃗  i    to represent     − r ⃗  i ,   the arrows are tip 

to tail and ready to add      r  ⃗ f  + (− r ⃗  i )  —see  Fig. 3.12b . The average velocity during this time 

interval is the displacement     Δr ⃗   divided by the time interval:

      v ⃗  av  =   
 r ⃗  f  −  r ⃗  i  ______ 
tf − ti

   =   Δr ⃗ ___ 
Δt

      (3-11)   

The direction of the average velocity is the direction of the displacement     Δr ⃗.    

   Instantaneous Velocity    The instantaneous velocity at  P  is the limit of the average 

velocity as Δ t  approaches zero. As we shorten the time interval between the initial and 

final positions by moving point  Q  closer and closer to  P,  the direction of the displacement 

(a) (b) (c) (d)

y

rf

v

ri

x

Q

P

P

Q1

Q2

vx

vy

Tangent at P

rf

rf – ri = ∆r

∆r

∆r2

∆r1

–ri P

∆r

Figure 3.12 (a) Position vectors for two points on the curve. (b) The displacement 

Δr ⃗ from point P to point Q. (c) As the time interval is decreased, the final point moves 

closer and closer to P; the direction of the displacement Δr ⃗ approaches the tangent to 

the curve at P. (d) Instantaneous velocity can be resolved into components along per-

pendicular axes.
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vector     Δr ⃗   gradually changes, approaching the tangent to the curved path at  P  ( Fig. 3.12c ). 

Expressed in mathematical terminology, the instantaneous velocity is the limit of     Δr ⃗/Δt

as the time interval approaches zero:     

v ⃗ =   lim    
Δt→0

    Δr ⃗ ___ 
Δt

   (3-12)

(Δr ⃗ is the displacement during a very short time interval Δt)

   With this definition, the instantaneous velocity at  P  becomes tangent to the curve at 

P  ( Fig. 3.12d ).  Here we are talking about a tangent to the actual path through space,   not

 a tangent line on a graph of position versus time.  The magnitude of the velocity vector 

is the speed at which the object moves and the direction of the velocity vector is the 

direction of motion.      

Component Equations    A vector equation is always equivalent to a set of equations, 

one for each component. The  x - and  y -components of the average velocity are

     vav,x =   Δx ___ 
Δt

   and vav,y =   
Δy

 ___ 
Δt

      (3-13) 

 The  x - and  y -components of the instantaneous velocity are

     vx =   lim    
Δt→0

    Δx ___ 
Δt

   and vy =   lim    
Δt→0

    
Δy

 ___ 
Δt

      (3-14) 

 To put Eq. (3-14) into words, the  x -component of an object’s velocity is the rate of 

change of its  x -coordinate and the  y -component of its velocity is the rate of change of its 

y -coordinate.     

If an object moves along a curved 

path, the direction of the velocity 

vector at any point is tangent to the 

path at that point.

If an object moves along a curved 

path, the direction of the velocity 

vector at any point is tangent to the 

path at that point.

average speed =   83 km ______ 
1.4 h

   = 59 km/h

Therefore,  v ⃗av  is not equal to the average speed. Further-

more, average velocity is a vector quantity with a direction 

in space, and average speed is a scalar.

Practice Problem 3.4 Average Velocity Versus 
Average Speed

In Example 3.4,  v ⃗av  was less than the average speed. Can 

 v ⃗av  ever be greater than the average speed? Can  v ⃗av  ever be 

equal to the average speed? Explain.

Example 3.4

An Irish Adventure (3)

In their trip from Kenmare to Cork via Glengariff, Charlotte 

and Shona travel a total distance of 83 km in 1.4 h. The total 

displacement for the trip is 45 km, 30° south of east. What is 

their average velocity? Contrast it with their average speed, 

defined as the total distance divided by the time interval.

Strategy The average velocity is calculated from the 

displacement—not from the distance traveled.

Solution The magnitude of the average velocity is

 v ⃗av  =   
 Δr ⃗ 

 ____ 
Δt

   =   45 km ______ 
1.4 h

   = 32 km/h

The average velocity has the same direction as the dis-

placement, so v ⃗av = 32 km/h, 30° south of east. The average 

speed is

3.4  ACCELERATION 

  The average acceleration      a ⃗ av   is the change in velocity divided by the elapsed time:

     a ⃗ av =   
 v ⃗  f  −  v ⃗  i  ______ 
tf − ti

   =   Δv ⃗ ___ 
Δt

      (3-15) 



 For motion in a plane, this vector equation is equivalent to two component equations:

     aav,x =   
Δ v  x  ____ 
Δt

   and aav,y =   
Δ v  y 

 ____ 
Δt

     (3-16)   

 The direction of      a ⃗ av   is the same as the direction of     Δv ⃗   ( Fig. 3.13 ). 

 Instantaneous acceleration is the limit of the average acceleration as the time inter-

val approaches zero:

 a ⃗ =   lim    
Δt→0

    Δv ⃗ ___ 
Δt

   (3-17)

(Δv ⃗ is the change in velocity during a very short time interval Δt)
 

 In component form,

     ax =   lim    
Δt→0

    
Δ v  x  ____ 
Δt

   and ay =   lim    
Δt→0

    
Δvy

 ___ 
Δt 

     (3-18)    

   In straight-line motion the acceleration is always along the same line as the veloc-

ity.  For motion in two dimensions, the acceleration vector can make any angle with the 

velocity vector because the velocity vector can change in magnitude, in direction, or 

both.  The direction of the acceleration is the direction of the  change  in velocity     Δv ⃗   dur-

ing a  very short  time interval.   

CHECKPOINT 3.4

An airplane is initially moving due north at 400 km/h. After making a slight course 

correction, it is moving at the same speed but in a direction 2.0° east of north. Is 

the plane’s average acceleration during this time interval zero? Explain.

Strategy The change in velocity is not 1.79 m/s (= 8.94 m/s 

−7.15 m/s). That is the change in speed. The change in 

velocity is found by subtracting the initial velocity vector

from the final velocity vector. After first making a graphi-

cal sketch, we use the component method. The average 

acceleration is the change in velocity divided by the 

elapsed time.

Example 3.5

Skating Uphill

An inline skater is travel-

ing on a level road with a 

speed of 8.94 m/s; 120.0 s 

later she is climbing a 

hill with a 15.0° angle of 

incline at a speed of 

7.15 m/s. (a) What is the 

change in her velocity? (b) What is her average acceleration 

during the 120.0-s time interval?

Figure 3.13 Two examples to 

illustrate that the average accel-

eration is always in the same 

direction as the change in veloc-

ity Δv ⃗ during the same time 

interval.
v∆

vf

vi
v∆

vf

vi

aav

aav

Turning while

keeping speed

constant

Turning while

increasing speed

continued on next page
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Solution (a) Figure 3.14a shows the initial and final veloc-

ity vectors and the slope of the hill. The initial velocity is 

horizontal as the skater skates on level ground. The final 

velocity is 15.0° above the horizontal. To subtract the two 

velocity vectors graphically, we place the tails of the vectors 

together. The change in velocity Δv ⃗ is found by drawing a 

vector arrow from the tip of  v ⃗  i  to the tip of  v ⃗  f . Judging by the 

graphical subtraction in Fig. 3.14b, the change in velocity is 

roughly at a 45° angle above the −x-axis. Its magnitude is 

smaller than the magnitudes of the initial and final velocity 

vectors—something like 2 to 3 m/s.

The components vfx and vfy can be found from a right tri-

angle (Fig. 3.15):

vfx =  v  f  cos q   = 7.15 m/s × 0.9659 = 6.91 m/s

 v  fy  =  v  f  sin q   = 7.15 m/s × 0.2588 = 1.85 m/s

Since  v  i  has only an x-component,

 v  iy  = 0 and  v  ix  =  v  i  = 8.94 m/s

Now we subtract the components to find the components 

of Δv ⃗:

Δvx =  v  fx  −  v  ix  = (6.91 − 8.94) m/s = −2.03 m/s

and

Δvy =  v  fy  −  v  iy  = (1.85 − 0) m/s = +1.85 m/s

To find the magnitude of Δv ⃗, we apply the Pythagorean the-

orem (Fig. 3.16):

  Δv ⃗  2  = (Δvx ) 
2  + (Δvy ) 

2  = (−2.03 m/s ) 2  + (1.85 m/s ) 2 

 = 7.54 (m/s ) 2 

  Δv ⃗  = 2.75 m/s

The angle is found from

tan f  =   
opposite

 _______ 
adjacent

   =  |   Δvy
 ___ 

Δvx

   |  =   1.85 m/s ________ 
2.03 m/s

   = 0.9113

f  =  tan  −1  0.9113 = 42.3°

The direction of the change in velocity Δv ⃗ is 42.3° above the 

negative x-axis.

(b) The magnitude of the average acceleration is

    a ⃗   av   =   
 Δv ⃗ 

 ____ 
Δt

   =   2.75 m/s ________ 
120.0 s

   = 0.0229 m/ s 2 

The direction of the average acceleration is the same as the 

direction of Δv ⃗: 42.3° above the negative x-axis.

Discussion Checking back with the 

graphical subtraction in Fig. 3.14b, 

the magnitude of Δv ⃗ appears to be 

roughly   1 _ 
4
   to   1 _ 

3
   the magnitude of  v ⃗  i . 

Since   1 _ 
4
   × 8.94 m/s = 2.24 m/s and   1 _ 

3
   ×

8.94 m/s = 2.98 m/s, the answer of 

2.75 m/s is reasonable.

Figure 3.14b also shows the direc-

tion of Δv ⃗ to be roughly midway 

between the +y- and −x-axes. We found 

the direction of Δv ⃗ to be 42.3° above 

the −x-axis and, therefore, 47.7° from 

the +y-axis. So the direction we calcu-

lated is also reasonable based on the graphical subtraction.

Practice Problem 3.5 Change in Sailboat Velocity

A C&C 30 sailboat is sailing at 12.0 knots (6.17 m/s) heading 

directly east across the harbor. When a gust of wind comes up, 

the boat changes its heading to 11.0° north of east and its 

speed increases to 14.0 knots (7.20 m/s). [A boat’s speed is 

customarily expressed in knots, which means nautical miles 

per hour. A nautical mile (6076 ft) is a little longer than a stat-

ute mile (5280 ft).] (a) What is the magnitude and direction of 

the change in velocity of the sailboat in m/s? (b) If this veloc-

ity change occurs during a 2.0-s time interval, what is the 

average acceleration of the sailboat during that interval?

Example 3.5 continued

(b)

vf – vi = ∆v

∆v

vi

vf

(a)

vi = 8.94 m/s 

vf = 7.15 m/s 

15.0°

Figure 3.14

(a) Change in velocity as 

the skater slows going 

uphill and (b) graphical 

subtraction of velocity 

vectors.
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Figure 3.15

Initial and final velocity vectors resolved 

into components.

Figure 3.16

Reconstruction of Δv ⃗ 
from its components 

(not to scale).
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   3.5  MOTION IN A PLANE WITH CONSTANT 
ACCELERATION 

  If an object moves in the  xy -plane with constant acceleration, then both  a   x   and  a   y   are 

constant. By looking separately at the motion along two perpendicular axes, the  y -direction 

and the  x -direction, each component becomes a one-dimensional problem, which we 

studied in Chapter 2. We can apply any of the constant acceleration relationships from 

Section 2.4 separately to the  x -components and to the  y -components. 

    It is generally easiest to choose the axes so that the acceleration has only one non-

zero component.  Suppose we choose the axes so that the acceleration is in the positive 

or negative  y -direction. Then  a   x    =  0 and  v   x   is constant. With this choice, the constant 

acceleration relationships [Eqs. (2-9) through (2-13)] become   

  

x-axis:  ax  = 0 y-axis: constant  ay

Δvx = 0 (vx is constant) Δvy = ay Δt (3-19)

Δ x = vx Δt Δy =   1 _ 
2
  ( v  fy  +  v  iy ) Δt (3-20)

 Δy =  v  iy  Δt +   1 _ 
2
  ay (Δt ) 2  (3-21)

  v  fy  
2
   −  v  iy  

2
   = 2ay Δy (3-22)

 Why are only two equations shown in the column for the  x -axis? The other two are 

redundant when  a   x    =  0. 

   Note that there is no mixing of components in Eqs. (3-19) through (3-22). Each 

equation pertains either to the  x -components or to the  y -components; none contains the 

 x -component of one vector quantity and the  y -component of another. The only quantity 

that appears in both  x - and  y -component equations is the time interval—a scalar.  

   Motion of Projectiles 

 An object in free fall near the Earth’s surface has a constant acceleration. As long as air 

resistance is negligible, the constant downward pull of gravity gives the object a constant 

downward acceleration with magnitude  g.  In Section 2.6 we considered objects in free fall, 

but only when they had no horizontal velocity component, so they moved straight up or 

straight down. Now we consider objects (called    projectiles   ) in free fall that have a  nonzero  

horizontal velocity component. The motion of a projectile takes place in a vertical plane.     

   Suppose some medieval marauders are attacking a castle. They have a catapult that 

propels large stones into the air to bombard the walls of the castle ( Fig. 3.17 ). Picture a 

stone leaving the catapult with initial velocity      v ⃗  i .    (      v ⃗  i     is the   initial   velocity for the time 

interval during which it moves as a projectile. It is also the   final   velocity for the time 

interval during which it is in contact with the catapult.)  The    angle of elevation    is the 

angle of the initial velocity above the horizontal. Once the stone is in the air, the only 

force acting on it is the downward gravitational force, provided that the air resistance 

has a negligible effect on the motion. The    trajectory    (path) of the stone is shown in 

 Fig. 3.18 . The positive  x -axis is chosen in the horizontal direction (to the right) and the 

positive  y -axis is upward.     

 If the initial velocity      v ⃗  i    is at an angle  q   above the horizontal, then resolving it into 

components gives

      v  ix  =  v  i  cos q and  v  iy  =  v  i  sin q (3-23)

 (+y-axis up, q  measured from the horizontal x-axis)        

 With the  y -axis pointing up,  a   y    =  − g  because the acceleration is downward (in the 

− y -direction). The acceleration has no  x -component ( a   x    =  0), so the stone’s horizontal 

CONNECTION:

Projectile motion is free fall 

for objects with a horizontal 

velocity component.

CONNECTION:

Projectile motion is free fall 

for objects with a horizontal 

velocity component.

vi

Figure 3.17 A medieval 

catapult.
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velocity component  v   x   is  constant.  The vertical velocity component  v   y   changes at a con-

stant rate, exactly as if the stone were propelled straight up with an initial speed of  v  i y  . 

The initially positive  v   y   decreases until, at the top of flight,  v   y    =  0. Then the pull of grav-

ity makes the projectile fall back downward. During the downward trip,  v   y   is still chang-

ing at the same constant rate with which it changed on the way up and at the top of the 

path. The acceleration has the same constant value—magnitude and direction—for the 

entire path.   

 The motion of a projectile when air resistance is negligible is the superposition of 

horizontal motion with constant velocity and vertical motion with constant acceleration. 

 The vertical and horizontal motions each proceed independently, as if the other motion 

were not present.  In the experiment of  Fig. 3.19 , one ball was dropped and, at the same 

instant, another was projected horizontally. The strobe photo shows snapshots of the 

two balls at equally spaced time intervals. The  vertical  motion of the two is identical; at 

every instant, the two are at the same height. The fact that they have different horizontal 

motion does not affect their vertical motion. (This statement would  not  be true if air 

resistance were significant.)     

PHYSICS AT HOME

Take a nickel and a penny to a room with a high table or countertop. Place 

the penny at the edge of the table and then slide the nickel so it collides with 

the penny. Listen for the sound of the two coins hitting the floor. The two coins 

will slide off the table with different horizontal velocities but will land at the 

same time.

  The horizontal and vertical motions 

of a projectile can be treated sepa-

rately; they are independent of each 

other.  

  The horizontal and vertical motions 

of a projectile can be treated sepa-

rately; they are independent of each 

other.  

x

viy

vfy

vy

vy
vy = 0

vix

vy

vy

vix

vix

vix

vix

vix

vix

y

q

Figure 3.18 Motion diagram 

showing the trajectory of a pro-

jectile. The position is drawn at 

equal time intervals. Superim-

posed are the velocity vectors 

along with their x- and 

y-components.

Figure 3.19 Independence of 

horizontal and vertical motion of 

a projectile in the absence of air 

resistance. The vertical motion 

of the projectile (white) is the 

same as that of an object (red) 

that falls straight down.



Discussion The same conclusion can be drawn algebra-

ically. With the +y-axis upward and the origin and t = 0 at 

the top of flight, xi, yi, and viy are all zero. Then x = vixt and

y = viyt +   1 __ 
2
  ay t 

2  = −   1 __ 
2
  g t 2  = −   1 __ 

2
  g  (   x ___  v  ix 

   )  2  = −  (   g
 ____ 

2 v  ix  
2
  
   )   x 2 

So y is proportional to x2 and the constant of proportionality 

is −g/(2 v  ix  
2
  ).

Conceptual Practice Problem 3.6 Throwing 
Stones

You stand at the edge of a cliff and throw stones horizontally 

into the river below. To double the horizontal displacement 

of a stone from the cliff to where it lands, by what factor 

must you increase the stone’s initial speed? Ignore air 

resistance.

Conceptual Example 3.6

Trajectory of a Projectile

The graph of an equation of the form

y = k x 2 , k = a nonzero constant

is a parabola. Show that the trajectory of a projectile is a 

parabola. [Hint: Choose the origin at the highest point of the 

trajectory and let ti = 0 at that instant.]

Strategy and Solution We start at the high point of the 

path and look at displacements from there. The horizontal dis-

placement is proportional to the elapsed time t since the hori-

zontal velocity is constant. The vertical displacement is the 

average vertical velocity component times the elapsed time t. 

The average vertical velocity component is itself proportional 

to t since it changes at a constant rate. Therefore, the vertical 

displacement is proportional to t2. Thus, the vertical displace-

ment y is proportional to the square of the horizontal displace-

ment x and y = kx2, where k is a constant of proportionality. 

The path followed by a projectile in free fall is a parabola.

   Graphing Projectile Motion     Figure 3.20  shows graphs of the  x - and  y -components 

of the velocity and position of a projectile as functions of time. In this case, the projec-

tile is launched above flat ground at  t   =  0 and returns to the same elevation at a later 

time  t  f . Note that the  y -component graphs are  symmetrical  about the vertical line through 

the highest point in the trajectory. The  y -component of velocity decreases linearly from 

its initial value; the slope of the line is  a   y    =  − g.  When  v   y    =  0, the projectile is at the apex 

of its trajectory. Then  v   y   continues to decrease at the same rate and is now negative with 

its magnitude getting larger and larger. At  t  f , when the projectile has returned to its orig-

inal altitude, the  y -component of the velocity has the same magnitude as at  t   =  0 but 

with the opposite sign ( v   y    =  − v  i y  ). 

 The graph of  y ( t ) indicates that the projectile moves upward, quickly at first and 

then gradually slowing, until it reaches the maximum height. The slope of the tangent to 

the  y ( t ) graph at any particular moment of time is  v   y   at that instant. At the highest point 
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Figure 3.20 Projectile motion: 

separate vertical and horizontal 

quantities versus time.
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of the  y ( t ) graph, the tangent is horizontal and  v   y    =  0. After that, gravity makes the pro-

jectile start to fall downward. 

 The horizontal velocity is constant, so the graph of  v   x  ( t ) is a horizontal line. The 

horizontal position  x  increases uniformly in time because the object is moving with a 

constant  v   x  .     

CHECKPOINT 3.5

When a basketball is thrown in an arc toward the net, what can you say about its 

velocity and acceleration at the highest point of the arc?

Solution (a) First we find the x- and y-components of the 

initial velocity for an angle of elevation q  = 30.0°.

 v  iy  =  v  i  sin q and  v  ix  =  v  i  cos q

The maximum height is the vertical displacement Δy when 

vfy = 0.

Δy =   1 _ 
2
  ( v  fy  +  v  iy ) Δt =   1 _ 

2
  (0 +  v  i  sin q ) Δt

Eliminating the time interval using vfy − viy = ayΔt yields

Δy =   1 __ 
2
  ( v  i  sin q )  (   0 −  v  i  sin q 

 __________ ay
   )  = −   

( v  i  sin q ) 2 
 _________ 

2 a  y 
  

=   
−(50.0 m/s × sin 30.0° ) 2 

  ____________________  
2 × (−9.80 m/ s 2 )

   = 31.9 m

The maximum height of the projectile is 31.9 m above its 

launch height.

(c) The initial and final heights are the same. Due to this 

symmetry, the time of flight (tf) is twice the time it takes the 

projectile to reach its maximum height. The time to reach 

the maximum height can be found from

 v  fy  = 0 =  v  iy  + ay Δt

Example 3.7

Attacking the Castle Walls

The catapult used by the marauders hurls a stone with a 

velocity of 50.0 m/s at a 30.0° angle of elevation (Fig. 3.21). 

(a) What is the maximum height reached by the stone? 

(b) What is its range (defined as the horizontal distance 

traveled when the stone returns to its original height)? 

(c) How long has the stone been in the air when it returns 

to its original height?

Strategy The problem gives both the magnitude and direc-

tion of the initial velocity of the stone. Ignoring air resistance, 

the stone has a constant downward acceleration once it has 

been launched—until it hits the ground or some obstacle. We 

choose the positive y-axis upward and the positive x-axis in 

the direction of horizontal motion of the stone (toward the cas-

tle). When the stone reaches its maximum height, the velocity 

component in the y-direction is zero since the stone goes no 

higher. When the stone returns to its original height, Δy = 0 

and vy = −viy. The range can be found once the time of flight tf
is known—time is the quantity that connects the x-component 

equations to the y-component equations. Therefore, we solve 

(c) before (b). One way to find tf is to find the time to reach 

maximum height and then double it (see Fig. 3.20). (Other 

methods include setting Δy = 0 or setting vy = −viy.)

Figure 3.21

A catapult projects a stone into the air in an attack on a castle wall.

viy

vix

Maximum
height

vi

Range

Initial launch height

30.0°

continued on next page



Example 3.7 continued

Solving for Δt,

Δt =   
 −v  iy 

 ____ ay
  

The time of flight is

 t  f  = 2  Δt = 2 ×    −50.0 m/s × sin 30.0°
  

__________________  
 −9.80 m/ s 2 

   = 5.10 s

(b) The range is

Δx =  v  ix   t  f  = (50.0 m/s × cos 30.0°) × 5.10 s = 221 m

Discussion Quick check: using

 y  f  −  y  i  =  v  iy  Δt +   1 _ 
2
   ay (Δt ) 2 

we can check that Δy = 31.9 m when Δt =   1 _ 
2
   × 5.10 s and that 

Δy = 0 when Δt = 5.10 s. Here we check the first of these:

Δy = (50.0 m/s × sin 30.0°) × 2.55 s +   1 _ 
2
   × (−9.80 m/ s 2 ) × (2.55 s ) 2 

 = 63.8 m + (−31.9 m) = 31.9 m

which is correct. This is not an independent check, since this 

equation can be derived from the others, but it can reveal 

algebra or calculation errors.

Since we analyze the horizontal motion independently 

from the vertical motion, we start by resolving the given ini-

tial velocity into x- and y-components. Time is what con-

nects the horizontal and vertical motions.

Practice Problem 3.7 Maximum Height for Arrows

Archers have joined in the attack on the castle and are shoot-

ing arrows over the walls. If the angle of elevation for an 

arrow is 45°, find an expression for the maximum height of 

the arrow in terms of vi and g. [Hint: Simplify the expression 

using sin 45° = cos 45° = 1/ √
__

 2  .]

PHYSICS AT HOME

On a warm day, take a garden hose and aim the nozzle so that the water streams 

upward at an angle above the horizontal. Set the nozzle for a fast, narrow 

stream for best effect. Once the water leaves the nozzle, it becomes a projectile 

with a constant downward acceleration (ignoring the small effect of air resis-

tance). The continuous stream of water lets us see the parabolic path easily. 

Stand in one place and try aiming the nozzle at different angles of elevation to 

find an angle that gives the maximum range. Aim for a particular spot on the 

ground (at a distance less than the maximum range) and see if you can find two 

different angles of elevated nozzle position that allow the stream to hit the tar-

get spot (see Fig. 3.22).
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y
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m
)
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Figure 3.22 Parabolic trajec-

tories of projectiles launched 

with the same initial speed 

(vi = 44.3 m/s) at five different 

angles. The ranges of projectiles 

launched at angles q  and 90° − q

are the same. The maximum 

range occurs for q = 45°.
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higher the speed of the arrow, the sooner they meet and the 

shorter the vertical distance that the coconut falls before 

being hit.

Discussion An experienced hunter would have aimed 

above the initial position of the coconut to compensate for 

gravity; he would have missed the coconut but might have 

hit the monkey unless the monkey jumped down to retrieve 

the coconut.

Conceptual Practice Problem 3.8 Changes in 
Position and Velocity for Consecutive Arrows

An arrow is shot into the air. One second later, a second 

arrow is shot with the same initial velocity. While the two are 

both in the air, does the difference in their positions ( r ⃗  2  −  r ⃗  1 ) 
stay constant or does it change with time? Does the differ-

ence in their velocities ( v ⃗  2  −  v ⃗  1 ) stay constant or does it 

change with time?

Conceptual Example 3.8

Monkey and Hunter

An inexperienced hunter aims and shoots an arrow straight 

at a coconut that is being held by a monkey in a tree 

(Fig. 3.23). At the same instant that the arrow leaves the 

bow, the monkey drops the coconut. Ignoring air resistance, 

does the arrow hit the coconut, the monkey, or neither?

Strategy and Solution If there were no gravity, the arrow 

would fly straight to the coconut (along the dashed blue line 

in Fig. 3.23). Since gravity gives the dropped coconut and 

the released arrow the same constant acceleration down-

ward, they each fall the same vertical distance below the 

positions they would have had with no gravity. The coconut 

falls along the dashed red line; the distance fallen at 0.25-s 

intervals is marked. The arrow falls below the blue dashed 

line by the same distances, marked along its trajectory at 

0.25-s intervals.

The arrow ends up hitting the coconut no matter what the 

initial speed of the arrow (as long as the arrow’s range is at 

least as large as the horizontal distance to the coconut). The 

1.2 m

0.3 m

2.8 m

2.8 m

1.2 m

4.9 m

t = 0.50 s

t = 0.75 s

t = 1.00 s

t = 0.75 st = 0.50 s

t = 0.25 s

t = 0 s
t = 0.25 s0.3 m

Figure 3.23

A monkey drops a coconut at the very instant an arrow is shot toward the coconut. In each quarter second, the coconut and arrow have 

fallen the same distance below where their positions would be if there were no gravity.



The horizontal displacement of the bullet is

 Δx =  v  ix  Δt =  v  ix   √
____

   
2 Δy

 ____ ay
    

= 500.0 m/s ×  √
____________

    
2 × (−20.0 m)

  ____________ 
 −9.8 m/ s 2 

     = 1.01 km

Discussion How did we know to start with the y-component 

equation when the question asks about the horizontal dis-

placement? The question gives vix and asks for Δx. The miss-

ing information needed is the time during which the bullet is 

in the air; the time can be found from analysis of the vertical

motion.

We ignored air resistance in this problem, which is not very 

realistic. The actual distance would be less than 1.01 km.

Practice Problem 3.9 Bullet Velocity

Find the horizontal and vertical components of the bullet’s 

velocity just before it hits the surface of the lake. At what 

angle does it strike the surface?

Example 3.9

A Bullet Fired Horizontally

A bullet is fired horizontally from the top of a cliff that is 

20.0 m above a long lake. If the muzzle speed of the bullet is 

500.0 m/s, how far from the bottom of the cliff does the bul-

let strike the surface of the lake? Ignore air resistance.

Strategy We need to find the total time of flight so that we 

can find the horizontal displacement. The bullet is starting 

from the high point of the parabolic path because viy = 0. As 

usual in projectile problems, we choose the y-axis to be the 

positive vertical direction. 

Known: Δy = −20.0 m;  v  iy  = 0;  v  ix  = 500.0 m/s. To find: Δx.

Solution The vertical displacement through which the bul-

let falls is 20.0 m. The relationship between Δy and Δt is

Δy =   1 _ 
2
  ( v  fy  +  v  iy ) Δt

Substituting viy = 0 and vfy = viy + ayΔt = ayΔt yields

Δy =   1 __ 
2
  ay (Δt ) 2  ⇒ Δt =  √

____

   
2 Δy

 ____ ay
    

   At the beginning of the chapter, we asked why the clam does not fall straight down 

when the gull lets go. The gull is flying horizontally with the clam, so the clam has the 

same horizontal velocity as the gull. When the gull lets go, the clam falls toward Earth, 

but since  a   x    =  0 the clam retains the same horizontal component of velocity as the gull. 

Therefore, the clam is a projectile starting at the top of its parabolic trajectory.   

3.6  VELOCITY IS RELATIVE; REFERENCE FRAMES 

  The idea of  relativity  arose in physics centuries before Einstein’s theory. Nicole 

Oresme (1323–1382) wrote that motion of one object can only be perceived relative 

to some other object. Until now, we have tacitly assumed in most situations that dis-

placements, velocities, and accelerations should be measured in a    reference frame    

attached to Earth’s surface—that is, by choosing an origin fixed in position relative to 

Earth’s surface and a set of axes whose directions are fixed relative to Earth’s surface. 

After learning about relative velocities, we will take another look at this assumption.  

   Relative Velocity 

 Suppose Wanda is walking down the aisle of a train moving along the track at a constant 

velocity ( Fig. 3.24 ). Imagine asking, “How fast is Wanda moving?” This question is not 

well defined. Do we mean her speed as measured by Tim, a passenger on the train, or 

her speed as measured by Greg, who is standing on the ground and looking into the train 

as it passes by? The answer to the question “How fast?” depends on the observer. 

  Figure 3.25  shows Wanda walking from one end of the car to the other during a time 

interval Δ t.  The displacement of  W anda as measured by  T im—her displacement  relative 

Why does the clam 

not drop straight 

down?

Why does the clam 

not drop straight 

down?
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to the train —is     Δ r ⃗  WT  =  v ⃗  WT  Δt.   During the same time interval, the  train’s  displacement 

 relative to   G  reg  is     Δ r ⃗  TG  =  v ⃗  TG  Δt.   As measured by Greg, Wanda’s displacement is partly 

due to her motion relative to the train and partly due to the motion of the train relative to 

the ground.  Figure 3.25  shows that     Δ r ⃗  WT  + Δ r ⃗  TG  = Δ r ⃗  WG .   Dividing by the time interval 

Δ t  gives the relationship between the three velocities:

      v ⃗  WT  +  v ⃗  TG  =  v ⃗  WG     (3-24)        

   To be sure that you are adding the velocity vectors correctly, think of the subscripts as if 

they were fractions that get multiplied when the velocity vectors are added. In Eq. (3-24),  

      W ___    ×    __ 
G

   =   W ___ 
G

     so the equation is correct. 

   Applications of Relative Velocities for Pilots and Sailors    Relative velocities are 

of enormous practical interest to pilots of aircraft, sailors, and captains of ocean 

freighters. The pilot of an airplane is ultimately concerned with the motion of the 

plane with respect to the ground—the takeoff and landing points are fixed points on 

the ground. However, the controls of the plane (engines, rudder, ailerons, and spoil-

ers) affect the motion of the plane  with respect to the air.  A sailor has to consider 

three different velocities of the boat: with respect to shore (for launching and land-

ing), with respect to the air (for the behavior of the sails), and with respect to the 

water (for the behavior of the rudder).     

CHECKPOINT 3.6

In Fig. 3.24, if the train is moving at 18.0 m/s with respect to the ground and 

Wanda walks at 1.5 m/s with respect to the train, how fast is Wanda moving 

(a) with respect to Greg and (b) with respect to Tim?

Figure 3.24 Tim and Greg 

watch Wanda walk down the 

aisle of a train. Wanda’s velocity 

with respect to Tim (or with 

respect to the train) is  v ⃗  WT ; 

Tim’s velocity with respect to 

Greg (or with respect to the 

ground) is  v ⃗  TG .

Greg

Wanda

TimvWT vTG

∆rWG = vWG ∆t 

∆rTG = vTG ∆t ∆rWT = vWT ∆t 

ti tf = ti + ∆t

Figure 3.25 Wanda’s displacement relative to the ground is the sum of her displace-

ment relative to the train and the displacement of the train relative to the ground.



trip takes Jack 4.2 min. In what direction did he head his 

rowboat to follow a course due west across the river? At 

what speed with respect to still water is Jack able to row?

Example 3.11

Rowing Across a River

Jack wants to row directly across a river from the east shore 

to a point on the west shore. The width of the river is 250 m 

and the current flows from north to south at 0.61 m/s. The 

x

vPG (360 km/h)

vPA (400 km/h)

vAG (40 km/h)

Figure 3.27

Addition of velocity vectors in 

the case of a headwind. Lengths 

of vectors are not to scale.

v ⃗  AG  are in the same direction, which we label as the 

+x-direction in Fig. 3.26. Then,

 v  PAx  +  v  AGx  =  v  PGx 

 v  AGx  =  v  PGx  −  v  PAx  = 440 km/h − 400 km/h = 40 km/h

vAGy = 0, so the wind speed is vAG = 40 km/h.

(b) With a 40 km/h headwind,  v ⃗  PA  and  v ⃗  AG  are in opposite 

directions (Fig. 3.27). The velocity of the plane with respect 

to the ground is

 v  PGx  =  v  PAx  +  v  AGx  = 400 km/h + (−40 km/h) = 360 km/h

The ground speed of the plane is 360 km/h and the trip 

takes

  1770 km ________ 
360 km/h

   = 4.9 h

Discussion Quick check: the trip takes longer with a head-

wind (4.9 h) than with no wind (4.4 h), as we expect.

Practice Problem 3.10 Rowing Across the Bay

Jamil, practicing to get on the crew team at school, rows a 

one-person racing shell to the north shore of the bay for a 

distance of 3.6 km to his friend’s dock. On a day when the 

water is still (no current flowing), it takes him 20 min 

(1200 s) to reach his friend. On another day when a current 

flows southward, it takes him 30 min (1800 s) to row the 

same course. Ignore air resistance. (a) What is the speed of 

the current in m/s? (b) How long does it take Jamil to return 

home with that same current flowing?

Example 3.10

Flight from Denver to Chicago

An airplane flies from Denver to Chicago (1770 km) in 

4.4 h when no wind blows. On a day with a tailwind, the 

plane makes the trip in 4.0 h. (a) What is the wind speed? 

(b) If a headwind blows with the same speed, how long 

does the trip take?

Strategy We assume the plane has the same airspeed—

the same speed relative to the air—in both cases. Once the 

plane is up in the air, the behavior of the wings, control 

surfaces, etc., depends on how fast the air is rushing by; the 

ground speed is irrelevant. But it is not irrelevant for the 

passengers, who are interested in a displacement relative to 

the ground.

Solution Let  v ⃗  PG  and  v ⃗  PA  represent the velocity of the 

plane relative to the ground and the velocity of the plane rel-

ative to the air, respectively. The wind velocity—the 

velocity of the air relative to the ground—can be written 

v ⃗  AG . Then  v ⃗  PA  +  v ⃗  AG  =  v ⃗  PG . The equation is correct since 

P __ 
A

   ×   A __ 
G

   =   P __ 
G

  . With no wind,

 v  PA  =  v  PG  =   1770 km ________ 
4.4 h

   = 400 km/h

(a) On the day with the tailwind,

 v  PG  =   1770 km ________ 
4.0 h

   = 440 km/h

We expect  v  PA  to be the same regardless of whether there is 

a wind or not. Since we are dealing with a tailwind,  v ⃗  PA  and  

__ __ __

__

Figure 3.26

Addition of velocity 

vectors in the case of a 

tailwind. Lengths of 

vectors are not to scale.

vPA (400 km/h)

vPG (440 km/h)

vAG (40 km/h)

x

The vector equation (3-24) applies to situations where the velocities are not all 

along the same line, as illustrated in Example 3.11.   

continued on next page
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At the beginning of this chapter, we asked what the path followed by the falling 

clam looks like as seen by the gull flying through the air. With respect to a beachcomber 

on the ground and ignoring air resistance, the clam has a constant horizontal velocity 

component given to it by the gull and a changing vertical component of velocity due to 

gravity ( Fig. 3.30a ); the clam moves in a parabolic path. If the gull continues to fly at 

the same horizontal velocity after dropping the clam, it is directly overhead when the 

clam hits the rock because they both have the same constant horizontal component of 

velocity with respect to Earth. 

What does the path 

of the falling clam 

look like to the gull?

What does the path 

of the falling clam 

look like to the gull?

Example 3.11 continued

Strategy We start with a sketch of the situation (Fig. 3.28). 

To keep the various velocities straight, we choose subscripts 

as follows: R = rowboat; W = water; S = shore. The velocity 

of the current given is the velocity of the water relative to the 

shore:  v ⃗  WS  = 0.61 m/s, south. The velocity of the rowboat 

relative to shore ( v ⃗  RS ) is due west. The magnitude of   v ⃗  RS

can be found from the displacement relative to shore and 

the time interval, both of which are given. The question 

asks for the magnitude and direction of the velocity of the 

rowboat relative to the water ( v ⃗  RW ). The three velocities are 

related by

 v ⃗  RW  +  v ⃗  WS  =  v ⃗  RS 

To compensate for the current carrying the rowboat south 

with respect to shore, Jack heads (points) the rowboat upstream 

(against the current) at some angle to the north of west.

Solution In a sketch of the vector addition (Fig. 3.29), the 

velocity of the rowboat with respect to the water is at an 

angle q  north of west. With respect to shore, Jack travels 

250 m in 4.2 min, so his speed with respect to shore is

 v  RS  =    250 m ________________  
4.2 min × 60 s/min

   = 0.992 m/s

We can find the angle at which the rowboat should 

be headed by finding the tangent of the angle between 

v ⃗  RW  and  v ⃗  RS :

tan q  =   
 v  WS 

 ____  v  RS    =   0.61 m/s _________ 
0.992 m/s

  

q  = 32° N of W

The speed at which Jack is able to row with respect to 

still water is the magnitude of  v ⃗  RW . Since  v ⃗  RS  and  v ⃗  WS  are 

perpendicular, the Pythagorean theorem yields

  v ⃗  RW   =  √
_________

  v  WS
  

2
   +  v  RS

  
2
     =  √

______________________

   (0.61 m/s ) 2  + (0.992 m/s ) 2   

 = 1.16 m/s

Jack rows at a speed of 1.16 m/s with respect to the water.

Discussion If  v ⃗  RS  and  v ⃗  WS  had not been perpen-

dicular, we could not have used the Pythagorean 

theorem in this way. Rather, we would use the component 

method to add the two vectors.

If Jack had headed the rowboat directly west, the current 

would have carried him south, so he would have traveled in 

a direction south of west relative to shore. He has to com-

pensate by heading upstream at just such an angle that his 

velocity relative to shore is directed west.

Practice Problem 3.11 Heading Straight Across

If Jack were to head straight across the river, in what direc-

tion with respect to shore would he travel? How long would 

it take him to cross? How far downstream would he be car-

ried? Assume that he rows at the same speed with respect to 

the water as in Example 3.11.

vRW

vRS

vWS

q

vRS    is velocity of rowboat
         with respect to shore

vRW   is velocity of rowboat
         with respect to water

vWS   is velocity of water
         with respect to shore

Figure 3.29

Graphical addition of the velocity vectors.

Path of rowboat
relative to shore

250 m

Not to scale

Shore

Water current

EW

S

N

Shore

Figure 3.28

Rowing across a 

river.



 In its own reference frame—that is, using its own position as the origin of the coor-

dinate axes—the gull sees the clam drop straight down toward the ground while rocks 

and other objects on the beach are moving horizontally ( Fig. 3.30b ). The bird sees a col-

lision between the horizontally moving rocks and the vertically falling clam. At any 

instant, if the velocity of the clam with respect to the gull is      v ⃗  CG ,   the velocity of the gull 

with respect to the rocks is      v ⃗  GR ,   and the velocity of the clam with respect to the rocks is 

v ⃗  CR ,   then      v ⃗  CG  +  v ⃗  GR  =  v ⃗  CR .       

vGR

vCR

vRR = 0

= gull
= clam
= rocks

G 
C 
R 

(a) (b)

vGG = 0

vCG

vRG

Figure 3.30 (a) Beachcomber 

view: The gull flies along a hori-

zontal line while the clam fol-

lows a parabolic path. (b) Bird’s 

eye view: The gull sees the rocks 

moving while the clam drops 

straight down, landing on the 

rocks just as the rocks move 

under the clam.

Master the Concepts

   • Vectors are added graphically by drawing each vector 

so that its tail is placed at the tip of the previous vector. 

The sum is drawn as a vector arrow from the tail of the 

first vector to the tip of the last. Addition of vectors is 

commutative:      A⃗ +  B⃗ =   B⃗ +  A⃗.   

A

B

A B+

    • Vectors are subtracted by adding the opposite of the 

second vector:      A⃗ −  B⃗ =  A⃗ + (− B⃗).    

   • Addition and subtraction of vectors algebraically using 

components is generally easier and more accurate than 

the graphical method. The graphical method is still a 

useful first step to get an approximate answer.  

   • To find the components of a vector, first draw a right tri-

angle with the vector as the hypotenuse and the other 

two sides parallel to the  x-  and  y- axes. Then use the trig-

onometric functions to find the magnitudes of the com-

ponents. The correct algebraic sign must be determined 

for each component. The same triangle can be used to 

find the magnitude and direction of a vector if its com-

ponents are known.      

vy

vx

v

x

y

58°

 • To add vectors algebraically, add their components to 

find the components of the sum:

       A⃗ +  B⃗ =   C⃗ if and only if  

  Ax + Bx = Cx and Ay + By = Cy

    • The  x-  and  y- axes are chosen to make the problem easi-

est to solve. Any choice is valid as long as the two are 

perpendicular. If the direction of the acceleration is 

known, choose  x-  and  y- axes so that the acceleration 

vector is parallel to one of the axes.  

   • Position, displacement, velocity, and acceleration are 

vector quantities with both magnitude and direction. 

They must be added and subtracted as vectors.  

continued on next page
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  Conceptual Questions 

    1. If two vectors have the same magnitude, are they neces-

sarily equal? If not, why not? Can two vectors with dif-

ferent magnitudes ever be equal?     

   2. (a) Is it possible for the sum of two vectors to be smaller 

in magnitude than the magnitude of either vector? (b) Is 

it possible for the magnitude of the sum of two vectors 

to be larger than the sum of the magnitudes of the two 

vectors?  

   3. What is the distinction between a vector and a scalar 

quantity? Give two examples of each.  

   4. Is it possible for two identical projectiles with identical 

initial speeds, but with two different angles of elevation, 

to land in the same spot? Explain. Ignore air resistance 

and sketch the trajectories.  

   5. If the trajectory is parabolic in one reference frame, is it 

always, never, or sometimes parabolic in another refer-

ence frame that moves at constant velocity with respect 

to the first reference frame? If the trajectory can be 

other than parabolic, what else can it be?  

   6. You are standing on a balcony overlooking the beach. 

You throw a ball straight up into the air with speed  v  i
and throw an identical ball straight down with speed  v  i . 

Ignoring air resistance, how do the speeds of the balls 

compare just before they hit the ground?  

   7. You throw a ball up with initial speed  v   i   and when it 

reaches its high point at height  h,  you throw another ball 

into the air with the same initial speed  v   i  . Will the two 

Master the Concepts continued

   • The equations for position, displacement, average veloc-

ity, instantaneous velocity, average acceleration, and 

instantaneous acceleration in Chapter 2 apply to  each 

perpendicular component  of the corresponding vector 

quantities for motion in two or three dimensions.  

   • The instantaneous velocity vector is tangent to the path 

of motion. 

v

vx

vy

Tangent at P

P

    • The instantaneous acceleration vector does  not  have to 

be tangent to the path of motion, since velocities can 

change both in direction and in magnitude.  

   • For a projectile or any object moving with constant accel-

eration in the  ±   y -direction, the motion in the  x-  and  

y- directions can be treated separately. Since  a   x    =  0,  v   x   is 

constant. Thus, the motion is a superposition of constant 

velocity motion in the  x- direction and constant accelera-

tion motion in the  y- direction.  

   • The kinematic equations for an object moving in two 

dimensions with constant acceleration along the  y -axis 

are

     x-axis: ax = 0      y-axis: constant  a  y   

      Δvx = 0 (vx is constant)  Δvy = ay Δt   (3-19)  

     Δx = vx Δt       Δy =   1 _ 
2
  (vfy + viy) Δt   (3-20)  

                Δy =  v  iy  Δt +   1 _ 
2
  ay (Δt ) 2    (3-21)  

                v  fy  
2
   =  v  iy  

2
   = 2ay Δy   (3-22)    

   • To relate the velocities of objects measured in different 

reference frames, use the vector equation

     v ⃗AC = v ⃗AB + v ⃗BC   (3-24)  

  where     v ⃗AC   represents the velocity of A relative to C, and 

so forth.  

balls cross at half the height  h,  or more than half, or less 

than half? Explain.  

   8. If an object is traveling at a constant velocity, is it nec-

essarily traveling in a straight line? Explain.  

   9. Can the average speed and the magnitude of the average 

velocity ever be equal? If so, under what circumstances?  

   10. Give an example of an object whose acceleration is (1) in 

the same direction as its velocity, (2) opposite its velocity, 

and (3) perpendicular to its velocity.  

   11. Name a situation where the speed of an object is con-

stant while the velocity is not.  

   12. Tell whether or not each of the following objects has a 

constant velocity and explain your reasoning. (a) A car 

driving around a curve at constant speed on a flat road. 

(b) A car driving straight up a 6 °  incline at constant 

speed. (c) The Moon.  

   13. Explain how to add two displacement vectors of magni-

tudes 3 L  and 4 L  so that the vector sum has magnitude 

(a)  L;  (b) 7 L;  (c) 5 L.   

   14. Compare the advantages and disadvantages of the two 

methods of vector addition (graphical and algebraic).  

   15. Can the  x -component of a vector ever be greater than 

the magnitude of the vector? Explain.  

   16. Why is the muzzle of a rifle not aimed directly at the 

center of the target? Why is this more important at lon-

ger ranges?  

   17. Does the monkey, coconut, and hunter demonstration 

still work if the hunter is in a higher tree and the arrow is 

pointed  downward  at the monkey and coconut? Explain.    



  Multiple-Choice Questions 

    1. Vector      A⃗   in the drawing is equal to

    (a)       C⃗ +  D⃗       (b)       C⃗ +  D⃗ +  E⃗       (c)       C⃗ +  F⃗    

   (d)       B⃗ +   C⃗       (e)       B⃗ +  F⃗       

Multiple-Choice Questions 1 and 2

CF

AE

DB

   2. Which vector sum is not equal to zero?

    (a)       C⃗ +  D⃗ +   E⃗       (b)       B⃗ +   C⃗ +  F⃗    

   (c)       D⃗ +  F⃗       (d)      ⃗ A +  B⃗ +  F⃗      

    3. A hunter spots a pheasant flying along horizontally. If 

he shoots the pheasant, the time interval between the 

bird being shot and the dead bird hitting the ground 

depends on

    (a) the speed with which the bird was flying.  

   (b) the height of the bird above the ground.  

   (c) the speed of the bird and its height above the ground.     

   4. A runner moves along a circular track at a constant 

speed.

    (a) Her acceleration is zero.  

   (b) Her velocity is constant.  

   (c) Both (a) and (b) are true.  

   (d) Both her acceleration and her velocity are changing.     

   5. A boy plans to cross a river in a rubber raft. The current 

flows from north to south at 1 m/s. In what direction 

should he head to get across the river to the east bank in 

the least amount of time if he is able to paddle the raft at 

1.5 m/s in still water?

    (a) directly to the east  

   (b) south of east  

   (c) north of east  

   (d)  The three directions require the same time to cross 

the river.     

   6. A boy plans to paddle a rubber raft across a river to the 

east bank while the current flows downriver from north 

to south at 1 m/s. He is able to paddle the raft at 1.5 m/s 

in still water. In what direction should he head the raft 

to go straight east across the river to the opposite bank?

    (a) directly to the east     (b) south of east  

   (c) north of east     (d) north     (e) south     

   7. A kicker kicks a football from the 5-yard line to the 

45-yard line (both on the same half of the field). Ignor-

ing air resistance, where along the trajectory is 

the speed of the football a minimum?

    (a)  at the 5-yard line, just after the football leaves the 

kicker’s foot  

   (b)  at the 45-yard line, just before the football hits the 

ground  

   (c)  at the 15-yard line, while the ball is still going 

higher  

   (d) at the 35-yard line, while the ball is coming down  

   (e)  at the 25-yard line, when the ball is at the top of its 

trajectory     

   8. Two balls, identical except for color, are projected hori-

zontally from the roof of a tall building at the same 

instant. The initial speed of the red ball is twice the ini-

tial speed of the blue ball. Ignoring air resistance,

    (a) the red ball reaches the ground first.  

   (b) the blue ball reaches the ground first.  

   (c)  both balls land at the same instant with different 

speeds.  

   (d)  both balls land at the same instant with the same 

speed.     

   9. A person stands on the roof garden of a tall building 

with one ball in each hand. If the red ball is thrown hori-

zontally off the roof and the blue ball is simultaneously 

dropped over the edge, which statement is true?

    (a)  Both balls hit the ground at the same time, but the 

red ball has a higher speed just before it strikes the 

ground.  

   (b)  The blue ball strikes the ground first, but with a 

lower speed than the red ball.  

   (c)  The red ball strikes the ground first with a higher 

speed than the blue ball.  

   (d)  Both balls hit the ground at the same time with the 

same speed.     

   10. A ball is thrown into the air and follows a parabolic tra-

jectory. At the highest point in the trajectory,

    (a) the velocity is zero, but the acceleration is not zero.  

   (b) both the velocity and the acceleration are zero.  

   (c) the acceleration is zero, but the velocity is not zero.  

   (d) neither the acceleration nor the velocity are zero.     

   11. A ball is thrown into the air and follows a parabolic 

trajectory. Point  A  is the highest point in the trajectory 

and point  B  is a point as the ball is falling back to the 

ground. Choose the correct relationship between the 

speeds and the magnitudes of the acceleration at the two 

points.

    (a)  v   A   >  v   B   and  a   A    =   a   B       (b)  v   A   <  v   B   and  a   A   >  a   B    

   (c)  v   A    =   v   B   and  a   A   ≠  a   B       (d)  v   A   <  v   B   and  a   A    =   a   B        

  Questions 12–14.  Two projectiles launched with the same 

initial speed but at different launch angles 30 °  and 60 °  land 

at the same spot (see  Fig. 3.22 ). Ignore air resistance. Answer 

choices:

    (a) projectile launched at 30 °   

   (b) projectile launched at 60 °   

   (c) They are equal.    

    12. Which has the larger horizontal velocity component  v   x  ?  

   13. Which has a longer time of flight Δ t  (time interval 

between launch and hitting the ground)?  

   14. For which is the product  v   x   Δ t  larger?    

 MULTIPLE-CHOICE QUESTIONS 79
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  Problems 

 Combination conceptual/quantitative problem

 Biological or medical application

✦ Challenging problem

Blue # Detailed solution in the Student Solutions Manual

1  2  Problems paired by concept

 Text website interactive or tutorial   

  3.1 Graphical Addition and Subtraction of 
Vectors 

1. Displacement vector  A⃗     is directed to the west and has 

magnitude 2.56 km. A second displacement vector is 

also directed to the west and has magnitude 7.44 km. 

(a) What are the magnitude and direction of      A⃗ +  B⃗?

(b) What are the magnitude and direction of      A⃗ −  B⃗?

(c) What are the magnitude and direction of       B⃗ −  A⃗?    

 2. Vector      A⃗   is directed along the positive  x -axis and has 

magnitude 1.73 units. Vector      B⃗   is directed along the 

negative  x -axis and has magnitude 1.00 unit. (a) What 

are the magnitude and direction of       A⃗ +  B⃗  ? (b) What are 

the magnitude and direction of       A⃗ −  B⃗  ? (c) What are the 

magnitude and direction of   B⃗ −  A⃗?

     3. Two vectors have magnitudes 3.0 and 4.0. How are the 

directions of the two vectors related if (a) the sum has 

magnitude 7.0, or (b) if the sum has magnitude 5.0? 

(c) What relationship between the directions gives the 

smallest magnitude sum and what is this magnitude?    

   4. A runner is practicing on a circular track that is 300 m 

in circumference. From the point farthest to the west on 

the track, he starts off running due north and follows the 

track as it curves around toward the east. (a) If he runs 

halfway around the track and stops at the farthest east-

ern point of the track, what is the distance he traveled? 

(b) What is his displacement? 

5. Two displacement vectors each have magnitude 20 km. 

One is directed 60 °  above the  +  x -axis; the other is 

directed 60 °  below the  +  x -axis. What is the vector sum 

of these two displacements? Use graph paper to find 

your answer.  

   6. Orville walks 320 m due east. He then continues walk-

ing along a straight line, but in a different direction, and 

stops 200 m northeast of his starting point. How far did 

he walk during the second portion of the trip and in 

what direction?  

   7. Vectors      A⃗,  B⃗,   and      C⃗   are shown in the figure. (a) Draw 

vectors      D⃗   and      E⃗,   where      D⃗ =  A⃗ +  B⃗   and      E⃗ =  A⃗ +  C⃗.   

(b) Show that      A⃗ +  B⃗ =  B⃗ +  A⃗   by graphical means. 

     

C

A

B

   8. Two vectors, each of magnitude 4.0 cm, are directed at 

a small angle  a  below the horizontal as shown. (The 

grid is 1 cm on a side.) (a) Let       C⃗ =  A⃗ +  B⃗.   Sketch 

the direction of       C⃗   and estimate its magnitude. (b) Let 

      D⃗ =  A⃗ −  B⃗  . Sketch the direction of     D⃗   and estimate its 

magnitude. (    tutorial: vectors) 

4.0 cm4.0 cm
BA

a a

9. Michaela is planning a trip in Ireland from Killarney to 

Cork to visit Blarney Castle. (See Example 3.2.) She 

also wants to visit Mallow, which is located 39 km due 

east of Killarney and 22 km due north of Cork. Draw 

the displacement vectors for the trip when she travels 

from Killarney to Mallow to Cork. (a) What is the mag-

nitude of her displacement once she reaches Cork? 

(b) How much additional distance does Michaela travel 

in going to Cork by way of Mallow instead of going 

directly from Killarney to Cork ? 

   10. A scout troop is practicing its orienteering skills with 

map and compass. First they walk due east for 1.2 km. 

Next, they walk 45 °  west of north for 2.7 km. In what 

direction must they walk to go directly back to their 

starting point? How far will they have to walk? Use 

graph paper, ruler, and protractor to find a geometrical 

solution.  

     11. Prove that the displacement for a trip is equal to the vec-

tor sum of the displacements for each leg of the trip. 

[ Hint:  Imagine a trip that consists of  n  segments. The 

trip starts at position     r ⃗1,   proceeds to     r ⃗2,   then to     r ⃗3, . . . ,   

then to     r ⃗n−1,   then finally to     r ⃗n.   Write an expression for 

each displacement as the difference of two position vec-

tors and then add them.]  

   12. A sailboat sails from Marblehead Harbor directly east for 

45 nautical miles, then 60 °  south of east for 20.0 nautical 

miles, returns to an easterly heading for 30.0 nautical 

miles, and sails 30 °  east of north for 10.0 nautical miles, 

then west for 62 nautical miles. At that time the boat 

becomes becalmed and the auxiliary engine fails to 

start. The crew decides to notify the Coast Guard of 

their position. Using graph paper, ruler, and protractor, 

sketch a graphical addition of the displacement vectors 

and estimate their position.    

  3.2 Vector Addition and Subtraction Using 
Components 

13. A vector is 20.0 m long and makes an angle of 60.0 °  coun-

terclockwise from the  y -axis (on the side of the  −  x -axis). 

What are the  x - and  y -components of this vector?  

   14. Vector      A⃗   has magnitude 4.0 units; vector       B⃗   has magni-

tude 6.0 units. The angle between      A⃗   and      B⃗   is 60.0 ° . 

What is the magnitude of       A⃗ +  B⃗?    

15. Vector      A⃗   is directed along the positive  y -axis and has 

magnitude      √
___

 3.0     units. Vector      B⃗   is directed along the 

negative  x -axis and has magnitude 1.0 unit. (a) What are 



the magnitude and direction of       A⃗ +   B⃗?   (b) What are the 

magnitude and direction of      A⃗ −  B⃗?   (c) What are the  

x - and  y -components of       B⃗ −  A⃗?    

16. Vector     a ⃗   has components  a   x    =   − 3.0 m/s 2  and  a   y    =  

 + 4.0 m/s 2 . (a) What is the magnitude of     a ⃗?   (b) What is 

the direction of     a ⃗?   Give an angle with respect to one of 

the coordinate axes.  

   17. In Problem 8, let  a     =  10 °  and find the magnitude of 

vector       C⃗   using the component method.  

   18. In Problem 8, let  a     =  10 °  and find the magnitude of 

vector      D⃗   using the component method.  

   19. Find the  x - and  y -components of the four vectors shown 

in the drawing. 

A

20.0°

7.0 m

x

y

B

20.0°

7.0 m/s

x

y

xC

7.0 m

x

y

D 20.0°

7.0 m/s

y

20.0°

    20. The velocity vector of a sprinting cheetah has  x - and 

 y -components  v   x    =   +  16.4 m/s and  v   y    =   − 26.3 m/s. 

(a) What is the magnitude of the velocity vector? 

(b) What angle does the velocity vector make with the 

 +  x - and − y -axes?  

   21. In each of these, the  x - and  y -components of a vector 

are given. Find the magnitude and direction of the 

vector. (a)  A   x    =   − 5.0 m/s,  A   y    =   + 8.0 m/s. (b)  B   x    =   + 120 m,  

B   y    =   − 60.0 m. (c)  C   x    =   − 13.7 m/s,  C   y    =   − 8.8 m/s. (d)  D   x    =  

2.3 m/s 2 ,  D   y    =  6.5 cm/s 2 .  

   22. A vector      A⃗   has a magnitude of 22.2 cm and makes an 

angle of 130.0 °  with the positive  x -axis. What are the 

x - and  y -components of this vector?  

   23. Vector       B⃗   has magnitude 7.1 and direction 14 °  below 

the  +  x -axis. Vector       C⃗   has  x -component  C   x    =   − 1.8 and 

 y -component  C   y    =   − 6.7. Compute (a) the  x - and 

y- components of       B⃗;   (b) the magnitude and direction of  
 C⃗;   (c) the magnitude and direction of       C⃗ +  B⃗;   (d) the 

magnitude and direction of       C⃗ −  B⃗;   (e) the  x - and 

y -components of       C⃗ −  B⃗.    

   24. Margaret walks to the store using the following path: 

0.500 miles west, 0.200 miles north, 0.300 miles east. 

What is her total displacement? That is, what is the 

length and direction of the vector that points from her 

house directly to the store? Use vector components to 

find the answer.  

25. Jerry bicycles from his dorm to the local fitness center: 

3.00 miles east and 2.00 miles north. Cindy’s apart-

ment is located 1.50 miles west of Jerry’s dorm. If 

Cindy is able to meet Jerry at the fitness center by 

bicycling in a straight line, what is the length and direc-

tion she must travel?  

   26. Repeat Problem 10 using the component (algebraic) 

method.  

27. Use the component method to obtain a more accurate 

description of the sailboat’s location in Problem 12.  

   28. You will be hiking to a lake with some of your friends by 

following the trails indicated on a map at the trailhead. 

The map says that you will travel 1.6 mi directly north, 

then 2.2 mi in a direction 35 °  east of north, then finally 

1.1 mi in a direction 15 °  north of east. At the end of this 

hike, how far will you be from where you started, and 

what direction will you be from your starting point?    

  3.3 Velocity 

29. A runner times his speed around a circular track with a 

circumference of 0.478 mi. At the start he is running 

toward the east and the track starts bending toward the 

north. If he goes halfway around, he will be running 

toward the west. He finds that he has run a distance of 

0.750 mi in 4.00 min. What is his (a) average speed and 

(b) average velocity in m/s?  

   30. A runner times his speed around a track with a circum-

ference of 0.50 mi. He finds that he has run a distance 

of 1.00 mi in 4.0 min. What is his (a) average speed and 

(b) average velocity magnitude in m/s?  

   31. Peggy drives from Cornwall to Atkins Glen in 45 min. 

Cornwall is 73.6 km from Illium in a direction 25 °  west 

of south. Atkins Glen is 27.2 km from Illium in a direc-

tion 15 °  south of west. Using Illium as your origin, 

(a) draw the initial and final position vectors, (b) find 

the displacement during the trip, and (c) find Peggy’s 

average velocity for the trip.  

   32. To get to a concert in time, a harpsichordist has to drive 

122 mi in 2.00 h. (a) If he drove at an average speed of 

55.0 mi/h in a due west direction for the first 1.20 h, 

what must be his average speed if he is heading 30.0 °
south of west for the remaining 48.0 min? (b) What is 

his average velocity for the entire trip?  

33. A bicycle travels 3.2 km due east in 0.10 h, then 4.8 km 

at 15.0 °  east of north in 0.15 h, and finally another 

3.2 km due east in 0.10 h to reach its destination. The 

time lost in turning is negligible. What is the average 

velocity for the entire trip?  

   34. A car travels east at 96 km/h for 1.0 h. It then travels 

30.0 °  east of north at 128 km/h for 1.0 h. (a) What is the 

average speed for the trip? (b) What is the average 

velocity for the trip?  

   35. A speedboat heads west at 108 km/h for 20.0 min. It 

then travels at 60.0 °  south of west at 90.0 km/h for 

10.0 min. (a) What is the average speed for the trip? 

(b) What is the average velocity for the trip?  

   36. See Problem 9. During Michaela’s travel from Killarney 

to Cork via Mallow, her actual travel time in the car is 
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48 min. (a) What is her average speed in m/s? (b) What 

is the magnitude of her average velocity in m/s?  

     37. Geoffrey drives from his home town due east at 90.0 km/h 

for 80.0 min. After visiting a friend for 15.0 min, he 

drives in a direction 30.0 °  south of west at 76.0 km/h 

for 45.0 min to visit another friend. (a) How far is it to 

his home from the second town? (b) If it takes him 

45.0 min to drive directly home, what is his average 

velocity on the third leg of the trip? (c) What is his aver-

age velocity during the first two legs of his trip? 

(d) What is his average velocity over the entire trip? 

(e) What is his average speed during the entire trip if he 

spent 55.0 min visiting the second friend?    

  3.4 Acceleration 

    38. A hawk is flying north at 2.0 m/s with respect to the 

ground; 10.0 s later, it is flying south at 5.0 m/s. What is 

its average acceleration during this time interval?  

   39. A skydiver is falling straight down at 55 m/s when he opens 

his parachute and slows to 8.3 m/s in 3.5 s. What is the 

average acceleration of the skydiver during those 3.5 s?  

     40. A car travels three quarters of the way around a circle of 

radius 20.0 m in a time of 3.0 s at a constant speed. The 

initial velocity is west and the final velocity is south. 

(a) Find its average velocity for this trip. (b) What is the 

car’s average acceleration during these 3.0 s? (c) Explain 

how a car moving at constant speed has a nonzero aver-

age acceleration.  

41. At  t   =  0, an automobile traveling north begins to make a 

turn. It follows one-quarter of the arc of a circle with a 

radius of 10.0 m until, at  t   =  1.60 s, it is traveling east. 

The car does not alter its speed during the turn. Find 

(a) the car’s speed, (b) the change in its velocity during 

the turn, and (c) its average acceleration during the turn.  

   42. At the beginning of a 3.0-h plane trip, you are traveling 

due north at 192 km/h. At the end, you are traveling 

240 km/h in the northwest direction (45 °  west of north). 

(a) Draw your initial and final velocity vectors. (b) Find 

the change in your velocity. (c) What is your average 

acceleration during the trip?  

   43. John drives 16 km directly west from Orion to Chester 

at a speed of 90 km/h, then directly south for 8.0 km to 

Seiling at a speed of 80 km/h, then finally 34 km south-

east to Oakwood at a speed of 100 km/h. Assume he 

travels at constant velocity during each of the three seg-

ments. (a) What was the change in velocity during this 

trip? [ Hint:  Do not assume he starts from rest and stops 

at the end.] (b) What was the average acceleration dur-

ing this trip?  

   44. A particle’s constant acceleration is south at 2.50 m/s 2 . 

At  t   =  0, its velocity is 40.0 m/s east. What is its veloc-

ity at  t   =  8.00 s?  

45. A particle’s constant acceleration is north at 100 m/s 2 . 

At  t   =  0, its velocity vector is 60 m/s east. At what time 

will the magnitude of the velocity be 100 m/s?    

✦✦

  3.5 Motion in a Plane with Constant Acceleration 

46. A baseball is thrown horizontally from a height of 

9.60 m above the ground with a speed of 30.0 m/s. 

Where is the ball after 1.40 s has elapsed? 

47. A clump of soft clay is thrown horizontally from 8.50 m 

above the ground with a speed of 20.0 m/s. Where is the 

clay after 1.50 s? Assume it sticks in place when it hits 

the ground. 

    48. A tennis ball is thrown horizontally from an elevation 

of 14.0 m above the ground with a speed of 20.0 m/s. 

(a) Where is the ball after 1.60 s? (b) If the ball is still in 

the air, how long before it hits the ground and where will 

it be with respect to the starting point once it lands? 

49. A ball is thrown from a point 1.0 m above the ground. 

The initial velocity is 19.6 m/s at an angle of 30.0 °
above the horizontal. (a) Find the maximum height of 

the ball above the ground. (b) Calculate the speed of the 

ball at the highest point in the trajectory.  

   50. An arrow is shot into the air at an angle of 60.0 °  above 

the horizontal with a speed of 20.0 m/s. (a) What are the 

x - and  y -components of the velocity of the arrow 3.0 s 

after it leaves the bowstring? (b) What are the  x - and  

y -components of the displacement of the arrow during 

the 3.0-s interval?  

   51. You are working as a consultant on a video game design-

ing a bomb site for a World War I airplane. In this game, 

the plane you are flying is traveling horizontally at 

40.0 m/s at an altitude of 125 m when it drops a bomb. 

(a) Determine how far horizontally from the target you 

should release the bomb. (b) What direction is the bomb 

moving just before it hits the target?  

   52. You have been employed by the local circus to plan 

their human cannonball performance. For this act, a 

spring-loaded cannon will shoot a human projectile, the 

Great Flyinski, across the big top to a net below. The net 

is located 5.0 m lower than the muzzle of the cannon 

from which the Great Flyinski is launched. The cannon 

will shoot the Great Flyinski at an angle of 35.0 °  above 

the horizontal and at a speed of 18.0 m/s. The ringmas-

ter has asked that you decide how far from the cannon 

to place the net so that the Great Flyinski will land in 

the net and not be splattered on the floor, which would 

greatly disturb the audience. What do you tell the ring-

master? (    interactive: projectile motion)  

   53. A cannonball is catapulted toward a castle. The can-

nonball’s velocity when it leaves the catapult is 40 m/s 

at an angle of 37 °  with respect to the horizontal and 

the cannonball is 7.0 m above the ground at this time. 

(a) What is the maximum height above the ground 

reached by the cannonball? (b) Assuming the cannon-

ball makes it over the castle walls and lands back down 

on the ground, at what horizontal distance from its 

release point will it land? (c) What are the  x - and 

 y -components of the cannonball’s velocity just before 

it lands? The  y -axis points up.  



   54. After being assaulted by flying cannonballs, the knights 

on the castle walls (12 m above the ground) respond by 

propelling flaming pitch balls at their assailants. One 

ball lands on the ground at a distance of 50 m from the 

castle walls. If it was launched at an angle of 53 °  above 

the horizontal, what was its initial speed?  

   55. From the edge of the rooftop of a building, a boy throws 

a stone at an angle 25.0 °  above the horizontal. The stone 

hits the ground 4.20 s later, 105 m away from the base 

of the building. (Ignore air resistance.) (a) For the 

stone’s path through the air, sketch graphs of  x,   y,   v   x  , 

and  v   y   as functions of time. These need to be only  quali-

tatively  correct—you need not put numbers on the axes. 

(b) Find the initial velocity of the stone. (c) Find the ini-

tial height  h  from which the stone was thrown. (d) Find 

the maximum height  H  reached by the stone.  

   56. Two angles are complementary when their sum is 90.0 ° . 

Find the ranges for two projectiles launched with identi-

cal initial speeds of 36.2 m/s at angles of elevation 

above the horizontal that are complementary pairs. 

(a) For one trial, the angles of elevation are 36.0 °  and 

54.0 ° . (b) For the second trial, the angles of elevation 

are 23.0 °  and 67.0 ° . (c) Finally, the angles of elevation 

are both set to 45.0 ° . (d) What do you notice about the 

range values for each complementary pair of angles? At 

which of these angles was the range greatest?  

   57. The range  R  of a projectile is defined as the magnitude 

of the horizontal displacement of the projectile  when it 

returns to its original altitude.  (In other words, the 

range is the distance between the launch point and the 

impact point on flat ground.) A projectile is launched at 

 t   =  0 with initial speed  v   i   at an angle  q   above the hori-

zontal. (a) Find the time  t  at which the projectile returns 

to its original altitude. (b) Show that the range is

R =   
 v  i  

2
  sin 2q 

 ________ g  

    [ Hint:  Use the trigonometric identity sin 2 q     =  2 sin  q   cos  q .] 

(c) What value of  q  gives the maximum range? What is 

this maximum range?  

   58. Use the expression in Problem 57 to find (a) the maxi-

mum range of a projectile with launch speed  v   i   and (b) the 

launch angle  q    at which the maximum range occurs.  

 59. A projectile is launched at  t   =  0 with initial speed  v  i  at 

an angle  q   above the horizontal. (a) What are  v   x   and  v   y   

at the projectile’s highest point? (b) Find the time  t  at 

which the projectile reaches its maximum height. 

(c) Show that the maximum height  H  of the projectile is

H =   
( v  i  sin q  ) 2 

 _________ 
2g

  

     60. A ballplayer standing at home plate hits a baseball that 

is caught by another player at the same height above the 

ground from which it was hit. The ball is hit with an ini-

tial velocity of 22.0 m/s at an angle of 60.0 °  above the 

horizontal. (    tutorial: projectile) (a) How high will 

the ball rise? (b) How much time will elapse from the 

✦✦

time the ball leaves the bat until it reaches the fielder? 

(c) At what distance from home plate will the fielder be 

when he catches the ball?  

61. You are planning a stunt to be used in an ice skating 

show. For this stunt a skater will skate down a friction-

less ice ramp that is inclined at an angle of 15.0 °  above 

the horizontal. At the bottom of the ramp, there is a 

short horizontal section that ends in an abrupt drop off. 

The skater is supposed to start from rest somewhere on 

the ramp, then skate off the horizontal section and fly 

through the air a horizontal distance of 7.00 m while 

falling vertically for 3.00 m, before landing smoothly 

on the ice. How far up the ramp should the skater start 

this stunt?  

     62. A suspension bridge is 60.0 m above the level base of a 

gorge. A stone is thrown or dropped from the bridge. 

Ignore air resistance. At the location of the bridge  g  has 

been measured to be 9.83 m/s 2 . (a) If you drop the stone, 

how long does it take for it to fall to the base of the 

gorge? (b) If you  throw  the stone straight down with a 

speed of 20.0 m/s, how long before it hits the ground? 

(c) If you throw the stone with a velocity of 20.0 m/s at 

30.0 °  above the horizontal, how far from the point 

directly below the bridge will it hit the level ground?  

     63. A circus performer is shot out of a cannon and flies over 

a net that is placed horizontally 6.0 m from the cannon. 

When the cannon is aimed at an angle of 40 °  above the 

horizontal, the performer is moving in the horizontal 

direction and just barely clears the net as he passes over 

it. What is the muzzle speed of the cannon and how high 

is the net?  

     64. Show that for a projectile launched at an angle of 45 °  

the maximum height of the projectile is one quarter of 

the range (the distance traveled on flat ground).    

  3.6 Velocity Is Relative; Reference Frames 

    65. Two cars are driving toward each other on a straight, flat 

Kansas road. The Jeep Wrangler is traveling at 82 km/h 

north and the Ford Taurus is traveling at 48 km/h south, 

both measured relative to the road. What is the velocity 

of the Jeep relative to an observer in the Ford?  

   66. Two cars are driving toward each other on a straight and 

level road in Alaska. The BMW is traveling at 100.0 km/h 

north and the VW is traveling at 42 km/h south, both 

velocities measured relative to the road. At a certain 

instant, the distance between the cars is 10.0 km. Approx-

imately how long will it take from that instant for the 

two cars to meet? [ Hint:  Consider a reference frame in 

which one of the cars is at rest.]  

   67. A car is driving directly north on the freeway at a speed 

of 110 km/h and a truck is leaving the freeway driving 

85 km/h in a direction that is 35 °  west of north. What is 

the velocity of the truck relative to the car?  

   68. A Nile cruise ship takes 20.8 h to go upstream from 

Luxor to Aswan, a distance of 208 km, and 19.2 h to 

✦✦
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✦✦

✦✦
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make the return trip downstream. Assuming the ship’s 

speed relative to the water is the same in both cases, cal-

culate the speed of the current in the Nile.  

69. An airplane has a velocity relative to the ground of 

210 m/s toward the east. The pilot measures his airspeed 

(the speed of the plane relative to the air) to be 160 m/s. 

What is the minimum wind velocity possible?  

   70. A small plane is flying directly west with an airspeed 

of 30.0 m/s. The plane flies into a region where the 

wind is blowing at 10.0 m/s at an angle of 30 °  to the 

south of west. (a) If the pilot does not change the head-

ing of the plane, what will be the ground speed of the 

airplane? (b) What will be the new directional head-

ing, relative to the ground, of the airplane? (    tuto-

rial: flight of crow)  

   71. A small plane is flying directly west with an airspeed of 

30.0 m/s. The plane flies into a region where the wind is 

blowing at 10.0 m/s at an angle of 30 °  to the south of 

west. In that region, the pilot changes the directional 

heading to maintain her due west heading. (a) What is 

the change she makes in the directional heading to com-

pensate for the wind? (b) After the heading change, 

what is the ground speed of the airplane?  

   72. A boat that can travel at 4.0 km/h in still water crosses a 

river with a current of 1.8 km/h. At what angle must the 

boat be pointed upstream to travel straight across the 

river? In other words, in what direction is the velocity of 

the boat relative to the water?  

   73. At an antique car rally, a Stanley Steamer automobile 

travels north at 40 km/h and a Pierce Arrow automobile 

travels east at 50 km/h. Relative to an observer riding in 

the Stanley Steamer, what are the  x - and  y -components 

of the velocity of the Pierce Arrow car? The  x -axis is to 

the east and the  y -axis is to the north.  

   74. Sheena can row a boat at 3.00 mi/h in still water. She 

needs to cross a river that is 1.20 mi wide with a current 

flowing at 1.60 mi/h. Not having her calculator ready, 

she guesses that to go straight across, she should head 

60.0 °  upstream. (a) What is her speed with respect to 

the starting point on the bank? (b) How long does it take 

her to cross the river? (c) How far upstream or down-

stream from her starting point will she reach the oppo-

site bank? (d) In order to go straight across, what angle 

upstream should she have headed?  

   75. A dolphin wants to swim directly back to its home bay, 

which is 0.80 km due west. It can swim at a speed of 

4.00 m/s relative to the water, but a uniform water cur-

rent flows with speed 2.83 m/s in the southeast direc-

tion. (a) What direction should the dolphin head? 

(b) How long does it take the dolphin to swim the 

0.80-km distance home?  

   76. Demonstrate with a vector diagram that a displacement 

is the same when measured in two different reference 

frames that are at rest with respect to each other.  

     77. A boy is attempting to swim directly across a river; he is 

able to swim at a speed of 0.500 m/s relative to the water. 

The river is 25.0 m wide and the boy ends up at 50.0 m 

downstream from his starting point. (a) How fast is the 

current flowing in the river? (b) What is the speed of the 

boy relative to a friend standing on the riverbank?  

     78. An aircraft has to fly between two cities, one of which 

is 600.0 km north of the other. The pilot starts from the 

southern city and encounters a steady 100.0 km/h wind 

that blows from the northeast. The plane has a cruising 

speed of 300.0 km/h in still air. (a) In what direction 

(relative to east) must the pilot head her plane? (b) How 

long does the flight take?     

  Comprehensive Problems 

    79. Jason is practicing his tennis stroke by hitting balls 

against a wall. The ball leaves his racquet at a height of 

60 cm above the ground at an angle of 80 °  with respect 

to the  vertical.  (a) The speed of the ball as it leaves the 

racquet is 20 m/s and it must travel a distance of 10 m 

before it reaches the wall. How far above the ground 

does the ball strike the wall? (b) Is the ball on its way up 

or down when it hits the wall?  

   80. Imagine a trip where you drive along an east-west high-

way at 80.0 km/h for 45.0 min and then you turn onto a 

highway that runs 38.0 °  north of east and travel at 

60.0 km/h for 30.0 min. (a) What is your average veloc-

ity for the trip? (b) What is your average velocity on the 

return trip when you head the opposite way and drive 

38.0 °  south of west at 60.0 km/h for the first 30.0 min 

and then west at 80.0 km/h for the last 45.0 min?  

81. A jetliner flies east for 600.0 km, then turns 30.0 °
toward the south and flies another 300.0 km. (a) How 

far is the plane from its starting point? (b) In what direc-

tion could the jetliner have flown directly to the same 

destination (in a straight-line path)? (c) If the jetliner 

flew at a constant speed of 400.0 km/h, how long did 

the trip take? (d) Moving at the same speed, how long 

would the direct flight have taken?  

   82. An African swallow carrying a very small coconut is 

flying horizontally with a speed of 18 m/s. (a) If it drops 

the coconut from a height of 100 m above the Earth, 

how long will it take before the coconut strikes the 

ground? (b) At what horizontal distance from the release 

point will the coconut strike the ground?  

   83. A pilot starting from Athens, New York, wishes to fly to 

Sparta, New York, which is 320 km from Athens in the 

direction 20.0 °  N of E. The pilot heads directly for 

Sparta and flies at an airspeed of 160 km/h. After flying 

for 2.0 h, the pilot expects to be at Sparta, but instead he 

finds himself 20 km due west of Sparta. He has forgot-

ten to correct for the wind. (a) What is the velocity of 

✦✦
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the plane relative to the air? (b) Find the velocity (mag-

nitude and direction) of the plane relative to the ground. 

(c) Find the wind speed and direction.  

   84. The citizens of Paris were terrified during World War I 

when they were suddenly bombarded with shells fired 

from a long-range gun known as Big Bertha. The barrel 

of the gun was 36.6 m long and it had a muzzle speed of 

1.46 km/s. When the gun’s angle of elevation was set to 

55 ° , what would be the range? For the purposes of solv-

ing this problem, neglect air resistance. (The actual 

range at this elevation was 121 km; air resistance can-

not be ignored for the high muzzle speed of the shells.)  

85. You are serving as a consultant for the newest James 

Bond film. In one scene, Bond must fire a projectile 

from a cannon and hit the enemy headquarters located 

on the top of a cliff 75.0 m above and 350 m from the 

cannon. The cannon will shoot the projectile at an angle 

of 40.0 °  above the horizontal. The director wants to 

know what the speed of the projectile must be when it is 

fired from the cannon so that it will hit the enemy head-

quarters. What do you tell him? [ Hint:  Don’t assume 

the projectile will hit the headquarters at the highest 

point of its flight.]  

   86. The pilot of a small plane finds that the airport where he 

intended to land is fogged in. He flies 55 mi west to 

another airport to find that conditions there are too icy 

for him to land. He flies 25 mi at 15 °  east of south and 

is finally able to land at the third airport. (a) How far 

and in what direction must he fly the next day to go 

directly to his original destination? (b) How many extra 

miles beyond his original flight plan has he flown?  

   87. A particle has a constant acceleration of 5.0 m/s 2  to the 

east. At time  t   =  0, it is 2.0 m east of the origin and its 

velocity is 20 m/s north. What are the components of its 

position vector at  t   =  2.0 s?  

   88. A baseball batter hits a long fly ball that rises to a height 

of 44 m. An outfielder on the opposing team can run at 

7.6 m/s. What is the farthest the fielder can be from 

where the ball will land so that it is possible for him to 

catch the ball?  

89. A locust jumps at an angle of 55.0 °  and lands 0.800 m 

from where it jumped. (a) What is the maximum height 

of the locust during its jump? Ignore air resistance. 

(b) If it jumps with the same initial speed at an angle of 

45.0 ° , would the maximum height be larger or smaller? 

(c) What about the range? (d) Calculate the maximum 

height and range for this angle.  

   90. A helicopter is flying horizontally at 8.0 m/s and an alti-

tude of 18 m when a package of emergency medical 

supplies is ejected horizontally backward with a speed 

of 12 m/s  relative to the helicopter.  Ignoring air resis-

tance, what is the horizontal distance between the pack-

age and the helicopter when the package hits the 

ground?  

   91. An airplane is traveling from New York to Paris, a dis-

tance of 5.80  ×  10 3  km. Ignore the curvature of the 

Earth. (a) If the cruising speed of the airplane is 

350.0 km/h, how much time will it take for the airplane 

to make the round-trip on a calm day? (b) If a steady 

wind blows from New York to Paris at 60.0 km/h, how 

much time will the round-trip take? (c) How much time 

will it take if there is a crosswind of 60.0 km/h?  

   92. A gull is flying horizontally 8.00 m above the ground at 

6.00 m/s. The bird is carrying a clam in its beak and plans 

to crack the clamshell by dropping it on some rocks 

below. Ignoring air resistance, (a) what is the horizontal 

distance to the rocks at the moment that the gull should let 

go of the clam? (b) With what speed relative to the rocks 

does the clam smash into the rocks? (c) With what speed 

relative to the gull does the clam smash into the rocks?  

93. A beanbag is thrown horizontally from a dorm room 

window a height  h  above the ground. It hits the ground 

a horizontal distance  h  (the  same  distance  h ) from the 

dorm directly below the window from which it was 

thrown. Ignoring air resistance, find the direction of the 

beanbag’s velocity just before impact.  

     94. In a plate glass factory, sheets of glass move along a con-

veyor belt at a speed of 15.0 cm/s. An automatic cutting 

tool descends at preset intervals to cut the glass to size. 

Since the assembly belt must keep moving at constant 

speed, the cutter is set to cut at an angle to compensate 

for the motion of the glass. If the glass is 72.0 cm wide 

and the cutter moves across the width at a speed of 

24.0 cm/s, at what angle should the cutter be set?  

     95. A pilot wants to fly from Dallas to Oklahoma City, a 

distance of 330 km at an angle of 10.0 °  west of north. 

The pilot heads directly toward Oklahoma City with an 

air speed of 200 km/h. After flying for 1.0 h, the pilot 

finds that he is 15 km off course to the west of where he 

expected to be after one hour assuming there was no 

wind. (a) What is the velocity and direction of the wind? 

(b) In what direction should the pilot have headed his 

plane to fly directly to Oklahoma City without being 

blown off course?  

   96. A ball is thrown horizontally off the edge of a cliff with 

an initial speed of 20.0 m/s. (a) How long does it take 

for the ball to fall to the ground 20.0 m below? (b) How 

long would it take for the ball to reach the ground if it 

were dropped from rest off the cliff edge? (c) How long 

would it take the ball to fall to the ground if it were 

thrown at an initial velocity of 20.0 m/s but 18 °  below 

the horizontal?  

     97. A marble is rolled so that it is projected horizontally off 

the top landing of a staircase. The initial speed of the 

marble is 3.0 m/s. Each step is 0.18 m high and 0.30 m 

wide. Which step does the marble strike first?  

     98. A motor scooter rounds a curve on the highway at a 

constant speed of 20.0 m/s. The original direction of the 

✦✦
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    scooter was due east; after rounding the curve the 

scooter is heading 36 °  north of east. The radius of cur-

vature of the road at the location of the curve is 150 m. 

What is the average acceleration of the scooter as it 

rounds the curve?  

     99.  You want to make a plot of the trajectory of a projectile. 

That is, you want to make a plot of the height  y  of the 

projectile as a function of horizontal distance  x.  The pro-

jectile is launched from the origin with an initial speed 

 v  i  at an angle  q   above the horizontal. Show that the 

equation of the trajectory followed by the projectile is

y =  (    v  iy 
 ___  v  

ix
    )  x +  (   

−g
 ____ 

2 v  ix  
2
  
   )   x 2 

          100. A person climbs from a Paris metro station to the street 

level by walking up a stalled escalator in 94 s. It takes 

66 s to ride the same distance when standing on the 

escalator when it is operating normally. How long 

would it take for him to climb from the station to the 

street by walking up the moving escalator?    

  Answers to Practice Problems 

    3.1  No; the checkbook balance may increase or decrease, 

but there is no spatial direction associated with it. When we 

say it “goes down,” we do not mean that it moves in a direc-

tion toward the center of Earth! Rather, we really mean that 

it decreases. The balance is a scalar.  

   3.2  240 mi 20 °  W of S  

   3.3   A   x    =   + 16 km;  A   y    =   − 8.2 km;  B   x    =   + 17 km;  B   y    =  0 km; 

 C   x    =   − 11 km;  C   y    =   + 47 km  

   3.4        v ⃗av    can never be greater than the average speed 

because the magnitude of the displacement cannot be greater 

✦✦

✦✦

than the distance traveled.      v ⃗av    can be equal to the average 

speed if the magnitude of the displacement is equal to the 

distance traveled, which is true when the motion is along a 

straight line with no change in direction.  

   3.5  (a) 1.64 m/s directed 33 °  east of north; (b) 0.82 m/s 2  

directed 33 °  east of north  

   3.6  2  

   3.7       v  i  
2
 /(4g)    

   3.8  Ignoring air resistance, the two arrows have the same 

constant horizontal velocity component:  v  2 x   −  v  1 x    =  0 (choos-

ing the  x -axis horizontal and the  y -axis up). Their vertical 

velocity components are different, but they  change at the 

same rate,  so  v  2 y   −  v  1 y   stays constant. The difference in their 

velocities     (v ⃗2 − v ⃗1)   stays constant. This constant difference 

in their velocities makes the difference in their positions 

    (r ⃗2 − r ⃗1)   change with time  

   3.9   v  f x    =  500.0 m/s;  v  f y    =   − 19.8 m/s; bullet enters the water 

at an angle of 2.27 °  below the horizontal  

   3.10  (a) 1.0 m/s; (b) 15 min  

   3.11  28 °  south of west; 3.6 min; 130 m    

  Answers to Checkpoints 

    3.2   C   x    =   − 5.5 km and  C   y    =   − 7.2 km  

   3.4  Velocity is a vector quantity. The plane’s speed does not 

change, but its velocity does. Therefore,     Δv ⃗ ≠ 0   and     a ⃗av = 

Δv ⃗/Δt ≠ 0.    

   3.5  The horizontal velocity component does not change. 

The vertical component is zero at the highest point, so the 

velocity vector is directed horizontally. The acceleration is 

constant and directed vertically downward throughout the 

flight, including at the highest point.  

   3.6  (a) 19.5 m/s (b) 1.5 m/s    



 Force and Newton’s 
Laws of Motion 

 A sailplane (or “glider”) is a small, unpowered, high-performance 

aircraft. A sailplane must be initially towed a few thousand feet into 

the air by a small airplane, after which it relies on regions of upward-

moving air such as thermals and ridge currents to ascend further. 

Suppose a small plane requires about 120 m of runway to take off 

by itself. When it is towing a sailplane, how much runway does it 

need? (See p. 120 for the answer.) 

 C H A P T E R 
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  • addition of vectors (Sections 3.1 and 3.2) 

 • vector components (Section 3.2) 

 • acceleration (Sections 2.3 and 3.4) 

 • motion with constant acceleration (Sections 2.4 and 3.5) 

 • motion diagrams (Section 2.5)  

    4.1  FORCE 

  Just as human life would be dull without social interactions, the physical universe would 

be dull without physical interactions. Social interactions with friends and family change 

our behavior; physical interactions change the “behavior” (motion, temperature, etc.) of 

matter. 

 An interaction between two objects can be described and measured in terms of two 

forces,  one exerted on each of the two interacting objects. A    force    is a push or a pull. 

When you play soccer, your foot exerts a force on the ball while the two are in contact, 

thereby changing the speed and direction of the ball’s motion. At the same time, the ball 

exerts a force on your foot, the effect of which you can feel. To understand the motion 

of an object, whether it be a soccer ball or the International Space Station, we need to 

analyze the forces acting on the object.

       Long-Range Forces    Forces exerted on macroscopic objects—objects that are large 

enough for us to observe without instrumentation—can be either long-range forces or 

contact forces.    Long-range forces    do not require the two objects to be touching. These 

forces can exist even if the two objects are far apart and even if there are other objects 

between the two. For example, gravity is a long-range force. The gravitational force 

exerted on the Earth by the Sun keeps the Earth in orbit around the Sun, despite the 

great distance between them and despite other planets that occasionally come between 

them. The Earth also exerts a long-range gravitational force on objects on or near its 

surface. We call the magnitude of the gravitational force that a planet or moon exerts on 

a nearby object the object’s    weight    .  

PHYSICS AT HOME

Besides gravity, other long-range forces are electric or magnetic in nature. On a 

dry day, run a comb vigorously through your hair until you hear some crackling. 

Now hold the comb a few centimeters from small pieces of a torn paper napkin. 

Observe the long-range electrical interaction between the paper and the comb.

Now take a refrigerator magnet. Hold it near but not touching the refriger-

ator door. You can feel the effect of a long-range magnetic interaction.

Part 3 of this book treats electromagnetic forces in detail. Until then, you 

can safely assume that gravity is the only significant long-range interaction 

unless the statement of a problem indicates otherwise.

Contact Forces    All forces exerted on macroscopic objects, other than long-range 

gravitational and electromagnetic forces, involve contact.    Contact forces    exist only as 

long as the objects are touching one another. Your foot has no noticeable effect on a soc-

cer ball’s motion until the two come into contact, and the force lasts only as long as they 

are in contact. Once the ball moves away from your foot, your foot has no further influ-

ence over the ball’s motion. 

 The idea of contact is a useful simplification for macroscopic objects. What we call 

a single contact force is really the net effect of enormous numbers of electromagnetic 

Force:    a push or pull that one object 

exerts on another      

Force:    a push or pull that one object 

exerts on another      

  The  weight  of an object near a 

planet or moon is the magnitude of 

the gravitational force exerted on it 

by that planet or moon.  

  The  weight  of an object near a 

planet or moon is the magnitude of 

the gravitational force exerted on it 

by that planet or moon.  

  Contact forces exist only as long as 

the objects are touching one another.  

  Contact forces exist only as long as 

the objects are touching one another.  

Concepts & Skills to Review
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Hand pulls down
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Figure 4.1 As the bottom of a 

spring scale is pulled downward, 

the spring stretches. We can 

measure the force by measuring 

the extension of the spring. For 

many springs, the extension is 

approximately proportional to 

the force, which makes calibra-

tion easy. Note that there is a pull 

on both ends of the scale. The 

ceiling pulls up on the scale and 

supports the scale from above.

forces between atoms on the surfaces of the two objects. On an atomic scale, the idea of 

“contact” breaks down. There is no way to define “contact” between two atoms—in 

other words, there is no unique distance between the atoms at which the forces they 

exert on one another suddenly become zero.   

  Measuring Forces 

 If the concept of force is to be useful in physics, there must be a way to measure forces. 

Consider a simple spring scale ( Fig. 4.1 ). As the scale’s pan is pulled down, a spring is 

stretched. The harder you pull, the more the spring stretches. As the spring stretches, an 

attached pointer moves. Then all we have to do to measure the applied force is to cali-

brate the scale so the amount of stretch measures the magnitude of the force. For many 

springs, the extension is approximately proportional to the force, which makes calibra-

tion easy. 

 In the United States, supermarket scales are generally calibrated to measure forces 

in pounds (lb). In the SI system, the unit of force is the    newton    (N). To convert pounds 

to newtons, use the approximate conversion factors

     1 lb = 4.448 N  or  1 N = 0.2248 lb    (4-1)    

 There are more sophisticated means for measuring forces than a supermarket scale. 

Even so, many operate on the same principle as the supermarket scale: a force is mea-

sured by the deformation—change of size or shape—it produces in some object.  

  Force Is a Vector Quantity 

    The magnitude of a force is   not   a complete description of the force. The   direction   of 

the force is equally important.  The direction of the brief contact force exerted by a 

soccer player’s foot on the ball can make the difference between scoring a goal or 

not ( Fig. 4.2 ). Force is a vector quantity that must be added (or subtracted) using the 

same methods used for other vector quantities such as position, velocity, and 

acceleration. 

Figure 4.2 A soccer player’s 

foot exerts a force on the ball 

only when they are touching.
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F1

F1x
= F1 cos 45.0°

F1y = F1 sin 45.0°

45.0°

30.0°

(a)

y

x
F3

F3y = –F3 sin 30.0°

(b)

x

F3x = F3 cos 30.0°
y

Figure 4.5

Finding the components of (a)  F⃗1 and (b)  F⃗3. For clarity, the vector 

arrows are drawn twice as long as they were in Fig. 4.4.

The y-components of the forces are

F1y = F2y = (22.0 N) sin 45.0°

F3y = (−22.0 N) sin 30.0°

The sum of the x-components is

Fx = F1x + F2x + F3x

    = 2 × (22.0 N) cos 45.0° + (22.0 N) cos 30.0°

    = 31.11 N + 19.05 N = 50.16 N

We keep an extra decimal place for now to minimize round-

off error. The sum of the y-components is

Fy =  F  1y  +  F  2y  +  F  3y 

= 2 × (22.0 N) sin 45.0° + (−22.0 N) sin 30.0°

    = 31.11 N − 11.00 N = 20.11 N

The magnitude of the sum is (Fig. 4.6):

F =  √
_______

  F  x  
2
  +  F  y  

2
    =  √

____________________

  (50.16 N ) 2  + (20.11 N ) 2    = 54.0 N

and the direction of the sum is

q  =  tan −1    
opposite

 _______ 
adjacent

   =  tan −1    20.11 N _______ 
50.16 N

   = 21.8°

The sum of the forces exerted on the pulley by the three 

cords is 54.0 N at an angle 21.8° above the +x-axis.

Discussion To check the answer, look back at the graphi-

cal estimate. The magnitude of the sum (54 N) is somewhat 

larger than 44 N and the direction is at an angle very nearly 

half of 45° above the horizontal.

Practice Problem 4.1 Changing the Pulley Angles

The pulleys are moved, after which  F⃗1 and  F⃗2 are at an angle 

of 30.0° above the x-axis and  F⃗3 is 60.0° below the x-axis. 

(a) What is the sum of these three forces in component form? 

(b) What is the magnitude of the sum? (c) At what angle 

with the horizontal is the sum?

Example 4.1

Traction on a Foot

In a traction apparatus, three cords pull on the central pul-

ley, each with magnitude 22.0 N, in the directions shown in 

Fig. 4.3. What is the sum of the forces exerted on the cen-

tral pulley by the three cords? Give the magnitude and 

direction of the sum.

Strategy First, we sketch the graphical addition of the three 

forces to get an estimate of the magnitude and direction of the 

sum. Then, to get an accurate answer, we resolve the three 

forces into their x- and y-components, sum the components, 

and then calculate the magnitude and direction of the sum.

Solution Figure 4.4 shows the graphical addition of the 

three forces exerted on the central pulley by the cords. From 

this sketch, we can tell that the sum of the three forces is at 

a relatively small angle above the horizontal (roughly half 

of 45°) and has a magnitude a bit larger than 44 N.

To find an algebraic solution, we find the components 

along the x- and y-axes and add them (Fig. 4.5). The 

x-components of the forces are

F1x = F2x = (22.0 N) cos 45.0°

F3x = (22.0 N) cos 30.0°

x

y

F3
F2

F1

q

Figure 4.4

Graphical sum of the forces 

on the pulley due to the cords.

20.11 N

50.16 N

q

Figure 4.6

Finding the sum from its 

components.

22.0 N

45.0°

30.0°

45.0°

30.0°

(a) (b)

F3

F2

F1

Figure 4.3

(a) A foot in traction; (b) the three forces exerted on the central 

pulley by the cords.



   Net Force 

 When more than one force acts on an object, the subsequent motion of the object is 

determined by the  net force  acting on the object. The    net force    is the vector sum of all 

the forces acting on an object.

Definition of net force:

If  F⃗1,  F⃗2, . . . ,  F⃗n are all the forces acting on an object, then the net force  F⃗net act-

ing on that object is the vector sum of those forces:

 F⃗net = ∑ F⃗ =  F⃗1 +  F⃗2 + ⋅ ⋅ ⋅ +  F⃗n  (4-2)

  The symbol ∑ is a capital Greek letter sigma that stands for “sum.”  

  Free-Body Diagrams 

 An essential tool used to find the net force acting on an object is a    free-body diagram    

(FBD): a simplified sketch of a single object with force vectors drawn to represent 

every  force  acting on that object.  (For example, the sum of three forces calculated in 

Example 4.1 is  not  the net force on the central pulley because the forces on the pulley 

due to the patient’s leg and due to gravity are not included.)  The net force must   not

 include any forces that act on other objects.  To draw an FBD:   

   • Draw the object in a simplified way—you don’t have to be Michelangelo to solve 

physics problems! Almost any object can be represented as a box or a circle, or 

even a dot.    

• Identify all the forces that are exerted on the object.  Take care not to omit any 

forces that are exerted on the object. Consider that everything touching the object 

may exert one or more contact forces. Then identify long-range forces (for now, 

just gravity unless electric or magnetic forces are specified in the problem).     

  •  Check your list of forces to make sure that each force is exerted   on   the object of 

interest   by   some other object. Make sure you have not included any forces that are 

exerted   on   other objects.     

  • Draw vector arrows representing all the forces acting on the object. We usually 

draw the vectors as arrows that start on the object and point away from it. Draw the 

arrows so they correctly illustrate the directions of the forces. If you have enough 

information to do so, draw the lengths of the arrows so they are proportional to the 

magnitudes of the forces.       

the FBD for the plane, we add the forces to find the net 

force. To resolve the force vectors into components, we 

choose x- and y-axes pointing east and north, respectively. 

All four forces are then lined up with the axes, so each will 

have only one nonzero component, with a sign that indi-

cates the direction along that axis. For example, the drag 

force points in the −x-direction, so its x-component is nega-

tive and its y-component is zero.

Example 4.2

Net Force on an Airplane

The forces on an airplane in flight heading eastward are as 

follows: gravity = 16.0 kN (kilonewtons), downward; lift = 

16.0 kN, upward; thrust = 1.8 kN, east; and drag = 0.8 kN, 

west. (Lift, thrust, and drag are three forces that the air exerts 

on the plane.) What is the net force on the plane?

Strategy All the forces acting on the plane are given in 

the statement of the problem. After drawing these forces in 

continued on next page
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92  CHAPTER 4  Force and Newton’s Laws of Motion

   4.2  INERTIA AND EQUILIBRIUM: NEWTON’S FIRST LAW 
OF MOTION 

  In 1687, Isaac Newton (1643–1727) published one of the greatest scientific works of 

all time, his  Philosophiae Naturalis Principia Mathematica  (or  Principia  for short). 

The Latin title translates as  The Mathematical Principles of Natural Philosophy.  In the 

 Principia,  Newton stated three laws of motion that form the basis of classical physics. 

 To pre-Newtonian thinkers, it seemed that there must be two different sets of physi-

cal laws: one set to describe the motion of the heavenly bodies, thought to be perfect and 

enduring, and another to describe the motion of earthly bodies that always come to rest. 

Together with his law of universal gravitation, Newton’s laws of motion showed for the 

first time that the motion of the heavenly bodies (the Sun, the planets, and their satellites) 

and the motion of earthly bodies can be understood using the same physical principles.  

   Newton’s First Law of Motion 

 Newton’s first law says that an object acted on by zero net force moves in a straight line 

with constant speed, or, if it is at rest, remains at rest. Using the concept of the velocity 

vector, which is a measure of both the speed  and the direction of motion  of an object, we 

can state the first law: 

Newton’s First Law of Motion

An object’s velocity vector v ⃗ remains constant if and only if the net force acting 

on the object is zero.

 This concise statement of Newton’s first law includes both the case of an object at rest 

(zero velocity) and a moving object (nonzero velocity). Certainly it makes sense that an 

object at rest remains at rest unless some force acts on it to make it start to move. On the 

Solution Figure 4.7a is the FBD for the plane, using  L⃗,  T⃗, 

and   D⃗ for the lift, thrust, and drag, respectively. W ⃗ stands for 

the gravitational force on the plane; its magnitude is the plane’s 

weight W. The sum of the x-components of the forces is

∑Fx = Lx + Tx + Wx + Dx

 = 0 + (1.8 kN) + 0 + (− 0.8 kN) = 1.0 kN

The sum of the y-components of the forces is

∑Fy = Ly + Ty + Wy + Dy

= (16 kN) + 0 + (−16 kN) + 0 = 0

The net force is 1.0 kN east.

Discussion A graphical check of the vector addition is a 

good idea. Figure 4.7b shows that the sum of the four forces 

is indeed in the +x-direction (east).

Practice Problem 4.2 New Forces on the Airplane

Find the net force on the airplane if the forces are gravity =

16.0 kN, downward; lift = 15.5 kN, upward; thrust = 1.2 kN, 

north; drag = 1.2 kN, south.

Example 4.2 continued

Figure 4.7

(a) FBD for the airplane. (b) Graphical addition of the four 

force vectors.
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other hand, it may not be obvious that an object can continue to move with constant 

speed in a straight line without forces acting to keep it moving. In our experience, most 

moving objects come to rest because of forces that oppose motion, like friction and air 

resistance. A hockey puck can slide the entire length of a rink with very little change in 

speed or direction because the ice is slippery (frictional forces are small). If we could 

remove  all  the resistive forces, including friction and air resistance, the puck would 

slide without changing its speed or direction at all. 

    No force is required to keep an object in motion if there are no forces opposing 

its motion.  When a hockey player strikes the puck with his stick, the brief contact force 

exerted on the puck by the stick changes the puck’s velocity, but once the puck loses contact 

with the stick, it slides along the ice even though the stick no longer exerts a force on it. 

     Inertia    Newton’s first law is also called the    law of inertia    .   In physics,     inertia     means 

resistance to   changes   in velocity. It does   not   mean resistance to the continuation of 

motion (or the tendency to come to rest).  Newton based the law of inertia on the ideas of 

some of his predecessors, including Galileo Galilei (1564–1642) and René Descartes 

(1596–1650). In a series of clever experiments in which he rolled a ball up inclines of 

different angles, Galileo postulated that, if he could eliminate all resistive forces, a ball 

rolling on a horizontal surface would never stop ( Fig. 4.8 ). Galileo made a brilliant concep-

tual leap from the real world with friction to an imagined, ideal world, free of friction. The 

law of inertia contradicted the view of the Greek philosopher Aristotle (384–322  b.c.e. ). 

Almost 2000 years before Galileo, Aristotle had formulated his view that the natural state 

of an object is to be at rest; and, for an object to remain in motion, a force would have to 

act on it continuously. Galileo conjectured that, in the absence of friction and other resis-

tive forces, no continued force is needed to keep an object moving. 

 However, Galileo thought that the sustained motion of an object would be in a 

great circle around the Earth. Shortly after Galileo’s death, Descartes argued that the 

motion of an object free of any forces should be along a straight line rather than a cir-

cle. Newton acknowledged his debt to Galileo, Descartes, and others when he wrote: 

“If I have seen farther, it is because I was standing on the shoulders of giants.” 

Start Stop

(a)
h1 h2

Start Stop

(b)
h1 h2

Start

Rolls on and on

(c)
h1

Figure 4.8 (a) Galileo found 

that a ball rolled down an incline 

stops when it reaches almost the 

same height on the second 

incline. He decided that it would 

reach the same height if resistive 

forces could be eliminated. 

(b) As the second incline is 

made less and less steep, the ball 

rolls farther and farther before 

stopping. (c) If the second 

incline is horizontal, and there 

are no resistive forces, the ball 

would never stop.

remains at rest on the ground. However, there is an impor-

tant way that the inertia of the snow makes it easier to 

shovel. Explain.

Conceptual Example 4.3

Snow Shoveling

The task of shoveling newly fallen snow from the driveway 

can be thought of as a struggle against the inertia of the 

snow. Without the application of a net force, the snow 

continued on next page
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PHYSICS AT HOME

For an easy demonstration of inertia, place a quarter on top of an index card, 

or a credit card, balanced on top of a drinking glass (Fig. 4.9a). With your 

thumb and forefinger, flick the card so it flies out horizontally from under the 

quarter. What happens to the quarter? The horizontal force on the coin due to 

friction is small. With a negligibly small horizontal force, the coin tends to 

remain motionless while the card slides out from under it (Fig. 4.9b). Once the 

card is gone, gravity pulls the coin down into the glass (Fig. 4.9c).

(a) (c)(b)

Figure 4.9 A demonstration 

of inertia.

Strategy Think about the physical motions used when 

shoveling snow. (If you live where there is no snow, think 

about shoveling gravel from a wheelbarrow to line a garden 

path.) In order for the shoveling to be facilitated by the 

snow’s inertia, there must be a time when the snow is mov-

ing on its own, without the shovel pushing it.

Solution and Discussion Imagine scooping up a shovel-

ful of snow and swinging the shovel forward toward the side 

of the driveway. The snow and the shovel are both in motion. 

Then suddenly the forward motion of the shovel stops, but 

the snow continues to move forward because of its inertia; it 

slides forward off the shovel, to be pulled down to the ground 

by gravity. The snow does not stop moving forward when 

the forward force due to the shovel is removed.

This procedure works best with fairly dry snow. Wet 

sticky snow tends to cling to the shovel. The frictional 

force on the snow due to the shovel keeps it from moving 

forward and makes the job far more difficult. In this case, it 

might help to give the shovel a thin coating of cooking oil 

to reduce the frictional force the shovel exerts on the 

snow.

Conceptual Practice Problem 4.3 Inertia on the 
Subway

Negar, a college student, stands on a subway car, holding on 

to an overhead strap. As the train starts to pull out of the sta-

tion, she feels thrust toward the rear of the car; as the train 

comes to a stop at the next station, she feels thrust forward. 

Explain the role played by inertia in this situation.

    Equilibrium 

 When the net force acting on an object is zero, the object is said to be in    translational 

equilibrium    .   Equilibrium  conveys the idea that the forces are in balance; there is as 

much force upward as there is downward, as much to the right as to the left, and so 

forth.  Any object moving with a constant velocity, whether at rest or moving in a 

  An object in translational equili-

brium has a net force of zero acting 

on it.  

  An object in translational equili-

brium has a net force of zero acting 

on it.  



straight line at constant speed, is in translational equilibrium. A vector can only have 

zero magnitude if all of its components are zero, so 

For an object in equilibrium,

∑Fx = 0 and ∑Fy = 0 (and ∑Fz = 0) (4-3)

    In an equilibrium problem, choose   x  - and   y  -axes so the fewest number of force vectors 

have both   x  - and   y  -components. It is always good practice to make a conscious   choice

 of axes and then to draw them in the FBDs and any other sketches that you make in 

solving the problem.  

Choosing the x-axis to the right and 

the y-axis up means that two of the 

three force vectors, W ⃗ and  F⃗, have one 

component that is zero:

Wx = 0 and  W  y  = −750 N

Fx = 450 N and Fy = 0

Now we set the x- and y-components of 

the net force each equal to zero because 

the chest is in equilibrium.

∑Fx = Wx + Fx + Cx = 0 + 450 N + Cx = 0

∑Fy = Wy + Fy + Cy = −750 N + 0 + Cy = 0

These equations tell us the components of   C⃗: Cx = − 450 N 

and Cy = +750 N. Then the magnitude of the contact force is 

(Fig. 4.12)

C =  √
_______

  C  x  
2
  +  C  y  

2
    =  √

__________________

  (−450 N ) 2  + (750 N ) 2    = 870 N

q  =  tan −1    
opposite

 _______ 
adjacent

   =  tan −1    750 N ______ 
450 N

   = 59°

The contact force due to the floor is 870 N, directed 59° 

above the leftward horizontal (−x-axis).

Discussion The x- and y-components of the contact force 

and its magnitude and direction are all reasonable based on 

the graphical addition, so we can be confident that we did 

not make an error such as a sign error with one of the 

components.

Practice Problem 4.4 The Chest at Rest

Suppose the same chest is at rest. You push it horizontally 

with a force of 110 N but it does not budge. What is the con-

tact force on the chest due to the floor during the time you 

are pushing?

Example 4.4

Sliding a Chest

In order to slide a chest that weighs 750 N across the floor at 

constant velocity, you must push it horizontally with a force 

of 450 N (Fig. 4.10). Find the contact force that the floor 

exerts on the chest.

Strategy The chest moves with constant velocity, so it is 

in equilibrium. The net force acting on it is zero. We will 

identify all the forces acting on the chest, draw an FBD, do a 

graphical addition of the forces, choose x- and y-axes, 

resolve the forces into their x- and y-components, and then 

set ΣFx = 0 and ΣFy = 0.

Solution There are three forces acting on the chest. The 

gravitational force W ⃗ has magnitude 750 N and is directed 

downward. Your push   F⃗ has magnitude 450 N and its direc-

tion is horizontal. The contact force due to the floor  C⃗ has 

unknown magnitude and direction. However, remembering 

that the chest is in equilibrium, upward and downward force 

components must balance, as must the horizontal force com-

ponents. Therefore,   C⃗ must be roughly in the direction shown 

in the FBD (Fig. 4.11a), as is confirmed by adding the three 

forces graphically (Fig. 4.11b). The sum is zero because the 

tip of the last vector 

ends up at the tail of 

the first one.

Figure 4.10

Sliding a chest across 

the floor.

(a) (b)

W

W
F

F

C

C
Figure 4.11

(a) An FBD for the chest; 

(b) graphical addition of the 

three forces showing that the 

sum is zero.

y

Cx

CyC

x

q

q

Figure 4.12

Finding the magni-

tude and direction 

of the contact force.
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 Using Newton’s first law, we can understand how a spring scale can be used to 

measure weight (the magnitude of the gravitational force exerted on an object). If a 

melon remains at rest in the pan of the scale, the net force on the melon must be zero. 

There are only two forces acting on the melon: gravity pulls down and the scale pulls 

up. Then these two forces must be equal in magnitude and opposite in direction. The 

scale measures the magnitude of the force it exerts on the melon, which is equal to the 

weight of the melon.    

   4.3  NET FORCE, MASS, AND ACCELERATION: NEWTON’S 
SECOND LAW OF MOTION 

  When a  nonzero  net force acts on an object, the object’s velocity changes. Newton’s 

second law says that the  rate of change of the object’s velocity —that is, the object’s 

acceleration—is proportional to the net force acting on it and inversely proportional to 

its mass: 

Newton’s Second Law

 a ⃗ =   1 __ m   ∑ F⃗ or ∑ F⃗ = ma ⃗ (4-4)

 If the net force is zero, then the acceleration is zero, in accordance with Newton’s first 

law. If the net force is not zero, then the acceleration has the same direction as the net 

force. When the net force is constant, the acceleration is also constant. In component 

form, Newton’s second law is

     ∑Fx = max and ∑Fy = may    (4-5)   

  If all the forces acting on an object are known, then Eq. (4-4) can be used to calculate its 

acceleration. Alternatively, sometimes we know the object’s acceleration but we have 

incomplete information about the forces acting on it; then Eq. (4-4) provides informa-

tion about the unknown forces.  

   SI Unit of Force 

 The SI unit of force, the newton, is  defined  so that a net force of 1 N gives a 1-kg mass 

an acceleration of 1 m/s 2 :

     1 N = 1 kg⋅m/ s 2     (4-6)    

 Defining the unit of force in this way makes it possible to write Eqs. (4-4) and (4-5) with-

out needing a constant of proportionality to convert between the force unit and kg·m/s 2 .  

  What Is Mass? 

 The acceleration of an object is proportional to the net force on it and is in the same 

direction ( Fig. 4.13 ). A larger net force causes a more rapid change in the velocity vec-

tor. Newton’s second law also says that the acceleration is inversely proportional to the 

object’s mass. The same net force acting on two different objects causes a smaller accel-

eration on the object with greater mass ( Fig. 4.14 ). Mass is a measure of an object’s 

inertia—the amount of resistance to  changes in velocity.  Newton’s second law serves as 

our  definition  of mass. 

    In everyday language mass and weight are sometimes used as synonyms, but in 

physics, mass and weight are different physical properties.  The mass of an object is a 

measure of its inertia, while weight is the magnitude of the gravitational force acting on 

it. Imagine taking a shuffleboard puck to the Moon. Since the Moon’s surface gravity is 

a

ΣF

a

ΣF

Figure 4.13 The acceleration 

of a baseball is proportional to 

the net force acting on it.



weaker than the Earth’s, the puck’s weight would be smaller on the Moon, but the puck’s 

 mass  would be the same as on Earth. Ignoring the effects of friction, an astronaut play-

ing shuffleboard on the Moon would have to exert the same horizontal force on the puck 

as on Earth to give it the same acceleration ( Fig. 4.15 ). 

      4.4  INTERACTION PAIRS: NEWTON’S THIRD LAW 
OF MOTION   

  Forces always exist in pairs. Every force is part of an interaction between two objects and 

each of the interacting objects exerts a force on the other. We call the two forces an    inter-

action pair    ;  each force is the    interaction partner    of the other. When you push open a 

door, the door pushes you. When two cars collide, each exerts a force on the other.  Note 

that interaction partners   act on different objects  —the two objects that are interacting.  

Figure 4.14 The same net 

force acting on two different 

objects produces accelerations in 

inverse proportion to the masses.

a

ΣF

a

ΣF

W

(b)

FΣ

W

(d)

Earth Moon

(a) (c)

FΣ

a a

Fcourt

Fstick

Fcourt
Fstick

Figure 4.15 An astronaut playing shuffleboard (a) on Earth and (c) on the Moon. FBDs for a puck of mass m being given 

the same acceleration a ⃗ on a frictionless court on (b) Earth and (d) on the Moon. The contact force on the puck due to the 

pushing stick ( F⃗stick) must be the same since the mass of the puck is the same: ∑ F⃗ =  F⃗stick = ma ⃗.
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  Newton’s third law of motion    says that interaction partners always have the  same 

magnitude  and are in  opposite directions.  

Newton’s Third Law of Motion

In an interaction between two objects, each object exerts a force on the other. 

These two forces are equal in magnitude and opposite in direction.

The forces exerted by these two 

children on a toy cannot be 

interaction partners because they 

act on the same object (the toy). 

The interaction of the force 

exerted by a child on the toy is 

the force that the toy exerts on 

that child.

vastly different effects due to the great discrepancy between 

the masses of the Earth and the satellite.

On the other hand, if a massive planet orbits a star in a 

relatively small orbit, the gravitational force that the planet 

exerts on the star can make the star wobble enough to be 

observed. The wobble enables astronomers to discover plan-

ets orbiting stars other than the Sun. The planets do not 

reflect enough light toward Earth to be seen, but their pres-

ence can be inferred from the effect they have on the star’s 

motion.

Conceptual Practice Problem 4.5 Interaction 
Partner of a Surface Contact Force

In Example 4.4, the contact force exerted on the chest by the 

floor was 870 N, directed 59° above the leftward horizontal 

(−x-axis). Describe the interaction partner of this force—in 

other words, what object exerts it on what other object? What 

are the magnitude and direction of the interaction partner?

Conceptual Example 4.5

An Orbiting Satellite

Earth exerts a gravitational force on an orbiting communica-

tions satellite. What is the interaction partner of this force?

Strategy The question concerns a gravitational interac-

tion between two objects: Earth and the satellite. In this 

interaction, each object exerts a gravitational force on the 

other.

Solution The interaction partner is the gravitational force 

exerted on the Earth by the satellite.

Discussion Does the satellite really exert a force on the 

Earth with the same magnitude as the force Earth exerts 

on the satellite? If so, why does the satellite orbit Earth 

rather than Earth orbiting the satellite? Newton’s third law 

says that the interaction partners are equal in magnitude, but 

does not say that these two forces have equal effects. The 

effect of a net force on an object’s motion depends on the 

object’s mass. These two forces of equal magnitude have 

    Do not assume that Newton’s third law is involved   every   time two forces   happen   to 

be equal and opposite—  it ain’t necessarily so!   You will encounter many situations in 

which two equal and opposite forces act   on a single object.   These forces cannot be  

 interaction partners   because they act on the same object. Interaction partners act on   dif-

ferent objects,   one on each of the two objects that are interacting.  

CHECKPOINT 4.4

In the photo, two children are pulling on a toy. If they are exerting equal and 

opposite forces on the toy, are these two forces interaction partners?

PHYSICS AT HOME

The next time you go swimming, notice that you use Newton’s third law to get 

the water to push you forward. When you push down and backward on the water 

with your arms and legs, the water pushes up and forward on you. The various 

swimming strokes are devised so that you exert as large a force as possible 

backward on the water during the power part of the stroke, and then as small a 

force as possible forward on the water during the return part of the stroke.



      Internal and External Forces 

 When we say that a baseball has interactions with the Earth (gravity), with a baseball bat, 

and with the air, we are treating the baseball as a single entity. But the ball really consists 

of an enormous number of protons, neutrons, and electrons, all interacting with each 

other. The protons and neutrons interact with each other to form atomic nuclei; the nuclei 

interact with electrons to form atoms; interactions between atoms form molecules; and 

the molecules interact to form the structure of the thing we call a baseball. It would be 

difficult to have to deal with all of these interactions to predict the motion of a baseball. 

   Defining a System      Let us call the set of particles comprising the baseball a    system    .  

Once we have defined a system, we can classify all the interactions that affect the system 

as either    internal  or  external    to the system. For an internal interaction,  both  interacting 

objects are part of the system. When we add up all the forces acting on the system to find 

the net force, every internal interaction contributes two forces—an interaction pair—that 

always add to zero. For an external interaction,  only one of the two interaction partners 

is exerted on the system.  The other partner is exerted on an object outside the system and 

does not contribute to the net force on the system.  Therefore, to find the net force on the 

system, we can ignore all the internal forces and just add the external forces. The insight 

that internal forces always add to zero is particularly powerful because the choice of 

what constitutes a system is completely arbitrary. We can choose   any   set of objects and 

define it to be a system.  In one problem, it may be convenient to think of the baseball as 

a system; in another, we may choose a system consisting of both the baseball and the bat. 

The second choice might be useful if we do not have detailed information about the 

interaction between the bat and the ball.     

   4.5  GRAVITATIONAL FORCES 

   Newton’s Law of Universal Gravitation 

 Now we turn our attention to learning about some forces in more detail, beginning with 

gravity. According to    Newton’s law of universal gravitation    ,  any two objects exert 

gravitational forces on each other that are proportional to the masses ( m  1  and  m  2 ) of the 

two objects and inversely proportional to the square of the distance ( r ) between their 

centers. Strictly speaking, the law of gravitation as presented here only applies to point 

particles and symmetrical spheres. (The  point particle  is a common model in physics 

used when the size of an object is negligibly small and the internal structure is irrele-

vant.) Nevertheless, the law of gravitation is  approximately  true for any two objects if 

the distance between their centers is large compared with their sizes. 

 In mathematical language, the magnitude of the gravitational force is written:

 F =   
G m  1  m  2  _______ 

 r  2 
   (4-7)

  where the constant of proportionality ( G   =  6.674  ×  10 −11  N·m 2 /kg 2 ) is called the 

   universal gravitational constant    .  Equation (4-7) is only part of the law of universal 

gravitation because it gives only the magnitudes of the gravitational forces that each 

object exerts on the other. The directions are equally important: each object is pulled 

toward the other’s center ( Fig. 4.16 ). In other words, gravity is an attractive force. The 

forces on the two objects are equal in magnitude and the directions are opposite, as 

they must be since they form an interaction pair. 

 Gravitational forces exerted  by  ordinary objects on each other are so small as to be 

negligible in most cases (see Practice Problem 4.6). Gravitational forces exerted by 

Earth, on the other hand, are much larger due to Earth’s large mass.  
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Solution The ratio of your weight in the airplane to your 

weight on the ground is

   
 W  2  ___ 
 W  1 

   =   

  
G   m

 ______ 
 r  2  

2
 
  

 ______ 

  
G   m

 ______ 
 r  1  

2
 
  

   =    
 r  1  

2
 
 __ 

 r  2  
2
 
   =   

  R  E  2 
 ________ 

( R  E  + h ) 2 
  

=   (   6.37  × 1 0 6  m  _______________________   
6.37  × 1 0 6  m + 6.4  × 1 0 3  m

   )  
2

  = 0.998

Since 0.998 = 1 − 0.002 and 0.002 = 0.2/100, your weight 

decreases by 0.2%.

Discussion Although 6400 m may seem like a sig-

nificant altitude to us, it’s a small fraction of the 

Earth’s radius (0.10%), so the weight change is a small per-

centage. When judging whether a quantity is small or large, 

always ask: “Small (or large) compared to what?”

Practice Problem 4.6 A Creative Defense

After an automobile collision, one driver claims that the 

gravitational force between the two cars caused the colli-

sion. Estimate the magnitude of the gravitational force 

exerted by one car on another when they are driving side-by-

side in parallel lanes and comment on the driver’s claim.

Example 4.6

Weight at High Altitude

When you are in a commercial airliner cruising at an altitude 

of 6.4 km, by what percentage has your weight (as well as 

the weight of the airplane) changed compared with your 

weight on the ground?

Strategy Your weight is the magnitude of Earth’s gravi-

tational force exerted on you. Newton’s law of universal 

gravitation gives the magnitude of the gravitational force 

at a distance r from the center of the Earth. For your 

weight on the ground W1, we can use the mean radius of 

the Earth RE as the distance between the Earth’s center and 

you: r1 = RE = 6.37 × 106 m (Fig. 4.17). At an altitude of 

h = 6.4  × 103 m above the surface, your weight is W2 

and your distance from Earth’s center is r2 = RE + h. Your 

mass m, the mass of the Earth ME (= 5.97  × 1024 kg), and 

G are the same in the two cases, so it is efficient to write a 

ratio of the weights and let those factors cancel out.

Earth

h

r

RE

Figure 4.17

The gravitational force depends 

on the distance r to the center of 

the Earth.

Earth

Moon

Gravitational force
exerted on the Earth
by the Moon

Gravitational force
exerted on the Moon
by the Earth

Figure 4.16 Gravity is always 

an attractive force. The force that 

each body exerts on the other is 

equal in magnitude, even though 

the masses may be very differ-

ent. The force exerted on the 

Moon by the Earth is of the same 

magnitude as the force exerted 

on the Earth by the Moon. The 

directions are opposite.

  Gravitational Field Strength 

 For an object near Earth’s surface, the distance between the object and the Earth’s center 

is very nearly equal to the Earth’s mean radius,  R  E   =  6.37   ×  10 6  m. The mass of the Earth 

is  M  E   =  5.97   ×  10 24  kg, so the weight of an object of mass  m  near Earth’s surface is

     W =   
G M  E m

 ______ 
 R  E  

2
  
   = m (   G M  E 

 _____ 
 R  E  

2
  
   )     (4-8)    



 Notice that for objects near Earth’s surface, the constants in the parentheses are always 

the same and the weight of the object is proportional to its mass. Rather than recalculate 

that combination of constants over and over, we call the combination the    gravitational 

field strength     g  near Earth’s surface:

     g =   
G M  E 

 _____ 
 R  E  

2
  
   =    

6.674 × 1 0 −11  N⋅ m 2 ⋅k g −2  × (5.97 × 1 0 24  kg)
    ___________________________________   

(6.37 × 1 0 6  m ) 2 
   ≈ 9.8 N/kg    (4-9)    

 The units  newtons per kilogram  reinforce the conclusion that weight is proportional to 

mass:  g  tells us how many newtons of gravitational force are exerted on an object for 

every kilogram of the object’s mass. The weight of a 1.0-kg object near Earth’s surface 

is 9.8 N (2.2 lb). Using  g,  the weight of an object of mass  m  near Earth’s surface is usu-

ally written 

Relationship between mass and weight:

 W = mg (4-10)

   Variations in Earth’s Gravitational Field    The Earth is not a perfect sphere; it is 

slightly flattened at the poles. Since the distance from the surface to the center of the 

Earth is smaller there, the field strength at sea level is greatest at the poles (9.832 N/kg) 

and smallest at the equator (9.814 N/kg). Altitude also matters; as you climb above sea 

level, your distance from Earth’s center increases and the field strength decreases. Tiny 

local variations in the field strength are also caused by geologic formations. On top of 

dense bedrock,  g  is a little greater than above less dense rock. Geologists and geophysi-

cists measure these variations to study Earth’s structure and also to locate deposits of 

various minerals, water, and oil. The device they use, a  gravimeter,  is essentially a mass 

hanging on a spring. As the gravimeter is carried from place to place, the extension of 

the spring increases where  g  is larger and decreases where  g  is smaller. The mass hang-

ing from the spring does not change, but its weight does ( W   =   mg ). 

 Furthermore, due to Earth’s rotation, the  effective  value of  g  that we measure in a 

coordinate system attached to Earth’s surface is slightly less than the true value of the 

field strength. This effect is greatest at the equator, where the effective value of  g  is 

9.784 N/kg, about 0.3% smaller than the true value of  g.  The effect gradually decreases 

with latitude to zero at the poles. We learn more about this effect in Chapter 5. 

    The most important thing to remember from this discussion is that, unlike   G,   g   is  

 not   a universal constant. The value of   g   is a function of position.  Near Earth’s surface, 

the variations are small, so we can adopt an average value  g   =  9.80 N/kg as a default.   

  Gravitational Field and Free-Fall Acceleration 

 An object in free fall is assumed to have only one force acting on it: gravity. Other 

forces, such as air resistance, must be negligibly small for this approximation to be 

valid. We can write the gravitational force on the object as W ⃗   = m  g⃗,   where the gravita-

tional field vector       g⃗   has magnitude  g  and is directed downward (in the direction of the 

gravitational force). From Newton’s second law,

     F⃗net = m  g⃗ = m a ⃗   

 Dividing by the mass yields

     a ⃗  =   g⃗    (4-11)    

 Therefore, the acceleration of an object in free fall is       ⃗g,   regardless of the object’s mass. 

Since 1 N  =  1 kg·m/s 2 , 9.80 N/kg  =  9.80 m/s 2 —the magnitude of the free-fall accelera-

tion near Earth’s surface has average value 9.80 m/s 2 . 
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 More massive objects have the same free-fall acceleration as less massive objects. 

True, a more massive object is harder to accelerate: the acceleration of an object sub-

jected to a given force is inversely proportional to its mass. However, the stronger gravi-

tational force on a more massive object compensates for its greater inertia, giving it the 

same free-fall acceleration as a less massive object.  

  Gravitational Field Strength on Other Planets 

 Equation (4-10) can be used to find the weight of an object at or above the surface of 

any  planet or moon, but the value of  g  will be different due to the different mass  M  of 

the planet or moon and the different distance  r  from the planet’s center:

     g =   GM
 ____ 

 r  2 
      (4-12) 

CHECKPOINT 4.5

If you climb Mt. McKinley, what happens to the weight of your gear? What hap-

pens to its mass?

Converting to pounds,

W = 3.43 N × 0.2248 lb/N = 0.771 lb

The figs weigh 3.4 N or 0.77 lb.

Discussion This is the weight of the figs at a location where 

g has its average value of 9.80 N/kg. The figs would weigh a 

little more in the northern city of St. Petersburg, Russia, and a 

little less in Quito, Ecuador, which is near the equator.

Practice Problem 4.7 Figs on the Moon

What would those figs weigh on the surface of the Moon, 

where g = 1.62 N/kg?

Example 4.7

“Weighing” Figs in Kilograms

In most countries other than the United States, produce is 

sold in mass units (grams or kilograms) rather than in force 

units (pounds or newtons). The scale still measures a force, 

but the scale is calibrated to show the mass of the produce 

instead of its weight. What is the weight of 350 g of fresh 

figs, in newtons and in pounds?

Strategy Weight is mass times the gravitational field 

strength. We will assume g = 9.80 N/kg. The weight in new-

tons can be converted to pounds using the conversion factor 

1 N = 0.2248 lb.

Solution The weight of the figs in newtons is

W = mg = 0.35 kg × 9.80 N/kg = 3.43 N

   4.6  CONTACT FORCES 

  We have already solved some problems involving forces exerted between two solid 

objects in contact. Now we look at contact forces in more detail.

   Normal Force 

 A contact force perpendicular to the contact surface that prevents two objects from pass-

ing through one another is called the    normal force    .  (In geometry, the word  normal  means 

perpendicular. ) Consider a book resting on a horizontal table surface. The normal force 

due to the table must have just the right magnitude to keep the book from falling through 

the table. If no other vertical forces act, the normal force on the book is equal in magni-

tude to the book’s weight because the book is in equilibrium ( Fig. 4.18a) . 

Normal force:    a contact force 

between two solid objects that is 

perpendicular to the contact surfaces. 

Each object pushes the other one away.    

Normal force:    a contact force 

between two solid objects that is 

perpendicular to the contact surfaces. 

Each object pushes the other one away.    

CONNECTION:

In Example 4.4, we resolved the 

contact force on a sliding chest 

into components perpendicular 

to and parallel to the contact 

surface. It is often convenient to 

think of these components as 

two separate but related contact 

forces: the normal force and the 

frictional force.
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Figure 4.18 (a) The normal 

force is equal in magnitude to 

the weight of the book; the two 

forces sum to zero. (b) On an 

incline, the normal force is 

smaller than the weight of the 

book and is not vertical. (c) If 

you push down on the book (  F⃗), 

the normal force on the book 

due to the table is larger than the 

book’s weight.

 According to Newton’s third law, there is also a normal force exerted on the table 

by the book; this normal force acts downward and is of equal magnitude. In  everyday  

language, we might say that the table “feels the book’s weight.” That is not an accurate 

statement in the language of physics. The table cannot “feel” the gravitational force on 

the book; the table can only feel forces exerted  on the table.  What the table does “feel” 

is the normal force—a  contact  force—exerted on the table by the book. 

   If the table’s surface is horizontal, the normal force on the book will be vertical and 

equal in magnitude to the book’s weight.  If the surface of the table is   not   horizontal, the 

normal force is not vertical and is not equal in magnitude to the weight of the book. 

Remember that the normal force is   perpendicular to the contact surface  (  Fig. 4.18b )  . 

Even on a horizontal surface, if there are other vertical forces acting on the book, then 

the normal force is   not   equal in magnitude to the book’s weight  (  Fig. 4.18c ) . Never 

 assume  anything about the magnitude of the normal force. In general, we can figure out 

what the magnitude of the normal force must be in various situations if we have enough 

information about other forces. 

   What Causes Normal Forces?    How does the table “know” how hard to push on the 

book? First imagine putting the book on a bathroom scale instead of the table. A spring 

inside the scale provides the upward force. The spring “knows” how hard to push 

because, as it is compressed, the force it exerts increases. When the book reaches equi-

librium, the spring is exerting just the right amount of force, so there is no tendency to 

compress it further. The spring is compressed until it pushes up with a force equal to the 

book’s weight. If the spring were stiffer, it would exert the same upward force but with 

less compression. 

 The forces that bind atoms together in a rigid solid, like the table, act like extremely 

stiff springs that can provide large forces with little compression—so little that it’s usu-

ally not noticed. The book makes a tiny indentation in the surface of the table ( Fig. 4.19 ); 

a heavier book would make a slightly larger indentation. If the book were to be placed on 

a soft foam surface, the indentation would be much more noticeable. 

CHECKPOINT 4.6

Your laptop is resting on the surface of your desk, which stands on four legs on 

the floor. Identify the normal forces acting on the desk and give their directions.

        Friction 

 A contact force  parallel  to the contact surface is called    friction    .  We distinguish two 

types:    static friction    and    kinetic    (or    sliding )  friction    .  When the two objects are slip-

ping or sliding across one another, as when a loose shingle slides down a roof, the fric-

tion is kinetic. When no slipping or sliding occurs, such as between the tires of a car 

parked on a hill and the road surface, the friction is called static. Static friction acts to 

prevent objects from  starting  to slide; kinetic friction acts to try to make sliding objects 

Figure 4.19 The book com-

presses the “atomic springs” in 

the table until they push up on 

the book to hold it up. The slight 

decrease in the distance between 

atoms is greatly exaggerated 

here.
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stop sliding. Note that two objects in contact with one another that move with the same 

velocity exert  static  frictional forces on one another, because there is no  relative  motion 

between the two. For example, if a conveyor belt carries an air freight package up an 

incline and the package is not sliding, the two move with the same velocity and the fric-

tion is  static. 

      Static Friction    Frictional forces are complicated on the microscopic level and are an 

active field of current research. Despite the complexities, we can make some approxi-

mate statements about the frictional forces between dry, solid surfaces. In a simplified 

model, the maximum magnitude of the force of static friction  f  s,max  that can occur in a 

particular situation is proportional to the magnitude of the normal force  N  acting 

between the two surfaces.

    fs,max ∝ N   

 If you want better traction between the tires of a rear-wheel-drive car and the road, it 

helps to put something heavy in the trunk to increase the normal force between the tires 

and the road. 

 The constant of proportionality is called the    coefficient of static friction    (symbol 

 m  s ): 

Maximum force of static friction:

 fs,max = msN (4-13)

   Since  f  s,max  and  N  are both magnitudes of forces,  m  s  is a dimensionless number. Its value 

depends on the condition and nature of the surfaces.  Equation (4-13) provides only an  

 upper limit   on the force of static friction in a particular situation. The actual force of 

friction in a given situation is not necessarily the maximum possible.  It tells us only 

that, if sliding does not occur, the magnitude of the static frictional force is less than or 

equal to this upper limit:

     fs ≤ msN    (4-14)     

   Kinetic (Sliding) Friction    For sliding or kinetic friction, the force of friction is only 

weakly dependent on the speed and is roughly proportional to the normal force. In the 

simplified model we will use, the force of kinetic friction is assumed to be proportional 

to the normal force and independent of speed: 

Force of kinetic (sliding) friction:

  f  k  = mkN (4-15)

 where  f  k  is the magnitude of the force of kinetic friction and  m  k  is called the    coefficient 

of kinetic friction    .  The coefficient of static friction is always larger than the coefficient 

of kinetic friction for an object on a given surface. On a horizontal surface, a larger 

force is required to start the object moving than is required to keep it moving at a con-

stant velocity.  

     Direction of Frictional Forces     Equations (4-13) through (4-15) relate only the   magni-

tudes   of the frictional and normal forces on an object. Remember that the frictional force 

is perpendicular to the normal force between the same two surfaces.  Friction is always 

parallel to the contact surface, but there are many directions parallel to a given contact sur-

face. Here are some rules of thumb for determining the direction of a frictional force. 

   • The static frictional force acts in whatever direction necessary to prevent the objects 

from beginning to slide or slip.  



  • Kinetic friction acts in a direction that tends to make the sliding stop. If a book 

slides to the left along a table, the table exerts a kinetic frictional force on the book 

to the right, in the direction opposite to the motion of the book.  

  • From Newton’s third law, frictional forces come in interaction pairs. If the table 

exerts a frictional force on the sliding book to the right, the book exerts a frictional 

force on the table to the  left  with the same magnitude.   

components of the contact force that are perpendicular and 

parallel to the contact surface. Since the surface is horizontal 

(in the x-direction), the x-component of the contact force is 

friction and the y-component is the normal force.

Solution The magnitude of the force due to sliding fric-

tion is fk =  Cx  = 450 N. The magnitude of the normal force 

is N =  Cy  = 750 N. Now we can calculate the coefficient of 

kinetic friction from fk = mkN:

mk =   
 f  k  __ 
N

   =   450 N ______ 
750 N

   = 0.60

Discussion If we had written fk = Cx = − 450 N, we would 

have ended up with a negative coefficient of friction. The 

coefficient of friction is a relationship between the magni-

tudes of two forces, so it cannot be negative.

Practice Problem 4.8 Chest at Rest

Suppose the same chest is at rest. You push to the right 

with a force of 110 N but the chest does not budge. What 

are the normal and frictional forces on the chest due to the 

floor while you are pushing? Explain why you do not need 

to know the coefficient of static friction to answer this 

question.

Example 4.8

Coefficient of Kinetic Friction for the Sliding 
Chest

Example 4.4 involved sliding a 750-N chest to the right at 

constant velocity by pushing it with a horizontal force of 

450 N. We found that the contact force on the chest due to 

the floor had components Cx = − 450 N and Cy = +750 N, 

where the x-axis points to the right and the y-axis points up 

(see Fig. 4.20). What is the coefficient of kinetic friction for 

the chest-floor surface?

Strategy To find the coefficient of friction, we need to 

know what the normal and frictional forces are. They are the 

(a) (b) (c)

W

F

C

fk

W

N

F

fk

y

x

N
q

q

C

Figure 4.20 (a) FBD for the chest.  C⃗ is the contact force 

due to the floor. (b) FBD in which the contact force is 

replaced by two perpendicular forces, the normal force   N⃗ 

and the kinetic frictional force   f⃗  k . (c) Resolving   C⃗ into nor-

mal and frictional components.

According to Newton’s third law, the sleigh always pulls 

back on the horse with a force of the same magnitude as 

the force with which the horse pulls the sleigh. Does this 

mean that no matter how hard it pulls, the horse can never 

make the net force on the sleigh nonzero? Explain. 

(c) Identify the interaction partner of each force acting on 

the sleigh.

Conceptual Example 4.9

Horse and Sleigh

A horse pulls a sleigh to the right at constant velocity on 

level ground. The horse exerts a horizontal force  F⃗sh on the 

sleigh. (The subscripts indicate the force on the sleigh due 

to the horse.) (a) Draw three FBDs, one for the horse, one 

for the sleigh, and one for the system horse + sleigh. 

(b) To make the sleigh increase its velocity, there must be 

a nonzero net force to the right acting on the sleigh. Sup-

pose the horse pulls harder (Fsh increases in magnitude). 

continued on next page
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Conceptual Example 4.9 continued

in magnitude and opposite in direc-

tion. From the FBDs,   f⃗  hg  = − F⃗hs 

and   f⃗  sg  = − F⃗sh. Because  F⃗hs and  F⃗sh 

are interaction partners, they are 

equal and opposite. Therefore,   f⃗  hg  

and   f⃗  sg  are equal and opposite. The 

system is in equilibrium.

(b) The FBD for the sleigh (see Fig. 

4.21) shows that if the horse pulls 

the sleigh with a force greater in 

magnitude than the force of friction 

on the sleigh (Fsh > fsg), then the net 

force on the sleigh is nonzero and to the right. From Fig. 4.22, 

we need fhg > Fhs to have a nonzero net force to the right on 

the horse. So the frictional force on the horse would have to 

increase to enable it to pull the sleigh with a greater force. 

Then in Fig. 4.23, the two frictional forces are no longer equal 

in magnitude. The forward frictional force on the horse is 

greater than the backward frictional force on the sleigh, so the 

net force on the system horse + sleigh is to the right.

FhE

Fhs

Nhg

fhg

Figure 4.22

FBD for the 

horse. FhE

Nhg

fhgfsg

FsE

Nsg
Figure 4.23

FBD for the system, 

horse and sleigh. 

The internal forces 
 F⃗sh and  F⃗hs are 

omitted—they form 

an interaction pair, 

so they add to zero.

(c)

Force Exerted on Sleigh Interaction Partner

Force on the sleigh due to the horse 
 F⃗sh

Force on the horse due to the sleigh 
 F⃗hs

Gravitational force on the sleigh due 

to Earth  F⃗sE

Gravitational force on Earth due to 

the sleigh  F⃗Es

Normal force on the sleigh due to 

the ground    N⃗  sg 

Normal force on the ground due to 

the sleigh    N⃗  gs 

Friction on the sleigh due to the 

ground   f⃗  sg 

Friction on the ground due to the 

sleigh    f⃗  gs 

Practice Problem 4.9 Passing a Truck

A car is moving north and speeding up to pass a truck on a 

level road. The combined contact force exerted on the road 

by all four tires has vertical component 11.0 kN downward 

and horizontal component 3.3 kN southward. The drag force 

exerted on the car by the air is 1.2 kN southward. (a) Draw 

the FBD for the car. (b) What is the weight of the car? 

(c) What is the net force acting on the car?

v (constant)

fsg

FsE

Nsg

Fsh

s = sleigh
g = ground
h = horse
E = Earth

Figure 4.21

FBD for the sleigh.

Strategy (a) In each FBD, we include only the external

forces acting on that system. All three systems move with 

constant velocity, so the net force on each is zero. (b) Look-

ing at the FBD for the sleigh, we can determine the condi-

tions under which the net force on the sleigh can be nonzero. 

(c) For a force exerted on the sleigh by X, its interaction 

partner must be the force exerted on X by the sleigh.

Solution and Discussion (a) If we think of the normal and 

frictional forces as separate forces, then there are four forces 

acting on the sleigh: the force exerted by the horse  F⃗sh, the 

gravitational force due to Earth  F⃗sE, the normal force on the 

sleigh due to the ground   N⃗sg, and kinetic (sliding) friction 

due to the ground   f⃗  sg . Figure 4.21 shows the FBD for the 

sleigh. The net force is zero, so its horizontal and vertical com-

ponents must each be zero:  F⃗sh+   f⃗  sg  = 0 and  N⃗sg +  F⃗sE = 0.

Similarly, four forces are acting on the horse: the force 

exerted by the sleigh  F⃗hs, the gravitational force  F⃗hE, the nor-

mal force due to the ground  N⃗hg, and friction due to the 

ground   f⃗  hg . Newton’s third law says that  F⃗hs = − F⃗sh; the sleigh 

pulls back on the horse with a force equal in magnitude to 

the forward pull of the horse on the sleigh. Therefore,  F⃗hs is 

to the left and has the same magnitude as  F⃗sh. The horse is in 

equilibrium, so  F⃗hs +   f⃗  hg  = 0 and  N⃗hg +  F⃗hE = 0. The first of 

these equations means that the frictional force has to be to 

the right. How does the horse get friction to push it forward? 

By pushing backward on the ground with its feet. We all do 

the same thing when taking a step; by pushing backward on 

the ground, we get the ground to push forward on us. This is 

static friction because the horse’s hoof is not sliding along 

the ground. If there were no friction (imagine the ground to 

be icy), the hoof might slide backward. Static friction acts to 

prevent sliding, so the frictional force on the hoof is forward. 

Figure 4.22 shows the FBD for the horse.

Of the eight forces acting either on the horse or on the 

sleigh, two are internal forces for the horse + sleigh system: 
 F⃗sh and  F⃗hs. They add to zero since they are interaction part-

ners, so we can omit them from the FBD for the system 

(Fig. 4.23). The two frictional forces on the system 

horse + sleigh are not interaction partners, but they are equal 



    Microscopic Origin of Friction    What looks like the smooth surface of a solid to 

the unaided eye is generally quite rough on a microscopic scale ( Fig. 4.24 ). Friction is 

caused by atomic or molecular bonds between the “high points” on the surfaces of the 

two objects. These bonds are formed by microscopic electromagnetic forces that hold 

the atoms or molecules together. If the two objects are pushed together harder, the 

surfaces deform a little more, enabling more “high points” to bond. That is why the 

force of kinetic friction and the maximum force of static friction are proportional to 

the normal force. A bit of lubricant drastically decreases the frictional forces, because 

the two surfaces can float past one another without many of the “high points” coming 

into contact. 

 In static friction, when these molecular bonds are stretched, they pull back harder. 

The bonds have to be broken before sliding can begin. Once sliding begins, molecular 

bonds are continually made and broken as “high points” come together in a hit-or-miss 

fashion. These bonds are generally not as strong as those formed in the absence of slid-

ing, which is why  m  s  >  m  k . 

 For dry, solid surfaces, the amount of friction depends on how smooth the sur-

faces are and how many contaminants are present on the surface. Does polishing two 

steel surfaces decrease the frictional forces when they slide across each other? Not 

necessarily. In an extreme case, if the surfaces are extremely smooth and all surface 

contaminants are removed, the steel surfaces form a “cold weld”—essentially, they 

become one piece of steel. The atoms bond as strongly with their new neighbors as 

they do with the old.   

  Equilibrium on an Inclined Plane 

 Suppose we wish to pull a large box up a  frictionless  incline to a loading dock platform. 

 Figure 4.25  shows the three forces acting on the box.      F⃗a   represents the applied force 

with which we pull. The force is parallel to the incline. If we choose the  x -   and  y -  axes to 

be horizontal and vertical, respectively, then two of the three forces have both  x -   and  y -

components. On the other hand, if we choose the  x -axis parallel to the incline and 

the  y -axis perpendicular to it, then only one of the three forces has both  x - and  y -

components (the gravitational force). 

 With axes chosen, the weight of the box is then resolved into two perpendicular 

components ( Fig. 4.26a) . To find the  x - and  y -components of the gravitational force     W ⃗,   
we must determine the angle that     W ⃗   makes with one of the axes. The right triangle of 

 Fig. 4.26b  shows that  a    +   f   =  90 ° , since the interior angles of a triangle add up to 180 ° . 

The  x - and  y -axes are perpendicular, so  a    +   b    =  90 ° . Therefore,  b    =   f . 

 The  y -component of     W ⃗   is perpendicular to the surface of the incline. From  

Fig. 4.26a , the side parallel to the  y -axis is adjacent to angle  b , so

  cos b  =   
adjacent

 __________ 
hypotenuse

   =   
 Wy 

 ____ 
 W 

       

 Since  W   y   is negative and  W   =   mg ,

    Wy = −mg cos b  = −mg cos f   

Fa

d

W

h

N

f

Figure 4.25 A box of mass m pulled up an incline.

Figure 4.24 Friction is caused 

by bonds between atoms that 

form between the “high points” 

of the two surfaces that come 

into contact.

y

x

(a)

W
Wx

Wy

(b)

Wy = –mg cos f

Wx = mg sin f
−Fa

N

+y

+x

(c)

f

a

b

a

f

Figure 4.26 (a) Resolving the 

weight into components parallel 

to and perpendicular to the 

incline. (b) A right triangle 

shows that a  + f  = 90°. (c) FBD 

for the box on the incline.
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 The  x -component of the weight tends to make the box slide down the incline (in the 

positive  x -direction). Using the same triangle,

     W  x  = +mg sin f   

 When the box is pulled with a force equal in magnitude to  W   x   up the incline (in the 

negative  x -direction), it will slide up with constant velocity. The component of the box’s 

weight perpendicular to the incline is supported by the normal force      N⃗   that pushes the 

box away from the incline.  Figure 4.26c  is an FBD in which the gravitational force is 

separated into its  x - and  y -components. 

 If the box is in equilibrium, whether at rest or moving along the incline at constant 

velocity, the force components along each axis sum to zero:

    ∑Fx = (−Fa) + mg sin f  = 0   

 and

    ∑Fy = N + (−mg cos f) = 0   

    On an incline, the normal force is   not   equal in magnitude to the weight and it does 

not point straight up.  If the applied force has magnitude  mg  sin  f  , we can pull the box 

up the incline at constant velocity. If friction acts on the box, we must pull with a force 

greater than  mg  sin  f    to slide the box up the incline at constant velocity. 

Fa

N

f

1.5 m

q = 15° W

q

Figure 4.27

Forces acting on the safe as it is moved up the incline.

(b)(a)

+x 

+y

N

Fa
–mg sin 

–mg sin 

–mg cos 

–mg cos 

–f
mg

+x 
q

q

q

q

q

q

Figure 4.28

(a) Resolving the weight into x- and y-components, and (b) an FBD 

in which the weight is replaced with its x- and y-components.

as it slides with a constant velocity. Both parts of the problem 

can be solved by drawing the FBD, choosing axes, and setting 

the x- and y-components of the net force equal to zero.

Solution First we draw a diagram to show forces acting 

(Fig. 4.27). Before resolving the forces into components, we 

must choose x- and y-axes. To use the coefficient of friction, 

we have to resolve the contact force on the safe due to the 

incline into components parallel and perpendicular to the 

incline—friction and the normal force, respectively—rather 

than into horizontal and vertical components. Therefore, we 

choose x- and y-axes parallel and perpendicular to the incline 

so friction is along the x-axis and the normal force is along 

the y-axis.

The gravitational force W ⃗ can be resolved into its com-

ponents: Wx = −mg sin q  and Wy = −mg cos q  (Fig. 4.28a). 

Example 4.10

Pushing a Safe up an Incline

A new safe is being delivered to the Corner Book Store. It is 

to be placed in the wall at a height of 1.5 m above the floor. 

The delivery people have a portable ramp, which they plan 

to use to help them push the safe up and into position. The 

mass of the safe is 510 kg, the coefficient of static friction 

along the incline is ms = 0.42, and the coefficient of kinetic 

friction along the incline is mk = 0.33. The ramp forms an 

angle q   = 15° above the horizontal. (a) How hard do the 

movers have to push to start the safe moving up the incline? 

Assume that they push in a direction parallel to the incline. 

(b) To slide the safe up at a constant speed, with what mag-

nitude force must the movers push?

Strategy (a) When the safe starts to move, its velocity is 

changing, so the safe is not in equilibrium. Nevertheless, to 

find the minimum applied force to start the safe moving, we 

can find the maximum applied force for which the safe remains 

at rest—an equilibrium situation. (b) The safe is in equilibrium 

continued on next page



Now we draw the FBD with W ⃗ replaced by its components 

(Fig. 4.28b).

(a) Suppose that the safe is initially at rest. As the movers 

start to push, Fa gets larger and the force of static friction 

gets larger to “try” to keep the safe from sliding. Eventually, 

at some value of Fa, static friction reaches its maximum pos-

sible value msN. If the movers continue to push harder, 

increasing Fa further, the force of static friction cannot 

increase past its maximum value msN, so the safe starts to 

slide. The direction of the frictional force is along the incline 

and downward since friction is “trying” to keep the safe 

from sliding up the incline.

The normal force is not equal in magnitude to the weight 

of the safe. To find the normal force, sum the y-components 

of the forces:

∑Fy = N + (−mg cos q ) = 0

Then N = mg cos q . The normal force is less than the weight 

since cos q   < 1.

When the movers push with the largest force for which 

the safe does not slide,

∑Fx = Fax + fx + Wx = 0

The applied force is in the +x-direction, so Fax = +Fa. 

The frictional force has its maximum magnitude and is 

in the −x-direction, so fx = −fs,max = −msN = −msmg cos q. 

From the FBD, Wx = −mg sin q. Then,

∑Fx = Fa − msmg cos q  − mg sin q  = 0

Solving for Fa,

 Fa = mg (ms cos q  + sin q )

= 510 kg × 9.80 m/ s 2  × (0.42 × cos 15° + sin 15°)

= 3300 N

An applied force that exceeds 3300 N starts the box moving 

up the incline.

(b) Once the safe is sliding, the movers need only push hard 

enough to make the net force on the safe equal to zero if they 

want the safe to slide at constant velocity. We are now deal-

ing with sliding friction, so the frictional force is now 

fx = −mkN = −mkmg cos q .

 ∑Fx = Fax + fx + Wx 

 = Fa − mkmg cos q  − mg sin q  

 = 0

 Fa = mg (mk cos q  + sin q )

= 510 kg × 9.80 m/ s 2  × (0.33 × cos 15° + sin 15°)

 = 2900 N

The movers push with a force  F⃗a of magnitude 2900 N 

directed up the incline.

Discussion In (b), the expression Fa = mg (mk cos q  + sin q ) 

shows that the applied force up the incline has to balance the 

sum of two forces down the incline: the frictional force 

(mkmg cos q ) and the component of the gravitational force 

down the incline (mg sin q ). This balance of forces is shown 

graphically in the FBD (Fig. 4.28b).

Practice Problem 4.10 Smoothing the Infield Dirt

During the seventh-inning stretch of a baseball game, grounds-

keepers drag mats across the infield dirt to smooth it. A 

groundskeeper is pulling a mat at a constant velocity by apply-

ing a force of 120 N at an angle of 22° above the horizontal. 

The coefficient of kinetic friction between the mat and the 

ground is 0.60. Find (a) the magnitude of the frictional force 

between the dirt and the mat and (b) the weight of the mat.

Example 4.10 continued

      4.7  TENSION 

  Consider a heavy chandelier hanging by a chain from the ceiling ( Fig. 4.29a) . The chan-

delier is in equilibrium, so the upward force on it due to the chain is equal in magnitude 

to the chandelier’s weight. With what force does the chain pull downward on the ceiling? 

The ceiling has to pull up with a force equal to the total weight of the chain and the chan-

delier. The interaction partner of this force—the force the chain exerts on the ceiling—is 

PHYSICS AT HOME

To estimate the coefficient of static friction between a penny and the cover of 

your physics book, place the penny on the book and slowly lift the cover. Note 

the angle of the cover when the penny starts to slide. Explain how you can use 

this angle to find the coefficient of static friction. Can you devise an experiment 

to find the coefficient of kinetic friction?
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equal in magnitude and opposite in direction. Therefore, if the weight of the chain is neg-

ligibly small compared with the weight of the chandelier, then the chain exerts forces of 

equal magnitude at its two ends. The forces at the ends would  not  be equal, however, if 

you grabbed the chain in the middle and pulled it up or down or if we could not neglect 

the weight of the chain. We can generalize this observation: 

An ideal cord (or rope, string, tendon, cable, or chain) pulls in the direction of the 

cord with forces of equal magnitude on the objects attached to its ends as long as 

no external force is exerted on it anywhere between the ends. An ideal cord has 

zero mass and zero weight.

 A single link of the chain ( Fig. 4.29b)  is pulled at both ends by the neighboring links. 

The magnitude of these forces is called the    tension    in the chain. Similarly, a little segment 

of a cord is pulled at both its ends by the tension in the neighboring pieces of the cord. If 

the segment is in equilibrium, then the net force acting on it is zero. As long as there are 

no other forces exerted on the segment, the forces exerted by its neighbors must be equal 

in magnitude and opposite in direction. Therefore, the tension has the same value every-

where and is equal to the force that the cord exerts on the objects attached to its ends.   

(a) (b)

Force on ceiling
due to chain

Force on chandelier
due to chain Force pulling up

on top of link

Force pulling down
on bottom of link

Figure 4.29 (a) The chain 

pulls up on the chandelier and 

pulls down on the ceiling. 

(b) The chain is under tension. 

Each link is pulled in opposite 

directions by its neighbors.

35 cm

162 N

72 cm

Figure 4.30

The force applied to the 

bowstring by an archer.

segment of string by the archer’s fingers. That segment is 

also pulled on each end by the tension in the string. Can we 

assume the tension in the string is the same everywhere? 

The weight of the string is small compared with the other 

forces acting on it. The archer pulls sideways on the bow-

string, exerting little or no tangential force, so we can 

assume the tension is the same everywhere.

Solution Figure 4.31a is an FBD for the segment of bow-

string being considered. The forces are labeled with their 

magnitudes: Fa for the force applied by the archer’s finger 

and T for each of the tension forces. Figure 4.31b shows 

these three forces adding to zero. From this sketch, we 

expect the tension T to be roughly the same as Fa. We choose 

the x-axis to the right and the y-axis upward. To find the 

Example 4.11

Archery Practice

Figure 4.30 shows the bowstring of a bow and arrow just 

before it is released. The archer is pulling back on the mid-

point of the bowstring with a hori-

zontal force of 162 N. What is the 

tension in the bowstring?

Strategy Consider a small seg-

ment of the bowstring that touches 

the archer’s finger. That piece of 

the string is in equilibrium, so the 

net force acting on it is zero. We 

draw the FBD, choose coordinate 

axes, and apply the equilibrium 

condition: ΣFx = 0 and ΣFy = 0. 

We know the force exerted on the 

continued on next page



components of the forces due to tension in the string, we 

draw a triangle (Fig. 4.31c). From the measurements given, 

we can find the angle q.

sin q  =   
opposite

 __________ 
hypotenuse

   =   35 cm ______ 
72 cm

   = 0.486

q  =  sin −1  0.486 = 29.1°

The x-component of the tension force exerted on the upper 

end of the segment is

Tx = −T sin q

The x-component of the force exerted on the lower end of 

the string is the same. Therefore,

∑Fx = −2T sin q  + Fa = 0

Solving for T,

T =   
Fa ______ 

2 sin  q 
     =    162 N ________ 

2 × 0.486
   = 170 N

Fa

T

T

T T

35 cm

72 cm

T

y

x

(a) (b) (c)

x

y

Fa

q

q

Figure 4.31

(a) FBD for a point on the bowstring with the magnitudes of the 

forces labeled. (b) Graphical addition of the three forces showing 

that the sum is zero. (c) The angle q   is used to find the x- and 

y-components of the forces exerted at each end of the bowstring.

Discussion The tension is only slightly larger than Fa, a 

reasonable result given the picture of graphical vector addi-

tion in Fig. 4.31b.

In this problem, only the x-components of the forces had 

to be used. The y-components must also add to zero. At the 

upper end of the string, the y-component of the force exerted 

by the bow is +T cos q, while at the lower end it is −T cos q. 

Therefore, ΣFy = 0.

The expression T = Fa/(2 sin q ) can be evaluated for lim-

iting values of q  to make sure that the expression is correct. 

As q  approaches 90°, the tension approaches

  
Fa ________ 

2 sin 90°
   =   1 __ 

2
   Fa

That is correct because the archer would be pulling to the 

right with a force Fa, while each side of the bowstring would 

pull to the left with a force of magnitude T. For equilibrium, 

Fa = 2T or T =   1 _ 
2
  Fa.

As q gets smaller, sin q decreases and the tension 

increases (for a fixed value of Fa). That agrees with our intu-

ition. The larger the tension, the smaller the angle the string 

needs to make in order to supply the necessary horizontal 

force.

Practice Problem 4.11 Tightrope Practice

Jorge decides to rig up a tightrope in the backyard so his 

children can develop a good sense of balance (Fig. 4.32). 

For safety reasons, he positions a horizontal cable only 

0.60 m above the ground. If the 6.00-m-long cable sags by 

0.12 m from its taut horizontal position when Denisha 

(weight 250 N) is standing on the middle of it, what is the 

tension in the cable? Ignore the weight of the cable.

250 N

0.12 m
Eyebolt

6.00 m

Figure 4.32

Tightrope for balancing 

practice.

   Application: Tensile Forces in the Body    Tensile forces are central in the study of 

animal motion, or biomechanics. Muscles are usually connected by tendons, one at each 

end of the muscle, to two different bones, which in turn are linked at a joint ( Fig. 4.33 ). 

Usually one of the bones is more easily moved than the other. When the muscle con-

tracts, the tension in the tendons increases, pulling on both of the bones. 

4.7  TENSION 111
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PHYSICS AT HOME

Sit with your arm bent at the elbow with a heavy object on the palm of your 

hand. You can feel the contraction of the biceps muscle. With your other hand, 

feel the tendon that connects the biceps muscle to your forearm.

Now place your hand palm down on the desktop and push down. Now it is 

the triceps muscle that contracts, pulling up on the bone on the other side of the 

elbow joint. Muscles and tendons cannot push; they can only pull. The biceps 

muscle cannot push the forearm downward, but the triceps muscle can pull on 

the other side of the joint. In both cases, the arm acts as a lever.

    Application: Ideal Pulleys    A pulley can change the direction of the force exerted by 

a cord under tension. To lift something heavy, it is easier to stand on the ground and pull 

down  on the rope than to get above the weight on a platform and pull up on the rope 

( Fig. 4.34 ). 

 An  ideal  pulley has no mass and no friction. An ideal pulley exerts no forces on the 

cord that are  tangent  to the cord—it is not pulling in either direction along the cord. As 

a result, the tension of an ideal cord that runs through an ideal pulley is the same on both 

sides of the pulley. An ideal pulley changes the direction of the force exerted by a cord 

without changing its magnitude. As long as a real pulley has a small mass and negligible 

amount of friction, we can approximate it as an ideal pulley.    

tendon muscle

joint

tendon

Figure 4.33 A muscle con-

tracts, increasing the tension in 

the attached tendons. The 

tendons exert forces on two 

different bones.

F

Figure 4.34 Using a pulley 

to lift an object by pulling down-

ward on a rope with force  F⃗.

rest, so the net force on it is also zero. We can draw the FBD 

for any or all of these objects and then apply the equilibrium 

condition. If the pulleys are ideal, the tension in the rope is the 

same on both sides of the pulley. Therefore, rope C—which is 

attached to the ceiling, passes around both pulleys, and is 

pulled downward at the other end—has the same tension 

Example 4.12

A Two-Pulley System

A 1804-N engine is hauled upward at constant speed 

(Fig. 4.35). What are the tensions in the three ropes labeled 

A, B, and C? Assume the ropes and the pulleys labeled 

L and R are ideal.

Strategy The engine and pulley L move up at constant 

speed, so the net force on each of them is zero. Pulley R is at 

continued on next page



throughout. Call the tensions in 

the three ropes TA, TB, and TC. To 

analyze the forces exerted on a 

pulley, we define our system so 

the part of the rope wrapped 

around the pulley is considered 

part of the pulley. Then there are 

two cords pulling on the pulley, 

each with the same tension.

Solution There are two 

forces acting on the engine: the 

gravitational force (1804 N, 

downward) and the upward pull 

of rope A. These must be equal 

and opposite (Fig. 4.36a), since 

the net force is zero. Therefore 

TA = 1804 N.

The FBD for pulley L (Fig. 4.36b) shows rope A pulling 

down with a force of magnitude TA and rope C pulling 

upward on each side. The rope has the same tension through-

out, so all forces labeled TC in Fig. 4.36b,c have the same 

magnitude. For the net force to equal zero,

2 T  C  =  T  A 

 T  C  =   1 _ 
2
   T  A  = 902.0 N

Figure 4.36c is the FBD for pulley R. Rope B pulls upward 

on it with a force of magnitude TB. On each side of the pul-

ley, rope C pulls downward. For the net force to equal zero,

 T  B  = 2 T  C  = 1804 N

Discussion The engine is raised by pulling down on a 

rope—the pulleys change the direction of the applied force 

needed to lift the engine. In this case they also change the 

magnitude of the required force. They do that by making the 

rope pull up on the engine twice, so the person pulling the rope 

only needs to exert a force equal to half the engine’s weight.

Practice Problem 4.12 System of Ropes, Pulleys, 
and Engine

Consider the entire collection of ropes, pulleys, and the 

engine to be a single system. Draw the FBD for this system 

and show that the net force on the system is zero. [Hint:

Remember that only forces exerted by objects external to 

the system are included in the FBD.]

Example 4.12 continued

1804 N

B

A

C

Pulley L

Pulley R

Figure 4.35

A system of pulleys used 

to raise a heavy weight.

(b)(a) (c)

TAW

TA

TC TB

TC

Pulley L
Pulley R

TC

TC

Figure 4.36

(a) FBD for the engine. (b) FBD for pulley L and (c) FBD for 

pulley R.

   4.8  APPLYING NEWTON’S SECOND LAW 

  We can now apply Newton’s second law to a great variety of situations involving the 

forces we have encountered so far—gravity, contact forces, and tension. The following 

steps are helpful in most problems that involve Newton’s second law. 

Problem-Solving Strategy for Newton’s Second Law

• Decide what object will have Newton’s second law applied to it.

• Identify all the external forces acting on that object.

• Draw an FBD to show all the forces acting on the object.

• Choose a coordinate system. If the direction of the net force is known, choose 

axes so that the net force (and the acceleration) are along one of the axes.

• Find the net force by adding the forces as vectors.

• Use Newton’s second law to relate the net force to the acceleration.

• Relate the acceleration to the change in the velocity vector during a time 

interval of interest.
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Solution (a) Figure 4.38 shows the forces acting on the 

suitcase, where  F⃗ is the force exerted by Beatrice. All the 

other forces are either parallel or perpendicular to the fl oor, 

so only  F⃗ needs to be resolved into x- and y-components.

Fx = F cos 40.0° = 65.0 N × 0.766 = 49.8 N

Fy = F sin 40.0° = 65.0 N × 0.643 = 41.8 N

Figure 4.39 is an FBD in which   F⃗ is replaced by its com-

ponents. The vertical force components add to zero since 

ay = 0.

∑Fy = may = 0

N + F sin 40.0° − W = 0

We can solve this equation for the magnitude of the normal 

force. The magnitude of the gravitational force is W = mg, so

 N = mg − F sin 40.0°

= (36.0 kg × 9.80 N/kg) − (65.0 N × sin 40.0°)

 = 352.8 N − 41.8 N = 311 N

(b) The magnitude of the kinetic frictional force is

 f  k  = mkN = 0.13 × 311 N = 40.43 N

Rounding to two significant figures, the frictional force is 

40 N in the −x-direction (opposite the motion of the 

suitcase).

(c) The y-component of the acceleration is zero. To find 

the x-component, we apply Newton’s second law to the 

x-components of the forces acting on the suitcase:

 ∑Fx = +F cos 40.0° + (−fk)

 = 49.79 N − 40.43 N = 9.36 N

ax =   
∑Fx

 ____ 
m

   =   9.36 N _______ 
36.0 kg

   = 0.260 m/ s 2 

Example 4.13

The Broken Suitcase

The wheels fall off Beatrice’s suitcase, so she ties a rope to it 

and drags it along the floor of the airport terminal (Fig. 4.37). 

The rope makes a 40.0° angle with the horizontal. The suit-

case has a mass of 36.0 kg and Beatrice pulls on the rope 

with a force of 65.0 N. (a) What is the magnitude of the nor-

mal force acting on the suitcase due to the floor? (b) If the 

coefficient of kinetic friction between the suitcase and the 

marble floor is mk = 0.13, find the frictional force acting on 

the suitcase. (c) What is the acceleration of the suitcase 

while Beatrice pulls with a 65.0 N force at 40.0°? (d) Start-

ing from rest, for how long a time must she pull with this 

force until the suitcase reaches a comfortable walking speed 

of 0.5 m/s?

40.0°

Figure 4.37

Beatrice dragging her suitcase.

Strategy Since the suitcase is dragged horizontally 

along the floor, the vertical component of its velocity is 

always zero. The vertical acceleration component of the 

suitcase is zero because the vertical velocity component 

does not change. (If it did have a vertical acceleration 

component, the suitcase would begin to move either down 

through the floor or up into the air.) If we choose the 

+y-axis up and the +x-axis to be horizontal, then ay = 0. 

We resolve the forces acting on the suitcase into their 

components, draw a free-body diagram for the suitcase, 

and apply Newton’s second law.

F

40.0°

N

fk

W

y

x

Figure 4.38

Forces acting on a suitcase 

dragged along the floor. The 

lengths of the vector arrows are 

not to scale.

y

x

−mg

F sin 40.0°

N

F cos 40.0°−fk

Figure 4.39

FBD for the suitcase, with the 

forces represented by their 

x- and y-components.

continued on next page



Here we have replaced newtons per kilogram with the equiv-

alent meters per second squared, the usual way to write the 

SI units of acceleration. The acceleration is 0.3 m/s2 in the 

+x-direction.

(d) With constant ax,

Δvx = ax Δt

The suitcase starts from rest so vix = 0 and Δvx = vfx − vix = vfx. 

Then,

Δt =   
vfx ___ 
ax

   =   0.5 m/s _________ 
0.260 m/ s 2 

   = 2 s

Discussion What Beatrice probably wants to do is to drag 

the suitcase along at constant velocity. To do that, she must 

first accelerate the suitcase from rest. Once the suitcase is 

moving at the desired velocity, she pulls a little less hard, so 

the net force is zero and the suitcase slides at constant 

speed. She would do so without thinking much about it, of 

course!

Practice Problem 4.13 The Continuing Story . . .

(a) How hard does Beatrice pull at a 40.0° angle while the 

suitcase slides along the floor at constant velocity? [Hint: 

Do not assume that the normal force is the same as in the 

previous discussion.] (b) The suitcase is moving at 0.50 m/s. 

Beatrice changes the force to 42 N at 40.0°. How long does 

it take the suitcase to come to rest?

 Sometimes two or more objects are constrained to have the same acceleration by 

the way they are connected. In Example 4.14, we look at a train engine pulling five 

freight cars. The couplings maintain a fixed distance between the cars, so at any instant 

the cars move with the same velocity; if they didn’t, the distance between them would 

change. The velocities don’t have to be constant, they just have to change in exactly the 

same way, which implies that the accelerations must also be the same at any instant. 

continued on next page

a
1

Engine

2345

T5 T4 T3 T2 T1

Figure 4.40

An engine pulling five identical freight cars. The entire train has a constant acceleration a ⃗ 
to the right.

gravity, and the pull of the first coupling. To find the force 

exerted by the fifth coupling, we consider car five by itself to 

be a system. In each case, once we identify a system, we 

draw a free-body diagram, choose a coordinate system, and 

then apply Newton’s second law.

As discussed previously, the engine and the cars must 

all have the same acceleration at any instant. We expect the 

acceleration to be constant because the engine pulls with a 

constant force. We can calculate the acceleration of the 

train from the initial and final velocities and the elapsed 

time.

Example 4.14

Coupling Force on First and Last Freight Cars

A train engine pulls out of a station along a straight hori-

zontal track with five identical freight cars behind it, each 

of which weighs 90.0 kN. The train reaches a speed of 

15.0 m/s within 5.00 min of starting out. Assuming the 

engine pulls with a constant force during this interval, with 

what magnitude of force does the coupling between cars 

pull forward on the first and last of the freight cars? Ignore 

air resistance and friction on the freight cars.

Strategy A sketch of the situation is shown in Fig. 4.40. 

To find the force exerted by the first coupling, we consider all 

five cars to be one system so we do not have to worry about 

the force exerted on the first car by the second car. The only 

external forces on the group of five cars are the normal force, 

Example 4.13 continued
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Solution For the tension T1 in the first 

coupling, we consider the five cars as 

one system of mass M. Figure 4.41 

shows the FBD in which cars 1 to 5 are 

treated as a single object. We choose the 

x-axis in the direction of motion of the 

train and the y-axis up. Since the train 

moves along the x-axis, the acceleration 

vector is along the x-axis. Therefore, 

ay = 0. Using the y-component of New-

ton’s second law, the vertical forces add 

to zero:

∑Fy = May = N
1−5

 − W
1−5

 = 0

The only external horizontal force is 

the force  T⃗1 due to the tension in the first coupling. This 

force is constant according to the problem statement, so we 

know that the acceleration ax is constant:

∑Fx = T1 = Max

The mass of the system M is five times the mass of one 

car m. We are given the weight of one car (W = 90.0 kN = 

9.00 × 104 N). From the relation between mass and weight, 

W = mg, the mass of one car is m = W/g and the mass of five 

cars is M = 5W/g.

The constant acceleration of the train is

ax =   
Δvx ___ 
Δt

   =   
 v  fx  −  v  ix  _______  t  f  −  t  i 

   =   15.0 m/s − 0 ___________ 
300 s − 0

   = 0.0500 m/ s 2 

Therefore,

 T  1  = Max =   5W
 ___ 

g
   ×   

Δvx ___ 
Δt

   =   5 × 9.00 × 1 0 4  N  ______________  
9.80 m/ s 2 

   ×   15.0 m/s ________ 
300 s

  

 = 2.30 kN

Now consider the last freight car (car 5). If we ignore 

friction and air resistance, the only external forces acting 

are the force  T⃗5 due to the tension in the fifth coupling, the 

normal force  N⃗5, and the gravitational force W ⃗
5; the FBD is 

shown in Fig. 4.42. Since  N⃗5 + W ⃗
5 = 0, the net force is equal 

to  T⃗5. From Newton’s second law,

∑Fx =  T  5  = max =   W __ g   ax

 T  5  =   W __ 
g
   ×   

Δvx ___ 
Δt

   =   9.00 × 1 0 4  N ___________ 
9.80 m/ s 2 

   ×   15.0 m/s ________ 
300 s

   = 459 N

Example 4.14 continued

T5

N5

W5

5

y

x

Figure 4.42

FBD for car 5. (Vector lengths 

are not to the same scale as 

those in Fig. 4.41.)

 Example 4.15 deals with two objects connected by an ideal cord. Although it may 

have a nonzero acceleration, the net force on an  ideal  cord is still zero because it has 

zero mass:  if  m   =  0, then     ∑ F⃗ = ma ⃗ = 0.   As a result, the tension is the same at the two 

ends as long as no external force acts on the cord between the ends ( Fig. 4.43a ). An 

ideal cord that passes over an ideal pulley has the same tension at its ends. The pulley 

exerts an external force on part of the cord, but this force is everywhere  perpendicular 

to the cord.  As  Fig. 4.43b  shows, an external force that has no component tangent to the 

cord does not affect the tension in the cord. 

T1

N1–5

W1–5

Cars 1–5

y

x

Figure 4.41

FBD for the system 

consisting of cars 

1–5 (but not the 

engine).

Discussion We considered two systems (cars 1 to 5 and 

car 5) that have the same acceleration and different masses. 

As expected, the net force is proportional to the mass: the 

net force on five cars is five times the net force on one car.

The solution to this problem is much simpler when 

Newton’s second law is applied to a system comprised of 

all five cars, rather than to each car individually. Although 

the problem can be solved by looking at individual cars, to 

find the tension in the first coupling you would have to 

draw five FBDs (one for each car) and apply Newton’s 

second law five times. That’s because each car, except the 

fifth, is acted on by the unequal tensions in the couplings 

on either side. You’d have to first find the tension in the 

fifth coupling, then the fourth, then the third, and so on.

Practice Problem 4.14 Coupling Force Between 
First and Second Freight Cars

With what force does the coupling between the first and sec-

ond cars pull forward on the second car? [Hint: Try two 

methods. One of them is to draw the FBD for the first car 

and apply Newton’s third law as well as the second.]



Figure 4.43 (a) FBD for an ideal cord with acceleration a ⃗.  Applying Newton’s second law along the x-axis: 

ΣFx = T1 − T2 = max. The ideal cord has mass m = 0, so T1 = T2: the tensions at the ends are equal. (b) An ideal cord passing 

around an ideal pulley and the FBD for a short segment of the cord at the top of the pulley. Choosing the x-axis to be hori-

zontal, the normal force has no x-component. Applying Newton’s second law along the x-axis: ΣFx = T1 cos q  − T2 cos q  

= max. With m = 0, T1 = T2. The same reasoning can be applied to any segment of cord in contact with the pulley to show 

that the tensions are the same on either side of the pulley.

(a)

x

T1T2

a

x

(b)

Cord
Pulley

T1

N

T2

qq

and downward for m2. Doing so means that ay has the same 

magnitude and sign (both positive) for the two blocks.

Solution Figure 4.45 shows FBDs for the two blocks. Two 

forces act on each: gravity and the pull of the cord. The 

Example 4.15

Two Blocks Hanging on a Pulley

In Fig. 4.44, two blocks are connected by an ideal cord that 

does not stretch; the cord passes over an ideal pulley. If the 

masses are m1 = 26.0 kg and m2 = 42.0 kg, what are the 

accelerations of each block and the tension in the cord?

Strategy Since m2 is greater than m1, the downward force 

of gravity is stronger on the right side than on the left. We 

expect block 2’s acceleration to be downward and block 1’s 

to be upward.

The cord does not stretch, so blocks 1 and 2 move at the 

same speed at any instant (in opposite directions). There-

fore, the accelerations of the two blocks are equal in magni-

tude and opposite in direction. If the accelerations had 

different magnitudes, then soon the two blocks would be 

moving with different speeds. That could only happen if the 

cord either stretches or contracts.

The tension in the cord must be the same everywhere 

along the cord since the masses of the cord and pulley are 

negligible and the pulley turns without friction.

We treat each block as a separate system, draw FBDs for 

each, and then apply Newton’s second law to each. It is con-

venient to choose the positive y-direction differently for the 

two blocks since we know their accelerations are in opposite 

directions. For each block, we choose the +y-axis in the direc-

tion of the acceleration of that block: upward for block m1 

m2

m1

Figure 4.44

Two hanging blocks 

connected on either 

side of a frictionless 

pulley by a massless, 

flexible cord that does 

not stretch.

+y

m1g

T

a

1

+y

m2g

T

a

2

Figure 4.45

FBDs for the hanging blocks. We 

draw the acceleration vector next 

to each FBD as a guide—the net 

force has to be in the direction of 

the acceleration. However, the 

acceleration vector is not part of 

the FBD (it is not a force to be 

added to the others).

continued on next page

4.8  APPLYING NEWTON’S SECOND LAW 117



118  CHAPTER 4  Force and Newton’s Laws of Motion

 Examples 4.16, 4.17, and 4.18 illustrate how different concepts and problem-

solving techniques from Chapters 2– 4 can be brought together to find the solution to a 

physics problem. 

acceleration vectors are drawn next to the FBDs. Thus, we 

know the direction of the net force: it is always the same as 

the direction of the acceleration. Then we know that the ten-

sion must be greater than m1g to give block 1 an upward 

acceleration and less than m2g to give block 2 a downward 

acceleration. The +y-axes are drawn for each block to be in 

the direction of the acceleration.

From the FBD of block 1, the pull of the cord is 

in the +y-direction and the gravitational force is in the 

−y-direction. Then Newton’s second law for block 1 is

∑ F  1y  = T −  m  1 g =  m  1  a  1y 

For block 2, the pull of the cord is in the −y-direction and the 

gravitational force is in the +y-direction. Newton’s second 

law for block 2 is

∑ F  2y  =  m  2 g − T =  m  2  a  2y 

The tension T in the cord is the same in the two equa-

tions. Also a1y and a2y are identical, so we write them simply 

as ay. We then have a system of two equations with two 

unknowns. We can add the equations to obtain

 m  2 g −  m  1 g =  m  2 ay +  m  1 ay

Solving for ay, we find

ay =   
( m  2  −  m  1 )g __________  m  2  +  m  1 

  

Substituting numerical values,

ay =   
(42.0 kg − 26.0 kg) × 9.80 N/kg

   __________________________  
42.0 kg + 26.0 kg

  

= 2.31 m/ s 2 

since

1   N ___ 
kg

   = 1   
kg ⋅ m/ s 2 

 _______ 
kg

   = 1 m/ s 2 

The blocks have the same magnitude acceleration. For block 

1 the acceleration points upward and for block 2 it points 

downward.

To find T we can substitute the expression for ay into either 

of the two original equations. Using the first equation,

T −  m  1 g =  m  1    
( m  2  −  m  1 )g __________ 

 m  2  +  m  1 
  

Solving for T yields

T =   
2 m  1  m  2  _______  m  1  +  m  2 

   g

Substituting,

T =   
2 × 26.0 kg × 42.0 kg

  __________________  
68.0 kg

   × 9.80 N/kg = 315 N

Discussion A few quick checks:

 • ay is positive, which means that the accelerations are in 

the directions we expect.

 • The tension (315 N) is between m1g (255 N) and m2g

(412 N), as it must be for the accelerations to be in 

opposite directions.

 • The units and dimensions are correct for all equations.

 • We can check algebraic expressions in special cases for 

which we have some intuition. For example, if the 

masses had been equal, we expect the blocks to hang in 

equilibrium (either at rest or moving at constant veloc-

ity) due to the equal pull of gravity on the two blocks. 

Substituting m1 = m2 into the expressions for ay and T

gives ay = 0 and T = m1g = m2g, which is just what we 

expect.

Note that we did not find out which way 

the blocks move. We found the directions of their 

accelerations. If the blocks start out at rest, then the block 

of mass m2 moves downward and the block of mass m1

moves upward. However, if initially m2 is moving up and 

m1 down, they continue to move in those directions, slow-

ing down since their accelerations are opposite to their 

velocities. Eventually they come to rest and then reverse 

directions.

Practice Problem 4.15 Another Check

Using the numerical values of the tension and the accelera-

tion calculated in Example 4.15, verify Newton’s second 

law directly for each of the two blocks.

Example 4.15 continued
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Figure 4.47

FBD for the crate and lower pulley. (This system 

is outlined by dashed lines in Fig. 4.46.)

Setting T = 550 N, the maximum possible value before the 

cable breaks, and substituting the other known values:

ay =   
550 N + 550 N − 91 kg × 9.80 m/ s 2 

   ____________________________  
91 kg

   = 2.288 m/ s 2 

The time to move the crate up a distance Δy starting from 

rest can be found from

Δy =  v  iy  Δt +   1 _ 
2
  ay(Δt ) 2  (3-21)

Setting viy = 0 and solving for Δt, we find

Δt = ± √
____

   
2 Δy

 ____ ay
    

Our equation applies only for Δt ≥ 0 (the crate reaches the 

window after it leaves the ground). Taking the positive root 

and substituting numerical values,

Δt =  √
__________

   2 × 30.0 m _________ 
2.288 m/ s 2 

     = 5.1 s

This is the minimum possible to haul the crate up without 

breaking the rope.

Discussion In reality, the student is not likely to achieve 

this minimum possible time. To do so would mean pulling 

the rope at an unrealistic speed. At the end of the 5.1-s inter-

val, vfy = 2.288 m/s2 × 5.1 s = 12 m/s! More likely, the stu-

dent would hoist the crate at a roughly constant velocity 

(except at the beginning, to get it moving, and at the end, to 

let it come to rest). For motion with a constant velocity, the 

tension in the rope would be equal to half the weight of the 

crate (450 N).

Practice Problem 4.16 Hauling the Crate with a 
Single Pulley

If only a single pulley, attached to the beam above the fourth 

floor, were available and if the student had a few friends to 

help him pull on the cable, could they haul the crate up to the 

third-floor window using the same rope? If so, what is the 

minimum time required to do so?

Example 4.16

Hauling a Crate up to a Third-Floor Window

A student is moving into a dorm room on the third floor and 

he decides to use a block and tackle arrangement (Fig. 4.46) 

to move a crate of mass 91 kg from the ground up to his win-

dow. If the breaking strength of the available rope is 550 N, 

what is the minimum time required to haul the crate to the 

level of the window, 30.0 m above the ground, without 

breaking the rope?

Strategy The tension in the rope is T and is the same at 

both ends or anywhere along the rope, assuming the rope and 

pulleys are ideal. Two pieces of rope support the lower pul-

ley, each pulling upward with a force of magnitude T. The 

gravitational force acts downward. We draw an FBD for the 

system consisting of the crate and the lower pulley and set 

the tension equal to the breaking force of the rope to find the 

maximum possible acceleration of the crate. Then we use the 

maximum acceleration to find the minimum time to move 

the required distance to the third-floor window. We choose 

the y-axis to be upward. Known: m = 91 kg; Δy = 30.0 m; 

Tmax = 550 N; viy = 0. To find: Δt, the time to raise the crate 

30.0 m with the maximum tension in the cable.

TT

T

4th-floor

window

3rd-floor

window

2nd-floor

window

mg Figure 4.46

Block and tackle 

setup.

Solution From the FBD (Fig. 4.47), if the forces acting up 

are greater than the force acting down, the net force is 

upward and the crate’s acceleration is upward. In terms of 

components, with the +y-direction chosen to be upward,

∑Fy = T + T − mg = may

Solving for the acceleration,

ay =   
T + T − mg

 __________ m  
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is still only one horizontal external force and it is the same 

thrust as before. The tension in the cable is an internal force. 

Therefore,

∑ F  2x  = F = ( m  1  +  m  2 )ax

where m1 + m2 is the total mass of the system (plane mass m1

plus glider mass m2) and ax is the horizontal acceleration 

component of plane and glider. We ignore the mass of the 

cable.

The problem statement gives neither the thrust nor either 

of the accelerations. We can continue by setting the thrusts 

equal and finding the ratio of the accelerations:

 m  1  a  1x  = ( m  1  +  m  2 )ax  ⇒    
ax ___ a1x

   =   
 m  1  _______  m  1  +  m  2 

  

The magnitude of the acceleration is inversely proportional 

to the mass of the system for the same net force.

How is the acceleration related to the runway distance? 

The plane must get to the same final speed in order to lift off 

the runway. From our two basic constant acceleration 

equations

Δvx = vfx − vix = ax Δt (2-9)

Δx =   1 _ 
2
  ( v  fx  +  v  ix ) Δt (2-11)

we can substitute vix = 0 and eliminate Δt to find

Δ  x =   1 __ 
2
  ( v  fx  + 0) (   vfx ___ ax

   )  =   
 v  fx  

2
  
 _____ 

2ax

  

In both cases, the displacement is inversely proportional 

to the acceleration and the acceleration is inversely propor-

tional to the mass of the system. Therefore, the displacement 

is directly proportional to the mass. Letting Δ x1 = 120 m be 

the displacement of the plane without the glider, we can set 

up a proportion:

  Δ x ____ 
Δ  x  1 

   =   
 a  1x  ___ 
ax

   =   
 m  1  +  m  2  _______ 

m1

   =   
1090 kg

 _______ 
760 kg

   = 1.434

Δ x = 1.434  × 120 m = 172.08 m → 170 m

(b) The final speed given enables us to find the acceleration:

Δ x =   
 v  fx  

2
  
 ___ 

2ax

   or ax =   
 v  fx  

2
  
 ____ 

2 Δ x
  

With vfx = 28 m/s, vix = 0, and Δx = 172.08 m,

ax =   
(28 m/s ) 2 

 ____________  
2  × 172.08 m

   = 2.278 m/ s 2 

The tension in the cable is the only horizontal force acting 

on the glider. Therefore,

∑Fx = T =  m  2 ax = 330 kg × 2.278 m/ s 2  = 751.7 N → 750 N

Example 4.17

Towing a Glider

What length runway does the plane need?

A small plane of mass 760 kg requires 120 m of runway to 

take off by itself. (120 m is the horizontal displacement of 

the plane just before it lifts off the runway, not the entire 

length of the runway.) As a simplified model, ignore friction 

and drag forces and assume the plane’s engine exerts a con-

stant forward force on the plane. (a) When the plane is tow-

ing a 330-kg glider, how much runway does it need? (b) If 

the final speed of the plane just before it lifts off the runway 

is 28 m/s, what is the tension in the tow cable while the plane 

and glider are moving along the runway?

Strategy We draw FBDs for the two cases: plane alone, 

then plane + glider. The motion in both cases is horizontal 

(along the runway), because we are told the displacement 

before it lifts off the runway. Until the plane begins to lift off 

the runway, its vertical acceleration component is zero. We 

need not be concerned with the vertical forces (gravity, the 

normal force, and lift—the upward force on the plane’s 

wings due to the air) since they cancel one another to pro-

duce zero vertical acceleration. We use Newton’s second law 

to compare the accelerations in the two cases and then use 

the accelerations to compare the displacements.

Solution (a) When the plane takes off by itself, four forces 

act on it (see Fig. 4.48). Three are vertical and the third—the 

thrust due to the engine—is horizontal. Choosing the x-axis 

to be horizontal, Newton’s second law says

∑F1x = F =  m  1  a  1x 

where F is the thrust, m1 is the plane’s mass, and a1x is its 

horizontal acceleration component.

When the glider is towed, we can consider the plane, 

glider, and cable to be a single system (see Fig. 4.49). There 

Normal force

Gravity

Lift

Thrust

Figure 4.49

FBD for the system plane + glider.

Normal force

Thrust

Gravity

Lift

Figure 4.48

FBD for the plane.

continued on next page
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Discussion This solution is based on a simplified model, 

so we can only regard the answers as approximate. Never-

theless, it illustrates Newton’s second law. The same net 

force produces an acceleration inversely proportional to the 

mass of the object upon which it acts. Here we have the 

same net force acting on two different objects: first the plane 

alone, then the plane and glider together.

Alternatively, we can look at forces acting only on the 

plane. When towing the glider, the cable pulls backward on 

the plane. The net force on the plane is smaller, so its accel-

eration is smaller. The smaller acceleration means that it 

takes more time to reach takeoff speed and travels a longer 

distance before lifting off the runway.

Practice Problem 4.17 Engine Thrust

What is the thrust provided by the airplane’s engines in 

Example 4.17?

Example 4.17 continued

component perpendicular to the incline. It does not sink into 

the incline or rise above it; it can only slide along the incline. 

Thus, the net force on block 1 in the direction perpendicular 

to the incline—the direction we have chosen as the y-axis 

for block 1—is zero.

∑Fy = N −  m  1 g cos q  = 0

or

N = m1g cos q

Here q  = 30.0°. Along the incline, in the x-direction for 

block 1, the acceleration is nonzero:

∑Fx = T −  m  1 g sin q  −  f  k  =  m  1 ax

The kinetic frictional force is related to the normal force:

 f  k  = mkN = mk m  1 g cos q

By substitution,

 T − m1g sin q  − mkm1g cos q  = m1ax (1)

Example 4.18

A Pulley, an Incline, and Two Blocks

A block of mass m1 = 2.60 kg rests on an incline that is 

angled at 30.0° above the horizontal (Fig. 4.50). An ideal 

cord is connected from block 1 over an ideal, frictionless 

pulley to another block of mass m2 = 2.20 kg that is hanging 

2.00 m above the ground. The coefficient of kinetic friction 

between the incline and block 1 is 0.180. The blocks are ini-

tially at rest. (a) How long does it take for block 2 to reach 

the ground? (b) Sketch a motion diagram for block 2 with a 

time interval of 0.5 s.

30.0°

m1

m2

Figure 4.50

Block on an incline con-

nected to a hanging block 

by a cord passing over a 

pulley.

Strategy The problem says that the blocks start from rest 

and that block 2 hits the floor, so block 2’s acceleration is 

downward and block 1’s is up the incline. For block 1, we 

choose axes parallel and perpendicular to the incline so that 

its acceleration has only one nonzero component. The mag-

nitudes of the accelerations of the two blocks are equal since 

they are connected by an ideal cord that does not stretch. 

Since the cord and pulley are ideal, the tension is the same at 

the two ends.

Solution (a) We start by drawing separate FBDs for each 

block (Figs. 4.51 and 4.52). Since block 1 slides up the 

incline, the frictional force   f⃗  k  acts down the incline to oppose 

the sliding. The gravitational force on block 1 is resolved 

into two components, one along the incline and one perpen-

dicular to the incline.

Using the FBDs, we write Newton’s second law in com-

ponent form for each block. Block 1 has no acceleration 

+x 

+y

m1g cos 30.0°

N

fk

T

m1g sin 30.0° 1

a1

Figure 4.51

FBD for block 1.

+x 

+y

T

m2g

2

a2

Figure 4.52

FBD for block 2 with the down-

ward direction chosen as +x.

continued on next page
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Example 4.18 continued

For block 2, we choose an x-axis pointing downward. 

Doing so simplifies the solution, since then the two blocks 

have the same ax. Applying Newton’s second law,

∑Fx =  m  2 g − T =  m  2 ax (2)

The tension in the cord T and the x-component of acceler-

ation ax are both unknown in Eqs. (1) and (2). We solve for 

T in Eq. (2) and substitute into Eq. (1):

T =  m  2 g −  m  2 ax =  m  2 (g − ax)

 m  2 (g − ax) −  m  1 g sin q  − mk m  1 g cos q  =  m  1 ax

Rearranging and solving for ax yields

ax =   
 m  2  −  m  1 (sin q + mk cos q )

  _____________________  
 m  1  +  m  2 

    g (3)

Substituting the known and given values,

ax =   
2.20 kg − 2.60 kg × (0.50 + 0.180 × 0.866)

    ___________________________________   
2.60 kg + 2.20 kg

   × 9.80 m/ s 2 

 = 1.01 m/ s 2 

Block 2 has a distance of 2.00 m to travel starting from 

rest with a constant downward acceleration of 1.01 m/s2. 

From Eq. (2-12) with vix = 0,

Δ x =   1 _ 
2
  ax(Δt ) 2 

The time to travel that distance is

Δt =  √
____

   2 Δx ____ 
ax

     =  √
__________

   2 × 2.00 m _________ 
1.01 m/ s 2 

     = 2.0 s

(b) Figure 4.53 shows the motion diagram for block 2. 

Choosing xi = 0 and ti = 0, the position as a function of time 

is x =   1 _ 
2
  ax t 

2 .

Discussion One advantage to solving for ax algebraically 

in Eq. (3) before substituting numerical values is that 

dimensional analysis can easily be used 

to check for errors. In Eq. (3), the quan-

tity in parentheses is dimensionless—the 

values of trigonometric functions are pure 

numbers as are coefficients of friction. 

Therefore, the numerator is the sum of 

two quantities with dimensions of force, 

the denominator is the sum of two masses, 

and force divided by mass gives an 

acceleration.

What if the problem did not tell us the 

directions of the blocks’ accelerations? 

We could figure it out by comparing the 

force with which gravity pulls down on 

block 2 (m2g) with the component of the 

gravitational force pulling block 1 down 

the incline (m1g sin q ). Whichever is 

greater “wins the tug-of-war,” assuming 

that static friction doesn’t prevent the 

blocks from starting to slide. Once we 

know the direction of block 1’s accelera-

tion, we can determine the direction of 

the kinetic frictional force. If block 1 is 

not initially at rest, the kinetic frictional 

force opposes the direction of sliding, 

even though that may be opposite to the 

direction of the acceleration.

Practice Problem 4.18 More Fun with a Pulley 
and an Incline

Suppose that m1 = 3.8 kg and m2 = 1.2 kg and the coefficient 

of kinetic friction is 0.18. The blocks are released from rest 

and block 1 starts to slide. (a) Does block 1 slide up or down 

the incline? (b) In which direction does the kinetic frictional 

force act? (c) Find the acceleration of block 1.

x
(m)

0.5 s

1.0 s

1.5 s

2.0 s

0

0.5

1.0

1.5

2.0

0 2

2

2

2

2

Figure 4.53

Motion diagram 

for block 2.

   4.9  REFERENCE FRAMES 

  Imagine a train moving at constant velocity with respect to the ground ( Fig. 4.54 ). Sup-

pose Tim does some experiments using the train’s reference frame for his measurements. 

Greg does similar experiments using the reference frame of the ground. Tim and Greg 

disagree about the numerical value of an object’s velocity, but since their velocity 

CHECKPOINT 4.8

Is it ever useful to choose the x- and y-axes so the x-axis is not horizontal? If yes, 

give an example.

t (s) x (m)

0 0

0.5 0.125

1.0 0.50

1.5 1.125

2.0 2.0



measurements  differ by a constant,  they will always agree about  changes  in velocity and 

about accelerations. Both observers can use Newton’s second law to relate the net force 

to the acceleration. The basic laws of physics, such as Newton’s laws of motion, work 

equally well in any two reference frames if they move with a constant relative velocity. 

      Newton’s First Law Defines an Inertial Reference Frame    You might wonder why 

we need Newton’s first law—isn’t it just a special case of the second law when     ∑ F⃗ = 0?   

No, the first law  defines  what kind of reference frame we can use when applying the sec-

ond law. For the second law to be valid, we must use an  inertial reference frame —a ref-

erence frame in which the law of inertia holds—to observe the motion of objects. The 

law of inertia is a  postulate  of classical mechanics—an assumption that is used as a start-

ing point. It is not something we can prove experimentally. 

 Is a reference frame attached to Earth’s surface truly inertial? No, but it is close 

enough in many circumstances. When analyzing the motion of a soccer ball, the fact 

that Earth rotates about its axis does not have much effect. But if we want to analyze the 

motion of a meteor falling from a great distance toward Earth, Earth’s rotation must be 

considered. We will take a closer look at the effect of Earth’s rotation in Chapter 5.     

   4.10  APPARENT WEIGHT 

  Imagine being in an elevator when the cable snaps. Assume that some safety mecha-

nism brings you to rest after you have been in free fall for a while. While you are in free 

fall, you  seem  to be “weightless,” but your weight has not changed; the Earth still pulls 

downward with the same gravitational force. In free fall, gravity gives the elevator and 

everything in it a downward acceleration equal to      g⃗.   If you jump up from the elevator 

floor, you seem to “float” up to the ceiling of the elevator. Your  weight  hasn’t changed, 

but your  apparent  weight is zero while you are in free fall. 

 Similarly, astronauts in a space station in orbit around the Earth are in free fall 

(their acceleration is equal to the local value of       g⃗  ). Earth exerts a gravitational force on 

them so they are not weightless; their  apparent  weight is zero. 

 Imagine an object that appears to be resting on a bathroom scale. The scale mea-

sures the object’s  apparent  weight  W  ′ , which is equal to the true weight only if the 

object and the scale have zero acceleration. Newton’s second law requires that

    ∑ F⃗ =   N⃗ + m  g⃗ = ma ⃗   

 where       N⃗   is the normal force of the scale pushing up. The apparent weight  W  ′  is the 

reading of the scale—that is, the magnitude of       N⃗:  

W′ =    N⃗   = N

        In  Fig. 4.55a , the acceleration of the elevator is upward. The normal force must be 

larger than the weight for the net force to be upward ( Fig. 4.55b ). Writing the forces in 

component form where the  +  y -direction is upward

∑Fy = N − mg = may

or

N = mg + may

Greg
Tim vTG

Figure 4.54 Greg’s frame of 

reference is that of the ground; 

Tim’s is that of the train, which 

moves at constant velocity v ⃗TG 

with respect to the ground.
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(a)

a

(b)

N

mg

Free-body

diagram

y

(c)

ΣF

Vector sum of forces

ΣF = N + mg = ma

ΣF is upward so
N > mg

mgN

Figure 4.55 (a) Apparent 

weight in an elevator with accel-

eration upward. (b) FBD for the 

passenger. (c) The normal force 

must be greater than the weight 

to have an upward net force.

(a)

a

(b)

N

mg

Free-body

diagram

y

(c)

ΣF

Vector sum of forces

ΣF = N + mg = ma

ΣF is downward so
N < mg

mg

N

Figure 4.56 (a) Apparent 

weight in an elevator with accel-

eration downward. (b) FBD for 

the passenger. (c) The normal 

force must be less than the 

weight to have a downward net 

force.

Therefore,   

W′ = N = m(g + ay)  (4-16)

 Since the elevator’s acceleration is upward,  a   y   > 0; the apparent weight is greater than 

the true weight ( Fig. 4.55c ). 

 In  Fig. 4.56a , the acceleration is downward. Then the net force must also point 

downward. The normal force is still upward, but it must be smaller than the weight in 

order to produce a downward net force ( Fig. 4.56b ). It is still true that  W  ′   =   m ( g   +   a   y  ), 

but now the acceleration is downward ( a   y   < 0). The apparent weight is less than the true 

weight ( Fig. 4.56c ). If the elevator is in free fall, then  a   y    =   −  g  and the apparent weight of 

the unfortunate passenger is zero. 

floor and has pushed the button for the fifteenth floor; the 

elevator is beginning to move upward. (b) The elevator is 

slowing down as it nears the fifteenth floor.

Example 4.19

Apparent Weight in an Elevator

A passenger weighing 598 N rides in an elevator. What is 

the apparent weight of the passenger in each of the follow-

ing situations? In each case, the magnitude of the elevator’s 

acceleration is 0.500 m/s2. (a) The passenger is on the first 

continued on next page



a

W

N

Figure 4.57

FBD for the passenger in an elevator with upward 

acceleration.

a

W

N

Figure 4.58

FBD for the passenger in an elevator with downward 

acceleration.

Example 4.19 continued

Strategy In each case, we sketch the FBD for the passen-

ger. The apparent weight is equal to the magnitude of the 

normal force exerted by the floor on the passenger. The only 

other force acting is gravity. Newton’s second law lets us 

find the normal force from the weight and the acceleration. 

Known: W = 598 N; magnitude of the acceleration is 

a = 0.500 m/s2. To find: W′.

Solution (a) Let the +y-axis be upward. When the elevator 

starts up from the first floor it has acceleration in the upward 

direction as its speed increases. Since the elevator’s acceler-

ation is upward, ay > 0 (as in Fig. 4.55). We expect the appar-

ent weight W′ = N to be greater than the true weight—the 

floor must push up with a force greater than W to cause an 

upward acceleration. Figure 4.57 is the FBD. Newton’s sec-

ond law says

∑Fy = N − W = may

Since W = mg, we can substitute m = W/g.

W′ = N = W + may = W +   W __ g   ay = W  ( 1 +   
ay

 __ g   ) 

 = 598 N ×  ( 1 +   0.500 m/ s 2  _________ 
9.80 m/ s 2 

   )  = 629 N

(b) When the elevator approaches the fifteenth floor, it 

is slowing down while still moving upward; its acceleration 

is downward (ay < 0) as in Fig. 4.56. The apparent weight is 

less than the true weight. Figure 4.58 is the FBD. Again, 

∑ Fy = N − W = may, but this time ay = −0.500 m/s2.

 N = W  ( 1 +   
ay

 __ g   ) 
= 598 N ×  ( 1 +   −0.500 m/ s 2  __________ 

9.80 m/ s 2 
   )  = 567 N

Discussion The apparent weight is greater when the direc-

tion of the elevator’s acceleration is upward. That can hap-

pen in two cases: either the elevator is moving up with 

increasing speed, or it is moving down with decreasing 

speed.

Practice Problem 4.19 Elevator Descending

What is the apparent weight of a passenger of mass 42.0 kg 

traveling in an elevator in each of the following situations? 

In each case, the magnitude of the elevator’s acceleration is 

0.460 m/s2. (a) The passenger is on the fifteenth floor and 

has pushed the button for the first floor; the elevator is begin-

ning to move downward. (b) The elevator is slowing down 

as it nears the first floor.

PHYSICS AT HOME

Take a bathroom scale to an elevator. Stand on the scale inside the elevator and 

push a button for a higher floor. When the elevator’s acceleration is upward, you 

can feel the increase in your apparent weight and can see the increase by the 

reading on the scale. When the elevator slows down to stop, the elevator’s accel-

eration is downward and your apparent weight is less than your true weight.

What is happening in your body while the elevator accelerates? The inertia 

principle means that your blood and internal organs cannot have the same 

acceleration as the elevator until the correct net force acts on them. Blood 

tends to collect in the lower extremities during acceleration upward and in the 

upper body during acceleration downward until the forces exerted on the blood 

by the body readjust to give the blood the same acceleration as the elevator. 

Likewise, the internal organs shift position within the body cavity, resulting in a 

funny feeling in the gut as the elevator starts and stops. To avoid this problem, 

high-speed express elevators in skyscrapers keep the acceleration relatively 

small, but maintain that acceleration long enough to reach high speeds. That 

way, the elevator can travel quickly to the upper floors without making the pas-

sengers feel too uncomfortable.
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CHECKPOINT 4.10

You are standing on a bathroom scale in an elevator that is moving downward. 

Nearing your stop, the elevator’s speed is decreasing. Is the scale reading greater 

or less than your weight?

   4.11  AIR RESISTANCE 

  So far we have ignored the effect of air resistance on falling objects and projectiles. A 

skydiver relies on a parachute to provide a large force of air resistance (also called 

  drag   ). Even with the parachute closed, drag is not negligible when the skydiver is fall-

ing rapidly. The drag force is similar to friction between two solid surfaces in that the 

direction of the force  opposes the motion  of the object through the air. However, in con-

trast to the force of friction, the magnitude of the drag force is strongly dependent on 

the speed of the object. In many cases, air drag is proportional to the square of the 

speed. Drag also depends on the size and shape of the object. 

 Since the drag force increases as the speed increases, a falling object approaches an 

equilibrium situation in which the drag force is equal in magnitude to the weight but 

opposite in direction. The velocity at which this equilibrium occurs is called the object’s 

terminal velocity.  (See text website for a more detailed treatment of drag.)   

PHYSICS AT HOME

Drop a basket-style paper coffee filter (or a cupcake paper) and a penny simul-

taneously from as close to the ceiling as you can safely do so. Air resistance on 

the penny is negligible unless it is dropped from a very high balcony. At the 

other extreme, the effect of air resistance on the coffee filter is very noticeable; 

it reaches its terminal speed almost immediately. Stack several (two to four) 

coffee filters together and drop them simultaneously with a single coffee filter. 

Why is the terminal speed higher for the stack? Crumple a coffee filter into a 

ball and drop it simultaneously with the penny. Air resistance on the coffee fil-

ter is now reduced, but still noticeable.

   4.12  FUNDAMENTAL FORCES 

  One of the main goals of physics has been to understand the immense variety of forces 

in the universe in terms of the fewest number of fundamental laws. Physics has made 

great progress in this quest for  unification;  today all forces are understood in terms of 

just four fundamental interactions ( Fig. 4.59 ). At the high temperatures present in the 

early universe, two of these interactions—the electromagnetic and weak forces—are 

now understood as the effects of a single electroweak interaction. The ultimate goal is 

to describe all forces in terms of a single interaction. 

      Gravity    You may be surprised to learn that gravity is by far the  weakest  of the fun-

damental forces. Any two objects exert gravitational forces on one another, but the 

force is tiny unless at least one of the masses is large. We tend to notice the relatively 

large gravitational forces exerted by planets and stars, but not the feeble gravitational 



forces exerted by smaller objects, such as the gravitational force this book exerts on 

your body. 

 Gravity has an unlimited range. The force gets weaker as the distance between 

two objects increases, but it never drops exactly to zero, no matter how far apart the 

objects get. 

 Newton’s law of gravity is an early example of unification. Before Newton, people 

did not understand that the same kind of force that makes an apple fall from a tree also 

keeps the planets in their orbits around the Sun. A single law—Newton’s law of univer-

sal gravitation—describes both.  

   Electromagnetism    The electromagnetic force is unlimited in range, like gravity. It 

acts on particles with electric charge. The electric and magnetic forces were unified into 

a single theoretical framework in the nineteenth century. We study electromagnetic 

forces in detail in Part 3 of this book. 

 Electromagnetism is the fundamental interaction that binds electrons to nuclei to 

form atoms and binds atoms together in molecules and solids. It is responsible for the 

properties of solids, liquids, and gases and forms the basis of the sciences of chemistry 

and biology. It is the fundamental interaction behind all macroscopic contact forces 

such as the frictional and normal forces between surfaces and forces exerted by springs, 

muscles, and the wind. 

 The electromagnetic force is  much  stronger than gravity. For example, the electri-

cal repulsion of two electrons at rest is about 10 43  times as strong as the gravitational 

attraction between them. Macroscopic objects have a nearly perfect balance of positive 

and negative electric charge, resulting in a nearly perfect balance of attractive and 

repulsive electromagnetic forces between the objects. Therefore, despite the funda-

mental strength of the electromagnetic forces, the net electromagnetic force between 

two macroscopic objects is often negligibly small except when atoms on the two sur-

faces come very close to each other—what we think of as  in contact.  On a microscopic 

level, there is no fundamental difference between contact forces and other electromag-

netic forces.  

Electricity Magnetism

Electromagnetism

Strong force

Weak
force

Gravitation

Earth’s gravity

Gravity of the Sun
and stars

Figure 4.59 All forces result from just four fundamental forces: gravity, electromagnetism, and the weak and strong 

forces.
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   The Strong Force    The strong force holds protons and neutrons together in the atomic 

nucleus. The same force binds quarks (a family of elementary particles) in combina-

tions so they can form protons and neutrons and many more exotic subatomic particles. 

The strong force is the strongest of the four fundamental forces—hence its name—but 

its range is short: its effect is negligible at distances much larger than the size of an 

atomic nucleus (about 10 −15   m).  

   The Weak Force    The range of the weak force is even shorter than that of the strong 

force (about 10 −17  m). It is manifest in many radioactive decay processes.       

Master the Concepts

 • A force is a push or a pull. Gravity and electromagnetic 

forces have unlimited range. All other forces exerted on 

macroscopic objects involve contact. Force is a vector 

quantity.

 • The SI unit of force is the newton: 1 N = 1 kg·m/s2.

 • The net force on a system is the vector sum of all the 

forces acting on it:

   F⃗net = ∑ F⃗ =  F⃗1 +  F⃗2 + ⋅ ⋅ ⋅ +  F⃗n (4-2)

  Since all the internal forces form interaction pairs, we 

need only sum the external forces.

 • Newton’s first law of motion: If zero net force acts on an 

object, then the object’s velocity does not change. 

Velocity is a vector whose magnitude is the speed at 

which the object moves and whose direction is the 

direction of motion.

 • Newton’s second law of motion relates the net force act-

ing on an object to the object’s acceleration and its 

mass:

  a ⃗ =   
∑ F⃗

 ____ m   or ∑ F⃗ = ma ⃗ (4-4)

  The acceleration is always in the same direction as the 

net force. Many problems involving Newton’s second 

law—whether equilibrium or nonequilibrium—can be 

solved by treating the x- and y-components of the forces 

and the acceleration separately:

  ∑Fx = max and ∑Fy = may (4-5)

a

ΣF

a

ΣF

 • Newton’s third law of motion: In an interaction between 

two objects, each object exerts a force on the other. 

These two forces are equal in magnitude and opposite 

in direction.

 • A free-body diagram (FBD) includes vector arrows 

representing every force acting on the chosen object 

due to some other object, but no forces acting on other 

objects.

L

Up

Down

West East

T

W

D

 • The magnitude of the gravitational force between two 

objects is

  F =   
G m  1  m  2  _______ 

r2
   (4-7)

  where r is the distance between their centers. Each 

object is pulled toward the other’s center.

 • The weight of an object is the magnitude of the gravita-

tional force acting on it. An object’s weight is propor-

tional to its mass: W = mg [Eq. (4-10)], where g is the 

gravitational field strength. Near Earth’s surface, 

g ≈ 9.80 N/kg.

 • The normal force is a contact force perpendicular to the 

contact surfaces that pushes each object away from the 

other.

W

N

 • Friction is a contact force parallel to the contact sur-

faces. In a simplified model, the kinetic frictional force 

and the maximum static frictional force are proportional 

continued on next page



Conceptual Questions

 1. Explain the need for automobile seat belts in terms of 

Newton’s first law.

 2. An American visitor to Finland is surprised to see heavy 

metal frames outside of all the apartment buildings. On 

Saturday morning the purpose of the frames becomes 

evident when several apartment dwellers appear, carry-

ing rugs and carpet beaters to each frame. What role 

does the principle of inertia play in the rug beating pro-

cess? Do you see a similarity to the role the principle of 

inertia plays when you throw a baseball?

 3. You are lying on the beach after a dip in the ocean where 

the waves were buffeting you around. Is it true that there 

are now no forces acting on you? Explain.

 4. A dog goes swimming at the beach and then shakes 

himself all over to get dry. What principle of physics 

aids in the drying process? Explain.

 5. In an attempt to tighten 

the loosened steel head of 

a hammer, a carpenter 

holds the hammer verti-

cally, raises it up, and then 

brings it down rapidly, 

hitting the bottom end of 

the wood handle on a two-

by-four board. Explain 

how this tightens the head 

back onto the handle.

 6. When a car begins to 

move forward, what force 

makes it do so? Remem-

ber that it has to be an external force; the internal forces 

all add to zero. How does the engine facilitate the pro-

pelling force?

 7. Two cars are headed toward each other in opposite 

directions along a narrow country road. The cars collide 

head-on, crumpling up the hoods of both. Describe what 

happens to the car bodies in terms of the principle of 

inertia. Does the rear end of the car stop at the same 

time as the front end?

 8. Can a body in free fall be in equilibrium? Explain.

 9. (a) What assumptions do you make when you call the 

reading of a bathroom scale your “weight”? What does the 

scale really tell you? (b) Under what circumstances might 

the reading of the scale not be equal to your weight?

 10. A freight train consists of an engine and several identi-

cal cars on level ground. Determine whether each of 

these statements is correct or incorrect and explain why. 

(a) If the train is moving at constant speed, the engine 

must be pulling with a force greater than the train’s 

weight. (b) If the train is moving at constant speed, the 

engine’s pull on the first car must exceed that car’s 

backward pull on the engine. (c) If the train is coasting, 

its inertia makes it slow down and eventually stop.

 11. (a) Does a man weigh more at the North Pole or at 

the equator? (b) Does he weigh more at the top of 

Mt. Everest or at the base of the mountain?

 12. What is the acceleration of an object thrown straight up 

into the air at the highest point of its motion? Does the 

answer depend on whether air resistance is negligible or 

not? Explain.

 13. If a wagon starts at rest and pulls back on you with a 

force equal to the force you pull on it, as required by 

Newton’s third law, how is it possible for you to make 

the wagon start to move? Explain.
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to the normal force acting between the same contact 

surfaces.

  fs ≤ msN (4-14)

  fk = mkN (4-15)

  The static frictional force acts in the direction that tends 

to keep the surfaces from beginning to slide. The direc-

tion of the kinetic frictional force is in the direction that 

would tend to make the sliding stop.

 • An ideal cord pulls in the direction of the cord with 

forces of equal magnitude on the objects attached to its 

ends as long as no external force tangent to the cord is 

exerted on it anywhere between the ends. The tension of 

an ideal cord that runs through an ideal pulley is the 

same on both sides of the pulley.

 • An object that is accelerating has an apparent weight 

that differs from its true weight. The apparent weight is 

equal to the normal force exerted by a supporting sur-

face with the same acceleration. A helpful trick is to 

think of the apparent weight as the reading of a bath-

room scale that supports the object.

 • The drag force exerted on an object moving through air 

opposes the motion of the object but, unlike kinetic fric-

tion, is strongly dependent on the object’s speed. When 

an object falls at its terminal velocity, the drag force is 

equal and opposite to the gravitational force, so the 

acceleration is zero.

 • At the fundamental level, there are four interactions: 

gravity, the strong and weak interactions, and the elec-

tromagnetic interaction. Contact forces are large-scale 

manifestations of many microscopic electromagnetic 

interactions.

Master the Concepts continued
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   23. The net force acting on an object is constant. Under 

what circumstances does the object move along a 

straight line? Under what circumstances does the object 

move along a curved path?  

   24. Pulleys and inclined planes are examples of  simple 

machines.  Explain what these machines do in Exam-

ples 4.10, 4.12, and 4.16 to make a task easier to 

perform.  

   25. For a problem about a crate sliding along an inclined 

plane, is it possible to choose the  x -axis so that it is par-

allel to the incline?  

   26. A bird sits on a stretched clothesline, causing it to sag 

slightly. Is the tension in the line greatest where the bird 

sits, greater at either end of the line where it is attached 

to poles, or the same everywhere along the line? Treat 

the line as an ideal cord with negligible weight.  

   27. You decide to test your physics knowledge while going 

over a waterfall in a barrel. You take a baseball into the 

barrel with you and as you are falling vertically down-

ward, you let go of the ball. What do you expect to see for 

the motion of the ball relative to the barrel? Will the ball 

fall faster than you and move toward the bottom of the 

barrel? Will it move slower than you and approach the top 

of the barrel, or will it hover apparently motionless within 

the falling barrel? Explain. [Warning: Do not try this.]  

  Multiple-Choice Questions 

    1. Interaction partners

    (a)  are equal in magnitude and opposite in direction and 

act on the same object.  

   (b)  are equal in magnitude and opposite in direction and 

act on different objects.  

   (c) appear in an FBD for a given object.  

   (d) always involve gravitational force as one partner.  

   (e) act in the same direction on the same object.     

   2. Within a given system, the internal forces

    (a) are always balanced by the external forces.  

   (b) all add to zero.  

   (c)  are determined only by subtracting the external 

forces from the net force on the system.  

   (d) determine the motion of the system.  

   (e) can never add to zero.     

   3. A friction force is

    (a)  a contact force that acts parallel to the contact 

surfaces.  

   (b)  a contact force that acts perpendicular to the contact 

surfaces.  

   (c)  a scalar quantity since it can act in any direction 

along a surface.  

   (d) always proportional to the weight of an object.  

   (e)  always equal to the normal force between the objects.     

 14. You are standing on a bathroom scale in an elevator. In 

which of these situations must the scale read the same 

as when the elevator is at rest? Explain. (a) Moving up 

at constant speed. (b) Moving up with increasing 

speed. (c) In free fall (after the elevator cable has 

snapped).

 15. A heavy ball hangs from a string attached to a sturdy 

wooden frame. A second string is attached to a hook on 

the bottom of the lead ball. You pull slowly and steadily 

on the lower string. Which string do you think will 

break first? Explain.

 16. An SUV collides with a Mini Cooper convertible. Is the 

force exerted on the Mini by the SUV greater than, 

equal to, or less than the force exerted on the SUV by 

the Mini? Explain.

 17. You are standing on one end of a light wooden raft that 

has floated 3 m away from the pier. If the raft is 6 m 

long by 2.5 m wide and you are standing on the 

raft end nearest to the pier, can you propel the raft 

back toward the pier where a friend is standing with 

a pole and hook trying to reach you? You have no oars. 

Make suggestions of what to do without getting 

yourself wet.

3 m

6 m

       18. What does it mean when we refer to a cord as an “ideal 

cord” and a pulley as an “ideal pulley”?  

   19. If a feather and a lead brick are dropped simultaneously 

from the top of a ladder, the lead brick hits the ground 

first. What would happen if the experiment is repeated 

on the surface of the Moon?  

   20. A baseball is tossed straight up. Taking into consider-

ation the force of air resistance, is the magnitude of 

the baseball’s acceleration zero, less than g, equal to g, 

or greater than g on the way up? At the top of the 

flight? On the way down? Explain. [ Hint:  The force of 

air resistance is directed opposite to the velocity. 

Assume in this case that its magnitude is less than the 

weight.]  

   21. Why might an elevator cable break during acceleration 

when lifting a lighter load than it normally supports at 

rest or at constant velocity?  

   22. If air resistance is ignored, what force(s) act on an object 

in free fall?  



   4. When a force is called a “normal” force, it is

    (a)  the usual force expected given the arrangement of a 

system.  

   (b)  a force that is perpendicular to the surface of the 

Earth at any given location.  

   (c) a force that is always vertical.  

   (d)  a contact force perpendicular to the contact surfaces 

between two solid objects.  

   (e) the net force acting on a system.     

   5. Your car won’t start, so you are pushing it. You apply a 

horizontal force of 300 N to the car, but it doesn’t budge. 

What force is the interaction partner of the 300 N force 

you exert?

    (a) the frictional force exerted on the car by the road  

   (b) the force exerted on you by the car  

   (c) the frictional force exerted on you by the road  

   (d) the normal force on you by the road  

   (e) the normal force on the car by the road     

   6. Which of these is not a long-range force?

    (a) the force that makes raindrops fall to the ground  

   (b) the force that makes a compass point north  

   (c)  the force that a person exerts on a chair while 

sitting  

   (d)  the force that keeps the Moon in its orbital path 

around the Earth     

   7. When an object is in translational equilibrium, which of 

these statements is  not  true?

    (a)  The vector sum of the forces acting on the object is 

zero.  

   (b) The object must be stationary.  

   (c) The object has a constant velocity.  

   (d) The speed of the object is constant.     

   8. To make an object start moving on a surface with fric-

tion requires

    (a) less force than to keep it moving on the surface.  

   (b)  the same force as to keep it moving on the 

surface.  

   (c) more force than to keep it moving on the surface.  

   (d) a force equal to the weight of the object.     

   9. A thin string that can support a weight of 35.0 N, but 

breaks under any larger weight, is attached to the ceil-

ing of an elevator. How large a mass can be attached to 

the string if the initial acceleration as the elevator starts 

to ascend is 3.20 m/s 2 ?

    (a) 3.57 kg  

   (b) 2.69 kg  

   (c) 4.26 kg  

   (d) 2.96 kg  

   (e) 5.30 kg     

   10. A woman stands on a bathroom scale in an elevator that 

is not moving. The scale reads 500 N. The elevator then 

moves downward at a constant velocity of 4.5 m/s. What 

does the scale read while the elevator descends with 

constant velocity?

    (a) 100 N    

 (b) 250 N    

 (c) 450 N  

   (d) 500 N    

 (e) 750 N     

   11. A 70.0-kg man stands on a bathroom scale in an 

elevator. What does the scale read if the elevator 

is slowing down at a rate of 3.00 m/s 2  while 

descending?

    (a) 70 kg     (b) 476 N     (c) 686 N  

   (d) 700 N     (e) 896 N     

   12. A space probe leaves the solar system to explore inter-

stellar space. Once it is far from any stars, when must it 

fire its rocket engines?

    (a) All the time, in order to keep moving.  

   (b) Only when it wants to speed up.  

   (c) When it wants to speed up or slow down.  

   (d) Only when it wants to turn.  

   (e) When it wants to speed up, slow down, or turn.     

   13. A small plane climbs with a constant velocity of 250 m/s 

at an angle of 28 °  with respect to the horizontal. Which 

statement is true concerning the magnitude of the net 

force on the plane?

    (a) It is equal to zero.  

   (b) It is equal to the weight of the plane.  

   (c)  It is equal to the magnitude of the force of air 

resistance.  

   (d)  It is less than the weight of the plane but greater than 

zero.  

   (e)  It is equal to the component of the weight of the 

plane in the direction of motion.     

   14. Two blocks are connected by a light string passing over 

a pulley (see the figure and    tutorial: pulley). The 

block with mass  m  1  slides on the frictionless horizontal 

surface, while the block with mass  m  2  hangs vertically. 

( m  1  >  m  2 .) The tension in the string is

    (a) zero.  

   (b) less than  m  2  g.   

   (c) equal to  m  2  g.   

   (d) greater than  m  2  g,  but less than  m  1  g.   

   (e) equal to  m  1  g.   

   (f) greater than  m  1  g.       

m1

m2
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      Problems 

 Combination conceptual/quantitative problem  

 Biological or medical application  

✦ Challenging problem  

Blue # Detailed solution in the Student Solutions Manual  

1  2  Problems paired by concept  

 Text website interactive or    tutorial

 4.1 Force 

1. A person is standing on a bathroom scale. Which of the 

following is  not  a force exerted  on the scale:  a contact 

force due to the floor, a contact force due to the per-

son’s feet, the weight of the person, the weight of the 

scale?  

 2. A sack of flour has a weight of 19.8 N. What is its 

weight in pounds?  

3. An astronaut weighs 175 lb. What is his weight in 

newtons?  

   4. Does the concept of a contact force apply to both a mac-

roscopic scale and an atomic scale? Explain.  

5. A force of 20 N is directed at an angle of 60 °  above the 

x -axis. A second force of 20 N is directed at an angle of 

60 °  below the  x -axis. What is the vector sum of these 

two forces?  

   6. Juan is helping his mother rearrange the living room 

furniture. Juan pushes on the armchair with a force of 

30 N directed at an angle of 15 °  above a horizontal line 

while his mother pushes with a force of 40 N directed at 

an angle of 20 °  below the same horizontal. What is the 

vector sum of these two forces? 

       7. In the drawing, what is the vector sum of forces       ⃗A +  ⃗B +  ⃗C   

if each grid square is 2 N on a side? 

C

A

B

EW

S

N

 8. In the drawing, what is the vector sum of forces   ⃗D +  ⃗E +  ⃗F

if each grid square is 2 N on a side?

D

E

F

EW

S

N

9. Two of Robin Hood’s men are pulling a sledge loaded 

with some gold along a path that runs due north to their 

hideout. One man pulls his rope with a force of 62 N at 

an angle of 12° east of north and the other pulls with the 

same force at an angle of 12° west of north. Assume the 

ropes are parallel to the ground. What is the sum of 

these two forces on the sledge?

 10. A barge is hauled along a straight-line section of canal 

by two horses harnessed to tow ropes and walking 

along the tow paths on either side of the canal. Each 

horse pulls with a force of 560 N at an angle of 15°

with the centerline of the canal. Find the sum of the 

two forces exerted by the horses on the barge.

 11. On her way to visit Grandmother, Red Riding Hood sat 

down to rest and placed her 1.2-kg basket of goodies 

beside her. A wolf came along, spotted the basket, and 

began to pull on the handle with a force of 6.4 N at an 

angle of 25° with respect to vertical. Red was not going 

to let go easily, so she pulled on the handle with a force 

of 12 N. If the net force on the basket is straight up, at 

what angle was Red Riding Hood pulling?

 12. A parked automobile slips out of gear, rolls unat-

tended down a slight incline, and then along a level 

road until it hits a stone wall. Draw an FBD to show 

the forces acting on the car while it is in contact with 

the wall.

13. Two objects, A and B, are acted on by the forces shown 

in the FBDs. Is the magnitude of the net force acting on 

object B greater than, less than, or equal to the magni-

tude of the net force acting on object A? Make a scale 

drawing on graph paper and explain the result.

2 N2 N

2 N2 N

4 N 4 N

B

A

45° 45°

45° 45°

14. Find the magnitude and direction of the net force on the 

object in each of the FBDs for this problem.

(b)

(a)

10 N 10 N

18 N 18 N

18 N

(c)

10 N 10 N

10 N 40 N



15. A truck driving on a level highway is acted on by the 

following forces: a downward gravitational force of 

52 kN (kilonewtons); an upward contact force due to 

the road of 52 kN; another contact force due to the road 

of 7 kN, directed east; and a drag force due to air resis-

tance of 5 kN, directed west. What is the net force act-

ing on the truck?

4.2 Inertia and Equilibrium: Newton’s First Law 
of Motion; 4.3 Net Force, Mass, and Acceleration: 
Newton’s Second Law of Motion

 16. A sailboat, tied to a mooring with a line, weighs 820 N. 

The mooring line pulls horizontally toward the west on 

the sailboat with a force of 110 N. The sails are stowed 

away and the wind blows from the west. The boat is 

moored on a still lake—no water currents push on it. 

Draw an FBD for the sailboat and indicate the magni-

tude of each force.

17. A hummingbird is hovering motionless beside a flower. 

The blur of its wings shows that they are rapidly beating 

up and down. If the air pushes upward on the bird 

with a force of 0.30 N, what is the weight of the 

hummingbird?

 18. You are pulling a suitcase through the airport at a con-

stant speed. The handle of the suitcase makes an angle 

of 60° with respect to the horizontal direction. If you 

pull with a force of 5.0 N parallel to the handle, what is 

the contact force due to the floor acting on the 

suitcase?

 19. A model sailboat is slowly sailing west across a pond at 

0.33 m/s. A gust of wind blowing at 28° south of west 

gives the sailboat a constant acceleration of magnitude 

0.30 m/s2 during a time interval of 2.0 s. (a) If the net 

force on the sailboat during the 2.0-s interval has mag-

nitude 0.375 N, what is the sailboat’s mass? (b) What is 

the new velocity of the boat after the 2.0-s gust of 

wind?

 20. A man is lazily floating on an air mattress in a swim-

ming pool. If the weight of the man and air mattress 

together is 806 N, what is the upward force of the water 

acting on the mattress?

21. A bag of potatoes with weight 39.2 N is suspended from 

a string that exerts a force of 46.8 N. If the bag’s accel-

eration is upward at 1.90 m/s2, what is the mass of the 

potatoes?

 22. A 2010-kg elevator moves with an upward acceleration 

of 1.50 m/s2. What is the force exerted by the cable on 

the elevator?

 23. While an elevator of mass 2530 kg moves upward, the 

force exerted by the cable is 33.6 kN. (a) What is the 

acceleration of the elevator? (b) If at some point in 

the motion the velocity of the elevator is 1.20 m/s 

upward, what is the elevator’s velocity 4.00 s later?

 24. The vertical component of the acceleration of a sail-

plane is zero when the air pushes up against its wings 

with a force of 3.0 kN. (a) Assuming that the only forces 

on the sailplane are that due to gravity and that due to 

the air pushing against its wings, what is the gravita-

tional force on the Earth due to the sailplane? (b) If the 

wing stalls and the upward force decreases to 2.0 kN, 

what is the acceleration of the sailplane?

25. A man lifts a 2.0-kg stone vertically with his hand at a 

constant upward velocity of 1.5 m/s. What is the mag-

nitude of the total force of the man’s hand on the 

stone?

 26. A man lifts a 2.0-kg stone vertically with his hand at a 

constant upward acceleration of 1.5 m/s2. What is the 

magnitude of the total force of the man’s hand on the 

stone?

 27. What is the acceleration of an automobile of mass 

1.40  × 103  kg when it is subjected to a forward force of 

3.36  × 103  N?

 28. A large wooden crate is pushed along a smooth, fric-

tionless surface by a force of 100 N. The acceleration of 

the crate is measured to be 2.5  m/s2. What is the mass 

of the crate?

29. The forces on a small airplane (mass 1160 kg) in hori-

zontal flight heading eastward are as follows: gravi-

ty = 16.000 kN downward, lift = 16.000 kN upward, 

thrust = 1.800 kN eastward, and drag = 1.400 kN west-

ward. At t = 0, the plane’s speed is 60.0 m/s. If the 

forces remain constant, how far does the plane travel in 

the next 60.0 s?

 30. While an elevator of mass 832 kg moves downward, the 

tension in the supporting cable is a constant 7730 N. 

Between t = 0 and t = 4.00 s, the elevator’s displace-

ment is 5.00 m downward. What is the elevator’s speed 

at t = 4.00 s?

4.4 Interaction Pairs: Newton’s Third Law of 
Motion

 31. A hanging potted plant is suspended by a cord from a 

hook in the ceiling. Draw an FBD for each of these: 

(a) the system consisting of plant, soil, and pot; (b) the 

cord; (c) the hook; (d) the system consisting of plant, 

soil, pot, cord, and hook. Label each force arrow using 

subscripts (for example,  F⃗ch would represent the force 

exerted on the cord by the hook).

 32. A bike is hanging from a hook in a garage. Consider the 

following forces: (a) the force of the Earth pulling down 

on the bike, (b) the force of the bike pulling up on the 

Earth, (c) the force of the hook pulling up on the bike, 

and (d) the force of the hook pulling down on the ceil-

ing. Which two forces are equal and opposite because 

of Newton’s third law? Which two forces are equal and 

opposite because of Newton’s first law?
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33. A woman who weighs 600 N sits on a chair with her 

feet on the floor and her arms resting on the chair’s arm-

rests. The chair weighs 100 N. Each armrest exerts an 

upward force of 25 N on her arms. The seat of the chair 

exerts an upward force of 500 N. (a) What force does 

the floor exert on her feet? (b) What force does the floor 

exert on the chair? (c) Consider the woman and the 

chair to be a single system. Draw an FBD for this sys-

tem that includes all of the external forces acting on it.

34. A fisherman is holding a fishing rod with a large fish 

suspended from the line of the rod. Identify the forces 

acting on the rod and their interaction partners.

35. A fish is suspended by a line from a fishing rod. Choose 

two forces acting on the fish and describe the interac-

tion partner of each.

Problems 34 and 35

36. A skydiver, who weighs 650 N, is falling at a constant 

speed with his parachute open. Consider the apparatus 

that connects the parachute to the skydiver to be part of 

the parachute. The parachute pulls upward with a force 

of 620 N. (a) What is the force of the air resistance act-

ing on the skydiver? (b) Identify the forces and the 

interaction partners of each force exerted on the sky-

diver. (c) Identify the forces and interaction partners of 

each force exerted on the parachute.

37. Margie, who weighs 543 N, is standing on a bathroom 

scale that weighs 45 N. (a) With what force does the scale 

push up on Margie? (b) What is the interaction partner of 

that force? (c) With what force does the Earth push up on 

the scale? (d) Identify the interaction partner of that force.

   38. Refer to Problem 36. Consider the skydiver and para-

chute to be a single system. What are the external forces 

acting on this system?  

  4.5 Gravitational Forces 

    39. (a) Calculate your weight in newtons. (b) What is the 

weight in newtons of 250 g of cheese? (c) Name a com-

mon object whose weight is about 1 N.  

   40. A young South African girl has a mass of 40.0 kg. 

(a) What is her weight in newtons? (b) If she came to the 

United States, what would her weight be in pounds as 

measured on an American scale? Assume  g   =  9.80 N/kg 

in both locations.  

✦✦

41. A man weighs 0.80 kN on Earth. What is his mass in 

kilograms?  

   42. An astronaut stands at a position on the Moon such that 

Earth is directly over head and releases a Moon rock 

that was in her hand. (a) Which way will it fall? 

(b) What is the gravitational force exerted by the Moon 

on a 1.0-kg rock resting on the Moon’s surface? 

(c) What is the gravitational force exerted by the Earth 

on the same 1.0-kg rock resting on the surface of the 

Moon? (d) What is the net gravitational force on the 

rock?  

   43. Alex is on stage playing his bass guitar. Estimate the 

magnitude of the  gravitational  attraction between Alex 

and Pat, a fan who is standing 8 m from Alex. Alex has 

a mass of 55 kg and Pat has a mass of 40 kg.  

   44. The Space Shuttle carries a satellite in its cargo bay and 

places it into orbit around the Earth. Find the ratio of the 

Earth’s gravitational force on the satellite when it is on 

a launch pad at the Kennedy Space Center to the gravi-

tational force exerted when the satellite is orbiting 

6.00   ×  10 3   km above the launch pad.  

45. How far above the surface of the Earth does an object 

have to be in order for it to have the same weight as it 

would have on the surface of the Moon? (Ignore any 

effects from the Earth’s gravity for the object on the 

Moon’s surface or from the Moon’s gravity for the 

object above the Earth.)  

   46. Find and compare the weight of a 65-kg man on Earth 

with the weight of the same man on (a) Mars, where 

g   =  3.7 N/kg; (b) Venus, where  g   =  8.9 N/kg; and 

(c) Earth’s Moon, where  g   =  1.6 N/kg.  

   47. Find the altitudes above the Earth’s surface where 

Earth’s gravitational field strength would be (a) two 

thirds and (b) one third of its value at the surface. 

[ Hint:  First find the radius for each situation; then 

recall that the altitude is the distance from the  surface

to a point above the surface. Use proportional 

reasoning.]  

   48. During a balloon ascension, wearing an oxygen mask, 

you measure the weight of a calibrated 5.00-kg mass 

and find that the value of the gravitational field strength 

at your location is 9.792 N/kg. How high above sea 

level, where the gravitational field strength was mea-

sured to be 9.803 N/kg, are you located?  

49. At what altitude above the Earth’s surface would your 

weight be half of what it is at the Earth’s surface?  

   50. (a) What is the magnitude of the gravitational force that 

the Earth exerts on the Moon? (b) What is the magni-

tude of the gravitational force that the Moon exerts on 

the Earth? See the inside front and back covers for nec-

essary information.  



   51. What is the approximate magnitude of the gravita-

tional force between the Earth and the Voyager space-

craft when they are separated by 15 billion km? Each 

spacecraft has a mass of approximately 825 kg 

during the mission, although the mass at launch 

was 2100 kg because of expendable Titan-Centaur 

rockets.  

52. In free fall, we assume the acceleration to be constant. 

Not only is air resistance ignored, but the gravitational 

field strength is assumed to be constant. From what 

height can an object fall to the Earth’s surface such that 

the gravitational field strength changes less than 1.000% 

during the fall?    

  4.6 Contact Forces 

53. A book rests on the surface of the table. Consider the 

following four forces that arise in this situation: (a) the 

force of the Earth pulling on the book, (b) the force of 

the table pushing on the book, (c) the force of the book 

pushing on the table, and (d) the force of the book pull-

ing on the Earth. The book is not moving. Which pair of 

forces must be equal in magnitude and opposite in 

direction even though they are  not  an interaction pair?  

   54. A crate full of artichokes rests on a ramp that is 

inclined 10.0 °  above the horizontal. Give the direction 

of the normal force and the friction force acting on the 

crate in each of these situations. (a) The crate is at rest. 

(b) The crate is being pushed and is sliding up the 

ramp. (c) The crate is being pushed and is sliding down 

the ramp.  

   55. Mechanical advantage is the ratio of the force required 

without the use of a simple machine to that needed 

when using the simple machine. Compare the force to 

lift an object with that needed to slide the same object 

up a frictionless incline and show that the mechanical 

advantage of the inclined plane is the length of 

the incline divided by the height of the incline ( d/h  in 

 Fig. 4.25 ).  

   56. An 80.0-N crate of apples sits at rest on a ramp that runs 

from the ground to the bed of a truck. The ramp is 

inclined at 20.0 °  to the ground. (a) What is the normal 

force exerted on the crate by the ramp? (b) The interac-

tion partner of this normal force has what magnitude 

and direction? It is exerted  by  what object  on  what 

object? Is it a contact or a long-range force? (c) What is 

the static frictional force exerted on the crate by the 

ramp? (d) What is the minimum possible value of the 

coefficient of static friction? (e) The normal and fric-

tional forces are perpendicular components of the con-

tact force exerted on the crate by the ramp. Find the 

magnitude and direction of the contact force.  

✦✦

57. An 85-kg skier is sliding down a ski slope at a constant 

velocity. The slope makes an angle of 11 °  above the 

horizontal direction. (a) Ignoring any air resistance, 

what is the force of kinetic friction acting on the skier? 

(b) What is the coefficient of kinetic friction between 

the skis and the snow?   

  Problems 58–60.  A crate of potatoes of mass 18.0 kg is on a 

ramp with angle of incline 30 °  to the horizontal. The coeffi-

cients of friction are  m  s   =  0.75 and  m  k   =  0.40. Find the fric-

tional force (magnitude and direction) on the crate if

    58. the crate is at rest.    

   59. the crate is sliding down the ramp.    

   60. the crate is sliding  up  the ramp.    

   61. You grab a book and give it a quick push across the 

top of a horizontal table. After a short push, the book 

slides across the table, and because of friction, comes 

to a stop. (a) Draw an FBD of the book while you are 

pushing it. (b) Draw an FBD of the book after you 

have stopped pushing it, while it is sliding across the 

table. (c) Draw an FBD of the book after it has 

stopped sliding. (d) In which of the preceding cases 

is the net force on the book not equal to zero? (e) If 

the book has a mass of 0.50 kg and the coefficient of 

friction between the book and the table is 0.40, what 

is the net force acting on the book in part (b)? (f) If 

there were no friction between the table and the book, 

what would the free-body diagram for part (b) look 

like? Would the book slow down in this case? Why or 

why not?  

   62. (a) In Example 4.10, if the movers stop pushing on 

the safe, can static friction hold the safe in place 

without having it slide back down? (b) If not, what 

minimum force needs to be applied to hold the safe 

in place?  

     63. A 3.0-kg block is at rest on a horizontal floor. If you 

push horizontally on the 3.0-kg block with a force of 

12.0 N, it just starts to move. (a) What is the coeffi-

cient of static friction? (b) A 7.0-kg block is stacked 

on top of the 3.0-kg block. What is the magnitude F of 

the force, acting horizontally on the 3.0-kg block as 

before, that is required to make the two blocks start to 

move?  

   64. A horse is trotting along pulling a sleigh through the 

snow. To move the sleigh, of mass  m,  straight ahead at a 

constant speed, the horse must pull with a force of mag-

nitude  T.  (a) What is the net force acting on the sleigh? 

(b) What is the coefficient of kinetic friction between 

the sleigh and the snow?  

     65. Before hanging new William Morris wallpaper in her 

bedroom, Brenda sanded the walls lightly to smooth out 

✦✦

✦✦
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some irregularities on the surface. The sanding block 

weighs 2.0 N and Brenda pushes on it with a force of 

3.0 N at an angle of 30.0 °  with respect to the vertical, 

and angled toward the wall. Draw an FBD for the sand-

ing block as it moves straight up the wall at a constant 

speed. What is the coefficient of kinetic friction between 

the wall and the block?  

   66. Four separate blocks are placed side by side in a left-to-

right row on a table. A horizontal force, acting toward 

the right, is applied to the block on the far left end of the 

row. Draw FBDs for (a) the second block on the left and 

for (b) the system of four blocks.  

67. A box sits on a horizontal wooden ramp. The coefficient 

of static friction between the box and the ramp is 0.30. 

You grab one end of the ramp and lift it up, keeping the 

other end of the ramp on the ground. What is the angle 

between the ramp and the horizontal direction when the 

box begins to slide down the ramp? (     tutorial: 

crate on ramp)  

68. In a playground, two slides have different angles of incline 

q   1  and  q   2  ( q   2  >  q   1 ). A child slides down the first at con-

stant speed; on the second, his acceleration down the slide 

is  a.  Assume the coefficient of kinetic friction is the same 

for both slides. (a) Find  a  in terms of  q   1 ,  q   2 , and  g.  

(b) Find the numerical value of  a  for  q   1   =  45 °  and  q   2   =  61 ° .     

  4.7 Tension 

    69. A sailboat is tied to a mooring with a horizontal line. 

The wind is from the southwest. Draw an FBD and 

identify all the forces acting on the sailboat.  

   70. A towline is attached between a car and a glider. As the 

car speeds due east along the runway, the towline exerts 

a horizontal force of 850 N on the glider. What is the 

magnitude and direction of the force exerted by the 

glider on the towline?  

   71.  In Example 4.14,  find the tension in the coupling 

between cars 2 and 3. (    tutorial: towing a 

train)  

   72. A 200.0-N sign is suspended from a horizontal strut of 

negligible weight. The force exerted on the strut by the 

wall is horizontal. Draw an FBD to show the forces 

acting on the strut. Find the tension  T  in the diagonal 

cable supporting the strut. 

T

30.0°

✦✦

✦✦

73. Two boxes with different masses are tied together on a 

frictionless ramp surface. What is the tension in each of 

the cords? 

2.0 kg

25°

1.0 kg

74. A pulley is attached to the ceiling. Spring scale A is 

attached to the wall and a rope runs horizontally from 

it and over the pulley. The same rope is then attached 

to spring scale B. On the other side of scale B hangs 

a 120-N weight. What are the readings of the two 

scales A and B? The weights of the scales are 

negligible. 

120 N

A

B

Pulley

75. Spring scale A is attached to the floor and a rope 

runs vertically upward, loops over the pulley, and 

runs down on the other side to a 120-N weight. Scale 

B is attached to the ceiling and the pulley is hung 

below it. What are the readings of the two spring 

scales, A and B? Neglect the weights of the pulley 

and scales. 

120 N
A

B

Pulley

        76. Two springs are connected in series so that spring scale 

A hangs from a hook on the ceiling and a second spring 

scale, B, hangs from the hook at the bottom of scale A. 



Apples weighing 120 N hang from the hook at the bot-

tom of scale B. What are the readings on the upper scale 

A and the lower scale B? Ignore the weights of the 

scales. 

B

A

        77. A pulley is hung from the ceiling by a rope. A block 

of mass  M  is suspended by another rope that passes 

over the pulley and is attached to the wall. The rope fas-

tened to the wall makes a right angle with the wall. 

Ignore the masses of the rope and the pulley. Find 

(a) the tension in the rope from which the pulley hangs 

and (b) the angle  q  that the rope makes with the 

ceiling. 

90°

zz

q

        78. A 2.0-kg ball tied to a string fixed to the ceiling is pulled 

to one side by a force      F⃗.   Just before the ball is released 

and allowed to swing back and forth, (a) how large is 

the force      F⃗   that is holding the ball in position and 

(b) what is the tension in the string? 

30.0°

2.0 kg

F

        79. A 45-N lithograph is supported by two wires. 

One wire makes a 25 °  angle with the vertical and 

the other makes a 15 °  angle with the vertical. Find 

the tension in each wire. (    tutorial: hanging 

picture)  

     80. A crow perches on a clothesline midway between two 

poles. Each end of the rope makes an angle of  q   below 

the horizontal where it connects to the pole. If the 

weight of the crow is  W,  what is the tension in the rope? 

Ignore the weight of the rope. 

qq

          81. The drawing shows an elastic cord attached to two 

back teeth and stretched across a front tooth. The pur-

pose of this arrangement is to apply a force      F⃗   to the 

front tooth. (The figure has been simplified by running 

the cord straight from the front tooth to the back teeth.) 

If the tension in the cord is 1.2 N, what are the magni-

tude and direction of the force      F⃗   applied to the front 

tooth? 

33° 33°

          82. A cord, with a spring balance to measure forces attached 

midway along, is hanging from a hook attached to the 

ceiling. A mass of 10 kg is hanging from the lower end 

of the cord. The spring balance indicates a reading of 

98 N for the force. Then two people hold the opposite 

ends of the same cord and pull against each other hori-

zontally until the balance in the middle again reads 

98 N. With what force must each person pull to attain 

this result?  

     83. Two blocks, masses  m  1  and  m  2 , are connected by a 

massless cord. If the two blocks are pulled with a con-

stant tension on a frictionless surface by applying a 

force of magnitude  T  2  to a second cord connected to  m  2 , 

what is the ratio of the tensions in the two cords  T  1 / T  2  in 

terms of the masses? 

m1 m2

T2T1

✦✦

✦✦

✦✦

✦✦
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         4.8 Applying Newton’s Second Law 

    84. A 6.0-kg block, starting from rest, slides down a friction-

less incline of length 2.0 m. When it arrives at the bottom 

of the incline, its speed is  v  f . At what distance from the 

top of the incline is the speed of the block 0.50  v  f ?  

85. The coefficient of static friction between a block and a 

horizontal floor is 0.40, while the coefficient of kinetic 

friction is 0.15. The mass of the block is 5.0 kg. A hori-

zontal force is applied to the block and slowly increased. 

(a) What is the value of the applied horizontal force at 

the instant that the block starts to slide? (b) What is the 

net force on the block after it starts to slide?  

   86. A 2.0-kg toy locomotive is pulling a 1.0-kg caboose. 

The frictional force of the track on the caboose is 0.50 N 

backward along the track. If the train’s acceleration for-

ward is 3.0 m/s 2 , what is the magnitude of the force 

exerted by the locomotive on the caboose?  

   87. A block of mass  m  1   =  3.0 kg rests on a frictionless hori-

zontal surface. A second block of mass  m  2   =  2.0 kg 

hangs from an ideal cord of negligible mass that runs 

over an ideal pulley and then is connected to the first 

block. The blocks are released from rest. (a) Find the 

acceleration of the two blocks after they are released. 

(b) What is the velocity of the first block 1.2 s after the 

release of the blocks, assuming the first block does not 

run out of room on the table and the second block does 

not land on the floor? (c) How far has block 1 moved 

during the 1.2-s interval? (d) What is the displacement 

of the blocks from their initial positions 0.40 s after they 

are released? 

m1

m2

Problems 87 and 153

        88. An engine pulls a train of 20 freight cars, each having a 

mass of 5.0   ×  10 4   kg with a constant force. The cars 

move from rest to a speed of 4.0 m/s in 20.0 s on a 

straight track. Ignoring friction, what is the force with 

which the 10th car pulls the 11th one (at the middle of 

the train)? (     tutorial: school bus)  

89. In  Fig. 4.44 , two blocks are connected by a lightweight, 

flexible cord that passes over a frictionless pulley. 

(a) If  m  1   =  3.0 kg and  m  2   =  5.0 kg, what are the accel-

erations of each block? (b) What is the tension in the 

cord?  

   90. A rope is attached from a truck to a 1400-kg car. The 

rope will break if the tension is greater than 2500 N. 

Ignoring friction, what is the maximum possible accel-

eration of the truck if the rope does not break? Should 

the driver of the truck be concerned that the rope might 

break?  

   91. Two blocks are connected by a lightweight, flexible 

cord that passes over a frictionless pulley. If  m  1   =  3.6 kg 

and  m  2   =  9.2 kg, and block 2 is initially at rest 140 cm 

above the floor, how long does it take block 2 to reach 

the floor? 

m2

m1

        92. A 10.0-kg watermelon and a 7.00-kg pumpkin are 

attached to each other via a cord that wraps over a pul-

ley, as shown. Friction is negligible everywhere in this 

system. (    tutorial: pulley) (a) Find the accelera-

tions of the pumpkin and the watermelon. Specify 

magnitude and direction. (b) If the system is released 

from rest, how far along the incline will the pumpkin 

travel in 0.30 s? (c) What is the speed of the watermelon 

after 0.20 s? 

30.0°53.0°

93. In the physics laboratory, a glider is released from rest 

on a frictionless air track inclined at an angle. If the 

glider has gained a speed of 25.0 cm/s in traveling 

50.0 cm from the starting point, what was the angle of 

inclination of the track? Draw a graph of  v   x  ( t ) when the 

positive  x -axis points down the track.  

94. A 10.0-kg block is released from rest on a frictionless 

track inclined at an angle of 55 ° . (a) What is the net 

force on the block after it is released? (b) What is the 

acceleration of the block? (c) If the block is released 

from rest, how long will it take for the block to attain a 

speed of 10.0 m/s? (d) Draw a motion diagram for the 

block. (e) Draw a graph of  v   x  ( t ) for values of velocity 

between 0 and 10 m/s. Let the positive  x -axis point 

down the track.  

95. A box full of books rests on a wooden floor. The normal 

force the floor exerts on the box is 250 N. (a) You push 

horizontally on the box with a force of 120 N, but it 

refuses to budge. What can you say about the coeffi-

cient of static friction between the box and the floor? 

✦✦

✦✦



   (b) If you must push horizontally on the box with a force 

of at least 150 N to start it sliding, what is the coeffi-

cient of static friction? (c) Once the box is sliding, you 

only have to push with a force of 120 N to keep it slid-

ing. What is the coefficient of kinetic friction?  

 96. A helicopter is lifting two crates simultaneously. One 

crate with a mass of 200 kg is attached to the helicopter 

by a cable. The second crate with a mass of 100 kg is 

hanging below the first crate and attached to the first 

crate by a cable. As the helicopter accelerates upward 

at a rate of 1.0 m/s 2 , what is the tension in each of the 

two cables?    

  4.10 Apparent Weight 

97. Oliver has a mass of 76.2 kg. He is riding in an elevator 

that has a downward acceleration of 1.37 m/s 2 . With 

what magnitude force does the elevator floor push 

upward on Oliver?  

    98. While on an elevator, Jaden’s apparent weight is 550 N. 

When he is on the ground, the scale reading is 600 N. 

What is Jaden’s acceleration?  

    99. When on the ground, Ian’s weight is measured to be 

640 N. When Ian is on an elevator, his apparent 

weight is 700 N. What is the net force on the system 

(Ian and the elevator) if their combined mass is 

1050 kg?  

   100.  Refer to Example 4.19. What is the apparent weight of 

the same passenger (weighing 598 N) in the following 

situations? In each case, the magnitude of the elevator’s 

acceleration is 0.50 m/s 2 . (a) After having stopped 

at the 15th floor, the passenger pushes the 8th floor 

button; the elevator is beginning to move downward. 

(b) The elevator is moving downward and is slowing 

down as it nears the 8th floor.  

     101.You are standing on a bathroom scale inside an eleva-

tor. Your weight is 140 lb, but the reading of the scale 

is 120 lb. (a) What is the magnitude and direction of 

the acceleration of the elevator? (b) Can you tell 

whether the elevator is speeding up or slowing 

down?  

   102. Yolanda, whose mass is 64.2 kg, is riding in an elevator 

that has an upward acceleration of 2.13 m/s 2 . What 

force does she exert on the floor of the elevator?  

   103. Felipe is going for a physical before joining the swim 

team. He is concerned about his weight, so he carries 

his scale into the elevator to check his weight while 

heading to the doctor’s office on the 21st floor of the 

building. If his scale reads 750 N while the elevator has 

an upward acceleration of 2.0 m/s 2 , what does the nurse 

measure his weight to be?  

     104. Luke stands on a scale in an elevator that has a constant 

acceleration upward. The scale reads 0.960 kN. When 

✦✦

✦✦

Luke picks up a box of mass 20.0 kg, the scale reads 

1.200 kN. (The acceleration remains the same.) (a) Find 

the acceleration of the elevator. (b) Find Luke’s weight.    

  4.12 Fundamental Forces 

105. Which of the fundamental forces has the shortest range, 

yet is responsible for producing the sunlight that 

reaches Earth?  

   106. Which of the fundamental forces governs the motion of 

planets in the solar system? Is this the strongest or the 

weakest of the fundamental forces? Explain.  

   107. Which of the following forces have an unlimited range: 

strong force, contact force, electromagnetic force, 

gravitational force?  

   108. Which of the following forces bind electrons to nuclei 

to form atoms: strong force, contact force, electromag-

netic force, gravitational force?  

109. Which of the fundamental forces binds quarks together 

to form protons, neutrons, and many exotic subatomic 

particles?    

  Comprehensive Problems 

    110. A car is driving on a straight, level road at constant 

speed. Draw an FBD for the car, showing the signifi-

cant forces that act upon it.  

   111. A skier with a mass of 63 kg starts from rest and skis 

down an icy (frictionless) slope that has a length of 

50 m at an angle of 32 °  with respect to the horizontal. 

At the bottom of the slope, the path levels out and 

becomes horizontal, the snow becomes less icy, and the 

skier begins to slow down, coming to rest in a distance 

of 140 m along the horizontal path. (a) What is the 

speed of the skier at the bottom of the slope? (b) What 

is the coefficient of kinetic friction between the skier 

and the horizontal surface?  

   112. You want to push a 65-kg box up a 25 °  ramp. The coef-

ficient of kinetic friction between the ramp and the box 

is 0.30. With what magnitude force parallel to the ramp 

should you push on the box so that it moves up the 

ramp at a constant speed?  

113. An airplane is cruising along in a horizontal level flight 

at a constant velocity, heading due west. (a) If the 

weight of the plane is 2.6  ×  10 4   N, what is the net force 

on the plane? (b) With what force does the air push 

upward on the plane?  

114. A young boy with a broken leg is undergoing traction. 

(a) Find the magnitude of the total force of the traction 

apparatus applied to the leg, assuming the weight of 

the leg is 22 N and the weight hanging from the trac-

tion apparatus is also 22 N. (b) What is the horizontal 
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component of the traction force acting on the leg? 

(c) What is the magnitude of the force exerted on the 

femur by the lower leg? 

22 N

30.0°

Femur

30.0°

          115. When you hold up a 100-N weight in your hand, with 

your forearm horizontal and your palm up, the force 

exerted by your biceps is much larger than 100 N—

perhaps as much as 1000 N. How can that be? What 

other forces are acting on your arm? Draw an FBD for 

the forearm, showing all of the forces. Assume that all 

the forces exerted on the forearm are purely vertical—

either up or down. 

100 N

Biceps

        116. In the sport of curling, popular in Canada and Ireland, 

a player slides a 20.0-kg granite stone down a 38-m-

long ice rink. Draw FBDs for the stone (a) while it 

sits at rest on the ice; (b) while it slides down the rink; 

(c) during a head-on collision with an opponent’s 

stone that was at rest on the ice. 

        117. A truck is towing a 1000-kg car at a constant speed up 

a hill that makes an angle of  a   =  5.0 °  with respect to 

the horizontal. A rope is attached from the truck to the 

car at an angle of  b    =  10.0 °  with respect to horizontal. 

Ignore any friction in this problem. (a) Draw an FBD 

showing all the forces on the car. Indicate the angle 

that each force makes with either the vertical or hori-

zontal direction. (b) What is the tension in the rope? 

 = 10.0°

 = 5.0°

b

a

          118. The readings of the two spring scales shown in the 

drawing are the same. (a) Explain why they are the 

same. [ Hint:  Draw free-body diagrams.] (b) What is 

the reading? 

550 N

Scale

Scale

550 N

550 N

        119. The tallest spot on Earth is Mt. Everest, which is 8850 m 

above sea level. If the radius of the Earth to sea level 

is 6370 km, how much does the gravitational field 

strength change between the sea level value at that 

location (9.826 N/kg) and the top of Mt. Everest?  

   120. By what percentage does the weight of an object 

change when it is moved from the equator at sea level, 

where the effective value of  g  is 9.784 N/kg, to the 

North Pole where  g   =  9.832 N/kg?  

   121. Two canal workers pull a barge along the narrow water-

way at a constant speed. One worker pulls with a force 

of 105 N at an angle of 28 °  with respect to the forward 

motion of the barge and the other worker, on the oppo-

site tow path, pulls at an angle of 38 °  relative to the 

barge motion. Both ropes are parallel to the ground. 

(a) With what magnitude force should the second 

worker pull to make the sum of the two forces be in the 

forward direction? (b) What is the magnitude of the 

force on the barge from the two tow ropes?  

   122. A large wrecking ball of mass  m  is resting against a 

wall. It hangs from the end of a cable that is attached at 

its upper end to a crane that is just touching the wall. 



The cable makes an angle of  q   with the wall. Ignoring 

friction between the ball and the wall, find the tension 

in the cable. 

q

123. The figure shows the quadriceps and the patellar ten-

dons attached to the patella (the kneecap). If the ten-

sion  T  in each tendon is 1.30 kN, what is (a) the 

magnitude and (b) the direction of the contact force 
 F⃗   exerted on the patella by the femur? 

Patella

Tibia

Quadriceps
tendon

Patellar
tendon

Femur

T

T

F

80.0°

37.0°

q

        124. The coefficient of static friction between a block and a 

horizontal floor is 0.35, while the coefficient of kinetic 

friction is 0.22. The mass of the block is 4.6 kg and it is 

initially at rest. (a) What is the minimum horizontal 

applied force required to make the block start to slide? 

(b) Once the block is sliding, if you keep pushing on it 

with the same minimum starting force as in part 

(a), does the block move with constant velocity or does 

it accelerate? (c) If it moves with constant velocity, 

what is its velocity? If it accelerates, what is its 

acceleration?  

125. Two blocks lie side by side on a frictionless table. The 

block on the left is of mass  m;  the one on the right is of 

mass 2 m.  The block on the right is pushed to the left 

with a force of magnitude  F,  pushing the other block in 

turn. What force does the block on the left exert on the 

block to its right?  

   126. A locomotive pulls a train of 10 identical cars, on a 

track that runs east-west, with a force of 2.0    ×  10 6   N 

directed east. What is the force with which the  last  car 

to the west pulls on the rest of the train?  

   127. The coefficient of static friction between a brick and a 

wooden board is 0.40 and the coefficient of kinetic 

friction between the brick and board is 0.30. You place 

the brick on the board and slowly lift one end of the 

board off the ground until the brick starts to slide down 

the board. (a) What angle does the board make with the 

ground when the brick starts to slide? (b) What is the 

acceleration of the brick as it slides down the board?  

   128. A woman of mass 51 kg is standing in an elevator. 

(a) If the elevator floor pushes up on her feet with a force 

of 408 N, what is the acceleration of the elevator? (b) If 

the elevator is moving at 1.5 m/s as it passes the fourth 

floor on its way down, what is its speed 4.0 s later?  

129. In  Fig. 4.15  an astronaut is playing shuffleboard on 

Earth. The puck has a mass of 2.0 kg. Between the board 

and puck the coefficient of static friction is 0.35 and of 

kinetic friction is 0.25. (a) If she pushes the puck with a 

force of 5.0 N in the forward direction, does the puck 

move? (b) As she is pushing, she trips and the force in 

the forward direction suddenly becomes 7.5 N. Does the 

puck move? (c) If so, what is the acceleration of the puck 

along the board if she maintains contact between puck 

and stick as she regains her footing while pushing 

steadily with a force of 6.0 N on the puck? (d) She car-

ries her game to the Moon and again pushes a moving 

puck with a force of 6.0 N forward. Is the acceleration of 

the puck during contact more, the same, or less than on 

Earth? Explain. (     tutorial: rough table) 

        130. You want to hang a 15-N picture as in part (a) using 

some very fine twine that will break with more than 

12 N of tension. Can you do this? What if you have it 

as illustrated in part (b) of the figure? 

50°30°

(a) (b)

131. A roller coaster is towed up an incline at a steady speed 

of 0.50 m/s by a chain parallel to the surface of the 

incline. The slope is 3.0%, which means that the eleva-

tion increases by 3.0 m for every 100.0 m of horizontal 

distance. The mass of the roller coaster is 400.0 kg. 

Ignoring friction, what is the magnitude of the force 

exerted on the roller coaster by the chain?  

132. A 320-kg satellite is in orbit around the Earth 16 000 km 

above the Earth’s surface. (a) What is the weight of the 

satellite when in orbit? (b) What was its weight when it 

was on the Earth’s surface, before being launched? 

(c) While it orbits the Earth, what force does the satel-

lite exert on the Earth?  

✦✦

✦✦

  COMPREHENSIVE PROBLEMS 141



142  CHAPTER 4  Force and Newton’s Laws of Motion

133. The mass of the Moon is 0.0123 times that of the Earth. 

A spaceship is traveling along a line connecting the 

centers of the Earth and the Moon. At what distance 

from the Earth does the spaceship find the gravitational 

pull of the Earth equal in magnitude to that of the 

Moon? Express your answer as a percentage of the dis-

tance between the centers of the two bodies.  

134. A model rocket is fired vertically from rest. It has a net 

acceleration of 17.5 m/s 2 . After 1.5 s, its fuel is exhausted 

and its only acceleration is that due to gravity. (a) Ignoring 

air resistance, how high does the rocket travel? (b) How 

long after liftoff does the rocket return to the ground?  

135. The model rocket in Problem 134 has a mass of 87 g 

and you may assume the mass of the fuel is much less 

than 87 g. (a) What was the net force on the rocket dur-

ing the first 1.5 s after liftoff? (b) What force was exerted 

on the rocket by the burning fuel? (c) What was the net 

force on the rocket after its fuel was spent? (d) The 

rocket’s vertical velocity was zero instantaneously when 

it was at the top of its trajectory. What were the net force 

and acceleration on the rocket at this instant?  

136. A toy freight train consists of an engine and three iden-

tical cars. The train is moving to the right at constant 

speed along a straight, level track. Three spring scales 

are used to connect the cars as follows: spring scale A 

is located between the engine and the first car; scale B 

is between the first and second cars; scale C is between 

the second and third cars. (a) If air resistance and fric-

tion are negligible, what are the relative readings on the 

three spring scales A, B, and C? (b) Repeat part 

(a), taking air resistance and friction into consideration 

this time. [ Hint:  Draw an FBD for the car in the mid-

dle.] (c) If air resistance and friction together cause a 

force of magnitude 5.5 N on each car, directed toward 

the left, find the readings of scales A, B, and C.  

137. Four  identical  spring scales, A, B, C, and D are used to 

hang a 220.0-N sack of potatoes. (a) Assume the scales 

have negligible weights and all four scales show the same 

reading. What is the reading of each scale? (b) Suppose 

that each scale has a weight of 5.0 N. If scales B and D 

show the same reading, what is the reading of each scale? 

A

B

C

D

✦✦

✦✦

✦✦

✦✦

✦✦

138. A computer weighing 87 N rests on the horizontal sur-

face of your desk. The coefficient of friction between 

the computer and the desk is 0.60. (a) Draw an FBD for 

the computer. (b) What is the magnitude of the fric-

tional force acting on the computer? (c) How hard 

would you have to push on it to get it to start to slide 

across the desk?  

139. A refrigerator magnet weighing 0.14 N is used to hold 

up a photograph weighing 0.030 N. The magnet 

attracts the refrigerator door with a magnetic force of 

2.10 N. (a) Identify the interactions between the mag-

net and other objects. (b) Draw an FBD for the mag-

net, showing all the forces that act on it. (c) Which of 

these forces are long-range and which are contact 

forces? (d) Find the magnitudes of all the forces act-

ing on the magnet.  

140. A 50.0-kg crate is suspended between the floor and the 

ceiling using two spring scales, one attached to the 

ceiling and one to the floor. If the lower scale reads 

120 N, what is the reading of the upper scale? Ignore 

the weight of the scales.  

141. Spring scale A is attached to the ceiling. A 10.0-kg 

mass is suspended from the scale. A second spring 

scale, B, is hanging from a hook at the bottom of the 

10.0-kg mass and a 4.0-kg mass hangs from the second 

spring scale. (a) What are the readings of the two scales 

if the masses of the scales are negligible? (b) What are 

the readings if each scale has a mass of 1.0 kg?  

142. A crate of oranges weighing 180 N rests on a flatbed 

truck 2.0 m from the back of the truck. The coefficients 

of friction between the crate and the bed are  m  s   =  0.30 

and  m  k   =  0.20. The truck drives on a straight, level 

highway at a constant 8.0 m/s. (a) What is the force of 

friction acting on the crate? (b) If the truck speeds up 

with an acceleration of 1.0 m/s 2 , what is the force of 

the friction on the crate? (c) What is the maximum 

acceleration the truck can have without the crate start-

ing to slide?  

143. A crate of books is to be put on a truck by rolling it up 

an incline of angle  q   using a dolly. The total mass of 

the crate and the dolly is  m.  Assume that rolling the 

dolly up the incline is the same as sliding it up a fric-

tionless surface. (a) What is the magnitude of the  hori-

zontal  force that must be applied just to hold the crate 

in place on the incline? (b) What horizontal force must 

be applied to roll the crate up at constant speed? (c) In 

order to start the dolly moving, it must be accelerated 

from rest. What horizontal force must be applied to 

give the crate an acceleration up the incline of magni-

tude  a?  (    tutorial: cart on ramp)  

144. A toy cart of mass  m  1  moves on frictionless wheels as it 

is pulled by a string under tension  T.  A block of mass  m  2  

rests on top of the cart. The coefficient of static friction 

between the cart and the block is  m . Find the maximum 

tension  T  that will not cause the block to slide on the 

✦✦

✦✦

✦✦

✦✦

✦✦



cart if the cart rolls on (a) a horizontal surface; (b) up a 

ramp of angle  q   above the horizontal. In both cases, the 

string is parallel to the surface on which the cart rolls.  

145. A helicopter of mass  M  is lowering a truck of mass  m  

onto the deck of a ship. (a) At first, the helicopter and the 

truck move downward together (the length of the cable 

doesn’t change). If their downward speed is decreasing 

at a rate of 0.10 g,  what is the tension in the cable? (b) As 

the truck gets close to the deck, the helicopter stops 

moving downward. While it hovers, it lets out the cable 

so that the truck is still moving downward. If the truck’s 

downward speed is decreasing at a rate of 0.10 g,  while 

the helicopter is at rest, what is the tension in the cable?  

     146. The coefficient of static friction between block A and a 

horizontal floor is 0.45 and the coefficient of static fric-

tion between block B and the floor is 0.30. The mass of 

each block is 2.0 kg and they are connected together by 

a cord. (a) If a horizontal force      F⃗   pulling on block B is 

slowly increased, in a direction parallel to the connect-

ing cord, until it is barely enough to make the two blocks 

start moving, what is the magnitude of      F⃗   at the instant 

that they start to slide? (b) What is the tension in the cord 

connecting blocks A and B at that same instant?  

147. Tamar wants to cut down a large, dead poplar tree with 

her chain saw, but she does not want it to fall onto the 

nearby gazebo. Yoojin comes to help with a long rope. 

Yoojin, a physicist, suggests they tie the rope taut from 

the poplar to the oak tree and then pull  sideways  on the 

rope as shown in the figure. If the rope is 40.0 m long 

and Yoojin pulls sideways at the midpoint of the rope 

with a force of 360.0 N, causing a 2.00-m sideways 

displacement of the rope at its midpoint, what force 

will the rope exert on the poplar tree? Compare this 

with pulling the rope directly away from the poplar 

with a force of 360.0 N and explain why the values are 

different. [ Hint:  Until the poplar is cut through enough 

to start falling, the rope is in equilibrium.] 

360.0 N

40.0 m

2.00 mDead
poplar

Oak
tree

360.0 N

40.0 m

Overhead view

Side view

Dead
poplar tree

Gazebo

Gazebo

Tamar Oak
tree

Yoojin pulling
sideways

q q

✦✦

✦✦

✦✦

148. A student’s head is bent over her physics book. The 

head weighs 50.0 N and is supported by the muscle 

force        F⃗m   exerted by the neck extensor muscles and by 

the contact force        F⃗c   exerted at the atlantooccipital joint. 

Given that the magnitude of        F⃗m   is 60.0 N and is directed 

35 °  below the horizontal, find (a) the magnitude and 

(b) the direction of        F⃗c.   

35°

50.0 N

Fc

Fm

f

149. (a) If a spacecraft moves in a straight line between the 

Earth and the Sun, at what point would the force of 

gravity on the spacecraft due to the Sun be as large as 

that due to the Earth? (b) If the spacecraft is close to, 

but not at, this equilibrium point, does the net force on 

the spacecraft tend to push it toward or away from the 

equilibrium point? [ Hint:  Imagine the spacecraft a 

small distance  d  closer to the Earth and find out which 

gravitational force is stronger.]  

150. While trying to decide where to hang a framed picture, 

you press it against the wall to keep it from falling. The 

picture weighs 5.0 N and you press against the frame 

with a force of 6.0 N at an angle of 40 °  from the verti-

cal. (a) What is the direction of the normal force exerted 

on the picture by your hand? (b) What is the direction 

of the normal force exerted on the picture by the wall? 

(c) What is the coefficient of static friction between the 

wall and the picture? The frictional force exerted on 

the picture by the wall can have two possible direc-

tions. Explain why. 

40°

151. In a movie, a stuntman places himself on the front of a 

truck as the truck accelerates. The coefficient of fric-

tion between the stuntman and the truck is 0.65. The 

stuntman is not standing on anything but can “stick” to 

✦✦

✦✦

✦✦

✦✦
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the front of the truck as long as the truck continues to 

accelerate. What minimum forward acceleration will 

keep the stuntman on the front of the truck?  

     152. An airplane of mass 2800 kg has just lifted off the run-

way. It is gaining altitude at a constant 2.3 m/s while 

the horizontal component of its velocity is increasing 

at a rate of 0.86 m/s 2 . Assume  g   =  9.81 m/s 2 . (a) Find 

the direction of the force exerted on the airplane by 

the air. (b) Find the horizontal and vertical components 

of the plane’s acceleration if the force due to the air has 

the same magnitude but has a direction 2.0 °  closer 

to the vertical than its direction in part (a).  

     153. In the figure with Problem 87, the block of mass  m  1  

slides to the right with coefficient of kinetic friction  m  k  

on a horizontal surface. The block is connected to a 

hanging block of mass  m  2  by a light cord that passes 

over a light, frictionless pulley. (a) Find the accelera-

tion of each of the blocks and the tension in the cord. 

(b) Check your answers in the special cases 

 m  1  <<  m  2 ,  m  1  >>  m  2 , and  m  1   =   m  2 . (c) For what value of 

 m  2  (if any) do the two blocks slide at constant velocity? 

What is the tension in the cord in that case?    

  Answers to Practice Problems 

    4.1  (a)  F   x    =  49.1 N,  F   y    =  2.9 N; (b)  F   =  49.2 N; (c) 3.4 °  
above the horizontal  

   4.2  0.5 kN downward  

   4.3  In the first case, the principle of inertia says that Negar 

tends to stay at rest with respect to the ground as the subway 

car begins to move forward, until forces acting on her 

(exerted by the strap and the floor) make her move forward. 

In the second case, Negar keeps moving forward with respect 

to the ground with constant speed as the subway car slows 

down, until forces acting on her make her slow down as 

well.  

   4.4  760 N, 81.7 °  above the – x -axis or 8.3 °  to the left of the 

 +  y -axis  

   4.5  The contact force exerted on the floor by the chest; 

870 N, 59 °  below the rightward horizontal ( +  x -axis)  

   4.6  For  m  1   =   m  2   =  1000 kg and  r   =  4 m,  F  ≈ 4  μ N, which is 

about the same magnitude as the weight of a mosquito. The 

claim that this tiny force caused the collision is ridiculous.  

   4.7  0.57 N or 0.13 lb  

   4.8  The chest is in equilibrium, so the net force on it is 

zero. Setting the net force equal to zero separately for the 

✦✦

✦✦

horizontal and vertical components gives the answer: the 

normal force is 750 N, up, and the frictional force is 110 N, 

to the left. The quantity  m  s  N  is the  maximum  possible mag-

nitude of the force of static friction for a surface. In this 

problem, the frictional force does not necessarily have the 

maximum possible magnitude.  

   4.9     (a)  

Normal

Weight

Static
friction

Drag

NorthSouth

        (b) Weight of the car  =  11.0 kN; (c) 2.1 kN northward    

        4.10  (a) 110 N; (b) 230 N  

   4.11  3100 N  

   4.12   

TC

TC

TB

W

TC = 902.0 N

TB = 1804 N

W = 1804 N

        4.13  (a) 54 N; (b) 1.8 s  

   4.14  1.84 kN  

   4.15  Block 1: ∑ F  1 y    =   T   −   m  1  g   =  315 N  −  255 N  =  60 N;  m  1  a  1 y    =  

60 N. Block 2: ∑ F  2 y    =   m  2  g   −   T   =  412 N  −  315 N  =  97 N;

  m  2  a  2 y    =  97 N.  

   4.16  Impossible to pull the crate up with a single pulley. 

The entire weight of the crate would be supported by a sin-

gle strand of cable and that weight exceeds the breaking 

strength of the cable.  

   4.17  2500 N  

   4.18  (a) down the incline; (b) up the incline; (c) 0.2 m/s 2  

down the incline  

   4.19  (a) 392 N; (b) 431 N              



  Answers to Checkpoints 

    4.4  The two forces exerted by the two children on a toy can-

not be interaction partners because they act on the  same  

object (the toy), not on two different objects. Interaction 

partners act on different objects, one on each of the two 

objects that are interacting. The interaction partner of the 

force exerted by one child on the toy is the force that the toy 

exerts on that child.  

   4.5  The weight of the gear decreases as the value of  g  

decreases. The mass of the gear does not change.  

   4.6  One upward normal force on each leg due to the floor 

and one downward normal force on the desktop due to the 

laptop.  

   4.8  Yes. For motion along an incline, it simplifies the prob-

lem to choose one axis parallel to the incline and the other 

perpendicular to the incline.  

   4.10  Your velocity is downward and decreasing in magni-

tude, so your acceleration is upward. Then the upward nor-

mal force exerted on you by the scale must be greater than 

your weight. The scale reading is greater than your 

weight.    
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 C H A P T E R 

 5  Circular Motion 

  German athlete Susanne 

Keil throws the hammer 

during the German Athletics 

championships. Keil qualified 

for the 2004 Olympics in 

Athens with a 67.77-m throw.     

   I n the track and field event called the  hammer throw , the “hammer” 

is actually a metal ball (mass 4.00 kg for women or 7.26 kg for men) 

attached by a cable to a grip. The athlete whirls the hammer sev-

eral times around while not leaving a circle of radius 2.1 m and then 

releases it. The winner is the athlete whose hammer lands the greatest 

distance away. How large a force does an athlete have to exert on the 

grip to whirl the massive hammer around in a circle? What kind of 

path does the hammer follow once it is released? (See pp. 155–156 

for the answer.) 



 • gravitational forces (Section 4.5) 

 • Newton’s second law: force and acceleration (Sections 4.3 and 4.8) 

 • velocity and acceleration (Sections 2.2 and 2.3) 

 • apparent weight (Section 4.10) 

 • normal and frictional forces (Section 4.6)   

    5.1  DESCRIPTION OF UNIFORM CIRCULAR MOTION 

  Ask someone to name the most important machine ever invented by humans and you 

are likely to get the wheel as a response. Rotating objects are so important to modern—

and even not-so-modern—technology that we barely notice them. Examples include 

wheels on cars, bicycles, trains, and lawnmowers; propellers on airplanes and helicop-

ters; CDs and DVDs; computer hard drives; the gears and hands of an analog clock; 

amusement park rides and centrifuges—the list is endless.      

  Rotation of a Rigid Body   To describe circular motion, we could use the familiar 

definitions of displacement, velocity, and acceleration. But much of the circular motion 

around us occurs in the rotation of a rigid object. A    rigid body    is one for which the dis-

tance between any two points of the body remains the same when the body is translated 

or rotated. When such an object rotates, every point on the object moves in a circular 

path. The radius of the path for any point is the distance between that point and the axis 

of rotation. When a compact disk spins inside a CD player, different points on the CD 

have different velocities and accelerations. The velocity and acceleration of a given 

point keep changing direction as the CD spins. It would be clumsy to describe the rota-

tion of the CD by talking about the motion of arbitrary points on it. However, some 

quantities are the same for every point on the CD. It is much simpler, for instance, to say 

“the CD spins at 210 rpm” instead of saying “a point 6.0 cm from the rotation axis of 

the CD is moving at 1.3 m/s.”            

  Angular Displacement and Angular Velocity   To simplify the description of circu-

lar motion, we concentrate on  angles  instead of distances. If a CD spins through      1 _ 
4
    of a 

turn, every point moves through the same angle (90 ° ), but points at different radii move 

different linear distances. On the CD shown in  Fig. 5.1 , point 1 near the axis of rotation 

moves through a smaller distance than point 4 on the circumference. For this reason we 

define a set of variables that are analogous to displacement, velocity, and acceleration, 

but use angular measure instead of linear distance. Instead of displacement, we speak of 

   angular displacement    Δ q , the angle through which the CD turns. A point on the CD 

moves along the circumference of a circle. As the point moves from the angular position 

 q    i   to the angular position  q    f  , a radial line drawn between the center of the circle and that 

point sweeps out an angle Δ q   =   q    f    −   q    i  , which is the angular displacement of the CD 

during that time interval ( Fig. 5.2 ).          

       

Definition of angular displacement:

 Δq  = q  f − q   i (5-1)

   The sign of the angular displacement indicates the sense of the rotation. The usual 

convention is that a positive angular displacement represents counterclockwise rotation 

and a negative angular displacement represents clockwise rotation.  Counterclockwise 

and clockwise are only well defined for a particular viewing direction; counterclock-

wise rotation viewed from above is clockwise when viewed from below.  

In a   rigid body  , the distance 

between any two points is constant.

In a   rigid body  , the distance 

between any two points is constant.

The abbreviation rpm means revolu-
tions per minute.
The abbreviation rpm means revolu-
tions per minute.

 +  Counterclockwise 

− Clockwise

 +  Counterclockwise 

− Clockwise

Concepts & Skills to Review
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CONNECTION:

Equations (5-1) through (5-3) 

have a familiar form because 

w  is the rate of change of q, 

just as velocity is the rate of 

change of position.
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 The    average angular velocity     w   av  is the average rate of change of the angular 

displacement.         

Definition of average angular velocity:

 w av =   Δq  ___ 
Δt

   (5-2)

 If we let the time interval Δ t  become shorter and shorter, we are averaging over smaller 

and smaller time intervals. In the limit Δ t  → 0,  w   av  becomes the    instantaneous angu-

lar velocity     w .             

Definition of instantaneous angular velocity:

 w  =   lim    
Δt→0

    Δq  ___ 
Δt

   (5-3)

 The angular velocity also indicates—through its algebraic sign—in what direction the 

CD is spinning. Since angular displacements can be measured in degrees or radians, 

angular velocities have units such as degrees/second, radians/second, degrees/day, and 

the like.  

  Radian Measure   You may be most familiar with measuring angles in degrees, but in 

many situations the most convenient measure is the  radian.  One such situation is when 

we relate the angular displacement or angular velocity of a rotating object with the dis-

tance traveled by, or the speed of, some point on the object. 

 In  Fig. 5.3 , an angle  q   between two radii of a circle define an arc of length  s.  
We say that  q   is the angle  subtended  by the arc. The arc length is proportional to 

both the radius of the circle and to the angle subtended. The angle  q   in radians is 

 defined  as

    q  (in radians) =   s _ r    (5-4)  

where  r  is the radius of the circle. Since an angle in radians is defined by the ratio of two 

lengths, it is dimensionless (a pure number). We use the term radians, abbreviated “rad,” 

to keep track of the angular measure used. Since “rad” is not a physical unit like meters 

or kilograms, it does not have to balance in Eq. (5-4). For the same reason, we can drop 

“rad” whenever there is no chance of being misunderstood. We can write  w    =  23  s   − 1  as 

long as context makes it clear that we mean 23 radians per second.       

    In equations that relate linear variables to angular variables [such as Eq. (5-4)], 

think of   r   as the number of meters of arc length per radian of angle subtended. In 

other words, think of   r   as having units of meters per radian.  Doing so, the radians 

cancel out in these equations. For example, if  q     =  2.0 rad and  r   =  1.2 m, then the arc 

length is

   s = q r = 2.0 rad × 1.2   m ___ 
rad

   = 2.4 m  

 Since the arc length for an angle of 360 °  is the circumference of the circle, the 

radian measure of an angle of 360 °  is

   q  =   s _ r   =   2p r ____ r   = 2p  rad 

Therefore, the conversion factor between degrees and radians is

    360° = 2p  rad  (5-5)     

Remember that the notation   lim    
Δt→0

 

indicates that Δ q   is the angular dis-

placement during a  very short  time 

interval Δ t  (short enough that the 

ratio Δ q  /Δ t  doesn’t change signifi-

cantly if we make the time interval 

even shorter).

Remember that the notation   lim    
Δt→0

 

indicates that Δ q   is the angular dis-

placement during a  very short  time 

interval Δ t  (short enough that the 

ratio Δ q  /Δ t  doesn’t change signifi-

cantly if we make the time interval 

even shorter).

1

1′

2′

3′

4′

432

Figure 5.1 A CD rotates 

through      1 _ 
4
    turn; points 1, 2, 3, 

and 4 travel through the same 

angle but different distances to 

reach their new positions, 

marked 1′, 2′, 3′, and 4′, 

respectively.

∆q

q f
q i

q f – q i = ∆q

rf
ri

x

Figure 5.2 Angular positions 

such as q i and q f are measured 

counterclockwise from a refer-

ence axis (usually the x-axis).

r

r

q

s = q r

Figure 5.3 Definition of the 

radian: angle q  in radians is the 

arc length s divided by the 

radius r. The angle shown is 

1 rad ≈ 57.3°.



  Relation Between Linear and Angular Speed 

 For a point moving in a circular path of radius  r,  the linear distance traveled along the 

circular path during an angular displacement of Δ q  (in radians) is the arc length  s  

where

    s = r|Δq | = r|q   f − q   i| (angles in radians)  (5-6)  

The point in question could be a point particle moving in a circular path, or it could be 

any point on a rotating rigid object. Since Eq. (5-6) comes directly from the definition 

of the radian, any equation derived from Eq. (5-6) is valid only when the angles are 

measured in radians. 

 What is the linear speed at which the point moves? The average linear speed is the 

distance traveled divided by the time interval,

    v  av  =   s __ 
Δt

   =   
r|Δq |

 _____ 
Δt

   (Δq  in radians) 

We recognize Δ q  /Δ t  as the average angular velocity  w  av . If we take the limit as Δ t  
approaches zero, both average quantities ( v  av  and  w   av ) become instantaneous quantities. 

Therefore, the relationship between linear speed and angular speed is

 v = r w   (w in radians per unit time) (5-7)

      

Equation (5-7) relates only the  magnitudes  of the linear and angular speeds. The direc-

tion of the velocity vector    v ⃗  is tangent to the circular path. For a rotating object, points 

farther from the axis move at higher linear speeds; they have a circle of bigger radius to 

travel and, therefore, cover more distance in the same time interval. For example, a per-

son standing at the equator has a much higher linear speed due to Earth’s rotation than 

does a person standing at the Arctic Circle (see  Fig. 5.4 ).        

Discussion Notice that this problem is analogous to a 

problem in linear motion such as: “A car travels in a straight 

line at constant speed. In 3 h, it has traveled 192 mi. What is 

its velocity in m/s?” Just about everything in circular motion 

and rotation has this kind of analog—which means we can 

draw heavily on what we have already learned.

Earth actually completes one rotation in 23.9345 h (see 

inside back cover) rather than in 24 h due to Earth’s motion 

around the Sun. This distinction would be important only if 

we needed a more precise value of  w   (more than two sig-

nificant figures).

Practice Problem 5.1 Angular Speed of Venus

Venus completes one rotation about its axis every 5816 h. 

What is the angular speed of the rotation of Venus in rad/s?

Example 5.1

Angular Speed of Earth

Earth is rotating about its axis. What is its angular speed in 

rad/s? (The question asks for angular speed, so we do not 

have to worry about the direction of rotation.)

Strategy The Earth’s angular velocity is constant, or 

nearly so. Therefore, we can calculate the average angular 

velocity for any convenient time interval and, in turn, the 

Earth’s instantaneous angular speed  w  .

Solution It takes the Earth 1 day to complete one rotation, 

during which the angular displacement is 2p  rad. More for-

mally, during a time interval ∆t = 1 day, the angular displace-

ment of the Earth is Δq = 2p  rad. So the angular speed of the 

Earth is 2p rad/day, and then convert days to seconds.

1 day = 24 h = 24 h × 3600 s/h = 86 400 s

 w   =    2p  rad _______ 
86 400 s

   = 7.3 ×  10 −5  rad/s

Axis of rotation

Equator

Arctic Circle

∆q  = 2p  rad

v

v

Figure 5.4 A person standing 

at the Equator is moving much 

faster than another person stand-

ing at the Arctic Circle, but their 

angular speeds are the same.
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Period and Frequency 

 When the speed of a point moving in a circle is constant, its motion is called    uniform 

circular motion.    Even though the speed of the point is constant, the velocity is 

not: the direction of the velocity is changing. This distinction is important when we 

find the acceleration of an object in uniform circular motion (Section 5.2). The time 

for the point to travel completely around the circle is called the    period    of the motion, 

T.  The    frequency    of the motion, which is the number of revolutions per unit time, is 

defined as

f =   1 __ 
T

    (5-8)

since

     revolutions __________ 
second

   =   1 _______________  
second/revolution

       

CHECKPOINT 5.1

If it takes   1
 

____ 
7200

   of a second for a computer hard drive to spin around once, what is 

its frequency?

 The speed is the total distance traveled divided by the time taken,

   v =   2p r ____ 
T

   = 2p rf 

Then, for uniform circular motion

 w   =   v 
__ r   = 2p f (w  in radians per unit time)  (5-9)

where, in SI units, angular velocity  w    is measured in rad/s and frequency  f  is measured 

in hertz (Hz). The hertz is a derived unit equal to 1 rev/s. The dimensions of Eq. (5-9) 

are correct since both revolutions and radians are pure numbers. The physical dimen-

sions on both sides are a number per second (s   −1 ). 

In uniform circular motion, 

speed is constant but veloc-

ity is not constant because the direc-
tion of the velocity is changing.

In uniform circular motion, 

speed is constant but veloc-

ity is not constant because the direc-
tion of the velocity is changing.

  SI unit of frequency: 1 Hz  =  1 rev/s    SI unit of frequency: 1 Hz  =  1 rev/s  

Strategy Remember that rpm means revolutions per min-
ute. 5400 rpm is the frequency, but in a unit other than Hz. 

After a unit conversion, the other quantities can be found 

using the relations already discussed.

Solution (a) First convert rpm to Hz:

f = 5400   rev ____ 
min

   ×   1 min _____ 
60 s

   = 90 rev/s

so the frequency is f  = 90 Hz = 90 s−1. The period is

T  = 1/f = 0.011 s

(b) To find the linear speed, we first find the angular speed 

in rad/s:

 w   = 90   rev ___ s   × 2p    rad ___ rev   = 180p  rad/s

continued on next page

Example 5.2

Speed in a Centrifuge

A centrifuge is spinning at 5400 rpm. (a) Find the period 

(in s) and frequency (in Hz) of the motion. (b) If the radius 

of the centrifuge is 14 cm, how fast (in m/s) is an object at 

the outer edge moving?



  Rolling Without Slipping: Rotation and Translation Combined 

 When an object is rolling, it is both rotating and translating. The wheel rotates about an 

axle, but the axle is not at rest; it moves forward or backward. What is the relationship 

between the angular speed of the wheel and the linear speed of the axle? You might 

guess that  v   =    w    r  is the answer. You would be right, as long as the object rolls without 

slipping or skidding. 

 There is no fixed relationship between the linear and angular speeds of a wheel if it 

is allowed to skid or slip. When an impatient driver guns the engine the instant a traffic 

light turns green, the automobile wheels are likely to slip. The rubber sliding against the 

road surface makes the squealing sound and leaves tracks on the road. The driver could 

actually make the acceleration of the car greater by giving the engine  less  gas. When the 

wheels are skidding or slipping,  kinetic  friction propels the car forward instead of the 

potentially larger force of  static  friction. 

 For a wheel that rolls  without  slipping, as the wheel turns through one complete 

rotation, the axle moves a distance equal to the circumference of the wheel ( Fig. 5.5 ). 

Think of a paint roller leaving a line of paint as it rolls along a wall. After one complete 

Example 5.2 continued

So  w   = 2p f = 180 p  rad/s. The linear speed is

v =  w  r = 180 p  s −1  × 0.14 m = 79 m/s

Discussion Notice that much of this problem was done 

with unit conversions. Instead of memorizing a formula such 

as  w       = 2p f, an understanding of where the formula came 

from (in this case, that 2p radians correspond to one revolu-

tion) is more useful and less prone to error.

Practice Problem 5.2 Clothing in the Drier

An automatic clothing drier spins at 51.6 rpm. If the radius 

of the drier drum is 30.5 cm, how fast is the outer edge of the 

drum moving?

Figure 5.5 (a) As a wheel of radius r that rolls without slipping turns through one complete revolution, the distance its 

axle moves is equal to the circumference of the wheel (2p r). (b) As a wheel rolls without slipping through an angle Δq, the 

distance the axle moves is equal to the arc length s.

p
Tire position after

one revolution
65.0 cm

13.0 m/s

2  r

(a)

Ha
wk ZXHa
wk ZX

H
a
w
k
Z
X

H
a
w
k
Z
X

vaxle

∆q 

s = r∆q

(b)
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rotation, the same point on the roller wheel is touching the wall as was initially touching 

it. The length of the line of paint is 2 p   r.  The elapsed time is  T,  so the axle’s speed is

    v  
axle

  =   2p r ____ 
T

   

while the angular speed of the roller is

    w   =   2p  ___ 
T

   

Thus,

     v  
axle

  =  w  r (w  in radians per unit time)  (5-10)

Time to travel a distance 2p r = 2.04 m is

  2.04 m ________ 
13.0 m/s

   = 0.157 s.

Looks good.

You could have obtained this answer immediately by 

looking back through the text for the equation  w     = v/r and 

plugging in numbers, but the solution here shows that you 

can re-create that equation. Here, and in many cases, there is 

no need to memorize a formula if you understand the con-

cepts behind the formula. You are then less apt to make a 

mistake by forgetting a factor or constant in the equation, or 

by using an inappropriate formula. For another example, if 

an object moves along a straight line at a constant velocity, 

you know instantly that the displacement is the velocity 

times the time interval—not because you have memorized 

an equation (Δr ⃗ = v ⃗ Δt), but because you understand the con-

cepts of displacement and velocity. This is the sort of inter-

nalization of scientific thinking that you will develop with 

more and more practice in problem solving.

Practice Problem 5.3 Rolling Drum

A cylindrical steel drum is tipped over and rolled along the 

floor of a warehouse. If the drum has a radius of 0.40 m and 

makes one complete turn every 8.0 s, how long does it take 

to roll the drum 36 m?

Example 5.3

Angular Speed of a Rolling Wheel

Kevin is riding his motorcycle at a speed of 13.0 m/s. If the 

diameter of the rear tire is 65.0 cm, what is the angular speed 

of the rear wheel? Assume that it rolls without slipping.

Strategy The given diameter of the tire enables us to find 

the circumference and, thus, the distance traveled in one revo-

lution of the wheel. From the speed of the motorcycle we can 

find how many revolutions the tire must make per second.

Solution During one revolution of the wheel, the motorcy-

cle travels a distance equal to the tire’s circumference 2p r 

(Fig. 5.5). Then the time to make one revolution is T and the 

speed v is

v =   distance _______ 
time

   =   2p r ____ 
T

  

Therefore, T = 2p r/v. For each revolution there is an angular 

displacement of Δq  = 2p  radians, so

 w   =   
 Δq    

 ____ 
Δt

   =   2p  ___ 
T

  

Substituting T = 2p r/v and remembering that the radius is 

half the diameter,

 w   =   2p  _____ 
2pr/v

   =   v 
__ r   =   13.0 m/s __________ 

(0.650 m)/2
   = 40.0   rad ___ s  

Discussion Check: Time for one revolution is

  2p  rad _________ 
40.0 rad/s

   = 0.157 s.

   5.2  RADIAL ACCELERATION 

    For a particle undergoing uniform circular motion, the  magnitude  of the velocity vector 

is constant, but its direction is continuously changing. At any instant of time, the direc-

tion of the instantaneous velocity is tangent to the path, as discussed in Section 3.2.  

Since the   direction   of the velocity continually changes, the particle has a nonzero 

acceleration.      



 In  Fig. 5.6a , two velocity vectors of equal magnitude are drawn tangent to a circu-

lar path of radius  r,  representing the velocity at two different times of an object moving 

around a circular path with constant speed. At any instant, the velocity vector is perpen-

dicular to a radius drawn from the center of the circle to the position of the object. As 

the time between velocity measurements approaches zero, the radii become closer 

together ( Fig. 5.6b ). To find the acceleration,    a ⃗ =   lim    
Δt→0

    Δv ⃗ ___ 
Δt

  ,  we must first find the change 

in velocity    Δv ⃗  for a very short time interval.  Figure 5.6c  shows that as the time interval 

Δ t  approaches zero, the angle between the two velocities also approaches zero and    Δv ⃗  
becomes perpendicular to the velocity.         

 Since    Δv ⃗  is perpendicular to the velocity, it is directed along a radius of the circle. 

Inspection of  Figs. 5.6b  and  5.6c  shows that    Δv ⃗  is radially  inward  (toward the center of 

the circle). Since the acceleration    a ⃗  has the same direction as    Δv ⃗  (in the limit Δt → 0), 

the acceleration is also directed radially inward ( Fig. 5.7 )—that is, along a radius of the 

circular path toward the center of the circle. The acceleration of an object undergoing 

 uniform  circular motion is often called the    radial acceleration        a ⃗  r .  The word  radial  here 

just reminds us of the direction of the acceleration. (A synonym for radial acceleration 

is  centripetal acceleration.   Centripetal  means “toward the center.”)              

CHECKPOINT 5.2

Does a radial acceleration mean that the speed of the object is changing?

   Magnitude of the Radial Acceleration 

 To find the magnitude of the radial acceleration for uniform circular motion, we 

must find the change in velocity    Δv ⃗  for a time interval Δ t  in the limit Δ t  → 0. The 

velocity keeps the same magnitude but changes direction at a steady rate, equal to 

the angular velocity  w .  In a time interval Δ t,  the velocity    v ⃗  rotates through an angle 

equal to the angular displacement Δ q     =   w   Δ t.  During this time interval, the velocity 

vector sweeps out an arc of a circle of “radius”  v  ( Fig. 5.8 ). In the limit Δ t  → 0, the 

In uniform circular motion, the 

direction of the acceleration is radi-

ally inward (toward the center of the 

circular path).

In uniform circular motion, the 

direction of the acceleration is radi-

ally inward (toward the center of the 

circular path).

v1

v1

v2

v2

v1

∆v

v2

v1 + ∆v  = v2 

∆t → 0

(a) (b) (c)

r2

r1
r1

r2

|v2| = |v1|

|r1| = |r2|

Figure 5.6 Uniform circular motion at constant speed. (a) The velocity vector 

is always tangent to the circular path and perpendicular to the radius at that point. 

(b) As the time interval between two velocity measurements decreases, the 

angle between the velocity vectors decreases. (c) The change in velocity (Δv ⃗ ) is 

found by placing the tails of the two velocity vectors together. Then Δv ⃗ is drawn 

from the tip of the initial velocity (v ⃗1) to the tip of the final velocity (v ⃗2) so that 

v ⃗1 + Δv ⃗ = v ⃗2.

a1

a2

a3

a4

a5

a6

v1

v2

v3
v4

v5

v6

Figure 5.7 In uniform circular 

motion, the acceleration is always 

directed toward the center of the 

circle, perpendicular to the 

velocity (see  interactive: 

circular motion).
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CONNECTION:

Radial acceleration is not a 

new kind of acceleration. The 

acceleration vector for an 

object moving in uniform cir-

cular motion is directed radi-

ally inward toward the center 

of the circle.
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magnitude of    Δv ⃗  becomes equal to the arc length, since a very short arc approaches a 

straight line. Then

    Δ v ⃗   = arc length = radius of circle × angle subtended

= v  Δq   = v  w   Δt        

 Acceleration is the rate of change of velocity, so the magnitude of the radial accel-

eration is

     a  r  =  a ⃗  =   
 Δv ⃗  

 ____ 
Δt

   = v w   (w  in radians per unit time)  (5-11)

where absolute value symbols are used with the vector quantities to indicate their mag-

nitudes. Velocity and angular velocity are not independent;  v   =    w    r.  It is usually most 

convenient to write the magnitude of the radial acceleration in terms of one or the other 

of these two quantities. So we write the radial acceleration in two other equivalent ways 

using  v   =    w    r: 

     a  r  =    v 2  __ r   or  a  r  =  w  2 r (w in radians per unit time)  (5-12)

 Note that Eqs. (5-11) and (5-12) assume that  w   is expressed in  radians  per unit 

time (normally rad/s, but rad/min or rad/h would be correct).  

Then using Eq. (5-12), the radial acceleration is

 a  r  =  w  2 r = (7.0p rad/s ) 2  × 0.060 m = 29 m/ s 2 

Discussion When finding the radial acceleration, use 

whichever form of Eq. (5-12) is more convenient. For rotat-

ing objects such as the spinning CD, it’s usually easiest to 

think in terms of the angular velocity. For an object moving 

around a circle, such as a satellite in orbit whose speed is 

known, it might be easier to use v2/r. Since the two equations 

are equivalent, either can be used in any situation.

Practice Problem 5.4 Radial Acceleration of a 
Point on an Old Record

What is the radial acceleration of a point 25.4 cm from the 

center of a record that is rotating at 78 rpm on a turntable?

Example 5.4

A Spinning CD

If a CD spins at 210 rpm, what is the radial acceleration of a 

point on the outer rim of the CD? The CD is 12 cm in 

diameter.

Strategy From the number of revolutions per minute, we 

can find the frequency and the angular velocity. The angular 

velocity and the radius of the CD enable us to calculate the 

radial acceleration.

Solution We convert 210 rpm into a frequency in revolu-

tions per second (Hz).

f = 210   rev ____ 
min

   ×   1 ___ 
60

     min ____ s   = 3.5   rev ___ s   = 3.5 Hz

For each revolution, the CD rotates through an angle of 2p

radians. The angular velocity is

 w   = 2p f = 2p    radians ______ rev   × 3.5   rev ___ s   = 7.0p  rad/s

  Applying Newton’s Second Law to Uniform Circular Motion 

   Now that we know the magnitude and direction of the acceleration of any object in uni-

form circular motion, we can use Newton’s second law to relate the net force acting on the 

object to the speed and radius of its motion. The net force is found in the usual way: each 

of the individual forces acting on the object is identified and then the forces are added as 

vectors.  Every force acting must be exerted   by some other object.   Resist the temptation to 

add in a new, separate force just because something moves in a circle.  For an object to 

move in a circle at constant speed, real, physical forces such as gravity, tension, normal 

forces, and friction must act on it; these forces combine to produce a net force that has the 

correct magnitude and is always perpendicular to the velocity of the object.        

∆v

∆q
v1

v2

Figure 5.8 The velocity vec-

tor sweeps out an arc of a circle 

whose “length” is nearly equal 

to that of the chord Δv ⃗.



Problem-Solving Strategy for an Object in Uniform Circular Motion

 1. Begin as for any Newton’s second law problem: identify all the forces acting 

on the object and draw an FBD.

 2. Choose perpendicular axes at the point of interest so that one is radial and the 

other is tangent to the circular path.

 3. Find the radial component of each force.

 4. Apply Newton’s second law as follows:

∑ F  r  =  ma  r 

  where ∑Fr is the radial component of the net force and the radial component 

of the acceleration is

 a  r  =    v 2  __ r   =  w  2 r

  (For uniform circular motion, neither the net force nor the acceleration has a 

tangential component.)

after its release. Just before release, the forces acting on the 

hammer are the tension in the cable and gravity. We can 

relate the net force on the hammer to its radial acceleration, 

calculated from the speed and radius of its path. The prob-

lem becomes two subproblems, one dealing with circular 

motion and the other with projectile motion. The final veloc-

ity for the circular motion is the initial velocity for the pro-

jectile motion.

Solution During its projectile motion, the initial velocity 

has magnitude vi (to be determined) and direction q  = 40° 

above the horizontal. Choosing the +y-axis pointing up, 

the displacement of the hammer (in component form) is 

∆x = 74.0 m and ∆y = −1.0 m (Fig. 5.9), the acceleration of 

the hammer is ax = 0 and ay = −g, and the initial velocity 

is vix = vi cos q and viy = vi sin q. Then, from Eqs. (4-8) 

and (4-9),

Δx = ( v  
i
  cos q ) Δt and Δy = ( v  

i
  sin q ) Δt −   1 _ 

2
   g(Δt ) 2 

Example 5.5

The Hammer Throw

An athlete whirls a 4.00-kg hammer six or seven times 

around and then releases it. Although the purpose of whirl-

ing it around several times is to increase the hammer’s speed, 

assume that just before the hammer is released, it moves at 

constant speed along a circular arc of radius 1.7 m. At the 

instant she releases the hammer, it is 1.0 m above the ground 

and its velocity is directed 40° above the horizontal. The 

hammer lands a horizontal distance of 74.0 m away. What 

force does the athlete apply to the grip just before she 

releases it? Ignore air resistance.

Strategy After release, the only force acting on the ham-

mer is gravity. The hammer moves in a parabolic trajectory 

like any other projectile. By analyzing the projectile motion 

of the hammer, we can find the speed of the hammer just 

y

x

∆ x = 74.0 m

∆ y = –1.0 m

40°

Release
point

Uniform
circular
motion

Projectile motion
(parabolic trajectory)

Figure 5.9

Path of the hammer from just before 

its release until it hits the ground. 

(Distances are not to scale.)

What force does the athlete exert on the 

grip? What path does the hammer follow 

after release?

continued on next page
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With the stone in the position depicted in Fig. 5.11a, the 

direction of the net force is along the +x-axis. This time 

the tension in the cord does not pull toward the center, but 

the net force does.

Solution Start by drawing an FBD (Fig. 5.11b). Now 

apply Newton’s second law in component form. The 

acceleration has components ax = w 
2r and ay = 0. For the 

x-components,

∑ F  x  = T sin f  =  ma  x  = m w       2 r

Example 5.6

Conical Pendulum

Suppose you whirl a stone in a horizontal circle at a slow 

speed so that the weight of the stone is not negligible com-

pared with the tension in the cord. Then the cord cannot be 

horizontal—the tension must have a vertical component to 

cancel the weight and leave a horizontal net force (Fig. 5.11). 

If the cord has length L, the stone has mass m, and the cord 

makes an angle f with the vertical direction, what is the con-

stant angular speed of the stone?

Strategy The net force must point toward the center of 

the circle, since the stone is in uniform circular motion. 

Example 5.5 continued

Solving the left equation for Δt and substituting into the right 

equation gives

Δy =  v  
i
  sin q    Δx _______ 

 v  
i
  cos q 

   −   1 __ 
2
   g  (   Δx _______ 

 v  
i
  cos q 

   )  
2
 

After a bit of algebra, we can solve for vi. First we multiply 

through by 2 v  i  
2
   cos 2  q :

2 v  i  
2
   cos 2 q Δy = 2 v  i  

2
   cos 2 q    Δx sin q  _______ 

cos q 
   

−   
2  v  i  

2
   cos 2  q 
 __________ 

2
   g   (   Δx _______ 

 v  
i
  cos q 

   )  
2
 

Subtracting the first term on the right side from both sides 

and factoring out  v  i  
2
 ,

 v  i  
2
 (2 Δy  cos 2 q  − 2 Δx cos q  sin q ) = −g(Δx ) 2 

Now we solve for vi:

v  
i
  =  √

________________________

      
g(Δx ) 2 

  _______________________   
2Δx cosq  sinq  − 2Δy co s 2 q 

    

=  √
________________________________________

       
9.80 m/ s 2  × (74.0 m ) 2 

   ______________________________________    
2(74.0 m) cos 40° sin 40° − 2(−1.0 m) co s 2  40°

    = 26.9 m/s

The net force on the hammer can be found from New-

ton’s second law. The two forces acting on the hammer are 

due to the tension in the cable and to gravity (Fig. 5.10). 

We ignore the gravitational force, assuming that the ham-

mer’s weight is small compared with the tension in the 

cable. Then the tension in the cable is the only significant 

force acting on the hammer. Assuming uniform circular 

motion, the cable pulls radially inward and causes a radial 

acceleration of magnitude v2/r. Newton’s second law in the 

radial direction is

∑ F  r  = T =  ma  r  =   m v 2  ____ r  

Substituting numerical values,

T =   
4.00 kg × (26.9 m/s ) 2 

  __________________  
1.7 m

   = 1700 N

The tension is much larger than the weight of the hammer 

(≈ 40 N), so the assumption that we could ignore the weight 

is justified. The athlete must apply a force of magnitude 

1700 N—almost 400 lb—to the grip.

Discussion This example demonstrates the cumulative 

nature of physics concepts. The basic concepts keep reap-

pearing, to be used over and over and to be extended for use 

in new contexts. Part of the problem involves new concepts 

(radial acceleration); the rest of the problem involves old 

material (Newton’s second law, projectile motion, and ten-

sion in a cord).

Practice Problem 5.5 Rotating Carousel

A horse located 8.0 m from the central axis of a rotating carou-

sel moves at a speed of 6.0 m/s. The horse is at a fixed height 

(it does not move up and down). What is the net force acting 

on a child seated on this horse? The child’s weight is 130 N.

mg

T Figure 5.10

FBD for the hammer 

just before its release. 

(Not to scale.)

continued on next page



   5.3  UNBANKED AND BANKED CURVES     

  Unbanked Curves   When you drive an automobile in a circular path along an 

unbanked roadway, friction acting on the tires due to the pavement acts to keep the 

automobile moving in a curved path. This frictional force acts  sideways,  toward the cen-

ter of the car’s circular path ( Fig. 5.12 ). The frictional force might also have a tangential 

component; for example, if the car is braking, a component of the frictional force makes 

the car slow down by acting backward (opposite to the car’s velocity). For now we 

assume that the car’s speed is constant and that the forward or backward component of 

the frictional force is negligibly small.       

As long as the tires roll without slipping, there is no relative motion between 

the bottom of the tires and the road, so it is the force of   static   friction that acts (see 

Section 4.6).  If the car is in a skid, then it is the smaller force of kinetic friction that acts 

as the bottom portion of the tire slides along the pavement. As the speed of the car 

increases, or for slippery surfaces with low coefficients of friction, the static frictional 

force may not be enough to hold the car in its curved path.      

Banked Curves   To help prevent cars from going into a skid or losing control, the 

roadway is often banked (tilted at a slight angle) around curves so that the outer por-

tion of the road—the part farthest from the center of curvature—is higher than the 

inner portion. Banking changes the angle and magnitude of the normal force,     N⃗,  so 

that it has a horizontal component  N   x   directed toward the center of curvature (in the 

Application of radial accelera-

tion and contact forces: banked 

roadways

Application of radial accelera-

tion and contact forces: banked 

roadways

y

x

y

x

L

f f

T

mg

(a) (b)

r = L sin f

Figure 5.11

(a) A stone is whirled in a horizontal circle of radius r = L sin f. 

(b) An FBD for the stone.

Since the problem does not specify r, we must express r in 

terms of L and f. In Fig. 5.11a, the radius forms a right trian-

gle with the cord and the y-axis. Then

r = L sin f

and

∑ F  x  = T sin f  = m w  2 L sin f

Therefore, T = mw 2L. For the y-components,

∑ F  y  = T cos f  − mg =  ma  y  = 0 ⇒ T cos f  = mg

Now we eliminate the tension:

(m w  2 L) cos f  = mg

Solving for  w  ,

 w   =  √
_______

    
g
 _______ 

L cos f 
    

Discussion We should check the dimensions of the final 

expression. Since cos f  is dimensionless,

 √
______

    
 [ L/ T 2  ] 

 ______ 
[L]

     =   1 ___ 
[T]

  

which is correct for w (SI unit rad/s).

Another check is to ask how w and f are related for a 

given length cord. As f increases toward 90°, the cord gets 

closer to horizontal and the radius increases. In our expres-

sion, as f increases, cos f decreases and, therefore, w

increases, in accordance with experience: the stone would 

have to be whirled faster and faster to make the cord more 

nearly horizontal.

Conceptual Practice Problem 5.6 Conical Pendu-
lum on the Moon

Examine the result of Example 5.6 to see how w  depends on 

g, all other things being equal. Where the gravitational field 

is weaker, do you have to whirl the stone faster or more 

slowly to keep the cord at the same angle f ? Is that in accord 

with your intuition?

Example 5.6 continued
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the car skid as it goes around the curve? (b) What happens if 

the driver ignores the highway speed limit sign and travels at 

18 m/s? (c) What speed is safe for traveling around the curve 

if the road surface is wet from a recent rainstorm and the 

Example 5.7

A Possible Skid: Unbanked and Banked Curves

A car is going around an unbanked curve at the recom-

mended speed of 11 m/s (see Fig. 5.12). (a) If the radius of 

curvature of the path is 25 m and the coefficient of static 

friction between the rubber and the road is ms = 0.70, does 

N

W

(a) (b)

mg

(c)

v

a

a

fs

x

y

N

fs

Figure 5.12 (a) A car negotiating a curve at constant speed on an unbanked roadway. The car’s acceleration is toward the 

center of the circular path. (b) A head-on view of the same car. The center of the circular path is to the left as viewed here. 

The force vectors   N⃗ and  f⃗s are shown acting on one tire, but they represent the total normal and frictional forces acting on 

all four tires. (c) FBD for the car.

radial direction—see  Fig. 5.13 ). Then we need no longer rely solely on friction to keep 

the car moving in a circular path as it negotiates the curve; this component of the nor-

mal force acts to help the car remain on the curved path.  Figure 5.13  shows a banked 

road with the normal force, the gravitational force, and, in parts (b) and (c), the radial 

component of the normal force  N   x  .  We choose the axes so that the   x  -axis is in the direc-

tion of the acceleration, which is to the left; the axes are   not   parallel and perpendicular 

to the incline.          

Figure 5.13 (a) Head-on view 

of a car negotiating a curve at 

constant speed on a banked 

roadway. The car’s acceleration 

is toward the center of the circu-

lar path (to the left as viewed 

here).  N⃗ represents the total nor-

mal force acting on all four tires. 

The car moves at just the right 

speed so that the frictional force 

is zero. (b) Resolving the normal 

force into x- and y-components. 

(c) FBD for the car with the nor-

mal force represented by its 

components.

x

y

x

y

a

Ny

Nx

N

Nx

(a) (b) (c)

Ny

N

W Wy
= −mg

q

q

q

continued on next page



coefficient of static friction between the wet road and the 

rubber tires is m s = 0.50? (d) For a car to safely negotiate the 

curve in icy conditions at a speed of 13 m/s, what banking 

angle would be required (see Fig. 5.13)?

Strategy The force of static friction is the only horizontal 

force acting on the car when the curve is not banked. The 

maximum force of static friction, which depends on road 

conditions, determines the maximum possible radial accel-

eration of the car. Therefore, we can compare the radial 

acceleration necessary to go around the curve at the speci-

fied speeds with the maximum possible radial acceleration 

determined by the coefficient of static friction. For part (d), 

in icy conditions we cannot rely much on friction, but the 

normal force has a horizontal component when the road is 

banked.

Solution (a) We find the radial acceleration required for a 

speed of 11 m/s:

 a  r  =    v 2  __ r   =   
(11 m/s ) 2 

 ________ 
25 m

   = 4.8 m/ s 2 

In order to have that acceleration, the component of the net 

force acting toward the center of curvature must be

∑ F  r  =  ma  r  = m    v 2  __ r  

The only force with a horizontal component is the static fric-

tional force acting on the tires due to the road (see the FBD 

in Fig. 5.12c). Therefore,

∑ F  r  =  f  s  = m    v 2  __ r  

We must check to make sure that the maximum frictional 

force is not exceeded:

 f  s  ≤ m  sN

Since N = mg, the car can go around the curve without skid-

ding as long as

m    v 2  __ r   ≤ m  s mg

Thus, the radial acceleration cannot exceed msg. That limits 

the car to speeds satisfying

v ≤  √
____

 m  sgr  

Substituting numerical values,

v ≤  √
____________________

  0.70 × 9.80 m/ s 2  × 25 m   = 13 m/s

Since 11 m/s is less than the maximum safe speed of 13 m/s, 

the car safely negotiates the curve.

(b) At 18 m/s, the car moves at a speed higher than the maxi-

mum safe speed of 13 m/s. The frictional force cannot sup-

ply the radial acceleration needed for the car to go around 

the curve—the car goes into a skid.

(c) In part (a), we found that the car is limited to speeds 

satisfying

v ≤  √
____

 m sgr  

With m s = 0.50, the maximum safe speed is

 v  max  =  √
____

 m  sgr   =  √
____________________

  0.50 × 9.80 m/ s 2  × 25 m   = 11 m/s

which is the same maximum speed recommended by the 

road sign. The highway engineer knew what she was doing 

when she had the sign placed along the road.

(d) Finally, we find the banking angle that would enable cars 

to travel around the curve at 13 m/s in icy conditions. Assum-

ing that friction is negligible, the horizontal component of 

the normal force is the only horizontal force. With the x-axis 

pointing toward the center of curvature and the y-axis verti-

cal (Fig. 5.13),

 ∑ F  x  = N sin q  = m v 2 /r (1)

and

 ∑ F  y  = N cos q  − mg = 0 (2)

Dividing Eq. (1) by Eq. (2) gives

   N sin q  _______ 
N cos q 

   = tan q  =   m v 2 /r _____ mg   =    v 2  __ rg   

q  =  tan −1     v 2  __ rg   =  tan  −1    
(13 m/s ) 2 

  ______________  
25 m × 9.80 m/ s 2 

   = 35° (3)

Discussion Notice that the mass of the car does not appear 

in Eq. (3); the same banking angle holds for a scooter, motor-

cycle, car, or tractor-trailer. Notice also that the banking 

angle depends on the square of the speed. Automobile race-

tracks and bicycle racetracks have highly banked road sur-

faces at hairpin curves to minimize skidding of the high-speed 

vehicles. However, a banking angle of 35° is far greater than 

those used in practice along public roadways. Careful driv-

ers would not try to drive around this curve in icy conditions 

at 13 m/s. What do you think might happen in icy conditions 

to a car that is traveling very slowly along a road banked at 

such a steep angle?

Highway curves are banked at slight angles to help driv-

ers who are driving at reasonable speeds for the road condi-

tions. They are not banked to save speed demons from their 

folly.

Practice Problem 5.7 A Bobsled Race

A bobsled races down an icy hill and then comes on a hori-

zontal curve, located 60.0 m from the bottom of the hill. The 

sled is traveling at 22.4 m/s (50 mph) as it approaches the 

curve that has a radius of curvature of 50.0 m. The curve is 

banked at an angle of 45° and the frictional force on the sled 

runners is negligible. Does the sled make it safely around 

the curve?
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ME
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Fgrav

Figure 5.15 Satellite in orbit 

around Earth.

 If there is  no  friction between the road and the tires, then there is only one speed at 

which it is safe to drive around a given curve.  With  friction, there is a  range  of safe 

speeds. The static frictional force can have any magnitude from 0 to  m  s  N  and it can be 

directed either up or down the bank of the road.     

 When an airplane pilot makes a turn in the air, the pilot makes use of a banking 

angle. The airplane itself is tilted as if it were traveling over an inclined surface. Because 

of the shape of the wings, an aerodynamic force called  lift  acts upward when the plane 

is in level flight. To go around a turn, the wings are tilted; the lift force stays perpendic-

ular to the wings and, therefore, now has a horizontal component ( Fig. 5.14 ), just as the 

normal force has a horizontal component for a car on a banked curve. This component 

supplies the necessary radial acceleration, while the vertical component of the lift holds 

the plane up. Therefore,

    L  x  =  ma  r  =    mv 2  ____ r   and  L  y  = mg 

where the  x -axis is horizontal and the  y -axis is vertical. The lift force is different in its 

physical origin from the normal force, but its components split up the same way, so a 

plane in a turn banks its wings at the same angle that a road would be banked for the 

same speed and radius of curvature. Of course, planes usually move much faster than 

cars and use large radii of curvature when they turn.                   

CHECKPOINT 5.3

A plane can’t make a turn without tilting its wings. Why can a car turn on a flat road?

   5.4  CIRCULAR ORBITS OF SATELLITES AND PLANETS      

 A satellite can orbit Earth in a circular path because of the long-range gravitational 

force on the satellite due to the Earth. The magnitude of the gravitational force on the 

satellite is

    F =   
G m  1  m  2  _______ 

 r  2 
    (2-6)  

where the universal gravitational constant is  G   =  6.67  ×  10  − 11  N·m 2 /kg 2 . We can use 

Newton’s second law to find the speed of a satellite in circular orbit at constant speed. 

Let  m  be the mass of the satellite and  M   E   be the mass of the Earth. The direction of the 

gravitational force on the satellite is always toward the center of the Earth, which is the 

center of the orbit ( Fig. 5.15 ). Since gravity is the only force acting on the satellite,

   ∑ F  r  = G    
m M  E 

 _____ 
 r   2  

  

   where   r   is the distance from the   center   of the Earth to the satellite. Then, from Newton’s 

second law,    

∑ F  r  =  ma  r  =    mv 2  ____ r   

Setting these equal,

   G   
m M  E 

 _____ 
 r   2 

   =    v 2  ____    

Solving for the speed yields

    v =  √
_____

   
G M  

E
 
 _____ r      (5-13)         

 Notice that the mass of the satellite does not appear in the equation for speed; it has 

been algebraically canceled. The greater inertia of a more massive satellite is overcome 

Application of radial 

acceleration: banking angle of an 

airplane

Application of radial 

acceleration: banking angle of an 

airplane

Application of radial 

acceleration: circular orbits

Application of radial 

acceleration: circular orbits

y

xLx

Ly L

Figure 5.14 The lift force   L⃗ 

is perpendicular to the wings 

of the plane. To turn, the pilot 

tilts the wings so a component 

of the lift force is directed 

toward the center of the circular 

path of the plane.



by a proportionally greater gravitational force acting on it. Thus, the speed of a satellite 

in a circular orbit does not depend on the mass of the satellite. Equation (5-13) also 

shows that satellites in lower orbits (smaller radii) have greater speeds. 

 We have been discussing satellites orbiting Earth, but the same principles apply to 

the circular orbits of satellites around other planets and to the orbits of the planets 

around the Sun. For planetary orbits, the mass of the Sun would appear in Eq. (5-13) 

instead of the Earth’s mass, because the  Sun’s  gravitational pull keeps the planets in 

their orbits. The planetary orbits are actually ellipses ( Fig. 5.16 ) instead of circles, 

although for most of the planets in the solar system the ellipses are nearly circular. Mer-

cury is the exception; its orbit is markedly different from a circle.       

Sun

Earth
(e = 0.017)

Comet
Tempel 1

(e = 0.519)

The other 
focus for 
the orbit 
of Comet 
Tempel 1

Figure 5.16 The shapes of two elliptical orbits around the Sun. 

(The sizes of the orbits are not to scale.) An ellipse looks like an 

elongated circle. The degree of elongation is measured by a quan-

tity called the eccentricity e. A circle is a special case of an ellipse 

with e = 0. Most of the planetary orbits are nearly circular, with 

the exception of Mercury. The sum of the distances from any point 

on an ellipse to each of two fixed points (called the foci) is con-

stant. The Sun is at one focus of each orbit. Since Earth’s orbit is 

nearly circular, the second focus is very near the Sun.

where m is the mass of the telescope. Solving for the speed, 

we find

v =  √
_____

   
G M  

E
 
 _____ r    

 v =  √
_________________________________

       
6.67 ×  10 −11  N ⋅  m 2 /k g 2  × 5.97 ×  10 24  kg

    ________________________________   
6.98 ×  10 6  m

  

  v = 7550 m/s = 27 200 km/h

Discussion Any satellite orbiting Earth at an altitude of 

613 km has this same speed, regardless of its mass.

Practice Problem 5.8 Speed of Earth in Its Orbit

What is the speed of Earth in its approximately circular 

orbit about the Sun? The average Earth–Sun distance is 

1.50 × 1011 m and the mass of the Sun is 1.987 × 1030 kg. 

Once you find the speed, use it along with the distance trav-

eled by the Earth during one revolution about the Sun to cal-

culate the time in seconds for one orbit.

Example 5.8

Speed of a Satellite

The Hubble Space Telescope is in a circular orbit 613 km 

above Earth’s surface. The average radius of the Earth is 

6.37 × 103 km and the mass of Earth is 5.97 × 1024 kg. What 

is the speed of the telescope in its orbit?

Strategy We first need to find the orbital radius of the tele-

scope. It is not 613 km; that is the distance from the surface of 

Earth to the telescope. We must add the radius of the Earth to 

613 km to find the orbital radius, which is measured from the 

center of the Earth to the telescope. Then we use Newton’s sec-

ond law, along with what we know about radial acceleration.

Solution The radius of the telescope’s orbit is

r = 6.13 ×  10 2  km + 6.37 ×  10 3  km = (0.613 + 6.37) ×  10 3  km

   = 6.98 ×  10 3  km

The net force on the telescope is equal to the gravitational 

force, given by Newton’s law of gravity. Newton’s second 

law relates the net force to the acceleration. Both are directed 

radially inward.

∑ F  r  =   
Gm M  

E
 
 ______ 

 r   2 
   =    mv 2  ____ r  

  Kepler’s Laws of Planetary Motion 

 At the beginning of the seventeenth century, Johannes Kepler (1571–1630) proposed 

three laws to describe the motion of the planets. These laws predated Newton’s laws of 

motion and his law of gravity. They offered a far simpler description of planetary motion 
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than anything that had been proposed previously. We turn history on its head and look at 

one of Kepler’s laws as a consequence of Newton’s laws. The fact that Newton could 

derive Kepler’s laws from his own work on gravity was seen as a confirmation of New-

tonian mechanics. 

  Kepler’s laws of planetary motion  are

   • The planets travel in elliptical orbits ( Fig. 5.16 ) with the Sun at one focus of the 

ellipse.  

  • A line drawn from a planet to the Sun sweeps out equal areas in equal time 

intervals.  

  • The square of the orbital period is proportional to the cube of the average distance 

from the planet to the Sun.    

 Kepler’s first law can be derived from the inverse square law of gravitational attrac-

tion. The derivation is a bit complicated, but for any two objects that have such an 

attraction, the orbit of one about the other is an ellipse, with the stationary object located 

at one focus. (Planetary orbits are also affected by gravitational interactions with other 

planets; Kepler’s laws ignore these small effects.) The circle is a special case of an 

ellipse where the two foci coincide. We discuss Kepler’s second law in Chapter 8. 

 We can derive Kepler’s third law from Newton’s law of universal gravitation for the 

special case of a circular orbit. The gravitational force gives rise to the radial acceleration:

   ∑ F  r  =   
Gm M  

Sun
 
 _______ 

 r   2 
   =   m v 2  ____ r       

Solving for  v  yields

   v =  √
______

   
G M  

Sun
 
 ______ r     

The distance traveled during one revolution is the circumference of the circle, which is 

equal to 2 p   r.  The speed is the distance traveled during one orbit divided by the period:

   v =  √
______

   
 GM  

Sun
 
 ______ r     =   2p r ____ 

T
   

Now we solve for  T: 

   T = 2p  √
______

     r 3  ______ 
 GM  

Sun 
 
     

Squaring both sides yields

     T  2  =   4 p   2  ______ 
 GM  

Sun
 
    r  3  = constant ×  r  3   (5-14)  

Equation (5-14) is Kepler’s third law: the square of the period of a planet is directly pro-

portional to the cube of the average orbital radius. 

 Although Kepler’s laws were derived for the motion of planets, they apply to satel-

lites orbiting the Earth as well. Many satellites, such as those used for communications, 

are placed in a  geostationary  (or  geosynchronous ) orbit—a circular orbit in Earth’s equa-

torial plane whose period is equal to Earth’s rotational period ( Fig. 5.17 ). A satellite in 

geostationary orbit remains directly above a particular point on the equator; to observers 

on the ground, it seems to hover above that point without moving. Due to their fixed posi-

tions with respect to Earth’s surface, geostationary satellites are used as relay stations for 

communication signals. In  Example 5.9 , we find the speed of a geostationary satellite.                

Application of radial 

acceleration: Kepler’s third law 

for a circular orbit

Application of radial 

acceleration: Kepler’s third law 

for a circular orbit

Application of radial 

acceleration: geostationary orbits

Application of radial 

acceleration: geostationary orbits

CHECKPOINT 5.4

Do all geostationary satellites, no matter their masses, have to be the same height 

above Earth? Explain.
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Communications
satellite

rP

Figure 5.17 Geostationary 

satellite orbiting the Earth. The 

satellite has the same angular 

velocity as Earth, so it is always 

directly above point P.

geostationary satellites. The mass of the satellite does not 

matter; it cancels out of the equations for orbital radius and 

for speed.

If we were actually putting a satellite into orbit, we would 

use a more accurate value for the period. We should use a 

time of 23 h and 56 min, which is the length of a sidereal 
day—the time for Earth to complete one rotation about its 

axis relative to the fixed stars. The solar day, 24 h, is the 

period of time between the daily appearances of the Sun at its 

highest point in the sky. The fact that Earth moves around the 

Sun is what causes the difference between these two ways of 

measuring the length of a day. The error introduced by using 

the longer time is negligible in this problem.

We can use Kepler’s third law to check the result. Exam-

ples 5.8 and 5.9 both concern circular orbits around the Earth. 

Is the square of the period proportional to the cube of the 

orbital radius? From Example 5.8, r1 = 6.98 × 103 km and

 T  
1
  =   

2p  r  
1
 
 ____ 

v
   =   2p  ×  6.98 ×  10 3  km  _________________  

7.55 km/s
   = 5810 s

From the present example, r2 = 4.22 × 107 m and

 T  
2
  = 24 h ×   3600 s ______ 

1 h
   = 86 400 s

The ratio of the squares of the periods is

  (    T  
2
 
 ___ 

 T  
1
 
   )  

2

  =   (   86 400 s _______ 
5810 s

   )  2  = 221

The ratio of the cubes of the radii is

  (    r  
2
 
 __  r  

1
    )  

3

  =   (   4.22 ×  10 7  m ___________ 
6.98 ×  10 6  m

   )  
3

  = 221

Practice Problem 5.9 Orbital Radius of Venus

The period of the orbit of Venus around the Sun is 0.615 Earth 

years. Using this information, find the radius of its orbit in 

terms of R, the radius of Earth’s orbit around the Sun.

Example 5.9

Geostationary Satellite

A 300.0-kg communications satellite is placed in a geosta-

tionary orbit 35,800 km above a relay station located in 

Kenya. What is the speed of the satellite in orbit?

Strategy The period of the satellite is 1 d or approximately 

24 h. To find the speed of the satellite in orbit we use New-

ton’s law of gravity and his second law of motion along with 

what we know about radial acceleration.

Solution Let m be the mass of the satellite and let M E be 

the mass of the Earth. Gravity is the only force acting on the 

satellite in its orbit. From Newton’s law of universal gravita-

tion, Newton’s second law, and the expression for radial 

acceleration,

∑ F  r  =   
Gm M  

E
 
 ______ 

 r   2 
   =   m v 2  ____ r  

Solving for the speed yields

v =  √
_____

   
 GM  

E
 
 _____ r    

We must add the mean radius of the Earth, R E = 6.37 × 106 m, 

to the height of the satellite above the Earth’s surface to find 

the orbital radius.

r = h +  R  
E
  = 3.58 ×  10 7  m + 0.637 × 1 0 7  m

= 4.217 ×  10 7  m

Substituting numerical values into the speed equation,

v =  √
________________________________

     
6.67 × 1 0 −11  N⋅ m 2 / kg 2  × 5.97 × 1 0 24  kg

   ________________________________   
4.217 × 1 0 7  m

  

     =  √
_______________

  9.443 ×  10 6   m 2 / s 2   

v = 3.07 ×  10 3  m/s

Discussion This result, an orbital speed of 3.07 km/s and 

a distance above Earth’s surface of 35,800 km, applies to all 
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Now we apply Newton’s second law to the orbit of the sec-

ond satellite about the planet of mass 3ME:

  
Gm × 3 M  

E
 
 _________ 

 r  2  
2
 
   =   

m v  1  
2
 
 ____  r  

2
   

 r  
2
  =   

G × 3 M  
E
 
 ________ 

 v  1  
2
 
  

The ratio of r2 to r1 is

  
 r  

2
 
 __  r  

1
    =   

G × 3 M  
E
 / v  1  

2
 
 __________ 

 GM  
E
 / v  1  

2
 
   = 3

Thus, r2 = 3r1.

Discussion Notice that we did not rush to substitute 

numerical values for the constants G and ME into the equa-

tions. We took the ratio r2/r1 so that these constants cancel.

Practice Problem 5.10 Period of Lunar Lander

A lunar lander is orbiting about the Moon. If the radius of its 

orbit is   1 _ 
3
   the radius of Earth, what is the period of its orbit?

Example 5.10

Orbiting Satellites

A satellite revolves about Earth with an orbital radius of r1

and speed v1. If an identical satellite were set into circular 

orbit with the same speed about a planet of mass three times 

that of Earth, what would its orbital radius be?

Strategy We can apply Newton’s law of universal gravita-

tion and set up a ratio to solve for the new orbital radius.

Solution From Newton’s second law, the magnitude 

of the gravitational force on the satellite is equal to 

the satellite’s mass times the magnitude of its radial 

acceleration:

  
Gm M  

E
 
 ______ 

 r  1  
2
 
   =   

m v  1  
2
 
 ____  r  

1
   

where M E and m are the masses of Earth and of the satellite, 

respectively. Solving for r1 yields

 r  
1
  =   

 GM  
E
 
 _____ 

 v  1  
2
 
  

   5.5  NONUNIFORM CIRCULAR MOTION 

  So far we have focused on  uniform  circular motion. Now we can extend the discussion 

to nonuniform circular motion, where the angular velocity changes with time. 

  Figure 5.18a  shows the velocity vectors     v ⃗  
1
   and     v ⃗  

2
   at two different times for an 

object moving in a circle with changing speed. In this case, the speed is increasing 

( v  2  >  v  1 ). In  Fig. 5.18b , we subtract     v ⃗  
1
   from     v ⃗  

2
   to find the change in velocity. In the 

limit    Δt → 0, Δv ⃗  does  not  become perpendicular to the velocity, as it did for uniform 

circular motion. Thus, the direction of the acceleration is  not  radial if the speed is chang-

ing. However, we can resolve the acceleration into tangential and radial components 

v1

v1

at

v2

v2

v2 = v1 + ∆v

(a) (b) (c)

ar

a = ∆v
∆t

∆v

r1

r2

a

Figure 5.18 Motion along a 

circular path with a changing 

speed: (a) the magnitude of 

velocity v ⃗ 2  is greater than the 

magnitude of velocity v ⃗ 1 , (b) the 

direction of Δv ⃗ is not radial 

when the speed is changing, and 

(c) components of a ⃗ can be 

taken along a tangent to the 

curved path (at) and along a 

radius (ar).



( Fig. 5.18c) . The radial component  a   r   changes the  direction  of the velocity, and the tan-

gential component  a  t  changes the  magnitude  of the velocity. Since these are perpendicu-

lar components of the acceleration, the magnitude of the acceleration is

   a =  √
______

  a  r  
2
  +  a  t  

2
           

 Using the same method as in Section 5.2 to find the radial acceleration, but work-

ing here with only the radial  component  of the acceleration, we find that

     a  r  =    v 2  __ r   =  w  2 r (w  in radians per unit time)  (5-12)   

    For circular motion,   whether uniform or nonuniform,   the radial component of the accel-

eration is given by Eq. (5-12).  However, in  uniform  circular motion the radial compo-

nent of the acceleration  a  r  is constant in magnitude, but for nonuniform circular motion 

 a  r  changes as the speed changes. 

 Also still true for nonuniform circular motion is the relationship between speed and 

angular speed:

    v = r  w    (5-7)   

    Many problems involving nonuniform circular motion are solved in the same way as for 

uniform circular motion. We find the   radial component of the net force   and then apply 

Newton’s second law along the radial direction: 

   ∑ F  r  =  ma  r     

Problem-Solving Strategy for an Object in Nonuniform 
Circular Motion

 1. Begin as for any Newton’s second law problem: Identify all the forces acting 

on the object and draw an FBD.

 2. Choose perpendicular axes at the point of interest so that one axis is radial and 

the other is tangent to the circular path.

 3. Find the radial component of each force.

 4. Apply Newton’s second law along the radial direction:

∑ F  r  =  ma  r 

  where

 a  r  =    v 2  __ r   =  w     2 r

 5. If necessary, apply Newton’s second law to the tangential force components:

∑ F  t  =  ma  t 

  The tangential acceleration component at determines how the speed of the 

object changes.

        

CHECKPOINT 5.5

For an object in circular motion, what is it about the radial acceleration that dis-

tinguishes between uniform and nonuniform circular motion?
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moves with a speed great enough to stay on the track. If the 

car moves too slowly, it loses contact with the track and the 

normal force is then zero.

Solution The normal force exerted by the track on the car 

at the top pushes the car away from the track (downward); 

the normal force cannot pull up on the car. Then, at the top 

of the loop, the gravitational force and the normal force both 

point straight down toward the center of the loop. Fig-

ure 5.19b is an FBD for the car. From Newton’s second law,

∑ F  r  = N + mg =  ma  r  =   
m v  top  

2
  
 _____ r  

or

N =   
m v  top  

2
  
 _____ r   − mg

Example 5.11

Vertical Loop-the-Loop

A roller coaster includes a vertical circular loop of radius 

20.0 m (Fig. 5.19a). What is the minimum speed at which 

the car must move at the top of the loop so that it doesn’t 

lose contact with the track?

Strategy A roller coaster car moving around a vertical 

loop is in nonuniform circular motion; its speed decreases 

on the way up and increases on the way back down. Never-

theless, it is moving in a circle and has a radial acceleration 

component as given in Eq. (5-12) as long as it moves in a 

circle. The only forces acting on the car are gravity and the 

normal force of the track pushing the car. Even if frictional 

or drag forces are present, at the top of the loop they act in 

the tangential direction and, thus, do not contribute to the 

radial component of the net force. At the top of the loop, the 

track exerts a normal force on the car as long as the car 

N

N

(a)

(b)

(c)

mg

mg

vtop

vbottom

abottom

atop

Figure 5.19 (a) A roller coaster car on a vertical circular loop. At the bottom of the loop, the car’s acceleration  a ⃗ 
bottom

  points upward 

toward the center of the circle. At the top of the loop, the car’s acceleration  a ⃗ top  points downward. The magnitude of  a ⃗ top  is smaller than 

that of  a ⃗ 
bottom

  because the speed is smaller at the top than at the bottom. (b) FBD for the car at the top of the loop. The track is above the 

car, so the normal force on the car due to the track is downward. (c) FBD for the car at the bottom of the loop.

continued on next page



where vtop stands for the speed at the top. In this expression, N
stands for the magnitude of the normal force. Since N ≥ 0,

m  (    v  top  
2
  
 ____  r

   − g )  ≥ 0

or

 v  top  ≥  √
__

 gr  

Imagine sending a roller coaster car around the loop many 

times with a slightly smaller speed at the top each time. As vtop

approaches  √
___

 gr  , the normal force at the top gets smaller and 

smaller. When  v  top  =  √
___

 gr  , the normal force just becomes zero 

at the top of the loop. Any slower and the car loses contact with 

the track before getting to the highest point and would fall off 

the track unless prevented from falling by a backup safety 

mechanism. Therefore, the minimum speed at the top is

 v  top  =  √
__

 gr   =  √
________________

  9.80 m/ s 2  × 20.0 m   = 14.0 m/s

Discussion If the car is going faster than 14 m/s at the top, 

its radial acceleration is larger. The track pushing on the car 

provides the additional net force component that results in a 

larger radial acceleration. The minimum speed occurs when 

gravity alone provides the radial acceleration at the top of 

the loop. In other words, ar = g at the top of the loop for min-

imum speed.

Practice Problem 5.11 Normal Force 
at the Bottom of the Track

If the speed of the roller coaster at the bottom of the loop is 

25 m/s, what is the normal force exerted on the car by the 

track in terms of the car’s weight mg? (See Fig. 5.19c.)

PHYSICS AT HOME

Go outside on a warm day and fill a bucket with water. Swing the bucket around 

in a vertical circle over your head. What, if anything, keeps the water in the 

bucket when the bucket is upside down over your head? Why doesn’t the water 

spill out? Do any upward forces act on the water at that point? [Hint: The FBD 

for the water when it is directly overhead is similar to the FBD for a roller 

coaster car at the top of a loop.]

Strategy Two forces appear on each FBD: gravity and the 

force due to the cord. The gravitational force is the same at 

both points (magnitude mg, direction down), but the force 

due to the cord varies in magnitude and in direction. Its 

direction is always along the cord. The net force on the bob 

is the sum of these two forces and its direction is the same as 

the direction of the acceleration. We can use what we know 

about the acceleration to guide us in drawing the forces.

The pendulum bob moves along the arc of a circle, but 

not at constant speed. At any point, the radial component of 

the acceleration is ar = v2/r. Unless v = 0, the radial accelera-

tion component is nonzero. As the pendulum bob swings 

toward the bottom (from A to B), its speed is increasing; as it 

rises on the other side, its speed is decreasing. When the 

speed is increasing, the tangential component of the acceler-

ation at is in the same direction as the velocity. From B to D, 

the speed is decreasing and at is in the direction opposite to 

Conceptual Example 5.12

Acceleration of a Pendulum Bob

A pendulum is released from rest at point A (Fig. 5.20). 

Sketch qualitatively an FBD and the acceleration vector for 

the pendulum bob at points B and C.

A

B

C

D

Figure 5.20

A pendulum swings to the right, starting from rest at point A.

continued on next page

Example 5.11 continued
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   5.6  TANGENTIAL AND ANGULAR ACCELERATION 

  An object in nonuniform circular motion has a changing speed and a changing angular 

velocity. To describe how the angular velocity changes, we define an angular acceleration. 

If the angular velocity is  w   1  at time  t  1  and is  w   2  at time  t  2 , the change in angular velocity is

   Δw = w 2 − w 1 

The time interval during which the angular velocity changes is Δ t   =   t  2   −   t  1 . The average 

rate at which the angular velocity changes is called the    average angular acceleration,     a   av .

    a av =   
w 2 − w 1 _______  t  

2
  −  t  

1
    =   Δw  ___ 

Δt
    (5-15)  

As we let the time interval become shorter and shorter,  a   av  approaches the    instanta-

neous angular acceleration,     a .

    a  =   lim    
Δt→0

    Δw  ___ 
Δt

    (5-16)  

If  w   is in units of rad/s,  a   is in units of rad/s 2 . 

 The angular acceleration is closely related to the tangential component of the accel-

eration. The tangential component of velocity is

     v  t  = r  w    (5-7)  

Equation (5-7) gives us a way to relate tangential acceleration to the angular accelera-

tion. The tangential acceleration is the rate of change of the tangential velocity, so

   at =   
Δ v  t  ___ 
Δt

   = r  |   Δw  ___ 
Δt

   |  (in the limit Δt → 0) 

Therefore,

    at = r  a    (5-17)    

the velocity. At point B, the speed is neither increasing nor 

decreasing and at = 0.

Solution and Discussion At point B, the tangential accel-

eration is zero, so the acceleration points in the radial direc-

tion: straight up (Fig. 5.21). The 

tension in the cord pulls straight 

up and gravity pulls down, so 

the tension must be larger than 

the weight of the bob to give an 

upward net force.

The acceleration at point C
has both tangential and radial 

components. The tangential 

acceleration is opposite to the 

velocity because the bob is 

slowing down. Figure 5.22 

shows the tangential and radial 

acceleration components added 

to form the acceleration vector 

a ⃗ and the FBD for the bob. 

When the two forces are added, they give a net force in the 

same direction as the acceleration vector.

Conceptual Practice Problem 5.12 Analysis 
of the Bob at Point D

Sketch the FBD and the acceleration vector for the pendu-

lum bob at point D, the highest point in its swing to the 

right.

Conceptual Example 5.12 continued

(a)

B

a

(b)

B

T

mg

Figure 5.21

(a) Acceleration of the bob 

at point B. (b) FBD for the 

bob at B.

C

(b)

C

a
ar

at

(a)

mg

T

Figure 5.22

(a) At point C, the bob 

has both tangential and 

radial acceleration com-

ponents. (b) FBD for 

the bob at C.



   Constant Angular Acceleration 

 The mathematical relationships between  q ,   w  , and  a   are the same as the mathematical 

relationships between  x,   v   x  , and  a   x   that we developed in Chapter 2. Each quantity is the 

instantaneous rate of change of the preceding quantity. For example,  a   x   is the rate of 

change of  v   x   and  a  is the rate of change of  w . Because the mathematical relationships 

are the same, we can draw upon the skills and equations we developed to solve prob-

lems with constant acceleration  a   x  . All we have to do is take the equations for constant 

acceleration and replace  x  with  q ,  v   x   with  w  , and  a   x   with  a  (see  Table 5.1 ).         
 Equation (5-18) is the definition of average angular acceleration, with  a   av  replaced 

by  a   since the angular acceleration is constant. Constant  a   means that  w   changes lin-

early with time; therefore, the average angular velocity is halfway between the initial 

and final angular velocities for any time interval    w  av =   1 _ 
2
  ( w   i  +  w   f ).  Using this form for 

 w   av  along with the definition of  w   av  ( w   av   =  Δ q  /Δ t ) yields Eq. (5-19). Equations (5-20) 

and (5-21) can be derived from the preceding two relations in a manner analogous to the 

derivations of Eqs. (2-12) and (2-13) in Section 2.4.        

CHECKPOINT 5.6

A centrifuge is “spinning up” with a constant angular acceleration. Can the radial 

acceleration of a sample in the centrifuge be constant? Explain.

Table 5.1 Relationships Between q, w, and a  for Constant 
Angular Acceleration

Constant Acceleration Along x-Axis Constant Angular Acceleration

Δvx = vfx − vix = ax Δt (2-9) Δw = w f − w i = a Δt (5-18)

Δx =   1 _ 
2
  ( v  fx  +  v  ix ) Δt (2-11) Δq  =   1 _ 

2
  ( w   f  +  w   i ) Δt (5-19)

Δx =  v  ix  Δt +   1 _ 
2
   a  x (Δt ) 2 (2-12) Δq  =  w   i  Δt +   1 _ 

2
  a (Δt ) 2 (5-20)

v  fx  
2
   −  v  ix  

2
   = 2 a  x  Δx (2-13)  w   f  

2
  −  w   i  

2 
 = 2a  Δq (5-21)

CONNECTION:

Because a  is the rate of 

change of w  , and w  is the rate 

of change of q, the equations 

for constant a  have the same 

form as those for constant ax.

acceleration that, for constant angular acceleration, is equal 

to the instantaneous angular 

acceleration. To find the num-

ber of revolutions, we can find 

the angular displacement Δq in 

radians and then divide by 

2p  rad/rev. We can find the 

angular velocity at t = 0.75 s 

and use it to find the radial 

acceleration component. The 

tangential acceleration is calcu-

lated from a.

Example 5.13

A Rotating Potter’s Wheel

A potter’s wheel rotates from rest to 210 rpm in a time of 

0.75 s. (a) What is the angular acceleration of the wheel dur-

ing this time, assuming constant angular acceleration? 

(b) How many revolutions does the wheel make during this 

time interval? (c) Find the tangential and radial components 

of the acceleration of a point 12 cm from the rotation axis 

when the wheel is spinning at 180 rpm.

Strategy We know the initial and final frequencies, so we 

can find the initial and final angular velocities. We also know 

the time it takes for the wheel to get to the final angular 

velocity. That is all we need to find the average angular 

continued on next page
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   5.7  APPARENT WEIGHT AND ARTIFICIAL GRAVITY 

You are no doubt familiar with pictures of astronauts “floating” while in orbit around 

the Earth. It seems as if the astronauts are weightless. To be truly weightless, the force 

of gravity acting on the astronauts due to Earth would have to be zero, or at least close 

to zero. Is it? We can calculate the weight of an astronaut in orbit. The orbital altitude 

for the space shuttle is typically about 600 km above the Earth. Then the orbital radius 

is 600 km  +  6400 km  =  7000 km. Comparing the astronaut’s weight in orbit to his or 

her weight on Earth’s surface,    

     
 W  

orbit
 
 ______ 

 W  
surface

 
   =   

   
G M  

E
 m
 ________ 

( R  
E
  + h ) 2 

   

 _________ 

  
G M  

E
 m
 ______ 

 R  E  
2
  
   

   =   
 R  E  

2
  
 ________ 

( R  
E
  + h ) 2 

   =   
(6400 km ) 2 

 __________ 
(7000 km ) 2 

   = 0.84 

Application of apparent weight 

and circular motion: apparent 

weightlessness of orbiting 

astronauts

Application of apparent weight 

and circular motion: apparent 

weightlessness of orbiting 

astronauts

Solution (a) Initially the wheel is at rest, so the initial 

angular velocity is zero.

 w   i  = 0 rad/s

Converting 210 rpm to rad/s gives the final angular 

velocity:

 w   f  = 210   rev ____ 
min

   ×   1 ___ 
60

     min ____ 
s
   × 2p   rad ___ 

rev
   = 7.0p  rad/s

The angular acceleration is the rate of change of the angular 

velocity. Since a is constant, we can calculate it by finding 

the average angular acceleration for the time interval:

a =   
 w   f  −  w   i  _______ 

tf
 − ti

   =   7.0p  rad/s − 0  ____________ 
0.75 s − 0

   =   7.0p  rad/s _________ 
 0.75 s

   = 29 rad/ s 2 

(b) The angular displacement is

Δq  =   1 _ 
2
   ( w   f  +  w   i ) Δt =   1 _ 

2
   (7.0p  rad/s + 0)(0.75 s) = 8.25 rad

Since 2p rad = one revolution, the number of revolutions is

  8.25 rad _________ 
2p  rad/rev

   = 1.3 rev

(c) At 180 rpm, the angular velocity is

w  = 180   rev ____ 
min

   ×   1 ___ 
60

     min ____ s   × 2p    rad ___ rev   = 6.0p  rad/s

The radial acceleration component is

 a  r  =  w  2 r = (6.0p  rad/s ) 2  × 0.12 m = 43 m/ s 2 

and the tangential acceleration component is

 a  t  = a  r = 29 rad/ s 2  × 0.12 m = 3.5 m/ s 2 

Discussion A quick check involves another of the equa-

tions for constant acceleration:

 w   f  
2
  −  w   i  

2
  = 2a  Δq

Since w i = 0, we can check

 w   f  =  √
_____

 2a Δq 

  From the answers to (a) and (b),

 √
_____

 2a Δq     =  √
____________________

  2 × 29 rad/ s 2  × 8.25 rad   = 22 rad/s

The original value for w f
 in rad/s was 7.0p  rad/s. Since 

p ≈ 22/7, the check is successful.

Practice Problem 5.13 The London Eye

The London Eye, a Ferris wheel on the banks of the Thames, 

has radius 67.5 m. At its cruising angular speed, it takes 

30.0 min to make one complete revolution. Suppose that it 

takes 20.0 s to bring the wheel from rest to its cruising 

speed and that the angular acceleration is constant during 

startup. (a) What is the angular acceleration during startup? 

(b) What is the angular displacement of the wheel during 

startup?

Example 5.13 continued

The London Eye



The weight in orbit is 0.84 times the weight on the surface. The astronaut weighs less 

but certainly isn’t  weightless!  Then why does the astronaut  seem  to be weightless? 

 Recall Section 4.10 on the apparent weightlessness of someone unfortunate 

enough to be in an elevator when the cable snaps. In that situation, the elevator and 

the passenger both have the same acceleration    (a ⃗ = g ⃗).  Similarly, the astronaut has 

the same acceleration as the space shuttle, which is equal to the  local  gravitational 

field    g ⃗.  Apparent weightlessness occurs when    a ⃗ = g ⃗,  where    g ⃗  is the  local  gravita-

tional field. 

Application: Artificial Gravity  In order for astronauts to spend long periods of time 

living in a space station without the deleterious effects of apparent weightlessness,  arti-
ficial gravity  would have to be created on the station. Many science fiction novels and 

movies feature ring-shaped space stations that rotate in order to create artificial gravity 

for the occupants. In a rotating space station, the acceleration of an astronaut is inward 

(toward the rotation axis), but the apparent gravitational field is outward. Therefore, the 

ceiling of rooms on the station are closest to the rotation axis and the floor is farthest 

away ( Fig. 5.23 ).       

 The centrifuge is a device that creates artificial gravity on a smaller scale. Centri-

fuges are common not only in scientific and medical laboratories but also in everyday 

life. The first successful centrifuge was used to separate cream from milk in the 1880s. 

Water drips out of sopping wet clothes due to the pull of gravity when the clothes are 

hung on a clothesline, but the water is removed much faster by the artificial gravity cre-

ated in the spin cycle of a washing machine.     

 The human body can be adversely affected not only by too little artificial gravity, 

but also by too much. Stunt pilots have to be careful about the accelerations to which 

they subject their bodies. An acceleration of about 3 g  can cause temporary blindness 

due to an inadequate supply of oxygen to the retina; the heart has difficulty pumping 

blood up to the head due to the blood’s increased apparent weight. Larger accelerations 

can cause unconsciousness. Pressurized flight suits enable pilots to sustain accelera-

tions up to about 5 g.         

Figure 5.23 A rotating space 

station from the movie 2001: A 
Space Odyssey. Note jogger in the 

upper half running on the floor.

Example 5.14

Stunt Pilot

Dave wants to practice vertical circles for a flying show 

exhibition. (a) What must the minimum radius of the circle 

be to ensure that his acceleration at the bottom does 

not exceed 3.0g? The 

speed of the plane is 

78 m/s at the bottom of 

the circle. (b) What is 

Dave’s apparent weight 

at the bottom of the cir-

cular path? Express 

your answer in terms 

of his true weight.

Strategy For the minimum radius, we use the maximum 

possible radial acceleration since a r = v2/r. For the maximum 

radial acceleration, the tangential acceleration must be zero 

(Fig. 5.24)—the magnitude of the acceleration is a =  √
______

  a  r  
2  +  a  t  

2   . 

Therefore, the radial acceleration component has magnitude 

3.0g at the bottom. To find Dave’s apparent weight, we do 

not need to use the numerical value of the radius found in 

part (a); we already know that his acceleration is upward and 

has magnitude 3.0g.

Solution (a) The magnitude of the radial acceleration is

 a  r  =  v 2 /r
Solving for the radius,

r =    v 2  __  a  
r
    =    v 2  ____ 

3.0g
  

=   
(78 m/s ) 2 

 ____________  
3.0 × 9.8 m/ s 2 

   = 210 m

continued on next page

v

a

Figure 5.24

Velocity and acceleration 

vectors for the plane at 

the bottom of the circle.
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(b) Dave’s apparent weight is the magnitude of the normal 

force of the plane pushing up on him. Let the y-axis point 

upward. The normal force is up and the gravitational force is 

down (Fig. 5.25). Then

∑ F  y  = N − mg =  ma  y 

where ay = +3.0g. Therefore,

W  ′ = N = m(g +  a  y ) = 4.0mg

His apparent weight is 4.0 times his 

true weight.

Discussion It might have been tempting to jump to the 

conclusion that an acceleration of 3.0g means that his appar-

ent weight is 3.0mg. But is his apparent weight zero when 

his acceleration is zero? No.

Practice Problem 5.14 Astronaut’s Apparent 
Weight

What is the apparent weight of a 730-N astronaut when her 

spaceship has an acceleration of magnitude 2.0g in the fol-

lowing two situations: (a) just above the surface of Earth, 

acceleration straight up; (b) far from any stars or planets?

Example 5.14 continued

mg

N
y

x

Figure 5.25

FBD for Dave.

Axis of rotation

Equator

Arctic Circle

a

a

  Application of Apparent Weight to Objects at Rest with Respect to Earth’s 

Surface   Due to Earth’s rotation, the  effective  value of  g  measured in a coordinate sys-

tem attached to Earth’s surface is slightly less than the true value of the gravitational 

field strength (see Section 4.5). The net force of an object placed on a scale is  not  zero 

because the object has a radial acceleration  a   r   =   w   2  r  directed toward Earth’s axis of 

rotation ( Fig. 5.26 ). This relatively small effect is greatest where  r  is greatest—at the 

equator, where the effective value of  g  is about 0.3% smaller than the true value of  g.             

Figure 5.26 An object at rest 

with respect to Earth’s surface 

has a radial acceleration due to 

Earth’s rotation. The angular fre-

quency w is the same every-

where, so the radial acceleration 

ar = w  2r is proportional to the 

distance from the axis of 

rotation.

Master the Concepts    

    • The angular displacement 

Δ q  is the angle through 

which an object has 

turned. Positive and nega-

tive angular displacements 

indicate rotation in differ-

ent directions. Conven-

tionally, positive represents 

counterclockwise motion.      

   • Average angular velocity:

      w   av  =   
 q   2  −  q   1  ______  t  

2
  −  t  

1
    =   Δq  ___ 

Δt
    (5-2)    

   • Average angular acceleration:

      a   av  =   
 w   2  −  w   1  _______  t  

2
  −  t  

1
    =   Δw  ____ 

Δt
    (5-15)    

∆q

q f
q i

q f – q i = ∆q

rf
ri

x

continued on next page



Master the Concepts continued  

 • The instantaneous angular velocity and acceleration are 

the limits of the average quantities as Δ t  → 0.  

   • A useful measure of angle is the radian:

     2p radians = 360° 

  Using radian measure for  q   , the arc length  s  of a circle 

of radius  r  subtended by an angle  q   is

     s = q r (q  in radian measure)  (5-4)    

   • Using radian measure for  w  , the speed of an object 

in circular motion (including a point on a rotating 

object) is

     v = r  w   (w in radians per unit time)  (5-7)    

   • Using radian measure for  a  , the tangential acceleration 

component is related to the angular acceleration by

      a  t  = r  a   (a in radians per tim e 2 )  (5-17)    

   • An object moving in a circle has a radial acceleration 

component given by

     a  r  =    v 2  __ r   =  w   2 r (w  in radians per unit time)  (5-12)        

   • The tangential and radial accelera-

tion components are two perpendic-

ular components of the acceleration 

vector. The radial acceleration com-

ponent changes the direction of the 

velocity and the tangential accelera-

tion component changes the speed.  

   • Uniform circular motion means that  v  and  w    are con-

stant. In uniform circular motion, the time to complete 

one revolution is constant and is called the period  T.  The 

frequency  f  is the number of revolutions completed per 

second.

     f = 1/T  (5-8)  

      w   = v/r = 2p f  (5-9)  

  where the SI unit of angular velocity is rad/s and that of 

frequency is rev/s  =  Hz.  

   • A rolling object is both rotating and translating. If the 

object rolls without skidding or slipping, then

      v  
axle

  = r  w    (5-10)   

     

Ha
wk ZXHa
wk ZX

H
a
w
k
Z
X

H
a
w
k
Z
X

vaxle

∆q

s = r∆q

   • Kepler’s third law says that the square of the period of a 

planetary orbit is proportional to the cube of the orbital 

radius:

      T  2  = constant ×  r  3   (5-14)

   • For constant angular acceleration, we can use equations 

analogous to those we developed for constant accelera-

tion  a   x  :

     Δw =  w   f  −  w   i  = a Δt  (5-18)  

     Δq  =   1 _ 
2
  ( w   f  +  w   i ) Δt  (5-19)  

     Δq  =  w   i  Δt +   1 _ 
2
  a (Δt ) 2   (5-20)  

      w   f  
2
  −  w   i  

2
  = 2a Δq  (5-21)      

at

ar

a = ∆v
∆t

a

  Conceptual Questions 

    1. Is depressing the “accelerator” (gas pedal) of a car the 

only way that the driver can make the car accelerate (in 

the physics sense of the word)? If not, what else can the 

driver do to give the car an acceleration?  

   2. Two children ride on a merry-go-round. One is 2 m 

from the axis of rotation and the other is 4 m from it. 

Which child has the larger (a) linear speed, (b) accelera-

tion, (c) angular speed, and (d) angular displacement?  

   3. Explain why the orbital radius and the speed of a satel-

lite in circular orbit are not independent.  

   4. In uniform circular motion, is the velocity constant? Is 

the acceleration constant? Explain.  

   5. In uniform circular motion, the net force is perpendicular 

to the velocity and changes the direction of the velocity 

but not the speed. If a projectile is launched horizontally, 

the net force (ignoring air resistance) is perpendicular to 

the initial velocity, and yet the projectile gains speed as it 

falls. What is the difference between the two situations?  

   6. The speed of a satellite in circular orbit around a planet 

does not depend on the mass of the satellite. Does it 

depend on the mass of the planet? Explain.  

   7. A flywheel (a massive disk) rotates with constant angu-

lar acceleration. For a point on the rim of the flywheel, 

is the tangential acceleration component constant? Is 

the radial acceleration component constant?  

   8. Explain why the force of gravity due to the Earth does 

not pull the Moon in closer and closer on an inward spi-

ral until it hits Earth’s surface.  

   9. When a roller coaster takes a sharp turn to the right, it 

feels as if you are pushed toward the left. Does a force 

push you to the left? If so, what is it? If not, why does 

there  seem  to be such a force?  
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   10. Is there anywhere on Earth where a bathroom scale 

reads your true weight? If so, where? Where does your 

apparent weight due to Earth’s rotation differ most from 

your true weight?  

   11. A physics teacher draws a cut-

away view of a car rounding a 

banked curve as a rectangle 

atop a right triangle. A student 

draws a coordinate system 

based on the drawing. Is there 

another choice of axes that would make the problem 

easier to solve?      

   12. A bridal party is at a 

rehearsal dinner. The best 

man challenges the bride-

groom to pick up an olive 

using only a brandy snif-

ter. How does the groom 

accomplish this task?        

  Multiple-Choice Questions 

    1. A spider sits on a turntable that is rotating at a constant 

33 rpm. The acceleration    a ⃗  of the spider is

    (a) greater the closer the spider is to the central axis.  

   (b)  greater the farther the spider is from the central axis.  

   (c)  nonzero and independent of the location of the spi-

der on the turntable.  

   (d) zero.   

y

x

A

Earth

B

C

D

Multiple-Choice Questions 2–5 and Problem 36

   Questions 2–5:  A satellite in orbit travels around the 

Earth in uniform circular motion. In the figure, the sat-

ellite moves counterclockwise ( ABCDA ). Answer 

choices:   

 (a)  +  x      (b)  +  y       (c) − x      (d) − y   

   (e) 45 °  above  +  x  (toward  +  y )  

   (f) 45 °  below  +  x  (toward  −  y )  

   (g) 45 °  above  −  x  (toward  +  y )  

   (h) 45 °  below  −  x  (toward  −  y )     

   2. What is the direction of the satellite’s instantaneous 

velocity at point  D?       

   3. What is the direction of the satellite’s average velocity for 

one quarter of an orbit, starting at  C  and ending at  D?   

   4. What is the direction of the satellite’s average acceleration 

for one half of an orbit, starting at  C  and ending at  A?   

   5. What is the direction of the satellite’s instantaneous 

acceleration at point  C?   

   6. Two satellites are in orbit around Mars with the same 

orbital radius. Satellite 2 has twice the mass of satellite 

1. The radial acceleration of satellite 2 has

    (a)  twice the magnitude of the radial acceleration of 

satellite 1.  

   (b)  the same magnitude as the radial acceleration of 

satellite 1.  

   (c)  half the magnitude of the radial acceleration of 

satellite 1.  

   (d)  four times the magnitude of the radial acceleration 

of satellite 1.   

 Questions 7–8:  A boy swings in a tire swing. Answer 

choices:   

 (a) At the highest point of the motion  

   (b) At the lowest point of the motion  

   (c) At a point neither highest nor lowest  

   (d) It is constant.     

   7. When is the tension in the rope the greatest?  

   8. When is the tangential acceleration the greatest? 

  Questions 9–10 concern these three statements: 

    (1) Its acceleration is constant.  

   (2)  Its radial acceleration component is constant in 

magnitude.  

   (3)  Its tangential acceleration component is constant in 

magnitude.     

   9.  An object is in uniform circular motion. Identify the 

correct statement(s).

    (a) 1 only     (b) 2 only     (c) 3 only  

   (d) 1, 2, and 3     (e) 2 and 3     (f) 1 and 2  

   (g) 1 and 3     (h) None of them     

   10.  An object is in nonuniform circular motion with 

constant angular acceleration. Identify the correct 

statement(s). (Use the same answer choices as 

Question 9.)  

   11. An astronaut is out in space far from any large bodies. 

He uses his jets to start spinning, then releases a base-

ball he has been holding in his hand. Ignoring the gravi-

tational force between the astronaut and the baseball, 

how would you describe the path of the baseball after it 

leaves the astronaut’s hand?

    (a)  It continues to circle the astronaut in a circle with 

the same radius it had before leaving the astronaut’s 

hand.  

   (b) It moves off in a straight line.  

   (c) It moves off in an ever-widening arc.     

Brandy snifter

Olive



   12. An object moving in a circle at a constant speed has an 

acceleration that is

    (a) in the direction of motion  

   (b) toward the center of the circle  

   (c) away from the center of the circle  

   (d) zero       

  Problems 

 Combination conceptual/quantitative problem  

 Biological or medical application  

✦ Challenging problem  

Blue #  Detailed solution in the Student Solutions Manual  

1  2  Problems paired by concept  

 Text website interactive or tutorial   

  5.1 Description of Uniform Circular Motion 

     1.  A carnival swing is fixed on the end of an 8.0-m-long 

beam. If the swing and beam sweep through an angle of 

120 ° , what is the distance through which the riders 

move?  

    2.  A soccer ball of diameter 31 cm rolls without slipping 

at a linear speed of 2.8 m/s. Through how many revolu-

tions has the soccer ball turned as it moves a linear dis-

tance of 18 m?  

    3.  Find the average angular speed of the second hand of a 

clock.  

    4.   Convert these to radian measure: (a) 30.0 ° , (b) 135 ° , 

(c)      1 _ 
4
    revolution, (d) 33.3 revolutions.  

    5.  A bicycle is moving at 9.0 m/s. What is the angular 

speed of its tires if their radius is 35 cm? (   tutorial: 

car tire)  

 6.  An elevator cable winds on a drum of radius 90.0 cm 

that is connected to a motor. (a) If the elevator is mov-

ing down at 0.50 m/s, what is the angular speed of the 

drum? (b) If the elevator moves down 6.0 m, how many 

revolutions has the drum made?  

    7.  Grace is playing with her dolls and decides to give them 

a ride on a merry-go-round. She places one of them on 

an old record player turntable and sets the angular speed 

at 33.3 rpm. (a) What is their angular speed in rad/s? 

(b) If the doll is 13 cm from the center of the spinning 

turntable platform, how fast (in m/s) is the doll moving?  

    8.  A wheel is rotating at a rate of 2.0 revolutions every 

3.0 s. Through what angle, in radians, does the wheel 

rotate in 1.0 s?  

    9.  In the construction of railroads, it is important that 

curves be gentle, so as not to damage passengers or 

freight. Curvature is not measured by the radius of cur-

vature, but in the following way. First a 100.0-ft-long 

chord is measured. Then the curvature is reported as the 

angle subtended by two radii at the endpoints of the 

✦✦

chord. (The angle is measured by determining the angle 

between two tangents 100 ft apart; since each tangent is 

perpendicular to a radius, the angles are the same.) In mod-

ern railroad construction, track curvature is kept below 

1.5 ° . What is the radius of curvature of a “1.5 °  curve”? 

[ Hint:  Since the angle is small, the length of the chord is 

approximately equal to the arc length along the curve.] 

       

q

100 ft

  5.2 Radial Acceleration 

    10. Verify that all three expressions for radial acceleration 

( v  w  ,  v  
2 / r,  and  w   2  r ) have the correct dimensions for an 

acceleration.  

     11. An apparatus is designed to study insects at an accelera-

tion of magnitude 980 m/s 2  ( =  100 g ). The apparatus 

consists of a 2.0-m rod with insect containers at either 

end. The rod rotates about an axis perpendicular to the 

rod and at its center. (a) How fast does an insect move 

when it experiences a radial acceleration of 980 m/s 2 ? 

(b) What is the angular speed of the insect? (    tuto-

rial: centrifuge) 

     

2.0 m

    12.  The rotor is an amusement park ride where people stand 

against the inside of a cylinder. Once the cylinder is 

spinning fast enough, the floor drops out. (a) What force 

keeps the people from falling out the bottom of the cyl-

inder? (b) If the coefficient of friction is 0.40 and the 

cylinder has a radius of 2.5 m, what is the minimum 

angular speed of the cylinder so that the people don’t 

fall out? (Normally the operator runs it considerably 

faster as a safety measure.) 
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    13.  Objects that are at rest relative to Earth’s surface are in 

circular motion due to Earth’s rotation. What is the 

radial acceleration of an African baobab tree located at 

the equator?  

14.  Earth’s orbit around the Sun is nearly circular. The 

period is 1 yr  =  365.25 d. (a) In an elapsed time of 1 d, 

what is Earth’s angular displacement? (b) What is the 

change in Earth’s velocity,    Δv ⃗ ? (c) What is Earth’s aver-

age acceleration during 1 d? (d) Compare your answer 

for (c) to the magnitude of Earth’s instantaneous radial 

acceleration. Explain.  

    15.  A 0.700-kg ball is on the 

end of a rope that is 1.30 m 

in length. The ball and rope 

are attached to a pole and 

the entire apparatus, includ-

ing the pole, rotates about 

the pole’s symmetry axis. 

The rope makes an angle of 

70.0 °  with respect to the 

vertical. What is the tangen-

tial speed of the ball?      

    16.  A child’s toy has a 0.100-kg ball attached to two strings,  A  

and  B.  The strings are also attached to a stick and the ball 

swings around the stick along a 

circular path in a horizontal plane. 

Both strings are 15.0 cm long and 

make an angle of 30.0 °  with 

respect to the horizontal. (a) Draw 

an FBD for the ball showing the 

tension forces and the gravitational 

force. (b) Find the magnitude of 

the tension in each string when the 

ball’s angular speed is 6.00 p   rad/s.      

17.  A child swings a rock of mass  m  in a horizontal circle 

using a rope of length  L.  The rock moves at constant 

speed  v.  (a) Ignoring gravity, find the tension in the rope. 

(b) Now include gravity (the weight of the rock is no lon-

ger negligible, although the weight of the rope still is 

negligible). What is the tension in the rope? Express the 

tension in terms of  m,   g,   v,   L,  and the angle  q   that the 

rope makes with the horizontal. (   tutorial: skip rope)  

18. A  conical pendulum  consists of a bob (mass  m ) attached 

to a string (length  L ) swinging in a horizontal circle 

( Fig. 5.11 ). As the string moves, it sweeps out the area 

of a cone. The angle that the string makes with the verti-

cal is  f . (a) What is the tension in the string? (b) What is 

the period of the pendulum?    

  5.3 Unbanked and Banked Curves 

19. A curve in a stretch of highway has radius  R.  The road 

is unbanked. The coefficient of static friction between 

the tires and road is  m   s . (a) What is the fastest speed that 

a car can safely travel around the curve? (b) Explain 

✦✦

✦✦

✦✦

what happens when a car enters the curve at a speed 

greater than the maximum safe speed. Illustrate with an 

FBD. (   interactive: banked curve)  

20.   A highway curve has a radius of 825 m. At what angle 

should the road be banked so that a car traveling at 

26.8 m/s (60 mph) has no tendency to skid sideways on 

the road? [ Hint:  No tendency to skid means the fric-

tional force is zero.]  

21.   A curve in a highway has radius of curvature 120 m and 

is banked at 3.0 ° . On a day when the road is icy, what is 

the safest speed to go around the curve?  

    22.   A roller coaster car of mass 320 kg (including passen-

gers) travels around a horizontal curve of radius 35 m. 

Its speed is 16 m/s. What is the magnitude and direction 

of the total force exerted on the car by the track?  

    23.   A velodrome is built for use in the Olympics. The radius 

of curvature of the surface is 20.0 m. At what angle 

should the surface be banked for cyclists moving at 

18 m/s? (Choose an angle so that no frictional force is 

needed to keep the cyclists in their circular path. Large 

banking angles  are  used in velodromes.) 

24.  A car drives around a curve with radius 410 m at a speed 

of 32 m/s. The road is not banked. The mass of the car is 

1400 kg. (a) What is the frictional force on the car? 

(b) Does the frictional force necessarily have magnitude 

m  s  N?  Explain.  

25.  A car drives around a curve with radius 410 m at a speed 

of 32 m/s. The road is banked at 5.0 ° . The mass of the 

car is 1400 kg. (a) What is the frictional force on the 

car? (b) At what speed could you drive around this curve 

so that the force of friction is zero?  

26.  A curve in a stretch of highway has radius  R.  The road is 

banked at angle  q   to the horizontal. The coefficient of 

static friction between the tires and road is  m  s . What is 

the fastest speed that a car can travel through the curve?  

   27. An airplane is flying at constant speed  v  in a horizontal 

circle of radius  r.  The lift force on the wings due to the 

air is perpendicular to the wings. At what angle to the 

vertical must the wings be banked to fly in this circle? 

(   tutorial: plane in turn)  

✦✦

✦✦
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28. A road with a radius of 75.0 m is banked so that a car 

can navigate the curve at a speed of 15.0 m/s without 

any friction. When a car is going 20.0 m/s on this 

curve, what minimum coefficient of static friction is 

needed if the car is to navigate the curve without 

slipping?    

  5.4 Circular Orbits of Satellites and Planets 

     29.   What is the average linear speed of the Earth about the 

Sun?  

   30. The orbital speed of Earth about the Sun is 3.0  ×  10 4  m/s 

and its distance from the Sun is 1.5  ×  10 11  m. The mass 

of Earth is approximately 6.0  ×  10 24  kg and that of the 

Sun is 2.0  ×  10 30  kg. What is the magnitude of the force 

exerted by the Sun on Earth? [ Hint:  Two different meth-

ods are possible. Try both.]  

    31.   Two satellites are in circular orbits around Jupiter. One, 

with orbital radius  r,  makes one revolution every 16 h. 

The other satellite has orbital radius 4.0 r.  How long 

does the second satellite take to make one revolution 

around Jupiter?  

    32.   The Hubble Space Telescope orbits Earth 613 km above 

Earth’s surface. What is the period of the telescope’s 

orbit?  

    33.  Io, one of Jupiter’s satellites, has an orbital period of 

1.77 d. Europa, another of Jupiter’s satellites, has an 

orbital period of about 3.54 d. Both moons have nearly 

circular orbits. Use Kepler’s third law to find the dis-

tance of each satellite from Jupiter’s center. Jupiter’s 

mass is 1.9  ×  10 27  kg.  

    34.   A spy satellite is in circular orbit around Earth. It makes 

one revolution in 6.00 h. (a) How high above Earth’s 

surface is the satellite? (b) What is the satellite’s 

acceleration?  

   35. Mars has a mass of about 6.42  ×  10 23  kg. The length of 

a day on Mars is 24 h and 37 min, a little longer than the 

length of a day on Earth. Your task is to put a satellite 

into a circular orbit around Mars so that it stays above 

one spot on the surface, orbiting Mars once each Mars 

day. At what distance from the center of the planet 

should you place the satellite?  

      36.  A satellite travels around Earth in uniform circular 

motion at an altitude of 35 800 km above Earth’s sur-

face. The satellite is in geosynchronous orbit (that is, 

the time for it to complete one orbit is exactly 1 d). In 

the figure with Multiple-Choice Questions 2–5, the sat-

ellite moves counterclockwise ( ABCDA ). State direc-

tions in terms of the  x - and  y -axes. (a) What is the 

satellite’s instantaneous velocity at point  C?  (b) What is 

the satellite’s average velocity for one quarter of an 

orbit, starting at  A  and ending at  B?  (c) What is the sat-

ellite’s average acceleration for one quarter of an orbit, 

starting at  A  and ending at  B?  (d) What is the satellite’s 

instantaneous acceleration at point  D?   

✦✦

✦✦

 37.   A spacecraft is in orbit around Jupiter. The radius of the 

orbit is 3.0 times the radius of Jupiter (which is 

R  J   =  71 500 km). The gravitational field at the surface of 

Jupiter is 23 N/kg. What is the period of the spacecraft’s 

orbit? [ Hint:  You don’t need to look up any more data 

about Jupiter to solve the problem.]    

  5.5 Nonuniform Circular Motion 

     38.  A roller coaster has a vertical loop with radius 29.5 m. 

With what minimum speed should the roller coaster car 

be moving at the top of the loop so that the passengers 

do not lose contact with the seats?  

      39.  A pendulum is 0.80 m long and the bob has a mass of 

1.0 kg. At the bottom of its swing, the bob’s speed is 

1.6 m/s. (a) What is the tension in the string at the bot-

tom of the swing? (b) Explain why the tension is greater 

than the weight of the bob.  

    40.  A 35.0-kg child swings on a rope with a length of 

6.50 m that is hanging from a tree. At the bottom of the 

swing, the child is moving at a speed of 4.20 m/s. What 

is the tension in the rope?  

41.  A car approaches the top of a hill that is shaped like a 

vertical circle with a radius of 55.0 m. What is the fast-

est speed that the car can go over the hill without losing 

contact with the ground?    

  5.6 Tangential and Angular Acceleration 

     42.  A child pushes a merry-go-round from rest to a final 

angular speed of 0.50 rev/s with constant angular accel-

eration. In doing so, the child pushes the merry-go-

round 2.0 revolutions. What is the angular acceleration 

of the merry-go-round?  

43.  A cyclist starts from rest and pedals so that the wheels 

make 8.0 revolutions in the first 5.0 s. What is the angu-

lar acceleration of the wheels (assumed constant)?  

    44.  During normal operation, a computer’s hard disk spins 

at 7200 rpm. If it takes the hard disk 4.0 s to reach this 

angular velocity starting from rest, what is the average 

angular acceleration of the hard disk in rad/s 2 ?  

    45.  Derive Eq. 5-20 from Eqs. 5-18 and 5-19. [ Hint:  See the 

derivation of Eq. (2-12) in Section 2.4.]  

   46. Derive Eq. 5-21 from Eqs. 5-18 and 5-19.  

47.  A pendulum is 0.800 m long and the bob has a mass of 

1.00 kg. When the string makes an angle of  q   =  15.0 °  

with the vertical, the bob is moving at 1.40 m/s. Find 

the tangential and radial acceler-

ation components and the tension 

in the string. [ Hint:  Draw an FBD 

for the bob. Choose the  x -axis to 

be tangential to the motion of the 

bob and the  y -axis to be radial. 

Apply Newton’s second law.]      

✦✦

✦✦

q

Problems 47 and 48
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48. Find the tangential acceleration of a freely swinging 

pendulum when it makes an angle  q   with the vertical.  

49.  A turntable reaches an angular speed of 33.3 rpm in 2.0 s, 

starting from rest. (a) Assuming the angular acceleration 

is constant, what is its magnitude? (b) How many revolu-

tions does the turntable make during this time interval?  

    50.   A wheel’s angular acceleration is constant. Initially its 

angular velocity is zero. During the first 1.0-s time 

interval, it rotates through an angle of 90.0 ° . (a) Through 

what angle does it rotate during the next 1.0-s time 

interval? (b) Through what angle during the third 1.0-s 

time interval?  

    51.   A car that is initially at rest moves along a circular path 

with a constant tangential acceleration component of 

2.00 m/s 2 . The circular path has a radius of 50.0 m. The 

initial position of the car is at the far west location on 

the circle and the initial velocity is to the north. (a) After 

the car has traveled      1 _ 
4
    of the circumference, what is the 

speed of the car? (b) At this point, what is the radial 

acceleration component of the car? (c) At this same 

point, what is the total acceleration of the car?  

    52.   A disk rotates with constant angular acceleration. The 

initial angular speed of the disk is 2 p   rad/s. After the 

disk rotates through 10 p  radians, the angular speed is 

7 p   rad/s. (a) What is the magnitude of the angular accel-

eration? (b) How much time did it take for the disk to 

rotate through 10 p  radians? (c) What is the tangential 

acceleration of a point located at a distance of 5.0 cm 

from the center of the disk?  

53.  In a Beams ultracentrifuge, the rotor is suspended mag-

netically in a vacuum. Since there is no mechanical con-

nection to the rotor, the only friction is the air resistance 

due to the few air molecules in the vacuum. If the rotor 

is spinning with an angular speed of 5.0  ×  10 5  rad/s and 

the driving force is turned off, its spinning slows down 

at an angular rate of 0.40 rad/s 2 . (a) How long does the 

rotor spin before coming to rest? (b) During this time, 

through how many revolutions does the rotor spin?  

54.  The rotor of the Beams ultracentrifuge (see Problem 53) 

is 20.0 cm long. For a point at the end of the rotor, find 

the (a) initial speed, (b) tangential acceleration compo-

nent, and (c) maximum radial acceleration component.    

  5.7 Apparent Weight and Artificial Gravity 

     55.  If a washing machine’s drum has a radius of 25 cm and 

spins at 4.0 rev/s, what is the strength of the artificial 

gravity to which the clothes are subjected? Express your 

answer as a multiple of  g.   

    56.  A space station is shaped like a ring and rotates to simu-

late gravity. If the radius of the space station is 120 m, at 

what frequency must it rotate so that it simulates Earth’s 

gravity? [ Hint:  The apparent weight of the astronauts 

must be the same as their weight on Earth.] (   tuto-

rial: space station)  

✦✦     57.  A biologist is studying 

growth in space. He 

wants to simulate Earth’s 

gravitational field, so he 

positions the plants on a 

rotating platform in the 

spaceship. The distance 

of each plant from the 

central axis of rotation is  r   =  0.20 m. What angular speed is 

required?      

58. A biologist is studying plant growth and wants to simu-

late a gravitational field twice as strong as Earth’s. She 

places the plants on a horizontal rotating table in her 

laboratory on Earth at a distance of 12.5 cm from the 

axis of rotation. What angular speed will give the plants 

an effective gravitational field    g  ⃗  eff ,  whose magnitude is 

2.0 g?  [ Hint:  Remember to account for Earth’s gravita-

tional field as well as the artificial gravity when finding 

the apparent weight.]  

59. Objects that are at rest relative to the Earth’s surface are 

in circular motion due to Earth’s rotation. (a) What is 

the radial acceleration of an object at the equator? (b) Is 

the object’s apparent weight greater or less than its 

weight? Explain. (c) By what percentage does the 

apparent weight differ from the weight at the equator? 

(d) Is there any place on Earth where a bathroom scale 

reading is equal to your true weight? Explain.  

60.  A person of mass  M  stands on a bathroom scale inside a 

Ferris wheel compartment. The Ferris wheel has radius 

R  and angular velocity  w . What is the apparent weight 

of the person (a) at the top and (b) at the bottom?  

61.  A person rides a Ferris wheel that turns with constant 

angular velocity. Her weight is 520.0 N. At the top of 

the ride her apparent weight is 1.5 N different from 

her true weight. (a) Is her apparent weight at the top 

521.5 N or 518.5 N? Why? (b) What is her apparent 

weight at the bottom of the ride? (c) If the angular 

speed of the Ferris wheel is 0.025 rad/s, what is its 

radius?  

     62. Objects that are at rest relative to Earth’s surface are in 

circular motion due to Earth’s rotation. What is the 

radial acceleration of a painting hanging in the Prado 

Museum in Madrid, Spain, at a latitude of 40.2 °  North? 

(Note that the object’s radial acceleration is not directed 

toward the center of the Earth.) 
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    63.  A rotating flywheel slows down at a constant rate due to 

friction in its bearings. After 1 min, its angular velocity 

has diminished to 0.80 of its initial value  w . At the end 

of the third minute, what is the angular velocity in terms 

of the initial value?     

  Comprehensive Problems 

64.  The Earth rotates on its own axis once per day (24.0 h). 

What is the tangential speed of the summit of Mt. 

Kilimanjaro (elevation 5895 m above sea level), which is 

located approximately on the equator, due to the rotation 

of the Earth? The equatorial radius of Earth is 6378 km.  

    65.   A trimmer for cutting weeds and grass near trees and 

borders has a nylon cord of 0.23-m length that whirls 

about an axle at 660 rad/s. What is the linear speed of 

the tip of the nylon cord?  

    66.  A high-speed dental drill is rotating at 3.14  ×  10 4  rad/s. 

Through how many degrees does the drill rotate in 1.00 s?  

   67. A jogger runs counterclockwise around a path of radius 

90.0 m at constant speed. He makes 1.00 revolution in 

188.4 s. At  t   =  0, he is heading due east. (a) What is the 

jogger’s instantaneous velocity at  t   =  376.8 s? (b) What 

is his instantaneous velocity at  t   =  94.2 s?  

   68. Two gears  A  and  B  are in contact. The radius of gear  A  is 

twice that of gear  B.  (a) When  A ’s angular velocity is 

6.00 Hz counterclockwise, what is  B ’s angular velocity? 

(b) If  A ’s radius to the tip of the teeth is 10.0 cm, what is 

the linear speed of a point on the tip of a gear tooth? What 

is the linear speed of a point on the tip of  B ’s gear tooth? 

     

BA

Problems 68 and 69

    69.  If gear  A  in Problem 68 has an initial frequency of 

0.955 Hz and an angular acceleration of 3.0 rad/s 2 , how 

many rotations does each gear go through in 2.0 s?  

     70. The time to sunset can be estimated by holding out your 

arm, holding your fingers horizontally in front of your 

eyes, and counting the number of fingers that fit between 

the horizon and the setting Sun. (a) What is the angular 

speed, in radians per second, of the Sun’s apparent cir-

cular motion around the Earth? (b) Estimate the angle 

subtended by one finger held at arm’s length. (c) How 

long in minutes does it take the Sun to “move” through 

this same angle?  

     71. In the professional videotape recording system known 

as quadriplex, four tape heads are mounted on the 

✦✦

circumference of a drum of radius 2.5 cm that spins at 

1500 rad/s. (a) At what speed are the tape heads moving? 

(b) Why are moving tape heads used instead of stationary 

ones, as in audiotape recorders? [ Hint:  How fast would 

the tape have to move if the heads were stationary?]  

    72.  The Milky Way galaxy rotates about its center with a 

period of about 200 million yr. The Sun is 2  ×  10 20  m 

from the center of the galaxy. How fast is the Sun mov-

ing with respect to the center of the galaxy?  

    73.  A small body of mass 0.50 kg is attached by a 0.50-m-

long cord to a pin set into the surface of a frictionless 

table top. The body moves in a circle on the horizontal 

surface with a speed of 2.0 p   m/s. (a) What is the magni-

tude of the radial acceleration of the body? (b) What is 

the tension in the cord?  

   74. Two blocks, one with mass  m  1   =  0.050 kg and one with 

mass  m  2   =  0.030 kg, are connected to one another by a 

string. The inner block is connected to a central pole by 

another string as shown in the figure with  r  1   =  0.40 m 

and  r  2   =  0.75 m. When the blocks are spun around on a 

horizontal frictionless surface at an angular speed of 

1.5 rev/s, what is the tension in each of the two strings? 

     

m1

m2

r2

r1

      75.  What’s the fastest way to make a U-turn at constant 

speed? Suppose that you need to make a 180 °  turn on a 

circular path. The minimum radius (due to the car’s 

steering system) is 5.0 m, while the maximum (due to 

the width of the road) is 20.0 m. Your acceleration must 

never exceed 3.0 m/s 2  or else you will skid. Should you 

use the smallest possible radius, so the distance is small, 

or the largest, so you can go faster without skidding, or 

something in between? What is the minimum possible 

time for this U-turn?  

   76. The Milky Way galaxy rotates about its center with a 

period of about 200 million yr. The Sun is 2  ×  10 20  m 

from the center of the galaxy. (a) What is the Sun’s radial 

acceleration? (b) What is the net gravitational force on 

the Sun due to the other stars in the Milky Way?  

     77. Bacteria swim using a corkscrew-like helical flagellum 

that rotates. For a bacterium with a flagellum that has a 

pitch of 1.0  μ m that rotates at 110 rev/s, how fast could 

it swim if there were no “slippage” in the medium in 

which it is swimming? The pitch of a helix is the dis-

tance between “threads.”  

   78. You place a penny on a turntable at a distance of 10.0 cm 

from the center. The coefficient of static friction between 

the penny and the turntable is 0.350. The turntable’s 

✦✦
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angular acceleration is 2.00 rad/s 2 . How long after you 

turn on the turntable will the penny begin to slide off of 

the turntable?  

    79.  A coin is placed on a turntable that is rotating at 

33.3 rpm. If the coefficient of static friction between 

the coin and the turntable is 0.1, how far from the cen-

ter of the turntable can the coin be placed without hav-

ing it slip off?  

    80.  Grace, playing with her dolls, pretends the turntable of 

an old phonograph is a merry-go-round. The dolls are 

12.7 cm from the central axis. She changes the setting 

from 33.3 rpm to 45.0 rpm. (a) For this new setting, 

what is the linear speed of a point on the turntable at the 

location of the dolls? (b) If the coefficient of static fric-

tion between the dolls and the turntable is 0.13, do the 

dolls stay on the turntable?  

    81.  Your car’s wheels are 65 cm in diameter and the wheels 

are spinning at an angular velocity of 101 rad/s. How 

fast is your car moving in kilometers per hour (assume 

no slippage)?  

    82.  In an amusement park rocket ride, cars are suspended 

from 4.25-m cables attached to rotating arms at a dis-

tance of 6.00 m from the axis of rotation. The cables 

swing out at an angle of 45.0 °  when the ride is operat-

ing. What is the angular speed of rotation? 

     

6.00 m 6.00 m
45.0° 45.0°

4.25 m4.25 m

      83.  Centrifuges are commonly used in biological laborato-

ries for the isolation and maintenance of cell prepara-

tions. For cell separation, the centrifugation conditions 

are typically 1.0  ×  10 3  rpm using an 8.0-cm-radius rotor. 

(a) What is the radial acceleration of material in the 

centrifuge under these conditions? Express your answer 

as a multiple of  g.  (b) At 1.0  ×  10 3  rpm (and with a 

8.0-cm rotor), what is the net force on a red blood cell 

whose mass is 9.0  ×  10  − 14  kg? (c) What is the net force 

on a virus particle of mass 5.0  ×  10  − 21  kg under the 

same conditions? (d) To pellet out virus particles and 

even to separate large molecules such as proteins, super-

high-speed centrifuges called ultracentrifuges are used 

in which the rotor spins in a vacuum to reduce heating 

due to friction. What is the radial acceleration inside an 

ultracentrifuge at 75 000 rpm with an 8.0-cm rotor? 

Express your answer as a multiple of  g.   

     84. You take a homemade “accelerometer” to an amuse-

ment park. This accelerometer consists of a metal nut 

attached to a string and connected to a protractor, as 

✦✦

shown in the figure. While riding a roller coaster that is 

moving at a uniform speed around a circular path, you 

hold up the accelerometer and notice that the string is 

making an angle of 55 °  with respect to the vertical with 

the nut pointing away from the center of the circle, as 

shown. (a) What is the radial acceleration of the roller 

coaster? (b) What is your radial acceleration expressed 

as a multiple of  g?  

(c) If the roller 

coaster track is turn-

ing in a radius of 

80.0 m, how fast are 

you moving?      

    85.  Massimo, a machinist, is cutting threads for a bolt on a 

lathe. He wants the bolt to have 18 threads per inch. If 

the cutting tool moves parallel to the axis of the would-

be bolt at a linear velocity of 0.080 in./s, what must the 

rotational speed of the lathe chuck be to ensure the cor-

rect thread density? [ Hint:  One thread is formed for 

each complete revolution of the chuck.]  

   86. In Chapter 19 we will see that a charged particle can 

undergo uniform circular motion when acted on by a 

magnetic force and no other forces. (a) For that to be 

true, what must be the angle between the magnetic force 

and the particle’s velocity? (b) The magnitude of the 

magnetic force on a charged particle is proportional to 

the particle’s speed,  F   =   kv.  Show that two identical 

charged particles moving in circles at different speeds 

in the same magnetic field must have the same period. 

(c) Show that the radius of the particle’s circular path is 

proportional to the speed.  

     87. Find the orbital radius of a geosynchronous satellite. Do 

not assume the speed found in  Example 5.9 . Start by 

writing an equation that relates the period, radius, and 

speed of the orbiting satellite. Then apply Newton’s 

second law to the satellite. You will have two equations 

with two unknowns (the speed and radius). Eliminate 

the speed algebraically and solve for the radius.    

  Answers to Practice Problems 

    5.1  3.001  ×  10  − 7   rad/s  

   5.2  1.65 m/s  

   5.3  1.9 min  

   5.4  17 m/s 2   

   5.5  60 N toward the center of the circular path  

   5.6  More slowly  

   5.7  No  

   5.8  29.7 km/s; 3.17  ×  10 7  s  

   5.9  0.723 R   

   5.10  2.44 h  

   5.11  4.2 mg   

✦✦

55°Center of
roller coaster’s
circular path



   5.12  Acceleration is purely tangential: 

     

a

D

T

mg

D

   5.13  (a) 1.75 × 10−4 rad/s 2 ; (b) 0.0349 rad (2.00°)  

   5.14  (a) 2200 N; (b) 1500 N    

  Answers to Checkpoints 

   5.1 7200 Hz  

  5.2 No, for uniform circular motion the  direction  of the 

velocity vector is continuously changing but the magnitude 

of the velocity (the speed) is unchanged.  

  5.3 The car has friction between the road and the tires to 

exert a horizontal force that causes the radial acceleration.  

  5.4 To be geosynchronous the satellites must have an orbital 

period of 1 d. The only quantities that affect the period are 

the mass of Earth and the radial distance from Earth’s center. 

These quantities are the same for all satellites no matter the 

mass.  

  5.5 For nonuniform circular motion, the direction and the 

magnitude of the velocity are both changing. There are tan-

gential and radial components to the acceleration. The 

magnitude of the radial component changes as the speed 

changes. For uniform circular motion, the magnitude of the 

velocity is constant but the direction changes. The radial 

acceleration is constant in magnitude (and the tangential 

acceleration is zero).  

  5.6 The radial acceleration cannot be constant because the 

radius  r  is constant but the angular velocity   w   is changing 

 a  r   =   w    2  r          .
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Review & Synthesis: Chapters 1−5

  Review Exercises 

    1. From your knowledge of Newton’s second law and 

dimensional analysis, find the units (in SI base units) of 

the spring constant  k  in the equation  F   =   kx,  where  F  is 

a force and  x  is a distance.  

   2. Harrison traveled 2.00 km west, then 5.00 km in a direc-

tion 53.0 °  south of west, then 1.00 km in a direction 60.0 °  

north of west. (a) In what direction, and for how far, 

should Harrison travel to return to his starting point? 

(b) If Harrison returns directly to his starting point with a 

speed of 5.00 m/s, how long will the return trip take?  

   3. (a) How many center-stripe road reflectors, separated by 

17.6 yd, are required along a 2.20-mile section of curving 

mountain roadway? (b) Solve the same problem for a road 

length of 3.54 km with the markers placed every 16.0 m. 

Would you prefer to be the highway engineer in a country 

with a metric system or U.S. customary units?    

   4. A baby was spitting up after nursing and the pediatrician 

prescribed Zantac syrup to reduce the baby’s stomach 

acid. The prescription called for 0.75 mL to be taken 

twice a day for a month. The pharmacist printed a label 

for the bottle of syrup that said “   3/4  tsp. twice a day.” By 

what factor was the baby overmedicated before the error 

was discovered at the baby’s next office visit two weeks 

later? [ Hint:  1 tsp  =  4.9 mL.]  

    5.  Mike swims 50.0 m with a speed of 1.84 m/s, then turns 

around and swims 34.0 m in the opposite direction with 

a speed of 1.62 m/s. (a) What is his average speed? 

(b) What is his average velocity?  

   6. You are watching a television show about Navy pilots. 

The narrator says that when a Navy jet takes off, it accel-

erates because the engines are at full throttle and because 

there is a catapult that propels the jet forward. You begin 

to wonder how much force is supplied by the catapult. 

You look on the Web and find that the flight deck of an 

aircraft carrier is about 90 m long, that an F-14 has a mass 

of 33 000 kg, that each of the two engines supplies 

27 000 lb of force, and that the takeoff speed of such a 

plane is about 160 mi/h. Estimate the average force on 

the jet due to the catapult.  

   7. On April 15, 1999, a Korean cargo plane crashed due to a 

confusion over units. The plane was to fly from Shang-

hai, China, to Seoul, Korea. After take-off the plane 

climbed to 900 m. Then the first officer was instructed by 

the Shanghai tower to climb to 1500 m and maintain that 

altitude. The captain, after reaching 1450 m, twice asked 

the first officer at what altitude they should fly. He was 

twice told incorrectly they were to be at 1500 ft. The cap-

tain pushed the control column quickly forward and 

started a steep descent. The plane could not recover from 

the dive and crashed. How much above the correct 

altitude did the captain think they were when he started 

his rapid descent and lost control? (It turns out that air-

craft altitudes are given in feet throughout the world 

except in China, Mongolia, and the former Soviet states 

where meters are used.)  

   8. Paula swims across a river that is 10.2 m wide. She can 

swim at 0.833 m/s in still water, but the river flows with a 

speed of 1.43 m/s. If Paula swims in such a way that she 

crosses the river in as short a time as possible, how far 

downstream is she when she gets to the opposite shore?  

      9.  Peter is collecting paving stones from a quarry. He har-

nesses two dogs, Sandy and Rufus, in tandem to the 

loaded cart. Sandy pulls with force     F⃗  at a 15 °  angle to the 

north of east; Rufus pulls with 1.5 times the force of 

Sandy and at an angle of 30.0 °  south of east. Use a ruler 

and protractor to draw the force vectors to scale (choose 

a simple scale, such as    2.0 cm ↔ F  ). Find the sum of the 

two force vectors graphically. Measure its length and find 

the magnitude of the sum from the scale used and the 

direction with the protractor. Will the cart stay on the 

road that runs directly west to east?  

   10. A tire swing hangs at a 12 °  angle to the vertical when a 

stiff breeze is blowing. In terms of the tire’s weight  W,  

(a) what is the magnitude of the horizontal force exerted 

on the tire by the wind? (b) What is the tension in the 

rope supporting the tire? Ignore the weight of the rope.  

   11. An astronaut of mass 60.0 kg and a small asteroid of 

mass 40.0 kg are initially at rest with respect to the space 

station. The astronaut pushes the asteroid with a constant 

force of magnitude 250 N for 0.35 s. Gravitational forces 

are negligible. (a) How far apart are the astronaut and the 

asteroid 5.00 s after the astronaut stops pushing? 

(b) What is their relative speed at this time?  

   12. In the fairy tale, Rapunzel, the beautiful maiden let her 

long golden hair hang down from the tower in which she 

was held prisoner so that her prince could use her hair as 

a climbing rope to climb the tower and rescue her. 

(a) Estimate how much force is required to pull a strand 

of hair out of your head. (b) There are about 10 5  hairs 

growing out of Rapunzel’s head. If the prince has a mass 

of 60 kg, estimate the average force pulling on each 

strand of hair. Will Rapunzel be bald by the time the 

prince reaches the top of the 30-m tower?  

    13.  Marie slides a paper plate with a slice of pizza across a 

horizontal table to her friend Jaden. The coefficient of 

friction between the table and plate is 0.32. If the pizza 

must travel 44 cm to get from Marie to Jaden, what ini-

tial speed should Marie give the plate of pizza so that it 

just stops when it gets to Jaden?  

   14. Two wooden crates with masses as shown are tied 

together by a horizontal cord. Another cord is tied to the 

first crate and it is pulled with a force of 195 N at an 

angle of 20.0 ° , as shown. Each crate has a coefficient of 

✦✦
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kinetic friction of 0.550. 

Find the tension in the 

rope between the crates 

and the magnitude of 

the acceleration of the system.      

     15. A boy has stacked two blocks on the floor so that a 

5.00-kg block is on top of a 2.00-kg block. (a) If the 

coefficient of static friction between the two blocks is 

0.400 and the coefficient of static friction between 

the bottom block and the floor is 0.220, with what 

minimum force should the boy push horizontally on 

the upper block to make both blocks start to slide 

together along the floor? (b) If he pushes too hard, the 

top block starts to slide off the lower block. What is the 

maximum force with which he can push without that 

happening if the coefficient of kinetic friction between 

the bottom block and the floor is 0.200?  

     16. A binary star consists of two stars of masses  M  1  and 

4.0 M  1  a distance  d  apart. Is there any point where the 

gravitational field due to the two stars is zero? If so, 

where is that point?  

    17.  Two boys are trying to break a cord. Gerardo says they 

should each pull in opposite directions on the two ends; 

Stefan says they should tie the cord to a pole and both 

pull together on the opposite end. Which plan is more 

likely to work?  

       18. Fish don’t move as fast as you might think. A small trout 

has a top swimming speed of only about 2 m/s, which is 

about the speed of a brisk walk (for a human, not a fish!). 

It may seem to move faster because it is capable of large 

 accelerations —it can dart about, changing its speed or 

direction very quickly. (a) If a trout starts from rest and 

accelerates to 2 m/s in 0.05 s, what is the trout’s average 

acceleration? (b) During this acceleration, what is the 

average net force on the trout? Express your answer as a 

multiple of the trout’s weight. (c) Explain how the trout 

gets the water to push it forward.  

     19. A spotter plane sees a school of tuna swimming at a 

steady 5.00 km/h northwest. The pilot informs a fishing 

trawler, which is just then 100.0 km due south of the 

fish. The trawler sails along a straight-line course and 

intercepts the tuna after 4.0 h. How fast did the trawler 

move? [ Hint:  First find the velocity of the trawler rela-

tive to the tuna.]  

   20. Julia is delivering newspapers. Suppose she is driving at 

15 m/s along a straight road and wants to drop a paper out 

the window from a height of 1.00 m so it slides along the 

shoulder and comes to rest in the customer’s driveway. At 

what horizontal distance before the driveway should she 

drop the paper? The coefficient of kinetic friction between 

the newspaper and the ground is 0.40. Ignore air resis-

tance and assume no bouncing or rolling.  

    21.  Three rocks are thrown from a cliff with the same initial 

speeds but in different directions: one straight down, 

one straight up, and one horizontally. Ignore air resis-

tance. (a) Compare the speeds of the three rocks just 

✦✦

✦✦

✦✦

✦✦

before they hit the flat ground at the bottom of the cliff. 

(b) Illustrate your answer by calculating the final speeds 

for three rocks thrown in the specified directions with 

initial speeds of 10.0 m/s from a cliff that is 15.00 m 

high. [ Hint:  Remember that the speed is the magnitude 

of the velocity vector.]  

   22. You are watching the Super Bowl where your favorite 

team is leading by a score of 21 to 20. The other team is 

lining up to try to kick the winning field goal. You 

watched their kicker warm up and you saw that he could 

kick the football with a velocity of 21 m/s. He lines up for 

a 45-yd kick. You watch as he kicks the ball at an angle of 

35 °  above the horizontal. Assuming he kicks the ball 

straight and with the same speed as during the warmup, 

will the ball clear the 10-ft-high goal post, or will your 

favorite team win the Super Bowl?  

   23. A coin is placed on a turntable 13.0 cm from the center. 

The coefficient of static friction between the coin and the 

turntable is 0.110. Once the turntable is turned on, its 

angular acceleration is 1.20 rad/s 2 . How long will it take 

until the coin begins to slide?  

     24. Carlos and Shannon are sledding down a snow-covered 

slope that is angled at 12 °  below the horizontal. When 

sliding on snow, Carlos’s sled has a coefficient of 

friction  m   k   =  0.10; Shannon has a “supersled” with 

 m   k   =  0.010. Carlos takes off down the slope starting 

from rest. When Carlos is 5.0 m from the starting point, 

Shannon starts down the slope from rest. (a) How far 

have they traveled when Shannon catches up to Carlos? 

(b) How fast is Shannon moving with respect to Carlos 

as she passes by?  

    25.  A proposed “space elevator” consists of a cable going 

all the way from the ground to a space station in geo-

synchronous orbit (always above the same point on 

Earth’s surface). Elevator “cars” would climb the cable 

to transport cargo to outer space. Consider a cable con-

nected between the equator and a space station at height 

 H  above the surface. Ignore the mass of the cable  *  . 

(a) Find the height  H.  (b) Suppose there is an elevator 

car of mass 100 kg sitting halfway up at height  H /2. 

What tension  T  would be required in the cable to hold 

the car in place? Which part of the cable would be under 

tension (above the car or below it)?        

   26. Anthony is going to drive a flat-bed truck up a hill that 

makes an angle of 10 °  with respect to the horizontal 

direction. A 36.0-kg package sits in the back of the truck. 

The coefficient of static friction between the package 

✦✦

9.00 kg 14.0 kg
20.0°

*More realistically, the mass of the cable is one of the primary 

engineering challenges of a space elevator. The cable is so long that 

it would have a very large mass and would have to withstand an 

enormous tension to support its own weight. The cable would need 

to be supported by a counterweight positioned beyond the geosyn-

chronous orbit. Some believe carbon nanotubes hold the key to 

producing a cable with the required properties.
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and the truck bed is 0.380. What is the maximum 

acceleration the truck can have without the package fall-

ing off the back?  

    27.  A road with a radius of 75.0 m is banked so that a car can 

navigate the curve at a speed of 15.0 m/s without any 

friction. On a cold day when the street is icy, the coeffi-

cient of static friction between the tires and the road is 

0.120. What is the  slowest  speed the car can go around 

this curve without sliding  down  the bank?  

   28. You want to lift a heavy box with 

a mass of 98.0 kg using the two-

pulley system as shown. With what 

minimum force do you have to pull 

down on the rope in order to lift the 

box at a constant velocity? One pul-

ley is attached to the ceiling and one 

to the box.      

      29.  At time  t   =  0, block  A  of mass 0.225 kg 

and block  B  of mass 0.600 kg rest on a horizontal fric-

tionless surface a distance 3.40 m apart, with block  A  

located to the left of block  B.  A horizontal force of 2.00 N 

directed to the right is applied to block  A  for a time inter-

val Δ t   =  0.100 s. During the same time interval, a 5.00-N 

horizontal force directed to the left is applied to block  B.  

How far from  B ’s initial position do the two blocks 

meet? How much time 

has elapsed from  t   =  0 

until the blocks meet?      

   30. A hamster of mass 0.100 kg gets onto his 20.0-cm-

diameter exercise wheel and runs along inside the wheel 

for 0.800 s until its frequency of rotation is 1.00 Hz. 

(a) What is the tangential acceleration of the wheel, 

assuming it is constant? (b) What is the normal force on 

the hamster just before he stops? The hamster is at the 

bottom of the wheel during the entire 0.800 s.  

   31. A pellet is fired from a toy cannon with a velocity of 

12 m/s directed 60 °  above the horizontal. After 0.10 s, a 

second identical pellet is fired with the same initial veloc-

ity. After an additional 0.15 s have passed, what is the 

velocity of the first pellet with respect to the second? 

Ignore air resistance.  

   32. A crate is sliding down a frictionless ramp that is inclined 

at 35.0 ° . (a) If the crate is released from rest, how far 

does it travel down the incline in 2.50 s if it does not get 

to the bottom of the ramp before the time has elapsed? 

(b) How fast is the crate moving after 2.50 s of travel?  

      33.  The invention of the cannon in the fourteenth century 

made the catapult unnecessary and ended the safety of 

castle walls. Stone walls were no match for balls shot 

from cannons. Suppose a cannonball of mass 5.00 kg is 

launched from a height of 1.10 m, at an angle of elevation 

of 30.0 °  with an initial velocity of 50.0 m/s, toward a cas-

tle wall of height 30 m and located 215 m away from the 

cannon. (a) The range of a projectile is defined as the hor-

izontal distance traveled when the projectile returns to its 

✦✦
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original height. Derive an equation for the range in terms 

of  v   i  ,  g,  and angle of elevation    q.  (b) What will be the 

range reached by the projectile, if it is not intercepted by 

the wall? (c) If the cannonball travels far enough to hit 

the wall, find the height at which it strikes.  

     34. Two blocks are connected by a lightweight, flexible cord 

that passes over a single frictionless pulley. If  m  1  >>  m  2 , 

find (a) the acceleration of each block and (b) the tension 

in the cord.  

   35. A runner runs three-quarters of the way around a circular 

track of radius 60.0 m, when she collides with another 

runner and trips. (a) How far had the runner traveled on 

the track before the collision? (b) What was the magni-

tude of the displacement of the runner from her starting 

position when the accident occurred?  

   36. A solar sailplane is going from Earth to Mars. Its sail is 

oriented to give a solar radiation force of 8.00  ×  10 2   N. 

The gravitational force due to the Sun is 173 N and the 

gravitational force due to the Earth is 1.00  ×  10 2   N. All 

forces are in the plane formed by Earth, Sun, and sail-

plane. The mass of the sailplane is 14 500 kg. (a) What 

is the net force (magnitude and direction) acting on the 

sailplane? (b) What is the acceleration of the sailplane? 

 

30.0°

90°
Sun

Earth

1.00 × 102 N

(vectors not to scale) 8.00 × 102 N

173 N

Solar
sailplane

    

    37.  A star near the visible edge of a galaxy travels in a uni-

form circular orbit. It is 40 000 ly (light-years) from the 

galactic center and has a speed of 275 km/s.   (a) Estimate 

the total mass of the galaxy based on the motion of the 

star? [ Hint:  For this estimate, assume the total mass to be 

concentrated at the galactic center and relate it to the grav-

itational force on the star.] (b) The total  visible  mass (i.e., 

matter we can detect via electromagnetic radiation) of the 

galaxy is 10 11  solar masses. What fraction of the total 

mass of the galaxy is visible * , according to this estimate?        

       38. One of the tricky things about learning to sail is distin-

guishing the true wind from the apparent wind. When 

you are on a sailboat and you feel the wind on your face, 

you are experiencing the  apparent wind —the motion of 

✦✦

✦✦

*In many galaxies the stars appear to have roughly the same orbital 

speed over a large range of distances from the center. A popular 

hypothesis to explain such galaxy rotation velocities is the exis-

tence of dark matter—matter that we cannot detect via electromag-

netic radiation. Dark matter is thought to account for the majority 

of the mass of some galaxies and nearly a fourth of the total mass 

of the universe.

98.0 kg

A 3.40 m B
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the air relative to 

you. The true wind is 

the speed and direc-

tion of the air rela-

tive to the water 

while the apparent 

wind is the speed 

and direction of the 

air relative to the 

 sailboat.  The figure 

shows three different 

directions for the 

true wind along with 

one possible sail ori-

entation as indicated 

by the position of the 

boom attached to the mast. (a) In each case, draw a vec-

tor diagram to establish the magnitude and direction of 

the apparent wind. (b) In which of the three cases is the 

apparent wind speed greater than the true wind speed? 

(Assume that the speed of the boat relative to the water 

is less than the true wind speed.) (c) In which of the 

three cases is the direction of the apparent wind direc-

tion forward of the true wind? [“Forward” means com-

ing from a direction more nearly straight ahead. For 

example, (1) is forward of (2), which is forward of (3).]        

  MCAT Review 
 The section that follows includes MCAT exam material and is reprinted 

with permission of the Association of American Medical Colleges (AAMC). 

  Read the paragraph and then answer the following four 
questions:  

 The study of the flight of projectiles has many practical 

applications. The main forces acting on a projectile are air 

resistance and gravity. The path of a projectile is often approx-

imated by ignoring the effects of air resistance. Gravity is then 

the only force acting on the projectile. When air resistance is 

included in the analysis, another force,     F⃗  R,  is introduced.  F  R  is 

proportional to the square of the velocity,  v.  The direction of 

the air resistance is exactly opposite the direction of motion. 

The equation for air resistance is  F  R   =   bv  2 , where  b  is a pro-

portionality constant that depends on such factors as the den-

sity of the air and the shape of the projectile. 

 Air resistance was studied by launching a 0.5-kg pro-

jectile from a level surface. The projectile was launched with 

a speed of 30 m/s at a 40 °  angle to the surface. (Note: Assume 

air resistance is present unless otherwise specified.)

    1. What is the magnitude of the vertical acceleration of 

the projectile immediately after it is launched? ( Note:  

 v   y     = vertical velocity component.)

   A.  −  g   +  ( bvv   y  )  

  B.  −  g   −  ( bvv   y  )  

  C.  −  g   +  ( bvv   y  )/(0.5 kg)  

  D.  −  g   −  ( bvv   y  )/(0.5 kg)     

   2. Approximately what horizontal distance does the pro-

jectile travel before returning to the elevation from 

which it was launched? (Note: Assume that the effects 

of air resistance are negligible.)

   A. 45 m     B. 60 m     C. 90 m      D. 120 m     

   3. What is the magnitude of the  horizontal component of air 
resistance  on the projectile at any point during flight? 

(Note:  v   x    =  horizontal velocity component.)

   A. ( bvv   x  ) cos  40 °   

  B. ( bvv   x  )/2  

  C. ( bvv   x  ) sin  40 °   

  D.  bvv   x       

   4. How does the amount of time it takes a projectile to reach 

its maximum height compare to the time it takes to fall 

from its maximum height back to the ground? (Note:  b  is 

greater than zero.)

   A. The times are the same.  

  B. The time to reach its maximum height is greater.  

  C. The time to fall back to the ground is greater.  

  D. Either can be greater depending on the magnitude 

of  b.        

  Read the paragraph and then answer the following 
questions:  

 A raft is constructed from wood and used in a river that 

varies in depth, width, and current at several points along its 

length. The river at point A has a current of 2 m/s, a width of 

200 m, and an average depth of 3 m.

    5. Near point A, the raft is rowed at a constant velocity of 2 m/s 

relative to the river current and perpendicular to it. How far 

does the raft travel before it reaches the other side?

   A. 224 m  

  B. 250 m  

  C. 283 m  

  D. 400 m     

   6. A rower at point A rows the raft at 3 m/s relative to the 

river current and wants to end up directly across the river 

from the point of origin. At what angle to the shore should 

the rower direct the raft?

   A.     cos −1    5 _ 
3
     

  B.     cos −1    2 _ 
5
     

  C.     cos −1    3 _ 
2
     

  D.     cos −1    2 _ 
3
        

   7. A rock is dropped from a cliff that is 100 m above ground 

level. How long does it take the rock to reach the ground? 

(Note: Use  g   =  10 m/s 2 .)

   A. 4.5 s  

  B. 10 s  

  C. 14 s  

  D. 20 s             
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 6   Conservation of Energy 

   A s a kangaroo hops along, the 

maximum height of each hop 

might be around 2.8 m. This 

height is only slightly higher 

than that achieved by an 

Olympic high jumper, but the 

kangaroo is able to achieve 

this height hop after hop as 

it travels with a horizontal 

velocity of 15 m/s or more. 

What features of kangaroo 

anatomy make this feat pos-

sible? It cannot simply be a 

matter of having more pow-

erful leg muscles. If it were, 

the kangaroo would have to 

consume large amounts of 

energy-rich food to supply the 

muscles with enough chemical 

energy for each jump, but in 

reality a kangaroo’s diet con-

sists largely of grasses that 

are poor in energy content. 

(See p. 210 for the answer.)        



 • gravitational forces (Section 4.5) 

 • Newton’s second law: force and acceleration (Sections 4.3–4.8)   

 • components of vectors (Section 3.2) 

 • circular orbits (Section 5.4) 

 • area under a graph (Sections 2.2 and 2.3)   

    6.1  THE LAW OF CONSERVATION OF ENERGY 

  Until now, we have relied on Newton’s laws of motion to be the fundamental physical 

laws used to analyze the forces that act on objects and to predict the motion of objects. 

Now we introduce another physical principle: the conservation of energy. A    conserva-

tion law    is a physical principle that identifies some quantity that does not change with 

time. Conservation of energy means that every physical process leaves the total energy 

in the universe unchanged. Energy can be converted from one form to another, or trans-

ferred from one place to another. If we are careful to account for all the energy transfor-

mations, we find that the total energy remains the same.         

The Law of Conservation of Energy

The total energy in the universe is unchanged by any physical process:

total energy before = total energy after.

   “Turn down the thermostat—we’re trying to conserve energy!”  In ordinary lan-

guage,   conserving energy   means trying not to waste useful energy resources. In the sci-

entific meaning of   conservation,   energy is   always   conserved no matter what happens.  

When we “produce” or “generate” electric energy, for instance, we aren’t creating any 

new energy; we’re just converting energy from one form into another that’s more useful 

to us. 

 Conservation of energy is one of the few universal principles of physics. No excep-

tions to the law of conservation of energy have been found. Conservation of energy is a 

powerful tool in the search to understand nature. It applies equally well to radioactive 

decay, the gravitational collapse of a star, a chemical reaction, a biological process such 

as respiration, and to the generation of electricity by a wind turbine ( Fig. 6.1 ). Think 

about the energy conversions that make life possible. Green plants use photosynthesis 

to convert the energy they receive from the Sun into stored chemical energy. When ani-

mals eat the plants, that stored energy enables motion, growth, and maintenance of body 

temperature. Energy conservation governs every one of these processes.          

  Choosing Between Alternative Solution Methods     Some problems can be solved 

using either energy conservation  or  Newton’s second law. Usually the energy method is 

easier. We often don’t know the details of all the forces acting on an object, making a 

direct application of Newton’s second law difficult. Using conservation of energy 

enables us to solve some of these problems more easily.  When deciding which of these 

two approaches to use to solve a problem, try using energy conservation first. If the 

energy method does not lead to the solution, then try Newton’s second law.   

  Historical Development of the Principle of Energy Conservation   While many 

scientists contributed to the development of the law of conservation of energy, the law’s 

first clear statement was made in 1842 by the German surgeon Julius Robert von Mayer 

(1814–1878). As a ship’s physician on a voyage to what is now Indonesia, Mayer had 

noticed that the sailors’ venous blood was a much deeper red in the tropics than it was 

in Europe. He concluded that less oxygen was being used because they didn’t need to 

“burn” as much fuel to keep the body warm in the warmer climate. 

  Conservation law:   a physical law 

that identifies a quantity that does 

not change with time.

  Conservation law:   a physical law 

that identifies a quantity that does 

not change with time.

Concepts & Skills to Review

Figure 6.1 At a California 

“wind farm,” these wind turbines 

convert the energy of motion of 

the air into electric energy.

 6.1  THE LAW OF CONSERVATION OF ENERGY 187



188  CHAPTER 6  Conservation of Energy

 In 1843, the English physicist James Prescott Joule (1818–1889), whose “day job” 

was running the family brewery, performed precise experiments to show that gravita-

tional potential energy could be converted into a previously unrecognized form of energy 

(internal energy). It had previously been thought that forces like friction “use up” energy. 

Thanks to Mayer, Joule, and others, we now know that friction converts mechanical 

forms of energy into internal energy and that total energy is always conserved.   

  Forms of Energy 

 Energy comes in many different forms ( Fig. 6.2 ).  Table 6.1  summarizes the main forms 

of energy discussed in this text and indicates the principal chapters that discuss each 

one. At the most fundamental level, there are only three kinds of energy: energy due to 

motion (   kinetic energy   ), stored energy due to interaction (   potential energy   ), and rest 

energy.                                         

 To apply the energy conservation principle, we need to learn how to calculate the 

amount of each form of energy. There isn’t one formula that applies to all. Fortunately, 

we don’t have to learn about all of them at once. This chapter focuses on three forms of 

macroscopic mechanical energy (kinetic energy, gravitational potential energy, and 

elastic potential energy). For now, we use energy conservation as a tool to understand 

the    translational    motion of objects, but we do not consider rotational motion or changes 

in the  internal  energy of an object. We assume that these moving objects are perfectly 

rigid, so every point on the object moves through the same displacement.              

   6.2  WORK DONE BY A CONSTANT FORCE 

  To apply the principle of energy conservation, we need to learn how energy can be con-

verted from one form to another. We begin with an example. Suppose the trunk in 

 Fig. 6.3a  weighs 220 N and must be lifted a height  h   =  4.0 m. To lift it at constant speed, 

Rosie must exert a force of 220 N on the rope, assuming an ideal pulley and rope. (We 

Kinetic energy: energy of motion.Kinetic energy: energy of motion.

Potential energy: stored energy due 

to interaction.

Potential energy: stored energy due 

to interaction.

Translation:  motion of an object in 

which any point of the object moves 

with the same velocity as any other 

point. (That is, the object does not 

rotate or change shape.) 

Translation:  motion of an object in 

which any point of the object moves 

with the same velocity as any other 

point. (That is, the object does not 

rotate or change shape.) 

Figure 6.2 The stored chemi-

cal energy in food enables a 

weightlifter to lift the barbell 

over her head.

Table 6.1 Some Common Forms of Energy

*Not a fundamental form of energy; made up of microscopic kinetic or electromagnetic energy.

Form of Energy Brief Description

Translational kinetic Energy of translational motion (Chapter 6)
Elastic Energy stored in a “springy” object or material when it is deformed 

(Chapter 6)*
Gravitational Energy of gravitational interactions (Chapter 6)
Rotational kinetic Energy of rotational motion (Chapter 8)*
Vibrational, acoustic, 

 seismic

Energy of the oscillatory motions of atoms and molecules in a 

substance caused by a mechanical wave passing through it (Chapters 

11 and 12)*
Internal Energies of motion and interaction of atoms and molecules in solids, 

liquids, and gases, related to our sensation of temperature (Chapters 

14 and 15)*
Electromagnetic Energy of interaction of electric charges and currents; energy of 

electromagnetic fields, including electromagnetic waves such as 

light (Chapters 14, 17–22)
Rest The total energy of a particle of mass m when it is at rest, given by 

Einstein’s famous equation E = mc2 (Chapters 26, 29, and 30)
Chemical Energies of motion and interaction of electrons in atoms and 

molecules (Chapter 28)*
Nuclear Energies of motion and interaction of protons and neutrons in atomic 

nuclei (Chapters 29 and 30)



ignore for now the brief initial time when she pulls with more than 220 N to acceler-

ate the trunk from rest to its constant speed and the brief time she pulls with less than 

220 N to let it come to rest.)     

 As discussed in Example 4.12, she would only have to exert half the force (110 N) 

if she were to use the two-pulley system of  Fig. 6.3b . She doesn’t get something for 

nothing, though. To lift the trunk 4.0 m, the sections of rope on  both  sides of pulley 2 

must be shortened by 4.0 m, so Rosie must pull an 8.0-m length of rope. The two-pulley 

system enables her to pull with half the force, but now she must pull the rope through 

 twice the distance.  

 Notice that the  product  of the magnitude of the force and the distance is the same in 

both cases:

    220 N × 4.0 m = 110 N × 8.0 m = 880 N⋅m = W  

This product is called the    work    ( W ) done by Rosie on the rope. Work is a scalar quan-

tity; it does not have a direction. The same symbol  W  is often used for the weight of an 

object. To avoid confusion, we write  mg  for weight and let  W  stand for work. 

  Don’t be misled by the many different meanings the word   work   has in ordinary con-

versation. We talk about doing homework, or going to work, or having too much work to 

do. Not everything we call “work” in conversation is   work   as defined in physics.      

    The SI unit of work and energy is the newton-meter (N·m), which is given the name 

joule (symbol: J).  Using either method, Rosie must do 880 J of work on the rope to lift 

the trunk. When we say that Rosie does 880 J of work, we mean that Rosie supplies 

880 J of energy—the amount of energy required to lift the trunk 4.0 m.  Work is an 

energy transfer that occurs when a force acts on an object that moves.            

 Rosie does no work on the rope while she holds it in one place because the dis-

placement is zero. She can just as well fasten it and walk away ( Fig. 6.4 ).  If there is no 

displacement,   no work is done and no energy is transferred.  Why then does she get tired 

if she holds the rope in place for a long time? Although Rosie does no work  on the rope  

when holding it in place, work  is  done inside her body by muscle fibers, which have to 

contract and expand continually to maintain tension in the muscle. This internal work 

converts chemical energy into internal energy—the muscle warms up—but no energy is 

transferred  to the trunk.       

  Work Done by a Force not Parallel to the Displacement   The force that Rosie exerts 

on the rope is in the same direction as the displacement of that end of the rope. More gen-

erally, how much work is done by a constant force that is at some angle to the displace-

ment? It turns out that only the  component  of the force  in the direction of the displacement  

SI unit of work and energy is the 

joule: 1 J  =  1 N·m.

SI unit of work and energy is the 

joule: 1 J  =  1 N·m.

Work:  an energy transfer that 

occurs when a force acts on an 

object that moves. 

Work:  an energy transfer that 

occurs when a force acts on an 

object that moves. 

d

2d

d

d

1

2

2

(a) Single pulley (b) Two pulleys

1

mg mg

Initial Final Initial Final

1–
2

mg

mg
1–
2

Figure 6.3 (a) Rosie moves a 

trunk into her dorm room 

through the window. (b) The 

two-pulley system makes it eas-

ier for Rosie to lift the trunk: the 

force she must exert is halved. Is 

she getting something for noth-

ing, or does she still have to do 

the same amount of work to lift 

the trunk?

Figure 6.4 While the trunk is 

held in place by tying the rope, 

no work is done and no energy 

transfers occur.
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does work. So, in general, the work done by a constant force is defined as the product of 

the magnitude of the displacement and the  component  of the force  in the direction of the 

displacement.  If  q    represents the angle between the force and displacement vectors when 

they are drawn starting at the same point, then the force component in the direction of the 

displacement is  F  cos  q    ( Fig. 6.5 ). Therefore, work done by a constant force on an object 

can be written  W   =   F  Δ r  cos  q , where  F  is the magnitude of the force and Δ r  is the magni-

tude of the displacement of the object.           

Work done by a constant force  F⃗ acting on an object whose displacement is Δr ⃗:

 W = F Δ r cos q (6-1)

(q  is the angle between  F⃗ and Δr ⃗)

 If we choose the  x -axis parallel to the displacement, then the component of the force 

in the direction of the displacement is  F   x    =   F  cos  q , so  W   =   F   x   Δ x.  Alternatively, we can 

identify Δ r  cos  q   in Eq. (6-1) as the component of the  displacement  in the direction of 

the  force  ( Fig. 6.6 ). Therefore, if we choose the  x -axis parallel to the  force,  then the com-

ponent of the displacement in the direction of the force is Δ x  and  W   =   F   x   Δ x,  as before:                  

Work done by a constant force  F⃗ acting on an object whose displacement is Δr ⃗:

 W =  F x  Δx (6-2)

( F⃗ and/or Δr ⃗ parallel to the x-axis)

  Work Can Be Positive, Negative, or Zero     When the angle between      F⃗   and     Δr ⃗   is less 

than 90 ° , cos  q   in Eq. (6-1) is positive, so the work done by the force is positive ( W  > 0). 

If the angle between      F⃗   and     Δr ⃗   is greater than 90 ° , cos  q   is negative and the work done 

by the force is negative ( W  < 0).  Pay careful attention to the algebraic sign when calcu-

lating work.  For example, the rope pulls Rosie’s trunk in the direction of its displace-

ment, so  q    =  0 and cos  q    =  1; the rope does positive work on the trunk. At the same 

time, gravity pulls downward in the direction opposite to the displacement, so  q    =  180 °  

and cos  q    =   − 1; gravity does  negative  work on the trunk. 

 If the force is perpendicular to the displacement,  q    =  90 °  and cos 90 °   =  0, so the work 

done is zero. For example, the normal force exerted by a stationary surface on a sliding 

object does no work because it is perpendicular to the displacement of the object ( Fig. 6.7a ). 

Even if the surface is curved, at any instant the normal force is perpendicular to the veloc-

ity of the object. During a short time interval, then, the normal force is perpendicular to the 

displacement     Δr ⃗ = v ⃗ Δt   ( Fig. 6.7b ), so the normal force still does zero work.     

 On the other hand, if the surface exerting the normal force is moving, then the nor-

mal force can do work. In  Fig. 6.7c , the normal force exerted by the forklift on the pallet 

does positive work as it lifts the pallet. 

The  scalar product  (or  dot prod-

uct ) of two vectors is defined by the 

equation      A⃗⋅  B⃗    = AB cos q,   where  q  

is the angle between      A⃗   and      B⃗   when 

they are drawn starting at the same 

point. The special name and nota-

tion are used because this pattern 

occurs often in physics and mathe-

matics. Work can be expressed 

using the scalar product:     W =  F⃗⋅Δr ⃗.   
See Appendix A.8 for more infor-

mation on the scalar product.

The  scalar product  (or  dot prod-

uct ) of two vectors is defined by the 

equation      A⃗⋅  B⃗    = AB cos q,   where  q  

is the angle between      A⃗   and      B⃗   when 

they are drawn starting at the same 

point. The special name and nota-

tion are used because this pattern 

occurs often in physics and mathe-

matics. Work can be expressed 

using the scalar product:     W =  F⃗⋅Δr ⃗.   
See Appendix A.8 for more infor-

mation on the scalar product.

F cos q

q

r∆

F

x

Figure 6.5 The work done by 

the force of the towrope on the 

water-skier during a displace-

ment Δr ⃗ is (F cos q  ) Δr, where 

(F cos q  ) is the component of  F⃗ 

in the direction of Δr ⃗.

∆r cos q

q

F

rΑ

Figure 6.6 The work done by 

the force of gravity on the hang 

glider during a displacement Δr ⃗ 
is F(Δr cos q), which is F times 

the component of Δr ⃗ in the 

direction of  F⃗.



 No work is done by the tension in the string on a swinging pendulum bob because 

the tension is always perpendicular to the velocity of the bob ( Fig. 6.8a ). Similarly, 

no work is done by the Earth’s gravitational force on a satellite in circular orbit 

( Fig. 6.8b ). In a circular orbit, the gravitational force is always directed along a radius 

from the satellite to the center of the Earth. At every point in the orbit, the gravita-

tional force is perpendicular to the velocity of the satellite (which is tangent to the 

circular orbit).     

 By contrast, gravity does work on a satellite in a noncircular orbit ( Fig. 6.8c ). Only 

at points  A  and  P  are the gravitational force and the satellite’s velocity perpendicular. 

Wherever the angle between the gravitational force and the velocity is less than 90 ° , 

gravity is doing positive work, increasing the satellite’s kinetic energy by making it 

move faster. Wherever the angle between the gravitational force and the velocity is 

greater than 90 ° , gravity is doing negative work, decreasing the satellite’s kinetic energy 

by slowing it down.           

CHECKPOINT 6.2

A force is applied to a moving object, but no work is done. How is that possible?

Application of work: elliptical 

orbits

Application of work: elliptical 

orbits

N

(c)(b)(a)

r∆

N
N

r∆

r∆

r = v∆ t∆

Figure 6.7 (a) The normal force does no work because it is perpendicular to the dis-

placement. (b) Even while sliding on a curved surface, the direction of the normal 

force is always perpendicular to the displacement during a short Δt, so it does no work. 

(c) The normal force that the forklift exerts on the pallet does work; it is not perpen-

dicular to the displacement.

Figure 6.8 (a) The tension in the string of a pendulum is always perpendicular to the 

velocity of the pendulum bob, so the string does no work on the bob. (b) No matter 

where the satellite is in its circular orbit, it experiences a gravitational force directed 

toward the center of the Earth. This force is always perpendicular to the satellite’s 

velocity; thus, gravity does no work on the satellite. (c) In an elliptical orbit, the gravi-

tational force is not always perpendicular to the velocity. As the satellite moves coun-

terclockwise in its orbit from point P to point A, gravity does negative work; from A to 

P, gravity does positive work.

(b) (c)(a)

T

v
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v

v

v
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N
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1.0 m

Fm
′

f

Figure 6.10 An antique chest is pushed up a ramp into a truck.

N
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mg sin f

mg cos f
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x

y
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Figure 6.11

(a) Resolving mg ⃗ into x- and y-components; (b) FBD for the chest.

continued on next page

Given: Weight of chest mg = 1400 N; length of ramp d = 4.0 m; 

height of ramp h = 1.0 m

To fi nd: Work done by movers on the chest Wm and work 

done by gravity on the chest Wg in the two cases; 

work done by the normal force on the chest WN.

Solution (a) The displacement is 1.0 m straight up. The 

movers must exert an upward force  F⃗m equal in magnitude 

to the weight of the chest to move it at constant speed 

(Fig. 6.9). The work done to lift it 1.0 m is

 W m  =  F m  Δr cos q  = 1400 N × 1.0 m × cos 0 = +1400 J

where q  = 0 because  F⃗m and Δr ⃗ are in the same direction 

(upward).

(b) Figure 6.10 shows a sketch of the situation. We take the 

x-axis along the inclined ramp and the y-axis perpendicular 

to the ramp and resolve the gravitational force into its x- and 

y-components (Fig. 6.11a). Figure 6.11b is the FBD for the 

chest. Sliding along at constant speed, the chest’s accelera-

tion is zero, so the x-components of the forces add to zero.

Example 6.1

Antique Chest Delivery

A valuable antique chest, made in 1907 by Gustav Stickley, 

is to be moved into a truck. The weight of the chest is 1400 N. 

To get the chest from the ground onto the truck bed, which is 

1.0 m higher, the movers must decide what to do. Should 

they lift it straight up, or should they push it up their 4.0-m-

long ramp? Assume they push the chest on a wheeled dolly, 

which in a simplified model is equivalent to sliding it up a 

frictionless ramp.

(a) Find the work done by the movers on the chest if they lift 

it straight up 1.0 m at constant speed.

(b) Find the work done by the movers on the chest if they 

slide the chest up the 4.0-m-long frictionless ramp at 

constant speed by pushing parallel to the ramp.

(c) Find the work done by gravity on the chest in each case.

(d) Find the work done by the normal force of the ramp on 

the chest. Assume that all forces are constant.

Strategy To calculate work, we use either Eq. (6-1) or 

Eq. (6-2), whichever is easier. For (a) and (b), we must cal-

culate the force exerted by the movers. Drawing the FBD 

helps us calculate the forces. The ramp is a simple machine—

just as for Rosie’s pulleys, the ramp cannot reduce the 

amount of work that must be done, so we expect the work 

done by the movers to be the same in 

both cases (ignoring friction). We 

expect the work done by gravity to be 

negative in both cases, since the chest 

is moving up while gravity pulls 

down. The normal force due to the 

ramp is perpendicular to the displace-

ment, so it does zero work on the 

chest. Since more than one 

force does work on the chest, 

we use subscripts to clarify 

which work is being calculated.

mg

Fm

Figure 6.9

FBD for the chest as 

the movers lift it 

straight up at con-

stant speed.



  Total Work 

 When several forces act on an object, the total work is the sum of the work done by each 

force individually:

      W 
total

  =  W 
1
  +  W 

2
  + … +  W N     (6-3) 

Total work is sometimes called  net  work because the work done by each force can be 

positive, negative, or zero, so the total work is often smaller than the work done by any 

one of the forces. Because we assume a rigid object with no rotational or internal 

motion, another way to calculate the total work is to find the work done by the  net  force 

as if there were a single force acting:

      W 
total

  =  F net  Δr cos q    (6-4)    

 To show that these two methods give the same result, let’s choose the  x -axis in the 

direction of the displacement. Then the work done by each individual force is the  

x -component of the force times Δ x.  From Eq. (6-3),

     W 
total

  =  F 
1x

  Δx +  F 
2x

  Δx + … +  F Nx  Δx  

Factoring out the Δ x  from each term,

     W 
total

  = ( F 
1x

  +  F 
2x

  + … +  F Nx ) Δx =  ( ∑ F 
x
  )  Δx  

∑ F   x   is the  x -component of the net force. In Eq. (6-4),  F  net  cos   q   is the component of the 

net force in the direction of the displacement, which is the  x -component of the net force. 

The two methods give the same total work.  

The x-component of the gravitational force acts in the 

–x-direction and the force exerted by the movers  F⃗′m  acts in 

the +x-direction. [The prime symbol indicates that the force 

exerted by the movers is different from what it was in part 

(a).]

∑ F x  = F ′m− mg sin f  = 0

From the right triangle formed by the ramp, the ground, and 

the truck bed in Fig. 6.12:

sin f  =   
height of truck bed

  _________________  
distance along ramp

   =   h __ 
d
  

We can now solve for F ′m:

F ′m = mg sin f =   
mgh

 ____ 
d
  

The force and displacement are in the same direction, so 

q  = 0:

 W m  = F ′m d cos 0 =   
mgh

 ____ 
d
   × d × 1 = mgh = +1400 J

The work done by the movers is the same as in (a).

(c) In both cases, the force of gravity has magnitude mg and 

acts downward. Choosing the y-axis so it now points upward, 

Fgy = −mg. In both cases, the component of the displacement 

along the y-axis is Δy = h = 1.0 m. The work done by gravity 

is the same for the two cases. Using Eq. (6-2),

W g  =  F gy  Δy = −mg Δy

= −1400 N × 1.0 m = −1400 J

(d) The normal force of the ramp on the chest does no work 

because it acts in a direction perpendicular to the displace-

ment of the chest.

 W 
N
  = N Δr cos 90° = 0

Discussion Since d, the length of the ramp, cancels 

when multiplying the force times the distance, the work 

done by the movers is the same for any length ramp (as 

long as the height is the same). Using the ramp, the mov-

ers apply one quarter the force over a displacement that is 

four times larger. With a real ramp, friction acts to oppose 

the motion of the chest, so the movers would have to do 

more than 1400 J of work to slide the chest up the ramp. 

There’s no getting around it; if the movers want to get that 

chest into the truck, they’re going to have to do at least

1400 J of work.

Practice Problem 6.1 Bicycling Uphill

A bicyclist climbs a 2.0-km-long hill that makes an angle of 

7.0° with the horizontal. The total weight of the bike and the 

rider is 750 N. How much work is done on the bike and rider 

by gravity?

Example 6.1 continued

Figure 6.12

Finding the angle of the 

incline.

4.0 m
1.0 m

f
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To find the tension, we need to eliminate the unknown nor-

mal force N. Equation (2) also involves the normal force N.

We multiply Eq. (2) by m k,

  m k  T sin q −  m k mg +  m k N = 0 (4)

Adding Eqs. (3) and (4) eliminates N. Then we solve for T.

T cos q +  m k T sin q −  m k mg = 0

T =   
 m k mg
 _____________  

 m k sin q + cos q 
  

=   
0.16 × 26 kg × 9.80 m/ s 2 

   _______________________   
0.16 × sin 20.0° + cos 20.0°

   = 41 N

Now that we know the tension, we find the work done by 

Diane. The component of the tension T acting parallel to 

the displacement is Tx = T cos q   and the displacement is 

Δx = 120 m. The work done by Diane is

W 
T
  = (T cos q )Δx

= 41 N × cos 20.0° × 120 m = +4600 J

(b) The force on the sled due to the ground has two compo-

nents: N and  f 
k
 . The normal force does no work since it is 

perpendicular to the displacement of the sled. Friction acts 

in a direction opposite to the displacement, so the angle 

between the force and displacement is 180°. The work done 

by friction is

 W 
f
  =  f 

k
  Δx cos 180° = − f 

k
  Δx

From Eq. (1),

 f 
k
  = T cos q

Therefore, the work done by the ground—the work done by 

the frictional force—is

 W 
f
  = − f 

k
  Δx = −(T cos q ) Δx

Except for the negative sign, Wf is the same as W T: 

W f = −4600 J.

Example 6.2

Fun on a Sled

Diane pulls a sled along a snowy path on level ground with 

her little brother Jasper riding on the sled (Fig. 6.13). The 

total mass of Jasper and the sled is 26 kg. The cord makes a 

20.0° angle with the ground. As a simplified model, assume 

that the force of friction on the sled is determined by 

m k = 0.16, even though the surfaces are not dry (some snow 

melts as the runners slide along it). Find (a) the work done by 

Diane and (b) the work done by the ground on the sled while 

the sled moves 120 m along the path at a constant 3 km/h. 

(c) What is the total work done on the sled?

Strategy (a,b) To find the work done by a force on an 

object, we need to know the magnitudes and directions of 

the force and of the displacement of the object. The sled’s 

acceleration is zero, so the vector sum of all the external 

forces (gravity, friction, rope tension, and the normal force) 

is zero. We draw the FBD and use Newton’s second law to 

find the tension in the rope and the force of kinetic friction 

on the sled. Then we apply Eq. (6-1) or Eq. (6-2) to find the 

work done by each. (c) We have two methods to find the 

total work. We’ll use Eq. (6-3) to calculate the total work 

and Eq. (6-4) as a check.

Solution (a) The FBD is shown in Fig. 6.14. The x- and 

y-axes are parallel and perpendicular to the ground, respec-

tively. After resolving the tension into its components 

(Fig. 6.15), Newton’s second law with zero acceleration yields

∑ F x  = +T cos q  −  f 
k
  = 0 (1)

∑ F y  = +T sin q  − mg + N = 0 (2)

where T is the tension and q  = 20.0°. The force of kinetic 

friction is

 f 
k
  =  m k N

Substituting this into Eq. (1)

T cos q −  m k N = 0 (3)

Displacement = 120 m

20.0°

T

v = 3 km/h

Figure 6.13

Jasper being pulled on a sled.

Figure 6.15

Resolving the tension into 

x- and y-components.

T cos q

q  = 20.0°

T sin q 

T

qT

mg

fk

N

20.0°

Figure 6.14

FBD.

continued on next page



  Work Done by Dissipative Forces 

 The work done by kinetic friction was calculated in  Example 6.2  according to a simpli-

fied model of friction. In this model, when friction truly does  − 4600 J of work on the 

sled, it transfers 4600 J of energy from the sled to the ground’s internal energy—the 

ground warms up a bit. In reality, 4600 J of energy is converted into internal energy 

shared  between the ground and the sled—both the ground and the sled warm up a little. 

So the 4600 J is not all transferred to the ground; some stays in the sled but is converted 

to a different form of energy. 

 Rather than saying friction does  − 4600 J of work, a more accurate statement is that 

friction  dissipates  4600 J of energy.    Dissipation    is the conversion of energy from an 

organized form to a disorganized form such as the kinetic energy associated with the 

random motions of the atoms and molecules within an object, which is part of the 

object’s internal energy. As a practical matter, we usually are not concerned with  where

the internal energy appears. When we can calculate the work done by friction using 

Eq. (6-1), we get the correct amount of energy dissipated; we just don’t know how much 

of it is transferred to the stationary surface and how much remains in the sliding object. 

This is how we apply the term  work  to kinetic friction or to other dissipative forces such 

as air resistance. (In Chapters 14 and 15, when we study internal energy in detail, we will 

look at situations in which we  do  care where the internal energy appears.)    

6.3  KINETIC ENERGY 

  Suppose a constant net force       F⃗ net    acts on a rigid object of mass  m  during a displacement 

Δr ⃗.   Choosing the  x -axis in the direction of the net force, the total work done on the 

object is

     W 
total

  =  F net  Δx  

where Δ x  is the  x -component of the displacement. Newton’s second law tells us that 

      F⃗ net      = ma ⃗,   so

      W 
total

  =  ma x  Δx    (6-5)   

Since the acceleration is constant, we can use any of the equations for constant acceler-

ation from Chapter 2. From Eq. (2-13),  v  
fx

  2
   −  v  

ix
  2
       = 2ax   Δ x or

     a x  Δx =   1 _ 
2
  ( v  

fx
  2
   −  v  

ix
  2
  )  

Substituting into Eq. (6-5) yields

     W 
total

  =   1 _ 
2
  m( v  

fx
  2
   −  v  

ix
  2
  )  

(c) The tension and friction are the only forces that do work 

on the sled. The normal force and gravity are both perpen-

dicular to the displacement, so they do zero work.

 W 
total

  =  W 
T
  +  W 

f
  = 4600 J + (−4600 J) = 0

Discussion To check (c), note that the sled travels with 

constant velocity, so the net force acting on it is zero. 

W total = F netΔr cos q  = 0.

The speed (3 km/h) was not used in the solution. Assum-

ing that the frictional force on the sled is independent of 

speed, Diane would exert the same force to pull the sled at 

any constant speed. Then the work she does is the same for a 

120-m displacement. At a higher speed, though, she would 

have to do that amount of work in a shorter time interval.

Practice Problem 6.2 A Different Angle

Find the tension if Diane pulls at an angle q  = 30.0° instead 

of 20.0°, assuming the same coefficient of friction. What is 

the work done by Diane on the sled in this case for a 120-m 

displacement? Explain how the tension can be greater but 

the work done by Diane smaller.

Example 6.2 continued
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Since the net force is in the  x -direction,  a   y   and  a   z   are both zero. Only the  x -component 

of the velocity changes;  v   y   and  v   z   are constant. As a result,

     v  
f
  2  −  v  

i
  2  = ( v  

fx
  2
   +  v  

fy
  2
   +  v  

fz
  2
  ) − ( v  

ix
  2
   +  v  

iy
  2
   +  v  

iz
  2
  ) =  v  

fx
  2
   −  v  

ix
  2
    

Therefore, the total work done is

     W 
total

  =   1 _ 
2
  m( v  

f
  2  −  v  

i
  2 ) =   1 _ 

2
  m v  

f
  2  −   1 _ 

2
  m v  

i
  2    

 The total work done is equal to the change in the quantity    1 _ 
2
  m v 2       , which is called the 

object’s    translational kinetic energy    (symbol  K ). (Often we just say  kinetic energy  if it 

is understood that we mean translational kinetic energy.) Translational kinetic energy is 

the energy associated with motion of the object as a whole; it does not include the 

energy of rotational or internal motion.              

Translational kinetic energy:

K =   1 _ 
2
  m v 2  (6-6)

Work-kinetic energy theorem:

  W 
total

  = ΔK (6-7)

 Kinetic energy is a scalar quantity and is always positive if the object is moving or 

zero if it is at rest. Kinetic energy is never negative, although a  change  in kinetic energy 

can be negative. The kinetic energy of an object moving with speed  v  is equal to the 

work that must be done on the object to accelerate it to that speed starting from rest. 

When the total work done is positive, the object’s speed increases, increasing the kinetic 

energy. When the total work done is negative, the object’s speed decreases, decreasing 

the kinetic energy.           

Relation between total work and 

kinetic energy

Relation between total work and 

kinetic energy

Conceptual Example 6.3

Collision Damage

Why is the damage caused by an automobile collision so 

much worse when the vehicles involved are moving at high 

speeds?

Strategy When a collision occurs, the kinetic energy of 

the automobiles gets converted into other forms of energy. 

We can use the kinetic energy as a rough measure of how 

much damage can be done in a collision.

Solution and Discussion Suppose we compare the kinetic 

energy of a car at two different speeds: 60.0 mi/h and 72.0 mi/h 

(which is 20.0% greater than 60.0 mi/h). If kinetic energy 

were proportional to speed, then a 20.0% increase in speed 

would mean a 20.0% increase in kinetic energy. However, 

since kinetic energy is proportional to the square of the 

speed, a 20.0% speed increase causes an increase in kinetic 

energy greater than 20.0%. Working by proportions, we can 

find the percent increase in kinetic energy:

  
 K 

2
 
 ___ 

 K 
1
 
   =   

  1 _ 
2
  m v  2  

2 
 _____ 

  1 _ 
2
  m v  1  

2 
   =   (   72.0 mi/h ________ 

60.0 mi/h
   )  

2
  = 1.44

Therefore, a 20.0% increase in speed causes a 44% increase 

in kinetic energy. What seems like a relatively modest differ-

ence in speed makes a lot of difference when a collision 

occurs.

Practice Problem 6.3 Two Different Cars Collide 
with a Stone Wall

Suppose a sports utility vehicle and a small electric car both 

collide with a stone wall and come to a dead stop. If the 

SUV mass is 2.5 times that of the small car and the speed of 

the SUV is 60.0 mph while that of the other car is 40.0 mph, 

what is the ratio of the kinetic energy changes for the two 

cars (SUV to small car)?



CHECKPOINT 6.3

Kinetic energy and work are related. Can kinetic energy ever be negative? Can 

work ever be negative?

6.4  GRAVITATIONAL POTENTIAL ENERGY (1) 

   Gravitational Potential Energy When Gravitational Force Is Constant 

 Toss a stone up with initial speed  v  i . Ignoring air resistance, how high does the stone 

go? We can solve this problem with Newton’s second law, but let’s use work and energy 

instead. The stone’s initial kinetic energy is      K 
i
  =   1 _ 

2
  m v  

i
  2 .   For an upward displacement Δ y,  

gravity does negative work  W   grav   =   −  mg  Δ y.  No other forces act, so this is the total work 

done on the stone. The stone is momentarily at rest at the top, so  K   f   =  0. Then

     W grav  =  K 
f
  −  K 

i
 

−mg Δy = −   1 __ 
2
   m v  

i
  2  ⇒ Δy =   

 v  
i
  2 
 ___ 

2g
     

 From the standpoint of energy conservation, where did the stone’s initial kinetic 

energy go? If total energy cannot change, it must be “stored” somewhere. Furthermore, 

Then the work done by gravity is

 W g  = −(780 N) × (−114 m) = +89 kJ

The work done by the cord is Wc = Wtotal − Wg = −89 kJ.

Discussion The work done by gravity is positive, since 

the force and the displacement are in the same direction 

(downward). If not for the negative work done by the 

cord, the jumper would have a kinetic energy of 89 kJ after 

falling 114 m.

The length of the bungee cord is not given, but it does not 

affect the answer. At first the jumper is in free fall as the cord 

plays out to its full length; only then does the cord begin to 

stretch and exert a force on the jumper, ultimately bringing 

him to rest again. Regardless of the length of the cord, the 

total work done by gravity and by the cord must be zero 

since the change in the jumper’s kinetic energy is zero.

Practice Problem 6.4 The Bungee Jumper’s Speed

Suppose that during the jumper’s descent, at a height of 

111 m above the bottom of the gorge, the cord has done 

−21.7 kJ of work on the jumper. What is the jumper’s speed 

at that point?

Example 6.4

Bungee Jumping

A bungee jumper makes a jump in the Gorge du Verdon in 

southern France. The jumping platform is 182 m above the 

bottom of the gorge. The jumper weighs 780 N. If the jumper 

falls to within 68 m of the bottom of the gorge, how much 

work is done by the bungee cord on the jumper during his 

descent? Ignore air resistance.

Strategy Ignoring air resistance, only two forces act on 

the jumper during the descent: gravity and the tension in the 

cord. Since the jumper has zero kinetic energy at both the 

highest and lowest points of the jump, the change in kinetic 

energy for the descent is zero. Therefore, the total work done 

by the two forces on the jumper must equal zero.

Solution Let Wg and Wc represent the work done on the 

jumper by gravity and by the cord. Then

 W 
total

  =  W g  +  W c  = ΔK = 0

The work done by gravity is

 W g  =  F y  Δy = −mg Δy

where the weight of the jumper is mg = 780 N. With y = 0 at 

the bottom of the gorge, the vertical component of the dis-

placement is

Δy =  y 
f
  −  y 

i
  = 68 m − 182 m = −114 m
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the stone gets its kinetic energy back as it falls from its highest point to its initial posi-

tion, so the energy is stored in a way that is easily recovered as kinetic energy. Stored 

energy due to the interaction of an object with something else (here, Earth’s gravita-

tional field) that can easily be recovered as kinetic energy is called    potential energy    

(symbol  U ).       

 The change in gravitational potential energy when an object moves up or down is 

the  negative  of the work done by gravity:          

Change in gravitational potential energy:

 Δ U grav  = − W grav  (6-8)

If the gravitational field is uniform, the work done by gravity is

     W grav  =  F y  Δy = −mg Δy  

where the  y -axis points up. Therefore,

    

Change in gravitational potential energy:

 Δ U grav  = mg Δy (6-9)

(uniform g ⃗, y-axis up)

Equation (6-9) holds even if the object does not move in a straight-line path. 

  Significance of the Negative Sign in Eq. (6-8)   When the stone moves up, Δ y  is 

positive. The gravitational force and the displacement of the stone are in opposite direc-

tions, so the work done by gravity is negative, gravity is taking away kinetic energy and 

adding it to its stored potential energy, so the potential energy increases ( Fig. 6.16a) . If 

the stone moves down, Δ y  is negative. The work done by gravity is positive; gravity is 

giving back kinetic energy by depleting its storage of potential energy, so the potential 

energy decreases ( Fig. 6.16b ).                      

CHECKPOINT 6.4

A stone is tossed straight up in the air and is moving upward. (a) Does the gravi-

tational potential energy increase, decrease, or stay the same? (b) What about 

the kinetic energy? (c) What force, if any, does work on the stone once it leaves 

the hand of the one who threw it?

The symbol for potential 

energy is U.

The symbol for potential 

energy is U.

Final
position

mg

Initial
position

More
potential
energy

Less
potential
energy

∆y
∆U > 0

+y

+x

Initial
position

mg

Final
position

More
potential
energy

Less
potential
energy

∆y
∆U < 0

mgmg

+y

+x

(a) (b)

Figure 6.16 (a) When the 

stone moves up, the gravitational 

potential energy increases. 

(b) When the stone moves down, 

the gravitational potential energy 

decreases.



  Other Forms of Potential Energy   In addition to gravitational potential energy, 

other kinds of potential energy include elastic potential energy (Section 6.7) and elec-

tric potential energy (Chapter 17). Forces that have potential energies associated with 

them are called    conservative forces,    for reasons we explain shortly. Not every force has 

an associated potential energy. For instance, there is no such thing as “frictional poten-

tial energy.” When kinetic friction does work, it converts energy into a disorganized 

form that is not easily recoverable as kinetic energy.  

  Mechanical Energy   The total work done on an object can always be written as the 

sum of the work done by conservative forces ( W  cons ) plus the work done by nonconser-

vative forces ( W  nc ). Since the total work is equal to the change in the object’s kinetic 

energy [Eq. (6-7)],

      W 
total

  =  W cons  +  W nc  = ΔK  ⇒    W nc  = ΔK −  W cons     (6-10) 

Following the same reasoning we used for gravity [see Eq. (6-8)], the change in the total 

potential energy is equal to the negative of the work done by the conservative forces:

ΔU = − W cons     (6-11) 

Combining Eqs. (6-10) and (6-11) yields

  W nc  = ΔK + ΔU = Δ E 
mech

  (6-12)

or

( K 
i
  +  U 

i
 ) +  W nc  = ( K 

f
  +  U 

f
 )

   The sum of the kinetic and potential energies ( K   +   U ) is called the    mechanical 

energy    ( E  mech ).  W  nc  is equal to the change in mechanical energy. When finding the 

change in mechanical energy, do not include the work done by conservative forces. 

Conservative forces such as gravity do not change the mechanical energy; they just 

change one form of mechanical energy into another. Work done by conservative forces 

is already accounted for by the change in potential energy.             

 The term  conservative force  comes from a time before the general law of conserva-

tion of energy was understood and when no forms of energy other than mechanical 

energy were recognized. Back then, it was thought that certain forces conserved energy 

and others did not. Now we believe that  total  energy is  always  conserved. Nonconserva-

tive forces do not conserve  mechanical  energy, but they do conserve  total  energy.   

Conservation of Mechanical Energy

When nonconservative forces do no work, mechanical energy is conserved: 

E i = E f

Mechanical energy: the sum of the 

kinetic and potential energies

Mechanical energy: the sum of the 

kinetic and potential energies

calculate the energy dissipated by the kinetic frictional 

forces acting between her and the line. The local value of g

is 9.78 N/kg. Ignore air resistance.

Example 6.5

Rock Climbing in Yosemite

A team of climbers is rappelling down steep terrain in the 

Yosemite valley (Fig. 6.17). Mei-Ling (mass 60.0 kg) slides 

down a line starting from rest 12.0 m above a horizontal 

shelf. If she lands on the shelf below with a speed of 2.0 m/s, 

continued on next page
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Strategy The forces acting on Mei-Ling are gravity and 

kinetic friction (Fig. 6.18). The only force whose work is not 

included in the change in potential energy is the work 

done by kinetic friction. Therefore, the 

change in the mechanical energy, 

ΔK + ΔU, is equal to the work done by 

friction. Since we know Mei-Ling’s ini-

tial and final speeds as well as her mass, 

we can calculate the change in her 

kinetic energy. From the change in 

height, we can calculate the change in 

potential energy.

Given: mass of climber, m = 60.0 kg; ∆y = −12.0 m; 

vi = 0 m/s and vf = 2.0 m/s, just before stopping; local 

field strength g = 9.78 N/kg.

To fi nd: change in mechanical energy ΔE.

Solution Wnc = ΔEmech = ΔK + ΔU, so we need to calcu-

late the changes in kinetic and potential energy. Mei-Ling’s 

kinetic energy is initially zero since she starts at rest. The 

change in her kinetic energy is

ΔK =   1 _ 
2
  m v  

f
  2  −   1 _ 

2
  m v  

i
  2  =   1 _ 

2
  m v  

f
  2  − 0 =   1 _ 

2
  (60.0 kg) × (2.0 m/s ) 2 

= +120 J

The change in her potential energy is

ΔU = mg Δy = 60.0 kg × 9.78 m/ s 2  × (0 − 12.0 m) = −7040 J

The work done by friction is

Δ E 
mech

  = ΔK + ΔU = 120 J + (−7040 J) = −6920 J

The amount of energy dissipated by friction (converted from 

mechanical energy into internal energy) is 6920 J. Fortu-

nately, Mei-Ling is wearing gloves, so her hands don’t get 

burned.

Discussion If the line had broken when Mei-Ling was at 

the top, her final kinetic energy would have been +7040 J—

disastrously large since it corresponds to a final speed of

v =  √
___

   K ___ 
  1 _ 
2
  m

     =  √
_______

   7040 J _______ 
30.0 kg

     = 15.3 m/s

Instead, kinetic friction reduces her final kinetic energy to a 

manageable +120 J (which corresponds to a final speed of 

2.0 m/s). Mei-Ling can absorb this much kinetic energy 

safely by landing on the shelf while bending her knees.

Practice Problem 6.5 Energy Dissipated 
by Air Resistance

A ball thrown straight up at an initial speed of 14.0 m/s 

reaches a maximum height of 7.6 m. What fraction of the 

ball’s initial kinetic energy is dissipated by air resistance as 

the ball moves upward?

Figure 6.17

Mei-Ling rappelling downward from a position 12.0 m above a 

shelf.

12.0 m

v

mg

fk

Figure 6.18

FBD for Mei-Ling.

Example 6.5 continued

  Choosing Where the Potential Energy Is Zero 

Notice that when we apply Eq. (6-12), only the   change   in potential energy enters the 

calculation. Therefore, we can always assign the value of the potential energy for any  

one   position.  Most often, we choose some convenient position and assign it to have zero 

potential energy. Once that choice is made, the potential energy of every other configu-

ration is determined by Eq. (6-11). 

 For gravitational potential energy in a uniform gravitational field, we usually 

choose the potential energy to be zero at some convenient place: on the floor, on a table, 



or at the top of a ladder. After assigning  y   =  0 to that place, the potential energy at any 

other place is  U   =   mgy.      

Gravitational potential energy:

  U grav  = mgy (6-13)

(uniform g ⃗, y-axis up, assign U = 0 to y = 0)

Potential energy is then positive above  y   =  0 and negative below it. There is no spe-

cial significance to the sign of the potential energy. What matters is the sign of the 

potential energy  change.   

skilled skier can control his speed by, in effect, controlling 

how much work the frictional force does on the skis. Here 

we assume no friction or air resistance. Then the only forces 

acting on the skier are the normal force and gravity 

(Fig. 6.19). The normal force does no work, since it is always 

perpendicular to the skier’s velocity, so Wnc = 0.

Example 6.6

A Quick Descent

A ski trail makes a vertical descent of 78 m. A novice skier, 

unable to control his speed, skis down this trail and is lucky 

enough not to hit any trees. What is his speed at the bottom 

of the trail, ignoring friction and air resistance?

Strategy When nonconservative forces do no work, 

Wnc = ΔEmech = 0 and mechanical energy does not change. A 

v

v

78 m

mg

N

v

v

Potential energy

Kinetic energy

E
n
er

g
y

N

N

N

mg

mg

mg

Figure 6.19 The final speed of the skier depends only on the initial and final altitudes if no friction acts.

continued on next page
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  Recognizing a Conservative Force 

 In  Example 6.6 , the final speed doesn’t depend on the shape of the trail: it could have been 

a steep descent, or a long gradual one, or have a complicated profile with varying slope. It 

could even be a vertical descent—the final speed is the same for free fall off a 78-m-high 

building. Any time the work done by a force is  independent of path —that is, the work 

depends only on the initial and final positions—the force is conservative. We depend on 

the path-independence of the work done to define the potential energy in Eq. (6-11). 

 Energy stored as potential energy by a conservative force during a displacement 

from point  A  to point  B  can be recovered as kinetic energy. We can simply reverse dis-

placement to get all of the energy back: Δ U   B  → A    =   − Δ U   A  → B  . 

 The work done by friction, air resistance, and other contact forces  does  depend on 

path, so these forces cannot have potential energies associated with them. We cannot 

use friction to store energy in a form that is completely recoverable as kinetic energy.    

   6.5  GRAVITATIONAL POTENTIAL ENERGY (2) 

  The expressions for gravitational potential energy developed in Section 6.4 apply when 

the gravitational force is  constant  (or nearly constant). If the gravitational force is not 

constant, such as when a satellite is placed into orbit around the Earth, Eqs. (6-9) and 

(6-13) cannot be used. Instead, we need to use an expression for gravitational potential 

This method shows that 

the final speed does not 

depend on the angle of 

the slope, but the energy 

method shows that the 

final speed is the same 

for any shape path, not 

just for constant slopes. 

On the other hand, the 

time that it takes the skier 

to reach the bottom does 

depend on the length and 

contour of the trail.

A final speed of 39 m/s (87 mi/h) is dangerously fast. In 

reality, friction and air resistance would do negative work on 

the skier, so the final speed would be smaller.

Practice Problem 6.6 Speeding Roller Coaster

A roller coaster is hauled to the top of the first hill of the ride 

by a motorized chain drive. After that, the train of cars is 

released and no more energy is supplied by an external 

motor. The cars are moving at 4.0 m/s at the top of the first 

hill, 35.0 m above the ground. How fast are they moving at 

the top of the second hill, 22.0 m above the ground? Ignore 

friction and air resistance.

x

y

mg cos q

mg sin q

N

q

Figure 6.20

FBD for the skier on a constant 

slope.

Example 6.6 continued

Solution Because Wnc = 0, the mechanical energy does 

not change:

 K 
i
  +  U 

i
  =  K 

f
  +  U 

f
 

If we choose the y-axis up and y = 0 at the bottom of the hill, 

yi = 78 m and yf = 0. Then

 U 
i
  =  mgy 

i
     and      U 

f
  = 0

If the skier starts with zero kinetic energy, then Ki = 0 and  

K 
f
  =   1 _ 

2
  m v  

f
  2 . Setting the mechanical energies equal,

0 +  mgy 
i
  =   1 _ 

2
  m v  

f
  2  + 0

Solving for the final speed vf,

 v 
f
  =  √

____

 2 gy 
i
    =  √

__________________

  2 × 9.80 m/ s 2  × 78 m   = 39 m/s

Discussion Notice that the solution did not depend on the 

detailed shape of the path. If the slope were constant 

(Fig. 6.20), we could use Newton’s second law to find the 

skier’s acceleration and then the change in velocity:

∑ F x  = mg sin q  =  ma x  ⇒  a x  = g sin q

From Eq. (2-13),

Δx =   
 v  

fx
  2
   −  v  

ix
  2
  
 _______ 

2 a x 
   =   

 v  
fx

  2
  
 _______ 

2g sin q 
    =   h _____ 

sin q 
   ⇒  v 

fx
  =  √

____

 2gh   

where  h = 78 m.



energy that corresponds to Newton’s law of universal gravitation. Recall that the magni-

tude of the gravitational force that one body exerts on another is

     F =   
G m 

1
  m 

2
 
 ______ 

 r  2 
      (2-6)   

where  r  is the distance between the centers of the bodies. The corresponding expression 

for gravitational potential energy in terms of the distance between two bodies is       

Gravitational potential energy:

 U = −   
G m 

1
  m 

2
 
 ______ 

r
   (6-14)

(assign U = 0 when r = ∞)

 A graph showing the gravitational potential energy as a function of  r  is shown in 

 Fig. 6.21 . Note that we have assigned the potential energy to be zero at infinite separa-

tion ( U   =  0 when  r   =   ∞ ). Why this choice? Simply put, any other choice would mean 

adding a constant term to the expression for  U.  This constant term would  always sub-

tract out  of our equations, which involve only  changes  in potential energy.     

 This choice ( U   =  0 when  r   =   ∞ ) means that the gravitational potential energy is 

 negative  for any finite value of  r,  because potential energy decreases as the bodies get 

closer together and increases as they get farther apart.  

   Does Eq. (6-14) Contradict Eq. (6-9)?   Calculus is used to derive Eq. (6-14), but we 

can  verify  that it is consistent with Eq. (6-9) without using calculus. For a  very 

small  displacement from   r   
i
   to   r   

f
    =    r   

i
    +  Δ y  ( Fig. 6.22 ), the potential energy change given 

by Eq. (6-14) must reduce to the constant-force case:

    ΔU =  U 
f
  −  U 

i
  =  ( −   

G M 
E
 m
 ______ 

 r 
i
  + Δy

   )  −  ( −   
G M 

E
 m
 ______ ri

   )   
  Rearranging and factoring out the common factors  GM  E  m  and then rewriting with a 

common denominator,

     ΔU = G M 
E
 m  (   1 __ 

r
i

   −   1 ______ 
 r 

i
  + Δy

   )  = G M 
E
 m   

 r 
i
  + Δy −  r 

i
 
 _________ 

 r 
i
 ( r 

i
  + Δy)

      (6-15)    

 For values of Δ y  that are small compared with   r   
i
  ,   r   

i
    +  Δ y  ≈   r   

i
  . Making that approxi-

mation in the denominator of Eq. (6-15),

     ΔU = m (   G M 
E
 
 _____ 

 r  
i
  2 
   )  Δy (Δy <<  r 

i
 )    (6-16)   

The quantity in the parentheses in Eq. (6-16) is the gravitational field strength  g,  the 

gravitational force on the object divided by its mass  m.  Then, Δ U   =   mg   Δ y,  in agreement 

with Eq. (6-9).                

CHECKPOINT 6.5

As Mercury travels in its elliptical orbit about the Sun, how does its mechanical 

energy at its nearest point (perihelion) to the Sun compare with that at its far-

thest point (aphelion) from the Sun? How does its potential energy compare at 

the same two points?

r

U(r)

0

Figure 6.21 Gravitational 

potential energy as a function of 

r, the distance between the cen-

ters of the two bodies. The 

potential energy increases as the 

distance increases.

r

∆y

Figure 6.22 An object at a 

distance r from Earth’s center 

moves up a small distance Δy 

(greatly exaggerated in the 

figure).
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The only force acting on the projectile is gravity, so the 

mechanical energy is constant. To escape, the projectile must 

have enough initial kinetic energy so that it can reach an 

unlimited distance from Earth.

Solution The mechanical energy is constant:

 K 
i
  +  U 

i
  =  K 

f
  +  U 

f
 

Initially the projectile is at a distance RE from Earth’s center 

and is moving at initial speed vi. At some later time, the pro-

jectile has speed vf at distance rf from Earth. Then

  1 __ 
2
  m v  

i
  2  +  ( −   

G M 
E
 m
 ______ 

 R 
E
 
   )  =  K 

f
  +  U 

f
 

Example 6.8

Escape Speed

Ignoring air resistance, what is the minimum initial speed a 

projectile must have at Earth’s surface if the projectile is to 

escape Earth’s gravitational pull?

Strategy What does “escape Earth’s gravitational pull” 

mean? The gravitational force on the projectile due to Earth 

approaches zero at large distances, but never reaches zero. 

We are looking for the initial speed so that, even though 

Earth’s gravity keeps pulling the projectile back, the projec-

tile can keep moving away from Earth. The gravitational 

force is not constant, and the trajectory of the projectile may 

be complicated, so using ∑ F⃗ = ma ⃗ is impractical. We try an 

energy approach.

The kinetic energy of Mercury at perihelion is  K p  =   1 _ 
2
  m v  p  

2 , 

where m is the mass of Mercury; the kinetic energy at 

aphelion is  K a  =   1 _ 
2
  m v  a  

2 . The potential energies at perihelion 

and at aphelion are

 U p  = −   
G M 

S
 m
 ______ 

 r p 
   and  U a  = −   

G M 
S
 m
 ______  r a 

  

respectively, where MS = 1.99 × 1030 kg is the mass of the 

Sun. From conservation of energy:

  1 __ 
2
  m v  p  

2  +  ( −   
G M 

S
 m
 ______ 

 r p 
   )  =   1 __ 

2
   m  v  a  

2  +  ( −   
G M 

S
 m
 ______ 

 r a 
   ) 

The mass of Mercury cancels out. Solving for va,

  1 __ 
2
    v  a  

2  =   1 __ 
2
    v  p  

2  +  ( −   
G M 

S
 
 _____ 

 r p 
   )  −  ( −   

G M 
S
 
 _____ 

 r a 
   ) 

 v a  =  √
________________

   v  p  
2  + 2G M 

S
  (   1 __  r a 

   −   1 __  r p 
   )   

Substituting numerical values yields va = 39 km/s.

Discussion The speed at aphelion is less than the speed at 

perihelion, as expected.

Practice Problem 6.7 Speed at a Different 
Distance

What is Mercury’s orbital speed when its distance from the 

Sun is 5.80 × 107 km?

Example 6.7

Orbital Speed of Mercury

The orbit of the planet Mercury around the Sun is an ellipse. 

At its perihelion (4.60 × 107 km), its orbital speed is 59 km/s. 

What is its orbital speed at aphelion (6.98 × 107 km)?

Strategy Ignoring the small gravitational forces exerted 

by other planets, the only force acting on Mercury is the 

gravitational force due to the Sun. Gravity is a conservative 

force, so the mechanical energy is constant. Figure 6.23 is a 

sketch of the orbit. At aphelion, Mercury is farther from the 

Sun than at perihelion, so the potential energy is greater. 

Then the kinetic energy must be smaller, so the answer must 

be less than 59 km/s.

Given: vp = 5.9 × 104 m/s, rp = 4.60 × 1010 m,

ra = 6.98 × 1010 m.

To fi nd: va.

Solution Mechanical energy is constant:

 K p  +  U p  =  K a  +  U a 

Sun

Aphelion Perihelionra rp

Figure 6.23

Sketch of Mercury’s orbit.

continued on next page



6.6  WORK DONE BY VARIABLE FORCES: HOOKE’S LAW 

  So far we have considered only constant forces when calculating work. The advan-

tage of using energy methods really shines in problems dealing with variable forces, 

where it’s difficult to use Newton’s second law. How can we calculate the work done 

by a variable force? Consider an archer drawing back a compound bow ( Fig. 6.24 ). 

The compound bow is designed to make it easier to draw the string back and hold it 

back because, at a certain point, the force required to draw the string farther stops 

increasing. A convenient way to describe how the force varies with string position is 

to plot a graph.  Figure 6.25  shows the force that must be applied to hold the string 

back as a function of distance. How can we calculate the work done by the archer as 

he draws the string back 40 cm?         

 We’ve asked analogous questions in previous chapters. Recall how we find the dis-

placement Δ x  when the velocity  v   x   is not constant (Section 2.2). We divide the time 

interval into a series of  short  time intervals and sum up the displacements that occur 

during each one. 

 To approximate the work done by a variable force  F   x  , we divide the overall dis-

placement into a series of small displacements Δ x.  During each small displacement, the 

work done is

ΔW =  F x  Δx    (6-17) 

 On a graph of  F   x  ( x ), each Δ W  is the area of a rectangle of height  F   x   and width Δ x

( Fig. 6.26 ). The total work done is the sum of the areas of these rectangles. This approx-

imation gets better as we make the rectangles thinner and thinner, so  the total work done 

is the area under the graph of   F   x  ( x ) from  x  i  to   x   
f
  .       

 In  Fig. 6.25 , the “area” of each rectangle represents (0.050 m  ×  20.0 N)  =  1.0 J 

of work. There are approximately 36 rectangles under the graph between  x   =  0 and 

x   =  40 cm, so the work done by the archer is  + 36 J.  

W  =  the area under a graph of  F   x   ( x )      W  =  the area under a graph of  F   x   ( x )      

To escape, the projectile must be able to reach any value of  

r 
f
 , no matter how large. As  r 

f
  gets larger and larger, the 

potential energy approaches its maximum value, which is 

zero. (Mathematically, as  r 
f
  → ∞, Uf → 0.) The minimum

value of vi gives the projectile just enough energy. So we 

assume that the projectile can reach its maximum potential 

energy without any kinetic energy left over (Kf = 0):

  1 __ 
2
  m v  

i
  2  +  ( −   

G M 
E
 m
 ______ 

 R 
E
 
   )  = 0 + 0

Solving for vi,

  1 __ 
2
  m v  

i
  2  =   

G M 
E
 m
 ______ 

 R 
E
 
   ⇒  v 

i
  =  √

______

   
2G M 

E
 
 ______ 

 R 
E
 
     = 11.2 km/s

Discussion This speed is called the escape speed of Earth. 

Note that the escape speed is independent of the mass of the 

projectile because both the kinetic energy and the potential 

energy are proportional to the projectile’s mass.

The concept of escape speed helps explain why there 

is little hydrogen gas (H2) or helium gas (He) in Earth’s 

atmosphere. We will see in Chapter 13 that the molecules in 

a gas have an average kinetic energy determined by the tem-

perature of the gas. In a mixture of gases, the molecules with 

the smallest mass have the highest average speeds. The aver-

age speeds of hydrogen and helium in our atmosphere are 

large enough that they can escape the atmosphere. A negligi-

ble fraction of the nitrogen, oxygen, or water molecules have 

speeds greater than the escape speed, so they persist in the 

atmosphere.

Practice Problem 6.8 Protons Streaming Away 
from the Sun

Particles such as protons and electrons are continually 

streaming away from the Sun in all directions. They carry 

off some of the energy released in the thermonuclear reac-

tions occurring in the Sun. How fast must a proton be mov-

ing at a distance of 7.00 × 109 m from the center of the Sun 

for it to escape the Sun’s gravitational pull and leave the 

solar system?

Example 6.8 continued

CONNECTION

See Sections 2.2 and 2.3 to 

review how we found that the 

area under a graph of vx(t) is 

Δx and that the area under a 

graph of ax(t) is Δvx.

x

Figure 6.24 Application of 

work done by a variable force: 

drawing a compound bow.
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x

Fx

Figure 6.26 Each rectangle’s area approximates the 

work done during a small displacement. The total area of 

the rectangles approximates the total work done.

Figure 6.25 The force to draw back the compound bow 

depends on how far it is drawn. In this graph, the “area” 

represented by each rectangle is 0.050 m × 20.0 N = 1.0 J.

0 5 10 15 20 25 30 35 40 45 50

120

100

80

60

40

20

0
x (cm)

Fx (N)

Solution We want to find the work done by the archer to 

draw the string back 40.0 cm, so the base of the triangle is 

40.0 cm. The altitude of the triangle is the force at 40.0 cm: 

160 N. The area of a triangle is   1 _ 
2
  (base × altitude), so

W =   1 _ 
2
  (0.400 m × 160 N) = +32 J

Discussion To check, we can count the number of rectan-

gles (including the half rectangles) that lie under the graph. 

There are 32 rectangles and each represents 20 N × 0.05 m 

= 1 J of work, so the answer is correct.

By doing 32 J of work on the bowstring, the archer stores 

this much energy in the bow. When the arrow is released, the 

bowstring does 32 J of work on the arrow, giving the arrow a 

kinetic energy of 32 J.

Practice Problem 6.9 A Gentle Pull

How much work would you do to draw the string of the 

compound bow (Fig. 6.25) back 10.0 cm instead of 

40.0 cm?

Example 6.9

Archery Practice

To draw back a simple bow, the force the archer exerts on 

the string continues to increase as the displacement of the 

string increases and the bow bends slightly. The force-

versus-position graph of Fig. 6.27 describes such a bow. 

Calculate the work done by the archer on the string as he 

draws the string back 40.0 cm.

Strategy The work done by the archer is the area under 

the force-versus-position graph. This time, instead of count-

ing rectangles, we can calculate the triangular area formed 

by the force-versus-position graph.

Figure 6.27

A simple bow requires a force proportional to the displacement of 

the string.
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   Hooke’s Law and Ideal Springs 

 In Example 6.9, the displacement of the bowstring is proportional to the force 

exerted by the archer. Robert Hooke (1635–1703) observed that, for many objects, 

the deformation—change in size or shape—of the object is proportional to the magni-

tude of the force that causes the deformation. This observation, called    Hooke’s law,    is 

an approximation and is valid only within limits. For example, the compound bow of 

 Fig. 6.25  is described by Hooke’s law only for an applied force less than 80 N.             

 Many springs are described by Hooke’s law as long as they are not stretched or 

compressed too far. That is, the extension or compression—the increase or decrease in 

length from the relaxed length—is proportional to the force applied to the ends of the 

spring. When we refer to an    ideal spring,    we mean a spring that is described by Hooke’s 

law and is also massless.

           

Hooke’s law for an ideal spring:

F = k ΔL (6-18)

Hooke’s law: the deformation is 

proportional to the deforming force.

Hooke’s law: the deformation is 

proportional to the deforming force.



 In Eq. (6-18),  F  is the  magnitude  of the force exerted  on each end  of the spring and Δ  L

is the distance that the spring is stretched or compressed from its relaxed length. 

 The constant  k  is called the    spring constant    for a particular spring. The SI unit of 

force is the newton and the SI unit of length is the meter, so the SI units of a spring con-

stant are N/m. The spring constant is a measure of how hard it is to stretch or compress 

a spring. A stiffer spring has a larger spring constant because larger forces must be 

exerted on the ends of the spring to stretch or compress it. Example 1.10 describes an 

experiment to measure the spring constant of a real spring and shows a graph of length 

of the spring as a function of the forces applied to its ends (Fig. 1.5). 

 In many situations, we are more interested in the forces exerted  by  the spring than in 

the forces exerted  on  it. From Newton’s third law, the forces exerted  by  the spring on what-

ever is attached to its ends are equal in magnitude and opposite in direction to the forces 

exerted  by  those objects  on  the ends of the spring. Suppose that an ideal spring is aligned 

with the  x -axis. One end is fixed in place and the other end can move along the  x -axis ( Fig. 

6.28 ). Choose the origin so the moveable end is at  x   =  0 when the spring is relaxed. Then 

the force exerted by the moveable end of the spring on whatever is attached to it is     

Force exerted by an ideal spring (Hooke’s law):

  F x  = −kx (6-19)

(Fx is the force exerted by the moveable end when its position is x; the spring is 

relaxed at x = 0.)

 The negative sign in Eq. (6-19) indicates the direction of the force. The moveable end 

of the spring always pushes or pulls toward its relaxed position. If it is displaced in the  

+  x -direction, the force it exerts is in the − x -direction (back toward  x   =  0). If it is displaced 

in the − x -direction, the force it exerts is in the  +  x -direction (again, back toward  x   =  0).  

Figure 6.28 An ideal spring 

is stretched a distance x beyond 

its relaxed length.

Relaxed spring

Stretched spring

x

Since the relation between F and x is 

linear, the spring stretches an addi-

tional 0.20 cm for each additional 

newton of force. Therefore, the 1-N 

marks should be 0.20 cm apart.

Discussion A variation on the solu-

tion is to look back at the question and 

notice that we are asked how many 

centimeters the spring stretches for 

each newton of force, which is the 

reciprocal of the spring constant. The 

reciprocal of the spring constant is

  1 __ 
k
   = −   x __ 

F
   = −   −4.8 cm _______ 

24.0 N
   = 0.20 cm/N

The answer is reasonable: since it takes 5 N to make the 

spring stretch 1 cm, 1 N makes the spring stretch   1 _ 
5
   cm.

Practice Problem 6.10 Stretching a Spring

16.0 N of nuts are placed in the pan of the scale of Example 

6.10. How far does the spring stretch?

Example 6.10

Getting Down to Nuts and Bolts

In many hardware stores, bulk nuts and bolts are sold by 

weight. A spring scale in the store stretches 4.8 cm when 

24.0 N of bolts are weighed. On the scale, what is the dis-

tance in centimeters between calibration marks that are 

marked in increments of 1 N? Assume an ideal spring.

Strategy The bolts are in equilibrium, so the spring scale 

is pulling upward on them with a force of 24.0 N (see 

Fig. 6.29). Using Hooke’s law and the data given, we can 

find the spring constant k. Then we can use Hooke’s law 

again to find out how much the spring stretches when the 

applied force is increased by 1 N.

Solution Let the x-axis point up. When the pan of the scale 

is at x = −4.8 cm, it exerts a force Fx = +24.0 N on the bolts. 

From Hooke’s law, Fx = −kx and the spring constant is

k = −   
 F x  __ 
x
   =   −24.0 N _______ 

−4.8 cm
   = 5.0 N/cm

Now let Fx = 1.00 N and solve for x:

x = −   
 F x  __ 
k
   =  −   1.00 N ________ 

5.0 N/cm
   = −0.20 cm

Scale pulling up

Weight of bolts

Figure 6.29

FBD for the pan of the 

scale.
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  Work Done by an Ideal Spring 

 To find the work done by an ideal spring, first we draw the  F   x  ( x ) graph ( Fig. 6.30 ). The 

unstretched position of the moveable end is  x   =  0. The work done by the spring as its 

moveable end moves from equilibrium ( x  i   =  0) to the final position   x   
f
   is the area of the 

shaded right triangle whose base is  x  and altitude is − kx: 

     W =   1 _ 
2
  (base × altitude) = −   1 _ 

2
  k x 2     (6-20)   

The area is negative because the graph is underneath the  x -axis. Think of     −   1 _ 
2
  k x 2    as the 

average force     (−   1 _ 
2
  kx)   times the displacement ( x ).       

 More generally, if the moveable end starts at position  x   i , not necessarily at the 

equilibrium point, the work done by the spring is

      W 
spring

  = (−   1 _ 
2
  k x  

f
  2 ) − (−   1 _ 

2
  k x  

i
  2 ) = −   1 _ 

2
  k x  

f
  2  +   1 _ 

2
  k x  

i
  2     (6-21)   

Imagine the spring starting at equilibrium and ultimately ending up at a displacement  x  f  

after passing through  x 
i
     . The total work done by the spring is     −   1 _ 

2
  k x  

f
  2 ;   then we subtract 

the work that was done to get the spring to position   x   i   from equilibrium     (−   1 _ 
2
  k x  

i
  2 )   to get 

the work done from   x   
i
   to   x   

f
  .    

   6.7  ELASTIC POTENTIAL ENERGY 

  The work done by an ideal spring [Eq. (6-21)] depends on the initial and final positions 

of the moveable end, but  not  on the path that was taken. Therefore, the force exerted by 

an ideal spring is  conservative  and we can associate a potential energy with it. The kind 

of potential energy stored in a spring is called    elastic potential energy.    

 Just as for gravity [see Eqs. (6-8) and (6-11)], the change in elastic potential energy 

is the  negative  of the work done by the spring:

     Δ U 
elastic

  = − W 
spring

     (6-22)        

 For example, if you increase the elastic energy stored in a spring by compressing it, the 

spring does  negative  work because the force its end exerts on your hand is in the direc-

tion opposite to its displacement. This stored elastic energy can be recovered as kinetic 

energy by, say, using the spring to shoot a stone. As the spring expands back to its origi-

nal length, it does positive work on the stone to increase the stone’s kinetic energy and 

the stored elastic energy decreases. 

 From Eqs. (6-21) and (6-22),

     Δ U 
elastic

  =   1 _ 
2
  k x  

f
  2  −   1 _ 

2
  k x  

i
  2     (6-23)   

Remember that only changes in potential energy enter our calculations, so we can assign 

 U   =  0 to any convenient position. The most convenient choice is to assign  U   =  0 when 

the spring is relaxed ( x   =  0):          

Elastic potential energy stored in an ideal spring:

  U 
elastic

  =   1 _ 
2
  k x 2  (6-24)

U = 0 when x = 0 (relaxed spring)

  Conservation of Energy with More than One Form of Potential Energy   When 

applying conservation of energy using  W  nc   =  Δ K   +  Δ U  [Eq. (6-12)], Δ U  must include 

the change in all forms of potential energy. For now, with two forms of potential 

energy,  

     ΔU = Δ U grav  + Δ U 
elastic

     (6-25)   

Fx

x

xf

–kxf

Figure 6.30 The work done 

by the spring is the (negative) 

area under the Fx(x) graph.

CONNECTION: 

The change in potential 

energy is always equal to the 

negative of the work done by 

the associated force. See 

Eq. (6-11).



W  nc  is the work done by all forces  other than  those included in the potential energy. 

When  W  nc   =  0, the mechanical energy  K   +   U  is constant.       

CHECKPOINT 6.7

If a spring is compressed horizontally on a table and then released so it expands 

to its original relaxed position, where does the spring have the greatest elastic 

potential energy?

After setting xf = 0 and vi = 0,

0 +   1 _ 
2
  k x  

i
  2  =   1 _ 

2
  m v  

f
  2  + 0

Solving for vf,

 v 
f
  =  √

___

   k __ m      x 
i
  =  √

__________

   400.0 N/m _________ 
0.0200 kg

     × 0.080 m = 11 m/s

Discussion Checking the units,

 √
_____

   N/m ____ 
kg

     × m =  √
___________

   
(kg⋅m/ s 2 )/m

 __________ 
kg

     × m =   m __ s  

Notice that the muzzle speed is proportional to the dis-

tance the spring is compressed when the gun is cocked. If 

the spring is compressed halfway, it stores only one quarter 

as much elastic energy. The dart then acquires one quarter 

the kinetic energy, which means its speed is half as much. A 

more massive dart fired from the same gun would have a 

smaller muzzle speed, but the same kinetic energy.

Practice Problem 6.11 A Misfire

The same dart gun is cocked by compressing the spring the 

same distance (8.0 cm). This time the spring gets caught 

inside the gun, stopping at the point where it is still com-

pressed by 4.0 cm. The dart is not caught inside the gun, but 

is released. Find the muzzle speed of the dart. [Hint: What is  

x 
f
  in this case?]

Example 6.11

The Dart Gun

In a dart gun (Fig. 6.31), a spring with k = 400.0 N/m is 

compressed 8.0 cm when the dart (mass m = 20.0 g) is 

loaded (Fig. 6.31a). What is the muzzle speed of the dart 

when the spring is released (Fig. 6.31b)? Ignore friction.

Strategy The elastic energy initially stored in the spring is 

converted into the kinetic energy of the dart as the spring 

expands. There is no change in gravitational potential energy 

since the motion of the dart is horizontal. The vertical normal 

forces do no work because they are perpendicular to the dis-

placement of the dart. The spring pushes the dart to the right 

until it reaches its relaxed length. Assuming the spring can’t 

pull the dart to the left (as it would if they stick together), the 

dart loses contact with the spring when the spring is at its 

relaxed length. We choose the origin at the relaxed position of 

the spring; therefore,  x 
f
  = 0. Using the x-axis in Fig. 6.31, 

xi = −8.0 cm. The dart starts from rest, so vi = 0. To find:  v 
f
  .

Solution Since we ignore friction, no work is done by 

nonconservative forces. Therefore, the mechanical energy is 

constant:

 K 
i
  +  U 

i
  =  K 

f
  +  U 

f
 

We can ignore the gravitational potential energy because it 

does not change. Using Eq. (6-24) for the elastic potential 

energy in the spring,

  1 _ 
2
  m v  

i
  2  +   1 _ 

2
  k x  

i
  2  =   1 _ 

2
  m v  

f
  2  +   1 _ 

2
  k x  

f
  2 

Figure 6.31

Dart gun (a) before and (b) after firing. The 

spring was compressed by 8.0 cm when the 

gun was cocked.

x

vf

(a) (b)

x
xf = 0 cmxi = –8.0 cm

vi = 0

Before (compressed spring) After (relaxed spring)
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 When a human jumps, the muscles supply the energy to propel the body upward. 

Try jumping as high as you can from a standing start. You no doubt start by crouching 

down. Then you accelerate upward, straightening your legs and your body; your mus-

cles convert chemical energy into the mechanical energy of your jump. If you are very 

athletic, you might be able to jump about 1 m above the floor.     

 The kangaroo uses a different mechanism. It has long, elastic tendons and small 

muscles in its hind legs, in contrast to the relatively large muscles and short, stiffer ten-

dons found in humans. The kangaroo folds its legs before a jump, using its muscles to 

stretch the tendons and converting chemical energy into elastic potential energy. The 

kangaroo then quickly extends its legs, relaxing the tendons like a released spring. The 

elastic energy stored in the tendons supplies much of the energy needed for the jump; 

the rest is supplied by the kangaroo’s leg muscles, which convert some more chemical 

energy into mechanical energy.       

 When the kangaroo lands on the ground, the tendons are stretched again as its legs 

bend. Thus, rather than dissipating all of the energy from the previous jump, a large 

fraction of it is recaptured as elastic energy in the tendons and then released to assist the 

next jump. This process reduces the amount of energy the muscles must supply for sub-

sequent jumps and makes the kangaroo one of the most energy-efficient travelers among 

animals. The human body also stores some elastic energy in stretched tendons and in 

flexed foot bones when we run or jump, but not to the extent that its specialized anat-

omy enables the kangaroo to do. 

 Some insects jump using a catapult technique. The knee joint of a flea contains an 

elastic material called resilin (a rubber-like protein). The flea slowly bends its knee, 

stretching out the resilin and storing elastic energy, and then locks its knee in place 

( Fig. 6.32a) . When the flea is ready to jump, the knee is unlocked and the resilin quickly 

contracts with a sudden conversion of the stored elastic energy into kinetic energy 

( Fig. 6.32b) . Some of this kinetic energy is then converted into gravitational potential 

energy as the flea moves higher and higher ( Fig. 6.32c) . Ignoring air resistance and 

other dissipative forces, the total mechanical energy (kinetic energy  +  gravitational 

potential energy  +  elastic potential energy) does not change during the jump.       

Application of Energy 

Conversion: Jumping

Application of Energy 

Conversion: Jumping

E
n
er

g
y

Kinetic energy

Gravitational
potential energy

Elastic potential 
energy

(a)(a) (b) (c) (b) (c)

Figure 6.32 Energy transformations in the jump of a flea.

beyond their unstretched length)? In a simplified model, we 

assume that all the energy for a kangaroo’s hop comes from 

the elastic energy stored in the tendons, which behave as ideal 

springs. Ignore air resistance and other energy dissipation.

Example 6.12

The Hopping Kangaroo

Suppose the height h of a kangaroo’s hop (Fig. 6.33) after it 

stretches its tendons a distance x1 (beyond their unstretched 

length) is 2.0 m. How high would the hop be after it stretched 

the tendons 10% more than before (that is, a distance 1.10x1 

continued on next page

How does the kangaroo 

keep jumping?



Strategy Ignoring dissipation, the mechanical energy 

does not change. We have to include both gravitational and 

elastic potential energies in the mechanical energy. At first 

we consider a kangaroo jumping straight up. Then we try to 

generalize to more typical hopping with forward motion as 

well as upward motion.

Solution The mechanical energy does not change:

 K 
i
  +  U 

i,grav
  +  U 

i,elastic
  =  K 

f
  +  U 

f,grav
  +  U 

f,elastic
 

Initially, when the kangaroo is crouched before the jump, it 

has zero kinetic energy. For convenience, we choose the ini-

tial gravitational potential energy to be zero. Thinking of the 

elastic potential energy as being stored in a single ideal spring 

with spring constant k, the initial mechanical energy is

 K 
i
  +  U 

i,grav
  +  U 

i,elastic
  = 0 + 0 +   1 _ 

2
  k x  

i
  2 

where xi represents the initial stretch of the tendons. With 

the kangaroo at the high point of the jump, the kinetic energy 

is again zero if it jumped straight up. The tendons are no 

long er stretched, so the elastic potential energy is zero. But 

now there is gravitational potential energy. At a height h 

above the initial point, the final mechanical energy is

 K 
f
  +  U 

f,grav
  +  U 

f,elastic
  = 0 + mgh + 0

where m is the kangaroo’s mass. Setting the mechanical 

energies equal,

  1 __ 
2
  k x  

i
  2  = mgh ⇒ h =   

k x  
i
  2 
 ____ 

2mg
  

We don’t know all of the constants (mass, spring constant, 

initial amount of stretch), so we set up a ratio:

  
 h 

2
 
 __ 

 h 
1
 
   =   

k x  
2
  2 /(2mg)

 _________ 
k x  

1
  2 /(2mg)

   =   
 x  

2
  2 
 __ 

 x  
1
  2 
  

For a 10% increase in stretch, x2 = 1.10x1 and

 h 
2
  =   (   

 x 
2
 
 __  x 

1
    )  

2

   h 
1
  = (1.10 ) 2  h 

1
  = 1.21 × 2.0 m = 2.4 m

Using a 10% increase in the stretch of the tendon, the kanga-

roo jumps about 21% higher.

When the kangaroo is hopping along, it does not jump 

straight up. Will the kangaroo’s jump still be 21% higher 

when jumping at another angle? Imagine the kangaroo hop-

ping along so that it leaves the ground at a 45° angle, which 

gives the maximum horizontal range per hop in the absence 

of air resistance. The elastic energy in the tendon is first con-

verted to kinetic energy. This time, not all of the kinetic 

energy is converted to gravitational potential energy. The 

kinetic energy at the highest point of the jump is not zero 

because the kangaroo is still moving forward. The initial 

velocity can be resolved into components:

 v 2  =  v  x  
2  +  v  y  

2  = 2 v  x  
2     (since  v x  =  v y  for a 45° angle)

At the highest point of the jump, the kinetic energy is   1 _ 
2
  m v  x  

2 , 

which is half of the initial kinetic energy. Overall, half of the 

elastic energy of the tendon is converted to gravitational 

potential energy:

  1 _ 
2
   ×  (   1 _ 

2
  k x  

i
  2  )  = mgh

Since h is still proportional to  x  
i
  2 , the height of the jump still 

increases by 21% if the stretch of the tendon is increased by 

10%.

Discussion The storage of elastic energy in the tendon is a 

clever way for the kangaroo to get more “miles per gallon.” 

Without such an energy storage system, most of the kanga-

roo’s mechanical energy would be converted to an unrecov-

erable form of energy at the end of each hop. The tendons 

store some of the energy that would otherwise be lost and 

then release it to help the next jump. Since less mechanical 

energy is “lost” on each landing, the energy supplied by the 

kangaroo’s muscles is less than it would otherwise be. 

Humans use a similar energy-saving mechanism when run-

ning (see Problem 103).

Practice Problem 6.12 Jumping with Joey

Suppose the kangaroo has a baby kangaroo (a joey) riding 

in her pouch. If the joey has grown to be one sixth the mass 

of its mother, how high can the kangaroo jump with the 

additional load? Assume that, without the joey, she can jump 

2.8 m.Figure 6.33

(a) Kangaroo crouched and ready to hop. (b) Kangaroo at the 

highest point in its hop.

(a) (b)

h

Example 6.12 continued
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6.8  POWER 

  Sometimes the  rate  of energy conversion is important. When shopping for a sports car, 

you wouldn’t ask the salesman how much work the engine can do. A tiny economy car 

like the Toyota Prius does more work than a Ferrari if the Prius is used for daily com-

muting while the Ferrari sits in the garage most of the time. But the Ferrari can do work 

at a much faster rate  than the Prius can. In other words, it can change chemical energy 

in the gasoline into mechanical energy of the car at a much faster rate—it has a larger 

maximum power output. The higher power output enables the Ferrari to accelerate to 

high speeds much faster than the Prius. We give the name    power    (symbol  P ) to the rate 

of energy transfer. The average power is the amount of energy converted (Δ E ) divided 

by the time the transfer takes (Δ t ):                       

Average power:

  P av  =   ΔE ___ 
Δt

   (6-26)

   The SI unit of power, the joule per second, is given the name watt (1 W  =  1 J/s), 

after James Watt (1736–1819), a Scottish inventor who greatly improved the efficiency 

of steam engines.   Remember that the unit symbol W stands for  watt,  not  work.  

 In the United States, the maximum power output of an electric motor or auto-

mobile engine is usually specified in horsepower, which is a non-SI unit of power 

(1 hp  =  746 W).   

 The  kilowatt-hour  (kW·h) is a unit of energy,  not  a unit of power. One kilowatt-hour 

is the amount of energy transferred at a constant rate of 1 kW during a time interval of 1 h.  

 The kilowatt-hour is commonly used by utility companies to measure the amount of 

electric energy used by consumers. 

 The work done by a force during a small time interval Δ t  is

     W  = F Δr cos q    (6-1) 

The magnitude of the displacement is

    Δr = v Δt   

 Hence, the power—the rate at which the force does work—can be found from the force 

and the velocity.

    P =   W __ 
Δt

   =   FΔr cos q  _________ 
Δt

   = F   Δr ___ 
Δt

   cos q   = Fv cos q  

Instantaneous power (rate at which work is done):

P = Fv cos q (6-27)

(q  is the angle between  F⃗ and v ⃗)

Power: the  rate  of energy 

conversion

Power: the  rate  of energy 

conversion

Strategy (a) We can find the rate of gravitational potential 

energy increase in two ways. One is to find the potential energy 

change during a time interval Δt and divide it by the time inter-

val, which is equivalent to using the definition of average 

power [Eq. (6-26)]. The other possibility is to use Eq. (6-27) 

to find the rate at which the gravitational force does work.

Example 6.13

Air Resistance on a Hill-Climbing Car

A 1000.0-kg car climbs a hill with a 4.0° incline at a con-

stant 12.0 m/s (Fig. 6.34). (a) At what rate is the gravita-

tional potential energy increasing? (b) If the mechanical 

power output of the engine is 20.0 kW, find the force of air 

resistance on the car. (Assume that air resistance is responsi-

ble for all of the energy dissipation.)

continued on next page



4.0°

∆y
12.0 m/s

y

x

Figure 6.34

Car climbing a hill at constant speed.

(b) The car moves at constant speed, so its kinetic energy is 

not changing. Therefore, during any time interval, the work 

done by the engine (We) plus the (negative) work done by air 

resistance (Wa) is equal to the increase in the gravitational 

potential energy.

Given: car mass = 1000.0 kg; v = 12.0 m/s; 4.0° incline.

To fi nd: (a) rate of potential energy change, ΔU/∆t;

(b) force due to air resistance,    ⃗ F a . 

Solution (a) For a small change in elevation Δy, the change 

in potential energy is

ΔU = mg Δy

The rate of potential energy change is

  ΔU
 ___ 

Δt
   =   

mg Δy
 ______ 

Δt
   = mg   

Δy
 ___ 

Δt
   = mg v  y 

where vy = Δy/Δt is the y-component of the velocity. From 

Fig. 6.35, vy = v sin f, where f  = 4.0°. Then,

ΔU
 ___ 

Δt
   = mgv sin f  = 1000.0 kg × 9.80 m/ s 

2
  × 12.0 m/s × sin 4.0°

        = 8200 W

(b) During any time interval Δt, the (positive) work done by 

the engine plus the (negative) work done by air resistance 

must equal the increase in the gravitational potential 

energy:

 W  total  = We + Wa = ΔU

Dividing each term by Δt, we find

  
 W  e  ___ 
Δt

   +   
 W  a  ___ 
Δt

   =   ΔU
 ___ 

Δt
   ⇒ Pe + Pa =   ΔU

 ___ 
Δt

  

where Pe and Pa represent the power output of the engine 

and the rate at which air resistance does (negative) work on 

the car, respectively. Then,

Pa =   ΔU
 ___ 

Δt
   − Pe = 8.2 kW − 20.0 kW = −11.8 kW

So, of the 20.0 kJ of mechanical work that the engine does 

each second, 8.2 kJ goes into gravitational potential energy 

and 11.8 kJ goes into pushing air out of 

the way and stirring it up in the process.

The direction of the force of air resis-

tance    ⃗ F a  on the car is opposite to the car’s 

velocity, so

Pa = Fav cos 180° = −Fav

Solving for Fa,

Fa = −   
Pa __ 
v
   = −   

−11 800 W
 __________ 

12.0 m/s
   = 983 N

Discussion We can check (a) by using 

Eq. (6-27) to find the rate at which 

the gravitational force does work: 

P = Fv cos q, where F = mg. The angle q  is not the same as 

f. In Eq. (6-27), q  is the angle between the force and veloc-

ity vectors, which is 94.0° (Fig. 6.36). Then,

P = mgv cos 94.0°

= 1000.0 kg × 9.80 m/ s 
2
  × 12.0 m/s × cos 94.0°

= −8200 W

Gravity does work on the car at a rate of −8200 W, which 

means the potential energy is increasing at a rate of +8200 W.

We can also figure out what mechanical power the engine 

must supply to go 12.0 m/s on level ground. With no change 

in potential energy, all of the mechanical power output of the 

engine goes into stirring up the air, so Pe + Pa = 0. The mag-

nitude of the force of air resistance is the same (983 N) since 

the speed is the same. Then air resistance dissipates energy 

at the same rate as before:

Pa = −Fav  = −983 N × 12.0 m/s = −11.8 kW

Therefore, Pe = 11.8 kW. On level ground, the gravitational 

potential energy isn’t increasing, so the engine only needs to 

do enough work to counteract the tendency of air resistance 

to slow down the car.

In this example, we have assumed that all of the mechan-

ical power output of the engine is delivered to the wheels 

to propel the car forward. In reality, some of the engine’s 

power output is used to run auxiliary devices such as head-

lights, radios, and windshield wipers. Friction (in the mov-

ing parts of the engine, transmission, and drivetrain) also 

reduces the amount of power that is actually delivered to 

the wheels.

Practice Problem 6.13 Mechanical Power Output 
on Flat Ground or Going Downhill 

What mechanical power must the engine supply (a) to drive 

on level ground at 12.0 m/s and (b) to go down a 4.0° incline 

at 12.0 m/s? (Since this is the same speed as in Example 

6.13, the force of air resistance is the same.)
f = 4.0°

vy

vx

v Figure 6.35

Resolving the velocity into x- and 

y-components.

f = 4.0°

mg

v

q

Figure 6.36

The angle between 

the force and the 

velocity is 

q  = 94.0°. (The 

angle is exagger-

ated for clarity.)

Example 6.13 continued
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    • Conservation law: a physical law phrased in terms of a 

quantity that does not change with time.  

   • The law of conservation of energy: the total energy of 

the universe is unchanged by any physical process.

         • Work is an energy transfer due to the application of a 

force. The work done by a constant force      F⃗   acting on an 

object during a displacement     Δr ⃗   is

      W = F Δr cos q    (6-1) 

F cos q

q

r∆

F

x

  where  q  is the angle between      F⃗   and     Δr ⃗.   If      F⃗   or     Δr ⃗   is 

parallel to the  x -axis,

      W = Fx Δx    (6-2) 

   • When several forces act on an object, the total work is 

the sum of the work done by each force individually.  

   • Translational kinetic energy is the energy associated 

with motion of the object as a whole. The translational 

kinetic energy of an object of mass  m  moving with 

speed  v  is

      K =   1 _ 
2
  m v 

2
     (6-6) 

         • The gravitational potential energy for an object of mass 

m  in a  uniform  gravitational field is

       U  grav  = mgy    (6-13) 

  where the  +  y -axis points up and we assign  U   =  0 to 

y   =  0.  

   • The gravitational potential energy for two bodies of 

masses  m  1  and  m  2  whose centers are separated by a dis-

tance  r  is

      U = −   
G m 

1
  m 

2
 
 ______ 

r
      (6-14) 

  where we assign  U   =  0 to infinite separation ( r   =   ∞ ).  

r

U(r)

0

   • There is no special significance to the sign of the poten-

tial energy. What matters is the sign of the potential 

energy  change.  Only  changes  in potential energy enter 

our calculations.

         • The work done by a variable force directed along the 

x -axis during a displacement Δ x  is the area under the 

F   x  ( x ) graph from  x  i  to  x  f .  
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   • Hooke’s law: for many objects, the deformation is pro-

portional to the magnitude of the force that causes the 

deformation. An ideal spring is massless and follows 

Hooke’s law. The force exerted  by  the moveable end of 

an ideal spring when it is at position  x  is

      Fx = −kx    (6-19) 

  where the origin is chosen so the spring is relaxed at 

x   =  0 and  k  is called the spring constant.  

   • If we assign  U   =  0 to the relaxed spring ( x   =  0), the elas-

tic potential energy stored in an ideal spring of spring 

constant  k  is

       U  elastic  =   1 _ 
2
  k x 

2
     (6-24) 

   • Mechanical energy is the sum of the kinetic and 

potential energies. The change in potential energy 

accounts for the work done by the forces associated 

with the potential energy. The work done by nonconser-

vative forces is equal to the change in the mechanical 

energy:

      Wnc = ΔK + ΔU = ΔEmech    (6-12) 

  When nonconservative forces do no net work, the 

mechanical energy does not change.

      If Wnc = 0, ΔK + ΔU = 0    

   • Average power is the average rate of energy 

conversion.

      Pav =   ΔE ___ 
Δt

      (6-26) 

  The instantaneous rate at which a force      F⃗   does work 

when the object it acts on moves with velocity     v ⃗   is

      P = Fv cos q    (6-27) 

  where  q   is the angle between      F⃗   and     v ⃗.    

   • The SI unit of work and energy is the joule. 1 J  =  1 N·m. 

The SI unit of power is the watt. 1 W  =  1 J/s.    

Master the Concepts



  Conceptual Questions 

    1. An object moves in a circle. Is the total work done on 

the object by external forces necessarily zero? Explain.  

   2. You are walking to class with a backpack full of 

books. As you walk at constant speed on flat ground, 

does the force exerted on the backpack by your back 

and shoulders do any work? If so, is it positive or nega-

tive? Answer the same questions in two other situations: 

(1) you are walking down some steps at constant speed; 

(2) you start to run faster and faster on a level sidewalk 

to catch a bus.  

   3. Why do roads leading to the top of a mountain wind 

back and forth? [ Hint:  Think of the road as an inclined 

plane.]  

   4. A mango falls to the ground. During the fall, does the 

Earth’s gravitational field do positive or negative work 

 W  m  on the mango? Does the mango’s gravitational field 

do positive or negative work  W  E  on the Earth? Compare 

the signs and the magnitudes of  W  m  and  W  E .  

   5. Can static friction do work? If so, give an example. 

[ Hint:  Static friction acts to prevent  relative  motion 

along the contact surface.]  

   6. In the design of a roller coaster, is it possible for any hill 

of the ride to be higher than the first one? If so, how?  

   7. When a ball is dropped to the floor from a height  h,  it 

strikes the ground and briefly undergoes a change of 

shape before rebounding to a maximum height less 

than  h.  Explain why it does not return to the same 

height  h.   

   8. A gymnast is swinging in a vertical circle about a cross-

bar. In terms of energy conservation, explain why the 

speed of the gymnast’s body is slowest at the top of the 

circle and fastest at the bottom.  

   9. A bicycle rider notices that he is approaching a steep 

hill. Explain, in terms of energy, why the bicyclist ped-

als hard to gain as much speed as possible on level road 

before reaching the hill.  

   10. You need to move a heavy crate by sliding it across a 

smooth floor. The coefficient of sliding friction is 0.2. 

You can either push the crate horizontally or pull the 

crate using an attached rope. When you pull on the rope, 

it makes a 30 °  angle with the floor. Which way should 

you choose to move the crate so that you do the least 

amount of work? How can you answer this question 

without knowing the weight of the crate or the displace-

ment of the crate?  

   11. The main effort of running is the work done by the mus-

cles to accelerate and decelerate the legs. When a foot 

strikes the ground, it is momentarily brought to rest while 

the remainder of the animal’s body continues to move for-

ward. When the foot is picked up, it is accelerated forward 

by one set of muscles in order to move ahead of the rest of 

the body. Then the foot is slowed down by a second set 

of muscles until it is brought to rest on the ground again. 

The muscles expend energy both when accelerating and 

when decelerating the leg. How are thoroughbred 

horses, deer, and greyhounds adapted so that they can 

run at great speed?      

   12. Explain why an ideal spring  must  exert forces of equal 

magnitude on the objects attached to each end, even if 

the spring itself has a nonzero acceleration. [ Hint:  Use 

one of Newton’s laws of motion and remember that an 

ideal spring has zero mass.] Is the amount of work 

done by the spring on the two objects necessarily the 

same? Explain. If the answer is no, give an example to 

illustrate.  

   13. Zorba and Boris are at a water park. There are two 

water slides with straight slopes that start at the same 

height and end at the same height. Slide A has a more 

gradual slope than slide B. Boris says he likes slide B 

better because you reach a faster speed and he notes 

that he got to the bottom level in less time on slide B 

as measured with his stop watch. His brother Zorba 

says you reach the same speed with either slide. Who 

is correct and why? Both slides have negligible 

friction.    

  Multiple-Choice Questions 

    1. After getting on the Santa Monica Freeway, a sports 

car accelerates from 30 mi/h to 90 mi/h. Its kinetic 

energy

    (a) increases by a factor of      √
__

 3  .    

   (b) increases by a factor of 3.  

   (c) increases by a factor of 9.  

   (d) increases by a factor that depends on the car’s mass.     

   2. If a kangaroo on Earth can jump from a standing start so 

that its feet reach a height  h  above the surface, approxi-

mately how high can the same kangaroo jump from a 

standing start on the Moon’s surface?      g 
Moon

  ≈   1 _ 
6
   g 

Earth
 .   

(Assume the kangaroo has an oxygen tank and pressure 

suit with negligible mass.)

    (a)  h      (b) 6 h      (c)       1 _ 
6
  h    

   (d) 36 h      (e)       1 __ 
36

  h       (f)      √
__

 6  h     
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Questions 3–5.  The orbit of Pluto is much more eccentric 

than the orbits of the planets. That is, instead of being 

nearly circular, the orbit is noticeably elliptical. The point 

in the orbit nearest the Sun is called the  perihelion  and 

the point farthest from the Sun is called the  aphelion.      

 Answer choices for Questions 3–5:

    (a) its maximum value     (b) its minimum value  

   (c) the same value as at every other point in the orbit     

Sun

PerihelionAphelion

Multiple-Choice Questions 3–5

   3. At perihelion, the gravitational potential energy of 

Pluto’s orbit has  

   4. At perihelion, the kinetic energy of Pluto has  

   5. At perihelion, the mechanical energy of Pluto’s orbit has  

   6. As Pluto moves from the perihelion to the aphelion, the 

work done by gravity on Pluto is

    (a) zero.     (b) positive.     (c) negative.     

   7. Two balls are thrown from the roof of a building with 

the same initial speed. One is thrown horizontally while 

the other is thrown at an angle of 20 °  above the horizon-

tal. Which hits the ground with the greatest speed? 

Ignore air resistance.

    (a) The one thrown horizontally  

   (b) The one thrown at 20 °   

   (c) They hit the ground with the same speed.  

   (d)  The answer cannot be determined with the given 

information.     

   8. A hiker descends from the South Rim of the Grand 

Canyon to the Colorado River. During this hike, the 

work done by gravity on the hiker is

    (a) positive and depends on the path taken.  

   (b) negative and depends on the path taken.  

   (c) positive and independent of the path taken.  

   (d) negative and independent of the path taken.  

   (e) zero.   

 Questions 9 and 10.  A simple catapult, consisting of a 

leather pouch attached to rubber bands tied to two forks of a 

wooden Y, has a spring constant  k  and is used to shoot a peb-

ble horizontally. When the catapult is stretched by a distance 

 d,  it gives a pebble of mass  m  a launch speed  v.   Answer 

choices for Questions 9 and 10: 

    (a)      √
__

 3  v       (b) 3 v      (c)     3 √
__

 3  v       (d) 9 v      (e) 27 v      

   9. What speed does the catapult give a pebble of mass  m  

when stretched to a distance 3 d?   

   10. What speed does the catapult give a pebble of mass  m /3 

when stretched to a distance  d?   

   11. A projectile is launched at an angle  q   above the hori-

zontal. Ignoring air resistance, what fraction of its initial 

kinetic energy does the projectile have at the top of its 

trajectory?

    (a) cos  q            (b) sin  q            (c) tan  q           (d)       1 _____ 
tan q 

         (e)       1 __ 
2
      

   (f) cos 2   q            (g) sin 2   q           (h) 0                (i) 1       

  Problems 

       Combination conceptual/quantitative problem  

      Biological or medical application  

     ✦ Challenging problem  

     Blue # Detailed solution in the Student Solutions Manual  

     1  2  Problems paired by concept  

      Text website interactive or tutorial   

  Section 6.2 Work Done by a Constant Force 

     1.  How much work must Denise do to drag her basket of 

laundry of mass 5.0 kg a distance of 5.0 m along a floor, 

if the force she exerts is a constant 30.0 N at an angle of 

60.0 °  with the horizontal?  

    2.  A sled is dragged along a horizontal path at a constant 

speed of 1.5 m/s by a rope that is inclined at an angle of 

30.0 °  with respect to the horizontal. The total weight of 

the sled is 470 N. The tension in the rope is 240 N. How 

much work is done by the rope on the sled in a time 

interval of 10.0 s?      

30.0°

1.5 m/s

    3.  Hilda holds a gardening book of weight 10 N at a height 

of 1.0 m above her patio for 50 s. How much work does 

she do  on the book  during that 50 s?  

    4.  The tension in the horizontal towrope pulling a water-

skier is 240 N while the skier moves due west a distance 

of 54 m. How much work does the towrope do on the 

water-skier?  

    5.  A barge of mass 5.0  ×  10 4  kg is pulled along the Erie 

Canal by two mules, walking along towpaths parallel to 

the canal on either side of it. The 

ropes harnessed to the mules make 

angles of 45 °  to the canal. Each 

mule is pulling on its rope with a 

force of 1.0 kN. How much work 

is done on the barge by both of 

these mules together as they pull 

the barge 150 m along the canal?  

    6.  A 402-kg pile driver is raised 12 

m above ground. (a) How much 

work must be done to raise the 

pile driver? (b) How much work 



does gravity do on the driver as it is raised? (c) The driver 

is now dropped. How much work does gravity do on the 

driver as it falls?      

    7.  Jennifer lifts a 2.5-kg carton of cat litter from the floor to 

a height of 0.75 m. (a) How much  total  work is done on 

the carton during this operation? Jennifer then pours 

1.2 kg of the litter into the cat’s litter box on the floor. 

(b) How much work is done by gravity on the 1.2 kg of 

litter as it falls into the litter box?  

 8. Dirk pushes on a packing box with a horizontal force of 

66.0 N as he slides it along the floor. The average friction 

force acting on the box is 4.80 N. How much  total  work 

is done on the box in moving it 2.50 m along the floor?  

 9.  Juana slides a crate along the floor of the moving van. 

The coefficient of kinetic friction between the crate and 

the van floor is 0.120. The crate has a mass of 56.8 kg 

and Juana pushes with a horizontal force of 124 N. If 

74.4 J of total work are done on the crate, how far along 

the van floor does it move?    

  Section 6.3 Kinetic Energy 

10.  An automobile with a mass of 1600 kg has a speed of 

30.0 m/s. What is its kinetic energy?  

11.  A record company executive is on his way to a TV inter-

view and is carrying a promotional CD in his briefcase. 

The mass of the briefcase and its contents is 5.00 kg. 

The executive realizes that he is going to be late. Start-

ing from rest, he starts to run, reaching a speed of 

2.50 m/s. What is the work done by the executive on the 

briefcase during this time? Ignore air resistance.  

   12. In 1899, Charles M. “Mile a Minute” Murphy set a 

record for speed on a bicycle by pedaling for a mile at 

an average of 62.3 mph (27.8 m/s) on a 3-mi track of 

plywood planks set over railroad ties in the draft of a 

Long Island Railroad train. In 1985, a record was set for 

this type of “motor pacing” by Olympic cyclist John 

Howard who raced at 152.2 mph (68.04 m/s) in the 

wake of a race car at Bonneville Salt Flats. The race car 

had a modified tail assembly designed to reduce the air 

drag on the cyclist. What was the kinetic energy of the 

bicycle plus rider in each of these feats? Assume that 

the mass of bicycle plus rider is 70.5 kg in each case.  

13.  Sam pushes a 10.0-kg sack of bread flour on a friction-

less horizontal surface with a constant horizontal force 

of 2.0 N starting from rest. (a) What is the kinetic energy 

of the sack after Sam has pushed it a distance of 35 cm? 

(b) What is the speed of the sack after Sam has pushed 

it a distance of 35 cm?  

    14.  Josie and Charlotte push a 12-kg bag of playground 

sand for a sandbox on a frictionless, horizontal, wet 

polyvinyl surface with a constant, horizontal force for a 

distance of 8.0 m, starting from rest. If the final speed of 

the sand bag is 0.40 m/s, what is the magnitude of the 

force with which they pushed?  

    15.  A ball of mass 0.10 kg moving with speed of 2.0 m/s 

hits a wall and bounces back with the same speed in the 

opposite direction. What is the change in the ball’s 

kinetic energy?  

    16.  Jim rides his skateboard down a ramp that is in the 

shape of a quarter circle with a radius of 5.00 m. At the 

bottom of the ramp, Jim is moving at 9.00 m/s. Jim and 

his skateboard have a mass of 65.0 kg. How much work 

is done by friction as the skateboard goes down the 

ramp? (   tutorial: energy, parts (a) and (b))  

17.  A 69.0-kg short-track ice skater is racing at a speed of 

11.0 m/s when he falls down and slides across the ice 

into a padded wall that brings him to rest. Assuming 

that he doesn’t lose any speed during the fall or while 

sliding across the ice, how much work is done by the 

wall while stopping the ice skater?  

    18.  A plane weighing 

220 kN (25 tons) 

lands on an aircraft 

carrier. The plane is 

moving horizontally 

at 67 m/s (150 mi/h) 

when its tailhook 

grabs hold of the 

arresting cables. The 

cables bring the plane to a stop in a distance of 84 m. 

(a) How much work is done on the plane by the arrest-

ing cables? (b) What is the force (assumed constant) 

exerted on the plane by the cables? (Both answers will 

be  underestimates,  since the plane lands with the 

engines full throttle forward; in case the tailhook fails to 

grab hold of the cables, the pilot must be ready for 

immediate takeoff.)      

    19.  A shooting star is a meteoroid that burns up when it 

reaches Earth’s atmosphere. Many of these meteoroids 

are quite small. Calculate the kinetic energy of a mete-

oroid of mass 5.0 g moving at a speed of 48 km/s and 

compare it to the kinetic energy of a 1100-kg car mov-

ing at 29 m/s (65 mi/h).    

  Section 6.4 Gravitational Potential Energy (1) 

     20.  Sean climbs a tower that is 82.3 m high to make a jump 

with a parachute. The mass of Sean plus the parachute 

is 68.0 kg. If  U   =  0 at ground level, what is the potential 

energy of Sean and the parachute at the top of the tower? 

(   tutorial: energy, parts (c) and (d))  

21.  Justin moves a desk 5.0 m across a level floor by push-

ing on it with a constant horizontal force of 340 N. (It 

slides for a negligibly small distance before coming to a 

stop when the force is removed.) Then, changing his 

mind, he moves it back to its starting point, again by 

pushing with a constant force of 340 N. (a) What is the 

change in the desk’s gravitational potential energy dur-

ing the round-trip? (b) How much work has Justin done 

on the desk? (c) If the work done by Justin is not equal 

to the change in gravitational potential energy of the 

desk, then where has the energy gone?  
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    22.  An airline executive decides to economize by reducing 

the amount of fuel required for long-distance flights. He 

orders the ground crew to remove the paint from the 

outer surface of each plane. The paint removed from a 

single plane has a mass of approximately 100 kg. (a) If 

the airplane cruises at an altitude of 12 000 m, how 

much energy is saved in not having to lift the paint to 

that altitude? (b) How much energy is saved by not hav-

ing to move that amount of paint from rest to a cruising 

speed of 250 m/s?  

    23.  Emil is tossing an orange of mass 0.30 kg into the air. 

(a) Emil throws the orange straight up and then catches 

it, throwing and catching it at the same point in space. 

What is the change in the potential energy of the orange 

during its trajectory? Ignore air resistance. (b) Emil 

throws the orange straight up, starting 1.0 m above the 

ground. He fails to catch it. What is the change in the 

potential energy of the orange during this flight?  

    24.  A brick of mass 1.0 kg slides down an icy roof inclined at 

30.0 °  with respect to the horizontal. (a) If the brick starts 

from rest, how fast is it moving when it reaches the edge 

of the roof 2.00 m away? Ignore friction. (b) Redo part 

(a) if the coefficient of kinetic friction is 0.10. (   inter-

active: sliding brick)      

    25.  An arrangement of two pulleys, as 

shown in the figure, is used to lift a 

48.0-kg mass a distance of 4.00 m 

above the starting point. Assume the 

pulleys and rope are ideal and that all 

rope sections are essentially vertical. 

(a) What is the mechanical advantage 

of this system? (In other words, by 

what factor is the force you exert to lift 

the weight multiplied by the pulley 

system?) (b) What is the change in the 

potential energy of the weight when it is lifted a distance 

of 4.00 m? (c) How much work must be done to lift the 

48.0-kg mass a distance of 4.00 m? (d) What length of 

rope must be pulled by the person lifting the weight 4.00 m 

higher in the air? (   tutorial: block-and-tackle)  

    26.  In Example 6.1, find the work done by the movers as 

they slide the chest up the ramp if the coefficient of fric-

tion between the chest and the ramp is 0.20. (  

tutorial: ramp)  

27.  A cart moving to the  right  passes point 1 at a speed of 

20.0 m/s. Let  g   =  9.81 m/s 2 . (a) What is the speed of the 

cart as it passes point 3? (b) Will the cart reach position 

4? Ignore friction. 

15.0 m 10.0 m

20.0 m

1

2
3

4

Problems 27 and 28

    28.  A cart starts from position 4 with a velocity of 15 m/s to 

the left. Find the speed with which the cart reaches posi-

tions 1, 2, and 3. Ignore friction.  

    29.  Bruce stands on a bank beside a pond, grasps the end of 

a 20.0-m-long rope attached to a nearby tree and swings 

out to drop into the water. If the rope starts at an angle 

of 35.0 °  with the vertical, what is Bruce’s speed at the 

bottom of the swing?  

    30.  The maximum speed of a child on a swing is 4.9 m/s. 

The child’s height above the ground is 0.70 m at the 

lowest point in his motion. How high above the ground 

is he at his highest point?  

    31.  If the skier of Example 6.6 is moving at 12 m/s at the 

bottom of the trail, calculate the total work done by fric-

tion and air resistance during the run. The skier’s mass 

is 75 kg.  

    32.  A 750-kg automobile is moving at 20.0 m/s at a height 

of 5.0 m above the bottom of a hill when it runs out of 

gasoline. The car coasts down the hill and then contin-

ues coasting up the other side until it comes to rest. 

Ignoring frictional forces and air resistance, what is the 

value of  h,  the highest position the car reaches above 

the bottom of the hill? 

750 kg
20.0 m/s

5.0 m
h = ?

33.  Rachel is on the roof of a building,  h  meters above ground. 

She throws a heavy ball into the air with a speed  v,  at an 

angle  q  with respect to the horizontal. Ignore air resis-

tance. (a) Find the speed of the ball when it hits the ground 

in terms of  h,   v,   q , and  g.  (b) For what value(s) of  q   is the 

speed of the ball greatest when it hits the ground?  

    34.  A crate of mass  m  1  on a 

frictionless inclined plane 

is attached to another 

crate of mass  m  2  by a 

massless rope. The rope 

passes over an ideal pul-

ley so the mass  m  2  is sus-

pended in air. The plane is inclined at an angle  q    =  36.9 ° . 

Use conservation of energy to find how fast crate  m  2  is 

moving after  m  1  has traveled a distance of 1.4 m along the 

incline, starting from rest. The mass of  m  1  is 12.4 kg and 

the mass of  m  2  is 16.3 kg.      

    35.  The forces required to extend a spring to various lengths 

are measured. The results are shown in the following table. 

Using the data in the table, plot a graph that helps you to 

answer the following two questions: (a) What is the spring 

constant? (b) What is the relaxed length of the spring?   

Force (N) 1.00 2.00 3.00 4.00 5.00

Spring length (cm) 14.5 18.0 21.5 25.0 28.5

  Section 6.5 Gravitational Potential Energy (2) 

       36.  A 75.0-kg skier starts from rest and slides down a 32.0-m 

frictionless slope that is inclined at an angle of 15.0 °  

✦✦

✦✦

F

48.0 kg
m1

m2

q



with the horizontal. Ignore air resistance. (a) Calculate 

the work done by gravity on the skier and the work 

done by the normal force on the skier. (b) If the slope 

is not frictionless so that the skier has a final velocity 

of 10.0 m/s, calculate the work done by gravity, the 

work done by the normal force, the work done by fric-

tion, the force of friction (assuming it is constant), 

and the coefficient of kinetic friction. (   tutorial: 

water slide)  

    37.  You are on the Moon and would like to send a probe 

into space so that it does not fall back to the surface of 

the Moon. What launch speed do you need?  

    38.  A planet with a radius of 6.00  ×  10 7  m has a gravita-

tional field of magnitude 30.0 m/s 2  at the surface. What 

is the escape speed from the planet?  

    39.  The escape speed from the surface of Planet Zoroaster 

is 12.0 km/s. The planet has no atmosphere. A meteor 

far away from the planet moves at speed 5.0 km/s on a 

collision course with Zoroaster. How fast is the meteor 

going when it hits the surface of the planet?  

    40.  The escape speed from the surface of the Earth is 

11.2 km/s. What would be the escape speed from another 

planet of the same density (mass per unit volume) as 

Earth but with a radius twice that of Earth?  

    41.  A satellite is placed in a noncircular orbit about the Earth. 

The farthest point of its orbit ( apogee ) is 4 Earth radii from 

the center of the Earth, while its nearest point ( perigee ) is 

2 Earth radii from the Earth’s center. If we define the gravi-

tational potential energy  U  to be zero for an infinite separa-

tion of Earth and satellite, find the ratio  U  perigee  / U  apogee .  

    42.  What is the minimum speed with which a meteor strikes 

the top of the Earth’s stratosphere (about 40 km above 

Earth’s surface), assuming that the meteor begins as a 

bit of interplanetary debris far from Earth? Assume the 

drag force is negligible until the meteor reaches the 

stratosphere.  

    43.  A projectile with mass of 500 kg is launched straight up 

from the Earth’s surface with an initial speed  v   i  . What 

magnitude of  v   i   enables the projectile to just reach a 

maximum height of 5 R   E , measured from the  center  of 

the Earth? Ignore air friction as the projectile goes 

through the Earth’s atmosphere.  

44.  The orbit of Halley’s comet around the Sun is a long 

thin ellipse. At its aphelion (point farthest from the 

Sun), the comet is 5.3  ×  10 12  m from the Sun and moves 

with a speed of 10.0 km/s. What is the comet’s speed at 

its perihelion (closest approach to the Sun) where its 

distance from the Sun is 8.9  ×  10 10  m?  

45.  Suppose a satellite is in a circular orbit 3.0 Earth radii 

above the surface of the Earth (4.0 Earth radii from the 

center of the Earth). By how much does it have to increase 

its speed in order to be able to escape Earth? [ Hint:  You 

need to calculate the orbital speed and the escape speed.]  

      46.  An asteroid hits the Moon and ejects a large rock from 

its surface. The rock has enough speed to travel to a 

✦✦

✦✦

point between the Earth and the Moon where the grav-

itational forces on it from the Earth and the Moon are 

equal in magnitude and opposite in direction. At that 

point the rock has a very small velocity toward Earth. 

What is the speed of the rock when it encounters 

Earth’s atmosphere at an altitude of 700 km above the 

surface?    

  Section 6.6  Work Done by Variable Forces: 
Hooke’s Law 

     47.  How much work is done on the bowstring of Example 

6.9 to draw it back by 20.0 cm? [ Hint:  Rather than 

recalculate from scratch, use proportional reasoning.]  

    48.  An ideal spring has a spring constant  k   =  20.0 N/m. 

What is the amount of work that must be done to stretch 

the spring 0.40 m from its relaxed length?  

    49.  The force that must be 

exerted to drive a nail 

into a wall is roughly 

as shown in the graph. 

The first 1.2 cm are 

through soft drywall; 

then the nail enters the 

solid wooden stud. 

How much work must be done to hammer the nail a 

horizontal distance of 5.0 cm into the wall?  

      50.  (a) If the length of the Achilles tendon increases 0.50 cm 

when the force exerted on it by the muscle increases 

from 3200 N to 4800 N, what is the “spring constant” of 

the tendon? (b) How much work is done by the muscle 

in stretching the tendon 0.50 cm as the force increases 

from 3200 N to 4800 N?  

    51.  (a) If forces of magnitude 5.0 N applied to each end of a 

spring cause the spring to stretch 3.5 cm from its relaxed 

length, how far do forces of magnitude 7.0 N cause the 

same spring to stretch? (b) What is the spring constant 

of this spring? (c) How much work is done by the 

applied forces in stretching the spring 3.5 cm from its 

relaxed length? (    tutorial: spring)  

    52.  A block of wood is compressed 2.0 nm when inward 

forces of magnitude 120 N are applied to it on two 

opposite sides. (a) Assuming Hooke’s law holds, what 

is the effective spring constant of the block? (b) Assum-

ing Hooke’s law still holds, how much is the same block 

compressed by inward forces of magnitude 480 N? 

(c) How much work is done by the applied forces dur-

ing the compression of part (b)?  

    53.  The length of a spring increases by 7.2 cm from its 

relaxed length when a mass of 1.4 kg is hanging in 

equilibrium from the spring. (a) What is the spring 

constant? (b) How much elastic potential energy is 

stored in the spring? (c) A different mass is suspended 

and the spring length increases by 12.2 cm from its 

relaxed length to its new equilibrium position. What is 

the second mass?  

1.20 5.0 x (cm)

50

120

Fx (N)
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    54.  A spring fixed at one end is compressed from its relaxed 

position by a distance of 0.20 m. See the graph of the 

applied external force,  F   x  , versus the position,  x,  of the 

spring. (a) Find the work done by the external force in 

compressing the 

spring 0.20 m start-

ing from its relaxed 

position. (b) Find 

the work done by 

the external force 

to compress the 

spring from 0.10 m 

to 0.20 m.      

    55.  Rhonda keeps a 2.0-kg model airplane moving at con-

stant speed in a horizontal circle at the end of a string of 

length 1.0 m. The tension in the string is 18 N. How 

much work does the string do on the plane during each 

revolution? (   tutorial: circular motion)  

    56.  The graph shows the force exerted on an object versus 

the position of that object along the  x -axis. The force 

has no components other than along the  x -axis. What is 

the work done by the force on the object as the object is 

displaced from 0 to 3.0 m?        

10 2 3

x (m)

Fx (N)

0

1

2

3

–1

–2

  Section 6.7 Elastic Potential Energy 

       57.  A kangaroo decides to see how high it can hop on  one 

leg.  Assuming the elastic energy stored in the tendon is 

the same as for Example 6.12, how high can it jump 

using a single leg?  

    58.  When the spring on a toy gun is compressed by a dis-

tance  x,  it will shoot a rubber ball straight up to a height 

of  h.  Ignoring air resistance, how high will the gun shoot 

the same rubber ball if the spring is compressed by an 

amount 2 x?  Assume  x  <<  h.   

    59.  You shoot a 51-g pebble straight up with a catapult 

whose spring constant is 320 N/m. The catapult is ini-

tially stretched by 0.20 m. How high above the starting 

point does the pebble fly? Ignore air resistance.  

      60.  A block (mass  m ) hangs from a spring (spring constant 

 k ). The block is released from rest a distance  d  above its 

 equilibrium  position. (a) What is the speed of the block 

as it passes through the equilibrium point? (b) What is 

the maximum distance below the equilibrium point that 

the block will reach?  

    61.  A gymnast of mass 52 kg is jumping on a trampoline. 

She jumps so that her feet reach a maximum height of 

✦✦

2.5 m above the trampoline and, when she lands, her 

feet stretch the trampoline down 75 cm. How far does 

the trampoline stretch when she stands on it at rest? 

[ Hint:  Assume the trampoline obeys Hooke’s law when 

it is stretched.]  

    62.  Jorge is going to bungee jump from a bridge that is 

55.0 m over the river below. The bungee cord has an 

unstretched length of 27.0 m. To be safe, the bungee 

cord should stop Jorge’s fall when he is at least 2.00 m 

above the river. If Jorge has a mass of 75.0 kg, what is 

the minimum spring constant of the bungee cord? 

(   tutorial: spring scale)  

    63.  A 2.0-kg block is released from rest and allowed to slide 

down a frictionless surface and into a spring. The far end 

of the spring is attached to a wall, as shown. The initial 

height of the block is 0.50 m above the lowest part of the 

slide and the spring constant is 450 N/m. (a) What is 

the block’s speed when it is at a height of 0.25 m above 

the base of the slide? (b) How far is the spring compressed? 

(c) The spring sends the 

block back to the left. 

How high does the 

block rise?        

  Section 6.8 Power 

     64.  Lars, of mass 82.4 kg, has been working out and can do 

work for about 2.0 min at the rate of 1.0 hp (746 W). 

How long will it take him to climb three flights of stairs, 

a vertical height of 12.0 m?  

    65.  Show that 1 kilowatt-hour (kW⋅h) is equal to 3.6 MJ.  

    66.  If a man has an average useful power output of 40.0 W, 

what minimum time would it take him to lift fifty 

10.0-kg boxes to a height of 2.00 m?  

    67.  In Section 6.2, Rosie lifts a trunk weighing 220 N up 

4.0 m. If it take her 40 s to lift the trunk, at what average 

rate does she do work?  

    68.  A bicycle and its rider together has a mass of 75 kg. What 

power output of the rider is required to maintain a con-

stant speed of 4.0 m/s (about 9 mph) up a 5.0% grade (a 

road that rises 5.0 m for every 100 m along the pavement)? 

Assume that frictional losses of energy are negligible.  

    69.  The power output of a cyclist moving at a constant 

speed of 6.0 m/s on a level road is 120 W. (a) What is 

the force exerted on the cyclist and the bicycle by the 

air? (b) By bending low over the handlebars, the cyclist 

reduces the air resistance to 18 N. If she maintains a 

power output of 120 W, what will her speed be?  

      70.  A car with mass of 1000.0 kg accelerates from 0 m/s to 

40.0 m/s in 10.0 s. Ignore air resistance. The engine has 

a 22% efficiency, which means that 22% of the energy 

released by the burning gasoline is converted into 

mechanical energy. (a) What is the average mechanical 

power output of the engine? (b) What volume of gaso-

line is consumed? Assume that the burning of 1.0 L of 

gasoline releases 46 MJ of energy.  

✦✦

Problems 63 and 105
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    71.  A motorist driving a 1200-kg car on level ground accel-

erates from 20.0 m/s to 30.0 m/s in a time of 5.0 s. 

Neglecting friction and air resistance, determine the 

average  mechanical power in watts the engine must 

supply during this time interval.  

72.  A 62-kg woman takes 6.0 s to run up a flight of stairs. 

The landing at the top of the stairs is 5.0 m above her 

starting place. (a) What is the woman’s average power 

output while she is running? (b) Would that be equal to 

her average power  input —the rate at which chemical 

energy in food or stored fat is used? Why or why not?  

73.  How many grams of carbohydrate does a person of 

mass 74 kg need to metabolize to climb five flights of 

stairs (15 m height increase)? Each gram of carbohy-

drate provides 17.6 kJ of energy. Assume 10.0% 

efficiency—that is, 10.0% of the available chemical 

energy in the carbohydrate is converted to mechanical 

energy. What happens to the other 90% of the energy?  

    74.  An object moves in the positive  x -direction under the 

influence of a force  F   x  . A graph of  F   x   versus  v   x   is shown. 

(a) What is the 

instantaneous power 

on the object when 

its velocity is 11 m/s?

(b) What is the 

instantaneous power 

on the object when 

its velocity is 16 m/s?      

    75.  A top fuel drag racer with a mass of 500.0 kg completes 

a quarter-mile (402 m) drag race in a time of 4.2 s start-

ing from rest. The car’s final speed is 125 m/s. What is 

the engine’s average power output? Ignore friction and 

air resistance.  

    76.  (a) Calculate the change 

in potential energy of 1 kg 

of water as it passes over 

Niagara Falls (a vertical 

descent of 50 m). (b) At 

what rate is gravitational 

potential energy lost by 

the water of the Niagara 

River? The rate of flow is 

5.5  ×  10 6  kg/s. (c) If 10% of this energy can be con-

verted into electric energy, how many households would 

the electricity supply? (An average household uses an 

average electrical power of about 1 kW.)         

  Comprehensive Problems 

     77.  If a high jumper needs to make his center of gravity rise 

1.2 m, how fast must he be able to sprint? Assume all of 

his kinetic energy can be transformed into potential 

energy. For an extended object, the gravitational poten-

tial energy is  U   =   mgh,  where  h  is the height of the cen-

ter of gravity.  

    78.  A pole-vaulter converts the kinetic energy of running to 

elastic potential energy in the pole, which is then con-

verted to gravitational potential energy. If a pole-vaulter’s 

center of gravity is 1.0 m above the ground while he 

sprints at 10.0 m/s, what is the maximum height of his 

center of gravity during the vault? For an extended object, 

the gravitational potential energy is  U   =   mgh,  where  h  is 

the height of the center of gravity. (In 1988, Sergei Bubka 

was the first pole-vaulter ever to clear 6 m.)  

    79.  A hang glider moving at speed 9.5 m/s dives to an alti-

tude 8.2 m lower. Ignoring drag, how fast is it then 

moving?  

    80.  A car moving at 30 mi/h is stopped by jamming on the 

brakes and locking the wheels. The car skids 50 ft before 

coming to rest. How far would the car skid if it were ini-

tially moving at 60 mi/h? [ Hint:  You will not have to do 

any unit conversions if you set up the problem as a 

proportion.]  

81.  Prove that  U   =  −2 K  for any gravitational circular orbit. 

[ Hint:  Use Newton’s second law to relate the gravita-

tional force to the acceleration required to maintain uni-

form circular motion.]  

    82.  A spring gun ( k   =  28 N/m) is used to shoot a 56-g ball 

horizontally. Initially the spring is compressed by 

18 cm. The ball loses contact with the spring and leaves 

the gun when the spring is still compressed by 12 cm. 

What is the speed of the ball when it hits the ground, 1.4 m 

below the spring gun?  

      83.  Two springs with 

equal spring con-

stants  k  are connected 

first in series (one 

after the other) and 

then in parallel (side 

by side) with a weight 

hanging from the bot-

tom of the combina-

tion. What is the 

effective spring con-

stant of the two dif-

ferent arrangements? In other words, what would be the 

spring constant of a single spring that would behave 

exactly as (a) the series combination and (b) the parallel 

combination? Ignore the weight of the springs. [ Hint  for 

(a):  each  spring stretches an amount  x   =   F / k,  but only 

one spring exerts a force on the hanging object.  Hint  for 

(b):  each  spring exerts a force  F   =   kx. ]      

    84.  A roller coaster car 

(mass  =  988 kg includ-

ing passengers) is about 

to roll down a track. The 

diameter of the circular 

loop is 20.0 m and the 

car starts out from rest 40.0 m above the lowest point of 

the track. Ignore friction and air resistance. (a) At 

what speed does the car reach the top of the loop? 

✦✦

✦✦
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(b) What is the force exerted on the car by the track at 

the top of the loop? (c) From what minimum height 

above the bottom of the loop can the car be released 

so that it does not lose contact with the track at the top 

of the loop?    

        85.  A 4.0-kg block is released from rest at the top of a fric-

tionless plane of length 8.0 m that is inclined at an angle 

of 15 °  to the horizontal. A cord is attached to the block 

and trails along behind it. When the block reaches a 

point 5.0 m along the incline from the top, someone 

grasps the cord and exerts a constant tension parallel to 

the incline. The tension is such that the block just comes 

to rest when it reaches the bottom of the incline. (The 

person’s force is a nonconservative force.) What is this 

constant tension? Solve the problem twice, once using 

work and energy and again using Newton’s laws and the 

equations for constant acceleration. Which method do 

you prefer? 

8.0 m

5.0 m Cord

15°

      86.  The bungee jumper of Example 6.4 made a jump into 

the Gorge du Verdon in southern France from a plat-

form 182 m above the bottom of the gorge. The jumper 

weighed 780 N and came within 68 m of the bottom of 

the gorge. The cord’s unstretched length is 30.0 m. 

(a) Assuming that the bungee cord follows Hooke’s law 

when it stretches, find its spring constant. [ Hint:  The 

cord does not begin to stretch until the jumper has fallen 

30.0 m.] (b) At what speed is the jumper falling when 

he reaches a height of 92 m above the bottom of the 

gorge?  

    87.  A spring with 

k   =  40.0 N/m is 

at the base of a 

frictionless 30.0 °

inclined plane. A 

0.50-kg object is pressed against the spring, compress-

ing it 0.20 m from its equilibrium position. The object is 

then released. If the object is not attached to the spring, 

how far up the incline does it travel before coming to 

rest and then sliding back down?      

    88.  In an adventure movie, a 62.5-kg stunt woman falls 

8.10 m and lands in a huge air bag. Her speed just before 

she hit the air bag was 10.5 m/s. (a) What is the total work 

done on the stunt woman during the fall? (b) How much 

work is done by gravity on the stunt woman? (c) How 

much work is done by air resistance on the stunt woman? 

(d) Estimate the magnitude of the average force of air 

resistance by assuming it is constant throughout the fall.  

89.  When a 0.20-kg mass is suspended from a vertically 

hanging spring, it stretches the spring from its original 

✦✦

✦✦

✦✦

length of 5.0 cm to a total length of 6.0 cm. The spring 

with the same mass attached is then placed on a hori-

zontal frictionless surface. The mass is pulled so that 

the spring stretches to a  total  length of 10.0 cm; then the 

mass is released and it oscillates back and forth. What is 

the maximum speed of the mass as it oscillates? 

10.0 cm
Start

xi

0.20 kg
0.20 kg

6.0 cm = xf

5.0 cm = xi

    90.  Yosemite Falls in California is about 740 m high. 

(a) What average power would it take for a 70-kg per-

son to hike up to the top of Yosemite Falls in 1.5 h? 

(b) The human body is about 25% efficient at convert-

ing chemical energy to mechanical energy. How much 

chemical energy is used in this hike? (c) One food Calorie 

is equal to 4.186  ×  10 3  J. How many Calories of food 

energy would a person use in this hike?  

91.  A 1500-kg car coasts in neutral down a 2.0 °  hill. The 

car attains a terminal speed of 20.0 m/s. (a) How much 

power must the engine deliver to drive the car on a  level

road at 20.0 m/s? (b) If the maximum useful power that 

can be delivered by the engine is 40.0 kW, what is the 

steepest hill the car can climb at 20.0 m/s?  

92.  A spring used in an introductory physics laboratory 

stores 10.0 J of elastic potential energy when it is 

compressed 0.20 m. Suppose the spring is cut in half. 

When one of the halves is compressed by 0.20 m, how 

much potential energy is stored in it? [ Hint:  Does the 

half spring have the same  k  as the original uncut 

spring?]  

93.  An elevator can carry a maxi-

mum load of 1202 kg (includ-

ing the mass of the elevator 

car). The elevator has an 801-kg 

counterweight that always 

moves with the same speed but 

in the  opposite direction  to the 

car. (a) What is the average 

power that must be delivered by 

the motor to carry the maximum 

load up 40.0 m in 60.0 s? 

(b) How would your answer be 

different if there were no 

counterweight?    

      94.  (a) How much work does a major-league pitcher do on 

the baseball when he throws a 90.0 mi/h (40.2 m/s) fast-

ball? The mass of a baseball is 153 g. (b) How many 

fastballs would a pitcher have to throw to “burn off” a 

1520-Calorie meal? (1 Calorie  =  1000 cal  =  1 kcal.) 

✦✦

✦✦

✦✦

0.50 kg

Compressed
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  Assume that 80.0% of the chemical energy in the food 

is converted to thermal energy and only 20.0% becomes 

the kinetic energy of the fastballs.  

       95.  The number of kilocalories per day required by a person 

resting under standard conditions is called the basal met-

abolic rate (BMR). (a) To generate 1 kcal, Jermaine’s 

body needs approximately 0.010 mol of oxygen. If 

Jermaine’s net intake of oxygen through breathing is 

0.015 mol/min while he is resting, what is his BMR in 

kcal/day? (b) If Jermaine fasts for 24 h, how many 

pounds of fat does he lose? Assume that only fat is con-

sumed. Each gram of fat consumed generates 9.3 kcal.  

     96.  Tarzan is running along the ground and approaching a 

deep gully. A tree branch with a vine hangs over the 

gully. Tarzan must grab the vine and swing across the 

gully to the other side, where the ground surface is 1.7 m 

higher than the ground surface from which Tarzan starts. 

How fast does Tarzan have to be running to accomplish 

this feat?  

     97.  Jane is running from the ivory hunters in the jungle. 

Cheetah throws a 7.0-m-long vine toward her. Jane 

leaps onto the vine with a speed of 4.0 m/s. When she 

catches the vine, it makes an angle of 20 °  with respect 

to the vertical. (a) When Jane is at her lowest point, she 

has moved downward a distance  h  from the height 

where she originally caught the vine. Show that  h  is 

given by  h   =   L  −  L  cos 20 ° , where  L  is the length of the 

vine. (b) How fast is Jane moving when she is at the 

lowest point in her swing? (c) How high can Jane swing 

above the lowest point in her swing?  

       98.  The escape speed from Earth is 11.2 km/s, but that is 

only the minimum speed needed to escape  Earth’s  gravi-

tational pull; it does not give the object enough energy to 

leave the solar system. What is the minimum speed for 

an object near the Earth’s surface so that the object 

escapes both the Earth’s and the Sun’s gravitational 

pulls? Ignore drag due to the atmosphere and the gravita-

tional forces due to the Moon and the other planets. Also 

ignore the rotation and the orbital motion of the Earth.  

 99.  A skier starts from rest at the top of a frictionless slope 

of ice in the shape of a hemispherical dome with radius 

R  and slides down the slope. At a certain height  h,  the 

normal force becomes zero and the skier leaves the sur-

face of the ice. What is  h  in terms of  R?   

100.  Two springs with spring constants  k  1  and  k  2  are con-

nected in series. (a) What is the effective spring con-

stant of the combination? (b) If a hanging object 

attached to the combination is displaced by 4.0 cm from 

the relaxed position, what is the potential energy stored 

in the spring for  k  1   =  5.0 N/cm and  k  2   =  3.0 N/cm? 

[See Problem 83(a).]  

      101.  Two springs with spring constants  k  1  and  k  2  are con-

nected in parallel. (a) What is the effective spring con-

stant of the combination? (b) If a hanging object 

attached to the combination is displaced by 2.0 cm from 

the relaxed position, what is the potential energy stored 

✦✦

✦✦

✦✦✦

✦✦

in the spring for  k  1   =  5.0 N/cm and  k  2   =  3.0 N/cm? 

[See Problem 83(b).]  

      102.  A pendulum, consisting of a bob of 

mass  M  on a cord of length  L,  is inter-

rupted in its swing by a peg a distance 

 d  below its point of suspension. (a) If 

the bob is to travel in a full circle of 

radius ( L  −  d ) around the peg, what is 

the minimum possible speed it can have at the lowest 

point in its motion, just before it starts to go around? 

Ignore any decrease in the length of the string due to 

the peg’s circumference. (b) From what minimum 

angle  q   must the pendulum be released so that the bob 

attains the speed calculated in (a)?      

      103.  Human feet and legs store elastic energy when walking 

or running. They are not nearly as efficient at doing so as 

kangaroo legs, but the effect is significant nonetheless. If 

not for the storage of elastic energy, a 70-kg man running 

at 4 m/s would lose about 100 J of mechanical energy 

each time he sets down a foot. Some of this energy is 

stored as elastic energy in the Achilles tendon and in the 

arch of the foot; the elastic energy is then converted back 

into the kinetic and gravitational potential energy of the 

leg, reducing the expenditure of metabolic energy. If 

the maximum tension in the Achilles tendon when the 

foot is set down is 4.7 kN and the tendon’s spring 

constant is 350 kN/m, calculate how far the tendon 

stretches and how much elastic energy is stored in it.  

        104.  The graph shows the tension in a rubber band as it is 

first stretched and then allowed to contract. As you 

stretch a rubber band, the tension force at a particular 

length (on the way to a maximum stretch) is larger than 

the force at that same length as you let the rubber band 

contract. That is why the graph shows two separate 

lines, one for stretching and one for contracting; the 

lines are not superimposed as you might have thought 

they would be. (a) Make a rough estimate of the total 

work done by the external force applied to the rubber 

band for the entire process. (b) If the rubber band obeyed 

Hooke’s law, what would the answer to (a) have to be? 

(c) While the rubber band is stretched, is all of the work 

done on it accounted for by the increase in elastic poten-

tial energy? If not, what happens to the rest of it? [ Hint:  

Take a rubber band and stretch it rapidly several times. 

Then hold it against your wrist or your lip.] 
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   105.  A 0.50-kg block, starting at rest, slides down a 30.0 °  

incline with kinetic friction coefficient 0.25 (see the 

✦✦

✦✦
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figure with Problem 63). After sliding 85 cm down the 

incline, it slides across a frictionless horizontal surface 

and encounters a spring ( k   =  35 N/m). (a) What is the 

maximum compression of the spring? (b) After the 

compression of part (a), the spring rebounds and shoots 

the block back up the incline. How far along the incline 

does the block travel before coming to rest?  

        106.  A wind turbine converts some of the kinetic energy of 

the wind into electric energy. Suppose that the blades 

of a small wind turbine have length  L   =  4.0 m. 

(a) When a 10 m/s (22 mi/h) wind blows head-on, what 

volume of air (in m 3 ) passes through the circular area 

swept out by the blades in 1.0 s? (b) What is the mass 

of this much air? Each cubic meter of air has a mass of 

1.2 kg. (c) What is the translational kinetic energy of 

this mass of air? (d) If the turbine can convert 40% of 

this kinetic energy into electric energy, what is its elec-

tric power output? (e) What happens to the power out-

put if the wind speed decreases to       1 _ 
2
     of its initial value? 

What can you conclude about electric power produc-

tion by wind turbines?  

      107.  Use dimensional analysis to show that the electric 

power output of a wind turbine is proportional to the 

 cube  of the wind speed. The relevant quantities on 

which the power can depend are the length  L  of the 

rotor blades, the density  r  of air (SI units kg/m 3 ), and 

the wind speed  v.   

        108.  Use this method to find how the speed with which ani-

mals of similar shape can run up a hill depends on the 

size of the animal. Let  L  represent some characteristic 

length, such as the height or diameter of the animal. 

Assume that the maximum rate at which the animal 

can do work is proportional to the animal’s surface 

area:  P  max   ∞   L  2 . Set the maximum power output equal 

to the rate of increase of gravitational potential energy 

and determine how the speed  v  depends on  L.   

    109.  The potential energy of a particle constrained to move 

along the  x -axis is shown in the graph. At  x   =  0, the 

particle is moving in the  +  x -direction with a kinetic 

energy of 200 J. Can this particle get into the region 3 

cm <  x   <  8 cm? Explain. If it can, what is its kinetic 

energy in that region? If it can’t, what happens to it? 
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✦✦
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    110.  The potential energy of a particle constrained to move 

along the  x -axis is shown in the graph. At  x   =  0, the 

particle is moving in the  +  x -direction with a kinetic 

energy of 400 J. Can this particle get into the region 

3 cm <  x  < 8 cm? Explain. If it can, what is its kinetic 

energy in that region? If it can’t, what happens to it?    

  Answers to Practice Problems 

    6.1  −180 kJ  

   6.2  43 N; 4500 J; she pulls with a greater force but its com-

ponent in the direction of the displacement is smaller.  

   6.3  (2.5  m )(1.50 v ) 2 /( mv  2 )  =  5.6  

   6.4  29 m/s  

   6.5  0.24  

   6.6  16.5 m/s  

   6.7  48 km/s  

   6.8  195 km/s  

   6.9  4.0 J  

   6.10  3.2 cm  

   6.11  9.8 m/s  

   6.12  2.4 m  

   6.13   (a) 11.8 kW (b) 3.6 kW    

  Answers to Checkpoints 

   6.2 The force is perpendicular to the displacement.  

  6.3 Kinetic energy is never negative. Work can be positive, 

negative, or zero, because kinetic energy can increase, 

decrease, or stay the same.  

  6.4 (a) The gravitational potential energy increases until it 

reaches its maximum value when the stone reaches its high-

est point above the ground. (b) The kinetic energy decreases 

as the potential energy increases. It is zero at the highest 

point. (c) The force of gravity does work on the stone 

throughout its motion.  

  6.5 The mechanical energy is the same throughout Mercu-

ry’s orbit. The kinetic energy is greatest at the perihelion 

because the potential energy is smallest there.  

  6.7 The greatest elastic potential energy is at the maximum 

compression.            
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   A fter a collision, an accident 

investigator measures the 

lengths of skid marks on the 

road. How can the investiga-

tor use this information to 

figure out the velocities of the 

vehicles immediately  before  

the collision? (See p. 246 for 

the answer.)    
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 • conservation laws (Section 6.1) 

 • Newton’s third law of motion (Section 4.4) 

 • Newton’s second law of motion (Section 4.3) 

 • velocity (Section 2.2) 

 • components of vectors (Section 3.2) 

 • vector subtraction (Section 3.1) 

 • kinetic energy (Section 6.3)   

    7.1  A CONSERVATION LAW FOR A VECTOR QUANTITY 

  In Chapter 4 we learned how to determine the acceleration of an object by finding the 

net force acting on it and applying Newton’s second law of motion. If the forces happen 

to be constant, then the resulting constant acceleration enables us to calculate changes 

in velocity and position. Calculating velocity and position changes when the forces are 

not constant is much more difficult. In many cases, the forces cannot even be easily 

determined. Conservation of energy is one tool that enables us to draw conclusions 

about motion without knowing all the details of the forces acting. Recall, for example, 

how easily we can calculate the escape speed of a projectile using conservation of 

energy, without even knowing the path the object takes. Now imagine how difficult the 

same calculation would be using Newton’s second law, with a gravitational force that 

changes magnitude and direction depending on the path taken. 

 In this chapter we develop another conservation law. Conservation laws are power-

ful tools. If a quantity is conserved, then no matter how complicated the situation, we 

can set the value of the conserved quantity at one time equal to its value at a later time. 

The “before-and-after” aspect of a conservation law enables us to draw conclusions 

about the results of a complicated set of interactions without knowing all of the details. 

 The new conserved quantity,  momentum,  is a vector quantity, in contrast to energy, 

which is a scalar. When momentum is conserved, both the magnitude and the direction of 

the momentum must be constant. Equivalently, the  x - and  y -components of momentum 

are constant. When we find the total momentum of more than one object, we must add 

the momentum vectors according to the procedure by which vectors are always added.       

   7.2  MOMENTUM 

  The word  momentum  is often heard in broadcasts of sporting events. A sports broad-

caster might say, “The home team has won five consecutive games; they have the 

momentum in their favor.” The team with “momentum” is hard to stop; they are moving 

forward on a winning streak. A football player, running for the goal line with a football 

tucked under his arm, has momentum; he is hard to stop. This use of the word  momen-

tum  is closer to the physics usage. In physics we would agree that the runner has 

momentum, but we have a precise definition in mind. 

 In everyday use, momentum has something to do with mass as well as with veloc-

ity. Would you rather have a running child bump into you, or a football player running 

with the same velocity? The child has much less momentum than the football player, 

even though their velocities are the same. 

 Could a quantity combining mass and velocity be useful in physics? Imagine a col-

lision between two spaceships ( Fig. 7.1 ). Let the spaceships be so far from planets and 

stars that we can ignore gravitational interactions with celestial bodies. The spaceships 

exert forces on one another while they are in contact. According to Newton’s third law, 

these forces are equal and opposite. The force on ship 2 exerted by ship 1 is equal and 

opposite to the force exerted on ship 1 by ship 2:

     F⃗21 = − F⃗12  

Concepts & Skills to Review

CONNECTION: 

Conservation laws can 

involve scalars, such as 

energy, or vectors, such as 

momentum.

 F⃗21 is the force exerted on object 2 

by object 1.



The changes in  velocities  of the two spaceships are  not  equal and opposite if the 

masses are different. Suppose a large spaceship (mass  m  1 ) collides with a much smaller 

ship (mass  m  2  <<  m  1 ). Assume for now that the forces are constant during the time inter-

val Δ t  that the spaceships are in contact. Although the forces have the same magnitude, 

the magnitudes of the accelerations of the two ships are different because their masses 

are different. The ship with the larger mass has the smaller acceleration. 

 The acceleration of either spaceship causes its velocity to change by

    Δv ⃗ = a ⃗ Δt =   
 F⃗ __ m   Δt  

The time interval Δ t  is the duration of the interaction between the two ships, so it must 

be the same for both ships. 

 Since the changes in velocity are inversely proportional to the masses, the changes 

in the  products  of mass and velocity are equal and opposite for the two bodies involved 

in the interaction:

    m1Δv ⃗1 =  F⃗12Δt

m2Δv ⃗2 =  F⃗21Δt = (− F⃗12)Δt = −(m1Δv ⃗1)  

This is a useful insight, so we give the product of mass and velocity a name and symbol: 

   linear momentum    (symbol     p ⃗  , SI unit kg⋅m/s). Linear momentum (or just  momentum ) 

is a vector quantity having the same direction as the velocity.     

Definition of linear momentum:

 p ⃗ = mv ⃗ (7-1)

 The collision of the two spaceships causes changes in their momenta that are equal 

in magnitude and opposite in direction:

    Δ p ⃗  
2
  = −Δ p ⃗  

1
   

In any interaction between two objects, momentum can be transferred from one object 

to the other. The momentum changes of the two objects are always equal and opposite, 

so the total momentum of the two objects is unchanged by the interaction. (By  total 

momentum  we mean the vector sum of the individual momenta of the objects.)     

 Example 7.1 gives some practice in finding the change in momentum of an object 

whose velocity changes.   Remember that momentum is a vector quantity, so changes in 

momentum must be found by subtracting momentum vectors, not by subtracting the 

magnitudes of the momenta.     

v1i

m1 m2 m1 m2m1 m2

v2i v1f v2f

F12

F21

(a) Before (b) During (c) After

Figure 7.1 (a) Two spaceships about to collide. (b) During the collision, the spaceships exert forces on one another that 

are equal in magnitude and opposite in direction. (c) The velocities of the spaceships after the collision.

CONNECTION: 

Newton’s third law implies 

that during an interaction 

momentum is transferred 

from one body to another.
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 Δp ⃗  =  √
______

  p  i  
2
  +  p  f  

2
   

=  √
___________________________________

    (3.66 ×  10 4  kg⋅m/s ) 2  + (1.66 ×  10 4  kg⋅m/s ) 2   

= 4.02 ×  10 4  kg⋅m/s

From the vector diagram, Δp ⃗ is directed at an angle q  east of 

south. Using trigonometry,

tan q  =   
opposite

 _______ 
adjacent

   =   
 p  

f
 
 __  p  

i
    =   

1.66 ×  10 4  kg⋅m/s
  _______________  

3.66 ×  10 4  kg⋅m/s
   = 0.454

 q  =  tan  −1  0.454 = 24.4°

Since the weight is given with two significant figures, we 

report the change in momentum of the car as 4.0 × 104 kg·m/s 

directed 24° east of south.

Discussion As with displace-

ments, velocities, accelerations, 

and forces, it is crucial to remem-

ber that momentum is a vector. 

When finding changes in 

momentum, we must find the 

difference between final and ini-

tial momentum vectors. If the 

initial and final momenta had not 

been perpendicular, we would 

have had to resolve the vectors 

into x- and y-components in order 

to subtract them.

Practice Problem 7.1 Falling Apple

(a) What is the momentum of an apple weighing 1.0 N just 

before it hits the ground, if it falls out of a tree from a height 

of 3.0 m? (b) The apple falls because of the gravitational 

interaction between the apple and the Earth. How much does 

this interaction change Earth’s momentum? How much does 

it change Earth’s velocity?

Example 7.1

Change of Momentum of a Moving Car

A car weighing 12 kN is driving due north at 30.0 m/s. After 

driving around a sharp curve, the car is moving east at 

13.6 m/s. What is the change in momentum of the car?

Strategy The definition of momentum is p ⃗ = mv ⃗. We can 

start by finding the car’s mass. There are two potential pitfalls:

 1. momentum depends not on weight but on mass, and

 2. momentum is a vector, so we must take its direction 

into consideration as well as its magnitude. To find the 

change in momentum, we need to do a vector

subtraction.

Solution The car’s mass is

m =   W __ 
g
   =   1.2 ×  10 4  N __________ 

9.8 m/ s 2 
   = 1220 kg

The car’s initial velocity is

 v ⃗  
i
  = 30.0 m/s, north

The car’s initial momentum is then

 p ⃗  
i
  = m v ⃗  i  = 1220 kg × 30.0 m/s north

            = 3.66 ×  10 4  kg⋅m/s north

After the curve, the final velocity is

 v ⃗  f  = 13.6 m/s, east

The final momentum is

 p ⃗  f  = m v ⃗  f  = 1220 kg × 13.6 m/s east

            = 1.66 ×  10 4  kg⋅m/s east

Momentum vectors are added and subtracted according 

to the same methods used for other vectors. To find the 

change in the momentum, we draw vector arrows represent-

ing the addition of  p ⃗  f   and − p ⃗  i  (Fig. 7.2). Since in this case

the three vectors in Fig. 7.2 form a right triangle, the magni-

tude of Δp ⃗ can be found from the Pythagorean theorem

East

q

West

North

South

pf

–pi
∆p = pf – pi

Figure 7.2

Vector subtraction to find 

the change in momentum.

CHECKPOINT 7.2

In Example 7.1, if the speed of the car had remained constant, would Δp ⃗ have 

been zero?

   7.3  THE IMPULSE-MOMENTUM THEOREM 

  We found that the change in momentum of an object when a single force acts on it is 

equal to the product of the force acting on the object and the time interval during which 

the force acts:

    Δp ⃗ =  F⃗ Δt              



The product      F⃗ Δt   is given the name    impulse.    Since the impulse is the product of a vec-

tor (the force) and a positive scalar (the time), impulse is a vector quantity having the 

same direction as that of the force. In words,     Δp ⃗ =  F⃗ Δt   can be read as “ the change in 

momentum equals the impulse. ” The SI units of impulse are newton-seconds (N·s) and 

those of momentum are kilogram-meters per second (kg·m/s). These are equivalent 

units, as can be demonstrated using the definition of the newton (Problem 3). 

 If an object is involved in more than one interaction, then its change in momentum 

during any time interval is equal to the  total  impulse during that time interval. The total 

impulse is the vector sum of the impulses due to each force. The total impulse is also 

equal to the net force times the time interval:

    total impulse =   F⃗ 1  Δt +   F⃗ 2  Δt + . . .

 = ( F⃗1 +  F⃗2 + . . .) Δt = ∑ F⃗ Δt  

The total impulse on an object is equal to the change in the object’s momentum during 

the same time interval. This relationship between total impulse and momentum change 

is called the impulse-momentum theorem and is especially useful in solving problems 

that involve collisions and impacts.  

Impulse-Momentum Theorem

 Δp ⃗ = ∑ F⃗ Δt (7-2)

       Impulse When Forces Are Not Constant    Our discussion so far has assumed that 

the forces acting are constant or that Δ t  is very small so the change in      F⃗   is negligible. 

That is a rather unusual situation; the concept of momentum would be of limited use if 

it were applicable only when forces are constant. However, everything we have said still 

applies to situations where the forces are not constant, as long as we use the  average

force to calculate the impulse.

     impulse =   F⃗ av  Δt    (7-3)

      Impulse =  F⃗ Δt          Impulse =  F⃗ Δt    

When the force is not constant, the 

impulse can be found using the 

average force.

When the force is not constant, the 

impulse can be found using the 

average force.

Solution and Discussion The change in momentum is 

equal to the impulse. The product of the force and the time 

interval gives the momentum change of the object. Over a 

period of 4 s, the 5-N force causes a momentum change of 

magnitude (5 N × 4 s) = 20 N·s, and the 2-N force acting for 

10 s also causes a momentum change of magnitude 

(2 N × 10 s) = 20 N·s. The smaller force causes the same 

change in momentum because it acts for a longer time 

interval.

When designing products to protect the human body, one 

goal is to lengthen the time period during which a velocity 

change occurs. For example, when a movie stuntman falls 

from a great height, he lands on a large air bag (Fig. 7.3), 

Conceptual Example 7.2

Big Force–Short Time Versus Small 
Force–Long Time

Which causes the larger 

change in momentum of 

an object, an average 

force of 5 N acting for 4 s 

or an average force of 

2 N acting for 10 s? How 

might this principle be 

used when designing 

products to protect the 

human body from injury? 

Give an example.

Figure 7.3

A stuntman lands safely in an air bag to break his fall. The air bag reduces the risk of injury in 

two ways. It changes the stuntman’s momentum more gradually, so that forces of smaller magni-

tude act on his body. It also spreads these forces over a larger area so they are less likely to cause 

serious injury.

continued on next page
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Impulse Work

Definition  F⃗ Δt  F⃗⋅ Δr ⃗

Vector or 

 Scalar?

Vector Scalar*

Physical 

 meaning

Momentum 

 transfer

Energy 

 transfer

*The scalar or dot product of two vec-

tors is introduced in Section 6.2.

CONNECTION

Impulse is a momentum 

transfer due to a force; work 

is an energy transfer due to a 

force.



230  CHAPTER 7  Linear Momentum

Designing a Safer Automobile    One automotive design change implemented to mini-

mize injury on collision is the foam padding built into automobile dashboards ( Fig. 7.4 ). 

Automobile bumpers have shock absorbers built in to lessen damage to the car body in 

small collisions. The structure of the car itself is often a single piece of metal with rein-

forced supports ( unibody  construction) so that the entire body can crumple and absorb 

the change in momentum more slowly than it would if it were made of separate sections 

of metal that would slide into or over each other or fall off the car. The safety glass in a 

windshield has two advantages. One is that it does not shatter and send sharp shards of 

glass into human tissue, but the other is that it distorts when struck by solid objects like 

human bones or a human head. The glass doesn’t give much, but in a crash every little 

bit helps.       

 The use of seat belts plus the air bag is better than either alone. Without a seat belt, 

the body continues moving with the same speed the car had before the crash. The rap-

idly inflating air bag moves toward the body and the effective velocity is then the sum of 

the two velocities (air bag velocity  +  body velocity) when the two collide. The body fly-

ing into the air bag can be injured more than a restrained body making more gradual 

contact with the air bag. An adult should sit at least 12 in. from the air bag container to 

avoid injury from the deploying air bag itself. Small children should always be placed 

in the back seat, in proper car seats for their size, to ensure their safety.   

  Application of momentum con-

servation to automotive design.  

  Application of momentum con-

servation to automotive design.  

Practice Problem 7.2 Pole-Vaulter Landing on a 
Padded Surface

A pole-vaulter vaults over the bar and falls onto thick pad-

ding. He lands with a speed of 9.8 m/s; the padding then 

brings him to a stop in a time of 0.40 s. What is the average 

force on his body due to the padding during that time inter-

val? Express your answer as a fraction or multiple of his 

weight. [Hint: The force due to the padding is not the only 

force acting on the vaulter during the 0.40-s interval.]

which changes his momentum much more gradually than if 

he were to fall onto concrete. The average force exerted 

by the air bag on the stuntman is much smaller than the aver-

age force exerted by concrete would be. Nets used under cir-

cus acrobats serve the same purpose. The net gives and dips 

downward when the acrobat falls into it, gradually reducing 

the speed of the fall over a longer time interval than if she 

fell directly onto the ground.

Example 7.2 continued

Rear passenger

seat belts

Safety

glass

Flexible

bumpersUnibody

construction

Front passenger

air bag

Front side
impact
air bags

Extra-thick

padded dash

Rear side

impact

air bags

Front driver

& passenger

seat belts

Reinforced steel

side beams

Antilock

braking system

ABS

Halogen

headlamps

Dual head protection

air bags 

Front driver

air bag

Rear

crumple

zone

Front

crumple

zone

Rigid steel 

safety cage

Figure 7.4 Some safety features of the modern automobile. Many of these features serve to lengthen the time interval 

during which a momentum change occurs in a crash, thereby lessening the forces acting on the passengers.



(a) No seat belt:    F⃗ av   =    
 Δp ⃗ 

 ____ 
Δt

     =   
1300 kg⋅m/s

 ___________ 
0.0030 s

   = 4.3 ×  10 5  N

(b) Air bag:    F⃗ av   =    
 Δp ⃗ 

 ____ 
Δt

     =   
1300 kg⋅m/s

 ___________ 
0.030 s

   = 4.3 ×  10 4  N

Discussion The average forces required to bring the pas-

senger to rest are inversely proportional to the time interval 

over which those forces act. It is a far happier situation to 

have the momentum change over as long a period as possible 

to make the forces smaller. Automotive safety engineers 

design cars to minimize the average forces on the passengers 

during sudden stops and collisions.

The air bag also spreads the force over a much larger area 

than impact with a hard surface like the windshield, further 

reducing the risk of injury.

Practice Problem 7.3 Catching a Fastball

A baseball catcher is catching a fastball that is thrown at 

43 m/s (96 mi/h) by the pitcher. If the mass of the ball is 

0.15 kg and if the catcher moves his mitt backward toward 

his body by 8.0 cm as the ball lands in the glove, what is the 

magnitude of the average force acting on the catcher’s mitt? 

Estimate the time interval required for the catcher to move 

his hands.

Example 7.3

Collision Between an Automobile and a Tree

A car moving at 20.0 m/s (44.7 mi/h) crashes into a tree. 

Find the magnitude of the average force acting on a passen-

ger of mass 65 kg in each of the following cases. (a) The 

passenger is not wearing a seat belt. He is brought to rest by 

a collision with the windshield and dashboard that lasts 

3.0 ms. (b) The car is equipped with a passenger-side air 

bag. The force due to the air bag acts for 30 ms, bringing the 

passenger to rest.

Strategy From the impulse-momentum theorem, Δp ⃗ =
 F⃗  av  Δt, where   F⃗  av  is the average force acting on the passen-

ger and Δt is the time interval during which the force acts. 

The change in the passenger’s momentum is the same in the 

two cases. What differs is the time interval during which the 

change occurs. It takes a larger force to change the momen-

tum in a shorter time interval.

Solution The magnitude of the passenger’s initial momen-

tum is

  p ⃗ 
i
   =  mv  ⃗ i   =  65 kg × 20.0 m/s = 1300 kg⋅m/s

His final momentum is zero, so the magnitude of the momen-

tum change is

 Δp ⃗   = 1300 kg⋅m/s

This momentum change divided by the time interval gives 

the magnitude of the average force in each case.

  Graphical Calculation of Impulse 

 When a force is changing, how can we find the impulse? We’ve asked similar questions 

in previous chapters. For simplicity we consider components along the  x -axis. Recall:

   • displacement  =  Δ x   =   v  av, x   Δ t   =  area under  v   x  ( t ) graph  

  • change in velocity  =  Δ v   x    =   a  av, x   Δ t   =  area under  a   x  ( t ) graph   

In both cases, the mathematical relationship is that of a rate of change. Velocity is the rate 

of change of position with time and acceleration is the rate of change of velocity with 

time. Now we have force as the rate of change of momentum with time. By analogy:

   • impulse  =   F  av, x   Δ t   =  area under  F   x  ( t ) graph   

So to find the impulse for a variable force, we find the area under the  F   x  ( t ) graph. Then, 

if we wish to know the average force, we can divide the impulse by the time interval 

during which the force is applied.         

PHYSICS AT HOME

Try playing catch with a friend [on the lawn] while using a raw egg or a water 

balloon as a ball. How do you move your hands to minimize the chance of break-

ing the egg or balloon when you catch it? What is likely to happen if you forget 

that the “ball” is an egg or balloon and catch it as you would a ball?

A “graph of vx(t)” means the quan-

tity vx is plotted as a function of the 

variable t with vx on the vertical axis 

and t on the horizontal axis.

CONNECTION: 

See Sections 2.2, 2.3, and 6.6 

to review how we used the 

area under a graph to find dis-

placement, change in veloc-

ity, and work done by a force.
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 The variable force of  Fig. 7.5a  increases linearly from 0 to 4 N in a time of 2 s; then 

it decreases from 4 N to 0 N in 2 s. The area under the  Fx ( t ) graph is found from the tri-

angular area

    area =   1 _ 
2
   base × height = 2 s × 4 N = 8 N⋅s = impulse  

The average force during the 4-s time interval is

    average force =   
impulse

 ___________ 
time interval

   =   8 N⋅s _____ 
4 s

   =  2 N  

 Figure 7.5b  shows the average force over the 4-s time interval; the area under the curve 

(the impulse) is the same as in  Fig. 7.5a .        

find the impulse exerted on the car. Since impulse is the area 

under the Fx(t) curve, we’ll make an estimate of the area. 

The impulse is then equal to the average force times the time 

interval and also to the car’s change in momentum. Once we 

find the change in momentum, we use it to find the car’s 

final speed.

Given: m = 10.2 kg; vix = 1.2 m/s; graph of Fx(t)

To find: (a) Fmax; (b) Fav,x; (c) vfx

Solution (a) From Fig. 7.6, the maximum force is approx-

imately 750 N in magnitude.

(b) Each division on the horizontal axis represents 0.01 s, 

and each vertical division represents 200 N. Then the area 

of each grid box represents (200 N × 0.01 s) = 2 N·s. 

Counting the number of grid boxes between the Fx(t) curve 

and the time axis, estimating fractions of boxes, yields 

about 10 boxes. Then the magnitude of the impulse is 

approximately

10 boxes × 2 N⋅s/box = 20 N⋅s

The collision is underway when the force is nonzero. So the 

collision begins at about t = 0.025 s and ends at about 

t = 0.095 s. The duration of the collision is

Δt = 0.07 s

Example 7.4

Hitting the Wall

An experimental robotic car of mass 10.2 kg moving at 

1.2 m/s in the +x-direction crashes into a brick wall and 

rebounds. A force sensor on the car’s bumper records the 

force that the wall exerts on the car as a function of time. 

These data are shown in graphical form in Fig. 7.6. (a) What 

is the maximum magnitude of the force exerted on the car? 

(b) What is the average force on the car during the collision? 

(c) At what speed does the car rebound from the wall?

Strategy The maximum force can be read directly from 

the graph. To solve parts (b) and (c) of this problem, we must 

4
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Figure 7.5 (a) The area under 

the Fx(t) graph for a variable 

force is the impulse. (b) The 

average force for a given time 

interval is the constant force that 

would produce the same 

impulse.
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Figure 7.6

Force versus time for a car colliding with a wall.

continued on next page



  A Restatement of Newton’s Second Law 

 We can use the relationship between impulse and momentum to find a new way to 

understand Newton’s second law. Let’s rewrite the impulse-momentum theorem this 

way:

    ∑ ⃗ F av  =   
Δp ⃗

 ___ 
Δt

    

What happens if we let the time interval Δ t  get smaller and smaller, approaching zero? 

Then the average force is taken over a smaller and smaller time interval, approaching 

the instantaneous force:

     F⃗ =   lim    
Δt→0

    
Δp ⃗

 ___ 
Δt  

  

If more than one force acts, we must replace      F⃗   with     ∑ F⃗.   Then our restatement of 

Newton’s second law becomes 

Newton’s Second Law

 ∑ F⃗ =   lim    
Δt→0

    
Δp ⃗

 ___ 
Δt

   (7-4)

 In words,  the net force is the rate of change of momentum.  

 Equation (7-4) is  more general  than     ∑ F⃗ = ma ⃗,   the form of Newton’s second law 

used in Chapters 4 through 6, which holds only when mass is constant. One situation in 

which mass is not constant is the rocket engine. In a rocket engine, fuel combustion pro-

duces hot gases that are then expelled at high speeds ( Fig. 7.8 ). The rocket’s mass 

decreases as the exhaust gases are expelled.     

Figure 7.8 The Space Shuttle 

is propelled upward as hot gases 

are exhausted downward at high 

speeds.

The magnitude of the average force is approximately

  F  av,x   =    
 impulse 

 ________ 
Δt

   =   20 N⋅s ______ 
0.07 s

   = 300 N

(c) The impulse gives us the momentum change. The 

force exerted by the wall is in the −x-direction. Thus, the 

x-component of the impulse is negative. In the graph of Fx

versus t, the area lies under the time axis and so is counted as 

negative. So, working with x-components,

Δ p  x  = m v  
fx

  − m v  
ix
  =  F  av,x  Δt = −20 N⋅s

Solving for vfx,

 v  
fx

  =   
Δpx + m v  

ix
 
 _________ m   =   

Δ p  x  ____ m   +  v  
ix
 

Substituting numerical values in this expression yields

 v  
fx

  =   −20 N⋅s _______ 
10.2 kg

   + 1.2 m/s = −0.8 m/s

The car rebounds at a speed of 0.8 m/s.

Discussion As a check, we compare the average force with 

the maximum force. The average force is a bit less than half 

of the maximum force. If the force were a linear function of 

time, the average would be exactly half the maximum. Here, 

the average force is less than that because more time is spent 

at smaller values of force than at the larger values.

Practice Problem 7.4 Car-Van Collision

A car weighing 13.6 kN is moving at 10.0 m/s in the 

+x-direction when it collides head-on with a van weighing 

33.0 kN. The horizontal force exerted on the car before, dur-

ing, and after the collision is shown in Fig. 7.7. What is the 

car’s velocity just after the collision?

0
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–40

–60
0.20 0.40 0.60 0.80 1.000

t (s)

Fx
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Figure 7.7

Varying force on a car during a car-van collision.

Example 7.4 continued

CONNECTION: 

Equation (7-4) is closer to 

Newton’s original statement 

of his second law and is more 

general than ∑ F⃗ = ma ⃗.
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 When mass is constant, then it can be factored out:

    ∑ F⃗ =   lim    
Δt→0

    
Δp ⃗

 ___ 
Δt

   =   lim    
Δt→0

    
Δ(mv ⃗)

 ______ 
Δt

   = m   lim    
Δt→0

    Δv ⃗ ___ 
Δt

   = ma ⃗  
  

Thus, Eq. (7-4) reduces to the familiar form of Newton’s second law from Chapters 4–6 

when mass is constant.    

   7.4  CONSERVATION OF MOMENTUM 

  Consider two pucks that bump into one another after sliding along a frictionless 

table.  Figure 7.9  shows what happens to the two pucks before, during, and after their 

interaction. If we think of the two pucks as constituting a single system, then the 

gravitational interactions with the Earth and the contact interactions with the table 

are  external  interactions—interactions with objects external to the system. The force 

of gravity on each object is balanced by the normal force on the same object and, 

thus, there is no net impulse up or down. Together, these forces produce a net exter-

nal force of zero, so they leave the system’s momentum unchanged. Since these two 

always cancel, we can ignore these external interactions and just focus on the inter-

action between the pucks. Therefore, we omit the normal and gravitational forces in 

 Fig. 7.9 . 

 Until contact is made, there is no interaction between the pucks (ignoring the small 

gravitational interaction between the two). During the collision, the pucks exert forces 

on each other. Force       F⃗ 
12

    is the contact force acting on mass  m  1  and force       F⃗ 
21

    is the con-

tact force acting on mass  m  2 . If we continue to regard the two pucks as parts of a single 

interacting system, then those forces are  internal  forces of this system. When they col-

lide, some momentum is transferred from one puck to the other. The changes in momen-

tum of the two are equal and opposite:

    Δ p ⃗ 
1
  = −Δ p ⃗ 

2
   

Since the change in momentum is the final momentum minus the initial momentum, we 

write:

    p  ⃗ 1f  −  p ⃗ 
1i

  = −( p ⃗ 
2f

  −  p ⃗ 
2i

 )  

Moving the initial momenta to the right side and the final momenta to the left:

      p ⃗  
1f

  +  p ⃗ 
2f

  =  p ⃗ 
1i

  +  p ⃗ 
2i

     (7-5)   

Equation (7-5) says the sum of the momenta of the pucks after the interaction is 

equal to the sum of the momenta before the interaction; or, more simply, the total 

momentum of the objects is unchanged by the collision. This isn’t surprising since, 

if some momentum is just transferred from one to the other, the total hasn’t changed. 

We say that momentum is  conserved  for this collision. The interaction between the 

pucks changes the momentum of each puck, but the total momentum of the system is 

unchanged. 

Before

During

After

m1

m1

m2

m2

m1 m2

v1i

v1f v2f

F12 F21

v2i

Figure 7.9 Two sliding pucks 

with different masses before, 

during, and after collision.



 In a system composed of more than two objects, interactions between objects inside 

the system do not change the total momentum of the system—they just transfer some 

momentum from one part of the system to another. Only external interactions can 

change the total momentum of the system. To summarize:

   • The total momentum of a system is the vector sum of the momenta of each object 

in the system.  

  • External interactions can change the total momentum of a system.  

  • Internal interactions do not change the total momentum of a system.   

In the absence of external interactions, momentum is conserved: 

Law of Conservation of Linear Momentum

If the net external force acting on a system is zero, then the momentum of the sys-

tem is conserved.

 If ∑  F⃗ 
ext

  = 0,      p ⃗  
i
  =  p ⃗  

f
  (7-6)

 By definition, an  isolated,  or closed, system is subject to no external interactions; 

thus,  linear momentum is always conserved for an isolated system.   Remember that 

momentum is a vector quantity, so both the magnitude   and the direction   of the momen-

tum at the beginning and end of the interaction must be the same. In component form, 

both   p   x    and   p   y    are unchanged by the interaction.          

CHECKPOINT 7.4

When is the momentum of a system not conserved?

Assume the raft is stationary with respect to the shore before 

Diana starts walking.

Strategy Diana and the raft can be considered to be a sin-

gle isolated system: as long as frictional forces on the raft 

due to the water and air are small enough to ignore, the net 

external force on the system is zero. Then the momentum of 

this system (raft + Diana) is conserved. We let the subscripts 

D stand for Diana and r for the raft and set the change in 

momentum of the system equal to zero.

Solution To walk forward, Diana must exert a backward 

force on the raft: the static frictional force between her feet 

and the raft. This is an internal interaction within the isolated 

system, so it cannot change the total momentum of the sys-

tem. Only something acting from outside the system could do 

that. As Diana walks in one direction, she acquires some 

momentum. The rest of the system (the raft) must acquire an 

equal and opposite momentum, because the momentum of the 

isolated system (Diana + raft) is conserved, which means that 

the change in momentum of the system is zero.

continued on next page

Example 7.5

Adrift on a Raft

Diana is standing on a raft of mass 100.0 kg that is floating 

on a still lake. She decides to walk the length of the raft 

(Fig. 7.10). If Diana’s mass is 55 kg and she walks with a 

velocity of 0.91 m/s with respect to the shore, how fast and 

in what direction does the raft move while Diana is walking? 

vD

x

vr

Figure 7.10

Diana walking along a raft. Velocities  v ⃗ 
D
  and  v ⃗ r  are mea-

sured with respect to the shore.
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 When a bullet is fired from a rifle, the system of rifle plus bullet must conserve 

momentum. Suppose the rifle is at rest before the bullet is fired. The momentum of the 

system is zero. When the bullet is fired, part of the system’s mass breaks away and trav-

els in one direction with a certain momentum. The rifle, which is the remaining mass of 

the system, moves in the exact opposite direction such that the total momentum of the 

system is still zero. The rifle has a much larger mass than the bullet, so it has a much 

smaller speed. The backward motion of the rifle is the  recoil  felt by anyone who has 

held a rifle against her shoulder and squeezed the trigger.       

 Jet engines and rockets operate by conservation of momentum. Hot combustion 

gases are forced out of nozzles at high speed by the engines. The increased backward 

momentum of the hot gases as they are expelled is accompanied by an increased for-

ward momentum of the engines. Airplane wings generate lift by conservation of momen-

tum. The main purpose of the wing is to deflect air downward, giving it a downward 

momentum component. (Exactly how the wing does this is the complicated part.) Since 

the wing pushes air downward, air pushes the wing upward.       

 Application of momentum 

conservation: recoil of a rifle 

 Application of momentum 

conservation: recoil of a rifle 

Application of momentum 

conservation: jets, rockets, and 

airplane wings

Application of momentum 

conservation: jets, rockets, and 

airplane wings

First we set the change in momentum of the system equal 

to zero:

Δp ⃗ = 0 = Δ p ⃗  
D
  + Δ p ⃗  

r
 

or

Δ p ⃗  
D
  = −Δ p ⃗  

r
 

This means that the momentum changes of Diana and of the 

raft are equal and opposite. Since momentum is the product 

of mass and velocity and the masses of the raft and Diana do 

not change,

mD Δ v ⃗  
D
  = − m  

r
  Δ v ⃗  

r
 

Solving for the change in velocity of the raft gives

Δ v ⃗  r  = −   
 m  

D
 
 ___  m  r 
   Δ v ⃗  

D
 

Finally we substitute numerical values from the given infor-

mation in the statement of the problem. Let Diana walk in 

the +x-direction.

Δ v ⃗  r  =    
− 55 kg × 0.91 m/s (in the + x-direction)

    _________________________________  
100.0 kg

  

= 0.50 m/s in the −x-direction

The negative sign reverses the direction: Δ v ⃗ r  is in the 

−x-direction and has a magnitude of 0.50 m/s.

The raft moves in a direction opposite to Diana’s motion 

to keep the momentum unchanged and thus conserved. Since 

the raft was originally stationary, this is the new velocity of 

the raft.

Discussion In any momentum conservation problem there 

are two equivalent ways to proceed. In this example we set 

the momentum change of the system equal to zero. We could 

just as well write an equation that sets the initial total momen-

tum equal to the final momentum of the system. The raft and 

Diana are initially at rest, so the initial momentum is zero:

0 =   m  
D
 v ⃗  

D
  +   m  

r
 v ⃗  

r
 

where  v ⃗  D  and  v ⃗  r  are the final velocities of Diana and the raft.

Practice Problem 7.5 Skaters Pushing Apart

Two skaters on in-line skates, Lisa and Bart, are initially at rest. 

They push apart and start moving in opposite directions. If 

Lisa’s speed just after they push apart is 2.0 m/s and her mass is 

85% of Bart’s mass, how fast is Bart moving at that time?

vD

x

vr

Figure 7.10

Diana walking along a raft. Velocities  v ⃗ 
D
  and  v ⃗ r  are mea-

sured with respect to the shore.



PHYSICS AT HOME

In case you and a friend ever end up stuck in the middle of the ice, practice the 

technique the pilot used to escape to the lakeshore. Bring a heavy medicine ball 

out to the middle of the ice rink and face each other with your skates aligned 

parallel. Toss the ball to your friend. What happens to you? What happens to 

your friend when he catches the ball? Can you both be “saved” by tossing the 

ball back and forth? (The same technique works using in-line skates.)

7.5  CENTER OF MASS 

  We have seen that the momentum of an isolated system is conserved even though parts of 

the system may interact with other parts; internal interactions transfer momentum between 

parts of the system but do not change the total momentum of the system. We can define a 

point called the    center of mass    ( cm ) that serves as an average location of the system. In 

Section 7.6, we prove that the center of mass of an isolated system must move with con-

stant velocity, regardless of how complicated the motions of parts of the system may be. 

Then we can treat the mass of the system as if it were all concentrated at the cm, like a point 

particle. The  cm  of an object is not necessarily located within the object; for some objects, 

such as a boomerang, the center of mass is located outside of the object itself ( Fig. 7.11a ).     

 What if a system is not isolated, but has external interactions? Again imagine all of the 

mass of the system concentrated into a single point particle located at the  cm.  The motion 

of this fictitious point particle is determined by Newton’s second law, where the net force is 

the sum of all of the external forces acting on  any part  of the system. In the case of a com-

plex system composed of many parts interacting with each other, the motion of the  cm  is 

considerably simpler than the motion of an arbitrary particle of the system ( Fig. 7.11b ,c).  
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Discussion If friction brings the pilot to rest before he 

reaches the shore, he can search his pockets and belt loops 

for other items to throw away. Once he reaches shore, he can 

tie one end of a rope to a tree and, holding onto the other 

end, venture back out onto the ice to retrieve any essential 

items. The rope provides him with an external force so he 

can get back to shore.

Practice Problem 7.6 Recoil of a Rifle

During an afternoon of target practice, you fire a Winchester 

.308 rifle of mass 3.8 kg. The bullets have a mass of 9.72 g 

and leave the rifle at a muzzle velocity of 860 m/s. If you are 

sloppy and fire a round when the butt of the rifle is not firmly 

up against your shoulder, at what speed does the rifle butt 

smash into your shoulder? (Ouch!)

Conceptual Example 7.6

Escape on Slippery Ice

A pilot parachutes from his disabled aircraft and lands on 

the frozen surface of a lake. There is no breeze blowing and 

the lake surface is too slippery to walk on. What can the 

pilot do to reach the shore?

Strategy and Solution Since the person in jeopardy is a 

pilot, he begins to think about how hot gases forced backward 

from a jet engine cause the plane to move forward. That gives 

him an idea: he bundles the parachute into a package and 

pushes it as hard as possible in a direction away from the 

nearest point of the shore. If friction is negligible, the net 

external force on the system of pilot plus parachute is zero 

and the total momentum of the system cannot change. The 

momentum of the parachute plus the momentum of the pilot 

must still equal zero. By conservation of momentum, the 

pilot begins sliding in the opposite direction and glides 

toward the shore.
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       Location of Center of Mass    For a system composed of two particles, the center of 

mass lies somewhere on a line between the two particles. In  Fig. 7.12 , particles of 

masses  m  1  and  m  2  are located at positions  x  1  and  x  2 , respectively. We define the location 

of the  cm  for these two particles as

      x 
CM

  =   
 m 

1
  x 

1
  +  m 

2
   x 

2
 
 __________ 

 m 
1
  +  m 

2
 
      (7-7)   

The  cm  is a  weighted average  of the positions of the two particles. Here we use the word 

 weighted  in its statistical sense. The position of a particle with more mass counts 

more—carries more  statistical  weight—than does the position of a particle with a 

smaller mass. We can rewrite Eq. (7-7) as a weighted average:

      x 
CM

  =   
 m 

1
 
 ___ 

M
    x 

1
  +   

 m 
2
 
 ___ 

M
    x 

2
     (7-8)   

Here  M   =   m  1   +   m  2  represents the total mass of the system. The statistical weight used 

for the location of each particle is the mass of that particle as a fraction of the total mass 

of the system. 

 Suppose masses  m  1  and  m  2  are equal. Then we expect the  cm  to be located midway 

between the two particles ( Fig. 7.12a ). If  m  1   =  2 m  2 , as in  Fig. 7.12b , then the  cm  is 

closer to the particle of mass  m  1 .  Figure 7.12b  shows that, in this case, the  cm  is twice 

as far from  m  2  as from  m  1 .     

 For a system of  N  particles, at arbitrary locations in three-dimensional space, the 

definition of the  cm  is a generalization of Eq. (7-7). 

(b)

(a)

(c)

Center of mass

Center of mass

CM
CM

CM

Center of mass

Figure 7.11 (a) The center of mass of a boomerang is a point outside of the boomerang. (b) The path followed by the 

center of mass when a hammer is tossed through the air. (c) British pole-vaulter Ben Challenger’s center of mass actually 

passes beneath the bar as his body passes over the bar.

CM

(a)

m1

x1

x2

m2

CM

(b)

m1

x1

x2

m2

x

x

Figure 7.12 (a) Two particles of equal mass located at positions x1 and x2 from the ori-

gin. The cm is midway between the two. (b) Two particles of unequal mass. The cm is 

closer to the more massive particle. For two children balanced on a see-saw, the cm is at 

the fulcrum.



Definition of center of mass:

Vector form:  r ⃗ 
CM

  =   
∑ m  i r  ⃗  i 

 ______ 
M

   (7-9)

Component form:  x  
CM

  =   
∑ m  

i
  x  

i
 
 ______ 

M
           y  

CM
  =   

∑ m  i   y  i 
 ______ 

M
            z  

CM
  =   

∑ m  i    z  i 
 ______ 

M
  

where i = 1, 2, 3, . . . , N and M = ∑mi

 Remember that the symbol ∑ stands for  sum.  The shorthand notation ∑m i  x i   is interpreted as

∑m 
i
 x 

i
= m 

1
x 

1
+ m 

2
 x 

2
+ … + m 

N
 x 

N

For particles in two-dimensional space, we use only two of these equations for the  x-y

plane and find the  x - and  y -components of the  cm.

Discussion In Fig. 7.13, we mark the position of the cm. As 

we expect for the case of two particles, it is located closer to 

the larger mass and on a line connecting the two. Once the cm

position is found in a problem, check to be sure its location is 

reasonable. Suppose we 

had made an error in this 

example and found the cm 

to be at x  = 1.5 AU and 

y  = 1.7 AU. This is not a 

reasonable location for the 

cm since it is not along the 

line connecting the two 

and is closer to the less 

massive star; we then 

would go back to look for 

the error.

Practice Problem 7.7 Three Balls with 
Unequal Masses

Three spherical objects are shown in Fig. 7.14. Their masses 

are m1 = m3 = 1.0 kg and m2  = 4.0 kg. Find the location of 

the cm for the three objects.

Example 7.7

Center of Mass of a Binary Star System

Due to the gravitational interaction between the two stars in 

a binary star system, each moves in a circular orbit around 

their cm. One star has a mass of 15.0 × 1030 kg; its center is 

located at x = 1.0 AU and y = 5.0 AU. The other has a mass 

of 3.0 × 1030 kg; its center is at x = 4.0 AU and y = 2.0 AU. 

Find the cm of the system composed of the two stars. (AU 

stands for astronomical unit. 1 AU = the average distance 

between the Earth and the Sun = 1.5 × 108 km.)

Strategy We treat the stars as point particles located at their 

centers. Since we are given x- and y-coordinates, the easiest 

way to proceed is to find the x- and y-coordinates of the cm.

There is no particular advantage here in finding the position 

vector of the cm in terms of its length and direction.

Given: m1 = 15.0 × 1030 kg   x1 = 1.0 AU   y1 = 5.0 AU

  m2 = 3.0 × 1030 kg     x2 = 4.0 AU   y2 = 2.0 AU

To find: xCM; yCM

Solution The total mass of the system is the sum of the 

individual masses:

M = m1 + m2 = 15.0 ×  10 30  kg + 3.0 ×  10 30  kg = 18.0 ×  10 30  kg

For the x-position, we find

 x  
CM

  =   
 m  

1
 
 ___ 

M
   x  

1
  +   

 m  
2
 
 ___ 

M
   x  

2
 

 =   
15.0 ×  10 30  kg

  ____________  
18.0 ×  10 30  kg

   × 1.0 AU +   
3.0 ×  10 30  kg

  ____________  
18.0 ×  10 30  kg

   × 4.0 AU

 = 1.5 AU

and for the y-position, we find

y  
CM

  =   
 m  

1
 
 ___ 

M
   y  

1
  +   

 m  
2
 
 ___ 

M
   y  

2
 

 =   15.0 ____ 
18.0

   × 5.0 AU +   3.0 ____ 
18.0

   × 2.0 AU = 4.5 AU

6

4

2

0

y (AU)

0 2 4 6 x (AU)

Figure 7.13

Finding the cm for the system of 

two stars.

4

3

2

1

0

y (cm)

0 1 2 3 4 5 x (cm)

m2

m1 m3

Figure 7.14

Three spheres located at x, y positions 

(1.0 cm, 1.0 cm), (2.0 cm, 3.0 cm), and 

(3.0 cm, 1.0 cm).
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   Using Symmetry to Locate the Center of Mass    Most objects we deal with in real 

life are not composed of a small set of point particles or spherically symmetrical objects. 

In Example 7.7, we use the location of the center of each star to find the  cm.  Due to spher-

ical symmetry, the cm of either star (by itself) is at its geometric center. The same tech-

nique can be applied to other shapes with symmetry. A standard 2 by 4, which is an 

8-ft-long uniform piece of lumber used in building 1.5 in. deep  ×  3.5 in. high, has its cen-

ter of mass at its geometric center. By contrast, a “loaded” die does  not  have its  cm  at its 

geometric center, since a small metal plug has been inserted near one face to make the dis-

tribution of mass in the die asymmetrical. The definition of the  cm  [Eq. (7-9)] still holds 

as long as ( x   i  ,  y   i  ,  z   i  ) are the coordinates of the  cm  of a part of the system with mass  m   i  .     

   7.6  MOTION OF THE CENTER OF MASS 

  Now that we know how to find the position of the  cm  of a system, we turn our attention 

to the motion of the  cm.  How is the velocity of the  cm  related to the velocities of the var-

ious parts of the system? 

 During a short time interval Δ t,  the displacement of the  i -th particle is     Δ r ⃗  i  =  v ⃗  i  Δt   

and the displacement of the center of mass is      Δr ⃗  CM  =  v ⃗  CM  Δt.   From the definition of the 

 cm  [Eq. (7-9)], the displacements must be related as follows:

    Δ r ⃗  
CM

  =   
∑ m  

i
 Δ r ⃗  

i
 
 _______ 

M
    ⇒  v  ⃗  CM  Δt =   

∑ m  
i
  v ⃗  

i
  Δt
 ________ 

M
    

Dividing both sides by Δ t  and multiplying by  M  yields

     M v ⃗  
CM

  = ∑ m 
i
  v ⃗  

i    (7-10)  

The right side of Eq. (7-10) is the sum of the momenta of the particles that constitute the 

system—the total momentum of the system     p ⃗.   Therefore,

     p ⃗ = Mv  ⃗  CM    (7-11)  

For two-dimensional motion, Eq. (7-11) is equivalent to two component equations

      p x  = M v 
CM,x

   and   p y  = M v 
CM,y

    (7-12)   

 In Section 7.4, we showed that, for an isolated system, the total linear momentum 

is conserved. In such a system, Eq. (7-11) implies that the  cm  must move with constant 

velocity regardless of the motions of the individual particles. On the other hand, what if 

the system is not isolated? If a net external force acts on a system, the  cm  does not move 

with constant velocity. Instead, it moves as if all the mass were concentrated there into 

a fictitious point particle with all the external forces acting on that point. The motion of 

the  cm  obeys the following statement of Newton’s second law:

     ∑  F⃗  ext  = Ma  ⃗  CM     (7-13)   

where  M  is the total mass of the system,     ∑  F⃗  ext    is the net external force, and      a ⃗  
CM  

  is the 

acceleration of the  cm.  [Eq. (7-13) is proved in Problem 38.]   

CHECKPOINT 7.6

Turn back to Fig. 7.11b. Why does the CM of the hammer move along a parabolic 

path?



Solution 1 First we make a sketch of the situation (Fig. 

7.15). At the top of the trajectory, where the explosion 

occurs, vy = 0; the rocket is moving in the x-direction. The 

initial momentum just before the explosion is entirely in the 

x-direction. If M is the mass of the rocket, then

pix = Mvix

Just after the explosion, one-third of the mass of the rocket 

is at rest; it then drops straight down under the influence of 

the gravitational force. This piece has zero momentum just 

after the explosion. To conserve momentum, the other two 

thirds of the rocket must have a momentum equal to the 

momentum just before the explosion.

  p  
ix
  =  p  

1x
  +  p  

2x
 

M v  
ix
  = 0 + (  2 _ 

3
  M)  v  

2x
 

Solving for v2x, we find

 v  
2x

  =   3 _ 
2
   v  

ix
 

The y-component of momentum must also be conserved:

piy = p1y + p2y

We know that both piy and p1y are zero; therefore, p2y is zero 

as well. Just after the explosion, both parts of the rocket have 

zero vertical components of velocity. Then both parts take 

the same time to fall to the ground as if the rocket had not 

exploded. With a horizontal velocity larger by a factor of   3 _ 
2
  , 

the second piece of the rocket travels a horizontal distance 

from the explosion a factor of   3 _ 
2
   larger than 260 m (see Fig. 

7.15). The distance from the launch point where this piece 

lands is

Δx = 260 m +   3 _ 
2
   × 260 m = 650 m

Example 7.8

An Exploding Rocket

A model rocket is fired from the ground in a parabolic tra-

jectory. At the top of the trajectory, a horizontal distance of 

260 m from the launch point, an explosion occurs within the 

rocket, breaking it into two fragments. One fragment, hav-

ing one third of the mass of the rocket, falls straight down to 

Earth as if it had been dropped from rest at that point. At 

what horizontal distance from the launch point does the 

other fragment land? Ignore air resistance. [Hint: The two 

fragments land simultaneously.]

Strategy Two different strategies can be used to solve this 

problem.

Strategy 1: We apply conservation of momentum to the 

explosion. The momentum of the rocket just before the explo-

sion is equal to the total momentum of the two fragments just 

after the explosion. Why can momentum conservation be 

assumed here? There is an external force—gravity—acting on 

the system. External forces change momentum. However, the 

explosion takes place in a very short time interval. From the 

impulse-momentum theorem [Eq. (7-2)], the momentum 

change of the system is the force of gravity multiplied by the 

time interval. As long as the time interval considered is suffi-

ciently short, the momentum change of the system can be 

ignored.

Strategy 2: The explosion is caused by an internal

interaction between two parts of the rocket. The motion of 

the cm of the system is unaffected by internal interactions, 

so it continues in the same parabolic path. Just before the 

explosion, the rocket is at the top of its trajectory, so it has 

py = 0 (with the y-axis pointing up). Just after the explo-

sion, one fragment is at rest. Then the other fragment must 

have py = 0; otherwise, conservation of momentum would 

be violated. Then both fragments have vy = 0 just after 

the explosion. Ignoring air resistance, they land simulta-

neously. At that same instant, the cm also reaches the 

ground.
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continued on next page
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Figure 7.15

Rocket motion after 

explosion.



242  CHAPTER 7  Linear Momentum

   7.7  COLLISIONS IN ONE DIMENSION 

       What Is a Collision?    In the macroscopic world, a moving body bumps into another 

body that may be at rest or in motion. The two bodies exert forces on one another while 

they are in contact; as a result, their velocities change. In the microscopic and submicro-

scopic world, our picture of a collision is different. When atoms collide, they don’t “touch” 

each other: the atom doesn’t have a definite spatial boundary, so there are no surfaces to 

make “contact.” However, the collision model is still useful for atoms and subatomic par-

ticles whenever there is an interaction in which the forces are strong over a short time 

interval, so that there is a clear “before collision” and a clear “after collision.”  

   Analyzing Collisions Using Momentum Conservation    We can often use conser-

vation of momentum to analyze collisions even when external forces act on the collid-

ing objects. If the net external force is small compared with the internal forces the 

colliding objects exert on each other during the collision, then the change in the total 

momentum of the two objects is small compared with the transfer of momentum from 

one object to the other. Then the total momentum after the collision is  approximately

the same as it was before the collision. 

 The same techniques that are used for collisions in the macroscopic world (car 

crashes, billiard ball collisions, baseball bats hitting balls) are also used in collisions in 

the microscopic world (gas molecules colliding with each other and with surfaces, 

radioactive decays of nuclei). First, we study collisions limited to motion along a line; 

later, we consider collisions limited to motion in a plane (in two dimensions). 

Solution 2 The piece with mass   1 _ 
3
  M falls straight down 

and lands 260 m from the launch point. After the explosion, 

the cm continues to travel just as the rocket itself would 

have done if it had not broken apart. From the symmetry of 

the parabola, the cm touches the ground at a distance of 

2 × 260 m = 520 m from the launch point. Since we know 

the location of the cm and that of one of the pieces, we can 

find where the second piece lands:

M x  
CM

  =   1 _ 
3
  M x  

1
  +   2 _ 

3
  M x  

2
 

After canceling the common factor of M,

 x  
CM

  =   1 _ 
3
   x  

1
  +   2 _ 

3
   x  

2
 

Solving for x2 yields

 x  2  =   
 3x  CM  −  x  1  _________ 

2
   =   3 × 520 m − 260 m  ________________ 

2
   = 650 m

which is the same answer that we found in Solution 1.

Discussion The insight that the motion of the cm is unaf-

fected by internal interactions can be of enormous help. 

Note, however, that solution 2 would not be so simple if 

the two fragments did not land simultaneously. As soon as 

one fragment (fragment 1) hits the ground, the external 

force on the system is no longer due exclusively to gravity, 

so the cm doesn’t continue to follow the same parabolic 

path. The normal and frictional forces acting on fragment 

1 affect its subsequent motion and the subsequent motion 

of the cm even though the motion of fragment 2 is 

unaffected.

Practice Problem 7.8 Diana and the Raft Revisited

In Example 7.5, Diana (mass 55 kg) walks at 0.91 m/s (rel-

ative to the water) on a raft of mass 100.0 kg. The raft 

moves in the opposite direction at 0.50 m/s. Suppose it 

takes her 3.0 s to walk from one end of the raft to the other. 

(a) How far does Diana walk (relative to the water)? 

(b) How far does the raft move while Diana is walking? 

(c) How far does the cm of Diana and the raft move during 

the 3.0 s?

Example 7.8 continued

moving with a velocity of 0.40 km/s to the left collide head-on. 

The water molecule has a velocity of 0.60 km/s to the right after 

Example 7.9

Collision in the Air

A krypton atom (mass 83.9 u) moving with a velocity of 

0.80 km/s to the right and a water molecule (mass 18.0 u) 

continued on next page
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the collision. What is the velocity of the krypton atom after the 

collision? (The symbol “u” stands for the atomic mass unit.)

Strategy Since we know both initial velocities and one of 

the final velocities, we can find the second final velocity by 

applying momentum conservation. Let the subscript “1” refer 

to the krypton atom and let the subscript “2” refer to the water 

molecule. Let the x-axis point to the right. Figure 7.16 shows 

before and after pictures of the collision.

Solution Momentum conservation requires that the final 

momentum be equal to the initial momentum:

 p ⃗  
1f

  +  p ⃗  
2f

  =  p ⃗  
1i

  +  p ⃗  
2i

 

Now we substitute p ⃗ = mv ⃗ for each momentum. It is easiest 

to work in terms of components. For simplicity we drop the 

“x” subscripts, remembering that all quantities refer to 

x-components:

 m  
1
  v  

1f
  +  m  

2
  v  

2f
  =  m  

1
  v  

1i
  +  m  

2
  v  

2i
 

Since m1/m2 = 83.9/18.0 = 4.661, we can substitute 

m1 = 4.661m2:

4.661  m  
2
  v  

1f
  +  m  

2
  v  

2f
  = 4.661  m  

2
  v  

1i
  +  m  

2
  v  

2i
 

The common factor m2 cancels out. Solving for v1f,

  v  
1f

  =   
4.661 v 

1i
  +  v 

2i
  −  v 

2f
 
  ________________ 

4.661
  

 =   
4.661 × 0.80 km/s + (−0.40 km/s) − 0.60 km/s

    ______________________________________  
4.661

  

 = 0.59 km/s

After the collision, the krypton atom moves to the right with 

a speed of 0.59 km/s.

Discussion To check this result, we calculate the total 

momentum (x-component) before and after the collision:

 m  
1
  v  

1i
  +  m  

2
  v  

2i
   = (83.9 u)(0.80 km/s) + (18.0 u)(−0.40 km/s)

 = 60 u⋅km/s

 m 
1
  v 

1f
  +  m 

2
  v 

2f
  = (83.9 u)(0.59 km/s) + (18.0 u)(0.60 km/s)

 = 60 u⋅km/s

Momentum is conserved. There is no need to convert u to kg 

since we only need to compare these two values.

If we made the mistake of thinking of momentum as 

a scalar, we would get the wrong answer. The sum of 

the magnitudes of the momenta before the collision is not

equal to the sum of the magnitudes of the momenta after the 

collision. Conservation of energy is perhaps easier to under-

stand intuitively since energy is a scalar quantity. Converting 

kinetic energy to potential energy is analogous to moving 

money from a checking account to a savings account; the 

total amount of money is the same before and after. This sort 

of analogy does not work with momentum!

Practice Problem 7.9 Head-On Collision

A 5.0-kg ball is at rest when it is struck head-on by a 2.0-kg 

ball moving along a track at 10.0 m/s. If the 2.0-kg ball is at 

rest after the collision, what is the speed of the 5.0-kg ball 

after the collision?

Example 7.9 continued

Before

0.40 km/s0.80 km/s

0.60 km/s

H2OKr

H2OKr

After

v1f

p1i p2i

p1f p2f

Figure 7.16

Before and after snapshots of a collision.

 Suppose we observe a bumper car traveling at speed  v   i   toward a second car that is 

at rest. The masses of the two cars are equal. When the first car hits the second, what 

happens? 

 Based on momentum considerations  alone,  there are many possible outcomes. One 

possibility is that the first car stops moving and the second car moves off with the same 

velocity that the first one had to begin with ( Fig. 7.17a ). This possibility satisfies con-

servation of momentum because the total momentum is the same before and after.     

 Another possibility is that the two cars stick together, moving away together 

( Fig. 7.17b ). With what speed do they move after the collision? If the momentum is to 

be the same with twice as much mass moving, the speed must be half the initial speed 

of the first car. There are many other possibilities. Conservation of momentum doesn’t 

tell us which of these outcomes actually happens, but if we know one car’s velocity after 

the collision, we can use momentum conservation to determine the other car’s velocity.   
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  Elastic and Inelastic Collisions 

 Collisions are often classified based on what happens to the kinetic energy of the collid-

ing objects. A ball dropped from a height  h  does not rebound to the same height. The 

kinetic energy of the ball just after the collision with the floor or ground is less than it 

was just before the collision; the amount of the kinetic energy decrease depends on the 

makeup of the ball and the ground. A racquetball dropped onto a hard wooden floor 

may rebound nearly to its original height, but a watermelon rebounds very little or not 

at all. Why do some objects rebound much better than others? 

 Imagine a racquetball colliding with the floor ( Fig. 7.18 ). The bottom of the ball is 

flattened. What makes the ball rebound from the floor? The forces holding the ball 

together are like springs; the kinetic energy of the ball has been transformed largely into 

potential energy stored in these springs. When the ball bounces back up, this energy is 

transformed back into kinetic energy. Then why does the watermelon not rebound? The 

watermelon, too, is deformed when it collides with the floor, but this deformation is not 

reversible. The kinetic energy of the watermelon is changed mostly into thermal energy 

rather than into potential energy. 

 A collision in which the  total  kinetic energy is the same before and after is called 

   elastic.    When the final kinetic energy is less than the initial kinetic energy, the collision 

is said to be    inelastic.    Collisions between macroscopic objects are generally inelastic to 

some degree, but sometimes the change in kinetic energy is so small that we treat them 

as elastic. When a collision results in two objects sticking together, the collision is    per-

fectly inelastic.    The decrease of kinetic energy in a perfectly inelastic collision is as 

large as  possible  (consistent with the conservation of momentum). Now that we have 

defined elastic and inelastic collisions, we can put together a problem-solving strategy 

for collision problems. 

Figure 7.18 Three successive 

photos of a racquetball during its 

collision with the floor 

(t1 < t2 < t3).

t1

t2

t3

Before

After

v = 0v = vi

v = 0 v = vi

Before

After

v = 0v = vi

v =   vi

(a)

(b)
1 – 
2

v =   vi
1 – 
2

Figure 7.17 Two of the many possible outcomes of a collision between bumper cars of equal mass with one of them ini-

tially at rest.



    There is no   conservation law   for kinetic energy by itself.  Total energy is always 

conserved, but that does not preclude some kinetic energy being transformed into 

another type of energy. The elastic collision is just a special kind of collision in which 

no kinetic energy is changed into other forms of energy. Momentum is conserved 

regardless of whether a collision is elastic or inelastic. 

 It can be proved (see Problem 56) that for  any  elastic collision between two objects, 

the relative speed is the same before and after the collision. (This fact is most useful in 

one-dimensional collisions; in two-dimensional collisions the  direction  of the relative 

velocity changes due to the collision.) Since the relative velocity is in the opposite direc-

tion after a one-dimensional collision—first the objects move together, then they move 

apart—we can write:

      v 
2ix

  −  v 
1ix

  = −( v 
2fx

  −  v 
1fx

 )    (7-14)   

assuming the objects move along the  x -axis. For a one-dimensional elastic collision, 

Eq. (7-14) is a useful alternative to setting the final kinetic energy equal to the initial 

kinetic energy.    

    

CHECKPOINT 7.7

Is momentum conserved in a perfectly inelastic collision?

Problem-Solving Strategy for Collisions Involving Two Objects

 1. Draw before and after diagrams of the collision.

 2. Collect and organize information on the masses and velocities of the two 

objects before and after the collision. Express the velocities in component 

form (with correct algebraic signs).

 3. Set the sum of the momenta of the two before the collision equal to the sum 

of the momenta after the collision. Write one equation for each direction:

 m  
1
  v 

1ix
  +  m  

2
  v  

2ix
  = m1v1fx +  m  

2
  v  

2fx
 

 m  
1
  v  

1iy
  +  m  

2
  v  

2iy
  = m

1
v

1fy
 +  m  

2
  v  

2fy
 

 4. If the collision is known to be perfectly inelastic, set the final velocities equal:

 v  
1fx

  =  v  
2fx

       and       v 
1fy

  =  v  
2fy

 

 5. If the collision is known to be perfectly elastic, then set the final kinetic 

energy equal to the initial kinetic energy:

  1 _ 
2
   m  1  v  1i

  
2
   +   1 _ 

2
   m  2  v  2i

  
2
   =   1 _ 

2
   m  1  v  1f

  
2
   +   1 _ 

2
   m  2  v  2f

  
2
  

 6. Solve for the unknown quantities.

Assuming the collision is elastic, how fast was the pickup 

going just before the collision if the car is pushed straight 

ahead onto the highway at 20.0 m/s just after the collision?

continued on next page

Example 7.10

Collision at the Highway Entry Ramp

At a Route 3 highway on-ramp, a car of mass 1.50 × 103 kg is 

stopped at a stop sign, waiting for a break in traffic before 

merging with the cars on the highway. A pickup of mass 

2.00 × 103 kg comes up from behind and hits the stopped car. 

7.7  COLLISIONS IN ONE DIMENSION 245
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 Suppose in Example 7.10 that the entry ramp speed limit is 20 mi/h (8.94 m/s). By 

measuring the length of the skid marks from the stop sign and estimating the coefficient 

of friction, the accident investigator can determine that the car was pushed onto the 

highway at a speed of 20.0 m/s. Witnesses confirm that the car was stopped before the 

collision. Then the investigator calculates the speed of the pickup just before the colli-

sion using conservation of momentum. The duration Δ t  of the collision is so short that 

we can ignore momentum changes due to external forces and treat the two vehicles as 

an isolated system. Finding that the pickup exceeded the speed limit, the investigator 

adds speeding to the charges against the driver of the pickup.       

Example 7.10 continued

Strategy Conservation of momentum provides one equa-

tion relating the initial and final velocities. That the collision 

is elastic provides another equation. With two unknown 

velocities, these two equations enable us to solve for both. 

Let “1” refer to the car stopped at the stop sign and “2” refer 

to the pickup. All motions are in one direction, which we call 

the x-axis. To simplify the notation, we drop the x subscripts 

and let all p’s and v’s refer to x-components. Figure 7.19 

shows a before and after diagram for the collision.

Given:  m1 = 1.50 × 103 kg; m2 = 2.00 × 103 kg; before the 

collision, v1i = 0; after the collision, v1f = 20.0 m/s

To find: v2i (speed of the pickup just before the collision)

Solution From conservation of momentum,

  m  
1
  v  

1i
  +  m  

2
  v  

2i
  =  m  

1
  v  

1f
  +  m  

2
  v  

2f
  (1)

where we cross out the first term because v1i = 0. The colli-

sion is elastic, so the relative velocity after the collision is 

equal and opposite to the relative velocity before the colli-

sion [Eq. (7-14)]:

  v  
2i

  −  v  
1i

  = −( v  
2f

  −  v  
1f

 ) (2)

We want to solve these two equations for v2i, so we can 

eliminate v2f. Multiplying Eq. (2) through by m2 and rear-

ranging yields

  m  2  v  2i  =  m  2  v  1f  −  m  2  v  2f  (3)

Adding Eqs. (1) and (3) gives

 2 m 
2
  v 

2i
  = ( m 

1
  +  m 

2
 ) v 

1f
  (4)

Finally, we solve Eq. (4) for v2i:

 v  
2i

  =   
 m 

1
  +  m 

2
 
 _______ 

2 m 
2
 
    v  1f  =   

1500 kg + 2000 kg
  ________________  

4000 kg
   × 20.0 m/s = 17.5 m/s

Discussion To check this answer, first solve for  v  2f . Then 

you can verify that momentum is conserved [Eq. (1)] and 

that the relative velocity changes sign [Eq. (2)]. You can also 

calculate the total kinetic energy before and after the colli-

sion and show they are equal, as they must be for an elastic 

collision. We leave these checks to you for practice.

The road exerts frictional forces on the vehicles, so 

the net external force on the vehicles was not zero during 

the collision. We still use conservation of momentum 

because during the short time interval of the collision, fric-

tion doesn’t have time to change the system’s momentum 

significantly.

Practice Problem 7.10 Perfectly Inelastic 
Collision Between the Cars

Instead of colliding elastically, suppose the two vehicles 

lock bumpers when they collide. With the same initial condi-

tions (v1i = 0 and v2i = 17.5 m/s), find the speed at which the 

car would be pushed out onto the highway.

Before

After

v2i

m1m2

v1i = 0

m1m2

v1f = 20.0 m/sv2f

x

Figure 7.19

Before and after diagrams of the collision 

(side view).

How are skid marks used to 

find car velocities just 

before the collision?



   7.8  COLLISIONS IN TWO DIMENSIONS 

  Most collisions are not limited to motion in one dimension in the absence of a track or 

other device to constrain motion to a single line. In a two-dimensional collision, we use 

the same techniques we used for one-dimensional collisions, as long as we remember 

that momentum is a vector. (  interactive: the virtual pool table.) To apply conserva-

tion of momentum, it is usually easiest to work with  x - and  y -components.        

Masses: m1 = 0.10 kg; m2 = 0.40 kg

Before collision: v1ix  = 8.0 m/s; v1iy = v2ix = v2iy = 0

After collision: v1fx  = v1f cos f1; v1fy = v1f sin f1;

 v2fx  = v2f cos f2; v2fy = − v2f sin f2

 ( f1   = 60.0° and  f2   = 30.0°)

To find:  v1f and v2f; total kinetic energy before 

and after the collision

Solution (a) Working with components means that we 

set the total x-component of momentum before the colli-

sion equal to the total x-component of momentum after 

the collision. We treat the y-components in the same way. 

The initial momentum is in the x-direction only. Thus, 

the total momentum y-component after the collision must 

be zero.

First we set the x-component of the total momentum after 

the collision equal to the x-component of the total momen-

tum before the collision:

 p 
1fx

  +  p 
2fx

  =  p 
1ix

  +  p 
2ix

 

Each momentum component is now rewritten using 

px = mvx:

 m 
1
  v 

1f
  cos  f 

1
  +  m 

2
  v 

2f
  cos  f 

2
  =  m 

1
  v 

1ix
  + 0

Since m2 = 4m1,

 m 
1
  v 

1f
  cos 60.0° + 4 m 

1
  v 

2f
  cos 30.0° =  m 

1
  v 

1ix
 

After canceling the common factor m1 and substituting numer-

ical values for cos 60.0° and cos 30.0°, this reduces to

 0.500 v 
1f

  + 3.46 v 
2f

  = 8.0 m/s (1)

For conservation of the y-component of the momentum:

 p  
1fy

  +  p  
2fy

  =  p  
1iy

  +  p  
2iy

  = 0

Example 7.11

Colliding Pucks on an Air Table

A small puck (mass m1 = 0.10 kg) is sliding to the right 

with an initial speed of 8.0 m/s on an air table (Fig. 7.20a). 

An air table has many tiny holes through which air is 

blown; the resulting air cushion allows objects to slide with 

very little friction. The puck collides with a larger puck 

(mass m2 = 0.40 kg), which is initially at rest. Figure 7.20b 

shows the outcome of the collision: the pucks move off at 

angles  f 1  = 60.0° above and  f 2  = 30.0° below the initial 

direction of motion of the small puck. (a) What are the 

final speeds of the pucks? (b) Is this an elastic collision or 

an inelastic collision? (c) If inelastic, what fraction of the 

initial kinetic energy is converted to other forms of energy 

in the collision?

Strategy The system of two pucks is an isolated system 

because the net external force is zero. Therefore, we can 

apply conservation of momentum. Since motions in two 

dimensions are involved, we treat the horizontal and vertical 

components of momentum separately.

Figure 7.20 shows the pucks before and after the colli-

sion. Now we collect information on the known quantities, 

writing velocities in component form.

y

x

Before After

m1

v1i v1f

v2f

m2

m1

m2

f2

f1

(b)(a)

v2i = 0

y

x

Figure 7.20

Snapshots in time, (a) before and (b) after a collision.

continued on next page
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CONNECTION:

See the Problem-Solving 

Strategy in Section 7.7. The 

same strategy applies to colli-

sions in two or three 

dimensions.
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conservation of momentum and kinetic energy to find the 

direction of the cue ball velocity, v ⃗c, after the collision.

Solution Conservation of momentum requires that

m v ⃗  
i
  = m v ⃗  

c
  + m v ⃗  

4
 

or

 v ⃗  i  =  v ⃗  c  + v  ⃗  4 

This vector addition is shown graphically in Fig. 7.22a. 

Since the collision is elastic, the total kinetic energy doesn’t 

change:

  1 _ 
2
  m v  i  

2
  =   1 _ 

2
  m v  c  

2
  +   1 _ 

2
  m v  4  

2
 

continued on next page

Conceptual Example 7.12

Eric at the Pool Table

Playing a game of pool, Eric is trying to decide whether to 

attempt a shot to sink the 4-ball in the pocket at corner B 

without scratching (sinking the cue ball “C” in corner A). 

He notices that the lines from the 4-ball to the two corner 

pockets happen to make a right angle (Fig. 7.21). The colli-

sion of the balls is nearly elastic. Assume Eric is an amateur 

player and does not know how to do fancy things, like put-

ting sidespin on a ball. Should he attempt the shot?

Strategy We assume a perfectly elastic collision between 

the balls. They have the same mass. The cue ball moves with 

an initial velocity  v ⃗ 
i
  and strikes the 4-ball, which is initially at 

rest. The 4-ball falls in pocket B if its velocity after the colli-

sion, v ⃗4, points toward the pocket. Assuming it does, we use 

Example 7.11 continued

The y-component of  p ⃗ 
2f

  is negative because the y-component 

of  v ⃗ 
2f

  is negative.

 m  
1
  v  

1f
  sin  f 1  + (−4 m  

1
  v  

2f
  sin  f 2 ) = 0

 v  
1f

  sin 60.0° − 4 v  
2f

  sin 30.0° = 0

We solve for v2f in terms of v1f:

  v
2f

  =   sin 60.0° _________ 
4 sin 30.0°

    v 
1f

  = 0.433 v 
1f

  (2)

Equations (1) and (2) contain two unknowns. To elimi-

nate one unknown, we substitute 0.433v1f for v2f in Eq. (1):

0.500 v  
1f

  + 3.46(0.433 v  
1f

 ) = 2.00 v  
1f

  = 8.0 m/s

Solving this equation gives the value of v1f:

 v  
1f

  = 4.0 m/s

Then by substitution into Eq. (2), we find the value of v2f:

 v  
2f

  = 0.433 v  
1f

  = 1.73 m/s → 1.7 m/s

(b) Now that we have the final speeds, we can compare the 

initial and final kinetic energies.

 K  i  =   1 _ 
2
   m  1  v  1i

  
2
  

 K  
i
  =   1 _ 

2
  (0.10 kg) × (8.0 m/s ) 2  = 3.2 J

and

 K  
f
   =   1 _ 

2
   m  

1
  v  1f

  
2
   +   1 _ 

2
   m 

2
  v  2f

  
2
  

 =   1 _ 
2
  (0.10 kg) × (4.0 m/s ) 2  +   1 _ 

2
  (0.40 kg) × (1.73 m/s ) 2 

   = 0.80 J + 0.60 J = 1.40 J

The final kinetic energy is less than the initial kinetic energy, 

so the collision is inelastic.

(c) The amount of kinetic energy converted to other forms of 

energy (primarily internal energy of the pucks) is

3.2 J − 1.40 J = 1.8 J

We divide by the initial kinetic energy to find the fraction of 

the initial kinetic energy converted to other forms:

  1.8 J ____ 
3.2 J

   = 0.56

Less than half of the kinetic energy of the incident puck 

therefore survives the collision as the kinetic energies of the 

two pucks.

Discussion Although a two-dimensional collision prob-

lem tends to require more complicated algebra than a one-

dimensional problem, the physical principles are the same. 

As long as the net external force on the system is zero (or 

negligibly small), the total vector momentum must be 

conserved.

Practice Problem 7.11 Colliding Balls

A ball of mass m1 moves at speed vi along the +x-axis toward 

a second ball of mass m2, which is initially at rest. The sec-

ond ball has five times the mass of the first ball. After the 

collision between these two objects, m1 moves along the 

+y-axis at a speed v1, and m2 moves at a speed  v 
2
  =   1 _ 

4
   v 

i
  at an 

angle of 36.9° below the +x-axis. Find v1 in terms of vi.



or

 v  i  
2
  =  v  c  

2
  +  v  4  

2
 

Since vi, vc, and v4 are the sides of a triangle, this is a state-

ment of the Pythagorean theorem—the triangle must be a 

right triangle with vi as the hypotenuse (Fig. 7.22b). There-

fore, the velocities of the 4-ball and the cue ball after the 

collision are perpendicular to each other.

If Eric sinks the 4-ball, the cue ball falls into pocket A. 

He shouldn’t attempt this shot until he learns how to put 

some spin on the ball.

Discussion Note that we did not resolve the velocities into 

x- and y-components. Doing so would have made the solu-

tion longer in this case.

We found that the two balls move at right angles after the 

collision. This result is true for any two-dimensional elastic 

collision between two objects of equal masses if one of them 

is initially at rest. In Example 7.11 the two pucks move at 

right angles after the collision, but the collision is inelastic—

the masses are unequal.

Practice Problem 7.12 Finding the Speed Ratio

Suppose that the cue ball initially moves in the −x-direction. 

After the collision, the cue ball moves at 52.0° above the −x-

axis and the 4-ball moves at 38.0° below the −x-axis. Find 

the ratio of the balls’ speeds vc/v4 after the collision.

Conceptual Example 7.12 continued

A

B

Cue ball
4-ball4

C

Figure 7.21 Should Eric try to sink the 4-ball?

90°vc

v4

vi

vc

v4

vi

(a) (b)

Figure 7.22

(a) Graphical addition of velocity vectors as required 

by the conservation of momentum. (b) Since  v  i  
2
  =  v  c  

2
  +  

v  4  
2 , the three velocities form a right triangle.
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   Master the Concepts 

    • Definition of linear momentum:

      p ⃗ = mv ⃗   (7-1)

   • During an interaction, momentum is transferred from 

one body to another, but the total momentum of the two 

is unchanged.

      Δp ⃗ 2 = −Δp ⃗1    

   • Impulse is the average force times the time interval.  

   • The total impulse equals the change in momentum:

      Δp ⃗ = ∑ F⃗ Δt   (7-2)

continued on next page
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   • A conserved quantity is one that remains unchanged as 

time passes. 

        • Impulse is the area under a graph of force versus time.  

4

3

2

1

5

1 20 3 4 5 t (s)
0

Fx (N)

   • The net force is the rate of change of momentum.

      ∑ F⃗ =   lim    
Δt→0

    
Δp ⃗

 ___ 
Δt

     (7-4)

   • External interactions may change the total momentum 

of a system.  

   • Internal interactions do not change the total momentum 

of a system.  

   • Conservation of linear momentum: if the net external 

force acting on a system is zero, then the momentum of 

the system is conserved.  

   • The position of the  cm  of a system of  N  particles is

       x  CM  =   
 m  1  x  1  +  m  2  x  2  + … +  m  N  x  N 

  _____________________  
M

    

  and

       y 
CM

  =   
 m 

1
  y 

1
  +  m 

2
  y 

2
  + … +  m 

N
  y 

N
 
  ____________________  

M
     (7-9)

  where  M  is the total mass of the particles:

      M =  m  1  +  m  2  + … +  m  N     

   • The total momentum of a system is equal to the total 

mass times the velocity of the center of mass:  

      p ⃗ =  p ⃗ 
1
  + p  ⃗ 2  + … +  p ⃗ 

N
  = M v ⃗ 

CM
    (7-11)

   • No matter how complicated a system is, the  cm  moves 

as if all the mass of the system were concentrated to a 

point particle with all the external forces acting on it:

      ∑ ⃗ F ext  = M a ⃗ 
CM

    (7-13)

Center of mass

CM

   • The  cm  of an isolated system moves at constant velocity.  

   • Conservation of momentum is used to solve problems 

involving collisions, explosions, and the like. Even 

when external forces are acting, the momentum of the 

system just before a collision is nearly equal to the 

momentum just after if the collision interaction is 

brief. The impulse, and, therefore, the change in 

momentum of the system, is small since the time inter-

val is small.    

Master the Concepts continued

  Conceptual Questions 

    1. You are trapped on the second floor of a burning build-

ing. The stairway is impassable, but there is a balcony 

outside your window. Describe what might happen in 

the following situations. (a) You jump from the second-

story balcony to the pavement below, landing stiff-

legged on your feet. (b) You jump into a privet hedge, 

landing on your back and rolling to your feet. (c) You 

jump into a firefighters’ net, landing on your back. What 

happens to the net as you land in it? What do the fire-

fighters do to cushion your fall even more?  

   2. A force of 30 N is applied for 5 s to each of two bodies 

of different masses. (a) Which one has the greatest 

momentum change? (b) The greatest velocity change? 

(c) The greatest acceleration?  

   3. If you take a rifle and saw off part of the barrel, the 

muzzle speed (the speed at which bullets emerge from 

the barrel) will be smaller. Why?  

   4. A firecracker at rest explodes, sending fragments off in 

all directions. Initially the firecracker has zero momen-

tum, but after the explosion the fragments flying off 

each have quite a lot of momentum. Hasn’t momentum 

been created? If not, explain why not.  

   5. An astronaut in deep space is taking a space walk when 

the tether connecting him to his spaceship breaks. How 

can he get back to the ship? He doesn’t have a rocket 

propulsion backpack, unfortunately, but he is carrying a 

big wrench.  

   6. An astronaut hits a golf ball on the surface of the Moon. 

Is the momentum of the ball conserved while it is in 

flight? Is there a  component  of its momentum that is 

conserved?  

   7. Which would be more effective: a hammer that collides 

elastically  with a nail, or one that collides perfectly 

inelastically?  Assume that the mass of the hammer is 

much larger than that of the nail.  



     8. Squid are the fastest swimmers among invertebrates. 

A cavity within the squid is filled with water. The  mantle,  

a powerful muscle, squeezes the cavity and expels the 

water through a narrow opening (the  siphon ) at high 

speed. Using momentum conservation, explain how this 

propels the squid forward. How is the squid’s swim-

ming mechanism like a rocket engine?  

   9. In your own words, phrase each of Newton’s three laws 

of motion as a statement about momentum.  

   10. Two objects with different masses have the same kinetic 

energy. Which has the larger magnitude of momentum?  

   11. A woman is 1.60 m tall. When standing straight, is her 

 cm  necessarily 0.80 m above the floor? Explain.  

   12. The momentum of a system can only be changed by an 

external force. What is the external force that changes 

the momentum of a bicycle (with its rider) as it speeds 

up, slows down, or changes direction? Is it true that 

changes in the bicycle’s kinetic energy must come from 

an external force? Explain.  

   13. In an egg toss, two people try to toss a raw egg back and 

forth without breaking it as they move farther and far-

ther apart. Discuss a strategy in terms of impulse and 

momentum for catching the egg without breaking it.  

   14. In the “executive toy,” two balls are pulled back and 

then released. After the collision, two balls move away 

on the opposite side. Why do we never see three balls 

move away following this action, although with a lower 

velocity so that linear momentum is still conserved? 

     

 15. A baseball batting coach emphasizes the importance of 

“follow-through” when a batter is trying for a home run. 

The coach explains that the follow-through keeps the bat 

in contact with the ball for a longer time so the ball will 

travel a greater distance. Explain the reasoning behind this 

statement in terms of the impulse-momentum theorem.  

   16. Micah is standing on his frictionless skateboard facing a 

concrete wall. He wants to project himself backward by 

throwing small balls at the wall. His friend Jeremy says 

that Micah need not throw the balls against the wall, he 

just needs to throw the balls away from himself, but 

Micah says the balls need something to push against if 

they are to propel him backward. Who is right and why?  

   17. Mary and Daryl are new to the sport of rock climbing. 

Mary says she wants a stiff rope because a stiff rope is a 

strong rope. Daryl insists that a good climbing rope 

must have some stretch. Who is correct, and why?    

  Multiple-Choice Questions 

    1. A ball of mass  m  with initial speed  v  collides with 

another ball of mass  M,  initially at rest. After the colli-

sion the two balls stick together, moving with speed  V.  

The ratio of the final speed  V  to the initial speed  v  is 

 V / v   = 

    (a)       M
 _____ 

M + m
         (b)       

M + m
 _____ 

M
      

   (c)       
m
 _____ 

M + m
         (d)       

M + m
 _____ m      

   (e)      √
_____

   M
 _____ 

M + m
           (f)        √

_____

   
m
 _____ 

M + m
             

   2. Two particles A and B of equal mass are located at some 

distance from each other. Particle A is at rest while B 

moves away from A at speed  v.  What happens to the 

center of mass of the system of two particles?

    (a) It does not move.  

   (b) It moves with a speed  v  away from A.  

   (c) It moves with a speed  v  toward A.  

   (d) It moves with a speed       1 _ 
2
  v   away from A.  

   (e) It moves with a speed       1 _ 
2
  v   toward A.     

   3. Two uniform spheres with equal mass per unit volume 

are in contact with one another. The mass of sphere A is 

five times that of sphere B. The center of mass of the 

system is

    (a) at the point where A and B touch.  

   (b)  inside sphere B somewhere on the line joining the 

centers of A and B.  

   (c)  inside sphere A somewhere on the line joining the 

centers.  

   (d) at the center of sphere A.  

   (e) outside of both spheres.     

   4. An object at rest suddenly explodes into three parts of 

equal mass. Two of the parts move away at right angles 

to each other and with equal speeds  v.  What is the veloc-

ity of the third part just after the explosion?

    (a) Direction of vector 1 and magnitude 2 v   

   (b) Direction of vector 2 and magnitude      √
__

 2  v    

   (c)  Direction of vector 3 

and magnitude       1 ___ 
 √

__

 2  
  v    

   (d)  Direction of vector 2 

and magnitude       1 ___ 
 √

__

 2  
  v    

   (e)  Direction of vector 1 

and magnitude       1 _ 
2
  v      

45°

45°15°

30°

m

m

m

1

2

3

v

v
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        5. A 3.0-kg object is initially at rest. It then receives an 

impulse of magnitude 15 N·s. After the impulse, the 

object has

    (a) a speed of 45 m/s.  

   (b) a momentum of magnitude 5.0 kg·m/s.  

   (c) a speed of 7.5 m/s.  

   (d) a momentum of magnitude 15 kg·m/s.     

   6. An object of mass  m  drops from rest a little above the 

Earth’s surface for a time  t.  Ignore air resistance. After 

time  t  the magnitude of its momentum is

    (a)  mgt  2   

   (b)  mgt   

   (c)     mg √
_
 t      

   (d)      √
____

 mgt      

   (e)       
 mgt 2 

 ____ 
2
          

Multiple-Choice Questions 7–12  refer to a situation in 

which a golf ball is projected straight upward in the 

+  y -direction. Ignore air resistance. The answer choices are 

found in the figure. 

(a)

t

(b)

t

(c)

t

(d)

t

(e)

t

(f)

t

 7. Which graph shows the acceleration  a   y   of the ball as a 

function of time?  

   8. Which graph shows the vertical position  y  of the ball as 

a function of time?  

   9. Which graph shows the momentum  p   y   of the ball as 

a function of time?  

   10. Which graph shows the kinetic energy of the ball as a 

function of time?  

   11. Which graph shows the potential energy of the ball as 

a function of time?  

   12. Which graph shows the total energy of the ball as a 

function of time?    

  Problems 

 Combination conceptual/quantitative problem  

 Biological or medical application  

✦ Challenging problem  

Blue # Detailed solution in the Student Solutions Manual  

1  2      Problems paired by concept  

     Text website interactive or tutorial   

  7.2 Momentum; 7.3 The Impulse-Momentum 
Theorem 

  1.  Two cars, each of mass 1300 kg, are approaching each 

other on a head-on collision course. Each speedometer 

reads 19 m/s. What is the magnitude of the total momen-

tum of the system?  

    2.  What is the momentum of an automobile (weight  =
9800 N) when it is moving at 35 m/s to the south?  

    3.  Verify that the SI unit of impulse is the same as the SI 

unit of momentum.  

  4.  A cue stick hits a cue ball with an average force of 24 N 

for a duration of 0.028 s. If the mass of the ball is 0.16 kg, 

how fast is it moving after being struck?  

    5.  A system consists of three particles with these masses 

and velocities: mass 3.0 kg, moving north at 3.0 m/s; 

mass 4.0 kg, moving south at 5.0 m/s; and mass 7.0 kg, 

moving north at 2.0 m/s. What is the total momentum of 

the system?  

    6.  A sports car traveling along a straight line increases its 

speed from 20.0 mi/h to 60.0 mi/h. (a) What is the ratio 

of the final to the initial magnitude of its momentum? 

(b) What is the ratio of the final to the initial kinetic 

energy?  

 7.  A ball of mass 5.0 kg moving with a speed of 2.0 m/s in 

the  +  x -direction hits a wall and bounces back with the 

same speed in the  −  x -direction. What is the change of 

momentum of the ball?  

    8.  An object of mass 3.0 kg is projected into the air at a 55 °  

angle. It hits the ground 3.4 s later. What is its change in 

momentum while it is in the air? Ignore air resistance.  

    9.  An object of mass 3.0 kg is allowed to fall from rest 

under the force of gravity for 3.4 s. What is the change 

in its momentum? Ignore air resistance.  

    10.  What average force is necessary to bring a 50.0-kg sled 

from rest to a speed of 3.0 m/s in a period of 20.0 s? 

Assume frictionless ice.  

    11.  For a safe re-entry into the Earth’s atmosphere, the 

pilots of a space capsule must reduce their speed from 

2.6  ×  10 4  m/s to 1.1  ×  10 4  m/s. The rocket engine pro-

duces a backward force on the capsule of 1.8  ×  10 5  N. 

The mass of the capsule is 3800 kg. For how long must 

they fire their engine? [ Hint:  Ignore the change in mass 

of the capsule due to the expulsion of exhaust gases.]  

   12. A 0.15-kg baseball traveling in a horizontal direction 

with a speed of 20 m/s hits a bat and is popped straight 

up with a speed of 15 m/s. (a) What is the change in 

momentum (magnitude and direction) of the baseball? 

(b) If the bat was in contact with the ball for 50 ms, 

what was the average force of the bat on the ball?  



    13.  An automobile traveling at a speed of 30.0 m/s applies its 

brakes and comes to a stop in 5.0 s. If the automobile has a 

mass of 1.0  ×  10 3  kg, what is the average horizontal force 

exerted on it during braking? Assume the road is level.  

   14. A 3.0-kg body is initially moving northward at 15 m/s. 

Then a force of 15 N, toward the east, acts on it for 

4.0 s. (a) At the end of the 4.0 s, what is the body’s 

final velocity? (b) What is the change in momentum 

during the 4.0 s?  

    15. A boy of mass 60.0 kg is rescued from a hotel fire by 

leaping into a firefighters’ net. The window from 

which he leapt was 8.0 m above the net. The firefight-

ers lower their arms as he lands in the net so that he is 

brought to a complete stop in a time of 0.40 s. (a) What 

is his change in momentum during the 0.40-s interval? 

(b) What is the impulse on the net due to the boy during 

the interval? [ Hint:  Do not ignore gravity.] (c) What is 

the average force on the net due to the boy during the 

interval?  

     16. A 115-g ball is traveling to the left with a speed of 30 m/s 

when it is struck by a racket. The force on the ball, 

directed to the right and applied over 21 ms of contact 

time, is shown in the graph. What is the speed of the 

ball immediately after it leaves the racket? (  tuto-

rial: impulse) 

t (ms)0 7 13 21
0

600

400

200

F (N)

17.  A pole-vaulter of mass 60.0 kg vaults to a height of 6.0 m 

before dropping to thick padding placed below to cushion 

her fall. (a) Find the speed with which she lands. (b) If the 

padding brings her to a stop in a time of 0.50 s, what is 

the average force on her body due to the padding during 

that time interval?    

  7.4 Conservation of Momentum 

     18.  A rifle has a mass of 4.5 kg and it fires a bullet of mass 

10.0 g at a muzzle speed of 820 m/s. What is the recoil 

speed of the rifle as the bullet leaves the gun barrel?  

   19. A 0.030-kg bullet is fired vertically at 200 m/s into a 

0.15-kg baseball that is initially at rest. The bullet lodges 

in the baseball and, after the collision, the baseball/

bullet rise to a height of 37 m. (a) What was the speed of 

the baseball/bullet right after the collision? (b) What 

✦✦

✦✦

was the average force of air resistance while the base-

ball/bullet was rising?  

    20.  A submarine of mass 2.5  ×  10 6  kg and initially at rest 

fires a torpedo of mass 250 kg. The torpedo has an 

initial speed of 100.0 m/s. What is the initial recoil 

speed of the submarine? Neglect the drag force of the 

water.  

21.  A uranium nucleus (mass 238 u), initially at rest, under-

goes radioactive decay. After an alpha particle (mass 4.0 u) 

is emitted, the remaining nucleus is thorium (mass 

234 u). If the alpha particle is moving at 0.050 times the 

speed of light, what is the recoil speed of the thorium 

nucleus? (Note: “u” is a unit of mass; it is  not  necessary 

to convert it to kg.)  

    22.  Dash is standing on his frictionless skateboard with 

three balls, each with a mass of 100 g, in his hands. The 

combined mass of Dash and his skateboard is 60 kg. 

How fast should dash throw the balls forward if he 

wants to move backward with a speed of 0.50 m/s? Do 

you think Dash can succeed? Explain.  

    23.  A 58-kg astronaut is in space, far from any objects that 

would exert a significant gravitational force on him. 

He would like to move toward his spaceship, but his 

jet pack is not functioning. He throws a 720-g socket 

wrench with a velocity of 5.0 m/s in a direction away 

from the ship. After 0.50 s, he throws a 800-g spanner 

in the same direction with a speed of 8.0 m/s. After 

another 9.90 s, he throws a mallet with a speed of 6.0 m/s 

in the same direction. The mallet has a mass of 1200 g. 

How fast is the astronaut moving after he throws the 

mallet?  

   24. A man with a mass of 65 kg skis down a frictionless hill 

that is 5.0 m high. At the bottom of the hill the terrain 

levels out. As the man reaches the horizontal section, he 

grabs a 20-kg backpack and skis off a 2.0-m-high ledge. 

At what horizontal distance from the edge of the ledge 

does the man land? 

5.0 m

2.0 m

Backpack

           25.  A cannon on a railroad car is facing in a direction paral-

lel to the tracks. It fires a 98-kg shell at a speed of 105 m/s 

(relative to the ground) at an angle of 60.0 °  above the 

horizontal. If the cannon plus car have a mass of 

5.0  ×  10 4  kg, what is the recoil speed of the car if it was 

at rest before the cannon was fired? [ Hint:  A  component  

✦✦
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of a system’s momentum along an axis is conserved if 

the net external force acting on the system has no com-

ponent along that axis.] 

105 m/s

60.0°

y

x

26. A marksman standing on a motionless railroad car fires a 

gun into the air at an angle of 30.0 °  from the horizontal. 

The bullet has a speed of 173 m/s (relative to the ground) 

and a mass of 0.010 kg. The man and car move to the left 

at a speed of 1.0  ×  10  − 3  m/s after he shoots. What is the 

mass of the man and car? (See the hint in Problem 25.) 

30.0°

         7.5 Center of Mass; 7.6 Motion of the 
Center of Mass 

27.  Particle A is at the origin and has a mass of 30.0 g. Par-

ticle B has a mass of 10.0 g. Where must particle B be 

located if the coordinates of the  cm  are ( x,   y )  =  (2.0 cm, 

5.0 cm)?  

      28.  Particle A has a mass of 5.0 g and particle B has a mass 

of 1.0 g. Particle A is located at the origin and particle B 

is at the point ( x,   y )  =  (25 cm, 0). What is the location of 

the  cm?  (  tutorial: center of mass)  

29.  The three bodies in the figure each have the same mass. 

If one of the bodies is moved 12 cm in the positive 

x -direction, by how much does the  cm  move? 

✦✦

3 x (m)10 2

3

y (m)

2

1

0

         30.  The positions of three particles, written as ( x, y ) coordi-

nates, are: particle 1 (mass 4.0 kg) at (4.0 m, 0 m); parti-

cle 2 (mass 6.0 kg) at (2.0 m, 4.0 m); particle 3 (mass 3.0 kg) 

at ( − 1.0 m,  − 2.0 m). What is the location of the  cm?   

    31. Belinda needs to find the  cm  of a sculpture she has made 

so that it will hang in a gallery correctly. The sculpture 

is all in one plane and consists of various shaped uni-

form objects with masses and sizes as shown. Where is 

the  cm  of this sculpture? Assume the thin rods connect-

ing the larger pieces have no mass and place the refer-

ence frame origin at the top left corner of the sculpture. 

       

y

x
0.5 m

0.6 m

2.0 m

1.0 m

1.0 m

1.0 m

1.5 m

0.8 m

0.8 m

2.0 m

2.0 kg

2.0 kg

3.0 kg

5.0 kg

Origin

 32. Jane is sitting on a chair with her lower leg at a 30.0 °  

angle with respect to the vertical, as shown. You need 

to develop a computer model of her leg to assist in some 

medical research. If you assume that her leg can be 

modeled as two 

uniform cylinders, 

one with mass  M   =  

20 kg and length  

L   =  35 cm and one 

with mass  m   =  

10 kg and length 

 l   =  40 cm, where is 

the  cm  of her leg? 

✦✦

y

x

35 cm

30.0°

40 cm

Origin



33.  Find the  x -coordinate of the  cm  of the composite object 

shown in the figure. The sphere, cylinder, and rectangu-

lar solid all have a uniform composition. Their masses 

and dimensions are: sphere: 200 g, diameter  =  10 cm; 

cylinder: 450 g, length  =  17 cm, radius  =  5.0 cm; rect-

angular solid: 325 g, length in  x -direction  =  16 cm, 

height  =  10 cm, depth  =  12 cm. 

x

200 g 450 g 325 g

0

 

      34.  Consider two falling bodies. Their masses are 3.0 kg 

and 4.0 kg. At time  t   =  0, the two are released from rest. 

What is the velocity of their  cm  at  t   =  10.0 s? Ignore air 

resistance.  

    35.  Body A of mass 3 kg is moving in the  +  x -direction with 

a speed of 14 m/s. Body B of mass 4 kg is moving in the 

 −  y -direction with a speed of 7 m/s. What are the  x - and 

y -components of the velocity of the  cm  of the two 

bodies?  

 36.  If a particle of mass 5.0 kg is moving east at 10 m/s and 

a particle of mass 15 kg is moving west at 10 m/s, what 

is the velocity of the  cm  of the pair?  

37.  An object located at the origin and having mass  M

explodes into three pieces having masses  M /4,  M /3, and 

5 M /12. The pieces scatter on a horizontal frictionless 

xy -plane. The piece with mass  M /4 flies away with 

velocity 5.0 m/s at 37 °  above the  x -axis. The piece with 

mass  M /3 has velocity 4.0 m/s directed at an angle of 

45 °  above the  −  x -axis.  (a)  What are the velocity compo-

nents of the third piece? (b) Describe the motion of the 

cm  of the system after the explosion.  

   38. Prove Eq. (7-13)     ∑ ⃗ F  ext  = M a ⃗  CM .   [ Hint:  Start with 

∑  F⃗  ext  =   lim    
Δt→0

  (Δp ⃗/Δt),   where     ∑  F⃗  ext    is the net external 

force acting on a system and     p ⃗   is the total momentum of 

the system.]    

  7.7 Collisions in One Dimension 

    39. A helium atom (mass 4.00 u) moving at 618 m/s to the 

right collides with an oxygen molecule (mass 32.0 u) 

moving in the same direction at 412 m/s. After the colli-

sion, the oxygen molecule moves at 456 m/s to the right. 

What is the velocity of the helium atom after the 

collision?  

   40. A toy car with a mass of 120 g moves to the right with a 

speed of 0.75 m/s. A small child drops a 30.0-g piece of 

clay onto the car. The clay sticks to the car and the car 

continues to the right. What is the change in speed of 

the car? Consider the frictional force between the car 

and the ground to be negligible.  

      41.  In the railroad freight yard, an empty freight car of mass 

m  rolls along a straight level track at 1.0 m/s and collides 

✦✦

with an initially stationary, fully loaded boxcar of mass 

4.0 m.  The two cars couple together on collision. (a) What 

is the speed of the two cars after the collision? (b) Sup-

pose instead that the two cars are at rest after the collision. 

With what speed was the loaded boxcar moving before 

the collision if the empty one was moving at 1.0 m/s? 

(  tutorial: sticking collision)  

42.  A 0.020-kg bullet traveling at 200.0 m/s east hits a 

motionless 2.0-kg block and bounces off it, retracing its 

original path with a velocity of 100.0 m/s west. What is 

the final velocity of the block? Assume the block rests 

on a perfectly frictionless horizontal surface.  

43.  A block of wood of mass 0.95 kg is initially at rest. A 

bullet of mass 0.050 kg traveling at 100.0 m/s strikes 

the block and becomes embedded in it. With what speed 

do the block of wood and the bullet move just after the 

collision?  

    44.  A 0.020-kg bullet is shot horizontally and collides 

with a 2.00-kg block of wood. The bullet embeds in 

the block and the block slides along a horizontal sur-

face for 1.50 m. If the coefficient of kinetic friction 

between the block and surface is 0.400, what was the 

original speed of the bullet?  

45.  A 2.0-kg block is moving to the right at 1.0 m/s just 

before it strikes and sticks to a 1.0-kg block initially at 

rest. What is the total momentum of the two blocks after 

the collision?  

    46.  A 75-kg man is at rest on ice skates. A 0.20-kg ball is 

thrown to him. The ball is moving horizontally at 25 m/s 

just before the man catches it. How fast is the man mov-

ing just after he catches the ball?  

   47.  A BMW of mass 2.0  ×  10 3  kg is traveling at 42 m/s. It 

approaches a 1.0  ×  10 3  kg Volkswagen going 25 m/s in 

the same direction and strikes it in the rear. Neither 

driver applies the brakes. Neglect the relatively small 

frictional forces on the cars due to the road and due to 

air resistance. (a) If the collision slows the BMW down 

to 33 m/s, what is the speed of the VW after the colli-

sion? (b) During the collision, which car exerts a larger 

force on the other, or are the forces equal in magnitude? 

Explain.  

     48. A 100-g ball collides elastically with a 300-g ball that is 

at rest. If the 100-g ball was traveling in the positive  x -

direction at 5.00 m/s before the collision, what are the 

velocities of the two balls after the collision? (  

tutorial: elastic collision)  

    49.  A projectile of 1.0-kg mass approaches a stationary 

body of 5.0 kg at 10.0 m/s and, after colliding, rebounds 

in the reverse direction along the same line with a speed 

of 5.0 m/s. What is the speed of the 5.0-kg body after 

the collision?  

    50.  A 2.0-kg object is at rest on a perfectly frictionless sur-

face when it is hit by a 3.0-kg object moving at 8.0 m/s. 

If the two objects are stuck together after the collision, 

what is the speed of the combination?  
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    51.  A spring of negligible mass is compressed between two 

blocks, A and B, which are at rest on a frictionless hori-

zontal surface at a distance of 1.0 m from a wall on the 

left and 3.0 m from a wall on the right. The sizes of the 

blocks and spring are small. When the spring is released, 

block A moves toward the left wall and strikes it at the 

same instant that block B strikes the right wall. The 

mass of A is 0.60 kg. What is the mass of B?  

52.  Two identical gliders on an air track are held together 

by a piece of string, compressing a spring between the 

gliders. While they are moving to the right at a common 

speed of 0.50 m/s, someone holds a match under the 

string and burns it, letting the spring force the gliders 

apart. One glider is then observed to be moving to the 

right at 1.30 m/s. (a) What velocity does the other glider 

have? (b) Is the total kinetic energy of the two gliders 

after the collision greater than, less than, or equal to the 

total kinetic energy before the collision? If greater, 

where did the extra energy come from? If less, where 

did the “lost” energy go?  

53.  A 0.010-kg bullet traveling horizontally at 400.0 m/s 

strikes a 4.0-kg block of wood sitting at the edge of a 

table. The bullet is lodged into the wood. If the table 

height is 1.2 m, how far from the table does the block 

hit the floor?  

54. Two objects with masses  m  1  and  m  2  approach each other 

with equal and opposite momenta so that the total 

momentum is zero. Show that, if the collision is elastic, 

the final  speed  of each object must be the same as its 

initial speed. (The final  velocity  of each object is  not  the 

same as its initial velocity, however.)  

    55. A 6.0-kg object is at rest on a perfectly frictionless sur-

face when it is struck head-on by a 2.0-kg object mov-

ing at 10 m/s. If the collision is perfectly elastic, what is 

the speed of the 6.0-kg object after the collision? [ Hint:

You will need two equations.]  

    56. Use the result of Problem 54 to show that in  any  elastic 

collision between two objects, the relative speed of the 

two is the same before and after the collision. [ Hints:

Look at the collision in its  cm   frame —the reference 

frame in which the  cm  is at rest. The  relative  speed of 

two objects is the same in any inertial reference frame.]    

  7.8 Collisions in Two Dimensions 

     57.  A firecracker is tossed straight up into the air. It explodes 

into three pieces of equal mass just as it reaches the high-

est point. Two pieces move off at 120 m/s at right angles 

to each other. How fast is the third piece moving?  

58.  Body A of mass  M  has an original velocity of 6.0 m/s in 

the  +  x -direction toward a stationary body (body B) of 

the same mass. After the collision, body A has velocity 

components of 1.0 m/s in the  +  x -direction and 2.0 m/s 

in the  +  y -direction. What is the magnitude of body B’s 

velocity after the collision?  

✦✦

✦✦

✦✦

✦✦

✦✦

  59.  (a) With reference to Practice Problem 7.11, find the 

momentum change of the ball of mass  m  1  during the 

collision. Give your answer in  x - and  y -component 

form; express the components in terms of  m  1  and  v   i  . 

(b) Repeat for the ball of mass  m  2 . How are the momen-

tum changes related?  

60.  A hockey puck moving at 0.45 m/s collides elastically 

with another puck that was at rest. The pucks have equal 

mass. The first puck is deflected 37 °  to the right and 

moves off at 0.36 m/s. Find the speed and direction of 

the second puck after the collision.  

61.  Puck 1 sliding along the  x -axis strikes stationary puck 2 

of the same mass. After the elastic collision, puck 1 

moves off at speed  v   1f  in the direction 60.0 °  above the 

x -axis; puck 2 moves off at speed  v   2f  in the direction 

30.0 °  below the  x -axis. Find  v   2f  in terms of  v   1f .  

    62.  Block A, with a mass of 220 g, is traveling north on a 

frictionless surface with a speed of 5.0 m/s. Block B, 

with a mass of 300 g travels west on the same surface 

until it collides with A. After the collision, the blocks 

move off together with a velocity of 3.13 m/s at an angle 

of 42.5 °  to the north of west. What was B’s speed just 

before the collision?  

    63.  A projectile of mass 2.0 kg approaches a stationary target 

body at 5.0 m/s. The projectile is deflected through an 

angle of 60.0 °  and its speed after the collision is 3.0 m/s. 

What is the magnitude of the momentum of the target 

body after the collision?  

   64. A 1500-kg car moving east at 17 m/s collides with a 

1800-kg car moving south at 15 m/s and the two cars 

stick together. (a) What is the velocity of the cars right 

after the collision? (b) How much kinetic energy was 

converted to another form during the collision?  

65.  A car with a mass of 1700 kg is traveling directly north-

east (45 °  between north and east) at a speed of 14 m/s 

(31 mph), and collides with a smaller car with a mass of 

1300 kg that is traveling directly south at a speed of 18 m/s 

(40 mph). The two cars stick together during the colli-

sion. With what speed and direction does the tangled 

mess of metal move right after the collision?  

66. In a nuclear reactor, a neutron moving at speed  v   i   in the 

positive  x -direction strikes a deuteron, which is at rest. 

The neutron is deflected by 90.0 °  and moves off with 

speed      v  i / √
__

 3     in the positive  y -direction. Find the  x - and 

 y -components of the deuteron’s velocity after the colli-

sion. (The mass of the deuteron is twice the mass of the 

neutron.)  

   67. Two identical pucks are on an air table. Puck A has an 

initial velocity of 2.0 m/s in the  +  x -direction. Puck B is at 

rest. Puck A collides elastically with puck B and A moves 

off at 1.0 m/s at an angle of 60 °  above the  x -axis. What is 

the speed and direction of puck B after the collision?  

   68. In a circus trapeze act, two acrobats actually fly through 

the air and grab on to one another, then together grab a 

✦✦

✦✦

✦✦



swinging bar. One acrobat, with a mass of 60 kg, is 

moving at 3.0 m/s at an angle of 10 °  above the horizon-

tal and the other, with a mass of 80 kg, is approaching 

her with a speed of 2.0 m/s at an angle of 20 °  above the 

horizontal. What is the direction and speed of the acro-

bats right after they grab on to each other? Let the posi-

tive  x -axis be in the horizontal direction and assume the 

first acrobat has positive velocity components in the 

positive  x - and  y -directions.  

      69.  Two African swallows fly toward one another, carrying 

coconuts. The first swallow is flying north horizontally 

with a speed of 20 m/s. The second swallow is flying at 

the same height as the first and in the opposite direction 

with a speed of 15 m/s. The mass of the first swallow is 

0.270 kg and the mass of his coconut is 0.80 kg. The 

second swallow’s mass is 0.220 kg and her coconut’s 

mass is 0.70 kg. The swallows collide and lose their 

coconuts. Immediately after the collision, the 0.80-kg 

coconut travels 10 °  west of south with a speed of 13 m/s, 

and the 0.70-kg coconut moves 30 °  east of north with a 

speed of 14 m/s. The two birds are tangled up with one 

another and stop flapping their wings as they travel off 

together. What is the velocity of the birds immediately 

after the collision?     

  Comprehensive Problems 

     70.  A sled of mass 5.0 kg is coasting along on a frictionless 

ice-covered lake at a constant speed of 1.0 m/s. A 1.0-kg 

book is dropped vertically onto the sled. At what speed 

does the sled move once the book is on it?  

    71.  An automobile weighing 13.6 kN is moving at 17.0 m/s 

when it collides with a stopped car weighing 9.0 kN. If 

they lock bumpers and move off together, what is their 

speed just after the collision?  

  72. For a system of three particles moving along a line, an 

observer in a laboratory measures the following masses 

and velocities.    What is the velocity of the  cm  of the 

system?

Mass (kg) vx (m/s)

3.0 +290

5.0 −120

2.0 +52

      73.  An intergalactic spaceship is traveling through space far 

from any planets or stars, where no human has gone 

before. The ship carries a crew of 30 people (of total 

mass 2.0  ×  10 3  kg). If the speed of the spaceship is 

1.0  ×  10 5  m/s and its mass (excluding the crew) is 

4.8  ×  10 4  kg, what is the magnitude of the total momen-

tum of the ship and the crew?  

    74.  A baseball player pitches a fastball toward home plate 

at a speed of 41 m/s. The batter swings, connects with 

✦✦

the ball of mass 145 g, and hits it so that the ball leaves 

the bat with a speed of 37 m/s. Assume that the ball is 

moving horizontally just before and just after the colli-

sion with the bat. (a) What is the magnitude of the 

change in momentum of the ball? (b) What is the 

impulse delivered to the ball by the bat? (c) If the bat 

and ball are in contact for 3.0 ms, what is the magnitude 

of the average force exerted on the ball by the bat?  

75.  A tennis ball of mass 0.060 kg is served. It strikes the 

ground with a velocity of 54 m/s (120 mi/h) at an angle 

of 22 °  below the horizontal. Just after the bounce it is 

moving at 53 m/s at an angle of 18 °  above the horizon-

tal. If the interaction with the ground lasts 0.065 s, what 

average force did the ground exert on the ball?  

   76. A uniform rod of length 30.0 cm is bent into the shape 

of an inverted U. Each of the three sides is of length 

10.0 cm. Find the location, in  x - and  y -coordinates, of 

the  cm  as measured from the origin. 

(10.0, 0)(0, 0)

(10.0, 10.0)(0, 10.0)

y (cm)

x (cm)

      77.  A child places 12 wooden blocks together, as shown in 

the figure. If each block has the same mass and density, 

where is the  cm  of these blocks? Each block is a cube 

with sides of 1.0 inch length. The origin of the coordinate 

system is at the center of the farthest block to the left. 

y

z x

Origin

        78.  To contain some unruly demonstrators, the riot squad 

approaches with fire hoses. Suppose that the rate of 

flow of water through a fire hose is 24 kg/s and the 

stream of water from the hose moves at 17 m/s. What 

force is exerted by such a stream on a person in the 

crowd? Assume that the water comes to a dead stop 

against the demonstrator’s chest.  

    79.  An inexperienced catcher catches a 130 km/h fastball of 

mass 140 g within 1 ms, whereas an experienced catcher 

slightly retracts his hand during the catch, extending the 

✦✦
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stopping time to 10 ms. What are the average forces 

imparted to the two gloved hands during the catches?  

      80.  A stationary 0.1-g fly encounters the windshield of a 

1000-kg automobile traveling at 100 km/h. (a) What is the 

change in momentum of the car due to the fly? (b) What 

is the change of momentum of the fly due to the car? 

(c) Approximately how many flies does it take to reduce 

the car’s speed by 1 km/h?  

    81.  A 0.15-kg baseball is pitched with a speed of 35 m/s 

(78 mph). When the ball hits the catcher’s glove, the 

glove moves back by 5.0 cm (2 in.) as it stops the ball. 

(a) What was the change in momentum of the base-

ball? (b) What impulse was applied to the baseball? 

(c) Assuming a constant acceleration of the ball, what 

was the average force applied by the catcher’s glove?  

      82.  A projectile of mass 2.0 kg approaches a stationary target 

body at 8.0 m/s. The projectile is deflected through an 

angle of 90.0 °  and its speed after the collision is 6.0 m/s. 

What is the speed of the target body after the collision if 

the collision is perfectly elastic?  

    83.  A radioactive nucleus is at rest when it spontaneously 

decays by emitting an electron and neutrino. The momen-

tum of the electron is 8.20  ×  10  − 19  kg·m/s and it is 

directed at right angles to that of the neutrino. The neu-

trino’s momentum has magnitude 5.00  ×  10  − 19  kg·m/s. 

(a) In what direction does the newly formed (daughter) 

nucleus recoil? (b) What is its momentum?  

Electron

Neutrino

Daughter nucleus

x

y

    84. A 60.0-kg woman stands at one end of a 120-kg raft that 

is 6.0 m long. The other end of the raft is 0.50 m from a 

pier. (a) The woman walks toward the pier until she gets 

to the other end of the raft and stops there. Now what 

is the distance between the raft and the pier? (b) In 

(a), how far did the woman walk (relative to the pier)?  

    85.  A police officer is investigating the scene of an accident 

where two cars collided at an intersection. One car with 

a mass of 1100 kg moving west had collided with a 

1300-kg car moving north. The two cars, stuck together, 

skid at an angle of 30 °  north of west for a distance of 

17 m. The coefficient of kinetic friction between the tires 

and the road is 0.80. The speed limit for each car was 

70 km/h. Was either car speeding?  

    86.  A jet plane is flying at 130 m/s relative to the ground. 

There is no wind. The engines take in 81 kg of air per 

second. Hot gas (burned fuel and air) is expelled from the 

engines at high speed. The engines provide a forward 

force on the plane of magnitude 6.0  ×  10 4  N. At what 

✦✦

✦✦

✦✦

✦✦

speed relative to the ground is the gas being expelled? 

[ Hint:  Look at the momentum change of the air taken in 

by the engines during a time interval Δ t. ] This calculation 

is approximate since we are ignoring the 3.0 kg of fuel 

consumed and expelled with the air each second.  

87.  Within cells, small organelles containing newly synthe-

sized proteins are transported along microtubules by 

tiny molecular motors called kinesins. What force does a 

kinesin molecule need to deliver in order to accelerate an 

organelle with mass 0.01 pg (10  − 17  kg) from 0 to 1  μ m/s 

within a time of 10  μ s? 

 
Problems 88 and 89.

B

A

h

        88. The pendulum bobs in the figure are made of soft clay 

so that they stick together after impact. The mass of bob 

A is half that of bob B. Bob B is initially at rest. What is 

the ratio of the kinetic energy of the combined bobs, 

just after impact, to the kinetic energy of bob A just 

before impact?  

    89.  The pendulum bobs in the figure are made of soft clay 

so that they stick together after impact. The mass of bob 

A is half that of bob B. Bob B is initially at rest. If bob 

A is released from a height  h  above its lowest point, 

what is the maximum height attained by bobs A and B 

after the collision?  

     90.  A flat, circular metal disk of uniform thickness has a 

radius of 3.0 cm. A hole is drilled in the disk that is 

1.5 cm in radius. The hole is tangent to one side of the 

disk. Where is the  cm  of the disk now that the hole has 

been drilled? [ Hint:  The original disk (before the hole is 

drilled) can be thought of as having two pieces—the disk 

with the hole plus the smaller disk of metal drilled out. 

Write an equation that expresses  x  CM  of the original disk in 

terms of the  x  CM ’s of the two pieces. Since the thickness is 

uniform, the mass of any piece is proportional to its area.] 

x (cm)3–3

–3

3.0 cm

y (cm)

3

0

✦✦

✦✦

✦✦

✦✦



    91.  Two pendulum bobs have equal masses and lengths 

(5.1 m). Bob A is initially held horizontally while bob B 

hangs vertically at rest. Bob A is released and collides 

elastically with bob B. How fast is bob B moving imme-

diately after the collision? 

 

5.1 m

5.1 m

B

A

     92. Two identical gliders, each with elastic bumpers and 

mass 0.10 kg, are on a horizontal air track. Friction is 

negligible. Glider 2 is stationary. Glider 1 moves toward 

glider 2 from the left with a speed of 0.20 m/s. They 

collide. After the collision, what are the velocities of 

glider 1 and glider 2?  

    93.  A radium nucleus (mass 226 u) at rest decays into a 

radon nucleus (symbol Rn, mass 222 u) and an alpha 

particle (symbol  a , mass 4 u). (a) Find the ratio of the 

speeds  v  a    / v  Rn  after the decay. (b) Find the ratio of the 

magnitudes of the momenta  p   a   / p  Rn . (c) Find the ratio of 

the kinetic energies  K   a   / K  Rn . (Note: “u” is a unit of mass; 

it is  not  necessary to convert it to kg.)    

  Answers to Practice Problems 

    7.1  (a) 0.78 kg·m/s downward; (b) 0.78 kg·m/s toward the 

apple; 1.3  ×  10  − 25  m/s  

   7.2  3.5 times his weight  

   7.3  1700 N; 0.0037 s  

✦✦

✦✦

   7.4  0.8 m/s in the  −  x -direction  

   7.5  1.7 m/s  

   7.6  2.2 m/s  

   7.7  (2.0 cm, 2.3 cm)  

   7.8  (a) 2.7 m; (b) 1.5 m in the other direction; (c) the cm does 

not move  

   7.9  4.0 m/s  

   7.10  10.0 m/s  

   7.11  0.751  v   i    

   7.12  0.781    

  Answers to Checkpoints 

    7.2  No, because the  direction  of the car’s momentum would 

have changed.  

   7.4   When external forces act on a system, the momentum 

of the system is not conserved.  

   7.6   Despite the fact that the hammer is rotating, it is in free 

fall and its  cm  follows the same trajectory as a point particle 

in free fall.  

   7.7  Yes. Momentum is conserved in both elastic and inelas-

tic collisions. In an inelastic collision, the initial and final 

 kinetic energies  are not equal.     

 ANSWERS TO CHECKPOINTS 259



 C H A P T E R 

 8  Torque and Angular 
Momentum 

  In gymnastics, the iron cross 

is a notoriously difficult feat 

requiring incredible strength. 

Why does it require such great 

strength? (See p. 282 for the 

answer.)        



 • translational equilibrium (Section 4.2) 

 • uniform circular motion and circular orbits (Sections 5.1 and 5.4) 

 • angular acceleration (Section 5.6) 

 • conservation of energy (Section 6.1) 

 • center of mass and its motion (Sections 7.5 and 7.6) 

 • rolling without slipping (Section 5.1)   

    8.1  ROTATIONAL KINETIC ENERGY AND ROTATIONAL 

INERTIA 

  When a rigid object is rotating about a fixed axis, it has kinetic energy because each 

particle other than those on the axis of rotation is moving in a circle around the axis. In 

principle, we can calculate the kinetic energy of rotation by summing the kinetic energy 

of each particle. To say the least, that sounds like a laborious task. We need a simpler 

way to express the rotational kinetic energy of such an object so that we don’t have to 

calculate this sum over and over. Our simpler expression exploits the fact that the speed 

of each particle is proportional to the angular speed of rotation  w .     

 If a rigid object consists of  N  particles, the sum of the kinetic energies of the parti-

cles can be written mathematically using a subscript to label the mass and speed of each 

particle:

    Krot =   1 _ 
2
  m1 v  1  

2
  +   1 _ 

2
  m2 v  2  

2
  + … +   1 _ 

2
  mN v  N  

2
   =   ∑ 

i = 1
  

N

      1 _ 
2
  mi v  i  

2
   

The speed of each particle is related to its distance from the axis of rotation. Particles 

that are farther from the axis move faster. In Section 5.1, we found that the speed of a 

particle moving in a circle is

     v = rw    (5-7)   

where  w  is the angular speed and  r  is the distance between the rotation axis and the par-

ticle ( Fig. 8.1 ). By substitution, the rotational kinetic energy can be written

    Krot =  ∑ 
i = 1

  
N

      1 _ 
2
  mi r  i  

2
  w  2   

The entire object rotates at the same angular velocity  w , so the constants       1 _ 
2
     and  w   2  can be 

factored out of each term of the sum:

    Krot =   1 _ 
2
    (  ∑ 

i = 1
  

N

   mi r  i  
2
  )   w    2          

 The quantity in the parentheses  cannot change  since the distance between each par-

ticle and the rotation axis stays the same if the object is rigid and doesn’t change shape. 

However difficult it may be to compute the sum in the parentheses, we only need to do 

it  once  for any given mass distribution and axis of rotation. 

 Let’s give the quantity in the brackets the symbol  I.  In Chapter 5, we found it useful 

to draw analogies between translational variables and their rotational equivalents. By 

using the symbol  I,  we can see that translational and rotational kinetic energy have simi-

lar forms: translational kinetic energy is

     K 
tr
   =   1 _ 

2
  m v 2   

and    rotational kinetic energy    is    

    

Rotational kinetic energy:

  K 
rot

   =   1 _ 
2
   I w  2  (8-1)

The symbol Σ stands for a 

sum.   ∑ 
i = 1

  
N

          means the sum for 

 i   =  1, 2, . . . ,  N. 

The symbol Σ stands for a 

sum.   ∑ 
i = 1

  
N

          means the sum for 

 i   =  1, 2, . . . ,  N. 

1 432

v1

v2

v3

v4

Figure 8.1 Four points on a 

spinning CD. Points at greater 

distances from the center are 

moving faster than points closer 

to the center.

Concepts & Skills to Review

Since v = rw  was used to 

derive Eq. (8-1), w must be 

expressed in radians per unit time 

(normally rad/s).
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The quantity  I  is called the    rotational inertia:   

 

Rotational inertia:

 I =  ∑ 
i = 1

  
N

    m 
i
   r  

i
  

2
  (8-2)

(SI unit: kg⋅m2)

 Comparing the expressions for translational and rotational kinetic energies, we 

see that angular speed  w  takes the place of speed  v  and rotational inertia  I  takes the 

place of mass  m.  Mass is a measure of the inertia of an object, or, in other words, how 

difficult it is to change the object’s velocity. Similarly, for a rigid rotating object,  I  is a 

measure of its rotational inertia—how hard it is to change its angular velocity. That is 

why the quantity  I  is called the rotational inertia; it is also sometimes called the 

   moment of inertia.            

 When a problem requires you to find a rotational inertia, there are three principles 

to follow.       

    

Finding the Rotational Inertia

 1. If the object consists of a small number of particles, calculate the sum I =   ∑ 
i = 1

  
N

   mi  r  i  
2
   

directly.

 2. For symmetrical objects with simple geometric shapes, calculus can be used 

to perform the sum in Eq. (8-2). Table 8.1 lists the results of these calculations 

for the shapes most commonly encountered.

 3. Since the rotational inertia is a sum, you can always mentally decompose the 

object into several parts, find the rotational inertia of each part, and then add them. 

This is an example of the divide-and-conquer problem-solving technique.

   See the text website for more information on rotational inertia, including the paral-

lel- and perpendicular-axis theorems. 

   Keep in mind that the rotational inertia of an object depends on the location of the 

rotation axis.   For instance, imagine taking the hinges off the side of a door and putting 

them on the top so that the door swings about a horizontal axis like a cat flap door 

( Fig. 8.2b ). The door now has a considerably larger rotational inertia than before the hinges 

were moved because the door’s height is greater than its width. The door has the same mass 

as before, but its mass now lies on average much farther from the axis of rotation than that 

Axis of rotation

(a) (b)

A
x
is

 o
f 

ro
ta

ti
o
n

h

w

Figure 8.2 The rotational 

inertia of a door depends on the 

rotation axis. (a) The door with 

hinges at the side has a smaller 

rotational inertia, I =   1 _ 
3
   Mw 2 , 

than (b) the rotational inertia, 

I =   1 _ 
3
   Mh 2 , of the same door with 

hinges at the top, because the 

door is taller than it is wide.

CONNECTION: 

Rotational and translational 

kinetic energies have the 

same form:   1 _ 
2
   inertia × spee d 2 .



Figure 8.3 Hank Aaron 

choking up on the bat.

of the door in  Fig. 8.2a . In applying Eq. (8-2) to find the rotational inertia of the door, 

the values of   r    i     range from 0 to the height of the door ( h ), whereas with the hinges in the 

normal position the values of   r    i     range from 0 only to the width of the door  (w).        

              

PHYSICS AT HOME

The change in rotational inertia of a rod as the rotation axis changes can be 

easily felt. Hold a baseball bat in the usual way, with your hands gripping the 

bottom of the bat. Swing the bat a few times. Now “choke up” on the bat—move 

your hands up the bat—and swing a few times. The bat is easier to swing because 

it now has a smaller rotational inertia. Children often choke up on a bat that is 

too massive for them. Even major league baseball players occasionally choke up 

on the bat when they want more control over their swing to place a hit in a cer-

tain spot (Fig. 8.3). On the other hand, choking up on the bat makes it impossi-

ble to hit a home run. To hit a long fly ball, you want the pitched baseball to 

encounter a bat that is swinging with a lot of rotational inertia.

        

CHECKPOINT 8.1

According to Table 8.1, the rotational inertia of a uniform cylinder or disk about 

its central axis depends only on the mass and radius. Why does it not depend on 

the height of the cylinder (or thickness of the disk)?

Table 8.1 Rotational Inertia for Uniform Objects with Various Geometrical Shapes

Shape

Axis of 

Rotation

Rotational 

Inertia Shape

Axis of 

Rotation

Rotational 

Inertia

Th in hollow 

cylindrical 

shell (or 

hoop)

R

R

Ce ntral axis 

of cylinder

MR2 Solid sphere

R

Th rough 

center

  2 _ 
5
  M R 2 

So lid 

cylinder 

(or disk)
R

R

Ce ntral axis 

of cylinder

  1 _ 
2
  MR2 Th in hollow 

spherical 

shell
R

Th rough 

center

  2 _ 
3
  M R 2 

Ho llow 

cylindrical 

shell or 

disk

a b a

b

Top view

Ce ntral axis 

of cylinder
  1 _ 
2
  M( a 2  +  b 2 ) Th in rod (or 

rectangu-

lar plate) L

L Pe rpendicular 

to rod 

through end 

(or along 

edge of 

plate)

  1 _ 
3
  M L 2 

Re ctangular 

plate
a

b

Pe rpendicular 

to plate 

through 

center

  1 __ 
12

  M( a 2  +  b 2 ) Th in rod (or 

rectangu-

lar plate)

L

L

Pe rpendicular to 

rod through 

center 

(or parallel 

to edge of 

plate through 

center)

  1 __ 
12

  M L 2 
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into tiny pieces and applying Eq. (8-2), each of the distances  

r 
i
   is at least d = 0.90 m (to the center) but no more than  

√
_______

  d  2  +  R  2    ≈ 0.91 m (to the edge). Therefore, to a good approx-

imation, we can assume each disk to be a point mass at a dis-

tance d from the axis. Then

I = M d  2  + M d  2  +   1 __ 
12

   m L 2 

  = 2 × [20 kg × (0.90 m ) 2 ] +   1 __ 
12

    × 10 kg × (2.20 m ) 2 

  = 2 × 16.2 kg⋅ m 2  + 4.03 kg⋅ m 2  = 36 kg⋅ m 2 

As expected, the rotational inertia is much smaller about 

axis a than about axis b.

Discussion The rod makes only a slight contribution to 

the rotational inertia about axis a because the radius of the 

rod is so much smaller than the radii of the disks, so its mass 

is on average much closer to the axis of rotation. The rod 

makes a more significant contribution to the rotational iner-

tia about axis b because now the length, not radius, of the 

rod is relevant—its mass is distributed at distances from 0 to 

1.10 m from the axis of rotation. Even if we account for the 

thickness of the disks, as long as their thicknesses are small 

relative to d, our estimate Md2 of the contribution to I from 

each disk about axis b is still valid.

Practice Problem 8.1 Playground 
Merry-Go-Round

A playground merry-go-round is essentially a uniform disk 

that rotates about a vertical axis through its center (Fig. 8.5). 

Suppose the disk has a radius of 2.0 m and a mass of 160 kg; 

a child of mass 18.4 kg sits at the edge of the merry-go-

round. What is the merry-go-round’s rotational inertia, 

including the contribution due to the child? [Hint: Treat the 

child as a point mass at the edge of the disk.]

Example 8.1

Rotational Inertia of a Barbell

A barbell consists of two plates, each a uniform disk of mass 

20 kg and radius 15 cm, attached 20 cm from each end of a 

uniform rod of mass 10 kg, radius 1.25 cm, and length 2.20 

m (Fig. 8.4). Find the rotational inertia of the barbell about 

two different axes of rotation: (a) axis a, the central axis of 

the bar, and (b) axis b, perpendicular to the bar and through 

its midpoint. Ignore the thickness of the disks and the holes 

in the disks.

Strategy The rotational inertia of this composite object 

is the sum of the rotational inertias of the three parts (two 

disks and rod). Table 8.1 gives formulas for the rotational 

inertias of disks and rods, but only for certain axes of rota-

tion. In particular, for axis b we have two disks rotating 

about an axis external to the disks, so none of the formulas 

in Table 8.1 apply; instead we’ll return to the basic defini-

tion of rotational inertia [Eq. (8-2)] and make an approxi-

mation. Based on the distances between parts of the barbell 

and the two axes, we expect a smaller rotational inertia 

about axis a than about axis b. Let M and R be the mass and 

radius of each disk, and m, r, and L the mass, radius, and 

length of the rod, respectively.

Solution (a) Each of the three component parts, the two 

disks and the rod, are solid cylinders rotating about their 

central axes. (The two formulas in Table 8.1 for thin rods are 

for axes perpendicular to the rod, so they are not useful 

here.) From Table 8.1,

I =   1 _ 
2
   M R 2  +   1 _ 

2
   M R 2  +   1 _ 

2
   m r 2 

= 2 × [  1 _ 
2
   × 20 kg × (0.15 m ) 2 ] +   1 _ 

2
   × 10 kg × (0.0125 m ) 2 

= 2 × 0.225 kg⋅ m 2  + 0.00078 kg⋅ m 2  = 0.45 kg⋅ m 2 

(b) Table 8.1 gives the rotational inertia of the rod about axis 

b as   1 __ 
12

    mL 2 . The center of each disk (assumed to have negligi-

ble thickness) is a distance d =   1 _ 
2
   (2.20 m − 0.40 m) = 0.90 m 

from the midpoint of the rod. If we think of breaking a disk 

90 cm 20 cm90 cm20 cm

Axis b

Axis a
30
cm

2.5
cm

Figure 8.4

A barbell with two different rotation axes.

2.0 m

Axis of rotation

180 N

Figure 8.5 

Child on a 

merry-go-round.



When applying conservation of energy to objects that rotate, the rotational kinetic 

energy is included in the mechanical energy. In Eq. (6-12),

  W nc   = ΔK + ΔU = Δ E 
mech

   (6-12)

just as U stands for the sum of the elastic and gravitational potential energies, K stands 

for the sum of the translational and rotational kinetic energies:

K =  K 
tr
   +  K 

rot
  

The mechanical energy of the system includes the kinetic 

energies of three objects: the two masses and the pulley. All 

start with zero kinetic energy, so

ΔK =   1 _ 
2
  (m1 + m2) v 2  +   1 _ 

2
   I w  2 

The speed v of the masses is the same since the cord’s length 

is fixed. The speed v and the angular speed of the pulley w

are related if the cord does not slip: the tangential speed of 

the pulley must equal the speed at which the cord moves. 

The tangential speed of the pulley is its angular speed times 

its radius:

v = w R

After substituting v/R for w, the energy conservation equa-

tion becomes

ΔU + ΔK = [−m
1
gh + m

2
gh] +  [   1 __ 

2
  ( m 

1
   +  m 

2
  ) v 2  +   1 __ 

2
  I   (   v 

__ 
R

   )  2  ]  = 0

or

 [   1 __ 
2
  ( m 

1
   +  m 

2
  ) +   1 __ 

2
     I ___ 
 R 2 

   ]  v 2  = ( m 
1
   −  m 

2
  )gh

Solving this equation for v yields

v =  √
_____________

    
2( m 

1
   −  m 

2
  )gh
  ____________  

 m 
1
   +  m 

2
   + I/ R 2 

    

Discussion This answer is rich in information, in the sense 

that we can ask many “What if?” questions. Not only do 

these questions provide checks as to whether the answer is 

reasonable, they also enable us to perform thought experi-

ments, which could then be checked by constructing an 

Atwood’s machine and comparing the results.

For instance: What if m1 is only slightly greater than m2? 

Then the final speed v is small—as m2 approaches m1, v 

approaches 0. This makes intuitive sense: a small imbalance 

in weights produces a small acceleration. You should prac-

tice this kind of reasoning by making other such checks.

It is also enlightening to look at terms in an algebraic 

solution and connect them with physical interpretations. The 

quantity (m1 − m2)g is the imbalance in the gravitational 

Example 8.2

Atwood’s Machine

Atwood’s machine consists of a cord around a pulley of rota-

tional inertia I, radius R, and mass M, with two blocks (masses 

m1 and m2) hanging from the ends of the cord as in Fig. 8.6. 

(Note that in Example 3.11 we analyzed Atwood’s machine 

for the special case of a massless pulley; for a massless pulley 

I = 0.) Assume that the pulley is free to turn without friction 

and that the cord does not slip. Ignore air resistance. If the 

masses are released from rest, find how fast they are moving 

after they have moved a distance h (one up, the other down).

Strategy Ignoring both air resistance and friction means 

that no nonconservative forces act on the system; therefore, 

its mechanical energy is conserved:

ΔU + ΔK = 0

Gravitational potential energy is converted into the transla-

tional kinetic energies of the two blocks and the rotational 

kinetic energy of the pulley.

Solution For our convenience, we assume that m1 > m2. 

Mass m1, therefore, moves down and m2 moves up. After the 

masses have each moved a distance h, the changes in gravi-

tational potential energy are

ΔU1 = −m1gh

ΔU2 = +m2 gh

m2

m1

Pulley
mass M

Initial
position

h

h

R M

v1

v2

Figure 8.6 

Atwood’s machine.

continued on next page
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   8.2  TORQUE 

  Suppose you place a bicycle upside down to repair it. First, you give one of the wheels 

a spin. If everything is working as it should, the wheel spins for quite a while; its angu-

lar acceleration is small. If the wheel doesn’t spin for very long, then its angular veloc-

ity changes rapidly and the angular acceleration is large in magnitude; there must be 

excessive friction somewhere. Perhaps the brakes are rubbing on the rim or the bearings 

need to be repacked. 

 If we could eliminate  all  the frictional forces acting on the wheel, including air 

resistance, then we would expect the wheel to keep spinning without diminishing angu-

lar speed. In that case, its angular acceleration would be zero. The situation is reminis-

cent of Newton’s first law: a body with no external interactions, or at least no net force 

acting on it, moves with constant velocity. We can state a “Newton’s first law for rota-

tion”: a rotating body with no external interactions, and whose rotational inertia doesn’t 

change, keeps rotating at constant angular velocity. 

 Of course, the hypothetical frictionless bicycle wheel does have external interac-

tions. The Earth’s gravitational field exerts a downward force and the axle exerts an 

upward force to keep the wheel from falling. Then is it true that, as long as there is no 

net external force, the angular acceleration is zero? No; it is easy to give the wheel an 

angular acceleration while keeping the net force zero. Imagine bringing the wheel to 

rest by pressing two hands against the tire on opposite sides. On one side, the motion of 

the rim of the tire is downward and the kinetic frictional force is upward ( Fig. 8.8 ). On 

the other side, the tire moves upward and the frictional force is downward. In a similar 

way, we could apply equal and opposite forces to the opposite sides of a wheel at rest to 

make it start spinning. In either case, we exert equal magnitude forces, so that the net 

force is zero, and still give the wheel an angular acceleration.          

   Torque    A quantity related to force, called    torque,    plays the role in rotation that force 

itself plays in translation. A torque is not separate from a force; it is impossible to exert 

a torque without exerting a force. Torque is a measure of how effective a given force is 

at twisting or turning something. For something rotating about a fixed axis such as the 

bicycle wheel, a torque can  change  the rotational motion either by making it rotate faster 

or by slowing it down. 

 When stopping the bicycle wheel with two equal and opposite forces, as in  Fig. 8.8 , 

the net applied force is zero and, thus, the wheel is in translational equilibrium; but the 

net torque is not zero, so it is not in rotational equilibrium. Both forces tend to give the 

wheel the same sign of angular acceleration; they are both making the wheel slow down. 

The two torques are in fact equal, with the same sign.      

forces pulling on the two sides. The denominator 

(m1 + m2 + I/R2) is a measure of the total inertia of the 

system—the sum of the two masses plus an inertial contri-

bution due to the pulley. The pulley’s contribution is not

simply equal to its mass. If, for example, the pulley is a uni-

form disk with I =   1 _ 
2
   MR 2 , the term I/R2 would be equal to 

half the mass of the pulley.

The same principles used to analyze Atwood’s machine 

have many applications in the real world. One such applica-

tion is in elevators, where one of the hanging masses is the 

elevator and the other is the counterweight. Of course, the 

elevator and counterweight are not allowed to hang freely 

from a pulley—we must also consider the energy supplied 

by the motor.

Practice Problem 8.2 Modified Atwood’s Machine

Figure 8.7 shows a modified form of Atwood’s machine 

where one of the blocks slides on a table instead of hanging 

from the pulley. The blocks are released from rest. Find the 

speed of the blocks after they have moved a distance h in 

terms of m1, m2, I, R, and h. Ignore friction.

m1

m2

Pulley

R I

v2

v1

Figure 8.7 

Modified Atwood’s 

machine.

f1

f2

N2N1

Figure 8.8 A spinning bicycle 

wheel slowed to a stop by fric-

tion. Each hand exerts a normal 

force and a frictional force on 

the tire. The two normal forces 

add to zero and the two fric-

tional forces add to zero.

The radial direction is directly 

toward or away from the axis of 

rotation. The perpendicular or tan-

gential direction is perpendicular to 

both the radial direction and the axis 

of rotation; it is tangent to the circu-

lar path followed by a point as the 

object rotates.

Example 8.2 continued



   Relationship Between Force and Torque    What determines the torque produced by 

a particular force? Imagine trying to push open a massive bank vault door. Certainly 

you would push as hard as you can; the torque is proportional to the magnitude of the 

force. It also matters where and in what direction the force is applied. For maximum 

effectiveness, you would push perpendicularly to the door ( Fig. 8.9a ). If you pushed 

radially, straight in toward the axis of rotation that passes through the hinges, the door 

wouldn’t rotate, no matter how hard you push ( Fig. 8.9b ). A force acting in any other 

direction could be decomposed into radial and perpendicular components, with the 

radial component contributing nothing to the torque ( Fig. 8.9c ). Only the perpendicular 

component of the force ( F  ⊥ ) produces a torque     .        

 Furthermore,  where  you apply the force is critical ( Fig. 8.10 ). Instinctively, you 

would push at the outer edge, as far from the rotation axis as possible. If you pushed 

close to the axis, it would be difficult to open the door. Torque is proportional to the dis-

tance between the rotation axis and the  point of application  of the force (the point at 

which the force is applied).       

 To satisfy the requirements of the previous paragraphs, we define the magnitude of 

the torque as the product of the distance between the rotation axis and the point of appli-

cation of the force ( r ) with the perpendicular component of the force ( F  ⊥ ):

          

Definition of torque:

 t  = ±rF⊥ (8-3)

where  r  is the shortest distance between the rotation axis and the point of application of 

the force and  F  ⊥  is the perpendicular component of the force. 

   The symbol for torque is  t , the Greek letter tau. The SI unit of torque is the N⋅m. 

The SI unit of  energy,  the joule, is equivalent to N.m, but we do not write torque in 

joules.   Even though both energy and torque can be written using the same SI base units, 

the two quantities have different meanings; torque is not a form of energy.   To help 

maintain the distinction, the joule is used for energy but  not  for torque.                

CHECKPOINT 8.2

You are trying to loosen a nut, without success. Why might it help to switch to a 

wrench with a longer handle?

The symbol ⊥ stands for  perpendic-

ular;    stands for parallel.

The symbol ⊥ stands for  perpendic-

ular;    stands for parallel.

F

Top view

Axis Axis

(a) Maximum torque (b) Zero torque

rr

Axis

(c) Less torque

r

F

F

F⊥

r

Figure 8.9 Torque on a bank vault door depends on the direction of the applied force. (a) Pushing perpendicularly gives 

the maximum torque. (b) Pushing radially inward with the same magnitude force gives zero torque. (c) The torque is pro-

portional to the perpendicular component of the force (F⊥).

F F

(a) Larger torque

Axis Axis

(b) Smaller torque

rr
Figure 8.10 Torques; the 

same force at different distances 

from the axis.
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Sign Convention for Torque    The sign of the torque indicates the direction of the 

angular acceleration that torque would cause  by itself.  Recall from Section 5.1 that by 

convention a positive angular velocity  w   means counterclockwise (CCW) rotation and a 

negative angular velocity  w   means clockwise (CW) rotation. A positive angular acceler-

ation  a   either increases the rate of CCW rotation (increases the magnitude of a positive 

w  ) or decreases the rate of CW rotation (decreases the magnitude of a negative  w  ).     

 We use the same sign convention for torque. A force whose perpendicular compo-

nent tends to cause rotation in the CCW direction gives rise to a positive torque; if it is 

the only torque acting, it would cause a positive angular acceleration a ( Fig. 8.11 ). A 

force whose perpendicular component tends to cause rotation in the CW direction gives 

rise to a negative torque. The symbol  ±  in Eq. (8-3) reminds us to assign the appropriate 

algebraic sign each time we calculate a torque.       

   The sign of the torque is  not  determined by the sign of the angular velocity (in other 

words, whether the wheel is spinning CCW or CW); rather, it is determined by the sign 

of the angular  acceleration  the torque would cause if acting alone. To determine the 

sign of a torque, imagine which way the torque would make the object begin to spin if 

it is initially not rotating.   

In a more general treatment of torque, 

torque is a vector quantity defined as 

the cross product s ⃗ = r ⃗ ×  ⃗F.       See 

Appendix A.8 for the definition of 

the cross product. For an object 

rotating about a fixed axis, Eq. (8-3) 

gives the component of s ⃗       along the 

axis of rotation.

In a more general treatment of torque, 

torque is a vector quantity defined as 

the cross product s ⃗ = r ⃗ ×  ⃗F.       See 

Appendix A.8 for the definition of 

the cross product. For an object 

rotating about a fixed axis, Eq. (8-3) 

gives the component of s ⃗       along the 

axis of rotation.

Brake pad

F

(a) (b)

f

Chain

Sprocket/hub

Figure 8.11 (a) When the cyclist climbs a hill, the top half of the chain exerts a large force  ⃗F on the sprocket attached to 

the rear wheel. As viewed here, the torque about the axis of rotation (the axle) due to this force is clockwise. By convention, 

we call this a negative torque. (b) When the brakes are applied, the brake pads are pressed onto the rim, giving rise to fric-

tional forces on the rim. As viewed here, the frictional force  ⃗f causes a counterclockwise (positive) torque on the wheel 

about the axle.

wheel is 32 cm and the coefficient of kinetic friction between 

the tire and your hand is 0.75. The wheel is spinning in the 

CW sense. What is the net torque on the wheel?

Example 8.3

A Spinning Bicycle Wheel

To stop a spinning bicycle wheel, suppose you push radially 

inward on opposite sides of the wheel, as shown in Fig. 8.8, 

with equal forces of magnitude 10.0 N. The radius of the 

continued on next page



  Lever Arms 

 There is another, completely equivalent, way to calculate torques that is often more con-

venient than finding the perpendicular component of the force.  Figure 8.12  shows a 

force      F⃗   acting at a distance  r  from an axis. The distance  r  is the length of a line perpen-

dicular to the axis that runs from the axis to the force’s point of application. The force 

makes an angle  q    with that line. The torque is then

    t  = ±rF⊥ = ±r(F sin q  )  

The factor sin  q    could be grouped with  r  instead of with  F.  Then  t    =   ± ( r  sin  q   ) F,  or

     t  = ±r
⊥
F     (8-4)   

The distance  r  ⊥  is called the  lever arm  (or  moment arm ). The magnitude of the torque 

is, therefore, the magnitude of the force times the lever arm.        

Strategy The 10.0-N forces are directed radially toward 

the rotation axis, so they produce no torques themselves; 

only perpendicular components of forces give rise to torques. 

The forces of kinetic friction between the hands and the tire 

are tangent to the tire, so they do produce torques. The nor-

mal force applied to the tire is 10.0 N on each side; using the 

coefficient of friction, we can find the frictional forces.

Solution The frictional force exerted by each hand on the 

tire has magnitude

f  =  m  
k
   N = 0.75 × 10.0 N = 7.5 N

The frictional force is tangent to the wheel, so f
⊥
 =  f. Then 

the magnitude of each torque is

 t    =  rf 
⊥
   = 0.32 m × 7.5 N = 2.4 N⋅m

The two torques have the same sign, since they are both 

tending to slow down the rotation of the wheel. Is the torque 

positive or negative? The angular velocity of the wheel is 

negative since it rotates CW. The angular acceleration has 

the opposite sign because the angular speed is decreasing. 

Since a  > 0, the net torque is also positive. Therefore,

∑t  = +4.8 N⋅m

Discussion The trickiest part of calculating torques is 

determining the sign. To check, look at the frictional forces 

in Fig. 8.8. Imagine which way the forces would make the 

wheel begin to rotate if the wheel were not originally rotat-

ing. The frictional forces point in a direction that would tend 

to cause a CCW rotation, so the torques are positive.

Practice Problem 8.3 Disc Brakes

In the disc brakes that slow down a car, a pair of brake pads 

squeeze a spinning rotor; friction between the pads and the 

rotor provides the torque that slows down the car. If the nor-

mal force that each pad exerts on a rotor is 85 N and the 

coefficient of friction is 0.62, what is the frictional force on 

the rotor due to each of the pads? If this force acts 8.0 cm 

from the rotation axis, what is the magnitude of the torque 

on the rotor due to the pair of brake pads?

Example 8.3 continued

Finding Torques Using the Lever Arm

 1. Draw a line parallel to the force through the force’s point of application; this 

line (dashed in Fig. 8.12) is called the force’s line of action.

 2. Draw a line from the rotation axis to the line of action. This line must be per-

pendicular to both the axis and the line of action. The distance from the axis 

to the line of action along this perpendicular line is the lever arm (r
⊥
). If the 

line of action of the force goes through the rotation axis, the lever arm and the 

torque are both zero (see Fig. 8.9b).

 3. The magnitude of the torque is the magnitude of the force times the lever arm:

t  = ±r
⊥
F

 4. Determine the algebraic sign of the torque as before.
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(c) Using the top view of Fig. 8.13, the torque tends to close 

the door by making it rotate counterclockwise (assuming the 

door is initially at rest and no other torques act). The torque 

is therefore positive as viewed from above.

Example 8.4

Screen Door Closer

An automatic screen door closer attaches to a door 47 cm 

away from the hinges and pulls on the door with a force of 

25 N, making an angle of 15° with the door (Fig. 8.13). Find 

the magnitude of the torque exerted on the door due to this 

force about the rotation axis through the hinges using (a) the 

perpendicular component of the force and (b) the lever arm. 

(c) What is the sign of this torque as viewed from above?

Strategy For method (a), we must find the component of 

the 25-N force perpendicular to the radial direction. Then 

this component is multiplied by the length of the radial line. 

For method (b), we draw in the line of action of the force. 

Then the lever arm is the perpendicular distance from the 

line of action to the rotation axis. The torque is the magni-

tude of the force times the lever arm. We must be careful not 

to combine the two methods: the torque is not equal to the 

perpendicular force component times the lever arm. For (c), 

we determine whether this torque would tend to make the 

door rotate CCW or CW.

Solution (a) As shown in Fig. 8.14a, the radial component 

of the force (F||) passes through the rotation axis. The angle 

labeled 15° would actually be a bit larger than 15°, but since 

the thickness of the door is much less than 47 cm, we 

approximate it as 15°. The perpendicular component is

F⊥ = F sin 15°

The magnitude of the torque is

 t   = rF⊥ = 0.47 m × 25 N × sin 15° = 3.0 N⋅m

(b) Figure 8.14b shows the line of action of the force, drawn 

parallel to the force and passing through the point of appli-

cation. The lever arm is the perpendicular distance between 

the rotation axis and the line of action. The distance r is 

approximately 47 cm (again neglecting the thickness of the 

door). Then the lever arm is

r⊥ = r sin 15°

and the magnitude of the torque is

 t   = r⊥F = 0.47 m × sin 15° × 25 N = 3.0 N⋅m

r r

F
F

r⊥
r⊥ = r sin q

t  = rF sin q

F⊥ = F sin q

r⊥

Axis Axis

90°

90°

q

q

q
F⊥

F⊥

Figure 8.12 Finding the mag-

nitude of a torque using the lever 

arm.

47 cm

Hinge

Screen doorAxis of rotation

15° Door frame

Top view

25 N

Figure 8.13 

Screen door with automatic closing mechanism.

15°

90°Point of
application

Point of
application

Hinge

(a)

F||

F⊥

F

15°

Hinge

Lever arm

Line of
action

Radial
line r

(b)

r⊥

Figure 8.14

(a) Finding the perpendicular component of the force. 

(b) Finding the lever arm.

continued on next page



  Center of Gravity 

 We have seen that the torque produced by a force depends on the point of application of 

the force. What about gravity? The gravitational force on a body is not exerted at a sin-

gle point, but is distributed throughout the volume of the body. When we talk of “the” 

force of gravity on something, we really mean the total force of gravity acting on each 

particle making up the system.       

 Fortunately, when we need to find the total torque due to the forces of gravity act-

ing on an object, the total force of gravity can be considered to act at a single point. This 

point is called the    center of gravity.    The torque found this way is the same as finding 

all the torques due to the forces of gravity acting at every point in the body and adding 

them together. As you can verify in Problem 95, if the gravitational field is uniform in 

magnitude and direction, then the center of gravity of an object is located at the object’s 

center of mass.    

   8.3  CALCULATING WORK DONE FROM THE TORQUE 

Torques can do work, as anyone who has started a lawnmower with a pull cord can 

verify. Actually, it is the force that does the work, but in rotational problems it is often 

simpler to calculate the work done from the torque. Just as the work done by a con-

stant force is the product of force and the parallel component of displacement, work 

done by a constant torque can also be calculated as the torque times the  angular

displacement.     

 Imagine a torque acting on a wheel that spins through an angular displacement Δ q
while the torque is applied. The work done by the force that gives rise to the torque is 

the product of the perpendicular component of the force ( F  ⊥ ) with the arc length  s  

through which the point of application of the force moves ( Fig. 8.16 ). We use the per-

pendicular force component because that is the component parallel to the  displacement,  

which is instantaneously tangent to the arc of the circle. Thus,

     W = F⊥s    (8-5)   

When calculating the torque 

due to gravity, consider the 

entire gravitational force to act at 

the center of gravity.

When calculating the torque 

due to gravity, consider the 

entire gravitational force to act at 

the center of gravity.

CONNECTION: 

We’re not introducing a dif-

ferent kind of work, just a 

different way to calculate 

work.

CONNECTION: 

We’re not introducing a dif-

ferent kind of work, just a 

different way to calculate 

work.

Axis

Ankle
weight

30.0° mg

Figure 8.15

Exercise leg lifts.

Discussion The most common mistake to make in either 

solution method would be to use cosine instead of sine (or, 

equivalently, to use the complementary angle 75° instead of 

15°). A check is a good idea. If the automatic closer were 

more nearly parallel to the door, the angle would be less than 

15°. The torque would be smaller because the force is more 

nearly pulling straight in toward the axis. Since the sine 

function gets smaller for angles closer to zero, the expres-

sion checks out correctly.

It might seem silly for a door closer to pull at such an 

angle that the perpendicular component is relatively small. 

The reason it’s done that way is so the door closer does not 

get in the way. A closer that pulled in a perpendicular direc-

tion would stick straight out from the door. As discussed in 

Section 8.5, the situation is much the same in our bodies. In 

order to not inhibit the motion of our limbs, our tendons and 

muscles are nearly parallel to the bones. As a result, the forces 

they exert must be much larger than we might expect.

Practice Problem 8.4 Exercise Is Good for You

A person is lying on an exercise mat and lifts one leg at an 

angle of 30.0° from the horizontal with an 89-N (20-lb) 

weight attached to the ankle (Fig. 8.15). The distance 

between the ankle weight and the hip joint (which is the 

rotation axis for the leg) is 84 cm. What is the torque due to 

the ankle weight on the leg?

Example 8.4 continued
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To write the work in terms of torque, note that  t    =   rF  ⊥  and  s   =   r  Δ q   ; then

     W = F⊥s =   t  __ r   × rΔq  = t Δq 

 W = t Δq (Δq  in radians)    (8-6) 

Work is indeed the product of torque and the angular displacement. If  t   and Δ q    have the 

same sign, the work done is positive; if they have opposite signs, the work done is nega-

tive. The  power  due to a constant torque—the rate at which work is done—is

     P = t w    (8-7) 

I =   1 _ 
2
  M R 2 

Substituting this for I,

ΔK =   1 _ 
4
  M R 2  w   f  

2
 

Before substituting numerical values, we convert 80.0 rpm 

to rad/s:

w f = 80.0   rev ____ 
min

   × 2p   rad ___ rev   ×   1 ___ 
60

     min ____ s   = 8.38 rad/s

Substituting the known values for mass and radius,

ΔK =   1 _ 
4
   × 40.0 kg × (   0.50

 
___ 

2
   m ) 2  × (8.38 rad/s ) 2  = 43.9 J

Therefore, the work done by the motor, rounded to two sig-

nificant figures, is 44 J.

(b) The work done by a constant torque is

W = t Δq

Solving for the angular displacement Δq gives

Δq  =   W __ t    =   43.9 J _______ 
8.2 N⋅m

   = 5.35 rad

Since 2p rad = 1 revolution,

Δq  = 5.35 rad ×   1 rev ______ 
2p rad

   = 0.85 rev

Example 8.5

Work Done on a Potter’s Wheel

A potter’s wheel is a heavy stone disk on which the pottery 

is shaped. Potter’s wheels were once driven by the potter 

pushing on a foot treadle; today most potter’s wheels are 

driven by electric motors. (a) If the potter’s wheel is a uni-

form disk of mass 40.0 kg and diameter 0.50 m, how much 

work must be done by the motor to bring the wheel from rest 

to 80.0 rpm? (b) If the motor delivers a constant torque of 

8.2 N.m during this time, through how many revolutions 

does the wheel turn in coming up to speed?

Strategy Work is an energy transfer. In this case, the 

motor is increasing the rotational kinetic energy of the pot-

ter’s wheel. Thus, the work done by the motor is equal to the 

change in rotational kinetic energy of the wheel, ignoring 

frictional losses. In the expression for rotational kinetic 

energy, we must express w in rad/s; we cannot substitute 

80.0 rpm for w. Once we know the work done, we use the 

torque to find the angular displacement.

Solution (a) The change in rotational kinetic energy of the 

wheel is

ΔK =   1 _ 
2
  I( w   f  

2
  −  w   i  

2
 ) =   1 _ 

2
  I w   f  

2
 

Initially the wheel is at rest, so the initial angular velocity w i

is zero. From Table 8.1, the rotational inertia of a uniform 

disk is

r

s
r

q

F⊥

F⊥

∆

s = r q∆ F⊥

Figure 8.16 The work done 

by a torque is the product of the 

perpendicular force component 

F⊥ and the arc length s.

continued on next page
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  In Chapter 4, we said that an object is in translational equilibrium when the net force act-

ing on it is zero. It is quite possible for the net force acting to be zero, while the net torque 

is nonzero; the object would then have a nonzero angular acceleration. When designing a 

bridge or a new house, it would be unacceptable for any of the parts to have nonzero angu-

lar acceleration! Zero net force is sufficient to ensure  translational  equilibrium; if an 

object is also in  rotational  equilibrium, then the net torque acting on it must also be zero.

Conditions for equilibrium (both translational and rotational):

∑ F⃗ = 0 and ∑t  = 0 (8-8)

Choosing an Axis of Rotation in Equilibrium Problems    Before tackling equilibrium 

problems, we must resolve a conundrum: if something is not rotating, then where is the 

axis of rotation? How can we calculate torques without knowing where the axis of rota-

tion is? In some cases, perhaps involving axles or hinges, there may be a clear axis about 

which the object would rotate if the balance of forces and torques is disturbed. In many 

cases, though, it is not clear what the rotation axis would be, and in general it depends 

on exactly how the equilibrium is upset. Fortunately, the axis can be chosen  arbitrarily  

when calculating torques  in equilibrium problems.  

 In equilibrium, the net torque about  any  rotation axis must be zero. Does that mean 

that we have to write down an infinite number of torque equations, one for each possible 

axis of rotation? Fortunately, no. Although the proof is complicated, it can be shown 

that if the net force acting on an object is zero and the net torque about one rotation axis 

is zero, then the net torque about every other axis parallel to that axis must also be zero. 

Therefore, one torque equation is all we need. 

   Since the torque can be calculated about any desired axis, a judicious choice can 

greatly simplify the solution of the problem.   The best place to choose the axis is usually 

at the point of application of an unknown force so that the unknown force does not 

appear in the torque equation.              

Discussion As always, work is an energy transfer. In this 

problem, the work done by the motor is the means by which 

the potter’s wheel acquires its rotational kinetic energy. But 

work done by a torque does not always appear as a change in 

rotational kinetic energy. For instance, when you wind up a 

mechanical clock or a windup toy, the work done by the 

torque you apply is stored as elastic potential energy in some 

sort of spring.

Practice Problem 8.5 Work Done on an Air 
Conditioner

A belt wraps around a pulley of radius 7.3 cm that drives the 

compressor of an automobile air conditioner. The tension in 

the belt on one side of the pulley is 45 N and on the other 

side of the pulley it is 27 N (Fig. 8.17). How much work is 

done by the belt on the compressor during one revolution of 

the pulley?27 N

45 N

r Figure 8.17

Air conditioner belt and 

pulley.

Example 8.5 continued

CHECKPOINT 8.4

Is it possible for the net torque on an object to be zero and the net force nonzero? 

Is it possible for the net force to be zero and the net torque nonzero?
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and the magnitude of the torque due to this force is

 t   = Fr⊥ = F1 × 1.44 m

Since the beam is uniform, its center of gravity is at its mid-

point. We imagine the entire gravitational force to act at this 

point. Then the lever arm for the gravitational force is

  1 _ 
2
   × 2.44 m = 1.22 m

and the torque due to gravity has magnitude

 t    = Fr⊥ = 425 N × 1.22 m = 518.5 N⋅m

The torque due to  F⃗1 is negative since, if it were the only 

torque, it would make the beam start to rotate clockwise 

about our chosen axis of rotation. The torque due to gravity 

is positive since, if it were the only torque, it would make the 

beam start to rotate counterclockwise. Therefore,

∑t  = −F1 × 1.44 m + 518.5 N⋅m = 0

Example 8.6

Carrying a 6 × 6 Beam

Two carpenters are carrying a uniform 6 × 6 beam. The 

beam is 8.00 ft (2.44 m) long and weighs 425 N (95.5 lb). 

One of the carpenters, being a bit stronger than the other, 

agrees to carry the beam 1.00 m in from the end; the other 

carries the beam at its opposite end. What is the upward 

force exerted on the beam by each carpenter?

Strategy The conditions for equilibrium are that the net exter-

nal force equal zero and the net external torque equal zero:

∑ F⃗ = 0 and ∑t  = 0

Should we start with forces or with torques? In this problem, 

it is easiest to start with torques. If we choose the axis of 

rotation where one of the unknown forces acts, then that 

force has a lever arm of zero and its torque is zero. The 

torque equation can be solved for the other unknown force. 

Then with only one force still unknown, we set the sum of 

the y-components of the forces equal to zero.

Solution The first step is to draw a force diagram 

(Fig. 8.18). Each force is drawn at the point where it acts. 

Known distances are labeled.

We choose a rotation axis perpendicular to the xy-plane 

and passing through the point of application of   F⃗ 
2
  . The sim-

plest way to find the torques for this example is to multiply 

each force by its lever arm. The lever arm for  F⃗1 is

2.44 m − 1.00 m = 1.44 m

CW

CCW

Axis2.44 m

1.00 m

y

x

F1

mg

F2
Figure 8.18 

Diagram of the 

beam with rota-

tion axis, forces, 

and distances 

shown.

Problem-Solving Steps in Equilibrium Problems

• Identify an object or system in equilibrium. Draw a diagram showing all the 

forces acting on that object, each drawn at its point of application. Use the 

center of gravity as the point of application of any gravitational forces.

• To apply the force condition ∑ F⃗ = 0, choose a convenient coordinate system 

and resolve each force into its x- and y-components.

• To apply the torque condition ∑t  = 0, choose a convenient rotation axis—

generally one that passes through the point of application of an unknown 

force. Then find the torque due to each force. Use whichever method is eas-

ier: either the lever arm times the magnitude of the force or the distance times 

the perpendicular component of the force. Determine the direction of each 

torque; then either set the sum of all the torques (with their algebraic signs) 

equal to zero or set the magnitude of the CW torques equal to the magnitude 

of the CCW torques.

• Not all problems require all three equations (two force component equations 

and one torque equation). Sometimes it is easier to use more than one torque 

equation, with a different axis. Before diving in and writing down all the 

equations, think about which approach is the easiest and most direct.

continued on next page



The Cantilever    A diving board is an example of a cantilever—a beam or pole that 

extends beyond its support. The forces exerted by the supports on a diving board are 

considerably larger than if the same board were supported at both ends (see Problem 

32). The advantage is that the far end of the board is left free to vibrate; as it does, the 

support forces adjust themselves to keep the board from tipping over. The architect 

Frank Lloyd Wright was fond of using cantilever construction to open up the sides and 

corners of a building, allowing corner windows that give buildings a lighter and more 

spacious feel ( Fig. 8.20 ).             

Application of Rotational 

Equilibrium: cantilever building 

construction

Application of Rotational 

Equilibrium: cantilever building 

construction

1.2 m 3.4 m

Figure 8.19

Diving board.

Figure 8.20 The cantilevered 

master bedroom in the north 

wing of Wingspread by Frank 

Lloyd Wright juts well out over 

its brick foundation. The cypress 

trellis extending even farther 

beyond the bedroom balcony fil-

ters the natural light and serves 

to emphasize the free-floating 

nature of the structure with 

views of the landscape below.
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Example 8.6 continued

Solving for F1,

 F 
1
   =   518.5 N⋅m _________ 

1.44 m
   = 360 N

Since another condition for equilibrium is that the net 

force be zero,

∑ F y   =  F 
1
   +  F 

2
   − mg = 0

Solving for F2,

F2 = 425 N − 360 N = 65 N

Discussion A good way to check this result is to make 

sure that the net torque about a different axis is zero—for an 

object in equilibrium, the net torque about any axis must be 

zero. Suppose we choose an axis through the point of appli-

cation of  F⃗1. Then the lever arm for mg ⃗ is 1.22 m − 1.00 m = 

0.22 m and the lever arm for  F⃗2 is 2.44 m − 1.00 m = 1.44 m. 

Setting the net torque equal to zero:

∑t  = −425 N × 0.22 m +  F 
2
   × 1.44 m = 0

Solving for F2 gives

F2 =   425 N × 0.22 m  _____________ 
1.44 m

   = 65 N

which agrees with the value calculated before. We could 

have used this second torque equation to find F2 instead of 

setting ∑Fy equal to zero.

Practice Problem 8.6 A Diving Board

A uniform diving board of length 5.0 m is supported at two 

points; one support is located 3.4 m from the end of the board 

and the second is at 4.6 m from the end (Fig. 8.19). The sup-

ports exert vertical forces on the diving board. A diver stands at 

the end of the board over the water. Determine the directions 

of the support forces. (  tutorial: plank) [Hint: In this prob-

lem, consider torques about different rotation axes.]
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continued on next page

L (= 8.00 m) for the length of the ladder, d for the unknown 

distance from the bottom of the ladder to the point where the 

person stands, and M (= 60.0 kg) and m (= 15.0 kg) for the 

masses of the person and ladder, respectively. The weight of 

the ladder acts at the ladder’s center of gravity, which is the 

ladder’s midpoint since it is uniform.

Now we apply the conditions for equilibrium. Starting 

with ∑Fx = 0, we find

 N w   − f = 0

where, if the climber is at the highest point possible, the fric-

tional force must have its maximum possible magnitude:

f = m sNf

Combining these two equations, we obtain a relationship 

between the magnitudes of the two normal forces:

 N w   = m sNf

Next we use the condition ∑Fy = 0, which gives

Nf − Mg − mg = 0

The only unknown quantity in this equation is Nf, so we can 

solve for it:

Nf = Mg + mg = (M + m)g

Now we can find the other normal force, Nw:

 N w   =  m  
s
  Nf =  m 

s
   (M + m)g

Example 8.7

The Slipping Ladder

A 15.0-kg uniform ladder leans against a wall in the atrium 

of a large hotel (Fig. 8.21a). The ladder is 8.00 m long; it 

makes an angle q  = 60.0° with the floor. The coefficient of 

static friction between the floor and the ladder is ms = 0.45. 

How far along the ladder can a 60.0-kg person climb before 

the ladder starts to slip? Assume that the wall is frictionless. 

(  interactive: ladder and tutorial: ladder)

Strategy Consider the ladder and the climber as a single 

system. Until the ladder starts to slip, this system is in 

equilibrium. Therefore, the net external force and the net 

external torque acting on the system are both equal to zero. 

Normal forces act on the ladder due to the wall (  N⃗ w  ) and the 

floor (  N⃗ 
f
  ). A frictional force acts on the base of the ladder 

due to the floor ( f⃗), but no frictional force acts on the top of 

the ladder since the wall is frictionless. Gravitational forces 

act on the ladder and on the person climbing it. As the per-

son ascends the ladder, the frictional force  f⃗ has to increase 

to keep the ladder in equilibrium. The ladder begins to slip 

when the frictional force required to maintain equilibrium 

is larger than its maximum possible value msNf. The ladder 

is about to slip when f = msNf.

∑ F x   = 0, ∑ F y   = 0, and ∑t  = 0

Solution The first step is to make a careful drawing of the 

ladder and label all distances and forces (Fig. 8.21b). Instead 

of cluttering the diagram with numerical values, we use 

y

x

Ladder
(length L)

Axis

mg

Mg

f

d

L
1 – 
2

(a) (b)

Nw

y

x
Nf

q q Figure 8.21

(a) A ladder and (b) forces acting on 

the ladder.



At this point, we have expressions for the magnitudes of all 

the forces. We do not know the distance d, which is the 

goal of the problem. To find d we must set the net torque 

equal to zero.

First we choose a rotation axis. The most convenient 

choice is an axis perpendicular to the plane of Fig. 8.21 

and passing through the bottom of the ladder. Since two of 

the five forces ( N⃗f and  f⃗) act at the bottom of the ladder, 

these two forces have zero lever arms and, thus, produce 

zero torque. Another reason why this is a convenient choice 

of axis is that the distance d is measured from the bottom 

of the ladder.

In this situation, with the forces either vertical or hori-

zontal, it is probably easiest to use lever arms to find the 

torques. In three diagrams (Fig. 8.22), we first draw the line 

of action for each force; then the lever arm is the perpendic-

ular distance between the axis and the line of action.

Using the usual convention that CCW torques are posi-

tive, the torque due to   N⃗ w   is negative and the torques due to 

gravity are positive. The magnitude of each torque is the 

magnitude of the force times its lever arm:

t  = Fr⊥

Setting the net torque equal to zero yields

− N w  L sin q  + mg (  1 _ 
2
  L cos q    ) + Mgd cos q  = 0

Now we solve for d algebraically.

  
− N w  L sin q 

 __________ 
Mg cos q 

   +   
  1 _ 
2
   mgL cos q 

 __________ 
Mg cos q 

   + d = 0

d =   
 N w  L tan q 

 _________ 
Mg

   −   mL ___ 
2M

  

Substituting for Nw, we have

d = L    (    m  
s
  (M + m) tan q 

  ______________ 
M

   −   m ___ 
2M

   ) 

= 8.00 m ×  (   0.45 × 75.0 kg × tan 60.0°
   ______________________  

60.0 kg
   −   

15.0 kg
 __________ 

2 × 60.0 kg
   ) 

= 6.8 m

The person can climb 6.8 m up the ladder without having it 

slip. This is the distance along the ladder, not the height above 

the ground, which is

h = 6.8 m × sin 60.0° = 5.9 m

Discussion If the person goes any higher, then his weight 

produces a larger CCW torque about our chosen rotation 

axis. To stay in equilibrium, the total CW torque would 

have to get larger. The only force providing a CW torque is 

the normal force due to the wall, which pushes to the right. 

However, if this force were to get larger, the frictional force 

would have to get larger to keep the net horizontal force 

equal to zero. Since friction already has its maximum mag-

nitude, there is no way for the ladder to be in equilibrium if 

the person climbs any higher.

Practice Problem 8.7 Another Ladder Leaning 
on a Wall

A uniform ladder of mass 10.0 kg and length 3.2 m leans 

against a frictionless wall with its base located 1.5 m from 

the wall. If the ladder is not to slip, what must be the mini-

mum coefficient of static friction between the bottom of the 

ladder and the ground? Assume the wall is frictionless.

Example 8.7 continued
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d

Axis

Line of
action

Mg

Lever arm

qd cos

q

L
1 – 
2

Axis
Lever arm

Line of
action

mg

1 – 
2

qL cos

q

Axis

Lever arm

Line of actionNw

L qL sin

q

Figure 8.22

Finding the lever arm for each force.
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0.50 m
1.00 m

(a)

30.0°

(c)

620 N

30.0°

F||

F⊥

(b)

0.50 m

30.0°

620 N

196 N

Axis

1.00 m

 MgFw

Figure 8.24

(a) A sign outside a restaurant. (b) Forces acting on the beam. (c) Finding the components of the tension in the cord.

continued on next page

the hinge. Then the force exerted by the hinge on the beam has 

a zero lever arm and does not enter the torque equation.

Before doing anything else, we draw a diagram showing 

each force acting on the beam and the chosen rotation axis. 

The FBD in previous chapters often placed all the force vec-

tors starting from a single point. Now we draw each force 

vector starting at its point of application so that we can find 

the torque—either by finding the lever arm or by finding the 

perpendicular force component and the distance from the 

axis to the point of application.

Solution Figure 8.24b shows the forces acting on the 

beam; three of these contribute to the torque. The gravitational 

Example 8.8

The Sign and the Breaking Cord

A uniform beam of weight 196 N and of length 1.00 m is 

attached to a hinge on the outside wall of a restaurant. A 

cord is attached at the center of the beam and is attached 

to the wall, making an angle of 30.0° with the beam 

(Fig. 8.24a). The cord keeps the beam perpendicular to the 

wall. If the breaking tension of the cord is 620 N, how large 

can the mass of the sign be without breaking the cord?

Strategy The beam is in equilibrium; both the net force and 

the net torque acting on it must be zero. To find the maximum 

weight of the sign, we let the tension in the cord have its maxi-

mum value of 620 N. We do not know the force exerted by the 

hinge on the beam, so we choose an axis of rotation through 

PHYSICS AT HOME

Take a dumbbell and wrap some string around the center of its axle. (An alter-

native: slide two spools of thread onto a pencil near its center with a small gap 

between the spools. Wrap some thread around the pencil between the two 

spools.) Place the dumbbell on a table (or on the floor). Unwind a short length 

of string and try pulling perpendicularly to the axle at different angles to the 

horizontal (Fig. 8.23). Depending on the direction of your pull, the dumbbell 

can roll in either direction. Try to find the angle at which the rolling changes 

direction; at this angle the dumbbell does not roll at all. (If using the pencil and 

spools of thread, pull gently and try to find the angle at which the whole thing 

slides along the table without any rotation.)

What is special about this angle? Since the dumbbell is in equilibrium when 

pulling at this angle, we can analyze the torques using any rotation axis we 

choose. A convenient choice is the axis that passes through point P, the point of 

contact with the table. Then the contact force between the table and the dumb-

bell acts at the rotation axis and its torque is zero. The torque due to gravity is 

also zero, since the line of action passes through point P. The dumbbell can only 

be in equilibrium if the torque due to the remaining force (the tension in the 

string) is zero. This torque is zero if the lever arm is zero, which means the line 

of action passes through point P.

F3

F2

F1

P

F4

Figure 8.23 Forces  F⃗1 and  F⃗2 

make the dumbbell roll to the 

left;  F⃗4 makes it roll to the right; 
 F⃗3 does not make it roll.



the file cabinet. A good choice of rotation axis is along the 

bottom edge of the file cabinet, because then the normal and 

frictional forces have zero lever arm.

Solution Figure 8.25b shows the forces acting on the file 

cabinet at the maximum angle q. The gravitational force is 

drawn at the center of gravity. Instead of drawing a single 

Example 8.9

The Toppling File Cabinet

A file cabinet of height a and width b is on a ramp at angle q
(Fig. 8.25a). The file cabinet is filled with papers in such a 

way that its center of gravity is at its geometric center. Find 

the largest q for which the file cabinet does not tip over. 

Assume the coefficient of static friction is large enough to 

prevent sliding. (  tutorial: file cabinet)

Strategy Until the file cabinet begins to tip over, it is in 

equilibrium; the net force acting on it must be zero and the 

total torque about any axis must also be zero. We first draw 

a force diagram showing the three forces (gravity, normal, 

friction) acting on the file cabinet. The point of application 

of the two contact forces (normal, friction) must be at the 

lower edge of the file cabinet if it is on the steepest possible 

incline, just about to tip over. In that case, contact has been 

lost over the rest of the bottom surface of the file cabinet so 

that only the lower edge makes good contact with the ramp.

As in all equilibrium problems, a good choice of rotation 

axis makes the problem easier to solve. We know that, at the 

maximum angle, the contact forces act at the bottom edge of 

b b

a

N

Axis 
f

a

(a) (b)

q q

mg cos q 

mg sin q 

Figure 8.25

(a) File cabinet on an incline. (b) Forces acting on the file cabinet.
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force on the beam can be taken to act at the midpoint of the 

beam since it is uniform. The force due to the cord has a per-

pendicular component (Fig. 8.24c) of

F⊥ = 620 N × sin 30.0° = 310 N

The two gravitational forces tend to rotate the beam CW, 

while the tension in the cord tends to rotate it CCW. The net 

torque must be equal to zero:

−0.50 m × 196 N − 1.00 m × Mg + 0.50 m × 310 N = 0

or

1.00 m × Mg = 0.50 m × (310 N − 196 N)

Now we solve for the unknown mass M:

M =   
0.50 m × (310 N − 196 N)

   ______________________  
1.00 m × 9.80 N/kg

   = 5.8 kg

Discussion In this problem, we did not have to set the net 

force equal to zero. By placing the axis of rotation at the 

hinge, we eliminated two of the three unknowns from the 

torque equation: the horizontal and vertical components of 

the hinge force (or, equivalently, its magnitude and direc-

tion). If we wanted to find the hinge force as well, setting the 

net force equal to zero would be necessary.

Practice Problem 8.8 Hinge Forces

Find the vertical component of the force exerted by the hinge 

in two different ways: (a) setting the net force equal to zero 

and (b) using a torque equation about a different axis.

  Distributed Forces 

 Gravity is not the only force that is distributed rather than acting at a point. Contact forces, 

including both the normal component and friction, are spread over the contact surface. 

Just as for gravity, we can consider the contact force to act at a single point, but the loca-

tion of that point is often not at all obvious. For a book sitting on a horizontal table, it 

seems reasonable that the normal force effectively acts at the geometric center of the book 

cover that touches the table. It is less clear where that effective point is if the book is on an 

incline or is sliding. As Example 8.9 shows, when something is about to topple over, con-

tact is about to be lost everywhere except at the corner around which the toppling object is 

about to rotate. That corner then must be the location of the contact forces.    

continued on next page

Example 8.8 continued
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PHYSICS AT HOME

When a person stands up straight, the body’s center of gravity lies directly 

above a point between the feet, about 3 cm in front of the ankle joint (see 

Fig. 8.28a). When a person bends over to touch her toes, the center of gravity 

lies outside the body (Fig. 8.28b). Note that the lower half of the body must 

move backward to keep the center of gravity from moving out in front of the 

toes, which would cause the person to fall over.

An interesting experiment can be done that illustrates what happens to 

your balance when you shift your center of gravity. Stand against a wall with 

the heels of your feet touching the wall and your back pressed against the wall. 

Then carefully try to bend over as if to touch your toes, without bending your 

knees. Can you do this without falling over? Explain.

CG

CG

(a) (b)

Figure 8.28 Location of the 

center of gravity when (a) stand-

ing and (b) reaching for the floor.

CG

Point of application of contact force

CG

CG

b

a

q
q

q

q

Figure 8.26

Contact force for various incline 

angles.

vector arrow for the gravitational force, we represent the grav-

itational force by its components parallel and perpendicular to 

the ramp. Then we find the lever arm for each of the compo-

nents. The lever arm for the parallel component of the weight 

(mg sin q ) is   1 _ 
2
  a and the lever arm for the perpendicular com-

ponent (mg cos q ) is   1 _ 
2
  b. Setting the net torque equal to zero:

∑t  = −mg cos q  ×   1 _ 
2
  b + mg sin q  ×   1 _ 

2
  a = 0

After dividing out the common factors of   1 _ 
2
  mg,

cos q  × b = sin q  × a

Solving for q,

q  =  tan −1    b __ a  

Discussion As a check, we can regard the normal and fric-

tion forces as two components of a single contact force. We can 

think of that contact force as acting at a single point—a “center 

of contact” analogous to the center of gravity. As the file cabi-

net is put on steeper and steeper surfaces, the effective point of 

application of the contact force moves toward the lower edge 

of the file cabinet (Fig. 8.26). If we take the rotation axis 

through the center of gravity so there is no gravitational torque, 

then the torque due to the contact force must be zero. The only 

way that can happen is if its lever arm is zero, which means 

that the contact force must point directly toward the center of 

gravity. If the angle q  has its maximum value, the contact 

force acts at the lower edge and tan q = b/a. The file cabinet is 

about to tip when its center of gravity is directly above the 

lower edge. Any object supported only by contact forces can 

be in equilibrium only if the point of application of the total 

contact force is directly below the object’s center of gravity.

Conceptual Practice Problem 
8.9 Gymnast Holding a Pike 
Position

Figure 8.27 shows a gymnast hold-

ing a pike position. What can you 

say about the location of the gym-

nast’s center of gravity?

Example 8.9 continued

Figure 8.27

Yuri Chechi of Italy holds the pike position on the rings at the 

World Gymnastic Championships in Sabae, Japan.



Biceps muscle (flexor)

Scapula

Tendons

Triceps muscle (extensor

Tendons

Ulna

Radius

Humerus

Solution The gravitational force is perpendicular to the 

line between its point of application and the rotation axis. 

Gravity produces a CW torque of magnitude

 t   = Fr = 30.0 N × 0.275 m = 8.25 N⋅m

For the torque due to  ⃗ F m  , we find the component of  ⃗ F m   that 

is perpendicular to the line between its point of application 

and the rotation axis. Since this line is horizontal, we need 

the vertical component of  ⃗ F m  , which is Fm sin 15°. Then the 

magnitude of the CCW torque due to  ⃗ F m   is

 t   = F⊥r =  F m   sin 15° × 0.12 m

The sum of these torques is zero. With the usual sign con-

vention. (CCW is +),

 F m   sin 15° × 0.12 m − 8.25 N⋅m = 0

Example 8.10

Force to Hold Arm Horizontal

A person is standing with his arm outstretched in a horizon-

tal position. The weight of the arm is 30.0 N and its center of 

gravity is at the elbow joint, 27.5 cm from the shoulder joint 

(Fig. 8.30). The deltoid pulls on the upper arm at an angle of 

15° above the horizontal and at a distance of 12 cm from the 

joint. What is the magnitude of the force exerted by the del-

toid muscle on the arm?

Strategy The arm is in equilibrium, so we can apply the 

conditions for equilibrium: ∑ F⃗ = 0 and ∑t  = 0. When calcu-

lating torques, we choose the rotation axis at the shoulder 

joint because then the unknown force  ⃗ F s  , which acts on the 

arm at the joint, has a zero lever arm and produces zero 

torque. With only one unknown in the torque equation, we 

can solve immediately for Fm. We do not need to apply the 

condition ∑ F⃗ = 0 unless we want to find  ⃗ F s  .

   8.5  EQUILIBRIUM IN THE HUMAN BODY 

We can use the concepts of torque and equilibrium to understand some of how the muscu-

loskeletal system of the human body works. A muscle has tendons at each end that con-

nect it to two different bones across a joint (the flexible connection between the bones). 

When the muscle contracts, it pulls the tendons, which in turn pull on the bones. Thus, the 

muscle produces a pair of forces of equal magnitude, one acting on each of the two bones. 

The biceps muscle ( Fig. 8.29 ) in the upper arm attaches the scapula to the forearm (radius) 

across the inside of the elbow joint. When the biceps contracts, the forearm is pulled 

toward the upper arm. The biceps is a  flexor  muscle; it moves one bone closer to another.         

 A muscle can pull but not push, so a flexor muscle such as the biceps cannot reverse 

its action to push the forearm away from the upper arm. The  extensor  muscles make bones 

move apart from each other. In the upper arm ( Fig. 8.29 ), an extensor muscle—the 

triceps—connects the scapula and humerus to the ulna (a bone in the forearm parallel to 

the radius) across the outside of the elbow. Since the biceps and triceps connect to the fore-

arm on opposite sides of the elbow joint, they tend to cause rotation about the joint in 

opposite directions. When the triceps contracts it pulls the forearm away from the upper 

arm. Using flexor and extensor muscles on opposite sides of the joint, the body can pro-

duce both positive and negative torques, although both muscles pull in the same direction. 

 Suppose the arm is held in a horizontal position. The deltoid muscle (the muscle 

shown in  Fig. 8.30 ) exerts a force      ⃗ F m     on the humerus at an angle of about 15 °  above 

the horizontal. This force has to do two things. The vertical component (magnitude 

F  m  sin 15 °  ≈ 0.26 F  m ) supports the weight of the arm, while the horizontal component 

(magnitude  F  m  cos 15 °  ≈ 0.97 F  m ) stabilizes the joint by pulling the humerus in against 

the shoulder (scapula). In Example 8.10, we estimate the magnitude of       F⃗ m  .              

Application of Conditions for 

Equilibrium to the Human Body

Application of Conditions for 

Equilibrium to the Human Body

Figure 8.29 The biceps is a 

flexor muscle; the triceps is an 

extensor muscle.

continued on next page

Figure 8.30 Forces exerted on 

an outstretched arm by the del-

toid muscle (  F⃗m ), the scapula 

( F⃗s ), and gravity ( F⃗g ).

Deltoid muscle

Humerus

Scapula

15°

Axis

27.5 cm

CG

12 cm

Fm

Fs

q
Fg
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The Iron Cross    When a gymnast does the iron cross ( Fig. 8.31a ), the primary muscles 

involved are the latissimus dorsi (“lats”) and pectoralis major (“pecs”). Since the rings are 

supporting the gymnast’s weight, they exert an upward force on the gymnast’s arms. Thus, 

the task for the muscles is not to hold the arm up, but to pull it down. The lats pull on the 

humerus about 3.5 cm from the shoulder joint ( Fig. 8.31b ). The pecs pull on the humerus 

about 5.5 cm from the joint ( Fig. 8.31c ). The other ends of these two muscles connect to 

bone in many places, widely distributed over the back (lats) and chest (pecs). As a reason-

able simplification, we can assume that these muscles pull at a 45 °  angle below the hori-

zontal in the iron cross maneuver. We also assume that the two muscles exert equal forces, 

so we can replace the two with a single force acting at 4.5 cm from the joint.             

 To determine the force exerted, we look at the entire arm as a system in equilib-

rium. This time we can ignore the weight of the arm itself since the force exerted on the 

arm by the ring is much larger—half the gymnast’s weight is supported by each ring. 

The ring exerts an upward force that acts on the hand about 60 cm from the shoulder 

joint (see  Fig. 8.31d ). Taking torques about the shoulder, in equilibrium we have

      CW torque   =   CCW torque  

 F m   × 0.045 m × sin 45° =   1 _ 
2
  W × 0.60 m

 F m   =   
  1 _ 
2
  W × 0.60 m

  _______________  
0.045 m × sin 45°

   = 9.4W  

Thus, the force exerted by the lats and pecs  on one side  of the gymnast’s body is more 

than nine times his weight. 

 The structure of the human body makes large muscular forces necessary. Are there 

advantages to the structure? Due to the small lever arms, the muscle forces are much 

larger than they would otherwise be, but the human body has traded this for a wide 

range of movement of the bones. The biceps and triceps muscles can move the lower 

arms through almost 180 °  while they change their lengths by only a few centimeters. 

The muscles also remain nearly parallel to the bones. If the biceps and triceps muscles 

were attached to the lower arm much farther from the elbow, there would have to be a 

large flap of skin to allow them to move so far away from the bones. The arrangement 

of our bones and muscles favors a wide range of movement. 

 Another advantage of the body structure is that it tends to minimize the rotational 

inertia of our limbs. For example, the muscles that control the motion of the lower arm 

are contained mostly within the  upper  arm. This keeps the rotational inertia of the lower 

arms about the elbow smaller. It also keeps the rotational inertia of the entire arm about 

the shoulder smaller. Smaller rotational inertia means that the energy we have to expend 

to move our limbs around is smaller. 

 The biceps muscle with its tendons is almost parallel to the humerus. One inter-

esting observation is that the tendon connects to the radius at different points in differ-

ent people. In one person this point may be 5.0 cm from the elbow joint, while in 

another person whose arm is the same length it may be 5.5 cm from the elbow. Thus, 

Why does the iron cross 

require great strength?

Why does the iron cross 

require great strength?

Solving for Fm,

 F m   =   8.25 N⋅m ______________  
sin 15° × 0.12 m

   = 270 N

Discussion The force exerted by the muscle is much larger 

than the 30.0-N weight of the arm. The muscle must exert a 

larger force because the lever arm is small; the point of appli-

cation is less than half as far from the joint as the center of 

gravity [0.12 m/(0.275 m) ≈ 4/9]. Also, the muscle cannot pull 

straight up on the arm; the vertical component of the muscle 

force is only about   1 _ 
4
   of the magnitude of the force. These two 

factors together make the weight supported (30.0 N) only 
4
 

_ 
9
   ×   1 _ 

4
   =   1 _ 

9
   as large as the force exerted by the muscle.

Practice Problem 8.10 Holding a Juice Carton

Find the force exerted by the same person’s deltoid muscle 

when holding a 1-L juice carton (weight 9.9 N) with the arm 

outstretched and parallel to the floor (as in Fig. 8.30). 

Assume that the juice carton is 60.0 cm from the shoulder.

Example 8.10 continued



some people are naturally stronger than others because of their internal structure. 

Chimpanzees have an advantage over humans because their biceps muscle has a lon-

ger lever arm. Do not make the mistake of arm wrestling with an adult chimp; chal-

lenge the chimp to a game of chess instead   .      

  Application of Equilibrium Conditions: Heavy Lifting 

 When lifting an object from the floor, our first instinct is to bend over and pick it up. 

This is not a good way to lift something heavy. The spine is an ineffective lever and is 

susceptible to damage when a heavy object is lifted with bent waist. It is much better to 

squat down and use the powerful leg muscles to do the lifting instead of using our back 

muscles. Analyzing torques in a simplified model of the back can illustrate why. 

Front view

(pecs)

Back view

(lats)

(c)

(b)

(a)

(d)

1 – 
2W

W

1 – 
2W

Shoulder joint
1 – 
2W

Fm

Fs

60 cm

4.5 cm

45°

Axis

Figure 8.31 (a) Gymnast doing the iron cross. The principal muscles involved are (b) the “lats” and (c) the “pecs.” 

(d) Simplified model of the forces acting on the arm of the gymnast.
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 The spine can be modeled as a rod with an axis at the tailbone (the sacrum). The 

sacrum exerts a force, marked      ⃗ F s     in  Fig. 8.32 , when a person bends at the waist with the 

back horizontal. The forces due to the complicated set of back muscles can be replaced 

with a single equivalent force      ⃗ F b     as shown. This equivalent force makes an angle of 12 °  

with the spine and acts about 44 cm from the sacrum. The weight of the upper body,     mg ⃗   
in  Fig. 8.32 , is about 65% of total body weight; its center of gravity is about 38 cm from 

the sacrum. By placing an axis at the sacrum we can ignore the force      ⃗ F s         in our torque 

equation. Since the vertical component of      ⃗ F b     is  F  b  sin 12 °  ≈ 0.21 F  b , only about       1 _ 
5
     

the magnitude of the forces exerted by the back muscles is supporting the body weight. 

The much larger horizontal component is pressing the rod representing the spine into the 

sacrum.       

 If we put some numbers into this example, we can get an idea of the forces required 

for just supporting the upper body in this position. If the person’s total weight is 710 N 

(160 lb), then the upper body weight is

    mg = 0.65 × 710 N  

Now we set the magnitude of the CCW torques about the axis equal to the magnitude of 

the CW torques:

     F b   × 0.44 m × sin 12° = mg × 0.38 m  

Substituting and solving,

     F b   =   0.65 × 710 N × 0.38 m  ___________________  
0.44 m × sin 12°

   = 1920 N  

The muscular force that compresses the spine is the horizontal component of      ⃗ F b  :  

     F b   cos 12° = 1900 N  

or about 430 lb. This is over four times the weight of the upper body. 

 Now if the person tries to lift something with his arms in this position, the lever arm 

for the weight of the load is even longer than for the weight of the upper body. The back 

muscles must supply a much larger force. The spine is now compressed with a danger-

ously large force. A cushioning disk called the lumbosacral disk, at the bottom of the 

spine, separates the last vertebra from the sacrum. This disk can be ruptured or deformed, 

causing great pain when the back is misused in such a fashion. 

 If, instead of bending over, we bend our knees and lower our body, keeping it verti-

cally aligned as much as possible while lifting a load, the centers of gravity of the body 

and load are positioned more closely in a line above the sacrum, as in  Fig. 8.33 . Then 

Axis
(sacrum)

Force due to 
back muscles Force due to 

sacrum

Spine

38 cm

44 cm

12°

(Fb)

          Weight of 
upper body(mg)

(Fs)

Figure 8.32 A simplified model of the human back when bent over.

Figure 8.33 A safer way to 

lift a heavy object.



Solution The grinding wheel is a uniform disk, so its rota-

tional inertia is

I =   1 _ 
2
  m r  2 

  1 _ 
2
   × 2.50 kg × (0.0900 m ) 2  = 0.010125 kg⋅ m 2 

A single rotation of the wheel is equivalent to 2p radians, so

w  = 126   rev ___ s   × 2p   rad ___ rev  

The angular acceleration is

a  =   Δw  ___ 
Δt

  

Example 8.11

The Grinding Wheel

A grinding wheel is a solid, uniform disk of mass 2.50 kg 

and radius 9.00 cm. Starting from rest, what constant torque 

must a motor supply so that the wheel attains a rotational 

speed of 126 rev/s in a time of 6.00 s?

Strategy Since the grinding wheel is a uniform disk, we 

can find its rotational inertia using Table 8.1. After convert-

ing the revolutions per second to radians per second, we can 

find the angular acceleration from the change in angular 

velocity over the given time interval. Once we have I and a, 

we can find the net torque from Newton’s second law for 

rotation.

the lever arms of these forces with respect to an axis through the sacrum are relatively 

small and the force on the lumbosacral disk is roughly equal to the upper body weight 

plus the weight being lifted.          

8.6  ROTATIONAL FORM OF NEWTON’S SECOND LAW 

  The concepts of torque and rotational inertia can be used to formulate a “Newton’s 

second law for rotation”—a law that fills the role of     ∑ F⃗ = ma ⃗   for rotation about a fixed 

axis:               

        

Rotational form of Newton’s second law:

 ∑t  =  Ia (8-9)

 Thus, the angular acceleration of a rigid body is proportional to the net torque (more 

torque causes a larger  a ) and is inversely proportional to the rotational inertia (more 

inertia causes a smaller  a ). In rotational equilibrium, the angular acceleration must be 

zero; Eq. (8-9) then requires that the net torque be zero. We used ∑ t    =  0 as the condition 

for rotational equilibrium in Sections 8.4 and 8.5. 

 Equation (8-9) is proved in Problem 57. It is subject to an important restriction. Just 

as     ∑ F⃗ = ma ⃗   is valid only if the mass of the object is constant, ∑ t    =   I  a  is valid only if the 

rotational inertia of the object is constant. For a  rigid  object rotating about a  fixed axis,  

 I  cannot change, so Eq. (8-9) is always applicable.     

 Newton’s second law for rotation explains why a tightrope walker carries a long 

pole to help maintain balance. Suppose the acrobat is about to topple over sideways. 

The pole has a large rotational inertia due to its length, so the angular acceleration of the 

system (acrobat plus pole) due to a small gravitational torque is much smaller than it 

would be without the pole. The smaller angular acceleration gives the acrobat more 

time to adjust his position and keep from falling.   

CONNECTION: 

In Newton’s second law for 

rotation, net torque takes the 

place of net force, and rota-

tional inertia takes the place 

of mass, and a  takes the 

place of a ⃗.

When calculating the net 

torque, remember to assign 

the correct algebraic sign to each 

torque before adding them.

The sum of the torques due 

to internal forces acting on 

a rigid object is always zero. There-

fore, only external torques need be 

included in Eq. (8-9).

continued on next page
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   8.7  THE MOTION OF ROLLING OBJECTS 

  A rolling object combines translational motion of the center of mass with rotation about 

an axis that passes through the center of mass (see Section 5.1). For an object that is 

rolling without slipping,  v  CM   =   w   R.  As a result, there is a specific relationship between 

the rolling object’s translational and rotational kinetic energies. The total kinetic energy 

of a rolling object is the sum of its translational and rotational kinetic energies. 

 A wheel with mass  M  and radius  R  has a rotational inertia that is some pure number 

times  MR  2 ; it couldn’t be anything else and still have the right units. We can write the 

rotational inertia about an axis through the  cm  as  I  CM   =   b   MR  2  where  b  is a pure number 

that measures how far from the axis of rotation the mass is distributed. Larger  b  means 

the mass is, on average, farther from the axis. From Table 8.1, a hoop has b = 1; a disk, 

b =   1 _ 
2
  ; and a solid sphere,     b  =   2 _ 

5
  .   

 Using  I  CM   =   b   MR  2  and  v  CM   =   w   R,  the rotational kinetic energy for a rolling object 

can be written

     K 
rot

   =   1 __ 
2
  ICM w  2  =   1 __ 

2
   × b M R  2  ×   (   

 v 
CM

  
 ____ 

R
   )  

2

  = b  ×   1 __ 
2
   Mv  CM

  
2
    

Since       1 _ 
2
   M v  CM

  
2
     is the translational kinetic energy,

      K 
rot

   = b  K 
tr
      (8-10) 

This is convenient since  b  depends only on the shape, not on the mass or radius of the 

object. For a given shape rolling without slipping, the ratio of its rotational to transla-

tional kinetic energy is always the same ( b  ). 

 The total kinetic energy can be written

     K =  K 
tr
   +  K 

rot
   

 K =   1 _ 
2
  M v  CM

  
2
   +   1 _ 

2
  ICM w  2     (8-11) 

or in terms of  b ,

     K = (1 + b )  K 
tr
   

 K = (1 + b )   1 _ 
2
  M v  CM

  
2
      (8-12) 

Thus, two objects of the same mass rolling at the same translational speed do  not  neces-

sarily have the same kinetic energy. The object with the larger value of  b   has more rota-

tional kinetic energy.                  

Then the torque required is

 ∑t  = Ia  = I   Δw  ___ 
Δt

  

= 0.010125 kg⋅ m 2  ×   126 rev/s × 2p rad/rev  __________________  
6.00 s

  

 = 1.34 N⋅m

If there are no other torques on the wheel, the motor must 

supply a constant torque of 1.34 N·m.

Discussion We assumed that no other torques are exerted 

on the wheel. There is certain to be at least a small frictional 

torque on the wheel with a sign opposite to the sign of the 

motor’s torque. Then the motor would have to supply a 

torque larger than 1.34 N·m. The net torque would still be 

1.34 N·m.

Practice Problem 8.11 Another Approach

Verify the answer to Example 8.11 by: (a) finding the angu-

lar displacement of the wheel using equations for constant 

a ; (b) finding the change in rotational kinetic energy of the 

wheel; and (c) finding the torque from W = t Δq.

Example 8.11 continued



Discussion We can make this conceptual question into a 

quantitative one: what is the ratio of the speeds of the two 

balls at the bottom of the hill?

Let the height of the hill be h. Then for a ball of mass M, 

the loss of gravitational potential energy is Mgh. This amount 

of gravitational potential energy is converted into transla-

tional and rotational kinetic energy:

Mgh =  K 
tr
   +  K 

rot
   = (1 + b ) K 

tr
   = (1 + b )   

M v  CM
  

2
  
 ______ 

2
  

Mass cancels out, as expected. We can solve for the final 

speed in terms of g, h, and b . The final speed is independent 

of the ball’s mass and radius.

 v 
CM

   =  √
_____

   
2gh

 _____ 
1 + b 

    

The ratio of the final speeds for two balls rolling down the 

same hill is, therefore,

  
 v 

1
  
 __  v 

2
     =  √

_______

   
1 +  b  2    ______ 
1 +  b  1  

     

To evaluate the ratio, we look up the rotational inertias in 

Table 8.1. The solid sphere has b =   2 _ 
5
   and the spherical shell 

has b  =   2 _ 
3
  . Then

  
 v 

solid
  
 _____  v 

hollow
     =  √

_____

   
1 +   2 _ 

3
  
 _____ 

1 +   2 _ 
5
  
      ≈ 1.091

The solid ball’s final speed is, therefore, 9.1% faster than 

that of the hollow ball. This ratio depends neither on the 

masses of the balls, the radii of the balls, the height of the 

hill, nor the slope of the hill.

Practice Problem 8.12 Fraction of Kinetic Energy 
That Is Rotational Energy

What fraction of a rolling ball’s kinetic energy is rotational 

kinetic energy? Answer both for a solid ball and a hollow one.

Conceptual Example 8.12

Hollow and Solid Rolling Balls

Starting from rest, two balls roll down a hill as in Fig. 8.34. One 

is solid, the other hollow. Which one is moving faster when it 

reaches the bottom of the hill? (  tutorial: rolling)

Strategy and Solution Energy conservation is the best 

way to approach this problem. As a ball rolls down the hill, 

its gravitational potential energy decreases as its kinetic 

energy increases by the same amount. The total kinetic 

energy is the sum of the translational and rotational 

contributions.

We do not know the mass or the radius of either ball and 

we cannot assume they are the same. Since both kinetic and 

potential energies are proportional to mass, mass does not 

affect the final speed. Also, the total kinetic energy does not 

depend on the radius of the ball [see Eq. (8-12)]. The final 

speeds of the two balls differ because different fractions of 

their total kinetic energies are translational.

One ball is a solid sphere and the other is approximately 

a spherical shell. The mass of a spherical shell is all con-

centrated on the surface of a sphere, while a solid sphere 

has its mass distributed throughout the sphere’s volume. 

Therefore, the shell has a larger b than the solid sphere. 

When the shell rolls, it converts a bigger fraction of the 

lost potential energy into rotational kinetic energy; there-

fore, a smaller fraction becomes translational kinetic 

energy. The final speed of the solid sphere is larger since it 

puts a larger fraction of its kinetic energy into translational 

motion.

CHECKPOINT 8.7

Give an example of how a marble can move so that Ktr > 0 and Krot = 0; 

(b) Ktr = 0 and Krot > 0; (c) Krot =   2 _ 
5
   Ktr .

Acceleration of Rolling Objects    What is the acceleration of a ball rolling down an 

incline?  Figure 8.35  shows the forces acting on the ball. Static friction is the force that 

makes the ball rotate; if there were no friction, instead of rolling, the ball would just 

slide  down the incline. This is true because friction is the only force acting that yields a 

h

vsolid

vhollow

Figure 8.34

Rolling balls.
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nonzero torque about the rotation axis through the ball’s center of mass. Gravity gives 

zero torque because it acts at the axis, so the lever arm is zero. The normal force points 

directly at the axis, so its lever arm is also zero.       

 The frictional force      f⃗   provides a torque

    t  = rf  

where  r  is the ball’s radius. An analysis of the forces and torques combined with New-

ton’s second law in both forms enables us to calculate the acceleration of the ball in 

Example 8.13.     

Solution Since the net torque is

∑t  = rf

the angular acceleration is

a =   
∑t 

 ___ 
I
   =   

rf
 __ 

I
   (1)

where I is the ball’s rotational inertia about its cm.

Figure 8.36b shows the forces along the incline acting on 

the ball. The acceleration of the cm is found from Newton’s 

second law. The component of the net force acting along the 

incline (in the direction of the acceleration) is

∑ F x   = mg sin q  − f = maCM (2)

Because the ball is rolling without slipping, the acceleration 

of the cm and the angular acceleration are related by

aCM = ar

Now we try to eliminate the unknown frictional force f from 

the previous equations. Solving Eq. (1) for f gives

f =   Ia  ___ r  

Substituting this into Eq. (2), we get

mg sin q  −   Ia  ___ r   = maCM

Now to eliminate a, we can substitute a = aCM /r:

mg sin q  −   
IaCM ____ 
 r    2  

   = maCM

Solving for aCM,

aCM =   
g sin q 

 _________ 
1 + I/(m r    2 )

  

For a solid sphere, I =   2 _ 
5
  m r  2 , so

aCM =   
g sin q 

 ______ 
1 +   2 _ 

5
  
   =   5 __ 

7
  g sin q

Example 8.13

Acceleration of a Rolling Ball

Calculate the acceleration of a solid ball rolling down a slope 

inclined at an angle q  to the horizontal (Fig. 8.36a).

Strategy The net torque is related to the angular accelera-

tion by ∑t = Ia, Newton’s second law for rotation. Similarly, 

the net force acting on the ball gives the acceleration of the 

center of mass: ∑ F⃗ = m a ⃗ 
CM

  . The axis of rotation is through 

the ball’s cm. As already discussed, neither gravity nor the 

normal force produce a torque about this axis; the net torque 

is ∑t  = rf, where f is the magnitude of the frictional force. 

One problem is that the force of friction is unknown. We 

must resist the temptation to assume that f = msN; there is 

no reason to assume that static friction has its maximum 

possible magnitude. We do know that the two accelera-

tions, translational and rotational, are related. We know 

that vCM and w  are proportional since r is constant. To stay 

proportional they must change in lock step; their rates of 

change, aCM and a, are proportional to each other by the 

same factor of r. Thus, aCM = a r. This connection should 

enable us to eliminate f and solve for the acceleration. 

Since the speed of a ball after rolling a certain distance 

was found to be independent of the mass and radius of the 

ball in Example 8.12, we expect the same to be true of the 

acceleration.

N

q

fs

mg

Figure 8.35 Forces acting on 

a ball rolling downhill.

N

mg

h
d

v

mg sin q

mg cos q

(a) (b)

q

q

q

r

f
x

ΣFx = mg sin q – f

Figure 8.36

(a) A ball rolling downhill. (b) FBD for the ball, with the gravita-

tional force resolved into components perpendicular and parallel 

to the incline.

continued on next page



8.8  ANGULAR MOMENTUM 

  Newton’s second law for translational motion can be written in two ways:   

 ∑ F⃗ =   lim    
Δt→0

    
Δp ⃗ 

 ___ 
Δt

   (general form) or ∑ F⃗ = ma ⃗ (constant mass)  

In Eq. (8-9) we wrote Newton’s second law for rotation as ∑ t    =   I  a , which applies only 

when  I  is constant—that is, for a rigid body rotating about a fixed axis. A more general 

form of Newton’s second law for rotation uses the concept of    angular momentum    

(symbol  L ).  

               

The net external torque acting on a system is equal to the rate of change of the 

angular momentum of the system.

∑t  =   lim    
Δt→0

    ΔL ___ 
Δt

   (8-13)

 The angular momentum of a rigid body rotating about a fixed axis is the rotational iner-

tia times the angular velocity, which is analogous to the definition of linear momentum 

(mass times velocity):    

    

Angular momentum:

L = Iw (8-14)

(rigid body, fixed axis)

Either Eq. (8-13) or Eq. (8-14) can be used to show that the SI units of angular momen-

tum are kg·m 2 /s. 

 For a rigid body rotating around a fixed axis, angular momentum doesn’t tell us 

anything new. The rotational inertia is constant for such a body since the distance  r   i   

between every point on the object and the axis stays the same. Then any change in angu-

lar momentum must be due to a change in angular velocity  w  :   

 ∑t  =   lim    
Δt→0

    ΔL ___ 
Δt

   =   lim    
Δt→0

    IΔw  ____ 
Δt

   = I   lim    
Δt→0

    Δw  ___ 
Δt

   = Ia        

   Conservation of Angular Momentum    However, Eq. (8-13) is  not  restricted to rigid 

objects or to fixed rotation axes. In particular, if the net external torque acting on a 

CONNECTION:

Note the analogy with 

∑ F⃗ =   lim    
Δt→0

    
Δp ⃗

 ___ 
Δt

  

CONNECTION:

Note the analogy with 

∑ F⃗ =   lim    
Δt→0

    
Δp ⃗

 ___ 
Δt

  

Discussion The acceleration of an object sliding down an 

incline without friction is a = g sin q. The acceleration of the 

rolling ball is smaller than g sin q  due to the frictional force 

directed up the incline.

We can check the answer using the result of Example 

8.12. The ball’s acceleration is constant. If the ball starts 

from rest as in Fig. 8.36a, after it has rolled a distance d, its 

speed v is

v =  √
____

 2ad   =  √
__________

 2 (   g sin q 
 ______ 

1 + b 
   ) d  

where b =   2 _ 
5
  . The vertical drop during this time is h =

d sin q, so

v =  √
_____

   
2gh

 _____ 
1 + b 

    

Practice Problem 8.13 Acceleration of a Hollow 
Cylinder

Calculate the acceleration of a thin hollow cylindrical shell 

rolling down a slope inclined at an angle q  to the horizontal.

Example 8.13 continued
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CONNECTION: 

Note the analogy with p ⃗ = mv ⃗. 
See the Master the Concepts 

section for a complete table 

of these analogies.
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system is zero, then the angular momentum of the system cannot change. This is the 

 law of conservation of angular momentum:          

Conservation of angular momentum:

 If ∑t  = 0,  L 
i
   =  L 

f
   (8-15)

Here  L  i  and  L  f  represent the angular momentum of the system at two different times. 

Conservation of angular momentum is one of the most basic and fundamental laws of 

physics, along with the two other conservation laws we have studied so far (energy and 

linear momentum). For an isolated system, the total energy, total linear momentum, and 

total angular momentum of the system are each conserved. None of these quantities can 

change unless some external agent causes the change. 

   With conservation of energy, we add up the amounts of the different forms of 

energy (such as kinetic energy and gravitational potential energy) to find the  total  

energy. The conservation law refers to the total energy.   By contrast, linear momentum 

and angular momentum  cannot  be added to find the “total momentum.” They are entirely 

different quantities, not two forms of the same quantity. They even have different dimen-

sions, so it would be impossible to add them. Conservation of linear momentum and 

conservation of angular momentum are  separate  laws of physics.          

   Changing Rotational Inertia    In this section, we restrict our consideration to cases 

where the axis of rotation is fixed but where the rotational inertia is not necessarily con-

stant. One familiar example of a changing rotational inertia occurs when a figure skater 

spins ( Fig. 8.37 ). To start the spin, the skater glides along with her arms outstretched 

and then begins to rotate her body about a vertical axis by pushing against the ice with 

a skate. The push of the ice against the skate provides the external torque that gives the 

skater her initial angular momentum. Initially the skater’s arms and the leg not in con-

tact with the ice are extended away from her body. The mass of the arms and leg when 

extended contribute more to her rotational inertia than they do when held close to the 

body. As the skater spins, she pulls her arms and leg close and straightens her body to 

decrease her rotational inertia. As she does, her angular velocity increases dramatically 

in such a way that her angular momentum stays the same.         

Conservation of angular 

momentum can be applied 

to any system if the net external 

torque on the system is zero (or 

negligibly small).

Conservation of angular 

momentum can be applied 

to any system if the net external 

torque on the system is zero (or 

negligibly small).

Application of angular 

momentum: figure skater

Application of angular 

momentum: figure skater

  Figure 8.37 Figure skater 

Lucinda Ruh at the (a) begin-

ning and (b) end of a spin. Her 

angular velocity is much higher 

in (b) than in (a). (a) (b)

CONNECTION: 

Another conservation law



inertia If. The mouse changes the rotational inertia of the 

mouse/wheel system by moving from the outer rim, where 

its mass makes the maximum possible contribution to the 

rotational inertia, to the rotation axis, where its mass makes 

no contribution to the rotational inertia.

Solution Initially, all of the mass of the system is at a dis-

tance R from the rotation axis, where R is the radius of the 

wheel. Therefore,

 I 
i
   = (M + m) R 2 

where M is the mass of the wheel and m is the mass of the 

mouse. After the mouse moves to the center of the wheel, its 

mass contributes nothing to the rotational inertia of the 

system:

 I 
f
   =  MR 2 

From conservation of angular momentum,

 I 
i
    w 

i
   =  I 

f
    w 

f
  

Substituting the rotational inertias and w = 2p f,

(M + m) R 2  × 2p  f 
i
   = M R 2  × 2p  f 

f
  

Factors of 2p R2 cancel from each side, leaving

(M + m) f 
i
   =  Mf 

f
  

Solving for ff,

 f 
f
   =   M + m ______ 

M
    f 

i
   =   

2.10 kg
 _______ 

2.00 kg
   (1.00 rev/s) = 1.05 rev/s

Example 8.14

Mouse on a Wheel

A 0.10-kg mouse is perched at point B on the rim of a 

2.00-kg wagon wheel that rotates freely in a horizontal 

plane at 1.00 rev/s (Fig. 8.38). The mouse crawls to point 

A at the center. Assume the mass of the wheel is concen-

trated at the rim. What is the frequency of rotation in rev/s 

when the mouse arrives at point A?

Strategy Assuming that frictional torques are negligibly 

small, there is no external torque acting on the mouse/wheel 

system. Then the angular momentum of the mouse/wheel 

system must be conserved; it takes an external torque to 

change angular momentum. The mouse and wheel exert 

torques on one another, but these internal torques only trans-

fer some angular momentum between the wheel and the 

mouse without changing the total angular momentum. We 

can think of the system as initially being a rigid body with 

rotational inertia Ii. When the mouse reaches the center, we 

think of the system as a rigid body with a different rotational 

CHECKPOINT 8.8

If the skater then extends her arms and leg back to their initial configuration, 

does her angular velocity decrease back to its initial value, ignoring friction?

Many natural phenomena can be understood in terms of angular momentum. In a 

hurricane, circulating air is sucked inward by a low-pressure region at the center of the 

storm (the  eye ). As the air moves closer and closer to the axis of rotation, it circulates 

faster and faster. An even more dramatic example is the formation of a pulsar. Under 

certain conditions, a star can implode under its own gravity, forming a neutron star 

(a collection of tightly packed neutrons). If the Sun were to collapse into a neutron star, 

its radius would be only about 13 km. If a star is rotating before its collapse, then as its 

rotational inertia decreases dramatically, its angular velocity must increase to keep its 

angular momentum constant. Such rapidly rotating neutron stars are called pulsars 

because they emit regular pulses of x-rays, at the same frequency as their rotation, that 

can be detected when they reach Earth. Some pulsars rotate in only a few thousandths of 

a second per revolution.     

Applications of angular 

momentum: hurricanes and 

pulsars

Applications of angular 

momentum: hurricanes and 

pulsars

B

A

R

Figure 8.38

Mouse on a rotating wheel.

continued on next page
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  Angular Momentum in Planetary Orbits 

Conservation of angular momentum applies to planets orbiting the Sun in elliptical 

orbits. Kepler’s second law says that the orbital speed varies in such a way that the 

planet sweeps out area at a constant rate ( Fig. 8.39a ). In Problem 104, you can show 

that Kepler’s second law is a direct result of conservation of angular momentum, where 

the angular momentum of the planet is calculated using an axis of rotation perpendicu-

lar to the plane of the orbit and passing through the Sun. When the planet is closer to the 

Sun, it moves faster; when it is farther away, it moves more slowly. Conservation of 

angular momentum can be used to relate the orbital speeds and radii at two different 

points in the orbit. The same applies to satellites and moons orbiting planets.              

Application of angular 

momentum: planetary orbits

Application of angular 

momentum: planetary orbits

Earth’s rotational inertia, we treat it as a point particle since 

its radius is much less than its distance from the axis of 

rotation.

Solution The rotational inertia of the Earth is

I = m r  2 

where m is Earth’s mass and r is its distance from the Sun. 

The angular velocity is

w  =   
v⊥ __ r  

where v⊥ is the component of the velocity perpendicular to a 

radial line from the Sun. At the two points under consideration, 

Example 8.15

Earth’s Orbital Speed

At perihelion (closest approach to the Sun), Earth is 

1.47 × 108 km from the Sun and its orbital speed is 30.3 km/s. 

What is Earth’s orbital speed at aphelion (greatest distance 

from the Sun), when it is 1.52 × 108 km from the Sun? Note 

that at these two points Earth’s velocity is perpendicular to a 

radial line from the Sun (see Fig. 8.39a).

Strategy We take the axis of rotation through the Sun. 

Then the gravitational force on Earth points directly toward 

the axis; with zero lever arm, the torque is zero. With no 

other external forces acting on the Earth, the net external 

torque is zero. Earth’s angular momentum about the rotation 

axis through the Sun must therefore be conserved. To find 

Discussion Conservation laws are powerful tools. We do 

not need to know the details of what happens as the mouse 

crawls along the spoke from the outer edge of the wheel; we 

need only look at the initial and final conditions.

A common mistake in this sort of problem is to assume 

that the initial rotational kinetic energy is equal to the final 

rotational kinetic energy. This is not true because the mouse 

crawling in toward the center expends energy to do so. In 

other words, the mouse converts some internal energy into 

rotational kinetic energy.

Practice Problem 8.14 Change in Rotational 
Kinetic Energy

What is the percentage change in the rotational kinetic 

energy of the mouse/wheel system?

Example 8.14 continued

Sun

(a)

va

vp

Perihelion Aphelion

Sun
r

(b)

v⊥

v

Planet

q

Figure 8.39 The planet’s 

speed varies such that it sweeps 

out equal areas in equal time 

intervals. The eccentricity of the 

planetary orbit is exaggerated 

for clarity.

continued on next page



   8.9  THE VECTOR NATURE OF ANGULAR MOMENTUM 

  Until now we have treated torque and angular momentum as scalar quantities. Such a 

treatment is adequate in the cases we have considered so far. However, the law of con-

servation of angular momentum applies to  all  systems, including rotating objects whose 

axis of rotation changes direction. Torque and angular momentum are actually vector 

quantities. Angular momentum is conserved in  both magnitude and direction  in the 

absence of external torques. 

 An important special case is that of a symmetrical object rotating about an axis of 

symmetry, such as the spinning disk in  Fig. 8.40 . The magnitude of the angular momen-

tum of such an object is  L   =   I  w . The direction of the angular momentum vector points 

along the axis of rotation. To choose between the two directions along the axis, a    right-

hand rule    is used. Align your right hand so that, as you curl your fingers in toward your 

palm, your fingertips follow the object’s rotation; then your thumb points in the direc-

tion of      L⃗.   

v⊥ = v. As the distance from the Sun r varies, its speed v must 

vary to conserve angular momentum:

Iiw i = Ifw f

By substitution,

 mr  i  
2
  ×   

vi __ ri
   = m r  f  

2
  ×   

vf __ rf
  

or

rivi = rfvf (1)

Solving for vf,

vf = ri/rf vi =   1.47 × 1 0 8  km  ____________  
1.52 × 1 0 8  km

   × 30.3 km/s = 29.3 km/s

Discussion Earth moves slower at a point farther from the 

Sun. This is what we expect from energy conservation. The 

potential energy is greater at aphelion than at perihelion. 

Since the mechanical energy of the orbit is constant, the 

kinetic energy must be smaller at aphelion.

Equation (1) implies that the orbital speed and orbital 

radius are inversely proportional, but strictly speaking this 

equation only applies to the perihelion and aphelion. At a 

general point in the orbit, the perpendicular component v⊥ is 

inversely proportional to r (see Fig. 8.39b). The orbits of 

Earth and most of the other planets are nearly circular so that 

q  ≈ 0° and v⊥ ≈ v.

Practice Problem 8.15 Puck on a String

A puck on a frictionless, horizontal air table is attached to 

a string that passes down through a hole in the table. Ini-

tially the puck moves at 12 cm/s in a circle of radius 24 cm. 

If the string is pulled through the hole, reducing the radius of 

the puck’s circular motion to 18 cm, what is the new speed 

of the puck? 

L

L

Figure 8.40 Right-hand rule 

for finding the direction of the 

angular momentum of a spin-

ning disk.

Example 8.15 continued
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For rotation about a  fixed  axis, the net torque is also along the axis of rotation, in 

the direction of the  change  in angular momentum it causes. The sign convention we 

have used up to now for angular momentum and torque gives the sign of the  z-component 

of the vector quantity,  where the  z -axis points toward the viewer (out of the page).       

 A disk with a large rotational inertia can be used as a  gyroscope.  When the gyro-

scope spins at a large angular velocity, it has a large angular momentum. It is then diffi-

cult to change the orientation of the gyroscope’s rotation axis, because to do so requires 

changing its angular momentum. To change the direction of a large angular momentum 

requires a correspondingly large torque. Thus, a gyroscope can be used to maintain sta-

bility. Gyroscopes are used in guidance systems in airplanes, submarines, and space 

vehicles to maintain a constant direction in space. 

     The same principle explains the great stability of rifle bullets and spinning tops. A 

rifle bullet is made to spin as it passes through the rifle’s barrel. The spinning bullet then 

keeps its correct orientation—nose first—as it travels through the air. Otherwise, a small 

torque due to air resistance could make the bullet turn around randomly, greatly increas-

ing air resistance and undermining accuracy. A properly thrown football is made to spin 

for the same reasons. A spinning top can stay balanced for a long time, while the same 

top soon falls over if it is not spinning. 

 The Earth’s rotation gives it a large angular momentum. As the Earth orbits the 

Sun, the axis of rotation stays in a fixed direction in space. The axis points nearly at 

Polaris (the North Star), so even as the Earth rotates around its axis, Polaris maintains 

its position in the northern sky. The fixed direction of the rotation axis gives us the regu-

lar progression of the seasons ( Fig. 8.41 ).       

  A Classic Demonstration 

 A demonstration often done in physics classes is for a student to hold a spinning bicycle 

wheel while standing on a platform that is free to rotate. The wheel’s rotation axis is initially 

horizontal ( Fig. 8.42a ). Then the student repositions the wheel so that its axis of rotation is 

vertical ( Fig. 8.42b ). As he repositions the wheel, the platform begins to rotate opposite to 

the wheel’s rotation. If we assume  no  friction acts to resist rotation of the platform, then the 

platform continues to rotate as long as the wheel is held with its axis vertical. If the student 

returns the wheel to its original orientation, the rotation of the platform stops.       

 The platform is free to rotate about a vertical axis. As a result, once the student 

steps onto the platform,  the vertical component   L   y   of the angular momentum of the sys-

tem (student  +  platform  +  wheel) is conserved. The horizontal components of      L⃗   are  not  

conserved. The platform is not free to rotate about any horizontal axis since the floor 

can exert external torques to keep it from doing so. In vector language, we would say 

that only the vertical component of the external torque is zero, so only the vertical com-

ponent of angular momentum is conserved. 

 Initially  L   y    =  0 since the student and the platform have zero angular momentum and 

the wheel’s angular momentum is horizontal. When the wheel is repositioned so that it 

Application of angular 

momentum: the gyroscope

Application of angular 

momentum: the gyroscope

Sun

L

Autumnal equinox
in northern
hemisphere

Vernal equinox
in northern
hemisphere

Summer solstice
in northern
hemisphere

Winter solstice
in northern
hemisphere

N

S

L

L

L

Figure 8.41 Spinning like a 

top, the Earth maintains the 

direction of its angular momen-

tum due to rotation as it revolves 

around the Sun (not to scale).



spins with an upward angular momentum ( L   y   > 0), the rest of the system (the student 

and the platform) must acquire an equal magnitude of downward angular momentum 

( L   y   < 0) so that the vertical component of the total angular momentum is still zero. 

Thus, the platform and student rotate in the opposite sense from the rotation of the 

wheel. Since the platform and student have more rotational inertia than the wheel, they 

do not spin as fast as the wheel, but their vertical angular momentum is just as large. 

 The student and the wheel apply torques to each other to transfer angular momen-

tum from one part of the system to the other. These torques are equal and opposite and 

they have both vertical and horizontal components. As the student lifts the wheel, he 

feels a strange twisting force that tends to rotate him about a horizontal axis. The plat-

form prevents the horizontal rotation by exerting unequal normal forces on the student’s 

feet. The horizontal component of the torque is so counterintuitive that, if the student is 

not expecting it, he can easily be thrown from the platform!         

Lplatform + student

(b)

Lwheel

Platform at rest

y

(a)

Lwheel

x

y

x

Figure 8.42 A demonstration 

of angular momentum 

conservation.

Master the Concepts

    • The rotational kinetic energy of a rigid object with rota-

tional inertia  I  and angular velocity  w  is   

   Krot =   1 _ 
2
  I w  2    (8-1)  

  In this expression,  w  must be measured in  radians  per 

unit time.  

   • Rotational inertia is a measure of how difficult it is to 

change an object’s angular velocity. It is defined as:   

   I =  ∑ 
i = 1

  
N

   mi r  i  
2
    (8-2)  

  where  r   i   is the perpendicular distance between a particle 

of mass  m   i   and the rotation axis. The rotational inertia 

depends on the location of the rotation axis.  

   • Torque measures the effectiveness of a force for twist-

ing or turning an object. It can be calculated in two 

equivalent ways: either as the product of the perpendic-

ular component of the force with the shortest distance 

between the rotation axis and the point of application of 

the force   

   t  = ±rF⊥   (8-3)  

continued on next page
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  or as the product of the magnitude of the force with its 

lever arm (the perpendicular distance between the line 

of action of the force and the axis of rotation)   

   t  = ±r⊥F   (8-4)   

     

r

F

r⊥

r⊥ = r sin q

t  = rF sin q

F⊥ = F sin q

Axis

90°

q

q
F⊥

r

Fr⊥

Axis

90°

q
F⊥

   • A force whose perpendicular component tends to cause 

rotation in the CCW direction gives rise to a positive 

torque; a force whose perpendicular component tends 

to cause rotation in the CW direction gives rise to a neg-

ative torque.  

   • The work done by a constant torque is the product of 

the torque and the angular displacement:   

   W = t Δq   (Δq  in radians)   (8-6)    

   • The conditions for translational and rotational equilib-

rium are   

   ∑ ⃗F = 0 and ∑t  = 0   (8-8)  

  The rotation axis can be chosen  arbitrarily  when calcu-

lating torques in equilibrium problems. Generally, the 

best place to choose the axis is at the point of applica-

tion of an unknown force so that the unknown force 

does not appear in the torque equation.  

   • Newton’s second law for rotation is   

   ∑t  = Ia   (8-9)  

  where radian measure must be used for  a . A more gen-

eral form is   

   ∑t  =   lim    
Δt→0

    ΔL ___ 
Δt

     (8-13)  

  where  L  is the angular momentum of the system.  

   • The total kinetic energy of a body that is rolling without 

slipping is the sum of the rotational kinetic energy about 

an axis through the  cm  and the translational kinetic 

energy:   

   K =   1 _ 
2
  M v  CM

  
2
   +   1 _ 

2
  ICM w  2    (8-11)    

   • The angular momentum of a rigid body rotating about a 

fixed axis is the rotational inertia times the angular 

velocity:   

   L = Iw   (8-14)    

   • The law of conservation of angular momentum: if the 

net external torque acting on a system is zero, then the 

angular momentum of the system cannot change.   

   If ∑t  = 0, Li = Lf   (8-15)    

   • This table summarizes the analogous quantities and 

equations in translational and rotational motion.   

Translation Rotation

m I

 ⃗F t

a ⃗ a

∑ ⃗F = ma ⃗ ∑t  = Ia

Δx Δq

W = FxΔx W = t Δq

v ⃗ w

K =   1 _ 
2
  m v 

2
 K =   1 _ 

2
  I w  2 

p ⃗ = mv ⃗ L = Iw

∑ ⃗F =   lim    
Δt→0

    
Δp ⃗

 

___ 
Δt

  ∑t =   lim    
Δt→0

    ΔL
 ___ 

Δt
  

If ∑ ⃗F = 0, p ⃗ is conserved If ∑t  = 0, L is conserved

Master the Concepts continued

  Conceptual Questions 

    1. In  Fig. 8.2b , where should the doorknob be located to 

make the door easier to open?  

   2. Explain why it is easier to drive a wood screw using a 

screwdriver with a large diameter handle rather than 

one with a thin handle.  

   3. Why is it easier to push open a swinging door from near 

the edge away from the hinges rather than in the middle 

of the door?  

   4. A book measures 3 cm 

by 16 cm by 24 cm. 

About which of the axes 

shown in the figure is 

its rotational inertia 

smallest?      

   5. A body in equilibrium 

has only two forces 

acting on it. We found 

in Section 4.2 that the 

3 cm

24 cm

16 cm

Axis 1

Axis 2

Axis 3

Conceptual Question 4



forces must be equal in magnitude and opposite in 

direction in order to give a translational net force of 

zero. What else must be true of the two forces for the 

body to be in equilibrium? [ Hint:  Consider the lines of 

action of the forces.]  

   6. Why do many helicopters have a small propeller 

attached to the tail that rotates in a vertical plane? 

Why is this attached at the tail rather than somewhere 

else? [ Hint:  Most of the helicopter’s mass is forward, 

in the cab.]  

   7. In the “Pinewood Derby,” Cub Scouts construct cars 

and then race them down an incline. Some say that, 

everything else being equal (friction, drag coefficient, 

same wheels, etc.), a heavier car will win; others main-

tain that the weight of the car does not matter. Who is 

right? Explain. [ Hint:  Think about the fraction of the 

car’s kinetic energy that is rotational.]  

   8. A large barrel lies on 

its side. In order to roll 

it across the floor, you 

apply a horizontal force, 

as shown in the figure. If 

the applied force points 

toward the axis of rota-

tion, which runs down the 

center of the barrel through the center of mass, it pro-

duces zero torque about that axis. How then can this 

applied force make the barrel start to roll?      

     9. Animals that can run fast always have thin legs. Their 

leg muscles are concentrated close to the hip joint; 

only tendons extend into the lower leg. Using the con-

cept of rotational inertia, explain how this helps them 

run fast.  

     10. Part (a) of the figure shows a simplified model of how 

the triceps muscle connects to the forearm. As the angle 

 q   is changed, the tendon wraps around a nearly circular 

arc. Explain how this is much more effective than if the 

tendon is connected as in part (b) of the figure. [ Hint:  

Look at the lever arm as  q   changes.] 

Triceps muscle

Tendon connects
here

(a) (b)

q q

Question 10
     

     11. Part (a) of the figure shows a simplified model of how 

the biceps muscle enables the forearm to support a load. 

What are the advantages of this arrangement as opposed 

to the alternative shown in part (b), where the flexor 

muscle is in the forearm instead of in the upper arm? 

Are the two equally effective when the forearm is 

Axis

F

horizontal? What about for other angles between the 

upper arm and the forearm? Consider also the rotational 

inertia of the forearm about the elbow and of the entire 

arm about the shoulder. 

     

(a) (b)

Flexor

Flexor
(biceps)

Question 11

   12. In Section 8.6, it was 

asserted that the sum 

of all the internal 

torques (that is, the 

torques due to inter-

nal forces) acting on 

a rigid object is zero. 

The figure shows two 

particles in a rigid 

object. The particles 

exert forces     F⃗ 12   and 

     F⃗21   on each other. These forces are directed along a line 

that joins the two particles. Explain why the torques due to 

these two forces must be equal and opposite even though 

the forces are applied at different points (and, therefore, 

possibly different distances from the axis).      

   13. A playground merry-go-round ( Fig. 8.5 ) spins with 

negligible friction. A child moves from the center out to 

the rim of the merry-go-round platform. Let the system 

be the merry-go-round plus the child. Which of these 

quantities change: angular velocity of the system, rota-

tional kinetic energy of the system, angular momentum 

of the system? Explain your answer.  

   14. The figure shows a balancing toy with weights extend-

ing on either side. The toy is extremely stable. It can be 

pushed quite far off center one way or the other but it 

does not fall over. Explain why it is so stable.      

   15. Explain why the posture taken by defensive football line-

men makes them more difficult to push out of the way. 

Consider both the height of the center of gravity and the 

size of the support base (the area on the ground bounded 

Axis

F21

F12

m2

m1
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by the hands and feet 

touching the ground). 

In order to knock a 

person over, what has 

to happen to the cen-

ter of gravity? Which 

do you think needs a 

more complex neu-

rological system for 

maintaining balance: 

four legged animals 

or humans?      

     16. The center of gravity of 

the upper body of a bird is 

located below the hips; in 

a human, the center of 

gravity of the upper body 

is located well above the 

hips. Since the upper body 

is supported by the hips, 

are birds or humans more 

stable? Consider what 

happens if the upper body 

is displaced a little so that 

its center of gravity is not 

directly above or below 

the hips. In what direction 

does the torque due to 

gravity tend to make the upper body rotate about an axis 

through the hips?      

   17. An astronaut wants to remove a bolt from a satellite in 

orbit. He positions himself so that he is at rest with 

respect to the satellite, then pulls out a wrench and 

attempts to remove the bolt. What is wrong with his 

method? How can he remove the bolt?  

   18. Your door is hinged to close automatically after being 

opened. Where is the best place to put a wedge-shaped 

door stopper on a slippery floor in order to hold the 

door open? Should it be placed close to the hinge or 

far from it?  

   19. You are riding your bicycle and approaching a rather 

steep hill. Which gear should you use to go uphill, a 

low gear or a high gear? With a low gear the wheel 

rotates less than with a high gear for one rotation of 

the pedals.  

   20. One way to find 

the center of grav-

ity of an irregular 

flat object is to 

suspend it from 

various points so 

that it is free to 

rotate. When the 

object hangs in 

equilibrium, a vertical line is drawn downward from the 

support point. After drawing lines from several different 

support points, the center of gravity is the point where 

the lines all intersect. Explain how this works.      

   21. One of the effects of significant global warming would 

be the melting of part or all of the polar ice caps. This, 

in turn, would change the length of the day (the period 

of the Earth’s rotation). Explain why. Would the day get 

longer or shorter?    

  Multiple-Choice Questions 

    1. A heavy box is resting 

on the floor. You would 

like to push the box to 

tip it over on its side, 

using the minimum 

force possible. Which 

of the force vectors in the diagram shows the correct 

location and direction of the force? The forces have 

equal horizontal components. Assume enough friction 

so that the box does not slide; instead it rotates about 

point  P.       

   2. When both are expressed in terms of SI  base  units, 

torque has the same units as

    (a) angular acceleration     (b) angular momentum  

   (c) force      (d) energy  

   (e) rotational inertia     (f) angular velocity    

  Questions 3–4:  A uniform solid cylinder rolls without slip-

ping down an incline. At the bottom of the incline, the speed, 

 v,  of the cylinder is measured and the translational and rota-

tional kinetic energies ( K  tr ,  K  rot ) are calculated. A hole is 

drilled through the cylinder along its axis and the experi-

ment is repeated; at the bottom of the incline the cylinder 

now has speed  v   ′   and translational and rotational kinetic 

energies     K ′tr   and     K ′rot.    

   3. How does the speed of the cylinder compare with its 

original value?

    (a)  v  ′  <  v      (b)  v  ′   =   v      (c)  v  ′  >  v   

   (d) Answer depends on the radius of the hole drilled.     

   4. How does the ratio of rotational to translational kinetic 

energy of the cylinder compare to its original value?

    (a)       
K ′rot ____ 
K ′tr

   <   
 K 

rot
  
 ____ 

 K 
tr
  
         (b)         

K ′rot ____ 
K ′tr

    =   
 K 

rot
  
 ____ 

 K 
tr
  
         (c)         

K ′rot ____ 
K ′tr

   >   
 K 

rot
  
 ____ 

 K 
tr
  
      

   (d) Answer depends on the radius of the hole drilled.     

   5. The SI units of angular momentum are

    (a)       rad ___ s         (b)       rad ___ 
 s 2 

         (c)       
kg⋅m

 _____ 
 s 2 

      

   (d)       
kg⋅ m 2 

 _____ 
 s 2 

         (e)       
kg⋅ m 2 

 _____ s         (f)       
kg⋅m

 _____ s         

CG

CG

CG

a

b

c P



   6. Which of the forces in the figure produces the largest 

magnitude torque about the rotation axis indicated?

    (a) 1     (b) 2     (c) 3     (d) 4    

Axis

1

2

3

4

Multiple-Choice Questions 6–8

   7. Which of the forces in the figure produces a  CW  torque 

about the rotation axis indicated?

    (a) 3 only     (b) 4 only     (c) 1 and 2  

   (d) 1, 2, and 3     (e) 1, 2, and 4     

   8. Which pair of forces in the figure might produce equal 

magnitude torques with opposite signs?

    (a) 2 and 3     (b) 2 and 4     (c) 1 and 2  

   (d) 1 and 3     (e) 1 and 4     (f) 3 and 4     

   9. A high diver in midair pulls her legs inward toward 

her chest in order to rotate faster. Doing so changes 

which of these quantities: her angular momentum  L,  

her rotational inertia  I,  and her rotational kinetic 

energy  K  rot ?

    (a)  L  only     (b)  I  only     (c)  K  rot  only  

   (d)  L  and  I  only     (e)  I  and  K  rot  only     (f) all three     

   10. A uniform bar of mass  m  is sup-

ported by a pivot at its top, about 

which the bar can swing like a 

pendulum. If a force  F  is applied 

perpendicularly to the lower end 

of the bar as in the diagram, how 

big must  F  be in order to hold the 

bar in equilibrium at an angle  q
from the vertical?

    (a) 2 mg      (b) 2 mg  sin  q   

   (c) ( mg /2) sin  q      (d) 2 mg  cos  q   

   (e) ( mg /2) cos  q      (f)  mg  sin  q            

  Problems 

 Combination conceptual/quantitative problem  

 Biological or medical application  

✦ Challenging problem  

Blue # Detailed solution in the Student Solutions Manual  

1  2  Problems paired by concept  

 Text website interactive or tutorial   

  8.1 Rotational Kinetic Energy and Rotational 
Inertia 

1. Verify that       1 _ 
2
  I w  2    has dimensions of energy.  

    2.  What is the rotational inertia of a solid iron disk of mass 

49 kg, with a thickness of 5.00 cm and radius of 20.0 cm, 

about an axis through its center and perpendicular to it?  

    3.  A bowling ball made for a child has half the radius of an 

adult bowling ball. They are made of the same material 

(and therefore have the same mass  per unit volume ). By 

what factor is the (a) mass and (b) rotational inertia of 

the child’s ball reduced compared with the adult ball?  

   4. Find the rotational inertia of the 

system of point particles shown 

in the figure assuming the system 

rotates about the (a)  x -axis, 

(b)  y -axis, (c)  z -axis. The  z -axis 

is perpendicular to the  xy -plane 

and points out of the page. Point particle  A  has a mass 

of 200 g and is located at ( x,   y,   z )  =  ( − 3.0 cm, 5.0 cm, 0), 

point particle  B  has a mass of 300 g and is at (6.0 cm, 0, 

0), and point particle  C  has a mass of 500 g and is 

at ( − 5.0 cm,  − 4.0 cm, 0). (d) What are the  x - and 

 y -coordinates of the center of mass of the system?      

    5.  Four point masses of 3.0 kg each are arranged in a 

square on massless rods. The length of a side of the 

square is 0.50 m. What is the rotational inertia for rota-

tion about an axis (a) passing through masses  B  and  C?  

(b) passing through masses  A  and  C?  (c) passing through 

the center of the square and perpendicular to the plane 

of the square? 

     

0.50 m

CD

BA

CD

BA

CD

BA

0.50 m 0.50 m

0.50 m0.50 m0.50 m

(a) (b) (c)

   6. How much work is done by the motor in a CD player to 

make a CD spin, starting from rest? The CD has a diam-

eter of 12.0 cm and a mass of 15.8 g. The laser scans at 

a constant tangential velocity of 1.20 m/s. Assume that 

the music is first detected at a radius of 20.0 mm from 

the center of the disk. Ignore the small circular hole at 

the CD’s center.  

   7. Find the ratio of the rotational inertia of the Earth for 

rotation about its own axis to its rotational inertia for 

rotation about the Sun.  

    8.  A bicycle has wheels of radius 0.32 m. Each wheel has 

a rotational inertia of 0.080 kg·m 2  about its axle. The 

total mass of the bicycle including the wheels and the 

rider is 79 kg. When coasting at constant speed, what 

fraction of the total kinetic energy of the bicycle (includ-

ing rider) is the rotational kinetic energy of the wheels?  

F

q

y

x

A

B
C
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    9.  In many problems in previous chapters, cars and other 

objects that roll on wheels were considered to act as if 

they were sliding without friction. (a) Can the same 

assumption be made for a wheel rolling  by itself ?  

Explain your answer. (b) If a moving car of total mass 

1300 kg has four wheels, each with rotational inertia of 

0.705 kg·m 2  and radius of 35 cm, what fraction of the 

total kinetic energy is rotational?  

   10. A centrifuge has a rotational inertia of 6.5  ×  10  − 3  kg·m 2 . 

How much energy must be supplied to bring it from rest 

to 420 rad/s (4000 rpm)?    

  8.2 Torque 

     11.  A mechanic turns a wrench using a force of 25 N at a 

distance of 16 cm from the rotation axis. The force is 

perpendicular to the wrench handle. What magnitude 

torque does she apply to the wrench?  

    12.  The pull cord of a lawnmower engine is wound around 

a drum of radius 6.00 cm. While the cord is pulled with 

a force of 75 N to start the engine, what magnitude 

torque does the cord apply to the drum?  

    13.  A child of mass 40.0 kg is sitting on a horizontal seesaw 

at a distance of 2.0 m from the supporting axis. What is 

the magnitude of the torque about the axis due to the 

weight of the child?  

    14.  A 124-g mass is placed on one pan of a balance, at a 

point 25 cm from the support of the balance. What is the 

magnitude of the torque about the support exerted by 

the mass?  

    15.  A uniform door weighs 50.0 N and is 1.0 m wide and 

2.6 m high. What is the magnitude of the torque due to 

the door’s own weight about a horizontal axis perpen-

dicular to the door and passing through a corner?  

   16. A tower outside the Houses of Parliament in London 

has a famous clock commonly referred to as Big Ben, 

the name of its 13-ton chiming bell. The hour hand of 

each clock face is 2.7 m long and has a mass of 60.0 kg. 

Assume the hour hand to be a uniform rod attached at 

one end. (a) What is the torque on the clock mecha-

nism due to the weight of one of the four hour hands 

when the clock strikes noon? The axis of rotation is 

perpendicular to a clock face and through the center of 

the clock. (b) What is the torque due to the weight of 

one hour hand about the same axis when the clock 

tolls 9:00  a.m.?   

        17.  Any pair of equal and opposite forces acting on the 

same object is called a  couple.  Consider the couple in 

part (a) of the figure. The rotation axis is perpendicular 

to the page and passes through point  P.  (a) Show that 

the net torque due to this couple is equal to  Fd,  where  d

is the distance between the lines of action of the two 

forces. Because the distance  d  is independent of the 

location of the rotation axis, this shows that the torque 

is the same for any rotation axis. (b) Repeat for the cou-

ple in part (b) of the figure. Show that the torque is still 

✦✦

Fd  if  d  is the  perpendicular  distance between the lines 

of action of the forces. 

(a) (b)

x2

x1

d

F

F

x2

x1

P Pd

F

F

   18. A 46.4-N force is 

applied to the 

outer edge of a 

door of width 

1.26 m in such a 

way that it acts (a) perpendicular to the door, (b) at an 

angle of 43.0 °  with respect to the door surface, (c) so that 

the line of action of the force passes through the axis of 

the door hinges. Find the torque for these three cases.      

   19. A trap door, of length and 

width 1.65 m, is held open at 

an angle of 65.0 °  with respect 

to the floor. A rope is attached 

to the raised edge of the door 

and fastened to the wall behind 

the door in such a position that 

the rope pulls perpendicularly 

to the trap door. If the mass of 

the trap door is 16.8 kg, what is the torque exerted on 

the trap door by the rope? (    tutorial: deck hatch)      

   20. A weightless rod, 10.0 m long, supports three weights 

as shown. Where is its center of gravity? 

5.0 kg 15.0 kg 10.0 kg

0.0 5.0 m 10.0 m

21.  A door weighing 

300.0 N measures 

2 . 0 0  m   ×   3 . 0 0  m 

and is of uniform 

density; that is, the 

mass is uniformly 

distributed through-

out the volume. 

A doorknob is 

attached to the door 

as shown. Where is 

the center of gravity if the doorknob weighs 5.0 N and 

is located 0.25 m from the edge?      

     22. A plate of uniform thickness is shaped as shown. Where 

is the center of gravity? Assume the origin (0, 0) is 

✦✦

Axis

1.26 m 43.0°  

(c)

(b)(a)

65.0°

3.00 m

2.00 m

0.25 m

5.0 N

300.0 N



located at the lower left corner of the plate; the upper 

left corner is at (0,  s ) and upper right corner is at ( s,   s ). 

s

s
0.50s

0.50s

0.50s

  8.3 Calculating Work Done from the Torque 

     23.  A stone used to grind wheat into flour is turned through 

12 revolutions by a constant force of 20.0 N applied to 

the rim of a 10.0-cm-radius shaft connected to the 

wheel. How much work is done on the stone during the 

12 revolutions?  

    24.  The radius of a wheel is 0.500 m. A rope is wound 

around the outer rim of the wheel. The rope is pulled 

with a force of magnitude 5.00 N, unwinding the rope 

and making the wheel spin CCW about its central axis. 

Ignore the mass of the rope. (a) How much rope unwinds 

while the wheel makes 1.00 revolution? (b) How much 

work is done by the rope on the wheel during this time? 

(c) What is the torque on the wheel due to the rope? 

(d) What is the angular displacement Δ q , in radians, of the 

wheel during 1.00 revolution? (e) Show that the numerical 

value of the work done is equal to the product  t  Δ q .  

      25.  A flywheel of mass 182 kg has an effective radius of 

0.62 m (assume the mass is concentrated along a circum-

ference located at the effective radius of the flywheel). 

(a) How much work is done to bring this wheel from rest 

to a speed of 120 rpm in a time interval of 30.0 s? (b) What 

is the applied torque on the flywheel (assumed constant)?  

26.  A Ferris wheel rotates because a motor exerts a torque 

on the wheel. The radius of the London Eye, a huge 

observation wheel on the banks of the Thames, is 67.5 m 

and its mass is 1.90  ×  10 6  kg. The cruising angular 

speed of the wheel is 3.50  ×  10  − 3  rad/s. (a) How much 

work does the motor need to do to bring the stationary 

wheel up to cruising speed? [ Hint:  Treat the wheel as a 

hoop.] (b) What is the torque (assumed constant) the 

motor needs to provide to the wheel if it takes 20.0 s to 

reach the cruising angular speed?    

  8.4 Rotational Equilibrium 

27.  A rod is being used as a 

lever as shown. The ful-

crum is 1.2 m from the 

load and 2.4 m from the 

applied force. If the load 

has a mass of 20.0 kg, 

what force must be applied to lift the load?      

    28.  A weight of 1200 N rests on a lever at a point 0.50 m 

from a support. On the same side of the support, at a 

✦✦

✦✦

distance of 3.0 m from it, an 

upward force with magnitude  F  is 

applied. Ignore the weight of the 

board itself. If the system is in 

equilibrium, what is  F?       

29.  A sculpture is 4.00 m tall and has 

its center of gravity located 1.80 m 

above the center of 

its base. The base is 

a square with a side 

of 1.10 m. To what 

angle  q  can the 

sculpture be tipped 

before it falls over? 

(  tutorial: filing 

cabinet)      

    30.  A house painter is 

standing on a uniform, horizontal platform that is held 

in equilibrium by two cables attached to supports 

on the roof. The painter has a mass of 75 kg and the 

mass of the platform is 20.0 kg. The distance from the 

left end of the plat-

form to where the 

painter is standing 

is  d   =  2.0 m and the 

total length of the 

platform is 5.0 m. 

(a) How large is the 

force exerted by 

the left-hand cable 

on the platform? 

(b) How large is the 

force exerted by the 

right-hand cable?      

31.  Four identical uni-

form metersticks are 

stacked on a table as 

shown. Where is the 

x -coordinate of the  cm  

of the metersticks if the 

origin is chosen at the 

left end of the lowest stick? Why does the system balance?      

      32.  A uniform diving board, of length 5.0 m and mass 55 kg, 

is supported at two points; one support is located 3.4 m 

from the end of the board and the second is at 4.6 m 

from the end (see  Fig. 8.19 ). What are the forces act-

ing on the board due to the two supports when a diver 

of mass 65 kg stands at the end of the board over the 

water? Assume that these forces are vertical. (  
tutorial: plank) [ Hint:  In this problem, consider using 

two different torque equations about different rotation 

axes. This may help you determine the directions of 

the two forces.]  

33.  A house painter stands 3.0 m above the ground on a 

5.0-m-long ladder that leans against the wall at a point 

✦✦

✦✦

2.4 m

1.2 m

FA

F

3.0 m

0.50 m

1200 N

1.80 m

CG

1.10 m

q

d

FL
FR

0.8600 m

0.3333 m

0.1667 m 0.0833 m
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4.7 m above the 

ground. The painter 

weighs 680 N and 

the ladder weighs 

120 N. Assuming no 

friction between the 

house and the upper 

end of the ladder, 

find the force of 

friction that the 

driveway exerts on 

the bottom of the 

ladder. (   inter-

active: ladder; tuto-

rial: ladder)      

34. A mountain climber 

is rappelling down 

a vertical wall. The 

rope attaches to a 

buckle strapped to 

the climber’s waist 

15 cm to the right of 

his center of gravity. 

If the climber 

weighs 770 N, find 

(a) the tension in 

the rope and (b) the 

magnitude and dir-

ection of the contact 

force exerted by the 

wall on the climber’s 

feet.      

35.  A sign is supported by 

a uniform horizontal 

boom of length 3.00 m 

and weight 80.0 N. A 

cable, inclined at an 

angle of 35 °  with the 

boom, is attached at 

a distance of 2.38 m 

from the hinge at the 

wall. The weight of 

the sign is 120.0 N. What is the tension in the cable and 

what are the horizontal and vertical forces  F   x   and  F   y
exerted on the boom by the hinge? Comment on the 

magnitude of  F   y  .      

36.  A boom of mass  m  sup-

ports a steel girder of 

weight  W  hanging from 

its end. One end of the 

boom is hinged at the 

floor; a cable attaches to 

the other end of the boom and pulls horizontally on 

it. The boom makes an angle   q  with the horizontal. 

Find the tension in the cable as a function of  m,   W,   q , 

and  g.  Comment on the tension at  q    =  0 and  q    =  90 ° .      

✦✦

37.  You are asked to hang 

a uniform beam and 

sign using a cable that 

has a breaking strength 

of 417 N. The store 

owner desires that it 

hang out over the side-

walk as shown. The 

sign has a weight of 

200.0 N and the beam’s 

weight is 50.0 N. The beam’s length is 1.50 m and the 

sign’s dimensions are 1.00 m horizontally  ×  0.80 m ver-

tically. What is the minimum angle  q   that you can have 

between the beam and cable?      

   38. Refer to Problem 37. You chose an angle  q   of 33.8 ° . An 

8.7-kg cat has climbed onto the beam and is walking 

from the wall toward the point where the cable meets the 

beam. How far can the cat walk before the cable breaks?  

    39.  A man is doing push-ups. He has a mass of 68 kg and 

his center of gravity is located at a horizontal distance 

of 0.70 m from his palms and 1.00 m from his feet. Find 

the forces exerted by the floor on his palms and feet. 

0.70 m 1.00 m

CG

  8.5 Equilibrium in the Human Body 

40.  Your friend balances a package with mass m = 10 kg on 

top of his head while standing. The mass of his upper 

body is M = 55 kg (about 65% of his total mass). 

Because the spine is vertical rather than horizontal, the 

force exerted by the sacrum on the spine ( F⃗s in Fig 8.32) 

is directed approximately straight up and the force 

exerted by the back muscles ( F⃗b) is negligibly small. 

Find the magnitude of  F⃗s  .

41.  Find the tension in the Achilles tendon and the force that 

the tibia exerts on the ankle joint when a person who 

weighs 750 N supports himself on the ball of one foot. 

The normal force  N   =  750 N pushes up on the ball of the 

foot on one side of the ankle joint, while the Achilles ten-

don pulls up on the foot on the other side of the joint.    

25°

91 cm

106 cm

CG

3.0 m

4.7 m

Ladder

Driveway

Painter

Wall

35°

1.50 m

3.00 m

2.38 m

80.0 N

Hinge

120.0 N

T

mg

T

W

q

0.80 m

1.00 m

q

Achilles tendon

Gastrocnemius-
soleus muscles

Calcaneus
(heel bone)

Tibia

12.8 cm
4.60 cm

N

FAchilles FTibia



42.  In the movie  Terminator,  Arnold Schwarzenegger lifts 

someone up by the neck and, with both arms fully 

extended and horizontal, holds the person off the 

ground. If the person being held weighs 700 N, is 60 cm 

from the shoulder joint, and Arnold has an anatomy 

analogous to that in  Fig. 8.30 , what force must  each  of 

the deltoid muscles exert to perform this task?      

43.  Find the force exerted by the biceps muscle in holding a 

1-L milk carton (weight 9.9 N) with the forearm paral-

lel to the floor. Assume that the hand is 35.0 cm from 

the elbow and that the upper arm is 30.0 cm long. The 

elbow is bent at a right angle and one tendon of the 

biceps is attached to the forearm at a position 5.00 cm 

from the elbow, while the other tendon is attached at 

30.0 cm from the elbow. The weight of the forearm and 

empty hand is 18.0 N and the center of gravity of the 

forearm is at a distance of 16.5 cm from the elbow. 

35.0 cm

30.0 cm

18.0 N

9.9 N

CG

Fb

16.5 cm

5.00 cm

44.  A person is doing leg lifts with 3.0-kg ankle weights. 

She is sitting in a chair with her legs bent at a right angle 

initially. The quadriceps muscles are attached to the 

patella via a tendon; the patella is connected to the tibia 

by the patellar tendon, which attaches to bone 10.0 cm 

below the knee joint. Assume that the tendon pulls at an 

angle of 20.0 °   with respect to the lower leg,  regardless 

of the position of the lower leg. The lower leg has a 

mass of 5.0 kg and its center of gravity is 22 cm below 

the knee. The ankle weight is 41 cm from the knee. If 

the person lifts one leg, find the force exerted by the 

patellar tendon to hold the leg at an angle of (a) 30.0 °

and (b) 90.0 °  with respect to the vertical.  

Tibia

Patellar
tendon

Quadriceps
muscle

Femur

10.0 cm
20.0°

Patella

22 cm

41 cm

45.  One day when your friend from Problem 40 is pick-

ing up a package, you notice that he bends at the waist 

to pick it up rather than keeping his back straight and 

bending his knees. You suspect that the lower   back 

pain he complains about is caused by the large force 

on his lower vertebrae ( F⃗s in Fig. 8.32) when he lifts 

objects in this way. Suppose that when the spine is 

horizontal, the back muscles exert a force  F⃗b as in 

Fig. 8.32 (44 cm from the sacrum and at an angle 

of 12° to the horizontal). Assume that the cm of 

his upper body (including the arms) is at its geo-

metric center, 38 cm from the sacrum. Find the hori-

zontal component of  F⃗s when your friend is holding 

a 10-kg package at a distance of 76 cm from his 

sacrum. Compare this with the magnitude of  F⃗s  found 

in Problem 40.

       46. A man is trying to lift 60.0 kg off the floor by bending 

at the waist (see  Fig. 8.32 ). Assume that the man’s upper 

body weighs 455 N and the upper body’s center of grav-

ity is 38 cm from the sacrum (tailbone). (a) If, when 

bent over, the hands are a horizontal distance of 76 cm 

from the sacrum, what torque must be exerted by the 

erector spinae muscles to lift 60.0 kg off the floor? (The 

axis of rotation passes through the sacrum, as shown in 

 Fig. 8.32 .) (b) When bent over, the erector spinae mus-

cles are a horizontal distance of 44 cm from the sacrum 

and act at a 12 °  angle above the horizontal. What force 

(     F⃗b   in  Fig. 8.32 ) do the erector spinae muscles need to 

exert to lift the weight? (c) What is the component of 

this force that compresses the spinal column?    

  8.6 Rotational Form of Newton’s Second Law 

    47. Verify that the units of the rotational form of Newton’s 

second law [Eq. (8-9)] are consistent. In other words, 

show that the product of a rotational inertia expressed in 

kg·m 2  and an angular acceleration expressed in rad/s 2  is 

a torque expressed in N·m.  

   48. A spinning flywheel has rotational inertia 

 I   =  400.0 kg·m 2 . Its angular velocity decreases from 

20.0 rad/s to zero in 300.0 s due to friction. What is the 

frictional torque acting?  

    49.  A turntable must spin at 33.3 rpm (3.49 rad/s) to play 

an old-fashioned vinyl record. How much torque must 

the motor deliver if the turntable is to reach its final 

angular speed in 2.0 revolutions, starting from rest? 

The turntable is a uniform disk of diameter 30.5 cm 

and mass 0.22 kg.  

   50. A lawn sprinkler has 

three spouts that spray 

water, each 15.0 cm 

long. As the water is 

sprayed, the sprinkler 

turns around in a circle. 

The sprinkler has a total 

rotational inertia of 

✦✦

✦✦

15.0 cm
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9.20  ×  10  − 2  kg·m 2 . If the sprinkler starts from rest and 

takes 3.20 s to reach its final speed of 2.2 rev/s, what 

force does each spout exert on the sprinkler?      

    51.  A chain pulls tangentially on a 40.6-kg uniform cylin-

drical gear with a tension of 72.5 N. The chain is 

attached along the outside radius of the gear at 0.650 m 

from the axis of rotation. Starting from rest, the gear 

takes 1.70 s to reach its rotational speed of 1.35 rev/s. 

What is the total frictional torque opposing the rotation 

of the gear?  

    52.  Four masses are arranged 

as shown. They are con-

nected by rigid, massless 

rods of lengths 0.75 m 

and 0.50 m. What torque 

must be applied to cause 

an angular acceleration 

of 0.75 rad/s 2  about the axis shown?      

53.  A bicycle wheel, of radius 0.30 m and mass 2 kg (con-

centrated on the rim), is rotating at 4.00 rev/s. After 50 s 

the wheel comes to a stop because of friction. What is the 

magnitude of the average torque due to frictional forces?  

54.  A playground merry-go-round (see  Fig. 8.5 ), made in 

the shape of a solid disk, has a diameter of 2.50 m and a 

mass of 350.0 kg. Two children, each of mass 30.0 kg, 

sit on opposite sides at the edge of the platform. Approx-

imate the children as point masses. (a) What torque is 

required to bring the merry-go-round from rest to 

25 rpm in 20.0 s? (b) If two other bigger children are 

going to push on the merry-go-round rim to produce 

this acceleration, with what force magnitude must each 

child push? (   tutorial: roundabout)  

55.  Two children standing on opposite sides of a merry-go-

round (see  Fig. 8.5 ) are trying to rotate it. They each 

push in opposite directions with forces of magnitude 

10.0 N. (a) If the merry-go-round has a mass of 180 kg 

and a radius of 2.0 m, what is the angular acceleration 

of the merry-go-round? (Assume the merry-go-round is 

a uniform disk.) (b) How fast is the merry-go-round 

rotating after 4.0 s?  

56. Refer to Atwood’s machine (Example 8.2). (a) Assum-

ing that the cord does not slip as it passes around the 

pulley, what is the relationship between the angular 

acceleration of the pulley ( a ) and the magnitude of the 

linear acceleration of the blocks ( a )? (b) What is the net 

torque on the pulley about its axis of rotation in terms of 

the tensions  T  1  and  T  2  in the left and right sides of the 

cord? (c) Explain why the tensions cannot be equal if 

m  1  ≠  m  2 . (d) Apply Newton’s second law to each of the 

blocks and Newton’s second law for rotation to the pul-

ley. Use these three equations to solve for  a,   T  1 , and  T  2 . 

(e) Since the blocks move with constant acceleration, 

use the result of Example 8.2 along with the constant 

acceleration equation      v  fy  
2
   −  v  iy  

2
   = 2 a y   Δy   to check your 

answer for  a.   

✦✦

      57.  Derive the rotational 

form of Newton’s 

second law as fol-

lows. Consider a 

rigid object that con-

sists of a large num-

ber  N  of particles. 

Let  F   i  ,  m   i  , and  r   i   rep-

resent the tangential 

component of the net force acting on the  i th particle, the 

mass of that particle, and the particle’s distance from the 

axis of rotation, respectively. (a) Use Newton’s second law 

to find  a   i  , the particle’s tangential acceleration. (b) Find the 

torque acting on this particle. (c) Replace  a   i   with an equiv-

alent expression in terms of the angular acceleration  a . 

(d) Sum the torques due to all the particles and show that   

 ∑ 
i = 1

  
N

     t  
i
   = Ia         

  8.7 The Motion of Rolling Objects 

    58. A solid sphere is rolling without slipping or sliding 

down a board that is tilted at an angle of 35 °  with respect 

to the horizontal. What is its acceleration?  

   59. A solid sphere is released from rest and allowed to roll 

down a board that has one end resting on the floor and is 

tilted at 30 °  with respect to the horizontal. If the sphere 

is released from a height of 60 cm above the floor, what 

is the sphere’s speed when it reaches the lowest end of 

the board?  

    60.  A hollow cylinder, a uniform solid sphere, and a uniform 

solid cylinder all have the same mass  m.  The three objects 

are rolling on a horizontal surface with identical transla-

tional speeds  v.  Find their total kinetic energies in terms of 

m  and  v  and order them from smallest to largest.  

61.  A solid sphere of mass 0.600 kg rolls without slipping 

along a horizontal surface with a translational speed of 

5.00 m/s. It comes to an incline that makes an angle of 

30 °  with the horizontal surface. Ignoring energy losses 

due to friction, to what vertical height above the hori-

zontal surface does the sphere rise on the incline?  

62. A bucket of water with a mass of 2.0 kg is attached to a 

rope that is wound around a cylinder. The cylinder has a 

mass of 3.0 kg and is mounted horizontally on friction-

less bearings. The bucket is released from rest. (a) Find 

its speed after it has fallen 

through a distance of 0.80 m. 

What are (b) the tension in the 

rope and (c) the acceleration of 

the bucket?  

63. A 1.10-kg bucket is tied to a rope 

that is wrapped around a pole 

mounted horizontally on friction-

less bearings. The cylindrical 

pole has a diameter of 0.340 m 

and a mass of 2.60 kg. When the 

✦✦

Axis

0.75 m

0.50 m

A 4.0 kg

B 3.0 kg

C 5.0 kg

D 2.0 kg

BA

CD

Axis

Fi

miri

Problems 62 and 63



bucket is released from rest, how long will it take to fall 

to the bottom of the well, a distance of 17.0 m?      

64.  A uniform solid cylinder rolls without slipping down an 

incline. A hole is drilled through the cylinder along its 

axis. The radius of the hole is 0.50 times the (outer) 

radius of the cylinder. (a) Does the cylinder take more 

or less time to roll down the incline now that the hole 

has been drilled? Explain. (b) By what percentage does 

drilling the hole change the time for the cylinder to roll 

down the incline? (   tutorial: rolling)  

      65.  A solid sphere of 

radius  R  and mass 

M   slides  without 

friction down a 

loop-the-loop track. 

The sphere starts 

from rest at a height 

of  h  above the horizontal. Assume that the radius of the 

sphere is small compared to the radius  r  of the loop. 

(a) Find the minimum value of  h  in terms of  r  so that the 

sphere remains on the track all the way around the loop. 

(b) Find the minimum value of  h  if, instead, the sphere 

rolls without slipping on the track.      

      66.  A hollow cylinder, of radius  R  and mass  M,  rolls without 

slipping down a loop-the-loop track of radius  r.  The cylin-

der starts from rest at a height  h  above the horizontal sec-

tion of track. What is the minimum value of  h  so that the 

cylinder remains on the track all the way around the loop?  

     67. If the hollow cylinder of Problem 66 is replaced with a solid 

sphere, will the minimum value of  h  increase, decrease, 

or remain the same? Once you think you know the answer 

and can explain why, redo the calculation to find  h.   

      68.  The string in a yo-yo is wound around an axle of radius 

0.500 cm. The yo-yo has both rotational and translational 

motion, like a rolling object, and has mass 0.200 kg and 

outer radius 2.00 cm. Starting from rest, it rotates and falls 

a distance of 1.00 m (the length of the string). Assume for 

simplicity that the yo-yo is a uniform circular disk and 

that the string is thin compared to the radius of the axle. 

(a) What is the speed of the yo-yo when it reaches the dis-

tance of 1.00 m? (b) How long does it take to fall? [ Hint:  

The translational and rotational kinetic energies are 

related, but the yo-yo is  not  rolling on its outer radius.]    

  8.8 Angular Momentum 

     69.  A turntable of mass 5.00 kg has a radius of 0.100 m and 

spins with a frequency of 0.550 rev/s. What is its angular 

momentum? Assume the turntable is a uniform disk.  

   70. Assume the Earth is a uniform solid sphere with radius 

of 6.37  ×  10 6  m and mass of 5.97  ×  10 24  kg. Find the 

magnitude of the angular momentum of the Earth due to 

rotation about its axis.  

    71.  The mass of a flywheel is 5.6  ×  10 4  kg. This particular 

flywheel has its mass concentrated at the rim of the 

✦✦

✦✦

✦✦

✦✦

wheel. If the radius of the wheel is 2.6 m and it is rotat-

ing at 350 rpm, what is the magnitude of its angular 

momentum?  

72.  The angular momentum of a spinning wheel is 

240 kg·m 2 /s. After application of a constant braking 

torque for 2.5 s, it slows and has a new angular momen-

tum of 115 kg·m 2 /s. What is the torque applied?  

73.  How long would a braking torque of 4.00 N·m have to 

act to just stop a spinning wheel that has an initial angu-

lar momentum of 6.40 kg·m 2 /s?  

74.  A figure skater is spinning at a rate of 1.0 rev/s with her 

arms outstretched. She then draws her arms in to her 

chest, reducing her rotational inertia to 67% of its origi-

nal value. What is her new rate of rotation?  

75.  A skater is initially spinning at a rate of 10.0 rad/s with a 

rotational inertia of 2.50 kg·m 2  when her arms are 

extended. What is her angular velocity after she pulls her 

arms in and reduces her rotational inertia to 1.60 kg·m 2 ?  

    76.  A uniform disk with a mass of 800 g and radius 17.0 cm 

is rotating on frictionless bearings with an angular speed 

of 18.0 Hz when Jill drops a 120-g clod of clay on a 

point 8.00 cm from the center of the disk, where it 

sticks. What is the new angular speed of the disk?  

    77.  A spoked wheel with a radius of 40.0 cm and a mass of 

2.00 kg is mounted horizontally on frictionless bearings. 

JiaJun puts his 0.500-kg guinea pig on the outer edge of 

the wheel. The guinea pig begins to run along the edge 

of the wheel with a speed of 20.0 cm/s with respect to 

the ground. What is the angular velocity of the wheel? 

Assume the spokes of the wheel have negligible mass.  

    78.  A diver can change his rotational inertia by drawing his 

arms and legs close to his body in the tuck position. After 

he leaves the diving board (with some unknown angular 

velocity), he pulls himself into a ball as closely as possi-

ble and makes 2.00 complete rotations in 1.33 s. If his 

rotational inertia decreases by a factor of 3.00 when he 

goes from the straight to the tuck position, what was his 

angular velocity when he left the diving board?  

     79. The rotational inertia for a diver in a pike position is 

about 15.5 kg·m 2 ; it is only 8.0 kg·m 2  in a tuck position. 

(a) If the diver gives himself an initial angular momen-

tum of 106 kg·m 2 /s as he jumps off the board, how many 

turns can he make when jumping off a 10.0-m platform 

✦✦

(b)(a)

Problem 79. (a) Mark Ruiz in the tuck position. 

(b) Gregory Louganis in the pike position.
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in a tuck position? (b) How many in a pike position? 

[ Hint:  Gravity exerts no torque on the person as he falls; 

assume he is rotating throughout the 10.0-m dive.]          

   80. Consider the merry-go-round of Practice Problem 8.1. 

The child is initially standing on the ground when the 

merry-go-round is rotating at 0.75 rev/s. The child then 

steps on the merry-go-round. How fast is the merry-go-

round rotating now? By how much did the rotational 

kinetic energy of the merry-go-round and child 

change?    

  8.9 The Vector Nature of Angular Momentum 

  Problems 81 and 82.  A solid cylindrical disk is to be used 

as a stabilizer in a ship. By using a massive disk rotating in 

the hold of the ship, the captain knows that a large torque is 

required to tilt its angular momentum vector. The mass 

of the disk to be used is 1.00  ×  10 5  kg and it has a radius 

of 2.00 m. 

81.  If the cylinder rotates at 300.0 rpm, what is the magni-

tude of the average torque required to tilt its axis by 

60.0 °  in a time of 3.00 s? [ Hint:  Draw a vector diagram 

of the initial and final angular momenta.]  

82. How should the disk be oriented to prevent rocking 

from side to side and from bow to stern? Does this ori-

entation make it difficult to steer the ship? Explain.  

Comprehensive Problems

   83. The Moon’s distance from Earth varies between 

3.56  ×  10 5  km at perigee and 4.07  ×  10 5  km at apogee. 

What is the ratio of its orbital speed around Earth at per-

igee to that at apogee?  

    84.  A ceiling fan has four blades, each with a mass of 

0.35 kg and a length of 60 cm. Model each blade as a 

rod connected to the fan axle at one end. When the 

fan is turned on, it takes 4.35 s for the fan to reach its 

final angular speed of 1.8 rev/s. What torque was 

applied to the fan by the motor? Ignore torque due to 

the air.  

85.  The distance from the center of the breastbone to a 

man’s hand, with the arm outstretched and horizontal to 

the floor, is 1.0 m. The man is holding a 10.0-kg dumb-

bell, oriented vertically, in his hand, with the arm hori-

zontal. What is the torque due to this weight about a 

horizontal axis through the breastbone perpendicular to 

his chest?  

    86.  A uniform rod of length  L  is free to pivot around an axis 

through its upper end. If it is released from rest when 

horizontal, at what speed is the lower end moving at its 

lowest point? [ Hint:  The gravitational potential energy 

change is determined by the change in height of the 

center of gravity.]  

✦✦

87.  A gymnast is per-

forming a giant 

swing on the high 

bar. In a simplified 

model of the giant 

swing, assume that 

the gymnast keeps 

his arms and body 

straight as he swings 

all the way around 

the upper bar. 

Assume also that 

the gymnast does no 

work during the 

swing. With what angular speed should he be moving at 

the bottom of the giant swing in order to make it all the 

way around? The distance from the bar to his feet is 2.0 m 

and his center of gravity is 1.0 m from his feet.            

88.  The 12.2-m crane weighs 18 kN and is lifting a 67-kN 

load. The hoisting cable (tension  T  1 ) passes over a pulley 

at the top of the crane and attaches to an electric winch in 

the cab. The pendant cable (tension  T  2 ), which supports 

the crane, is fixed to the top of the crane. Find the ten-

sions in the two cables and the force      F⃗p   at the pivot. 

5.0°

10.0°

18 kN

40.0°

T1

T1T2

12.2
 m

67 kN

89.  A collection of objects is set to rolling, without slip-

ping, down a slope inclined at 30 ° . The objects are a 

solid sphere, a hollow sphere, a solid cylinder, and a 

hollow cylinder. A frictionless cube is also allowed to 

slide down the same incline. Which one gets to the bot-

tom first? List the others in the order they arrive at the 

finish line.  

   90. A uniform cylinder with a radius of 15 cm has been 

attached to two cords and the cords are wound 

around it and hung from 

the ceiling. The cylinder is 

released from rest and the 

cords unwind as the cylin-

der descends. (a) What is 

the acceleration of the 

cylinder? (b) If the mass 

of the cylinder is 2.6 kg, 

what is the tension in each 

cord?      

✦✦

✦✦

Problem 87. Notice that the 

angular speed is much greater 

at the bottom of the swing.

r



   91. A modern sculpture has a large 

horizontal spring, with a spring 

constant of 275 N/m, that is 

attached to a 53.0-kg piece of 

uniform metal at its end and 

holds the metal at an angle of 

50.0 °  above the horizontal 

direction. The other end of the 

metal is wedged into a corner 

as shown. By how much has the spring stretched?      

     92. A painter (mass 

61 kg) is walk-

ing along a tres-

tle, consisting of 

a uniform plank 

(mass 20.0 kg, 

length 6.00 m) 

balanced on two 

sawhorses. Each 

sawhorse is 

placed 1.40 m 

from an end of 

the plank. A paint bucket (mass 4.0 kg, diameter 28 cm) 

is placed as close as possible to the right-hand edge of the 

plank while still having the whole bucket in contact with 

the plank. (a) How close to the right-hand edge of the 

plank can the painter walk before tipping the plank and 

spilling the paint? (b) How close to the left-hand edge 

can the same painter walk before causing the plank to 

tip? [ Hint:  As the painter walks toward the right-hand 

edge of the plank and the plank starts to tip clockwise, 

what is the force acting upward on the plank from the 

left-hand sawhorse support?]      

      93.  An experimental flywheel, used to store energy and 

replace an automobile engine, is a solid disk of mass 

200.0 kg and radius 0.40 m. (a) What is its rotational 

inertia? (b) When driving at 22.4 m/s (50 mph), the fully 

energized flywheel is rotating at an angular speed of 

3160 rad/s. What is the initial rotational kinetic energy 

of the flywheel? (c) If the total mass of the car is 

1000.0 kg, find the ratio of the initial rotational kinetic 

energy of the flywheel to the translational kinetic energy 

of the car. (d) If the force of air resistance on the car is 

670.0 N, how far can the car travel at a speed of 

22.4 m/s (50 mph) with the initial stored energy? Ignore 

losses of mechanical energy due to means other than air 

resistance.  

        94.  (a) Assume the Earth is a uniform solid sphere. Find the 

kinetic energy of the Earth due to its rotation about its 

axis. (b) Suppose we could somehow extract 1.0% of 

the Earth’s rotational kinetic energy to use for other 

purposes. By how much would that change the length of 

the day? (c) For how many years would 1.0% of the 

Earth’s rotational kinetic energy supply the world’s 

energy usage (assume a constant 1.0  ×  10 21  J per year)?  

✦✦

✦✦

✦✦

   95. A flat object in the  xy -plane is free to rotate about 

the  z -axis. The gravitational field is uniform in the 

 −  y -direction. Think of the object as a large number of 

particles with masses  m   i   located at coordinates ( x   i  ,  y   i  ), 

as in the figure. (a) Show that the torques on the parti-

cles about the  z -axis can be written  t   i    =   −  x   i  m  i  g. (b) Show 

that if the center of gravity is located at ( x  CG ,  y  CG ), the 

total torque due to gravity on the object must be 

Σ t   i    =   −  x  CG  Mg,  where  M  is the total mass of the object. 

(c) Show that  x  CG   =   x  CM . (This same line of reasoning 

can be applied to objects that are not flat and to other 

axes of rotation to show that  y  CG   =   y  CM  and  z  CG   =   z  CM .) 
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    96.  The operation of the Princeton Tokomak Fusion Test 

Reactor requires large bursts of energy. The power 

needed exceeds the amount that can be supplied by the 

utility company. Prior to pulsing the reactor, energy is 

stored in a giant flywheel of mass 7.27  ×  10 5  kg and 

rotational inertia 4.55  ×  10 6  kg·m 2 . The flywheel rotates 

at a maximum angular speed of 386 rpm. When the 

stored energy is needed to operate the reactor, the fly-

wheel is connected to an electrical generator, which con-

verts some of the rotational kinetic energy into electric 

energy. (a) If the flywheel is a uniform disk, what is its 

radius? (b) If the flywheel is a hollow cylinder with its 

mass concentrated at the rim, what is its radius? (c) If the 

flywheel slows to 252 rpm in 5.00 s, what is the average 

power supplied by the flywheel during that time?  

      97.  A box of mass 42 kg sits 

on top of a ladder. Ignor-

ing the weight of the 

ladder, find the tension 

in the rope. Assume that 

the rope exerts horizon-

tal forces on the ladder 

at each end. [ Hint:  Use a 

symmetry argument; 

then analyze the forces 

and torques on one side 

of the ladder.]      

       98. A person is trying to lift a ladder of mass 15 kg and 

length 8.0 m. The person is exerting a vertical force on 

the ladder at a point of contact 2.0 m from the center of

✦✦

✦✦

50.0°

1.40 m
6.00 m

1.40 m
0.28 m

75°

0.50h

1.26 m

42 kg

Rope

75°

h
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  gravity. The opposite end of the ladder rests on the 

floor. (a) When the ladder makes an angle of 60.0 °  with 

the floor, what is this vertical force? (b) A person tries 

to help by lifting the ladder at the point of contact with 

the floor. Does this help the person trying to lift the 

ladder? Explain.  

        99.  A crustacean ( Hemisquilla ensigera ) rotates its ante-

rior limb to strike a mollusk, intending to break it open. 

The limb reaches an angular velocity of 175 rad/s in 

1.50 ms. We can approximate the limb as a thin rod 

rotating about an axis perpendicular to one end (the 

joint where the limb attaches to the crustacean). (a) If 

the mass of the limb is 28.0 g and the length is 3.80 cm, 

what is the rotational inertia of the limb about that 

axis? (b) If the extensor muscle is 3.00 mm from the 

joint and acts perpendicular to the limb, what is the 

muscular force required to achieve the blow?  

   100. A block of mass  m  2  

hangs from a rope. 

The rope wraps 

around a pulley of 

rotational inertia  I  and 

then attaches to a sec-

ond block of mass  m  1 , which sits on a frictionless table. 

What is the acceleration of the blocks when they are 

released?      

    101.  A 2.0-kg uniform flat disk is thrown into the air with a 

linear speed of 10.0 m/s. As it travels, the disk spins at 

3.0 rev/s. If the radius of the disk is 10.0 cm, what is 

the magnitude of its angular momentum?  

        102.  A hoop of 2.00-m circumference is rolling down an 

inclined plane of length 10.0 m in a time of 10.0 s. It 

started out from rest. (a) What is its angular velocity 

when it arrives at the bottom? (b) If the mass of the 

hoop, concentrated at the rim, is 1.50 kg, what is the 

angular momentum of the hoop when it reaches the bot-

tom of the incline? (c) What force(s) supplied the net 

torque to change the hoop’s angular momentum? 

Explain. [ Hint:  Use a rotation axis through the hoop’s 

center.] (d) What is the magnitude of this force?  

    103.  A large clock has a second hand with a mass of 0.10 kg 

concentrated at the tip of the pointer. (a) If the length of 

the second hand is 30.0 cm, what is its angular momen-

tum? (b) The same clock has an hour hand with a mass 

of 0.20 kg concentrated at the tip of the pointer. If the 

hour hand has a length of 20.0 cm, what is its angular 

momentum?  

     104. A planet moves around the Sun in an elliptical orbit 

(see  Fig. 8.39 ). (a) Show that the external torque acting 

on the planet about an axis through the Sun is zero. 

(b) Since the torque is zero, the planet’s angular momen-

tum is constant. Write an expression for the planet’s 

angular momentum in terms of its mass  m,  its distance  r  

from the Sun, and its angular velocity  w . (c) Given  r  and 

w, how much area is swept out during a short time 

✦✦

✦✦

Δ t?  [ Hint:  Think of the area as a fraction of the area of 

a  circle,  like a slice of pie; if Δ t  is short enough, the 

radius of the orbit during that time is nearly constant.] 

(d) Show that the area swept out per unit time is con-

stant. You have just proved Kepler’s second law!  

        105.  A 68-kg woman stands straight with both feet flat on 

the floor. Her center of gravity is a horizontal distance 

of 3.0 cm in front of a line that connects her two ankle 

joints. The Achilles tendon attaches the calf muscle to 

the foot a distance of 4.4 cm behind the ankle joint. If 

the Achilles tendon is inclined at an angle of 81 °  with 

respect to the horizontal, find the force that each calf 

muscle needs to exert while she is standing. [ Hint:  

Consider the equilibrium of the part of the body  above  

the ankle joint.]  

   106. A merry-go-round (radius  R,  rotational inertia  I   i  ) spins 

with negligible friction. Its initial angular velocity is  w   i . 

A child (mass  m ) on the merry-go-round moves from the 

center out to the rim. (a) Calculate the angular velocity 

after the child moves out to the rim. (b) Calculate the 

rotational kinetic energy and angular momentum of the 

system (merry-go-round  +  child) before and after.  

     107. Since humans are generally not symmetrically shaped, 

the height of our center of gravity is generally not half 

of our height. One way to determine the location of the 

center of gravity is shown in the diagram. A 2.2-m-long 

uniform plank is supported by two bathroom scales, 

one at either end. Initially the scales each read 100.0 N. 

A 1.60-m-tall student then lies on top of the plank, with 

the soles of his feet directly above scale B. Now scale 

A reads 394.0 N and scale B reads 541.0 N. (a) What is 

the student’s weight? (b) How far is his center of grav-

ity from the soles of his feet? (c) When standing, how 

far above the floor is his center of gravity, expressed as 

a fraction of his height?      

BA
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Problem 107

     108. A spool of thread of 

mass  m  rests on a 

plane inclined at 

angle  q . The end of 

the thread is tied as 

shown. The outer 

radius of the spool 

is  R  and the inner 

radius (where the thread is wound) is  r.  The rotational 

✦✦

✦✦

Pulley

m2

I

m1

R

r

q



inertia of the spool is  I.  Give all answers in terms of  m,  

 q ,  R,   r,   I,  and  g.  (a) If there is no friction between the 

spool and the incline, describe the motion of the spool 

and calculate its acceleration. (b) If the coefficient of 

friction is large enough to keep the spool from slipping, 

calculate the magnitude and direction of the frictional 

force. (c) What is the minimum possible coefficient of 

friction to keep the spool from slipping in part (b)?      

    109.  A bicycle travels up 

an incline at constant 

velocity. The magni-

tude of the frictional 

force due to the road 

on the rear wheel is 

 f   =  3.8 N. The upper 

section of chain pulls 

on the sprocket wheel, which is attached to the rear 

wheel, with a force      ⃗ F C  .   The lower section of chain is 

slack. If the radius of the rear wheel is 6.0 times the 

radius of the sprocket wheel, what is the magnitude of 

the force  ⃗ F   C       with which the chain pulls?    

      110.  A circus roustabout is attach-

ing the circus tent to the top of 

the main support post of length 

 L  when the post suddenly 

breaks at the base. The work-

er’s weight is negligible rela-

tive to that of the uniform post. 

What is the speed with which 

the roustabout reaches the 

ground if (a) he jumps at the 

instant he hears the post crack 

or (b) if he clings to the post 

and rides to the ground with it? 

(c) Which is the safest course 

of action for the roustabout?      

       111. A student stands on a platform 

that is free to rotate and holds 

two dumbbells, each at a dis-

tance of 65 cm from his central axis. Another student 

gives him a push and starts the system of student, dumb-

bells, and platform rotating at 0.50 rev/s. The student on 

the platform then pulls the dumbbells in close to his 

chest so that they are each 22 cm from his central axis. 

Each dumbbell has a mass of 1.00 kg and the rotational 

inertia of the student, platform, and dumbbells is initially 

2.40 kg·m 2 . Model each arm as a uniform rod of mass 

3.00 kg with one 

end at the central 

axis; the length of 

the arm is initially 

65 cm and then is 

reduced to 22 cm. 

What is his new rate 

of rotation?      

✦✦

✦✦

     112. A person places 

his hand palm 

downward on a 

scale and pushes 

down on the scale 

until it reads 96 N. 

The triceps muscle 

is responsible for 

this arm extension 

force. Find the force exerted by the triceps muscle. The 

bottom of the triceps muscle is 2.5 cm to the left of the 

elbow joint and the palm is pushing at approximately 

38 cm to the right of the elbow joint.      

      113.  The posture of small 

animals may pre-

vent them from 

being blown over by 

the wind. For exam-

ple, with wind blow-

ing from the side, a small insect stands with bent legs; 

the more bent the legs, the lower the body and the smaller 

the angle  q . The wind exerts a force on the insect, which 

causes a torque about the point where the downwind 

feet touch. The torque due to the weight of the insect 

must be equal and opposite to keep the insect from 

being blown over. For example, the drag force on a 

blowfly due to a sideways wind is  F  wind   =   cAv  2 , where 

 v  is the velocity of the wind,  A  is the cross-sectional 

area on which the wind is blowing, and  c  ≈ 1.3 N·s 2 ·m  − 4 . 

(a) If the blowfly has a cross-sectional side area of 

0.10 cm 2 , a mass of 0.070 g, and crouches such that 

 q    =  30.0 ° , what is the maximum wind speed in which 

the blowfly can stand? (Assume that the drag force acts 

at the center of gravity.) (b) How about if it stands such 

that  q    =  80.0 ° ? (c) Compare to the maximum wind 

velocity that a dog can withstand, if the dog stands such 

that  q    =  80.0 ° , has a cross-sectional area of 0.030 m 2 , 

and weighs 10.0 kg. (Assume the same value of  c. )      

      114.  (a) Redo Example 8.7 to find an algebraic solution for 

 d  in terms of  M,   m,   m  s ,  L,  and  q . (b) Use this expression 

to show that placing the ladder at a larger angle  q  (that 

is, more nearly vertical) enables the person to climb 

farther up the ladder without having it slip, all other 

things being equal. (c) Using the numerical values from 

Example 8.7, find the minimum angle  q   that enables 

the person to climb all the way to the top of the ladder.    

  Answers to Practice Problems 

    8.1  390 kg·m 2   

   8.2      v =  √
_____________

    
2 m 

2
  gh
 ____________  

 m 
1
   +  m 

2
   + I/ R 2 

        

   8.3  53 N; 8.4 N·m  

   8.4  −65 N·m  

✦✦

f

r1

r2

FC

L

65 cm
22 cm

65 cm

38 cm
2.5 cm

96 N

Fwind

LegLeg Body

mg

q
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   8.5  8.3 J  

   8.6  left support, downward; right support, upward  

   8.7  0.27  

   8.8  57 N, downward  

   8.9  It must lie in the same vertical plane as the two ropes 

holding up the rings. Otherwise, the gravitational force 

would have a nonzero lever arm with respect to a horizontal 

axis that passes through the contact points between his hands 

and the rings; thus, gravity would cause a net torque about 

that axis.  

   8.10  460 N  

   8.11  (a) 2380 rad; (b) 3.17 kJ; (c) 1.34 N·m  

   8.12  solid ball,       2 _ 
7
  ;   hollow ball,       2 _ 

5
      

   8.13        1 _ 
2
  g sin q    

   8.14  5% increase  

   8.15  16 cm/s    

  Answers to Checkpoints 

   8.1 Rotational inertia involves distances from masses to 

the rotation axis; distances  along  the rotation axis are irrel-

evant. Another way to see it: cut the cylinder or disk into 

a large number of thin disks with the same radius. Each 

thin disk has rotational inertia      I 
i
   =   1 _ 

2
    m 

i
    R 2 .   Now add up 

the rotational inertias of the thin disks:     I = ∑ I 
i
   = ∑  1 _ 

2
   m 

i
    R 2  = 

  1 _ 
2
   R 2  ∑ m 

i
   =   1 _ 

2
   M R 2 .    

  8.2 The longer handle lets you push at a greater distance 

from the rotation axis. Thus, you can exert a larger torque.  

  8.4 Yes in both cases. Torque depends not only on the mag-

nitude and direction of the force but also on the point where 

the force is applied. Two forces that do not add to zero can 

produce torques that add to zero due to different lever arms. 

Then the net torque is zero and the net torque nonzero; the 

object is in rotational equilibrium but not in translational 

equilibrium. Similarly, two forces that add to zero can have 

different lever arms and produce torques that do not add to 

zero. In this case the net force is zero and the net torque is 

nonzero; the object is in translational equilibrium but not in 

rotational equilibrium.  

  8.7 (a) falling without spinning; (b) spinning about a fixed 

axis; (c) rolling without slipping along a surface  

  8.8 Yes. If friction is negligible, the external torque is zero 

so her angular momentum does not change. Extending her 

arms and leg makes her rotational inertia increase back to its 

initial value, so her angular velocity decreases to its initial 

value.       



  Review Exercises 

     1.  A spring scale in a French market is calibrated to show the 

 mass  of vegetables in grams and kilograms. (a) If the 

marks on the scale are 1.0 mm apart for every 25 g, what 

maximum extension of the spring is required to measure 

up to 5.0 kg? (b) What is the spring constant of the spring? 

[ Hint:  Remember that the scale really measures  force. ]  

   2. Plot a graph of this data for a spring resting horizontally 

on a table. Use your graph to find (a) the spring constant 

and (b) the relaxed length of the spring.   

Force (N) 0.200 0.450 0.800 1.500

Spring length (cm) 13.3 15.0 17.3 22.0

   3. A pendulum consists of a bob of mass  m  attached to the 

end of a cord of length  L.  The pendulum is released from 

a point at a height of  L /2 above the lowest point of the 

swing. What is the tension in the cord as the bob passes 

the lowest point?  

    4.  How much energy is expended by an 80.0-kg person in 

climbing a vertical distance of 15 m? Assume that mus-

cles have an efficiency of 22%; that is, the work done by 

the muscles to climb is 22% of the energy expended.  

    5.  Ugonna stands at the top of an incline and pushes a 100-kg 

crate to get it started sliding down the incline. The crate 

slows to a halt after traveling 1.50 m along the incline. 

(a) If the initial speed of the crate was 2.00 m/s and the 

angle of inclination is 30.0 ° , how much energy was dissi-

pated by friction? (b) What is the coefficient of sliding 

friction?  

    6.  A packing carton slides down an inclined plane of angle 

30.0 °  and of incline length 2.0 m. If the initial speed of 

the carton is 4.0 m/s directed down the incline, what is 

the speed at the bottom? Ignore friction.  

    7.  A child’s playground swing is supported by chains that are 

4.0 m long. If the swing is 0.50 m above the ground and 

moving at 6.0 m/s when the chains are vertical, what is 

the maximum height of the swing?  

    8.  A block slides down a plane that is inclined at an angle of 

53 °  with respect to the horizontal. If the coefficient of 

kinetic friction is 0.70, what is the acceleration of the 

block?  

    9.  Gerald wants to know how fast he can throw a ball, so he 

hangs a 2.30-kg target on a rope from a tree. He picks up a 

0.50-kg ball of putty and throws it horizontally against the 

target. The putty sticks to the target and the putty and target 

swing up a vertical distance of 1.50 m from its original 

position. How fast did Gerald throw the ball of putty?  

    10.  A hollow cylinder rolls without slipping or sliding along 

a horizontal surface toward an incline. If the cylinder’s 

speed is 3.00 m/s at the base of the incline and the angle 

of inclination is 37.0 ° , how far along the incline does the 

cylinder travel before coming to a stop?  

    11.  A grinding wheel, with a mass of 20.0 kg and a radius of 

22.4 cm, is a uniform cylindrical disk. (a) Find the rota-

tional inertia of the wheel about its central axis. (b) When 

the grinding wheel’s motor is turned off, friction causes 

the wheel to slow from 1200 rpm to rest in 60.0 s. What 

torque must the motor provide to accelerate the wheel 

from rest to 1200 rpm in 4.00 s? Assume that the fric-

tional torque is the same regardless of whether the motor 

is on or off.  

    12.  An 11-kg bicycle is moving with a linear speed of 7.5 m/s. 

Each wheel can be modeled as a thin hoop with a mass of 

1.3 kg and a diameter of 70 cm. The bicycle is stopped in 

4.5 s by the action of brake pads that squeeze the wheels 

and slow them down. The coefficient of friction between 

the brake pads and a wheel is 0.90. There are four brake 

pads altogether; assume they apply equal magnitude nor-

mal forces on the wheels. What is the normal force 

applied to a wheel by one of the brake pads?  

    13.  A 0.185-kg spherical steel ball is used in a pinball 

machine. The ramp is 2.05 m long and tilted at an angle 

of 5.00 ° . Just after a flipper hits the ball at the bottom of 

the ramp, the ball has an initial speed of 2.20 m/s. What is 

the speed of the ball when it reaches the top of the pinball 

machine?  

   14. A rotating star collapses under the influence of gravita-

tional forces to form a pulsar. The radius of the star after 

collapse is 1.0  ×  10  − 4  times the radius before collapse. 

There is no change in mass. In both cases, the mass of the 

star is uniformly distributed in a spherical shape. Find the 

ratios of the (a) angular momentum, (b) angular velocity, 

and (c) rotational kinetic energy of the star after collapse 

to the values before collapse. (d) If the period of the star’s 

rotation before collapse is 1.0  ×  10 7  s, what is its period 

after collapse?  

     15. A 0.122-kg dart is fired from a gun with a speed of 

132 m/s horizontally into a 5.00-kg wooden block. The 

block is attached to a spring with a spring constant of 

8.56 N/m. The coefficient of kinetic friction between the 

block and the horizontal surface it is resting on is 0.630. 

After the dart embeds itself into the block, the block 

slides along the surface and compresses the spring. What 

is the maximum compression of the spring?  

   16. A 5.60-kg uniform door is 0.760 m wide by 2.030 m 

high, and is hung by two hinges, one at 0.280 m from the 

top and one at 0.280 m from the bottom of the door. If the 

vertical components of the forces on each of the two 

hinges are identical, find the vertical and horizontal force 

components acting on each hinge due to the door.  

✦✦
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    17.  Consider the apparatus shown in the figure (not to scale). 

The pulley, which can be treated as a uniform disk, has a 

mass of 60.0 g and a radius of 3.00 cm. The spool also 

has a radius of 3.00 cm. The rotational inertia of the 

spool, axle, and paddles about their axis of rotation is 

0.00140 kg·m 2 . The block has a mass of 0.870 kg and is 

released from rest. After the block has fallen a distance of 

2.50 m, it has a speed of 3.00 m/s. How much energy has 

been delivered to the fluid in the beaker? 

 

Pulley Spool

Axle

Paddles

    

    18.  It is the bottom of the ninth inning at a baseball game. 

The score is tied and there is a runner on second base 

when the batter gets a hit. The 85-kg base runner rounds 

third base and is heading for home with a speed of 

8.0 m/s. Just before he reaches home plate, he crashes 

into the opposing team’s catcher, and the two players 

slide together along the base path toward home plate. The 

catcher has a mass of 95 kg and the coefficient of friction 

between the players and the dirt on the base path is 0.70. 

How far do the catcher and base runner slide?  

   19. Pendulum bob A has half the mass of pendulum bob B. 

Each bob is tied to a string that is 5.1 m long. When bob 

A is held with its string horizontal and then released, it 

swings down and, once bob A’s string is vertical, it col-

lides elastically with bob B. How high do the bobs rise 

after the collision?  

     20. During a game of marbles, the “shooter,” 

a marble with three times the mass of the 

other marbles, has a speed of 3.2 m/s just 

before it hits one of the marbles. The 

other marble bounces off the shooter in 

an elastic collision at an angle of 40 ° , as 

shown, and the shooter moves off at an 

angle  q . Determine (a) the speed of the 

shooter after the collision, (b) the speed of the marble 

after the collision, and (c) the angle  q .      

    21.  At the beginning of a scene in an action movie, the 

78.0-kg star, Indianapolis Jones, will stand on a ledge 

3.70 m above the ground and the 55.0-kg heroine, 

Georgia Smith, will stand on the ground. Jones will 

swing down on a rope, grab Smith around the waist, and 

continue swinging until they come to rest on another 

ledge on the other side of the set. At what height above 

the ground should the second ledge be placed? Assume 

that Jones and Smith remain nearly upright during the 

✦✦

swing so that their cms are always the same distance 

above their feet.  

   22. A uniform disk is rotated about its symmetry axis. The 

disk goes from rest to an angular speed of 11 rad/s in a 

time of 0.20 s with a constant angular acceleration. The 

rotational inertia and radius of the disk are 1.5 kg·m 2  

and 11.5 cm, respectively. (a) What is the angular accel-

eration during the 0.20-s interval? (b) What is the net 

torque on the disk during this time? (c) After the applied 

torque stops, a frictional torque remains. This torque has 

an associated angular acceleration of 9.8 rad/s 2 . Through 

what total angle  q  (starting from time  t   =  0) does the disk 

rotate before coming to rest? (d) What is the speed of a 

point halfway between the rim of the disk and its rotation 

axis 0.20 s after the applied torque is removed?  

    23.  A block is released from rest and slides down an incline. 

The coefficient of sliding friction is 0.38 and the angle of 

inclination is 60.0 ° . Use energy considerations to find 

how fast the block is sliding after it has traveled a dis-

tance of 30.0 cm along the incline.  

    24.  A uniform solid cylinder rolls without slipping or sliding 

down an incline. The angle of inclination is 60.0 ° . Use 

energy considerations to find the cylinder’s speed after it 

has traveled a distance of 30.0 cm along the incline.  

    25.  A block of mass 2.00 kg slides eastward along a friction-

less surface with a speed of 2.70 m/s. A chunk of clay with 

a mass of 1.50 kg slides southward on the same surface 

with a speed of 3.20 m/s. The two objects collide and move 

off together. What is their velocity after the collision?  

   26. An ice-skater, with 

a mass of 60.0 kg, 

glides in a circle of 

radius 1.4 m with a 

tangential speed of 

6.0 m/s. A second 

skater, with a mass 

of 30.0 kg, glides on 

the same circular 

path with a tangen-

tial speed of 2.0 m/s. 

At an instant of 

time, both skaters 

grab the ends of a lightweight, rigid set of rods, set at 90 °  

to each other, that can freely rotate about a pole, fixed in 

place on the ice. (a) If each rod is 1.4 m long, what is the 

tangential speed of the skaters after they grab the rods? 

(b) What is the direction of the angular momentum before 

and after the skaters “collide” with the rods?      

      27.  In a motor, a flywheel (solid disk of radius  R  and mass  M ) 

is rotating with angular velocity  w   i . When the clutch is 

released, a second disk (radius  r  and mass  m ) initially not 

rotating is brought into frictional contact with the flywheel. 

The two disks spin around the same axle with frictionless 

bearings. After a short time, friction between the two disks 

brings them to a common angular velocity. (a) Ignoring 

external influences, what is the final angular velocity? 

40°
q

60.0 kg

30.0 kg

6.0 m/s

2.0 m/s
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(b) Does the total angular momentum of the two change? 

If so, account for the change. If not, explain why it does 

not. (c) Repeat (b) for the rotational kinetic energy.  

    28.  A child’s toy is made of a 12.0-cm-radius rotating wheel 

that picks up 1.00-g pieces of candy in a pocket at its 

lowest point, brings the candy to the top, then releases it. 

The frequency of rotation is 1.60 Hz. (a) How far from its 

starting point does the candy land? (b) What is the radial 

acceleration of the candy when it is on the wheel?  

    29.  A Vulcan spaceship has a mass of 65 000 kg and a Romu-

lan spaceship is twice as massive. Both have engines that 

generate the same total force of 9.5  ×  10 6  N. (a) If each 

spaceship fires its engine for the same amount of time, 

starting from rest, which will have the greater kinetic 

energy? Which will have the greater momentum? (b) If 

each spaceship fires its engine for the same  distance,  which 

will have the greater kinetic energy? Which will have the 

greater momentum? (c) Calculate the energy and momen-

tum of each spaceship in parts (a) and (b), ignoring any 

change in mass due to whatever is expelled by the engines. 

In part (a), assume that the engines are fired for 100 s. In 

part (b), assume that the engines are fired for 100 m.  

    30.  Two blocks of masses  m  1  

and  m  2 , resting on fric-

tionless inclined planes, 

are connected by a mass-

less rope passing over an 

ideal pulley. Angle 

 f    =  45.0 °  and angle  q    =  36.9 ° ; mass  m  1  is 6.00 kg and 

mass  m  2  is 4.00 kg. (a) Using energy conservation, find 

how fast the blocks are moving after they travel 2.00 m 

along the inclines. (b) Now solve the same problem using 

Newton’s second law. [ Hint:  First find the acceleration of 

each of the blocks. Then find how fast either block is 

moving after it travels 2.00 m along the incline with con-

stant acceleration.]      

     31. A particle, constrained to move along the  x -axis, has a total 

mechanical energy of  − 100 J. The potential energy of the 

particle is shown in the graph. At time  t   =  0, the particle is 

located at  x   =  5.5 cm and is moving to the left. (a) What is 

the particle’s potential energy at  t   =  0? What is its kinetic 

energy at this time? (b) What are the particle’s total, poten-

tial, and kinetic energies when it is at  x   =  1 cm and moving 

to the right? (c) What is the particle’s kinetic energy when 

it is at  x   =  3 cm and moving to the left? (d) Describe the 

motion of this particle starting at  t   =  0.      

3 11 13.55.51

–100

–300

–550

x (cm)

U (J)

     32. You are mowing the lawn on a hill near your house when 

the lawnmower blade strikes a stone of mass 100 g and 

✦✦

✦✦

sends it flying horizontally toward a window. The lawn-

mower blade can be modeled as a thin rod with a mass of 

2.0 kg and a length of 50 cm rotating about its center. The 

stone impacts the blade near one end and is ejected with 

a velocity perpendicular to the rotation axis and the blade 

at the moment of collision. As a result of the impact, the 

blade slows from 60 rev/s to 55 rev/s. The window is 

1.00 m in height, and its center is located 10.0 m away 

and at the same height as the lawnmower. (a) With what 

speed is the stone shot out by the mower? [ Hint:  The 

external force due to the lawnmower’s drive shaft on the 

system (blade  +  stone) cannot be ignored during the col-

lision, but the external  torque  about the shaft  can  be 

ignored. The angular momentum of the stone just after 

impact can be calculated from its tangential velocity and 

its distance from the rotation axis.] (b) Ignoring air resis-

tance, will the stone hit the window?  

 

10.0 mv

1.00 m

    33. A person on a bicycle (combined total mass 80.0 kg) 

starts from rest and coasts down a hill to the bottom 

20.0 m below. Each wheel can be treated as a hoop with 

mass 1.5 kg and radius 40 cm. Ignore friction and air 

resistance. (a) Find the speed of the bike at the bottom. 

(b) Would the speed at the bottom be the same for a less 

massive rider? Explain.  

   34. Tarzan wants to swing on a vine across a river. He is stand-

ing on a ledge 3.00 m above the water’s edge, and the river 

is 5.00 m wide. The vine is attached to a tree branch that is 

8.00 m directly above the opposite edge of the river. Ini-

tially the vine makes a 60.0 °  angle with the vertical as he is 

holding it. He swings across starting from rest, but unfortu-

nately the vine breaks when the vine is 20.0 °  from the ver-

tical. (a) Assuming Tarzan weighs 900.0 N, what was the 

tension in the vine just before it broke? (b) Does he land 

safely on the other side of the river?  

8.00 m

5.00 m

3.00 m

60.0⬚

m1

m2

f q
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   35. A boy of mass 60 kg is sledding down a 70-m slope start-

ing from rest. The slope is angled at 15 °  below the hori-

zontal. After going 20 m along the slope he passes his 

friend, who jumps on the sled. The friend has a mass of 

50 kg and the coefficient of kinetic friction between the 

sled and the snow is 0.12. Ignoring the mass of the sled, 

find their speed at the bottom.  

       36. You want to throw a banana to a monkey hanging from a 

branch as shown in the figure. The banana has a mass of 

200 g and the monkey has a mass of 3.00 kg. The mon-

key is startled and drops from the branch the moment you 

throw the banana. Ignore air resistance. (a) In what direc-

tion should you aim the banana so the monkey catches it 

in the air? (b) Explain why your answer to part (a) is the 

same for different values of the banana’s launch speed. 

(c) If the monkey catches the banana at the point indi-

cated in the figure, what was the banana’s initial speed? 

(d) What is the horizontal distance  d  to the spot where the 

monkey lands?    

3.33 m

3.00 m

2.00 m

1.67 m

d

  MCAT Review 
 The section that follows includes MCAT exam material and is 

reprinted with permission of the Association of American Medical 

Colleges (AAMC). 

    1. A projectile with a mass of 0.2 kg and a horizontal speed 

of 2.0 m/s hits a recycle bin (which is free to move), then 

rebounds at 1.0 m/s back along the same path. What is 

the magnitude of the horizontal momentum the bin 

receives?

   A. 0.2 kg·m/s     B. 0.3 kg·m/s  

  C. 0.5 kg·m/s     D. 0.6 kg·m/s     

   2. A vertically oriented spring is stretched by 0.15 m when 

a 100-g mass is suspended from it. What is the approxi-

mate spring constant of the spring?

   A. 0.015 N/m     B. 0.15 N/m  

  C. 1.5 N/m     D. 6.5 N/m     

✦✦

   3. When a downward force is applied at a point 0.60 m to 

the left of a fulcrum, equilibrium is obtained by placing a 

mass of 1.0  ×  10  − 7  kg at a point 0.40 m to the right of the 

fulcrum. What is the magnitude of the downward force?

   A. 1.5  ×  10  − 7  N     B. 6.5  ×  10  − 7  N  

  C. 9.8  ×  10  − 7  N     D. 1.5  ×  10  − 6  N     

   4. A 0.50-kg ball accelerates from rest at 10 m/s 2  for 2.0 s. 

It then collides with and sticks to a 1.0-kg ball that is ini-

tially at rest. After the collision, approximately how fast 

are the balls going?

   A. 3.3 m/s     B. 6.7 m/s  

  C. 10.0 m/s     D. 15.0 m/s     

   5. A 1000-kg car requires 10,000 W of power to travel at 

15 m/s on a level highway. How much extra power in 

watts is required for the car to climb a 10 °  hill at the 

same speed? (Use  g   =  10 m/s 2 .)

   A. 1.0  ×  10 4   ×  sin 10 °      B. 1.5  ×  10 4   ×  sin 10 °   

  C. 1.0  ×  10 5   ×  sin 10 °      D. 1.5  ×  10 5   ×  sin 10 °      

   6. A 90-kg patient walks the treadmill at a speed of 2 m/s, 

and  q   in   =  30 °  for 10 min (600 s). What is the total work 

done by the patient on the treadmill? (Use  g   =  10 m/s 2 .)

   A. 1.80 kJ     B. 18.0 kJ  

  C. 0.54 MJ     D. 1.08 MJ     

   7. A 100-kg patient walks the treadmill at a speed of 3 m/s, 

and  q  in   =  30 °  for 5 min (300 s). What is the mechanical 

power output of the patient in watts? (Use  g   =  10 m/s 2 .)

   A. 300 W     B. 1500 W  

  C. 3000 W     D. 7500 W      

  Read the paragraphs and then answer the following 

questions:  

 An exercise bike has the basic construction of a bicycle 

with a single heavy disk wheel. In addition to friction in the 

bearings and the transmission system, resistance to pedaling 

is provided by two narrow friction pads that push with equal 

force on each side of the wheel. The coefficient of kinetic 

friction between the pads and the wheel is 0.4, and the pads 

provide a total retarding force of 20 N tangential to the 

wheel. The pads are located at a position 0.3 m from the cen-

ter of the wheel. The distance, recorded on the odometer, is 

considered to be the distance that a point on the wheel 0.3 m 

from the center moves. The pedals move in a circle of 

0.15 m in radius and complete one revolution, while a trans-

mission system allows the wheel to rotate twice. 

 In human metabolic processes, the ratio of energy 

released to volume of oxygen consumed averages 20 000 J/L. 

A cyclist with a basal metabolic rate of 85 W (rate of inter-

nal energy conversion while awake but inactive) pedals con-

tinuously for 20 min, registering 4800 m on the odometer. 

During this activity, the cyclist’s average metabolic rate is 

535 W. The cyclist’s body converts the extra energy into 

mechanical work output with an efficiency of 20%. 
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    8. What is the magnitude of the force pushing each friction 

pad onto the wheel?

   A. 10 N  

  B. 25 N  

  C. 40 N  

  D. 50 N     

   9. Which of the following is closest to the radial accelera-

tion of the part of the wheel that passes between the fric-

tion pads?

   A. 10 m/s 2   

  B. 20 m/s 2   

  C. 40 m/s 2   

  D. 50 m/s 2      

   10. If the wheel has a kinetic energy of 30 J when the cyclist 

stops pedaling, how many rotations will it make before 

coming to rest?

   A. Less than 1  

  B. Between 1 and 2  

  C. Between 2 and 3  

  D. Between 3 and 4     

   11. What is the difference between the average mechanical 

power output of the cyclist in the passage and the power 

dissipated by the wheel at the friction pads?

   A. 5 W  

  B. 10 W  

  C. 20 W  

  D. 27 W     

   12. Which of the following actions would most likely 

increase the fraction of the cyclist’s mechanical power 

output that is dissipated by the wheel at the friction 

pads?

   A. Reducing the force on the friction pads and pedal-

ing at the same rate  

  B. Maintaining the same force on the friction pads and 

pedaling at a slower rate  

  C. Maintaining the same force on the friction pads and 

pedaling at a faster rate  

  D. Increasing the force on the friction pads and pedal-

ing at the same rate     

   13. Which of the following is the best estimate of the number 

of liters of oxygen the cyclist in the passage would con-

sume in the 20 min of activity?

   A. 25 L  

  B. 30 L  

  C. 45 L  

  D. 50 L     

   14. During a second workout, the cyclist reduces the force on 

the friction pads by 50%, then pedals for two times the 

previous distance in       1 _ 
2
     the previous time. How does the 

amount of energy dissipated by the pads in the second 

workout compare with energy dissipated in the first 

workout?

   A. One-eighth as much  

  B. One-half as much  

  C. Equal  

  D. Two times as much     

   15. What is the ratio of the distance moved by a pedal to the 

distance moved by a point on the wheel located at a radius 

of 0.3 m in the same amount of time?

   A. 0.25  

  B. 0.5  

  C. 1  

  D. 2     

   16. A cyclist’s average metabolic rate during a workout is 

500 W. If the cyclist wishes to expend at least 300 kcal 

(1 kcal  =  4186 J) of energy, how long must the cyclist 

exercise at this rate?

   A. 0.6 min  

  B. 3.6 min  

  C. 36.0 min  

  D. 41.9 min     

  17. If the friction pads are moved to a location 0.4 m from 

the center of the wheel, how does the amount of work 

done on the wheel, per revolution, change?

   A. It decreases by 25%  

  B. It stays the same  

  C. It increases by 33%  

  D. It increases by 78%                 
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   A  hippopotamus in Kruger 

National Park, South Africa, 

wants to feed on the vegeta-

tion growing on the bottom 

of a pond. When the hippo 

wades into the pond, it floats. 

How does a hippopotamus 

get its floating body to sink 

to the bottom of a pond? 

(See p. 329 for the answer.)        



 • conservation of energy (Chapter 6) 

 • force as rate of change of momentum (Section 7.3) 

 • conservation of momentum in collisions (Sections 7.7 and 7.8) 

 • equilibrium (Section 4.2)   

    9.1  STATES OF MATTER 

  Ordinary matter is usually classified into three familiar states or phases: solids, liquids, 

and gases. Solids tend to hold their shapes. Many solids are quite rigid; they are not eas-

ily deformed by external forces because forces due to neighboring atoms hold each 

atom in a particular position. Although the atoms vibrate around fixed equilibrium posi-

tions, they do not have enough energy to break the bonds with their neighbors. To bend 

an iron bar, for example, the arrangement of the atoms must be altered, which is not 

easy to do. A blacksmith heats iron in a forge to loosen the bonds between atoms so that 

he can bend the metal into the required shape. 

 In contrast to solids, liquids and gases do not hold their shapes. A liquid flows and 

takes the shape of its container and a gas expands to fill its container.    Fluids   —both liq-

uids and gases—are easily deformed by external forces. This chapter deals mainly with 

properties that are common to both liquids and gases.         

 The atoms or molecules in a fluid do not have fixed positions, so a fluid does not 

have a definite shape. An applied force can easily make a fluid flow; for instance, the 

squeezing of the heart muscle exerts an applied force that pumps blood through the 

blood vessels of the body. However, this squeezing does not change the  volume  of 

the blood by much. In many situations we can think of liquids as    incompressible   —that 

is, as having a fixed volume that is impossible to change. The shape of the liquid can be 

changed by pouring it from a container of one shape into a container of a different 

shape, but the volume of the liquid remains the same. 

 In most liquids, the atoms or molecules are almost as closely packed as those in 

the solid phase of the same material. The intermolecular forces in a liquid are almost 

as strong as those in solids, but the molecules are not locked in fixed positions as they 

are in solids. That is why the volume of the liquid can remain nearly constant while 

the shape is easily changed. Water is one of the exceptions: in cold water, the mole-

cules in the liquid phase are actually  more  closely packed than those in the solid 

phase (ice). 

 Gases, on the other hand, cannot be characterized by a definite volume nor 

by a definite shape. A gas expands to fill its container and can easily be compressed. 

The molecules in a gas are very far apart compared to the molecules in liquids and 

solids. The molecules are almost free of interactions with each other except when 

they collide.       

   9.2  PRESSURE     

   Microscopic Origin of Pressure    A    static    fluid does not flow; it is everywhere at 

rest. In the study of fluid statics ( hydrostatics ), we also assume that any solid object in 

contact with the fluid—whether a vessel containing the fluid or an object submerged in 

the fluid—is at rest. The atoms or molecules in a static fluid are not themselves static; 

they are continually moving. The motion of people bouncing up and down and bumping 

into each other in a mosh pit gives you a rough idea of the motion of the closely packed 

atoms or molecules in a liquid; in gases, the atoms or molecules are much farther apart 

than in liquids, so they travel greater distances between collisions. 

  Fluids   (liquids and gases) are 

materials that flow.

  Fluids   (liquids and gases) are 

materials that flow.

Gases are much more compressible 

than liquids.

Gases are much more compressible 

than liquids.

Concepts & Skills to Review
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Figure 9.2 Forces due to a 

static fluid acting on the walls of 

the container and on a sub-

merged object.

 Fluid pressure is caused by collisions of the fast-moving atoms or molecules of a 

fluid. When a single molecule hits a container wall and rebounds, its momentum 

changes due to the force exerted on it by the wall.  Figure 9.1a  shows a molecule of a 

fluid within a container making an elastic collision with one of the container walls. In 

this case, the  y -component of momentum is unchanged, while the  x -component 

reverses direction ( Fig. 9.1b ). The momentum change is in the  +  x -direction, which 

occurs because the wall exerts a force to the right on the molecule. By Newton’s third 

law, the molecule exerts a force to the left on the wall during the collision. If we con-

sider all the molecules colliding with this wall,  on average  they exert no force on the 

wall in the  ±   y -direction, but all exert a force in the  −  x -direction. The frequent colli-

sions of fluid molecules with the walls of the container cause a net force pushing out-

ward on the walls.        

PHYSICS AT HOME

Drop a very tiny speck of dust or lint into a container of water and push the 

speck below the surface. The motion of the speck—called Brownian motion—is 

easily observed as it is pushed and bumped about randomly by collisions with 

water molecules. The water molecules themselves move about randomly, but at 

much higher speeds than the speck of dust due to their much smaller mass.

   Definition of Pressure    A static fluid exerts a force on any surface with which it 

comes in contact; the direction of the force is perpendicular to the surface ( Fig. 9.2 ). A 

static fluid  cannot  exert a force  parallel  to the surface. If it did, the surface would exert 

a force on the fluid parallel to the surface, by Newton’s third law. This force would 

make the fluid flow along the surface, contradicting the premise that the fluid is static.         

 The  average pressure  of a fluid at points on a planar surface is

Definition of average pressure:

  P av   =    F __ 
A

   (9-1)

where  F  is the magnitude of the force acting perpendicularly to the surface and  A  is the 

area of the surface. By imagining a tiny surface at various points within the fluid and 

measuring the force that acts on it, we can define the pressure at any point within the 

fluid. In the limit of a small area  A,   P   =   F / A  is the    pressure     P  of the fluid. 

    Pressure is a scalar quantity; it does not have a direction.  The force acting on an 

object submerged in a fluid—or on some portion of the fluid itself—is a vector quan-

tity; its direction is perpendicular to the contact surface. Pressure is defined as a scalar 

because, at a given location in the fluid, the magnitude of the force per unit area is the 

same for any orientation of the surface. The molecules in a static fluid are moving in 

random directions; there can be no preferred direction since that would constitute fluid 

flow. There is no reason that a surface would have a greater number of collisions, or col-

lisions with more energetic molecules, for one particular surface orientation compared 

with any other orientation. 

 The SI unit for pressure is the newton per square meter (N/m 2 ), which is named the 

pascal  (symbol Pa) after the French scientist Blaise Pascal (1623–1662). Another com-

monly used unit of pressure is the  atmosphere  (atm). One atmosphere is the  average  air 

pressure at sea level. The conversion factor between atmospheres and pascals is

    1 atm = 101.3 kPa  

Other units of pressure in common use are introduced in Section 9.5.   

The force due to a static fluid on a 

surface is always perpendicular to 

the surface.

The force due to a static fluid on a 

surface is always perpendicular to 

the surface.

y

(a) (b)

pi

pi

pf
pf

x x

y

piy

pfy = piy

pix

pfx = –pix

Figure 9.1 (a) A single fluid 

molecule bouncing off a con-

tainer wall. (b) In this elastic 

collision, the y-component of the 

momentum is unchanged, while 

the x-component reverses 

direction.



  Atmospheric Pressure 

 On the surface of the Earth, we live at the bottom of an ocean of fluid called air. The 

forces exerted by air on our bodies and on surfaces of other objects may be surprisingly 

large: 1 atm is approximately 10 N/cm 2  of surface area, or nearly 15 lb/in 2 . We are not 

crushed by this pressure because most of the fluids in our bodies are at approximately 

the same pressure as the air around us. As an analogy, consider a sealed bag of potato 

chips. Why is the bag not crushed by the air pushing in on all sides? Because the air 

inside the bag is at the same pressure and pushes out on the sides of the bag. The pres-

sure of the fluids inside our cells matches the pressure of the surrounding fluids pushing 

in on the cell membranes, so the cells do not rupture. 

 By contrast, the blood pressure in the arteries is as much as 20 kPa higher than 

atmospheric pressure. The strong, elastic arterial walls are stretched by the pressure of 

the blood inside; the walls squeeze the arterial blood to keep its higher pressure from 

being transmitted to other fluids in the body. 

   Changing weather conditions cause variations of approximately 5% in the actual 

value of air pressure at sea level; 101.3 kPa (1 atm) is only the  average  value. Air pres-

sure also decreases with increasing elevation. (In Section 9.4, we study the effect of 

gravity on fluid pressure in detail.) The average air pressure in Leadville, Colorado, the 

highest incorporated city in the United States (elevation 3100 m), is 70 kPa. Some 

Tibetans live at altitudes of over 5000 m, where the average air pressure is only half its 

value at sea level.  In problems, please assume that the atmospheric pressure is 1 atm 

unless the problem states otherwise.     

The average pressure is the woman’s weight divided by the 

area of the heel. For the tennis shoe:

P =   F __ 
A

   =   534 N ____________  
6.00 ×  10 −3   m 2 

   = 8.90 ×  10 4  N/ m 2  = 89.0 kPa

For the stilettos:

P =   534 N ____________  
1.00 ×  10 −4   m 2 

   = 5.34 ×  10 6  N/ m 2  = 5.34 MPa

Discussion In atmospheres, these pressures are 0.879 atm 

and 52.7 atm, respectively. The pressure due to the dress 

shoe is 60 times the pressure due to the tennis shoe since the 

same force is spread over   1 __ 
60

   the area.

Practice Problem 9.1 Pressure from an Ordinary 
Dress Shoe Heel

Fortunately for floor manufacturers, and for women’s feet, 

stiletto heels are out of fashion more often than they are in 

fashion. Suppose that a woman’s dress shoes have heels 

that are each 4.0 cm2 in area. Find the pressure on the floor, 

when the entire weight is on a single heel, for such a shoe 

worn by the same woman as in Example 9.1. Find the factor 

by which this pressure exceeds the pressure from the tennis 

shoe heel.

Example 9.1

Pressure due to Stiletto-Heeled Shoes

A young woman weighing 534 N (120 lb) walks to her bed-

room while wearing tennis shoes. She then gets dressed for 

her evening date, putting on her new stiletto-heeled dress 

shoes. The area of the heel section of her tennis shoe is 

60.0 cm2 and the area of the heel of her dress shoe is 1.00 cm2. 

For each pair of shoes, find the average pressure caused by 

the heel making contact with the floor when her entire 

weight is supported by one heel.

Strategy The average pressure is the force applied to the 

floor divided by the contact area. The force that the heel 

exerts on the floor is 534 N. To keep the units straight, we 

convert the areas from square centimeters to square meters.

Solution To convert the area of the tennis shoe heel and 

the dress shoe heel from cm2 to m2, we multiply by the 

conversion factor   (   1 m ______ 
 10 2  cm

   )  
2
 .  For the tennis shoe heel:

A = 60.0 c m 2  ×   (   1 m ______ 
 10 2  cm

   )  
2
  = 6.00 ×  10 −3   m 2 

For the dress shoe heel:

A = 1.00 c m 2  ×   (   1 m ______ 
 10 2  cm

   )  
2
  = 1.00 ×  10 −4   m 2 
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   9.3  PASCAL’S PRINCIPLE 

  If the weight of a static fluid is negligible (as, for example, in a hydraulic system under 

high pressure), then the pressure must be the same everywhere in the fluid. Why? In 

 Fig. 9.3 , imagine the submerged cube to be composed of the same fluid as its sur-

roundings. Ignoring the fluid’s weight, the only forces acting on the cubical piece of 

fluid are those due to the surrounding fluid pushing inward. The forces pushing on 

each pair of opposite sides of the cube must be equal in magnitude, since the fluid 

inside the cube is in equilibrium. Therefore, the pressure must be the same on both 

sides. Since we can extend this argument to any size and shape piece of fluid,  the fluid 

pressure must be the same everywhere in a weightless,   static fluid.      

 More generally, when the weight of the fluid is  not  negligible, the pressure is not 

the same everywhere. In this case, analysis of the forces acting on a piece of fluid (see 

Conceptual Question 15) leads to a more general result called    Pascal’s principle.         

Pascal’s Principle

A change in pressure at any point in a confined fluid is transmitted every-

where throughout the fluid.

   Applications of Pascal’s Principle: Hydraulic Lifts, Brakes, and Controls    When a 

truck needs to have its muffler replaced, it is lifted into the air by a mechanism called 

a hydraulic lift ( Fig. 9.4 ). A force is exerted on a liquid by a piston with a relatively 

small area; the resulting increase in pressure is transmitted everywhere throughout the 

liquid. Then the truck is lifted by the fluid pressure on a piston of much larger area. 

The upward force on the truck is much larger than the force applied to the small piston. 

Pascal’s principle has many other applications, such as the hydraulic brakes in cars 

and trucks and the hydraulic controls in airplanes.       

 To analyze the forces in the hydraulic lift, let force  F  1  be applied to the small piston 

of area  A  1 , causing a pressure increase:

    ΔP =   
F1 ___ 
A1

     

 A truck is supported by a piston of much larger area  A  2  on the other side of the lift. 

The increase in pressure due to the small piston is transmitted everywhere in the liq-

uid. Ignoring the weight of the fluid (or assuming the two pistons to be at the same 

height), the force  F  2  exerted by the fluid on the large piston is related to  F  1  by

      
F1 ___ 
A1

   =   
F2 ___ 
A2

    

Since  A  2  is larger than  A  1 , the force exerted on the large piston ( F  2 ) is larger than the force 

applied to the small piston ( F  1 ). We are not getting something for nothing; just as for the 

two-pulley systems discussed in Section 6.2, the advantage of the smaller force applied to 

the small piston is balanced by a greater distance it must be moved. The small piston has 

to move a long distance  d  1  while the large piston moves a short distance  d  2 . Assuming the 

liquid to be incompressible, the volume of fluid displaced by each piston is the same, so

    A1d1 = A2d2  

The displacements of the pistons are inversely proportional to their areas, while the 

forces are directly proportional to the areas; then the product of force and displace-

ment is the same:

      
F1 ___ 
A1

   × A1d1 =   
F2 ___ 
A2

   × A2d2  ⇒  F1d1 = F2d2  

The work (force times displacement) done by moving the small piston equals the work 

done by the large piston in raising the truck.         

CONNECTION: 

As for levers, systems of pul-

leys, and other simple 

machines, the hydraulic lift 

reduces the applied force 

needed to perform a task, but 

the work done is the same.

CONNECTION: 

As for levers, systems of pul-

leys, and other simple 

machines, the hydraulic lift 

reduces the applied force 

needed to perform a task, but 

the work done is the same.

Figure 9.3 Forces acting on a 

cube of fluid.

F2

F1
A2

A1

d2 d1

Hydraulic fluid

Figure 9.4 Simplified dia-

gram of a hydraulic lift. Notice 

that piston 1 has to move a great 

distance (d1) to lift the truck a 

much smaller distance (d2). In a 

real hydraulic lift, piston 1 is 

usually replaced by a pump that 

draws fluid from a reservoir and 

pushes it into the hydraulic 

system.



9.4  THE EFFECT OF GRAVITY ON FLUID PRESSURE 

  On a drive through the mountains or on a trip in a small plane, the feeling of our ears 

popping is evidence that pressure is not the same everywhere in a static fluid. Gravity 

makes fluid pressure increase as you move down and decrease as you move up. To 

understand more about this variation, we must first define the density of a fluid.      

   Density    The    density    of a substance is its mass per unit volume. The Greek letter  r  (rho) 

is used to represent density. The density of a uniform substance of mass  m  and volume  V  is

r =   m __ 
V

   (9-2)

The SI units of density are kilograms per cubic meter: kg/m 3 . For a nonuniform sub-

stance, Eq. (9-2) defines the    average density.              

  Table 9.1  lists the densities of some common substances. Note that temperatures 

and pressures are specified in the table. For solids and liquids, density is only weakly 

dependent on temperature and pressure. On the other hand, gases are highly compress-

ible, so even a relatively small change in temperature or pressure can change the density 

of a gas significantly.        

   Pressure Variation with Depth due to Gravity    Now, using the concept of density, 

we can find how pressure increases with depth due to gravity. Suppose we have a glass 

beaker containing a static liquid of uniform density  r . Within this liquid, imagine a cyl-

inder of liquid with cross-sectional area  A  and height  d  ( Fig. 9.5a ). The mass of the liq-

uid in this cylinder is

    m = rV  

Density  of a uniform substance: its 

mass divided by its volume. 

Density  of a uniform substance: its 

mass divided by its volume. 

F2 = 100F1 = 25 000 N = 25 kN

Discussion One common error in this sort of prob-

lem is to think of the area and the force as a trade-

off—in other words, that the piston with the large area has 

the small force and vice versa. Since the pressures are the 

same, the force exerted by the fluid on either piston is pro-

portional to the piston’s area. We make the piston that lifts 

the truck large because we know the force on it will be large, 

in direct proportion to its area.

Practice Problem 9.2 Application of Pascal’s 
Principle

Consider the hydraulic lift of Example 9.2. (a) What is the 

increase in pressure caused by the 250-N force on the small 

piston? (b) If the larger piston moves 5.0 cm, how far does 

the smaller piston move?

Example 9.2

The Hydraulic Lift

In a hydraulic lift, if the radius of the smaller piston is 

2.0 cm and the radius of the larger piston is 20.0 cm, what 

weight can the larger piston support when a force of 250 N 

is applied to the smaller piston?

Strategy According to Pascal’s principle, the pressure 

increases the same amount at every point in the fluid. A nat-

ural way to work is in terms of proportions since the forces 

are proportional to the areas of the pistons.

Solution Since the pressure on the two pistons increases 

by the same amount,

  
F1 ___ 
A1

   =   
F2 ___ 
A2

  

Equivalently, the forces are proportional to the areas:

  
F2 ___ 
F1

   =   
A2 ___ 
A1

  

The ratio of the radii is r2/r1 = 10, so the ratio of the areas 

is A2/A1 = (r2/r1)
2 = 100. Then the weight that can be sup-

ported is
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where the volume of the cylinder is

    V = Ad  

The weight of the cylinder of liquid is therefore

    mg = ( rAd )g  

The vertical forces acting on this column of liquid are shown in  Fig. 9.5b . The pressure 

at the top of the cylinder is  P  1  and the pressure at the bottom is  P  2 . Since the liquid in 

the column is in equilibrium, the net vertical force acting on it must be zero by 

Newton’s second law:

    ∑Fy = P2A − P1A − rAdg = 0  

Dividing by the common factor  A  and rearranging yields:

             

Pressure variation with depth in a static fluid with uniform density:

 P2 = P1 + rgd (9-3)

where point 2 is a depth d below point 1

 Since we can imagine a cylinder anywhere we choose within the liquid, Eq. (9-3) 

relates the pressure at any two points in a static liquid where point 2 is a depth  d  below 

point 1. 

    For gases, Eq. (9-3) can be applied as long as the depth   d   is small enough that 

changes in the density due to gravity are negligible.  Since liquids are nearly incom-

pressible, Eq. (9-3) holds to great depths in liquids. 

 For a liquid that is open to the atmosphere, suppose we take point 1 at the surface 

and point 2 a depth  d  below. Then  P  1   =   P  atm , so the pressure at a depth  d  below the sur-

face is

               

Pressure at a depth d below the surface of a liquid open to the atmosphere:

 P = Patm + rgd (9-4)

A

P2A

P1A

d

y

mg

(a)

(b)

Figure 9.5 Applying 

Newton’s second law to a cylin-

der of liquid tells us how pres-

sure increases with increasing 

depth. (a) A cylinder of liquid of 

height d and area A. (b) Vertical 

forces on the cylinder of liquid.

Gases

Density 

(kg/m3) Liquids

Density 

(kg/m3) Solids

Density 

(kg/m3)

Hydrogen 0.090 Gasoline 680 Polystyrene 100

Helium 0.18 Ethanol 790 Cork 240

Steam (100°C) 0.60 Oil 800–900 Wood (pine) 350–550

Nitrogen 1.25 Water (0°C) 999.87 Wood (oak) 600–900

Air (20°C) 1.20 Water (3.98°C) 1000.00 Ice 917

Air (0°C) 1.29 Water (20°C) 1001.80 Wood (ebony) 1000–1300

Oxygen 1.43 Seawater 1025 Bone 1500–2000

Carbon dioxide 1.98 Blood (37°C) 1060 Concrete 2000

Mercury 13 600 Quartz, granite 2700

Aluminum 2702

Iron, steel 7860

Copper 8920

Lead 11 300

Gold 19 300

Platinum 21 500

Table 9.1 Densities of Common Substances (at 0°C and 1 atm 
unless otherwise indicated)



CHECKPOINT 9.4

Pressure in a static fluid depends on vertical position. Can it also depend on 

horizontal position? Explain.

where A = 0.60 cm2 = 6.0 × 10−5 m2. Then

ΔF = (3.14 ×  10 4  Pa) × (6.0 ×  10 −5   m 2 )

= 1.9 N

Discussion A force also pushes outward on the eardrum 

due to the pressure inside the ear canal. If the diver descends 

rapidly so that the pressure inside the ear canal does not 

change, then a 1.9-N net force due to fluid pressure pushes 

inward on the eardrum. When the diver’s ear “pops,” the 

pressure inside the ear canal increases to equal the fluid 

pressure outside the eardrum, so that the net force due to 

fluid pressure on the eardrum is zero.

Practice Problem 9.3 Limits on Submarine 
Depth

A submarine is constructed so that it can safely withstand a 

pressure of 1.6 × 107 Pa. How deep may this submarine 

descend in the ocean if the average density of seawater is 

1025 kg/m3?

Example 9.3

A Diver

A diver swims to a depth of 3.2 m in a freshwater lake. What 

is the increase in the force pushing in on her eardrum, com-

pared to what it was at the lake surface? The area of the ear-

drum is 0.60 cm2.

Strategy We can find the increase in pressure at a depth of 

3.2 m and then find the corresponding increase in force on 

the eardrum. If the force on the eardrum at the surface is P1A

and the force at a depth of 3.2 m is P2A, then the increase in 

the force is (P2 − P1)A.

Solution The increase in pressure depends on the depth d

and the density of water. From Table 9.1, the density of 

water is 1000 kg/m3 to two significant figures for any rea-

sonable temperature.

P2 − P1  = rgd

ΔP = 1000 kg/ m 3  × 9.8 m/ s 2  × 3.2 m

= 31.4 kPa

The increase in force on the eardrum is

ΔF = ΔP × A

[Hint: Think about the forces due to fluid pressure on the 

sides of the containers; do they have vertical components?]

Conceptual Example 9.4

The Hydrostatic Paradox

Three vessels have different shapes, but the same base area 

and the same weight when empty (Fig. 9.6). The vessels are 

filled with water to the same level and then the air is pumped 

out. The top surface of the water is then at a low pressure 

that, for simplicity, we assume to be zero. (a) Are the water 

pressures at the bottom of each vessel the same? If not, 

which is largest and which is smallest? (b) If the three 

vessels containing water are weighed on a scale, do they give 

the same reading? If not, which weighs the most and which 

weighs the least? (c) If the water exerts the same downward 

force on the bottom of each vessel, is that force equal to 

the weight of water in the vessel? Is there a paradox here? 

A B C

d

Figure 9.6

Three differently shaped vessels filled with water to same level.

continued on next page
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   9.5  MEASURING PRESSURE 

Many other units are used for pressure besides atmospheres and pascals. In the United 

States, the pressure in an automobile tire is measured in pounds per square inch (lb/in 2 ). 

Weather bureaus record atmospheric pressure in bars or millibars. In the United States, 

television weather reports and home barometers measure pressure in inches of mercury. 

One atmosphere is equal to approximately 1 bar (1000 millibars), 76 cm of mercury, or 

29.9 in. of mercury. Blood pressure, the  difference  between the pressure in the blood and 

atmospheric pressure, is measured in millimeters of mercury (mm Hg), also called the 

torr. Inches or millimeters of mercury may seem like strange units for pressure: how can a 

force per unit area be equal to a  distance  (so many mm Hg)? There is an assumption 

inherent in using these pressure units that we can understand by studying the mercury 

manometer.      

   Manometer 

 A mercury manometer consists of a vertical U-shaped tube, containing some mercury, 

with one side typically open to the atmosphere and the other connected to a vessel 

Units of pressure: 1 atm

= 101.3 kPa = 1.013 bar

= 14.7 lb/ in 2  = 760.0 mm Hg

= 760.0 torr = 29.9 in Hg  

Units of pressure: 1 atm

= 101.3 kPa = 1.013 bar

= 14.7 lb/ in 2  = 760.0 mm Hg

= 760.0 torr = 29.9 in Hg  

Solution and Discussion (a) The water at the bottom of 

each vessel is the same depth d below the surface. Water at 

the surface of each vessel is at a pressure Psurface = 0. There-

fore, the pressures at the bottom must be equal:

P  =  P 
surface

   + rgd = rgd

(b) The weight of each filled vessel is equal to the weight of 

the vessel itself plus the weight of the water inside. The 

vessels themselves have equal weights, but vessel A holds 

more water than C, whereas vessel B holds less water than 

C. Vessel A weighs the most and vessel B weighs the least.

(c) Each container supports the water inside by exerting an 

upward force equal in magnitude to the weight of the water. 

By Newton’s third law, the water exerts a downward force 

on the container of the same magnitude. Figure 9.7 shows 

the forces acting on each container due to the water. In ves-

sel C, the horizontal forces on any two diametrically oppo-

site points on the walls of the container are equal and 

opposite; thus, the net force on the container walls is zero. 

The force on the bottom is

F = PA = ( rgd )(p  r 2 )

The volume of water in the cylinder is V = p r2d, so

F = rgV = (rV )g = mg

The force on the bottom of vessel C is equal to the weight of 

the water, as expected. However, the force on the bottom of 

vessel A is less than the weight of the water in the container, 

while the force on the bottom of vessel B is greater than the 

weight of the water. Then how can the water be in equilib-

rium? In vessel A, the forces on the container walls have 

downward components as well as horizontal components. 

The horizontal components of the forces on any two diamet-

rically opposite points are equal and opposite, so the hori-

zontal components add to zero. The sum of the downward 

components of the forces on the walls and the downward 

force on the bottom of the container is equal to the weight of 

the water. Similarly, the forces on the walls of vessel B have 

upward components. In each case, the total force on the bot-

tom and sides of the container due to the water is equal to 

the weight of the water.

Conceptual Practice Problem 9.4 Is Pressure 
Determined by Column Height?

Figure 9.8 shows a vessel with two 

points marked at the bottom of the water 

in the vessel. A narrow column of water 

is drawn above each point. (a) Is the 

pressure at point 2, P2, the same as 

the pressure at point 1, P1, even though 

the column of water above point 2 is not 

as tall? (b) Does P = Patm + rgd imply 

that P2 < P1? Explain.

A B C

d

Figure 9.7

Forces exerted on the containers by the water.

1 2

Figure 9.8

Two different points 

on the bottom of an 

open vessel.

Conceptual Example 9.4 continued



containing a gas whose pressure we want to measure.  Figure 9.9  shows the manome-

ter before it is connected to such a vessel. When both sides of the manometer are open 

to the atmosphere, the mercury levels are the same.       

 Now we connect an inflated balloon to the left side of the U-tube ( Fig. 9.10 ). If the 

gas in the balloon is at a higher pressure than the atmosphere, the gas pushes the mer-

cury down on the left side and forces it up on the right side. The density of a gas is small 

compared to the density of mercury, so every point within the gas is assumed to be at 

the same pressure no matter what the depth. At point  B,  the mercury pushes on the gas 

with the same magnitude force with which the gas pushes on the mercury, so point  B  is 

at the same pressure as the gas. Since point  B  ′  is at the same height within the mercury 

as point  B,  the pressure at  B  ′  is the same as at  B.  Point  C  is at atmospheric pressure. 

 The pressure at  B  is

    PB = PB  = PC + rgd  

where  r  is the density of mercury. The difference in the pressures on the two sides of the 

manometer is

     ΔP = PB − PC = rgd    (9-5) 

Thus, the difference in mercury levels  d  is a measure of the pressure  difference —

commonly reported in millimeters of mercury (mm Hg). 

 The pressure measured when one side of the manometer is open is the  difference

between atmospheric pressure and the gas pressure rather than the absolute pressure of 

the gas. This difference is called the    gauge pressure,    since it is what most gauges (not 

just manometers) measure:

Gauge pressure:

Pgauge = Pabs − Patm (9-6)

 Since the density of mercury is 13 600 kg/m 3 , 1.00 mm Hg can be converted to 

pascals by substituting  d   =  1.00 mm in Eq. (9-5):

    1.00 mm Hg = rgd = (13 600 kg/ m 3 )(9.80 m/ s 2 )(0.00100 m) = 133 Pa  

The liquid in a manometer may be something other than mercury, such as water or oil. 

Equation (9-5) still applies, as long as we use the correct density  r  of the liquid in the 

manometer.  

Starting
level

Hg

Open to the
atmosphere

A′ A

B′ B

Figure 9.9 A mercury 

manometer open on both sides. 

Points A and A′ are both at atmo-

spheric pressure. Any two points 

(such as B and B′) at the same 

height within the fluid are at the 

same pressure: PB = PB′.

C

Hg

Open to the
atmosphere

B′B

d

Gas

Figure 9.10 The manometer 

connected on one side to a con-

tainer of gas at a pressure greater 

than atmospheric pressure.

find the difference in levels of the mercury columns on the two 

sides. Careful: It is not 12 cm! If one side went up by 

12 cm, then the other side has gone down by 12 cm, since 

the same volume of mercury is contained in the manometer.

Solution (a) The difference in the mercury levels is 24 cm 

(Fig. 9.11). Since the mercury on the gas side went up, the 

absolute pressure of the gas is lower than atmospheric pres-

sure. Therefore, the gauge pressure of the gas is less than 

zero. The gauge pressure in Pa is

 P gauge   = rgd

Example 9.5

The Mercury Manometer

A manometer is attached to a container of gas to determine 

its pressure. Before the container is attached, both sides of 

the manometer are open to the atmosphere. After the con-

tainer is attached, the mercury on the side attached to the gas 

container rises 12 cm above its previous level. (a) What is 

the gauge pressure of the gas in Pa? (b) What is the absolute 

pressure of the gas in Pa?

Strategy The mercury column is higher on the side connected 

to the container of gas, so we know that the pressure of the 

enclosed gas is lower than atmospheric pressure. We need to 

continued on next page
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  Barometer 

 A manometer can act as a  barometer —a device to measure atmospheric pressure. 

Instead of attaching a container with a gas to one end of the manometer, attach a 

container and a vacuum pump. Pump the air out of the container to get as close to a 

vacuum—zero pressure—as possible. Then the atmosphere pushes down on one side 

and pushes the fluid up on the other side toward the evacuated container. 

  Figure 9.12  shows a barometer in which the vacuum is not created by a vacuum 

pump. The barometer was invented by Evangelista Torricelli (1608–1647), an assistant 

to Galileo, in the 1600s; in his honor, one millimeter of mercury is called one torr.        

where the “depth” is d = −24 cm (the mercury is 24 cm 

higher on the gas side). Then

 P gauge   = 13 600 kg/ m 3  × 9.8 m/ s 2  × (−0.24 m) = −32 kPa

(b) The absolute pressure of the gas is

P =  P gauge   +  P 
atm

  

   = −32 kPa + 101 kPa = 69 kPa

Discussion As a check, the manometer tells us directly 

that the gauge pressure of the gas is −240 mm Hg. Convert-

ing to pascals gives

−240 mm Hg × 133 Pa/mm Hg = −32 kPa

Practice Problem 9.5 Column Heights in 
Manometer

A mercury manometer is connected to a container of gas. 

(a) The height of the mercury column on the side connected 

to the gas is 22.0 cm (measured from the bottom of the 

manometer). What is the height of the mercury column 

on the open side if the gauge pressure is measured to be 

13.3 kPa? (b) If the gauge pressure of the gas doubles, what 

are the new heights of the two columns?

Example 9.5 continued

Gas

Hg

Open to the
atmosphere

24 cm

12 cm

12 cm

Figure 9.11

When a container of gas 

is attached to one side of 

the manometer, one side 

goes down 12 cm and the 

other side goes up 12 cm.

Atmospheric
pressure

B

d

A
Hg

Vacuum (P = 0)

Figure 9.12 A simple barometer. A tube, of length greater than 76 cm and closed at 

one end, is filled with mercury. The tube is then inverted into an open container of mer-

cury. Some mercury flows down from the tube into the bowl. The space left at the top 

of the tube is nearly a vacuum because nothing is left but a negligible amount of mer-

cury vapor. Points A and B are at the same level in the mercury and, therefore, are both 

at atmospheric pressure since the bowl is open to the air. The distance d from A to the 

top of the mercury column in the closed tube is a measure of the atmospheric pressure 

(often called barometric pressure because it is measured with a barometer).



  Sphygmomanometer 

Blood pressure is measured with a sphygmomanometer ( Fig. 9.14 ). The oldest kind of 

sphygmomanometer consists of a mercury manometer on one side attached to a closed 

bag—the cuff. The cuff is wrapped around the upper arm at the level of the heart and 

is then pumped up with air. The manometer measures the gauge pressure of the air in 

the cuff.           

 At first, the pressure in the cuff is higher than the  systolic  pressure—the maximum 

pressure in the brachial artery that occurs when the heart contracts. The cuff pressure 

squeezes the artery closed and no blood flows into the forearm. A valve on the cuff is 

then opened to allow air to escape slowly. When the cuff pressure decreases to just 

below the systolic pressure, a little squirt of blood flows past the constriction in the 

artery with each heartbeat. The sound of turbulent blood flow past the constriction can 

be heard through the stethoscope. 

 As air continues to escape from the cuff, the sound of blood flowing through the 

constriction in the artery continues to be heard. When the pressure in the cuff reaches 

the  diastolic  pressure in the artery—the minimum pressure that occurs when the heart 

muscle is relaxed—there is no longer a constriction in the artery, so the pulsing sounds 

cease. The  gauge  pressures for a healthy heart are nominally around 120 mm Hg (sys-

tolic) and 80 mm Hg (diastolic).    

   9.6  THE BUOYANT FORCE 

  When an object is immersed in a fluid, the pressure on the lower surface of the object is 

higher than the pressure on the upper surface. The difference in pressures leads to an 

upward net force acting on the object due to the fluid pressure. If you try to push a 

beach ball underwater, you feel the effects of the buoyant force pushing the ball back 

up. It takes a rather large force to hold such an object completely underwater; the instant 

you let go, the object pops back up to the surface.     

Application of the 

manometer: measuring 

blood pressure

Application of the 

manometer: measuring 

blood pressure

P1A

PatmA

mg

Figure 9.13 Force acting on 

the liquid inside a straw.

PHYSICS AT HOME

When you next have a drink with a straw, insert the straw into the drink and 

place your finger over the upper opening of the straw so that no more air can 

enter the straw. Raise the lower end of the straw up out of your drink. Does the 

liquid in the straw flow back down into your glass? What do you suppose is 

holding the liquid in place? Make an FBD on your paper napkin.

Some air is trapped between your finger and the top of the liquid in the 

straw; that air exerts a downward force on the liquid of magnitude P1A 

(Fig. 9.13). A downward gravitational force mg also acts on the liquid. The air 

at the bottom of the straw exerts an upward force on the liquid of magnitude 

PatmA; this upward force is what holds the liquid in place. Because the liquid 

does not pour out of the straw, but instead is in equilibrium,

PatmA = P1A + mg

Thus, the pressure P1 of the air trapped above the liquid must be less than 

atmospheric pressure.

How did P1 become less than atmospheric pressure? As you pulled the 

straw up and out, the liquid in the straw falls a bit, expanding the volume avail-

able to the air trapped above the liquid. When a gas expands under conditions 

like this, its pressure decreases.

When you remove your finger from the top of the straw, air can get in at the 

top of the straw. Then the pressures above and below the liquid are equal, so the 

gravitational force pulls the liquid down and out of the straw.

Figure 9.14 A sphygmoma-

nometer being used to measure 

blood pressure.

CONNECTION: 

The buoyant force is not a 

new kind of force exerted by 

a fluid; it is the sum of forces 

due to fluid pressure.
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 Consider a rectangular solid immersed in a fluid of uniform density  r  ( Fig. 9.15a ). 

For each vertical face (left, right, front, and back), there is a face of equal area opposite 

it. The forces on these two faces due to the fluid are equal in magnitude since the areas 

and the average pressures are the same. The directions are opposite, so the forces act-

ing on the vertical faces cancel in pairs.       

 Let the top and bottom surfaces each have area  A.  The force on the lower face of the 

block is  F  2   =   P  2  A;  the force on the upper face is  F  1   =   P  1  A.  The total force on the block 

due to the fluid, called the    buoyant force     F  B , is upward since  F  2  >  F  1  ( Fig. 9.15b ).

      ⃗FB   =    ⃗F1 +    ⃗F2

FB = (P2 − P1)A  

Since  P  2   −   P  1   =   r  gd,  the magnitude of the buoyant force can be written

        

Buoyant force:

 FB = r gdA = rgV (9-7)

where  V   =   Ad  is the volume of the block. 

 Note that  r   V  is the mass of the volume  V  of the fluid that the block displaces. 

Thus, the buoyant force on the submerged block is equal to the weight of an equal vol-

ume of fluid, a result called    Archimedes’ principle.    

Archimedes’ Principle

A fluid exerts an upward buoyant force on a submerged object equal in magni-

tude to the weight of the volume of fluid displaced by the object.

 Archimedes’ principle applies to a submerged object of  any shape  even though we 

derived it for a rectangular block. Why? Imagine replacing an irregular submerged 

object with enough fluid to fill the object’s place. This “piece” of fluid is in equilibrium, 

so the buoyant force must be equal to its weight. The buoyant force is the net force 

exerted on the “piece” of fluid by the surrounding fluid, which is identical to the buoy-

ant force on the irregular object since the two have the same shape and surface area. 

 The same argument can be used to show that if an object is only partly submerged, 

the buoyant force is still equal to the weight of fluid displaced. Equation (9-7) applies 

as long as  V  is the part of the object’s volume below the fluid surface rather than the 

entire volume of the object.      

   Net Force due to Gravity and Buoyancy    The net force due to gravity and buoyancy 

acting on an object totally or partially immersed in a fluid ( Fig. 9.16 ) is

     ⃗F = mg ⃗ +   ⃗F 
B
    

The force of gravity on an object of volume  V   o   and average density  r  o  is

    W = mg =  r o  gVo  

and the buoyant force is

     F 
B
   =  r 

f
    g V 

f
    

where  V  f  and  r  f  are the volume of fluid displaced and the fluid density, respectively. 

Choosing up to be the  +  y -direction, the net force due to gravity and buoyancy is

     F
y
 =  r 

f
   g V 

f
   −  r 

o
   gV

o
    (9-8)   

Here  F   y   can be positive or negative, depending on which density is larger. Imagine 

releasing a pebble and an air bubble underwater. The pebble’s average density is greater 

F2

F2

F1

F1

FB

(a)

(b)

d

Figure 9.15 (a) Forces due to 

fluid pressure on the top and bot-

tom of an immersed rectangular 

solid. (b) The buoyant force is 

the sum of    ⃗ F 
1
   and     ⃗F 

2
  . Since 

     |  ⃗ F 
2
   |  >  |    ⃗ F 

1
   | , the net force due to 

fluid pressure is upward.

FB

mg

Figure 9.16 Forces acting on 

a floating ice cube. The ice cube 

is in equilibrium, so    ⃗ F 
B
   + mg ⃗ = 0.



than the density of water, so the net force on it is downward; the pebble sinks. An air 

bubble’s average density is less than the density of water, so the net force is upward, 

causing the bubble to rise toward the surface of the water.           

 If the object is completely submerged, the volumes of the object and the displaced 

fluid are the same and

     F y   = ( r f   −  r o  )gV   

 If  r   o  <  r   f , the object floats with only part of its volume submerged. In equilibrium, 

the object displaces a volume of fluid whose weight is equal to the object’s weight. At 

that point the gravitational force equals the buoyant force and the object floats. Setting 

 F   y    =  0 in Eq. (9-8) yields

     r 
f
    g V 

f
   =  r 

o
   g V 

o
    

which can be rearranged as:

      
 V 

f
  
 ___ 

 V o  
   =   

 r o   __  r 
f
      

On the left side of this equation is the fraction of the object’s volume that is submerged; 

it is equal to the ratio of the density of the object to the density of the fluid.  

   Specific Gravity    This ratio of densities is called the    specific gravity    of the material 

when  r  f  is the density of water at 4 ° C. Specific gravity is without units because it is a 

ratio of two densities. Water at 4 ° C is chosen as the reference material because at that 

temperature, the density of water is a maximum (at atmospheric pressure). The gram 

was originally defined as the mass of one cubic centimeter of water at 4 ° C. Thus, water 

at 4 ° C has a density of 1 g/cm 3  (1000 kg/m 3 ). The specific gravity of seawater is 1.025, 

which means that seawater has a density of 1.025 g/cm 3  (1025 kg/m 3 ).

           

Specific gravity:

 S.G. =   
r 
 _____  r 

water
     =   

r 
 __________ 

1000 kg/ m 3 
   (9-9)

 Blood tests often include determination of the specific gravity of the blood—

normally around 1.040 to 1.065. A reading that is too low may indicate anemia, since 

the presence of red blood cells increases the average density of the blood. Before taking 

blood from a donor, a drop of the blood is placed in a solution of known density. If the 

drop does not sink, it is not safe for the donor to give blood because the concentration 

of red blood cells is too low. Urinalysis also includes a specific gravity measurement 

(normally 1.015 to 1.030); too high a value indicates an abnormally high concentration 

of dissolved salts, which can signal a medical problem.       

 Freighters, aircraft carriers, and cruise ships float, although they are made from 

steel and other materials that are more dense than seawater. When a ship floats, the 

buoyant force acting on the ship is equal to the ship’s weight. A ship is constructed so 

that it displaces a volume of seawater larger than the volume of the steel and other con-

struction materials. The  average  density of the ship is its weight divided by its total vol-

ume. A large part of a ship’s interior is filled with air. All of the “empty” space contributes 

to the total volume; the resulting average density is less than that of seawater, allowing 

the ship to float.     

 Now we can understand how a hippopotamus can sink to the bottom of a pond: it 

can expel some of the air in its body by exhaling. Exhalation increases the average den-

sity of the hippopotamus so that it is just slightly above the density of the water; thus, it 

sinks. (An armadillo does just the opposite: it swallows air, inflating its stomach and 

intestines, to increase the buoyant force for a swim across a large lake.) When the hippo 

needs to breathe, it swims back up to the surface.          

Applications of specific 

gravity measurements in 

medicine

Applications of specific 

gravity measurements in 

medicine

Application of Archimedes’ 

principle: how a ship can float

Application of Archimedes’ 

principle: how a ship can float

How can the hippo sink?How can the hippo sink?
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From Table 9.1, the statue has the correct density; it may 

possibly be gold.

Discussion According to legend, this method to determine 

the specific gravity of a solid was discovered by Archimedes 

in the third century b.c.e. King Hieron II asked Archimedes 

to find a way to check whether his crown was made of pure 

gold—without melting down the crown, of course! Archi-

medes came up with his method while he was taking a bath; 

he noticed the water level rising as he got in and connected 

the rising water level with the volume of water displaced by 

his body. In his excitement, he jumped out of the bath and 

ran naked through the streets of Siracusa (a city in Sicily) 

shouting “Eureka!”

Practice Problem 9.6 Identifying an Unknown 
Substance

An unknown solid substance has a weight of 142.0 N. The 

object is suspended from a scale and hung so that it is com-

pletely submerged in water (but not touching bottom). The 

scale reads 129.4 N. Find the specific gravity of the object 

and determine whether the substance could be anything 

listed in Table 9.1.

Example 9.6

The Golden (?) Falcon

A small statue in the shape of a falcon has a weight of 24.1 N. 

The owner of the statue claims it is made of solid gold. When 

the statue is completely submerged in a container brimful of 

water, the weight of the water that spills over the top and 

into a bucket is 1.25 N. Find the density and specific gravity 

of the metal. Is the density consistent with the claim that the 

falcon is solid gold?

Strategy When the statue is completely submerged, it dis-

places a volume V of water equal to its own volume. The 

weight of the displaced water is equal to the buoyant force. 

Let msg = 24.1 N represent the weight of the statue (in terms 

of its mass ms) and let mwg = 1.25 N represent the weight of 

the water.

Solution The specific gravity of the statue is

S.G. =   
 r s   ___  r 

w
     =   

 m s   /V _____ 
 m w   /V

   =   
 m s   ___  m 

w
    

Rather than calculate the masses in kilograms, we recognize 

that a ratio of masses is equal to the ratio of the weights:

S.G. =   
 m s  g ____  m w  g   =   24.1 N ______ 

1.25 N
   = 19.3

The density of the statue is

 r s   = S.G. ×  r w   = 19.3 × 1000 kg/ m 3  = 1.93 × 1 0 4  kg/ m 3 

The fraction of the iceberg’s volume that is submerged is 

equal to the ratio of the densities of ice and seawater. Thus, 

the ratio of the volume submerged to the total volume of 

ice is

  
 V 

submerged
  
 ________ 

 V 
ice

  
   =   

 r ice   ______  r 
seawater

     =   
 S.G. 

ice
  
 _________ 

 S.G. 
seawater

  
  

=   0.917 _____ 
1.025

   = 0.895

89.5% of the ice is below the surface of the water, leaving 

only 10.5% above the surface.

Discussion An alternative solution does not depend on 

remembering that the ratio of the volumes is equal to the 

Example 9.7

Hidden Depths of an Iceberg

What percentage of a floating iceberg’s volume is above 

water? The specific gravity of ice is 0.917 and the specific 

gravity of the surrounding seawater is 1.025.

Strategy The ratio of the density of ice to the density of 

seawater tells us the ratio of the volume of ice that is sub-

merged in the seawater to the total volume of the iceberg. 

The rest of the ice is above the water.

Solution We could calculate the densities of seawater and 

of ice in SI units from their specific gravities, but that is 

unnecessary; the ratio of the specific gravities is equal to the 

ratio of the densities:

  
 S.G. 

ice
  
 _________ 

 S.G. 
seawater

  
   =   

 r ice  / r water   ___________ 
 r 

seawater
  / r 

water
  
   =   

 r ice   ______  r 
seawater

    

continued on next page



Figure 9.17 The buoyant 

force due to the outside air keeps 

these balloons aloft.

ratio of the densities. The buoyant force is equal to the 

weight of a volume V submerged of water:

buoyant force =  r 
seawater

   V 
submerged

  g

The weight of the iceberg is mg = r iceV ice g. From Newton’s 

second law, the buoyant force must be equal in magnitude to 

the weight of the iceberg when it is floating in equilibrium:

 r 
seawater

   V 
submerged

  g =  r 
ice

   V 
ice

  g

or

  
 V 

submerged
  
 ________ 

 V 
ice

  
   =   

 r ice   ______  r 
seawater

    

The fact that ice floats is of great importance for the bal-

ance of nature. If ice were more dense than water, it would 

gradually fill up the ponds and lakes from the bottom. It 

would not form on top of lakes and remain there. The conse-

quences for fish and other bottom dwellers of solidly frozen 

lakes would be catastrophic. The water below the surface 

layer of ice formed in winter remains just above freezing so 

that the fish are able to survive.

Practice Problem 9.7 Floating in Freshwater 
Versus Seawater

If the average density of a human being is 980 kg/m3, what 

fraction of a human body floats above water in a freshwater 

pond and what fraction floats above seawater in the ocean? 

The specific gravity of seawater is 1.025.

of the surrounding water, the fish can remain suspended in 

position. The fish can also adjust the volume of the bladder 

when it wants to rise or sink.

Conceptual Practice Problem 9.8 The Diving 
Beetle

A diving beetle traps a bubble of air under its wings. While 

under the water, the beetle uses the air in the bubble to 

breathe, gradually exchanging the oxygen for carbon diox-

ide. (a) What does the beetle do to the air bubble so that it 

can dive under the water? (b) Once under water, what does 

the beetle do so that it can rise to the surface? [Hint: Treat 

the beetle and the air bubble as a single system. How can the 

beetle change the buoyant force acting on the system?]

Conceptual Example 9.8

A Hovering Fish

How is it that a fish is able to hover almost motion-

less in one spot—until some attractive food is spotted 

and, with a flip of the tail, off it swims after the food? Fish 

have a thin-walled bladder, called a swim bladder, located 

under the spinal column. The swim bladder contains a mix-

ture of oxygen and nitrogen obtained from the blood of the 

fish. How does the swim bladder help the fish keep the buoy-

ant and gravitational forces balanced so that it can hover?

Solution and Discussion If the fish’s average density is 

greater than that of the surrounding water, it will sink; if its 

average density is smaller than that of the water, it will 

rise. By varying the volume of the swim bladder, the fish is 

able to vary its overall volume and, thus, its average den-

sity. By adjusting its average density to match the density 

Buoyant Forces on Objects Immersed in a Gas    Gases such as air are fluids and 

exert buoyant forces just as liquids do. The buoyant force due to air is often negligible 

if an object’s average density is much larger than the density of air. To see a significant 

buoyant force in air, we must use an object with a small average density. A hot air bal-

loon has an opening at the bottom and a burner for heating the air within ( Fig. 9.17 ). 

Many molecules of the heated air escape through the opening, decreasing the balloon’s 

average density. When the balloon is less dense on average than the surrounding air, it 

rises; at higher altitudes, the surrounding air becomes less and less dense. At some par-

ticular altitude, the buoyant force is equal in magnitude to the weight of the balloon. 

Then, by Newton’s second law, the net force on the balloon is zero. The balloon is in 

 stable  equilibrium at this altitude: if the balloon rises a bit, it experiences a net force 

downward, while if the balloon sinks down a bit, it is pushed back upward.               

Application of buoyant 

forces: hot air balloons

Application of buoyant 

forces: hot air balloons

Example 9.7 continued
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   9.7  FLUID FLOW     

   Types of Fluid Flow    The study of  moving  fluids is a wonderfully complex subject. 

To illustrate some important ideas in less complex situations, we limit our study at first 

to fluids flowing under special conditions. 

 One difference between moving fluids and static fluids is that a moving fluid can 

exert a force  parallel  to any surface over or past which it flows; a static fluid cannot. 

Since the moving fluid exerts a force against a surface, the surface must also exert a 

force on the fluid. This    viscous force    opposes the flow of the fluid; it is the counterpart 

to the kinetic frictional force between solids. An external force must act on a viscous 

fluid (and thereby do work) to keep it flowing. Viscosity is considered in Section 9.9. 

Until then, we consider only nonviscous fluids—fluid flow where the viscous forces are 

negligibly small. We also ignore surface tension, which is considered in Section 9.11. 

 Fluid flow can be characterized as steady or unsteady. When the flow is  steady,  the 

velocity of the fluid  at any point  is constant in time. The velocity is not necessarily the 

same everywhere, but at any particular point, the velocity of the fluid passing that point 

remains constant in time. The density and pressure at any point in a steadily flowing 

fluid are also constant in time. 

 Steady flow is    laminar.    The fluid flows in neat layers so that each small portion of 

fluid that passes a particular point follows the same path as every other portion of fluid that 

passes the same point. The path that the fluid follows, starting from any point, is called a 

   streamline    ( Fig. 9.18 ). The streamlines may curve and bend, but they cannot cross each 

other; if they did, the fluid would have to “decide” which way to go when it gets to such a 

point. The direction of the fluid velocity at any point must be tangent to the streamline pass-

ing through that point. Streamlines are a convenient way to depict fluid flow in a sketch.        

   The Ideal Fluid    The special case that we consider fi rst is the fl ow of an    ideal fl uid.    An 

ideal fl uid is incompressible, undergoes laminar fl ow, and has no viscosity. Under some 

conditions, real fl uids can be modeled as (nearly) ideal, but not under all conditions. 

 The flow of an ideal fluid is governed by two principles: the continuity equation 

and Bernoulli’s equation. The continuity equation is an expression of conservation of 

mass for an incompressible fluid: since no fluid is created or destroyed, the total mass 

of the fluid must be constant. Bernoulli’s equation, discussed in Section 9.8, is a form of 

the energy conservation law applied to fluid flow. Together, these two equations enable 

us to predict the flow of an ideal fluid.   

  The Continuity Equation 

 We start by deriving the continuity equation, which relates the speed of flow to the 

cross-sectional area of the fluid. Suppose an incompressible fluid flows into a pipe of 

nonuniform cross-sectional area under conditions of steady flow. In  Fig. 9.19 , the fluid 

on the left moves at speed  v  1 . During a time Δ t,  the fluid travels a distance

     x 
1
   =  v 

1
   Δt  

If  A  1  is the cross-sectional area of this section of pipe, then the mass of water moving 

past point 1 in time Δ t  is

    Δ m 
1
   = r V 

1
   = r  A 

1
   x 

1
   = r  A 

1
   v 

1
   Δt  

Figure 9.18 A wind tunnel 

shows the streamlines in the 

flow of air past a car.

21

A1

A2
x1

v1

x2

v2

∆m1

∆m2

Figure 9.19 An incompress-

ible fluid flowing horizontally 

through a nonuniform pipe.



During this same time interval, the mass of fluid moving past point 2 is

    Δ m 
2
   = r V 

2
   = r  A 

2
   x 

2
   = r  A 

2
   v 

2
   Δt  

But, if the flow is steady, the mass passing through one section of pipe in time interval 

Δ t  must pass through any other section of the pipe in the same time interval. Therefore,

    Δ m 
1
   = Δ m 

2
    

or

     r  A 
1
   v 

1
   Δt = r  A 

2
   v 

2
   Δt    (9-10)          

 The quantity  r   Av  is the  mass flow rate  of the fluid:

        

Mass flow rate:

   Δm ___ 
Δt

   = r Av (SI unit: kg/s) (9-11)

Since the time intervals Δ t  are the same, Eq. (9-11) says that the mass flow rate past any 

two points is the same. Since the density of an incompressible fluid is constant, the vol-

ume flow rate past any two points must also be the same:

          

Volume flow rate:

   ΔV
 ___ 

Δt
   = Av (SI unit:  m 3 /s) (9-12)

The    continuity equation    for an incompressible fluid equates the volume flow rates past 

two different points:

           

Continuity equation for incompressible fluid:

  A 
1
   v 

1
   =  A 

2
   v 

2
   (9-13)

 The same volume of fluid that enters the pipe in a given time interval exits the pipe in 

the same time interval. Where the radius of the tube is large, the speed of the fluid is small; 

where the radius is small, the fluid speed is large. A familiar example is what happens 

when you use your thumb to partially block the end of a garden hose to make a jet of 

water. The water moves past your thumb, where the cross-sectional area is smaller, at a 

greater speed than it moves in the hose. Similarly, water traveling along a river speeds up, 

forming rapids, when the riverbed narrows or is partially blocked by rocks and boulders. 

 Streamlines are closer together where the fluid flows faster and farther apart where 

it flows more slowly ( Fig. 9.20 ). Thus, streamlines help us visualize fluid flow. The 

fluid velocity at any point is tangent to a streamline through that point.          

PHYSICS AT HOME

The continuity equation applies to an ideal fluid even if it is not flowing through 

a pipe. Turn on a faucet so that the water flows out in a moderate stream 

(Fig. 9.21). The falling water is in free fall, accelerated by gravity until it hits 

the sink below. As the water falls, its speed increases. The stream of water grad-

ually narrows as it falls so that the product of speed and cross-sectional area is 

constant, as predicted by the continuity equation.

v2

v1

Figure 9.20 Streamlines in a 

pipe of varying cross-sectional 

area. Streamlines are closer 

together where the fluid velocity 

is larger and farther apart where 

the velocity is smaller.

Figure 9.21 Demonstrating 

the continuity equation at a bath-

room sink. Notice that the 

stream of water is narrower 

where the flow speed is faster.
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   9.8  BERNOULLI’S EQUATION 

  The continuity equation relates the flow velocities of an ideal fluid at two different 

points, based on the change in cross-sectional area of the pipe. According to the conti-

nuity equation, the fluid must speed up as it enters a constriction ( Fig. 9.22 ) and then 

slow down to its original speed when it leaves the constriction. Using energy ideas, we 

will show that the pressure of the fluid in the constriction ( P  2 ) cannot be the same as the 

pressure before or after the constriction ( P  1 ). For horizontal flow  the speed is higher 

where the pressure is lower.  This principle is often called the    Bernoulli effect.                

The Bernoulli effect can seem counterintuitive at first; isn’t rapidly moving fluid at  

high   pressure? For instance, if you were hit with the fast-moving water out of a firehose, 

you would be knocked over easily. The force that knocks you over is indeed due to fluid 

pressure; you would justifiably conclude that the pressure was high. However, the pres-

sure is not high   until you slow down the water   by getting in its way. The rapidly moving 

water in the jet is, in fact, approximately at atmospheric pressure (zero gauge pressure), 

but when you   stop   the water, its pressure increases dramatically.  

 Let’s find the quantitative relationship between pressure changes and flow speed 

changes for an ideal fluid. In  Fig. 9.23 , the shaded volume of fluid flows to the right. 

The Bernoulli effect:  Fluid flows 

faster where the pressure is lower.     
The Bernoulli effect:  Fluid flows 

faster where the pressure is lower.     

 A 
1
   v 

1
   =  A 

2
   v 

2
  

 v 
2
   =  v 

1
    
 A 

1
  
 ___ 

 A 
2
  
   = 0.28 m/s ×   

p × (0.010 m ) 2 
  _______________  

32p × (0.0021 m ) 2 
   = 0.20 m/s

Discussion The blood flow slows in the arteries because 

the total cross-sectional area is greater than that of the aorta 

alone. From the arteries, the blood travels to the many capil-

laries of the body. Each capillary has a tiny cross-sectional 

area, but there are so many of them that the blood flow slows 

greatly once it reaches the capillaries—allowing time for the 

exchange of oxygen, carbon dioxide, and nutrients between 

the blood and the body tissues.

Practice Problem 9.9 Hosing Down a Wastebasket

A garden hose fills a 32-L wastebasket in 120 s. The open-

ing at the end of the hose has a radius of 1.00 cm. (a) How 

fast is the water traveling as it leaves the hose? (b) How fast 

does the water travel if half the exit area is obstructed by 

placing a finger over the opening?

Example 9.9

Speed of Blood Flow

The heart pumps blood into the aorta, which has an 

inner radius of 1.0 cm. The aorta feeds 32 major 

arteries. If blood in the aorta travels at a speed of 28 cm/s, at 

approximately what average speed does it travel in the arter-

ies? Assume that blood can be treated as an ideal fluid and 

that the arteries each have an inner radius of 0.21 cm.

Strategy Since we have assumed blood to be an ideal 

fluid, we can apply the continuity equation. The main tube 

(the aorta) is connected to multiple tubes (the major arter-

ies), so this problem seems to be more complicated than a 

single pipe with a constriction in it. What matters here is the 

total cross-sectional area into which the blood flows.

Solution We start by finding the cross-sectional area of 

the aorta

 A 
1
   =  p r  aorta  

2
  

and then the total cross-sectional area of the arteries

 A 
2
   = 32p  r  artery  

2
  

Now we apply the continuity equation and solve for the 

unknown speed.

BA

v2 > v1

P2 < P1

P2

P1P1

v1 v1v2

a a

Figure 9.22 A small volume 

of fluid speeds up as it moves 

into a constriction (position A) 

and then slows down as it 

moves out of the constriction 

(position B).



If the left end moves a distance Δ x  1 , then the right end moves a distance Δ x  2 . Since the 

fluid is incompressible,

     A 
1
   Δ x 

1
   =  A 

2
   Δ x 

2
   = V  

Work is done by the neighboring fluid during this flow. Fluid behind (to the left) pushes 

forward, doing positive work, while fluid ahead pushes backward, doing negative work. 

The total work done on the shaded volume by neighboring fluid is

    W =  P 
1
   A 

1
   Δ x 

1
   −  P 

2
   A 

2
   Δ x 

2
   = ( P 

1
   −  P 

2
  )V             

 Since no dissipative forces act on an ideal fluid, the work done is equal to the total 

change in kinetic and gravitational potential energy. The net effect of the displacement 

is to move a volume  V  of fluid from height  y  1  to height  y  2  and to change its speed from 

 v  1  to  v  2 . The energy change is therefore

    ΔE = ΔK + ΔU =   1 _ 
2
  m( v  2  

2
  −  v  1  

2
 ) + mg( y 2   −  y 1  )  

where the  +  y -direction is up. Substituting  m   =   r  V  and equating the work done on the 

fluid to the change in its energy yields

    ( P 1   −  P 2  ) V =   1 _ 
2
   rV( v  2  

2
  −  v  1  

2
 ) + rVg( y 2   −  y 1  )  

Dividing both sides by  V  and rearranging yields Bernoulli’s equation, named after Swiss 

mathematician Daniel Bernoulli (1700–1782), but first derived by fellow Swiss mathe-

matician Leonhard Euler (pronounced like  oiler,  1707–1783).

          

Bernoulli’s equation (for ideal fluid flow):

  P 1   + rg y 1   +   1 _ 
2
  r  v  1  

2
  =  P 2   + rg y 2   +   1 _ 

2
  r  v  2  

2
  

 (or P + rgy +   1 _ 
2
  r  v 2  = constant) (9-14)

Bernoulli’s equation relates the pressure, flow speed, and height at two points in an 

ideal fluid. Although we derived Bernoulli’s equation in a relatively simple situation, 

it applies to the flow of any ideal fluid as long as points 1 and 2 are on the same 

streamline. 

 Each term in Bernoulli’s equation has units of pressure, which in the SI system is 

Pa or N/m 2 . Since a joule is a newton-meter, the pascal is also equal to a joule per cubic 

CONNECTION: 

Bernoulli’s equation is a 

restatement of the principle of 

energy conservation applied 

to the flow of an ideal fluid.

CONNECTION: 

Bernoulli’s equation is a 

restatement of the principle of 

energy conservation applied 

to the flow of an ideal fluid.

(a)

∆x2

∆x1
P2

P1

y2

v2

v1

y1

(b)

∆x2

∆x1

A1

A2

Figure 9.23 Applying conser-

vation of energy to the flow of 

an ideal fluid. The shaded 

volume of fluid in (a) is flowing 

to the right; (b) shows the same 

volume of fluid a short time 

later.
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meter (J/m 3 ). Each term represents work or energy per unit volume. The pressure is the 

work done by the fluid on the fluid ahead of it per unit volume of flow. The kinetic 

energy per unit volume is       1 _ 
2
  r  v 2    and the gravitational potential energy per unit volume is 

r  gy.  (  Text website tutorial: energies)   

CHECKPOINT 9.8

Discuss Bernoulli’s equation in two special cases: (a) horizontal flow (y1 = y2) 

and (b) a static fluid (v1 = v2 = 0).

The speed of the emerging water is v2. What is v1, the speed 

of the water at the surface? The water at the surface is mov-

ing slowly, since the barrel is draining. The continuity equa-

tion requires that

 v 
1
   A 

1
   =  v 

2
   A 

2
  

Since the cross-sectional area of the spigot A2 is much 

smaller than the area of the top of the barrel A1, the speed of 

the water at the surface v1 is negligibly small compared with 

v2. Setting v1 = 0, Bernoulli’s equation reduces to

rg y 1   = rg y 2   +   1 _ 
2
  r v  2  

2
 

After dividing through by r, we solve for v2:

g( y 
1
   −  y 

2
  ) =   1 _ 

2
   v  2  

2
 

 v 
2
   =  √

__________

 2g( y 
1
   −  y 

2
  )   = 4.0 m/s

(b) Now take point 2 to be at the top of the fountain. Then 

v2 = 0 and Bernoulli’s equation reduces to

rg y 
1
   = rg y 

2
  

The “fountain” goes right back up to the top of the water in 

the barrel!

Discussion The result of part (b) is called Torricelli’s the-

orem. In reality, the fountain does not reach as high as the 

original water level; some energy is dissipated due to viscos-

ity and air resistance.

Practice Problem 9.10 Fluid in Free Fall

Verify that the speed found in part (a) is the same as if the 

water just fell 0.80 m straight down. That shouldn’t be too 

surprising since Bernoulli’s equation is an expression of 

energy conservation.

Example 9.10

Torricelli’s Theorem

A barrel full of rainwater has a spigot near the bottom, at a 

depth of 0.80 m beneath the water surface. (a) When the 

spigot is directed horizontally (Fig. 9.24a) and is opened, 

how fast does the water come out? (b) If the opening points 

upward (Fig. 9.24b), how high does the resulting “fountain” 

go? (  tutorial: waterfall)

Strategy The water at the surface is at atmospheric pres-

sure. The water emerging from the spigot is also at atmo-

spheric pressure since it is in contact with the air. If the 

pressure of the emerging water were different than that of 

the air, the stream would expand or contract until the pres-

sures were equal. We apply Bernoulli’s equation to two 

points: point 1 at the water surface and point 2 in the emerg-

ing stream of water.

Solution (a) Since P1 = P2, Bernoulli’s equation is

rg y 1   +   1 _ 
2
  r v  1  

2
  = rg y 2   +   1 _ 

2
  r v  2  

2
 

Point 1 is 0.80 m above point 2, so

 y 
1
   −  y 

2
   = 0.80 m

1 1

0.80 m d = ?

v
v

2

2

(a) (b)

Figure 9.24

Full barrel of rainwater with open spigot (a) horizontal and 

(b) upward.



     Application of Bernoulli’s Principle: Arterial Flutter and Aneurisms    Suppose an 

artery is narrowed due to buildup of plaque on its inner walls. The flow of blood through 

the constriction is similar to that shown in  Fig. 9.22 . Bernoulli’s equation tells us that 

the pressure  P  2  in the constriction is lower than the pressure elsewhere. 

(b) The gauge pressures are:

 P 
1
   = rg h 

1
   = 1000 kg/ m 3  × 9.80 N/kg × 1.20 m = 11.8 kPa

 P 
2
   = rg h 

2
   = 1000 kg/ m 3  × 9.80 N/kg × 0.80 m = 7.8 kPa

(c) Now we apply Bernoulli’s equation. We can use gauge 

pressures as long as we do so on both sides—in effect we are 

just subtracting atmospheric pressure from both sides of the 

equation:

 P 1   + rg y 1   +   1 _ 
2
  r  v  1  

2
  =  P 2   + rg y 2   +   1 _ 

2
  r  v  2  

2
 

Since the tube is horizontal, y1 ≈ y2 and we can ignore the 

small change in gravitational potential energy density rgy. 

Then

 P 1   +   1 _ 
2
  r  v  1  

2
  =  P 2   +   1 _ 

2
  r  v  2  

2
 

We are trying to find v1, so we can eliminate v2 by substitut-

ing v2 = 2.0v1:

 P 1   +   1 _ 
2
  r  v  1  

2
  =  P 2   +   1 _ 

2
  r (2.0 v 1   ) 

2 

Simplifying,

 P 1   −  P 2   = 1.5r  v  1  
2
 

 v 
1
   =  √

_________________

    11 800 Pa − 7800 Pa  _________________  
1.5 × 1000 kg/ m 3 

     = 1.6 m/s

Discussion The assumption that y1 ≈ y2 is fine as long as 

the pipe radius is small compared with the difference between 

the static water heights (40 cm). Otherwise, we would have 

to account for the different y values in Bernoulli’s equation.

One subtle point: recall that we assumed that the fluid 

pressure at the bottom of the vertical tubes was the same as 

the pressure of the moving fluid just beneath. Does that con-

tradict Bernoulli’s equation? Since there is an abrupt change 

in fluid speed, shouldn’t there be a significant difference in 

the pressures? No, because these points are not on the same 

streamline.

Practice Problem 9.11 Garden Hose

Water flows horizontally through a garden hose of radius 

1.0 cm at a speed of 1.4 m/s. The water shoots horizontally 

out of a nozzle of radius 0.25 cm. What is the gauge pressure 

of the water inside the hose?

Example 9.11

The Venturi Meter

A Venturi meter (Fig. 9.25) measures fluid speed in a pipe. 

A constriction (of cross-sectional area A2) is put in a pipe of 

normal cross-sectional area A1. Two vertical tubes, open to 

the atmosphere, rise from two points, one of which is in the 

constriction. The vertical tubes function like manometers, 

enabling the pressure to be determined. From this informa-

tion the flow speed in the pipe can be determined.

Suppose that the pipe in question carries water, 

A1 = 2.0A2, and the fluid heights in the vertical tubes are 

h1 = 1.20 m and h2 = 0.80 m. (a) Find the ratio of the 

flow speeds v2/v1. (b) Find the gauge pressures P1 and P2. 

(c) Find the flow speed v1 in the pipe.

Strategy Neither of the two flow speeds is given. We need 

more than Bernoulli’s equation to solve this problem. Since 

we know the ratio of the areas, the continuity equation gives 

us the ratio of the speeds. The height of the water in the ver-

tical tubes enables us to find the pressures at points 1 and 2. 

The fluid pressure at the bottom of each vertical tube is 

the same as the pressure of the moving fluid just beneath 

each tube—otherwise, water would flow into or out of the 

vertical tubes until the pressure equalized. The water in the 

vertical tubes is static, so the gauge pressure at the bottom is 

P = rgd. Once we have the ratio of the speeds and the pres-

sures, we apply Bernoulli’s equation.

Solution (a) From the continuity equation, the product of 

flow speed and area must be the same at points 1 and 2. 

Therefore,

  
 v 

2
  
 __  v 

1
     =   

 A 
1
  
 ___ 

 A 
2
  
   = 2.0

The water flows twice as fast in the constriction as in the rest 

of the pipe.

Streamlines

1
2

h1

h2

v2v1

A1

A2

Figure 9.25

Venturi meter.
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The arterial walls are elastic rather than rigid, so the lower pressure allows the arterial 

walls to contract a bit in the constriction. Now the flow velocity is even higher and the 

pressure even lower. Eventually the artery wall collapses, shutting off the flow of blood. 

Then the pressure builds up, reopens the artery, and allows blood to flow. The cycle of 

arterial flutter then begins again. 

 The opposite may happen where the arterial wall is weak. Blood pressure pushes 

the artery walls outward, forming a bulge called an aneurism. The lower flow speed in 

the bulge is accompanied by a higher blood pressure, which enlarges the aneurism even 

more (see Problem 88). Ultimately the artery may burst from the increased pressure.  

   Application of Bernoulli’s Principle: Airplane Wings    How does an airplane wing 

generate lift?  Figure 9.26  is a sketch of some streamlines for air flowing past an air-

plane wing in a wind tunnel. The streamlines bend, showing that the wing deflects air 

downward. By Newton’s third law (or conservation of momentum), if the wing pushes 

downward on the air, the air also pushes upward on the wing. This upward force on the 

wing is lift. However, the situation is not as simple as air “bouncing” off the bottom of 

the wing—note that air passing above the wing is also deflected downward.     

 We can use Bernoulli’s equation to get more insight into the generation of lift. 

(Bernoulli’s equation applies in an approximate way to moving air. Even though air is 

not incompressible, for subsonic flight the density changes are small enough to be 

ignored.) If the air exerts a net upward force on the wing, the air pressure must be lower 

above the wing than beneath the wing. In  Fig. 9.26 , the streamlines above the wing are 

closer together than beneath the wing, showing that the flow speed above the wing is 

faster than it is beneath. This observation confirms that the pressure is lower above the 

wing, because where the pressure is lower, the flow speed is faster.     

   9.9  VISCOSITY 

  Bernoulli’s equation ignores viscosity (fluid friction). According to Bernoulli’s equa-

tion, an ideal fluid can continue to flow in a horizontal pipe at constant velocity on its 

own, just as a hockey puck would slide across frictionless ice at constant velocity with-

out anything pushing it along. However, all real fluids have some viscosity; to maintain 

flow in a viscous fluid, we have to apply an external force since viscous forces oppose 

the flow of the fluid ( Fig. 9.27 ). A  pressure difference  between the ends of the pipe must 

be maintained to keep a real liquid moving through a horizontal pipe. The pressure dif-

ference is important—in everything from blood flowing through arteries to oil pumped 

through a pipeline.           

 To visualize viscous flow in a tube of circular cross section, imagine the fluid to 

flow in cylindrical layers, or shells. If there were no viscosity, all the layers would move 

at the same speed ( Fig. 9.28a ). In viscous flow, the fluid speed depends on the distance 

from the tube walls ( Fig. 9.28b ). The fastest flow is at the center of the tube. Layers 

closer to the wall of the tube move more slowly. The outermost layer of fluid, which is 

in contact with the tube, does not move. Each layer of fluid exerts viscous forces on the 

Figure 9.26 Streamlines 

showing the airflow past an air-

plane wing in a wind tunnel.

CONNECTION: 

Kinetic friction makes a slid-

ing object slow down unless 

an applied force balances the 

force of friction. Similarly, 

viscous forces oppose the 

flow of a fluid. Steady flow 

of a viscous fluid requires an 

applied force to balance the 

viscous forces. The applied 

force is due to the pressure 

difference.

(b)

Direction of flow

Pressure

(a)
P1A P2A

Fv

x

x

P1

P2

Figure 9.27 (a) To maintain 

viscous flow, a net force due to 

fluid pressure (P1 − P2) A must be 

applied in the direction of flow to 

balance the viscous force Fv due 

to the pipe, which opposes flow. 

(b) The pressure in the fluid 

decreases from P1 at the left end 

to P2 at the right end.



neighboring layers; these forces oppose the relative motion of the layers. The outermost 

layer exerts a viscous force on the tube.       

 A liquid is more viscous if the cohesive forces between molecules are stronger. The 

viscosity of a liquid decreases with increasing temperature because the molecules become 

less tightly bound. A decrease in the temperature of the human body is dangerous because 

the viscosity of the blood increases and the flow of blood through the body is hindered. 

Gases, on the other hand, have an increase in viscosity for an increase in temperature. At 

higher temperatures the gas molecules move faster and collide more often with each other. 

 The coefficient of viscosity (or simply the  viscosity ) of a fluid is written as the Greek 

letter eta ( h ) and has units of pascal-seconds (Pa·s) in SI. Other viscosity units in com-

mon use are the poise (pronounced  pwäz,  symbol P; 1 P  =  0.1 Pa·s) and the centipoise 

(1 cP  =  0.01 P  =  0.001 Pa·s).  Table 9.2  lists the viscosities of some common fluids.        

   Poiseuille’s Law 

 The volume flow rate Δ V /Δ t  for laminar flow of a viscous fluid through a horizontal, 

cylindrical pipe depends on several factors. First of all, the volume flow rate is propor-

tional to the  pressure drop per unit length  (Δ P / L )—also called the pressure gradient. If 

a pressure drop Δ P  maintains a certain flow rate in a pipe of length  L,  then a similar pipe 

of length 2 L  needs twice the pressure drop to maintain the same flow rate (Δ P  across the 

first half and another Δ P  across the second half ). Thus, the flow rate (Δ V /Δ t ) must be 

proportional to the pressure drop per unit length (Δ P / L ). 

 Next, the flow rate is inversely proportional to the viscosity of the fluid. The more 

viscous the fluid, the smaller the flow rate, if all other factors are equal. 

 The only other consideration is the radius of the pipe. In the nineteenth century, 

during a study of flow in blood vessels, French physician Jean-Léonard Marie 

Poiseuille (1799–1869) discovered that the flow rate is proportional to the  fourth power  

of the pipe radius: 

(a)  Fluid flow
       without viscosity

(b)  Viscous flow

Figure 9.28 (a) In nonviscous 

flow through a tube, the flow 

speed is the same everywhere. 

(b) In viscous flow, the flow 

speed depends on distance from 

the tube wall. This simplified 

sketch shows layers of fluid each 

moving at a different speed, but 

in reality the flow speed 

increases continuously from 

zero for the outermost “layer” to 

a maximum speed at the center.

Poiseuille’s Law (for Viscous Flow)

   ΔV
 ___ 

Δt
   =   p  __ 

8
     ΔP/L _____ 

h     r 4  (9-15)
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 where Δ V /Δ t  is the volume flow rate, Δ P  is the pressure difference between the ends of 

the pipe,  r  and  L  are the inner radius and length of the pipe, respectively, and  h  is the 

viscosity of the fluid. Poiseuille’s name is pronounced  pwahzoy,  in a rough English 

approximation. 

 It isn’t often that we encounter a  fourth-power  dependence. Why such a strong 

dependence on radius? First of all, if fluids are flowing through two different pipes at 

the  same speed,  the volume flow rates are proportional to radius squared (flow 

rate  =  speed multiplied by cross-sectional area). But, in viscous flow, the average flow 

speed is larger for wider pipes; fluid farther away from the walls can flow faster. It turns 

out that the average flow speed for a given pressure gradient is also proportional 

to radius squared, giving the overall fourth power dependence on the pipe radius of 

Poiseuille’s law. 

 The strong dependence of flow rate on radius is important in blood flow. A person 

with cardiovascular disease has arteries narrowed by plaque deposits. To maintain the 

necessary blood flow to keep the body functioning, the blood pressure increases. If the 

diameter of an artery narrows to       1 _ 
2
     of its original value due to plaque deposits, the blood 

flow rate would decrease to       1 __ 
16

     of its original value if the pressure drop across it were to 

stay the same. To compensate for some of this decrease in blood flow, the heart pumps 

harder, increasing the blood pressure. High blood pressure is not good either; it intro-

duces its own set of health problems, not least of which is the increased demands placed 

on the heart muscle.          

Application of viscous 

flow: high blood pressure

Application of viscous 

flow: high blood pressure

Table 9.2 Viscosities of Some Fluids

Substance Temperature (°C) Viscosity  (Pa·s)

Gases

 Water vapor 100 1.3 × 10−5

 Air 0 1.7 × 10−5

20 1.8 × 10−5

30 1.9 × 10−5

100 2.2 × 10−5

Liquids

 Acetone 30 0.30 × 10−3

 Methanol 30 0.51 × 10−3

 Ethanol 30 1.0 × 10−3

 Water 0 1.8 × 10−3

20 1.0 × 10−3

30 0.80 × 10−3

40 0.66 × 10−3

60 0.47 × 10−3

80 0.36 × 10−3

100 0.28 × 10−3

 Blood plasma 37 1.3 × 10−3

 Blood, whole 20 3.0 × 10−3

37 2.1 × 10−3

 Glycerin 20 0.83

30 0.63

  SAE 5W-30 motor oil −30 ≤ 6.6

150 ≥ 2.9 × 10−3



Turbulence

When the fluid velocity at a given point changes, the flow is unsteady. Turbulence is an 

extreme example of unsteady flow (Fig. 9.29). In turbulent flow, swirling vortices—

whirlpools of fluid—appear. The vortices are not stationary; they move with the fluid. 

The flow velocity at any point changes erratically; prediction of the direction or speed 

of fluid flow under turbulent conditions is difficult.

9.10  VISCOUS DRAG 

When an object moves through a fluid, the fluid exerts a drag force on it. When the rela-

tive velocity between the object and the fluid is low enough for the flow around the 

object to be laminar, the drag force derives from viscosity and is called    viscous drag.

Viscous drag:  F  D  ∝  v  

Turbulent drag:  F  D  ∝  v  2 

Viscous drag:  F  D  ∝  v  

Turbulent drag:  F  D  ∝  v  2 

We solve for the ratio of the pressure drops:

  
Δ P 

2
  
 ____ 

Δ P 
1
  
   =   

 r  1  
4
 
 __ 

 r  2  
4
 
   =   1 _______ 

(0.900 ) 4 
   = 1.52

Discussion A factor of 1.52 means there is a 52% 

increase in the blood pressure difference across that artery. 

The increased pressure must be provided by the heart. If 

the normal pressure drop across the artery is 10 mm Hg, 

then it is now 15.2 mm Hg. The person’s blood pressure 

either must increase by 5.2 mm Hg or there will be a reduc-

tion in blood flow through this artery. The heart is under 

greater strain as it works harder, attempting to maintain an 

adequate flow of blood.

Practice Problem 9.12 New Water Pipe

The town water supply is operating at nearly full capacity. 

The town board decides to replace the water main with a 

bigger one to increase capacity. If the maximum flow rate is 

to increase by a factor of 4.0, by what factor should they 

increase the radius of the water main?

Example 9.12

Arterial Blockage

A cardiologist reports to her patient that the radius of the left 

anterior descending artery of the heart has narrowed by 

10.0%. What percent increase in the blood pressure drop 

across the artery is required to maintain the normal blood 

flow through this artery?

Strategy We assume that the viscosity of the blood has 

not changed, nor has the length of the artery. To maintain 

normal blood flow, the volume flow rate must stay the 

same:

  
Δ V 

1
  
 ____ 

Δt
   =   

Δ V 
2
  
 ____ 

Δt
  

Solution If r1 is the normal radius and r2 is the actual 

radius, a 10.0% reduction in radius means r2 = 0.900r1. 

Then, from Poiseuille’s law,

  
pΔ P 

1
   r  

1
  

4
 
 _______ 

8hL
   =   

pΔ P 
2
   r  

2
  

4
 
 _______ 

8hL
  

 r  
1
  

4
  Δ P 

1
   =  r  

2
  

4
  Δ P 

2
  

Figure 9.29 Turbulent flow of 

gas emerging from the nozzle of 

an aerosol can.
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The viscous drag force is proportional to the speed of the object. For larger relative 

speeds, the flow becomes turbulent and the drag force is proportional to the square of 

the object’s speed.     

 The viscous drag force depends also on the shape and size of the object. For a 

spherical object, the viscous drag force is given by Stokes’s law: 

Stokes’s Law (viscous drag on a sphere)

  F 
D
   = 6phrv (9-16)

 where  r  is the radius of the sphere,  h   is the viscosity of the fluid, and  v  is the speed 

of the object with respect to the fluid.       

CHECKPOINT 9.10

Compare and contrast the viscous drag force with the kinetic frictional force.

 An object’s    terminal velocity    is the velocity that produces just the right drag force 

so that the net force is zero. An object falling at its terminal velocity has zero accelera-

tion, so it continues moving at that constant velocity. Using Stokes’s law, we can find 

the terminal velocity of a spherical object falling through a viscous fluid. When the 

object moves at terminal velocity, the net force acting on it is zero. If  r  o  >  r  f , the object 

sinks; the terminal velocity is downward and the viscous drag force acts upward to 

oppose the motion. For an object, such as an air bubble in oil, that rises rather than 

sinks ( r  o  <  r  f ), the terminal velocity is  upward  and the drag force is  downward.  

    =   
  4 _ 
3
  p  r  3 g( r oil   −  r air  )

  ______________ 
6ph r

  

After dividing the numerator and denominator by p r, we 

substitute numerical values:

= 6.0 ×  10 −4  m/s = 0.60 mm/s

Discussion We should check the units in the final 

expression:

  
 m 2 ⋅(N/kg)⋅kg/ m 3 

  _______________ 
Pa⋅s

   =   N/m ________ 
N/ m 2  × s

   = m/s

Stokes’s law was applied in this way by Robert Millikan 

(1868–1953) in his experiments in 1909–1913 to measure the 

charge of the electron. Using an atomizer, Millikan produced 

a fine spray of oil droplets. The droplets picked up electric 

charge as they were sprayed through the atomizer. Millikan 

kept a droplet suspended without falling by applying an 

upward electric force. After removing the electric force, he 

measured the terminal speed of the droplet as it fell through 

the air. He calculated the mass of the droplet from the termi-

nal speed and the density of the oil using Stokes’s law. 

Example 9.13

Falling Droplet

In an experiment to measure the electric charge of the elec-

tron, a fine mist of oil droplets is sprayed into the air and 

observed through a telescope as they fall. These droplets 

are so tiny that they soon reach their terminal velocity. If 

the radius of the droplets is 2.40 μm and the average den-

sity of the oil is 862 kg/m3, find the terminal speed of the 

droplets. The density of air is 1.20 kg/m3 and the viscosity 

of air is 1.8 × 10−5 Pa·s.

Strategy When the droplets fall at their terminal velocity, 

the net force on them is zero. We set the net force equal to 

zero and use Stokes’s law for the drag force.

Solution We set the sum of the forces equal to zero when 

v = vt.

∑ F 
y
   = + F 

D
   +  F 

B
   − W  = 0

If mair is the mass of displaced air, then

6phr v 
t
   +  m 

air
  g −  m 

oil
  g = 0

Solving for vt,

 v 
t
   =   

g( m 
oil

   −  m 
air

  )
 ___________ 

6p h r
  

 v 
t
   =   

  4 _ 
3
   (2.40 ×  10 −6  m ) 2  (9.80 N/kg) (862 kg/ m 3  − 1.20 kg/ m 3 )

     ______________________________________________   
6 × 1.8 ×  10 −5  Pa⋅s
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 For small particles falling in a liquid, the terminal velocity is also called the  sedi-

mentation velocity.  The sedimentation velocity is often small for two reasons. First, if 

the particle isn’t much more dense than the fluid, then the vector sum of the gravita-

tional and buoyant forces is small. Second, notice that the terminal velocity is propor-

tional to  r  2 ; viscous drag is most important for small particles. Thus, it can take a long 

time for the particles to sediment out of solution. Because the sedimentation velocity is 

proportional to  g,  it can be increased by the use of a centrifuge, a rotating container that 

creates artificial gravity of magnitude  g  eff   =   w   2  r  [see Eq. (5-12) and Section 5.7]. Ultra-

centrifuges are capable of rotating at 105 rev/min and produce artificial gravity approach-

ing a million times  g.          

   9.11  SURFACE TENSION 

  The surface of a liquid has special properties not associated with the interior of the liq-

uid. The surface acts like a stretched membrane under tension. The    surface tension  

(symbol  g , the Greek letter gamma) of a liquid is the force per unit  length  with which the sur-

face pulls  on its edge.  The direction of the force is tangent to the surface at its edge. Surface 

tension is caused by the cohesive forces that pull the molecules toward each other. 

 The high surface tension of water enables water striders and other small insects to 

walk on the surface of a pond. The foot of the insect makes a small indentation in the 

water surface ( Fig. 9.30 ); the deformation of the surface enables it to push upward on the 

foot as if the water surface were a thin sheet of rubber. Visually it looks similar to a person 

walking across the mat of a trampoline. Other small water creatures, such as mosquito lar-

vae and planaria, hang from the surface of water, using surface tension to hold themselves 

up. In plants, surface tension aids in the transport of water from the roots to the leaves.             

Application of viscous 

drag: sedimentation veloc-

ity and the centrifuge

Application of viscous 

drag: sedimentation veloc-

ity and the centrifuge

Application of surface 

tension: how insects can 

walk on the surface of a pond

Application of surface 

tension: how insects can 

walk on the surface of a pond

By setting the magnitude of the electric force equal to the 

weight of a suspended droplet, Millikan calculated the elec-

tric charge of the droplet. He measured the charges of hun-

dreds of different droplets and found that they were all 

multiples of the same quantity—the charge of an electron.

Practice Problem 9.13 Rising Bubble

Find the terminal velocity of an air bubble of 0.500 mm 

radius in a cup of vegetable oil. The specific gravity of the 

oil is 0.840 and the viscosity is 0.160 Pa·s. Assume the diam-

eter of the bubble does not change as it rises.

Example 9.13 continued

PHYSICS AT HOME

A demonstration of terminal velocity can be done at home. Climb up a small 

stepladder, or lean over an upstairs balcony, and drop two objects at the same 

time: a coin and two or three nested cone-shaped paper coffee filters. You will 

see the effects of viscous drag on the coffee filters as they fall with a constant 

terminal velocity. Enlist the help of a friend so you can get a side view of the two 

objects falling. Why do the coffee filters work so well?

Figure 9.30 A water strider.

  PHYSICS AT HOME 

 Place a needle (or a flat plastic-coated paper clip) gently on the surface of a 

glass of water. It may take some practice, but you should be able to get it to 

“float” on top of the water. Now add some detergent to the water and try again. 

The detergent reduces the surface tension of the water so it is unable to support 

the needle. Soaps and detergents are  surfactants —substances that reduce the 

surface tension of a fluid. The reduced surface tension allows the water to spread 

out more, wetting more of a surface to be cleaned.  
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 The high surface tension of water is a hindrance in the lungs. The exchange of oxy-

gen and carbon dioxide between inspired air and the blood takes place in tiny sacs 

called  alveoli,  0.05 to 0.15 mm in radius, at the end of the bronchial tubes ( Fig. 9.31 ). If 

the mucus coating the alveoli had the same surface tension as other body fluids, the 

pressure difference between the inside and outside of the alveoli would not be great 

enough for them to expand and fill with air. The alveoli secrete a surfactant that decreases 

the surface tension in their mucous coating so they can inflate during inhalation.              

   Bubbles 

 In an underwater air bubble, the surface tension of the water surface tries to contract the 

bubble while the pressure of the enclosed air pushes outward on the surface. In equilib-

rium, the air pressure inside the bubble must be larger than the water pressure outside so 

that the net outward force due to pressure balances the inward force due to surface ten-

sion. The excess pressure Δ P   =   P  in   −   P  out  depends both on the surface tension and the 

size of the bubble. In Problem 72, you can show that the excess pressure is

     ΔP =   
2g 

 ___ r      (9-17)    

 Look closely at a glass of champagne and you can see strings of bubbles rising, origi-

nating from the same points in the liquid. Why don’t bubbles spring up from random loca-

tions? A very small bubble would require an insupportably large excess pressure. The 

bubbles need some sort of nucleus—a small dust particle, for instance—on which to form 

so they can start out larger, with excess pressures that aren’t so large. The strings of bub-

bles in the glass of champagne are showing where suitable nuclei have been “found.”     

Application of surface 

tension: surfactant in 

the lungs

Application of surface 

tension: surfactant in 

the lungs

must have a lower pressure outside than inside, as for a 

bubble.

Solution The excess pressure is

ΔP =   
2g 

 ___ r   =   2 × 0.070 N/m  _____________  
0.050 ×  10 −3  m

   = 2.8 kPa

Example 9.14

Lung Pressure

During inhalation the gauge pressure in the alveoli is about 

−400 Pa to allow air to flow in through the bronchial tubes. 

Suppose the mucous coating on an alveolus of initial 

radius 0.050 mm had the same surface tension as water 

(0.070 N/m). What lung pressure outside the alveoli would 

be required to begin to inflate the alveolus?

Strategy We model an alveolus as a sphere coated with 

mucus. Due to the surface tension of the mucus, the alveolus 

Blood flow

Bronchiole

Alveolar
sac

Alveoli
Capillary
network
on surface
of alveolus

Figure 9.31 In the human 

lung, millions of tiny sacs called 

alveoli are inflated with each 

breath. Gas is exchanged 

between the air and the blood 

through the walls of the alveoli. 

The total surface area through 

which gas exchange takes place 

is about 80 m 2 —about 40 times 

the surface area of the body.

continued on next page



Thus, the pressure inside the alveolus would be 2.8 kPa 

higher than the pressure outside. The gauge pressure inside 

is −400 Pa, so the gauge pressure outside would be

 P 
out

   = −0.4 kPa − 2.8 kPa = −3.2 kPa

Discussion The actual gauge pressure outside the alveoli 

is about −0.5 kPa rather than −3.2 kPa; then ΔP = Pin − Pout = 

−0.4 kPa − (−0.5 kPa) = 0.1 kPa rather than 2.8 kPa. Here 

the surfactant comes to the rescue; by decreasing the surface 

tension in the mucus, it decreases ΔP to about 0.1 kPa and 

allows the expansion of the alveoli to take place. For a new-

born baby, the alveoli are initially collapsed, making the 

required pressure difference about 4 kPa. That first breath is 

as difficult an event as it is significant.

Practice Problem 9.14 Champagne Bubbles

A bubble in a glass of champagne is filled with CO2. When 

it is 2.0 cm below the surface of the champagne, its radius is 

0.50 mm. What is the gauge pressure inside the bubble? 

Assume that champagne has the same average density as 

water and a surface tension of 0.070 N/m.

Example 9.14 continued

  Master the Concepts 

    • Fluids are materials that flow and include both liquids 

and gases. A liquid is nearly incompressible, whereas a 

gas expands to fill its container.  

   • Pressure is the perpendicular force per unit area that a 

fluid exerts on any surface with which it comes in con-

tact ( P   =   F / A ). The SI unit of pressure is the pascal 

(1 Pa  =  1 N/m 2 ).  

   • The average air pressure at sea level is 1 atm  =  101.3 kPa.  

   • Pascal’s principle: A change in pressure at any point in 

a confined fluid is transmitted everywhere throughout 

the fluid.  

   • The average density of a substance is the ratio of its 

mass to its volume

  r  =   m __ 
V

         (9-2)    

   • The specific gravity of a material is the ratio of its den-

sity to that of water at 4   °C.   

   • Pressure variation with depth in a static fluid:

       P 
2
   =  P 

1
   + rgd   (9-3)  

  where point 2 is a depth  d  below point 1.  

   • Instruments to measure pressure include the manometer 

and the barometer. The barometer measures the pres-

sure of the atmosphere. The manometer measures a 

pressure difference.  

   • Gauge pressure is the amount by which the absolute 

pressure exceeds atmospheric pressure:

       P gauge   =  P abs   −  P atm     (9-6)        

   • Archimedes’ principle: a fluid exerts an 

upward buoyant force on a completely or 

partially submerged object equal in magni-

tude to the weight of the volume of fluid 

displaced by the object:

       F 
B
   = rgV   (9-7)  

  where  V  is the volume of the part of the object that is 

submerged and  r  is the density of the fluid.  

   • In steady flow, the velocity of the fluid  at any point  is 

constant in time. In laminar flow, the fluid flows in neat 

layers so that each small portion of fluid that passes a 

particular point follows the same path as every other 

portion of fluid that passes the same point. The path that 

the fluid follows, starting from any point, is called a 

streamline. Laminar flow is steady. Turbulent flow is 

chaotic and unsteady. The viscous force opposes the 

flow of the fluid; it is the counterpart to the frictional 

force for solids.  

   • An ideal fluid exhibits laminar flow, has no viscosity, 

and is incompressible. The flow of an ideal fluid is gov-

erned by two principles: the continuity equation and 

Bernoulli’s equation.  

   • The continuity equation states that the volume flow rate 

for an ideal fluid is constant:

        ΔV
 ___ 

Δt
   =  A 

1
   v 

1
   =  A 

2
   v 

2
     (9-12, 9-13)   

   • Bernoulli’s equation relates pressure changes to changes 

in flow speed and height:

       P 1   + rg y 1   +   1 _ 
2
  r  v  1  

2
  =  P 2   + rg y 2   +   1 _ 

2
  r  v  2  

2
    (9-14)    

1

A1

A2
x1

x2

∆m1

∆m2

2

v2
v1
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  Conceptual Questions 

    1. Does a manometer (with one side open) measure abso-

lute pressure or gauge pressure? How about a barome-

ter? A tire pressure gauge? A sphygmomanometer?  

   2. A volunteer firefighter holds the end of a firehose as a 

strong jet of water emerges. (a) The hose exerts a large 

backward force on the firefighter. Explain the origin of 

this force. (b) If another firefighter steps on the hose, 

forming a constriction (a place where the area of the 

hose is smaller), the hose begins to pulsate wildly. 

Explain.  

   3. The weight of a boat is listed on specification sheets as 

its “displacement.” Explain.  

   4. In tall buildings, the water supply system uses multiple 

pumping stations on different floors. At each station, 

water pumped up from below collects in a storage tank 

held at atmospheric pressure before it enters the pump. 

The storage tank supplies water to the floors below it. 

What are some of the reasons why these multiple pump-

ing stations are used?  

   5. Can an astronaut on the Moon use a straw to drink from 

a normal drinking glass? How about if he pokes a straw 

through an otherwise sealed juice box? Explain.  

   6. It is commonly said that wood floats because it is 

“lighter than water” or that a stone sinks because it is 

“heavier than water.” Are these accurate statements? If 

not, correct them.  

     7. Why must a blood pressure cuff be wrapped around the 

arm at the same vertical level as the heart?  

   8. A hot air balloon is floating in equilibrium with the sur-

rounding air. (a) How does the pressure inside the bal-

loon compare with the pressure outside? (b) How does 

the density of the air inside compare to the density 

outside?      

   9. When helium weather balloons are released, they are 

purposely underinflated. Why? [ Hint:  The balloons go 

to very high altitudes.]  

   10. Bernoulli’s equation applies only to  steady flow.  Yet 

Bernoulli’s equation allows the fluid velocity at one 

point to be different than the velocity at another point. 

For the fluid velocity to change, the fluid must be accel-

erated as it moves from one point to another. In what 

way is the flow  steady,  then?  

   11. Before getting an oil change, it is a good idea to drive a 

few miles to warm up the engine. Why?  

12. Your ears “pop” when you change altitude quickly—

such as during takeoff or landing in an airplane, or 

during a drive in the mountains. Curiously, if you are 

a passenger in a high-speed train, your ears some-

times pop as the speed of the train increases rapidly—

even though there is little or no change in altitude. 

Explain.  

   13. It is easier to get a good draft in a chimney on a windy 

day than when the outside air is still, all other things 

being equal. Why?  

14. Two soap bubbles of  different radii  are formed at the 

ends of a tube with a closed valve in the middle. What 

happens to the bubbles when the valve is opened? (If 

the alveoli in the lung did not have a surfactant that 

reduces surface tension in the smaller alveoli, the 

same thing would happen in the lung, with disastrous 

results!)  

   15.  Pascal’s principle:   proof by contradiction.  Points  A  and 

B  are near each other at the same height in a fluid. Sup-

pose  P   A   >  P   B  . (a) Can both  v   A   and  v   B   be zero? Explain. 

(b) Point  C  is just above point  D  in a static fluid. Sup-

pose the pressure at  C  increases by an amount Δ P.  What 

would happen if the pressure at  D  did not increase by 

the same amount?  

   • Poiseuille’s law gives the volume flow rate Δ V /Δ t  for 

viscous flow in a horizontal pipe:

        ΔV
 ___ 

Δt
   =   p  __ 

8
     ΔP/L

 _____ 
h     r 4    (9-15)  

(b) Pressure

P1

Fv

P2

Direction of flow

(a)
P1A P2A

x

x

  where Δ P  is the pressure difference between the ends 

of the pipe,  r  and  L  are the inner radius and length of 

the pipe, respectively, and  h  is the viscosity of the 

fluid.      

   • Stokes’s law gives the viscous drag force on a spherical 

object moving in a fluid:

       F 
D
   = 6p h r v   (9-16)    

   • The surface tension  g  (the Greek letter gamma) of a 

liquid is the force  per unit length  with which the 

surface pulls on its edge.    
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   16. What are the advantages of using hydraulic systems 

rather than mechanical systems to operate automobile 

brakes or the control surfaces of an airplane?  

   17. In any hydraulic system, it is important to “bleed” air 

out of the line. Why?  

   18. Is it possible for a skin diver to dive to any depth as long 

as his snorkel tube is sufficiently long? (A snorkel is a 

face mask with a breathing tube that sticks above the 

surface of the water.)  

   19. Is the buoyant force on a soap bubble greater than the 

weight of the bubble? If not, why do soap bubbles some-

times appear to float in air?  

   20. A plastic water bottle open at the top is three-fourths full 

of water and is placed on a scale. The bottle has an inden-

tation for a label midway up the side and a strap has been 

placed around this indentation. If the strap is tightened, so 

the bottle is squeezed in at the middle and the water level 

is forced to rise, what happens to the reading on the scale? 

Is the water pressure at the bottom of the bottle the same?    

  Multiple-Choice Questions 

    1. A glass of ice water is filled to the brim with water; the 

ice cubes stick up above the water surface. After the ice 

melts, which is true?

    (a) The water level is below the top of the glass.  

   (b)  The water level is at the top of the glass but no water 

has spilled.  

   (c) Some water has spilled over the sides of the glass.  

   (d)  Impossible to say without knowing the initial densi-

ties of the water and the ice.     

   2. A dam holding back the water in a reservoir exerts a 

horizontal force on the water. The magnitude of this 

force depends on

    (a) the maximum depth of the reservoir.  

   (b) the depth of the water at the location of the dam.  

   (c) the surface area of the reservoir.  

   (d) both (a) and (b).  

   (e) all three—(a), (b), and (c).     

   3. Bernoulli’s equation applies to

    (a) any fluid.  

   (b) an incompressible fluid, whether viscous or not.  

   (c)  an incompressible, nonviscous fluid, whether the 

flow is turbulent or not.  

   (d) an incompressible, nonviscous, nonturbulent fluid.  

   (e) a static fluid only.      

  Questions 4–5.  Two spheres, A and B, fall through the same 

viscous fluid. 

  Answer choices for Questions 4 and 5: 

    (a) A has the larger terminal velocity.  

   (b) B has the larger terminal velocity.  

   (c) A and B have the same terminal velocity.  

   (d)  Insufficient information is given to reach a conclusion.   

    4. A and B have the same radius; A has the larger mass. 

Which has the larger terminal velocity?  

   5. A and B have the same density; A has the larger radius. 

Which has the larger terminal velocity?  

   6. Bernoulli’s equation is an expression of

    (a) conservation of mass.  

   (b) conservation of energy.  

   (c) conservation of momentum.  

   (d) conservation of angular momentum.     

   7. The continuity equation is an expression of

    (a) conservation of mass.  

   (b) conservation of energy.  

   (c) conservation of momentum.  

   (d) conservation of angular momentum.     

   8. What is the gauge pressure of the gas in the closed tube 

in the figure? (Take the atmospheric pressure to be 

76 cm Hg.)

    (a) 20 cm Hg  

   (b)  − 20 cm Hg    

 (c) 96 cm Hg  

   (d) 56 cm Hg  

   (e)  − 96 cm Hg    

 (f)  − 56 cm Hg     

20 cm

Open to the

atmosphere

Gas Hg

  

 9. A manometer contains two different fluids of differ-

ent densities. Both sides are open to the atmosphere. 

Which pair(s) of points in the figure have equal 

pressure?

    (a)  P  1   =   P  5     

 (b)  P  2   =   P  5     

 (c)  P  3   =   P  4     

 (d) Both (a) and (c)    

 (e) Both (b) and (c)         

5

4

1

2

3
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   10. A Venturi meter is used to measure the flow speed 

of a  viscous  fluid. With reference to the figure, which 

is true?

    (a)  h  3   =   h  1      (b)  h  3  >  h  1   

   (c)  h  3  <  h  1      (d) Insufficient information to determine       

Direction of flow

h1

h2

A1 A1

A2

h3

  Problems 

 Combination conceptual/quantitative problem  

 Biological or medical application  

✦ Challenging problem  

Blue # Detailed solution in the Student Solutions Manual  

1  2  Problems paired by concept  

 Text website interactive or    tutorial

  9.2 Pressure 

     1.  Someone steps on your toe, exerting a force of 500 N on 

an area of 1.0 cm 2 . What is the average pressure on that 

area in atm?  

   2. The pressure inside a bottle of champagne is 4.5 atm 

higher than the air pressure outside. The neck of the 

bottle has an inner radius of 1.0 cm. What is the fric-

tional force on the cork due to the neck of the bottle?  

    3.  What is the average pressure on the soles of the feet of a 

standing 90.0-kg person due to the contact force with 

the floor? Each foot has a surface area of 0.020 m 2 .  

     4. Atmospheric pressure is about 1.0  ×  10 5  Pa on average. 

(a) What is the downward force of the air on a desktop 

with surface area 1.0 m 2 ? (b) Convert this force to 

pounds so you really understand how large it is. (c) Why 

does this huge force not crush the desk?  

    5.  A 10-kg baby sits on a three-legged stool. The diameter 

of each of the stool’s round feet is 2.0 cm. A 60-kg adult 

sits on a four-legged chair that has four circular feet, 

each with a diameter of 6.0 cm. Who applies the greater 

pressure to the floor and by how much?  

   6. A lid is put on a box that is 15 cm long, 13 cm wide, and 

8.0 cm tall and the box is then evacuated until its inner 

pressure is 0.80  ×  10 5  Pa. How much force is required 

to lift the lid (a) at sea level; (b) in Denver, on a day 

when the atmospheric pressure is 67.5 kPa (      2 _ 
3
     the value 

at sea level)?    

  9.3 Pascal’s Principle 

     7.  A container is filled with gas at a pressure of 4.0  ×  10 5  Pa. 

The container is a cube, 0.10 m on a side, with one side 

facing south. What is the magnitude and direction of the 

force on the south side of the container due to the gas 

inside?  

    8.  A nurse applies a force of 4.40 N to the piston of a 

syringe. The piston has an area of 5.00  ×  10   −5  m 2 . What 

is the pressure increase in the fluid within the syringe?  

    9.  A hydraulic lift is lifting a car that weighs 12 kN. The area 

of the piston supporting the car is  A,  the area of the other 

piston is  a,  and the ratio  A / a  is 100.0. How far must the 

small piston be pushed down to raise the car a distance of 

1.0 cm? [ Hint:  Consider the work to be done.]  

    10.  In a hydraulic lift, the radii of the pistons are 2.50 cm 

and 10.0 cm. A car weighing  W   =  10.0 kN is to be lifted 

by the force of the large piston. (a) What force  F  a  must 

be applied to the small piston? (b) When the small pis-

ton is pushed in by 10.0 cm, how far is the car lifted? 

(c) Find the mechanical advantage of the lift, which is 

the ratio  W / F  a .  

11.  Depressing the brake pedal in a car pushes on a piston 

with cross-sectional area 3.0 cm 2 . The piston applies 

pressure to the brake fluid, which is connected to two 

pistons, each with area 12.0 cm 2 . Each of these pistons 

presses a brake pad against one side of a rotor attached 

to one of the rotating wheels. See the figure for this 

problem. (a) When the force applied by the brake pedal 

to the small piston is 7.5 N, what is the normal force 

applied to each side of the rotor? (b) If the coefficient of 

kinetic friction between a brake pad and the rotor is 

0.80 and each pad is (on average) 12 cm from the rota-

tion axis of the rotor, what is the torque on the rotor due 

to the two pads? 

Rotor

Master
cylinder

Brake
pedal Brake

fluid

Piston
Piston

Brake pad
F

(not to scale)

  9.4 The Effect of Gravity on Fluid Pressure 

     12.  At the surface of a freshwater lake the air pressure is 

1.0 atm. At what depth under water in the lake is the 

water pressure 4.0 atm?  

✦✦



13.  What is the pressure on a fish 10 m under the ocean 

surface?  

    14.  How high can you suck water up a straw? The pressure 

in the lungs can be reduced to about 10 kPa below atmo-

spheric pressure.  

   15. The density of platinum is 21 500 kg/m 3 . Find the ratio 

of the volume of 1.00 kg of platinum to the volume of 

1.00 kg of aluminum.  

    16.  In the Netherlands, a dike holds back the sea from a 

town below sea level. The dike springs a leak 3.0 m 

below the water surface. If the area of the hole in the 

dike is 1.0 cm 2 , what force must the Dutch boy exert to 

save the town?  

17.  A container has a large cylindrical lower part with a 

long thin cylindrical neck. The lower part of the con-

tainer holds 12.5 m 3  of water and the surface area of the 

bottom of the container is 5.00 m 2 . The height of the 

lower part of the container is 

2.50 m and the neck contains a 

column of water 8.50 m high. 

The total volume of the column 

of water in the neck is 0.200 m 3 . 

What is the magnitude of the 

force exerted by the water on 

the bottom of the container?      

18. The maximum pressure most organisms can survive is 

about 1000 times atmospheric pressure. Only small, 

simple organisms such as tadpoles and bacteria can sur-

vive such high pressures. What then is the maximum 

depth at which these organisms can live under the sea 

(assuming that the density of seawater is 1025 kg/m 3 )?  

    19.  At the surface of a freshwater lake the pressure is 

105 kPa. (a) What is the pressure increase in going 

35.0 m below the surface? (b) What is the approximate 

pressure decrease in going 35 m above the surface? Air 

at 20 ° C has density of 1.20 kg/m 3 .    

  9.5 Measuring Pressure 

      20. A woman’s systolic blood pressure when resting is 

160 mm Hg. What is this pressure in (a) Pa, (b) lb/in 2 , 

(c) atm, (d) torr?  

21.  The gauge pressure of the air in an automobile tire is 

32 lb/in 2 . Convert this to (a) Pa, (b) torr, (c) atm.  

22. An IV is connected to a patient’s vein. The blood pres-

sure in the vein has a gauge pressure of 12 mm Hg. At 

least how far above the vein must the IV bag be hung in 

order for fluid to flow into the vein? Assume the fluid in 

the IV has the same density as blood.  

    23.  When a mercury manometer is connected to a gas main, 

the mercury stands 40.0 cm higher in the tube that is 

open to the air than in the tube connected to the gas main. 

A barometer at the same location reads 74.0 cm Hg. 

Determine the absolute pressure of the gas in cm Hg.  

24.  An experiment to deter-

mine the specific heat of a 

gas makes use of a water 

manometer attached to a 

flask. Initially the two col-

umns of water are even. 

Atmospheric pressure is 

1.0  ×  10 5  Pa. After heating 

the gas, the water levels 

change to those shown. 

Find the change in pres-

sure of the gas in Pa.      

25.  A manometer using oil (density 0.90 g/cm 3 ) as a fluid is 

connected to an air tank. Suddenly the pressure in the 

tank increases by 0.74 cm Hg. (a) By how much does 

the fluid level rise in the side of the manometer that is 

open to the atmosphere? (b) What would your answer 

be if the manometer used mercury instead?  

26.  Estimate the average blood pressure in a person’s foot, 

if the foot is 1.37 m below the aorta, where the average 

blood pressure is 104 mm Hg. For the purposes of this 

estimate, assume the blood isn’t flowing.    

  9.6 The Buoyant Force 

27.  A Canada goose floats with 25% of its volume below 

water. What is the average density of the goose?  

   28. A flat-bottomed barge, loaded with coal, has a mass of 

3.0  ×  10 5  kg. The barge is 20.0 m long and 10.0 m wide. 

It floats in fresh water. What is the depth of the barge 

below the waterline? (   tutorial: boat)  

29.  (a) When ice floats in water at 0 ° C, what percent of its 

volume is submerged? (b) What is the specific gravity 

of ice?  

   30. (a) What is the density of an object that is 14% sub-

merged when floating in water at 0 ° C? (b) What per-

centage of the object will be submerged if it is placed in 

ethanol at 0 ° C?  

    31.  (a) What is the buoyant force on 0.90 kg of ice floating 

freely in liquid water? (b) What is the buoyant force 

on 0.90 kg of ice held completely submerged under 

water?  

    32.  A block of birch wood floats in oil with 90.0% of its 

volume submerged. What is the density of the oil? The 

density of the birch is 0.67 g/cm 3 .  

33.  When a block of ebony is placed in ethanol, what per-

centage of its volume is submerged?  

   34. A cylindrical disk has volume 8.97  ×  10  − 3  m 3  and mass 

8.16 kg. The disk is floating on the surface of some 

water with its flat surfaces horizontal. The area of each 

flat surface is 0.640 m 2 . (a) What is the specific gravity 

of the disk? (b) How far below the water level is its 

bottom surface? (c) How far above the water level is its 

top surface?  

8.50 m 11.0 m

2.50 m

Gas

Initial levels

1.0 cm

Water
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   35. An aluminum cylinder weighs 1.03 N. When this same 

cylinder is completely submerged in alcohol, the volume 

of the displaced alcohol is 3.90  ×  10  − 5  m 3 . If the cylinder 

is suspended from a scale while submerged in the alco-

hol, the scale reading is 0.730 N. What is the specific 

gravity of the alcohol? (   tutorial: ball in beaker)  

36. A fish uses a swim bladder to change its density so it 

is equal to that of water, enabling it to remain suspen-

ded under water. If a fish has an average density of 

1080 kg/m 3  and mass 10.0 g with the bladder com-

pletely deflated, to what volume must the fish inflate 

the swim bladder in order to remain suspended in sea-

water of density 1060 kg/m 3 ?  

37.  While vacationing at the Outer Banks of North Caro-

lina, you find an old coin that looks like it is made of 

gold. You know there were many shipwrecks here, so 

you take the coin home to check the possibility of it 

being gold. You suspend the coin from a spring scale 

and find that it has a weight in air of 1.75 oz  

(mass  =  49.7 g). You then let the coin hang submerged 

in a glass of water and find that the scale reads 1.66 oz 

(mass  =  47.1 g). Should you get excited about the possi-

bility that this coin might really be gold?  

38. The average density of a fish can be found by first 

weighing it in air and then finding the scale reading for 

the fish completely immersed in water and suspended 

from a scale. If a fish has weight 200.0 N in air and 

scale reading 15.0 N in water, what is the average den-

sity of the fish?  

39.  (a) A piece of balsa wood with density 0.50 g/cm 3  is 

released under water. What is its initial acceleration? 

(b) Repeat for a piece of maple with density 0.750 g/cm 3 . 

(c) Repeat for a ping-pong ball with an average density 

of 0.125 g/cm 3 .  

     40. A piece of metal is released under water. The volume of 

the metal is 50.0 cm 3  and its specific gravity is 5.0. 

What is its initial acceleration?     

  9.7 Fluid Flow; 9.8 Bernoulli’s Equation 

     41.  A garden hose of inner radius 1.0 cm carries water at 

2.0 m/s. The nozzle at the end has radius 0.20 cm. How 

fast does the water move through the nozzle?  

      42.  If the average volume flow of blood through the aorta is 

8.5  ×  10  − 5  m 3 /s and the cross-sectional area of the aorta 

is 3.0  ×  10  − 4  m 2 , what is the average speed of blood in 

the aorta?  

    43.  A nozzle of inner radius 1.00 mm is connected to a hose 

of inner radius 8.00 mm. The nozzle shoots out water 

moving at 25.0 m/s. (a) At what speed is the water in the 

hose moving? (b) What is the volume flow rate? 

(c) What is the mass flow rate?  

    44.  Water entering a house flows with a speed of 0.20 m/s 

through a pipe of 1.0 cm inside radius. What is the speed 

✦✦

✦✦

of the water at a point where the pipe tapers to a radius 

of 2.5 mm?  

45.  A horizontal segment of pipe tapers from a cross-

sectional area of 50.0 cm 2  to 0.500 cm 2 . The pressure at 

the larger end of the pipe is 1.20  ×  10 5  Pa and the speed 

is 0.040 m/s. What is the pressure at the narrow end of 

the segment?  

    46.  In a tornado or hurricane, a roof may tear away from the 

house because of a difference in pressure between the 

air inside and the air outside. Suppose that air is blow-

ing across the top of a 2000 ft 2  roof at 150 mph. What is 

the magnitude of the force on the roof?  

47.  Use Bernoulli’s equation to estimate the upward force 

on an airplane’s wing if the average flow speed of air is 

190 m/s above the wing and 160 m/s below the wing. 

The density of the air is 1.3 kg/m 3  and the area of each 

wing surface is 28 m 2 .  

    48.  An airplane flies on a level path. There is a pressure dif-

ference of 500 Pa between the lower and upper surfaces 

of the wings. The area of each wing surface is about 

100 m 2 . The air moves below the wings at a speed of 

80.5 m/s. Estimate (a) the weight of the plane and 

(b) the air speed above the wings.  

49.  A nozzle is connected to a horizontal hose. The nozzle 

shoots out water moving at 25 m/s. What is the gauge 

pressure of the water in the hose? Neglect viscosity and 

assume that the diameter of the nozzle is much smaller 

than the inner diameter of the hose.  

   50. Suppose air, with a density of 1.29 kg/m 3  is flowing into 

a Venturi meter. The narrow section of the pipe at point 

A  has a diameter that is       1 _ 
3
     of the diameter of the larger 

section of the pipe at point  B.  The U-shaped tube 

is filled with  water  and 

the difference in height 

between the two sections 

of pipe is 1.75 cm. How 

fast is the air moving at 

point  B?       

    51.  A water tower supplies water through the plumbing in 

a house. A 2.54-cm-diameter faucet in the house can fill a 

cylindrical container with a diameter of 44 cm and 

a height of 52 cm in 12 s. How high above the faucet is 

the top of the water in the tower? (Assume that the 

diameter of the tower is so large compared to that of the 

faucet that the water at the top of the tower does not 

move.)  

52.  The volume flow rate of the water supplied by a well is 

2.0  ×  10  − 4  m 3 /s. The well is 40.0 m deep. (a) What is the 

power output of the pump—in other words, at what rate 

does the well do work on the water? (b) Find the pres-

sure difference the pump must maintain. (c) Can the 

pump be at the top of the well or must it be at the bot-

tom? Explain.   

✦✦

B A

h

Air



  9.9 Viscosity 

53.  Using Poiseuille’s law [Eq. (9-15)], show that viscosity 

has SI units of pascal-seconds.  

    54.  A viscous liquid is flowing steadily through a pipe of 

diameter  D.  Suppose you replace it by two parallel 

pipes, each of diameter  D /2, but the same length as the 

original pipe. If the pressure difference between the 

ends of these two pipes is the same as for the original 

pipe, what is the total rate of flow in the two pipes com-

pared to the original flow rate?  

55.  A hypodermic syringe is attached to a needle that has an 

internal radius of 0.300 mm and a length of 3.00 cm. 

The needle is filled with a solution of viscosity 

2.00  ×  10  − 3  Pa·s; it is injected into a vein at a gauge 

pressure of 16.0 mm Hg. Ignore the extra pressure 

required to accelerate the fluid from the syringe into the 

entrance of the needle. (a) What must the pressure of 

the fluid in the syringe be in order to inject the solution 

at a rate of 0.250 mL/s? (b) What force must be applied 

to the plunger, which has an area of 1.00 cm 2 ?   

  Problems 56–58.  Four identical sections of pipe are con-

nected in various ways to pumps that supply water at the 

pressures indicated in the figure (in units of 10 5  Pa). The 

water exits at the right at atmospheric pressure. Assume vis-

cous flow.

    56. If the  total  volume flow rates in systems A and C are the 

same and the flow speed in each of the pipes in C is 

3.0 m/s, what is the flow speed in system A?  

    57.  If the total volume flow rate in system B is 0.020 m 3 /s, 

what is the total volume flow rate in system C?  

   58. If the total volume flow rates in systems A and B are the 

same, at what pressure does the pump supply water in 

system A? 

Problems 56−58

P = ? P = 1.0

P = 1.0P = 5.0

P = 1.0P = 3.0

A

B

C

59. (a) What is the pressure difference required to make 

blood flow through an artery of inner radius 2.0 mm and 

length 0.20 m at a speed of 6.0 cm/s? (b) What is 

the pressure difference required to make blood flow at 

0.60 mm/s through a capillary of radius 3.0  μ m and 

length 1.0 mm? (c) Compare both answers to your aver-

age blood pressure, about 100 torr.  

   60. (a) Since the flow rate is proportional to the pressure 

difference, show that Poiseuille’s law can be written in 

the form Δ P   =   IR,  where  I  is the volume flow rate and  R

is a constant of proportionality called the fluid flow 

resistance.  (Written this way, Poiseuille’s law is analo-

gous to  Ohm’s law  for electric current to be studied in 

Chapter 18: Δ V   =   IR,  where Δ V  is the potential drop 

across a conductor,  I  is the electric current flowing 

through the conductor, and  R  is the electrical resistance 

of the conductor.) (b) Find  R  in terms of the viscosity of 

the fluid and the length and radius of the pipe.     

  9.10 Viscous Drag 

61.  Two identical spheres are dropped into two different 

columns: one column contains a liquid of viscosity 

0.5 Pa·s, while the other contains a liquid of the same 

density but unknown viscosity. The sedimentation 

velocity in the second tube is 20% higher than the sedi-

mentation velocity in the first tube. What is the viscos-

ity of the second liquid?  

   62. A sphere of radius 1.0 cm is dropped into a glass cylin-

der filled with a viscous liquid. The mass of the sphere 

is 12.0 g and the density of the liquid is 1200 kg/m 3 . 

The sphere reaches a terminal speed of 0.15 m/s. What 

is the viscosity of the liquid?  

63. A dinoflagellate takes 5.0 s to travel 1.0 mm. Approxi-

mate a dinoflagellate as a sphere of radius 35.0  μ m 

(ignoring the flagellum). (a) What is the drag force on 

the dinoflagellate in seawater of viscosity 0.0010 Pa·s? 

(b) What is the power output of the flagellate?  

   64. An air bubble of 1.0-mm radius is rising in a container 

with vegetable oil of specific gravity 0.85 and viscosity 

0.12 Pa·s. The container of oil and the air bubble are at 

20 ° C. What is its terminal velocity?  

      65.  This table gives the terminal speeds of various spheres 

falling through the same fluid. The spheres all have the 

same radius.   

m = 8 12 16 20 24 28 (g)

vt = 1.0 1.5 2.0 2.5 3.0 3.5 (cm/s)

  Is the drag force primarily viscous or turbulent? Explain 

your reasoning.  

     66. This table gives the terminal speeds of various spheres 

falling through the same fluid. The spheres all have the 

same radius.   

m = 5.0 11.3 20.0 31.3 45.0 80.0 (g)

vt = 1.0 1.5 2.0 2.5 3.0 4.0 (cm/s)

   Is the drag force primarily viscous or turbulent? Explain 

your reasoning.  
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   67.  What keeps a cloud from falling?  A cumulus (fair-weather) 

cloud consists of tiny water droplets of average radius 

5.0  μ m. Find the terminal velocity for these droplets at 

20 ° C, assuming viscous drag. (Besides the viscous drag 

force, there are also upward air currents called  thermals  

that push the droplets upward.    tutorial: rain drop)  

      68.  An aluminum sphere (specific gravity  =  2.7) falling 

through water reaches a terminal speed of 5.0 cm/s. 

What is the terminal speed of an air bubble of the same 

radius rising through water? Assume viscous drag in 

both cases and ignore the possibility of changes in size 

or shape of the air bubble; the temperature is 20 ° C.    

  9.11 Surface Tension 

     69.  An underwater air bubble has an excess inside pressure 

of 10 Pa. What is the excess pressure inside an air bub-

ble with twice the radius?  

    70.  Assume a water strider has a roughly circular foot of 

radius 0.02 mm. (a) What is the maximum possible 

upward force on the foot due to surface tension of the 

water? (b) What is the maximum mass of this water 

strider so that it can keep from breaking through the 

water surface? The strider has six legs.  

     71. The potential energy associated with surface tension is 

much like the elastic potential energy of a stretched 

spring or a balloon. Suppose we do work on a puddle of 

liquid, spreading it out through a distance of Δ s  along a 

line  L  perpendicular to the force. (a) What is the work 

done on the fluid surface in terms of  g ,  L,  and Δ s?  

(b) The work done is equal to the increase in surface energy 

of the fluid. Show that the increase in energy is propor-

tional to the increase in area. (c) Show that we can think of 

 g   as the surface energy per unit area. (d) Show that the SI 

units of surface tension can be expressed either as N/m 

(force per unit length) or J/m 2  (energy per unit area). 

 

∆A = L ∆s

L

∆s

F

    

     72. A hollow hemispherical object is filled with air as in 

part (a) of the figure. (a) Show that the magnitude of 

the force due to fluid pressure on the curved surface of 

the hemisphere has magnitude  F   =   p    r  2   P,  where  r  is the 

radius of the hemisphere and  P  is the pressure of the air. 

Ignore the weight of the air. [ Hint:  First find the force 

on the  flat  surface. What is the net force on the hemi-

sphere due to the air?] (b) Consider an underwater air 

bubble to be divided into two hemispheres along the 

circumference as in part (b) of the figure. The upper 

✦✦

✦✦

✦✦

hemisphere of the water surface exerts a force of magni-

tude 2 p  r  g   (circumference times force per unit length) 

on the lower hemisphere due to surface tension. Show 

that the air pressure inside the bubble must exceed the 

water pressure outside by Δ P   =  2 g  / r.  

 
(a) (b)

Inside pressure

Inside pressure

Outside pressure

r

Surface tension

       

  Comprehensive Problems 

     73.  A wooden barrel full of water has a flat 

circular top of radius 25.0 cm with a small 

hole in it. A tube of height 8.00 m and 

inner radius 0.250 cm is suspended above 

the barrel with its lower end inserted 

snugly in the hole. Water is poured into 

the upper end of the tube until it is full. 

(a) What is the weight of the water in the 

tube? (b) What is the force with which the water in the 

barrel pushes up on the top of the barrel? (c) How can 

adding such a small weight of water lead to such a large 

force on the top of the barrel? (As a demonstration of the 

principle now named for him, Pascal astonished specta-

tors by showing that the addition of a small amount of 

water to the tube could make the barrel burst.)      

   74. A block of aluminum that has dimensions 2.00 cm by 

3.00 cm by 5.00 cm is suspended from a spring scale. 

(a) What is the weight of the block? (b) What is the 

scale reading when the block is submerged in oil with a 

density of 850 kg/m 3 ?  

   75. A 85.0-kg canoe made of thin aluminum has the shape 

of half of a hollowed-out log with a radius of 0.475 m 

and a length of 3.23 m. (a) When this is placed in the 

water, what percentage of the volume of the canoe is 

below the waterline? (b) How much additional mass can 

be placed in this canoe before it begins to sink? (   

interactive: buoyancy)  

   76. Two identical beakers are filled to the brim and placed 

on balance scales. The base area of the beakers is large 

enough that any water that spills out of the beakers 

will fall onto the table the scales are resting on. A 

block of pine (density  =  420 kg/m 3 ) is placed in one of 

8.00 m

25.0 cm
(not to scale)



the beakers. The block has a volume of 8.00 cm 3 . 

Another block of the same size, but made of steel, is 

placed in the other beaker. How does the scale reading 

change in each case?  

    77.  A very large vat of water has a hole 1.00 cm in diameter 

located a distance 1.80 m below the water level. 

(a) How fast does water exit the hole? (b) How would 

your answer differ if the vat were filled with gasoline? 

(c) How would your answer differ if the vat contained 

water, but was on the Moon, where the gravitational 

field strength is 1.6 N/kg?  

   78. A cube that is 4.00 cm on a side and of density 

8.00  ×  10 2  kg/m 3  is attached to one end of a spring. The 

other end of the spring is attached to the base of a bea-

ker. When the beaker is filled with water until the entire 

cube is submerged, the spring is stretched by 1.00 cm. 

What is the spring constant?  

   79. You are hiking through a lush forest with some of your 

friends when you come to a large river that seems 

impossible to cross. However, one of your friends 

notices an old metal barrel sitting on the shore. The 

barrel is shaped like a cylinder and is 1.20 m high and 

0.76 m in diameter. One of the circular ends of the 

barrel is open and the barrel is empty. When you put 

the barrel in the water with the open end facing up, 

you find that the barrel floats with 33% of it under 

water. You decide that you can use the barrel as a boat 

to cross the river, as long as you leave about 30 cm 

sticking above the water. How much extra mass can 

you put in this barrel to use it as a boat?  

   80. The deepest place in the ocean is the Marianas Trench 

in the western Pacific Ocean, which is over 11.0 km 

deep. On January 23, 1960, the research sub  Trieste  

went to a depth of 10.915 km, nearly to the bottom of 

the trench. This still is the deepest dive on record. The 

density of seawater is 1025 kg/m 3 . (a) What is the water 

pressure at that depth? (b) What was the force due to 

water pressure on a flat section of area 1.0 m 2  on the top 

of the sub’s hull?  

    81.  The pressure in a water pipe in the basement of an apart-

ment house is 4.10  ×  10 5  Pa, but on the seventh floor it 

is only 1.85  ×  10 5  Pa. What is the height between the 

basement and the seventh floor? Assume the water is 

not flowing; no faucets are opened.  

      82.  The body of a 90.0-kg person contains 0.020 m 3  of body 

fat. If the density of fat is 890 kg/m 3 , what percentage 

of the person’s body weight is composed of fat?  

    83.  Near sea level, how high a hill must you ascend for the 

reading of a barometer you are carrying to drop by 

1.0 cm Hg? Assume the temperature remains at 20 ° C as 

you climb. The reading of a barometer on an average 

day at sea level is 76.0 cm Hg. (   tutorial: gauge)  

   84. A stone of weight  W  has specific gravity 2.50. (a) When 

the stone is suspended from a scale and submerged in 

water, what is the scale reading in terms of its weight in 

✦✦

air? (b) What is the scale reading for the stone when it is 

submerged in oil (specific gravity  =  0.90)?  

    85.  If you watch water falling from a faucet, you will notice 

that the flow decreases in radius as the water falls. This 

can be explained by the equation of continuity, since the 

cross-sectional area of the water decreases as the speed 

increases. If the water flows with an initial velocity of 

0.62 m/s and a diameter of 2.2 cm at the faucet opening, 

what is the diameter of the water flow after the water 

has fallen 30 cm?  

     86. The average speed of blood in the aorta is 0.3 m/s and 

the radius of the aorta is 1 cm. There are about 2  ×  10 9  

capillaries with an average radius of 6  μ m. What is the 

approximate average speed of the blood flow in the 

capillaries?  

     87. If the cardiac output of a small dog is 4.1  ×  10  − 3  m 3 /s, 

the radius of its aorta is 0.50 cm, and the aorta length 

is 40.0 cm, determine the pressure drop across the 

aorta of the dog. Assume the viscosity of blood is 

4.0  ×  10  − 3  Pa·s.  

    88. In an aortic aneurysm, a bulge forms where the walls of 

the aorta are weakened. If blood flowing through the 

aorta (radius 1.0 cm) enters an aneurysm with a radius 

of 3.0 cm, how much on average is the blood pressure 

higher inside the aneurysm than the pressure in the 

unenlarged part of the aorta? The average flow rate 

through the aorta is 120 cm 3 /s. Assume the blood is 

nonviscous and the patient is lying down so there is no 

change in height.  

      89.  Scuba divers are admonished not to rise faster than their 

air bubbles when rising to the surface. This rule helps 

them avoid the rapid pressure changes that cause the 

bends. Air bubbles of 1.0 mm radius are rising from a 

scuba diver to the surface of the sea. Assume a water 

temperature of 20 ° C. (a) If the viscosity of the water is 

1.0  ×  10  − 3  Pa·s, what is the terminal velocity of the bub-

bles? (b) What is the largest rate of pressure change tol-

erable for the diver according to this rule?  

     90. A shallow well usually has the pump at the top of the 

well. (a) What is the deepest possible well for which a 

surface pump will work? [ Hint:  A pump maintains a 

pressure difference, keeping the outflow pressure higher 

than the intake pressure.] (b) Why is there not the same 

depth restriction on wells with the pump at the bottom?  

      91.  A plastic beach ball has radius 20.0 cm and mass 

0.10 kg, not including the air inside. (a) What is the 

weight of the beach ball including the air inside? Assume 

the air density is 1.3 kg/m 3  both inside and outside. 

(b) What is the buoyant force on the beach ball in air? 

The thickness of the plastic is about 2 mm—negligible 

compared to the radius of the ball. (c) The ball is thrown 

straight up in the air. At the top of its trajectory, what is its 

acceleration? [ Hint:  When  v   =  0, there is no drag force.]  

     92. A block of wood, with density 780 kg/m 3 , has a cubic 

shape with sides 0.330 m long. A rope of negligible 

✦✦

✦✦
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mass is used to tie a piece of lead to the bottom of the 

wood. The lead pulls the wood into the water until it is 

just completely covered with water. What is the mass of 

the lead? [ Hint:  Don’t forget to consider the buoyant 

force on both the wood and the lead.]  

93.  Are evenly spaced specific gravity markings on the cyl-

inder of a hydrometer equal distances apart? In other 

words, is the depth  d  to which the cylinder is submerged 

linearly related to the density  r  of the fluid? To answer 

this question, assume that the cylinder has radius  r  and 

mass  m.  Find an expression for  d  in terms of  r   , r,  and  m

and see if  d  is a linear function of  r .  

   94. A hydrometer is an instrument for measuring the spe-

cific gravity of a liquid. For example, vintners use a 

hydrometer to determine the density changes as wine is 

fermented, and producers of maple sugar and maple 

syrup use the hydrometer to find how much sugar is in 

the collected sap. Markings along a stem are calibrated 

to indicate the specific gravity for the level at which the 

hydrometer floats in a liquid. The weighted base ensures 

that the hydrometer floats vertically. Suppose the 

hydrometer has a cylindrical stem of cross-sectional 

area 0.400 cm 2 . The total volume of the bulb and stem is 

8.80 cm 3  and the mass of the hydrometer is 4.80 g. 

(a) How far from the top of the cylinder should a mark 

be placed to indicate a specific gravity of 1.00? 

(b) When the hydrometer is placed in alcohol, it floats 

with 7.25 cm of stem above the surface. What is the spe-

cific gravity of the alcohol? (c) What is the lowest spe-

cific gravity that can be measured with this hydrometer? 

 

Hydrometer

Fluid to be tested

Simple hydrometer 

(Problems 93 and 94)
    

      95.  A house with its own well has a pump in the basement 

with an output pipe of inner radius 6.3 mm. Assume that 

the pump can maintain a gauge pressure of 410 kPa in 

the output pipe. A showerhead on the second floor 

(6.7 m above the pump’s output pipe) has 36 holes, each 

of radius 0.33 mm. The shower is on “full blast” and no 

other faucet in the house is open. (a) Ignoring viscosity, 

with what speed does water leave the showerhead? 

(b) With what speed does water move through the out-

put pipe of the pump?  

✦✦

✦✦

96. To measure the airspeed of a plane, a device called a 

Pitot tube is used. A simplified model of the Pitot tube 

is a manometer with one side connected to a tube facing 

directly into the “wind” (stopping the air that hits it 

head-on) and the other side connected to a tube so that 

the “wind” blows across its openings. If the manometer 

uses mercury and the levels differ by 25 cm, what is the 

plane’s airspeed? The density of air at the plane’s alti-

tude is 0.90 kg/m 3 . 

25 cm

97.  A U-shaped tube is partly filled with water and partly 

filled with a liquid that does not mix with water. Both 

sides of the tube are open to the atmosphere. What is the 

density of the liquid (in g/cm 3 )? 

Water

0.50 m
0.45 m

0.30 m

98. Atmospheric pressure is equal to the weight of a verti-

cal column of air, extending all the way up through the 

atmosphere, divided by the cross-sectional area of the 

column. (a) Explain why that must be true. [ Hint:  Apply 

Newton’s second law to the column of air.] (b) If the air 

all the way up had a uniform density of 1.29 kg/m 3  (the 

density at sea level at 0 ° C), how high would the column 

of air be? (c) In reality, the density of air decreases with 

increasing altitude. Does that mean that the height found 

in (b) is a lower limit or an upper limit on the height of 

the atmosphere?  

       99. On a nice day when the temperature outside is 20 ° C, 

you take the elevator to the top of the Sears Tower in 

Chicago, which is 440 m tall. (a) How much less is the 

air pressure at the top than the air pressure at the bot-

tom? Express your answer both in pascals and atm.

✦✦

✦✦

✦✦

✦✦



  (   tutorial: gauge) [ Hint:  The altitude change is 

small enough to treat the density of air as constant.] 

(b) How many pascals does the pressure decrease for 

every meter of altitude? (c) If the pressure gradient—

the pressure decrease per meter of altitude—were uni-

form, at what altitude would the atmospheric pressure 

reach zero? (d) Atmospheric pressure does  not  decrease 

with a uniform gradient since the density of air 

decreases as you go up. Which is true: the pressure 

reaches zero at a  lower  altitude than your answer to 

(c), or the pressure is nonzero at that altitude and the 

atmosphere extends to a higher altitude? Explain.  

        100.  A bug from South America known as  Rhodnius pro-

lixus  extracts the blood of animals. Suppose  Rhodnius 

prolixus  extracts 0.30 cm 3  of blood in 25 min from a 

human arm through its feeding tube of length 0.20 mm 

and radius 5.0  μ m. What is the absolute pressure at the 

bug’s end of the feeding tube if the absolute pressure at 

the other end (in the human arm) is 105 kPa? Assume 

the viscosity of blood is 0.0013 Pa·s. [ Note:  Negative 

absolute pressures are possible in liquids in very slen-

der tubes.]  

        101.  The diameter of a certain artery has decreased by 25% 

due to arteriosclerosis. (a) If the same amount of blood 

flows through it per unit time as when it was unob-

structed, by what percentage has the blood pressure 

difference between its ends increased? (b) If, instead, 

the pressure drop across the artery stays the same, by 

what factor does the blood flow rate through it decrease? 

(In reality we are likely to see a combination of some 

pressure increase with some reduction in flow.)    

  Answers to Practice Problems 

    9.1  1.3  ×  10 6  N/m 2   =  1.3 MPa; the pressure is a factor of 15 

greater than the pressure from the tennis shoe heel.  

   9.2  (a) 2.0  ×  10 5  Pa; (b) 5.0 m  

   9.3  1.6 km  

✦✦

✦✦

   9.4  (a) Yes,  P  2   =   P  1 . The column above point 2 is not as tall, 

but the pressure at the top of that column is  greater than  

atmospheric pressure. (b) No,  P   =   P  atm   +   r  gd  gives the pres-

sure at a depth  d  below a point where the pressure is  P  atm .  

   9.5  (a) 32.0 cm; (b) 17.0 cm and 37.0 cm  

   9.6  S.G.  =  11.3; could be lead  

   9.7  2% and 4%  

   9.8  (a) The beetle can squeeze the air bubble with its wings, 

compressing the air to reduce the bubble volume and 

decreasing the buoyant force. (b) When it is time to rise to 

the surface, the beetle relaxes the pressure on the bubble, 

allowing it to expand again.  

   9.9  (a) 0.85 m/s; (b) 1.7 m/s  

   9.10        √
____

 2gh   = 4.0 m/s    

   9.11  250 kPa  

   9.12  1.4  

   9.13  2.85 mm/s upward  

   9.14  480 Pa    

 Answers to Checkpoints 

   9.4  Pressure in a static fluid cannot depend on horizontal 

position. The net horizontal force on any part of the fluid 

must be zero—otherwise the horizontal acceleration would 

be nonzero and the fluid would begin to flow. The net verti-

cal force  including the weight of the fluid  must also be zero, 

so pressure does depend on vertical position.  

   9.8  (a) For horizontal flow, Bernoulli’s equation becomes      

P 1   +   1 _ 
2
   r v  1  

2
  =  P 2   +   1 _ 

2
   r v  2  

2
 ;   the pressure is lower where the flow 

speed is higher. (b) In a static fluid, Bernoulli’s equation 

becomes  P  1   +   r  gy  1   =   P  2   +   r  gy  2 . Letting  d   =   y  1   −   y  2 , we have

 P  2   −   P  1   =   r  gy  1   −   r  gy  2   =   r  gd,  which is the pressure depen-

dence with depth for a static fluid as discussed in Section 9.4.  

 9.10  Viscous drag and kinetic friction are both forces that 

oppose the motion of an object (relative to the surrounding 

fluid or relative to the surface on which the object slides, 

respectively). However, viscous drag depends strongly on the 

speed of the object (FD ∝ v), but kinetic friction does not.    
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  Elasticity and Oscillations 

 C H A P T E R 

 10 
   N ear the top of the 241-m-tall 

Hancock Tower in Boston, two 

steel boxes filled with lead are 

part of a system designed to 

reduce the swaying and twist-

ing of the building caused by 

the wind. The mass of each box 

is nearly 300 000 kg (weight 

300 tons). It might seem that 

adding a large mass to the  top  

of the building would make it 

more “top heavy” and might 

 increase  the amount of sway-

ing. Why is such a large mass 

used and how does it reduce 

the swaying of the building? 

(See p. 381 for the answer.)     



    • Hooke’s law (Section 6.6) 

 • graphical relationship of position, velocity, and acceleration (Sections 2.2 

and 2.3) 

 • elastic potential energy (Section 6.7)   

10.1  ELASTIC DEFORMATIONS OF SOLIDS 

  If the net force and the net torque on an object are zero, the object is in equilibrium—but 

that does not mean that the forces and torques have no effect. An object is deformed 

when contact forces are applied to it ( Fig. 10.1 ). A    deformation    is a change in the size 

or shape of the object. Many solids are stiff enough that the deformation cannot be seen 

with the human eye; a microscope or other sensitive device is required to detect the 

change in size or shape.     

 When the contact forces are removed, an    elastic    object returns to its original shape 

and size. Many objects are elastic as long as the deforming forces are not too large. On 

the other hand, any object may be permanently deformed or even broken if the forces 

acting are too large. An automobile that collides with a tree at a low speed may not be 

damaged; but at a higher speed the car suffers a permanent deformation of the body-

work and the driver may suffer a broken bone.   

10.2  HOOKE’S LAW FOR TENSILE 

AND COMPRESSIVE FORCES 

  Suppose we stretch a wire by applying tensile forces of magnitude  F  to each end. The 

length of the wire increases from  L  to  L   +  Δ L.  How does the elongation Δ L  depend on 

the original length  L?  Conceptual Example 10.1 helps answer this question.      

Concepts & Skills to Review

Figure 10.1 A tennis ball is flattened by the contact force exerted on it by the 

strings of the tennis racquet. Likewise, the strings of the racquet are deformed by the 

contact force exerted by the ball. The two forces are interaction partners.

Practice Problem 10.1 Cutting a Spring in Half

If a spring (spring constant k) is cut in half, what is the spring 

constant of each of the two newly formed springs?

Conceptual Example 10.1

Stretching Wires

If a given tensile force stretches a wire an amount ΔL, by 

how much would the same force stretch a wire twice as long 

but identical in thickness and composition?

Strategy and Solution Think of the wire of length 2L as 

two wires of length L placed end-to-end (Fig. 10.2). Under 

the same tension, each of the two imagined wires stretches 

by an amount ΔL, so the total deformation of the long wire 

is 2 ΔL.

F
L

∆L

L A

∆L

F

Figure 10.2

Two identical wires are 

joined end-to-end and 

stretched by tensile 

forces. Each wire 

stretches an amount ΔL.
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CONNECTION: 

The two topics of this 

chapter—elasticity and 

oscillations—may seem unre-

lated at first, but they are 

closely connected: many 

oscillations are caused by the 

kinds of elastic forces we 

study in Sections 10.1 

through 10.4.
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   Stress and Strain    When stretched by the same tensile forces, the two wires in Concep-

tual Example 10.1 get longer by an amount proportional to their original lengths: 

Δ L   ∝   L.  In other words, the two wires have the same  fractional length change  Δ L  / L.  

The fractional length change is called the    strain   ; it is a dimensionless measure of the 

degree of deformation.         

 strain =   Δ L ___ 
L

   (10-1)

 Suppose we had wires of the same composition and length but different thick-

nesses. It would require larger tensile forces to stretch the thicker wire the same amount 

as the thinner one; a thick steel cable is harder to stretch than the same length of a thin 

strand of steel. In Conceptual Question 13, we conclude that the tensile force required 

is proportional to the cross-sectional area of the wire ( F   ∝   A ). Thus, the same applied 

force  per unit area  produces the same deformation on wires of the same length and 

composition. The force per unit area is called the    stress:   

 stress =   F __ 
A

   (10-2)

The SI units of stress are the same as those of pressure: N/m 2  or Pa.          

   Hooke’s Law    Suppose that a solid object of initial length  L  is subjected to tensile or 

compressive forces of magnitude  F.  As a result of the forces, the length of the object is 

changed by magnitude Δ L.  According to Hooke’s law, the deformation is proportional 

to the deforming forces as long as they are not too large:

     F = k Δ L    (10-3)   

In Eq. (10-3),  k  is a measure of the object’s stiffness; it is analogous to the spring constant 

of a spring. This constant  k  depends on the length and cross-sectional area of the object. A 

larger cross-sectional area  A  makes  k  larger; a greater length  L  makes  k  smaller. 

 We can rewrite Hooke’s law in terms of stress ( F / A ) and strain (Δ L  / L ):         

Hooke’s Law

stress ∝ strain

   F __ 
A

    = Y   ΔL ___ 
L

   (10-4)

 Equation (10-4) still says that the length change (Δ L ) is proportional to the magnitude 

of the deforming forces ( F  ). Stress and strain account for the effects of length and cross-

sectional area; the proportionality constant  Y  depends only on the inherent stiffness of the 

material from which the object is composed; it is independent of the length and cross-

sectional area. Comparing Eqs. (10-3) and (10-4), the “spring constant”  k  for the object is

     k =   YA ___ 
L

      (10-5)    

 The constant of proportionality  Y  in Eqs. (10-4) and (10-5) is called the    elastic 

modulus    or    Young’s modulus;     Y  has the same units as those of stress (Pa or N/m 2 ), 

since strain is dimensionless. Young’s modulus can be thought of as the inherent stiff-

ness of a material; it measures the resistance of the material to elongation or compres-

sion. Material that is flexible and stretches easily (for example, rubber) has a  low  

Young’s modulus. A stiff material (such as steel) has a high Young’s modulus; it takes a 

larger stress to produce the same strain.  Table 10.1  gives Young’s modulus for a variety 

of common materials.     

  Strain:   fractional length change  Strain:   fractional length change

  Stress:   force per unit cross-

sectional area

  Stress:   force per unit cross-

sectional area

CONNECTION:

Hooke’s law does not just 

apply to springs. The defor-

mation of an object is often 

proportional to the forces 

applied to it.

CONNECTION:

Hooke’s law does not just 

apply to springs. The defor-

mation of an object is often 

proportional to the forces 

applied to it.

  Hooke’s law:   the strain is 

proportional to the stress

  Hooke’s law:   the strain is 

proportional to the stress



Table 10.1 Approximate Values of Young’s Modulus for Various Substances

Substance Young’s Modulus (109 Pa) Substance Young’s Modulus (109 Pa)

Rubber 0.002–0.008 Wood, along the grain 10–15

Human cartilage 0.024 Brick 14–20

Human vertebra 0.088 (compression); 

0.17 (tension)

Concrete

Marble

20–30 (compression)

50–60

Collagen, in bone 0.6 Aluminum 70

Human tendon 0.6 Cast iron 100–120

Wood, across the grain 1 Copper 120

Nylon 2–6 Wrought iron 190

Spider silk 4 Steel 200

Human femur 9.4 (compression); 16 (tension) Diamond 1200

CHECKPOINT 10.2

Which stretches more when put under the same tension: a steel wire 2.0 m long 

or a copper wire 1.0 m long with the same diameter? (See Table 10.1.)

 Hooke’s law holds up to a maximum stress called the  proportional limit.  For many 

materials, Young’s modulus has the same value for tension and compression. Some 

composite materials, such as bone and concrete, have significantly different Young’s 

moduli for tension and compression. The components of bone include fibers of collagen 

(a protein found in all connective tissue) that give it strength under tension and hydroxy-

apatite crystals (composed of calcium and phosphate) that give it strength under com-

pression. The different properties of these two substances lead to different values of 

Young’s modulus for tension and compression.   

Application of tensile 

and compressive 

forces: bone strength

Application of tensile 

and compressive 

forces: bone strength

Femur

0.40 kN

43.0 cm

0.40 kN

Figure 10.3

Compression of the 

femur.

Solution The strain is proportional to the stress:

  F __ 
A

   = Y   ΔL ___ 
L

  

Solving this equation for ΔL gives

ΔL =   F/A ____ 
Y

   L

From Table 10.1, Young’s modulus for a femur in compres-

sion is:

Y = 9.4 ×  10 9  Pa

We need to convert the cross-sectional area to m2 since 1 Pa  

= 1 N/m2:

A = 8.0  cm 2  ×   (   1 m _______ 
100 cm

   )  
2
  = 0.00080  m 2 

Example 10.2

Compression of the Femur

A man whose weight is 0.80 kN is standing upright. 

By approximately how much is his femur (thigh-

bone) shortened compared with 

when he is lying down? Assume that 

the compressive force on each femur 

is about half his weight (Fig. 10.3). 

The average cross-sectional area of 

the femur is 8.0 cm2 and the length 

of the femur when lying down is 

43.0 cm.

Strategy A change in length of 

the femur involves a strain. After 

finding the stress and looking up the 

Young’s modulus, we can find 

the strain using Hooke’s law. We 

assume that each femur supports 

half the man’s weight.

continued on next page
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Figure 10.4 Stress-strain curves showing limits for (a) a ductile material, (b) a brittle material, and (c) compact bone. The 

elastic limit, ultimate strength, and breaking point are well separated for ductile materials, but close together for a brittle material.

Example 10.2 continued

The force on each leg is 0.40 kN, or 4.0 × 102 N. The length 

change is then

ΔL =   F/A ____ 
Y

   L =   
(4.0 ×  10 2  N)/(0.00080  m 2 )

   ______________________  
9.4 ×  10 9  Pa

   × 43.0 cm

 = 5.3 ×  10 −5  × 43.0 cm = 0.0023 cm

Discussion The strain—or fractional length change—

is 5.3 × 10−5. Since the strain is much smaller than 1, 

we are justified in not worrying about whether the length is 

43.0 cm with or without the compressive load; we would 

calculate the same value of ΔL (to two significant figures) 

either way.

Practice Problem 10.2 Fractional Length Change 
of a Cable

A steel cable of diameter 3.0 cm supports a load of 2.0 kN. 

What is the fractional length increase of the cable compared 

to the length when there is no load if Y = 2.0 × 1011 Pa?

   10.3  BEYOND HOOKE’S LAW 

  If the tensile or compressive stress exceeds the proportional limit, the strain is no longer 

proportional to the stress ( Fig. 10.4 ). The solid still returns to its original length when 

the stress is removed as long as the stress does not exceed the  elastic limit.  If the stress 

exceeds the elastic limit, the material is permanently deformed. For still larger stresses, 

the solid fractures when the stress reaches the  breaking point.  The maximum stress that 

can be withstood without breaking is called the  ultimate strength.  The ultimate strength 

can be different for compression and tension; then we refer to the compressive strength 

or the tensile strength of the material. 

 A  ductile  material continues to stretch beyond its ultimate tensile strength without 

breaking; the stress then  decreases  from the ultimate strength ( Fig. 10.4a ). Examples of 

ductile solids are the relatively soft metals, such as gold, silver, copper, and lead. These 

metals can be pulled like taffy, becoming thinner and thinner until finally reaching the 

breaking point. 

 For a  brittle  substance, the ultimate strength and the breaking point are close 

together ( Fig. 10.4b ). Bone is an example of a brittle material; it fractures abruptly if the 

stress becomes too large ( Fig. 10.4c ). Under either tension or compression, its elastic 

limit, breaking point, and ultimate strength are approximately the same. Babies have 



more flexible bones than adults because they have built up less of the calcium com-

pound hydroxyapatite. As people age, their bones become more brittle as the collagen 

fibers lose flexibility and their bones also become weaker as calcium gets reabsorbed 

(a condition called osteoporosis).     

 Like bone, reinforced concrete has one component for tensile strength and another 

for compressive strength. Reinforced concrete contains steel rods that provide tensile 

strength that concrete itself lacks ( Fig. 10.5 ). 

 Human anatomy has special features for adapting to the compressive stress associated 

with standing upright. For example, the vertebrae in the spinal column gradually increase 

in size from the neck to the tailbone. Such an arrangement places the stronger vertebrae in 

the lower positions, where they must support more weight. The vertebrae are separated by 

fluid-filled disks, which have a cushioning effect by spreading out the compressive forces.         

Applications of elastic 

properties of materials: 

osteoporosis and reinforced 

concrete

Applications of elastic 

properties of materials: 

osteoporosis and reinforced 

concrete

Application of 

compressive forces: 

the human vertebra

Application of 

compressive forces: 

the human vertebra

stress so that the cable does not break. We certainly don’t 

want the cable to break, but it would be prudent to keep the 

stress under the elastic limit to give the cable a long useful 

life. Therefore, we choose a minimum diameter in (a) to 

keep the stress below the elastic limit.

Solution (a) We choose the minimum diameter to keep 

the stress less than the elastic limit:

  F __ 
A

   < elastic limit = 3.0 ×  10 8  Pa

for F = 1.0 × 105 N. Then

A >   F __________ 
elastic limit

   =   1.0 ×  10 5  N __________ 
3.0 ×  10 8  Pa

   = 3.33 ×  10 −4   m 2 

The minimum cross-sectional area corresponds to the min-

imum diameter. The cross-sectional area of the cable is p r2

or pd2/4, so

d =  √
___

   4A ___ 
p

      =  √
________________

    4 × 3.33 ×  10 −4   m 2   ________________ 
p

      = 2.1 cm

The minimum diameter is therefore 2.1 cm.

Example 10.3

Crane with Steel Cable

A crane is required to lift loads of up to 1.0 × 105 N (11 tons). 

(a) What is the minimum diameter of the steel cable that 

must be used? (b) If a cable of twice the minimum diameter 

is used and it is 8.0 m long when no load is present, how 

much longer is it when supporting a load of 1.0 × 105 N? 

(Data for steel: Y = 2.0 × 1011 Pa; proportional limit = 

2.0 × 108 Pa; elastic limit = 3.0 × 108 Pa; tensile strength 

= 5.0 × 108 Pa.)

Strategy The data given for steel consists of four quanti-

ties that all have the same units. It would be easy to mix 

them up if we didn’t understand what each one means. 

Young’s modulus is the proportionality constant between 

stress and strain. That will be useful in part (b) where we 

find the elongation of the cable; the elongation is the strain 

times the original length. However, we should first check 

that the stress is less than the proportional limit before using 

Young’s modulus to find the strain.

The elastic limit is the maximum stress so that no perma-

nent deformation occurs; the tensile strength is the maximum 

continued on next page

Figure 10.5 In prestressed 

concrete, steel rods are stretched 

before the concrete is poured. 

After the concrete hardens, the 

frame holding the rods under ten-

sion is removed. The rods con-

tract, compressing the concrete. 

Then, when the prestressed con-

crete is subject to a tensile force, 

the compression of the concrete 

is lessened but not eliminated so 

that the concrete itself is never 

subjected to a tensile stress.
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  Height Limits 

 What limits the height of a stone column? If the column is too tall, it could be crushed 

under its own weight. The maximum height of a column is limited since the compressive 

stress at the bottom cannot exceed the compressive strength of the material (see Problem 

89). However, the maximum height at which a vertical column buckles is generally less 

than the height at which it would be crushed.     

 The bones of our limbs are hollow; the inside of the structural material is filled with 

marrow, which is structurally weak. A hollow bone is better able to resist fracture from 

bending and twisting forces than a solid bone with the same amount of structural mate-

rial, although the hollow bone would buckle more easily under a compressive force 

along the central axis. 

PHYSICS AT HOME

Challenge a friend to use a single sheet of 8.5 in. × 11 in. paper and two paper 

clips (or tape) to support a book at least 8 in. above a table. If your friend has 

no idea what to do, roll the sheet of paper into a narrow cylinder about 2.5 cm 

(an inch) in diameter; then fasten the cylinder at the top and bottom with paper 

clips (or with tape). Carefully place the book so that it is balanced on top of the 

cylinder (Fig. 10.6). If you have difficulty, try using thicker paper or a lighter 

book.

Use the same “apparatus” to get some insight into the buckling of columns. 

Try making the diameter of the paper cylinder twice as large. The walls of this col-

umn are thinner because there are fewer layers of the paper in the cylinder wall, 

although the same cross-sectional area of paper supports the book. If nothing 

happens, try again with a heavier book. You will likely see the walls crumple in on 

themselves as the cylinder buckles and the book falls to the table.

Example 10.3 continued

(b) If we double the diameter and keep the same load, the 

stress is reduced by a factor of four since the cross-sectional 

area is proportional to the square of the diameter. Therefore, 

the stress is

  F __ 
A

   =   3.0 ×  10 8  Pa __________ 
4
   = 7.5 ×  10 7  Pa

The strain is then

  ΔL ___ 
L

   =   F/A ____ 
Y

   =   7.5 ×  10 7  Pa ___________ 
2.0 ×  10 11  Pa

   = 0.000375

The strain is the fractional length change. Then the length 

change is

ΔL = 0.000375L = 0.000375 × 8.0 m = 0.0030 m = 3.0 mm

Discussion By using a cable twice as thick as the mini-

mum, we build in a safety factor. We don’t want to be right 

at the edge of disaster! Since doubling the diameter of the 

cable increases the cross-sectional area of the cable by a fac-

tor of four, the maximum stress on the cable is one fourth of 

the elastic limit.

Practice Problem 10.3 Tuning a 
Harpsichord String

A harpsichord string is made of yellow brass (Young’s mod-

ulus 9.0 × 1010 Pa, tensile strength 6.3 × 108 Pa). When 

tuned correctly, the tension in the string is 59.4 N, which is 

93% of the maximum tension that the string can endure 

without breaking. What is the radius of the string?

The San Jacinto monument in 

Texas is the tallest stone column 

in the world.

Figure 10.6 A column made 

from a rolled sheet of paper can 

support a book.



 Why would the design of a giant’s bones have to be different from a human’s? If 

the giant’s average density is the same as a human’s, then his weight is larger by the 

same factor that his  volume  is larger. If the giant is five times as tall as a human, for 

instance, and has the same relative proportions, then his volume is 5 3   =  125 times as 

large, since each of the three dimensions of any body part has increased by a factor of 

five. On the other hand, the cross-sectional area of a bone is proportional to the  square  

of its radius. So while the leg bones must support 125 times as much weight, the maxi-

mum compressive force they can withstand has only increased by a factor of 25. The 

giant would need much thicker legs (in relation to their length) to support his increased 

weight. Similar analysis can be applied to the twisting and bending forces that are more 

likely to break bones than are compressive forces. The result is the same: the bones of a 

giant could not have human proportions.         

 Some science fiction or horror movies portray giant insects as greatly magnified 

versions of a normal insect. Such a giant insect’s legs would collapse under the weight 

of the insect.    

   10.4  SHEAR AND VOLUME DEFORMATIONS 

  In this section we consider two other kinds of deformation. In each case we define a 

stress (force per unit area), a strain (dimensionless), and a modulus (the constant of pro-

portionality between stress and strain).  

   Shear Deformation 

 Unlike tensile and compressive forces, which are perpendicular to two opposite 

surfaces of an object, a    shear deformation    is the result of a pair of equal and 

opposite forces that act  parallel  to two opposite surfaces ( Fig. 10.7 ). The  shear 

stress  is the magnitude of the shear force divided by the area of the surface on which 

the force acts:

     shear stress =   shear force ____________  
area of surface

   =   F __ 
A

      (10-6)   

   Shear strain    is the ratio of the relative displacement Δ x  to the separation  L  of the two 

surfaces:     

 shear strain =   
displacement of surfaces

  ____________________  
separation of surfaces

   =   Δx ___ 
L

      (10-7)   

The shear strain is proportional to the shear stress as long as the stress is not too large. 

The constant of proportionality is the    shear modulus     S.  

Hooke’s Law for Shear Deformations

shear stress ∝ shear strain

   F __ 
A

    = S    Δx ___ 
L

   (10-8)

  

 The units of shear stress and the shear modulus are the same as for tensile or compres-

sive stress and Young’s modulus: Pa or N/m 2 . The strain is once again dimensionless. 

 Table 10.2  lists shear moduli for various materials.     
 An example of shear stress is the cutting action of a pair of scissors (or “shears”) on 

a piece of paper. The forces acting on the paper from above and below are offset from 

each other and act parallel to the cross-sectional surfaces of the paper ( Fig. 10.8 ).       

F

A∆x
γ

L F

Figure 10.7 A book under 

shear stress. Shear forces produce 

the same kind of deformation in a 

solid block; the amount of the 

deformation is just smaller.

Application of compres-

sive strength: size limita-

tions on organisms
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CONNECTION:

Hooke’s law takes the same 

form for different kinds of 

stresses and strains. In each 

case, the strain is proportional 

to the stress.
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Table 10.2 Shear and Bulk Moduli for Various Materials

(1) At 0°C and 1 atm; constant temperature expansion or compression

(2) At 0°C and 1 atm; no heat flow during expansion or compression

Material Shear Modulus S (109 Pa) Bulk Modulus B  (109 Pa)

Gases

 Air (1) 0.00010

 Air (2) 0.00014

Liquids

 Ethanol 0.9

 Water 2.2

 Mercury 25

Solids

 Cast iron 40–50 60–90

 Marble 70

 Aluminum 25–30 70

 Copper 40–50 120–140

 Steel 80–90 140–160

 Diamond 620

Paper
moving
up

 Upward force
 from bottom
 blade

Downward
force from

top blade

Paper
moving

down

Sheared
region

Figure 10.8 Scissors apply shear stress to a sheet of paper. The shear stress is the force exerted by a blade divided by the 

cross-sectional area of the paper—the thickness of the paper times the length of blade that is in contact with the paper.

push two cross-sectional paper surfaces in opposite direc-

tions so they are displaced with respect to one another. The 

shear stress is the force exerted by each blade divided by this 

cross-sectional area—the thickness of the paper times the 

length of blade in contact with the paper. (Compare Figs. 

10.7 and 10.8.) The total length and the width of the blades 

are irrelevant.

Example 10.4

Cutting Paper

A sheet of paper of thickness 0.20 mm is cut with scissors that 

have blades of length 10.0 cm and width 0.20 cm. While cut-

ting, the scissors blades each exert a force of 3.0 N on the paper; 

the length of each blade that makes contact with the paper is 

approximately 0.5 mm. What is the shear stress on the paper?

Strategy Shear stress is a force divided by an area. In this 

problem, identifying the correct area is tricky. The blades 

continued on next page



   When a bone is twisted, it is subjected to a shear stress. Shear stress is a more com-

mon cause of fracture than a compressive or tensile stress along the length of the bone. 

The twisting of a bone can result in a spiral fracture ( Fig. 10.9 ).  

  Volume Deformation 

 As discussed in Chapter 9, a fluid exerts inward forces on an immersed solid object. These 

forces are perpendicular to the surfaces of the object. Since the fluid presses inward on all 

sides of the object ( Fig. 10.10 ), the solid is compressed—its volume is reduced. The fluid 

pressure  P  is the force per unit surface area; it can be thought of as the    volume stress    on 

the solid object. Pressure has the same units as the other kinds of stress: N/m 2  or Pa.

    volume stress = pressure =   F __ 
A

   = P  

The resulting deformation of the object is characterized by the    volume strain,    which is 

the fractional change in volume:

     volume strain =   
change in volume

  _______________  
original volume

   =   ΔV
 ___ 

V
      (10-9)   

Unless the stress is too large, the stress and strain are proportional within a constant of 

proportionality called the    bulk modulus     B.  A substance with a large bulk modulus is 

more difficult to compress than a substance with a small bulk modulus.     

Example 10.4 continued

Solution The cross-sectional area is

 A = thickness × contact length

= 2.0 ×  10 −4  m × 5 ×  10 −4  m = 1 ×  10 −7   m 2 

The shear stress is

  F __ 
A

   =   3.0 N __________ 
1 ×  10 −7   m 2 

   = 3 ×  10 7  N/ m 2 

Discussion To identify the correct area, remember 

that shear forces act in the plane of the surfaces that 

are displaced with respect to each other. By contrast, tensile 

and compressive forces are perpendicular to the area used to 

find tensile and compressive stresses.

Practice Problem 10.4 Shear Stress due 
to a Hole Punch

A hole punch has a diameter of 8.0 mm and presses onto ten 

sheets of paper with a force of 6.7 kN. If each sheet of paper 

is of thickness 0.20 mm, find the shear stress. [Hint: Be 

careful in deciding what area to use. Remember that a shear 

force acts parallel to the surface whose area is relevant.]

(a) (b)

Figure 10.9 (a) An Olympic 

skier falls and his leg is sub-

jected to a shear stress. (b) X-ray 

of a spiral fracture of the tibia.

F = PA2

F = PA2

F = PA1

F = PA1

F = PA3

F = PA3

Figure 10.10 Forces on an 

object when submerged in a 

fluid.
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 An object at atmospheric pressure is already under volume stress: the air pressure 

already compresses the object slightly compared to what its volume would be in vacuum. 

For solids and liquids, the volume strain due to atmospheric pressure is, for most purposes, 

negligibly small (5  ×  10  − 5  for water). Since we are usually concerned with the deformation 

due to a  change  in pressure Δ P  from atmospheric pressure, we can write Hooke’s law as: 

Hooke’s Law for Volume Deformation

 ΔP = −B   ΔV
 ___ 

V
   (10-10)

 where  V  is the volume at atmospheric pressure. The negative sign in Eq. (10-10) allows 

the bulk modulus to be positive—an increase in the volume stress causes a  decrease  in 

volume, so Δ V  is negative.  Table 10.2  lists bulk moduli for various substances. 

 Unlike the stresses and strains discussed previously, volume stress can be applied 

to fluids (liquids and gases) as well as solids. The bulk moduli of liquids are generally 

not much less than those of solids, since the atoms in liquids are nearly as close together 

as those in solids. In Chapter 9 we assume that liquids are incompressible, which is 

often a good approximation since the bulk moduli of liquids are generally large. In 

gases, the atoms are much farther apart on average than in solids or liquids. Gases are 

much easier to compress than solids or liquids, so their bulk moduli are much smaller.    

Solving for ΔV,

 ΔV = −   ΔP ___ 
B

  V = −    
1.005 ×  10 7  Pa

  ____________  
70 ×  10 9  Pa

   × 1.5  m 3 

= −2.2 ×  10 −4   m 3  ×   (   100 cm _______ 
1 m

   )  
3
  = −220  cm 3 

The statue’s volume decreases approximately 220 cm3.

Discussion The fractional decrease in volume is

  1.005 ×  10 7  Pa  ____________  
70 ×  10 9  Pa

   ≈   1 _____ 
7000

  

or a reduction of 0.014%.

In calculating the pressure increase, we assumed that 

the density of seawater is constant—the equation ΔP = rgd 

is derived for a constant fluid density r. Should we worry 

that our calculation of ΔP is wrong? The result of Practice 

Problem 10.5 shows that the density of seawater at a depth 

of 1.0 km is only about 0.43% greater than its density at 

the surface. The calculation of ΔP is inaccurate by less 

than 0.5%—negligible here since we only know the depth to 

two significant figures.

Practice Problem 10.5 Compression of Water

Show that a pressure increase of 1.0 × 107 Pa (100 atm) on 1 m3 

of seawater causes a 0.43% decrease in volume. The bulk 

modulus of seawater is 2.3 × 109 Pa.

Example 10.5

Marble Statue Under Water

A marble statue of volume 1.5 m3 is being transported by ship 

from Athens to Cyprus. The statue topples into the ocean 

when an earthquake-caused tidal wave sinks the ship; the 

statue ends up on the ocean floor, 1.0 km below the surface. 

Find the change in volume of the statue in cm3 due to the pres-

sure of the water. The density of seawater is 1025 kg/m3.

Strategy The water pressure is the volume stress; it is the 

force per unit area pressing inward and perpendicular to all 

the surfaces of the statue. The water pressure at a depth d is 

greater than the pressure at the water surface; we can find 

the pressure using the given density of seawater. Then, using 

the bulk modulus of marble given in Table 10.2, we find the 

change in volume from Hooke’s law.

Solution The pressure at a depth d = 1.0 km is larger than 

atmospheric pressure by

 ΔP = rgd

= 1025 kg/ m 3  × 9.8 N/kg × 1000 m

 = 1.005 ×  10 7  Pa

According to Table 10.2, the bulk modulus for marble is 

70 × 109 Pa. This is the constant of proportionality between 

the volume stress (pressure increase) and the strain (frac-

tional change in volume).

ΔP = −B  ΔV
 ___ 

V
  



   10.5  SIMPLE HARMONIC MOTION 

  Vibration, one of the most common kinds of motion, is repeated motion back and forth 

along the same path. Vibrations occur in the vicinity of a point of    stable equilibrium.    

An equilibrium point is  stable  if the net force on an object when it is displaced a small 

distance from equilibrium points back toward the equilibrium point ( Fig. 10.11 ). Such a 

force is called a    restoring force    since it tends to restore equilibrium. A special kind of 

vibratory motion—called    simple harmonic motion    (or    SHM   )—occurs whenever the 

restoring force is proportional to the displacement from equilibrium.             

  Figure 10.12  shows a graph of  F   x   versus  x  for some restoring force. We choose 

 x   =  0 at the equilibrium position. Since the graph is not linear, the resulting oscillations 

are not SHM—unless the amplitude is small. For small amplitudes, we can approximate 

the graph near equilibrium by a straight line tangent to the curve at the equilibrium 

point. For small amplitude oscillations, the restoring force is approximately linear, so 

the resulting oscillations are (approximately) SHM. The ideal spring is a favorite model 

of physicists because the restoring force it provides is proportional to the displacement 

from equilibrium.   

 Consider a relaxed ideal spring with spring constant  k  and zero mass. The spring is 

fixed at one end and attached at the other to an object of mass  m  ( Fig. 10.13 ) that slides 

without friction. Since the normal force is equal and opposite to the weight of the object, 

the net force on the object is that due to the spring. When the spring is relaxed, the net 

force is zero; the object is in equilibrium.     

 If the object is now pulled to the right to the position  x   =   A  and then released, the 

net force on the object is

      F x   = −kx    (10-11)   

where the negative sign tells us that the spring force is opposite in direction to the dis-

placement from equilibrium. At first the object is to the right of the equilibrium position 

and the spring pulls to the left. Notice that the force exerted by the spring is in the cor-

rect direction to restore the object to the equilibrium position; it always pushes or pulls 

back toward the equilibrium point. 

 Imagine taking a series of photos at equal time intervals as the object oscillates 

back and forth. In  Fig. 10.14  the blue dots are the positions of the object at equal time 

intervals over one-half of a full cycle, from one endpoint to the other. (A full cycle 

would include the return trip.)    

   Energy Analysis in SHM     Figure 10.14  suggests that the speed is greatest as the object 

passes through the equilibrium position. The object slows as it approaches the endpoints 

and gains speed as it approaches the equilibrium point. At the endpoints ( x   =   ±   A ), the 

body is instantaneously at rest before heading back in the other direction. Conservation 

of energy supports these observations. The total mechanical energy of the mass and 

spring is constant.

    E = K + U = constant  

  Simple harmonic motion:   

vibratory motion that occurs when 

the restoring force is proportional to 

the displacement from equilibrium

  Simple harmonic motion:   

vibratory motion that occurs when 

the restoring force is proportional to 

the displacement from equilibrium

Stable equilibrium point

(a) (b)

Unstable equilibrium  point

Figure 10.11 (a) A point of stable equilibrium for a roller-coaster car. If the car is displaced slightly from its position at 

the bottom of the track, the net force pulls the car back toward the equilibrium point. (b) A point of unstable equilibrium for 

a roller-coaster car. If the car is displaced slightly from the very top of the track, the net force pushes the car away from the 

equilibrium point.

F(x)

x

Figure 10.12 A nonlinear 

restoring force (red) can be 

approximated as a linear restor-

ing force (blue) for small 

displacements.

0

Spring

–A

m

A x

Figure 10.13 Spring in 

relaxed position. We choose the 

origin x = 0 at the object’s equi-

librium position.
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CONNECTION: 

As shown in Sections 

10.2–10.4, Hooke’s law 

applies to small deformations 

of many kinds of objects, not 

just springs. Thus, simple 

harmonic motion occurs in 

many situations as long as the 

vibrations are not too large.
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where  K  is the kinetic energy and  U  is the elastic potential energy stored in the spring. 

As the object oscillates back and forth, energy is converted from potential to kinetic and 

back to potential in the half-cycle shown in  Fig. 10.14 . From Section 6.7, the elastic 

potential energy of the spring is

     U =   1 _ 
2
   k x 2     (6-24)   

The speed at any point  x  can be found from the energy equation

     E =   1 _ 
2
  m v  x  

2
  +   1 _ 

2
   k x 

2
     (10-12)        

 The maximum displacement of the body is the    amplitude     A.  At the maximum dis-

placement, where the motion changes direction, the velocity is zero. Since the kinetic 

energy is zero at  x   =   ±   A,  all the energy is elastic potential energy at the endpoints. 

Therefore, the total energy  E  at the endpoints is

      E 
total

   =   1 _ 
2
   k A 2     (10-13)   

and, since energy is conserved, this must be the total energy at any point in the object’s 

motion. The maximum speed  v  m  occurs at  x   =  0 where all the energy is kinetic. Thus, at 

 x   =  0, the total energy equals the kinetic energy

     E 
total

   =   1 _ 
2
  m v  m  

2
    

and, from Eq. (10-13),

      1 _ 
2
  m v  m  

2
   =   1 _ 

2
  k A 2   

Solving for  v  m  yields

      v m   =  √
___

   k __ m     A    (10-14)   

The maximum speed is proportional to the amplitude. 

CHECKPOINT 10.5

What is the displacement of an object in SHM when the kinetic and potential 

energies are equal?

                  Acceleration in SHM    The force on the object at any point  x  is given by Hooke’s law; 

Newton’s second law then gives the acceleration:

     F x   = −kx = m a x    

Solving for the acceleration,

 ax(t)  = −   k __ m   x(t) (10-15)

  Amplitude:   maximum 

displacement from equilibrium

  Amplitude:   maximum 

displacement from equilibrium

0
Endpoint Equilibrium position Endpoint

–A A
x

Figure 10.14 Positions of an 

oscillating body at equal time 

intervals over half a period. The 

spring is omitted for clarity.

CONNECTION: 

Our study of SHM is based 

on familiar principles of 

energy conservation and 

Newton’s second law, 

together with Hooke’s law.



Thus, the acceleration is a negative constant ( −  k / m ) times the displacement; the acceler-

ation and displacement are always in opposite directions. Whenever the acceleration is 

a negative constant times the displacement, the motion is SHM. 

 The acceleration has its maximum magnitude  a  m , where the force is largest, which 

is at the maximum displacement  x   =   ±   A: 

      a m   =   k __ m   A    (10-16)            

In SHM, the acceleration 

changes with time. Equa-

tions derived for constant accelera-

tion do not apply.

In SHM, the acceleration 

changes with time. Equa-

tions derived for constant accelera-

tion do not apply.

(c) For the speed at a displacement of 0.120 m, we again use 

energy conservation.

  1 _ 
2
  k x 2  +   1 _ 

2
  m v 2  =   1 _ 

2
  k A 2 

Solving for v,

 v =  √
________

   k A 2  − k x 2  ________ m     =  √
__________

   k __ m   ( A 2  −  x 2 )  

=  √
_________________________________

      6.0 ×  10 2  N/m  ____________ 
1.0 kg

   [(0.180 m ) 2  − (0.120 m ) 2 ]   = 3.3 m/s

From Newton’s second law,

 F x   = −kx =  ma x  

 At x = ± 0.120 m,

 a x   = −   k __ m   x =   6.0 ×  10 2  N/m  ____________ 
1.0 kg

   × (±0.120 m) = ±72 m/ s 2 

The magnitude of the acceleration is 72 m/s2; the direction is 

toward the equilibrium point.

Discussion Note that at a given position (say x = +  0.120 m), 

we can find the speed of the rocket, but the direction of the 

velocity can be either left or right; the rocket passes through 

each point (other than the endpoints) both on its way to the 

left and on its way to the right. By contrast, the acceleration 

at x = +0.120 m is always in the −x-direction, regardless of 

whether the rocket is moving to the left or to the right. If the 

rocket is moving to the right, then it is slowing down as it 

approaches x = +A; if it is moving to the left, then it is speeding 

up as it approaches x = 0.

Practice Problem 10.6 Maximum Acceleration 
of the Rocket

What is the maximum acceleration of the rocket in Example 

10.6 and at what position(s) does it occur?

Example 10.6

Oscillating Model Rocket

A model rocket of 1.0-kg mass is attached to a horizontal 

spring with a spring constant of 6.0 N/cm. The spring is 

compressed by 18.0 cm and then released. The intent is to 

shoot the rocket horizontally, but the release mechanism 

fails to disengage, so the rocket starts to oscillate horizon-

tally. Ignore friction and assume the spring to be ideal. 

(a) What is the amplitude of the oscillation? (b) What is the 

maximum speed? (c) What are the rocket’s speed and accel-

eration when it is 12.0 cm from the equilibrium point?

Strategy First, we sketch the situation (Fig. 10.15). Ini-

tially all of the energy is elastic potential energy and the 

kinetic energy is zero. The initial displacement must be the 

maximum displacement—or amplitude—of the oscilla-

tions since to get farther from equilibrium would require 

more elastic energy than the total energy available. The 

speed at any position can be found using energy conserva-

tion (  1 _ 
2
  k x 2  +   1 _ 

2
  m v  

x
  2  =   1 _ 

2
  k A 2 ). The maximum speed occurs when 

all of the energy is kinetic. The acceleration can be found 

from Newton’s second law.

Solution (a) The amplitude of the oscillation is the maxi-

mum displacement, so A = 18.0 cm.

(b) From energy conservation, the maximum kinetic energy 

is equal to the maximum elastic potential energy:

 K m   =   1 _ 
2
   m v  m  

2
    = E =   1 

 
_ 
2
  k  A 2 

Solving for vm,

 v m   =  √
___

   k __ m     A =  √
____________

    6.0 ×  10 2  N/m  ____________ 
1.0 kg

     × 0.180 m = 4.4 m/s

0–18.0 cm

Spring is
relaxed here

x

Figure 10.15

The model 

rocket before it 

is released.
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   10.6  THE PERIOD AND FREQUENCY FOR SHM     

   Definitions of Period and Frequency    SHM is  periodic  motion because the same 

motion repeats over and over—a particle goes back and forth over the same path in 

exactly the same way. Each time the particle repeats its original motion, we say that it 

has completed another cycle.    To complete one cycle of motion, the particle must be at 

the same point   and heading in the same direction   as it was at the start of the cycle.        The 

   period     T  is the time taken by one complete cycle. The    frequency     f  is the number of 

cycles per unit time:

     f =   1 __ 
T

           (SI unit: Hz = cycles per second)    (5-8)            

 SHM is a special kind of periodic motion in which the restoring force is propor-

tional to the displacement from equilibrium.    Not all periodic vibrations are examples of 

simple harmonic motion since not all restoring forces are proportional to the displacement.  

Any restoring force can cause oscillatory motion. An electrocardiogram ( Fig. 10.16 ) 

traces the periodic pattern of a beating heart, but the motion of the recorder needle is not 

simple harmonic motion. As we are about to show, in SHM the position is a  sinusoidal  

function of time.  

   Circular Motion and SHM    To learn more about SHM, imagine setting up an experi-

ment ( Fig. 10.17 ). We attach an object to an ideal spring, move the object away from the 

equilibrium position, and then release it. The object vibrates back and forth in simple 

harmonic motion with amplitude  A.  At the same time a horizontal circular disk, of 

radius  r   =   A  and with a pin projecting vertically up from its outer edge, is set into rota-

tion with uniform circular motion. Both the pin and the object attached to the spring are 

illuminated so that shadows of the vibrating object and of the pin on the rotating disk 

are seen on a screen. The speed of the disk is adjusted until the shadows oscillate with 

the same period. We will show that the motion of the two shadows is identical, so the 

mathematical description of one can be used for the other.     

 To find the mathematical description of SHM, we analyze the uniform circular 

motion of the pin.  Figure 10.17b  shows the pin  P  moving counterclockwise around 

  Period:   time for one complete cycle  Period:   time for one complete cycle

Figure 10.16 An electrocar-

diogram.

0

0

(a)

Light source

(b)

(c)

–A A

x

x

x

P

r

r

y

y

y

v

P

x

w

x0 A–A

t

 = twq

w

q

w

Figure 10.17 (a) An experiment to show the relation between uniform circular motion and SHM. (b) A pin P moving counter-

clockwise around a circle as a disk rotates with constant angular velocity w. (c) Finding the x-component of the displacement.

Most of the equations 

involving w  are correct only 

if w  is measured in radians per unit 

time (such as rad/s). Don’t forget to 

put your calculator into radian mode.

CONNECTION: 

The period and frequency 

are defined exactly as for 

uniform circular motion, 

which is another kind of 

periodic motion.



a circle of radius  A  at a constant angular velocity  w   in rad/s. For simplicity, let the pin start 

at  q    =  0 at time  t   =  0. The location of the pin at any time is then given by the angle  q  :

    q (t) = w t  

The motion of the pin’s shadow has the same  x -component as the pin itself. Using a 

right triangle ( Fig. 10.17c ), we find that

     x(t) = A cos q  = A cos w t    (10-17)    

 Since the pin moves in uniform circular motion, its acceleration is constant in  mag-

nitude  but not in direction; the acceleration is toward the center of the circle. In Section 

5.2, the magnitude of the radial acceleration is shown to be

     a =  w  2 r =  w  2 A    (5-12)   

At any instant the direction of the acceleration vector is opposite to the direction of the 

displacement vector in  Fig. 10.17b —that is, toward the center of the circle. Therefore,

      a x   = −a cos q  = − w  2 A cos w t    (10-18)    

 Comparing Eqs. (10-17) and (10-18), we see that, at any time  t, 

      a x  (t) = − w  2 x(t)    (10-19)   

In Eq. (10-15) we showed that in SHM the acceleration is proportional to the displacement:

      a x   = −   k __ m   x    (10-15)   

Comparing the right-hand sides of Eqs. (10-15) and (10-19), the motions of the two 

shadows are identical as long as

    

 w  =  √
___

   k __ m     (10-20a)

The position and acceleration of an object in SHM are sinusoidal functions of time 

[Eqs. (10-17) and (10-18)]. The sinusoidal functions are sine and cosine. In Problem 54, 

you can show that  v   x   is also a sinusoidal function of time. 

 The term  harmonic  in  simple harmonic motion  refers to a sinusoidal vibration; this 

usage is related to similar usage in music and acoustics. The sinusoidal functions are 

also called harmonic functions. In Chapter 12, we show that a complex vibration can be 

formed by combining harmonic vibrations at different frequencies, which is why the 

study of SHM is the basis for understanding more complex vibrations. The term  simple  

in SHM means that the amplitude of the vibration is constant; we assume there is no 

energy dissipation to cause the vibration to die out.  

   Period and Frequency for an Ideal Mass-Spring System    Since the object in SHM 

and the pin in circular motion have the same frequency and period, the relationships 

between  w ,  f,  and  T  still apply. Therefore, the frequency and period of a mass-spring 

system are

     f =   w  ___ 
2p 

   =   1 ___ 
2p 

    √
___

   k __ m       (10-20b)  

and

    

 T =   1 __ 
f
   = 2p  √

___

   m __ 
k
     (10-20c)

In the context of SHM, the quantity  w  is called the    angular frequency.    Note that the 

angular frequency is determined by the mass and the spring constant but is independent 

of the amplitude. 
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 With the identification of  w   for a mass-spring system, we can write the maximum 

speed and acceleration from Eqs. (10-14) and (10-16):

      v m   = w A    (10-21)   

      a m   =  w  2  A    (10-22)   

These expressions are more general than Eqs. (10-14) and (10-16)—they apply to any 

system in SHM, not just a mass-spring system.   

To Find the Angular Frequency for Any Object in SHM

• Write down the restoring force as a function of the displacement from equi-

librium. Since the restoring force is linear, it always takes the form F = −kx, 

where k is a constant.

• Use Newton’s second law to relate the restoring force to the acceleration.

• Solve for w using ax = −w
2x [Eq. (10-19)].

  A Vertical Mass and Spring 

 The mass and spring systems discussed so far oscillate horizontally. An oscillating mass 

on a vertical spring also exhibits SHM; the difference is that the equilibrium point is 

shifted downward by gravity. In our discussions, we assume ideal springs that obey 

Hooke’s law and have a negligibly small mass of their own. 

   Suppose that an object of weight  mg  is hung from an ideal spring of spring constant 

 k  ( Fig. 10.18 ).  The object’s equilibrium point is   not   the point at which the spring is 

relaxed.  In equilibrium, the spring is stretched downward a distance  d  from its relaxed 

length so that the spring pulls up with a force equal to  mg.  Taking the  +  y -axis in the 

upward direction, the condition for equilibrium is

     ∑ F y   = +kd − mg = 0     (at equilibrium)    (10-23)   

Let us take the origin ( y   =  0) at the equilibrium point. If the object is displaced vertically 

from the equilibrium point to a position  y,  the spring force becomes

     F 
spring,y

   = k(d − y)  

(a)

+d

0

(b) (c)

Equilibrium
position

Displaced
position

Relaxed
position

y

y

d m

m

m

Figure 10.18 (a) A relaxed 

spring, of spring constant k, with 

mass m attached. (b) The same 

spring is extended to its equilib-

rium position, a distance d 

below the relaxed position, after 

mass m is allowed to hang 

freely. Note that we choose y = 0 

at the equilibrium position, not 

at the relaxed position. (c) The 

spring is displaced from the 

equilibrium position.



If  y  is positive, the object is displaced upward and the spring force is less than  kd.  The 

y -component of the net force is then

    ∑ F y   = k(d − y) − mg = kd − ky − mg     (at displacement y from equilibrium)  

From Eq. (10-23), we know that  kd   =   mg;  therefore,

    ∑ F y   = −ky  

The restoring force provided by the spring and gravity together is − k  times the displace-

ment from equilibrium. Therefore, the vertical mass-spring exhibits SHM with the same 

period and frequency as if it were horizontal   .     

spring is stretched at the equilibrium point; it can be found 

by setting the net force on the bird equal to zero. The total 

mechanical energy is the sum of the kinetic energy, the 

elastic potential energy, and the gravitational potential 

energy. We expect the total energy to be the same at the 

two points; since no dissipative forces act, mechanical 

energy is conserved.

Solution The equilibrium point is where the net force on 

the bird is zero:

 ∑ F y   = +kd − mg = 0 (10-23)

In this equation, d is the extension of the spring at equilib-

rium. Since the bird is released where the spring is relaxed, 

d is also the amplitude of the oscillations:

A = d =   
mg

 ___ 
k
  

(a) At the point of release, v = 0 and the kinetic energy is 

zero. The elastic energy is also zero—the spring is unstretched. 

The gravitational potential energy is

 U g   = mgy = mgA =   
(mg ) 2 

 _____ 
k
  

The total mechanical energy is the sum of the kinetic and 

potential (elastic + gravitational) energies,

E = K +  U e   +  U g   =   
(mg ) 2 

 _____ 
k
  

(b) At the equilibrium point, the bird moves with its maxi-

mum speed vm = w A. The angular frequency is the same as 

for a horizontal spring:  w  =  √
____

 k/m  . Then the kinetic energy is

K =   1 _ 
2
  m v  m  

2
   =   1 _ 

2
  m w  2   A 2 

Substituting A = mg/k and w2 = k/m,

K =   1 __ 
2
  m   k __ m     

(mg ) 2 
 _____ 

 k 2 
   =   1 __ 

2
     
(mg ) 2 

 _____ 
k
  

Example 10.7

A Vertical Spring

A spring with spring constant k is suspended vertically. 

A model goose of mass m is attached to the unstretched 

spring and then released so that the bird oscillates up and 

down. (Ignore friction and air resistance; assume an ideal 

massless spring.) Calculate the kinetic energy, the elastic 

potential energy, the gravitational potential energy, and the 

total mechanical energy at (a) the point of release and (b) the 

equilibrium point. Take the gravitational potential energy to 

be zero at the equilibrium point.

Strategy The bird oscillates in SHM about its equilibrium 

point y = 0 between two extreme positions y = +A and y = −A 

(Fig. 10.19). The amplitude A is equal to the distance the 

(a) (b) (c)

Equilibrium
position

v = 0

v = 0

v = vm

y = +A

y = –A

y = 0

y

Figure 10.19

(a) The spring is unstretched before the model bird is released at 

position y = +A; (b) the model bird passes through the equilib-

rium position y = 0 with maximum speed; (c) the spring’s maxi-

mum extension occurs when the bird is at y = −A.

continued on next page
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Example 10.7 continued

The spring is stretched a distance A, so the elastic energy is

 U e   =   1 __ 
2
  k A 2  =   1 __ 

2
  k   

(mg ) 2 
 _____ 

 k 2 
   =   1 __ 

2
     
(mg ) 2 

 _____ 
k
  

The gravitational potential energy is zero at y = 0. Therefore, 

the total mechanical energy is

E = K +  U e   +  U g   =   1 __ 
2
     
(mg ) 2 

 _____ 
k
   +   1 __ 

2
     
(mg ) 2 

 _____ 
k
   + 0 =   

(mg ) 2 
 _____ 

k
  

which is the same as at y = +A.

Discussion As the bird moves down from the release point 

toward the equilibrium point, gravitational potential energy 

is converted into elastic energy and kinetic energy. After the 

bird passes the equilibrium point, both kinetic and gravita-

tional energy are converted into elastic energy. At the lowest 

point in the motion, the gravitational potential energy has its 

lowest value, while the elastic potential energy has its great-

est value. The total potential energy (gravitational plus elas-

tic) has its minimum value at the equilibrium point since the 

kinetic energy is maximum there.

Practice Problem 10.7 Energy at Maximum 
Extension

Calculate the energies at the lowest point in the oscillations 

in Example 10.7.

(a)

One cycle, or one period

x = A cos w t

vx = –vm sin w t

vx

ax

ax = –am cos w t

t

x

A

0

0

0

vm

–vm

am

–am

–A

T TT
3 – 
2

1 – 
2

(b)
tT TT

3 – 
2

1 – 
2

(c)

(d)

t

K

K =    mvx
E

0
t

T TT
3 – 
2

1 – 
2

T TT
3 – 
2

1 – 
2

1 – 
2

(e)

U

U =    kx2E

0
tT TT

3 – 
2

1 – 
2

1 – 
2

2

Figure 10.20 Graphs of 

(a) position, (b) velocity, and 

(c) acceleration as functions of 

time for a particle in simple har-

monic motion. Observe the inter-

relationships between the three 

graphs. The velocity graph is 

one-quarter cycle ahead of the 

position graph; that is, vx(t) 

reaches its positive maximum 

one-quarter period before x(t) 

reaches its positive maximum. 

Likewise, the acceleration is one-

quarter cycle ahead of the veloc-

ity and one-half cycle ahead of 

the position. (d) Kinetic energy 

as a function of time. (e) Poten-

tial energy as a function of time.

   10.7  GRAPHICAL ANALYSIS OF SHM 

  We have shown that the position of a particle moving in SHM along the  x -axis is

     x(t) = A cos w t    (10-17)   

Since the cosine function goes from  − 1 to  + 1, multiplying it by  A  gives us a displace-

ment from  −  A  to  +  A.   Figure 10.20a  is a graph of the position as a function of time. 

 The velocity at any time is the slope of the  x ( t ) graph. Note that the maximum slope 

in  Fig. 10.20a  occurs when  x   =  0, which confirms what we already know from energy 



conservation: the velocity is maximum at the equilibrium point. Note also that the 

velocity is zero when the displacement is a maximum ( +  A  or  −  A ).  Figure 10.20b  shows 

a graph of  v   x  ( t ). The equation describing this graph is (see Problem 54):

      v x  (t) = − v m   sin w t = −w A sin w t    (10-24)    

 The acceleration is the slope of the  v   x  ( t ) graph.  Figure 10.20c  is a graph of  a   x  ( t ), 

which is described by the equation

      a x  (t) = − a m   cos w t = − w  2 A cos w t    (10-18)    

  Figures 10.20d ,e show the kinetic and potential energies as functions of time, 

respectively. The total energy     E = K + U =   1 _ 
2
  k A 2    is constant. 

 We have written the position as a function of time in terms of the cosine function, 

but we can just as correctly use the sine function. The difference between the two is the 

initial position at time  t   =  0. If the position is at a maximum ( x   =   A ) at  t   =  0,  x ( t ) is a 

cosine function. If the position is at the equilibrium point ( x   =  0) at  t   =  0,  x ( t ) is a sine 

function. By analyzing the slopes of the graphs, you can show (Problem 50) that if the 

position as a function of time is

     x(t) = A sin w t   (10-25a)  

then the velocity and acceleration are

      v x  (t) =  v m   cos w t   (10-25b)  

      a x  (t) = − a m   sin w t   (10-25c)     

CHECKPOINT 10.7

(a) When the displacement of an object in SHM is zero, what is its speed? 

(b) When the speed is zero, what is the displacement?

Since x(t) begins at the maximum displacement, it is described 

by a cosine function. By looking at the slope of x(t), we 

can tell whether the velocity is a positive or negative sine 

function.

Solution  (a) The amplitude is the maximum displacement 

shown on the graph: A = 0.015 m.

(b) The period is the time for one complete cycle. From the 

graph: T = 0.040 s.

(c) The frequency is the inverse of the period.

f =   1 __ 
T

   =   1 ______ 
0.040 s

   = 25 Hz

(d) Since x = +A at t = 0, we write x(t) as a cosine function:

x(t) = A cos w t

where A = 0.015 m and

w = 2p f = 160 rad/s

Example 10.8

A Vibrating Loudspeaker Cone

A loudspeaker has a movable diaphragm (the cone) that 

vibrates back and forth to produce sound waves. The dis-

placement of a loudspeaker cone playing a sinusoidal test 

tone is graphed in Fig. 10.21. Find (a) the amplitude of the 

motion, (b) the period of the motion, and (c) the frequency 

of the motion. (d) Write equations for x(t) and vx(t).

Strategy The amplitude and period can be read directly 

from the graph. The frequency is the inverse of the period. 

0.015

0

–0.015

x (m)

t (s)0.02 0.04 0.05 0.060.030.01

Figure 10.21

Horizontal displacement of a vibrating cone as a function of time.

continued on next page
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Example 10.8 continued

The slope of x(t) is initially zero and then goes negative. 

Therefore, vx(t) is a negative sine function:

 v x  (t) = − v m   sin w t

where w  = 2p f = 160 rad/s and

 v m   = w A = 160 rad/s × 0.015 m = 2.4 m/s

Discussion As a check, the velocity should be one-quarter 

cycle ahead of the position. If we imagine shifting the vertical 

axis to the right (ahead) by 0.01 s, the graph would have the 

shape of a negative sine function.

Practice Problem 10.8 Acceleration of the 
Speaker Cone

Sketch a graph and write an equation for ax(t).

(a) (b)

mg

x

T

L

L

q

q
TTy

Tx

Path of pendulum
bob

y

x

Figure 10.22 (a) Forces on a 

pendulum bob. (b) Finding the 

x-component of the force due to 

the string.

   10.8  THE PENDULUM 

   Simple Pendulum 

 When a pendulum swings back and forth, a string or thin rod constrains the bob to move 

along a circular arc. However,  for oscillations with small amplitude,  we assume that the 

bob moves  back and forth along the x-axis;  the vertical motion of the bob is negligible. 

 Since the weight of the bob has no  x -component, the restoring force is the  x -component 

of the force due to the string. We expect the restoring force to be proportional to the dis-

placement for small oscillations. From  Fig. 10.22 ,

    ∑ F x   = −T sin q  = −   Tx ___ 
L

    

where  L  is the length of the string and sin  q    =   x / L.  The  y -component of the acceleration 

is negligibly small, so

    ∑ F y   = T cos q  − mg = m a y   ≈ 0  

Since cos  q   ≈ 1 for small  q ,  T  ≈  mg.  Then

    ∑ F x   ≈ −   
mgx

 ____ 
L

   =  ma x    

Solving for  a   x  :

     a x   = −   
g
 __ 

L
  x  

To identify the angular frequency, we recall that  a   x    =   −  w   2  x  [Eq. (10-19)]. Therefore, the 

angular frequency is

     w  =  √
__

   
g
 __ 

L
       (10-26a)  

and the period is

     T =   2p  ___ w    = 2p  √
__

   L __ g       (10-26b)  

Note that the period depends on  L  and  g  but not on the mass of the pendulum.    (Text 

website tutorial: change in period)     

    Be careful not to confuse the   angular frequency   of the pendulum with its   angular 

velocity.  Even though the two have the same units (rad/s in SI) and are written with the 

same symbol ( w ), for a pendulum they are  not  the same. When dealing with the pendu-

lum, we use the symbol  w   to stand for the  angular frequency  only. The angular fre-

quency  w    =  2 p   f  of a given pendulum is constant, while the angular velocity (the rate of 

0.015

0

–0.015

x (m)

t (s)0.02 0.04 0.05 0.060.030.01

Figure 10.21

Horizontal displacement of a vibrating cone as a function of time.



change of  q  ) changes with time between zero (at the extremes) and its maximum mag-

nitude (at the equilibrium point). 

PHYSICS AT HOME

The relation between the period and the length of the pendulum is easily tested at 

home. Make a simple pendulum by tying a thin string to one end of a paper clip 

and sliding the clip over a coin. Some tape can be used to help hold the coin if it 

slips out of place. Holding the end of the string, let the coin swing through a small 

arc and note the time for the coin to make ten complete oscillations, starting from 

one extreme position and returning to the same position ten times. Divide the time 

by ten to get the period. (This gives a more accurate value than timing a single 

period.) Measure the length of the pendulum and test Eq. (10-26b).

Repeat the experiment by holding the string at a position closer to the coin, 

effectively shortening the length of the pendulum. What do you find? Is the 

period for the shorter pendulum longer, shorter, or the same as that measured 

for the longer pendulum?

The effect of a different mass on the period can also be tested by using two 

or three coins taped together, with the same length pendulum as used for the 

first measurement. Does a heavier coin affect the result?

  x __ 
L

   =   33 mm _______ 
990 mm

   = 0.033

Is that small enough? If sin q  = x/L = 0.033, then

q  =  sin  −1  0.033 = 0.033006

Sin q  and q  differ by less than 0.02%. Since we only know 

T to two significant figures, the approximation is good.

Discussion We should check that we didn’t write the 

expression for the period “upside down,” which is the most 

likely error we could make. Besides checking that the units 

work out, we know that a longer pendulum has a longer 

period, so L must go in the numerator. On the other hand, if 

g were larger, the restoring force would be larger and we 

would expect the period to shorten; thus, g belongs in the 

denominator.

Practice Problem 10.9 Pendulum on the Moon

A pendulum of length 0.99 m is taken to the Moon by an 

astronaut. The period of the pendulum is 4.9 s. What is the 

gravitational field strength on the surface of the Moon?

Example 10.9

Grandfather Clock

A grandfather clock uses a pendulum with period 2.0 s to keep 

time. In one such clock, the pendulum bob has mass 150 g; 

the pendulum is set into oscillation by displacing it 33 mm to 

one side. (a) What is the length of the pendulum? (b) Does the 

initial displacement satisfy the small angle approximation?

Strategy The period depends on the length of the pendulum 

and on the gravitational field strength g. It does not depend on 

the mass of the bob. It also does not depend on the initial 

displacement, as long as it is small compared to the length.

Solution (a) Assuming small amplitudes, the period is

T = 2p  √
__

   L __ g    

Solving for L,

 L =   
 T  2 g

 _____ 
(2p ) 2 

  

=   
(2.0 s ) 2  × 9.80 m/ s 2 

  ________________ 
(2p ) 2 

   = 0.99 m

(b) The small angle approximation is valid if the maximum dis-

placement is small compared to the length of the pendulum.

Large-Amplitude Motion of a Pendulum Is   Not   SHM    The period of a pendulum 

as just determined is valid only for small amplitudes. For larger amplitudes, the pendu-

lum’s motion is still periodic (though not SHM). Why would the period be any different 

for large amplitudes? Remember that we assumed the bob was moving horizontally 

back and forth along the  x -axis. This simplification breaks down for large amplitudes. 
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For instance, if we pull the pendulum out horizontally ( q     =  90 ° ), the tangential component 

of the weight is  mg,  but  F   x    =  0! Since we have overestimated  F   x  , we have underestimated 

the time for the bob to return to  x   =  0; thus, the period for large amplitudes is greater than 

    2p  √
___

 L/g  .   Another way of looking at it is in terms of the tangential force. The expres-

sion for the tangential component of the weight is correct even for large amplitudes. 

However, the distance the bob must move to return to equilibrium is larger than  x.  For 

instance, starting at  q    =  90 ° , the bob must move one quarter of the circumference, a dis-

tance       1 _ 
4
  (2p L) ≈ 1.6L,   to return to equilibrium. Assuming linear motion along the  x -axis 

would make the distance only  L.  With a longer distance to travel, the time is longer.   

  Physical Pendulum 

 Imagine that you have a simple pendulum of length  L.  Beside it you have a uniform 

metal bar of the same length, which is free to swing about an axis at one end. Would the 

two have the same period if they are set into oscillation? 

 For the simple pendulum, the bob is assumed to be a point mass; all the mass of the 

pendulum is at a distance  L  from the rotation axis. For the metal bar, however, the mass 

is uniformly distributed from the axis to a  maximum  distance  L  away from the axis. The 

center of mass is located at the midpoint, a distance     d =   1 _ 
2
  L   from the axis ( Fig. 10.23 ). 

Since the mass is on average closer to the axis, the period is shorter than that of the sim-

ple pendulum.     

 Would this bar have a period equal to that of a simple pendulum of length       1 _ 
2
   L?   That 

is a good guess, since the center of mass of the bar is a distance       1 _ 
2
   L   away from the rota-

tion axis. Unfortunately, it isn’t quite that easy. The gravitational force acts at the center 

of mass, but we  cannot  think of all the mass as being concentrated at that point—that 

would give the wrong rotational inertia. When set into oscillation, the bar, or any other 

rigid object free to rotate about a fixed axis, is called a    physical pendulum.    The period 

of a physical pendulum is

     T = 2p  √
_____

   I ____ 
mgd

        (10-27)   

where  d  is the distance from the rotation axis to the  cm  of the object and  I  is the rota-

tional inertia about that axis. [See text website for a derivation of Eq. (10-27).]   

For a uniform bar of length  L,  the  cm  is halfway down the bar:

   d =   1 _ 
2
  L   

From Table 8.1, the rotational inertia of a uniform bar rotating about an axis through an 

endpoint is      I =   1 _ 
3
   m L 2 .   The period of oscillation is

T = 2p   √
_____

   I ____ 
mgd

     = 2p   √
_______

   
  1 _ 
3
  m L 2 
 ______ 

(mg)  1 _ 
2
  L

     = 2p  √
___

   2L ___ 
3g

    

The bar has the same period as a simple pendulum of length        2 _ 
3
  L.      

Tension
force

Axis Axis

L
L

d

q q
CM

mg
mg

(a) (b)

Figure 10.23 (a) A simple 

pendulum and (b) a physical 

pendulum.

covered per unit time) for a given walking frequency f. [Hint:

Start by drawing a picture of the leg position at the start of 

the swing (leg back) and the end of the swing (leg forward) 

and assume a comfortable angle of about 30° between these 

two positions. To how many steps does a complete period of 

the pendulum correspond?] (c) Find the walking speed for 

each of the animals listed in part (a).

Example 10.10

Comparison of Walking Frequencies and Speeds 
for Various Creatures

During a relaxed walking pace, an animal’s leg can 

be thought of as a physical pendulum of length L

that pivots about the hip. (a) What is the relaxed walking fre-

quency for a cat (L = 30 cm), dog (60 cm), human (1 m), 

giraffe (2 m), and a mythological titan (10 m)? (b) Derive an 

equation that gives the walking speed (amount of ground 

continued on next page



Example 10.10 continued

Strategy We have to use an idealized model of the leg, 

since we don’t know the exact location of the center of mass 

or the rotational inertia. The simple pendulum is not a good 

model, since it would assume all the mass of the leg at the 

foot! A much better model is to think of the leg as a uniform 

cylinder pivoting about one end.

Solution (a) For a uniform cylinder, the center of mass is 

a distance  d =   1 _ 
2
  L  from the pivot and the rotational inertia 

about an axis at one end is  I =   1 _ 
3
  m L 2 . Then the period is

T = 2p  √
_____

   I ____ 
mgd

     = 2p  √
_______

   
  1 _ 
3
  m L 2 
 ______ 

(mg)  1 _ 
2
  L

     = 2p  √
___

   2L ___ 
3g

    

and the frequency f is

f =   1 __ 
T

   =   1 ___ 
2p 

    √
___

   
3g

 ___ 
2L

     ≈ 0.2  √
__

   
g
 __ 

L
    

Substituting the numerical values of L for each animal, we 

find the frequencies to be 1 Hz (cat), 0.8 Hz (dog), 0.6 Hz 

(human), 0.4 Hz (giraffe), and 0.2 Hz (titan).

(b) One period of the “pendulum” corresponds to two steps. 

In Fig. 10.24a, the right leg is about to step forward. The 

step occurs as the pendulum swings forward through half a 

cycle. In Fig. 10.24b, the right foot is about to touch the 

ground; in Fig. 10.24c, the right foot touches the ground and 

now the left leg is about to step forward. During this step, 

the right foot stays in place on the ground, but the right leg is 

swinging backward relative to the hip joint. During each 

step, the distance covered is approximately the length of a 

30° arc of radius L, which is one twelfth the circumference 

of a circle of radius L. So during one period, the distance 

walked is

D = 2 ×   1 ___ 
12

   × 2p L =   p  __ 
3
  L ≈ L

and the walking speed is

v =   D __ 
T

   = Lf = 0.2 √
___

 gL  

(c) The speeds are 0.3 m/s (cat), 0.5 m/s (dog), 0.6 m/s 

(human), 0.9 m/s (giraffe), and 2 m/s (titan).

Discussion You may be more familiar with walking 

speeds in mi/h. Converting the units, 0.6 m/s ≈ 1.3 mi/h, 

which is just about right for a leisurely walk. A brisk walk is 

about 3 mi/h for most people; to go much faster than that, 

you need to jog or run.

The solution says that longer legs walk faster, but the fre-

quency of the steps is lower. You can verify that by walking 

beside a friend who is much taller or much shorter than you, 

or by taking your dog for a walk.

Practice Problem 10.10 Walking Speed 
for a Human

A more realistic model of a human leg of length 1.0 m has 

the center of mass 0.45 m from the hip and a rotational iner-

tia of   1 _ 
6
   m L 2 . What is the walking speed predicted by this 

model?

(a) (b) (c)

Figure 10.24 The forward motion of a leg during walking is similar to the swing of a physical pendulum. From (a) to 

(b), the right leg swings forward like a pendulum. In (c), the right foot is on the ground and the left leg is about to swing 

forward.
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   10.9  DAMPED OSCILLATIONS 

  In SHM, we assume that no dissipative forces such as friction or viscous drag exist. 

Since the mechanical energy is constant, the oscillations continue forever with constant 

amplitude. SHM is a simplified model. The oscillations of a swinging pendulum or a 

vibrating tuning fork gradually die out as energy is dissipated. The amplitude of each 

cycle is a little smaller than that of the previous cycle ( Fig. 10.25a ). This kind of motion 

is called    damped oscillation,    where the word  damped  is used in the sense of  extin-

guished  or  restrained.  For a small amount of damping, oscillations occur at approxi-

mately the same frequency as if there were no damping. A greater degree of damping 

lowers the frequency slightly ( Fig. 10.25b ). Even more damping prevents oscillations 

from occurring at all ( Fig. 10.25c ).     

 Damping is not always a disadvantage. The suspension system of a car includes 

shock absorbers that cause the vibration of the body—a mass connected to the chassis 

by springs—to be quickly damped. The shock absorbers reduce the discomfort that pas-

sengers would otherwise experience due to the bouncing of an automobile as it travels 

along a bumpy road.  Figure 10.26  shows how a shock absorber works. In order to com-

press or expand the shock absorber, a viscous oil must flow through the holes in the pis-

ton. The viscous force dissipates energy regardless of which direction the piston moves. 

The shock absorber enables the spring to smoothly return to its equilibrium length with-

out oscillating up and down ( Fig. 10.25c ). When the oil leaks out of the shock absorber, 

the damping is insufficient to prevent oscillations. After hitting a bump, the body of the 

car oscillates up and down ( Fig. 10.25b ).       

   10.10  FORCED OSCILLATIONS AND RESONANCE 

  When damping forces are present, the only way to keep the amplitude of oscillations 

from diminishing is to replace the dissipated energy from some other source. When a 

child is being pushed on a swing, the parent replaces the energy dissipated with a small 

push. In order to keep the amplitude of the motion constant, the parent gives a little 

push once per cycle, adding just enough energy each time to compensate for the 

energy dissipated in one cycle. The frequency of the  driving force  (the parent’s push) 

matches the  natural frequency  of the system (the frequency at which it would oscil-

late on its own). 

    Forced oscillations    (or driven oscillations) occur when a periodic external driving 

force acts on a system that can oscillate. The frequency of the driving force does not 

have to match the natural frequency of the system. Ultimately, the system oscillates at 

the driving frequency, even if it is far from the natural frequency. However, the amplitude 

  Application of damped 

oscillation: shock absorbers in a car  

  Application of damped 

oscillation: shock absorbers in a car  

(a)

(b)

(c)

y

y

x

y

x

x

Figure 10.25 Graphs of x(t) 

for a mass-spring system with 

increasing amounts of damping. 

In (c) the damping is sufficient 

to prevent oscillations from 

occurring.

Holes in 
the piston

Viscous oil

Spring

Figure 10.26 A shock 

absorber.



of the oscillations is generally quite small unless the driving frequency  f  is close to the 

natural frequency  f  0  ( Fig. 10.27 ). When the driving frequency is equal to the natural fre-

quency of the system, the amplitude of the motion is a maximum. This condition is 

called    resonance.        

 At resonance, the driving force is always in the same direction as the object’s 

velocity. Since the driving force is always doing positive work, the energy of the 

oscillator builds up until the energy dissipated balances the energy added by the driv-

ing force. For an oscillator with little damping, this requires a large amplitude. When 

the driving and natural frequencies differ, the driving force and velocity are no longer 

synchronized; sometimes they are in the same direction and sometimes in opposite 

directions. The driving force is not at resonance, so it sometimes does negative work. 

The net work done by the driving force decreases as the driving frequency moves 

away from resonance. Therefore, the oscillator’s energy and amplitude are smaller 

than at resonance.      

   Applications of Resonance    Large-amplitude vibrations due to resonance can be dan-

gerous in some situations. Materials can be stressed past their elastic limits, causing perma-

nent deformation or breaking. In 1940, the wind set the Tacoma Narrows Bridge in 

Washington state into vibration with increasing amplitude. Turbulence in the air as it flowed 

across the bridge caused the air pressure to fluctuate with a frequency matching one of the 

bridge’s resonant frequencies. As the amplitude of the oscillations grew, the bridge was 

closed; soon after, the bridge collapsed ( Fig. 10.28 ). Engineers now design bridges with 

much higher resonant frequencies so the wind cannot cause resonant vibrations.     

 In the nineteenth century, bridges were sometimes set into resonant vibration 

when the cadence of marching soldiers matched a resonant frequency of the bridge. 

After the collapse of several bridges due to resonance, soldiers were told to break step 

when crossing a bridge to eliminate the danger of their cadence setting the bridge into 

resonance. 

   Tall buildings sway back and forth at a particular resonant frequency determined 

by the structure. The vibration pattern is similar to what you see if you hold one end 

of a ruler to the edge of a desk and then pluck the other end. Engineers have many 

methods to reduce the amplitude of the swaying. One of the simplest and most widely 

used is the tuned mass damper (TMD). Building engineers attach a damped mass-

spring system to the structure at a point where its vibration amplitude is largest—

near the top. In the Hancock Tower, each of the 300 000-kg boxes is attached to the 

building frame with springs and shock absorbers and can slide back and forth, riding 

on a thin layer of oil that covers a 9-m-long steel plate. The resonant frequency of 

the TMD is matched to the resonant frequency of the swaying building. When the 

swaying of the building drives the TMD into oscillation, energy is dissipated in the 

shock absorbers. The TMD in the Hancock Tower reduces the amplitude of its sway-

ing by about 50%.          

  Applications of resonance: 

vibration of bridges and buildings  

  Applications of resonance: 

vibration of bridges and buildings  

How is the swaying of a 

tall building reduced?

How is the swaying of a 

tall building reduced?

Figure 10.28 (a) The Tacoma 

Narrows Bridge begins to 

vibrate. (b) Ultimately the 

vibrations caused the bridge 

to collapse.(a) (b)

Driving frequency
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Figure 10.27 Two resonance 

curves for an oscillator with nat-

ural frequency f0. The amplitude 

of the driving force is constant. 

In the red graph, the oscillator 

has one fourth as much damping 

as in the blue graph.
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   Master the Concepts 

    • A deformation is a change in the size or shape of an object.  

   • When deforming forces are removed, an  elastic  object 

returns to its original shape and size.  

   • Hooke’s law, in a generalized form, says that the deforma-

tion of a material (measured by the strain) is proportional 

to the magnitude of the forces causing the deformation 

(measured by the stress). The definitions of stress and 

strain are as given in the following table.   

Type of Deformation

Tensile or 

Compressive Shear Volume

Stress Force per unit 

cross-sectional 

area F/A

Shear force 

divided by the 

parallel area of 

the surface on 

which it acts F/A

Pressure P

Strain Fractional 

length change 

ΔL/L

Ratio of the rela-

tive displacement 

Δx to the separa-

tion L of the two 

parallel surfaces 

Δx/L

Fractional 

volume 

change 

ΔV/V

Constant of 

proportionality

Young’s 

modulus Y

Shear modulus S Bulk 

modulus B

      • If the tensile or compressive stress exceeds the  propor-

tional limit,  the strain is no longer proportional to the 

stress. The solid still returns to its original length when 

the stress is removed as long as the stress does not exceed 

the  elastic limit.  If the stress exceeds the elastic limit, the 

material is permanently deformed. For larger stresses yet, 

the solid fractures when the stress reaches the  breaking 

point.  The maximum stress that can be withstood without 

breaking is called the  ultimate strength.   

   • Vibrations occur in the vicinity of a point of stable equi-

librium. An equilibrium point is  stable  if the net force on 

an object when it is displaced from equilibrium points 

back toward the equilibrium point. Such a force is called 

a restoring force since it tends to restore equilibrium.  

   • Simple harmonic motion is periodic motion that occurs 

whenever the restoring force is proportional to the dis-

placement from equilibrium. In SHM, the position, veloc-

ity, and acceleration as functions of time are sinusoidal (i.e., 

sine or cosine functions). Any oscillatory motion is approx-

imately SHM if the amplitude is small, because for small 

oscillations the restoring force is approximately linear.  

   • The period  T  is the time taken by one complete cycle of 

oscillation. The frequency  f  is the number of cycles per 

unit time:

     f =   1 __ 
T

       (5-8)  

  The angular frequency is measured in radians per unit 

time:

     w  = 2p f    (5-9)

   • The maximum velocity and acceleration in SHM are

       v m   = w A     and      a m   =  w  2 A   (10-21, 10-22)  

  where  w  is the angular frequency. The acceleration is 

proportional to and in the opposite direction from the 

displacement:

      a x  (t) = − w  2 x(t)     (10-19)     

   • The equations that describe SHM are     

 If x = A at t = 0, If x = 0 at t = 0,

x = A cos w t x = A sin w t

 vx = −vm sin w t vx = vm cos w t

 ax = −am cos w t ax = −am sin w t

(a)

One cycle, or one period

x = A cos w t

vx = –vm sin w t

vx

ax

ax = –am cos w t

t

x

A

0

0

0

vm

–vm

am

–am

–A

T T
1 – 
2

(b)
tT T

1 – 
2

(c)

(d)

t

K

K =    mvx
E

0
t

T T
1 – 
2

T T
1 – 
2

1 – 
2

(e)

U

U =    kx2E

0
tT T

1 – 
2

1 – 
2

2

   In either case, the velocity is one-quarter cycle ahead of 

the position and the acceleration is one-quarter cycle 

ahead of the velocity. 

    • The period of oscillation for a mass-spring system is

     T = 2p  √
___

   m __ 
k
        (10-20c)

continued on next page



  Conceptual Questions 

    1. Young’s modulus for diamond is about 20 times as large 

as that of glass. Does that tell you which is stronger? If 

not, what does it tell you?  

   2. A grandfather clock is running too fast. To fix it, should 

the pendulum be lengthened or shortened? Explain.  

   3. A karate student hits down-

ward on a stack of concrete 

blocks supported at both ends. 

A block breaks. Explain where 

it starts to break first, at the 

bottom or at the top. (The 

block experiences shear, com-

pressive, and tensile stresses. 

Recall that concrete has much 

less tensile strength than com-

pressive strength. Which part of the block is stretched 

and which is compressed when the block bends in the 

middle?) 

        4. A cylindrical steel bar is compressed by the application 

of forces of magnitude  F  at each end. What magnitude 

forces would be required to compress by the same 

amount (a) a steel bar of the same cross-sectional area 

but one half the length? (b) a steel bar of the same length 

but one half the radius?  

   5. The columns built by 

the ancient Greeks 

and Romans to sup-

port temples and other 

structures are tapered; 

they are thicker at 

the bottom than at the 

top. This certainly has 

an aesthetic purpose, but is there an engineering purpose 

as well? What might it be?  

   6. Explain how the period of a mass-spring system can 

be independent of amplitude, even though the distance 

traveled during each cycle is proportional to the 

amplitude.  

   7. In a reciprocating saw, a  Scotch yoke  converts the rotation 

of the motor into the back-and-forth motion of the blade. 

The Scotch yoke is a mechanical device used to convert 

oscillatory motion to circular motion or  vice versa.  A 

wheel with a fixed knob rotates at constant angular veloc-

ity; the knob is constrained within a vertical slot causing 

the saw blade to move left and right without moving up 

and down. Is the motion of the saw blade SHM? Explain. 

     

   8. A mass hanging vertically from a spring and a simple 

pendulum both have a period of oscillation of 1 s on 

Earth. An astronaut takes the two devices to another 

planet where the gravitational field is stronger than that 

of Earth. For each of the two systems, state whether the 

period is now longer than 1 s, shorter than 1 s, or equal 

to 1 s. Explain your reasoning.  

   9. A bungee jumper leaps from a bridge and comes to a stop 

a few centimeters above the surface of the water below. 

At that lowest point, is the tension in the bungee cord 

equal to the jumper’s weight? Explain why or why not.  

   10. Does it take more force to break a longer rope or a 

shorter rope? Assume the ropes are identical except for 

their lengths and are ideal—there are no weak points. 

Does it take more  energy  to break the long rope or the 

short rope? Explain.  

   11. A pilot is performing vertical loop-the-loops over the 

ocean at noon. The plane speeds up as it approaches the 

bottom of the circular loop and slows as it approaches 

the top of the loop. An observer in a helicopter is watch-

ing the shadow of the plane on the surface of the water. 

Does the shadow exhibit SHM? Explain.  

   12. Are you more likely to find steel rods in a horizontal 

concrete beam or in a vertical concrete column? Is con-

crete more in need of reinforcement under tensile or 

compressive stress?  

   13. Suppose that it takes tensile forces of magnitude  F  to 

produce a given strain Δ L / L  in a steel wire of cross-

sectional area  A.  If you had two such wires side by side 

and stretched them simultaneously, what magnitude ten-

sile forces would be required to produce the same strain? 

By thinking of a thick wire as two (or more) thinner 

Master the Concepts continued

  For a simple pendulum it is

     T = 2p  √
__

   L __ g        (10-26b)  

  and for a physical pendulum it is

     T = 2p  √
_____

   I ____ 
mgd

         (10-27)     

   • In the absence of dissipative forces, the total mechani-

cal energy of a simple harmonic oscillator is constant 

and proportional to the square of the amplitude:

      E =   1 _ 
2
   k A 2     (10-13)   

  where the potential energy has been chosen to be zero at 

the equilibrium point. At any point, the sum of the 

kinetic and potential energies is constant:

      E =   1 _ 
2
  m v  x  

2  +   1 _ 
2
  k x 2  =   1 _ 

2
  kA2    (10-12)       

CONCEPTUAL QUESTIONS 383



384  CHAPTER 10  Elasticity and Oscillations

wires side by side, explain why the force to produce a 

given strain must be proportional to the cross-sectional 

area. Thus, the strain depends on the stress—the force 

per unit area.  

   14. Think of a crystalline solid as a set of atoms connected 

by ideal springs. When a wire is stretched, how is the 

elongation of the wire related to the elongation of each 

of the interatomic springs? Use your answer to explain 

why a given tensile stress produces an elongation of the 

wire proportional to the wire’s initial length—or, equiv-

alently, that a given stress produces the same strain in 

wires of different lengths. 

     

   15. What are the advantages of using the concepts of stress 

and strain to describe deformations?  

   16. An old highway is built out of concrete blocks of equal 

length. A car traveling on this highway feels a little bump 

at the joint between blocks. The passengers in the car feel 

that the ride is uncomfortable at a speed of 45 mi/h, but 

much smoother at speeds either lower or higher than that. 

Explain.  

   17. The period of oscillation of a simple pendulum does not 

depend on the mass of the bob. By contrast, the period 

of a mass-spring system does depend on mass. Explain 

the apparent contradiction. [ Hint:  What provides the 

restoring force in each case? How does the restoring 

force depend on mass?]  

   18. A mass connected to an ideal spring is oscillating with-

out friction on a horizontal surface. Sketch graphs of the 

kinetic energy, potential energy, and total energy as func-

tions of time for one complete cycle.    

  Multiple-Choice Questions 

  Questions 1–4.  A body is suspended vertically from an ideal 

spring. The spring is initially in its relaxed position. The body 

is then released and oscillates about the equilibrium position. 

Answer choices for Questions 1–4:

    (a) The spring is relaxed.  

   (b) The body is at the equilibrium point.  

   (c) The spring is at its maximum extension.  

   (d)  The spring is somewhere between the equilibrium 

point and maximum extension.   

    1. The acceleration is greatest in magnitude and is directed 

upward when:  

   2. The speed of the body is greatest when:  

   3. The acceleration of the body is zero when:  

   4. The acceleration is greatest in magnitude and is directed 

downward when:  

   5. Two simple pendulums, A and B, have the same length, 

but the mass of A is twice the mass of B. Their vibra-

tional amplitudes are equal. Their periods are  T  A  and  T  B , 

respectively, and their energies are  E  A  and  E  B . Choose 

the correct statement.

    (a)  T  A   =   T  B  and  E  A  >  E  B      (b)  T  A  >  T  B  and  E  A  >  E  B   

   (c)  T  A  >  T  B  and  E  A  <  E  B      (d)  T  A   =   T  B  and  E  A  <  E  B      

   6. A force  F  applied to each end of a steel wire (length  L,  

diameter  d  ) stretches it by 1.0 mm. How much does  F  

stretch another steel wire, of length 2 L  and diameter 2 d? 

    (a) 0.50 mm     (b) 1.0 mm     (c) 2.0 mm  

   (d) 4.0 mm     (e) 0.25 mm     

   7. A stiff material is characterized by

    (a) high ultimate strength.  

   (b) high breaking strength.  

   (c) high Young’s modulus.  

   (d) high proportional limit.     

   8. A brittle material is characterized by

    (a) high breaking strength and low Young’s modulus.  

   (b) low breaking strength and high Young’s modulus.  

   (c) high breaking strength and high Young’s modulus.  

   (d) low breaking strength and low Young’s modulus.     

   9. Which pair of quantities can be expressed in the same 

units?

    (a) stress and strain  

   (b) Young’s modulus and strain  

   (c) Young’s modulus and stress  

   (d) ultimate strength and strain     

   10. Two wires have the same diameter and length. One is 

made of copper, the other brass. The wires are connected 

together end to end. When the free ends are pulled in 

opposite directions, the two wires  must  have the same

    (a) stress.     (b) strain.     (c) ultimate strength.  

   (d) elongation.     (e) Young’s modulus.       

  Questions 11–20.  See the graph of  v   x  ( t ) for an object in SHM. 

Answer choices for each question:

    (a) 1 s, 2 s, 3 s     (b) 5 s, 6 s, 7 s     (c) 0 s, 1 s, 7 s, 8 s  

   (d) 3 s, 4 s, 5 s     (e) 0 s, 4 s, 8 s     (f ) 2 s, 6 s  

   (g) 3 s, 5 s      (h) 1 s, 3 s     (i) 5 s, 7 s  

   ( j) 3 s, 7 s      (k) 1 s, 5 s    

2 4 6 8 t (s)

vx

Multiple-Choice Questions 11–20



    11. When is the kinetic energy maximum?  

   12. When is the kinetic energy zero?  

   13. When is the potential energy maximum?  

   14. When is the potential energy minimum?  

   15. When is the object at the equilibrium point?  

   16. When does the acceleration have its maximum 

magnitude?  

   17. Which answer specifies times when the net force is in 

the  +  x -direction?  

   18. Which answer specifies times when the object is on the 

−x-side of the equilibrium point ( x  < 0)?  

   19. Which answer specifies times when the object is mov-

ing away from the equilibrium point?  

   20. Which answer specifies times when the potential energy 

is decreasing?    

  Problems 

 Combination conceptual/quantitative problem  

 Biological or medical application  

✦ Challenging problem  

Blue # Detailed solution in the Student Solutions Manual  

1  2  Problems paired by concept  

 Text website interactive or tutorial   

  10.2 Hooke’s Law for Tensile 
and Compressive Forces 

  1.  A steel beam is placed vertically in the basement of a build-

ing to keep the floor above from sagging. The load on the 

beam is 5.8  ×  10 4  N, the length of the beam is 2.5 m, and 

the cross-sectional area of the beam is 7.5  ×  10  − 3  m 2 . 

Find the vertical compression of the beam.  

      2.  A 91-kg man’s thighbone has a relaxed length of 0.50 m, a 

cross-sectional area of 7.0  ×  10  − 4  m 2 , and a Young’s mod-

ulus of 1.1  ×  10 10  N/m 2 . By how much does the thigh-

bone compress when the man is standing on both feet?  

  3.  A brass wire with Young’s modulus of 9.2  ×  10 10  Pa is 

2.0 m long and has a cross-sectional area of 5.0 mm 2 . If 

a weight of 5.0 kN is hung from the wire, by how much 

does it stretch?  

    4.  A wire of length 5.00 m with a cross-sectional area of 

0.100 cm 2  stretches by 6.50 mm when a load of 1.00 kN is 

hung from it. What is the Young’s modulus for this wire?  

    5.  Two steel wires (of the same length and different radii) 

are connected together, end to end, and tied to a wall. 

An applied force stretches the combination by 1.0 mm. 

How far does the  midpoint  move? 

Radius r Radius 2r

? 1.0 mm

F
L L

   6. Abductin is an elastic protein found in scallops, with a 

Young’s modulus of 4.0  ×  10 6  N/m 2 . It is used as an inner 

hinge ligament, with a cross-sectional area of 0.78 mm 2

and a relaxed length of 1.0 mm. When the muscles in 

the shell relax, the shell opens. This increases efficiency 

as the muscles do not need to exert any force to open the 

shell, only to close it. If the muscles must exert a force 

of 1.5 N to keep the shell closed, by how much is the 

abductin ligament compressed?  

   7. A 0.50-m-long guitar string, of cross-sectional area 

1.0  ×  10  − 6  m 2 , has Young’s modulus  Y   =  2.0  ×  10 9  N/m 2 . 

By how much must you stretch the string to obtain a 

tension of 20 N?  

        8.  It takes a flea 1.0  ×  10  − 3  s to reach a peak speed of 0.74 m/s. 

(a) If the mass of the flea is 0.45  ×  10  − 6  kg, what is the 

average power required? (b) Insect muscle has a maxi-

mum output of 60 W/kg. If 20% of the flea’s weight 

is muscle, can the muscle provide the power needed? 

(c) The flea has a resilin pad at the base of the hind 

leg that compresses when the flea bends its leg to 

jump. If we assume the pad is a cube with a side of 

6.0  ×  10  − 5  m, and the pad compresses fully, what is 

the energy stored in the compression of the pads of 

the two hind legs? The Young’s modulus for resilin is 

1.7  ×  10 6  N/m 2 . (d) Does this provide enough power 

for the jump?    

  10.3 Beyond Hooke’s Law 

      9.  Using the stress-strain graph for bone ( Fig. 10.4c ), cal-

culate Young’s moduli for tension and for compression. 

Consider only small stresses.  

10.  An acrobat of mass 55 kg is going to hang by her teeth 

from a steel wire and she does not want the wire to 

stretch beyond its elastic limit. The elastic limit for the 

wire is 2.5  ×  10 8  Pa. What is the minimum diameter the 

wire should have to support her?  

      11.  A hair breaks under a tension of 1.2 N. What is the diam-

eter of the hair? The tensile strength is 2.0  ×  10 8  Pa.  

12. The ratio of the tensile (or compressive) strength to the 

density of a material is a measure of how strong the 

material is “pound for pound.” (a) Compare tendon 

(tensile strength 80.0 MPa, density 1100 kg/m 3 ) with 

steel (tensile strength 0.50 GPa, density 7700 kg/m 3 ): 

which is stronger “pound for pound” under tension? 

(b) Compare bone (compressive strength 160 MPa, den-

sity 1600 kg/m 3 ) with concrete (compressive strength 

0.40 GPa, density 2700 kg/m 3 ): which is stronger “pound 

for pound” under compression?  

13.  What is the maximum load that could be suspended 

from a copper wire of length 1.0 m and radius 1.0 mm 

without permanently deforming the wire? Copper has 

an elastic limit of 2.0  ×  10 8  Pa and a tensile strength of 

4.0  ×  10 8  Pa.  

    14.  What is the maximum load that could be suspended 

from a copper wire of length 1.0 m and radius 1.0 mm 

✦✦

PROBLEMS 385



386  CHAPTER 10  Elasticity and Oscillations

without breaking the wire? Copper has an elastic limit 

of 2.0  ×  10 8  Pa and a tensile strength of 4.0  ×  10 8  Pa.  

15.  The leg bone (femur) breaks under a compressive force 

of about 5  ×  10 4  N for a human and 10  ×  10 4  N for a 

horse. The human femur has a compressive strength of 

1.6  ×  10 8  Pa, while the horse femur has a compressive 

strength of 1.4  ×  10 8  Pa. What is the effective cross-

sectional area of the femur in a human and in a horse? 

( Note:  Since the center of the femur contains bone mar-

row, which has essentially no compressive strength, the 

effective cross-sectional area is about 80% of the total 

cross-sectional area.)  

   16. The maximum strain of a steel wire with Young’s mod-

ulus 2.0  ×  10 11  N/m 2 , just before breaking, is 0.20%. 

What is the stress at its breaking point, assuming that 

strain is proportional to stress up to the breaking point?  

17.  A marble column with a cross-sectional area of 25 cm 2

supports a load of 7.0  ×  10 4  N. The marble has a Young’s 

modulus of 6.0  ×  10 10  Pa and a compressive strength of 

2.0  ×  10 8  Pa. (a) What is the stress in the column? 

(b) What is the strain in the column? (c) If the column is 

2.0 m high, how much is its length changed by support-

ing the load? (d) What is the maximum weight the col-

umn can support?  

   18. A copper wire of length 3.0 m is observed to stretch by 

2.1 mm when a weight of 120 N is hung from one end. 

(a) What is the diameter of the wire and what is the ten-

sile stress in the wire? (b) If the tensile strength of cop-

per is 4.0  ×  10 8  N/m 2 , what is the maximum weight that 

may be hung from this wire?    

  10.4 Shear and Volume Deformations 

    19. A sphere of copper is subjected to 100 MPa of pressure. 

The copper has a bulk modulus of 130 GPa. By what 

fraction does the volume of the sphere change? By what 

fraction does the radius of the sphere change?  

    20.  By what percentage does the density of water increase 

at a depth of 1.0 km below the surface?  

21.  Atmospheric pressure on Venus is about 90 times that 

on Earth. A steel sphere with a bulk modulus of 

160 GPa has a volume of 1.00 cm 3  on Earth. If it were 

put in a pressure chamber and the pressure were 

increased to that of Venus (9.12 MPa), how would its 

volume change?  

    22.  How would the volume of 1.00 cm 3  of aluminum on Earth 

change if it were placed in a vacuum chamber and the 

pressure changed to that of the Moon (less than 10  − 9  Pa)?  

    23.  Two steel plates are fastened together using four bolts. 

The bolts each have a shear modulus of 8.0  ×  10 10  Pa 

and a shear strength of 6.0  ×  10 8  Pa. The radius of each 

bolt is 1.0 cm. Normally, the bolts clamp the two plates 

together and the frictional forces between the plates 

keep them from sliding. If the bolts are loose, then the 

frictional forces are small and the bolts themselves 

would be subject to a large shear stress. What is the 

maximum shearing force  F  on the plates that the four 

bolts can withstand? 

F
F

    24.  An anchor, made of cast iron of bulk modulus 

60.0  ×  10 9  Pa and of volume 0.230 m 3 , is lowered over 

the side of the ship to the bottom of the harbor where 

the pressure is greater than sea level pressure by 

1.75  ×  10 6  Pa. Find the change in the volume of the 

anchor.  

25.  The upper surface of a cube of gelatin, 5.0 cm on a side, 

is displaced 0.64 cm by a tangential force. If the shear 

modulus of the gelatin is 940 Pa, what is the magnitude 

of the tangential force?  

    26.  A large sponge has forces of magnitude 12 N applied in 

opposite directions to two opposite faces of area 42 cm 2

(see  Fig. 10.7 for a similar situation ). The thickness of 

the sponge ( L ) is 2.0 cm. The deformation angle ( g  ) is 

8.0 ° . (a) What is Δ x?  (b) What is the shear modulus of 

the sponge?    

  10.5 Simple Harmonic Motion;  

  10.6 The Period and Frequency for SHM 

     27.  The period of oscillation of a spring-and-mass system is 

0.50 s and the amplitude is 5.0 cm. What is the magni-

tude of the acceleration at the point of maximum exten-

sion of the spring?  

   28. A sewing machine needle moves with a rapid vibratory 

motion, rather like SHM, as it sews a seam. Suppose the 

needle moves 8.4 mm from its highest to its lowest posi-

tion and it makes 24 stitches in 9.0 s. What is the maxi-

mum needle speed?  

29.  The prong of a tuning fork moves back and forth when 

it is set into vibration. The distance the prong moves 

between its extreme positions is 2.24 mm. If the fre-

quency of the tuning fork is 440.0 Hz, what are the 

maximum velocity and the maximum acceleration of 

the prong? Assume SHM.  

   30. The period of oscillation of an object in an ideal spring-

and-mass system is 0.50 s and the amplitude is 5.0 cm. 

What is the speed at the equilibrium point?  

    31.  Show that the equation  a   =   −  w   2  x  is consistent for units, 

and that      √
____

 k/m     has the same units as  w .  

    32.  A 170-g object on a spring oscillates left to right on a 

frictionless surface with a frequency of 3.00 Hz and an 

amplitude of 12.0 cm.  (a)  What is the spring constant? 

(b) If the object starts at  x   =  12.0 cm at  t   =  0 and the 

equilibrium point is at  x   =  0, what equation describes its 

position as a function of time?  

33.  The air pressure variations in a sound wave cause the 

eardrum to vibrate. (a) For a given vibration amplitude, 



are the maximum velocity and acceleration of the ear-

drum greatest for high-frequency sounds or low-

frequency sounds? (b) Find the maximum velocity and 

acceleration of the eardrum for vibrations of amplitude 

1.0  ×  10  − 8  m at a frequency of 20.0 Hz. (c) Repeat (b) for 

the same amplitude but a frequency of 20.0 kHz.  

   34. Show that, for SHM, the maximum displacement, veloc-

ity, and acceleration are related by      v  m  
2
   =  a m  A.    

    35.  An empty cart, tied between two ideal springs, oscil-

lates with  w    =  10.0 rad/s. A load is placed in the cart, 

making the total mass 4.0 times what it was before. 

What is the new value of  w ?  

   36. A cart with mass  m  is attached between two ideal 

springs, each with the same spring constant  k.  Assume 

that the cart can oscillate without friction. (a) When the 

cart is displaced by a small distance  x  from its equilib-

rium position, what force magnitude acts on the cart? 

(b) What is the angular frequency, in terms of  m,   x,  and 

 k,  for this cart? (   tutorial: cart between springs) 

     

    37.  In a playground, a wooden horse is attached to the ground 

by a stiff spring. When a 24-kg child sits on the horse, the 

spring compresses by 28 cm. With the child sitting on the 

horse, the spring oscillates up and down with a frequency 

of 0.88 Hz. What is the oscillation frequency of the spring 

when no one is sitting on the horse?  

     38. A small bird’s wings can undergo a maximum displace-

ment amplitude of 5.0 cm (distance from the tip of the 

wing to the horizontal). If the maximum acceleration of 

the wings is 12 m/s 2 , and we assume the wings are 

undergoing simple harmonic motion when beating, 

what is the oscillation frequency of the wing tips?  

    39.  Equipment to be used in airplanes or spacecraft is often 

subjected to a shake test to be sure it can withstand the 

vibrations that may be encountered during flight. A 

radio receiver of mass 5.24 kg is set on a platform that 

vibrates in SHM at 120 Hz and with a maximum accel-

eration of 98 m/s 2  ( =  10 g ). Find the radio’s (a) maxi-

mum displacement, (b) maximum speed, and (c) the 

maximum net force exerted on it.  

    40.  In an aviation test lab, pilots are subjected to vertical 

oscillations on a shaking rig to see how well they can 

recognize objects in times of severe airplane vibration. 

The frequency can be varied from 0.02 to 40.0 Hz and 

the amplitude can be set as high as 2 m for low frequen-

cies. What are the maximum velocity and acceleration 

to which the pilot is subjected if the frequency is set at 

25.0 Hz and the amplitude at 1.00 mm?  

    41.  The diaphragm of a speaker has a mass of 50.0 g and 

responds to a signal of frequency 2.0 kHz by moving 

back and forth with an amplitude of 1.8  ×  10  − 4  m at that 

frequency. (a) What is the maximum force acting on the 

diaphragm? (b) What is the mechanical energy of the 

diaphragm?  

   42. An ideal spring has a spring constant  k   =  25 N/m. The 

spring is suspended vertically. A 1.0-kg body is attached 

to the unstretched spring and released. It then performs 

oscillations. (a) What is the magnitude of the accelera-

tion of the body when the extension of the spring is a 

maximum? (b) What is the maximum extension of the 

spring?  

43.  An ideal spring with a spring constant of 15 N/m is sus-

pended vertically. A body of mass 0.60 kg is attached to 

the unstretched spring and released. (a) What is the 

extension of the spring when the speed is a maximum? 

(b) What is the maximum speed?  

    44.  A 0.50-kg object, suspended from an ideal spring of 

spring constant 25 N/m, is oscillating vertically. How 

much change of kinetic energy occurs while the object 

moves from the equilibrium position to a point 5.0 cm 

lower?  

45.  A small rowboat has a mass of 47 kg. When a 92-kg 

person gets into the boat, the boat floats 8.0 cm lower in 

the water. If the boat is then pushed slightly deeper in 

the water, it will bob up and down with simple harmonic 

motion (neglecting any friction). What will be the period 

of oscillation for the boat as it bobs around its equilib-

rium position?  

    46.  A baby jumper consists of a cloth seat suspended by an 

elastic cord from the lintel of an open doorway. The 

unstretched length of the cord is 1.2 m and the cord 

stretches by 0.20 m when a baby of mass 6.8 kg is 

placed into the seat. The mother then pulls the seat down 

by 8.0 cm and releases it. (a) What is the period of the 

motion? (b) What is the maximum speed of the baby?    

  10.7 Graphical Analysis of SHM 

    47. The displacement of an object in SHM is given by 

y ( t )  =  (8.0 cm) sin [(1.57 rad/s) t ]. What is the frequency 

of the oscillations?  

    48.  A body is suspended vertically from an ideal spring of 

spring constant 2.5 N/m. The spring is initially in its 

relaxed position. The body is then released and oscil-

lates about its equilibrium position. The motion is 

described by

   y = (4.0 cm) sin [(0.70 rad/s)t] 

  What is the maximum kinetic energy of the body?  

    49.  An object of mass 306 g is attached to the base of 

a spring, with spring constant 25 N/m, that is hang-

ing from the ceiling. A pen is attached to the back of the 

object, so that it can write on a paper placed behind 

the mass-spring system. Ignore friction. (a) Describe 

the pattern traced on the paper if the object is held at the 
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point where the spring is relaxed and then released 

at  t   =  0. (b) The experiment is repeated, but now the 

paper moves to the left at constant speed as the pen 

writes on it. Sketch the pattern traced on the paper. 

Imagine that the paper is long enough that it doesn’t 

run out for several oscillations.  

    50.  (a) Sketch a graph of  x ( t )  =   A  sin  w   t  (the position of an 

object in SHM that is at the equilibrium point at  t   =  0). 

(b) By analyzing the slope of the graph of  x ( t ), sketch a 

graph of  v   x  ( t ). Is  v   x  ( t ) a sine or cosine function? (c) By 

analyzing the slope of the graph of  v   x  ( t ), sketch  a   x  ( t ). 

(d) Verify that  v   x  ( t ) is       1 _ 
4
     cycle ahead of  x ( t ) and that  a   x  ( t ) 

is       1 _ 
4
     cycle ahead of  v   x  ( t ). (   tutorial: sinusoids)  

    51.  A mass-and-spring system oscillates with amplitude  A  

and angular frequency  w . (a) What is the  average  speed 

during one complete cycle of oscillation? (b) What is 

the maximum speed? (c) Find the ratio of the average 

speed to the maximum speed. (d) Sketch a graph of 

 v   x  ( t ), and refer to it to explain why this ratio is greater 

than       1 _ 
2
  .    

     52. A ball is dropped from a height  h  onto the floor and 

keeps bouncing. No energy is dissipated, so the ball 

regains the original height  h  after each bounce. Sketch 

the graph for  y ( t ) and list several features of the graph 

that indicate that this motion is  not  SHM.  

    53.  A 230.0-g object on a spring oscillates left to right on a 

frictionless surface with a frequency of 2.00 Hz. Its posi-

tion as a function of time is given by  x   =  (8.00 cm) sin  w   t.  

(a) Sketch a graph of the elastic potential energy as a 

function of time. (b) The object’s velocity is given by 

 v   x    =   w  (8.00 cm) cos  w   t.  Graph the system’s kinetic 

energy as a function of time. (c) Graph the sum of the 

kinetic energy and the potential energy as a function of 

time. (d) Describe qualitatively how your answers would 

change if the surface weren’t frictionless.  

     54. (a) Given that the position of an object is  x ( t )  =   A  cos  w   t,  

show that  v   x  ( t )  =   −  w   A  sin  w   t.  [ Hint:  Draw the velocity 

vector for point  P  in  Fig. 10.17b  and then find its  x -

component.] (b) Verify that the expressions for  x ( t ) and 

 v   x  ( t ) are consistent with energy conservation. [ Hint:  

Use the trigonometric identity sin 2   w   t   +  cos 2   w   t   =  1.]    

  10.8 The Pendulum 

     55.  What is the period of a pendulum consisting of a 6.0-kg 

mass oscillating on a 4.0-m-long string?  

    56.  A pendulum of length 75 cm and mass 2.5 kg swings 

with a mechanical energy of 0.015 J. What is the 

amplitude?  

    57.  A 0.50-kg mass is suspended from a string, forming a 

pendulum. The period of this pendulum is 1.5 s when 

the amplitude is 1.0 cm. The mass of the pendulum is 

now reduced to 0.25 kg. What is the period of oscilla-

tion now, when the amplitude is 2.0 cm? (   tutorial: 

change in period)  

✦✦

    58.  A bob of mass  m  is suspended from a string of length  L,  

forming a pendulum. The period of this pendulum is 2.0 s. 

If the pendulum bob is replaced with one of mass       1 _ 
3
   m

and the length of the pendulum is increased to 2 L,  what 

is the period of oscillation?  

   59. A pendulum (mass  m,  unknown length) moves accord-

ing to  x   =   A  sin  w   t.  (a) Write the equation for  v   x  ( t ) and 

sketch one cycle of the  v   x  ( t ) graph. (b) What is the max-

imum kinetic energy?  

    60.  A clock has a pendulum that performs one full swing every 

1.0 s (back  and  forth). The object at the end of the pendu-

lum weighs 10.0 N. What is the length of the pendulum?  

    61.  A pendulum of length  L  1  has a period  T  1   =  0.950 s. The 

length of the pendulum is adjusted to a new value  L  2
such that  T  2   =  1.00 s. What is the ratio  L  2 / L  1 ?  

62. A pendulum clock has a period of 0.650 s on Earth. It is 

taken to another planet and found to have a period of 

0.862 s. The change in the pendulum’s length is negligi-

ble. (a) Is the gravitational field strength on the other 

planet greater than or less than that on Earth? (b) Find 

the gravitational field strength on the other planet.  

    63.  A grandfather clock is constructed so that it has a simple 

pendulum that swings from one side to the other, a dis-

tance of 20.0 mm, in 1.00 s. What is the maximum speed 

of the pendulum bob? Use two different methods. First, 

assume SHM and use the relationship between amplitude 

and maximum speed. Second, use energy conservation.  

     64. Christy has a grandfather clock with a pendulum that is 

1.000 m long. (a) If the pendulum is modeled as a simple 

pendulum, what would be the period? (b) Christy observes 

the actual period of the clock, and finds that it is 1.00% 

faster than that for a simple pendulum that is 1.000 m 

long. If Christy models the pendulum as two objects, a 

1.000-m uniform thin rod and a point mass located 1.000 m 

from the axis of rotation, what percentage of the total 

mass of the pendulum is in the uniform thin rod?  

      65.  A pendulum of length 120 cm swings with an amplitude 

of 2.0 cm. Its mechanical energy is 5.0 mJ. What is the 

mechanical energy of the same pendulum when it swings 

with an amplitude of 3.0 cm?  

66.  A thin circular hoop is sus-

pended from a knife edge. 

Its rotational inertia about 

the rotation axis (along the 

knife) is  I   =  2 mr  2 . Show that 

it oscillates with the same 

frequency as a simple pen-

dulum of length equal to the 

diameter of the hoop. 

     10.9 Damped Oscillations 

     67.  (a) What is the energy of a pendulum ( L   =  1.0 m,  m   =  

0.50 kg) oscillating with an amplitude of 5.0 cm? (b) The 

pendulum’s energy loss (due to damping) is replaced in a 

✦✦

✦✦

✦✦



clock by allowing a 2.0-kg mass to drop 1.0 m in 1 week. 

What average percentage of the pendulum’s energy is 

lost during one cycle?  

68. The amplitude of oscillation of a pendulum decreases 

by a factor of 20.0 in 120 s. By what factor has its 

energy decreased in that time?  

69.  Because of dissipative forces, the amplitude of an oscil-

lator decreases 5.00% in 10 cycles. By what percentage 

does its  energy  decrease in ten cycles?    

  Comprehensive Problems 

    70. Four people sit in a car. The masses of the people are 

45 kg, 52 kg, 67 kg, and 61 kg. The car’s mass is 1020 kg. 

When the car drives over a bump, its springs cause an 

oscillation with a frequency of 2.00 Hz. What would the 

frequency be if only the 45-kg person were present?  

    71.  A pendulum passes  x   =  0 with a speed of 0.50 m/s; it 

swings out to  A   =  0.20 m. What is the period  T  of the 

pendulum? (Assume the amplitude is small.)  

72. What is the length of a simple pendulum whose hori-

zontal position is described by

    x = (4.00 cm) cos [(3.14 rad/s) t]?  

  What assumption do you make when answering this 

question?  

    73.  Martin caught a fish and wanted to know how much it 

weighed, but he didn’t have a scale. He did, however, 

have a stopwatch, a spring, and a 4.90-N weight. He 

attached the weight to the spring and found that the 

spring would oscillate 20 times in 65 s. Next he hung 

the fish on the spring and found that it took 220 s for the 

spring to oscillate 20 times. (a) Before answering part 

(b), determine if the fish weighs more or less than 4.90 N. 

(b) What is the weight of the fish?  

    74.  A naval aviator had to eject from her plane before it 

crashed at sea. She is rescued from the water by heli-

copter and dangles from a cable that is 45 m long while 

being carried back to the aircraft carrier. What is the 

period of her vibration as she swings back and forth 

while the helicopter hovers over her ship?  

    75.  An object of mass  m  is hung from the base of an ideal 

spring that is suspended from the ceiling. The spring 

has a spring constant  k.  The object is pulled down a 

distance  D  from equilibrium and released. Later, the 

same system is set oscillating by pulling the object 

down a distance 2 D  from equilibrium and then releas-

ing it. (a) How do the period and frequency of oscilla-

tion change when the initial displacement is increased 

from  D  to 2 D?  (b) How does the total energy of oscil-

lation change when the initial displacement is increased 

from  D  to 2 D?  Give the answer as a numerical ratio. 

(c) The mass-spring system is set into oscillation a third 

time. This time the object is pulled down a distance of 

✦✦

✦✦

2 D  and then given a push downward some more, so 

that it has an initial speed  v  i  downward. How do the 

period and frequency of oscillation compare to those 

you found in part (a)? (d) How does the total energy 

compare to when the object was released from rest at a 

displacement 2 D?   

     76. A spider’s web can undergo SHM when a fly lands on it 

and displaces the web. For simplicity, assume that a web 

obeys Hooke’s law (which it does not really as it deforms 

permanently when displaced). If the web is initially 

horizontal, and a fly landing on the web is in equilib-

rium when it displaces the web by 0.030 mm, what is 

the frequency of oscillation when the fly lands?  

      77.  A mass-spring system oscillates so that the position of the 

mass is described by  x   =   − 10 cos (1.57 t ), where  x  is in cm 

when  t  is in seconds. Make a plot that has a dot for the 

position of the mass at  t   =  0,  t   =  0.2 s,  t   =  0.4 s, . . . ,  t   =  4 s. 

The time interval between each dot should be 0.2 s. From 

your plot, tell where the mass is moving fastest and where 

slowest. How do you know?  

   78. A hedge trimmer has a blade that moves back and forth 

with a frequency of 28 Hz. The blade motion is con-

verted from the rotation provided by the electric motor 

to an oscillatory motion by means of a Scotch yoke (see 

Conceptual Question 7). The blade moves 2.4 cm dur-

ing each stroke. Assuming that the blade moves with 

SHM, what are the maximum speed and maximum 

acceleration of the blade?  

    79.  The simple pendulum can be thought of as a special 

case of the physical pendulum where all of the mass is 

at a distance  L  from the rotation axis. For a simple pen-

dulum of mass  m  and length  L,  show that the expression 

for the period of a physical pendulum (Eq. 10-27) 

reduces to the expression for the period of a simple pen-

dulum (Eq. 10-26b).  

   80. Luke is trying to catch a pesky animal that keeps eating 

vegetables from his garden. He is building a trap and 

needs to use a spring to close the door to his trap. He 

has a spring in his garage and he wants to determine the 

spring constant of the spring. To do this, he hangs the 

spring from the ceiling and measures that it is 20.0 cm 

long. Then he hangs a 1.10-kg brick on the end of the 

spring and it stretches to 31.0 cm. (a) What is the spring 

constant of the spring? (b) Luke now pulls the brick 

5.00 cm from the equilibrium position to watch it oscil-

late. What is the maximum speed of the brick? (c) When 

the displacement is 2.50 cm from the equilibrium posi-

tion, what is the speed of the brick? (d) How long will it 

take for the brick to oscillate five times?  

    81.  A 4.0-N body is suspended vertically from an ideal 

spring of spring constant 250 N/m. The spring is ini-

tially in its relaxed position. Write an equation to 

describe the motion of the body if it is released at 

 t   =  0. [ Hint:  Let  y   =  0 at the equilibrium point and 

take  +  y   =  up.]  

COMPREHENSIVE PROBLEMS 389
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   82. Show, using dimensional analysis, that the frequency  f  

at which a mass-spring system oscillates radical is 

independent of the amplitude  A  and proportional to      
√

____

 k/m  .   [ Hint:  Start by assuming that  f  does depend on  A

(to some power).]  

    83.  A horizontal spring with spring constant of 9.82 N/m is 

attached to a block with a mass of 1.24 kg that sits on 

a frictionless surface. When the block is 0.345 m from 

its equilibrium position, it has a speed of 0.543 m/s. 

(a) What is the maximum displacement of the block 

from the equilibrium position? (b) What is the maxi-

mum speed of the block? (c) When the block is 0.200 m 

from the equilibrium position, what is its speed?  

   84. A steel piano wire 

( Y   =  2.0  ×  10 11  Pa) has a 

diameter of 0.80 mm. At 

one end it is wrapped 

around a tuning pin of diameter 8.0 mm. The length of 

the wire (not including the wire wrapped around the tun-

ing pin) is 66 cm. Initially, the tension in the wire is 381 N. 

To tune the wire, the tension must be increased to 402 N. 

Through what angle must the tuning pin be turned? 

     85.  When the tension is 402 N, what is the tensile stress in 

the piano wire in Problem 84? How does that compare 

to the elastic limit of steel piano wire (8.26  ×  10 8  Pa)?  

   86. A tightrope walker who weighs 640 N walks along a 

steel cable. When he is halfway across, the cable makes 

an angle of 0.040 rad below the horizontal. (a) What is 

the strain in the cable? Assume the cable is horizontal 

with a tension of 80 N before he steps onto it. Ignore the 

weight of the cable itself. (b) What is the tension in the 

cable when the tightrope walker is standing at the mid-

point? (c) What is the cross-sectional area of the cable? 

(d) Has the cable been stretched beyond its elastic limit 

(2.5  ×  10 8  Pa)? 

Problem 86 (the 0.040-rad angles are greatly exaggerated).

0.040 rad 0.040 rad

    87.  A gibbon, hanging onto a horizontal tree branch with 

one arm, swings with a small amplitude. The gibbon’s 

cm  is 0.40 m from the branch and its rotational inertia 

divided by its mass is  I / m   =  0.25 m 2 . Estimate the fre-

quency of oscillation.  

88. In Problem 8.41, we found that the force of the tibia 

(shinbone) on the ankle joint for a person (of weight 

750 N) standing on the ball of one foot was 2800 N. The 

ankle joint therefore pushes upward on the bottom of 

the tibia with a force of 2800 N, while the top end of the 

tibia must feel a net downward force of approximately 

2800 N (ignoring the weight of the tibia itself ). The tibia 

has a length of 0.40 m, an average inner diameter of 

1.3 cm, and an average outer diameter of 2.5 cm. (The 

central core of the bone contains marrow that has negli-

gible compressive strength.) (a) Find the average cross-

sectional area of the tibia. (b) Find the compressive 

stress in the tibia. (c) Find the change in length for the 

tibia due to the compressive forces. 

2050 N

2050 N

750 N

750 N

2800 N

2800 N2800 N

2800 N

0.40 m

1.3 cm

2.5 cm

Cross section

89.  The maximum height of a cylindrical column is limited 

by the compressive strength of the material; if the com-

pressive stress at the bottom were to exceed the com-

pressive strength of the material, the column would be 

crushed under its own weight. (a) For a cylindrical col-

umn of height  h  and radius  r,  made of material of den-

sity  r , calculate the compressive stress at the bottom of 

the column. (b) Since the answer to part (a) is indepen-

dent of the radius  r,  there is an absolute limit to the 

height of a cylindrical column, regardless of how wide 

it is. For marble, which has a density of 2.7  ×  10 3  kg/m 3

and a compressive strength of 2.0  ×  10 8  Pa, find the 

maximum height of a cylindrical column. (c) Is this 

limit a practical concern in the construction of marble 

columns? Might it limit the height of a beanstalk?  

90.  A bungee jumper leaps from a bridge and undergoes a 

series of oscillations. Assume  g   =  9.78 m/s 2 . (a) If a 

60.0-kg jumper uses a bungee cord that has an unstretched 

length of 33.0 m and she jumps from a height of 50.0 m 

above a river, coming to rest just a few centimeters 

above the water surface on the first downward descent, 

what is the period of the oscillations? Assume the 

bungee cord follows Hooke’s law. (b) The next jumper 

in line has a mass of 80.0 kg. Should he jump using the 

same cord? Explain.  



       91. Spider silk has a Young’s modulus of 4.0  ×  10 9  N/m 2  

and can withstand stresses up to 1.4  ×  10 9  N/m 2 . A sin-

gle web strand has a cross-sectional area of 1.0  ×  10  − 11  m 2 , 

and a web is made up of 50 radial strands. A bug lands in 

the center of a horizontal web so that the web stretches 

downward. (a) If the maximum stress is exerted on each 

strand, what angle  q    does the web make with the horizon-

tal? (b) What does the mass of a bug have to be in order to 

exert this maximum stress on the web? (c) If the web is 

0.10 m in radius, how far down does the web extend? 

0.10 m

q

     

     92. What is the period of a pendulum formed by placing a 

horizontal axis (a) through the end of a meterstick (100-cm 

mark)? (b) through the 75-cm mark? (c) through the 

60-cm mark?  

        93.  The motion of a simple pendulum is approximately 

SHM only if the amplitude is small. Consider a simple 

pendulum that is released from a horizontal position 

( q   i   =  90 °  in  Fig. 10.22 ). (a) Using conservation of energy, 

find the speed of the pendulum bob at the bottom of its 

swing. Express your answer in terms of the mass  m  and 

the length  L  of the pendulum. Do  not  assume SHM. 

(b) Assuming (incorrectly, for such a large amplitude) 

that the motion  is  SHM, determine the maximum speed 

of the pendulum. Based on your answers, is the period 

of a pendulum for large amplitudes larger or smaller 

than that given by Eq. (10-26b)?  

     94. The gravitational potential energy of a pendulum is 

 U   =   mgy.  (a) Taking  y   =  0 at the lowest point, show that 

 y   =   L (1  −  cos  q  ), where  q   is the angle the string makes 

with the vertical. (b) If  q   is small,     (1 − cos q ) ≈   1 _ 
2
   q  2    and 

 q   ≈  x / L  (Appendix A.7). Show that the potential energy 

can be written     U ≈   1 _ 
2
  k x 2    and find the value of  k  (the 

equivalent of the spring constant for the pendulum).  

      95.  A pendulum is made from a uniform rod of mass  m  1  and 

a small block of mass  m  2  attached at the lower end. 

(a) If the length of the pendulum is  L  and the oscilla-

tions are small, find the period of the oscillations in 

terms of  m  1 ,  m  2 ,  L,  and  g.  (b) Check your answer to part 

(a) in the two special cases  m  1  >>  m  2  and  m  1  <<  m  2 .  

       96. Resilin is a rubber-like protein that helps insects to fly 

more efficiently. The resilin, attached from the wing to 

the body, is relaxed when the wing is down and is extended 

when the wing is up. As the wing is brought up, some 

elastic energy is stored in the resilin. The wing is then 

brought back down with little muscular energy, since the 

✦✦

✦✦

✦✦

✦✦

✦✦

potential energy in the resilin is converted back into kinetic 

energy. Resilin has a Young’s modulus of 1.7  ×  10 6  N/m 2 . 

(a) If an insect wing has resilin with a relaxed length of 

1.0 cm and with a cross-sectional area of 1.0 mm 2 , how 

much force must the wings exert to extend the resilin to 

4.0 cm? (b) How much energy is stored in the resilin?     

          Answers to Practice Problems 

     10.1  2 k  (When the original spring is stretched an amount  L,  

each of the half-springs stretches only       1 _ 
2
  L.   Each of the newly 

formed springs stretches half as far as the original spring for 

a given applied force.)  

    10.2  1.4  ×  10  − 5   

    10.3  0.18 mm  

    10.4  1.3  ×  10 8  Pa  

    10.5       −   ΔP ___ 
B

   = −    1.0 ×  10 7  Pa ___________ 
2.3  ×  10 9  Pa

   = − 0.0043 =   ΔV
 ___ 

V
    

 and Δ V   =   −  0.43%  ×   V   

    10.6  110 m/s 2  at  x   =   ±   A   

    10.7   K   =  0,  U  e   =  2( mg ) 2 / k,   U  g   =   − ( mg ) 2 / k,   E   =  ( mg ) 2 / k   

    10.8   

ax (m/s2)

370

0.02 0.04 0.06

–370

t (s)

 a   x  ( t )  =   −  a  m  cos  w   t,  where  w    =  160 rad/s and  a  m   =  370 m/s 2 . 

     10.9  1.6 m/s 2  (about 1/6 that of the Earth)  

    10.10  0.82 m/s or 1.8 mi/h    

  Answers to Checkpoints 

     10.2  The two wires are under the same stress (same tensile 

force and same cross-sectional area). Young’s modulus for 

steel is about       5 _ 
3
     times that for copper, so the  strain  for the 

steel wire is       3 _ 
5
     the strain of the copper wire. However, the 

strain is the  fractional  length change. The steel wire is twice 

as long, so its length change is 2  ×  (3/5) times the length 

change of the copper wire. The steel wire stretches more.  

    10.5  When the kinetic and potential energies are equal, each is 

half of the total energy. When    U =   1 _ 
2
   k x 2  =   1 _ 

2
    E 

total
   =   1 _ 

2
   (  1 _ 

2
   k A 2 ),          

x = ± A/ √
__

 2  .     

    10.7  (a) When the displacement is zero, the potential energy 

has its minimum value. From conservation of energy, the 

kinetic energy then has its maximum value. Therefore, the 

speed has its maximum magnitude ( v   =   ±   v  m ), as shown in 

 Fig. 10.20 . (b) When the speed is zero, the kinetic energy is 

minimum and the potential energy is maximum. Therefore, 

the displacement has its maximum magnitude ( x   =   ±   A ).      

✦
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 C H A P T E R 

 11  Waves 

   O n January 17, 1995, a ter-

rible earthquake struck the 

Hanshin region of Japan, 

killing over 6400 people and 

injuring about 40 000 others. 

Some 200 000 homes and 

buildings were damaged, caus-

ing the evacuation to shelters 

of 320 000 people. The heavi-

est damage occurred in the city 

of Kobe, including the buckling 

and collapse of an elevated 

highway. However, geologists 

found that the point of origin 

of the earthquake was 15–20 

km below the northern tip of 

Awaji Island, about 20 km 

southwest of Kobe. How did 

the earthquake cause great 

devastation at locations many 

kilometers away? (See p. 393 

for the answer.)        



 • period, frequency, angular frequency (Section 10.6) 

 • position, velocity, acceleration, and energy in simple harmonic motion 

(Section 10.5) 

 • resonance (Section 10.10) 

 • graphical analysis of SHM (Section 10.7)   

    11.1  WAVES AND ENERGY TRANSPORT     

   Basic Models: Particles and Waves    Physicists use only a few basic models to describe 

the physical world. One such model is the particle: a pointlike object with no inner 

structure and with certain characteristics such as mass and electric charge. Another basic 

model is the    wave.    Water waves are familiar examples. When a pebble is dropped into a 

pond, it disturbs the surface of the water. Ripples on the surface of the pond travel away 

from the spot where the pebble landed.      

   Examples of Waves    Any wave is characterized as some sort of “disturbance” that 

travels away from its source. In Chapters 11 and 12, we concentrate on mechanical 

waves traveling through a material medium, such as water waves, sound waves, and 

the seismic waves caused by earthquakes. Particles in the medium are disturbed from 

their equilibrium positions as the wave passes, returning to their equilibrium posi-

tions after the wave has passed. In Chapter 22, we discuss electromagnetic waves 

such as radio waves and light waves, in which the disturbance consists of oscillating 

electromagnetic fields. Two of our five human senses are wave detectors: the ear is 

sensitive to the tiny fluctuations in air pressure caused by compressional waves in air 

(sound) and the eye is sensitive to electromagnetic waves in a certain frequency 

range (light).   

  Energy Transport by a Wave 

 Suppose we drop a pebble into a still pond. The kinetic energy of the pebble just 

before it hits the pond is partly converted into the energy carried off by the water 

wave. That waves carry energy is clear to anyone who has been surfing or swimming 

in the ocean. Speaking of surfing, information on the Internet is carried by waves of 

various sorts: electrical waves in wires, microwaves between Earth and communica-

tions satellites, light waves in optical fibers. Microwaves in ovens carry energy from 

their source to the food; the electromagnetic energy of the microwaves is absorbed by 

water molecules in the food and appears as thermal energy. Electromagnetic waves 

from the Sun bring the energy that fuels the growth of green plants. Seismic waves 

carry energy released by an earthquake to other parts of the Earth, sometimes with 

devastating results.     

 Seismic waves travel away from the  focus  of an earthquake (the point of origin) 

both through the Earth ( body waves ) and along the Earth’s crust ( surface waves ), trans-

porting vibrations and energy. However, the material through which the waves travel is 

 not  transported. Most earthquake damage is caused by seismic waves rather than caused 

by fault movement. In the Hanshin earthquake, damage to buildings was caused by seis-

mic waves at distances over 100 km from the  epicenter  (the point on the surface directly 

above the focus), but the motion of the vibrating particles in the ground never moved 

more than about 1.5 m.         

 The sound of thunder travels for miles in all directions, but none of the air mole-

cules zapped by lightning travels more than a meter or so during the few seconds that it 

takes the sound to reach our ears. A wave can transmit energy from one point to another 

without transporting any matter between the two points ( Fig. 11.1 ).      

Concepts & Skills to ReviewConcepts & Skills to Review

How can an earthquake 

cause damage far from 

the epicenter?

How can an earthquake 

cause damage far from 

the epicenter?

Epicenter
OSAKA BAYAwaji

Island

OSAKA

KOBE

Collapsed highway

Hanshin region

Kansai
International
Airport

Epicenter
OSAKA BAYAwaji

Island

OSAKA

KOBE

Collapsed highway

Hanshin region

Kansai
International
Airport
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CONNECTION: 

In wave motion, energy is 

transferred from one oscillat-

ing particle to another. 

Energy is conserved overall, 

but the energy of any one 

oscillating particle can 

change. Mechanical waves 

carry the same kinds of 

energy as a simple harmonic 

oscillator: kinetic energy and 

potential energy.
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PHYSICS AT HOME

Stretch a heavy rope between yourself and a friend and test out the transfer of 

energy from one to the other by sending wave pulses down the rope. Can you feel 

the energy transfer when the pulse arrives?

PHYSICS AT HOME

Observe carefully what happens when you snap your fingers. You start by press-

ing your thumb against your fingers and then sideways, the thumb in one direc-

tion and the fingers in the opposite direction. Initially friction keeps them from 

moving sideways, but suddenly they slip, releasing the built-up energy.

Similarly, the rocks on two sides of a fault line are pressed together and 

sideways. Friction keeps them from moving sideways as elastic (or strain) 

energy builds up. Then suddenly they slip, releasing a tremendous amount of 

energy largely in the form of seismic waves that carry vibrations far from the 

focus of the earthquake.

  Intensity 

 For a wave that travels in a three-dimensional medium (such as sound waves or seismic 

waves traveling through the Earth), the    intensity    (symbol  I,  SI unit W/m 2 ) is a measure 

of the  average power per unit area  carried by the wave past a surface perpendicular to 

the wave’s direction of propagation.   

 I = P/A  

For example, if a sound wave’s intensity is a fairly loud  I   =  10  − 5  W/m 2  when it reaches 

the eardrum and the area of the eardrum is  A   =  10  − 4  m 2 , then the power delivered to the 

eardrum is  P   =   IA   =  10  − 9  W (assuming that all the energy incident on the eardrum is 

absorbed). The energy absorbed by the eardrum at this rate in  one hour  would be   

  10 −9  W × 3600 s ≈ 4 μJ  

The human ear is a very sensitive detector indeed.         

   Intensity and Distance from the Wave Source    For most waves, the intensity 

decreases as the distance from the source increases. Some of the energy can be absorbed 

(dissipated) by the wave medium. The amount of energy absorbed depends on the 

Application: sensitivity of 

the human ear

Application: sensitivity of 

the human ear

(a)

Hand of
pitcher

(b)

Hand of
catcher

Figure 11.1 Two different ways to transfer energy. (a) When a baseball pitcher throws a ball to the catcher, the ball car-

ries energy with it. The pitcher gives the ball kinetic energy; the catcher receives the energy when the ball hits his hand and 

his hand recoils. (b) Suppose instead that they hold a rope stretched between them. If the pitcher suddenly moves his hand 

up and down quickly, a wave pulse travels along the rope until it reaches the catcher’s hand. Once again, the pitcher sends 

the energy and the catcher receives it when the rope makes his hand recoil. However, in this case the pitcher is still holding 

his end of the rope; it never leaves his hand. Energy is transferred without any matter moving from the pitcher to the catcher.



medium. Air absorbs relatively little sound energy, which is why we can hear sounds 

generated far away. 

 Another reason that intensity decreases with distance is that, as the wave spreads 

out, the energy gets spread over a larger and larger area. Consider a point source emit-

ting a wave uniformly in all directions—an  isotropic  source ( Fig. 11.2 ). The average 

power (energy per unit time) emitted is constant. Imagine a sphere surrounding the 

source; the rate at which energy passes through the surface of the sphere is the same no 

matter what the radius. The surface area of a sphere is 4 p   r   2 , so as the wave moves far-

ther from the source, the energy spreads out over a larger and larger area. Thus, the 

power per unit area (intensity) decreases with distance. Assuming that no energy is 

absorbed by the medium and there are no obstacles to reflect or absorb sound,    

 I =   
power

 ______ area   =   P _____ 
4p   r  2 

   (11-1)

(point source emitting uniformly in all directions; no reflection or absorption)

       

 Therefore, if energy absorption by the medium can be ignored, the intensity of the sound 

is inversely proportional to the square of the distance from the source. This “inverse 

square law” is the result of a conserved quantity (here, energy) radiating uniformly from 

a point source in three-dimensional space.     

        

CHECKPOINT 11.1

A siren in a fire tower 20 m high generates a sound wave with intensity 0.090 W/m2 

at a point on the ground below the tower. What is the intensity of the sound wave 

2.0 km from the tower? Assume the siren is an isotropic source.

   11.2  TRANSVERSE AND LONGITUDINAL WAVES 

  A Slinky toy can be used to demonstrate two different kinds of wave. In a    transverse    

wave, the motion of particles in the medium is perpendicular to the direction of propa-

gation of the wave. To send a transverse wave down a Slinky, wiggle the end of the 

Slinky back and forth in a direction perpendicular to the length of the Slinky ( Fig. 11.3a ). 

In a    longitudinal    wave, the motion of particles in the medium is along the same line as 

the direction of propagation of the wave. To send a longitudinal wave down the Slinky, 

jiggle the end in and out along its length to alternately stretch and compress the coils 

( Fig. 11.3b ). A red dot painted on one coil of the Slinky helps illustrate the difference. 

In a transverse wave, the dot moves back and forth about a fixed position with its motion 

perpendicular to the direction of propagation of the wave; in a longitudinal wave, the 

Figure 11.2 (a) A point 

source of sound radiating energy 

uniformly in all directions. 

(b) The intensity at a distance r2 

is smaller than the intensity at a 

distance r1 since the same power 

is spread out over a greater area.

r2

r1

(a) (b)

r1 r2
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dot also moves back and forth about a fixed position but along the direction of propaga-

tion of the wave. In both cases, the wave itself moves from one end of the Slinky to the 

other while the dot is moving about its fixed position.     

PHYSICS AT HOME

Ask a friend to sit at a table and hold one end of a long, loose spring (or a 

Slinky). With the spring supported by the table surface, grasp the other end and 

stretch the spring. Figure out how to move your hand to send transverse and 

longitudinal waves down the spring.

 The Slinky—or any long spring—is a better approximation to solid materials than 

the stretched rope. In solids both types of waves can exist; a transverse wave results 

from a shear disturbance and a longitudinal wave from a compressional disturbance. 

Therefore, seismic body waves can be either longitudinal or transverse ( Fig. 11.4 ).     

 Fluids can be compressed, but, because they flow, they do not sustain shear stresses. 

Therefore, longitudinal waves travel through fluids but transverse waves do not. How-

ever, gravity or surface tension can provide the transverse restoring force that allows a 

transverse wave to travel  along the surface  of a liquid. 

 A sound wave is longitudinal; each small volume of air vibrates back and forth 

along the direction of travel of the wave. Molecules are compressed together in some 

places and more thinly spaced ( rarefied  ) in others; the air has regions of higher and 

lower density called    compressions    and    rarefactions    (see  Fig. 11.3b ).  

Compression Compression

Rarefaction RarefactionRarefaction

(b)(a)Direction of
hand motion

Direction of
hand motion

Figure 11.3 (a) Transverse and (b) longitudinal waves on a Slinky.

P waves S waves
Surface waves

Direction of
wave propagation

Direction of
wave propagation

Direction of
wave propagation

Motion of
rock particles

Motion of
rock particles

Motion of
rock particles

(a) (b) (c)

Figure 11.4 Three types of seismic waves. (a) Longitudinal body waves (P waves) are the fastest seismic waves (typi-

cally 4–8 km/s). They are similar to sound waves in air: particles in the Earth’s interior are pushed together and pulled apart 

in the same direction that the wave propagates. (b) Transverse body waves (S waves) travel more slowly—typically 

2–5 km/s. In an S wave, particles in the Earth’s interior vibrate at right angles to the direction that the wave travels. By mea-

suring the time between the first arrivals of these two types of waves at different detection stations, geologists are able to 

determine the point of origin of the earthquake. (c) In a surface wave, the motion of the ground combines longitudinal and 

transverse components.



   Waves That Combine Transverse and Longitudinal Motion 

 Not all seismic waves are purely transverse or purely longitudinal. In a surface wave, 

the ground near the surface rolls approximately in a circle. Thus, the motion of the 

ground has components both parallel and perpendicular to the direction of propagation. 

The transverse component can either be up and down (as shown in  Fig. 11.4c ) or side to 

side. The motion of the ground is greatest at the surface. 

 Ocean waves are similar to the surface seismic wave shown in  Fig. 11.4c . Deep 

underwater, the wave is mostly longitudinal ( Fig. 11.5 ); as the wave passes, water moves 

back and forth along the direction of propagation of the wave. Higher up, the wave has 

both transverse and longitudinal components; water moves in an oval as the wave 

passes. Water near the surface moves approximately in a circle. The air above the sur-

face presents little resistance, so water swells upward more easily there and then is 

pulled back downward by gravity (or, for small amplitudes, by surface tension). When 

the wave gets close to shore, the crest often collapses or  breaks;  the motion of the water 

particles is then much more complex.     

 When a guitar string is plucked  gently,  the wave on the string is almost purely 

transverse; stretching of the string is negligible. When it is plucked more forcefully, the 

resulting wave is a combination of transverse and longitudinal waves. At any instant, 

the string is stretched more in some places than in others; a point on the string has longi-

tudinal motion as well as transverse motion.    

   11.3  SPEED OF TRANSVERSE WAVES ON A STRING 

  The speed of a mechanical wave depends on properties of the wave medium. What 

properties of a string determine the speed of a transverse wave moving along it? 

Suppose that a string of length  L  and mass  m  is under tension  F.  In Problem 56, you can 

show that      √
_____

 FL/m     is the only combination of those three quantities with the correct units 

for speed. There could be a dimensionless constant multiplier, but a derivation using 

more advanced mathematics shows that the constant is 1; the speed of a transverse wave 

on a string is   

  v =  √
___

   FL ___ m        (11-2)   

We can rewrite Eq. (11-2) in another form. Length and mass are not independent; for a 

given string composition and diameter (say, a yellow brass string of 0.030 in. diameter), 

the mass of the string is proportional to its length. By defining the    linear mass density    

(mass per unit length) of the string to be   

  m =   m __ 
L

      (11-3)   

the speed of a transverse wave on a string can be written   

 v =  √
__

   F __ m       (11-4)   

An advantage of Eq. (11-4) over Eq. (11-2) is that it shows clearly that the wave speed 

depends on  local  properties of the medium; it does not depend on how much of the 

medium there is. The wave speed in the vicinity of some point  P,  for instance, does not 

depend on how long the string is; only properties of the string in the immediate vicinity 

of point  P  can determine how fast the wave travels past that point. 

 Note that as tension increases, wave speed increases; as mass density increases, 

wave speed decreases. A somewhat more general way to think about it, applicable to 

other waves as well, is:    

More restoring force makes faster waves; more inertia makes slower waves.

Direction of
wave propagation

Figure 11.5 The motion of 

water in an ocean wave com-

bines transverse and longitudinal 

motion.
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    The speed at which a wave propagates is not the same as the speed at which a parti-

cle in the medium moves.  Suppose a horizontal string is stretched along the  x -axis and 

a transverse pulse in the  y -direction is sent down the string. The speed of propagation of 

the wave  v  is the speed at which the  pattern  or disturbance moves along the string (in 

the  x -direction); for a uniform string, the wave speed is constant. A point on the string 

vibrates up and down in the  ±  y -direction with a  different  speed that is  not  constant.       

The wave speed is not the same as 

the speed of a particle in the wave 

medium.

The wave speed is not the same as 

the speed of a particle in the wave 

medium.

The linear mass density of the string is mass per unit 

length (m = m/L). Substituting the tension and mass den-

sity, we have

v =  √
____

   F ____ 
m/L

     =  √
______

   
(Mg)L

 ______ 
m

    

=  √
_____________________

    
4.0 kg × 9.8 m/ s 2  × 2.0 m

  _____________________  
125 ×  10 −6  kg

     = 790 m/s

Discussion The weight of the string (mg) is negligible in 

comparison with the weight hanging from the end of the 

string (Mg). That is not always the case, as can be seen in 

Practice Problem 11.1.

Practice Problem 11.1 Initial Velocity of Another 
Wave Pulse Traveling on a String

A string of length 10.0 m has a linear mass density of 25 g/m. 

The string is fixed at the top and has an object of mass 0.200 kg 

hanging from the bottom. (a) What is the initial wave speed 

of a pulse sent up the string from the bottom? (b) What is the 

speed of the pulse as it approaches the top of the string? 

[Hint: Does the weight of the string itself affect the tension 

in either case?]

Example 11.1

A Piñata

A string of length 2.0 m has a 

mass of 125 mg. The string is 

attached to the ceiling and a piñata 

of mass 4.0 kg hangs from the 

other end. A child whacks the 

piñata sideways with a stick; as a 

result, a transverse pulse travels 

up the string toward the ceiling. At 

what speed does the pulse travel?

Strategy We start with a dia-

gram of the situation (see the 

figure). The piñata puts the string 

under tension. The tension in the 

string is equal to the weight of 

the piñata because the weight of 

the string itself is negligible in 

comparison. The mass and length of the string are given, so 

the linear mass density can be found. Then we can find the 

wave speed.

Solution The speed of a transverse wave on a string is 

given by Eq. (11-4):

v =  √
__

   F __ m     

where F is the tension in the string and m is the linear mass 

density of the string. The tension is equal to the weight hang-

ing on the string:

F = Mg

4.0 kg

   11.4  PERIODIC WAVES 

A    periodic    wave repeats the same pattern over and over, each repeating section trans-

porting the energy that was used to generate it. A periodic water wave can be produced 

by steadily dropping a series of pebbles into the water; a periodic wave on a cord can be 

produced by taking one end of the cord and moving it up and down, over and over, in a 

repeating pattern. As the wave propagates along the cord, every point on the cord oscil-

lates with the same up and down pattern, though with a time delay that depends on the 

wave speed. Whereas musical sounds are often periodic waves, noise is  aperiodic.

Application of periodic 

waves: the difference between 

musical sound and noise

Application of periodic 

waves: the difference between 

musical sound and noise



The human voice makes a periodic sound wave when a vowel is sung at a steady pitch 

(constant frequency); most of the consonant sounds are aperiodic ( Fig. 11.6 ).          

   Period, Frequency, Wavelength, and Amplitude    At any given point in space, a peri-

odic wave repeats itself after a time  T  called the    period.    The inverse of the period is the 

   frequency     f.    

  f =   1 __ 
T

   (SI unit Hz =  s −1 )    (5-8)   

The frequency tells how often the pattern of motion repeats itself at any single point. 

For instance, if the frequency is 20 Hz, then there are 20 repetitions, or cycles, per sec-

ond. Each cycle takes a time  T   =  1/ f   =  0.05 s. The angular frequency is  w   =  2 p   f  and is 

measured in rad/s.     

 During one period  T,  a periodic wave traveling at speed  v  moves a distance  vT.  In 

 Fig. 11.7 , note that, at any instant, points separated by a distance  vT  along the direction 

of propagation of a wave move “in sync” with each other. Thus,  vT  is the  repetition dis-

tance  of the wave, just as the period is the  repetition time.  This distance is called the 

   wavelength    (symbol  l , the Greek letter lambda).   

  l = vT    (11-5)   

Combining this relation and the expression for frequency, we obtain   

  v =   l  __ 
T

   = fl    (11-6)   

Equations (11-5) and (11-6) are true for all periodic waves, no matter how the wave is 

produced or what the shape of the wave.                        

CHECKPOINT 11.4

A seismic wave travels at 4.0 km/s and has a wavelength of 20 km. How long 

does it take a rock particle to complete one cycle of oscillation?

 The maximum displacement of any particle from its equilibrium position is the 

   amplitude     A  of the wave. For a sinusoidal wave traveling along a stretched string in the  

x -direction, the amplitude  A  is the maximum displacement of a particle in the positive or 

negative  y -direction. For surface water waves, the amplitude is the height of a crest (a high 

point) above or the depth of a trough (a low point) below the undisturbed water level. 

  Harmonic Waves      Harmonic waves    are a special kind of periodic wave in which 

the disturbance is sinusoidal (either a sine or cosine function). In a harmonic trans-

verse wave on a string, for instance, every point on the string moves in SHM with 

the same amplitude and angular frequency, although different points reach their 

maximum displacements at different times. The maximum speed and maximum 

A

–A

x

y

l

l

Crest Crest

TroughTrough

Figure 11.7 Snapshot graph 

of a sinusoidal wave moving 

with speed v in the x-direction. 

The graph shows the displace-

ment y of particles in the wave 

medium as a function of x, their 

position along the direction of 

wave propagation, at one partic-

ular time t. The amplitude A and 

the wavelength l are shown.

Figure 11.6 (a) Periodic sound 

wave pattern produced by singing 

the vowel “ah.” (b) Aperiodic 

sound wave pattern produced by 

hissing the consonant “s.” (The 

microphone generates an electri-

cal signal proportional to the 

pressure variations of the sound 

wave. This signal is displayed as 

a function of time on the screen.)
(a) (b)
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CONNECTION: 

The terminology for periodic 

waves is similar to that 

used for uniform circular 

motion (Chapter 5) and for 

simple harmonic motion 

(Chapter 10).
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acceleration of a point on the string depend on both the angular frequency and the 

amplitude of the wave:   

   v  m   = w A    (10-21)      

   a  m   =  w  2 A    (10-22)         

   Intensity and Amplitude    Since the total energy of an object moving in SHM is 

proportional to the amplitude squared (Section 10.5), the total energy of a harmonic 

wave is proportional to the square of its amplitude. Intensity is the rate at which a 

wave transports energy per unit area perpendicular to the direction of propagation. 

The intensity of a harmonic wave is proportional to its total energy and, therefore, is 

proportional to the square of the amplitude. That turns out to be a general result not 

limited to harmonic waves: 

      
The intensity of a wave is proportional to the square of its amplitude.

   11.5  MATHEMATICAL DESCRIPTION OF A WAVE 

  A wave is represented mathematically by a variation in some quantity (such as pressure 

or displacement) that is described as a function of both position and time. For a trans-

verse wave on a guitar string, the function specifies the displacement of each point on 

the string from its equilibrium position. If the string is oriented along the  x -axis and the 

displacement of any point on the string is in the  ±   y -direction, then the wave is described 

by a function of two variables:  y ( x, t ).    

   Traveling Waves    Consider a long stretched string along the  x -axis. One end of the string 

(at  x   =  0) is moved by an external agent according to some function  y   =   h ( t ); as a result, 

a transverse wave is produced that travels in the  +  x -direction with wave speed  v.  If the 

wave retains the same shape as it moves down the string, then the motion of any point 

 x  on the string copies the motion of the left end after a time delay  x / v  (the time it takes 

the wave to travel a distance  x  at speed  v —see  Fig. 11.8 ). Thus,  y ( x,   t )  =   h ( t   −   x / v ). Even 

though the function that describes the wave has two variables ( x  and  t ), these variables 

must occur in the particular combination ( t   −   x / v ) in order to describe a wave that retains 

its form as it propagates in the  +  x -direction. For a wave moving in the  −  x -direction, the 

variables would occur in the combination ( t   +   x / v ). A wave that retains its shape as it 

moves in a single direction is called a  traveling wave.                   

   Harmonic Traveling Waves    Suppose the motion of the left end of the string is described 

by  y   =   A  cos  w   t.  By substituting ( t   −   x / v ) for  t,  we obtain the function that describes the 

motion of  any  point  x  > 0:   

 y(x, t) = A cos [w (t − x/v)]  

In Eq. (10-21), vm is the 

maximum speed at which a 

point on the string moves in the 

±y-direction. vm is not the same as 

v, the speed of wave propagation in 

the ±x-direction (see Section 11.3).

In Eq. (10-21), vm is the 

maximum speed at which a 

point on the string moves in the 

±y-direction. vm is not the same as 

v, the speed of wave propagation in 

the ±x-direction (see Section 11.3).

The notation y(x, t) means 

that y is a function of x and 

t: the value of y depends on the val-

ues of x and t in such a way that 

only one value of y (the dependent 

variable) corresponds to a particular 

choice of x and t (the independent 

variables).

The notation y(x, t) means 

that y is a function of x and 

t: the value of y depends on the val-

ues of x and t in such a way that 

only one value of y (the dependent 

variable) corresponds to a particular 

choice of x and t (the independent 

variables).

+x-direction: y(x, t) = h(t − x/v)

−x-direction: y(x, t) = h(t + x/v)

To understand the notation 

 h ( t   −   x / v ), imagine that you have a 

computer program that calculates 

the function  h ( t ): you type in the 

value of  t  and the program returns 

the corresponding value of  h.  To 

find  h ( t   −   x / v ), you calculate  t   −   x / v  

and type  that  value in as input to the 

same computer program.

+x-direction: y(x, t) = h(t − x/v)

−x-direction: y(x, t) = h(t + x/v)

To understand the notation 

 h ( t   −   x / v ), imagine that you have a 

computer program that calculates 

the function  h ( t ): you type in the 

value of  t  and the program returns 

the corresponding value of  h.  To 

find  h ( t   −   x / v ), you calculate  t   −   x / v  

and type  that  value in as input to the 

same computer program.

y At t = 0

x = 0

x = 0 x = vt

v

vLater time t

y

x

x

Figure 11.8 A wave pulse, 

with the same shape, at succes-

sive times. The motion of the 

point x repeats the motion of the 

point x = 0 with a time delay 

Δt = x/v.



To simplify the writing, we introduce a constant called the    wavenumber    (symbol  k,  SI 

unit rad/m):   

  k =   w  __ 
v
    =   

2p  f
 ____ 

v
    =   2p  ___ 

l 
      (11-7)   

Then the equation for the harmonic wave can be written   

  y(x, t) = A cos (w t − kx)    (11-8)    

 The argument of the sine or cosine function, ( w   t   ±   kx ), is called the    phase    of the 

wave at  x  and  t.  Phase is measured in units of angle (usually radians). The phase of a 

wave at a given point and instant of time tells us how far along that point is in the 

repeating pattern of its motion. Since a sine or cosine function repeats every 2 p  radians, 

the motions of two different points  x  1  and  x  2  that differ in phase by an integer times 2 p  

are exactly the same; the points move “in sync” or  in phase  with each other. The dis-

tance between the two points is an integral number of wavelengths: 

 If   

 k( x  
2
   −  x  

1
  ) = 2p n     (where n is any integer)  

then   

  x  
2
   −  x  

1
   =   2p n ____ 

k
   =   2p  n _____ 

2p /l 
   = nl           

the t and x/v terms have the same sign; and (c) the wave 

speed is b/c.

Discussion Before being completely satisfied with this 

solution, it is a good idea to check that b/c has the right 

units for wave speed. The two terms bt and cx that are 

added together must have the same units. In SI, the argu-

ment of a sine function is measured in radians. Then b is 

measured in rad/s and c is measured in rad/m. Then the 

units of b/c are (rad/s)/(rad/m) = m/s, which is correct for 

wave speed.

Practice Problem 11.2 Another Traveling Wave 
on a String

A wave on a string is described by

y(x, t) = (0.0050 m) sin [(4.0 rad/s)t − (0.50 rad/m)x]

(a) Does this wave retain its shape as it travels? (b) In what 

direction does the wave travel? (c) What is the wave speed?

Example 11.2

A Traveling Wave on a String

A wave on a string is described by y(x, t) = a sin (bt + cx), 

where a, b, and c are positive constants. (a) Does this wave 

retain its shape as it travels? (b) In what direction does the 

wave travel? (c) What is the wave speed?

Strategy We try to manipulate the function to see if it can 

be written as a function of either (t − x/v) or (t + x/v) as in 

the general harmonic wave equation y(x, t) = A cos w (t − x/v). 

The wave speed v does not appear explicitly in the function 

as written, but it may be some combination of the other con-

stants in the function.

Solution The coefficient of t in our equation should be the 

constant that represents w. Factoring out that constant, we have

y(x, t) = a sin b ( t +   cx __ 
b
   )  = a sin b ( t +   x ___ 

b/c
   ) 

Now we see that y(x, t) is a function of t + x/v, where v = b/c:

y(x, t) = a sin b ( t +   x __ 
v
   )   where v =   b __ c  

Therefore: (a) yes, the wave retains its shape since it is a 

function of (t + x/v); (b) it travels in the −x-direction since 

   11.6  GRAPHING WAVES 

  To graph a one-dimensional wave  y ( x, t ), only one of the two independent variables 

( x, t ) can be plotted. The other must be “frozen”; it is treated as a constant. If  x  is held 

constant, then one particular point (determined by the value of  x ) is singled out; the graph 

shows the motion of  that point  as a function of time ( Fig. 11.9a ). If instead  t  is held 

constant and  y  is plotted as a function of  x,  then the graph is like a snapshot—an instanta-

neous picture of what the wave looks like  at that particular instant  ( Fig. 11.9b ).   
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CONNECTION: 

Note the analogy between w 

and k. w = 2p /T, where T is 

the repeat time; k = 2p /l, 

where l is the repeat dis-

tance. w  is measured in radi-

ans per second; k is measured 

in radians per meter. (  

tutorial: sine wave)
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Since the wave moves in the +x-direction, a point at x > 0 

duplicates the motion of x = 0 with a time delay of Δt = x/v

(the time for the wave to travel a distance x). Then

y(x, t) = A sin  ( 2p   t − x/v  ______ 
T

   ) 
where v = 5.0 m/s and T = 2.0 s.

(e) Substituting t = 0,

y(x) = A sin  ( −2p   x ___ 
vT

   ) 
Substituting vT = l and using the identity sin (−q ) = −sin q
(Appendix A.7), we have

y(x, t = 0) = −A sin  ( 2p   x __ 
l 

   ) 
A graph of this function is an inverted sine function with 

amplitude A = 0.030 m and wavelength

l = vT = 5.0 m/s × 2.0 s = 10 m

10 12 148642

0
0.010

y (m)

x (m)–0.010

0.030

–0.030

t = 0

Discussion Figure 11.10 shows that the point x = 0 is ini-

tially at y = 0 and then moves up (in the +y-direction) until 

it reaches the crest (maximum y) at t = 0.50 s. Imagine the 

graph in (e) to represent the first frame (at t = 0) of a movie 

of the wave. Since the wave moves to the right, the sinusoi-

dal pattern shifts a little to the right in each successive 

frame. The point x = 0 moves up until it reaches the crest 

when the wave has traveled 2.5 m to the right. Since the 

wave speed is 5.0 m/s, the point x = 0 reaches the crest at 

t  = (2.5 m)/(5.0 m/s) = 0.50 s.

Example 11.3

A Transverse Harmonic Wave

A transverse harmonic wave travels in the +x-direction on 

a string at a speed of 5.0 m/s. Figure 11.10 shows a graph of 

y(t) for the point x = 0. (a) What is the period of the wave? 

(b) What is the wavelength? (c) What is the amplitude? 

(d) Write the function y(x, t) that describes the wave. (e) Sketch 

a graph of y(x) at t = 0.

Strategy Since the graph uses time as the independent 

variable, the period can be read from the graph as the time 

for one cycle. The wavelength is the distance traveled by the 

wave during one period. The amplitude can be read from the 

graph as the maximum displacement. These are all the con-

stants needed to write the function y(x, t). We do have to 

think about the direction of travel and whether to write sine 

or cosine.

Solution (a) The period T is the time for one cycle. From 

the graph, T = 2.0 s.

(b) The wavelength l is the distance traveled by the wave at 

speed v = 5.0 m/s during one period:

l = vT = 5.0 m/s × 2.0 s = 10 m

(c) The amplitude A is the maximum displacement from 

equilibrium. From the graph, A = 0.030 m.

(d) Figure 11.10 is a sine function. The motion of the point 

x = 0 is

y(t) = A sin  ( 2p   t __ 
T

   ) 

x

y

0

(b)

t

y

0

w

(a)

T

A

–A

A

–A

At x = 0, y(t) = A sin    t At t = 0, y(x) = A sin (–kx)

l

Figure 11.9 Two graphs of a 

harmonic wave on a string 

described by the equation y(x, t) =
A sin (w t − kx). (a) The vertical 

displacement y of a particular 

point on the string (x = 0) as a 

function of time t. (b) The verti-

cal displacement y as a function 

of horizontal position x at a sin-

gle instant of time (t = 0).

Figure 11.10

Graph of a transverse harmonic wave.

0

0.4 0.8 1.2 1.6 2.0 2.4 2.8

y (m)

t (s)

0.030

0.010

–0.010

–0.030

x = 0

continued on next page



Practice Problem 11.3 Another Harmonic 
Transverse Wave

A wave is described by y(x, t) = (1.2 cm) sin (10.0p t + 2.5p x), 

where x is in meters and t is in seconds. (a) Sketch a graph 

of y(t) at x = 0. (b) Sketch a graph of y(x) at t = 0. (c) What 

is the period of the wave? (d) What is the wavelength? 

(e) What is the amplitude? (f) What is the speed of the wave? 

(g) In what direction does the wave move?

Example 11.3 continued

   11.7  PRINCIPLE OF SUPERPOSITION 

  Suppose two waves of the same type pass through the same region of space. Do the 

waves affect each other? If the amplitudes of the waves are large enough, then particles 

in the medium are displaced far enough from their equilibrium positions that Hooke’s 

law (restoring force ∝ displacement) no longer holds; in that case, the waves  do  affect 

each other. However, for small amplitudes, the waves can pass through each other and 

emerge  unchanged.  More generally, when the amplitudes are not too large, the principle 

of superposition applies: 

Principle of Superposition

When two or more waves overlap, the net disturbance at any point is the sum of 

the individual disturbances due to each wave.

  Figure 11.11  illustrates the superposition principle for two wave pulses traveling 

toward one another on a string.    The wave pulses pass right through one another without 

affecting one another; once they have separated, their shapes and heights are the same 

as before the overlap  ( Fig. 11.11a ). The principle of superposition enables us to distin-

guish two voices speaking in the same room at the same time; the sound waves pass 

through each other unaffected.     

Figure 11.11 (a) Two identi-

cal wave pulses traveling 

toward and through each other. 

(b), (c) Applying the superposi-

tion principle at two different 

times; in each case, the dashed 

lines are the separate wave 

pulses and the solid line is the 

sum. If one of the pulses (acting 

alone) would produce a dis-

placement y1 at a certain point 

and the other would produce a 

displacement y2 at the same 

point, the result when the two 

overlap is a displacement of 

y1 + y2.

(a)

y1 + y2

y1

y2

y2

(b)

y1 + y2

y1

(c)
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Example 11.4

Superposition of Two Wave Pulses

Two identical wave pulses travel at 0.5 m/s toward each 

other on a long cord (Fig. 11.12). Sketch the shape of the 

cord at t = 1.0, 1.5, and 2.0 s.

0.25 1.51.250

y
t = 0

4.0 mm

x (m)

Figure 11.12

Two wave pulses at t = 0.

Strategy We start by sketching the two pulses in their 

new positions at each time given. Wherever they overlap, 

we apply superposition by adding the individual displace-

ments at each point to find the net displacement of the cord 

at that point.

Solution Using graph paper, we draw the wave pulses at 

t = 0 (Fig. 11.13a). At t = 1.0 s, each pulse has moved 0.5 m 

toward the other. The leading edges of the pulses are just 

starting to overlap (Fig. 11.13b). At t = 1.5 s, each pulse has 

moved another 0.25 m; the crests overlap exactly. By adding 

the displacements point by point, we see that the string has 

the shape of a single pulse twice as high as either of the indi-

vidual pulses (Fig. 11.13c). At t = 2.0 s, the pulses have each 

moved another 0.25 m (Fig. 11.13d).

Discussion When the two pulses exactly overlap, the dis-

placement of points on the string is larger than for corre-

sponding points on a single pulse because we add displacements 

in the same direction ( y > 0 for both). However, superposition 

does not always produce larger displacements (see Practice 

Problem 11.4).

Practice Problem 11.4 Superposition of Two 
Opposite Wave Pulses

Repeat Example 11.4, except now let the pulse on the right 

be inverted (Fig. 11.14). [Hint: Points on the string below 

the x-axis have negative displacements ( y < 0).]

1.5 m

0.750 1.51.00.5

(a)

x (m)

x (m)

x (m)

x (m)

t = 0 s

t = 2.0 s

t = 1.0 s

t = 1.5 s

y (mm)

y (mm)

4

4

4

4

y (mm)

y (mm)

(b)

(c)

(d)

Figure 11.13

Wave positions at times t = 0, 1.0, 1.5, and 2.0 s.

y

x (m)

t = 0

1.5 m

Figure 11.14

Wave pulses for Practice Problem 11.4.

   11.8  REFLECTION AND REFRACTION 

   Reflection 

 At an abrupt boundary between one medium and another,    reflection    occurs; a reflected 

wave carrying some of the energy of the incident wave travels backward from the 

boundary. A sound wave in air, for instance, reflects when it reaches a wall. 



 A reflected wave can be inverted. Let’s look at an extreme example: a string tied to a 

wall. If you send a wave pulse down the string, the reflected pulse is inverted ( Fig. 11.15 ). 

By the principle of superposition, the shape of the string  at any point  is the sum of the inci-

dent and reflected waves, even at the fixed point at the end. The only way the end can 

stay in place is if the reflected wave is an upside down version of the incident wave. 

Another way to understand the inversion is by considering the force exerted on the string 

by the wall. When an upward pulse reaches the fixed end, the force exerted by the string on the 

wall has an upward component. By Newton’s third law, the wall exerts a force on the string 

with a downward component. This downward force produces a downward reflected pulse.     

 Now, instead of tying the string to the wall, tie it to another string with an enormous 

linear mass density—so large that its motion is too small to measure. The original string 

doesn’t know the difference; it just knows that one end is fixed in place. The second 

string with the huge density has a much slower wave speed than the first string. Now 

make the mass density of the second string not huge, but still greater than the first 

string. The greater inertia inhibits the motion of the boundary point and causes the 

reflected wave to be inverted. In general, when a transverse wave on a string reflects 

from a boundary with a region of slower wave speed, the reflected wave is inverted. On 

the other hand, when such a wave reflects from a boundary with a region of  faster  wave 

speed, the reflected wave is  not  inverted.  

  Change in Wavelength at a Boundary 

When there is an abrupt change in wave medium, an incident wave splits up at the 

boundary; part is reflected and part is transmitted past the boundary into the other 

medium.  The frequencies of both the reflected and transmitted waves are the same as 

the frequency of the incident wave.   To understand why, think of a wave incident on the 

knot between two different strings. Both the reflected and the transmitted waves are 

generated by the up-and-down motion of the knot; the knot vibrates at the frequency 

dictated by the incident wave. However, if the wave speed changes at the boundary,  the 

wavelength of the transmitted wave is not the same  as the wavelength of the incident 

and reflected waves. Since  v   =   l   f  and the frequencies are the same,   

  f =   
v1 ___ 
 l   1  

    =   
 v  

2
  
 ___ 

 l   2  
      (11-9)   

Equation (11-9) applies to any kind of wave and is of particular importance in the study 

of optics.  

  When a wave passes from one 

medium into another, the frequency 

of the transmitted wave is the same 

as that of the incident wave.  

  When a wave passes from one 

medium into another, the frequency 

of the transmitted wave is the same 

as that of the incident wave.  

Figure 11.15 Snapshots of 

the reflection of a wave pulse 

from a fixed end. The reflected 

pulse is upside down.

 l  air   =  v  
air

  T =   
 v  

air
  
 ___ 

f
  

Substituting numerical values,

 l  air   =   340 m/s _______ 
440 Hz

   = 0.77 m

(b) The wave in the water has the same frequency, but the 

speed of sound is different:

l water =   
vwater _____ 

f
   =   1520 m/s ________ 

440 Hz
   = 3.5 m

Discussion The wavelength in water is longer, as expected. 

As a quick check, the ratio of the wavelengths should be 

equal to the ratio of the wave speeds:

  0.77 m ______ 
3.5 m

   = 0.22;      340 m/s ________ 
1520 m/s

   = 0.22

continued on next page

Example 11.5

Wavelength in Air and Under Water

A horn near the beach emits a 440-Hz sound wave. (a) What is 

the wavelength of the sound wave in air? The speed of sound 

in air is 340 m/s. (b) What is the wavelength of the sound wave 

in seawater? The speed of sound in seawater is 1520 m/s.

Strategy The frequency of the sound wave in water is the 

same as in air. The wavelengths depend on both the fre-

quency and the speed of sound in the medium. Sound travels 

faster in solids and liquids than in gases; during one period, 

the wave travels farther in water than it does in air, so the 

wavelength is longer in water.

Solution (a) The wavelength in air is related to the speed 

of sound in air and the frequency:
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  Refraction 

A transmitted wave not only has a different wavelength than the incident wave; it 

also travels in a different direction unless the incident wave’s direction of propagation 

is along the  normal  (the direction perpendicular to the boundary). This change in 

propagation direction is called    refraction.    If the change in wave speed is gradual, 

then the change in direction is gradual as well. The speed of ocean waves depends on 

the depth of the water; the waves are slower in shallower water. As waves approach the 

shore, they gradually slow down; as a result, they gradually bend until they reach 

shore nearly head-on. A sudden change in wave speed, such as when a seismic wave 

is incident on a boundary between different kinds of rock, causes a sudden refraction 

 (Fig. 11.16) .     

   Application of Reflection and Refraction: Seismology    Understanding the propa-

gation of seismic waves, including reflection and refraction due to boundaries between 

geological features, is an essential part of the effort to reduce damage from future earth-

quakes. Scientists create small seismic waves with a large vibrator, then use seismo-

graphs to record ground vibrations at various locations. The goal is to produce a seismic 

hazard map so that preventative measures can be targeted to areas with the highest risk 

of earthquake damage.     

11.9  INTERFERENCE AND DIFFRACTION 

   Interference 

 The principle of superposition leads to dramatic effects when applied to coherent waves. 

Two waves are    coherent    if they have the  same frequency  and they maintain a  fixed 

phase relationship  with one another. One way to obtain coherent waves is to get them 

from the same source. Such is the case, for example, if one  monophonic  amplifier sends 

the same signal to two speakers. Should some fluctuation occur in the amplifier driving 

the speakers, the same fluctuation occurs in both speakers at the same time and they 

maintain their coherence. Waves are    incoherent    if the phase relationship between them 

varies randomly. (As defined here,  coherent  and  incoherent  are idealized extremes. In 

reality, two waves do not have to have either perfect correlation between their phases or 

no correlation at all.) 

 Suppose coherent waves with amplitudes  A  1  and  A  2  pass through the same point 

in space. If the waves are  in phase  at that point—that is, the phase difference is any 

 even  integral multiple of  p  rad—then the two waves consistently reach their maxima 

at exactly the same instants of time ( Fig. 11.17a ). The superposition of the waves 

that are in phase with one another is called    constructive interference;    the amplitude 

of the combined waves is the sum of the amplitudes of the two individual waves 

( A  1   +   A  2 ).   

  Application of refraction: why 

ocean waves approach shore nearly 

head-on  

  Application of refraction: why 

ocean waves approach shore nearly 

head-on  

Example 11.5 continued

Practice Problem 11.5 Working on the Railroad

A railroad worker, driving in spikes, misses the spike and hits 

the iron rail; a sound wave travels through the air and through 

the rail. (We ignore the transverse wave that also travels in the 

rail.) The wavelength of the sound in air is 0.548 m. The 

speed of sound in air is 340 m/s; the speed of sound in iron 

is 5300 m/s. (a) What is the frequency of the wave? (b) What 

is the wavelength of the sound wave in the rail?

Wave crests

Figure 11.16 Wave crests for 

a seismic wave incident on a 

boundary between two different 

kinds of rock. Not only does the 

wavelength (distance between 

wave crests) change at the 

boundary, the wave also refracts 

(changes its direction of propa-

gation). The reflected wave is 

omitted for clarity. 



 Two waves that are  180 °  out of phase  at a given point have a phase difference of 

 p  rad, 3 p  rad, 5 p  rad, and so on. The waves are half a cycle apart; when one reaches its 

maximum, the other reaches its minimum ( Fig. 11.17b ). The superposition of waves 

that are 180 °  out of phase is called    destructive interference   —the amplitude of the 

combined waves is the  difference  of the amplitudes of the two individual waves (| A  1   −   A  2 |). 
For any other fixed phase relationship between the two waves, the superposition has an 

amplitude between  A  1   +   A  2  and | A  1   −   A  2 |. 
 Suppose two coherent waves start out in phase with one another. In  Fig. 11.18 , 

two rods vibrate up and down in step with one another to generate circular waves on 

the surface of the water. If the two waves travel the same distance to reach a point on the 

water surface, they arrive  in phase  and interfere constructively. At points where the dis-

tances are different, the phase difference is proportional to the path difference. One wave-

length of path difference corresponds to a phase difference of 2 p  radians (one full 

cycle), so   

    
 d  

1
   −  d  

2
  
 _______ 

l 
   =   

phase difference
  ______________ 

2p rad
      (11-10)   

Thus, the phase difference is   

  phase difference =   2p rad ______ 
l 

   × ( d  
1
   −  d  

2
  ) = k( d  

1
   −  d  

2
  )    (11-11)   

If the path difference  d  1   −   d  2  is an integral number of wavelengths, then the phase dif-

ference is an even integral multiple of  p  rad and constructive interference occurs at 

point  P.  If the path difference is       1 _ 
2
  l,   3 _ 

2
  l,   5 _ 

2
  l, . . . ,   then the phase difference is an odd inte-

gral multiple of  p  rad and destructive interference occurs at point  P.  If the phase differ-

ence is not an integral multiple of  p , the amplitude has a value between the maximum 

and minimum possible values.  

  Intensity Effects for Interfering Waves   

 When coherent waves interfere, the  amplitudes  add (for constructive interference) or 

subtract (for destructive interference)—see Example 11.6.  However, since intensity is 

proportional to amplitude   squared,   we cannot simply add or subtract the   intensities   of 

coherent waves when they interfere.   Incoherent  waves, on the other hand, have no fixed 

  When two coherent waves are inter-

fering and have a phase differ-

ence  =   n  p , the interference is 

constructive for even  n  and the 

interference is destructive for odd  n.   

  When two coherent waves are inter-

fering and have a phase differ-

ence  =   n  p , the interference is 

constructive for even  n  and the 

interference is destructive for odd  n.   

t

y

A1
A2

A1
A2

(a)

t

y

180° out of phase

In phase

(b)

1 + A2

A1 – A2

Figure 11.17 Coherent waves 

(a) in phase and (b) 180° out of 

phase. (One wave is drawn with 

a lighter line to distinguish it 

from the other.) The dashed 

curve is the superposition of the 

two waves.

Figure 11.18 Overhead snap-

shot of two coherent surface 

water waves. The two waves 

travel different distances d1 and 

d2 to reach a point P. The phase 

difference between the waves at 

point P is k(d1 − d2).

d2

d1

P
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phase relationship; interference effects are averaged out due to the rapidly varying phase 

difference. In the superposition of incoherent waves, the total intensity is the sum of the 

individual intensities. 

 Why don’t we see and hear interference effects all the time? Light from ordinary 

sources—incandescent bulbs, fluorescent bulbs, or the Sun—is incoherent because it 

is generated by large numbers of independent atomic sources. A single source of 

sound normally contains many different frequencies, so a point of constructive inter-

ference for one frequency is not a point of constructive interference for other frequen-

cies. Furthermore, in most situations there are many different sound waves that reach 

our ears after traveling different paths due to the reflection of sound from walls, ceil-

ings, chairs, and so forth.  

The minimum possible amplitude for the superposition 

occurs if the waves are 180° out of phase:

 A  
min

   =   A  
1
   −  A  

2
    = 2.0 A  

2
  

The ratio of the maximum to minimum intensity is

  
 I  max   ____ 
 I  

min
  
   =   (    A  max   ____ 

 A  
min

  
   )  

2

  =   (   4.0 ___ 
2.0

   )  2  = 4.0

Discussion Had we added and subtracted the intensities

instead of the amplitudes, we would have found a ratio of 

10/8 = 1.25 between the maximum and minimum intensi-

ties. We must be careful to add or subtract the amplitudes of 

the interfering waves instead of the intensities themselves 

when the waves are coherent.

Practice Problem 11.6 Two More Coherent Waves

Repeat Example 11.6, but change the ratio of the individual 

intensities to 4.0 (instead of 9.0).

Example 11.6

Intensity of Interfering Waves

Two coherent waves interfere. The intensity of one of them 

(alone) is 9.0 times the intensity of the other. What is the 

ratio of the maximum possible intensity to the minimum 

possible intensity of the resulting wave?

Strategy The intensity is not the sum or difference of the 

individual intensities because the waves are coherent. Since 

the waves maintain a fixed phase relationship, the principle 

of superposition tells us that the maximum and minimum 

amplitudes of the interfering waves are the sum and differ-

ence of the individual amplitudes. Intensity is proportional 

to amplitude squared, so we find the ratio of the amplitudes 

and then add or subtract them.

Solution The intensities of the two individual waves are 

related by I1 = 9.0I2 or I1/I2 = 9.0. Since intensity is propor-

tional to amplitude squared,

  
 A  

1
  
 ___ 

 A  
2
  
   =  √

___

   
 I  

1
  
 __ 

 I  
2
  
     = 3.0

Thus, A1 = 3.0A2. The maximum possible amplitude for the 

superposition occurs if the waves are in phase:

 A  max   =  A  
1
   +  A  

2
   = 4.0 A  

2
  

  Diffraction 

 Diffraction is the spreading of a wave around an obstacle in its path ( Fig. 11.19 ). The 

amount of diffraction depends on the relative size of the obstacle and the wavelength 

of the waves. Diffraction enables you to hear around a corner but not to see around a 

corner. Sound waves, with typical wavelengths in air of around 1 m, diffract around 

the corner much more than do light waves with much smaller wavelengths (less than 

1  μ m). We will study interference and diffraction of electromagnetic waves (including 

light) in detail in Chapter 25. 



      11.10  STANDING WAVES 

  Standing waves occur when a wave is reflected at a boundary and the reflected wave 

interferes with the incident wave so that the wave appears not to propagate. Suppose 

that a harmonic wave on a string, coming from the right, hits a boundary where the 

string is fixed. The equation of the incident wave is   

 y(x, t) = A sin (w t + kx)  

The  +  sign is chosen in the phase because the wave travels to the left. 

 The reflected wave travels to the right, so  +  kx  is replaced with  −  kx;  and the reflected 

wave is inverted, so  +  A  is replaced with  −  A.  Then the reflected wave is described by   

 y(x, t) = −A sin (w t − kx)  

Applying the principle of superposition, the motion of the string is described by   

 y(x, t) = A [sin (w t + kx) −sin (w t − kx)]  

This can be rewritten in a form that shows the motion of the string more clearly. Using 

the trigonometric identity (Appendix A.7),   

 sin a − sin b = 2 cos [  1 _ 
2
  (a + b )] sin [  1 _ 

2
  (a − b )]  

where   

 a = w t + kx      and      b = w t − kx  

we have   

 y(x, t) = 2A cos w t sin kx  

Notice that  t  and  x  are separated. Every point moves in SHM with the same frequency. 

However, in contrast to a  traveling  harmonic wave, every point reaches its maximum 

distance from equilibrium  simultaneously.  In addition, different points move with dif-

ferent amplitudes; the amplitude at any point  x  is 2 A  sin  kx.  

Figure 11.19 Water waves 

incident from the right on a gap 

in a breakwater (Three Fathoms 

Cove, Hong Kong). Notice the 

shape of the wave crests to the 

left of the gap.
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  Figure 11.20  shows the string at time intervals of       1 _ 
8
  T,   where  T  is the period. What 

you actually see when looking at a standing wave is a blur of moving string, with 

points that never move (   nodes,    labeled “N”) halfway between points of maximum 

amplitude (   antinodes,    labeled “A”). The nodes are the points where sin  kx   =  0. 

Since sin  n  p    =  0 ( n   =  0, 1, 2, . . .), the nodes are located at  x   =   n  p  / k   =   n  l  /2. Thus, the dis-

tance between two adjacent nodes is       1 _ 
2
  l.   The antinodes occur where sin  kx   =   ±  1, which 

is exactly halfway between a pair of nodes. So the nodes and antinodes alternate, with 

one quarter of a wavelength between a node and the neighboring antinode. 

       So far we have ignored what happens at the other end of the string. If the other end 

is fixed, then it is a node. The string thus has two or more nodes, with one at each end. 

The distance between each pair of nodes is       1 _ 
2
  l,   so   

  n(l /2) = L    (11-12a)   

where  L  is the length of the string and  n   =  1, 2, 3, . . . . The possible wavelengths for stand-

ing waves on a string are   

   l  n   =   2L ___ n      (n = 1, 2, 3, . . .)    (11-12b)   

The frequencies are   

   f  n   =   v 
___ 
 l   n  

   =   nv
 

___ 
2L

      (n = 1, 2, 3, . . .)    (11-13)    

 The lowest frequency standing wave ( n   =  1) is called the    fundamental.    Notice that 

the higher frequency standing waves are all integral multiples of the fundamental; the 

set of standing wave frequencies makes an evenly spaced set:   

  f  1  , 2 f  1  , 3 f  1  , 4 f  1  , . . . , n f  1  , . . .   

These frequencies are called the  natural frequencies  or  resonant frequencies  of the 

string.  Resonance  occurs when a system is driven at one of its natural frequencies; the 

resulting vibrations are large in amplitude compared to when the driving frequency is 

not close to any of the natural frequencies.        

CHECKPOINT 11.10

A standing wave on a string 1.0 m long has four nodes, not including the nodes at 

the two fixed ends. What is the wavelength?

 

  Figure 11.21  shows the first four standing wave patterns on a string. The two ends 

are always nodes since they are fixed in place. Notice that each successive pattern has 

one more node and one more antinode than the previous one. The fundamental has the 

fewest possible number of nodes (2) and antinodes (1).          

 Node–node distance is       1 _ 
2
  l.   

Node–antinode distance is     1 _ 
4
  l.

 Node–node distance is       1 _ 
2
  l.   

Node–antinode distance is     1 _ 
4
  l.

There is no need to memo-

rize Eqs. (11-12) and 

(11-13). Start with a sketch like 

Fig. 11.21, find the wavelengths, 

and then use v = fl to find the 

frequencies.

There is no need to memo-

rize Eqs. (11-12) and 

(11-13). Start with a sketch like 

Fig. 11.21, find the wavelengths, 

and then use v = fl to find the 

frequencies.

Figure 11.20 A standing 

wave at various times: t = 0,   1 _ 
8
  T, 

  2 _ 
8
  T,   3 _ 

8
  T, and   4 _ 

8
  T, where T is the 

period.

A A A

t1 =   T

t0 = 0

NN N N

t1

t0

t2

t3

t4

1 – 
8

t2 =   T2 – 
8

t3 =   T3 – 
8

t4 =   T4 – 
8

x

y

CONNECTION: 

An ideal mass-spring system 

has a single resonant 

frequency (Section 10.10), 

but extended objects gener-

ally have many different reso-

nant frequencies.



more accurate to measure the distance between two actual 

nodes rather than to assume that the ends are nodes.

Practice Problem 11.7 Standing Wave 
with Seven Loops

The vibrator frequency is increased until there are seven 

loops within the 42-cm length. What is the new standing 

wave frequency for this string (assuming the same tension)?

Example 11.7

Wavelength of a Standing Wave

A string is attached to a vibrator driven at 1.20 × 102 Hz. 

A weight hangs from the other end of the string; the weight 

is adjusted until a standing wave is formed (Fig. 11.22). 

What is the wavelength of the standing wave on the 

string?

Strategy The measured distance of 42 cm encompasses 

six “loops”—that is, six segments of string between one node 

and the next. Each of the loops represents a length of   1 _ 
2
  l.

Solution The length of one loop is

42 cm ×   1 _ 
6
   = 7.0 cm

Since the length of one loop is   1 _ 
2
  l, the wavelength is 14 cm.

Discussion This string is not fixed at both ends. The left 

end is connected to a moving vibrator, so it is not a node. 

The right end wraps around a pulley; it may not be easy to 

determine precisely where the “end” is. For this case, it is 

A

A A

A

A A A A

A A

L

N

N N

N

NNN

N

N

N

N

N

N

N

n = 3

n = 4

n = 2

n = 1

Figure 11.21 Four standing 

wave patterns for a string fixed 

at both ends. “N” marks the 

locations of the nodes and 

“A” marks the locations of the 

antinodes. In each case, the 

node-to-node distance is   1 _ 
2
  l and 

n such “loops” fit into the length 

L of the string, so n(l/2) = L.

Figure 11.22

Measuring distance between nodes for a standing wave.

String

vibrator

f = 120 Hz 42 cm

 Resonance is responsible for much of the structural damage caused by seismic waves. 

If the frequency at which the ground vibrates is close to a resonant frequency of a struc-

ture, the vibration of the structure builds up to a large amplitude. Thus, to construct a 

building that can survive an earthquake, it is not enough to make it stronger. Either 

the building must be designed so it is isolated from ground vibrations, or a damping 

mechanism—something like a shock absorber—must be incorporated to dissipate energy 

and reduce the amplitude of the vibrations. Damping is b ecoming increasingly common 

in large buildings since it is just as effective and much less expensive than isolation. 

 Large sections of the Hanshin expressway vibrated in a twisting motion due to 

ground vibrations near a resonant frequency. The road now has rubber base isolators 

instead of steel bearings connecting the roadway to the concrete piers. Part of their 

function is to act like shock absorbers. 

Application of resonance: 

damage caused by earthquakes

Application of resonance: 

damage caused by earthquakes
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  Conceptual Questions 

    1. The piano strings that vibrate with the lowest frequen-

cies consist of a steel wire around which a thick coil of 

copper wire is wrapped. Only the inner steel wire is 

under tension. What is the purpose of the copper coil?  

   2. Is the vibration of a string in a piano, guitar, or violin a 

 sound  wave? Explain.  

   3. The wavelength of the fundamental standing wave on a 

cello string depends on which of these quantities: length 

of the string, mass per unit length of the string, or ten-

sion? The wavelength of the  sound wave  resulting from 

the string’s vibration depends on which of the same 

three quantities?  

   4. If the length of a guitar string is decreased while the 

tension remains constant, what happens to each of these 

   Master the Concepts 

    • An isotropic source radiates sound uniformly in all direc-

tions. Assuming that no energy is absorbed by the medium 

and there are no obstacles to reflect or absorb sound, the 

intensity  I  at a distance  r  from an isotropic source is   

   I =   
power

 ______ 
area

   =   P _____ 
4p  r 2 

     (11-1)        

   • In a transverse wave, the motion of particles in the 

medium is perpendicular to the direction of propaga-

tion of the wave. In a longitudinal wave, the motion of 

particles in the medium is along the same line as the 

direction of propagation of the wave.  

Compression Compression

Rarefaction RarefactionRarefaction

(b)

(a)Direction of
hand motion

Direction of
hand motion

   • The speed of a mechanical wave depends on properties 

of the wave medium. More restoring force makes faster 

waves; more inertia makes slower waves.  

   • The speed of a transverse wave on a string is   

   v =  √
__

   F __ m        (11-4)  

  where   

   m = m/L   (11-3)    

   • A periodic wave repeats the same pattern over and over. 

Harmonic waves are a special kind of periodic wave 

characterized by a sinusoidal function (either a sine or 

cosine function).  

   • If a periodic wave has period  T  and travels at speed  v,  

the repetition distance of the wave is the wavelength:   

   l = vT   (11-5)    

A

–A

x

y

l

l

Crest Crest

TroughTrough

   • The principle of superposition: When two or more 

waves overlap, the net disturbance at any point is the 

sum of the individual disturbances due to each wave.  

   • A harmonic traveling wave can be described by   

   y(x, t) = A cos (w t − kx)   (11-8)  

  The argument of the sinusoidal function, ( w   t   ±   kx ), is 

called the phase of the wave at  x  and  t.  The constant  k  is 

the wave number   

   k =   w  __ 
v
    =   

2p f
 ___ 

v
    =   2p  ___ 

l
      (11-7)    

   • Reflection occurs at a boundary between different wave 

media. Some energy may be transmitted into the new 

medium and the rest is reflected. The wave transmitted 

past the boundary is refracted (propagates in a different 

direction).  

   • Coherent waves have the  same frequency  and maintain a 

 fixed phase relationship  with one another. Coherent 

waves that are in phase with one another interfere con-

structively; those that are 180 °  out of phase interfere 

destructively.      

   • Diffraction occurs when a wave bends around an obstacle 

in its path.  

   • In a standing wave on 

a string, every point 

moves in SHM with 

the same frequency. 

Nodes are points of 

zero amplitude; anti-

nodes are points of 

maximum amplitude. 

The distance between two adjacent nodes is       1 _ 
2
  l.      

A

A A

A

A AN
N N

N
N

N

N

N

N



quantities? (a) the wavelength of the fundamental, 

(b) the frequency of the fundamental, (c) the time for a 

pulse to travel the length of the string, (d) the maximum 

velocity of a point on the string (assuming the amplitude 

is the same both times), (e) the maximum acceleration 

of a point on the string (assuming the amplitude is the 

same both times).  

   5. Why is it possible to understand the words spoken by 

two people at the same time?  

   6. A cello player can change the frequency of the sound 

produced by her instrument by (a) increasing the ten-

sion in the string, (b) pressing her finger on the string at 

different places along the fingerboard, or (c) bowing a 

different string. Explain how each of these methods 

affects the frequency.  

   7. Why is a transverse wave sometimes called a shear 

wave?  

   8. The drawing shows a complex wave moving to the right 

along a cord. Draw the shape of the cord an instant later 

and determine which parts of the cord are moving upward 

and which are moving downward. Indicate the direc-

tions on your drawing with arrows. 

v

     

   9. When an earthquake occurs, the S waves (transverse 

waves) are not detected on the opposite side of the Earth 

while the P waves (longitudinal waves) are. How does 

this provide evidence that the Earth’s solid core is sur-

rounded by liquid?    

     10. Simple ear-protection devices use materials that 

reflect or absorb sound before it reaches the ears. A 

newer technology, sometimes called  noise cancella-

tion,  uses a microphone to produce an electrical signal 

that mimics the noise. The signal is modified electroni-

cally, then fed to the speakers in a pair of headphones. 

The speakers emit sound waves that  cancel  the noise. 

On what principle is this technology based? What kind 

of modification is made to the electrical signal?  

   11. When connecting speakers to a stereo, it is important 

to connect them with the correct polarity so that, if 

the same electrical signal is sent, they both move in 

the same direction. If the wires going to one speaker 

are reversed, the listener hears a noticeably weaker 

bass (low frequencies). Explain what causes this and 

why low frequencies are affected more than high 

frequencies.    

  Multiple-Choice Questions 

    1. Standing waves are produced by the superposition of 

two waves with

    (a)  the same amplitude, frequency, and direction of 

propagation.  

   (b)  the same amplitude and frequency, and opposite 

propagation directions.  

   (c)  the same amplitude and direction of propagation, but 

different frequencies.  

   (d)  the same amplitude, different frequencies, and oppo-

site directions of propagation.     

   2. A transverse wave travels on a string of mass  m,  length 

 L,  and tension  F.  Which statement here is correct?

    (a)  The energy of the wave is proportional to the square 

root of the wave amplitude.  

    (b)  The speed of a moving point on the string is the 

same as the wave speed.  

   (c)  The wave speed is determined by the values of  m,   L,  

and  F.   

   (d) The wavelength of the wave is proportional to  L.      

   3. A transverse wave on a string is described by  y ( x,   t )  =
   A  cos ( w   t   +   kx ). It arrives at the point  x   =  0 where the 

string is fixed in place. Which function describes the 

reflected wave?

    (a)  A  cos ( w   t   +   kx )     (b)  A  cos ( w   t   −   kx )  

   (c) −  A  sin ( w   t   +   kx )     (d) −  A  cos ( w   t   −   kx )  

   (e)  A  sin ( w   t   +   kx )     

   4. A violin string of length  L  is fixed at both ends. Which 

one of these is  not  a wavelength of a standing wave on 

the string?

    (a)  L      (b) 2 L      (c)  L  /2     (d)  L  /3     (e) 2 L  /3     (f) 3 L  /2     

   5. The speed of waves in a stretched string depends on 

which one of the following?

    (a) The tension in the string  

   (b) The amplitude of the waves  

   (c) The wavelength of the waves  

   (d) The gravitational field strength     

   6. The higher the frequency of a wave,

    (a) the smaller its speed.  

   (b) the shorter its wavelength.  

   (c) the greater its amplitude.  

   (d) the longer its period.     

   7. In a transverse wave, the individual particles of the 

medium

    (a) move in circles.     (b) move in ellipses.  

   (c) move parallel to the direction of the wave’s travel.  

   (d)  move perpendicularly to the direction of the wave’s 

travel.     

   8. Which is the only one of these properties of a wave that 

could be changed without changing any of the others?

    (a) amplitude     (b) wavelength  

   (c) speed     (d) frequency     
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   9. Two successive transverse pulses, one caused by a brief 

displacement to the right and the other by a brief dis-

placement to the left, are sent down a Slinky that is fas-

tened at the far end. At the point where the first reflected 

pulse meets the second advancing pulse, the deflection 

(compared with that of a single pulse) is

    (a) quadrupled.     (b) doubled.  

   (c) canceled.      (d) halved.     

   10. The intensity of an isotropic sound wave is

    (a)  directly proportional to the distance from the source.  

   (b)  inversely proportional to the distance from the source.  

   (c)  directly proportional to the square of the distance 

from the source.  

   (d)  inversely proportional to the square of the distance 

from the source.  

   (e) none of the above.       

  Problems 

 Combination conceptual/quantitative problem  

 Biological or medical application  

✦ Challenging problem  

Blue # Detailed solution in the Student Solutions Manual  

1  2  Problems paired by concept  

 Text website interactive or tutorial   

  11.1 Waves and Energy Transport 

  1.  The intensity of sunlight that reaches Earth’s atmo-

sphere is 1400 W/m 2 . What is the intensity of the sun-

light that reaches Jupiter? Jupiter is 5.2 times as far 

from the Sun as Earth. [ Hint:  Treat the Sun as an isotro-

pic source of light waves.]  

    2.  Michelle is enjoying a picnic across the valley from a cliff. 

She is playing music on her radio (assume it to be an iso-

tropic source) and notices an echo from the cliff. She 

claps her hands and the echo takes 1.5 s to return. 

(a) Given that the speed of sound in air is 343 m/s on that 

day, how far away is the cliff? (b) If the intensity of the 

music 1.0 m from the radio is 1.0  ×  10  − 5  W/m 2 , what is 

the intensity of the music arriving at the cliff?  

  3.  The intensity of the sound wave from a jet airplane as it 

is taking off is 1.0  ×  10 2  W/m 2  at a distance of 5.0 m. 

What is the intensity of the sound wave that reaches the 

ears of a person standing at a distance of 120 m from 

the runway? Assume that the sound wave radiates from 

the airplane equally in all directions.  

    4.  At what rate in watts does the jet airplane in Problem 3 

radiate energy in the form of sound waves?  

    5.  The Sun emits electromagnetic waves (including light) 

equally in all directions. The intensity of the waves at 

Earth’s upper atmosphere is 1.4 kW/m 2 . At what rate 

does the Sun emit electromagnetic waves? (In other 

words, what is the power output?)    

  11.3 Speed of Transverse Waves on a String 

 6. (a) What is the speed of propagation of the pulse shown 

in the figure? (b) At what average speed does the point 

at  x   =  2.0 m move during this time interval?      
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Problems 6 and 7

    7.  (a) What is the position of the peak of the pulse shown 

in the figure with Problem 6 at  t   =  3.00 s? (b) When 

does the peak of the pulse arrive at  x   =  4.00 m?  

  8.  When the tension in a cord is 75 N, the wave speed is 

140 m/s. What is the linear mass density of the cord?  

    9.  A metal guitar string has a linear mass density of 

m   =  3.20 g/m. What is the speed of transverse waves on 

this string when its tension is 90.0 N?  

   10. Two strings, each 15.0 m long, are stretched side by 

side. One string has a mass of 78.0 g and a tension of 

180.0 N. The second string has a mass of 58.0 g and a 

tension of 160.0 N. A pulse is generated at one end of 

each string simultaneously. On which string will the 

pulse move faster? Once the faster pulse reaches the far 

end of its string, how much additional time will the 

slower pulse require to reach the end of its string?  

    11.  A uniform string of length 10.0 m and weight 0.25 N is 

attached to the ceiling. A weight of 1.00 kN hangs from 

its lower end. The lower end of the string is suddenly 

displaced horizontally. How long does it take the result-

ing wave pulse to travel to the upper end? [ Hint:  Is the 

weight of the string negligible in comparison with that 

of the hanging mass?]    

  11.4 Periodic Waves 

     12.  What is the speed of a wave whose frequency and wave-

length are 500.0 Hz and 0.500 m, respectively?  

    13.  What is the wavelength of a wave whose speed and 

period are 75.0 m/s and 5.00 ms, respectively?  

14.  What is the frequency of a wave whose speed and wave-

length are 120 m/s and 30.0 cm, respectively?  



    15.  The speed of sound in air at room temperature is 340 m/s. 

(a) What is the frequency of a sound wave in air with 

wavelength 1.0 m? (b) What is the frequency of a radio 

wave with the same wavelength? (Radio waves are elec-

tromagnetic waves that travel at 3.0  ×  10 8  m/s in air or 

in vacuum.)  

   16. Light visible to humans consists of electromagnetic 

waves with wavelengths (in air) in the range 400–700 nm 

(4.0  ×  10  − 7  m to 7.0  ×  10  − 7  m). The speed of light in air 

is 3.0  ×  10 8  m/s. What are the frequencies of electro-

magnetic waves that are visible?  

    17.  A fisherman notices a buoy bobbing up and down in the 

water in ripples produced by waves from a passing 

speedboat. These waves travel at 2.5 m/s and have a 

wavelength of 7.5 m. At what frequency does the buoy 

bob up and down?    

  11.5 Mathematical Description of a Wave 

     18.  You are swimming in the ocean as water waves with 

wavelength 9.6 m pass by. What is the closest distance 

that another swimmer could be so that his motion is 

exactly opposite yours (he goes up when you go 

down)?  

    19.  What is the speed of the wave represented by  y ( x,   t )  =
A  sin ( kx   −   w   t ), where  k   =  6.0 rad/cm and  w   =  5.0 rad/s?  

    20.  The equation of a wave is  

y(x, t) = (3.5 cm) sin  {   p  ______ 
3.0 cm

   [x − (66 cm/s)t]   } 

   Find (a) the amplitude and (b) the wavelength of this 

wave.  

      21.  A wave on a string has equation   

   y(x, t) = (4.0 mm) sin (w t − kx)   

  where  w   =  6.0  ×  10 2  rad/s and  k   =  6.0 rad/m. (a) What is 

the amplitude of the wave? (b) What is the wavelength? 

(c) What is the period? (d) What is the wave speed? 

(e) In which direction does the wave travel?  

      22.  A transverse wave on a string is described by the equa-

tion  y ( x,   t )  =  (2.20 cm) sin [(130 rad/s)  t   +  (15 rad/m) x ]. 

(a) What is the maximum transverse speed of a point on 

the string? (b) What is the maximum transverse accelera-

tion of a point on the string? (c) How fast does the wave 

move along the string? (d) Why is your answer to 

(c) different from the answer to (a)?  

    23.  Write an equation for a sine wave with amplitude 0.120 m, 

wavelength 0.300 m, and wave speed 6.40 m/s traveling 

in the −x-direction.  

      24.  Write the equation for a transverse sinusoidal wave with 

a maximum amplitude of 2.50 cm and an angular fre-

quency of 2.90 rad/s that is moving along the positive 

 x -direction with a wave speed that is 5.00 times as fast 

as the maximum speed of a point on the string. Assume 

that at time  t   =  0, the point  x   =  0 is at  y   =  0 and then 

moves in the −y-direction in the next instant of time.    

✦✦

✦✦

  11.6 Graphing Waves 

     25.  A sine wave is traveling to the right on a cord. The 

lighter line in the figure represents the shape of the cord 

at time  t   =  0; the darker line represents the shape of the 

cord at time  t   =  0.10 s. (Note that the horizontal and 

vertical scales are different.) What are (a) the ampli-

tude and (b) the wavelength of the wave? (c) What is 

the speed of the wave? What are (d) the frequency and 

(e) the period of the wave? 
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   26. (a) Plot a graph for   

  y(x, t) = (4.0 cm) sin [(378 rad/s)t − (314 rad/cm)x]  

  versus  x  at  t   =  0 and at     t =   1
 

___ 
480

   s.   From the plots determine 

the amplitude, wavelength, and speed of the wave. 

(b) For the same function, plot a graph of  y ( x, t ) versus  t

at  x   =  0 and find the period of the vibration. Show that 

l   =   vT.   

   27. For a transverse wave on a string described by   

  y(x, t) = (0.0050 m) cos [(4.0p  rad/s)t − (1.0p rad/m)x]  

  find the maximum speed and the maximum acceleration 

of a point on the string. Plot graphs for one cycle of dis-

placement  y  versus  t,  velocity  v   y   versus  t,  and accelera-

tion  a   y   versus  t  at the point  x   =  0.  

    28.  A transverse wave on a string is described by   

  y(x, t) = (1.2 mm) sin [(2.0p rad/s)t − (0.50p rad/m)x]  

  Plot the displacement  y  and the velocity  v   y   versus  t  for 

one complete cycle of the point  x   =  0 on the string.  

    29.  (a) Sketch graphs of  y  versus  x  for the function   

  y(x, t) = (0.80 mm) sin (kx − w t)  

  for the times  t   =  0, 0.96 s, and 1.92 s. Make all three 

graphs of the same axes, using a solid line for the first, 

a dashed line for the second, and a dotted line for the 

third. Use the values  k   =   p  /(5.0 cm) and  w   =  ( p  / 6.0) rad/s. 

(b) Repeat part (a) for the function 

 y ( x,   t )  =  (0.50 mm) sin ( kx   +   w   t ) 

  (c) Which function represents a wave traveling in the −x-

direction and which represents a wave traveling in the 

 + x-direction?  

     30. The drawing shows a snapshot of a transverse wave trav-

eling along a string at 10.0 m/s. The equation for the wave 

✦✦
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is  y ( x,   t )  =   A  cos ( w   t   +   kx ). (a) Is the wave moving to the 

right or to the left? (b) What are the numerical values of  A,  

 w , and  k?  (c) At what times could this snapshot have been 

taken? (Give the three smallest nonnegative possibilities.) 
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  11.7 Principle of Superposition 

     31.  Two pulses on a cord at time  t   =  0 are moving toward 

each other; the speed of each pulse is 40 cm/s. Sketch 

the shape of the cord at 0.15, 0.25, and 0.30 s. 
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x (cm)10 20 30 40

v

v
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    32.  Two pulses on a cord at time  t   =  0 are moving toward 

one another; the speed of each pulse is 2.5 m/s. Sketch 

the shape of the cord at 0.60, 0.80, and 0.90 s. 
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    33.  Using graph paper, sketch two identical sine waves of 

amplitude 4.0 cm that differ in phase by (a)  p  /3 rad 

(60 ° ) and (b)  p  /2 rad (90 ° ). Find the amplitude of the 

superposition of the two waves in each case.  

34. Two traveling sine waves, identical except for a phase 

difference  f , add so that their superposition produces 

another traveling wave with the same amplitude as the 

two component waves. What is the phase difference 

between the two waves?  

      35.  A traveling sine wave is the result of the superposi-

tion of two other sine waves with equal amplitudes, 

✦✦

✦✦

wavelengths, and frequencies. The two component waves 

each have amplitude 5.00 cm. If the superposition 

wave has amplitude 6.69 cm, what is the phase differ-

ence  f  between the component waves? [ Hint:  Let 

y  1   =   A  sin ( w   t   +   kx ) and  y  2   =   A  sin ( w   t   +   kx   −   f ). Make 

use of the trigonometric identity (Appendix A.7) for 

sin  a   +  sin  b  when finding  y   =   y  1   +   y  2  and identify the 

new amplitude in terms of the original amplitude.]    

  11.8 Reflection and Refraction 

     36.  Light of wavelength 0.500  μ m (in air) enters the water 

in a swimming pool. The speed of light in water is 0.750 

times the speed in air. What is the wavelength of the 

light in water?     

Problems 37–38.  The pulse of the figure travels to the right 

on a string whose ends at  x   =  0 and  x   =  4.0 m are both fixed 

in place. Imagine a reflected pulse that begins to move onto 

the string at an endpoint at the same time the incident pulse 

reaches that endpoint. The superposition of the incident and 

reflected pulses gives the shape of the string. 

       37.  When does the string first look completely flat for 

t  > 0?      
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Problems 37, 38, 76, and 77

   38. When is the first time for   t  > 0 that the string looks 

exactly as it does at  t   =  0?    

  11.9 Interference and Diffraction 

39.  Two waves with identical frequency but different ampli-

tudes  A  1   =  5.0 cm and  A  2   =  3.0 cm, occupy the same 

region of space (are superimposed). (a) At what phase 

difference does the resulting wave have the largest 

amplitude? What is the amplitude of the resulting wave 

in that case? (b) At what phase difference does the 

resulting wave have the smallest amplitude and what is 

its amplitude? (c) What is the ratio of the largest and 

smallest amplitudes?  

    40.  Two waves with identical frequency but different ampli-

tudes  A  1   =  6.0 cm and  A  2   =  3.0 cm, occupy the same 

✦✦



region of space (i.e., are superimposed). (a) At what 

phase difference will the resulting wave have the highest 

intensity? What is the amplitude of the resulting wave in 

that case? (b) At what phase difference will the resulting 

wave have the lowest intensity and what will its ampli-

tude be? (c) What is the ratio of the two intensities?  

41.  A sound wave with intensity 25 mW/m 2  interferes 

constructively with a sound wave that has an intensity 

of 15 mW/m 2 . What is the intensity of the superposi-

tion of the two? (   tutorial: superposition)  

    42.  A sound wave with intensity 25 mW/m 2  interferes 

destructively with a sound wave that has an intensity 

of 28 mW/m 2 . What is the intensity of the superposi-

tion of the two?  

    43.  Two coherent sound waves have intensities of 0.040 W/m 2

and 0.090 W/m 2  where you are listening. (a) If the 

waves interfere constructively, what is the intensity that 

you hear? (b) What if they interfere destructively? (c) If 

they were incoherent, what would be the intensity? 

[ Hint:  If your answers are correct, then (c) is the aver-

age of (a) and (b).]  

      44.  While testing speakers for a concert, Tomás sets up two 

speakers to produce sound waves at the same frequency, 

which is between 100 Hz and 150 Hz. The two speakers 

vibrate in phase with one another. He notices that when 

he listens at certain locations, the sound is very soft 

(a minimum intensity compared to nearby points). One 

such point is 25.8 m from one speaker and 37.1 m from 

the other. What are the possible frequencies of the sound 

waves coming from the speakers? (The speed of sound 

in air is 343 m/s.)    

  11.10 Standing Waves 

     45.  In order to decrease the fundamental frequency of a gui-

tar string by 4.0%, by what percentage should you reduce 

the tension?  

    46.  The tension in a guitar string is increased by 15%. What 

happens to the fundamental frequency of the string?  

    47.  A standing wave has wavenumber 2.0  ×  10 2  rad/m. What 

is the distance between two adjacent nodes?  

    48.  A harpsichord string of length 1.50 m and linear mass 

density 25.0 mg/m vibrates at a (fundamental) frequency 

of 450.0 Hz. (a) What is the speed of the transverse string 

waves? (b) What is the tension? (c) What are the wave-

length and frequency of the sound wave in air produced 

by vibration of the string? (The speed of sound in air at 

room temperature is 340 m/s.)  

    49.  A cord of length 1.5 m is fixed at both ends. Its mass per 

unit length is 1.2 g/m and the tension is 12 N. (a) What is 

the frequency of the fundamental oscillation? (b) What 

tension is required if the  n   =  3 mode has a frequency of 

0.50 kHz?  

    50.  Tension is maintained in a string by attaching one 

end to a wall and by hanging a 2.20-kg object from the 

other end of the string after it passes over a pulley that is 

✦✦

2.00 m from the wall. The string has a mass per unit 

length of 3.55 mg/m. What is the fundamental frequency 

of this string?  

    51.  A guitar’s E-string has length 65 cm and is stretched to a 

tension of 82 N. It vibrates at a fundamental frequency of 

329.63 Hz. Determine the mass per unit length of the string.  

    52.  A string 2.0 m long is held fixed at both ends. If a sharp 

blow is applied to the string at its center, it takes 0.050 s 

for the pulse to travel to the ends of the string and return 

to the middle. What is the fundamental frequency of 

oscillation for this string?  

    53.  A 1.6-m-long string fixed at both ends vibrates at resonant 

frequencies of 780 Hz and 1040 Hz, with no other reso-

nant frequency between these values. (a) What is the fun-

damental frequency of this string? (b) When the tension in 

the string is 1200 N, what is the total mass of the string?  

   54. A certain string has a mass per unit length of 0.120 g/m. 

It is attached to a vibrating device and weight similar to 

that shown in  Figure 11.22 . The vibrator oscillates at a 

constant frequency of 110 Hz. How heavy should the 

weight be in order to produce standing waves in a string 

of length 42 cm?  

55. The longest “string” (a thick metal wire) on a particular 

piano is 2.0 m long and has a tension of 300.0 N. It 

vibrates with a fundamental frequency of 27.5 Hz. What 

is the total mass of the wire?  

     56. Suppose that a string of length  L  and mass  m  is under 

tension  F.  (a) Show that      √
_____

 FL/m     has units of speed. 

(b) Show that there is no other combination of  L,   m,  and 

F  with units of speed. [ Hint:  Of the dimensions of the 

three quantities  L,   m,  and  F,  only  F  includes time.] 

Thus, the speed of transverse waves on the string can 

only be some dimensionless constant times      √
_____

 FL/m  .      

  Comprehensive Problems 

     57.  The speed of waves on a lake depends on frequency. 

For waves of frequency 1.0 Hz, the wave speed is 

1.56 m/s; for 2.0-Hz waves, the speed is 0.78 m/s. The 

2.0-Hz waves from a speedboat’s wake reach you 120 s 

after the 1.0-Hz waves generated by the same boat. 

How far away is the boat?  

   58. A transverse wave on a string is described by   

   y(x, t) = (1.2 cm) sin [(0.50p rad/s)t − (1.00p  rad/m)x]  

  Find the maximum velocity and the maximum accelera-

tion of a point on the string. Plot graphs for displace-

ment  y  versus  t,  velocity  v   y   versus  t,  and acceleration  a   y
versus  t  at  x   =  0.  

    59.  What is the wavelength of the radio waves transmitted 

by an FM station at 90 MHz? (Radio waves travel at 

3.0  ×  10 8  m/s.)  

   60. A longitudinal wave has a wavelength of 10 cm and an 

amplitude of 5.0 cm and travels in the  y -direction. The 

wave speed in this medium is 80 cm/s. (a) Describe the 

✦✦

✦✦
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motion of a particle in the medium as the wave travels 

through the medium. (b) How would your answer differ 

if the wave were transverse instead?  

    61.  An underground explosion sends out both transverse 

(S waves) and longitudinal (P waves) mechanical wave 

pulses (seismic waves) through the crust of the Earth. 

Suppose the speed of transverse waves is 8.0 km/s and 

that of longitudinal waves is 10.0 km/s. On one occa-

sion, both waves follow the same path from a source to 

a detector (a seismograph); the longitudinal pulse 

arrives 2.0 s before the transverse pulse. What is the dis-

tance between the source and the detector?  

62.  The graph shows ground vibrations recorded by a seis-

mograph 180 km from the focus of a small earthquake. 

It took the waves 30.0 s to travel from their source to the 

seismograph. Estimate the wavelength. 

Time (s)

2.61.0

   63. When the string of a guitar is pressed against a fret, the 

shortened string vibrates at a frequency 5.95% higher than 

when the previous fret is pressed. If the length of the part 

of the string that is free to vibrate is 64.8 cm, how far 

from one end of the string are the first three frets located?  

   64. A guitar string has a fundamental frequency of 300.0 Hz. 

(a) What are the next three lowest standing wave fre-

quencies? (b) If you press a finger  lightly  against the 

string at its midpoint so that both sides of the string can 

still vibrate, you create a node at the midpoint. What are 

the lowest four standing wave frequencies now? (c) If 

you press  hard  at the same point, only one side of the 

string can vibrate. What are the lowest four standing 

wave frequencies?  

    65.  A sign is hanging from a sin-

gle metal wire, as shown in 

part (a) of the drawing. The 

shop owner notices that the 

wire vibrates at a fundamental 

resonance frequency of 660 Hz, 

which irritates his customers. 

In an attempt to fix the problem, the shop owner cuts 

the wire in half and hangs the sign from the two halves, 

as shown in part (b). Assuming the tension in the two 

wires to be the same, what is the new fundamental fre-

quency of each wire?      

   66. (a) Write an equation for a surface seismic wave mov-

ing along the −x-axis with amplitude 2.0 cm, period 4.0 s, 

and wavelength 4.0 km. Assume the wave is harmonic, 

x  is measured in m, and  t  is measured in s. (b) What is the 

maximum speed of the ground as the wave moves by? 

(c) What is the wave speed?  

✦✦

     67. The formula for the speed of transverse waves on a 

spring is the same as for a string. (a) A spring is stretched 

to a length much greater than its relaxed length. Explain 

why the tension in the spring is approximately propor-

tional to the length. (b) A wave takes 4.00 s to travel 

from one end of such a spring to the other. Then the 

length is increased 10.0%. Now how long does a wave 

take to travel the length of the spring? [ Hint:  Is the mass 

per unit length constant?]  

    68.  Deep-water waves are  dispersive  (their wave speed 

depends on the wavelength). The restoring force is pro-

vided by gravity. Using dimensional analysis, find out 

how the speed of deep-water waves depends on wave-

length  l , assuming that  l  and  g  are the only relevant quan-

tities. (Mass density does not enter into the expression 

because the restoring force, arising from the weight of the 

water, is itself proportional to the mass density.)  

    69.  In contrast to deep-water waves, shallow ripples on the 

surface of a pond are due to surface tension. The sur-

face tension  g  of water characterizes the restoring 

force; the mass density  r  of water characterizes the 

water’s inertia. Use dimensional analysis to determine 

whether the surface waves are  dispersive  (the wave 

speed depends on the wavelength) or  nondispersive

(their wave speed is independent of wavelength). 

[ Hint:  Start by assuming that the wave speed is deter-

mined by  g ,  r , and the wavelength  l .]  

   70. A seismic wave is described by the equation   

  y(x, t) = (7.00 cm) cos [(6.00p  rad/cm) x + (20.0p  rad/s)t]  

  The wave travels through a uniform medium in the 

 x -direction. (a) Is this wave moving right ( + x-direction) 

or left (−x-direction)? (b) How far from their equilib-

rium positions do the particles in the medium move? 

(c) What is the frequency of this wave? (d) What is the 

wavelength of this wave? (e) What is the wave speed? 

(f) Describe the motion of a particle that is at  y   =  7.00 cm 

and  x   =  0 when  t   =  0. (g) Is this wave transverse or 

longitudinal?  

     71. The drawing shows 

a snapshot of a trans-

verse wave moving 

to the left on a string. 

The wave speed is 10.0 m/s. At the instant the snapshot 

is taken, (a) in what direction is point  A  moving? (b) In 

what direction is point  B  moving? (c) At which of these 

points is the speed of the string segment (not the wave 

speed) larger? Explain.      

72. Consider a point just to the left of point  A  in the draw-

ing with Problem 71. Plot the position of that point and 

the velocity of that point as a function of time as the 

wave passes the point.  

      73.  Two speakers spaced a distance 1.5 m apart emit coherent 

sound waves at a frequency of 680 Hz in all directions. 

The waves start out in phase with each other. A listener 

walks in a circle of radius greater than one meter centered 

✦✦

✦✦
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on the midpoint of the two speakers. At how many points 

does the listener observe destructive interference? The lis-

tener and the speakers are all in the same horizontal plane 

and the speed of sound is 340 m/s. [ Hint:  Start with a dia-

gram; then determine the  maximum  path difference 

between the two waves at points on the circle.] Experi-

ments like this must be done in a special room so that 

reflections are negligible.  

   74. (a) Use a graphing calculator or computer graphing pro-

gram to plot  y  versus  x  for the function   

  y(x, t) = (5.0 cm) [sin (kx − w t) + sin (kx + w t)]  

  for the times  t   =  0, 1.0 s, and 2.0 s. Use the values 

k   =   p  / (5.0 cm) and  w   =  ( p  /6.0) rad/s. (b) Is this a trav-

eling wave? If not, what kind of wave is it?  

75 Show that the amplitudes of the graphs you made in 

Problem 74 satisfy the equation  A  ′   =  2 A  cos ( w   t ), where 

 A  ′  is the amplitude of the wave you plotted and  A  is 

5.0 cm, the amplitude of the waves that were added 

together.     

  Problems 76–77.  The pulse of Problems 37–38 travels on a 

string that has fixed ends. 

      76.  The pulse travels on a string whose ends at  x   =  0 and 

 x   =  4.0 m are both fixed in place. Sketch the shape of 

the string at  t   =  2.2 s.      

     77.  The pulse travels on a string whose ends at  x   =  0 and 

 x   =  4.0 m are both fixed in place. Sketch the shape of 

the string at  t   =  1.6 s.             

  Answers to Practice Problems 

    11.1  (a) 8.9 m/s; (b) 13 m/s  

    11.2  (a) Yes, the traveling wave retains its shape; (b) it trav-

els in the  + x-direction because the  t  and  x / v  terms have 

 opposite  signs; (c) the wave speed is 8.0 m/s.  

    11.3   

0

y (cm)

t (s)

y (cm)

x (m)

1.2

–1.2

0

0.2 0.4

(a)

(b)

0.6 0.8

0.05 0.10 0.15 0.20

1.2

–1.2

x = 0

t = 0

    

✦✦

✦✦

✦✦

✦✦

(c)  T   =  0.200 s; (d)  l   =  0.80 m; (e)  A   =  1.2 cm; (f)  v   =  4.0 m/s; 

(g) the wave travels in the −x-direction because the signs of 

the terms containing  x  and  t  are the same.  

    11.4   

0.5

0.75

1.0

t = 1.0 s

0.5

1.0

t = 2.0 s

t = 1.5 s

x (m)

y

x (m)

y

x (m)

y

    11.5  (a) 620 Hz; (b) 8.5 m  

    11.6  9.0  

   11.7  140 Hz    

  Answers to Checkpoints 

     11.1  For an isotropic source,  I  ∝ 1/ r  2 . At a distance 

10 2  times as far from the tower, the intensity is 

10  − 4   ×  0.090 W/m 2   =  9.0   μW/m 2 .  

    11.4  The period  T  is the time for one cycle. During one 

period, the wave travels 20 km at a speed of 4.0 km/s. Then 

the period is (20 km)/(4.0 km/s)  =  5.0 s.  

    11.10  The nodes are evenly spaced, so the nodes are at 

x   =  0, 20 cm, 40 cm, 60 cm, 80 cm, and 100 cm. The dis-

tance between nodes is half the wavelength, so the wave-

length is 40 cm.           
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 C H A P T E R 

 12  Sound 

Congratulations! You’re 

expecting twins!     Ultrasonic imaging of the fetus is an increasingly important part 

of prenatal care. Could an image of the fetus be produced just as 

well using sound in the audible range rather than ultrasound? Why 

is ultrasound used rather than some other imaging technology, such 

as x-rays? Are there other medical applications of ultrasound? (See 

p. 445 for the answer.) 



  • gauge pressure (Section 9.5) 

 • bulk modulus (Section 10.4) 

 • relation between energy and amplitude in SHM (Section 10.5) 

 • period and frequency in SHM (Section 10.6) 

 • longitudinal waves, intensity, standing waves, superposition principle (Chap-

ter 11) 

 • logarithms (Appendix A.3)   

    12.1  SOUND WAVES 

  When a guitar string is plucked, a transverse wave travels along the string. The wave on 

the string is not what we hear, of course, since the string has no direct connection to our 

eardrums. The vibration of the string is transmitted through the bridge to the body of the 

guitar, which in turn transmits the vibration to the air—a sound wave.  A transverse wave 

on a guitar string is not a sound wave, though it does   cause   a sound wave.  

 In the absence of a sound wave, molecules in the air dart around in random direc-

tions. On average, they are uniformly distributed and the pressure is the same every-

where (ignoring the insignificant variation of pressure due to small changes in altitude). 

In a sound wave, the uniform distribution of molecules is disturbed. A loudspeaker pro-

duces pressure fluctuations that travel through the air in all directions ( Fig. 12.1 ). In 

some regions ( compressions ), the molecules are bunched together and the pressure is 

higher than the average pressure. In other regions ( rarefactions ), the molecules are 

spread out and the pressure is lower than average. The sound wave can be described 

mathematically by the gauge pressure  p  (the difference between the pressure at a given 

point and the average pressure in the surroundings) as a function of position and time 

( Fig. 12.2a ). 

 The speaker cone produces these pressure variations by displacing molecules in 

the air from their uniform distribution ( Fig. 12.2b ). When the cone moves to the left 

of its equilibrium position, air spreads into a region of lower pressure (rarefaction). 

  Application: how a guitar creates a 

sound wave    

  Application: how a guitar creates a 

sound wave    

  Application: how a loudspeaker 

generates a sound wave  

  Application: how a loudspeaker 

generates a sound wave  

Concepts & Skills to Review

Wavelength
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Figure 12.1 The vibrating speaker cones in this boombox create alternating regions of high and low pressure in the air. 

Air nearby is affected by a net force due to the nonuniform air pressure; as a result, variations in pressure travel in all direc-

tions away from the speakers. This traveling disturbance is a sound wave.
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When the cone moves to the right, air is squeezed together into a region of higher 

pressure (compression). 

 Thus, the regions of higher and lower pressure are formed when molecules are dis-

placed from a uniform distribution. A sound wave can be described equally well by the 

displacement  s  of an  element  of the air—a region of air that can be considered to move 

together as a unit ( Fig. 12.2c ). An element is much smaller than the wavelength of the 

wave, but still large enough to contain many molecules. For a sinusoidal wave, elements 

at points of maximum or minimum pressure have zero displacement, while the neigh-

boring elements move in toward them (a compression) or away from them (a rarefaction). 

Conversely, where the gauge pressure is zero, the displacement of an element has its max-

imum magnitude. 

 If the pressure is higher on one side than on the other, the net force pushes air 

toward the side with lower pressure. The uneven distribution of pressure results in air 

molecules being pushed toward rarefactions and away from compressions, as shown by 

the force arrows in  Fig. 12.2b . Note that the directions of these force arrows, point-

ing opposite to the displacement arrows in a corresponding region, are such that 

where there is a compression at a given instant, there will later be a rarefaction, and 

 vice versa;  the pressure at a given point fluctuates above and below the average 

pressure.  
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Figure 12.2 A sound wave generated by a loudspeaker. (a) Graph of the pressure 

variation p of the air as a function of position x. Pressure is high where air is squeezed 

together and low where it is more spread out. (b) Elements of the air are displaced 

from their equilibrium positions. Since the pressure is not uniform, air elements expe-

rience a net force due to air pressure; the force arrows indicate the direction of this net 

force. The force is always directed away from a compression (higher pressure) and 

toward a rarefaction. (c) Graph of the displacement s of an air element from its equi-

librium position x as a function of x; the arrows indicate the directions of the displace-

ments in each region. Air elements are displaced leftward or rightward toward 

compressions and away from rarefactions. Elements at the center of each compression 

or rarefaction are at their equilibrium positions (s = 0).
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   Frequencies of Sound Waves 

 The human ear responds to sound waves within a limited range of frequencies. We gen-

erally consider the    audible range    to extend from 20 Hz to 20 kHz. Very few people can 

actually hear sounds over that entire range. Even for a person with excellent hearing, the 

sensitivity of the ear declines rapidly below 100 Hz and above 10 kHz. The terms    infra-

sound    and    ultrasound    are used to describe sound waves with frequencies below 20 Hz 

and above 20 kHz, respectively. 

 The audible ranges for animals can be quite different. Dogs can hear frequencies as 

high as 50 kHz, which is why we can make a dog whistle that is inaudible to humans. 

Dolphins make use of frequencies as high as 250 kHz. Elephants communicate over 

long distances (up to 4 km) using sounds with fundamental frequencies as low as 14 Hz. 

A rhinoceros uses frequencies down to 10 Hz. Such low-frequency sounds cannot be 

heard by humans, but the vibrations can be felt and the sounds can be recorded using 

special equipment.    

   12.2  THE SPEED OF SOUND WAVES 

  For string waves, the restoring force is characterized by the tension in the string  F  and 

the inertia is characterized by the linear mass density  m  (mass per unit length). The 

speed of transverse waves on a string is    

     v =  √
__

   F __ m           (11-4)    

 For sound waves in a fluid, the restoring force is characterized by the bulk modulus 

 B,  defined in Section 10.4 as the constant of proportionality between an increase in 

pressure and the fractional volume change:

     ΔP = −B   ΔV
 ___ 

V
      (10-10)        

 The inertia of the fluid is characterized by its mass density  r . Following our dictum 

“more restoring force makes faster waves; more inertia makes slower waves,” we expect 

the speed of sound to be faster in a medium with a larger bulk modulus (harder to compress 

means more restoring force) and slower in a medium with a larger density. By analogy 

with Eq. (11-4), we might  guess  that

     v =  √
__________________________

     
a measure of the restoring force

   __________________________   
a measure of the inertia

     =  √
__

   B __ r            (in fluids)    (12-1)   

This guess turns out to be correct; Eq. (12-1) is the correct expression for the speed of 

sound in fluids.      

   Temperature Dependence of the Speed of Sound in a Gas    The bulk modulus  B  of 

an ideal gas turns out to be directly proportional to the density  r  and to  T,  the  absolute 

temperature  ( B  ∝  r   T  ). As a result, the speed of sound in an ideal gas is proportional to 

the square root of the absolute temperature, but is independent of pressure and density 

(at a fi xed temperature):

    v =  √
__

   B __ r       ∝  √
___

   
rT

 ___ r       ∝  √
__

 T            (ideal gas)  

The SI unit of absolute temperature is the kelvin (symbol K). To find absolute tempera-

ture in kelvins, add 273.15 to the temperature in degrees Celsius:

     T (in K) =  T  
C
   (in °C) + 273.15    (12-2)    

 Since     v ∝  √
__

 T  ,   the speed of sound in an ideal gas at any absolute temperature  T  can 

be found if it is known at one temperature:

     v =  v  
0
    √

___

   T ___ 
 T  

0
  
        (12-3)   

More restoring force ⇒ faster 

waves; more inertia ⇒ slower 

waves.

More restoring force ⇒ faster 

waves; more inertia ⇒ slower 

waves.
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CONNECTION: 

Just as for transverse waves 

on a string, the speed of 

sound waves is determined 

by a balance between two 

characteristics of the wave 

medium: the restoring force 

and the inertia.



where the speed of sound is  v  0  at absolute temperature  T  0 . For example, the speed of 

sound in air at 0 ° C (or 273 K) is 331 m/s. At room temperature (20 ° C, or 293 K), the 

speed of sound in air is

    v = 331 m/s ×  √
______

   293 K ______ 
273 K

     = 343 m/s  

An  approximate  formula that can be used for the speed of sound in air is

     v = (331 + 0.606 T  
C
  ) m/s    (12-4)   

where  T  C  is air temperature  in degrees Celsius  (see Problem 8). The speed of sound in 

air increases 0.606 m/s for each degree Celsius increase in temperature. Equation (12-4) 

gives speeds accurate to better than 1% all the way from  − 66 ° C to  + 89 ° C.  

   Speed of Sound in a Solid    The speed of sound in a  solid  depends on the Young’s 

modulus  Y  and the shear modulus  S.  For sound waves traveling along the length of a 

thin solid rod, the speed is approximately

     v =  √
__

   Y __ r             (thin solid rod)    (12-5)   

 Table 12.1  gives the speed of sound in various materials.

how hard it is to compress a material. Liquids (such as mer-

cury) are much more difficult to compress than are gases. 

Thus, the restoring forces in mercury are much larger than 

those in hydrogen; this allows sound to travel a bit faster in 

mercury than it does in hydrogen gas.

Conceptual Practice Problem 12.1 Speed of 
Sound in Solids versus Liquids

Why does sound generally travel faster in a solid than in a 

liquid?

Conceptual Example 12.1

Speed of Sound in Hydrogen and Mercury

From Table 12.1, the speed of sound in hydrogen gas at 0°C 

is almost as large as the speed of sound in mercury, even 

though the density of mercury is 150 000 times larger than 

the density of hydrogen. How is that possible? Shouldn’t the 

speed in mercury be much smaller, since it has so much 

more inertia?

Solution and Discussion The speed of sound depends on 

two characteristics of the medium: the restoring force (mea-

sured by the bulk modulus) and the inertia (measured by the 

density). The bulk modulus of mercury is much larger than the 

bulk modulus of hydrogen. The bulk modulus is a measure of 

Table 12.1 Speed of Sound in Various Materials (at 0°C and 1 atm 
unless otherwise noted)

Medium Speed (m/s) Medium Speed (m/s)

Carbon dioxide 259 Blood (37°C) 1570

Air 331 Muscle (37°C) 1580

Nitrogen 334 Lead 1322

Air (20°C) 343 Concrete 3100

Helium 972 Copper 3560

Hydrogen 1284 Bone (37°C) 4000

Mercury (25°C) 1450 Pyrex glass 5640

Fat (37°C) 1450 Aluminum 5100

Water (25°C) 1493 Steel 5790

Seawater (25°C) 1533 Granite 6500
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   12.3  AMPLITUDE AND INTENSITY OF SOUND WAVES 

  Since there are two ways to describe a sound wave—pressure and displacement—the 

amplitude of a sound wave can take one of two forms: the pressure amplitude  p  0  or the 

displacement amplitude  s  0 . The pressure amplitude  p  0  is the maximum pressure fluctua-

tion above or below the equilibrium pressure, the displacement amplitude  s  0  is the max-

imum displacement of an element of the medium from its equilibrium position. The 

pressure amplitude is proportional to the displacement amplitude. For a harmonic sound 

wave at angular frequency  w , an advanced analysis shows that

      p  0   = w vr  s  
0
      (12-6)   

where  v  is the speed of sound and  r  is the mass density of the medium. 

 Is a larger amplitude sound wave perceived as  louder?  Yes, all other things being 

equal. However, the relationship between our perception of loudness and the amplitude 

of a sound wave is complex. Loudness is a subjective aspect of how sound is perceived; 

it has to do with how the ear responds to sound and how the brain interprets signals 

from the ear. Perceived loudness turns out to be  roughly  proportional to the logarithm of 

the amplitude. If the amplitude of a sound wave doubles repeatedly, the perceived loud-

ness does not double; it increases by a series of roughly equal steps. 

 Discussions of loudness are more often phrased in terms of intensity rather than 

amplitude since we are interested in how much energy the sound wave carries. The 

intensity of a sinusoidal sound wave is

     I =   
 p  0  

2
 
 ____ 

2r v
      (12-7)   

where  r  is the mass density of the medium and  v  is the speed of sound in that medium. 

The most important thing to remember is that  intensity is proportional to amplitude 

squared,  which is true for all waves, not just sound. It is closely related to the fact that 

energy in SHM is proportional to amplitude squared [see Eq. (10-13)].       

Intensity ∝ (Amplitude) 2 

Intensity is the average power per 

unit area carried by a wave (see

Section 11.1).

Intensity ∝ (Amplitude) 2 

Intensity is the average power per 

unit area carried by a wave (see

Section 11.1).

12.3  AMPLITUDE AND INTENSITY OF SOUND WAVES 425

intensity through Eq. (12-7). These relationships can be used 

to solve for both pressure amplitude, p0, and displacement 

amplitude, s0. The density of air at 20°C is r = 1.20 kg/m3

(see Table 9.1). The speed of sound in air at 20°C is 

v = 343 m/s. We need to multiply the frequency by 2p  to get 

the angular frequency w.

Solution Intensity and pressure amplitude are related by

I =   
 p  0  

2
 
 ____ 

2rv 
   (12-7)

Solving for p0,

  p  0    =   √
_____

 2Irv  

=  √
____________________________________

    2 × 1.4 ×  10 −8  W/ m 2  × 1.20 kg/ m 3  × 343 m/s  

 = 3.4 ×  10 −3  Pa

The pressure and displacement amplitudes are related by

  p 
0
   = w vr  s  

0
   (12-6)

Example 12.2

The Brown Creeper

The song of the Brown Creeper (Certhia americana) 

is very high in frequency—as high as 8 kHz. Many 

people who have lost some 

of their high-frequency 

hearing can’t hear it at all. 

Suppose that you are out 

in the woods and hear the 

song. If the intensity of 

the song at your position 

is 1.4 × 10−8 W/m2 and 

the frequency is 6.0 kHz, 

what are the pressure and 

displacement amplitudes? 

(Assume the temperature 

is 20°C.)

Strategy The displace-

ment and pressure ampli-

tudes are related through 

Eq. (12-6); the pressure 

amplitude is related to the 

continued on next page
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  Decibels 

 Since the perception of loudness by the human ear is roughly proportional to the loga-

rithm of the intensity, it is also roughly proportional to the logarithm of the amplitude 

(since log  x  2   =  2 log  x ). An intensity of  I  0   =  10  − 12  W/m 2  is about the lowest intensity 

sound wave that can be heard under ideal conditions by a person with excellent hearing; 

it is therefore called the    threshold of hearing.    The threshold of hearing is used as a ref-

erence intensity in the definition of the intensity level. 

 A sound intensity  I  is compared to the reference level  I  0  by taking the ratio of the 

two intensities. Suppose a sound has an intensity of 10  − 5  W/m 2 ; the ratio is

      I __ 
 I  

0
  
   =    10 −5  W/ m 2  __________ 

 10 −12  W/ m 2 
   =  10 7   

so the intensity is 10 7  times that of the hearing threshold. The power to which 10 is raised 

is the    sound intensity level     b   in units of bels (after Alexander Graham Bell). A ratio of 10 7  

indicates a sound intensity of 7 bels or, as it is more commonly stated, 70 decibels (dB). 

Since log 10  (10  x  )  =   x,  the sound intensity level in decibels is

  b  = (10 dB)  log  10     
I __ 
 I  

0
  
      (12-8) 

An intensity level of 0 dB corresponds to the threshold of hearing ( I   =  10  − 12  W/m 2 ). 

Although the intensity level is really a pure number, the “units” (dB) remind us what the 

number means. 

  Table 12.2  gives the pressure amplitudes, intensities, and intensity levels for a 

wide range of sounds. Notice that, even for sounds that are quite loud, the pressure 

fluctuations due to sound waves are small compared to the “background” atmospheric 

pressure.      

CHECKPOINT 12.3

Why doesn’t Table 12.2 include a column listing the displacement amplitudes of 

the sound waves?

The notation log 10  stands for the 

base-10 logarithm. See Appendix 

A.3 for a review of the properties of 

logarithms.

The notation log 10  stands for the 

base-10 logarithm. See Appendix 

A.3 for a review of the properties of 

logarithms.

Example 12.2 continued

Substituting in Eq. (12-7) yields

I =   
(w vr  s  

0
   ) 2 
 ________ 

2rv 
  

Solving for s0,

 s  
0
   =  √

_____

   2I _____ 
r w  2 v

     =  √
__________________________________

      2 × 1.4 ×  10 −8  W/ m 2    _________________________________    
1.20 kg/ m 3  × (2p  × 6000 Hz ) 2  × 343 m/s

     = 2.2 ×  10 −10  m

Discussion This problem illustrates how sensitive the 

human ear is. The pressure amplitude is a fluctuation of one 

part in 30 million in the air pressure. Since the pressure 

amplitude is 3.4 × 10−3 Pa, the maximum force on the ear-

drum would be about

 F  max   = 3.4 ×  10 −3  N/ m 2  ×  10 −4   m 2  ≈ 3 ×  10 −7  N

which is about the weight of a large amoeba. The displace-

ment amplitude is about the size of an atom.

Practice Problem 12.2 Pressure and Intensity 
at an Outdoor Concert

At a distance of 5.0 m from the stage at an outdoor rock con-

cert, the sound intensity is 1.0 × 10−4 W/m2. Estimate the 

intensity and pressure amplitude at a distance of 25 m if 

there were no speakers other than those on stage. Explain 

the assumptions you make.



Table 12.2 Pressure Amplitudes, Intensities, and Intensity Levels of a Wide Range of Sounds 
in Air at 20°C

Sound
Pressure Amplitude 

(atm)
Pressure Amplitude 

(Pa)
Intensity  
(W/m2)

Intensity Level 
(dB)

Threshold of hearing 3 × 10−10 3 × 10−5 10−12 0

Leaves rustling 1 × 10−9 1 × 10−4 10−11 10

Whisper (1 m away) 3 × 10−9 3 × 10−4 10−10 20

Library background noise 1 × 10−8 0.001 10−9 30

Living room background noise 3 × 10−8 0.003 10−8 40

Office or classroom 1 × 10−7 0.01 10−7 50

Normal conversation at 1 m 3 × 10−7 0.03 10−6 60

Inside a moving car, light traffic 1 × 10−6 0.1 10−5 70

City street (heavy traffic) 3 × 10−6 0.3 10−4 80

Shout (at 1 m); or inside a subway 

 train; risk of hearing damage if 

 exposure lasts several hours

1 × 10−5 1 10−3 90

Car without muffler at 1 m 3 × 10−5 3 10−2 100

Construction site 1 × 10−4 10 10−1 110

Indoor rock concert; threshold of 

 pain; hearing damage occurs rapidly

3 × 10−4 30 1 120

Jet engine at 30 m 1 × 10−3 100 10 130

The intensity level in decibels is

b  = 10.6 bels × (10 dB/bel) = 106 dB

Discussion As a quick check, 100 dB corresponds to 

I = 10−2 W/m2 and 110 dB corresponds to I = 10−1 W/m2; 

since the intensity is between 10−2 W/m2 and 10−1 W/m2, the 

intensity level must be between 100 dB and 110 dB.

Practice Problem 12.3 Consequences of a Hole 
in the Muffler

When rust creates a hole in the muffler of a car, the sound 

intensity level inside the car is 26 dB higher than when the 

muffler was intact. By what factor does the intensity 

increase?

 Example 12.3

Decibels from a Jackhammer

The sound intensity 5 m from a jackhammer is 4.20 ×

10−2 W/m2. What is the sound intensity level in decibels? 

(Use the usual reference level of I0 = 1.00 × 10−12 W/m2.)

Strategy We are given the intensity in W/m2 and asked for 

the intensity level in dB. First we find the ratio of the given 

intensity to the reference level. Then we take the logarithm of 

the result (to get the level in bels) and multiply by 10 (to con-

vert from bels to dB).

Solution The ratio of the intensity to the reference level is

  I __ 
 I  

0
  
   =   4.20 ×  10 −2  W/ m 2   _______________  

1.00 ×  10 −12  W/ m 2 
   = 4.20 ×  10 10 

The intensity level in bels is

 log  10     
I __ 
 I  

0
  
   =  log  10   4.20 ×  10 10  = 10.6 bels
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 As we saw in Section 11.9, when two sounds are coming from different sources, the 

waves are incoherent. If we know the intensity of each wave alone at a certain point, then 

the intensity due to the two waves together at that point is the sum of the two intensities:

    I =  I  
1
   +  I  

2
       (incoherent waves)  

   This is   not   true for two coherent waves, where the total intensity depends on the phase 

relationship between the waves.  Since there is no fixed phase relationship between two 

incoherent waves, on average there is neither constructive nor destructive interference. 

The total power per unit area is the sum of the power per unit area of each wave. 

and the new intensity level is

b ′ = (10 dB)  log  10     
I ′

 __ 
 I  

0
  
   = (10 dB)  log  10   (2.00 ×  10 9 ) = 93.0 

dB

Discussion The new intensity level is just 3 dB higher 

than the original one, even though the intensity is twice as 

big. This turns out to be a general result: a 3-dB increase 

represents a doubling of the intensity.

Practice Problem 12.4 Intensity Change 
for an Increment of 5 dB

The maximum recommended exposure time to a sound level 

of 90 dB is 8 h. For every increase of 5.0 dB in sound level 

up to 120 dB, the exposure time should be reduced by a fac-

tor of 2. (At 120 dB, damage occurs almost immediately; 

there is no safe exposure time.) What factor of intensity change 

does an intensity level increment of 5.0 dB represent?

Example 12.4

The Sound Intensity Level of Two Lathes

A metal lathe in a workshop produces a 90.0-dB sound 

intensity level at a distance of 1 m. What is the intensity 

level when a second identical lathe starts operating? Assume 

the listener is at the same distance from both lathes.

Strategy The noise is coming from two different 

machines and, thus, they are incoherent sources. 

We cannot add 90.0 dB to 90.0 dB to get 180.0 dB, which 

would be a senseless result—two lathes are not going to 

drown out a jet engine at close range (see Table 12.2). Instead, 

what doubles is the intensity. We must work in terms of inten-

sity rather than intensity level.

Solution First find the intensity due to one lathe:

b  = 90.0 dB = (10 dB)  log  10     
I __ 
 I  

0
  
  

 log  10     
I __ 
 I  

0
  
   = 9.00,        so     I __ 

 I  
0
  
   = 1.00 ×  10 9 

We could solve for I numerically but it is not necessary. With 

two machines operating, the intensity doubles, so

  I ′
 __ 

 I  
0
  
   = 2.00 ×  10 9 

 Sound intensity level is useful because it roughly approximates the way we perceive 

loudness (since it is a logarithmic function of intensity). Equal increments in intensity 

level roughly correspond to equal increases in loudness.    Two useful rules of thumb: every 

time the intensity increases by a   factor   of 10, the intensity level   adds   10 dB; since 

log 10  2  =  0.30, adding 3.0 dB to the intensity level   doubles   the intensity (see Problem 17).  

In Example 12.4, when both lathes are running at the same time, the intensity is twice as 

big as for one lathe, but the two do not sound twice as loud as one. Intensity  level  is a bet-

ter guide to loudness; two lathes produce a level 3 dB higher than one lathe. 

 Decibels can also be used in a relative sense; instead of comparing an intensity to 

I  0 , we can compare two intensities directly. Suppose we have two intensities  I  1  and  I  2
and two corresponding intensity levels  b   1  and  b   2 . Then

     b2 − b1 = 10 dB  (  log  10     
 I  

2
  
 __ 

 I  
0
  
   −  log  10     

 I  
1
  
 __ 

 I  
0
  
   )    

Since     log x − log y = log   x __ y     [see Appendix A.3, Eq. (A-21)],

     b2 − b1 = (10 dB)  log  10     
 I  

2
  / I  

0
  
 ____ 

 I  
1
  / I  

0
  
   = (10 dB)  log  10     

 I  
2
  
 __ 

 I  
1
  
      (12-9) 



From the rule of thumb, we know that  I  
2
   =   1

 
___ 
100

    I  
1
  . Then

  
 r  

2
  
 __  r  

1
     =  √

___

   
 I  

1
  
 __ 

 I  
2
  
     =  √

____

 100   = 10

 r  
2
   = 10 r  

1
   = 300 m

Discussion It is not necessary to use the rule of thumb. 

Let b1 = 130 dB and b 2 = 110 dB. Then

b2 − b1 = −20 dB = (10 dB)  log  10     
 I  

2
  
 __ 

 I  
1
  
  

From this, we find that

 log  10     
 I  

2
  
 __ 

 I  
1
  
   = −2      or       

 I  
2
  
 __ 

 I  
1
  
   =   1 ____ 

100
  

We can only consider 300 m an estimate. The jet engine 

may not radiate sound equally in all directions; it might be 

louder in front than on the side. Sound is partly absorbed 

and partly reflected by the runway, by the plane, and by 

any nearby objects. The air itself absorbs some of the 

sound energy—that is, some of the energy of the wave is 

dissipated.

Practice Problem 12.5 A Plane as Quiet as a 
Library

At what distance from the jet engine would the intensity 

level be comparable to the background noise level of a 

library (30 dB)? Is your answer realistic?

Example 12.5

Variation of Intensity Level with Distance

At a distance of 30 m from a jet engine, the sound intensity 

level is 130 dB. Serious, permanent hearing damage occurs 

rapidly at intensity levels this high, which is why you see air-

port personnel using hearing protection out on the runway. 

Assume the engine is an isotropic source of sound and ignore 

reflections and absorption. At what distance is the intensity 

level 110 dB—still quite loud but below the threshold of pain?

Strategy The intensity level drops 20 dB. According to 

the rule of thumb, each 10-dB change represents a factor of 

10 in intensity. Therefore, we must find the distance at 

which the intensity is 2 factors of 10 smaller—that is,   1
 

___ 
100

   the 

original intensity. The intensity is proportional to 1/r 2 since we 

assume an isotropic source [see Eq. (11-1)].

Solution We set up a ratio between the intensities and the 

inverse square of the distances:

  
 I  

1
  
 __ 

 I  
2
  
   =   (   

 r  
2
  
 __  r  

1
     )  

2

 

   12.4  STANDING SOUND WAVES 

   Pipe Open at Both Ends 

 Recall (Section 11.8) that a transverse wave on a string is reflected from a fixed end. 

A string fixed at both ends reflects the wave at each end. A standing wave on a string is 

caused by the superposition of two waves traveling in opposite directions. Standing 

 sound  waves are also caused by reflections at boundaries. Standing wave patterns for 

sound waves can be more complex, since sound is a three-dimensional wave. However, 

the air inside a pipe open at both ends gives rise to standing waves closely analogous to 

those on a string, as long as the pipe’s diameter is small compared with its length. Such 

a pipe is an excellent model of some organ pipes and flutes. 

 If the pipe is open at both ends, then the pipe has the same boundary condition at 

each end. At each open end, the column of air inside the pipe communicates with the 

outside air, so the pressure at the ends can’t deviate much from atmospheric pressure. 

The open ends are therefore  pressure nodes  ( Fig. 12.3 ). They are also  displacement 

  Open ends are pressure nodes and 

displacement antinodes.  

  Open ends are pressure nodes and 

displacement antinodes.  
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antinodes —elements of air vibrate back and forth with maximum amplitude at the ends. 

Since nodes and antinodes alternate with equal spacing ( l  /4), the wavelengths of stand-

ing sound waves in a pipe open at both ends are the same as for a string fixed at both 

ends (compare  Fig. 12.3  with Fig. 11.21), regardless of whether you consider the pres-

sure or the displacement description.       

  

Standing sound waves (thin pipe open at both ends):

 ln =   2L ___ n   (11-12)

  f  n   =   v 
__ 
ln

   = n  v 
___ 
2L

   =  nf  1   (11-13)

where n = 1, 2, 3, . . .

   Pipe Closed at One End 

 Some organ pipes are  closed at one end  and open at the other ( Fig. 12.4 ). The closed 

end is a pressure  antinode;  the air at the closed end meets a rigid surface, so there is no 

restriction on how far the pressure can deviate from atmospheric pressure. The closed 
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Figure 12.3 Standing waves in a pipe open at both ends. (Although the graphs show air displacement s on the vertical axis 

and x on the horizontal, remember that the displacements are in the ± x-direction, as illustrated by the black vector arrows.)

Figure 12.4 Some organ 

pipes are open at the top; others 

are closed. A pipe closed at one 

end has a fundamental wave-

length twice as large and there-

fore a fundamental frequency 

half as large as a pipe of the 

same length that is open at both 

ends, assuming the pipes are 

thin. (For musicians: the pitch of 

the pipe closed at one end 

sounds an octave lower than the 

other, since the interval of an 

octave corresponds to a factor of 

2 in frequency.)

CONNECTION:

The same sketch used to find 

wavelengths of standing 

waves for a string fixed at 

both ends can be used to find 

the wavelengths for a pipe 

open at both ends. (The wave 

speeds are different, however, 

so a string and pipe of the 

same length do not have the 

same standing wave 

frequencies.)



end is also a  displacement node  since the air near it cannot move beyond that rigid sur-

face. Some wind instruments are effectively pipes closed at one end. The reed of a clari-

net admits only brief puffs of air into the instrument; the rest of the time the reed closes 

off that end of the pipe. The pressure at the reed end fluctuates above and below atmo-

spheric pressure. The reed end is a pressure antinode and a displacement node.         

 The wavelengths and frequencies of the standing waves can be found using either 

the pressure or displacement descriptions of the wave. Using displacement, the funda-

mental has a node at the closed end, an antinode at the open end, and no other nodes or 

antinodes ( Fig. 12.5 ). The distance from a node to the nearest antinode is always       1 _ 
4
  l,   so 

for the fundamental

    L =   1 _ 
4
  l      or    l = 4L  

which is twice as large as the wavelength (2 L ) of the fundamental in a pipe of the same 

length open at both ends. Two thin organ pipes of the same length, one open at both ends 

and one closed at one end, do not have the same fundamental wavelength (see  Fig. 12.4 ).   

 What are the other standing wave frequencies? The next standing wave mode is 

found by adding one node and one antinode. Then the length of the pipe is 3 quarter-

cycles:     L =   3 _ 
4
  l   or     l =   4 _ 

3
  L.   This is       1 _ 

3
     the wavelength of the fundamental and the frequency 

is 3 times that of the fundamental. Adding one more node and one more antinode, the 

wavelength is       4 _ 
5
  L.   Continuing the pattern, we find that the wavelengths and frequencies 

for standing waves are

 

Standing sound waves (thin pipe closed at one end):

 ln =   4L ___ n   (12-10a)

  f  n   =   v 
__ 
ln

   = n  v 
___ 
4L

   = n f  1   (12-10b)

where n = 1, 3, 5, 7, . . .

    Note that the standing wave frequencies for a pipe closed at one end are only   odd   multi-

ples of the fundamental.  The “missing” standing wave patterns for even values of  n  require 

a clarinet to have many more keys and levers than a flute ( Fig. 12.6 ). What the keys do is 

effectively shorten the length of the pipe, making the standing wave frequencies higher.    
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Figure 12.5 Standing waves in a pipe closed at one end.
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CHECKPOINT 12.4

Why can’t a pipe of length L closed at one end support a standing wave with 

wavelength 2L?

(b) Clarinet

(a) Flute Open ends

Reed (closed end)

Blow hole (open end)

Figure 12.6 A flute can be modeled as a pipe open at both ends, while a clarinet can 

be modeled as a pipe closed at one end. Although the instruments are similar in length, 

the clarinet can play tones nearly an octave lower than the flute can. (a) The flute’s 

open blow hole serves as one of its open “ends.” If a flute’s fundamental frequency is 

f1 with no keys pressed, the next highest frequency possible without using any keys is 

2f1—the flutist overblows, exciting the next highest standing wave frequency rather 

than the fundamental. The flute needs enough keys to fill in all the notes with frequen-

cies between f1 and 2f1. (b) The clarinet can be modeled as a pipe open at one end and 

closed at the other. The mouthpiece end with its vibrating reed is more like a closed 

end (pressure antinode) than an open end (pressure node). For a clarinet, if the funda-

mental frequency is f1 with no keys pressed, the next highest frequency possible with-

out using any keys is 3f1. The clarinet must have more keys because it has to 

accommodate all the notes with frequencies between f1 and 3f1.

variable length L, closed at one end by the water surface and 

open at the other end. The sound is amplified due to resonance; 

when the frequency of the tuning fork matches one of the natural 

frequencies of the air column, a large-amplitude standing wave 

builds up in the column. For standing waves in a column of 

air, the wavelength and frequency are related by the speed of 

sound in air. We start by finding the speed of sound in air from 

the temperature given. Then we can find the wavelength of the 

sound waves emanating from the tuning fork. Last, we find the 

column lengths that support standing waves of that wavelength.

Solution The speed of sound in air at 18°C is

v = (331 + 0.606 × 18) m/s = 342 m/s

With the speed of sound and the frequency known, we can 

find the wavelength. The wavelength is the distance traveled 

by a wave during one period:

 l = vT =   v 
__ 
f
  

l =   342 m/s ________ 
520.0 Hz

   = 0.6577 m = 65.77 cm

Example 12.6

A Demonstration of Resonance

A thin hollow tube of length 

1.00 m is inserted vertically 

into a tall container of water 

(Fig. 12.7). A tuning fork 

( f = 520.0 Hz) is struck and 

held near the top of the tube 

as the tube is slowly pulled 

up and out of the water. At 

certain distances (L) between 

the top of the tube and the 

water surface, the otherwise 

faint sound of the tuning 

fork is greatly amplified. At 

what values of L does this 

occur? The temperature of 

the air in the tube is 18°C.

Strategy Sound waves in 

the air inside the tube reflect 

from the water surface. Thus, 

we have an air column of 

L

Figure 12.7

Experimental setup 

for Example 12.6.

continued on next page



PHYSICS AT HOME

You can set up a resonance in an empty water bottle by blowing horizontally 

across the top of the bottle. Once you have heard one resonance, add varying 

amounts of water to raise the level within and listen for other resonances. The 

resonant sound is noticeably louder than the nonresonant sounds. Notice that 

the longer the air column within the bottle, the lower the pitch heard.

12.5  TIMBRE 

  The sound produced by the vibration of a tuning fork is nearly a pure sinusoid at a sin-

gle frequency. In contrast, most musical instruments produce complex sounds that are 

the superposition of many different frequencies. The standing wave on a string or in a 

column of air is almost always the superposition of many standing wave patterns at 

The first possible resonance for a tube closed at one end occurs 

when there is a pressure node at the open end, a pressure 

antinode at the closed end, and no other pressure nodes or anti-

nodes. Therefore,

 L  
1
   =   1 _ 

4
  l =   1 _ 

4
   × 65.77 cm = 16.4 cm

To reach other resonances, the tube must be pulled out to 

accommodate additional pressure nodes and antinodes. To 

add one node and one antinode, the additional distance is   1 _ 
2
  l 

= 32.9 cm. The resonances occur at intervals of 32.9 cm:

 L  
2
   = 16.4 cm + 32.9 cm = 49.3 cm

 L  
3
   = 49.3 cm + 32.9 cm = 82.2 cm

The next one would require a tube longer than 1.00 m, so there 

are three values of L that produce resonance in this tube.

Discussion As a check, we can sketch the standing wave 

pattern for the third resonance (Figs. 12.8a,b). There are 5 

quarter-wavelengths in the length of the column, so

 L  
3
   =   5 _ 

4
  l =   5 _ 

4
   × 65.77 cm = 82.2 cm

At the open end of the tube, the node for pressure and the 

antinode for maximum displacement is actually a little above 

the opening. For this reason it is best to measure the distance 

between two successive resonances to find an accurate value 

for a half-wavelength rather than measuring the distance for 

the first possible resonance, the shortest distance between 

the opening and the 

water surface, and 

setting it equal to a 

quarter-wavelength.

Practice Problem 12.6 A Roundabout Way to 
Measure Temperature

A tuning fork of frequency 440.0 Hz is held above the hol-

low tube in Example 12.6. If the distance ∆L that the tube is 

moved between resonances is 39.3 cm, what is the tempera-

ture of the air inside the tube?

Example 12.6 continued

(a) (b)

L

Pressure Top of
tube

Water
level

Displacement

Figure 12.8

(a) Standing wave pat-

tern, showing displace-

ment nodes and 

antinodes, for the third 

resonance. (b) Standing 

wave pattern, showing 

pressure nodes and 

antinodes, for the third 

resonance.

Problem-Solving Strategy for Standing Waves

There is no need to memorize equations for standing wave frequencies and wave-

lengths. Just sketch the standing wave patterns as in Figs. 12.3 and 12.5. Make 

sure that nodes and antinodes alternate and that the boundary conditions at the 

ends are correct. Then determine the wavelengths by setting the distance between 

a node and antinode equal to   1 _ 
4
  l. Once the wavelengths are known, the frequencies 

are found from v = fl.
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different frequencies. The lowest frequency in a complex sound wave is called the fun-

damental; the rest of the frequencies are called    overtones.    All the overtones of a peri-

odic sound wave have frequencies that are integral multiples of the fundamental; the 

fundamental and the overtones are then called    harmonics.    

 Middle C played on an oboe does not sound the same as middle C played on a 

trumpet, even though the fundamental frequency is the same, largely because the two 

instruments produce overtones with different relative amplitudes. What is different 

about the two sounds is the    tone quality,    or    timbre    (pronounced “tamber”). 

 Any periodic wave, no matter how complicated, can be decomposed into a set of 

harmonics, each of which is a simple sinusoid. The characteristic wave form for a note 

played on a clarinet, for example, can be decomposed into its harmonic series ( Fig. 12.9 ). 

This process is called harmonic analysis, or Fourier analysis, in honor of the French 

mathematician, Jean Baptiste Joseph Fourier (1768–1830), who developed mathemati-

cal methods for analyzing periodic functions. Although the spectrum of a periodic wave 

consists only of members of a harmonic sequence, not all members of the sequence 

need be present, not even the fundamental ( Fig. 12.10 ). 

 The opposite of harmonic analysis is harmonic synthesis: combining various har-

monics to produce a complex wave. Electronic synthesizers can mimic the sounds of 

various instruments. Realistic-sounding synthesizers must also allow the adjustment of 

other parameters such as the attack and decay of the sound.   
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p Figure 12.9 (a) A graph of the sound wave produced by a clarinet. (b) A bar 

graph showing the relative intensities of the harmonics, often called the spectrum. 

The frequency of each harmonic is nf1, where f1 = 200 Hz. Notice that odd multiples 

of the fundamental dominate the spectrum. A simple pipe closed at one end would 

show only odd multiples in its spectrum. (Data courtesy of P. D. Krasicky, Cornell 

University.)
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Figure 12.10 Complex wave 

form (bottom wave) composed 

by superposition of three sinu-

soidal waves (three upper 

waves). A wave with three har-

monic components having fre-

quencies of 110, 165, and 

220 Hz repeats at a frequency of 

55 Hz because each of these 

three frequencies is an integral 

multiple of 55 Hz. Even though 

the fundamental is missing—

there is no harmonic component 

at 55 Hz—the ear is clever 

enough to “reconstruct” a 55-Hz 

tone. That’s why you can listen 

to and recognize music on an 

inexpensive radio whose speaker 

may reproduce only a small 

range of frequencies.



   12.6  THE HUMAN EAR   

   Figure 12.11  shows the structure of the human ear. The human ear has an external part 

or  pinna  that acts something like a funnel, collecting sound waves and concentrating 

them at the opening of the auditory canal. The pinna is better at collecting sound com-

ing from in front than from behind, which helps with localization. Resonance in the 

 auditory canal  (see Problem 56) boosts the ear’s sensitivity in the 2- to 5-kHz frequency 

range—a crucial range for understanding speech. 

 At the end of the auditory canal, the eardrum ( tympanum ) vibrates in response to 

the incident sound wave. The region just beyond the eardrum is called the middle ear. 

The vibrations of the eardrum are transmitted through three tiny bones of the middle 

ear (the  auditory ossicles ) to the  oval window  of the  cochlea,  a tapered spiral-shaped 

organ filled with fluid. The oval window is a membrane that is in contact with the 

fluid in the cochlea. The ossicles act as levers; the force exerted by the “stirrup” on 

the oval window is 1.5 to 2.0 times the force the eardrum exerts on the “hammer.” The 

area of the oval window is one-twentieth that of the eardrum, so there is an overall 

amplification in pressure by a factor of 30 to 40. The ossicles protect the ear from 

damage: in response to a loud sound, a muscle pulls the stirrup away from the oval 

window. At the same time, another muscle increases the eardrum tension. These two 

changes make the ear temporarily less sensitive. It takes a few milliseconds for the 

muscles to respond in this way, so they provide no protection against  sudden  loud 

sounds. 

 The  cochlear partition  runs most of the length of the cochlea, separating it into two 

chambers (the  scala vestibuli  and the  scala tympani ). Vibration of the oval window sends 

a compressional wave down the fluid in the scala vestibuli, around the end of the partition, 

and back up the scala tympani to the  round window.  This wave sets the  basilar membrane,  

located on the cochlear partition, into vibration. The basilar membrane is thinnest and 

under greatest tension near the oval and round windows; it gradually increases in thick-

ness and decreases in tension toward its other end. High-frequency waves cause the mem-

brane to vibrate with maximum amplitude near its thin, high-tension end; low-frequency 
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Pinna Auditory canal

Eardrum

Oval
window

Round
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(for pressure equalization)
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Auditory nerve
(to the brain)
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Cochlear
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Organ of
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Figure 12.11 Structure of the human ear with a cross section of the cochlea.
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waves cause maximum amplitude vibrations near its thicker, lower-tension end. The loca-

tion of the maximum amplitude vibrations is one way the ear determines frequency; for 

low-frequency sounds (up to about 1 kHz), the ear sends periodic nerve signals to the 

brain at the frequency of the sound wave. For complex sounds, which consist of the super-

position of many different frequencies (see Section 12.5), the ear performs a spectral anal-

ysis—it decomposes the complex sound into its constituent frequencies. 

 Located on the basilar membrane is the sensory organ (the  organ of Corti ). Rows of 

hair cells on the basilar membrane excite neurons when they bend in response to vibra-

tion. These neurons send electrical signals to the brain.  

   Loudness 

 Although loudness is most closely correlated to intensity level, it also depends on fre-

quency (as well as other factors). In other words, the sensitivity of the ear is frequency-

dependent.  Figure 12.12  shows a set of  curves of equal loudness  for a typical person. 

Each curve shows the intensity levels at which sounds of different frequencies are per-

ceived to be equally loud.    

  Pitch 

     Pitch    is the perception of frequency. If you sing or play up and down a scale, it is the 

pitch that is rising and falling. Although pitch is the aspect of sound perception most 

closely tied to a single physical quantity, frequency, our sense of pitch is affected to a 

small extent by other factors such as intensity and timbre (Section 12.5). 

 Our sense of pitch is a  logarithmic  function of frequency, just as loudness is approx-

imately a logarithmic function of intensity. If you start at the lowest note on the piano 

(which has a fundamental frequency of 27.5 Hz) and play a chromatic scale—every 
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Figure 12.12 Curves of equal loudness. The curves show that the ear is most sensi-

tive to frequencies between 3 kHz and 4 kHz, partly due to resonance in the auditory 

canal. The ear’s sensitivity falls off rapidly below 800 Hz and above 10 kHz. At any 

given frequency between 800 Hz and 10 kHz, the curves are approximately evenly 

spaced: equal steps in intensity level produce equal steps in loudness, which is why 

intensity level is often used as an approximate measure of loudness. In this frequency 

range, 1 dB is about the smallest change in intensity level that is perceptible as a change 

in loudness. The threshold of hearing is shown by the lowest curve in the set; a person 

with excellent hearing cannot hear sounds with intensity levels below this curve. The 

threshold of hearing is at an intensity level of 0 dB only in the vicinity of 1 kHz.



white and black key in turn—all the way to the highest note (4190 Hz), you hear a 

series of equal steps in pitch. The frequencies do  not  increase in equal steps; the funda-

mental frequency of each note is 5.95% higher than the previous note. Under ideal con-

ditions, most people can sense frequency changes as small as 0.3%. A trained musician 

can sense a frequency change of 0.1% or so.  

   Localization 

 How can you tell where a sound comes from? The ear has several different tools it uses 

to localize sounds:

   • The principal method for high-frequency sounds (> 4 kHz) is the difference in 

intensity sensed by the two ears. The head casts a “sound shadow,” so a sound com-

ing from the right has a larger intensity at the right ear than at the left ear.  

  • The shape of the pinna makes it slightly preferential to sounds coming from the 

front. This helps with front-back localization for high-frequency sounds.  

  • For lower-frequency sounds, both the difference in arrival time and the phase dif-

ference between the waves arriving at the two ears are used for localization.                 

   12.7  BEATS 

  When two sound waves are close in frequency (within about 15 Hz of one another), the 

superposition of the two produces a pulsation that we call    beats.    Beats can be produced 

by any kind of wave; they are a general result of the principle of superposition when 

applied to two waves of nearly the same frequency. 

 Beats are caused by the slow change in the phase difference between the two waves. 

Suppose that at one instant ( t   =  0 in  Fig. 12.13 ), the two waves are in phase with one 

another and interfere constructively. The amplitude of the superposition is the sum of the 

amplitudes of the two waves shown in  Fig. 12.13a . However, since the frequencies are dif-

ferent, the waves do not  stay  in phase. The higher-frequency wave has a shorter cycle, so 

it gets ahead of the other one. The phase difference between the two steadily increases; as 

it does, the amplitude of the superposition decreases. At a later time ( t   =  5 T  0 ), the phase 

difference reaches 180 ° ; now the waves are half a cycle out of phase and interfere destruc-

tively ( Fig. 12.13b ). Now the amplitude of the superposition is minimum—the difference 
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8T0 10T0

p0

2p0

0

–2p0

–p0

T0

2T0 4T0 6T0
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t
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–p0

p

p
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Figure 12.13 (a) Graph (red) 

of a sound wave with frequency 

f1 = 1/T0 and amplitude p0. 

Graph (blue) of a second sound 

wave with frequency f2 = 1.1f1 

and amplitude 1.5p0. (b) The 

superposition of the two has 

maximum amplitude 2.5p0 and 

minimum amplitude 0.5p0.
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CONNECTION:

When two waves with differ-

ent frequencies are superim-

posed, constructive 

interference alternates with 

destructive interference, 

causing beats.
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between the amplitudes of the two waves. As the phase difference continues to increase, 

the amplitude increases until constructive interference occurs again ( t   =  10 T  0 ). The ear 

perceives the amplitude (and intensity) cycling from large to small to large to small as a 

pulsation—a repeating alternation of increasing and decreasing loudness. 

 At what frequency do the beats occur? It depends on how far apart the frequencies of 

the two waves are. We can measure the time between beats  T  beat  as the time to go from 

constructive interference to the next occurrence of constructive interference. During that 

time, each wave must go through a whole number of cycles, with one of them going 

through one more cycle than the other. Since frequency (  f  ) is the number of cycles per 

second, the number of cycles a wave goes through during a time  T  beat  is  f T  beat . (To illus-

trate: in  Fig. 12.13 ,  T  beat   =  10 T  0 . During that time, wave 1 goes through  f  1  T  beat   =  10 cycles, 

while wave 2 goes through  f  2  T  beat   =  1.1/ T  0   ×  10 T  0   =  11 cycles.) If  f  2  >  f  1 , then wave 2 goes 

through one cycle more than wave 1:

     f  2   T  
beat

   −  f  1   T  
beat

   = (Δf ) T  
beat

   = 1  

The beat frequency  f  beat  is 1/ T  beat :

      f  beat   = 1/ T  
beat

   = Δf    (12-11)   

Thus, we obtain the remarkably simple result that the beat frequency is the difference 

between the frequencies of the two waves. If the difference in frequencies exceeds 

roughly 15 Hz, then the ear no longer perceives the beats; instead, we hear two tones at 

different pitches.       

CHECKPOINT 12.7

(a) At what time(s) in Fig. 12.13 do the two waves interfere constructively? 

(b) At what time(s) do they interfere destructively?

 Piano tuners listen for beats as they tune. The tuner sounds two strings and listens 

for the beats. The beat frequency indicates whether the interval is correct or not. If the 

two strings are played by the same key, they are tuned to the same fundamental fre-

quency, so the beat frequency should be (nearly) zero. If the two strings belong to two 

different notes, the beat frequency is nonzero. In this case the tuner listens to beats 

between two  overtones  that are close in frequency.   

Application of beats: tuning a 

piano

Application of beats: tuning a 

piano

length, which does not change. The increase in tension 

increases the speed of waves on the string, which in turn 

increases the frequency.

Solution (a) Since the piano tuner heard 3.0 beats per sec-

ond, the difference in the two frequencies was 3.0 Hz:

Δ f = 3.0 Hz

Is the piano string’s frequency 3.0 Hz higher or 3.0 Hz lower 

than the tuning fork’s frequency? As the tension increases 

gradually, the beat frequency decreases, which means that the 

frequency of the piano string is getting closer to the frequency 

Example 12.7

The Piano Tuner

A piano tuner strikes his tuning fork ( f = 523.3 Hz) and 

strikes a key on the piano at the same time. The two have 

nearly the same frequency; he hears 3.0 beats per second. As 

he tightens the piano string, he hears the beat frequency 

gradually decrease to 2.0 beats per second when the two 

sound together. (a) What was the frequency of the piano 

string before it was tightened? (b) By what percentage did 

the tension increase?

Strategy The beat frequency is the difference between 

the two frequencies; we only have to determine which is 

higher. The wavelength of the string is determined by its 

continued on next page



   12.8  THE DOPPLER EFFECT 

  A police car races by, its sirens screaming. As it passes, we hear the pitch change from 

higher to lower. The frequency change is called the    Doppler effect,    after the Austrian 

physicist Johann Christian Andreas Doppler (1803–1853). The observed frequency is 

different from the frequency transmitted by the source when the source or the observer 

are in motion relative to the wave medium. 

   We consider only the motion of the source and observer directly toward or away 

from one another in the reference frame in which the wave medium is at rest.  Velocities 

of the source and observer are expressed as components along the direction of propaga-

tion of the sound wave (from source to observer). A positive component means the 

velocity is in the direction of propagation of the wave, but a negative component means 

the velocity is opposite the direction of propagation.   

   Moving Source 

 First we consider a moving source. A source emits a sound wave at frequency  f  s , 

which means that wave crests (regions of maximum amplitude, indicated by circles 

in  Fig. 12.14 ) leave the source spaced by a time interval  T  s   =  1/ f  s . If the source is 

moving at velocity  v  s  toward a stationary observer on the right,  Fig. 12.14a  shows 

that the wavelength—the distance between crests—is smaller in front of the source 

and larger behind the source. In  Fig. 12.14b , at the instant that crest 6 is emitted, 

crest 5 has traveled outward a distance  vT  s  from point 5, where  v  is the speed of 

sound. During the same time interval, the source has advanced a distance  v  s  T  s . The 

wavelength  l , measured by the observer on the right is the distance between crests 

5 and 6:

    l = v T  s   −  v  s   T  s     

of the tuning fork. Therefore, the string frequency must be 

3.0 Hz lower than the tuning fork frequency:

 f  string   = 523.3 Hz − 3.0 Hz = 520.3 Hz

(b) The tension (F) is related to the speed of the wave on the 

string (v) and the mass per unit length (m) by

 v =  √
__

   F __ m      (11-4)

The mass per unit length does not change, so v ∝  √
__

 F  . The 

speed of the wave on the string is related to its wavelength 

and frequency by

v = l f

The wavelength l in this expression is the wave-

length of the transverse wave on the string, not the 

wavelength of the sound wave in air. Since l does not change, 

v ∝ f. Therefore, f ∝  √
__

 F   or

F ∝  f  2 

This means that the ratio of the tension F to the original ten-

sion F0 is equal to the ratio of the frequencies squared:

  F ___ 
 F  

0
  
   =   (   f __ 

 f  0  
   )  

2

  =   (   521.3 Hz ________ 
520.3 Hz

   )  
2
  = 1.004

The tension was increased 0.4%.

Discussion We needed to find whether the original fre-

quency was too high or too low. As the beat frequency 

decreases, the frequency of the string is getting closer to the 

frequency of the tuning fork. Tightening the string makes 

the string’s frequency increase; since increasing the string’s 

frequency brings it closer to the tuning fork’s frequency, we 

know that the original frequency of the string was lower than 

the frequency of the tuning fork. Had an increase in tension 

increased the beat frequency instead, we would know that 

the original frequency was already too high; the tension 

would have to be relaxed to tune the string.

Practice Problem 12.7 Tuning a Violin

A tuning fork with a frequency of 440.0 Hz produces 4.0 beats 

per second when sounded together with a violin string of 

nearly the same frequency. What is the frequency of the string 

if a slight increase in tension increases the beat frequency?

Example 12.7 continued
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 The frequency at which the crests arrive at the observer is the  observed  wave fre-

quency  f  o . The observed period  T  o  between the arrival of two crests is the time it takes 

sound to travel a distance ( v   −   v  s ) T  s :

     T  o   =   l  __ 
v
   =   

(v −  v  s  ) T  s   _________ 
v    

The observed frequency is

     f  o   =   1 ___ 
 T  o  

   =   v
 

______  v −  v  s  
   ×   1 ___ 

 T  s  
    

Dividing numerator and denominator by  v  and substituting  f  s   =  1/ T  s  yields

      

Doppler effect (moving source):

  f  o   =  (   1 _______ 
1 −  v  s  /v

   )   f  s   (12-12)

vs > 0 for a source moving in the direction of the wave

Since the denominator 1  −   v  s  / v  is less than 1, the observed frequency is higher than 

the source frequency when the source moves in the same direction as the wave (toward 

the observer). If the source instead moves  away  from the observer, the correct observed 

frequency is given by Eq. (12-12) as long as we make  v  s  negative (the source moves 

opposite the direction of the wave). With  v  s  negative, 1  −   v  s  / v  is  greater  than 1, so the 

observed frequency is  less  than the source frequency.  

  Moving Observer 

 Now we consider motion of the observer. A stationary source emits a sound wave at fre-

quency  f  s  and wavelength  l   =   v / f  s , where  v  is the speed of sound. A stationary observer 

would measure the arrival of wave crests spaced by a time interval  T  s   =  1/ f  s . An observer 

l

1

2

3

4

5

1 2 3 4 5 6

5

5 6

(b)(a)

vsTs

vTs

′
vs

l l

Figure 12.14 (a) A speedboat is moving to the right at speed vs (exaggerated for clarity) while it blows its siren. The siren 

emits wave crests at positions 1, 2, 3, 4, 5, and 6; each wave crest moves outward in all directions, from the point at which it 

was emitted, at speed v. (b) Wave crest 6 is emitted a time Ts after wave crest 5 is emitted. During that time, wave crest 5 moves 

a distance vTs and the boat moves a distance vsTs. The wavelength is the distance between wave crests: l = vTs − vsTs.
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moving away from the source at velocity  v  o  would observe a longer time interval 

between crests. Just as crest 1 reaches the observer, the next (crest 2) is a distance  l

away. Crest 2 catches up with the observer at a time  T  o  later when the distance the wave 

crest travels toward the observer is equal to the distance the observer travels away from 

the wave crest plus the wavelength ( Fig. 12.15 ):

    v T  o   =  v  o   T  o   + l        or         (v −  v  o  ) T  o   = l = v/ f  s    

Solving for  T  o ,

     T  o   =   
v /f  s   ______ 

v −  v  o  
    

The observed frequency is

     f  o   =   1 ___ 
 T  o  

   =   
v −  v  o   ______  v    f  s    

Dividing numerator and denominator by  v  yields  

Doppler effect (moving observer):

  f  o   = (1 −  v  o  /v)  f  s   (12-13)

vo > 0 for an observer moving in the direction of the wave

    An observer moving away from the source measures a frequency lower than  f  s . An 

observer moving  toward  the source moves opposite to the direction of the wave; in that 

case,  v  o  is negative and the observed frequency is  higher  than  f  s .        

CHECKPOINT 12.8

(a) Does the motion of the source of a sound wave affect the wavelength? 

(b) Does the motion of the observer affect the wavelength?

12

3

Source
(stationary)

vo To=   Tsv       

Tov

vo

l

Figure 12.15 An observer 

moving at speed vo (exaggerated 

for clarity) away from a station-

ary sound source. The observed 

frequency is lower than the 

source frequency.

the observer, so vs is positive. With the source approaching the 

observer, the observed frequency is higher than the source 

frequency. When the train is at rest, there is no Doppler shift; 

the observed frequency then is equal to the source frequency.

Solution For a moving source, the source ( fs) and observed 

( fo) frequencies are related by

 f  o   =  (   1 _______ 
1 −  v  s  /v

   )   f  s  

Example 12.8

Train Whistle and Doppler Shift

A monorail train approaches a platform at a speed of 10.0 m/s 

while it blows its whistle. A musician with perfect pitch 

standing on the platform hears the whistle as “middle C,” a 

frequency of 261 Hz. There is no wind and the temperature 

is a chilly 0°C. What is the observed frequency of the whis-

tle when the train is at rest?

Strategy In this case, the source—the whistle—is moving 

and the observer is stationary. The source is moving toward

continued on next page
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Now we can find vo:

 v  o   = a v = 0.02778 × 338 m/s = 9.4 m/s

The speed of each car is 9.4 m/s.

Discussion Quick check on the algebra: substituting 

v = 338 m/s, fs = 111 Hz, vo = 9.4 m/s, and vs = −9.4 m/s 

directly into Eq. (12-14),

 f  o   =   
1 − (9.4 m/s)/(338 m/s)

  ____________________  
1 − (−9.4 m/s)/(338 m/s)

   × 111 Hz = 105 Hz

Practice Problem 12.9 Finding Speed from the 
Doppler Shift

A car is driving due west at 15 m/s and sounds its horn 

with a frequency of 260.0 Hz. A passenger in a car heading 

east away from the first car hears the horn at a frequency of 

230.0 Hz. How fast is the second car traveling? The speed 

of sound is 350 m/s.

Example 12.9

Determining Speed from Horn Frequency

Two cars, with equal ground speeds, are moving in opposite 

directions away from each other on a straight highway. One 

driver blows a horn with a frequency of 111 Hz; the other mea-

sures the frequency as 105 Hz. If the speed of sound is 338 m/s 

and there is no wind, what is the ground speed of each car?

Strategy A sound wave travels from source to observer. 

The source moves opposite the direction of the wave, so vs is 

negative. The observer moves in the direction of the wave, 

so vo is positive. The speeds are the same, so vs = −vo.

Solution With both the source and observer moving, the 

frequencies are related by

 f  o   =  (   1 −  v  o  /v
 

_______ 
1 −  v  s  /v

   )   f  s  
To simplify the algebra, we let a  = vo/v = −vs/v. Then

 f  o   =  (   1 − a  _____ 
1 + a 

   )   f  s  
Now we solve for a :

(1 + a)   
 f  o   __ 
 f  s  

    = 1 − a

a  =   
1 −  f  o  / f  s   _______ 
1 +  f  o  / f  s  

   =   
1 − (105 Hz)/(111 Hz)

  ___________________  
1 + (105 Hz)/(111 Hz)

   = 0.02778

Example 12.8 continued

where v  = 331 m/s (the speed of sound in air at 0°C), 

vs = +10.0 m/s, and fo = 261 Hz. Solving for fs,

  f  s   = (1 −  v  s  /v)  f  o  

=  ( 1 −   10.0 m/s ________ 
331 m/s

   )  × 261 Hz

 = 253 Hz

The source frequency is less than the observed frequency, as 

expected. The observed frequency when the train is at rest is 

equal to the source frequency: 253 Hz.

Discussion When the train is moving toward the plat-

form, the distance between source and observer is decreas-

ing. Wave crests emitted later take less time to reach the 

observer than if the train were at rest, so the time between 

arrivals of wave crests is smaller than if the train were station-

ary. When the distance between source and observer is 

decreasing, the observed frequency is higher than 

the source frequency; when the distance is increasing, the 

observed frequency is lower than the source frequency.

Practice Problem 12.8 A Sports Car Racing By

Justine is gardening in her front yard when a Mazda Miata 

races by at 32.0 m/s (71.6 mi/h). If she hears the sound of 

the Miata’s engine at 220.0 Hz as it approaches her, what 

frequency does she hear after it passes? Assume the temper-

ature is 20°C and there is no wind.

  Motion of Both Source and Observer 

 If both source and observer are moving, we combine the two Doppler shifts (see Con-

ceptual Question 10) to obtain

      f  o   =  (   1 −  v  o  /v
 

_______ 
1 −  v  s  /v

   )   f  s   =  (   v −  v  o   ______ 
v −  v  s  

   )   f  s      (12-14)   

   Remember that the signs of   v   o  and   v   s  are positive for motion in the direction of propaga-

tion of the wave and negative for motion opposite the direction of propagation.   



  Shock Waves 

 Let’s examine two interesting special cases of the Doppler formula [Eq. (12-14)]. First, 

what if the observer moves away from the source at the speed of sound ( v  o   =   v )? The 

Doppler-shifted frequency would be zero according to Eq. (12-14). What does that 

mean? If the observer moves away from the source with a speed equal to (or greater 

than) the wave speed, the wave crests  never reach the observer.  

 Second, what if the source moves toward the observer at a speed approaching the 

speed of sound ( v  s  →  v )? Then Eq. (12-14) gives an observed frequency that increases 

without bound (  f  o  →  ∞ ).  Figure 12.16  helps us understand what that means. For a plane 

moving slower than sound, the wave crests in front of it are closer together due to the 

plane’s motion ( Fig. 12.16a ). An observer to the right would measure a frequency higher 

than the source frequency. As the plane’s speed increases, the wave crests in front of it 

get closer and closer together and the observed frequency increases. For a plane moving 

at the speed of sound ( Fig. 12.16b ), the wave crests pile up on top of each other; they 

move to the right at the same speed as the plane, so they can’t get ahead of it. An 

observer to the right would measure a wavelength of zero—zero distance between wave 

crests—and therefore an infinite frequency. 

 What happens if the source moves at a speed  greater than  the speed of sound?  

Figure 12.16c  shows that the wave crests pile up on top of one another to form cone-

shaped  shock waves,  which travel outward in the direction indicated. There are two 

principal shock waves formed, one starting at the nose of the plane and one at the tail 

( Fig. 12.17 ). The sound of a shock wave is referred to as a  sonic boom.      

PHYSICS AT HOME

You can make a visible shock wave by trailing your finger along the surface of 

the water in a sink or tub. If your finger pushes the water faster than water 

waves travel, water piles up in front of your finger and forms a V-shaped shock 

wave. See if you can approximate the case of a plane moving at the speed of 

sound with rounded waves moving outward from your finger (Fig. 12.16b) 

instead of a V-shaped wave. The next time you are in a boat, notice the V-shaped 

bow wave that extends from the prow of the boat when you are moving faster 

than the speed of water waves.

12.9  ECHOLOCATION AND MEDICAL IMAGING 

Bats, dolphins, whales, and some birds use  echolocation  to locate prey and to “see” 

their environment. To find their way around in the darkness of caves, oilbirds of north-

ern South America and cave swiftlets of Borneo and East Asia emit sound waves and 

listen for the echoes. The time it takes for the echoes to return tells them how far they 

are from an obstacle or cave wall. Differences between the echoes that reach the two 

sides of the head provide information on the direction from which the echo comes.

Application of shock waves:  

supersonic flight

Application of shock waves:  

supersonic flight

    Application of echolocation by 

bats and dolphins  

    Application of echolocation by 

bats and dolphins  

Direction of travel
of shock wave

Direction of travel
of shock wave

(c)(b)(a)

Figure 12.16 (a) Wave crests 

for a plane moving slower than 

sound. (b) A plane moving at the 

speed of sound; the wave crests 

pile up on each other since the 

plane moves to the right as fast as 

the wave crests. (c) Shock wave 

for a supersonic plane. The wave 

crests pile up along the cone indi-

cated by the black lines.

Figure 12.17 A bullet mov-

ing through air faster than 

sound. Notice the two principal 

shock waves starting at either 

end of the bullet.
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  See text website for more 

information about supersonic 

flight.
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      The sounds used by oilbirds and cave swiftlets for echolocation are audible to 

humans, but dolphins, whales, and most bats use ultrasound (20 to 200 kHz) instead. 

Bats and dolphins can also determine an object’s velocity by sensing the Doppler shift 

between the emitted and reflected waves—a clear advantage in locating prey that are 

darting around to avoid being eaten. Some horseshoe bats can detect frequency differ-

ences as small as 0.1 Hz. 

 Prey are not completely helpless. Moths, lacewings, and praying mantises have 

primitive ears containing a few nerve cells to detect the ultrasound emitted by a nearby 

bat. A group of moths fluttering about at some distance from a cave may, for no appar-

ent reason, fold their wings and drop suddenly to the ground. Folding their wings both 

reduces the amount of reflected sound and helps them drop quickly to the ground to 

evade the swooping bat. The moths’ bodies are furry rather than smooth to help absorb 

some of the sound waves and thus reduce the intensity of reflected sound. 

 When the tiger moth detects the ultrasound from a bat, it emits its own ultrasound 

by flexing a part of its exoskeleton. The extra sounds mixed in with the echoes tend to 

confuse the bat, perhaps encouraging it to hunt elsewhere.

  Echolocation is a useful navigational tool for seafarers. To find the depth of water 

below a ship, a  sonar  ( so und  na vigation and  r anging) device sends out ultrasonic pulses 

( Fig. 12.18 ). The time delay Δ t  between an emitted ultrasonic pulse and the return of its 

reflection is used to determine the distance to the seafloor. Seismic P waves—sound 

waves traveling through the Earth—generated by explosions or air guns are used to 

study the interior structure of Earth and to find oil beneath the surface. 

 Radar is a form of echolocation that uses electromagnetic waves instead of sound 

waves, but otherwise the concept is similar. Weather forecasting relies on  Doppler radar  

to show not only the location of a storm, but also the wind velocity.  

   Medical Applications of Ultrasound 

   Millions of expectant parents see their unborn child for the first time when the mother 

has an ultrasonic examination. Ultrasonic imaging uses a pulse-echo technique similar 

to that used by bats and in sonar. Pulses of ultrasound are reflected at boundaries 

between different types of tissue. 

  Application of echolocation: 

sonar and radar  

  Application of echolocation: 

sonar and radar  

Figure 12.18 A ship with a 

sonar device to locate the depth 

of the seafloor; an ultrasound 

pulse, sent out from the ship by 

a transmitter, is reflected from 

the seafloor and detected by a 

receiver on the ship.

1 – 
2 v ∆t

Ship motion

Emitted pulses

Reflected pulses



 In the early stages of pregnancy (tenth to fourteenth weeks), the scan is used to ver-

ify that the fetus is alive and to check for twins. The length of the fetus is measured to 

help determine the due date more accurately. Some abnormalities can be discovered 

even at this early stage. For example, some chromosomal abnormalities can be detected 

by measuring the thickness of the skin at the back of the neck. After the eighteenth 

week, the fetus can be examined in even more detail. The major organs are examined to 

be sure they are developing normally. After the thirtieth week, the flow of blood in the 

umbilical cord is checked to ensure that oxygen and nutrients reach the fetus. The posi-

tion of the placenta is also checked. 

 Why are sound waves used rather than, say, electromagnetic waves such as x-rays? 

X-ray radiation is damaging to tissue—especially to rapidly growing fetal tissue. After 

decades of use, ultrasound has no known adverse effects. In addition, ultrasound images are 

captured in real time, so they are available immediately and can show movement. A third 

reason is that regular x-rays detect the amount of radiation that passes through tissue, but 

cannot resolve details at different depths, and so cannot produce an image of a “slice” of the 

abdomen; a more complicated and expensive diagnostic tool such as a CAT scan (computer-

assisted tomography) would be required to resolve details at different depths. Fourth, some 

kinds of tissue are not detected well by x-rays but are clearly resolved in ultrasound. 

 Why is ultrasound used rather than sound waves of audible frequencies or lower? 

Sound waves with high frequencies have small wavelengths. Waves with small wave-

lengths diffract less around the same obstacle than do waves with larger wavelengths 

(see Section 11.9). Too much diffraction would obscure details in the image. As a rough 

rule of thumb, the wavelength is a lower limit on the smallest detail that can be resolved. 

The frequencies used in imaging are typically in the range 1 to 15 MHz, which means 

that the wavelengths in human tissue are in the range 0.1 to 1.5 mm. As a comparison, 

if sound waves at 15 kHz were used, the wavelength inside the body would be 10 cm. 

Higher frequencies give better resolution but at the expense of less penetration; sound 

waves are absorbed within a distance of about 500 l  in tissue. 

 The medical applications of ultrasonic imaging are not limited to prenatal care. 

Ultrasound is also used to examine organs such as the heart, liver, gallbladder, kidneys, 

bladder, breasts, and eyes, and to locate tumors. It can be used to diagnose various heart 

conditions and to assess damage after a heart attack ( Fig. 12.19 ). Ultrasound can show 

movement, so it is used to assess heart valve function and to monitor blood flow in large 

blood vessels. Because ultrasound provides real-time images, it is sometimes used to 

guide procedures such as biopsies, in which a needle is used to take a sample from an 

organ or tumor for testing. 

 Doppler ultrasound is a technique that is used to examine blood flow. It can help 

reveal blockages to blood flow, show the formation of plaque in arteries, and provide 

detailed information on the heartbeat of the fetus during labor and delivery. The Doppler-

shifted reflections interfere with the emitted ultrasound, producing beats. The beat 

frequency is proportional to the speed of the reflecting object (see Problem 52).     

Figure 12.19 Ultrasonic 

imaging is used to diagnose 

heart disease.
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Why is ultrasound 

used to image the 

fetus?
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Master the Concepts

        • A sound wave can be described either by the gauge 

pressure  p,  which measures the pressure fluctuations 

above and below the ambient atmospheric pressure, or 

by the displacement  s  of each point in the medium from 

its undisturbed position. 
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   • Humans with excellent hearing can hear frequencies 

from 20 Hz to 20 kHz. The terms infrasound and ultra-

sound are used to describe sound waves with frequen-

cies below 20 Hz and above 20 kHz, respectively.  

   • The speed of sound in a fluid is

      v =  √
__

   B __ r         (12-1)     

   • The speed of sound in an ideal gas at any absolute temper-

ature  T  can be found if it is known at one temperature:

      v =  v  
0
   √

___

   T ___ 
 T  

0
  
   
 
     (12-3)

  where the speed of sound at absolute temperature 

T  0  is  v  0 .  

   • The speed of sound in air at 0 ° C (or 273 K) is 331 m/s.  

   • For sound waves traveling along the length of a thin 

solid rod, the speed is approximately

      v =  √
__

   Y __ r         (thin solid rod)    (12-5)

   • The pressure amplitude of a sound wave is proportional 

to the displacement amplitude. For a harmonic sound 

wave at angular frequency  w ,

       p  0   = w vr s  
0
      (12-6)   

  where  v  is the speed of sound and  r  is the mass density 

of the medium.  

   • The intensity of a sound wave is related to the pressure 

amplitude as follows:

      I =   
 p  0  

2
 
 ____ 

2rv
      (12-7)   

  where  r  is the mass density of the medium and  v  is the 

speed of sound in that medium. The most important 

thing to remember is that  intensity is proportional to 

amplitude squared,  which is true for all waves, not just 

sound.  

   • Sound intensity level in decibels is

      b  = (10 dB)  log  10     
I __ 
 I  

0
  
      (12-8)   

  where  I  0   =  10  − 12  W/m 2 . Sound intensity level is useful 

since it roughly corresponds to the way we perceive 

loudness. Equal increments in intensity level roughly 

correspond to equal increases in loudness.  

   • In a standing sound wave in a thin pipe, an open end is 

a pressure node and a displacement antinode; a closed 

end is a pressure antinode and a displacement node. 

   For a pipe open at both ends,

      l n =   2L ___ n      (11-12)   

       f  n   = n  v 
___ 
2L

   = n f  1      (11-13)

  where  n   =  1, 2, 3, . . . . 

   For a pipe closed at one end,

      ln =   4L ___ n      (12-10a)   

       f  n   = n  v 
___ 
4L

   = n f  1      (12-10b)   

  where  n   =  1, 3, 5, 7, . . . .  

   • When two sound waves are close in frequency, the 

superposition of the two produces a pulsation called 

beats. 

       f  beat   = Δf    (12-11)    

2T0 4T0 6T0 8T0 10T0

p0

2p0

0

–2p0

–p0

T0 12T0 14T0

p

Tbeat

t

   • Doppler effect: if  v  s  and  v  o  are the velocities of the 

source and observer, the observed frequency is

       f  o   =  (   1 −  v  o  /v
 

_______ 
1 −  v  s  /v

   )   f  s      (12-14)   

  where  v  s  and  v  o  are positive in the direction of propaga-

tion of the wave and the wave medium is at rest.    



  Conceptual Questions 

    1. Explain why the pitch of a bassoon is more sensitive to 

a change in air temperature than the pitch of a cello. 

(That’s why wind players keep blowing air through the 

instrument to keep it in tune.)  

   2. On a warm day, a piano is tuned to match an organ in an 

auditorium. Will the piano still be in tune with the organ 

the next morning, when the room is cold? If not, will 

the organ be higher or lower in pitch than the piano? 

(Assume that the piano’s tuning doesn’t change. Why is 

that a reasonable assumption?)  

   3. Many real estate agents have an ultrasonic rangefinder 

that enables them to quickly and easily measure the 

dimensions of a room. The device is held to one wall 

and reads the distance to the opposite wall. How does 

it work?  

     4. For high-frequency sounds, the ear’s principal method 

of localization is the difference in intensity sensed by 

the two ears. Why can’t the ear reliably use this method 

for low-frequency sounds? Doesn’t the head cast a 

“sound shadow” regardless of the frequency? Explain. 

[ Hint:  Consider diffraction of sound waves around the 

head.]  

     5. For low-frequency sounds, the ear uses the phase differ-

ence between the sound waves arriving at the two ears 

to determine direction. Why can’t the ear reliably use 

phase difference for high-frequency sounds? Explain.  

   6. A sign along the road in Tompkins County reads, “State 

Law: Noise Limit, 90 decibels.” If you were subjected 

to such a noise level for an extended period of time, 

would you need to worry about your hearing being 

affected?  

   7. Why is it that your own voice sounds strange to you when 

you hear it played back on a tape recorder, but your 

friends all agree that it is just what your voice sounds 

like? [ Hint:  Consider the media through which the sound 

wave travels when you usually hear your own voice.]  

     8. What is the purpose of the gel that is spread over the 

skin before an ultrasonic imaging procedure? [ Hint:  

The speed of sound in the gel is similar to the speed in 

the body, while the speed in air is much slower. What 

happens to a wave at an abrupt change in wave speed?]  

   9. A stereo system whose amplifier can produce 60 W per 

channel is replaced by one rated 120 W per channel. 

Would you expect the new stereo to be able to play 

twice as loudly as the old one? Explain.  

   10. A moving source emits a sound wave that is heard by a 

moving observer. Imagine a thin wall at rest between 

the source and observer. The wall completely absorbs 

the sound and instantaneously emits an  identical  sound 

wave. Use this scenario to explain why we can combine 

the Doppler shifts due to motion of the source and 

observer as in Eq. (12-14). [ Hint:  What is the net effect 

of this imaginary wall?]  

   11. Explain why the displacement of air elements at con-

densations and rarefactions is zero.  

   12. Why is the speed of sound in solids generally much 

faster than the speed of sound in air?  

   13. If the pressure amplitude of a sound wave is doubled, 

what happens to the displacement amplitude, the inten-

sity, and the intensity level?  

   14. The source and observer of a sound wave are both at 

rest with respect to the ground. The wind blows in the 

direction from source to observer. Is the observed fre-

quency Doppler-shifted? Explain.  

   15. Many brass instruments have valves that increase the 

total length of the pipe from mouthpiece to bell. When a 

valve is depressed, is the fundamental frequency raised 

or lowered? What happens to the pitch? 

     

   16. When the viola section of an orchestra with six mem-

bers plays together, is the sound 6 times as loud as when 

a single viola plays? Explain. Is the intensity 6 times 

what it would be for a single viola? [ Hint:  The six sound 

waves are not coherent.]  

   17. The fundamental frequency of the highest note on the 

piano is 4.186 kHz. Most musical instruments do not go 

that high; only a few singers can produce sounds with 

fundamental frequencies higher than around 1 kHz. Yet 

a good-quality stereo system must reproduce frequen-

cies up to at least 16 to 18 kHz. Explain.    

  Multiple-Choice Questions 

    1. An organ pipe is closed at 

one end. Several standing 

wave patterns are sketched 

in the drawing. Which one 

is not a possible standing 

wave pattern for this 

pipe? 

    2. Of the standing wave 

patterns sketched in the 

drawing, which shows 

the lowest frequency 

standing wave for an 

organ pipe closed at one 

end? (   tutorial: 

standing waves)  

(d)

(c)

(b)

(a)

Multiple-Choice 

Questions 1 and 2
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   3. The speed of sound in water is 4.3 times the speed of 

sound in air. A whistle on land produces a sound wave 

with a frequency  f  0 . When this sound wave enters the 

water, its frequency becomes

    (a) 4.3 f  0   

   (b)  f  0   

   (c)       
 f  0   ___ 

4.3
      

   (d) not enough information given     

   4. The intensity of a sound wave is directly proportional to

    (a) the frequency.  

   (b) the amplitude.  

   (c) the square of the amplitude.  

   (d) the square of the speed of sound.  

   (e) none of the above.     

   5. The fundamental frequency of a pipe closed at one end 

is  f  1 . How many nodes are present in a standing wave of 

frequency 9 f  1 ?

    (a) 4     (b) 5     (c) 6     (d) 8     (e) 9     (f) 10     

   6. The length of a pipe closed at one end is  L.  In the stand-

ing wave whose frequency is 7 times the fundamental 

frequency, what is the closest distance between nodes?

    (a)       1 __ 
14

  L       (b)       1 _ 
7
  L       (c)       2 _ 

7
  L       (d)       4 _ 

7
  L       (e)       8 _ 

7
  L    

   (f) none of the above     

   7. The three lowest resonant frequencies of a system are 

50 Hz, 150 Hz, and 250 Hz. The system could be

    (a) a tube of air closed at both ends.  

   (b) a tube of air open at one end.  

   (c) a tube of air open at both ends.  

   (d) a vibrating string with fixed ends.     

   8. A source of sound with frequency 620 Hz is placed on a 

moving platform that approaches a physics student at 

speed  v;  the student hears sound with a frequency  f  1 . 

Then the source of sound is held stationary while the stu-

dent approaches it at the same speed  v;  the student hears 

sound with a frequency  f  2 . Choose the correct statement.

    (a)  f  1   =   f  2 ; both are greater than 620 Hz.  

   (b)  f  1   =   f  2 ; both are less than 620 Hz.  

   (c)  f  1  >  f  2  > 620 Hz.  

   (d)  f  2  >  f  1  > 620 Hz.     

   9. A moving van and a small car are traveling in the same 

direction on a two-lane road. The van is moving at twice 

the speed of the car and overtakes the car. The driver 

of the car sounds his horn, frequency  =  440 Hz, to sig-

nal the van that it is safe to return to the lane. Which is 

the correct statement?

    (a)  The car driver and van driver both hear the horn fre-

quency as 440 Hz.  

   (b)  The car driver hears 440 Hz, but the van driver hears 

a lower frequency.  

   (c)  The car driver hears 440 Hz, but the van driver hears 

a higher frequency.  

   (d)  Both drivers hear the same frequency and it is lower 

than 440 Hz.     

   10. A trombone and a bassoon play notes of equal loudness 

with the same fundamental frequency. The two sounds 

differ primarily in

    (a) pitch.  

   (b) intensity level.  

   (c) amplitude.  

   (d) timbre.  

   (e) wavelength.       

  Problems 

 Combination conceptual/quantitative problem  

 Biological or medical application  

✦ Challenging problem  

Blue #     Detailed solution in the Student Solutions Manual  

1  2  Problems paired by concept  

 Text website interactive or    tutorial

Note: Assume a temperature of 20.0 ° C in all problems 

unless otherwise indicated.  

  12.2 The Speed of Sound Waves 

       1.  Bats emit ultrasonic waves with a frequency as high as 

1.0  ×  10 5  Hz. What is the wavelength of such a wave in 

air of temperature 15 ° C?  

    2.  Dolphins emit ultrasonic waves with a frequency as 

high as 2.5  ×  10 5  Hz. What is the wavelength of such a 

wave in seawater at 25 ° C?  

    3.  At a baseball game, a spectator is 60.0 m away from the 

batter. How long does it take the sound of the bat con-

necting with the ball to travel to the spectator’s ears? 

The air temperature is 27.0 ° C.  

   4. A lightning flash is seen in the sky and 8.2 s later the boom 

of the thunder is heard. The temperature of the air is 12 ° C. 

(a) What is the speed of sound at that temperature? [ Hint:  

Light is an electromagnetic wave that travels at a speed of 

3.00  ×  10 8  m/s.] (b) How far away is the lightning strike?  

    5.  During a thunderstorm, you can easily estimate your dis-

tance from a lightning strike. Count the number of sec-

onds that elapse from when you see the flash of lightning 

to when you hear the thunder. The rule of thumb is that 

5 s elapse for each mile of distance. Verify that this rule 

of thumb is (approximately) correct. (One mile is 1.6 km 

and light travels at a speed of 3  ×  10 8  m/s.)  

   6. A copper alloy has a Young’s modulus of 1.1  ×  10 11  Pa 

and a density of 8.92  ×  10 3  kg/m 3 . What is the speed of 

sound in a thin rod made from this alloy? Compare your 

result with that given in  Table 12.1 .  

    7.  Find the speed of sound in mercury, which has a bulk 

modulus of 2.8  ×  10 10  Pa and a density of 1.36  ×  

10 4  kg/m 3 .  

   8. Derive Eq. (12-4) as: (a) Starting with Eq. (12-3), substi-

tute  T   =   T  C   +  273.15. (b) Apply the binomial approxima-

tion to the square root (see Appendix A.5) and simplify.  



    9.  (a) Show that since the bulk modulus has SI units N/m 2

and mass density has SI units kg/m 3 , Eq. (12-1) gives 

the speed of sound in m/s. Thus, the equation is dimen-

sionally consistent. (b) Show that no other combination 

of  B  and  r  can give dimensions of speed. Thus, Eq. (12-

1)  must  be correct except for the possibility of a dimen-

sionless constant.  

     10. Stan and Ollie are standing next to a train track. Stan puts 

his ear to the steel track to hear the train coming. He hears 

the sound of the train whistle through the track 2.1 s before 

Ollie hears it through the air. How far away is the train?    

  12.3 Amplitude and Intensity of Sound Waves 

       11.  A sound wave with an intensity level of 80.0 dB is inci-

dent on an eardrum of area 0.600  ×  10  − 4  m 2 . How much 

energy is absorbed by the eardrum in 3.0 min?  

    12.  The sound level 25 m from a loudspeaker is 71 dB. 

What is the rate at which sound energy is produced by 

the loudspeaker, assuming it to be an isotropic source?  

    13.  In a factory, three machines produce noise with inten-

sity levels of 85 dB, 90 dB, and 93 dB. When all three 

are running, what is the intensity level? How does this 

compare to running just the loudest machine?  

   14. At the race track, one race car starts its engine with a 

resulting intensity level of 98.0 dB at point  P.  Then 

seven more cars start their engines. If the other seven 

cars each produce the same intensity level at point  P  as 

the first car, what is the new intensity level with all eight 

cars running?  

      15.  (a) What is the pressure amplitude of a sound wave with 

an intensity level of 120.0 dB in air? (b) What force 

does this exert on an eardrum of area 0.550  ×  10  − 4  m 2 ?  

    16.  An intensity level change of  + 1.00 dB corresponds to 

what percentage change in intensity?  

    17.  (a) Show that if  I  2   =  10.0 I  1 , then  b  2   =   b  1   +  10.0 dB. (A 

factor of 10 increase in intensity corresponds to a 10.0-

dB increase in intensity level.) (b) Show that if  I  2   =  2.0 I  1 , 

then  b  2   =   b  1   +  3.0 dB. (A factor of 2 increase in inten-

sity corresponds to a 3.0-dB increase in intensity level. 

   tutorial: decibels)  

    18.  At a rock concert, the engineer decides that the music isn’t 

loud enough. He turns up the amplifiers so that the ampli-

tude of the sound, where you’re sitting, increases by 

50.0%. (a) By what percentage does the intensity increase? 

(b) How does the intensity level (in dB) change?    

  12.4 Standing Sound Waves 

    19. Humans can hear sounds with frequencies up to about 

20.0 kHz, but dogs can hear frequencies up to about 

40.0 kHz. Dog whistles are made to emit sounds that 

dogs can hear but humans cannot. If the part of a dog 

whistle that actually produces the high frequency is 

made of a tube open at both ends, what is the longest 

possible length for the tube?  

✦✦

    20.  (a) What should be the length of an organ pipe, closed at 

one end, if the fundamental frequency is to be 261.5 Hz? 

(b) What is the fundamental frequency of the organ pipe 

of part (a) if the temperature drops to 0.0 ° C?  

21.  Repeat Problem 20 for an organ pipe that is open at 

both ends.  

    22.  An organ pipe that is open at both ends has a fundamen-

tal frequency of 382 Hz at 0.0 ° C. What is the funda-

mental frequency for this pipe at 20.0 ° C?  

23.  What is the length of the organ pipe in Problem 22?  

    24.  A certain pipe has resonant frequencies of 234 Hz, 

390 Hz, and 546 Hz, with no other resonant frequencies 

between these values. (a) Is this a pipe open at both ends 

or closed at one end? (b) What is the fundamental fre-

quency of this pipe? (c) How long is this pipe?  

25.  In an experiment to measure the speed of sound in air, 

standing waves are set up in a narrow pipe open at both 

ends using a speaker driven at 702 Hz. The length of the 

pipe is 2.0 m. What is the air temperature inside the pipe 

(assumed reasonably near room temperature, 20 ° C to 

35 ° C)? [ Hint:  The standing wave is not necessarily the 

fundamental.]  

   26. When a tuning fork is held over the open end of a very 

thin tube, as in  Fig. 12.7 , the smallest value of  L  that 

produces resonance is found to be 30.0 cm. (a) What is 

the wavelength of the sound? [ Hint:  Assume that the 

displacement antinode is at the open end of the tube.] 

(b) What is the next larger value of  L  that will produce 

resonance with the same tuning fork? (c) If the fre-

quency of the tuning fork is 282 Hz, what is the speed 

of sound in the tube?  

   27. Two tuning forks, A and B, excite the next-to-lowest 

resonant frequency in two air columns of the same 

length, but A’s column is closed at one end and B’s col-

umn is open at both ends. What is the ratio of A’s fre-

quency to B’s frequency?  

    28.  How long a pipe is needed to make a tuba whose lowest 

note is low C (frequency 130.8 Hz)? Assume that a tuba 

is a long straight pipe open at both ends.  

29.  An aluminum rod, 1.0 m long, is held lightly in the mid-

dle. One end is struck head-on with a rubber mallet so 

that a longitudinal pulse—a sound wave—travels down 

the rod. The fundamental frequency of the longitudi-

nal vibration is 2.55 kHz. (a) Describe the location of 

the node(s) and antinode(s) for the fundamental mode 

of vibration. Use either displacement or pressure nodes 

and antinodes. (b) Calculate the speed of sound in alu-

minum from the information given in the problem. 

(c) The vibration of the rod produces a sound wave in 

air that can be heard. What is the wavelength of the 

sound wave in the air? Take the speed of sound in air 

to be 334 m/s. (d) Do the two ends of the rod vibrate 

longitudinally in phase or out of phase with each other? 

That is, at any given instant, do they move in the same 

direction or in opposite directions?    

✦✦
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    12.7 Beats 

30.  A violin is tuned by adjusting the tension in the strings. 

Brian’s A string is tuned to a slightly lower frequency 

than Jennifer’s, which is correctly tuned to 440.0 Hz. 

(a) What is the frequency of Brian’s string if beats of 

2.0 Hz are heard when the two bow the strings together? 

(b) Does Brian need to tighten or loosen his A string to 

get in tune with Jennifer? Explain.  

    31.  A piano tuner sounds two strings simultaneously. One has 

been previously tuned to vibrate at 293.0 Hz. The tuner 

hears 3.0 beats per second. The tuner increases the tension 

on the as-yet untuned string, and now when they are played 

together the beat frequency is 1.0 s  − 1 . (a) What was the 

original frequency of the untuned string? (b) By what per-

centage did the tuner increase the tension on that string?  

   32. An auditorium has organ pipes at the front and at the 

rear of the hall. Two identical pipes, one at the front and 

one at the back, have fundamental frequencies of 

264.0 Hz at 20.0 ° C. During a performance, the organ 

pipes at the back of the hall are at 25.0 ° C, while those at 

the front are still at 20.0 ° C. What is the beat frequency 

when the two pipes sound simultaneously?  

33.  A musician plays a string on a guitar that has a funda-

mental frequency of 330.0 Hz. The string is 65.5 cm 

long and has a mass of 0.300 g. (a) What is the tension 

in the string? (b) At what speed do the waves travel on 

the string? (c) While the guitar string is still being 

plucked, another musician plays a slide whistle that is 

closed at one end and open at the other. He starts at a 

very high frequency and slowly lowers the frequency 

until beats, with a frequency of 5 Hz, are heard with the 

guitar. What is the fundamental frequency of the slide 

whistle with the slide in this position? (d) How long is 

the open tube in the slide whistle for this frequency?  

     34. A cello string has a fundamental frequency of 65.40 Hz. 

What beat frequency is heard when this cello string is 

bowed at the same time as a violin string with frequency 

of 196.0 Hz? [ Hint:  The beats occur between the third 

harmonic of the cello string and the fundamental of the 

violin.]    

  12.8 The Doppler Effect 

     35.  An ambulance traveling at 44 m/s approaches a car head-

ing in the same direction at a speed of 28 m/s. The ambu-

lance driver has a siren sounding at 550 Hz. At what 

frequency does the driver of the car hear the siren?  

    36.  At a factory, a noon whistle is sounding with a frequency 

of 500 Hz. As a car traveling at 85 km/h approaches the 

factory, the driver hears the whistle at frequency  f  i . After 

driving past the factory, the driver hears frequency  f  f . What 

is the change in frequency  f  f   −   f  i  heard by the driver?  

37.  In parts of the midwestern United States, sirens sound 

when a severe storm that may produce a tornado is 

approaching. Mandy is walking at a speed of 1.56 m/s 

directly toward one siren and directly away from another 

✦✦

siren when they both begin to sound with a frequency of 

698 Hz. What beat frequency does Mandy hear? (

  tutorial: Doppler effect)  

   38. A source of sound waves of frequency 1.0 kHz is trav-

eling through the air at 0.50 times the speed of sound. 

(a) Find the frequency of the sound received by a sta-

tionary observer if the source moves toward her. 

(b) Repeat if the source moves away from her instead.  

39.  A source of sound waves of frequency 1.0 kHz is sta-

tionary. An observer is traveling at 0.50 times the speed 

of sound. (a) What is the observed frequency if the 

observer moves toward the source? (b) Repeat if the 

observer moves away from the source instead.  

    40.  A child swinging on a swing set hears the sound of a 

whistle that is being blown directly in front of her. At 

the bottom of her swing when she is moving toward the 

whistle, she hears a higher pitch, and at the bottom of 

her swing when she is moving away from the swing she 

hears a lower pitch. The higher pitch has a frequency 

that is 5.0% higher than the lower pitch. What is the 

speed of the child at the bottom of the swing?  

    41.  A source and an observer are  each  traveling at 0.50 times 

the speed of sound. The source emits sound waves at 

1.0 kHz. Find the observed frequency if (a) the source and 

observer are moving  toward  each other; (b) the source and 

observer are moving  away  from each other; (c) the source 

and observer are moving in the same direction.  

     42. Blood flow rates can be found by measuring the Doppler 

shift in frequency of ultrasound reflected by red blood 

cells (known as  angiodynography ). If the speed of the red 

blood cells is  v,  the speed of sound in blood is  u,  the 

ultrasound source emits waves of frequency  f,  and we 

assume that the blood cells are moving directly toward 

the ultrasound source, show that the frequency  f  r  of 

reflected waves detected by the apparatus is given by

     f  r   = f   1 + v/u ______ 
1 − v/u

    

  [ Hint:  There are  two  Doppler shifts. A red blood cell 

first acts as a moving observer; then it acts as a moving 

source when it reradiates the reflected sound at the same 

frequency that it received.]  

      43.  Show that for a moving source, the fractional shift in 

observed frequency is equal to  v  s / v,  the source’s speed 

as a fraction of the speed of sound. [ Hint:  Use the bino-

mial approximation from Appendix A.5.]  

      44.  The pitch of the sound from a race car engine drops the 

musical interval of a fourth when it passes the specta-

tors. This means the frequency of the sound after pass-

ing is 0.75 times what it was before. How fast is the race 

car moving?    

  12.9 Echolocation and Medical Imaging 

     45.  A ship is lost in a dense fog in a Norwegian fjord that is 

1.80 km wide. The air temperature is 5.0 ° C. The captain 

fires a pistol and hears the first echo after 4.0 s. (a) How 

✦✦

✦✦



far from one side of the fjord is the ship? (b) How long 

after the first echo does the captain hear the second echo?  

    46.  A ship mapping the depth of the ocean emits a sound of 

38 kHz. The sound travels to the ocean floor and returns 

0.68 s later. (a) How deep is the water at that location? 

(b) What is the wavelength of the wave in water? (c) What 

is the wavelength of the reflected wave as it travels into 

the air, where the speed of sound is 350 m/s?  

    47.  A boat is using sonar to detect the bottom of a freshwa-

ter lake. If the echo from a sonar signal is heard 0.540 s 

after it is emitted, how deep is the lake? Assume the 

temperature of the lake is uniform and at 25 ° C.  

    48.  A geological survey ship mapping the floor of the ocean 

sends sound pulses down from the surface and measures 

the time taken for the echo to return. How deep is the 

ocean at a point where the echo time (down and back) is 

7.07 s? The temperature of the seawater is 25 ° C.  

49.  A bat emits chirping sounds of frequency 82.0 kHz 

while hunting for moths to eat. If the bat is flying toward 

the moth at a speed of 4.40 m/s and the moth is flying 

away from the bat at 1.20 m/s, what is the frequency of 

the sound wave reflected from the moth as observed by 

the bat? Assume it is a cool night with a temperature of 

10.0 ° C. [ Hint:  There are two Doppler shifts. Think of 

the moth as a receiver, which then becomes a source as 

it “retransmits” the reflected wave.]  

      50.  The bat of Problem 49 emits a chirp that lasts for 2.0 ms 

and then is silent while it listens for the echo. If the 

beginning of the echo returns just after the outgoing 

chirp is finished, how close to the moth is the bat? [ Hint:  

Is the change in distance between the two significant 

during a 2.0-ms time interval?]  

        51.  Doppler ultrasound is used to measure the speed of 

blood flow (see Problem 42). The reflected sound inter-

feres with the emitted sound, producing beats. If the 

speed of red blood cells is 0.10 m/s, the ultrasound fre-

quency used is 5.0 MHz, and the speed of sound in 

blood is 1570 m/s, what is the beat frequency?  

        52.  (a) In Problem 42, find the beat frequency between the 

outgoing and reflected sound waves. (b) Show that the 

beat frequency is proportional to the speed of the blood 

cell if  v  <<  u.  [ Hint:  Use the binomial approximation 

from Appendix A.5.]    

  Comprehensive Problems 

     53.  A 30.0-cm-long string has a mass of 0.230 g and is 

vibrating at its next-to-lowest natural frequency  f  2 . The 

tension in the string is 7.00 N. (a) What is  f  2 ? (b) What 

are the frequency and wavelength of the sound in the 

surrounding air if the speed of sound is 350 m/s?  

   54. Kyle is climbing a sailboat mast and is 5.00 m above the 

surface of the ocean, while his friend Rob is scuba div-

ing below the boat. Kyle shouts to someone on another 

boat and Rob hears him shout 0.0210 s later. The ocean 

✦✦

✦✦

✦✦

temperature is 25 ° C and the air is at 20 ° C. How deep is 

Rob below the boat?  

    55.  What are the four lowest standing wave frequencies for 

an organ pipe that is 4.80 m long and closed at one end?  

56. The length of the auditory canal in humans averages 

about 2.5 cm. What are the lowest three standing wave 

frequencies for a pipe of this length open at one end? 

What effect might resonance have on the sensitivity of 

the ear at various frequencies? (Refer to  Fig. 12.12 . 

Note that frequencies critical to speech recognition are 

in the range 2 to 5 kHz.)  

      57.  Some bats determine their distance to an object by detect-

ing the difference in intensity between echoes.(a) If inten-

sity falls off at a rate that is inversely proportional to the 

distance squared, show that the echo intensity is inversely 

proportional to the fourth power of distance. (b) The bat 

was originally 0.60 m from one object and 1.10 m from 

another. After flying closer, it is now 0.50 m from the first 

and at 1.00 m from the second object. What is the percent-

age increase in the intensity of the echo from each object?  

58. The Vespertilionidae family of bats detect the distance to 

an object by timing how long it takes for an emitted sig-

nal to reflect off the object and return. Typically they emit 

sound pulses 3 ms long and 70 ms apart while cruising. 

(a) If an echo is heard 60 ms later ( v  sound   =  331 m/s), how 

far away is the object? (b) When an object is only 30 cm 

away, how long will it be before the echo is heard? 

(c) Will the bat be able to detect this echo?  

   59. At what frequency  f  does a sound wave in air have a 

wavelength of 15 cm, about half the diameter of the 

human head? Some methods of localization work well 

only for frequencies below  f,  while others work well 

only above  f.  (See Conceptual Questions 4 and 5.)  

     60. Horseshoe bats use the Doppler effect to determine their 

location. A Horseshoe bat flies toward a wall at a speed 

of 15 m/s while emitting a sound of frequency 35 kHz. 

What is the beat frequency between the emission fre-

quency and the echo?  

    61.  According to a treasure map, a treasure lies at a depth of 

40.0 fathoms on the ocean floor due east from the light-

house. The treasure hunters use sonar to find where the 

depth is 40.0 fathoms as they head east from the light-

house. What is the elapsed time between an emitted pulse 

and the return of its echo at the correct depth if the water 

temperature is 25 ° C? [ Hint:  One fathom is 1.83 m.]  

62. When playing  fortissimo  (very loudly), a trumpet emits 

sound energy at a rate of 0.800 W out of a bell (open-

ing) of diameter 12.7 cm. (a) What is the sound inten-

sity level right in front of the trumpet? (b) If the trumpet 

radiates sound waves uniformly in all directions, what 

is the sound intensity level at a distance of 10.0 m?  

     63. One cold and windy winter day, Zach notices a hum-

ming sound coming from his chimney when the chim-

ney is open at the top and closed at the bottom. He opens 

the chimney at the bottom and notices that the sound 

✦✦

✦✦
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changes. He goes over to the piano to try to match the 

note that the chimney is producing with the bottom open. 

He finds that the “C” three octaves below middle “C” 

matches the chimney’s fundamental frequency. Zach 

knows that the frequency of middle “C” is 261.6 Hz, and 

each lower octave is       1 _ 
2
     of the frequency of the octave 

above. From this information, Zach finds the height of 

the chimney and the fundamental frequency of the note 

that was produced when the chimney was  closed  at the 

bottom. Assuming that the speed of sound in the cold air 

is 330 m/s, reproduce Zach’s calculations to find (a) the 

height of the chimney and (b) the fundamental fre-

quency of the chimney when it is  closed  at the bottom.  

     64. A periodic wave is composed of the superposition of 

three sine waves whose frequencies are 36, 60, and 

84 Hz. The speed of the wave is 180 m/s. What is the 

wavelength of the wave? [ Hint:  The 36 Hz is not neces-

sarily the fundamental frequency.]  

    65.  Analysis of the periodic sound wave produced by a vio-

lin’s G string includes three frequencies: 392, 588, and 

980 Hz. What is the fundamental frequency? [ Hint:  The 

wave on the string is the superposition of several differ-

ent standing wave patterns.]  

     66. Your friend needs advice on her newest “acoustic sculp-

ture.” She attaches one end of a steel wire, of diameter 

4.00 mm and density 7860 kg/m 3 , to a wall. After passing 

over a pulley, located 1.00 m from the wall, the other end 

of the wire is attached to a hanging weight. Below the 

horizontal length of wire she places a 1.50-m-long hol-

low tube, open at one end and closed at the other. Once 

the sculpture is in place, air will blow through the tube, 

creating a sound. Your friend wants this sound to cause 

the steel wire to oscillate at the same resonant frequency 

as the tube. What weight (in newtons) should she hang 

from the wire if the temperature is 18.0 ° C?  

      67.  A sound wave arriving at your ear is transferred to the 

fluid in the cochlea. If the intensity in the fluid is 0.80 

times that in air and the frequency is the same as for the 

wave in air, what will be the ratio of the pressure ampli-

tude of the wave in air to that in the fluid? Approximate 

the fluid as having the same values of density and speed 

of sound as water.  

          68.  In this problem, you will estimate the smallest kinetic 

energy of vibration that the human ear can detect. Sup-

pose that a harmonic sound wave at the threshold of 

hearing ( I   =  1.0  ×  10  − 12  W/m 2 ) is incident on the ear-

drum. The speed of sound is 340 m/s and the density of 

air is 1.3 kg/m 3 . (a) What is the maximum speed of an 

element of air in the sound wave? [ Hint:  See Eq. (10-21).] 

(b) Assume the eardrum vibrates with displacement  s  0  

at angular frequency  w  ; its maximum speed is then 

equal to the maximum speed of an air element. The 

mass of the eardrum is approximately 0.1 g. What is the 

 average  kinetic energy of the eardrum? (c) The average 

kinetic energy of the eardrum due to collisions with air 

✦✦

✦✦

✦✦

✦✦

molecules  in the absence of a sound wave  is about 10  − 20  J. 

Compare your answer with (b) and discuss.  

69.  During a rehearsal, all eight members of the first violin 

section of an orchestra play a very soft passage. The 

sound intensity level at a certain point in the concert 

hall is 38.0 dB. What is the sound intensity level at the 

same point if only one of the violinists plays the same 

passage? [ Hint:  When playing together, the violins are 

incoherent  sources of sound.]     

  Answers to Practice Problems 

     12.1  Although solids usually have somewhat higher densi-

ties than liquids, they have  much  higher bulk moduli—they 

are much stiffer. The greater restoring forces in solids cause 

sound waves to travel faster.  

    12.2  Assumptions: Treat the stage as a point source; ignore 

reflection and absorption of waves. 4.0  ×  10  − 6  W/m 2 , 

0.057 Pa.  

    12.3  400  

    12.4  a factor of 3.2  

    12.5  3000 km. No; it is not realistic to ignore absorption 

and reflection over such a great distance.  

    12.6  24 ° C  

    12.7  444.0 Hz  

    12.8  182.5 Hz  

    12.9  27 m/s    

  Answers to Checkpoints 

     12.3  The relationship between pressure and displacement 

amplitudes depends on the frequency and, therefore, does 

not have a unique value for a given pressure amplitude and 

intensity.  

    12.4  A pipe of length L closed at one end has a node at one 

end and an antinode at the other. The wavelength can be 2 L

only if both ends are nodes (or both are antinodes), because 

the distance between two successive nodes (or two succes-

sive antinodes) is       1 _ 
2
  l.    

    12.7  (a) Constructive interference means the two waves 

are  in phase,  which occurs at  t   =  0 and  t   =  10 T  0 . At those 

times, the superposition of the waves has its maximum 

amplitude. (b) Destructive interference means the two waves 

are  out of phase,  which occurs at  t   =  5 T  0 . At this time, the 

superposition has its minimum amplitude. Destructive 

interference would next occur at  t   =  15 T  0  (not shown on 

the graph).  

    12.8  (a) The motion of the source does affect the wave-

length:  l  is shorter in front of the source and longer behind it 

(see  Fig. 12.14 ). (b) The motion of the observer does not 

affect the wavelength, which is the instantaneous distance 

between two wave crests (see  Fig. 12.15 ).    

✦✦



   Review Exercises 

      1. (a) Which has more buoyant force acting on it in water, 

1.0 kg of lead or 1.0 kg of aluminum? Explain. (b) Which 

has more buoyant force acting on it, 1.0 kg of steel that is 

sinking to the bottom of a lake or 1.0 kg of wood with a 

density of 500 kg/m 3  that is floating on the lake? Explain. 

(c) Once you have answered the qualitative questions, 

find the quantitative answers to parts (a) and (b).  

     2. A solid piece of plastic, with a density of 890 kg/m 3 , is 

placed in oil with a density of 830 kg/m 3  and the plastic 

sinks (A). Then the plastic is placed in water and it floats 

(B). (a) What percentage of the plastic is submerged in 

the water? (b) Finally, the same oil in which the plastic 

sinks is poured over the plastic and the water. Will less 

(C) or more (D) of the plastic be submerged in the water 

compared to B? Explain. (c) Calculate the percentage of 

the plastic submerged in the water in figure C. 

 
A B C D

    

   3. Water enters an apartment building 0.90 m below the 

street level with a gauge pressure of 52.0 kPa through the 

main pipe with a 5.00-cm radius. A second-story bath-

room has a faucet with a 1.20-cm radius that is located 

4.20 m above the street. How fast is the water moving 

through the main pipe?  

       4. To escape a burning building, Arnold has to jump from a 

third-story window that is about 10 m above the ground. 

Arnold is worried about breaking his leg. The largest 

bone in Arnold’s leg is the femur, which has a mini-

mum cross-sectional area of about 5  ×  10  − 4  m and a 

maximum ultimate strength for compression of about 

1.70  ×  10 8  N/m 2 . Arnold has a mass of 82 kg. (a) If 

Arnold lands on the ground with his legs stiff, then his 

femur can compress only about 5 mm. What will happen 

to Arnold’s femur? (b) Suppose instead of landing on the 

ground, Arnold lands in deep snow so his legs can move 

about 30 cm between the time they first hit the snow and 

the time he comes to a complete stop. What will happen 

to Arnold’s femur in this case?  

   5. A 5.0-kg block of wood is attached to a spring with a 

spring constant of 150 N/m. The block is free to slide on 

a horizontal frictionless surface once the spring is 

stretched and released. A 1.0-kg block of wood rests on 

top of the first block. The coefficient of static friction 

between the two blocks of wood is 0.45. What is the 

maximum speed that this set of blocks can have as it 

oscillates if the top block of wood is not to slip?  

    6.  A child swinging on a swing set hears the sound of a whistle 

that is being blown directly in front of her. At the bottom 

of her swing when she is moving toward the whistle, she 

hears a higher pitch, and at the bottom of her swing when 

she is moving away from the whistle she hears a lower 

pitch. The higher pitch has a frequency that is 4.0% higher 

than the lower pitch. How high is the child swinging?  

    7.  Consider the following equations for two different travel-

ing waves:

      I.   y ( x,   t )  =  (1.50 cm) sin [(4.00 cm  − 1 ) x   +  (6.00 s  − 1 ) t ]  

     II.   y ( x,   t )  =  (4.50 cm) sin [(3.00 cm  − 1 ) x   −  (3.00 s  − 1 ) t ]   

  (a) Which wave has the fastest wave speed? What is that 

speed? (b) Which wave has the longest wavelength? What 

is that wavelength? (c) Which wave has the fastest maxi-

mum speed of a point in the medium? What is that speed? 

(d) Which wave is moving in the positive  x -direction?  

    8.  A Foucault pendulum has an object with a mass of 15.0 kg 

hung by a 14.0-m-long thin wire. (a) What is the oscilla-

tion frequency of this pendulum? (b) If the pendulum has 

a maximum oscillation angle of 6.10 ° , what is the maxi-

mum speed of this pendulum? (c) What is the maximum 

tension in the wire? (d) If the wire has a mass of 10.0 g, 

what is the fundamental frequency of the wire when it is 

at maximum tension?  

   9. The lowest frequency string on a guitar is 65.5 cm long 

and is tuned to 82 Hz. (a) If the string has a mass of 

3.31 g, what is the tension in the string? (b) By fingering 

the guitar at the fifth fret, you shorten the vibrating length 

of the string, thereby changing the fundamental frequency 

of this string to match that of the next-highest-frequency 

string on the guitar, 110 Hz. How long is the lowest fre-

quency string when it is fingered at the fifth fret?  

    10.  Two children are playing with a tin-can telephone. The 

children are 12 m apart, the string connecting their tin 

cans has a linear mass density of 1.3 g/m, and it is 

stretched with a tension of 8.0 N. One child decides to 

pluck the string. How long does it take for the wave pulse 

to travel from one child to the other?  

    11.  A sound wave with a frequency of 400.0 Hz is incident 

upon a set of stairs. The reflected waves from the vertical 

surfaces of adjacent steps cancel each other. What is the 

minimum tread depth of a step for this to occur? 

 
Tread depth

    

   12. Akiko rides her bike toward a brick wall with a speed of 

7.00 m/s while blowing a whistle that is emitting sound 

Review & Synthesis: Chapters 9–12

 REVIEW & SYNTHESIS: CHAPTERS 9–12 453



with a frequency of 512.0 Hz. (a) What is the frequency of 

the sound that is reflected from the wall as heard by Ha-

ruki, who is standing still? (b) Junichi is walking away 

from the wall at a speed of 2.00 m/s. What is the frequency 

of the sound reflected from the wall that Junichi hears?  

    13.  A siren has a circle of 25 equally sized, evenly spaced 

holes near the rim of a disk free to rotate about its center. 

Air is blown toward the plane of the disk as it rotates with 

a frequency of 60.0 Hz. What is the frequency and wave-

length of the sound produced?  

    14.  A stretched string has a fundamental frequency of 

847 Hz. What is the fundamental frequency if the ten-

sion is tripled?  

     15. The average adult has about 5 L of blood and a healthy 

adult heart pumps blood at a rate of about 80 cm 3 /s. Esti-

mate how long it takes for medicine delivered intrave-

nously to travel throughout a person’s body.  

    16.  A sound wave of frequency 1231 Hz travels through air 

directly toward a wall, then through the wall out into air 

again. If the initial speed of the sound wave is 341 m/s 

and its speed in the wall is 620 m/s, what are (a) the ini-

tial wavelength of the sound, (b) the wavelength of the 

sound in the wall, and (c) the wavelength of the sound 

when it exits the wall on the other side?  

    17.  A speedboat is traveling at 20.1 m/s toward another boat 

moving in the opposite direction with a speed of 15.6 m/s. 

The speedboat pilot sounds his horn, which has a fre-

quency of 312 Hz. What is the frequency heard by a pas-

senger in the oncoming boat?  

      18.  A glass tube is closed at one end and has a diaphragm 

covering the other end. The tube is filled with gas and 

some sawdust has been scattered along inside the tube. 

When the diaphragm is driven at a frequency of 1457 Hz, 

the sawdust forms small piles 20 cm apart. (a) What is the 

speed of the sound in the gas? (b) Do the piles of sawdust 

represent nodes or antinodes in the sound wave? Explain.  

   19. A section of pipe with an internal diameter of 10.0 cm 

tapers to an inner diameter of 6.00 cm as it rises through 

a height of 1.70 m at an angle of 60.0 °  with respect to the 

horizontal. The pipe carries water and its higher end is 

open to air. (a) If the speed of the water at the lower point 

is 15.0 cm/s, what are the pressure at the lower end and 

the speed of the water as it exits the pipe? (b) If the higher 

end of the pipe is 0.300 m above ground, at what hori-

zontal distance from the pipe outlet does the water land? 

 

1.70 m

0.300 m

60.0°

    

   20. When a standing wave is produced in a string fixed at 

both ends, the string oscillates so fast that it looks like a 

blur. You want to photograph the string when it is at posi-

tions A, B, and C shown in the figure. The tension in the 

string is 2.00 N and its mass per unit length is 0.200 g/m. 

The string’s length is 0.720 m. Assume that you take your 

first picture when the string is in position A and let that be 

time  t   =  0. What are the first two times after  t   =  0 at which 

you can photograph the string in each of the positions A, 

B, and C? 

A CB
     

   21. The A string on a guitar has length 64.0 cm and funda-

mental frequency 110.0 Hz. The string’s tension is 133 N. 

It is vibrating in its fundamental standing wave mode 

with a maximum displacement from equilibrium of 

2.30 mm. The air temperature is 20.0 ° C.

   (a) What is the wavelength of the fundamental mode 

of vibration?  

  (b) What is the wave speed on the string?  

  (c) What is the linear mass density of the string? 

   (d) What is the maximum speed of any point on the 

oscillating string?  

  (e) The string transmits vibrations through the bridge 

to the body of the instrument and then to the air. 

What is the frequency of the sound wave in air?  

  (f) What is the wavelength of the sound wave in air?     

   22. At a grocery store, a spring scale (spring constant  =  

450 N/m) hangs near the produce section. The spring 

hangs vertically with a 0.250-kg pan suspended from its 

lower end. Jenna drops a 2.20-kg bag of oranges from a 

height of 30.0 cm above the pan. The pan and oranges 

start oscillating vertically in SHM.

   (a) What is the velocity of the pan immediately after 

the oranges land on the pan? Assume a perfectly 

inelastic collision.  

  (b) How far is the new equilibrium point of the pan 

(with oranges) below its position before the oranges 

were dropped on it?  

  (c) What is the amplitude of the oscillations?  

  (d) What is the frequency of the oscillations?     

   23. A spherical balloon with a radius of 12.0 cm is filled with 

helium. The bottom of the balloon is attached to a 2.30 m 

length of ribbon that is anchored to the ground. The bal-

loon alone has a mass of 2.80  ×  10  − 3  kg. Ignore the mass 

of the ribbon.

   (a) What is tension in the ribbon?  

  (b) After the balloon is displaced slightly to the side 

from its equilibrium position, it oscillates back and 

forth like an inverted pendulum. What is the period 

of oscillation? Ignore friction and air resistance.     
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   24. An atomizer is a device that delivers a fine mist of some 

liquid such as perfume by blowing air horizontally over 

the top of a tube immersed in the liquid. Suppose a per-

fume with density 800 kg/m 3  has a 3.0-cm tube extend-

ing vertically from the top of the liquid. What minimum 

speed does air flow over the top of the tube when the liq-

uid just reaches the top of the tube? 

    25. A tetherball set has a ball with 

mass 0.411 kg and a nylon 

string with diameter 2.50 mm, 

Young’s modulus 4.00  ×  10 9  Pa, 

and density 1150 kg/m 3 . The 

nylon string has a length of 

2.200 m when the ball is at rest 

(hanging straight down). While 

playing tetherball, Monty hits 

the ball around the pole so it moves in a horizontal circle 

with the string at an angle of 65.0 °  to the pole. (a) How 

much does the string stretch compared with when the ball 

is at rest? (b) What is the ball’s kinetic energy? (c) How 

long would it take a transverse wave pulse to travel the 

length of the string from the ball to the top of the pole?        

   26.  A harpsichord string is made of yellow brass (Young’s 

modulus 9.0  ×  10 10  Pa, tensile strength 6.3  ×  10 8  Pa, 

mass density 8500 kg/m 3 ). When tuned correctly, the 

tension in the string is 59.4 N, which is 93% of the max-

imum tension that the string can endure without break-

ing. The length of the string that is free to vibrate is 

9.4 cm. What is the fundamental frequency?

  MCAT Review 

 The section that follows includes MCAT exam material and is 

reprinted with permission of the Association of American Medical 

Colleges (AAMC).

    1. What is the volume of a brick that weighs 30 N in air and 

20 N when completely submerged in water? (Note: The 

density of water is 1000 kg/m 3  and let  g  be 10 m/s 2 .)

   A. 1  ×  10  − 3  m 3      B. 5  ×  10  − 3  m 3   

  C. 1  ×  10  − 2  m 3      D. 5  ×  10  − 2  m 3      

   2. The expansion of a particular cable when subjected to a 

tensile stress obeys  F   =   k ∆ L,  where  F  is the tension, 

 k   =  5.0  ×  10 6  N/m, and ∆ L  is the expansion. How far will 

a 100-m section of cable expand when placed under 

5000 N of tension?

   A. 10  − 3  m     B. 10  − 2  m  

  C. 10  − 1  m     D. 10 m     

   3. SL, the sound level in decibels, is defined as SL  =  

10 log 10 ( I / I  0 ), where  I  0   =  1.0  ×  10  − 12  W/m 2  (the minimum 

sound intensity audible to humans). A fire siren has a 

sound level of about 100 dB. What is the intensity  I  of the 

fire siren?

   A. 1.0  ×  10  − 22  W/m 2      B. 1.0  ×  10  − 10  W/m 2   

  C. 1.0  ×  10  − 8  W/m 2      D. 1.0  ×  10  − 2  W/m 2      

✦✦

   4. Suppose that 2 cm of a liquid with a specific gravity of 

0.5 is added to a 4-cm column of water. How does the 

new gauge pressure at the base of the column,  P  n , com-

pare with the original pressure,  P  i ?

   A.      P  n   =   3 _ 
4
   P  i         B.  P  n   =   P  i   

  C.      P  n   =   5 _ 
4
   P  i         D.      P  n   =   3 _ 

2
   P  i         

   5. Consecutive resonances occur at wavelengths of 8 m and 

4.8 m in an organ pipe closed at one end. What is the 

length of the organ pipe? (Note: Resonances occur at 

 L   =   n  l  /4, where  L  is the pipe length,  l  is the wavelength, 

and  n   =  1, 3, 5, . . . .)

   A. 3.2 m     B. 4.8 m  

  C. 6.0 m     D. 8.0 m     

   6. Two mechanical waves of the same frequency pass 

through the same medium. The amplitude of wave A is 

3 units, and the amplitude of wave B is 5 units. Which 

of the following describes the range of amplitudes pos-

sible when the two waves pass through the medium 

simultaneously?

   A. Always 4 units  

  B. Between 2 and 8 units  

  C. Between 3 and 5 units  

  D. Between 5 and 8 units     

   7. A simple pendulum is swinging with an amplitude of 

10 ° . As the bob of the pendulum swings through one 

oscillation, its linear acceleration

   A. remains constant in magnitude and direction.  

  B. remains constant in magnitude but changes direction.  

  C. changes in magnitude but remains constant in direction.  

  D. changes in magnitude and direction.     

   8. In a simplified model of the blood flow, the velocity of 

blood flow through a coronary artery is inversely propor-

tional to the fourth power of the radius of the artery. What 

is the ratio of kinetic energy of the blood in an artery of 

2 cm radius to the kinetic energy of the same volume of 

blood in an artery 1 cm in radius?

   A. 1:2 4      B. 1:4 4   

  C. 2 4 :1     D. 2 4 :1    

   Read the paragraph and then answer the following 

questions:  

 Three balls with the same volume of 1.0  ×  10  − 6  m 3  are in 

an open tank of water that has a density ( r ) equal to 

1.0  ×  10 3  kg/m 3 . The balls are in the water at different levels. 

Ball 1 floats in water with a part of it above the surface, ball 2 

is completely submerged in the water, and ball 3 rests on the 

bottom of the tank. Any movement of the water obeys Ber-

noulli’s equation:

     P  1   +   
1
 

_
 

2
  r  v  1  

2
  + rg y  1   =  P  2   +   

1
 

_
 

2
  r  v  2  

2
  + rg y  2    

where  P  1  and  P  2  are the pressures at elevations  y  1  and  y  2 , and 

 v  1  and  v  2  are the speeds of the water. (Note: Unless other-

wise noted, the water and the balls are stationary.)  

65.0°

 REVIEW & SYNTHESIS: CHAPTERS 9–12 455



   9. The buoyant forces  B  1 ,  B  2 , and  B  3  exerted by water on the 

balls are related by which of the following?

   A.  B  1  <  B  2  <  B  3   

  B.  B  1  <  B  2   =   B  3   

  C.  B  1   =   B  2  >  B  3   

  D.  B  1  >  B  2  >  B  3      

   10. The densities of the balls  r  1 ,  r  2 , and  r  3  are related by 

which of the following?

   A.  r  1  <  r  2  <  r  3      B.  r  1  <  r  2   =   r  3   

  C.  r  1   =   r  2  <  r  3      D.  r  1   =   r  2  >  r  3      

   11. Assume that the density of ball 3 is 7.8  ×  10 3  kg/m 3 . 

Ignoring atmospheric pressure, what is the supporting 

force exerted by the bottom of the tank on ball 3?

   A. 1.0  ×  10  − 2  N     B. 6.7  ×  10  − 2  N  

  C. 7.6  ×  10  − 2  N     D. 8.8  ×  10  − 2  N     

   12. Assume that the density of ball 1 is 8.0  ×  10 2  kg/m 3 . 

Ignoring atmospheric pressure, what fraction of ball 1 is 

above the surface of the water?

   A.       4 _ 
5
          B.       3 _ 

4
         C.       1 _ 

4
          D.       1 _ 

5
         

   13. Ball 2 is in the water 20 cm above ball 3. What is the 

approximate difference in pressure between the two 

balls?

   A. 2  ×  10 2  N/m 2      B. 5  ×  10 2  N/m 2   

  C. 2  ×  10 3  N/m 2      D. 5  ×  10 3  N/m 2      

   14. If ball 3 is a hollow, iron ball and atmospheric pressure 

can be ignored, what should be the volume of the hollow 

portion of ball 3 such that the force exerted by it on the 

bottom of the tank is 0? (Note: Density of iron is 

7.8  ×  10 3  kg/m 3 .)

   A. 0.13  ×  10  − 6  m 3      B. 0.78  ×  10  − 6  m 3   

  C. 0.87  ×  10  − 6  m 3      D. 1.15  ×  10  − 6  m 3               
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PART TWO Thermal Physics 

  A crocodile basks on a rock in 

Lake Baringo (Kenya) to get 

warm.     

   I n warm-blooded or homeothermic (constant temperature) animals, 

body temperature is carefully regulated. The hypothalamus, located 

in the brain, acts as the master thermostat to keep body temperature 

constant to within a fraction of a degree Celsius in a healthy ani-

mal. If the body temperature starts to deviate much from the desired 

constant level, the hypothalamus causes changes in blood flow and 

initiates other processes, such as shivering or perspiration, to bring 

the temperature back to normal. What evolutionary advantage does a 

constant body temperature give the warm-blooded animals (birds and 

mammals) over the cold-blooded (such as reptiles and insects)? What 

are the disadvantages? (See p. 476 for the answer.) 
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• energy conservation (Chapter 6) 

 • momentum conservation (Section 7.4) 

 • collisions (Sections 7.7 and 7.8)   

13.1  TEMPERATURE AND THERMAL EQUILIBRIUM 

  The measurement of    temperature    is part of everyday life. We measure the temperature 

of the air outdoors to decide how to dress when going outside; a thermostat measures 

the air temperature indoors to control heating and cooling systems to keep our homes 

and offices comfortable. Regulation of oven temperature is important in baking. When 

we feel ill, we measure our body temperature to see if we have a fever. Despite how 

matter-of-fact it may seem, temperature is a subtle concept. Although our subjective 

sensations of hot and cold are related to temperature, they can easily mislead, as the 

next Physics at Home demonstrates. 

PHYSICS AT HOME

Try an experiment described by the philosopher John Locke in 1690. Fill one 

container with water that is hot (but not too hot to touch); fill a second con-

tainer with lukewarm water; and fill a third container with cold water. Put one 

hand in the hot water and one in the cold water (Fig. 13.1) for about 10 to 

20 s. Then plunge both hands into the container of lukewarm water. Although 

both hands are now immersed in water that is at a single temperature, the hand 

that had been in the hot water feels cool while the hand that had been in the 

cold water feels warm. This demonstration shows that we cannot trust our sub-

jective senses to measure temperature.

   The definition of temperature is based on the concept of    thermal equilibrium.    

Suppose two objects or systems are allowed to exchange energy. The net flow of energy 

is always from the object at the higher temperature to the object at the lower tempera-

ture. As energy flows, the temperatures of the two objects approach one another. When 

the temperatures are the same, there is no longer any net flow of energy; the objects are 

now said to be in thermal equilibrium. Thus,  temperature is a quantity that determines 
when objects are in thermal equilibrium.   (The objects do   not   necessarily have the same  

energy   when in thermal equilibrium.)  The energy that flows between two objects or sys-

tems due to a temperature difference between them is called    heat.    In Chapter 14 we dis-

cuss heat in detail. If heat can flow between two objects or systems, the objects or 

systems are said to be in    thermal contact.                

 To measure the temperature of an object, we put a thermometer into thermal contact 

with the object. Temperature measurement relies on the    zeroth law of thermodynamics.    

Zeroth Law of Thermodynamics

If two objects are each in thermal equilibrium with a third object, then the two are 

in thermal equilibrium with one another.

 Without the zeroth law, it would be impossible to define temperature, since differ-

ent thermometers could give different results. The rather odd name  zeroth  law of ther-

modynamics came about because this law was formulated historically  after  the first, 

second, and third laws of thermodynamics and yet it is so fundamental that it should 

come  before  the others.    Thermodynamics,    the subject of Chapters 13 to 15, concerns 

temperature, heat flow, and the internal energy of systems.   

Concepts & Skills to Review

Heat: energy in transit due to a 

temperature difference. Heat flows 

spontaneously from the hotter object 

to the colder object.

Heat: energy in transit due to a 

temperature difference. Heat flows 

spontaneously from the hotter object 

to the colder object.

Cold HotLukewarm

Figure 13.1 It is easy to trick 

our sense of temperature.



   13.2  TEMPERATURE SCALES 

  Thermometers measure temperature by exploiting some property of matter that is 

temperature-dependent. The familiar liquid-in-glass thermometer relies on thermal 

expansion: the mercury or alcohol expands as its temperature rises (or contracts as its 

temperature drops) and we read the temperature on a calibrated scale. Since some mate-

rials expand more than others, these thermometers must be calibrated on a scale using 

some easily reproducible phenomenon, such as the melting point of ice or the boiling 

point of water. The assignment of temperatures to these phenomena is arbitrary. 

 The most commonly used temperature scale in the world is the Celsius scale. On 

the Celsius scale, 0 ° C is the freezing temperature of water at  P   =  1 atm (the  ice point ) 
and 100 ° C is the boiling temperature of water at  P   =  1 atm (the  steam point ).       

 In the United States, the Fahrenheit scale is still commonly used ( Fig. 13.2 ). At 

1 atm, the ice point is 32 ° F and the steam point is 212 ° F, so the difference between the 

steam and ice points is 180 ° F. The size  of the Fahrenheit degree interval is therefore 

smaller than the Celsius degree interval: a temperature difference of 1 ° C is equivalent to 

a difference of 1.8 ° F:   

  Δ T 
F
   = Δ T 

C
   × 1.8   °F ___ 

°C
      (13-1)   

Since the two scales also have an offset (0 ° C is not the same temperature as 0 ° F), con-

version between the two is:   

   T 
F
   = (1.8°F/°C)  T 

C
   + 32°F    (13-2a)      

   T 
C
   =   

 T 
F
   − 32°F

 _________ 
1.8°F/°C

      (13-2b)          

 The SI unit of temperature is the    kelvin    (symbol K,  without  a degree sign). The kel-

vin has the same degree size as the Celsius scale; that is, a temperature  difference  of 1 ° C 

is the same as a difference of 1 K. However, 0 K represents  absolute zero —there are no 

temperatures below 0 K. The ice point is 273.15 K, so temperature in  ° C ( T  C ) and tem-

perature in kelvins ( T  ) are related.   

   T 
C
   = T − 273.15    (13-3)   

Equation (13-3) is the definition of the Celsius scale in terms of the kelvin.  Table 13.1  

shows some temperatures in kelvins,  ° C, and  ° F.       

The freezing and boiling 

temperatures of water 

depend on the pressure.

The freezing and boiling 

temperatures of water 

depend on the pressure.

212°F (Steam
            point)

100°C

FahrenheitCelsius

50°C

0°C

–40°C

200°F

150°F

100°F

50°F

0°F

–40°F

32°F (Ice point)

Figure 13.2 The Fahrenheit 

and Celsius temperature scales.

 Table 13.1  Some Reference Temperatures in K,  ° C, and  ° F

K °C °F

Absolute zero 0 −273.15 −459.67

Lo west transient temperature 

achieved (laser cooling)

10−9

Intergalactic space 3 −270 −454 

Helium boils 4.2 −269 −452 

Nitrogen boils 77 −196 −321 

Ca rbon dioxide freezes 

(“dry ice”)

195 −78 −108 

Mercury freezes 234 −39 −38 

Ice melts/water freezes 273.15 0 32.0

Human body temperature 310 37 98.6

K °C °F

Water boils  373.15  100.00 212.0

Campfire 1 000 700 1 300

Gold melts 1 337 1 064 1 947

Lightbulb filament 3 000 2 700 4 900

Su rface of Sun; iron 

welding arc

6 300 6 000 11 000

Center of Earth 16 000 15 700 28 300

Lightning channel 30 000 30 000 50 000

Center of Sun 107 107 107

Interior of neutron star 109 109 109
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13.3  THERMAL EXPANSION OF SOLIDS AND LIQUIDS 

  Most objects expand as their temperature increases. Long before the cause of thermal 

expansion was understood, the phenomenon was put to practical use. For example, the 

cooper (barrel maker) heated iron hoops red hot to make them expand before fitting 

them around the wooden staves of a barrel. The iron hoops contracted as they cooled, 

pulling the staves tightly together to make a leak-tight barrel.          

   Linear Expansion 

 If the length of a wire, rod, or pipe is  L  0  at temperature  T  0  ( Fig. 13.3 ), then   

   ΔL ___ 
 L 

0
  
   = a ΔT (13-4)

where Δ L   =   L   −   L  0  and Δ T   =   T   −   T  0 . The length at temperature  T  is   

  L =  L 
0
   + ΔL = (1 + a ΔT )  L 

0
      (13-5)   

The constant of proportionality  a  is called the    coefficient of linear expansion    of the 

substance. It plays a role in thermal expansion similar to that of the elastic modulus in 

tensile stress. If  T  is measured in kelvins or in degrees Celsius, then  a  has units of K  − 1  

or  ° C  − 1 . Since only the  change  in temperature is involved in Eq. (13-4), either Celsius or 

Kelvin temperatures can be used to find Δ T;  a temperature change of 1K is the same as 

a temperature change of 1 ° C.       

 As is true for the elastic modulus, the coefficient of linear expansion has different 

values for different solids and also depends to some extent on the starting temperature 

of the object.  Table 13.2  lists the coefficients for various solids. 

CHECKPOINT 13.3

A steel tower is 150.00 m tall at 40°C. How much shorter is it at −10°C?

           

CONNECTION:

Recall that the fractional 

length change (strain) caused 

by a tensile or compressive 

stress is proportional to the 

stress that caused it [Hooke’s 

law, Eq. (10-4)]. Similarly, 

the fractional length change 

caused by a temperature 

change is proportional to the 

temperature change, as long 

as the temperature change is 

not too great.

(b) First find how many °F above the ice point:

Δ T 
F
   = 38.6°C  × (1.8°F/°C) = 69.5°F

The ice point is 32°F, so

 T 
F
   = 32.0°F + 69.5°F = 101.5°F

Discussion The answer is reasonable since 98.6°F is nor-

mal body temperature.

Practice Problem 13.1 Normal Body Temperatures 
with Two Scales

Convert the normal human body temperature (98.6°F) to 

degrees Celsius and kelvins.

Example 13.1

A Sick Friend

A friend suffering from the flu has a fever; her body 

temperature is 38.6°C. What is her temperature in 

(a) K and (b) °F?

Strategy (a) Kelvins and °C differ only by a shift of the 

zero point. Converting from °C to K requires only the addi-

tion of 273.15 K since 0°C (the ice point) corresponds to 

273.15 K. (b) The °F is a different size than the °C, as well 

as having a different zero. In the Celsius scale, the zero is at 

the ice point. First multiply by 1.8°F/°C to find how many 

°F above the ice point. Then add 32°F (the Fahrenheit tem-

perature of the ice point).

Solution (a) The temperature is 38.6 K above the ice point 

of 273.15 K. Therefore, the kelvin temperature is

T = 38.6 K + 273.15 K = 311.8 K



  Figure 13.4  is a graph of the relative length of a steel girder as a function of temper-

ature over a  wide  range of temperatures. The curvature of this graph shows that the ther-

mal expansion of the girder is in general  not  proportional to the temperature change. 

However, over a  limited  temperature range, the curve can be approximated by a straight 

line; the slope of the tangent line is the coefficient  a   at the temperature  T  0 . For small 

temperature changes near  T  0 , the change in length of the girder can be treated as being 

proportional to the temperature change with only a small error.          

   Applications of Thermal Expansion: Expansion Joints in Bridges and Build-

ings    Allowances must be made in building sidewalks, roads, bridges, and buildings to 

leave space for expansion in hot weather. Old subway tracks have small spaces left 

between rail sections to prevent the rails from pushing into each other and causing the 

track to bow. A train riding on such tracks is subject to a noticeable amount of “clickety-

clack” as it goes over these small expansion breaks in the tracks. Expansion joints are 

easily observed in bridges ( Fig. 13.5 ). Concrete roads and sidewalks have joints between 

sections. Homeowners sometimes build their own sidewalks without realizing the 

necessity for such joints; these sidewalks begin to crack almost immediately!       

 Allowances must also be made for contraction in cold weather. If an object is not 

free to expand or contract, then as the temperature changes it is subjected to  thermal 
stress  as its environment exerts forces on it to prevent the thermal expansion or contrac-

tion that would otherwise occur.   

L0

∆L

T > T0

L

T0

Figure 13.3 Expansion of a 

solid rod with increasing 

temperature.

Figure 13.5 Expansion joints 

permit the roadbed of a bridge to 

expand and contract as the tem-

perature changes.

T0

L0

L

T

Slope = a
1

Figure 13.4 The relative 

length of a steel girder as a func-

tion of temperature. The dashed 

tangent line shows what Eq. (13-

4) predicts for small temperature 

changes in the vicinity of  T  0 . 

The slope of this tangent line is 

the value of  a   at  T   =   T  0 .  

Material  a (10−6 K−1)

Glass (Vycor)  0.75

Brick  1.0

Glass (Pyrex)  3.25

Granite  8

Glass, most types  9.4

Cement or concrete 12

Iron or steel 12

Copper 16

Silver 18

Brass 19

Aluminum 23

Lead 29

Ice (at 0°C) 51

Table 13.2  Coefficients of Linear Expansion  a   for Solids 
(at  T   =  20 ° C unless otherwise indicated) 
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  Differential Expansion 

 When two strips made of different metals are joined together and then heated, one 

expands more than the other (unless they have the same coefficient of expansion). This 

differential expansion can be put to practical use: the joined strips bend into a curve, 

allowing one strip to expand more than the other. 

 The bimetallic strip ( Fig. 13.7 ) is made by joining a material with a lower coeffi-

cient of expansion, such as steel, and one of a higher coefficient of expansion, such as 

brass. Unequal expansions or contractions of the two materials force the bimetallic strip 

to bend. In  Fig. 13.7 , the brass expands more than the steel when the bimetallic strip is 

heated. As the strip is cooled, the brass contracts more than the steel.           

Application of differential 

expansion: bimetallic strip in a 

thermostat

Application of differential 

expansion: bimetallic strip in a 

thermostat

Solving for ΔT,

ΔT =   0.024 cm ___________ 
( a 

br
   +  a 

Al
  ) L 

0
  
  

=   0.024 cm  __________________________________    
(19 ×  10 −6   K −1  + 23 ×  10 −6   K −1 ) × 50.0 cm

  

= 11.4°C 

The temperature at which the two touch is

 T 
f
   =  T 

0
   + ΔT = 0.0°C + 11.4°C → 11°C

Discussion As a check on the solution, we can find how 

much each individual rod expands and then add the two 

amounts:

Δ L 
Al

   =  a 
Al

   ΔT  L 
0
  

= 23 ×  10 −6   K −1  × 11.4 K × 50.0 cm = 0.013 cm

Δ L 
br

   =  a 
br 

   ΔT  L 
0
  

= 19 ×  10 −6   K −1  × 11.4 K × 50.0 cm = 0.011 cm

total expansion = 0.013 cm + 0.011 cm = 0.024 cm

which is correct.

Practice Problem 13.2 Expansion of a Wall

The outer wall of a building is constructed from concrete 

blocks. If the wall is 5.00 m long at 20.0°C, how much lon-

ger is the wall on a hot day (30.0°C)? How much shorter is it 

on a cold day (−5.0°C)?

Example 13.2

Expanding Rods

Two metal rods, one aluminum and one brass, are each 

clamped at one end (Fig. 13.6). At 0.0°C, the rods are each 

50.0 cm long and are separated by 0.024 cm at their unfas-

tened ends. At what temperature will the rods just come into 

contact? (Assume that the base to which the rods are clamped 

undergoes a negligibly small thermal expansion.)

Strategy Two rods of different materials expand by differ-

ent amounts. The sum of the two expansions (ΔLbr + ΔLAl) 

must equal the space between the rods. After finding ΔT, we 

add it to T0 = 0.0°C to obtain the temperature at which the 

two rods touch.

Known: L0 = 50.0 cm, T0 = 0.0°C for both

Look up: a br = 19 × 10−6 K−1; aAl = 23 × 10−6 K−1

Requirement: ΔLbr + ΔLAl = 0.024 cm

Find: Tf  =  T0 + ΔT

Solution The brass rod expands by

Δ L 
br

   = ( a 
br

   ΔT ) L 
0
  

and the aluminum rod by

Δ L 
Al

   = ( a 
Al

   ΔT ) L 
0
  

The sum of the two expansions is known:

Δ L 
br

   + Δ L 
Al

   = 0.024 cm

Since both the initial lengths and the temperature changes 

are the same,

( a 
 br

   +  a 
Al

  ) ΔT ×  L 
0
   = 0.024 cm

T0 = 0.0°C
Brass Aluminum

50.0 cm 50.0 cm

0.024 cm

Figure 13.6

Two clamped rods.



 The bimetallic strip is used in many wall thermostats. The bending of the bimetallic 

strip closes or opens an electrical switch in the thermostat that turns the furnace or air 

conditioner on or off. Inexpensive oven thermometers also use a bimetallic strip wound 

into a spiral coil; the coil winds tighter or unwinds as the temperature changes.  

  Area Expansion 

 As you might suspect,  each dimension  of an object expands when the object’s tempera-

ture increases. For instance, a pipe expands not only in length, but also in radius. An iso-

tropic substance expands uniformly in all directions, causing changes in area and 

volume that leave the  shape  of the object unchanged. In Problem 25, you can show that, 

for small temperature changes, the area of any flat surface of a solid changes in propor-

tion to the temperature change:   

    ΔA ___ 
 A 

0
  
   = 2a ΔT    (13-6)   

The factor of two in Eq. (13-6) arises because the surface expands in two perpendicular 

directions.      

  Volume Expansion 

 The fractional change in volume of a solid or liquid is also proportional to the tempera-

ture change as long as the temperature change is not too large:   

    ΔV ___ 
 V 

0
  
   = b ΔT    (13-7)   

The coefficient of volume expansion,  b , is the fractional change in volume per unit tem-

perature change. For solids, the coefficient of volume expansion is three times the coef-

ficient of linear expansion (as shown in Problem 26):   

  b  = 3a    (13-8)   

The factor of three in Eq. (13-8) arises because the object expands in three-dimensional 

space. For liquids, the volume expansion coefficient is the only one given in tables. 

Since liquids do not necessarily retain the same shape as they expand, the quantity that 

is uniquely defined is the change in volume.  Table 13.3  provides values of  b  for some 

common liquids and gases.     
 A hollow cavity in a solid expands exactly as if it were filled—the interior of a steel 

gasoline container expands when its temperature increases just as if it were a solid steel 

block.  The steel wall of the can does   not   expand inward to make the cavity smaller.    

Bimetallic strip

Room temperature HotCold

Brass

Steel

Figure 13.7 A bimetallic strip 

bends when its temperature 

changes; brass expands and con-

tracts more than steel for the 

same temperature change.

   * Below 3.98 ° C, water  contracts  with increasing temperature.  
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Table 13.3  Coefficients of Volume Expansion  b   for Liquids 
and Gases (at  T   =  20 ° C unless otherwise indicated) 

Material b (10−6 K−1)

Liquids

 Water (at 0°C)* −68

 Mercury 182

 Water (at 20°C) 207

 Gasoline 950

 Ethyl alcohol 1120

 Benzene 1240

Gases

 Air (and most other gases) at 1 atm 3340

CONNECTION: 

Compare Eq. (10-10). There, 

the fractional volume change 

is proportional to the pressure 

change; here it is proportional 

to the temperature change.
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 In an ordinary alcohol-in-glass or mercury-in-glass thermometer, it is not just the 

liquid that expands as temperature rises. The reading of the thermometer is determined 

by the difference in the volume expansion of the liquid and that of the interior of the 

glass. The calibration of an accurate thermometer must account for the expansion of the 

glass. Comparison of  Tables 13.2  and  13.3  shows that, as is usually the case, the liquid 

expands much more than the glass for a given temperature change.        

Application of volume 

expansion: thermometers

Application of volume 

expansion: thermometers

The amount of water that spills is

Δ V 
 H 

2
  O

   − Δ V 
Cu

   =  b   
H

 
2

  
O
   ΔT  V 

0
   −  b  Cu   ΔT  V 

0
  

= (   b   
H

 
2

  
O
   −  b  Cu  ) ΔT  V 

0
  

=  (207 ×  10 −6  ° C −1  − 3 × 16 ×  10 −6  ° C −1 ) 

× 71°C ×  V 
0
  

= 0.011 V 
0
  

The percentage of water that spills is therefore 1.1%.

Discussion As a check, we can find the change in volume 

of the copper container and of the water and find the 

difference.

Δ V 
Cu

   =  b  Cu
   ΔT  V 

0
   = 3 × 16 ×  10 −6  ° C −1  × 71°C ×  V 

0
   = 0.0034 V 

0
  

Δ V 
 H 

2
  O
   =  b      

H
 
2

  
O
   ΔT  V 

0
   = 207 ×  10 −6  ° C −1  × 71°C ×  V 

0
   = 0.0147 V 

0
  

volume of water that spills = 0.0147 V 
0
   − 0.0034 V 

0
   = 0.0113 V 

0
  

which again shows that 1.1% spills.

Practice Problem 13.3 Overflowing Gas Can

A driver fills an 18.9-L steel gasoline can with gasoline at 

15.0°C right up to the top. He forgets to replace the cap and 

leaves the can in the back of his truck. The temperature 

climbs to 30.0°C by 1 p.m. How much gasoline spills out of 

the can?

Example 13.3

Hollow Cylinder Full of Water

A hollow copper cylinder is filled to the brim with water at 

20.0°C. If the water and the container are heated to a tem-

perature of 91°C, what percentage of the water spills over 

the top of the container?

Strategy The volume expansion coefficient for water is 

greater than that for copper, so the water expands more than 

the interior of the cylinder. The cavity expands just as if it 

were solid copper. Since the problem does not specify the 

initial volume, we call it V0. We need to find out how much a 

volume V0 of water expands and how much a volume V0 of 

copper expands; the difference is the water volume that spills 

over the top of the container.

Known:  Initial copper cylinder interior volume = initial 

water volume = V0

Initial temperature = T0 = 20.0°C

Final temperature = 91°C; ΔT = 71°C

Look up:  a 
 Cu

   = 16 ×  10 −6  ° C −1 ;  b    
H

 
2

  
O
   = 207 ×  10 −6  ° C −1 

Find: Δ V 
 H 

2
  O

   − Δ V 
Cu

   as a percentage of V
0

Solution The volume expansion of the interior of the cop-

per cylinder is

Δ V 
Cu

   =  b  Cu
   ΔT  V 

0
  

where  b  Cu   = 3 a 
 Cu

  . The volume expansion of the water is

Δ V 
 H 

2
  O
   =  b   

H
 
2

  
O
   ΔT  V 

0
  

13.4  MOLECULAR PICTURE OF A GAS     

   Number Density    As we saw in Chapter 9, the densities of liquids are generally not 

much less than the densities of solids. Gases are  much  less dense than liquids and solids 

because the molecules are, on average, much farther apart. The mass density—mass per 

unit volume—of a substance depends on the mass  m  of a single molecule and the number 

of molecules  N  packed into a given volume  V  of space ( Fig. 13.8 ). The number of mole-

cules per unit volume,  N / V,  is called the    number density    to distinguish it from mass den-

sity. In SI units, number density is written as the number of molecules per cubic meter, 

usually written simply as m  − 3  (read “per cubic meter”). If a gas has a total mass  M,  occu-

pies a volume  V,  and each molecule has a mass  m,  then the number of gas molecules is   

  N =   M __ m       (13-9)   



and the average number density is   

    N __ 
V

   =   M ___ 
mV

   =   
r 

 __ m       (13-10)   

where  r   =   M / V  is the mass density.        

   Moles    It is common to express the amount of a substance in units of    moles    (abbrevi-

ated mol). The mole is an SI base unit and is defined as follows: one mole of anything 

contains the same number of units as there are atoms in 12  grams  (not kilograms) of 

carbon-12. This number is called    Avogadro’s number    and has the value   

 N 
A
   = 6.022 ×  10 23   mol −1  (Avogadro’s number)

  

Avogadro’s number is written with units, mol  − 1 , to show that this is the number  per 
mole.  The number of moles,  n,  is therefore given by   

  number of moles =   total number  ______________  
number per mole

   

 n =   N ___ 
 N 

A
  
      (13-11)     

   Molecular Mass and Molar Mass    The mass of a molecule is often expressed in units 

other than kg. The most common is the    atomic mass unit    (symbol u). By definition, one 

atom of carbon-12 has a mass of 12 u (exactly). Using Avogadro’s number, the relation-

ship between atomic mass units and kilograms can be calculated (see Problem 27):   

      1 u = 1.66 ×  10 −27  kg (13-12)

The proton, neutron, and hydrogen atom all have masses within 1% of 1 u—which is 

why the atomic mass unit is so convenient. More precise values are 1.007 u for the pro-

ton, 1.009 u for the neutron, and 1.008 u for the hydrogen atom. The mass of an atom is 

 approximately  equal to the number of nucleons (neutrons plus protons)—the atomic 
mass number—times 1 u. 

 Instead of the mass of one molecule, tables commonly list the    molar mass   —the 

mass of the substance  per mole.  For an element with several isotopes (such as carbon-12, 

carbon-13, and carbon-14), the molar mass is averaged according to the naturally occur-

ring abundance of each isotope.  The atomic mass unit is chosen so that the mass of a mol-

ecule in “u” is numerically the same as the molar mass in g/mol.  For example, the molar 

mass of O 2  is 32.0 g/mol and the mass of one molecule is 32.0 u.   

 The mass of a molecule is very nearly equal to the sum of the masses of its constit-

uent atoms. The molar mass of a molecule is therefore equal to the sum of the molar 

masses of the atoms. For example, the molar mass of carbon is 12.0 g/mol and the 

molar mass of (atomic) oxygen is 16.0 g/mol; therefore, the molar mass of carbon 

dioxide (CO 2 ) is (12.0  +  2  ×  16.0) g/mol  =  44.0 g/mol.             

 The abbreviation “mol” 

stands for moles, not 
molecules.

 The abbreviation “mol” 

stands for moles, not 
molecules.

(a) (b)

    Figure 13.8 These two gases 

have the same mass per unit vol-

ume but different number densi-

ties. The red arrows represent 

the molecular velocities. In 

(a), there are a larger number of 

molecules in a given volume, but 

the mass of each molecule in 

(b) is greater.  

CHECKPOINT 13.4

(a) What is the mass (in u) of a CO2 molecule? (b) What is the mass (in g) of 

3.00 mol of CO2?
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   13.5  ABSOLUTE TEMPERATURE AND THE IDEAL GAS LAW 

  We have examined the thermal expansion of solids and liquids. What about gases? Is 

the volume expansion of a gas proportional to the temperature change? We must be 

careful; since gases are easily compressed, we must also specify what happens to the 

pressure. The French scientist Jacques Charles (1746–1823) found experimentally that, 

if the pressure of a gas is held constant, the change in temperature is indeed propor-

tional to the change in volume ( Fig. 13.10a ).   

  Charles’s law: ΔV ∝ ΔT (for constant P)   

According to Charles’s law, a graph of  V  versus  T  for a gas held at constant pressure is 

a straight line, but the line does not necessarily pass through the origin ( Fig. 13.10b ). 

 However, if we graph  V  versus  T  (at constant  P ) for various gases, something 

interesting happens. If we extrapolate the straight line to where it reaches  V   =  0, the 

The number density is

  N __ 
V

   =   2.4 ×  10 23  atoms  ______________ 
0.010  m 3 

   = 2.4 ×  10 25  atoms/ m 3 

The mass of a helium atom is 4.00 u. Then the mass in kg of 

a helium atom is

m = 4.00 u × 1.66 ×  10 −27  kg/u = 6.64 ×  10 −27  kg

and the mass density of the gas is

r =   M __ 
V

   = m ×   N __ 
V

  

= 6.64 ×  10 −27  kg × 2.4 ×  10 25   m −3  = 0.16 kg/ m 3 

(b) We assume that each atom is at the center of a sphere of 

radius r (Fig. 13.9). The volume of the sphere is

  V __ 
N

   =   1 ____ 
N/V

   =   1 _________________  
2.4 ×  10 25  atoms/ m 3 

   = 4.2 ×  10 −26   m 3  per atom

Then

  V __ 
N

   =   4 __ 
3
   p  r 3  ≈  4 r 3  (since p ≈ 3)

Solving for r,

r ≈   (   V ___ 
4N

   )  1/3
  = 2.2 ×  10 −9  m = 2.2 nm

The average distance between atoms is d = 2r ≈ 4 nm (since 

this is an estimate).

Discussion For comparison, in liquid helium the average 

distance between atoms is about 0.4 nm, so in the gas the 

average separation is about ten times larger.

Practice Problem 13.4 Number Density for Water

The mass density of liquid water is 1000.0 kg/m3. Find the 

number density.

Example 13.4

A Helium Balloon

A helium balloon of volume 0.010 m3 contains 0.40 mol of 

He gas. (a) Find the number of atoms, the number density, 

and the mass density. (b) Estimate the average distance 

between He atoms.

Strategy The number of moles tells us the number of 

atoms as a fraction of Avogadro’s number. Once we have the 

number of atoms, N, the next quantity we are asked to find is 

N/V. To find the mass density, we can look up the atomic 

mass of helium in the periodic table. The mass per atom 

times the number density (atoms per m3) equals the mass 

density (mass per m3). To find the average distance between 

atoms, imagine a simplified picture in which each atom is at 

the center of a spherical volume equal to the total volume of 

the gas divided by the number of atoms. In this approxima-

tion, the average distance between atoms is equal to the 

diameter of each sphere.

Solution (a) The number of atoms is

N = n N 
A
  

= 0.40 mol × 6.022 ×  10 23  atoms/mol

= 2.4 ×  10 23  atoms

Figure 13.9

Simplified model in which equally spaced helium atoms sit at the 

centers of spherical volumes of space.



temperature at that point is the  same  regardless of what gas we use, how many moles 

of gas are present, or what the pressure of the gas is ( Fig. 13.10c ). (One reason we 

have to extrapolate is that all gases become liquids or solids before they reach  V   =  0.) 

This temperature,  − 273.15 ° C or  − 459.67 ° F, is called    absolute zero   —the lower limit 

of attainable temperatures. In kelvins—an  absolute  temperature scale—absolute zero 

is defined as 0 K ( Fig. 13.10d ). As long as it is understood that an absolute tempera-

ture scale is to be used, then Charles’s law can be written   

 V ∝ T (for constant P)               

PHYSICS AT HOME

Take an empty 2-L soda bottle, cap it tightly, and put it in the freezer. Check it 

an hour later; what has happened? Estimate the percentage change in the vol-

ume of the air inside and compare with the percentage change in absolute tem-

perature (if you don’t have a thermometer handy, a typical freezer temperature 

is about −10°C).

 Thermal expansion of a gas can be used to measure temperature. Gas thermometers 

are universal: it does not matter what gas is used or how many moles of gas are present, 

as long as the number density is sufficiently low. Gas thermometers give absolute tem-

perature in a natural way and they are extremely accurate and reproducible. The main 

disadvantage of gas thermometers is that they are much less convenient to use than most 

other thermometers, so they are mainly used to calibrate other thermometers. 

 A thermometer based on Charles’s law would be called a  constant pressure gas 
thermometer.  More common is the  constant volume gas thermometer  ( Fig. 13.11 ), 

which is based on Gay-Lussac’s law:   

  P ∝ T (for constant V  )   

Absolute zero: the lower limit of 

attainable temperatures.

Absolute zero: the lower limit of 

attainable temperatures.

Gas AConstant P Constant P
Gas B

Beaker of water

(b)

Thermometer Hg

Volume (V )
of enclosed
gas

Gas C

Gas D

Gas E

V

T (K)

V

T (°C)

00

(d)

(a)

(c)

∆T

∆V

V

Tlimit T (°C)

    Figure 13.10 (a) Apparatus to verify Charles’s law. The pressure of the enclosed 

gas is held constant by the fixed quantity of mercury resting on top of it and atmo-

spheric pressure pushing down on the mercury. If the temperature of the gas is 

changed, it expands or contracts, moving the mercury column above it. (b) Charles’s 

law: for a gas held at constant pressure, changes in temperature are proportional to 

changes in volume. (c) Volume versus temperature graphs for various gas samples, 

each at a constant pressure, are extrapolated to  V   =  0. The graphs intersect the temper-

ature axis at the same temperature,  T  limit , even though the gases may differ in composi-

tion and mass. (d) An absolute temperature scale sets  T  limit   =  0.  

Open end

Patm

Flexible tube

Fixed
reference
level

Pgas ∆h

Figure 13.11 A constant vol-

ume gas thermometer. A dilute 

gas is contained in the vessel on 

the left, which is connected to a 

mercury manometer. The right 

side can be moved up or down to 

keep the mercury level on the 

left at a fixed level, so the vol-

ume of gas is kept constant. 

Then the manometer is used to 

measure the pressure of the gas: 

Pgas = Patm + rgΔh.
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Here we keep the volume of the gas constant, measure the pressure and use that to indi-

cate the temperature. (It is much easier to keep the volume constant and measure the 

pressure than to do the opposite.)         

 Both Charles’s law and Gay-Lussac’s law are valid only for a    dilute    gas—a gas 

where the number density is low enough (and, therefore, the average distance between 

gas molecules is large enough) that interactions between the molecules are negligible 

except when they collide. Two other experimentally discovered laws that apply to dilute 

gases are Boyle’s law and Avogadro’s law. Boyle’s law states that the pressure of a gas 

is inversely proportional to its volume at constant temperature:   

 P ∝   1 __ 
V

   (for constant T )  

Avogadro’s law states that the volume occupied by a gas at a given temperature and 

pressure is proportional to the number of gas molecules  N:    

 V ∝ N (constant P, T )  

(A constant number of gas molecules was assumed in the statements of Boyle’s, Gay-

Lussac’s, and Charles’s laws.) 

 One equation combines all four of these gas laws—the    ideal gas law:        

Ideal Gas Law (Microscopic Form)

 PV = NkT (N = number of molecules) (13-13)

 The constant of proportionality is a universal quantity known as    Boltzmann’s constant    

(symbol  k ); its value is   

      
 k = 1.38 ×  10 −23  J/K (13-14)

 The macroscopic form of the ideal gas law is written in terms of  n,  the number of 

 moles  of the gas, in place of  N,  the number of molecules. Substituting   

 N = n N 
A
    

into the microscopic form yields   

 PV = n N 
A
  kT  

The product of  N  A  and  k  is called the    universal gas constant:      

 
 R =  N 

A
  k = 8.31   J/K ____ 

mol
   (13-15)

Then the ideal gas law in macroscopic form is written 

Ideal Gas Law (Macroscopic Form)

 PV = nRT (n = number of moles) (13-16)

   Many problems deal with the changing pressure, volume, and temperature in a gas 

with a constant number of molecules (and a constant number of moles). In such prob-

lems, it is often easiest to write the ideal gas law as follows:   

    
 P 

1
   V 

1
  
 _____ 

 T 
1
  
   =    

 P 
2
   V 

2
  
 _____ 

 T 
2
  
                

In the ideal gas law,  T  stands for 

 absolute  temperature (in K) and  P  

stands for  absolute  (not gauge) 

pressure.

In the ideal gas law,  T  stands for 

 absolute  temperature (in K) and  P  

stands for  absolute  (not gauge) 

pressure.



CHECKPOINT 13.5

Two containers with the same volume are filled with two different gases. The 

pressure of the two gases is the same. (a) Must their temperatures be the same? 

Explain. (b) If their temperatures are the same, must they have the same number 

density? The same mass density?

Then

 T 
f
   =   

 P 
f
  
 __ 

 P 
i
  
    T 

i
   =   342 ____ 

315
   × 288 K = 313 K

Now convert back to °C:

313 K − 273 K = 40°C

Discussion The final answer of 40°C seems reasonable 

since, after a long drive, the tires are noticeably warm, but 

not hot enough to burn your hand.

It is often most convenient to work with the ideal 

gas law by setting up a proportion. In this problem, 

we did not know the volume or the number of molecules, so 

we had no choice. In essence, what we used was Gay-

Lussac’s law. Starting with the ideal gas law, we can 

“rederive” Gay-Lussac’s law or Charles’s law or any other 

proportionality inherent in the ideal gas law.

Practice Problem 13.5 Air Pressure in the Tire 
After the Temperature Decreases

Suppose you now (unwisely) decide to bleed air from the 

tires, since the manufacturer suggests keeping the pressure 

between 28 lb/in2 and 32 lb/in2. (The manufacturer’s speci-

fication refers to when the tires are “cold.”) If you let out 

enough air so that the pressure returns to 31 lb/in2, what 

percentage of the air molecules did you let out of the tires? 

What is the gauge pressure after the tires cool back down 

to 15°C?

Example 13.5

Temperature of the Air in a Tire

Before starting out on a long drive, you check the air in your 

tires to make sure they are properly inflated. The pressure 

gauge reads 31.0 lb/in2 (214 kPa), and the temperature is 

15°C. After a few hours of highway driving, you stop and 

check the pressure again. Now the gauge reads 35.0 lb/in2 

(241 kPa). What is the temperature of the air in the tires now?

Strategy We treat the air in the tire as an ideal gas. We 

must work with absolute temperatures and absolute pres-

sures when using the ideal gas law. The pressure gauge 

reads gauge pressure; to get absolute pressure we add 

1 atm = 101 kPa. We don’t know the number of molecules 

inside the tire or the volume, but we can reasonably assume 

that neither changes. The number is constant as long as the 

tire does not leak. The volume may actually change a bit as 

the tire warms up and expands, but this change is small. 

Since N and V are constant, we can rewrite the ideal gas law 

as a proportionality between P and T.

Solution First convert the initial and final gauge pressures 

to absolute pressures:

 P 
i
   = 214 kPa + 101 kPa = 315 kPa

 P 
f
   = 241 kPa + 101 kPa = 342 kPa

Now convert the initial temperature to an absolute 

temperature:

 T 
i
   = 15°C + 273 K = 288 K

According to the ideal gas law, pressure is proportional to 

temperature, so

  
 T 

f
  
 __ 

 T 
i
  
   =   

 P 
f
  
 __ 

 P 
i
  
   =   342 kPa _______ 

315 kPa
  

PHYSICS AT HOME

The next time you take a car trip, check the tire pressure with a gauge just 

before the trip and then again after an hour or more of highway driving. Calcu-

late the temperature of the air in the tires from the two pressure readings and 

the initial temperature. Feel the tire with your hand to see if your calculation is 

reasonable.
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The pressure at the surface is (approximately) 1 atm, while 

the pressure at 30 m under water is

P = 1 atm + rgh

rgh = 1000 kg/m3 × 9.8 m/s2 × 30 m = 294 kPa ≈ 3 atm

Therefore, at a depth of 30 m,

P ≈ 4 atm

To match the pressure of the surrounding water, the pressure 

of the compressed air is four times larger at a depth of 30 m; 

then the volume of air is one fourth what it was at the sur-

face. The diver breathes the same volume per minute, so the 

tank will last one fourth as long—20 min.

Discussion To do the same thing a bit more formally, we 

could write:

 P 
i
   V 

i
   =  P 

f
   V 

f
  

After setting Pi = 1 atm and Pf = 4 atm, we find that  

V 
f
   / V 

i
   =   1 _ 

4
  .

In this problem, the only numerical values given (indi-

rectly) were the initial and final pressures. Assuming that N 

and T remain constant, we then can find the ratio of the final 

and initial volumes. Whenever there seems to be 

insufficient numerical information given in a prob-

lem, think in terms of ratios and look for constants that 

cancel out.

Practice Problem 13.6 Pressure in the Air Tank 
After the Temperature Increases

A tank of compressed air is at an absolute pressure of 

580 kPa at a temperature of 300.0 K. The temperature 

increases to 330.0 K. What is the pressure in the tank now?

Example 13.6

Scuba Diver

A scuba diver 

needs air deliv-

ered at a pressure equal 

to the pressure of the 

surrounding water—the 

pressure in the lungs 

must match the water 

pressure on the diver’s 

body to prevent the 

lungs from collapsing. 

Since the pressure in 

the air tank is much 

higher, a regulator deliv-

ers air to the diver at 

the appropriate pres-

sure. The compressed 

air in a diver’s tank lasts 80 min at the water’s surface. About 

how long does the same tank last at a depth of 30 m under 

water? (Assume that the volume of air breathed per minute 

does not change and ignore the small quantity of air left in 

the tank when it is “empty.”)

Strategy The compressed air in the tank is at a pressure 

much higher than the pressure at which the diver breathes, 

whether at the surface or at 30 m depth. The constant quantity 

is N, the number of gas molecules in the tank. We also assume 

that the temperature of the gas remains the same; it may 

change slightly, but much less than the pressure or volume.

Solution Since N and T are constant,

PV = constant

or

P ∝ 1/V

Problem-Solving Tips for the Ideal Gas Law

• In most problems, some change occurs; decide which of the four quantities 

(P, V, N or n, and T ) remain constant during the change.

• Use the microscopic form if the problem deals with the number of molecules 

and the macroscopic form if the problem deals with the number of moles.

• Use subscripts (i and f ) to distinguish initial and final values.

• Work in terms of ratios so that constant factors cancel out.

• Write out the units when doing calculations.

• Remember that P stands for absolute pressure (not gauge pressure) and T 

stands for absolute temperature (in kelvins, not °C or °F).



   13.6  KINETIC THEORY OF THE IDEAL GAS 

  In a gas, the interaction between two molecules weakens rapidly as the distance between 

the molecules increases. In a dilute gas, the average distance between gas molecules is 

large enough that we can ignore interactions between the molecules except when they 

collide. In addition, the volume of space occupied by the molecules themselves is a 

small fraction of the total volume of the gas—the gas is mostly “empty space.” The 

   ideal gas    is a simplified model of a dilute gas in which we think of the molecules as 

pointlike particles that move  independently  in free space with no interactions except for 

elastic collisions. 

 This simplified model is a good approximation for many gases under ordinary con-

ditions. Many properties of gases can be understood from this model; the microscopic 

theory based on it is called the    kinetic theory    of the ideal gas.  

   Microscopic Basis of Pressure 

 The force that a gas exerts on a surface is due to collisions that the gas molecules make 

with that surface. For instance, think of the air inside an automobile tire. Whenever an 

air molecule collides with the inner tire surface, the tire exerts an inward force to turn 

the air molecule around and return it to the bulk of the gas. By Newton’s third law, the 

gas molecule exerts an outward force on the tire surface. The net force per unit area on 

the inside of the tire due to all the collisions of the many air molecules is equal to the air 

pressure in the tire. The pressure depends on three things: how many molecules there 

are, how often each one collides with the wall, and the momentum transfer due to each 

collision. 

 We want to find out how the pressure of an ideal gas is determined by the motions 

of the gas molecules. To simplify the discussion, consider a gas contained in a box of 

length  L  and side area  A  ( Fig. 13.12a )—the result does not depend on the shape of the 

container.  Figure 13.12b  shows a gas molecule about to collide with the rightmost wall 

of the container. For simplicity, we assume that the collision is elastic; a more advanced 

analysis shows that the result is correct even though not all collisions are elastic.       

 For an elastic collision, the  x -component of the molecule’s momentum is reversed 

in direction since the wall is much more massive than the molecule. Since the gas exerts 

only an outward force on the wall (a static fluid exerts no tangential force on a bound-

ary), the  y - and  z -components of the molecule’s momentum are unchanged. Thus, the 

molecule’s momentum change is Δ p   x    =  2 m|  v   x  |. 
 When does this molecule next collide with the same wall? Ignoring for now colli-

sions with other molecules, its  x -component of velocity never changes magnitude—only 

the sign of  v   x   changes when it reverses direction ( Fig. 13.12c ). The time it takes the 

molecule to travel the length  L  of the container and hit the other wall is  L /| v   x  |. Then the 

round-trip time is   

  Δt =   2   L ___ 
∣vx∣

    

After molecule
hits the wall

Before molecule
hits the wall of
area A

vy

vx

x

vy

−vx

(a)

L
A

(b) (c) (d)

vi

vf
p

pf−pi

∆

Figure 13.12 (a) Gas mole-

cules confined to a container of 

length  L  and area  A.  (b) A mole-

cule is about to collide with the 

wall of area  A.  (c) After an elas-

tic collision,  v   x   has changed 

sign, while  v   y   and  v   z   are 

unchanged. (d) The change in 

momentum due to the collision 

has magnitude 2|  p   x  | and is per-

pendicular to the wall.
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CONNECTION: 

We are using the principle 

that force is the rate of 

change of momentum 

(Newton’s second law) to 

draw a conclusion about 

pressure in a gas.
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The  average  force exerted by the molecule on the wall is the change in momentum 

( Fig. 13.12d ) divided by the time for one complete round-trip:   

   F av,x   =   
Δ p x   ____ 
Δt

   =   
2m| v x  | _______ 
2L / | v x  |

   =   
m| v x   | 

2 
 ______ 

L
   =   

m v  x  
2
 
 ____ 

L
      

 The total force on the wall is the sum of the forces due to each molecule in the gas. 

If there are  N  molecules in the gas, we can simply multiply  N  by the  average  force due 

to one molecule to get the total force on the wall. To represent such an average, we use 

angle brackets 〈  〉; the quantity inside the brackets is averaged over all the molecules in 

the gas.   

 F = N 〈 F av  〉 =   Nm ___ 
L

   〈 v  x  
2
   〉

The pressure is then   

  P =   F __ 
A

   =   Nm ___ 
AL

   〈 v  x  
2
 〉  

The volume of the box is  V   =   AL,  so   

  P =   Nm ___ 
V

   〈 v  x  
2
 〉    (13-17)   

which is true regardless of the shape of the container enclosing the gas. Since we end up 

averaging over all the molecules in the gas, the simplifying assumption about no colli-

sions with other molecules does not affect the result. 

 The product     m〈 v  x  
2
 〉   suggests kinetic energy. It certainly makes sense that if the aver-

age kinetic energy of the gas molecules is larger, the pressure is higher. The average 

translational kinetic energy of a molecule in the gas is     〈 K 
tr
  〉 =   1 _ 

2
   m〈 v 2 〉.   For  any gas mol-

ecule,      v 2  =  v  x  
2
  +  v  y  

2
  +  v  z  

2
 ,   since velocity is a vector quantity. The gas as a whole is at rest, 

so there is no preferred direction of motion. Then the average value of      v  x  
2
    must be the 

same as the averages of      v  y  
2
    and      v  z  

2
 ,   so   

 〈 v  x  
2
 〉 =   1 _ 

3
   〈 v 2 〉  

Therefore,   

 m〈 v  x  
2
 〉 =   1 _ 

3
   m〈 v 2 〉 =   2 _ 

3
   〈 K 

tr
  〉       

 Substituting this into Eq. (13-17), the pressure is   

  P =   2 __ 
3
      

N〈 K 
tr
  〉
 ______ 

V
   =   2 __ 

3
     N __ 
V

   〈 K 
tr
  〉    (13-18)   

Equation (13-18) is written with the variables grouped in two different ways to give 

two different insights. The first grouping says that pressure is proportional to the kinetic 

energy density (the kinetic energy per unit volume). The second says that pressure is 

proportional to the product of the number density  N / V  and the average molecular kinetic 

energy. The pressure of a gas increases if either the gas molecules are packed closer 

together or if the molecules have more kinetic energy. 

 Note that 〈 K 
tr
  〉 is the average  translational  kinetic energy of a gas molecule and  v  is 

the  cm  speed of a molecule.  A gas molecule with more than one atom (such as N   2   ), has 

vibrational and rotational kinetic energy   in addition to   its translational kinetic energy  

 K   tr   , but Eq. (13-18) still holds.    

 What about the assumption that the gas molecules never collide with each other? It 

certainly is  not  true that the same molecule returns to collide with the same wall at a 

fixed time interval and has the same  v  x  each time it returns! However, the derivation 

really only relies on average quantities. In a gas at equilibrium, an average quantity like 

        〈 v  x  
2
 〉     remains unchanged even though any one particular molecule changes its velocity 

components as a result of each collision.  

The pressure of an ideal gas is pro-

portional to the average translational 

kinetic energy of its molecules and 

to the number of molecules per unit 

volume.

The pressure of an ideal gas is pro-

portional to the average translational 

kinetic energy of its molecules and 

to the number of molecules per unit 

volume.



  Temperature and Translational Kinetic Energy 

 The temperature of an ideal gas has a direct physical interpretation that we can now 

bring to light. We found that in an ideal gas, the pressure, volume, and number of mole-

cules are related to the average translational kinetic energy of the gas molecules:   

  P =   2 __ 
3
     N __ 
V

   〈 K 
tr
  〉    (13-18)   

Solving for the average kinetic energy,   

 〈  K 
tr
  〉 =   3 __ 

2
     PV ___ 

N
      (13-19)   

The ideal gas law relates  P, V,  and  N  to the temperature:   

  PV = NkT    (13-13)   

By rearranging the ideal gas law, we find that  P, V,  and  N  occur in the same combina-

tion as in Eq. (13-19):   

   PV ___ 
N

   = kT  

Then by substituting  kT  for ( PV )/ N  in Eq. (13-19), we find that   

  〈 K 
tr
  〉 =   3 _ 

2
   kT    (13-20)    

 Therefore,  the absolute temperature of an ideal gas is proportional to the average 
translational kinetic energy of the gas molecules.  Temperature then is a way to describe 

the average translational kinetic energy of the gas molecules. At higher temperatures, 

the gas molecules have (on average) greater kinetic energy.         

CHECKPOINT 13.6

At what temperature in °C would molecules of O2 have twice the average 

translational kinetic energy that molecules of H2 have at 20°C?

  RMS Speed   The speed of a gas molecule that has the average kinetic energy is called 

the    rms    (root mean square)    speed.    The rms speed is  not  the same as the average speed. 

Instead, the rms speed is the square  root  of the  mean  (average) of the speed  squared.  
Since   

  〈Ktr〉 =   1 _ 
2
   m〈 v 2 〉 =   1 _ 

2
   m v  rms  

2
      (13-21)   

the rms speed is   

  v rms   =  √
____

 〈 v 2 〉      

Squaring before averaging emphasizes the effect of the faster-moving molecules, so the 

rms speed is a bit higher than the average speed—about 9% higher as it turns out. 

 Since the average kinetic energy of molecules in an ideal gas depends only on tem-

perature, Eq. (13-21) implies that more massive molecules move more slowly on aver-

age than lighter ones at the same temperature. If two different gases are placed in a 

single chamber so that they reach equilibrium and are at the same temperature, their 

molecules must have the same average translational kinetic energies. If one gas has 

molecules of larger mass, its molecules must move with a slower average velocity than 

those of the gas with the lighter mass molecules. In Problem 74, you can show that   

   v rms   =  √
____

   3kT ____ m         (13-22)   

where  k  is Boltzmann’s constant and  m  is the mass of a molecule. Therefore, at a given 

temperature, the rms speed is inversely proportional to the square root of the mass of the 

molecule.   
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  Maxwell-Boltzmann Distribution 

 So far we have considered only the  average  kinetic energy and  rms  speed of a molecule. 

Sometimes we may want to know more: how many molecules have speeds in a certain 

range? The distribution of speeds is called the    Maxwell-Boltzmann distribution.    The 

distribution for oxygen at two different temperatures is shown in  Fig. 13.13 . The inter-

pretation of the graphs is that the number of gas molecules having speeds between any 

two values  v  1  and  v  2  is proportional to the area under the curve between  v  1  and  v  2 . In 

 Fig. 13.13 , the shaded areas represent the number of oxygen molecules having speeds 

The rms speed is the speed of a molecule with the aver-

age kinetic energy:

〈 K 
tr
  〉 =   1 _ 

2
   m v  rms

  
2
  

 v rms   =  √
______

    
2〈 K 

tr
  〉
 _____ m     =  √

_______________

     2 × 6.07 ×  10 −21  J  _______________  
5.31 ×  10 −26  kg

     = 478 m/s

Discussion How can we decide if the result is reasonable, 

since we have no first-hand experience watching molecules 

bounce around? Recall from Chapter 12 that the speed of 

sound in air at room temperature is 343 m/s. Since sound 

waves in air propagate by the collisions that occur between 

air molecules, the speed of sound must be of the same order 

of magnitude as the average speeds of the molecules.

Practice Problem 13.7 CO2 Molecules at Room 
Temperature

Find the average translational kinetic energy and the rms 

speed of the CO2 molecules in air at room temperature 

(20°C).

Example 13.7

O2 Molecules at Room Temperature

Find the average translational kinetic energy and the rms 

speed of the O2 molecules in air at room temperature 

(20°C).

Strategy The average translational kinetic energy depends 

only on temperature. We must remember to use absolute 

temperature. The rms speed is the speed of a molecule that 

has the average kinetic energy.

Solution The absolute temperature is

20°C + 273 K = 293 K

Therefore, the average translational kinetic energy is

〈 K 
tr
  〉 =   3 _ 

2
   kT

= 1.50 × 1.38 ×  10 −23  J/K × 293 K

= 6.07 ×  10 −21  J

From the periodic table, we find the atomic mass of oxy-

gen to be 16.0 u; the molecular mass of O2 is twice that 

(32.0 u). First we convert that to kg:

32.0 u × 1.66 ×  10 −27  kg/u = 5.31 ×  10 −26  kg
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Figure 13.13 The probability 

distribution of kinetic energies 

in oxygen at two temperatures: 

 − 10 ° C (263 K) and  + 30 ° C 

(303 K). The area under either 

curve for any range of speeds is 

proportional to the number of 

molecules whose speeds lie in 

that range. Despite the relatively 

small difference in rms speeds 

(453 m/s at 263 K and 486 m/s 

at 303 K), the fraction of mole-

cules in the high-speed tail is 

quite different.



above 800 m/s at the two selected temperatures. A relatively small temperature change 

has a significant effect on the number of gas molecules with high speeds.       

 Any given molecule changes its kinetic energy often—at each collision, which 

means billions of times per second. However, the total number of gas molecules in a 

given kinetic energy range in the gas stays the same, as long as the temperature is con-

stant. In fact, it is the frequent collisions that maintain the stability of the Maxwell-

Boltzmann distribution. The collisions keep the kinetic energy distributed among the 

gas molecules  in the most disordered way possible,  which is the Maxwell-Boltzmann 

distribution. 

  Application of the Maxwell-Boltzmann Distribution: Composition of Planetary 

Atmospheres   The Maxwell-Boltzmann distribution helps us understand planetary 

atmospheres. Why does Earth’s atmosphere contain nitrogen, oxygen, and water vapor, 

among other gases, but not hydrogen or helium, which are by far the most common ele-

ments in the universe? Molecules in the upper atmosphere that are moving faster than the 

 escape speed  (see Example 6.8) have enough kinetic energy to escape from the planetary 

atmosphere to outer space. Those that are heading away from the planet’s surface will 

escape if they avoid colliding with another molecule. The high-energy tail of the 

Maxwell-Boltzmann distribution does not get depleted by molecules that escape. Other 

molecules will get boosted to those high kinetic energies as a result of collisions; these 

replacements will in turn also escape. Thus, the atmosphere gradually leaks away. 

 How fast the atmosphere leaks away depends on how far the rms speed is from 

the escape speed. If the rms speed is too small compared with the escape speed, the 

time for all the gas molecules to escape is so long that the gas is present in the atmo-

sphere indefinitely. This is the case for nitrogen, oxygen, and water vapor in Earth’s 

atmosphere. On the other hand, since hydrogen and helium are much less massive, 

their rms speeds are higher. Though only a tiny fraction of the molecules are above 

the escape speed, the fraction is sufficient for these gases to escape quickly from 

Earth’s atmosphere ( Fig. 13.14 ). The Moon is often said to lack an atmosphere. The 

Moon’s low escape speed (2400 m/s) allows most gases to escape, but it does have an 

atmosphere about 1 cm tall composed of krypton (a gas with molecular mass 83.8 u, 

about 2.6 times that of oxygen)   .          

   13.7  TEMPERATURE AND REACTION RATES 

  What we have learned about the distribution of kinetic energies and its relationship to 

temperature has a great relevance to the dependence of chemical reaction rates on tem-

perature. Imagine a mixture of two gases, N 2  and O 2 , which can react to form nitric 

oxide (NO):   

   N 
2
   +  O 

2
   → 2NO   

In order for the reaction to occur, a molecule of nitrogen must collide with a molecule 

of oxygen. But the reaction does not occur every time such a collision takes place. The 

reactant molecules must possess enough kinetic energy to initiate the reaction, because 

the reaction involves the rearrangement of chemical bonds between atoms. Some chem-

ical bonds must be broken before new ones form; the energy to break these bonds must 

come from the energy of the reactants. The minimum kinetic energy of the reactant 

molecules that allows the reaction to proceed is called the    activation energy    ( E  a ). 

 If a molecule of N 2  collides with one of O 2 , but their total kinetic energy is less than 

the activation energy, then the two just bounce off one another. Some energy may be trans-

ferred from one molecule to the other, or converted between translational, rotational, and 

vibrational energy, but we are still left with one molecule of N 2  and one of O 2 . 

 Now we begin to see why, with few exceptions, rates of reaction increase with tem-

perature. At higher temperatures, the average kinetic energy of the reactants is higher 

and therefore a greater fraction of the collisions have total kinetic energies exceeding 

 Note that energy must be 

supplied to break a bond. 

Forming a bond releases 

energy.

 Note that energy must be 

supplied to break a bond. 

Forming a bond releases 

energy.
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  Figure 13.14 Maxwell-

Boltzmann distributions for oxy-

gen and hydrogen at  T   =  300 K. 

Escape speed from Earth is 

11 200 m/s (not shown on the 

graph).
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CONNECTION: 

The basic principle behind 

escape speed is conservation 

of energy (Sec. 6.5). At the 

escape speed, an atom or 

molecule has just enough 

kinetic energy to escape the 

planet’s gravitational pull.
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the activation energy. If the activation energy is much greater than the average transla-

tional kinetic energy of the reactants,   

   E a   >>   3 _ 
2
   kT    (13-23)   

then the only candidates for reaction are molecules far off in the exponentially decay-

ing, high-energy tail of the Maxwell-Boltzmann distribution. In this situation, a small 

increase in temperature can have a dramatic effect on the reaction rate: the reaction rate 

depends  exponentially  on temperature.   

  reaction rate ∝  e − E a   /(kT )     (13-24)    

 Although we have discussed reactions in terms of gases, the same general princi-

ples apply to reactions in liquid solutions. The temperature determines what fraction of 

the collisions have enough energy to react, so reaction rates are temperature-dependent 

whether the reaction occurs in a gas mixture or a liquid solution. 

The ratio of the reaction rates is

  new rate _______ 
old rate

   =    e −41.00  _____ 
 e −41.41 

   =  e −(41.00 − 41.41)  =  e 0.41  = 1.5

The reaction rate at 707.0 K is 1.5 times the rate at 

700.0 K—a 50% increase in reaction rate for a 1% increase 

in temperature!

Discussion Normally we might suspect an error when a 

1% change in one quantity causes a 50% change in another! 

However, this problem illustrates the dramatic effect of an 

exponential dependence. Reaction rates can be extremely

sensitive to small temperature changes.

Practice Problem 13.8 Decrease in Reaction Rate 
for Lower Temperature

What is the percentage decrease in the rate of the same 

reaction if the temperature is lowered from 700.0 K to 

699.0 K?

Example 13.8

Increase in Reaction Rate with Temperature 
Increase

The activation energy for the reaction N2O → N2 + O is 

4.0 × 10−19 J. By what percentage does the reaction rate 

increase if the temperature is increased from 700.0 K to 

707.0 K (a 1% increase in absolute temperature)?

Strategy We should first check that  E a   >>   3 _ 
2
   kT; other-

wise, Eq. (13-24) does not apply. Assuming that checks out, 

we can set up a ratio of the reaction rates at the two 

temperatures.

Solution Start by calculating Ea/(kT1), where T1 = 

700.0 K:

  
 E a   ___ 
 kT 

1
  
   =   4.0 ×  10 −19  J  ______________________   

1.38 ×  10 −23  J/K × 700.0 K
   = 41.41

So Ea is about 41 times kT, or about 28 times   3 _ 
2
   kT. The acti-

vation energy is much greater than the average kinetic 

energy; thus, only a small fraction of the collisions might 

cause a reaction to occur.

At  T 
2
   = 707.0 K,

  
 E a   ___ 
 kT 

2
  
   =   4.0 ×  10 −19  J  ______________________   

1.38 ×  10 −23  J/K × 707.0 K
   =   41.41 _____ 

1.01
   = 41.00

 At the beginning of this chapter, we asked about the necessity for temperature regu-

lation in warm-blooded animals ( Fig. 13.15 ). The temperature dependence of chemical 

reaction rates has a profound effect on biological functions. If our internal temperatures 

varied, we would have a varying metabolic rate, becoming sluggish in cold weather. 

Application: Temperature and Metabolism    By maintaining a constant body tem-

perature higher than that of the environment, warm-blooded animals are able to toler-

ate a wider range of environmental temperatures than cold-blooded animals (such as 

What are the evolu-

tionary advantages 

of warm-blooded 

versus cold-blooded 

animals?

What are the evolu-

tionary advantages 

of warm-blooded 

versus cold-blooded 

animals?



reptiles and insects). Temperature fluctuation in the environment is much more severe 

on land than in water; thus, land animals are more likely to be homeothermic than 

aquatic animals. Keeping muscles at their optimal temperatures contributes to the 

much larger effort required to move around on land or in the air as opposed to moving 

through water. Keeping the muscles and vital organs warm allows the high level of 

aerobic metabolism needed to sustain intense physical activity. 

 Cold-blooded animals depend on the environment for temperature regulation; 

thus, we see a snake lying on a rock heated by the Sun in an attempt to keep warm. As 

a snake’s blood temperature goes down in cold weather, the snake becomes inactive 

and lethargic. Most insects are inactive below 10 ° C and many cannot survive the cold 

of winter. 

 However, if environmental conditions become too extreme, it may be difficult for 

homeotherms to maintain ideal body temperature. Hypothermia occurs when the cen-

tral core of the body becomes too cold; bodily processes slow and eventually cease. 

People caught outside in blizzards are urged to stay awake and to keep moving; the 

energy produced by exercise may be up to 20 times that produced by the resting body 

and can compensate for heat loss in extreme cold. 

 Warm-blooded animals must consume much more food than cold-blooded animals 

of a similar size; metabolic processes in warm-blooded animals act like a furnace to 

keep the body warm. A human must consume about 1500 kcal of food energy per day 

just to keep warm when resting at 20 ° C; an alligator of similar body weight needs only 

60 kcal/day at rest at 20 ° C.    

   13.8  DIFFUSION     

   Mean Free Path    How far does a gas molecule move, on average, between collisions? 

The mean (average) length of the path traveled by a gas  molecule as a free particle (no 

interactions with other particles) is called the    mean free path    (Λ, the Greek capital 

(a) (b) (c)

Figure 13.15 Warm-blooded animals use different strategies to maintain a constant body temperature. (a) The fur of an 

Arctic fox serves as a layer of insulation to help it stay warm. (b) Dogs pant and (c) people sweat when their bodies are in 

danger of overheating. In cases (b) and (c), the evaporation of water has a cooling effect on the body.
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lambda). The mean free path depends on two things: how large the molecules are and 

how many of them occupy a given volume. A detailed calculation yields

Mean free path:

 Λ =   1 ___________  
 √

__

 2   p  d 2  (N/V)
   (13-25)

Typically the mean free path is much larger than the average distance between neigh-

boring molecules.  Nitrogen molecules in air at room temperature have mean free paths 

of about 0.1  μ m, which is about 25 times the average distance between molecules. Each 

molecule collides an average of 5  ×  10 9  times per second. (For more information on 

mean free path, see text website.)      

  Diffusion 

 A gas molecule moves in a straight line between collisions—the effect of gravity on the 

velocity of the molecule is negligible during a time interval of only 0.2 ns. At each colli-

sion, both the speed and direction of the molecule’s motion change. The mean free path 

tells us the  average  length of the molecule’s straight line paths between collisions. The 

result is that a given molecule follows a  random walk  trajectory ( Fig. 13.16 ).       

 After an elapsed time  t,  how far on average has a molecule moved from its initial 

position? The answer to this question is relevant when we consider    diffusion.    Some-

one across the room opens a bottle of perfume: how long until the scent reaches you? 

As gas molecules diffuse into the air, the frequent collisions are what determine how 

long it takes the scent to travel across the room (assuming, as we do here, that there 

are no air currents). When there is a difference in concentrations between different 

points in a gas, the random thermal motion of the molecules tends to even out the con-

centrations (other things being equal). The net flow from regions of high concentra-

tion (near the perfume bottle) to regions of lower concentration (across the room) is 

diffusion. 

 Consider a molecule of perfume in the air. It has a mean free path Λ. After a large 

number of collisions  N,  it has traveled a total  distance   N Λ. However, its displacement 

from its original position is much less than that, since at each collision it changes 

direction. It can be shown using statistical analysis of the random walk that the rms 

magnitude of its displacement after  N  collisions is proportional to      √
__

 N  .   Since the num-

ber of collisions is proportional to the elapsed time, the rms displacement is propor-

tional to      √
_
 t  .   

 The root mean squared displacement in one direction is   

   x rms   =  √
____

 2Dt      (13-26)   

where  D  is a diffusion constant such as those given in  Table 13.4 . The diffusion constant 

 D  depends on the molecule or atom that is diffusing and the medium through which it is 

moving.             
 Diffusion is crucial in biological processes such as the transport of oxygen. Oxygen 

molecules diffuse from the air in the lungs through the walls of the alveoli and then 

through the walls of the capillaries to oxygenate the blood. The oxygen is then carried 

by hemoglobin in the blood to various parts of the body, where it again diffuses through 

capillary walls into intercellular fluids and then through cell membranes into cells. Dif-

fusion is a slow process over long distances but can be quite effective over short 

distances—which is why cell membranes must be thin and capillaries must have small 

diameters. Evolution has seen to it that the capillaries of animals of widely different 

sizes are all about the same size—as small as possible while still allowing blood cells to 

flow through them.         

 Application: diffusion of 

oxygen through cell 

membranes

 Application: diffusion of 

oxygen through cell 

membranes

Figure 13.16 Successive 

straight-line paths traveled by a 

molecule between collisions.



Discussion The time is proportional to the square of the 

membrane thickness. It would take four times as long for an 

oxygen molecule to diffuse through a membrane twice as 

thick. The rapid increase of diffusion time with distance is a 

principal reason why evolution has favored thin membranes 

over thicker ones.

Practice Problem 13.9 Time for Oxygen to Get 
Halfway Through the Membrane

How long on average does it take an oxygen molecule to get 

halfway through the alveolus and capillary wall?

Example 13.9

Diffusion Time for Oxygen into Capillaries

How long on average does it take an oxygen mole-

cule in an alveolus to diffuse into the blood? Assume 

for simplicity that the diffusion constant for oxygen passing 

through the two membranes (alveolus and capillary walls) is 

the same: 1.8 × 10−11 m2/s. The total thickness of the two 

membranes is 1.2 × 10−8 m.

Strategy Take the x-direction to be through the mem-

branes. Then we want to know how much time elapses until 

xrms = 1.2 × 10−8 m.

Solution Solving Eq. (13-26) for t yields

t =   
 x  rms  

2
  
 ____ 

2D
  

Now substitute xrms = 1.2 × 10−8 m and D = 1.8 × 10−11 m2/s:

t =   
 (1.2 ×  10 −8  m) 2 

  _________________  
2 × 1.8 ×  10 −11   m 2 /s

   = 4.0 ×  10 −6  s

Table 13.4 Diffusion Constants at 1 atm and 20 ° C

Master the Concepts

    • Temperature is a quantity that determines when objects 

are in thermal equilibrium. The flow of energy that 

occurs between two objects or systems due to a temper-

ature difference between them is called heat flow. If 

heat can flow between two objects or systems, the 

objects or systems are said to be in thermal contact. 

When two systems in thermal contact have the same 

temperature, there is no net flow of heat between them; 

the objects are said to be in thermal equilibrium.  

   • Zeroth law of thermodynamics: if two objects are each 

in thermal equilibrium with a third object, then the two 

are in thermal equilibrium with one another.  

   • The SI unit of temperature is the kelvin (symbol K, 

without  a degree sign). The kelvin scale is an absolute 

temperature scale, which means that  T   =  0 is set to abso-

lute zero.  

continued on next page
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Diffusing Molecule Medium  D  (m2/s)

DNA Water 1.3 × 10−12

Oxygen Tissue (cell membrane) 1.8 × 10−11

Hemoglobin Water 6.9 × 10−11

Sucrose (C12H22O11) Water 5.0 × 10−10

Glucose (C6H12O6) Water 6.7 × 10−10

Oxygen Water 1.0 × 10−9

Oxygen Air 1.8 × 10−5

Hydrogen Air 6.4 × 10−5



480  CHAPTER 13  Temperature and the Ideal Gas

   R =  N 
A
  k = 8.31   J/K ____ 

mol
     (13-15)

   • The pressure of an ideal gas is proportional to the aver-

age translational kinetic energy of the molecules:   

   P =   2 __ 
3
     N __ 
V

   〈 K 
tr
  〉   (13-18)

   • The average translational kinetic energy of the mole-

cules is proportional to the absolute temperature:   

   〈 K 
tr
  〉 =   3 _ 

2
   kT   (13-20)

   • The speed of a gas molecule that has the average kinetic 

energy is called the rms speed:   

    〈 K 
tr
  〉 =   1 _ 

2
   m v  rms  

2
    (13-21)

   • The distribution of molecular speeds in an ideal gas is 

called the Maxwell-Boltzmann distribution. 
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   • If the activation energy for a chemical reaction is much 

greater than the average kinetic energy of the reactants, 

the reaction rate depends  exponentially  on temperature:   

   reaction rate ∝  e − E a  /(kT )    (13-24)

   • The mean free path (Λ) is the average length of the path 

traveled by a gas molecule as a free particle (no interac-

tions with other particles) between collisions:   

   Λ =   1 ___________  
 √

__

 2   p  d 2  (N/V)
     (13-25)

   • The root mean square displacement of a diffusing mole-

cule along the  x -axis is   

    x rms   =  √
____

 2Dt     (13-26)

  where  D  is a diffusion constant.    

   • Temperature in  ° C ( T  C ) and temperature in kelvins ( T  ) 

are related by   

    T 
C
   = T − 273.15   (13-3)

   • As long as the temperature change is not too great, the 

fractional length change of a solid is proportional to the 

temperature change:   

     ΔL ___ 
 L 

0
  
   = a ΔT   (13-4)

  The constant of proportionality,  a,  is called the coeffi-

cient of linear expansion of the substance.  

L0

∆L

T > T0

L

T0

   • The fractional change in volume of a solid or liquid is 

also proportional to the temperature change as long as 

the temperature change is not too large:   

     ΔV ___ 
 V 

0
  
   = b ΔT   (13-7)

  For solids, the coefficient of volume expansion is three 

times the coefficient of linear expansion:  b    =  3 a .  

   • The mole is an SI base unit and is defined as: one mole of 

anything contains the same number of units as there are 

atoms in 12  grams  (not kilograms) of carbon-12. This 

number is called Avogadro’s number and has the value   

    N 
A
   = 6.022 ×  10 23   mol −1      

   • The mass of an atom or molecule is often expressed in 

the atomic mass unit (symbol u). By definition, one 

atom of carbon-12 has a mass of 12 u (exactly).   

   1 u = 1.66 ×  10 −27  kg   (13-12)

  The atomic mass unit is chosen so that the mass of an 

atom or molecule in “u” is numerically the same as the 

molar mass in g/mol.  

   • In an ideal gas, the molecules move independently in 

free space with no interactions except when two mole-

cules collide. The ideal gas is a useful model for many 

real gases, provided that the gas is sufficiently dilute. 

The ideal gas law:   

    microscopic form: PV = NkT  (13-13)

   macroscopic form: PV = nRT   (13-16)

  where Boltzmann’s constant and the universal gas con-

stant are   

    k = 1.38 ×  10 −23  J/K  (13-14)

Master the Concepts continued



0.3 nm. Explain how the mean free path can be so 

much larger than the average distance between 

molecules.  

   17. In air under ordinary conditions (room temperature and 

atmospheric pressure), the average intermolecular dis-

tance is about 4 nm and the mean free path is about 

0.1  μ m. The diameter of a nitrogen molecule is about 

0.3 nm. Which two distances should we compare to 

decide that air is dilute and can be treated as an ideal 

gas? Explain.  

   18. In air under ordinary conditions (room temperature and 

atmospheric pressure), the average intermolecular dis-

tance is about 4 nm and the mean free path is about 

0.1  μ m. The diameter of a nitrogen molecule is about 

0.3 nm. What would it mean if the intermolecular dis-

tance and the molecular diameter were about the same? 

In that case, would it make sense to speak of a mean 

free path? Explain.  

   19. Explain how an automobile airbag protects the passen-

ger from injury. Why would the airbag be ineffective if 

the gas pressure inside is too low when the passenger 

comes into contact with it? What about if it is too high?  

   20. It takes longer to hard-boil an egg in Mexico City 

(2200 m above sea level) than it does in Amsterdam 

(parts of which are below sea level). Why? [ Hint:  At 

higher altitudes, water boils at less than 100 ° C.]    

  Multiple-Choice Questions 

    1. In a mixed gas such as air, the rms speeds of different 

molecules are

    (a) independent of molecular mass.  

   (b) proportional to molecular mass.  

   (c) inversely proportional to molecular mass.  

   (d) proportional to      √
_____________

  molecular mass  .    
   (e) inversely proportional to      √

_____________

  molecular mass  .       

   2. The average kinetic energy of the molecules in an ideal 

gas increases with the volume remaining constant. 

Which of these statements  must  be true?

    (a)  The pressure increases and the temperature stays the 

same.  

   (b)  The number density decreases.  

   (c)  The temperature increases and the pressure stays the 

same.  

   (d) Both the pressure and the temperature increase.     

   3. Which of these will increase the average kinetic energy 

of the molecules in an ideal gas?

    (a) reduce the volume, keeping  P  and  N  constant  

   (b) increase the volume, keeping  P  and  N  constant  

   (c) reduce the volume, keeping  T  and  N  constant  

   (d) increase the pressure, keeping  T  and  V  constant  

   (e) increase  N,  keeping  V  and  T  constant     

  Conceptual Questions 

    1. Explain why it would be impossible to uniquely define 

the temperature of an object if the zeroth law of thermo-

dynamics were violated?  

   2. Why do we call the temperature 0 K “absolute zero”? 

How is 0 K fundamentally different from 0 ° C or 0 ° F?  

   3. Under what special circumstances can kelvins or Cel-

sius degrees be used interchangeably?  

   4. What happens to a hole in a flat metal plate when the 

plate expands on being heated? Does the hole get larger 

or smaller?  

   5. Why would silver and brass probably not be a good 

choice of metals for a bimetallic strip (leaving aside the 

question of the cost of silver)? (See  Table 13.2 .)  

   6. One way to loosen the lid on a glass jar is to run it under 

hot water. How does that work?  

   7. Why must we use absolute temperature (temperature in 

kelvins) in the ideal gas law ( PV   =   NkT  )? Explain how 

using the Celsius scale would give nonsensical results.  

   8. Natural gas is sold by volume. In the United States, the 

price charged is usually per cubic foot. Given the price 

per cubic foot, what other information would you need 

in order to calculate the price per mole?  

   9. What are the SI units of mass density and number den-

sity? If two different gases have the same number den-

sity, do they have the same mass density?  

   10. Suppose we have two tanks, one containing helium gas 

and the other nitrogen gas. The two gases are at the 

same temperature and pressure. Which has the higher 

number density (or are they equal)? Which has the 

higher mass density (or are they equal)?  

   11. The mass of an aluminum atom is 27.0 u. What is the 

mass of  one mole  of aluminum atoms? (No calculation 

required!)  

   12. A ping-pong ball that has been dented during hard play 

can often be restored by placing it in hot water. Explain 

why this works.  

   13. Why does a helium weather balloon expand as it rises 

into the air? Assume the temperature remains constant.  

   14. Explain why there is almost no hydrogen (H 2 ) or helium 

(He) in Earth’s atmosphere, yet both are present in Jupi-

ter’s atmosphere. [ Hint:  Escape velocity from Earth is 

11.2 km/s and escape velocity from Jupiter is 60 km/s.]  

   15. Explain how it is possible that more than half of the 

molecules in an ideal gas have kinetic energies less than 

the average kinetic energy. Shouldn’t half have less and 

half have more?  

   16. In air under ordinary conditions (room temperature 

and atmospheric pressure), the average intermolecular 

distance is about 4 nm and the mean free path is about 

0.1  μ m. The diameter of a nitrogen molecule is about 
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   4. The absolute temperature of an ideal gas is directly pro-

portional to

    (a) the number of molecules in the sample.  

   (b) the average momentum of a molecule of the gas.  

   (c) the average translational kinetic energy of the gas.  

   (d) the diffusion constant of the gas.     

   5. The rms speed is the

    (a) speed at which all the gas molecules move.  

   (b)  speed of a molecule with the average kinetic 

energy.  

   (c) average speed of the gas molecules.  

   (d) maximum speed of the gas molecules.     

   6. What are the most favorable conditions for real gases to 

approach ideal behavior?

    (a) high temperature and high pressure  

   (b) low temperature and high pressure  

   (c) low temperature and low pressure  

   (d) high temperature and low pressure     

   7. An ideal gas has the volume  V  0 . If the temperature and 

the pressure are each tripled during a process, the new 

volume is

    (a)  V  0 .  

   (b) 9 V  0 .  

   (c) 3 V  0 .  

   (d) 0.33 V  0 .     

   8. The average kinetic energy of a gas molecule can be 

found from which of these quantities?

    (a) pressure only  

   (b) number of molecules only  

   (c) temperature only  

   (d) pressure and temperature are both required     

   9. If the temperature of an ideal gas is doubled and the 

pressure is held constant, the rms speed of the 

molecules

    (a) remains unchanged.  

   (b) is 2 times the original speed.  

   (c) is      √
__

 2     times the original speed.  

   (d) is 4 times the original speed.     

   10. A metal box is heated until each of its sides has expanded 

by 0.1%. By what percent has the  volume  of the box 

changed?

    (a) −0.3%     (b) −0.2%     (c)  + 0.1%  

   (d)  + 0.2%     (e)  + 0.3%       

  Problems 

 Combination conceptual/quantitative problem  

 Biological or medical application  

✦ Challenging problem  

Blue # Detailed solution in the Student Solutions Manual  

1  2  Problems paired by concept  

 Text website interactive or tutorial   

  13.2 Temperature Scales 

1.  On a warm summer day, the air temperature is 84 ° F. 

Express this temperature in (a)  ° C and (b) kelvins. 

(   tutorial: sun’s temperature)  

    2.  The temperature at which liquid nitrogen boils (at atmo-

spheric pressure) is 77 K. Express this temperature in 

(a)  ° C and (b)  ° F.  

    3.  (a) At what temperature (if any) does the numerical 

value of Celsius degrees equal the numerical value of 

Fahrenheit degrees? (b) At what temperature (if any) 

does the numerical value of kelvins equal the numerical 

value of Fahrenheit degrees?  

    4.  A room air conditioner causes a temperature change of 

− 6.0 ° C. (a) What is the temperature change in kelvins? 

(b) What is the temperature change in  ° F?  

    5.  Aliens from the planet Jeenkah have based their temper-

ature scale on the boiling and freezing temperatures of 

ethyl alcohol. These temperatures are 78 ° C and  − 114 ° C, 

respectively. The people of Jeenkah have six digits on 

each hand, so they use a base-12 number system and 

have decided to have 144 ° J between the freezing and 

boiling temperatures of ethyl alcohol. They set the freez-

ing point to 0 ° J. How would you convert from  ° J to  ° C?    

  13.3 Thermal Expansion of Solids and Liquids 

       6.  A 2.4-m length of copper pipe extends directly from a 

hot-water heater in a basement to a faucet on the first 

floor of a house. If the faucet isn’t fixed in place, how 

much will it rise when the pipe is heated from 20.0 ° C to 

90.0 ° C. Ignore any increase in the size of the faucet 

itself or of the water heater.  

   7. Two 35.0-cm metal rods, one made of copper and one 

made of aluminum, are placed end to end, touching 

each other. One end is fixed, so that it cannot move. The 

rods are heated from 0.0 ° C to 150 ° C. How far does the 

other end of the system of rods move?  

 8. Steel railroad tracks of length 18.30 m are laid at 

10.0 ° C. How much space should be left between the 

track sections if they are to just touch when the temper-

ature is 50.0 ° C? 

Cool

18.30 m 10.0°C
?

Warm

50.0°C

    9.  A highway is made of concrete slabs that are 15 m long 

at 20.0 ° C. (a) If the temperature range at the location of 

the highway is from  − 20.0 ° C to  + 40.0 ° C, what size 

expansion gap should be left (at 20.0 ° C) to prevent 

buckling of the highway? (b) How large are the gaps at 

− 20.0 ° C?  



    10.  A lead rod and a common glass rod both have the same 

length when at 20.0 ° C. The lead rod is heated to 50.0 ° C. 

To what temperature must the glass rod be heated so 

that they are again at the same length?  

    11.  The coefficient of linear expansion of brass is 1.9  ×  10  − 5

 ° C  − 1 . At 20.0 ° C, a hole in a sheet of brass has an area of 

1.00 mm 2 . How much larger is the area of the hole at 

30.0 ° C? (   tutorial: loop around the equator)  

    12.  Aluminum rivets used in airplane construction are made 

slightly too large for the rivet holes to be sure of a tight 

fit. The rivets are cooled with dry ice ( − 78.5 ° C) before 

they are driven into the holes. If the holes have a diame-

ter of 0.6350 cm at 20.5 ° C, what should be the diameter 

of the rivets at 20.5 ° C if they are to just fit when cooled 

to the temperature of dry ice?  

    13.  A temperature change Δ T  causes a volume change Δ V  but 

has no effect on the mass of an object. (a) Show that the 

change in density Δ r  is given by Δ r   =   −  b   r  Δ T.  (b) Find the 

fractional change in density (Δ r  / r ) of a brass sphere when 

the temperature changes from 32 ° C to  − 10.0 ° C.  

   14. A cylindrical brass container with a base of 75.0 cm 2  

and height of 20.0 cm is filled to the brim with water 

when the system is at 25.0 ° C. How much water over-

flows when the temperature of the water and the con-

tainer is raised to 95.0 ° C?  

    15.  An ordinary drinking glass is filled to the brim with 

water (268.4 mL) at 2.0 ° C and placed on the sunny pool 

deck for a swimmer to enjoy. If the temperature of the 

water rises to 32.0 ° C before the swimmer reaches for 

the glass, how much water will have spilled over the top 

of the glass? Assume the glass does not expand.  

   16. Consider the situation described in Problem 15. (a) Take 

into account the expansion of the glass and calculate 

how much water will spill out of the glass. Compare 

your answer with the case where the expansion of the 

glass was not considered. (b) By what percentage has 

the answer changed when the expansion of the glass is 

considered?  

    17.  A steel sphere with radius 1.0010 cm at 22.0 ° C must 

slip through a brass ring that has an internal radius of 

1.0000 cm at the same temperature. To what tempera-

ture must the brass ring be heated so that the sphere, 

still at 22.0 ° C, can just slip through?  

   18. A long, narrow steel rod of length 2.5000 m at 25 ° C is 

oscillating as a pendulum about a horizontal axis 

through one end. If the temperature changes to 0 ° C, 

what will be the fractional change in its period?  

    19.  The George Washington Bridge crosses the Hudson 

River between New York and New Jersey. The span of 

the steel bridge is about 1.6 km. If the temperature can 

vary from a low of  − 15 ° F in winter to a high of 105 ° F in 

summer, by how much might the length of the span 

change over an entire year?  

    20.  A square brass 

plate, 8.00 cm on a 

side, has a hole cut 

into its center of 

area 4.90874 cm 2  

(at 20.0 ° C). The 

hole in the plate is 

to slide over a cylin-

drical steel shaft of cross-sectional area 4.91000 cm 2

(also at 20.0 ° C). To what temperature must the brass 

plate be heated so that it can just slide over the steel cyl-

inder (which remains at 20.0 ° C)? [ Hint:  The steel cylin-

der is not heated so it does not expand; only the brass 

plate is heated.]      

21.  A copper washer is 

to be fit in place over 

a steel bolt. Both 

pieces of metal are 

at 20.0 ° C. If the 

diameter of the bolt 

is 1.0000 cm and the 

inner diameter of 

the washer is 0.9980 cm, to what temperature must the 

washer be raised so it will fit over the bolt? Only the 

copper washer is heated.      

   22. Repeat Problem 21, but now the copper washer and the 

steel bolt are both raised to the same temperature. At 

what temperature will the washer fit on the bolt?  

23.  A steel rule is calibrated for measuring lengths at 

20.00 ° C. The rule is used to measure the length of a 

Vycor glass brick; when both are at 20.00 ° C, the brick 

is found to be 25.00 cm long. If the rule and the brick 

are both at 80.00 ° C, what would be the length of the 

brick as measured by the rule?  

   24. The fuselage of an Airbus A340 has a circumference of 

17.72 m on the ground. The circumference increases by 

26 cm when it is in flight. Part of this increase is due to 

the pressure difference between the inside and outside 

of the plane and part is due to the increase in the tem-

perature due to air drag while it is flying along at 

950 km/h. Suppose we wanted to heat a full-size model 

of the airbus made of aluminum to cause the same 

increase in circumference without changing the pres-

sure. What would be the increase in temperature 

needed?  

25.  A flat square of side  s  0  at temperature  T  0  expands by Δ s
in both length and width when the temperature increases 

by Δ T.  The original area is        s  0  
2
  = A0 and the final area is 

( s  0   +  Δ s ) 2   =   A.  Show that if Δ s  <<  s  0 ,   

     ΔA ___ 
A0

   = 2a ΔT   (13-6)  

  (Although we derive this relation for a square plate, it 

applies to a flat area of any shape.)  

✦✦

✦✦

Hole

Brass plate
Steel

cylinder Cylinder

Side viewTop view

Plate

0.9980 cm

1.0000 cm
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41.  A cylinder in a car engine takes  V  i   =  4.50  ×  10  − 2  m 3  of 

air into the chamber at 30 ° C and at atmospheric pres-

sure. The piston then compresses the air to one-ninth of 

the original volume (0.111  V  i ) and to 20.0 times the 

original pressure (20.0  P  i ). What is the new temperature 

of the air?  

   42. A tire with an inner volume of 0.0250 m 3  is filled with 

air at a gauge pressure of 36.0 psi. If the tire valve is 

opened to the atmosphere, what volume  outside of the 
tire  does the escaping air occupy? Some air remains 

within the tire occupying the original volume, but now 

that remaining air is at atmospheric pressure. Assume 

the temperature of the air does not change.  

   43. Verify, using the ideal gas law, the assertion in Problem 

38 that 1.00 mol of a gas at 0.0 ° C and 1.00 atm occu-

pies a volume of 0.0224 m 3 .  

   44. Verify that the SI units of  PV  (pressure times volume) 

are joules.  

45.  Incandescent lightbulbs are filled with an inert gas to 

lengthen the filament life. With the current off (at  T   =  

20.0 ° C), the gas inside a lightbulb has a pressure of 

115 kPa. When the bulb is burning, the temperature rises to 

70.0 ° C. What is the pressure at the higher temperature?  

    46.  What fraction of the air molecules in a house must be 

pushed outside while the furnace raises the inside tem-

perature from 16.0 ° C to 20.0 ° C? The pressure does not 

change since the house is not 100% airtight.  

    47.  What is the mass density of air at  P   =  1.0 atm and 

 T   =  (a)  − 10 ° C and (b) 30 ° C? The average molecular 

mass of air is approximately 29 u.  

   48. A constant volume gas thermometer containing helium is 

immersed in boiling ammonia ( − 33 ° C) and the pressure 

is read once equilibrium is reached. The thermometer is 

then moved to a bath of boiling water (100.0 ° C). After 

the manometer was adjusted to keep the volume of helium 

constant, by what factor was the pressure multiplied?  

    49.  A hydrogen balloon at Earth’s surface has a volume of 

5.0 m 3  on a day when the temperature is 27 ° C and the 

pressure is 1.00  ×  10 5  N/m 2 . The balloon rises and 

expands as the pressure drops. What would the volume 

of the same number of moles of hydrogen be at an alti-

tude of 40 km where the pressure is 0.33  ×  10 3  N/m 2  

and the temperature is  − 13 ° C?  

    50.  An ideal gas that occupies 1.2 m 3  at a pressure of 

1.0  ×  10 5  Pa and a temperature of 27 ° C is compressed 

to a volume of 0.60 m 3  and heated to a temperature of 

227 ° C. What is the new pressure?  

      51.  A diver rises quickly to the surface from a 5.0-m depth. 

If she did not exhale the gas from her lungs before ris-

ing, by what factor would her lungs expand? Assume 

the temperature to be constant and the pressure in the 

lungs to match the pressure outside the diver’s body. 

The density of seawater is 1.03  ×  10 3  kg/m 3 .  

26.  The volume of a solid cube with side  s  0  at temperature 

T  0  is        V 
0
   =  s  0  

3
 . Show that if Δ s  <<  s  0 , the change in vol-

ume Δ V  due to a change in temperature Δ T  is given by   

     ΔV ___ 
 V 

0
  
   = 3a ΔT   (13-7, 8)  

  and therefore that  b   =  3 a . (Although we derive this rela-

tion for a cube, it applies to a solid of any shape.)    

  13.4 Molecular Picture of a Gas 

    27. Use the definition that 1 mol of  12 C (carbon-12) atoms 

has a mass of exactly 12 g, along with Avogadro’s num-

ber, to derive the conversion between atomic mass units 

and kg.  

   28. Find the molar mass of ammonia (NH 3 ).  

29.  Find the mass (in kg) of one molecule of CO 2 .  

    30.  The mass of 1 mol of  13 C (carbon-13) is 13.003 g. 

(a) What is the mass in u of one  13 C atom? (b) What is 

the mass in kilograms of one  13 C atom?  

31. Estimate the number of H 2 O molecules in a human body 

of mass 80.2 kg. Assume that, on average, water makes 

up about 62% of the mass of a human body.  

32. The mass density of diamond (a crystalline form of car-

bon) is 3500 kg/m 3 . How many carbon atoms per cm 3

are there?  

33.  How many hydrogen atoms are present in 684.6 g of 

sucrose (C 12 H 22 O 11 )?  

34.  How many moles of He are in 13 g of He?  

35.  The principal component of natural gas is methane 

(CH 4 ). How many moles of CH 4  are present in 144.36 g 

of methane?  

    36.  What is the mass of one gold atom in kilograms?  

37.  Air at room temperature and atmospheric pressure has a 

mass density of 1.2 kg/m 3 . The average molecular mass 

of air is 29.0 u. How many molecules are in 1.0 cm 3  of 

air?  

   38. At 0.0 ° C and 1.00 atm, 1.00 mol of a gas occupies a 

volume of 0.0224 m 3 . (a) What is the number density? 

(b) Estimate the average distance between the mole-

cules. (c) If the gas is nitrogen (N 2 ), the principal com-

ponent of air, what is the total mass and mass density?  

    39.  Sand is composed of SiO 2 . Find the order of magnitude 

of the number of silicon (Si) atoms in a grain of sand. 

Approximate the sand grain as a sphere of diameter 

0.5 mm and an SiO 2  molecule as a sphere of diameter 

0.5 nm.    

  13.5 Absolute Temperature and the Ideal Gas Law 

    40. A flight attendant wants to change the temperature of 

the air in the cabin from 18 ° C to 24 ° C without changing 

the number of moles of air per m 3 . What fractional 

change in pressure would be required?  

✦✦



62.  What is the kinetic energy per unit volume in an ideal 

gas at (a)  P   =  1.00 atm and (b)  P   =  300.0 atm?  

   63. Show that, for an ideal gas,   

   P =   1 _ 
3
   r   v  rms  

2
     

  where  P  is the pressure,  r  is the mass density, and  v  rms  is 

the rms speed of the gas molecules.  

   64. Estimate the percentage of the O 2  molecules in air at 

0.0 ° C and 1.00 atm that are moving faster than the speed 

of sound in air at that temperature (see  Fig. 13.13 ).  

65.  What is the total internal kinetic energy of 1.0 mol of an 

ideal gas at 0.0 ° C and 1.00 atm?  

   66. If 2.0 mol of nitrogen gas (N 2 ) are placed in a cubic 

box, 25 cm on each side, at 1.6 atm of pressure, what is 

the rms speed of the nitrogen molecules?  

   67. There are two identical containers of gas at the same 

temperature and pressure, one containing argon and 

the other neon. What is the ratio of the rms speed of 

the argon atoms to that of the neon atoms? The atomic 

mass of argon is twice that of neon. (   tutorial: RMS 

speed)  

    68.  A smoke particle has a mass of 1.38  ×  10  − 17  kg and it is 

randomly moving about in thermal equilibrium with 

room temperature air at 27 ° C. What is the rms speed of 

the particle?  

69.  Find the rms speed in air at 0.0 ° C and 1.00 atm of 

(a) the N 2  molecules, (b) the O 2  molecules, and (c) the 

CO 2  molecules.  

    70.  What are the rms speeds of helium atoms, and nitrogen, 

hydrogen, and oxygen molecules at 25 ° C?  

   71. If the upper atmosphere of Jupiter has a temperature of 

160 K and the escape speed is 60 km/s, would an astro-

naut expect to find much hydrogen there?  

   72. A sealed cylinder contains a sample of ideal gas at a 

pressure of 2.0 atm. The rms speed of the molecules is 

v0 . If the rms speed is then reduced to 0.90  v  0 , what is 

the pressure of the gas?  

73.  What is the temperature of an ideal gas whose mole-

cules in random motion have an average translational 

kinetic energy of 4.60  ×  10  − 20  J?  

74. Show that the rms speed of a molecule in an ideal gas at 

absolute temperature  T  is given by   

    v rms   =  √
____

   3kT ____ m       (13-22)  

  where  k  is Boltzmann’s constant and  m  is the mass of a 

molecule.  

     75. Show that the rms speed of a molecule in an ideal gas at 

absolute temperature  T  is given by   

    v rms   =  √
____

   3RT ____ 
M

       

  where  M  is the  molar mass —the mass of the gas per 

mole.    

✦✦

✦✦

    52.  In intergalactic space, there is an average of about one 

hydrogen atom per cm 3  and the temperature is 3 K. 

What is the absolute pressure?  

53.  A tank of compressed air of volume 1.0 m 3  is pressur-

ized to 20.0 atm at  T   =  273 K. A valve is opened and air 

is released until the pressure in the tank is 15.0 atm. 

How many air molecules were released?  

    54.  A mass of 0.532 kg of molecular oxygen is contained in 

a cylinder at a pressure of 1.0  ×  10 5  Pa and a tempera-

ture of 0.0 ° C. What volume does the gas occupy?  

      55.  A bubble rises from the bottom of a lake of depth 

80.0 m, where the temperature is 4 ° C. The water tem-

perature at the surface is 18 ° C. If the bubble’s initial 

diameter is 1.00 mm, what is its diameter when it 

reaches the surface? (Ignore the surface tension of 

water. Assume the bubble warms as it rises to the same 

temperature as the water and retains a spherical shape. 

Assume  P  atm   =  1.0 atm.)  

      56.  A bubble with a volume of 1.00 cm 3  forms at the bot-

tom of a lake that is 20.0 m deep. The temperature at 

the bottom of the lake is 10.0 ° C. The bubble rises to 

the surface where the water temperature is 25.0 ° C. 

Assume that the bubble is small enough that its tem-

perature always matches that of its surroundings. 

What is the volume of the bubble just before it breaks 

the surface of the water? Ignore surface tension.  

      57.  A scuba diver has an air tank with a volume of 0.010 m 3 . 

The air in the tank is initially at a pressure of 1.0  ×  10 7  Pa. 

Assuming that the diver breathes 0.500 L/s of air, find 

how long the tank will last at depths of (a) 2.0 m and 

(b) 20.0 m.   (Make the same assumptions as in Example 

13.6.)

      58.  An emphysema patient is breathing pure O 2  through 

a face mask. The cylinder of O 2  contains 0.60 ft 3  of 

O 2  gas at a pressure of 2200 lb/in 2 . (a) What volume 

would the oxygen occupy at atmospheric pressure 

(and the same temperature)? (b) If the patient takes in 

8 L/min of O 2  at atmospheric pressure, how long will 

the cylinder last?  

   59. Consider the expansion of an ideal gas at constant pres-

sure. The initial temperature is  T  0  and the initial volume 

is  V  0 . (a) Show that Δ V / V  0   =   b  Δ T,  where  b    =  1/ T  0 . 

(b) Compare the coefficient of volume expansion  b  for 

an ideal gas at 20 ° C to the values for liquids and gases 

listed in  Table 13.3 .    

  13.6 Kinetic Theory of the Ideal Gas 

    60. What is the temperature of an ideal gas whose mole-

cules have an average translational kinetic energy of 

3.20  ×  10  − 20  J?  

61.  What is the total translational kinetic energy of the gas 

molecules of 0.420 mol of air at atmospheric pressure 

that occupies a volume of 1.00 L (0.00100 m 3 )?  

✦✦

✦✦
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  13.7 Temperature and Reaction Rates 

76. The reaction rate for the hydrolysis of benzoyl-l-arginine 

amide by trypsin at 10.0 ° C is 1.878 times faster than that 

at 5.0 ° C. Assuming that the reaction rate is exponential 

as in Eq. (13-24), what is the activation energy?  

77.  The reaction rate for the prepupal development of male 

Drosophila  is temperature-dependent. Assuming that the 

reaction rate is exponential as in Eq. (13-24), the activa-

tion energy for this development is then 2.81  ×  10  − 19  J. A 

Drosophila  is originally at 10.00 ° C and its temperature is 

increasing. If the rate of development has increased 

3.5%, how much has its temperature increased?  

78.  At high altitudes, water boils at a temperature lower 

than 100.0 ° C due to the lower air pressure. A rule of 

thumb states that the time to hard-boil an egg doubles 

for every 10.0 ° C drop in temperature. What activation 

energy does this rule imply for the chemical reactions 

that occur when the egg is cooked?    

  13.8 Diffusion 

     79.  Estimate the mean free path of a N 2  molecule in air 

at (a) sea level ( P  ≈ 100 kPa and  T  ≈ 290 K), (b) the top 

of Mt. Everest (altitude  =  8.8 km,  P  ≈ 50 kPa, and 

T  ≈ 230 K), and (c) an altitude of 30 km ( P  ≈ 1 kPa and 

T  ≈ 230 K). For simplicity, assume that air is pure nitro-

gen gas. The diameter of a N 2  molecule is approximately 

0.3 nm.  

80.  About how long will it take a perfume molecule to dif-

fuse a distance of 5.00 m in one direction in a room if 

the diffusion constant is 1.00  ×  10  − 5  m 2 /s? Assume that 

the air is perfectly still—there are no air currents.  

81.  Estimate the time it takes a sucrose molecule to move 

5.00 mm in one direction by diffusion in water. Assume 

there are no currents in the water.  

   82. Your friend is 3.0 m away from you in a room. There 

are no significant air currents. She opens a bottle of per-

fume and you first smell it 20 s later. How long would it 

have taken for you to smell it if she had been 6.0 m 

away instead? (   tutorial: diffusion)      

  Comprehensive Problems 

     83.  The driver from Practice Problem 13.3 fills his 18.9-L 

steel gasoline can in the morning when the temperature 

of the can and the gasoline is 15.0 ° C and the pressure is 

1.0 atm, but this time he remembers to replace the 

tightly fitting cap after filling the can. Assume that the 

can is completely full of gasoline (no air space) and that 

the cap does not leak. The temperature climbs to 30.0 ° C. 

Ignoring the expansion of the steel can, what would be 

the pressure of the heated gasoline? The bulk modulus 

for gasoline is 1.00  ×  10 9  N/m 2 .  

✦✦

✦✦

✦✦

    84.  An iron bridge girder ( Y   =  2.0  ×  10 11  N/m 2 ) is con-

strained between two rock faces whose spacing doesn’t 

change. At 20.0 ° C the girder is relaxed. How large a 

stress develops in the iron if the sun heats the girder to 

40.0 ° C?  

85.  Consider the sphere and ring of Problem 17. What must 

the final temperature be if both the ring and the sphere 

are heated to the same final temperature?  

   86. Agnes Pockels (1862–1935) was able to determine 

Avogadro’s number using only a few household chemi-

cals, in particular oleic acid, whose formula is C 18 H 34 O 2 . 

(a) What is the molar mass of this acid? (b) The mass of 

one drop of oleic acid is 2.3  ×  10  − 5  g and the volume is 

2.6  ×  10  − 5  cm 3 . How many moles of oleic acid are there 

in one drop? (c) Now all Pockels needed was to find the 

number of molecules of oleic acid. Luckily, when oleic 

acid is spread out on water, it lines up in a layer one 

molecule thick. If the base of the molecule of oleic acid 

is a square of side  d,  the height of the molecule is known 

to be 7 d.  Pockels spread out one drop of oleic acid on 

some water, and measured the area to be 70.0 cm 2 . 

Using the volume and the area of oleic acid, what is  d?  

(d) If we assume that this film is one molecule thick, 

how many molecules of oleic acid are there in the drop? 

(e) What value does this give you for Avogadro’s 

number?  

    87.  A certain acid has a molecular mass of 63 u. By mass, it 

consists of 1.6% hydrogen, 22.2% nitrogen, and 76.2% 

oxygen. What is the chemical formula for this acid?  

   88. These data are from a constant-volume gas thermometer 

experiment. The volume of the gas was kept constant, 

while the temperature was changed. The resulting pres-

sure was measured. Plot the data on a pressure versus 

temperature diagram. Based on these data, estimate the 

value of absolute zero in Celsius.   

T (°C) P (atm)

0 1.00

20 1.07

100 1.37

−33 0.88

−196 0.28

89.  Given that our body temperature is 98.6 ° F, (a) what is 

the average kinetic energy of the molecules in the air in 

our lungs? (b) If our temperature has increased to 

100.0 ° F, by what percentage has the kinetic energy of 

the molecules increased?  

90.  The volume of air taken in by a warm-blooded verte-

brate in the Andes mountains is 210 L/day at standard 

temperature and pressure (i.e., 0 ° C and 1 atm). If the air 

in the lungs is at 39 ° C, under a pressure of 450 mm Hg, 

and we assume that the vertebrate takes in an average 

volume of 100 cm 3  per breath at the temperature and 



pressure of its lungs, how many breaths does this verte-

brate take per day?  

    91.  As a Boeing 747 gains altitude, the passenger cabin is 

pressurized. However, the cabin is not pressurized 

fully to atmospheric (1.01  ×  10 5  Pa), as it would be at 

sea level, but rather pressurized to 7.62  ×  10 4  Pa. Sup-

pose a 747 takes off from sea level when the tempera-

ture in the airplane is 25.0 ° C and the pressure is 

1.01  ×  10 5  Pa.  (a)  If the cabin temperature remains at 

25.0 ° C, what is the percentage change in the number 

of moles of air in the cabin? (b) If instead, the number 

of moles of air in the cabin does not change, what 

would the temperature be?  

    92.  An iron cannonball of radius 0.08 m has a cavity of 

radius 0.05 m that is to be filled with gunpowder. If the 

measurements were made at a temperature of 22 ° C, 

how much extra volume of gunpowder, if any, will be 

required to fill 500 cannonballs when the temperature 

is 30 ° C?  

93.  Ten students take a test and get the following scores: 83, 

62, 81, 77, 68, 92, 88, 83, 72, and 75. What are the aver-

age value, the rms value, and the most probable value, 

respectively, of these test scores?  

    94.  A hand pump is being used to inflate a bicycle tire that 

has a gauge pressure of 40.0 psi. If the pump is a cylin-

der of length 18.0 in. with a cross-sectional area of 

3.00 in. 2 , how far down must the piston be pushed 

before air will flow into the tire?  

    95.  An ideal gas in a constant-volume gas thermometer 

( Fig. 13.11 ) is held at a volume of 0.500 L. As the tem-

perature of the gas is increased by 20.0 ° C, the mercury 

level on the right side of the manometer must rise by 

8.00 mm in order to keep the gas volume constant. 

(a) What is the slope of a graph of  P  versus  T  for this 

gas (in mm Hg/ ° C)? (b) How many moles of gas are 

present?  

   96. A cylinder with an interior cross-sectional area of 

70.0 cm 2  has a moveable piston of mass 5.40 kg at the 

top that can move up and down without friction. The 

cylinder contains 2.25  ×  10  − 3  mol of an ideal gas at 

23.0 ° C. (a) What is the volume of the gas when the pis-

ton is in equilibrium? Assume the air pressure outside 

the cylinder is 1.00 atm. (b) By what factor does the 

volume change if the gas temperature is raised to 

223.0 ° C and the piston moves until it is again in 

equilibrium?  

97.  Estimate the average distance between air molecules at 

0.0 ° C and 1.00 atm.  

   98. If you wanted to make a scale model of air at 0.0 ° C and 

1.00 atm, using ping-pong balls (diameter, 3.75 cm) to 

represent the N 2  molecules (diameter, 0.30 nm), (a) how 

far apart on average should the ping-pong balls be at 

any instant? (b) How far would a ping-pong ball travel 

on average before colliding with another?  

99.  For divers going to great depths, the composition of 

the air in the tank must be modified. The ideal compo-

sition is to have approximately the same number of O 2
molecules per unit volume as in surface air (to avoid 

oxygen poisoning), and to use helium instead of nitro-

gen for the remainder of the gas (to avoid nitrogen 

narcosis, which results from nitrogen dissolving in the 

bloodstream). Of the molecules in dry surface air, 78% 

are N 2 , 21% are O 2 , and 1% are Ar. (a) How many O 2
molecules per m 3  are there in surface air at 20.0 ° C and 

1.00 atm? (b) For a diver going to a depth of 100.0 m, 

what percentage of the gas molecules in the tank 

should be O 2 ? (Assume that the density of seawater is 

1025 kg/m 3  and the temperature is 20.0 ° C.)  

   100. Show that, in two gases at the same temperature, the 

rms speeds are inversely proportional to the square root 

of the molecular masses:   

     
 ( v rms  ) 1   ______ 
 ( v rms  ) 2  

   =  √
___

   
 m 

2
  
 ___  m 

1
           

101.  The SR-71 Blackbird reconnaissance aircraft is primar-

ily made of titanium and typically flies at speeds above 

Mach 3. In flight, the length of the SR-71 increases by 

about 0.20 m from its takeoff length of 32.70 m. The 

average coefficient of linear expansion for titanium 

over the temperature range experienced by the SR-71 

is 10.1  ×  10  − 6  K  − 1 . What is the approximate tempera-

ture of the SR-71 while it is in flight if it started at 

20 ° C?  

102.  In plants, water diffuses out through small openings 

known as stomatal pores. If  D   =  2.4  ×  10  − 5  m 2 /s for 

water vapor in air, and the length of the pores is 

2.5  ×  10  − 5  m, how long does it take for a water mole-

cule to diffuse out through the pore?  

      103.  The alveoli (see Section 13.8) have an average radius 

of 0.125 mm and are approximately spherical. If the 

pressure in the sacs is 1.00  ×  10 5  Pa, and the tempera-

ture is 310 K (average body temperature), how many 

air molecules are in an alveolus?  

     104. A 10.0-L vessel contains 12 g of N 2  gas at 20 ° C. 

(a) Estimate the nearest-neighbor distance. (b) Is the 

gas dilute? [ Hint:  Compare the nearest-neighbor dis-

tance to the diameter of an N 2  molecule, about 0.3 nm.]  

      105.  During hibernation, an animal’s metabolism slows 

down, and its body temperature lowers. For example, a 

California ground squirrel’s body temperature lowers 

from 40.0 ° C to 10.0 ° C during hibernation. If we 

assume that the air in the squirrel’s lungs is 75.0% N 2  

and 25.0% O 2 , by how much will the rms speed of the 

air molecules in the lungs have decreased during 

hibernation?  

      106.  A steel ring of inner diameter 7.00000 cm at 20.0 ° C 

is to be heated and placed over a brass shaft of 

outer diameter 7.00200 cm at 20.0 ° C. (a) To what 

✦✦
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temperature must the ring be heated to fit over the 

shaft? The shaft remains at 20.0 ° C. (b) Once the ring is 

on the shaft and has cooled to 20.0 ° C, to what tempera-

ture must the ring plus shaft combination be cooled to 

allow the ring to slide off the shaft again?  

      107.  The inner tube of a Pyrex glass 

mercury thermometer has a 

diameter of 0.120 mm. The bulb 

at the bottom of the thermometer 

contains 0.200 cm 3  of mercury. 

How far will the thread of mer-

cury move for a change of 

1.00 ° C? Remember to take into 

account the expansion of the glass. (   tutorial: 

thermometer)      

      108.  A wine barrel has a diameter at its widest point of 

134.460 cm at a temperature of 20.0 ° C. A circular iron 

band, of diameter 134.448 cm, is to be placed around 

the barrel at the widest spot. The iron band is 5.00 cm 

wide and 0.500 cm thick. (a) To what temperature must 

the band be heated to be able to fit it over the barrel? 

(b) Once the band is in place and cools to 20.0 ° C, what 

will be the tension in the band?  

      109.  A 12.0-cm cylin-

drical chamber 

has an 8.00-cm-

diameter piston 

attached to one 

end. The piston is 

connected to an ideal spring as shown. Initially, the 

gas inside the chamber is at atmospheric pressure 

and 20.0 ° C and the spring is not compressed. When a 

total of 6.50  ×  10  − 2  mol of gas is added to the chamber 

at 20.0 ° C, the spring compresses a distance of 

Δ x   =  5.40 cm. What is the spring constant of the 

spring?      

     110. A bimetallic strip is 

made from metals with 

expansion coefficients 

 a  1  and  a  2  (with 

 a  2  >  a  1 ). The thickness 

of each layer is  s.  At 

some temperature  T  0 , 

the bimetallic strip is relaxed and straight. (a) Show 

that, at temperature  T  0   +  Δ T,  the radius of curvature of 

the strip is   

   R ≈   s __________ 
( a 

2
   −  a 

1
  )ΔT

     

✦✦

✦✦

✦✦

✦✦

  [ Hint:  At  T  0 , the lengths of the two layers are the same. 

At temperature  T  0   +  Δ T,  the layers form circular arcs of 

radii  R  and  R   +   s,  which subtend the same angle  q . 

Assume a small Δ T  so that  a  Δ T  << 1 (for either  a  ).] 

(b) If the layers are made of iron and brass, with 

 s   =  0.1 mm, what is  R  for Δ T   =  20.0 ° C?         

  Answers to Practice Problems 

     13.1  37.0 ° C; 310.2 K  

    13.2  0.60 mm longer; 1.5 mm shorter  

    13.3  0.26 L  

    13.4  3.34  ×  10 28  molecules/m 3   

    13.5  7.9% of the air molecules; 189 kPa (27 lb/in 2 )  

    13.6  640 kPa  

    13.7   〈 K 
tr
  〉  =  6.07  ×  10  − 21  J (same as O 2 ) and  v  rms   =  408 m/s 

(lower than that of O 2  since the CO 2  molecule is more 

massive)  

    13.8  6% decrease  

    13.9  1.0  ×  10  − 6  s    

  Answers to Checkpoints 

     13.3  From  Table 13.2 ,  a   =  12  ×  10  − 6  K  − 1 . The temperature 

change is  − 50 ° C  =   − 50 K and the fractional length change is 

Δ L / L  0   =   a  Δ T   =   −  6.0  ×  10  − 4 . Then Δ L   =   −  6.0  ×  10  − 4   ×  150.00 m  

=   − 0.090 m. The tower is 9.0 cm shorter.  

    13.4  (a) The molar mass is 44.0 g/mol, so one CO 2  mole-

cule has a mass of 44.0 u. (b) 3.00 mol of CO 2  have a mass 

of (3.00 mol)  ×  (44.0 g/mol)  =  132 g.  

    13.5  (a) The temperatures do not have to be the same, 

because they could have different numbers of molecules ( N ) 

or moles ( n ). (b) If the temperatures are the same, then they 

have the same number of molecules, so they have the same 

number density  N / V.  They would have the same mass den-

sity only if their molar masses are the same.  

    13.6  The average translational kinetic energy of an ideal 

gas depends only on  absolute  temperature. The H 2  is at 

20 ° C  =  293 K, so to have twice the translational kinetic 

energy, the O 2  must be at 2  ×  293 K  =  586 K  =  313 ° C.                       

Mercury

0.120 mm

Pyrex

R
ss

T0 T0 + ∆T

q

R

8.00 cm

12.0 cm 5.40 cm
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 14  Heat 

   T he weather forecast predicts 

a late spring hard freeze one 

night; the temperature is to 

fall several degrees below 0 ° C 

and the apple crop is in dan-

ger of being ruined. To protect 

the tender buds, farmers rush 

out and spray the trees with 

water. How does that protect 

the buds? (See p. 500 for the 

answer.) 
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  • energy conservation (Chapter 6) 

 • thermal equilibrium (Section 13.1) 

 • absolute temperature and the ideal gas law (Section 13.5) 

 • kinetic theory of the ideal gas (Section 13.6)   

    14.1  INTERNAL ENERGY 

  From Section 13.6, the average translational kinetic energy 〈 K  tr 〉 of the molecules of an 

ideal gas is proportional to the absolute temperature of the gas:

     〈 K 
tr
  〉 =   3 _ 

2
   kT    (13-20)   

The molecules move about in random directions even though, on a macroscopic scale, 

the gas is neither moving nor rotating. Equation (13-20) also gives the average transla-

tional kinetic energy of the random motion of molecules in liquids, solids, and nonideal 

gases except at very low temperatures. This random microscopic kinetic energy is  part

of what we call the    internal energy    of the system:     

Definition of Internal Energy

The internal energy of a system is the total energy of all of the molecules in the 

system except for the macroscopic kinetic energy (kinetic energy associated with 

macroscopic translation or rotation) and the external potential energy (energy due 

to external interactions).

 A    system    is whatever we define it to be: one object or a group of objects. Every-

thing that is not part of the system is considered to be external to the system, or in other 

words, in the surroundings of the system. 

 Internal energy includes

   • Translational and rotational kinetic energy of molecules  due to their individual 

random motions.   

  • Vibrational energy—both kinetic and potential—of molecules and of atoms within 

molecules due to random vibrations about their equilibrium points.  

  • Potential energy due to interactions between the atoms and molecules of the system.  

  • Chemical and nuclear energy—the kinetic and potential energy associated with the 

binding of atoms to form molecules, the binding of electrons to nuclei to form 

atoms, and the binding of protons and neutrons to form nuclei.    

 Internal energy does  not  include

   • The kinetic energy of the molecules due to translation, rotation, or vibration of the 

whole system or of a macroscopic part of the system.  

  • Potential energy due to interactions of the molecules of the system with something 

outside of the system (such as a gravitational field due to something outside of the 

system).   

Concepts & Skills to ReviewConcepts & Skills to Review

CONNECTION: 

Revisit Table 6.1 for an over-

view of the forms of energy 

discussed in this book.

CONNECTION: 

Revisit Table 6.1 for an over-

view of the forms of energy 

discussed in this book.

surface of a table that has friction. The block comes to rest at 

point C, a distance of 1.0 m along the table surface. How much 

has the internal energy of the system (block + table) increased?

continued on next page

Example 14.1

Dissipation of Energy by Friction

A block of mass 10.0 kg starts at point A at a height of 2.0 m 

above the horizontal and slides down a frictionless incline 

(Fig. 14.1). It then continues sliding along the horizontal 

CONNECTION: 

We’ve used the idea of a sys-

tem before, for instance when 

finding the net external force 

on a system or the momen-

tum change of a system.



     A change in the internal energy of a system does not always cause a temperature 

change.  As we explore further in Section 14.5, the internal energy of a system can change 

while the temperature of the system remains constant—for instance, when ice melts.   

f

h

B

A

C

Frictionless

1.0 m

v

Stops

m

Example 14.1 continued

Solution The initial potential energy (taking Ug = 0 at the 

horizontal surface) is

 U g   = mgh = 10.0 kg × 9.8 m/ s 2  × 2.0 m = 200 J

The final potential energy is zero. The initial and final trans-

lational kinetic energies of the block are both zero. Neglect-

ing the small transfer of energy to the air, the increase in the 

internal energy of the block and table is 200 J.

Discussion We do not know how much of this internal 

energy increase appears in the object and how much in the 

table; we can only find the total. We call friction a noncon-

servative force, but that only means that macroscopic 

mechanical energy is not conserved; total energy is always 

conserved. Friction merely converts some macroscopic 

mechanical energy into internal energy of the block and 

the table. This internal energy increase manifests itself as a 

slight temperature increase. We often say that mechanical 

energy is dissipated by friction or other nonconservative 

forces; in other words, energy in an ordered form (transla-

tional motion of the block) has been changed into disor-

dered energy (random motion of molecules within the block 

and table).

Practice Problem 14.1 On the Rebound

If a rubber ball of mass 1.0 kg is dropped from a height of 

2.0 m and rebounds on the first bounce to 0.75 of the height 

from which it was dropped, how much energy is dissipated 

during the collision with the floor?

Figure 14.1

An object sliding down a 

frictionless incline and 

then across a horizontal 

surface with friction.

Strategy Gravitational potential energy is converted to 

macroscopic translational kinetic energy as the block’s speed 

increases. Friction then converts this macroscopic kinetic 

energy into internal energy—some of it in the block and 

some in the table. Since total energy is conserved, the 

increase in internal energy is equal to the decrease in gravi-

tational potential energy:

decrease in PE from A to B = increase in KE from A to B

 = decrease in KE from B to C

 =  increase in internal energy 

from B to C

the molecules due to translation, rotation, or vibration of the 

system as a whole. Therefore, the internal energy of the ball 

is the same. Temperature is associated with the average 

translational kinetic energy due to the individual random

motions of molecules; the temperature is still 18°C.

Conceptual Practice Problem 14.2 
Total Translational KE

Is the total translational kinetic energy of the molecules in the 

ball higher, lower, or the same as when the ball was at rest?

Conceptual Example 14.2

Internal Energy of a Bowling Ball

A bowling ball at rest has a temperature of 18°C. The ball is 

then rolled down a bowling alley. Ignoring the dissipation of 

energy by friction and drag forces, is the internal energy of 

the ball higher, lower, or the same as when the ball was at 

rest? Is the temperature of the ball higher, lower, or the same 

as when the ball was at rest?

Strategy, Solution, and Discussion The only change is 

that the ball is now rolling—the ball has macroscopic trans-

lational and rotational kinetic energy. However, the defini-

tion of internal energy does not include the kinetic energy of 
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   14.2  HEAT 

  We defined heat in Section 13.1: 

Definition of Heat

Heat is energy in transit between two objects or systems due to a temperature 

difference between them.

 Many eighteenth-century scientists thought that heat was a fluid, which they called 

“caloric.” The flow of heat into an object was thought to cause the object to expand in vol-

ume in order to accommodate the additional fluid; why no mass increase occurred was a 

mystery. Now we know that heat is not a substance but is a flow of energy. One experiment 

that led to this conclusion was carried out by Count Rumford (Benjamin Thompson, 1753–

1814). While supervising the boring of cannon barrels, he noted that the drill doing the bor-

ing became quite hot. At the time it was thought that the grinding up of the cannon metal 

into little pieces caused caloric to be released because the tiny bits of metal could not hold 

as much caloric as the large piece from which they came. But Rumford noticed that the 

drill got hot even when it became so dull that metal was no longer being bored out of the 

cannon and that he could create a limitless amount of what we now call internal energy. He 

decided that “heat” must be a form of microscopic motion instead of a material substance. 

 It was not until later experiments were done by James Prescott Joule (1818–1889) 

that Rumford’s ideas were finally accepted. In his most famous experiment ( Fig. 14.2 ), 

Joule showed that a temperature increase can be caused by mechanical means. In a 

series of such experiments, Joule determined the “mechanical equivalent of heat,” or the 

amount of mechanical work required to produce the same effect on a system as a given 

amount of heat. In those days heat was measured in calories, where one calorie was 

defined as the heat required to change the temperature of 1 g of water by 1 ° C (specifi-

cally from 14.5 to 15.5 ° C). Joule’s experimental results were within 1% of the currently 

accepted value, which is

     1 cal = 4.186 J    (14-1)    

   Equation (14-1) is now the  definition  of the calorie.  The Calorie (with an uppercase 

letter C) used by dietitians and nutritionists is actually a kilocalorie: 

    1 Calorie = 1 kcal =  10 3  cal = 4186 J  

Although the calorie is still used, the SI unit for internal energy and for heat is the same 

as that used for all forms of energy and all forms of energy transfer: the joule.  

Rotating
paddles

Stationary
fins

Insulated
container

Water

Thermometer
Figure 14.2 Joule’s experi-

ment. As the two masses fall, 

they cause paddles to rotate 

within an insulated container 

(not to scale) filled with water. 

The paddles agitate the water 

and cause its temperature to rise. 

By measuring the distance 

through which the masses fell 

and the temperature change of 

the known quantity of water, 

Joule determined the mechanical 

work done and the internal 

energy increase of the water.



Heat and Work    Heat and work are similar in that both describe a particular kind of 

energy  transfer.  Work is an energy transfer due to a force acting through a displacement. 

Heat is a microscopic form of energy transfer involving large numbers of particles; the 

exchange of energy occurs due to the individual interactions of the particles. No macro-

scopic displacement occurs when heat flows and no macroscopic force is exerted by 

one object on the other. 

 It does not make sense to say that a system  has  15 kJ of heat, just as it does not make 

sense to say that a system  has  15 kJ of work. Similarly, we cannot say that the heat of a sys-

tem has changed (nor that the work of a system has changed).    A system can possess   energy  

 in various forms (including internal energy), but it cannot possess heat or work. Heat and 

work are two ways of   transferring   energy from one system to another.  Joule’s experiments 

showed that a quantity of work done on a system or the same quantity of heat flowing into 

the system causes the same increase in the system’s internal energy. If the internal energy 

increase comes from mechanical work, as from Joule’s paddle wheel, no heat flow occurs.       

CHECKPOINT 14.2

Take a rubber band and stretch it rapidly several times. Then hold it against your 

wrist or your lip. In everyday language, you might say the rubber band “heats 

up.” Is the temperature increase caused by heat flow into the rubber band? If not, 

what has happened?

   Direction of Heat Flow     Heat flows spontaneously from a system at higher temperature 

to one at lower temperature.  Temperature is associated with the microscopic transla-

tional kinetic energy of the molecules; thus, the flow of heat tends to equalize the aver-

age microscopic translational kinetic energy of the molecules. When two systems are in 

thermal contact and no net heat flow occurs, the systems are in thermal equilibrium and 

have the same temperature.   

CONNECTION:

Heat, like work, is a kind of 

energy transfer.

CONNECTION:

Heat, like work, is a kind of 

energy transfer.

Discussion To perform an experiment like Joule’s, we can 

vary the amount of energy delivered to the water. One way is 

to change the number of times the object is allowed to 

descend. Other possibilities include varying the mass of the 

descending object or raising the apparatus so that the object 

can descend a greater distance. All of these variations allow 

a change in the amount of gravitational potential energy con-

verted into internal energy without requiring any changes in 

the complicated mechanism involving the paddle wheel.

Practice Problem 14.3 Temperature Change of the 
Water

If the water temperature in the insulated container is found 

to have increased 2.0°C after 20.0 descents of the falling 

object, what mass of water is in the container? Assume all of 

the internal energy increase appears in the water (ignore any 

internal energy change of the paddle wheel itself). [Hint: 

Recall that the calorie was defined as the heat required to 

change the temperature of 1 g of water by 1°C.]

Example 14.3

A Joule Experiment

In an experiment similar to that done by Joule, an object of 

mass 12.0 kg descends a distance of 1.25 m at constant speed 

while causing the rotation of a paddle wheel in an insulated 

container of water. If the descent is repeated 20.0 times, what 

is the internal energy increase of the water in joules?

Strategy Each time the object descends, it converts gravi-

tational potential energy into kinetic energy of the paddle 

wheel, which in turn agitates the water and converts kinetic 

energy into internal energy.

Solution The change in gravitational potential energy dur-

ing 20.0 downward trips is

Δ U g   = mg Δh

 = 12.0 kg × 9.80 N/kg × 20.0 descents × 1.25 m/descent

 = 2.94 kJ

If all of this energy goes into the water, the internal energy 

increase of the water is 2.94 kJ.

14.2  HEAT 493



494  CHAPTER 14  Heat

  The Cause of Thermal Expansion 

 If not to accommodate additional “caloric,” then why do objects generally expand when 

their temperatures increase? (See Section 13.3.) An object expands when the  average  

distance between the atoms (or molecules) increases. The atoms are not at rest; even in 

a solid, where each atom has a fixed equilibrium position, they  vibrate  to and fro about 

their equilibrium positions. The energy of vibration is part of the internal energy of the 

object. When heat flows into the object, raising its temperature, the internal energy 

increases. Some of the increase goes into vibration, so the average vibrational energy of 

an atom increases with increasing temperature.     

 The average distance between atoms usually increases with increasing vibrational 

energy because the forces between atoms are highly asymmetrical. Two atoms separated by 

 less  than their equilibrium distance repel one another  strongly,  while two atoms separated 

by  more  than their equilibrium distance attract one another much less strongly. Therefore, as 

vibrational energy increases, the maximum distance between the atoms increases more than 

the minimum distance decreases; the  average  distance between the atoms increases. 

 The coefficient of expansion varies from material to material because the strength 

of the interatomic (or intermolecular) bonds varies. As a general rule, the stronger the 

atomic bond, the smaller the coefficient of expansion. Liquids have much greater coeffi-

cients of volume expansion than do solids because the molecules are more loosely 

bound in a liquid than in a solid.    

   14.3  HEAT CAPACITY AND SPECIFIC HEAT 

   Heat Capacity 

 Suppose we have a system on which no mechanical work is done, but we allow heat to 

flow into the system by placing it in thermal contact with another system at higher tem-

perature. As the internal energy of the system increases, its temperature increases (pro-

vided that no part of the system undergoes a change of phase, such as from solid to 

liquid). If heat flows  out  of the system rather than into the system, the internal energy of 

the system decreases. We account for that possibility by making  Q  negative if heat 

flows out of the system; since  Q  is defined as the heat  into  the system, a negative heat 

represents heat flow  out of  the system.     

 For a large number of substances, under normal conditions, the temperature change 

Δ T  is approximately proportional to the heat  Q.  The constant of proportionality is called 

the    heat capacity    (symbol  C  ):      

 C =   
Q

 ___ 
ΔT

   (14-2)

The heat capacity depends both on the substance and on how much of it is present: 1 cal 

of heat into 1 g of water causes a temperature increase of 1 ° C, but 1 cal of heat into 2 g 

of water causes a temperature increase of 0.5 ° C. The SI unit of heat capacity is J/K. We 

can write J/K or J/ ° C interchangeably since only temperature  changes  are involved; a 

temperature change of 1 K is equivalent to a temperature change of 1 ° C. 

    The term   heat capacity   is unfortunate since it has nothing to do with a capacity to   hold  

 heat, or a limited ability to absorb heat, as the name seems to imply. Instead, it relates the 

heat into a system to the temperature increase. Think of heat capacity as a measure of how 

much heat must flow into or out of the system to produce a given temperature change.   

  Specific Heat 

 The heat capacity of the water in a drinking glass is much smaller than the heat capacity 

of the water in Lake Superior. Since the heat capacity of a system is proportional to the 

  In Chapter 15, we consider cases 

where both work and heat change 

the internal energy of a system. We 

will see that work done on a system 

can change the system’s temperature 

or cause a change of phase. For 

now, we assume that the work done 

is zero and consider changes due to 

heat flow.  

  In Chapter 15, we consider cases 

where both work and heat change 

the internal energy of a system. We 

will see that work done on a system 

can change the system’s temperature 

or cause a change of phase. For 

now, we assume that the work done 

is zero and consider changes due to 

heat flow.  

Q is positive for heat flow into the 

system and negative for heat flow 

 out of  the system.

Q is positive for heat flow into the 

system and negative for heat flow 

 out of  the system.

CONNECTION: 

Section 13.3 discussed ther-

mal expansion. Now we dis-

cuss why the expansion 

occurs.



mass  of the system, the    specific heat capacity    (symbol  c ) of a substance is defined as 

the heat capacity per unit mass: 

c =   C __ m   =   
Q
 _____ 

m ΔT
   (14-3)

 Specific heat capacity is often abbreviated to  specific heat.  The SI units of specific 

heat are J/(kg·K). In SI units, the specific heat is the number of joules of heat required 

to produce a 1 K temperature change in 1 kg of the substance. Again, since only temper-

ature changes are involved, we can equivalently write J/(kg· ° C). 

  Table 14.1  lists specific heats for some common substances at 1 atm and 20 ° C 

(unless otherwise specified). For the range of temperatures in our examples and prob-

lems, assume these specific heat values to be valid. Note that water has a relatively large 

specific heat compared with most other substances. The relatively large specific heat of 

water causes the oceans to warm slowly in the spring and to cool slowly as winter 

approaches, moderating the temperature along the coast.         
 Rearrangement of Eq. (14-3) leads to an expression for the heat required to produce 

a known temperature change in a system:

     Q = mc ΔT    (14-4)   

Note that in Eqs. (14-3) and (14-4), the sign convention for  Q  is consistent: a tempera-

ture increase (Δ T  > 0) is caused by heat flowing  into  the system ( Q  > 0), while a tem-

perature decrease (Δ T  < 0) is caused by heat flowing  out  of the system ( Q  < 0). 

     Specific heat:    heat capacity per unit 

mass    

     Specific heat:    heat capacity per unit 

mass    

Equations (14-2) through 

(14-4) apply when no phase 

change occurs. The value of the spe-

cific heat is different for different 

phases of the same substance. That’s 

why Table 14.1 lists different values 

for ice, liquid water, and steam.

Equations (14-2) through 

(14-4) apply when no phase 

change occurs. The value of the spe-

cific heat is different for different 

phases of the same substance. That’s 

why Table 14.1 lists different values 

for ice, liquid water, and steam.

Table 14.1 Specific Heats of Common Substances at 1 atm and 20°C

  
Specific Heat

      

 (   kJ
 _____ 

kg⋅K   ) 
    

Specific Heat
      

 (   kJ
 _____ 

kg⋅K
   ) 

  

Substance Substance

Gold 0.128 Pyrex glass 0.75

Lead 0.13 Granite 0.80

Mercury 0.139 Marble 0.86

Silver 0.235 Aluminum 0.900

Brass 0.384 Air (50°C) 1.05

Copper 0.385 Wood (average) 1.68

Steel 0.45 Steam (110°C) 2.01

Iron 0.44 Ice (0°C) 2.1

Flint glass 0.50 Alcohol (ethyl) 2.4

Crown glass 0.67 Human tissue (average) 3.5

Vycor 0.74 Water (15°C) 4.186

possible to estimate the flow of heat from the burner during 

the first 10.0 min?

Strategy We are interested in the internal energy and the 

temperature of the water, so we define a system that consists 

Example 14.4

Heating Water in a Saucepan

A saucepan containing 5.00 kg of water initially at 20.0°C is 

heated over a gas burner for 10.0 min. The final temperature 

of the water is 30.0°C. (a) What is the internal energy increase 

of the water? (b) What is the expected final temperature if 

the water were heated for an additional 5.0 min? (c) Is it 

continued on next page
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Heat Flow with More Than Two Objects    Suppose some water is heated in a large 

iron pot by dropping a hot piece of copper into the pot. We can define the system to be 

the water, the copper, and the iron pot; the environment is the room containing the sys-

tem. Heat continues to flow among the three substances (iron pot, water, copper) until 

thermal equilibrium is reached—that is, until all three substances are at the same tem-

perature. If losses to the environment are negligible, all the heat that flows out of the 

copper flows into either the iron or the water:

     Q 
Cu

   +  Q 
Fe

   +  Q 
 H 

2
  O

   = 0  

In this case,  Q  Cu  is negative since heat flows  out  of the copper;  Q  Fe  and      Q 
 H 

2
  O

     are positive 

since heat flows into both the iron and the water.       

  Calorimetry 

 A calorimeter is an insulated container that enables the careful measurement of heat 

( Fig. 14.3 ). The calorimeter is designed to minimize the heat flow to or from the sur-

roundings. A typical constant volume calorimeter, called a  bomb calorimeter,  consists 

of a hollow aluminum cylinder of known mass containing a known quantity of water; 

the cylinder is inside a larger aluminum cylinder with insulated walls. An evacuated 

space separates the two cylinders. An insulated lid fits over the opening of the cylinders; 

often there are two small holes in the lid, one for a thermometer to be inserted into the 

contents of the inner cylinder and one for a stirring device to help the contents reach 

equilibrium faster.     

 Suppose an object at one temperature is placed in a calorimeter with the water and 

aluminum cylinder at another temperature. By conservation of energy, all the heat that 

CONNECTION: 

Here we apply the principle 

of energy conservation.

CONNECTION: 

Here we apply the principle 

of energy conservation.

of the water in the saucepan. Although the pan is also heated, 

it is not part of this system. The pan, the burner, and the 

room are all outside the system.

Since no work is done on the water, the internal energy 

increase is equal to the heat flowing into the water. The heat 

can be found from the mass of the water, the specific heat of 

water, and the temperature change. As long as the burner 

delivers heat at a constant rate, we can find the additional 

heat delivered in the additional time. Since the temperature 

change is proportional to the heat delivered, the temperature 

changes at a constant rate (a constant number of °C per min-

ute). So, in half the time, half as much energy is delivered 

and the temperature change is half as much.

Solution (a) First find the temperature change:

ΔT =  T 
f
   −  T 

i
   = 30.0°C − 20.0°C = 10.0 K

(A change of 10.0°C is equivalent to a change of 10.0 K.) 

The increase in the internal energy of the water is

 ΔU = Q = mc ΔT

= 5.00 kg × 4.186 kJ/(kg⋅K) × 10.0 K = 209 kJ

(b) We assume that the heat delivered is proportional to the 

elapsed time. The temperature change is proportional to 

the energy delivered, so if the temperature changes 10.0°C 

in 10.0 min, it changes an additional 5.0°C in an additional 

5.0 min. The final temperature is

T = 20.0°C + 15.0°C = 35.0°C

(c) Not all of the heat flows into the water. Heat also flows 

from the burner into the saucepan and into the room. All we 

can say is that more than 209 kJ of heat flows from the 

burner during the 10.0 min.

Discussion As a check, the heat capacity of the water is 

5.00 kg × 4.186 kJ/(kg·K) = 20.9 kJ/K; 20.9 kJ of heat must 

flow for each 1.0 K change in temperature. Since the tem-

perature change is 10.0 K, the heat required is 

20.9 kJ/K × 10.0 K = 209 kJ

Practice Problem 14.4 Price of a Bubble Bath

If the cost of electricity is $0.080 per kW·h, what does it 

cost to heat 160 L of water for a bubble bath from 10.0°C 

(the temperature of the well water entering the house) to 

70.0°C? [Hint: 1 L of water has a mass of 1 kg. 1 kW·h =
1000 J/s × 3600 s.]

Example 14.4 continued

Insulated
jacket

Thermometer
Stirrer

Lid

Figure 14.3 A calorimeter.



flows out of one substance ( Q  < 0) flows into some other substance ( Q  > 0). If no heat 

flows to or from the environment, the total heat into the object, water, and aluminum 

must equal zero:

     Q o   +  Q w   +  Q a   = 0  

Example 14.5 illustrates the use of a calorimeter to measure the specific heat of an 

unknown substance. The measured specific heat can be compared with a table of known 

values to help identify the substance.    

A table helps organize the given information:

Example 14.5

Specific Heat of an Unknown Metal

A sample of unknown metal of mass 0.550 kg is heated in a 

pan of hot water until it is in equilibrium with the water at a 

temperature of 75.0°C. The metal is then carefully removed 

from the heat bath and placed into the inner cylinder of an 

aluminum calorimeter that contains 0.500 kg of water at 

15.5°C. The mass of the inner cylinder is 0.100 kg. When 

the contents of the calorimeter reach equilibrium, the tem-

perature inside is 18.8°C. Find the specific heat of the metal 

sample and determine whether it could be any of the metals 

listed in Table 14.1.

Strategy Heat flows from the sample to the water and to 

the aluminum until thermal equilibrium is reached, at which 

time all three have the same temperature. We use subscripts 

to keep track of the three heat flows and three temperature 

changes. Let Tf be the final temperature of all three. Initially, 

the water and aluminum are both at 15.5°C while the sam-

ple is at 75.0°C. When thermal equilibrium is reached, all 

three are at 18.8°C. We assume negligible heat flow to the 

environment—in other words, that no heat flows into or out 

of the system of aluminum + water + sample.

Solution Heat flows out of the sample (Qs < 0) and into 

the water and aluminum cylinder (Qw > 0 and Qa > 0). 

Assuming no heat into or out of the surroundings,

 Q s   +  Q w   +  Q a   = 0

For each substance, the heat is related to the temperature 

change. Substituting Q = mc ΔT for each gives

  m s   c s   Δ T s   +  m w   c w   Δ T w   +  m a   c a   Δ T a   = 0 (1)

Substituting known values into Eq. (1) yields

0.550 kg ×  c s   × (−56.2°C) + (2.093 kJ/°C + 0.0900 kJ/°C) × 3.3°C = 0

Now we solve for cs.

0.550 kg ×  c s   × 56.2°C = 7.204 kJ

 c s   =   7.204 kJ  _______________  
0.550 kg × 56.2°C

   = 0.233   kJ _____ 
kg⋅°C

  

By comparing this result with the values in Table 14.1, it 

appears that the unknown sample could be silver.

Discussion As a quick check, the heat capacity of the 

sample is approximately   1 __ 
17

   that of the water since its temper-

ature change is 56.2°C/3.3°C ≈ 17 times as much—ignoring 

the small heat capacity of the aluminum. Since the masses of 

the water and sample are about equal, the specific heat of the 

sample is roughly   1 __ 
17

   that of the water:

  1 ___ 
17

   × 4.186   kJ _____ 
kg⋅°C

   = 0.25   kJ _____ 
kg⋅°C

  

That is quite close to our answer.
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Sample H2O Al

Mass (m) 0.550 kg 0.500 kg 0.100 kg

Specific Heat (c) cs (unknown) 4.186 kJ/(kg⋅°C) 0.900 kJ/(kg⋅°C)

Heat Capacity (mc) 0.550 kg × cs 2.093 kJ/°C 0.0900 kJ/°C

Ti 75.0°C 15.5°C 15.5°C

Tf 18.8°C 18.8°C 18.8°C

ΔT −56.2°C 3.3°C 3.3°C

Practice Problem 14.5 Final Temperature

cylinder of mass 0.100 kg, find the final temperature of 

the mixture.
If 0.25 kg of water at 90.0°C is added to 0.35 kg of water 

at 20.0°C in an aluminum calorimeter with an inner 
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   14.4  SPECIFIC HEAT OF IDEAL GASES 

  Since the average translational kinetic energy of a molecule in an ideal gas is

     〈 K 
tr
  〉 =   3 _ 

2
  kT    (13-20)   

the  total  translational kinetic energy of a gas containing  N  molecules ( n  moles) is

     K 
tr
   =   3 _ 

2
  NkT =   3 _ 

2
  nRT   

 Suppose we allow heat to flow into a  monatomic  ideal gas—one where the gas 

molecules consist of single atoms—while keeping the volume of the gas constant. 

Since the volume is constant, no work is done on the gas, so the change in the inter-

nal energy is equal to the heat. If we think of the atoms as point particles, the only 

way for the internal energy to change when heat flows into the gas is for the transla-

tional kinetic energy of the atoms to change. The rest of the internal energy is 

“locked up” in the atoms and does not change unless something else happens, such as a 

phase transition or a chemical reaction—neither of which can happen in an ideal 

gas. Then

     Q = Δ K 
tr
   =   3 _ 

2
  nR ΔT    (14-5)    

 From Eq. (14-5), we can find the specific heat of the monatomic ideal gas. How-

ever, with gases it is more convenient to define the    molar specific heat    at constant vol-

ume ( C  V ) as

      C 
V
   =   

Q
 _____ 

n ΔT
      (14-6)   

The subscript “V” is a reminder that the volume of the gas is held constant during the 

heat flow. The molar specific heat is the heat capacity  per mole  rather than  per unit 

mass. In one case, we measure the amount of substance by the number of moles; in the 

other case, by the mass.      

 From Eqs. (14-5) and (14-6), we can find the molar specific heat of a monatomic 

ideal gas:

    Q =   3 _ 
2
  nR ΔT = n C 

V
   ΔT

  C 
V
   =   3 _ 

2
  R = 12.5   J/K ____ 

mol
           (monatomic ideal gas)    (14-7)   

A glance at  Table 14.2  shows that this calculation is remarkably accurate at room tem-

perature for monatomic gases. 

 Diatomic gases have larger molar specific heats than monatomic gases. Why? We 

cannot model the diatomic molecule as a point mass; the two atoms in the molecule are 

separated, giving the molecule a much larger rotational inertia about two perpendicular 

axes ( Fig. 14.4 ). The molar specific heat is  larger  because not all of the internal energy 

increase goes into the translational kinetic energy of the molecules; some goes into rota-

tional kinetic energy. 

Table 14.2 
Molar Specific Heats 
at Constant Volume 
of Gases at 25°C

Gas  C 
V
    (   J/K

 ____ 
mol

   ) 
Monatomic He 12.5

Ne 12.7

Ar 12.5

Diatomic H2 20.4

N2 20.8

O2 21.0

Polyatomic CO2 28.2

N2O 28.4

z

x

(a)

y

(b) (c)

Figure 14.4 Rotation of a 

model diatomic molecule about 

three perpendicular axes. The 

rotational inertia about the x-axis 

(a) is negligible, so we can ignore 

rotation about this axis. The rota-

tional inertias about the y- and 

z-axes (b) and (c) are much larger 

than for a single atom of the 

same mass because of the larger 

distance between the atoms and 

the axis of rotation.

CONNECTION: 

Specific heat and molar spe-

cific heat can be thought of 

as the same quantity—heat 

capacity per amount of 

substance—expressed in 

different units.



 It turns out that the molar specific heat of a diatomic ideal gas at room temperature 

is approximately

      C 
V
   =   5 _ 

2
  R = 20.8   J/K ____ 

mol
       (diatomic ideal gas at room temperature)    (14-8)   

Why       5 _ 
2
  R   instead of       3 _ 

2
  R?   The diatomic molecule has rotational kinetic energy about two 

perpendicular axes ( Fig. 14.4b  and c) in addition to translational kinetic energy associ-

ated with motion in three independent directions. Thus, the diatomic molecule has five 

ways to “store” internal energy while the monatomic molecule has only three. The theo-

rem of    equipartition of energy   —which we cannot prove here—says that internal energy 

is distributed equally among all the possible ways in which it can be stored (as long as the 

temperature is sufficiently high). Each independent form of energy has an average of       1 _ 
2
   kT

of energy per molecule and contributes       1 _ 
2
   R   to the molar specific heat at constant volume. 

gas molecules. The molar specific heat is defined by 

Q = nCV ΔT, where, for a monatomic gas,  C 
V
   =   3 _ 

2
   R. Then,

Q =   3 _ 
2
   nR ΔT

where

ΔT = 50.0°C − 20.0°C = 30.0°C

Substituting,

Q =   3 _ 
2
   × 51.8 mol × 8.31 J/(mol⋅°C) × 30.0°C = 19 kJ

Discussion Constant volume implies that all the heat is 

used to increase the internal energy of the gas; if the gas 

were to expand it could transfer energy by doing work. 

When we find the number of moles from the ideal gas law, 

we must remember to convert the Celsius temperature 

to kelvins. Only when an equation involves a change in 

temperature can we use kelvin or Celsius temperatures 

interchangeably.

Practice Problem 14.6 Heating Some Helium Gas

A storage cylinder of 330 L of helium gas is at 21°C and is 

subjected to a pressure of 10.0 atm. How much energy must 

be added to raise the temperature of the helium in this con-

tainer to 75°C?

Example 14.6

Heating Some Xenon Gas

A cylinder contains 250 L of xenon gas (Xe) at 20.0°C and a 

pressure of 5.0 atm. How much heat is required to raise the 

temperature of this gas to 50.0°C, holding the volume con-

stant? Treat the xenon as an ideal gas.

Strategy The molar heat capacity is the heat required per 

degree per mole. The number of moles of xenon (n) can be 

found from the ideal gas law, PV = nRT. Xenon is a mona-

tomic gas, so we expect  C 
V
   =   3 _ 

2
   R.

Solution First we convert the known quantities into SI 

units.

P = 5.0 atm = 5 × 1.01 ×  10 5  Pa = 5.05 ×  10 5  Pa

 V = 250 L = 250 ×  10 −3   m 3 

 T = 20.0°C = 293.15 K

From the ideal gas law, we find the number of moles,

n =   PV
 ___ 

RT
   =   5.05 ×  10 5  Pa × 250 ×  10 −3   m 3    _________________________   

8.31 J/(mol⋅K) × 293.15 K
   = 51.8 mol

We should check the units. Since Pa = N/m2,

  Pa ×  m 3  ____________  
J/(mol⋅K) × K

   =   N/ m 2  ×  m 3  _________ 
J/mol

   =   N⋅m ____ 
J
   × mol = mol

For a monatomic gas at constant volume, the energy all 

goes into increasing the translational kinetic energy of the 

 You may wonder why we can ignore rotation for the monatomic molecule—which in 

reality is not a point particle—or why we can ignore rotation about one axis for the 

diatomic molecule. The answer comes from quantum mechanics. Energy cannot be added 

to a molecule in arbitrarily small amounts; energy can only be added in discrete amounts 

or “steps.” At room temperature, there is not enough internal energy to excite the rota-

tional modes with small rotational inertias, so they do not participate in the specific heat. 

We also ignored the possibility of vibration for the diatomic molecule. That is fine at room 

temperature, but at higher temperatures vibration becomes significant, adding two more 

energy modes (one kinetic and one potential). Thus, as temperature increases, the molar 

specific heat of a diatomic gas increases, approaching       7 _ 
2
  R   at high temperatures.   

14.4  SPECIFIC HEAT OF IDEAL GASES 499



500  CHAPTER 14  Heat

   14.5  PHASE TRANSITIONS 

  If heat continually flows into the water in a pot, the water eventually begins to boil; liq-

uid water becomes steam. If heat flows into ice cubes, they eventually melt and turn into 

liquid water. A    phase transition    occurs whenever a material is changed from one phase, 

such as the solid phase, to another, such as the liquid phase. 

 When some ice cubes at 0 ° C are placed into a glass in a room at 20 ° C, the ice grad-

ually melts. A thermometer in the water that forms as the ice melts reads 0 ° C until all 

the ice is melted. At atmospheric pressure, ice and water can only coexist in equilibrium 

at 0 ° C. Once all the ice is melted, the water gradually warms up to room temperature. 

Similarly, water boiling on a stove remains at 100 ° C until all the water has boiled away. 

Suppose we change 1.0 kg of ice at –25 ° C into steam at 125 ° C. A graph of the tempera-

ture versus heat is shown in  Fig. 14.5 . During the two phase transitions,  heat flow con-

tinues,   and the internal energy changes,   but the temperature of the mixture of two phases 

does not change.   Table 14.3  shows the heat during each step of the process.          

   Latent Heat    The heat required  per unit mass  of substance to produce a phase change is 

called the    latent heat    ( L ). The word “latent” is related to the lack of temperature change 

during a phase transition.

      

Definition of latent heat:

  Q  = mL (14-9)

The heat per unit mass for the solid-liquid phase transition (in either direction) is called the 

 latent heat of fusion  ( L  f ). From  Table 14.3 , it takes 333.7 kJ to change 1 kg of ice to water 

at 0 ° C, so for water  L  f   =  333.7 kJ/kg. For the liquid-gas phase transition (in either direc-

tion), the heat per unit mass is called the  latent heat of vaporization  ( L  v ). From  Table 14.3 , 

to change 1 kg of water to steam at 100 ° C takes 2256 kJ, so for water  L  v   =  2256 kJ/kg. 

 Table 14.4  lists latent heats of fusion and vaporization for various materials.

  Heat flowing into a substance can cause melting (solid to liquid) or boiling (liquid 

to gas). Heat flowing out of a substance can cause freezing (liquid to solid) or condensa-

tion (gas to liquid). If 2256 kJ must be supplied to turn 1 kg of water into steam, then 

2256 kJ of heat is  released  from 1 kg of steam when it condenses to form water.         

CHECKPOINT 14.5

Why is a burn caused by 100°C steam often much more severe than a burn 

caused by 100°C water?

 The large latent heat of fusion of water is partly why spraying fruit trees with water 

can protect the buds from freezing. Before the buds can freeze, first the water must be 

cooled to 0 ° C and then it must freeze. In the process of freezing, the water gives up a 

large amount of heat and keeps the temperature of the buds from going below 0 ° C. Even 

  During a phase transition, the tem-

perature of the mixture of two 

phases does not change.  

  During a phase transition, the tem-

perature of the mixture of two 

phases does not change.  

The sign of Q in Eq. (14-9) 

depends on the direction of 

the phase transition. For melting or 

boiling, Q > 0 (heat flows into the 

system). For freezing or condensa-

tion, Q < 0 (heat flows out of the 

system).

The sign of Q in Eq. (14-9) 

depends on the direction of 

the phase transition. For melting or 

boiling, Q > 0 (heat flows into the 

system). For freezing or condensa-

tion, Q < 0 (heat flows out of the 

system).

How does spraying with 

water protect the buds?

How does spraying with 

water protect the buds?

–25

0

125

100

T (°C)

Ice

Ice + water

Water
Melting

Boiling

Water + steam

52.3 386 Heat added (kJ)805 31113061

Steam

Figure 14.5 Temperature ver-

sus heat for 1 kg of ice that starts 

at a temperature below 0°C. 

(Horizontal axis not to scale.) 

During the two phase transitions—

melting and boiling—the temper-

ature does not change.

Table 14.3 Heat to Turn 
1 kg of Ice at −25°C to 
Steam at 125°C

Phase Transition or 
Temperature Change Q (kJ)

Ice: −25°C to 0°C 52.3

Melting: ice at 0°C to 

 water at 0°C

333.7

Water: 0°C to 100°C 419

Boiling: water at 100°C 

 to steam at 100°C

2256

Steam: 100°C to 125°C 50



if the water freezes, then the layer of ice over the buds acts like insulation since ice is 

not a particularly good conductor of heat.

      Microscopic View of a Phase Change    To understand what is happening during a 

phase change, we must consider the substance on the molecular level. When a substance 

is in solid form, bonds between the atoms or molecules hold them near fixed equilib-

rium positions. Energy must be supplied to break the bonds and change the solid into a 

liquid. When the substance is changed from liquid to gas, energy is used to separate the 

molecules from the loose bonds holding them together and to move the molecules apart. 

Temperature does not change during these phase transitions because the  kinetic energy

of the molecules is not changing. Instead, the  potential energy  of the molecules changes 

as work is done against the forces holding them together. 

 Note that energy must be 

supplied to break a bond. 

Forming a bond releases energy.

 Note that energy must be 

supplied to break a bond. 

Forming a bond releases energy.

Table 14.4 Latent Heats of Some Common Substances

Substance Melting Point (°C) Heat of Fusion (kJ/kg) Boiling Point (°C) Heat of Vaporization (kJ/kg)

Alcohol (ethyl) −114 104 78 854

Aluminum 660 397 2450 11 400

Copper 1083 205 2340 5070

Gold 1063 66.6 2660 1580

Lead 327 22.9 1620 871

Silver 960.8 88.3 1950 2340

Water 0.0 333.7 100 2256
`

Discussion An easy mistake to make is to use the 

wrong latent heat. Here we were dealing with melt-

ing, so we needed the latent heat of fusion. Another possible 

error is to use the specific heat for the wrong phase: here we 

raised the temperature of solid silver, so we needed the spe-

cific heat of solid silver. With water, we must always be care-

ful to use the specific heat of the correct phase; the specific 

heats of ice, water, and steam have three different values.

Practice Problem 14.7 Making Gold Medals

Some gold medals are to be made from 750 g of solid gold 

at 24°C (Fig. 14.6). How much heat is required to melt the 

gold so that it can be poured into the molds for the medals?

Example 14.7

Making Silver Charms

A jewelry designer plans to make some specially ordered 

silver charms for a commemorative bracelet. If the melting 

point of silver is 960.8°C, how much heat must the jeweler 

add to 0.500 kg of silver at 20.0°C to be able to pour silver 

into her charm molds?

Strategy The solid silver first needs to be heated to its melt-

ing point; then more heat has to be added to melt the silver.

Solution The total heat flow into the silver is the sum of 

the heat to raise the temperature of the solid and the heat that 

causes the phase transition:

Q = mc ΔT + m L 
f
  

The temperature change of the solid is

ΔT = 960.8°C − 20.0°C = 940.8°C

We look up the specific heat of solid silver and the latent 

heat of fusion of silver. Substituting numerical values into 

the equation for Q yields

Q = 0.500 kg × 0.235 kJ/(kg⋅°C) × 940.8°C + 0.500 kg × 88.3 kJ/kg

 = 110.5 kJ + 44.15 kJ = 155 kJ

Figure 14.6

A gold medal: the Nobel 

Prize for physics.
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Example 14.8

Turning Water into Ice

Ice cube trays are filled with 0.500 kg of water at 20.0°C and placed into the freezer 

compartment of a refrigerator. How much energy must be removed from the water to 

turn it into ice cubes at −5.0°C?

Strategy We can think of this process as three consecutive steps. First, the liquid 

water is cooled to 0°C. Then the phase change occurs at constant temperature. Now the 

water is frozen; the ice continues to cool to −5.0°C. The energy that must be removed 

for the whole process is the sum of the energy removed in each of the three steps.

Solution For liquid water going from 20.0°C to 0.0°C,

Q1 = m c w  ΔT1

where

Δ T 
1
   = 0.0°C − 20.0°C = −20.0°C

Since ∆T1 is negative, Q1 is negative: heat must flow out of the water in order for its 

temperature to decrease. Next the water freezes. The heat is found from the latent heat 

of fusion:

 Q 
2
   = −m L

f

Again, heat flows out so Q2 is negative. For phase transitions, we supply the correct sign 

of Q according to the direction of the phase transition (negative sign for freezing, positive 

sign for melting). Finally, the ice is cooled to −5.0°C:

 Q 
3
   =  mc 

ice
   Δ T 

2
  

where

Δ T 
2
   = −5.0°C − 0.0°C = −5.0°C

We use subscripts on the specific heats to distinguish the specific heat of ice from that 

of water. The total heat is

Q = m ( c 
w
  Δ T 

1
   −  L 

f
   +  c 

ice
  Δ T 

2
  )

Now we look up cw, Lf, and cice in Tables 14.1 and 14.4 and substitute:

Q = 0.500 kg ×  [ 4.186   kJ _____ 
kg⋅K

   × (−20.0°C) − 333.7   kJ ___ 
kg

   + 2.1   kJ _____ 
kg⋅K

   × (−5.0°C) ] 
 = −0.500 kg × 427.9   kJ ___ 

kg
   = −214 kJ

So 214 kJ of heat flows out of the water that becomes ice cubes.

Discussion We cannot consider the entire temperature change from +20°C 

to −5°C in one step. A phase change occurs, so we must include the flow of heat 

during the phase change. Also, the specific heat of ice is different from the specific heat of 

liquid water; we must find the heat to cool water 20°C and then the heat to cool ice 5°C.

Practice Problem 14.8 Frozen Popsicles

Nigel pulls a tray of frozen popsicles out of the freezer to share with his friends. If the pop-

sicles are at −4°C and go directly into hungry mouths at 37°C, how much energy is used to 

bring a popsicle of mass 0.080 kg to body temperature? Assume the frozen popsicles have 

the same specific heat as ice and the melted popsicle has the specific heat of water.



Example 14.9

Cooling a Drink

Two 50-g ice cubes are placed into 0.200 kg of water in a Styrofoam cup. The water is ini-

tially at a temperature of 25.0°C and the ice is initially at a temperature of −15.0°C. What 

is the final temperature of the drink? The average specific heat for ice between −15°C and 

0°C is 2.05 kJ/(kg·°C).

Strategy We need to raise the temperature of the ice from −15°C to 0°C before the 

ice can melt, so we first find how much heat this requires. Then we find how much heat 

is needed to melt all the ice. Once the ice is melted, the water from the melted ice can 

be raised to the final temperature of the drink. The heat for all three steps (raising tem-

perature of ice, melting ice, raising temperature of water from melted ice) all comes 

from the water initially at 25°C. That water cools as heat flows out of it. Assuming no 

heat flow into or out of the room, the quantity of heat that flows out of the water initially 

at 25°C flows into the ice or melted ice (before, during, and after melting).

Given: mice = 0.100 kg at −15.0°C; mw = 0.200 kg at 25.0°C; cice = 2.05 kJ/(kg·°C)

Look up: Lf for water = 333.7 kJ/kg; cw = 4.186 kJ/(kg·°C)

Find: Tf

Solution Since heat flows out of the water and into ice, Qw < 0 and Qice > 0. Their 

sum is zero:

 Q 
ice

   +  Q w   = 0

The heat flow into the ice is the sum of three terms:

Qice = miceciceΔTice + miceLf + micecw (Tf − 0.0°C)

The heat flow out of the water is

Qw = mwcw (Tf − 25.0°C)

The heat required to bring the ice from −15.0°C to 0°C is

miceciceΔTice = 0.100 kg × 2.05   kJ _____ 
kg⋅°C

   × 15.0°C = 3.075 kJ

The heat required to melt the ice at 0.0°C is

mice L f = 0.100 kg × 333.7 kJ/kg = 33.37 kJ

The heat to raise the temperature of the melted ice from 0.0°C to Tf is

micecw (Tf − 0.0°C) = 0.100 kg × 4.186   kJ _____ 
kg⋅°C

   × Tf

 = 0.4186   kJ ___ 
°C

   × Tf

The heat supplied by the water that was initially at 25.0°C is

mwcw (Tf − 25.0°C) = 0.200 kg × 4.186   kJ _____ 
kg⋅°C

   × (Tf − 25.0°C)

 = 0.8372   kJ ___ 
°C

   × Tf − 20.93 kJ

Now we substitute these values back into the original equation, Qice + Qw = 0.

3.075 kJ + 33.37 kJ +  ( 0.4186   kJ ___ 
°C

   ×  T f   )  +  ( 0.8372   kJ ___ 
°C

   ×  T f   − 20.93 kJ )  = 0

continued on next page
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  Evaporation 

If you leave a cup of water out at room temperature, the water eventually evaporates. 

Recall that the temperature of the water reflects the average kinetic energy of the water 

molecules; some have higher than average energies and some have lower. The most 

energetic molecules have enough energy to break loose from the molecular bonds at the 

surface of the water. As these highest-energy molecules leave the water, the average 

energy of those left behind decreases—which is why evaporation is a cooling process. 

Approximately the same latent heat of vaporization applies to evaporation as to boiling, 

since the same molecular bonds are being broken. Perspiring basketball players cover 

up while sitting on the bench for a short time during a game to prevent getting a chill 

even though the air in the stadium may be warm. 

 When the humidity is high—meaning there is already a lot of water vapor in the 

air—evaporation proceeds more slowly. Water molecules in the air can also condense 

into water; the net evaporation rate is the difference in the rates of evaporation and con-

densation. A hot, humid day is uncomfortable because our bodies have trouble staying 

cool when perspiration evaporates slowly.  

  Application of evaporation: chill 

caused by perspiration  

  Application of evaporation: chill 

caused by perspiration  

Example 14.9 continued

Simplifying yields

1.2558   kJ ___ 
°C

   ×  T 
f
   + 15.515 kJ = 0

Solving for Tf, we find

 T 
f
   = −   15.515 kJ ___________  

1.2558 kJ/°C
   = −12.4°C

This result does not make sense: we assumed that all of the ice would melt and that the 

final mixture would be all liquid, but we cannot have liquid water at −12.4°C. Let’s take 

another look at the solution.

What if the water initially at 25°C cools all the way to 0°C? From cooling the water, 

how much heat is available to warm the ice and melt it?

  Q w   =  m w   c w   (0°C − 25.0°C)

= 0.200 kg × 4.186   kJ _____ 
kg⋅°C

   × (−25.0°C) = −20.93 kJ

Thus, the water can supply 20.93 kJ when it cools to 0°C. But to warm the ice requires 

3.075 kJ and to melt all of the ice requires another 33.37 kJ. The ice can be warmed to 

0°C, but there is not enough heat available to melt all of the ice. Only some of the ice 

melts, so the drink ends up as a mixture of water and ice in equilibrium at 0°C.

Discussion This example shows the value of checking a result to make sure it 

is reasonable. We started by assuming incorrectly that all of the ice would melt. 

When we obtained an answer that was impossible, we went back to see if there was 

enough heat available to melt all of the ice. Since there was not, the final temperature of 

the drink can only be 0°C—the only temperature at which ice and water can be in ther-

mal equilibrium at atmospheric pressure.

Practice Problem 14.9 Melting Ice

How much of the ice of Example 14.9 melts?



PHYSICS AT HOME

The effects of evaporation can easily be felt. Rub some water on the inside of 

your forearm and then blow on your arm. The motion of the air over your arm 

removes the newly evaporated molecules from the vicinity of your arm and 

allows other molecules to evaporate more quickly. You can feel the cooling 

effect. If you have some rubbing alcohol, repeat the experiment. Since the alco-

hol evaporates faster, the cooling effect is noticeably greater.

  Phase Diagrams 

 A useful tool in the study of phase transitions is the    phase diagram   —a diagram on 

which pressure is plotted on the vertical axis and temperature on the horizontal axis. 

 Figure 14.7a  is a phase diagram for water. A point on the phase diagram represents 

water in a state determined by the pressure and the temperature at that point. The curves 

on the phase diagram are the demarcations between the solid, liquid, and gas phases. 

For most temperatures, there is one pressure at which two particular phases can coexist 

in equilibrium. Since point  P  lies on the fusion curve, water can exist as liquid, or as 

solid, or as a mixture of the two at that temperature and pressure. At point  Q,  water can 

only be a solid. Similarly, at  A  water is a liquid; at  B  it is a gas.     

 The one exception is at the    triple point,    where all three phases (solid, liquid, and 

gas) can coexist in equilibrium. Triple points are used in precise calibrations of ther-

mometers. The triple point of water is precisely 0.01 ° C at 0.006 atm. 

 From the vapor pressure curve, we see that as the pressure is lowered, the tempera-

ture at which water boils decreases. It takes longer to cook a hard-boiled egg at high ele-

vations because the temperature of the boiling water is less than 100 ° C; the chemical 

reactions proceed more slowly at a lower temperature. It might take as long as half an 

hour to hard-boil an egg on Pike’s Peak, where the average pressure is 0.6 atm. 

 If either the temperature or the pressure or both are changed, the point represent-

ing the state of the water moves along some path on the phase diagram. If the path 

crosses one of the curves, a phase transition occurs and the latent heat for that phase 

transition is either absorbed or released (depending on direction). Crossing the fusion 

curve represents freezing or melting; crossing the vapor pressure curve represents con-

densation or vaporization. 
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Figure 14.7 Phase diagrams for (a) water and (b) carbon dioxide. The term vapor is often used to indicate a substance in 

the gaseous state below its critical temperature; above the critical temperature it is called gas. (Note that the axes do not use 

a linear scale.)
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 Notice that the vapor pressure curve ends at the    critical point.    Thus, if the path for 

changing a liquid to a gas goes around the critical point without crossing the vapor pres-

sure curve, no phase transition occurs. At temperatures above the critical temperature or 

pressures above the critical pressure, it is  impossible  to make a clear distinction between 

the liquid and gas phases. 

  Sublimation  occurs when a solid becomes gas (or vice versa) without passing 

through the liquid phase. An example occurs when ice on a car windshield becomes 

water vapor on a cold dry day. Mothballs and dry ice (solid carbon dioxide) also pass 

directly from solid to gas. At atmospheric pressure, only the solid and gas phases of 

CO 2  exist ( Fig. 14.7b ). The liquid phase is not stable below 5.2 atm of pressure, so car-

bon dioxide does not melt at atmospheric pressure. Instead it sublimates; it goes from 

solid directly to gas. Solid CO 2  is called  dry ice  because it is cold and looks like ice, but 

does not melt. Sublimation has its own latent heat; the latent heat for sublimation is not 

the sum of the latent heats for fusion and vaporization. 

   The Unusual Phase Diagram of Water    The phase diagram of water has an unusual 

feature: the slope of the fusion curve is negative. The fusion curve has a negative slope 

only for substances (such as water, gallium, and bismuth) that expand on freezing. In 

these substances the molecules are  closer together  in the liquid than they are in the 

solid! As liquid water starting at room temperature is cooled, it contracts until it reaches 

3.98 ° C. At this temperature water has its highest density (at a pressure of 1 atm); further 

cooling makes the water  expand.  When water freezes, it expands even more; ice is less 

dense than water. 

 One consequence of the expansion of water on freezing is that cell walls might rup-

ture when foods are frozen and thawed. The taste of frozen food suffers as a result. Another 

consequence is that lakes, rivers, and ponds do not freeze solid in the winter. A layer of ice 

forms on  top  since ice is less dense than water; underneath the ice, liquid water remains, 

which permits fish, turtles, and other aquatic life to survive until spring ( Fig. 14.8 ). 

       14.6  THERMAL CONDUCTION 

  Until now we have considered the  effects  of heat flow, but not the mechanism of how 

heat flow occurs. We now turn our attention to three types of heat flow— conduction,  

 convection,  and  radiation.  

 The    conduction    of heat can take place within solids, liquids, and gases. Conduc-

tion is due to collisions between atoms (or molecules) in which energy is exchanged. 

If the average energy is the same everywhere, there is no net flow of heat. If, on the 

other hand, the temperature is not uniform, then on average the atoms with more 

energy transfer some energy to those with less. The net result is that heat flows from 

the higher-temperature region to the lower-temperature region. 

 Conduction also occurs between objects that are in contact. A teakettle on an elec-

tric burner receives heat by conduction since the heating coil of the burner is in contact 

with the bottom of the kettle. The atoms that are vibrating in the object at higher tem-

perature (the coil) collide with atoms in the object at lower temperature (the bottom of 

the kettle), resulting in a net transfer of energy to the colder object. If conduction is 

allowed to proceed, with no heat flow to or from the surroundings, then the objects in 

contact eventually reach thermal equilibrium when the average translational kinetic 

energies of the atoms are equal.      

   Fourier’s Law of Heat Conduction    Suppose we consider a simple geometry such as an 

object with uniform cross section in which heat flows in a single direction. Examples are 

a plate of glass, with different temperatures on the inside and outside surfaces, or a cylin-

drical bar, with its ends at different temperatures ( Fig. 14.9 ). The rate of heat conduction 

depends on the temperature difference Δ T   =   T  hot   −   T  cold , the length (or thickness)  d,  the 

    Figure 14.8   A Nunavut vil-

lager fishing for Arctic char.
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    Figure 14.9 (a) Heat conduc-

tion along a cylindrical bar of 

length  d.  (b) Heat conduction 

through a slab of material of 

thickness  d.   



cross-sectional area  A  through which heat flows, and the nature of the material itself. 

The greater the temperature difference, the greater the heat flow. The thicker the material, 

the longer it takes for the heat to travel through—since the energy transfer has to be passed 

along a longer “chain” of atomic collisions—making the rate of heat flow smaller. A 

larger cross-sectional area allows more heat to flow. 

 The nature of the material is the final thing that affects the rate of energy transfer. 

In metals the electrons associated with the atom are free to move about and they carry 

the heat. When a material has free electrons, the transfer rate is faster; if the electrons 

are all tightly bound, as in nonmetallic solids, the transfer is slower. Liquids, in turn, 

conduct heat less readily than solids, because the forces between atoms are weaker. 

Gases are even less efficient as conductors of heat than solids or liquids since the atoms 

of a gas are so much farther apart and have to travel a greater distance before collisions 

occur. The    thermal conductivity    (symbol  k , the Greek letter kappa) of a substance is 

directly proportional to the rate at which energy is transferred through the substance. 

Higher values of  k   are associated with good conductors of heat, smaller values with 

 thermal insulators  that tend to prevent the flow of heat.  Table 14.5  lists the thermal con-

ductivities for several common substances.

Let 풫 = Q/Δt represent the rate of heat flow (or power). (The script 풫 is used to 

avoid confusing power with pressure.)   The dependence of the  rate  of heat flow through 

a substance on all the factors mentioned is given by

Fourier’s law of heat conduction:

 풫 = k A   ΔT ___ 
d
   (14-10)

where        k   is the thermal conductivity of the material,  A  is the cross-sectional area,  d  is the 

thickness (or length) of the material, and Δ T  is the temperature difference between one 

side and the other. The quantity Δ T / d  is called the  temperature gradient;  it tells how 

many  ° C or K the temperature changes per unit of distance moved along the path of heat 

flow. Inspection of Eq. (14-10) shows that the SI units of  k    are W/(m·K). 

 In  Fig. 14.9b , a slab of material is shown that conducts heat because of a tempera-

ture difference between the two sides. By rearranging Eq. (14-10) and solving for Δ T, 

     ΔT = 풫  
d
 ___ 

k A
   = 풫R    (14-11)   

The quantity  d /( k   A ) is called the    thermal resistance     R. 

     R =   d ___ 
k A

      (14-12)   

Thermal resistance has SI units of K/W (kelvins per watt). Notice that the thermal resis-

tance depends on the nature of the material (through the thermal conductivity   k) and the 

geometry of the object ( d /A ). Equation (14-11) is useful for solving problems when 

heat flows through one material after another.      

   Conduction Through Two or More Materials in Series    Suppose we have two lay-

ers of material between two temperature extremes as in  Fig. 14.10 . These layers are in 

 series  because the heat flows through one and then through the other. Looking at one 

layer at a time,

     T 
1
   −  T 

2
   = 풫 R 

1
          and          T 

2
   −  T 

3
   = 풫 R 

2
    

Then, adding the two together

    ( T 
1
   −  T 

2
  ) + ( T 

2
   −  T 

3
  ) = 풫 R 

1
   + 풫 R 

2
  

ΔT =  T 
1
   −  T 

3
   = 풫( R 

1
   +  R 

2
  )  

  Table 14.5   Thermal 
Conductivities at 20 ° C 

Material k   (   W ____ 
m⋅K

   ) 
Air 0.023

Ri gid panel polyure-

thane insulation

0.023–0.026

Fiberglass insulation 0.029–0.072

Rock wool insulation 0.038

Cork 0.046

Wood 0.13

Soil (dry) 0.14

Asbestos 0.17

Snow 0.25

Sand 0.39

Water 0.6

Wi ndow glass 

(typical)

0.63

Pyrex glass 1.13

Vycor 1.34

Concrete 1.7

Ice 1.7

Stainless steel 14

Lead 35

Steel 46

Nickel 60

Tin 66.8

Platinum 71.6

Iron 80.2

Brass 122

Zinc 116

Tungsten 173

Aluminum 237

Gold 318

Copper 401

Silver 429

CONNECTION: 

Fourier’s law says that the 

rate of heat flow is propor-

tional to the temperature gra-

dient. Closely analogous is 

Poiseuille’s law for viscous 

fluid flow [Eq. (9-15)], in 

which the volume flow rate is 

proportional to the pressure 

gradient.
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The rate of heat flow through the first layer is the same as the rate through the second 

layer because otherwise the temperatures would be changing. For  n  layers,

     ΔT = 풫∑ R n    n = 1, 2, 3, . . .    (14-13)   

Equation (14-13) shows that the effective thermal resistance for layers in series is the 

sum of each layer’s thermal resistance.            

CHECKPOINT 14.6

In Fig. 14.10, which of the two materials has the larger thermal conductivity?

T
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Direction of
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d2
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d1 d2
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    Figure 14.10 (a) Conduction 

of heat through two different 

layers ( T  1  >  T  2  >  T  3 ). (b) Graph 

of temperature  T  as a function of 

position  x.  The slope of the 

graph in either material is the 

temperature gradient Δ T / d  in 

that material. The temperature 

gradients are not the same 

because the materials have dif-

ferent thermal conductivities.  

Now we have all the information we need to find the rate of 

conductive heat flow:

 풫 = k A   ΔT ___ 
d
  

= 0.63 W/(m⋅K) × 0.0300  m 2  × 1.16 ×  10 4  K/m

 = 220 W

Discussion A loss of 220 W through one small window is 

significant. However, our assumption about the temperatures 

of the two glass surfaces exaggerates the temperature differ-

ence across the glass. In reality, the inside surface of the 

glass is colder than the air inside the house, while the out-

side surface is warmer than the air outside.

Practice Problem 14.10 An Igloo

A group of children build an igloo in their garden. The snow 

walls are 0.30 m thick. If the inside of the igloo is at 10.0°C 

and the outside is at −10.0°C, what is the rate of heat flow 

through the snow walls of area 14.0 m2?

Example 14.10

The Rate of Heat Flow Through Window Glass

A windowpane that measures 20.0 cm by 15.0 cm is set 

into the front door of a house. The glass is 0.32 cm thick. 

The temperature outdoors is −15°C and inside is 22°C. At 

what rate does heat leave the house through that one small 

window?

Strategy We assume one side of the glass to be at the tem-

perature of the air inside the house and the other to be at the 

outdoor temperature.

Given: ΔT = 22°C − (−15°C) = 37°C; thickness of 

windowpane d = 0.32 × 10−2 m; area of windowpane 

A = 0.200 m × 0.150 m = 0.0300 m2

Look up: thermal conductivity for glass = 0.63 W/(m·K)

Find: rate of heat flow, 풫

Solution The temperature gradient is

  ΔT ___ 
d
   =   37°C ____________  

0.32 ×  10 −2  m
    = 1.16 ×  10 4  K/m



Thermal Conductivity of Air    Air has a low thermal conductivity; it is an excellent ther-

mal insulator  when it is still.  An accurate calculation of the energy loss through a single-

paned window  must  take into account the thin layer of stagnant air, due to viscosity, on 

each side of the glass. If the temperature is measured near a window, the temperature of 

the air just beside the window is intermediate in value between the temperatures of the 

room air and the outside air (see  Fig. 14.11 ). Thus, the temperature gradient  across the 

glass  is considerably smaller than the difference between indoor and outdoor tempera-

tures. In fact, much of the thermal resistance of a window is due to the stagnant air lay-

ers rather than to the glass.  

    Figure 14.11 Temperature variation on either side of a windowpane. A plot of tem-

perature versus position is superimposed on a cross section of the window glass and 

the air layers on either side.  22°C

–15°C

Window glass

Stagnant
air layers

T

x

The total thermal resistance is

∑ R n   = 0.169 + 7.246 + 0.169 = 7.584 K/W

and the rate of conductive heat flow is

풫 =   
Q

 __ 
Δt

   =   ΔT ____ 
∑ R n  

   =   37 K __________ 
7.584 K/W

   = 4.9 W

Discussion The reduction in the rate of heat loss by replac-

ing a single-paned window with a double pane is significant. 

This example, however, overestimates the reduction since 

we assume that heat can only be conducted through the air 

layer. In reality, heat can also flow through air by convection 

and radiation. A more accurate calculation would have to 

account for the other methods of heat flow.

Practice Problem 14.11 Two Panes of Glass 
Without the Air Gap

Repeat Example 14.11 if the two panes of glass are touching 

one another, without the intervening layer of air.

Example 14.11

Heat Loss Through a Double-Paned Window

The single-paned window of Example 14.10 is replaced by a 

double-paned window with an air gap of 0.50 cm between the 

two panes. The inner surface of the inner pane is at 22°C and 

the outer surface of the outer pane is at −15°C. What is the 

new rate of heat loss through the double-paned window?

Strategy Now there are three layers to consider: two lay-

ers of glass and one layer of air. We find the thermal resis-

tance of each layer and then add them together to find the 

total thermal resistance. Then we find the temperature dif-

ference between the inside of the house and the air outdoors 

and divide by the total thermal resistance to find the rate at 

which heat is lost through the replacement window.

Solution For the first layer of glass,

 R 
1
   =   d ___ 

k A
   =   0.32 ×  10 −2  m  ______________________   

0.63 W/(m⋅K) × 0.0300  m 2 
   = 0.169 K/W

For the air gap,

 R 
2
   =   d ___ 

k A
   =   0.50 ×  10 −2  m  _______________________   

0.023 W/(m⋅K) × 0.0300  m 2 
   = 7.246 K/W

The second layer of glass has the same thermal resistance as 

the first:

 R 
3
   =  R 

1
  

R-Factors    The U.S. building industry rates materials used in construction with  

R-factors.  The R-factor is not quite the same as the thermal resistance; thermal resis-

tance cannot be specified without knowing the cross-sectional area. The R-factor is the 

thickness divided by the thermal conductivity:

  R-factor =   d __ 
k

     = RA

  
p
 __ 

A
   =   ΔT _______ 

R-factor
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Unfortunately, SI units are not used. The R-factors quoted in the United States are in 

units of  ° F·ft 2 /(Btu/h)! R-factors are added, just as thermal resistances are, when heat 

flows through several different layers.     

   14.7  THERMAL CONVECTION 

     Convection    involves  fluid currents  that carry heat from one place to another. In conduc-

tion, energy flows through a material but the material itself does not move. In convec-

tion,  the material itself moves  from one place to another. Thus, convection can occur 

only in fluids, not in solids. When a wood stove is burning, convection currents in the 

air carry heat upward to the ceiling. The heated air is less dense than cooler air, so the 

buoyant force causes it to rise, carrying heat with it. Meanwhile, cooler air that is more 

dense sinks toward the floor. An example of convection currents at the seashore is shown 

in  Fig. 14.12 . Air is a poor  conductor  of heat, but it can easily flow and carry heat by 

 convection.      

 The use of sealed, double-paned windows replaces the large air gap of about 6 or 

7 cm between a storm window and regular window with a much smaller gap. The 

smaller air gap minimizes circulating convection currents between the two panes. Down 

jackets and quilts are good insulators because air is trapped in many little spaces among 

the feathers, minimizing heat flow due to convection. Materials such as rock wool, glass 

wool, or fiberglass are used to insulate walls; much of their insulating value is due to the 

air trapped around and between the fibers.      

   Natural and Forced Convection    In  natural convection,  the currents are due to gravity. 

Fluid with a higher density sinks because the buoyant force is smaller than the weight; 

less dense fluid rises because the buoyant force exceeds the weight ( Figs. 14.13  and 

 14.14 ). In  forced convection,  fluid is pushed around by mechanical means such as a fan 

or pump. In forced-hot-air heating, warm air is blown into rooms by a fan ( Fig. 14.15 ); 

in hot water baseboard heating, hot water is pumped through baseboard radiators. 

Another example of forced convection is blood circulation in the body. The heart pumps 

blood around the body. When our body temperature is too high, the blood vessels near 

the skin dilate so that more blood can be pushed into them by the heart. The blood car-

ries heat from the interior of the body to the skin; heat then flows from the skin into 

the cooler surroundings. If the surroundings are  hotter  than the skin, such as in a hot 

tub, this strategy backfires and can lead to dangerous overheating of the body. The hot 

Applications of convection: off-

shore and onshore breezes, double-

paned windows, and down jackets
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Applications of forced 

convection: building heat-

ing systems; temperature 

regulation in the human 

body.

Applications of forced 
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    Figure 14.12 (a) During the day, air coming off the ocean is heated as it passes over 

the warm ground on shore; the heated air rises and expands. The expansion cools the 

air; it becomes more dense and falls back down. This cycle sets up a convection cur-

rent that brings cool breezes from the sea to the shore. (b) The reverse circulation 

occurs at night when the land is cold and the sea is warmer, retaining heat absorbed 

during the day.  

Cool Cool

Hot

    Figure 14.13 Convection cur-

rents in heated water. Heat flows 

through the bottom surface of 

the pot by conduction and then 

heats the layer of water in con-

tact with the pot bottom. The 

heated water is less dense, so 

buoyant forces make it rise, set-

ting up convection currents.  
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water delivers heat to the dilated blood vessels; the blood carries the heat back to the 

central core of the body,  raising  the core temperature. (For more information on con-

vection, see text website.  )       

  Convection and Global Climate Change 

 One worry for scientists studying global warming is that northern Europe might be 

plunged into a deep freeze—a seeming contradiction that results from an interruption of 

the natural convection cycle. Earth’s climate is influenced by convection currents caused 

by temperature differences between the poles and the tropics ( Fig. 14.16 ). Massive sea 

currents travel through the Pacific and Atlantic oceans, carrying about half of the heat 

from the tropics to the poles, where it is dissipated. Storms moving north from the 

tropics carry much of the rest of the heat. If the polar regions warm at a faster rate than 

the tropics, the smaller temperature difference between them changes the patterns of 

the prevailing winds, the tracks followed by storms, the speed of ocean currents, and the 

amount of precipitation.     

 For example, the melting of the ice shelves combined with increased precipitation 

could lead to a layer of fresh water lying on top of the more dense salt water in the 

North Atlantic. Normally, the cold ocean water at the surface sinks and starts the pro-

cess of convection. With the buoyancy of the less dense freshwater layer keeping it from 

sinking, the convection currents slow down or are stopped. Without the pull of the con-

vection current, the usual northward movement of water from the warm Gulf Stream 

would slow or cease, causing  colder  temperatures in northern Europe. 

 Such an effect on climate is not without precedent. At the end of the last Ice Age, 

freshwater from melting glaciers flowed out the St. Lawrence River and into the North 

Atlantic. A freshwater layer, buoyed up by the more dense salt water, disrupted the 

usual ocean currents. The Gulf Stream was effectively shut down and Europe experi-

enced a thousand years of deep freeze.    

   14.8  THERMAL RADIATION 

  All bodies emit energy through electromagnetic radiation—due to the oscillation of 

electric charges in the atoms. Thermal radiation consists of electromagnetic waves that 

travel at the speed of light. Unlike conduction and convection, radiation does not require 

a material medium; the Sun radiates heat to Earth through the near vacuum of space.     

Application of convection: ocean 

currents and global climate change

Application of convection: ocean 

currents and global climate change
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    Figure 14.15 Household 

heating systems rely on forced 

convection.  

  Figure 14.14 Birds (and peo-

ple flying sailplanes) take 

advantage of thermal updrafts.

    Figure 14.16 Surface convec-

tion currents in the oceans. The 

Gulf Stream is a current of warm 

water flowing across the Atlantic.  
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 When solar radiation reaches Earth, it is partially absorbed and partially reflected. 

Earth also emits radiation at nearly the same average rate that it absorbs energy from the 

Sun. If there were an exact equilibrium between absorption and emission, Earth’s aver-

age temperature would stay constant. However, increasing concentrations of CO 2  and 

other “greenhouse gases” in Earth’s atmosphere cause energy to be emitted at a slightly 

lower rate than it is absorbed. As a result, Earth’s average temperature is rising. Although 

the predicted temperature increase may seem small on an absolute scale, it will have 

dramatic consequences for life on Earth. 

An object emits thermal radiation 

while absorbing some of the thermal 

radiation emitted by other objects. 

The rate of absorption may be less 

than, equal to, or greater than the 

rate of emission.

An object emits thermal radiation 

while absorbing some of the thermal 

radiation emitted by other objects. 

The rate of absorption may be less 

than, equal to, or greater than the 

rate of emission.

radiation than it emits. Absorption increases internal energy 

while emission decreases it, so the alligator’s internal energy 

is increasing at a rate of 130 W. Thus, we expect the alliga-

tor’s body temperature to rise. (The actual rate of increase of 

internal energy would be smaller since conduction and con-

vection carry heat away as well.)

Conceptual Practice Problem 14.12 Maintaining 
Constant Temperature

After some time elapses, the alligator’s body temperature 

reaches a constant level. The rate of absorption is still 230 W. 

If the alligator loses heat by conduction and convection at a 

rate of 90 W, at what rate does it emit radiation?

Conceptual Example 14.12

An Alligator Lying in the Sun

An alligator crawls out into the Sun to get warm. Solar 

radiation is incident on the alligator at the rate of 300 W; 

70 W of it is reflected. (a) What happens to the other 

230 W? (b) If the alligator emits 100 W, does its body tem-

perature rise, fall, or stay the same? Ignore heat flow by 

conduction and convection.

Solution and Discussion (a) When radiation falls on an 

object, some can be absorbed, some can be reflected, and—

for a transparent or translucent object—some can be trans-

mitted through the object without being absorbed or 

reflected. Since the alligator is opaque, no radiation is trans-

mitted through it. All the radiation is either absorbed or 

reflected, so the other 230 W is absorbed. (b) Since 230 W is 

absorbed while 100 W is emitted, the alligator absorbs more 

  Stefan’s Radiation Law 

 An idealized body that absorbs all the radiation incident upon it is called a    blackbody.

A blackbody absorbs not only all visible light, but infrared, ultraviolet, and all other 

wavelengths of electromagnetic radiation. It turns out (see Conceptual Question 23) 

that a good  absorber  is also a good  emitter  of radiation. A blackbody emits more radiant 

power per unit surface area than any real object at the same temperature. The rate at 

which a blackbody emits radiation per unit surface area is proportional to the fourth 

power of the  absolute  temperature:

Stefan’s Law of Radiation (blackbody)

 풫 = s   A T   4  (14-14)

 

   In Eq. (14-14),  A  is the surface area and  T  is the surface temperature of the blackbody  in 

kelvins.   Since Stefan’s law involves the absolute temperature and not a temperature dif-

ference,  ° C   cannot   be substituted.  The universal constant  s   (Greek letter sigma) is 

called  Stefan’s constant: 

     s  = 5.670 ×  10 −8  W/( m 2 ⋅ K 4 )    (14-15)   



The fourth-power temperature dependence implies that the power emitted is extremely 

sensitive to temperature changes. If the absolute temperature of a body doubles, the 

energy emitted increases by a factor of 2 4   =  16. 

   Emissivity    Since real bodies are not perfect absorbers and therefore emit less than a 

blackbody, we define the    emissivity    ( e ) as the ratio of the emitted power of the body to 

that of a blackbody at the same temperature. Then Stefan’s law becomes 

Stefan’s Law of Radiation

 풫 = es  A T   4  (14-16)

 The emissivity ranges from 0 to 1;  e   =  1 for a perfect radiator and absorber (a black-

body) and  e   =  0 for a perfect reflector. The emissivity for polished aluminum, an excel-

lent reflector, is about 0.05; for soot (carbon black) it is about 0.95.   Equation (14-16) is 

a refinement of Stefan’s law, but it is still an approximation because it treats the emissivity 

as a constant. Emissivity is actually a function of the wavelength of the emitted radiation. 

Equation (14-16) is useful when the emissivity is approximately constant over the range 

of wavelengths in which most of the power is radiated. 

 Human skin, no matter what the pigmentation, has an emissivity of about 0.97 in 

the infrared part of the spectrum. Many objects have high emissivities in the infrared 

even though they may reflect much of the visible light incident on them and, therefore, 

have low emissivities in the visible range.   

  Radiation Spectrum 

 The electromagnetic radiation we are concerned with falls into three wavelength ranges. 

Infrared radiation includes wavelengths from about 100  μ m down to 0.7 μ  m. The wave-

lengths of visible light range from about 0.7 μ  m to about 0.4 μ  m. Ultraviolet wave-

lengths are less than 0.4 μ  m. 

 The total power radiated is not the only thing that varies with temperature.  Fig-

ure 14.17  shows the radiation spectrum—a graph of how much radiation occurs as a 

function of wavelength—for blackbodies at two different temperatures. The wavelength 

at which the maximum power is emitted decreases as temperature increases. Objects at 

ordinary temperatures emit primarily in the infrared—around 10 μ  m in wavelength for 

300 K. The Sun, since it is much hotter, radiates primarily at shorter wavelengths. Its 

radiation peaks in the visible (no surprise there) but includes plenty of infrared and 

ultraviolet as well. The wavelength of maximum radiation is inversely proportional to 

the absolute temperature: 

Wien’s Law

  l  max  T = 2.898 ×  10 −3  m⋅K (14-17)

 where the temperature  T  is the temperature in kelvins and  l   max  is the wavelength of 

maximum radiation in meters. 

 As the temperature of the blackbody rises to 1000 K and above, the peak inten-

sity shifts toward shorter wavelengths until some of the emitted radiation falls in the 

visible. Since the longest visible wavelengths are for red light, the heated body glows 

dull red. As the temperature of the blackbody continues to increase, the red glow 

becomes brighter red, then orange, then yellow-white, and eventually blue-white as 
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    Figure 14.17 Graphs of 

blackbody radiation as a func-

tion of wavelength at two differ-

ent temperatures. At the higher 

temperature, the wavelength of 

maximum radiation is shorter 

(Wien’s law) and the total power 

radiated, represented by the area 

under the graph, increases 

(Stefan’s law).  
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  Simultaneous Emission and Absorption of Thermal Radiation 

 An object simultaneously emitting and absorbing thermal radiation has a  net  rate of 

heat flow due to thermal radiation given by     풫net =  풫emitted − 풫absorbed.   Suppose an object 

with surface area  A  and temperature  T  is bathed in thermal radiation coming from its 

surroundings in all directions that are at a  uniform  temperature  T  s . Then the  net  rate of 

heat flow due to thermal radiation is    

 풫net = es  A T  4  − es   A T   s  
4
  = es  A( T   4  −  T   s  

4
 )    (14-18)   

A body emits energy even if it is at the same temperature as its surroundings; it just emits 

at the same rate that it absorbs, so     풫net = 0.   If  T  >  T  s , the object emits more thermal radia-

tion than it absorbs. If  T  <  T  s , the object absorbs more thermal radiation than it emits.     

 Why is the rate of  absorption  proportional to the  emissivity?  Because a good emit-

ter is also a good absorber. The emissivity  e  measures not only how much the object 

emits compared to a blackbody; it also measures how much the object  absorbs  com-

pared with a blackbody. A blackbody at the same temperature as its surroundings would 

have to absorb radiation at the rate     풫absorbed = s  A T   s  
4
    to exactly balance the rate of emis-

sion. However, emissivity does depend on temperature. Equation (14-18) assumes the 

emissivity at temperature  T  is the same as the emissivity at temperature  T  s . If  T  and  T  s  

are very different, we would have to modify Eq. (14-18) to use two different 

emissivities. 

    Do not substitute temperature in Celsius degrees into Eq. (14-18). The quantity 

inside the parentheses might look like a temperature difference, but it is not. The two 

kelvin temperatures are raised to the fourth power,   then   subtracted—which is not the 

same as the corresponding two Celsius temperatures subjected to the same mathematical 

Net rate of energy transfer due to 

emission and absorption of thermal 

radiation

Net rate of energy transfer due to 

emission and absorption of thermal 

radiation

Discussion Quick check: an object at 300 K has 

l max ≈ 10 μm, which is 20 times the l max in the radiation 

from the Sun (0.5 μm). Since l max and T are inversely pro-

portional, the Sun’s surface temperature is 20 times 

300 K = 6000 K.

Practice Problem 14.13 Wavelengths of Maximum 
Power Emission for Skin

The temperature of skin varies from 30°C to 35°C depend-

ing on the blood flow near the skin surface. What is the 

range of wavelengths of maximum power emission from 

skin?

Example 14.13

Temperature of the Sun

The maximum rate of energy emission from the Sun occurs 

in the middle of the visible range—at about l  = 0.5 μm. Esti-

mate the temperature of the Sun’s surface.

Strategy We assume the Sun to be a blackbody. Then the 

wavelength of maximum emission and the surface tempera-

ture are related by Wien’s law.

Solution Given: l max = 0.5 μm = 5 × 10−7 m. Then from 

Wien’s law, we know that the product of the wavelength for 

maximum power emission and the corresponding tempera-

ture for the power emission is

 l  max  T = 2.898 ×  10 −3  m⋅K

We can solve for the temperature since we know l max:

T =   2.898 ×  10 −3  m⋅K  _______________  
5 ×  10 −7  m

  

 = 6000 K

the blackbody emits more and more visible light. When the body is emitting all the col-

ors of the visible spectrum, the glow appears white to the eye. When something is red-

hot, it is not as hot as something that is white-hot.  



operations. By the same token, do not subtract the temperatures in kelvins and then 

raise to the fourth power.  The difference of the fourth powers is not equal to the differ-

ence raised to the fourth power, as can be readily demonstrated:

    ( 2 4  −  1 4 ) = 15 but (2 − 1 ) 4  = 1    

Medical Applications of Thermal Radiation 

 Thermal radiation from the body is used as a diagnostic tool in medicine. “Instant-read” 

thermometers work by measuring the intensity of thermal radiation in the patient’s ear. 

A thermogram shows whether one area is radiating more heat than it should, indicating 

a higher temperature due to abnormal cellular activity. For example, when a broken 

bone is healing, heat can be detected at the location of the break just by placing a hand 

lightly on the area of skin over the break. Infrared detectors, originally developed for 

military uses (nightscopes, for example), can be used to detect radiation from the skin. 

The radiation is absorbed and an electrical signal is produced that is then used to pro-

duce a visual display ( Fig. 14.18 ). Thermography has been used to screen travelers at 

airports in Asia for the high fever that accompanies infection with severe acute respira-

tory syndrome (SARS).  

    Figure 14.18 Thermography 

of a backache. The magenta 

areas are warmer than the sur-

rounding tissue, revealing the 

location of the source of pain.  

Substituting,

풫net = 0.97 × 5.67 ×  10 −8  W/( m 2 ⋅ K 4 ) × 2.0  m 2  × ( 307 4  −  295 4 )  K 4 

= 140 W

Discussion 140 W is a significant heat loss because the 

body also loses about 10 W by convection and conduction. 

To stay at a constant body temperature, an inactive person 

must give off heat at a rate of 90 W to account for basal met-

abolic activity; if the rate of heat loss exceeds that, the body 

temperature starts to drop. The patient had better wrap a 

blanket around his body or start running in place.

We need only the fraction of energy emitted and absorbed 

by the body; the emissivity of the walls of the room is irrele-

vant. If the walls are poor emitters, then they also absorb 

poorly, so they reflect radiation. The amount of radiation 

incident on the body is the same.

Practice Problem 14.14 The Roller Blader 
Radiates

Find how much energy per unit time a roller blader loses 

by radiation from her body. Her skin temperature is 35°C 

and the air temperature is 30°C. Her surface area is 1.2 m2, 

of which 75% is exposed to the air. Assume skin has 

e = 0.97.

Example 14.14

Thermal Radiation from the Human Body

A person of body surface area 2.0 m2 is sitting in a 

doctor’s examining room with no clothing on. The 

temperature of the room is 22°C and the person’s average 

skin temperature is 34°C. Skin emits about 97% as much as 

a blackbody at the same temperature for wavelengths in the 

infrared region, where most of the emission occurs. At what 

net rate is energy radiated away from the body?

Strategy Both radiation and absorption occur in the 

infrared—the absolute temperatures of the skin and the 

room are not very different. Therefore, we can assume that 

97% of the incident radiation from the room is absorbed. 

Equation (14-18) therefore applies. We must convert the 

Celsius temperatures to kelvins.

Given: surface area, A = 2.0 m2; Troom = 22°C; skin tempera-

ture, T = 34°C; fraction of energy emitted, e = 0.97

To find: net rate of energy transfer, 풫net

Solution The temperature of the skin surface is

T = 273 + 34 = 307 K

and of the room is

 T s   = 273 + 22 = 295 K

The net rate of energy transfer between the room and the 

body is

풫net = es  A( T  4  −  T   s  
4
 )
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Solving Stefan’s law for T yields

T =   (   풫 ____ 
es   A

   )  
1/4

 

Now we substitute numerical values:

T =   (   풫 _______ 
es 4p  R  E  

2
  
   )  

1/4

 

=   [   1.2 ×  10 17  W   ______________________________________    
1 × 5.67 ×  10 −8  W/( m 2 ⋅ K 4 ) × 4p (6.4 ×  10 6  m ) 2 

   ]  
1/4

 

= 253 K = −20°C

Discussion Remember that −20°C is supposed to be the 

average temperature of the atmosphere, not of Earth’s sur-

face. This relatively simple calculation gives impressively 

accurate results. To find the temperature of Earth’s surface, 

we must take the greenhouse effect into account.

Practice Problem 14.15 Reflecting Less Incident 
Radiation

If Earth were to reflect 25% of the incident radiation 

instead of 30%, what would be the average temperature of 

the atmosphere?

Example 14.15

Radiative Equilibrium of Earth

Radiant energy from the Sun reaches Earth at a rate of 

1.7 × 1017 W. An average of about 30% is reflected and the 

rest is absorbed. Energy is also radiated by the atmosphere. 

Assuming equal rates of absorption and emission, and that 

the atmosphere emits as a blackbody in the infrared (e = 1), 

calculate the temperature of the atmosphere. (The Sun’s 

radiation peaks in the visible part of the spectrum, but Earth’s 

radiation peaks in the infrared due to its much lower surface 

temperature.)

Strategy Earth must radiate the same power as it absorbs. 

We use Stefan’s law to find the rate at which energy is radi-

ated as a function of temperature and then equate that to the 

rate of energy absorption.

Solution Earth absorbs 70% of the incident solar radia-

tion. To have a relatively constant temperature, it must emit 

radiation at the same rate:

풫 = 0.70 × 1.7 ×  10 17  W = 1.2 ×  10 17  W

From Stefan’s law,

풫 = es   A T 4 

where we take e = 1 since the atmosphere is assumed to emit 

as a blackbody. Earth’s surface area is

A = 4p  R  E  
2
  

  Application of Thermal Radiation: Global Climate Change 

 Earth receives heat by radiation from the Sun. The atmosphere helps trap some of the 

radiation, acting rather like the glass in a greenhouse. When sunlight falls on the glass 

of a greenhouse, most of the visible radiation and short-wavelength infrared ( near-

infrared  ) travel right on through; the glass is transparent to those wavelengths. The 

glass absorbs much of the incoming ultraviolet radiation. The radiation that gets through 

the glass is mostly absorbed inside the greenhouse. Since the inside of the greenhouse is 

much cooler than the Sun, it emits primarily infrared radiation (IR). The glass is not 

transparent to this longer-wavelength IR; much of it is absorbed by the glass. The glass 

itself also emits IR, but in both directions: half of it is emitted back inside the green-

house. The absorption of IR by the glass keeps the greenhouse warmer than it would 

otherwise be. (The glass in a greenhouse has a second function not mirrored in Earth’s 

atmosphere—it prevents heat from being carried away by convection.) 

 Earth is something like a greenhouse, where the atmosphere fulfills the role of the 

glass. Like glass, the atmosphere is largely transparent to visible and near IR; the ozone 

layer in the upper atmosphere absorbs some of the ultraviolet. The atmosphere absorbs 

a great deal of the longer-wavelength IR emitted by Earth’s surface. The atmosphere 

 radiates  IR in two directions: back toward the surface and out toward space ( Fig. 14.19 ). 

“Greenhouse gases” such as CO 2  and water vapor are particularly good absorbers of IR. 

The higher the concentration of greenhouse gases in the atmosphere, the more IR is 



absorbed and the warmer Earth’s surface becomes. Even small changes in the average 

surface temperature can have dramatic effects on climate.     

 In applying Stefan’s radiation law to Earth, there are some complications. One is 

the effect of the cloud cover. Clouds are quite reflective, but they are sometimes there 

and sometimes not. The heating of the lakes and oceans causes water to evaporate and 

form clouds. The clouds then serve as a screen and reflect sunlight away from Earth, 

reducing the temperature again.     

UV

IR

IR emitted by
atmosphere

Visible

Atmosphere
Ozone

Earth

From the Sun

IR emitted by Earth’s surface

  Figure 14.19 The global 

greenhouse effect. In this  simpli-

fied  diagram, all the UV from 

the Sun is absorbed by the atmo-

sphere, while all the visible and 

IR from the Sun is transmitted. 

Earth absorbs the visible and IR 

and radiates longer-wavelength 

IR. The longer-wavelength IR is 

absorbed by the atmosphere, 

which itself radiates IR both 

back toward the surface and out 

toward space.

        • The internal energy of a system is the total energy of all 

of the molecules in the system except for the macro-

scopic kinetic energy (kinetic energy associated with 

macroscopic translation or rotation) and the external 

potential energy (energy due to external interactions).  

   • Heat is a   flow  of energy that occurs due to a tempera-

ture difference.  

   • The joule is the SI unit for all forms of energy, for heat, 

and for work. An alternative unit sometimes used for 

heat and internal energy is the calorie:

      1 cal = 4.186 J    (14-1)     

   • The ratio of heat flow into a system to the temperature 

change of the system is the heat capacity of the system:

      C =   
Q

 ___ 
ΔT

      (14-2)     

   • The heat capacity per unit mass is the specific heat 

capacity (or specific heat) of a substance:

 c =   
Q
 _____ 

m ΔT
      (14-3)     

   • The  molar specific heat  is the heat capacity per mole:

       C 
V
   =   

Q
 _____ 

n ΔT
      (14-6)   

  At room temperature, the molar heat capacity at con-

stant volume for a monatomic ideal gas is approxi-

mately      C 
V
   =    3 _ 

2
  R, and   for a diatomic ideal gas it is 

approximately      C 
V
   =    5 _ 

2
  R.    

   • Phase transitions occur at constant temperature. The 

heat  per unit mass  that must flow to melt a solid or to 

freeze a liquid is the latent heat of fusion  L  f . The latent 

heat of vaporization  L  v  is the heat  per unit mass  that 

must flow to change the phase from liquid to gas or 

from gas to liquid. 
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   •  Sublimation  occurs when a solid changes directly to a 

gas without going into a liquid form.  

   • A phase diagram is a graph of pressure versus tempera-

ture that indicates solid, liquid, and gas regions for a 

continued on next page
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substance. The sublimation, fusion, and vapor pressure 

curves separate the three phases. Crossing one of these 

curves represents a phase transition. 
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 • Heat flows by three processes: conduction, convection, 

and radiation.  

   • Conduction is due to atomic (or molecular) collisions 

within a substance or from one object to another when 

they are in contact. The rate of heat flow within a sub-

stance is:

      풫 = k A   ΔT ___ 
d
      (14-10)   

  where 풫 is the rate 

of heat flow (or 

power delivered),  k  

is the thermal con-

ductivity of the mate-

rial,  A  is the cross-

sectional area,  d  is 

the thickness (or 

length) of the material, and Δ T  is the temperature differ-

ence between one side and the other.      

   • Convection involves  fluid currents  that carry heat from 

one place to another. In convection, the material itself 

moves from one place to another.      

Chimney

Exhaust

Cold air

Hot air

Furnace

   • Thermal radiation does not have to travel through a 

material medium. The energy is carried by electromag-

netic waves that travel at the speed of light. All bodies 

emit energy through electromagnetic radiation. An ide-

alized body that absorbs all the radiation incident on it 

is called a blackbody. A blackbody emits more radiant 

power per unit surface area than any real object at the 

same temperature. Stefan’s law of thermal radiation is

      풫 = es A T  4     (14-16)   

  where the emissivity  e  ranges from 0 to 1,  A  is the 

surface area,  T  is the surface temperature of the 

blackbody  in kelvins,  and Stefan’s constant is 

 s   =  5.670  ×  10  − 8  W/(m 2 ·K 4 ). The wavelength of maxi-

mum power emission is inversely proportional to the 

absolute temperature:

       l  max  T = 2.898 ×  10 −3  m⋅K    (14-17)   

  The difference between the power emitted by the body 

and that absorbed by the body from its surroundings is 

the net power emitted:

      풫net = es  A( T  4  −  T   s  
4
 )    (14-18)       

Master the Concepts continued
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  Conceptual Questions 

    1. What determines the direction of heat flow when two 

objects at different temperatures are placed in thermal 

contact?  

   2. When an old movie has a scene of someone ironing, the 

person is often shown testing the heat of a hot flat iron 

with a moistened finger. Why is this safe to do?  

   3. Why do lakes and rivers freeze first at their surfaces?  

   4. Why is drinking water in a camp located near the equa-

tor often kept in porous jars?  

   5. Why are several layers of clothing warmer than one 

coat of equal weight?  

   6. Why are vineyards planted along lakeshores or river-

banks in cold climates?  

   7. A metal plant stand on a wooden deck feels colder than 

the wood around it. Is it necessarily colder? Explain.  

   8. Near a large lake, in what direction does a breeze pass-

ing over the land tend to blow at night?  

   9. What is the purpose of having fins on an automobile or 

motorcycle radiator?  

   10. Why do roadside signs warn that bridges ice before 

roadways? Explain.  

   11. Why do cooking directions on packages advise differ-

ent timing to be followed for some locations?  



   12. Explain the theory behind the pressure cooker. How 

does it speed up cooking times?  

   13. When you eat a pizza that has just come from the oven, 

why is it that you are apt to burn the roof of your mouth 

with the first bite although the crust of the pizza feels 

only warm to your hand?  

   14. Explain why the molar specific heat of a diatomic gas 

such as O 2  is larger than that of a monatomic gas such 

as Ne.  

   15. At very low temperatures, the molar specific heat of 

hydrogen (H 2 ) is  C  V   =  1.5 R.  At room temperature, 

 C  V   =  2.5 R.  Explain.  

   16. When the temperature as measured in  ° C of a radiating 

body is doubled (such as a change from 20 ° C to 40 ° C), is 

the radiation rate necessarily increased by a factor of 16?  

   17. A cup of hot coffee has been poured, but the coffee 

drinker has a little more work to do at the computer 

before she picks up the cup. She intends to add some 

milk to the coffee. To keep the coffee hot as long as pos-

sible, should she add the milk at once, or wait until just 

before she takes her first sip?  

   18. Would heat loss be reduced or increased by increasing 

the usual air gap, 1 to 2 cm, between commercially 

made double-paned windows? Explain your reasoning. 

[ Hint:  Consider convection.]  

   19. A study of food preservation in Britain discovered that 

the temperature of meat that is kept in transparent plas-

tic packages and stored in open and lighted freezers can 

be as much as 12 ° C above the temperature of the freezer. 

Why is this? How could this be prevented?  

   20. Which possesses more total internal energy, the water 

within a large, partially ice-covered lake in winter or a 

6-cup teapot filled with hot tea? Explain.  

   21. A room in which the air temperature is held constant 

may feel warm in the summer but cool in the winter. 

Explain. [ Hint:  The walls are not necessarily at the same 

temperature as the air.]  

   22. Many homes are heated with “radiators,” which are hol-

low metal devices filled with hot water or steam and 

located in each room of the house. They are sometimes 

painted with metallic, high-gloss silver paint so that they 

look well polished. Does this make them better radiators of 

heat? If not, what might be a more efficient finish to use?  

   23. Two objects with the same surface area are inside an 

evacuated container. The walls of the container are kept 

at a constant temperature. Suppose one object absorbs a 

larger fraction of incident radiation than the other. 

Explain why that object must emit a correspondingly 

greater amount of radiation than the other. Thus a good 

absorber must be a good emitter.  

   24. Even though heat is not a fluid, Eq. (14-11) has a close 

analogy in Poiseuille’s law, which describes the vis-

cous flow of a fluid through a pipe (see Problem 9.60). 

(a) Explain the analogy. (b) For two or more thermal 

conductors in series, the total thermal resistance is just 

the sum of the thermal resistances [Eq. (14-13)]. Is the 

total fluid flow resistance for two or more pipes in 

series equal to the sum of the resistances? Explain.    

  Multiple-Choice Questions 

    1. The main loss of heat from Earth is by

    (a) radiation.  

   (b) convection.  

   (c) conduction.  

   (d)  All three processes are significant modes of heat 

loss from Earth.     

   2. Assume the average temperature of Earth’s atmosphere 

to be 253 K. What would be the eventual average tem-

perature of Earth’s atmosphere if the surface tempera-

ture of the Sun were to drop by a factor of 2?

    (a) 253 K      (b)       253 K ______ 
2
   = 127 K    

   (c)       253 K ______ 
4
   = 63 K       (d)       253 K ______ 

 2 4 
   = 16 K       

   3. In equilibrium, Mars emits as much radiation as it absorbs. 

If Mars orbits the Sun with an orbital radius that is 1.5 

times the orbital radius of Earth about the Sun, what is the 

approximate atmospheric temperature of Mars? Assume 

the atmospheric temperature of Earth to be 253 K.

    (a)       253 K ______ 
1.5

   = 170 K       (b)       253 K ______ 
1. 5 2 

   = 112 K    

   (c)       253 K ______ 
1. 5 4 

   = 50 K       (d)            253 K
 ______ 

 √
___

 1.5  
   = 207 K

   4. Which term best represents the relation between a 

blackbody and radiant energy? A blackbody is an ideal    

_______ of radiant energy.

    (a) emitter     (b) absorber  

   (c) reflector     (d) emitter and absorber     

   5. A window conducts power  P  from a house to the cold 

outdoors. What power is conducted through a window 

of  half  the area and  half  the thickness?

    (a) 4 P      (b) 2 P      (c)  P      (d)  P /2     (e)  P /4     

   6. Iron has a specific heat that is about 3.4 times that of 

gold. A cube of gold and a cube of iron, both of equal 

mass and at 20 ° C, are placed in two different Styrofoam 

cups, each filled with 100 g of water at 40 ° C. The Sty-

rofoam cups have negligible heat capacities. After equi-

librium has been attained,

    (a)  the temperature of the gold is lower than that of the 

iron.  

   (b)  the temperature of the gold is higher than that of the 

iron.  

   (c)  the temperatures of the water in the two cups are the 

same.  

   (d) Either (a) or (b), depending on the mass of the cubes.     
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   7. Sublimation is involved in which of these phase 

changes?

     (a) liquid to gas     (b) solid to liquid  

    (c) solid to gas     (d) gas to liquid     

   8. When a vapor condenses to a liquid,

    (a) its internal energy increases.  

   (b) its temperature rises.  

   (c) its temperature falls.  

   (d) it gives off internal energy.     

   9. When a substance is at its triple point, it

    (a) is in its solid phase.  

   (b) is in its liquid phase.  

   (c) is in its vapor phase.  

   (d) may be in any or all of these phases.     

   10. The phase diagram for water is shown in the figure. If 

the temperature of a certain amount of ice is increased 

by following the path represented by the dashed line 

from  A  to  B  in the phase diagram, which of the graphs 

of temperature as a function of heat added is correct? 
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   11. Two thin rods are made from the same material and 

are of lengths  L  1  and  L  2 . The two ends of the rods have 

the same temperature difference. What should the 

relation be between their diameters and lengths so 

that they conduct equal amounts of heat energy in a 

given time?

    (a)       
 L 

1
  
 ___ 

 L 
2
  
   =   

 d 
1
  
 __ 

 d 
2
  
         (b)       

 L 
1
  
 ___ 

 L 
2
  
   =   

 d 
2
  
 __ 

 d 
1
  
      

   (c)       
 L 

1
  
 ___ 

 L 
2
  
   =   

 d  1  
2
 
 __ 

 d  2  
2
 
         (d)       

 L 
1
  
 ___ 

 L 
2
  
   =   

 d  2  
2
 
 __ 

 d  1  
2
 
         

   12. If you place your hand underneath, but not touching, a 

kettle of hot water, you  mainly  feel the presence of heat 

from

    (a) conduction.    

 (b) convection.    

 (c) radiation.       

  Problems 

 Combination conceptual/quantitative problem  

 Biological or medical application  

✦ Challenging problem  

Blue # Detailed solution in the Student Solutions Manual  

1  2  Problems paired by concept  

 Text website interactive or tutorial   

  14.1 Internal Energy 

       1.  A mass of 1.4 kg of water at 22 ° C is poured from a 

height of 2.5 m into a vessel containing 5.0 kg of water 

at 22 ° C. (a) How much does the internal energy of the 

6.4 kg of water increase? (b) Is it likely that the water 

temperature increases? Explain.  

    2.  The water passing over Victoria Falls, located along the 

Zambezi River on the border of Zimbabwe and Zambia, 

drops about 105 m. How much internal energy is pro-

duced per kilogram as a result of the fall?  

  3.  How much internal energy is generated when a 20.0-g 

lead bullet, traveling at 7.00  ×  10 2  m/s, comes to a stop 

as it strikes a metal plate?  

    4.  Nolan threw a baseball, of mass 147.5 g, at a speed of 

162 km/h to a catcher. How much internal energy was 

generated when the ball struck the catcher’s mitt?  

    5.  A child of mass 15 kg climbs to the top of a slide that is 

1.7 m above a horizontal run that extends for 0.50 m at 

the base of the slide. After sliding down, the child comes 

to rest just before reaching the very end of the horizon-

tal portion of the slide. (a) How much internal energy 

was generated during this process? (b) Where did the 

generated energy go? (To the slide, to the child, to the 

air, or to all three?)  

    6.  A 64-kg sky diver jumped out of an airplane at an alti-

tude of 0.90 km. She opened her parachute after a while 

and eventually landed on the ground with a speed of 

5.8 m/s. How much energy was dissipated by air resis-

tance during the jump?  

    7.  During basketball practice Shane made a jump shot, 

releasing a 0.60-kg basketball from his hands at a 

height of 2.0 m above the floor with a speed of 7.6 m/s. 

The ball swooshes through the net at a height of 

3.0 m above the floor and with a speed of 4.5 m/s. 

✦✦



How much energy was dissipated by air drag from the 

time the ball left Shane’s hands until it went through 

the net?    

  14.2 Heat; 14.3 Heat Capacity and Specific Heat 

     8.  An experiment is conducted with a basic Joule apparatus, 

where a mass is allowed to descend by 1.25 m and rotate 

paddles within an insulated container of water. There are 

several different sizes of descending masses to choose 

among. If the investigator wishes to deliver 1.00 kJ to the 

water within the insulated container after 30.0 descents, 

what descending mass value should be used?  

    9.  Convert 1.00 kJ to kilowatt-hours (kWh).  

10. What is the heat capacity of 20.0 kg of silver?  

11.  What is the heat capacity of a gold ring that has a mass 

of 5.00 g?  

    12.  If 125.6 kJ of heat are supplied to 5.00  ×  10 2  g of water 

at 22 ° C, what is the final temperature of the water?  

    13.  It is a damp, chilly day in a New England seacoast 

town suffering from a power failure. To warm up the 

cold, clammy sheets, Jen decides to fill hot water bot-

tles to tuck between the sheets at the foot of the beds. 

If she wishes to heat 2.0 L of water on the wood stove 

from 20.0 ° C to 80.0 ° C, how much heat must flow into 

the water?  

      14.  An 83-kg man eats a banana of energy content 

1.00  ×  10 2  kcal. If all of the energy from the banana is 

converted into kinetic energy of the man, how fast is he 

moving, assuming he starts from rest?  

      15.  A high jumper of mass 60.0 kg consumes a meal of 

3.00  ×  10 3  kcal prior to a jump. If 3.3% of the energy 

from the food could be converted to gravitational poten-

tial energy in a single jump, how high could the athlete 

jump?  

    16.  What is the heat capacity of a 30.0-kg block of ice?  

    17.  What is the heat capacity of 1.00 m 3  of (a) aluminum? 

(b) iron? See Table 9.1 for density values.  

    18.  What is the heat capacity of a system consisting of (a) a 

0.450-kg brass cup filled with 0.050 kg of water? (b) 7.5 kg 

of water in a 0.75-kg aluminum bucket?  

    19.  A 0.400-kg aluminum teakettle contains 2.00 kg of 

water at 15.0 ° C. How much heat is required to raise the 

temperature of the water (and kettle) to 100.0 ° C?  

      20.  How much heat is required to raise the body tempera-

ture of a 50.0-kg woman from 37.0 ° C to 38.4 ° C?  

    21.  It takes 880 J to raise the temperature of 350 g of lead 

from 0 to 20.0 ° C. What is the specific heat of lead?  

    22.  A mass of 1.00 kg of water at temperature  T  is poured 

from a height of 0.100 km into a vessel containing 

water of the same temperature  T,  and a temperature 

change of 0.100 ° C is measured. What mass of water 

was in the vessel? Ignore heat flow into the vessel, the 

thermometer, etc.  

    23.  A thermometer containing 0.10 g of mercury is cooled 

from 15.0 ° C to 8.5 ° C. How much energy left the mer-

cury in this process?  

   24. A heating coil inside an electric kettle delivers 2.1 kW 

of electric power to the water in the kettle. How long 

will it take to raise the temperature of 0.50 kg of water 

from 20.0 ° C to 100.0 ° C? (   tutorial: heating)    

  14.4 Specific Heat of Ideal Gases 

25.  A cylinder contains 250 L of hydrogen gas (H 2 ) at 0.0 ° C 

and a pressure of 10.0 atm. How much energy is required 

to raise the temperature of this gas to 25.0 ° C?  

   26. A container of nitrogen gas (N 2 ) at 23 ° C contains 

425 L at a pressure of 3.5 atm. If 26.6 kJ of heat are 

added to the container, what will be the new tempera-

ture of the gas?  

    27.  Imagine that 501 people are present in a movie theater 

of volume 8.00  ×  10 3  m 3  that is sealed shut so no air can 

escape. Each person gives off heat at an average rate of 

110 W. By how much will the temperature of the air 

have increased during a 2.0-h movie? The initial pres-

sure is 1.01  ×  10 5  Pa and the initial temperature is 

20.0 ° C. Assume that all the heat output of the people 

goes into heating the air (a diatomic gas).  

   28. A chamber with a fixed volume of 1.0 m 3  contains a 

monatomic gas at 3.00  ×  10 2  K. The chamber is heated 

to a temperature of 4.00  ×  10 2  K. This operation 

requires 10.0 J of heat. (Assume all the energy is trans-

ferred to the gas.) How many gas molecules are in the 

chamber?    

  14.5 Phase Transitions 

     29.  As heat flows into a 

substance, its tempera-

ture changes according 

to the graph in the dia-

gram. For what sec-

tions of the graph is the 

substance undergoing a 

phase change? For the 

sections you identified, what kind of phase change is 

occurring? (   tutorial: temperature graph)      
   30. Given these data, compute the heat of vaporization of 

water. The specific heat capacity of water is 

4.186 J/(g·K).   

Mass of calorimeter = 

 3.00 × 102 g

Specific heat of calorimeter = 

 0.380 J/(g·K)

Mass of water = 

 2.00 × 102 g

Initial temperature of water and 

 calorimeter = 15.0°C

Mass of condensed 

 steam = 18.5 g
Initial temperature of steam = 

 100.0°C

Final temperature of calorimeter 

 = 62.0°C
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31.  Given these data, compute the heat of fusion of water. 

The specific heat capacity of water is 4.186 J/(g·K).   

Mass of calorimeter = 

 3.00 × 102 g

Specific heat of calorimeter = 

 0.380 J/(g·K)

Mass of water = 

 2.00 × 102 g

Initial temperature of water and 

 calorimeter = 20.0°C

Mass of ice = 30.0 g Initial temperature of ice = 0°C

Final temperature of calorimeter = 

 8.5°C

    32. In a physics lab, a student accidentally drops a 25.0-g 

brass washer into an open dewar of liquid nitrogen at 

77.2 K. How much liquid nitrogen boils away as the 

washer cools from 293 K to 77.2 K? The latent heat of 

vaporization for nitrogen is 199.1 kJ/kg.  

    33.  What mass of water at 25.0 ° C added to a Styrofoam cup 

containing two 50.0-g ice cubes from a freezer at  − 15.0 ° C 

will result in a final temperature of 5.0 ° C for the drink?  

   34. How much heat is required to change 1.0 kg of ice, 

originally at  − 20.0 ° C, into steam at 110.0 ° C? Assume 

1.0 atm of pressure.  

    35.  Ice at 0.0 ° C is mixed with 5.00  ×  10 2  mL of water at 

25.0 ° C. How much ice must melt to lower the water 

temperature to 0.0 ° C?  

   36. Tina is going to make iced tea by first brewing hot tea, 

then adding ice until the tea cools. How much ice, at 

a temperature of  − 10.0 ° C, should be added to a 

2.00  ×  10  − 4  m 3  glass of tea at 95.0 ° C to cool the tea 

to 10.0 ° C? Ignore the temperature change of the glass. 

(   tutorial: iced tea)  

    37.  Repeat Problem 36 without neglecting the temperature 

change of the glass. The glass has a mass of 350 g and 

the specific heat of the glass is 0.837 kJ/(kg·K). By what 

percentage does the answer change from the answer for 

Problem 36?  

   38. The graph shows the change in temperature as heat is 

supplied to a certain mass of ice initially at  − 80.0 ° C. 

What is the mass of the ice? 
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39.  How many grams of aluminum at 80.0 ° C would have to 

be dropped into a hole in a block of ice at 0.0 ° C to melt 

10.0 g of ice?  

     40. Is it possible to heat the aluminum of Problem 39 to a 

high enough temperature so that it melts an equal mass of 

ice? If so, what temperature must the aluminum have?  

41.  If a leaf is to maintain a temperature of 40 ° C (reason-

able for a leaf), it must lose 250 W/m 2  by transpiration 

(evaporative heat loss). Note that the leaf also loses heat 

by radiation, but we will neglect this. How much water 

is lost after 1 h through transpiration only? The area of 

the leaf is 0.005 m 2 .  

     42. A birch tree loses 618 mg of water per minute through 

transpiration (evaporation of water through stomatal 

pores). What is the rate of heat lost through transpiration?  

43. You are given 250 g of coffee (same specific heat as 

water) at 80.0 ° C (too hot to drink). In order to cool this 

to 60.0 ° C, how much ice (at 0.0 ° C) must be added? 

Ignore heat content of the cup and heat exchanges with 

the surroundings.  

44. A phase diagram is 

shown. Starting at 

point  A,  follow the 

dashed line to point 

E  and consider what 

happens to the sub-

stance represented by 

this diagram as its 

pressure and temper-

ature are changed. 

(a) Explain what hap-

pens for each line 

segment,  AB,   BC,   CD,  and  DE.  (b) What is the signifi-

cance of point  a  and of point  b?       

45.  Compute the heat of fusion of a substance from these 

data: 31.15 kJ will change 0.500 kg of the solid at 21 ° C 

to liquid at 327 ° C, the melting point. The specific heat 

of the solid is 0.129 kJ/(kg·K).  

46.  A dog loses a lot of heat through panting. The air rush-

ing over the upper respiratory tract causes evaporation 

and thus heat loss. A dog typically pants at a rate of 670 

pants per minute. As a rough calculation, assume that 

one pant causes 0.010 g of water to be evaporated from 

the respiratory tract. What is the rate of heat loss for the 

dog through panting?    

  14.6 Thermal Conduction 

    47. (a) What thickness of cork would have the same R-factor 

as a 1.0-cm thick stagnant air pocket? (b) What thickness 

of tin would be required for the same R-factor?  

   48. A metal rod with a diameter of 2.30 cm and length of 

1.10 m has one end immersed in ice at 32.0 ° F and the 

other end in boiling water at 212 ° F. If the ice melts at a 

rate of 1.32 g every 175 s, what is the thermal conduc-

tivity of this metal? Identify the metal. Assume there is 

no heat lost to the surrounding air.  

49.  Given a slab of material with area 1.0 m 2  and thickness 

2.0  ×  10  − 2  m, (a) what is the thermal resistance if the 

material is asbestos? (b) What is the thermal resistance 

if the material is iron? (c) What is the thermal resistance 

if the material is copper?  

   50. A copper rod of length 0.50 m and cross-sectional area 

6.0  ×  10  − 2  cm 2  is connected to an iron rod with the same 
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cross section and length 

0.25 m. One end of the 

copper is immersed in boil-

ing water and the other end 

is at the junction with the 

iron. If the far end of the 

iron rod is in an ice bath at 

0 ° C, find the rate of heat transfer passing from the boil-

ing water to the ice bath. Assume there is no heat loss to 

the surrounding air. (   tutorial: composite rod)    

51.  For a temperature difference Δ T   =  20.0 ° C, one slab of 

material conducts 10.0 W/m 2 ; another of the same shape 

conducts 20.0 W/m 2 . What is the rate of heat flow per 

m 2  of surface area when the slabs are placed side by 

side with Δ T  tot   =  20.0 ° C? 

∆Ttot = 20.0°C10.0 W/m2 
for

∆T = 20.0°C

20.0 W/m2 
for

∆T = 20.0°C

     52. A wall consists of a layer of wood and a layer of cork 

insulation of the same thickness. The temperature inside 

is 20.0 ° C and the temperature outside is 0.0 ° C. (a) What 

is the temperature at the interface between the wood 

and cork if the cork is on the inside and the wood on the 

outside? (b) What is the temperature at the interface if 

the wood is inside and the cork is outside? (c) Does it 

matter whether the cork is placed on the inside or the 

outside of the wooden wall? Explain. 

T = ?

Outside

Cork Wood

Inside

T = 0.0°C T = 0.0°CT = 20.0°C T = 20.0°C

T = ?

Outside

CorkWood

Inside

53.  The thermal conductivity of the fur (including the skin) 

of a male Husky dog is 0.026 W/(m·K). The dog’s heat 

output is measured to be 51 W, its internal temperature 

is 38 ° C, its surface area is 1.31 m 2 , and the thickness of 

the fur is 5.0 cm. How cold can the outside temperature 

be before the dog must increase its heat output?  

54. The thermal resistance of a seal’s fur and blubber com-

bined is 0.33 K/W. If the seal’s internal temperature is 

37 ° C and the temperature of the sea is about 0 ° C, what 

must be the heat output of the seal in order for it to 

maintain its internal temperature?  

     55. A hiker is wearing wool clothing of 0.50-cm thickness 

to keep warm. Her skin temperature is 35 ° C and the 

outside temperature is 4.0 ° C. Her body surface area is 

Boiling
water

100°C 0°C

Ice
bath

ᏼ

1.2 m 2 . (a) If the thermal conductivity of wool is 

0.040 W/(m·K), what is the rate of heat conduction 

through her clothing? (b) If the hiker is caught in a rain-

storm, the thermal conductivity of the soaked wool 

increases to 0.60 W/(m·K) (that of water). Now what is 

the rate of heat conduction?  

   56. A window whose glass has  k    =  1.0 W/(m·K) is covered 

completely with a sheet of foam of the same thickness 

as the glass, but with  k    =  0.025 W/(m·K). How is the 

rate at which heat is conducted through the window 

changed by the addition of the foam?  

      57.  A copper bar of thermal conductivity 401 W/(m·K) has 

one end at 104 ° C and the other end at 24 ° C. The length 

of the bar is 0.10 m and the cross-sectional area is 

1.0  ×  10  − 6  m 2 . (a) What is the rate of heat conduction, 풫, 

along the bar? (b) What is the temperature gradient in the 

bar? (c) If two such bars were placed in series (end to 

end) between the same temperature baths, what would 풫
be? (d) If two such bars were placed in parallel (side by 

side) with the ends in the same temperature baths, what 

would 풫 be? (e) In the series case, what is the tempera-

ture at the junction where the bars meet?  

       58. One cross-country skier is wearing a down jacket that is 

2.0 cm thick. The thermal conductivity of goose down is 

0.025 W/(m·K). Her companion on the ski outing is wear-

ing a wool jacket that is 0.50 cm thick. The thermal con-

ductivity of wool is 0.040 W/(m·K). (a) If both jackets 

have the same surface area and the skiers both have the 

same body temperature, which one will stay warmer lon-

ger? (b) How much longer can the person with the warmer 

jacket stay outside for the same amount of heat loss?    

  14.8 Thermal Radiation 

    59. If a blackbody is radiating at  T   =  1650 K, at what wave-

length is the maximum intensity?  

   60. Wien studied the spectral distribution of many radiating 

bodies to finally discover a simple relation between 

wavelength and intensity. Use the limited data shown in 

 Fig. 14.17  to find the constant predicted by Wien for the 

product of wavelength of maximum emission and 

temperature.  

    61.  An incandescent lightbulb has a tungsten filament that is 

heated to a temperature of 3.00  ×  10 3  K when an electric 

current passes through it. If the surface area of the fila-

ment is approximately 1.00  ×  10  − 4  m 2  and it has an emis-

sivity of 0.32, what is the power radiated by the bulb?  

   62. A tungsten filament in a lamp is heated to a tempera-

ture of 2.6  ×  10 3  K by an electric current. The tungsten 

has an emissivity of 0.32. What is the surface area of 

the filament if the lamp delivers 40.0 W of power?  

63. A person of surface area 1.80 m 2  is lying out in the sun-

light to get a tan. If the intensity of the incident sunlight 

is 7.00  ×  10 2  W/m 2 , at what rate must heat be lost by the 

person in order to maintain a constant body tempera-

ture? (Assume the effective area of skin exposed to the 

✦✦

✦✦
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Sun is 42% of the total surface area, 57% of the incident 

radiation is absorbed, and that internal metabolic pro-

cesses contribute another 90 W for an inactive person.)  

64. A student wants to lose some weight. He knows that rig-

orous aerobic activity uses about 700 kcal/h (2900 kJ/h) 

and that it takes about 2000 kcal per day (8400 kJ) just 

to support necessary biological functions, including 

keeping the body warm. He decides to burn calories 

faster simply by sitting naked in a 16 ° C room and let-

ting his body radiate calories away. His body has a sur-

face area of about 1.7 m 2  and his skin temperature 

is 35 ° C. Assuming an emissivity of 1.0, at what rate 

(in kcal/h) will this student “burn” calories?  

    65.  An incandescent light bulb radiates at a rate of 60.0 W 

when the temperature of its filament is 2820 K. Dur-

ing a brownout (temporary drop in line voltage), the 

power radiated drops to 58.0 W. What is the tempera-

ture of the filament? Neglect changes in the filament’s 

length and cross-sectional area due to the temperature 

change. (   tutorial: light bulb)    

   66. If the maximum intensity of radiation for a blackbody is 

found at 2.65  μ m, what is the temperature of the radiat-

ing body?  

   67. A black wood stove has a surface area of 1.20 m 2  and a 

surface temperature of 175 ° C. What is the net rate at 

which heat is radiated into the room? The room temper-

ature is 20 ° C.  

       68. A lizard of mass 3.0 g is warming itself in the bright sun-

light. It casts a shadow of 1.6 cm 2  on a piece of paper 

held perpendicularly to the Sun’s rays. The intensity of 

sunlight at the Earth is 1.4  ×  10 3  W/m 2 , but only half of 

this energy penetrates the atmosphere and is absorbed by 

the lizard. (a) If the lizard has a specific heat of 

4.2 J/(g· ° C), what is the rate of increase of the lizard’s 

temperature? (b) Assuming that there is no heat loss by 

the lizard (to simplify), how long must the lizard lie in the 

Sun in order to raise its temperature by 5.0 ° C?  

69.  At a tea party, a coffeepot and a teapot are placed on the 

serving table. The coffeepot is a shiny silver-plated pot 

with emissivity of 0.12; the teapot is ceramic and has an 

emissivity of 0.65. Both pots hold 1.00 L of liquid at 

98 ° C when the party begins. If the room temperature is 

at 25 ° C, what is the rate of radiative heat loss from the 

two pots? [ Hint:  To find the surface area, approximate 

the pots with cubes of similar volume.]  

70. If the total power per unit area from the Sun incident on 

a horizontal leaf is 9.00  ×  10 2  W/m 2 , and we assume 

that 70.0% of this energy goes into heating the leaf, 

what would be the rate of temperature rise of the leaf? 

The specific heat of the leaf is 3.70 kJ/(kg· ° C), the leaf’s 

area is 5.00  ×  10  − 3  m 2 , and its mass is 0.500 g.  

        71.  Consider the leaf of Problem 70. Assume that the top sur-

face of the leaf absorbs 70.0% of 9.00  ×  10 2  W/m 2  of 

radiant energy, while the bottom surface absorbs all of 

the radiant energy incident on it due to its surroundings at 

25.0 ° C. (a) If the only method of heat loss for the leaf 

✦✦

✦✦

✦✦

✦✦

were thermal radiation, what would be the temperature of 

the leaf? (Assume that the leaf radiates like a blackbody.) 

(b) If the leaf is to remain at a temperature of 25.0 ° C, 

how much power per unit area must be lost by other 

methods such as transpiration (evaporative heat loss)?    

  Comprehensive Problems 

    72. A hotel room is in thermal equilibrium with the rooms 

on either side and with the hallway on a third side. The 

room loses heat primarily through a 1.30-cm-thick glass 

window that has a height of 76.2 cm and a width of 

156 cm. If the temperature inside the room is 75 ° F and 

the temperature outside is 32 ° F, what is the approximate 

rate (in kJ/s) at which heat must be added to the room to 

maintain a constant temperature of 75 ° F? Ignore the 

stagnant air layers on either side of the glass.  

    73.  While camping, some students decide to make hot choc-

olate by heating water with a solar heater that focuses 

sunlight onto a small area. Sunlight falls on their solar 

heater, of area 1.5 m 2 , with an intensity of 750 W/m 2 . 

How long will it take 1.0 L of water at 15.0 ° C to rise to a 

boiling temperature of 100.0 ° C?  

    74.  Five ice cubes, each with a mass of 22.0 g and at a tem-

perature of  − 50.0 ° C, are placed in an insulating con-

tainer. How much heat will it take to change the ice 

cubes completely into steam?  

   75. A 10.0-g iron bullet with a speed of 4.00  ×  10 2  m/s and 

a temperature of 20.0 ° C is stopped in a 0.500-kg block 

of wood, also at 20.0 ° C. (a) At first all of the bullet’s 

kinetic energy goes into the internal energy of the bul-

let. Calculate the temperature increase of the bullet. 

(b) After a short time the bullet and the block come to 

the same temperature  T.  Calculate  T,  assuming no heat 

is lost to the environment.  

     76. If the temperature surrounding the sunbather in Prob-

lem 63 is greater than the normal body temperature of 

37 ° C and the air is still, so that radiation, conduction, 

and convection play no part in cooling the body, how 

much water (in liters per hour) from perspiration must 

be given off to maintain the body temperature? The 

heat of vaporization of water is 2430 J/g at normal 

skin temperature.  

      77.  If 4.0 g of steam at 100.0 ° C condenses to water on a 

burn victim’s skin and cools to 45.0 ° C, (a) how much 

heat is given up by the steam? (b) If the skin was origi-

nally at 37.0 ° C, how much tissue mass was involved in 

cooling the steam to water? See  Table 14.1  for the spe-

cific heat of human tissue.  

     78. If 4.0 g of boiling water at 100.0 ° C was splashed onto a 

burn victim’s skin, and if it cooled to 45.0 ° C on the 

37.0 ° C skin, (a) how much heat is given up by the 

water? (b) How much tissue mass, originally at 37.0 ° C, 

was involved in cooling the water? See  Table 14.1 . 

Compare the result with that found in Problem 77.  



     79. The amount of heat generated during the contraction of 

muscle in an amphibian’s leg is given by

  Q = 0.544 mJ + (1.46 mJ/cm)Δx  

  where Δ  x  is the length shortened. If a muscle of length 

3.0 cm and mass 0.10 g is shortened by 1.5 cm during a 

contraction, what is the temperature rise? Assume that 

the specific heat of muscle is 4.186 J/(g· ° C).  

      80.  Many species cool themselves by sweating, because as 

the sweat evaporates, heat is given up to the surround-

ings. A human exercising strenuously has an evaporative 

heat loss rate of about 650 W. If a person exercises stren-

uously for 30.0 min, how much water must he drink to 

replenish his fluid loss? The heat of vaporization of water 

is 2430 J/g at normal skin temperature.  

    81.  A wall consists of a layer of wood outside and a layer of 

insulation inside. The temperatures inside and outside 

the wall are  + 22 ° C and  − 18 ° C; the temperature at the 

wood/insulation boundary is  − 8.0 ° C. By what factor 

would the heat loss through the wall increase if the insu-

lation were not present?  

   82. Two 62-g ice cubes are dropped into 186 g of water in a 

glass. If the water is initially at a temperature of 24 ° C 

and the ice is at  − 15 ° C, what is the final temperature of 

the drink?  

   83. A 0.500-kg slab of granite is heated so that its tempera-

ture increases by 7.40 ° C. The amount of heat supplied 

to the granite is 2.93 kJ. Based on this information, 

what is the specific heat of granite?  

    84.  A spring of force constant  k   =  8.4  ×  10 3  N/m is com-

pressed by 0.10 m. It is placed into a vessel containing 

1.0 kg of water and then released. Assuming all the 

energy from the spring goes into heating the water, find 

the change in temperature of the water.  

    85.  One end of a cylindrical iron rod of length 1.00 m and 

of radius 1.30 cm is placed in the blacksmith’s fire and 

reaches a temperature of 327 ° C. If the other end of the 

rod is being held in your hand (37 ° C), what is the rate of 

heat flow along the rod? The thermal conductivity of 

iron varies with temperature, but an average value 

between the two temperatures is 67.5 W/(m·K). (   

tutorial: conduction)  

   86. A blacksmith heats a 0.38-kg piece of iron to 498 ° C in 

his forge. After shaping it into a decorative design, he 

places it into a bucket of water to cool. If the available 

water is at 20.0 ° C, what minimum amount of water 

must be in the bucket to cool the iron to 23.0 ° C? The 

water in the bucket should remain in the liquid phase.  

   87. The student from Problem 64 realizes that standing naked 

in a cold room will not give him the desired weight loss 

results since it is much less efficient than simply exercis-

ing. So he decides to burn calories through conduction. 

He fills the bathtub with 16 ° C water and gets in. The water 

right next to his skin warms up to the same temperature as 

his skin, 35 ° C, but the water only 3.0 mm away remains at         

 16 ° C. At what rate (in kcal/h) would he “burn” calories? 

The thermal conductivity of water at this temperature is 

0.58 W/(m·K). [ Warning:  Do not try this. Sitting in water 

this cold can lead to hypothermia and even death.]  

     88. A stainless steel saucepan, with a base that is made of 

0.350-cm-thick steel [ k    =  46.0 W/(m·K)] fused to a 

0.150-cm thickness of copper [ k    =  401 W/(m·K)], sits 

on a ceramic heating element at 104.00 ° C. The diameter 

of the pan is 18.0 cm and it contains boiling water at 

100.00 ° C. (a) If the copper-clad bottom is touching the 

heat source, what is the temperature at the copper-steel 

interface? (b) At what rate will the water evaporate from 

the pan?  

      89.  A 75-kg block of ice at 0.0 ° C breaks off from a glacier, 

slides along the frictionless ice to the ground from a 

height of 2.43 m, and then slides along a horizontal sur-

face consisting of gravel and dirt. Find how much of the 

mass of the ice is melted by the friction with the rough 

surface, assuming 75% of the internal energy generated 

is used to heat the ice.  

         90. Small animals eat much more food per kg of body mass 

than do larger animals. The basal metabolic rate (BMR) 

is the minimal energy intake necessary to sustain life in 

a state of complete inactivity. The table lists the BMR, 

mass, and surface area for five animals. (a) Calculate 

the BMR/kg of body mass for each animal. Is it true that 

smaller animals must consume much more food per kg 

of body mass? (b) Calculate the BMR/m 2  of surface 

area. (c) Can you explain why the BMR/m 2  is approxi-

mately the same for animals of different sizes? Consider 

what happens to the food energy metabolized by an ani-

mal in a resting state.   

Animal

BMR 

(kcal/day) Mass (kg)

Surface 

Area  (m2)

Mouse 3.80 0.018 0.0032

Dog 770 15 0.74

Human 2050 64 2.0

Pig 2400 130 2.3

Horse 4900 440 5.1

          91.  Imagine a person standing naked in a room at 23.0 ° C. 

The walls are well insulated, so they also are at 23.0 ° C. 

The person’s surface area is 2.20 m 2  and his basal meta-

bolic rate is 2167 kcal/day. His emissivity is 0.97. (a) If 

the person’s skin temperature were 37.0 ° C (the same as 

the internal body temperature), at what net rate would 

heat be lost through radiation? (Ignore losses by conduc-

tion and convection.) (b) Clearly the heat loss in (a) is not 

sustainable—but skin temperature is less than internal 

body temperature. Calculate the skin temperature such 

that the net heat loss due to radiation is equal to the basal 

metabolic rate. (c) Does wearing clothing slow the loss of 

heat by radiation, or does it only decrease losses by con-

duction and convection? Explain.  

      92.  Bare, dark-colored basalt has a thermal conductivity of 

3.1 W/(m·K), whereas light-colored sandstone’s thermal 

✦✦

✦✦

✦✦

✦✦

✦✦
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conductivity is only 2.4 W/(m·K). Even though the 

same amount of radiation is incident on both and their 

surface temperatures are the same, the temperature gra-

dient within the two materials will differ. For the same 

patch of area, what is the ratio of the depth in basalt as 

compared with the depth in sandstone that gives the 

same temperature difference?  

93.  The power expended by a cheetah is 160 kW while run-

ning at 110 km/h, but its body temperature cannot 

exceed 41.0 ° C. If 70.0% of the energy expended is dis-

sipated within its body, how far can it run before it over-

heats? Assume that the initial temperature of the cheetah 

is 38.0 ° C, its specific heat is 3.5 kJ/(kg· ° C), and its mass 

is 50.0 kg.  

94.  A scientist working late at night in her low-temperature 

physics laboratory decides to have a cup of hot tea, but 

discovers the lab hot plate is broken. Not to be deterred, 

she puts about 8 oz of water, at 12 ° C, from the tap into 

a lab dewar (essentially a large thermos bottle) and 

begins shaking it up and down. With each shake the 

water is thrown up and falls back down a distance of 

33.3 cm. If she can complete 30 shakes per minute, how 

long will it take to heat the water to 87 ° C? Would this 

really work? If not, why not?  

    95.  A 2.0-kg block of copper at 100.0 ° C is placed into 1.0 kg 

of water in a 2.0-kg iron pot. The water and the iron pot 

are at 25.0 ° C just before the copper block is placed into 

the pot. What is the final temperature of the water, assum-

ing negligible heat flow to the environment?  

   96. A piece of gold of mass 0.250 kg and at a temperature 

of 75.0 ° C is placed into a 1.500-kg copper pot contain-

ing 0.500 L of water. The pot and water are at 22.0 ° C 

before the gold is added. What is the final temperature 

of the water?  

        97.  For a cheetah, 70.0% of the energy expended during 

exertion is internal work done on the cheetah’s system 

and is dissipated within his body; for a dog only 5.00% of 

the energy expended is dissipated within the dog’s body. 

Assume that both animals expend the same total amount 

of energy during exertion, both have the same heat capac-

ity, and the cheetah is 2.00 times as heavy as the dog. 

(a) How much higher is the temperature change of the 

cheetah compared to the temperature change of the dog? 

(b) If they both start out at an initial temperature of 

35.0 ° C, and the cheetah has a temperature of 40.0 ° C after 

the exertion, what is the final temperature of the dog? 

Which animal probably has more endurance? Explain.  

   98. A 20.0-g lead bullet leaves a rifle at a temperature of 

87.0 ° C and hits a steel plate. If the bullet melts, what is 

the minimum speed it must have?  

    99.  The inner vessel of a calorimeter contains 2.50  ×  10 2  g 

of tetrachloromethane, CCl 4 , at 40.00 ° C. The vessel is 

surrounded by 2.00 kg of water at 18.00 ° C. After a time, 

the CCl 4  and the water reach the equilibrium tempera-

ture of 18.54 ° C. What is the specific heat of CCl 4 ?  

✦✦

✦✦

   100. On a very hot summer day, Daphne is off to the park 

for a picnic. She puts 0.10 kg of ice at 0 ° C in a thermos 

and then adds a grape-flavored drink, which she has 

mixed from a powder using room temperature water 

(25 ° C). How much grape-flavored drink will just melt 

all the ice?  

101.  It requires 17.10 kJ to melt 1.00  ×  10 2  g of urethane 

[CO 2 (NH 2 )C 2 H 5 ] at 48.7 ° C. What is the latent heat of 

fusion of urethane in kJ/mol?  

   102. A 20.0-g lead bullet leaves a rifle at a temperature of 

47.0 ° C and travels at a velocity of 5.00  ×  10 2  m/s until 

it hits a large block of ice at 0 ° C and comes to rest 

within it. How much ice will melt?     

  Answers to Practice Problems 

     14.1  4.9 J  

    14.2  Higher. The molecules have the same amount of  ran-

dom  translational kinetic energy plus the additional kinetic 

energy associated with the ball’s translation and rotation.  

    14.3  350 g  

    14.4  at least $0.89  

    14.5  48 ° C  

    14.6  92 kJ  

    14.7  150 kJ  

    14.8  40 kJ  

    14.9  53.5 g  

    14.10  230 W  

    14.11  110 W  

    14.12  To maintain constant temperature, the net heat must 

be zero. The rate at which energy is emitted is 140 W.  

    14.13  9.4  μ m (at 35 ° C) to 9.6  μ m (at 30 ° C)  

    14.14  28 W  

    14.15  −16 ° C    

  Answers to Checkpoints 

     14.2  No, the temperature increase is not caused by heat 

flow. When you stretch the rubber band, you do work on it. 

This increases its internal energy and its temperature. (If you 

now put the rubber band down, heat does flow  out  of the 

rubber band, decreasing its internal energy and its tempera-

ture until it is in thermal equilibrium with its surroundings.)  

    14.5  The steam releases a large quantity of heat as it con-

denses into water on the skin. Much more energy is trans-

ferred to the skin than would be the case for the same amount 

of water at 100 ° C.  

    14.6  The rate of heat flow through the two materials is the 

same, so the material with the larger thermal conductivity 

has the smaller temperature gradient.  Figure 14.10b  shows 

that the temperature gradient is smaller in the material on 

the left, so it has the larger thermal conductivity.                    
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   T he gasoline engines in cars 

are terribly inefficient. Of 

the chemical energy that is 

released in the burning of gas-

oline, typically only 20% to 

25% is converted into useful 

mechanical work done on the 

car to move it forward. Yet 

scientists and engineers have 

been working for decades to 

make a more efficient gaso-

line engine. Is there some 

fundamental limit to the effi-

ciency of a gasoline engine? Is 

it possible to make an engine 

that converts all—or nearly 

all—of the chemical energy 

in the fuel into useful work? 

(See p. 544 for the answer.)        
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 • conservation of energy (Section 6.1) 

 • internal energy and heat (Sections 14.1–14.2) 

 • zeroth law of thermodynamics (Section 13.1) 

 • system and surroundings (Section 14.1) 

 • work done is the area under a graph of  F   x  ( x ) (Section 6.6) 

 • heat capacity (Section 14.3) 

 • the ideal gas law (Section 13.5) 

 • specific heat of ideal gases at constant volume (Section 14.4) 

 • natural logarithm (Appendix A.3)   

    15.1  THE FIRST LAW OF THERMODYNAMICS 

  Both work and heat can change the internal energy of a system. Work can be done on a 

rubber ball by squeezing it, stretching it, or slamming it into a wall. Heat will flow into 

the ball if it is left out in the Sun or put into a hot oven. These two methods of changing 

the internal energy of a system lead to the    first law of thermodynamics:        

First Law of Thermodynamics

The change in internal energy of a system is equal to the heat flow into the system 

plus the work done on the system.

 The first law is a specialized statement of energy conservation applied to a thermo-

dynamic system, such as a gas inside a cylinder that has a movable piston. The gas can 

exchange energy with its surroundings in two ways. Heat can flow between the gas and 

its surroundings when they are at different temperatures and work can be done on the 

gas when the piston is pushed in.     

 In equation form, we can write

 

First Law of Thermodynamics

 ΔU = Q + W (15-1)

 In Eq. (15-1), Δ U  is the change in internal energy of the system. The internal energy can 

increase or decrease, so Δ U  can be positive or negative. The signs of  Q  and  W  have the 

same meaning we have used in previous chapters. If heat flows into the system,  Q  is 

positive, while if heat flows out of the system,  Q  is negative.  W  represents    the work 

done  on  the system, which can be positive or negative, depending on the directions of 

the applied force and the displacement. Using the example of the gas in a cylinder, if the 

piston is pushed in, then the force on the gas due to the piston and the displacement of 

the gas are in the same direction ( Fig. 15.1a ) and  W  is positive. If the piston moves out, 

then the force and the displacement are in opposite directions, because the piston still 

pushes inward on the gas, and  W  is negative ( Fig. 15.1b ).  Table 15.1  summarizes the 

meanings of the signs of Δ U,   Q,  and  W.                    

Concepts & Skills to ReviewConcepts & Skills to Review

The choice of a  system  is made in 

any way convenient for a given 

problem.

The choice of a  system  is made in 

any way convenient for a given 

problem.
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The first law is not a new 

principle—just a specialized 

form of energy conservation.

CONNECTION:

The first law is not a new 
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form of energy conservation.
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and W are consistent with 

their definitions in previous 

chapters (Chapter 6 for work 

and Chapter 14 for heat).

CONNECTION:

Our sign conventions for Q 

and W are consistent with 

their definitions in previous 

chapters (Chapter 6 for work 

and Chapter 14 for heat).

  The symbol  U,  previously used for 

potential energy, is used exclusively 

for  internal energy  in this chapter. 

Internal energy was defined in 

Section 14.1.  

  The symbol  U,  previously used for 

potential energy, is used exclusively 

for  internal energy  in this chapter. 

Internal energy was defined in 

Section 14.1.  

Figure 15.1 (a) When a gas is 

compressed, the work done on 

the gas is positive. (b) When a 

gas expands, the work done on 

the gas is negative.

Displacement
of piston

Force on
gas due
to piston

(a)

Displacement
of piston

Force on
gas due
to piston

(b)



Table 15.1 Sign Conventions for the First Law of Thermodynamics

Quantity Definition Meaning of + Sign Meaning of − Sign

Q Heat flow into the system Heat flows into the 

system

Heat flows out of the system

W Work done on the system Surroundings do 

positive work on the 

system

Surroundings do negative 

work on the system (system 

does positive work on the 

surroundings)

ΔU Internal energy change Internal energy 

increases

Internal energy decreases

Since we assume no heat flow (Q = 0), the internal energy of 

the paint changes by ΔU = Q + W = +134.4 kJ. The temper-

ature increases 1.00 K for every 12.5 kJ of increased internal 

energy, so

ΔT = 134.4 kJ ×   1.00 K ______ 
12.5 kJ

   = 10.8 K

(b) To apply the first law, we first find the internal energy 

change:

ΔU =   12.5 kJ ______ 
1.00 K

   × 6.3 K = 78.75 kJ

Now we apply the first law:

ΔU = Q + W

Q = ΔU − W = 78.75 kJ − 134.4 kJ = −56 kJ

Q is negative because 56 kJ of heat flow out of the paint.

Discussion How did we know the work done by the pad-

dle on the paint was positive? Think of the force the paddle 

exerts on the paint as it pushes paint out of its way; the force 

and the displacement are in the same direction.

The quantity 12.5 kJ/K is the heat capacity of the paint—

it tells us how many kJ the internal energy of the paint must 

increase for its temperature to increase 1 K, regardless of 

whether the internal energy increase is caused by heat,

work, or a combination of the two.

Conceptual Practice Problem 15.1 
Changing Internal Energy of a Gas

While 14 kJ of heat flows into the gas in a cylinder with a 

moveable piston, the internal energy of the gas increases by 

42 kJ. Was the piston pulled out or pushed in? Explain. 

[Hint: Determine whether the piston does positive or nega-

tive work on the gas.]

Example 15.1

Stirring a Can of Paint

A contractor uses a paddle stirrer to mix a can of paint 

(Fig. 15.2). The paddle turns at 28.0 rad/s and exerts a torque 

of 16.0 N·m on the paint, doing work at a rate

power = tw  = 16.0 N⋅m × 28.0 rad/s = 448 W

An internal energy increase of 12.5 kJ causes the temper-

ature of the paint to increase by 1.00 K. (a) If there were 

no heat flow between the paint and the surroundings, 

what would be the temperature change of the paint as it is 

stirred for 5.00 min? (b) If the actual temperature change 

was 6.3 K, how much heat flowed from the paint to the 

surroundings?

Strategy From conservation of energy, the change in the 

internal energy of the paint is equal to the heat flow into the 

paint plus the work done on the paint.

Solution (a) In 5.00 min, the work done by the paddle on 

the paint is

W = 0.448 kJ/s × 5.00 min × 60 s/min = 134.4 kJ

Figure 15.2

An electric paint stirrer does work on the paint as it stirs.

15.1  THE FIRST LAW OF THERMODYNAMICS 529



530  CHAPTER 15  Thermodynamics

   15.2  THERMODYNAMIC PROCESSES 

  A thermodynamic process is the method by which a system is changed from one  state  

to another. The state of a system is described by a set of    state variables    such as pres-

sure, temperature, volume, number of moles, and internal energy. State variables 

describe the state of a system at some instant of time but not how the system got to that 

state. Heat and work are  not  state variables—they describe  how  a system gets from one 

state to another.  

    The   PV   Diagram  

 If a system is changed so that it is always very near equilibrium, the changes in state can 

be represented by a curve on a plot of pressure versus volume (called a    PV   diagram   ). 

Each point on the curve represents an equilibrium state of the system. The  PV  diagram 

is a useful tool for analyzing thermodynamic processes. One of the chief uses of a  PV  

diagram is to find the work done on the system. 

   Work and Area Under a   PV   Curve     Figure 15.3a  shows the expansion of a gas, start-

ing with volume  V  i  and pressure  P  i ;  Fig. 15.3b  is the  PV  diagram for the process. In 

 Fig. 15.3 , the force exerted by the piston on the gas is downward, while the displace-

ment of the gas is upward, so the piston does negative work on the gas. This work repre-

sents a transfer of energy from the gas to its surroundings. (Equivalently, we can say the 

gas does positive work on the piston.) The piston pushes against the gas with a force of 

magnitude  F   =   PA,  where  P  is the pressure of the gas and  A  is the cross-sectional area of 

the piston. This force is not constant since the pressure decreases as the gas expands. As 

was shown in Section 6.6, the work done by a variable force is the area under a graph of 

 F   x  ( x ).           

 To see how work is related to the area under the curve, first note that the units of 

 P   ×   V  are those of work:

    [pressure × volume] = [Pa] × [ m 3 ] =   
[N]

 ____ 
[ m 2 ]

   × [ m 3 ] = [N] × [m] = [J]  

So far, so good. Imagine that the piston moves out a  small  distance  d —small enough 

that the pressure change is insignificant. The work done on the gas is

    W = Fd cos 180° = −PAd  

The volume change of the gas is

    ΔV = Ad  

So the work done on the gas is

 W = −P ΔV (15-2)
        

CONNECTION:

In Chapter 6, we saw that 

work is represented by the 

area under a graph of force 

versus displacement. Here we 

use the same concept; we just 

modify which variables are 

being graphed.

CONNECTION:

In Chapter 6, we saw that 

work is represented by the 

area under a graph of force 

versus displacement. Here we 

use the same concept; we just 

modify which variables are 

being graphed.

Initial state

Piston of
cross-sectional

area A

Final state

(a) (b)

Process

Vi Vf

Pi

Pf

P

V

Pi, Vi (initial state)

Pf, Vf (final state)

d

Pi, Vi

Pf, Vf

Figure 15.3 (a) Expansion of 

a gas from initial pressure Pi and 

volume Vi to final pressure Pf and 

volume Vf. During the expansion, 

negative work is done on the gas 

by the moving piston because the 

force exerted on the gas and the 

displacement are in opposite 

directions. (b) A PV diagram for 

the expansion shows the pressure 

and volume of the gas starting at 

the initial values, passing through 

intermediate values, and ending 

at the final values.



To find the  total  work done on the gas, we add up the work done during each small vol-

ume change. During each small Δ V,  the magnitude of the work done is the area of a thin 

strip of height  P  and width Δ V  under the  PV  curve ( Fig. 15.4 ). Therefore, the magnitude 

of the total work done on the gas is the area under the  PV  curve.    During an increase in 

volume, Δ  V   is positive and the work done on the gas is negative. During a decrease in 

volume, Δ  V   is negative and the work done on the gas is positive.              

    The magnitude of the work done on a system depends on the   path   taken on the   PV  

 curve.   Figure 15.5  shows two other possible paths between the same initial and final 

states as those of  Fig. 15.4 . In  Fig. 15.5a , the pressure is kept constant at the initial 

value  P  i  while the volume is increased from  V  i  to  V  f . Then the volume is kept constant 

while the pressure is reduced from  P  i  to  P  f . The magnitude of the work done is repre-

sented by the shaded area under the  PV  curve; it is greater than the magnitude of the 

work done in  Fig. 15.4a . Alternatively, in  Fig. 15.5b  the pressure is first reduced from  P  i  

to  P  f  while the volume is held fixed; then the volume is allowed to increase from  V  i  to  V  f  

while the pressure is kept at  P  f . We see by the shaded area that the magnitude of the 

work done this way is less than the magnitude of the work done in  Fig. 15.4a . The work 

done differs from one process to another, even though the initial and final states are the 

same in each case.        

   Work Done During a Closed Cycle    Because the work done on a system depends on 

the path on the  PV  diagram, the net work done on a system during a    closed cycle   —a 

series of processes that leave the system in the same state it started in—can be nonzero. 

For example, during the cycle 1→2→3→4→1 in  Fig. 15.5c , you can verify that the net 

work done on the gas is negative. Equivalently, the net work done  by  the gas is positive. 

A closed cycle during which the system does net work is the essential idea behind the 

heat engine (Section 15.5).   

Magnitude of work done  on   

a   system   =  area under  PV  curve. 

 W  > 0 for compression and  W  < 0 

for expansion.

Magnitude of work done  on   

a   system   =  area under  PV  curve. 

 W  > 0 for compression and  W  < 0 

for expansion.

(a) (b)

Process Magnified view
of one strip
under PV curve

Vi Vf

Pi

Pf

P

V

P ∆V

P

Figure 15.4 (a) The area 

under the PV curve is divided 

into many narrow strips of width 

ΔV and of varying heights P. The 

sum of the areas of the strips is 

the total area under the PV 

curve, which represents the 

magnitude of the work done on 

the gas. (b) An enlarged view of 

one strip under the curve. If the 

strip is very narrow, we can 

ignore the change in P and 

approximate its area as P ΔV.

2

2′ 4
33

3

1

1 1 2

VfVi

Pi

Pf

P

V

P

V

Constant pressure
process

Constant
volume
process

Constant pressure
process

Constant volume
process

Expansion

Compression

VfVi

Pi

Pf

(a) (b)

P

VVfVi

Pi

Pf

(c)

Figure 15.5 (a) and (b) Two different paths between the same initial and final states. (c) A closed cycle. The net work 

done on the gas during this cycle is the negative of the area inside the rectangle because the negative work done during 

expansion (1→2) is greater in magnitude than the positive work done during compression (3→4).
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  Constant Pressure Processes 

 A process by which the state of a system is changed while the pressure is held constant 

is called an  isobaric  process. The word  isobaric  comes from the same Greek root as the 

word “barometer.” In  Fig. 15.5a , the first change of state from  V  i  to  V  f  along the line 

from 1 to 2 occurs at the constant pressure  P  i . A constant pressure process appears as a 

horizontal line on the  PV  diagram. The work done on the gas is

     W = − P  
i
   ( V  

f
   −  V  

i
  ) = − P  

i
   ΔV (constant pressure)    (15-3)     

  Constant Volume Processes 

 A process by which the state of a system is changed while the  volume  remains constant 

is called an  isochoric  process. Such a process is illustrated in  Fig. 15.5a  when the system 

moves along the line from 2 to 3 as the pressure changes from  P  i  to  P  f  at the constant vol-

ume  V  f . No work is done during a constant volume process; without a displacement, 

work cannot be done. The area under the  PV  curve—a vertical line—is zero:

     W = 0 (constant volume)    (15-4)   

If no work is done, then from the first law of thermodynamics, the change in internal 

energy is equal to the heat flow into the system:

     ΔU = Q (constant volume)    (15-5)     

  Constant Temperature Processes 

 A process in which the temperature of the system remains constant is called an    isother-

mal    process. On a  PV  diagram, a path representing a constant temperature process is 

called an    isotherm    ( Fig. 15.6 ). All the points on an isotherm represent states of the sys-

tem with the same temperature.       

 How can we keep the temperature of the system constant? One way is to put the 

system in thermal contact with a  heat reservoir —something with a heat capacity so 

large that it can exchange heat in either direction without changing its temperature sig-

nificantly. Then as long as the state of the system does not change too rapidly, the heat 

flow between the system and the reservoir keeps the system’s temperature constant.      

  Adiabatic Processes 

   A process in which no heat is transferred into or out of the system is called an    adiabatic    

process.  An adiabatic process is   not   the same as a constant temperature (isothermal) 

process.  In an isothermal process, heat flow into or out of a system is necessary to main-

tain a constant temperature. In an adiabatic process,  no  heat flow occurs, so if work is 

done, the temperature of the system may change. One way to perform an adiabatic pro-

cess is to completely insulate the system so that no heat can flow in or out; another way 

is to perform the process so quickly that there is no time for heat to flow in or out. 

 For example, the compressions and rarefactions caused by a sound wave occur so 

fast that heat flow from one place to another is negligible. Hence, the compressions and 

rarefactions are adiabatic. Isaac Newton made a now-famous error when he assumed 

that these processes were isothermal and calculated a speed of sound that was about 

20% lower than the measured value. 

PHYSICS AT HOME

Hold an elastic band against your lip; it should feel cool. Now grasp the elastic 

and stretch it back and forth rapidly several times. Hold the stretched region to 

your lip. Does it feel warm? The elastic’s temperature is higher because the 

work you did in stretching it increased its internal energy. The rapid stretching is 

approximately adiabatic—it occurs quickly so there is little time for heat to 

flow out of the elastic.

Definition of heat reservoirDefinition of heat reservoir

T1

P

V 

T2 > T1

Isotherms

Isothermal
compressionf

i

ViVf

Pf

Pi

Figure 15.6 Isotherms for an 

ideal gas at two different tem-

peratures. Each isotherm is a 

graph of P = nRT/V for a con-

stant temperature. The shaded 

area represents the work done by 

the gas during an isothermal 

compression at temperature T2, 

which is positive. (The work 

done by the gas during an iso-

thermal expansion would be 

negative.)



 From the first law of thermodynamics

     ΔU = Q + W    (15-1)   

With  Q   =  0,

    ΔU = W (adiabatic)   

  Table 15.2  summarizes all of the thermodynamic processes discussed. (See also the 

 interactive: thermodynamics.)                   

CHECKPOINT 15.2

(a) Can an adiabatic process cause a change in temperature? Explain. (b) Can 

heat flow during an isothermal process? (c) Can the internal energy of a system 

change during an isothermal process?

   15.3  THERMODYNAMIC PROCESSES FOR AN IDEAL GAS 

   Constant Volume 

  Figure 15.7  is a  PV  diagram for heat flow into an ideal gas at constant volume. Since the 

temperature of the gas changes, the initial and final states are shown as points on two 

different isotherms. (Note that the higher-temperature isotherm is farther from the ori-

gin.) The area under the vertical line is zero; no work is done when the volume is con-

stant. With  W   =  0, the heat flow increases the internal energy of the gas, so the 

temperature increases         .  

 In Section 14.4, we discussed the molar specific heat of an ideal gas at constant 

volume. The first law of thermodynamics enables us to calculate the internal energy 

change Δ U.  Since no work is done during a constant volume process, Δ U   =   Q.  For a 

constant volume process,  Q   =   nC   V   Δ T  and therefore,

     ΔU = n C  
V
   ΔT (ideal gas)    (15-6)   

Internal energy is a state variable—its value depends only on the current state of the 

system, not on the path the system took to get there. Therefore, as long as the number of 

moles is constant,  the internal energy of an ideal gas changes only when the tempera-

ture changes.  Equation (15-6) therefore gives the internal energy change of an ideal gas 

for  any  thermodynamic process, not just for constant volume processes.  

  Constant Pressure 

 Another common situation is when the  pressure  of the gas is constant. In this case, work 

is done because the volume changes. The first law of thermodynamics enables us to cal-

culate the molar specific heat at constant pressure ( C  P ), which is different from the 

molar specific heat at constant volume ( C  V ). 

CONNECTION:

Section 15.2 described 

some general aspects of 

various thermodynamic 

processes. Now we find 

out what happens when the 

system undergoing the 

process is an ideal gas.

CONNECTION:

Section 15.2 described 

some general aspects of 

various thermodynamic 

processes. Now we find 

out what happens when the 

system undergoing the 

process is an ideal gas.

Table 15.2 Summary of Thermodynamic Processes

Process Name Condition Consequences

Constant temperature Isothermal T = constant ( For an ideal gas, ΔU = 0)

Constant pressure Isobaric P = constant W = −P ΔV

Constant volume Isochoric V = constant W = 0; ΔU = Q

No heat flow Adiabatic Q = 0 ΔU = W

Constant
volume
process

Isotherms:

Ti

Vi

Pi

Pf

Tf = Ti + ∆T

P = nRTf/V

P = nRTi/V

P

V

f

i

Figure 15.7 A PV diagram 

for a constant volume process 

for an ideal gas. Every point on 

an isotherm (red dashed lines) 

represents a state of the gas at 

the same temperature.
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  Figure 15.8  shows a  PV  diagram for the constant pressure expansion of an ideal gas 

starting and ending at the same temperatures as for the constant volume process of 

 Fig. 15.7 . Applying the first law to the constant pressure process requires that

    ΔU = Q + W  

where the work done on the gas is, from the ideal gas law,

    W = −P ΔV = −nR ΔT  

The definition of  C  P  is

     Q = n C  
P
   ΔT    (15-7)   

Substituting  Q  and  W  into the first law, we obtain

     ΔU = n C  
P
   ΔT − nR ΔT    (15-8) 

Since the internal energy of an ideal gas is determined by its temperature, Δ U  for this 

constant pressure process is the same as Δ U  for the constant volume process between 

the same two temperatures:

     ΔU = n C  
V
   ΔT    (15-6)   

Then

    n C  
V
   ΔT = n C  

P
   ΔT − nR ΔT  

Canceling common factors of  n  and Δ T,  this reduces to

      C  
P
   =  C  

V
   + R        (ideal gas)    (15-9)   

Since  R  is a positive constant, the molar specific heat of an ideal gas at constant pressure 

is larger than the molar specific heat at constant volume.       

 Is this result reasonable? When heat flows into the gas at constant pressure, the gas 

expands, doing work on the surroundings. Thus, not all of the heat goes into increasing 

the internal energy of the gas. More heat has to flow into the gas at constant pressure for 

a given temperature increase than at constant volume.  

We know the pressure, volume, and temperature: P = 1.0 atm = 

1.01 × 105 Pa, V = 8.50 m3, and T = 273 K + 20.0°C = 293 K. 

Solving for the number of moles yields

n =   PV
 ___ 

RT
   =   1.01 ×  10 5  Pa × 8.50  m 3   ____________________  

8.31 J/(mol⋅K) × 293 K
   = 352.6 mol

For an ideal gas at constant pressure, the heat required to 

change the temperature is

Q = n C  
P
   ΔT

where  C  
P
   =    5 _ 

2
  R. The temperature change is

ΔT = 55.0°C − 20.0°C = 35.0 K

Now we have everything we need to find Q:

Q = n C  
P
   ΔT = 352.6 mol ×   5 _ 

2
   × 8.31 J/(mol⋅K) × 35.0 K

= 260 kJ

Constant
pressure
process

Isotherms

f

i

Vi Vf

Vi

Vf

Pi

Tf = Ti + ∆T
Ti

P

V 

Figure 15.8 A PV diagram of 

a constant pressure expansion of 

an ideal gas. Heat flows into the 

ideal gas (Q > 0). The increase 

in the internal energy ΔU is less 

than Q because negative work is 

done on the expanding gas by 

the piston. The work done by the 

gas is the negative of the shaded 

area under the path.

Example 15.2

Warming a Balloon at Constant Pressure

A weather balloon is filled with helium gas at 20.0°C and 

1.0 atm of pressure. The volume of the balloon after filling 

is measured to be 8.50 m3. The helium is heated until its 

temperature is 55.0°C. During this process, the balloon 

expands at constant pressure (1.0 atm). What is the heat flow 

into the helium?

Strategy We can find how many moles of gas n are pres-

ent in the balloon by using the ideal gas law. For this prob-

lem, we consider the helium to be a system. Helium is a 

monatomic gas, so its molar specific heat at constant volume 

is  C  
V
   =    3 _ 

2
  R. The molar specific heat at constant pressure is 

then  C  
P
   =  C  

V
   + R =   5 _ 

2
  R. Then the heat flow into the gas dur-

ing its expansion is Q = nCP ΔT.

Solution The ideal gas law is

PV = nRT

continued on next page



Practice Problem 15.2 Air Instead of Helium

Suppose the balloon were filled with dry air instead of 

helium. Find Q for the same temperature change. (Dry air is 

mostly N2 and O2, so assume an ideal diatomic gas.)

  Constant Temperature 

 For an ideal gas, we can plot isotherms using the ideal gas law  PV   =   nRT  ( Fig. 15.6 ). 

Since the change in internal energy of an ideal gas is proportional to the temperature 

change,

     ΔU = 0  (ideal gas, isothermal process)    (15-10)   

From the first law of thermodynamics, Δ U   =  0 means that  Q   =   −  W.     Note that Eq. (15-

10) is true for an   ideal gas   at constant temperature. Other systems can change internal 

energy without changing temperature; one example is when the system undergoes a 

phase change.  

 It can be shown (using calculus to find the area under the  PV  curve) that the work 

done on an ideal gas during a constant temperature expansion or contraction from vol-

ume  V  i  to volume  V  f  is

     W = nRT ln  (    V  
i
  
 ___ 

 V  
f
  
   )   (ideal gas, isothermal)    (15-11)   

In Eq. (15-11), “ln” stands for the natural (or base- e ) logarithm.    

Example 15.2 continued

Discussion We do not have to find the work done 

on the gas separately and then subtract it from 

the change in internal energy to find Q. The work done is 

already accounted for by the molar specific heat at constant 

pressure. This simplifies the problem since we use the same 

method for constant pressure as we use for constant volume; 

the only change is the choice of CV or CP.

Example 15.3

Constant Temperature Compression 
of an Ideal Gas

An ideal gas is kept in thermal contact with a heat reservoir at 

7°C (280 K) while it is compressed from a volume of 20.0 L 

to a volume of 10.0 L (Fig. 15.9). During the compression, an 

average force of 33.3 kN is used to move the piston a distance 

of 0.15 m. How much heat is exchanged between the gas and 

the reservoir? Does the heat flow into or out of the gas?

Strategy We can find the work done on the gas from the 

average force applied and the distance moved. For isother-

mal compression of an ideal gas, ΔU = 0. Then Q = −W.

Solution The work done on the gas is

W = fd = 33.3 kN × 0.15 m = 5.0 kJ

This work adds 5.0 kJ to the internal energy of the gas. Then 

5.0 kJ of heat must flow out of the gas if its internal energy 

continued on next page
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Figure 15.9

Isothermal compression of an ideal gas. Thermal contact 

with a heat reservoir keeps the gas at a constant 

temperature.
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   15.4  REVERSIBLE AND IRREVERSIBLE PROCESSES 

  Have you ever wished you could make time go backward? Perhaps you accidentally 

broke an irreplaceable treasure in a friend’s house, or missed a one-time opportunity to 

meet your favorite movie star, or said something unforgivable to someone close to you. 

Why can’t the clock be turned around? 

 Imagine a perfectly elastic collision between two billiard balls. If you were to watch 

a movie of the collision, you would have a hard time telling whether the movie was being 

played forward or backward. The laws of physics for an elastic collision are valid even if 

the direction of time is reversed. Since the total momentum and the total kinetic energy are 

the same before and after the collision, the reversed collision is physically possible. 

 The perfectly elastic collision is one example of a    reversible    process. A reversible 

process is one that does not violate any laws of physics if “played in reverse.” Most of 

the laws of physics do not distinguish forward in time from backward in time. A projec-

tile moving in the absence of air resistance (on the Moon, say) is reversible: if we play 

the movie backward, the total mechanical energy is still conserved and Newton’s sec-

ond law      ( ∑ F⃗ = ma ⃗   )  still holds at every instant in the projectile’s trajectory. 

 Notice the caveats in the examples: “perfectly elastic” and “in the absence of air 

resistance.” If friction or air resistance is present, then the process is    irreversible.    If you 

played  backward  a movie of a projectile with noticeable air resistance, it would be easy 

to tell that something is wrong. The force of air resistance on the projectile would act in 

the wrong direction—in the direction of the velocity, instead of opposite to it. The same 

would be true for sliding friction. Slide a book across the table; friction slows it down 

and brings it to rest. The macroscopic kinetic energy of the book—due to the orderly 

motion of the book in one direction—has been converted into disordered energy associ-

ated with the random motion of molecules; the table and book will be at slightly higher 

temperatures. The reversed process certainly would never occur, even though it does not 

violate the first law of thermodynamics (energy conservation). We would not expect a 

slightly warmed book placed on a slightly warmed table surface to spontaneously begin 

to slide across the table, gaining speed and cooling off as it goes, even if the total energy 

is the same before and after. It is easy to convert ordered energy into disordered energy, 

but not so easy to do the reverse.  The presence of energy dissipation (sliding friction,   air 

resistance) always makes a process irreversible.        

 As another example of an irreversible process, imagine placing a container of warm 

lemonade into a cooler with some ice ( Fig. 15.10 ). Some of the ice melts and the lemon-

ade gets cold as heat flows out of the lemonade and into the ice. The reverse would 

Irreversible processes do 

 not violate energy 

conservation.

Irreversible processes do 

 not violate energy 

conservation.

gas were thermally isolated so no heat could flow, then the 

work done on the gas would increase the internal energy, 

resulting in an increase in the temperature of the gas.

Practice Problem 15.3 Work Done During 
Constant Temperature Expansion of a Gas

Suppose 2.0 mol of an ideal gas are kept in thermal contact 

with a heat reservoir at 57°C (330 K) while the gas expands 

from a volume of 20.0 L to a volume of 40.0 L. Does heat 

flow into or out of the gas? How much heat flows? [Hint:

Use W = nRT ln (Vi/Vf), which applies to an ideal gas at con-

stant temperature.]

Example 15.3 continued

Warm

Spontaneous heat flow

Cold

Reverse heat flow does not
happen spontaneously

Warm Cold

Figure 15.10 Spontaneous 

heat flow goes from warm to 

cool; the reverse does not hap-

pen spontaneously.

does not change. The work done on the gas is positive since 

the piston is pushed with an inward force as it moves 

inward.

Q = −W = −5.0 kJ

Since positive Q represents heat flow into the gas, the 

negative sign tells us that heat flows out of the gas into 

the reservoir.

Discussion Although the temperature remains 

constant during the process, it does not mean that no 

heat flows. To maintain a constant temperature when work is 

done on the gas, some heat must flow out of the gas. If the 



never happen: putting cold lemonade into a cooler with some partially melted ice, we 

would never find that the lemonade gets warmer as the liquid water freezes.  Spontane-

ous heat flow from a hotter body to a colder body is always irreversible.        

lemonade would remain unchanged—energy would be con-

served. The process would never occur, but not because 

energy conservation would be violated.

Conceptual Practice Problem 15.4 A Campfire

On a camping trip, you gather some twigs and logs and 

start a fire. Discuss the campfire in terms of irreversible 

processes.

Conceptual Example 15.4

Irreversibility and Energy Conservation

Suppose heat did flow spontaneously from the cold ice to the 

warm lemonade, making the ice colder and the lemonade 

warmer. Would conservation of energy be violated by this 

process?

Solution and Discussion Heat flow from the ice to the 

lemonade would increase the internal energy of the lemon-

ade by the same amount that the internal energy of the ice 

would decrease. The total internal energy of the ice and the 

 As we will see later in this chapter, irreversible processes such as the frictional dis-

sipation of energy and the spontaneous heat flow from a hotter to a colder body can be 

thought of in terms of a change in the amount of order in the system. A system never 

goes  spontaneously  from a disordered state to a more ordered state. Reversible pro-

cesses are those that do not change the total amount of disorder in the universe; irrevers-

ible processes increase the amount of disorder.    

Second Law of Thermodynamics    According to the    second law of thermodynamics,    

the total amount of disorder in the universe never decreases. Irreversible processes increase 

the disorder of the universe. We see in Section 15.8 that the second law is based on the sta-

tistics of systems with extremely large numbers of atoms or molecules. For now, we start 

with an equivalent statement of the second law, phrased in terms of heat flow: 

Second Law of Thermodynamics (Clausius Statement)

Heat never flows spontaneously from a colder body to a hotter body.

 Spontaneous heat flow from a colder body to a hotter body would decrease the total dis-

order in the universe. 

 The second law of thermodynamics determines what we sense as the direction of 

time—none of the other physical laws we have studied would be violated if the direc-

tion of time were reversed.         

CHECKPOINT 15.4

A perfectly elastic collision is reversible. What about an inelastic collision? 

Explain.

15.5  HEAT ENGINES 

  We said in Section 15.4 that it is far  easier  to convert ordered energy into disor-

dered energy than to do the reverse. Converting ordered into disordered energy 

occurs spontaneously, but the reverse does not. A    heat engine    is a device designed 
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to convert disordered energy into ordered energy. We will see that there is a funda-

mental limitation on how much ordered energy (mechanical work) can be produced 

by a heat engine from a given amount of disordered energy (heat). 

 The development of practical steam engines—heat engines that use steam as the 

working substance—around the beginning of the eighteenth century was one of the cru-

cial elements in the industrial revolution. These steam engines were the first machines 

that produced a sustained work output using an energy source other than muscle, wind, 

or moving water. Steam engines are still used in many electric power plants.     

 The source of energy in a heat engine is most often the burning of some fuel such 

as gasoline, coal, oil, natural gas, and the like. A nuclear power plant is a heat engine 

using energy released by a nuclear reaction instead of a chemical reaction (as in burn-

ing). A geothermal engine uses the high temperature found beneath the Earth’s crust 

(which comes to the surface in places such as volcanoes and hot springs).      

   Cyclical Engines    The engines that we will study operate in cycles. Each cycle consists 

of several thermodynamic processes that are repeated the same way during each cycle. In 

order for these processes to repeat the same way, the engine must end the cycle in the 

same state in which it started. In particular, the internal energy of the engine must be the 

same at the end of a cycle as it was in the beginning. Then for one complete cycle,

    ΔU = 0  

From the first law of thermodynamics (energy conservation),

     Q  net   +  W  net   = 0      or        W  net    =   Q  net     

Therefore, for a cyclical heat engine, 

The net work done by an engine during one cycle is equal to the net heat flow into 

the engine during the cycle.

 We stress that it is the  net  heat flow since an engine not only takes in heat but exhausts 

some as well.  Figure 15.11  shows the energy transfers during one cycle of a heat engine.      

   Application: the Internal Combustion Engine    One familiar engine is the internal 

combustion engine found in automobiles.  Internal  combustion refers to the fact that 

gasoline is burned inside a cylinder; the resulting hot gases push against a piston and do 

work. A steam engine is an  external  combustion engine. The coal burned, for example, 

releases heat that is used to make steam; the steam is the working substance of the 

engine that drives the turbines. 

 Most automobile engines work in a cyclic thermodynamic process shown in 

 Fig. 15.12 . Of the energy released by burning gasoline, only about 20% to 25% is turned 

into mechanical work used to move the car forward and run other systems. The rest is 

discarded. The hot exhaust gases carry energy out of the engine, as does the liquid cool-

ing system.         

  Efficiency of an Engine 

 To measure how effectively an engine converts heat into mechanical work, we define 

the engine’s    efficiency     e  as what you get (net useful work) divided by what you supply 

(heat input):          

Efficiency of an engine:

 e =   
net work done by the engine

   _______________________  
heat input

   =   
 W  net   ____ 
 Q  in  

   (15-12)

Application of thermodynamics: 

heat engines

Application of thermodynamics: 

heat engines

Heat
engine

Work done
by the engine

Heat flow into
the engine

Heat flow out
of the engine

Figure 15.11 A heat engine. 

The engine is represented by a 

circle and the arrows indicate 

the direction of the energy flow. 

The total energy entering the 

engine during one cycle equals 

the total energy leaving the 

engine during the cycle.



   To avoid getting mixed up by algebraic signs, we let the symbols   Q   in ,   Q   out , and   W   net  

stand for the   magnitudes   of the heat flows into and out of the engine and the net work 

done by the engine   during one or more cycles.   Hence,   Q   in ,   Q   out , and   W   net  are never nega-

tive. We supply minus signs in equations when necessary, based on the direction of 

energy flow.  Doing so helps keep us focused on what is happening physically with the 

energy flows, rather than on a sign convention. (We will do the same when we discuss 

refrigerators and heat pumps later in this chapter.) 

 The efficiency is stated as either a fraction or a percentage. It gives the fraction of 

the heat input that is turned into useful work.    Note that the heat input is   not   the same as 

the net heat flow into the engine;  rather,

      Q  net   =  Q  in   −  Q  out      (15-13)   

The efficiency of an engine is less than 100% because some of the heat input is 

exhausted, instead of being converted into useful work. 

 If an engine does work at a constant rate and its efficiency does not change, then it 

also takes in and exhausts heat at constant rates. The work done, heat input, and heat 

exhausted during any time interval are all proportional to the elapsed time.    Therefore, 

all the same relationships that are true for the amounts of heat flow and work done apply 

to the   rates   at which heat flows and work is done.  For example, the efficiency is

    e =   net work done  ____________ 
heat input

   =   
net rate of doing work

  ___________________  
rate of taking in heat

   =   
 W  net  /Δt

 _______ 
 Q  in  /Δt

     

Fuel + air
mixture

Exhaust

Valve open

Piston

1. Intake stroke:
The piston is pulled out,
drawing the fuel-air
mixture into the
cylinder at atmospheric 
pressure.

2. Compression stroke: 

The piston is pushed 
back in, compressing
the fuel-air mixture
and work is done on the
gas.

4. Power stroke:
The high pressure that
results from ignition
pushes the piston out.
The gases do work on
the piston and some
heat flows out of the 
cylinder.

3. Ignition: A spark 
ignites the gases,
quickly and dramatically
raising the temperature
and pressure.

5. Exhaust stroke:
A valve is opened and
the exhaust gases are
pushed out of the
cylinder.

Piston

Valve 
open

Valve
closed

Spark plug

Spark 

Figure 15.12 The four-stroke automobile engine. Each cycle has four strokes during which the piston moves 

(steps 1, 2, 4, and 5).
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   Efficiency and the First Law    According to the first law of thermodynamics, the 

efficiency of a heat engine cannot exceed 100%. An efficiency of 100% would mean 

that all of the heat input is turned into useful work and no “waste” heat is exhausted. It 

might seem theoretically possible to make a 100% efficient engine by eliminating all of 

the imperfections in design such as friction and lack of perfect insulation. However, it is 

not, as we see in Section 15.7.     

   15.6  REFRIGERATORS AND HEAT PUMPS 

  The second law of thermodynamics says that heat cannot  spontaneously  flow from a 

colder body to a hotter body; but machines such as refrigerators and heat pumps can 

make that happen. In a refrigerator, heat is pumped out of the food compartment into the 

warmer room. That doesn’t happen by itself; it requires the  input  of work. The electric-

ity used by a refrigerator turns the compressor motor, which does the work required to 

make the refrigerator function ( Fig. 15.13 ). An air conditioner is essentially the same 

thing: it pumps heat out of the house into the hotter outdoors.     

 The only difference between a refrigerator (or an air conditioner) and a heat pump 

is which end is performing the useful task. Refrigerators and air conditioners pump heat 

out of a compartment that they are designed to keep cool. Heat pumps pump heat from 

the colder outdoors into the warmer house. The idea is not to cool the outdoors; it is to 

warm the house.     

 Notice that the energy transfers in a heat pump are reversed in direction from those 

in a heat engine ( Fig. 15.14 ). In the heat engine, heat flows from hot to cold, with work 

Application: refrigerators and heat 

pumps

Application: refrigerators and heat 

pumps

CONNECTION: 

A refrigerator or heat pump 

is like a heat engine with the 

directions of the energy trans-

fers reversed.

CONNECTION: 

A refrigerator or heat pump 

is like a heat engine with the 

directions of the energy trans-

fers reversed.

In other words, the rate at which the engine does work is 

equal to the net rate of heat input. We are asked to find the 

rate of heat exhausted Qout/Δt:

  
 Q  out   ____ 
Δt

   =   
 Q  in   ___ 
Δt

   −   
 W  net   ____ 
Δt

   =   
 W  net  /Δt

 _______ 
e
   −   

 W  net   ____ 
Δt

  

=   
 W  net   ____ 
Δt

    (   1 __ 
e
   − 1 )  = 0.10 MW ×  (   1 ____ 

0.25
   − 1 ) 

= 0.30 MW

Discussion Heat flows out of the engine at a rate of 

0.30 MW.

As a check: 25% efficiency means that   1 _ 
4
   of the heat input 

does work and   3 _ 
4
   of it is exhausted. Therefore, the ratio of 

work to exhaust is

  1/4 ___ 
3/4

   =   1 __ 
3
   =   0.10 MW ________ 

0.30 MW
  

For simplicity, we could have let Wnet, Qin, and Qout refer 

to rates instead of to total amounts—to do this we just can-

cel common factors of Δt out of the equations for efficiency 

and energy conservation.

Practice Problem 15.5 Heat Engine Efficiency

An engine “wastes” 4.0 J of heat for every joule of work 

done. What is its efficiency?

Example 15.5

Rate at Which Heat Is Exhausted from an Engine

An engine operating at 25% efficiency produces work at a 

rate of 0.10 MW. At what rate is heat exhausted into the 

surroundings?

Strategy We are given that the engine does work at a con-

stant rate. The efficiency is also constant.

Solution The efficiency is the ratio of Wnet/Δ t, the rate at 

which the engine does net work, to Qin/Δ t, the rate of heat 

flow into the engine:

e =   
 W  net   ____ 
 Q  in  

   =   
 W  net  /Δt

 _______ 
 Q  in  /Δt

  

The net rate of heat flow Qnet/Δt is

  
 Q  net   ____ 
Δt

   =   
 Q  in   ___ 
Δt

   −   
 Q  out   ____ 
Δt

  

Since the internal energy of the engine does not change over 

a complete cycle, energy conservation (or the first law of 

thermodynamics) requires that

 Q  net   =  W  net   or  Q  in   −  Q  out   =  W  net  

In terms of the rate at which heat is delivered or exhausted 

and the rate at which work is done,

  
 Q  in   ___ 
Δt

   −   
 Q  out   ____ 
Δt

   =   
 W  net   ____ 
Δt

  



as the output. In a heat pump, heat flows from cold to hot, with work as the  input.     It will 

be most convenient to distinguish the heat transfers not by which is input and which 

output (since that switches in going from an engine to a heat pump), but rather by the 

temperature at which the exchange is made, using subscripts “H” and “C” for hot and 

cold.   Q   H ,   Q   C , and   W   net  stand for the   magnitudes   of the energy transfers during one or 

more cycles and are never negative. We supply minus signs in equations when neces-

sary, based on the directions of the energy transfers, as appropriate for the engine, heat 

pump, or refrigerator under consideration.        

 Thus, the efficiency of the heat engine can be rewritten    

     e =   
net work output

  _____________ 
heat input

   =   
 W  net   ____ 
 Q  H  

      (15-12)   

The efficiency can also be expressed in terms of the heat flows. Since  W  net   =   Q  H   −   Q  C ,

     e =   
 Q  H   −  Q  C  

 ________ 
 Q  H  

   = 1 −   
 Q  C  

 ___ 
 Q  H  

      (15-14)   

The efficiency of an engine is  less  than 1.      

   Coefficient of Performance    To measure the performance of a heat pump or refrigera-

tor, we define a    coefficient of performance     K.     Just as for the efficiency of an engine, 

the coefficients of performance are ratios of what you get divided by what you pay for: 

   • for a heat  p ump:

      K  p   =   heat delivered  ____________  
net work input

   =   
 Q  H  

 ____ 
 W  net  

      (15-15)     

  • for a  r efrigerator or air conditioner:

      K  r   =   heat removed  ____________  
net work input

   =   
 Q  C  

 ____ 
 W  net  

      (15-16)      

A higher coefficient of performance means a better heat pump or refrigerator.    Unlike the 

efficiency of an engine, coefficients of performance can be (and usually are)   greater than   1.  

 The second law says that heat cannot flow spontaneously from cold to hot—we 

need to do some work to make that happen. That’s equivalent to saying that the coeffi-

cient of performance can’t be infinite.     

Sign convention for engines, refrig-

erators, and heat pumps:  Q  H ,  Q  C , 

and  W  net  are all positive.

Sign convention for engines, refrig-

erators, and heat pumps:  Q  H ,  Q  C , 

and  W  net  are all positive.

High
pressure

Low
pressure

Compressor

HOT

COLD

Condenser
Evaporator

Expansion
valve

Heat
from food

Heat
to
room

Figure 15.13 In a refrigera-

tor, a fluid is compressed, 

increasing its temperature. Heat 

is exhausted as the fluid passes 

through the condenser. Now the 

fluid is allowed to expand; its 

temperature falls. Heat flows 

from the food compartment into 

the cold fluid. The fluid returns 

to the compressor to begin the 

same cycle again.

the house. Where does the “extra” heat delivered by the heat 

pump come from? (c) What would its coefficient of perfor-

mance be when used as an air conditioner instead?

Example 15.6

A Heat Pump

A heat pump has a performance coefficient of 2.5. (a) How 

much heat is delivered to the house for every joule of electri-

cal energy consumed? (b) In an electric heater, for each joule 

of electric energy consumed, one joule of heat is delivered to continued on next page
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Figure 15.14 Energy trans-

fers during one cycle for (a) a 

heat engine and (b) a refrigerator 

or heat pump. With our defini-

tion of QH, QC, and Wnet as posi-

tive quantities, in either case 

conservation of energy requires 

that QH = Wnet + QC.

Refrigerator
or heat pump

Wnet

QH

QC

(b)

Heat
engine

Wnet

QH

QC

(a)
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   15.7  REVERSIBLE ENGINES AND HEAT PUMPS 

What limitation does the  second  law of thermodynamics place on the efficiencies of heat 

engines or on the coefficients of performance of heat pumps and refrigerators? To address 

that question, we first introduce a simplified model of engines and heat pumps. We 

assume the existence of two reservoirs, a hot reservoir at absolute temperature  T  H  and a 

cold reservoir at absolute temperature  T  C  (where  T  C  <  T  H ). In this model, an engine takes 

its heat input from the hot reservoir and exhausts heat into the cold reservoir ( Fig. 15.15 ). 

A heat pump takes in heat from the cold reservoir and exhausts heat to the hot reservoir. 

The cold reservoir stays at temperature  T  C  and the hot reservoir stays at  T  H .       

 Now imagine a hypothetical    reversible engine    exchanging heat with two reser-

voirs. In this engine, no irreversible processes occur: there is no friction or other dissi-

pation of energy and heat only flows between systems that have the same temperature. 

In practice, there would have to be some small temperature difference to make heat flow 

from one system to another, but we can imagine making the temperature difference 

smaller and smaller.    Hence, the reversible engine is an idealization, not something we 

can actually build.  We can now show that    

   • the efficiency of this reversible engine depends only on the absolute temperatures 

of the two reservoirs; and  

  • the efficiency of a real engine that exchanges heat with two reservoirs cannot be 

greater than the efficiency of a reversible engine using the same two reservoirs.         

   A Reversible Engine Has the Maximum Possible Efficiency    We can prove that 

no real engine can have a higher efficiency than a reversible engine using the same two 

reservoirs by the following thought experiment. Imagine two engines using the same 

hot and cold reservoirs that do the same amount of work per cycle ( Fig. 15.16a ). Sup-

pose engine 1 is reversible and hypothetical engine 2 has a higher efficiency than engine 1 

( e  2  >  e  1 ). The more efficient engine does the same amount of work per cycle but takes in 

a smaller quantity of heat from the hot reservoir per cycle ( Q  H2  <  Q  H1 ). Energy conser-

vation for a cyclical engine requires that  Q  C   =   Q  H   −   W  net , so the more efficient engine 

also exhausts a smaller quantity of heat to the cold reservoir ( Q  C2  <  Q  C1 ).       

Recall that a reservoir is a system 

with such a large heat capacity that 

it can exchange heat in either direc-

tion with a negligibly small temper-

ature change.

Recall that a reservoir is a system 

with such a large heat capacity that 

it can exchange heat in either direc-

tion with a negligibly small temper-

ature change.

Strategy There are two slightly different meanings of 

coefficient of performance. For a heat pump, whose object is 

to deliver heat to the house, the coefficient of performance is 

the heat delivered (QH) per unit of net work done to run the 

pump. With an air conditioner, the object is to remove heat 

from the house. The coefficient of performance is the heat 

removed (QC) per unit of work done.

Solution (a) As a heat pump,

 K  p   =   heat delivered  ____________  
net work input

   =   
 Q  H  

 ____ 
 W  net  

   = 2.5

 Q  H   = 2.5 W  net  

For every joule of electric energy (= work input), 2.5 J of 

heat are delivered to the house.

  (b) The 2.5 J of heat delivered include the 1.0 J of work input 

plus 1.5 J of heat pumped in from the outside. The electric 

heater just transforms the joule of work into a joule of heat.

 (c) From (b), the coefficient is 1.5:

 K  r   =   heat removed  ____________  
net work input

   =   
 Q  C  

 ____ 
 W  net  

   =   1.5 J ____ 
1.0 J

   = 1.5

Discussion One thing that makes a heat pump economical 

in many situations is that the same machine can function as 

a heat pump (in winter) and as an air conditioner (in sum-

mer). The heat pump delivers heat to the interior of the 

house, while the air conditioner pumps heat out.

Practice Problem 15.6 Heat Exhausted by Air 
Conditioner

An air conditioner with a coefficient of performance Kr = 3.0 

consumes electricity at an average rate of 1.0 kW. During 

1.0 h of use, how much heat is exhausted to the outdoors?

Example 15.6 continued

TC

Cold reservoir

Hot reservoir

Heat
engine

Wnet

QH

QC

TH

Figure 15.15 Simplified 

model of a heat engine. Heat 

flows into the engine from a res-

ervoir at temperature TH, and 

heat flows out of the engine into 

a reservoir at TC.



 Now imagine reversing the energy flow directions for engine 1, turning it into a 

heat pump. Engine 1 is reversible, so the magnitudes of the energy transfers per cycle 

do not change. Connect this heat pump to engine 2, using the work output of the engine 

as the work input for the heat pump ( Fig. 15.16b ). Since  Q  C1  >  Q  C2  and  Q  H1  >  Q  H2 , the 

net effect of the two devices is a flow of heat from the cold reservoir to the hot reservoir 

without the input of work, which is impossible—it violates the second law of thermody-

namics. The conclusion is that according to the second law, no engine can have an effi-

ciency greater than that of a reversible engine that uses the same two reservoirs. 

 Furthermore, every reversible engine exchanging heat with the same two reser-

voirs, no matter what the details of its construction, has the same efficiency. (To see why, 

use the same thought experiment with two reversible engines such that  e  2  >  e  1 .) There-

fore, the efficiency of such an engine can depend only on the temperatures of the hot 

and cold reservoirs. It turns out that  e  r  is given by the remarkably simple expression:

      e  r   = 1 −   
 T  

C
  
 ___ 

 T  
H
  
      (15-17)   

Equation (15-17) was first derived by Sadi Carnot (see later in this section).    The tempera-

tures in Eq. (15-17) must be   absolute   temperatures.  [Absolute temperature is also called 

 thermodynamic temperature  because you can use the efficiency of reversible engines to 

set a temperature scale. In fact, the definition of the kelvin is based on Eq. (15-17).]     

 Using Eq. (15-17), the ratio of the heat exhaust to the heat input  for a reversible 

engine  is

       
 Q  C  

 ___ 
 Q  H  

   =   
 Q  H   −  W  net   _________ 

 Q  H  
   = 1 −   

 W  net   ____ 
 Q  H  

   = 1 −  e  r   =   
 T  

C
  
 ___ 

 T  
H
  
      (15-18)   

 For a reversible engine,  the ratio of the heat magnitudes is equal to the temperature 

ratio. 

 The efficiency of a reversible engine is always less than 100%, assuming that the cold 

reservoir is not at absolute zero.    Even an ideal, perfectly reversible engine must exhaust 

some heat, so the efficiency can never be 100%,   even in principle.  Efficiencies of real 

engines cannot be greater than those of reversible engines, so the second law of thermody-

namics sets a limit on the theoretical maximum efficiency of an engine ( e  < 1  −   T  C / T  H ).  

   Reversible Refrigerators and Heat Pumps    Equation (15-18) also applies to revers-

ible heat pumps and refrigerators because they are just reversible engines with the 

directions of the energy transfers reversed. Using Eq. (15-18) and the first law, we 

Efficiency of a Reversible Engine Efficiency of a Reversible Engine 

TH

TC

Cold reservoir

Hot reservoir

Wnet Wnet

QH1

QC1

QH2

QH1 > QH2 

QC1 > QC2

QC2

Reversible 
Engine 1

Hypothetical 
Engine 2

Hypothetical 
Engine 2

(a)

TH

TC

Cold reservoir

Hot reservoir

Wnet Wnet

QH1

QC1

QH2

QC2

Reversible 
Heat pump 1

(b)

Figure 15.16 (a) Two engines that take in heat from the same hot reservoir and 

exhaust heat to the same cold reservoir. The two engines do the same amount of net 

work per cycle. Engine 1 is reversible, while hypothetical engine 2 is assumed to have 

an efficiency higher than that of engine 1, which we will show to be impossible. 

(b) Engine 1 is reversed, making it into a reversible heat pump. The work output of 

hypothetical engine 2 is used to run the heat pump. The net effect of the two connected 

devices is heat flow from the cold reservoir to the hot reservoir without any work input.
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can find the coefficients of performance for reversible heat pumps and refrigerators (see 

Problems 42 and 44):

      K  p, rev   =   1 _________ 
1 −  T  

C
  / T  

H
  
   and  K  r, rev   =   1 _________ 

 T  
H
  / T  

C
   − 1

   =  K  p, rev   − 1    (15-19)   

Real heat pumps and refrigerators cannot have coefficients of performance greater than 

those of reversible heat pumps and refrigerators operating between the same two 

reservoirs.   

This gives a higher efficiency:

 e  r   = 1 −   
 T  

C
  
 ___ 

 T  
H
  
   = 1 −   293 K _______ 

3273 K
   = 0.910 = 91.0%

Discussion As mentioned in the chapter 

opener, real gasoline engines achieve efficiencies 

of only about 20% to 25%. Although improve-

ment is possible, the second law of thermodynamics limits 

the theoretical maximum efficiency to that of a reversible 

engine operating between the same temperatures. The theo-

retical maximum efficiency can only be increased by using a 

hotter hot reservoir or a colder cold reservoir. However, 

practical considerations may prevent us from using a hotter 

hot reservoir or colder cold reservoir. Hotter combustion 

gases might cause engine parts to wear out too fast, or there 

may be safety concerns. Letting the gases expand to a greater 

volume would make the exhaust gases colder, leading to an 

increase in efficiency, but might reduce the power the engine 

can deliver. (A reversible engine has the theoretical maxi-

mum efficiency, but the rate at which it does work is vanish-

ingly small because it takes a long time for heat to flow 

across a small temperature difference.)

Practice Problem 15.7 Temperature of Hot Gases

If the efficiency of a reversible engine is 75% and the tem-

perature of the outdoor world into which the engine sends its 

exhaust is 27°C, what is the combustion temperature in the 

engine cylinder? [Hint: Think of the combustion tempera-

ture as the temperature of the hot reservoir.]

Example 15.7

Efficiency of an Automobile Engine

In an automobile engine, the combustion of the fuel-air 

mixture can reach temperatures as high as 3000°C and the 

exhaust gases leave the cylinder at about 1000°C. (a) Find 

the efficiency of a reversible engine operating between res-

ervoirs at those two temperatures. (b) Theoretically, we 

might be able to have the exhaust gases leave the engine at 

the temperature of the outside air (20°C). What would be 

the efficiency of the hypothetical reversible engine in this 

case?

Strategy First we identify the temperatures of the hot and 

cold reservoirs in each case. We must convert the reservoir 

temperatures to kelvins in order to find the efficiency of a 

reversible engine.

Solution (a) The reservoir temperatures in kelvins are 

found using

T =  T  
C
   + 273 K

Therefore,

 T  
H
   = 3000°C = 3273 K

 T  
C
   = 1000°C = 1273 K

The efficiency of a reversible engine operating between 

these temperatures is

 e  r   = 1 −   
 T  

C
  
 ___ 

 T  
H
  
   = 1 −   1273 K _______ 

3273 K
   = 0.61 = 61%

(b) The high-temperature reservoir is still at 3273 K, while 

the low-temperature reservoir is now

 T  
C
   = 293 K

Can an engine be 100% efficient?

rate of thermal pollution (heat exhausted into the river) if the 

station generates 125 MW of electricity?

Example 15.8

Coal-Burning Power Plant

A coal-burning electrical power plant burns coal at 706°C. 

Heat is exhausted into a river near the power plant; the aver-

age river temperature is 19°C. What is the minimum possible 
continued on next page



  The Carnot Cycle 

 Sadi Carnot (1796–1832), a French engineer, published a treatise in 1824 that greatly 

expanded the understanding of how heat engines work. His treatment introduced a 

hypothetical, ideal engine that uses two heat reservoirs at different temperatures as the 

source and sink for heat and an ideal gas as the working substance of the engine. We 

now call this engine a    Carnot engine    and its cycle of operation the    Carnot cycle.     

Remember that the Carnot engine is an   ideal   engine, not a real engine.  

   Carnot was able to calculate the efficiency of an engine operating in this cycle and 

obtained Eq. (15-17). Since  all  reversible engines operating between the same two res-

ervoirs must have the same efficiency, deriving the efficiency for one particular kind of 

reversible engine is sufficient to derive it for all of them. 

 The Carnot engine is a particular kind of reversible engine. (Other reversible 

engines might use a working substance other than an ideal gas or might exchange heat 

with three or more reservoirs.) We must assume that all friction has somehow been 

eliminated—otherwise an irreversible process takes place. We also must avoid heat flow 

across a finite temperature difference, which would be irreversible. Therefore, when-

ever the ideal gas takes in or gives off heat, the gas must be at the same temperature as 

the reservoir with which it exchanges energy. 

 How can we get heat to flow without a temperature difference? Imagine putting the 

gas in good thermal contact with a reservoir at the same temperature. Now  slowly  pull a 

piston so that the gas expands. Since the gas does work, it must lose internal energy—

and therefore its temperature drops, since in an ideal gas the internal energy is propor-

tional to absolute temperature. As long as the expansion occurs slowly, heat flows into 

the gas fast enough to keep its temperature constant. 

 So, to keep every step reversible, we must exchange heat in  isothermal  processes. 

To take in heat, we expand the gas; to exhaust heat, we compress it. We also need 

reversible processes to change the gas temperature from  T  H  to  T  C  and back to  T  H . These 

processes must be  adiabatic  (no heat flow) since otherwise an irreversible heat flow 

would occur.     (For more detail on the Carnot cycle, see the text website.)

Strategy The minimum discharge of heat into the river 

would occur if the engine generating the electricity were 

reversible. As in Example 15.5, we can take all of the rates 

to be constant.

Solution First find the absolute temperatures of the 

reservoirs:

 T  
H
   = 706°C = 979 K

 T  
C
   = 19°C = 292 K

The efficiency of a reversible engine operating between 

these temperatures is

 e  r   = 1 −   
 T  

C
  
 ___ 

 T  
H
  
   = 1 −   292 K ______ 

979 K
   = 0.702

We want to find the rate at which heat is exhausted, which is 

QC/Δt. The efficiency is equal to the ratio of the net work 

output to the heat input from the hot reservoir:

e =   
 W  net   ____ 
 Q  H  

  

Conservation of energy requires that

 Q  H   =  Q  C   +  W  net  

Solving for QC,

 Q  C   =  Q  H   −  W  net   =   
 W  net   ____ e   −  W  net   =  W  net   ×  (   1 __ e   − 1 ) 

Assuming that all the rates are constant,

  
 Q  C  

 ___ 
Δt

   = 125 MW ×  (   1 _____ 
0.702

   − 1 )  = 53 MW

The rate at which heat enters the river is 53 MW.

Discussion We expect the actual rate of thermal pollution 

to be higher. A real, irreversible engine would have a lower 

efficiency, so more heat would be dumped into the river.

Practice Problem 15.8 Generating Electricity 
from Coal

What is the minimum possible rate of heat input (from the 

burning of coal) needed to generate 125 MW of electricity 

in this same plant?

Example 15.8 continued
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   15.8  ENTROPY 

  When two systems of different temperatures are in thermal contact, heat flows out of the 

hotter system and into the colder system. There is no change in the total energy of the 

two systems; energy just flows out of one and into the other. Why then does heat flow in 

one direction but not in the other? As we will see, heat flow  into  a system not only 

increases the system’s internal energy, it also increases the  disorder  of the system. Heat 

flow  out of  a system decreases not only its internal energy but also its disorder. 

 The    entropy    of a system (symbol  S  ) is a quantitative measure of its disorder. 

Entropy is a state variable (like  U, P, V,  and  T  ): a system in equilibrium has a unique 

entropy that does  not  depend on the past history of the system. (Recall that heat and 

work are  not  state variables. Heat and work describe  how  a system goes from one state 

to another.) The word  entropy  was coined by Rudolf Clausius (1822–1888) in 1865; its 

Greek root means  evolution  or  transformation.  

 If an amount of heat  Q  flows into a system at constant absolute temperature  T,  the 

entropy change  of the system  is

     ΔS =   
Q

 __ 
T

      (15-20)   

The SI unit for entropy is J/K. Heat flowing into a system increases the system’s entropy 

(both Δ S  and  Q  are positive); heat leaving a system decreases the system’s entropy (both 

Δ S  and  Q  are negative). Equation (15-20) is valid as long as the temperature of the system 

is constant, which is true if the heat capacity of the system is large (as for a reservoir), so 

that the heat flow  Q  causes a negligibly small temperature change in the system. 

 Note that Eq. (15-20) gives only the  change  in entropy, not the initial and final val-

ues of the entropy.    As with potential energy, the   change   in entropy is what’s important 

in most situations.  

 If a small amount of heat  Q  flows from a hotter system to a colder system ( T  H  >  T  C ), 

the  total  entropy change of the systems is

    Δ S  tot   = Δ S  
H
   + Δ S  

C
   =   

−Q
 ___ 

 T  
H
  
   +   

Q
 ___ 

 T  
C
  
    

Since  T  H  >  T  C ,

      
Q

 ___ 
 T  

H
  
   <   

Q
 ___ 

 T  
C
  
    

The increase in the colder system’s entropy is larger than the decrease of the hotter sys-

tem’s entropy and the total entropy increases:

 Δ S  tot   > 0 (irreversible process) (15-21)
        

Thus, the flow of heat from a hotter system to a colder system causes an increase in the 

total entropy of the two systems. Every irreversible process increases the total entropy 

of the universe. A process that would decrease the total entropy of the universe is impos-

sible. A reversible process causes no change in the total entropy of the universe. We can 

restate the second law of thermodynamics in terms of entropy: 

Second Law of Thermodynamics (Entropy Statement)

The entropy of the universe never decreases.

 For example, a reversible engine removes heat  Q  H  from a hot reservoir at temperature 

 T  H  and exhausts  Q  C  to a cold reservoir at  T  C . The entropy of the engine itself is left 

unchanged since it operates in a cycle. The entropy of the hot reservoir decreases by an 

amount  Q  H / T  H  and that of the cold reservoir increases by  Q  C / T  C . Since the entropy of 

the universe must be unchanged by a reversible engine, it must be true that

    −   
 Q  H  

 ___ 
 T  

H
  
   +   

 Q  C  
 ___ 

 T  
C
  
   = 0  or    

 Q  C  
 ___ 

 Q  
H
  
   =   

 T  
C
  
 ___ 

 T  
H
  
    



The efficiency of the engine is therefore

     e  r   =   
 W  net   ____ 
 Q  H  

   =   
 Q  H   −  Q  C  

 ________ 
 Q  H  

   = 1 −   
 Q  C  

 ___ 
 Q  H  

   = 1 −   
 T  

C
  
 ___ 

 T  
H
  
    

as stated in Section 15.7   .  

Entropy is   not   a conserved quantity like energy. The entropy of the universe is always 

increasing.  It is possible to decrease the entropy of a  system,  but only at the expense of 

increasing the entropy of the surroundings by at least as much (usually more).       
CONNECTION: 

Energy is a conserved quan-

tity; entropy is not.

CONNECTION: 

Energy is a conserved quan-

tity; entropy is not.CHECKPOINT 15.8

The entropy of a system increases by 10 J/K. Does this mean the process is neces-

sarily irreversible? Explain.

expands, it does work on the piston. If the temperature is to 

stay constant, the work done must equal the heat flow into 

the gas:

ΔU = 0     implies    Q + W = 0

In Section 15.3, we found the work done by an ideal gas dur-

ing an isothermal expansion:

W = nRT ln  (    V  
i
  
 ___ 

 V  
f
  
   ) 

The volume of the gas doubles, so Vi/Vf = 0.50:

W = nRT ln 0.50

Since Q = −W, the entropy change is

ΔS =   
Q

 __ 
T

   = −nR ln 0.50

= −(1.0 mol) ×  ( 8.31   J ______ 
mol⋅K

   )  × (−0.693) = +5.8 J/K

Discussion The entropy change is positive, as expected. 

Free expansion is an irreversible process; the gas molecules 

do not spontaneously collect back in the original container. 

The reverse process would cause a decrease in entropy, 

without a larger increase elsewhere, and so violates the 

second law.

Practice Problem 15.9 Entropy Change of the Uni-
verse When a Lump of Clay Is Dropped

A room-temperature lump of clay of mass 400 g is dropped 

from a height of 2 m and makes a totally inelastic collision 

with the floor. Approximately what is the entropy change of 

the universe due to this collision? [Hint: The temperature of 

the clay rises, but only slightly.]

Example 15.9

Entropy Change of a Freely Expanding Gas

Suppose 1.0 mol of an 

ideal gas is allowed to 

freely expand into an 

evacuated container of 

equal volume so that the 

volume of the gas dou-

bles (Fig. 15.17). No 

work is done on the gas 

as it expands, since 

there is nothing pushing 

against it. The contain-

ers are insulated so no heat flows into or out of the gas. 

What is the entropy change of the gas?

Strategy The only way to calculate entropy changes that 

we’ve learned so far is for heat flow at a constant tempera-

ture. In free expansion, there is no heat flow—but that does 

not necessarily mean there is no entropy change. Since 

entropy is a state variable, ΔS depends only on the initial and 

final states of the gas, not the intermedi-

ate states. We can therefore find the 

entropy change using any thermody-

namic process with the same initial and 

final states. The initial and final temper-

atures of the gas are identical since the 

internal energy does not change; there-

fore we find the entropy change for an 

isothermal expansion.

Solution Imagine the gas confined to 

a cylinder with a moveable piston 

(Fig. 15.18). In an isothermal expansion, 

heat flows into the gas from a reservoir 

at a constant temperature T. As the gas 

Heat
reservoir

Figure 15.18

As the gas in the 

cylinder expands, 

heat flows into it 

from the reservoir 

and keeps its tem-

perature constant.

Valve closed

VacuumGas

Figure 15.17

Two chambers connected by a valve. 

One chamber contains a gas and the 

other has been evacuated. When the 

valve is opened, the gas expands 

until it fills both chambers.
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    Application of the Second Law to Evolution 

 Some have argued that evolution cannot have occurred because it would violate the sec-

ond law of thermodynamics. The argument views evolution as an increase in order: life 

spontaneously developed from simple life forms to more complex, more highly ordered 

organisms. 

 However, the second law says only that the  total entropy of the universe  cannot 

decrease. It does not say that the entropy of a particular system cannot decrease. When 

heat flows from a hot body to a cold body, the entropy of the hot body decreases, but 

the increase in the cold body’s entropy is greater, so the entropy of the universe 

increases. A living organism is not a closed system and neither is the Earth. An adult 

human, for instance, requires roughly 10 MJ of chemical energy from food per day. 

What happens to this energy? Some is turned into useful work by the muscles, some 

more is used to repair body tissues, but most of it is dissipated and leaves the body as 

heat. The human body therefore is constantly increasing the entropy of its environ-

ment. As evolution progresses from simpler to more complicated organisms, the 

increase in order within the organisms must be accompanied by a larger increase in 

disorder in the environment.  

  Application of the Second Law to the “Energy Crisis” 

 When people speak of “conserving energy,” they usually mean using fuel and electricity 

sparingly. In the physics sense of the word  conserve,  energy is  always  conserved. Burn-

ing natural gas to heat your house does not change the amount of energy around; it just 

changes it from one form to another. 

 What we need to be careful not to waste is  high-quality  energy. Our concern is not 

the total amount of energy, but rather whether the energy is in a form that is useful and 

convenient. The chemical energy stored in fuel is relatively high-quality (ordered) energy. 

When fuel is burned, the energy is degraded into lower-quality (disordered) energy.  

  Statistical Interpretation of Entropy 

 Thermodynamic systems are collections of huge numbers of atoms or molecules. How 

these atoms or molecules behave statistically determines the disorder in the system. In 

other words, the second law of thermodynamics is based on the statistics of systems 

with extremely large numbers of atoms or molecules. 

 The    microstate    of a thermodynamic system specifies the state of each constituent 

particle. For instance, in a monatomic ideal gas with  N  atoms, a microstate is specified 

by the position and velocity of each of the  N  atoms. As the atoms move about and col-

lide, the system changes from one microstate to another. The    macrostate    of a thermo-

dynamic system specifies only the values of the macroscopic state variables (such as 

pressure, volume, temperature, and internal energy). 

 Statistical analysis is the microscopic basis for the second law of thermodynamics. 

It turns out, remarkably, that the number of microstates corresponding to a given macro-

state is related to the entropy of that macrostate in a simple way. Letting Ω (the Greek 

capital omega) stand for the number of microstates, the relationship is

     S = k ln Ω    (15-22)   

where  k  is Boltzmann’s constant. Equation (15-22) is inscribed on the tombstone of 

Ludwig Boltzmann (1844–1906), the Austrian physicist who made the connection 

between entropy and statistics in the late nineteenth century. The relationship between 

 S  and Ω has to be logarithmic because entropy is additive: if system 1 has entropy  S  1  

and system 2 has entropy  S  2 , then the total entropy is  S  1   +   S  2 . However, the number of 

microstates is  multiplicative.  Think of dice: if die 1 has 6 microstates and die 2 also 

has 6, the total number of microstates when rolling two dice is not 12, but 6  ×  6  =  36. 

The entropy is additive since ln 6  +  ln 6  =  ln 36. (For more information on entropy and 

statistics see text website.)      



   15.9  THE THIRD LAW OF THERMODYNAMICS 

  Like the second law, the third law of thermodynamics can be stated in several equiva-

lent ways. We will state just one of them: 

Third Law of Thermodynamics

It is impossible to cool a system to absolute zero.

 While it is impossible to  reach  absolute zero, there is no limit on how  close  we can 

get. Scientists who study low-temperature physics have attained equilibrium tempera-

tures as low as 1  μ K and have sustained temperatures of 2 mK; transient temperatures 

in the nano- and picokelvin range have been observed.        

Master the Concepts

    • The first law of thermodynamics is a statement of 

energy conservation:

      ΔU = Q + W    (15-1)   

  where  Q  is the heat flow  into  the system and  W  is the 

work done  on  the system.  

   • Pressure, temperature, volume, number of moles, inter-

nal energy, and entropy are state variables; they describe 

the state of a system at some instant of time but  not  how 

the system got to that state. Heat and work are  not  state 

variables—they describe  how  a system gets from one 

state to another.  

   • The work done on a system when the pressure is 

constant—or for a volume change small enough that the 

pressure change is insignificant—is

      W = −P ΔV    (15-2)   

  The magnitude of the work done is the total area under 

the  PV  curve. 

Displacement
of piston

Force on
gas due
to piston

W > 0 for compression

   • The change in internal energy of an ideal gas is deter-

mined solely by the temperature change. Therefore,

     ΔU = 0  (ideal gas, isothermal process)    (15-10)     

   •  A process in which no heat is transferred into or out of 

the system is called an adiabatic process.  

   •  The molar specific heats of an ideal gas at constant vol-

ume and constant pressure are related by

       C  
P
   =  C  

V
   + R    (15-9)     

   • Spontaneous heat flow from a hotter body to a colder 

body is always irreversible. 

Warm

Spontaneous heat flow

Cold

   • For one cycle of an engine, heat pump, or refrigerator, 

conservation of energy requires

       Q  net   =  Q  H   −  Q  C   =  W  net     

  where  Q  H ,  Q  C , and  W  net  are defined as positive 

quantities.  

Heat
engine

Refrigerator
or heat pump

Wnet Wnet

QH QH

QC
QC

   • The efficiency of an engine is defined as

      e =   
 W  net   ____ 
 Q  H  

      (15-12)     

   • The coefficient of performance for a heat pump is

       K  p   =   heat delivered  ____________  
net work input

   =   
 Q  H  

 ____ 
 W  net  

      (15-15)

   • The coefficient of performance for a refrigerator or air 

conditioner is

       K  r   =   heat removed  ____________  
net work input

   =   
 Q  C  

 ____ 
 W  net  

      (15-16)

continued on next page
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  Conceptual Questions 

    1. Is it possible to make a heat pump with a coefficient of 

performance equal to 1? Explain.  

   2. An electric baseboard heater can convert 100% of the 

electric energy used into heat that flows into the house. 

Since a gas furnace might be located in a basement and 

sends exhaust gases up the chimney, the heat flow into 

the living space is less than 100% of the chemical 

energy released by burning. Does this mean that elec-

tric heating is better? Which heating method consumes 

less fuel? In your answer, consider how the electricity 

might have been generated and the efficiency of that 

process.  

   3. A whimsical statement of the laws of thermodynamics—

probably not one favored by gamblers—goes like 

this:

     I. You can never win; you can only lose or break even.  

    II. You can only break even at absolute zero.  

    III. You can never get to absolute zero.    

   What do we mean by “win,” “lose,” and “break even”? 

[ Hint:  Think about a heat engine.]  

   4. Why must all reversible engines (operating between the 

same reservoirs) have the same efficiency? Try an argu-

ment by contradiction: imagine that two reversible 

engines exist with  e  1  >  e  2 . Reverse one of them (into a 

heat pump) and use the work output from the engine to 

run the heat pump. What happens? (If it seems fine at 

first, switch the two.)  

   5. When supplies of fossil fuels such as petroleum and 

coal dwindle, people might call the situation an “energy 

crisis.” From the standpoint of physics, why is that not 

an accurate name? Can you think of a better one?  

   6. If you leave the refrigerator door open and the refrigera-

tor runs continuously, does the kitchen get colder or 

warmer? Explain.  

   7. Most heat pumps incorporate an auxiliary electric 

heater. For relatively mild outdoor temperatures, the 

electric heater is not used. However, if the outdoor tem-

perature gets very low, the auxiliary heater is used to 

supplement the heat pump. Why?  

   8. Why are heat pumps more often used in mild climates 

than in areas with severely cold winters?  

   9. Are entropy changes always caused by the flow of heat? 

If not, give some other examples of processes that 

increase entropy. (  tutorial: reversibility)  

   10. Can a heat engine be made to operate without creating 

any “thermal pollution,” that is, without making its cold 

reservoir get warmer in the long run? The net work out-

put must be greater than zero.  

   11. A warm pitcher of lemonade is put into an ice chest. 

Describe what happens to the entropies of lemonade 

and ice as heat flows from the lemonade to the ice within 

the chest.  

   12. A new dormitory is being built at a college in North 

Carolina. To save costs, it is proposed to not include air 

conditioning ducts and vents. A member of the board 

overseeing the construction says that stand-alone air 

conditioning units can be supplied to each room later. 

He has seen advertisements that claim these new units 

do not need to be vented to the outside. Can the claim 

be true? Explain.  

   13. After a day at the beach, a child brings home a bucket 

containing some salt water. Eventually the water evapo-

rates, leaving behind a few salt crystals. The molecular 

order of the salt crystals is greater than the order of the 

dissolved salt sloshing around in the sea water. Is this a 

violation of the entropy principle? Explain.  

   14. Explain why the molar specific heat at constant volume 

is not the same as the molar specific heat at constant 

pressure for gases. Why is the distinction between con-

stant volume and constant pressure usually insignificant 

for the specific heats of liquids and solids?    

   • A reservoir is a system 

with such a large heat 

capacity that it can 

exchange heat in either 

direction with a negli-

gibly small temperature 

change.  

   • The second law of 

thermodynamics can be 

stated in various equiva-

lent ways. Two of them 

are: (1) heat never flows 

spontaneously from a 

colder body to a hotter body, and (2) the entropy of the 

universe never decreases.  

   • The efficiency of a  reversible  engine is determined only 

by the  absolute  temperatures of the hot and cold 

reservoirs:

       e  r   = 1 −   
 T  

C
  
 ___ 

 T  
H
  
      (15-17)     

   • If an amount of heat  Q  flows into a system at constant 

absolute temperature  T,  the entropy change of the sys-

tem is

      ΔS =   
Q

 __ 
T

      (15-20)     

   • The third law of thermodynamics: it is impossible to 

cool a system to absolute zero.        

Master the Concepts continued

Reverse heat flow does not
happen spontaneously

Warm Cold



  Multiple-Choice Questions 

    1. A heat engine runs between reservoirs at temperatures 

of 300 ° C and 30 ° C. What is its maximum possible 

efficiency?

    (a) 10%     (b) 47%     (c) 53%  

   (d) 90%     (e) 100%     

   2. If two different systems are put in thermal contact so 

that heat can flow from one to the other, then heat will 

flow until the systems have the same

    (a) energy.  

   (b) heat capacity.  

   (c) entropy.  

   (d) temperature.     

   3. As moisture from the air condenses on the outside of a 

cold glass of water, the entropy of the condensing 

moisture

    (a) stays the same.  

   (b) increases.  

   (c) decreases.  

   (d) not enough information     

   4. As a system undergoes a constant volume process

    (a) the pressure does not change.  

   (b) the internal energy does not change.  

   (c) the work done on or by the system is zero.  

   (d) the entropy stays the same.  

   (e) the temperature of the system does not change.     

   5.  Which of these statements are implied by the  second  

law of thermodynamics?

    (a)  The entropy of an engine (including its fuel 

and/or heat reservoirs) operating in a cycle never 

decreases.  

   (b)  The increase in internal energy of a system in any 

process is the sum of heat absorbed plus work done 

on the system.  

   (c)  A heat engine, operating in a cycle, that rejects no 

heat to the low-temperature reservoir is impossible.  

   (d) Both (a) and (c).  

   (e) All three [(a), (b), and (c)].     

   6. On a summer day, you keep the air conditioner in your 

room running. From the list numbered 1 to 4, choose 

the hot reservoir and the cold reservoir.

    1. the air outside  

   2.  the compartment inside the air conditioner where the 

air is compressed  

   3.  the freon gas that is the working substance (expands 

and compresses in each cycle)  

   4. the air in the room   

    (a) 1 is the hot reservoir, 2 is the cold reservoir.  

   (b) 1 is the hot reservoir, 3 is the cold reservoir.  

   (c) 1 is the hot reservoir, 4 is the cold reservoir.  

   (d) 2 is the hot reservoir, 3 is the cold reservoir.  

   (e) 2 is the hot reservoir, 4 is the cold reservoir.  

   (f) 3 is the hot reservoir, 4 is the cold reservoir.     

   7. The  PV  diagram illustrates 

several paths to get from 

an initial to a final state. 

For which path does the 

system do the most work?

    (a) path  ig f   

   (b) path  if   

   (c) path  ihf   

   (d) All paths represent equal work.         

   8. An ideal gas is confined to the left chamber of an insu-

lated container. The right chamber is evacuated. A valve 

is opened between the chambers, allowing gas to flow 

into the right chamber. After equilibrium is established, 

the temperature of the gas _____   . [ Hint:  What happens 

to the internal energy?]

    (a) is lower than the initial temperature  

   (b) is higher than the initial temperature  

   (c) is the same as the initial temperature  

   (d)  could be higher than, the same as, or lower than the 

initial temperature     

   9. When the first law of thermodynamics (Δ U   =   Q   +   W ) is 

applied to a system S, the variables  Q  and  W  stand for

    (a)  the heat flow  out of  S and the work done  on  S.  

   (b)  the heat flow  out of  S and the work done  by  S.  

   (c)  the heat flow  into  S and the work done  by  S.  

   (d)  the heat flow  into  S and the work done  on  S.     

   10. As an ideal gas is adiabatically expanding,

    (a) the temperature of the gas does not change.  

   (b) the internal energy of the gas does not change.  

   (c) work is not done on or by the gas.  

   (d) no heat is given off or taken in by the gas.  

   (e) both (a) and (d)  

   (f) both (a) and (b)     

   11. As an ideal gas is compressed at constant temperature,

    (a) heat flows out of the gas.  

   (b) the internal energy of the gas does not change.  

   (c) the work done on the gas is zero.  

   (d) none of the above  

   (e) both (a) and (b)  

   (f) both (a) and (c)     

   12. Given 1 mole of an ideal gas, in a state characterized by 

 P  A ,  V  A , a change occurs so that the final pressure and 

volume are equal to  P  B ,  V  B , where  V  B  >  V  A . Which of 

these is true?

    (a)  The heat supplied to the gas during the process 

is completely determined by the values  P   A  ,  V   A  ,  P   B  , 

and  V   B  .  

   (b)  The change in the internal energy of the gas during 

the process is completely determined by the values 

 P   A  ,  V   A  ,  P   B  , and  V   B  .  

   (c)  The work done by the gas during the process is com-

pletely determined by the values  P   A  ,  V   A  ,  P   B  , and  V   B  .  

   (d) All three are true.  

   (e) None of these is true.     

Pi
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Final state

P
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   13. Which choice correctly identifies the three processes 

shown in the diagrams?

P

P
i

f

(I)
Vi Vf

T1 T2

V

P

i

f

(III)
V

T1 T2

V

P

Pf Pi

Pi Pf
i

f

(II)
Vi Vf

T1 T2

V

    (a) I  =  isobaric; II  =  isochoric; III  =  adiabatic  

   (b) I  =  isothermal; II  =  isothermal; III  =  isobaric  

   (c) I  =  isochoric; II  =  adiabatic; III  =  isobaric  

   (d) I  =  isobaric; II  =  isothermal; III  =  isochoric           

  Problems 

 Combination conceptual/quantitative problem  

  Biological or medical application  

✦ Challenging problem  

Blue # Detailed solution in the Student Solutions Manual  

1  2  Problems paired by concept  

  Text website interactive or tutorial   

  15.1 The First Law of Thermodynamics;  

  15.2 Thermodynamic Processes;  

  15.3 Thermodynamic Processes for an Ideal Gas 

     1.  On a cold day, Ming rubs her hands together to warm 

them up. She presses her hands together with a force of 

5.0 N. Each time she rubs them back and forth they 

move a distance of 16 cm with a coefficient of kinetic 

friction of 0.45. Assuming no heat flow to the surround-

ings, after she has rubbed her hands back and forth eight 

times, by how much has the internal energy of her hands 

increased?  

 2.  A system takes in 550 J of heat while performing 840 J 

of work. What is the change in internal energy of the 

system?  

    3.  The internal energy of a system increases by 400 J while 

500 J of work are performed on it. What was the heat 

flow into or out of the system?  

    4.  A model steam engine of 1.00-kg mass pulls eight cars 

of 1.00-kg mass each. The cars start at rest and reach a 

velocity of 3.00 m/s in a time of 3.00 s while moving a 

distance of 4.50 m. During that time, the engine takes in 

135 J of heat. What is the change in the internal energy 

of the engine?  

    5.  A monatomic ideal gas at 27 ° C 

undergoes a constant pressure 

process from  A  to  B  and a con-

stant volume process from  B  to  C.  

Find the total work done during 

these two processes.      

6. A monatomic ideal gas at 27 ° C 

undergoes a constant volume pro-

cess from  A  to  B  and a constant 

pressure process from  B  to  C.  

Find the total work done during 

these two processes.      

   7. An ideal monatomic gas is 

taken through the cycle in 

the  PV  diagram. (a) If there 

are 0.0200 mol of this gas, 

what are the temperature and 

pressure at point  C?  (b) What 

is the change in internal 

energy of the gas as it is taken from  A  to  B?  (c) How 

much work is done by this gas per cycle? (d) What is the 

total change in internal energy of this gas in one cycle?      

   8. An ideal gas is in contact with a heat reservoir so that it 

remains at a constant temperature of 300.0 K. The gas is 

compressed from a volume of 24.0 L to a volume of 

14.0 L. During the process, the mechanical device push-

ing the piston to compress the gas is found to expend 

5.00 kJ of energy. How much heat flows between the 

heat reservoir and the gas and in what direction does the 

heat flow occur?  

    9.  Suppose 1.00 mol of oxygen is heated at constant pres-

sure of 1.00 atm from 10.0 ° C to 25.0 ° C. (a) How much 

heat is absorbed by the gas? (b) Using the ideal gas law, 

calculate the change of volume of the gas in this pro-

cess. (c) What is the work done by the gas during this 

expansion? (d) From the first law, calculate the change 

of internal energy of the gas in this process.  

10. Suppose a monatomic ideal 

gas is changed from state  A  

to state  D  by one of the pro-

cesses shown on the  PV  

diagram. (a) Find the total 

work done on the gas if it 

follows the constant vol-

ume path  A–B  followed by 

the constant pressure path 

B–C–D.  (b) Calculate the 

total change in internal energy of the gas during the 

entire process and the total heat flow into the gas.      

11.  Repeat Problem 10 for the case when the gas follows 

the constant temperature path  A–C  followed by the con-

stant pressure path  C–D.   

12. Repeat Problem 10 for the case when the gas follows 

the constant pressure path  A–E  followed by the constant 

temperature path  E–D.     

✦✦

✦✦

✦✦
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  15.5 Heat Engines; 15.6 Refrigerators and Heat 
Pumps 

13.  A heat engine follows 

the cycle shown in 

the figure. (a) How 

much net work is 

done by the engine in 

one cycle? (b) What 

is the heat flow  into  

the engine per cycle? (  tutorial: closed cycle)      

    14.  What is the efficiency of an electric generator that pro-

duces 1.17 kW·h per kg of coal burned? The heat of 

combustion of coal is 6.71  ×  10 6  J/kg.  

   15. A heat pump delivers heat at a rate of 7.81 kW for 

10.0 h. If its coefficient of performance is 6.85, how 

much heat is taken from the cold reservoir during 

that time?  

    16.  (a) How much heat does an engine with an efficiency 

of 33.3% absorb in order to deliver 1.00 kJ of work? 

(b) How much heat is exhausted by the engine?  

17.  The efficiency of an engine is 0.21. For every 1.00 kJ of 

heat absorbed by the engine, how much (a) net work is 

done by it and (b) heat is released by it?  

    18.  A certain engine can propel a 1800-kg car from rest to a 

speed of 27 m/s in 9.5 s with an efficiency of 27%. What 

are the rate of heat flow into the engine at the high tem-

perature and the rate of heat flow out of the engine at the 

low temperature?  

   19. The United States generates about 5.0  ×  10 16  J of elec-

tric energy a day. This energy is equivalent to work, 

since it can be converted into work with almost 100% 

efficiency by an electric motor. (a) If this energy is gen-

erated by power plants with an average efficiency of 

0.30, how much heat is dumped into the environment 

each day? (b) How much water would be required to 

absorb this heat if the water temperature is not to 

increase more than 2.0 ° C?  

   20. The intensity (power per unit area) of the sunlight inci-

dent on Earth’s surface, averaged over a 24-h period, is 

about 0.20 kW/m 2 . If a solar power plant is to be built 

with an output capacity of 1.0  ×  10 9  W, how big must 

the area of the solar energy collectors be for photocells 

operating at 20.0% efficiency?  

    21.  An engine releases 0.450 kJ of heat for every 0.100 kJ 

of work it does. What is the efficiency of the engine?  

    22.  An engine works at 30.0% efficiency. The engine raises 

a 5.00-kg crate from rest to a vertical height of 10.0 m, 

at which point the crate has a speed of 4.00 m/s. How 

much heat input is required for this engine?  

   23. How much heat does a heat pump with a coefficient of 

performance of 3.0 deliver when supplied with 1.00 kJ 

of electricity?  

   24. An air conditioner whose coefficient of performance is 

2.00 removes 1.73  ×  10 8  J of heat from a room per day. 

How much does it cost to run the air conditioning unit 

per day if electricity costs $0.10 per kilowatt-hour? 

(Note that 1 kilowatt-hour  =  3.6  ×  10 6  J.)    

  15.7 Reversible Engines and Heat Pumps 

25.  An ideal engine has an efficiency of 0.725 and uses 

gas from a hot reservoir at a temperature of 622 K. What 

is the temperature of the cold reservoir to which it 

exhausts heat?  

    26.  A heat engine takes in 125 kJ of heat from a reservoir at 

815 K and exhausts 82 kJ to a reservoir at 293 K. 

(a) What is the efficiency of the engine? (b) What is the 

efficiency of an ideal engine operating between the 

same two reservoirs?  

27.  In a certain steam engine, the boiler temperature is 

127 ° C and the cold reservoir temperature is 27 ° C. While 

this engine does 8.34 kJ of work, what minimum amount 

of heat must be discharged into the cold reservoir?  

    28.  Calculate the maximum possible efficiency of a heat 

engine that uses surface lake water at 18.0 ° C as a source 

of heat and rejects waste heat to the water 0.100 km 

below the surface where the temperature is 4.0 ° C.  

    29.  An ideal refrigerator removes heat at a rate of 0.10 kW 

from its interior ( + 2.0 ° C) and exhausts heat at 40.0 ° C. 

How much electrical power is used?  

   30. A heat pump is used to heat a house with an interior 

temperature of 20.0 ° C. On a chilly day with an outdoor 

temperature of  − 10.0 ° C, what is the minimum work that 

the pump requires in order to deliver 1.0 kJ of heat to 

the house? (    tutorial: heat pump)  

    31.  A coal-fired electrical generating station can use a 

higher  T  H  than a nuclear plant; for safety reasons the 

core of a nuclear reactor is not allowed to get as hot as 

coal. Suppose that  T  H   =  727 ° C for a coal station but 

T  H   =  527 ° C for a nuclear station. Both power plants 

exhaust waste heat into a lake at  T  C   =  27 ° C. How much 

waste heat does each plant exhaust into the lake to pro-

duce 1.00 MJ of electricity? Assume both operate as 

reversible engines. (    tutorial: power stations)  

   32. Two engines operate between the same two tempera-

tures of 750 K and 350 K, and have the same rate of 

heat input. One of the engines is a reversible engine 

with a power output of 2.3  ×  10 4  W. The second engine 

has an efficiency of 42%. What is the power output of 

the second engine?  

33.  (a) Calculate the efficiency of a reversible engine that 

operates between the temperatures 600.0 ° C and 

300.0 ° C. (b) If the engine absorbs 420.0 kJ of heat from 

the hot reservoir, how much does it exhaust to the cold 

reservoir?  

    34.  A reversible engine with an efficiency of 30.0% has 

 T  C   =  310.0 K. (a) What is  T  H ? (b) How much heat is 

exhausted for every 0.100 kJ of work done?  

V0.200 m3 0.800 m3

P

4.00 atm

1.00 atm
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    35.  An electric power station generates steam at 500.0 ° C and 

condenses it with river water at 27 ° C. By how much would 

its theoretical maximum efficiency decrease if it had to 

switch to cooling towers that condense the steam at 47 ° C?  

   36. An oil-burning electric power plant uses steam at 773 K 

to drive a turbine, after which the steam is expelled at 

373 K. The engine has an efficiency of 0.40. What is the 

theoretical maximum efficiency possible at those 

temperatures?  

    37.  An inventor proposes a heat engine to propel a ship, 

using the temperature difference between the water at 

the surface and the water 10 m below the surface as the 

two reservoirs. If these temperatures are 15.0 ° C and 

10.0 ° C, respectively, what is the maximum possible 

efficiency of the engine?  

   38. A heat engine uses the warm air at the ground as the hot 

reservoir and the cooler air at an altitude of several 

thousand meters as the cold reservoir. If the warm air is 

at 37 ° C and the cold air is at 25 ° C, what is the maxi-

mum possible efficiency for the engine?  

    39.  A reversible refrigerator has a coefficient of perfor-

mance of 3.0. How much work must be done to freeze 

1.0 kg of liquid water initially at 0 ° C?  

     40. An engine operates between temperatures of 650 K 

and 350 K at 65.0% of its maximum possible efficiency. 

(a) What is the efficiency of this engine? (b) If 6.3  ×  10 3  J 

is exhausted to the low temperature reservoir, how much 

work does the engine do?  

      41.  A town is planning on using the water flowing through a 

river at a rate of 5.0  ×  10 6  kg/s to carry away the heat 

from a new power plant. Environmental studies indicate 

that the temperature of the river should only increase by 

0.50 ° C. The maximum design efficiency for this plant is 

30.0%. What is the maximum possible power this plant 

can produce?  

   42. Show that the coefficient of performance for a revers-

ible heat pump is 1/(1  −   T  C / T  H ).  

     43. On a hot day, you are in a sealed, insulated room. The 

room contains a refrigerator, operated by an electric 

motor. The motor does work at the rate of 250 W when it 

is running. Assume the motor is ideal (no friction or 

electrical resistance) and that the refrigerator operates on 

a reversible cycle. In an effort to cool the room, you turn 

on the refrigerator and open its door. Let the temperature 

in the room be 320 K when this process starts, and the 

temperature in the cold compartment of the refrigerator 

be 256 K. At what net rate is heat added to ( + ) or sub-

tracted from (−) the room and all of its contents?  

   44. Show that the coefficient of performance for a revers-

ible refrigerator is 1/[( T  H / T  C )  −  1].  

    45.  Show that in a reversible engine the amount of heat  Q  C  

exhausted to the cold reservoir is related to the net work 

done  W  net  by          

 Q  C   =   
 T  

C
  
 _______ 

 T  
H
   −  T  

C
  
    W  net  

✦✦

✦✦

✦✦

  15.8 Entropy 

46. List these in order of increasing entropy: (a) 0.01 mol of 

N 2  gas in a 1-L container at 0 ° C; (b) 0.01 mol of N 2  gas 

in a 2-L container at 0 ° C; (c) 0.01 mol of liquid N 2 .  

47.  List these in order of increasing entropy: (a) 0.5 kg of 

ice and 0.5 kg of (liquid) water at 0 ° C; (b) 1 kg of ice at 

0 ° C; (c) 1 kg of (liquid) water at 0 ° C; (d) 1 kg of water 

at 20 ° C.  

48. An ice cube at 0.0 ° C is slowly melting. What is the 

change in the ice cube’s entropy for each 1.00 g of ice 

that melts?  

49.  From Table 14.4, we know that approximately 2256 kJ 

are needed to transform 1.00 kg of water at 100 ° C to 

steam at 100 ° C. What is the change in entropy of 1.00 kg 

of water evaporating at 100.0 ° C? (Specify whether the 

change in entropy is an increase,  + , or a decrease,  − .)  

   50. What is the change in entropy of 10 g of steam at 100 ° C 

as it condenses to water at 100 ° C? By how much does 

the entropy of the universe increase in this process?  

    51.  A large block of copper initially at 20.0 ° C is placed in a 

vat of hot water (80.0 ° C). For the first 1.0 J of heat that 

flows from the water into the block, find (a) the entropy 

change of the block, (b) the entropy change of the water, 

and (c) the entropy change of the universe. Note that the 

temperatures of the block and water are essentially 

unchanged by the flow of only 1.0 J of heat.  

   52. A large, cold (0.0 ° C) block of iron is immersed in a tub 

of hot (100.0 ° C) water. In the first 10.0 s, 41.86 kJ of 

heat are transferred, although the temperatures of the 

water and the iron do not change much in this time. 

Ignoring heat flow between the system (iron  +  water) 

and its surroundings, calculate the change in entropy of 

the system (iron  +  water) during this time.  

    53.  On a cold winter day, the outside temperature is 

 − 15.0 ° C. Inside the house the temperature is  + 20.0 ° C. 

Heat flows out of the house through a window at a rate 

of 220.0 W. At what rate is the entropy of the universe 

changing due to this heat conduction through the 

window?  

   54. Within an insulated system, 418.6 kJ of heat is con-

ducted through a copper rod from a hot reservoir at 

 + 200.0 ° C to a cold reservoir at  + 100.0 ° C. (The reser-

voirs are so big that this heat exchange does not change 

their temperatures appreciably.) What is the net change 

in entropy of the system, in kJ/K?  

     55. A student eats 2000 kcal per day. (a) Assuming that all 

of the food energy is released as heat, what is the rate of 

heat released (in watts)? (b) What is the rate of change 

of entropy of the surroundings if all of the heat is 

released into air at room temperature (20 ° C)?  

   56. The motor that drives a reversible refrigerator produces 

148 W of useful power. The hot and cold temperatures 

of the heat reservoirs are 20.0 ° C and  − 5.0 ° C. What is 

the maximum amount of ice it can produce in 2.0 h 

from water that is initially at 8.0 ° C?  



      57.  An engineer designs a ship that gets its power in the fol-

lowing way: The engine draws in warm water from the 

ocean, and after extracting some of the water’s internal 

energy, returns the water to the ocean at a temperature 

14.5 ° C lower than the ocean temperature. If the ocean is 

at a uniform temperature of 17 ° C, is this an efficient 

engine? Will the engineer’s design work?  

   58. A balloon contains 200.0 L of nitrogen gas at 20.0 ° C 

and at atmospheric pressure. How much energy must be 

added to raise the temperature of the nitrogen to 40.0 ° C 

while allowing the balloon to expand at atmospheric 

pressure?  

   59. An ideal gas is heated at a constant pressure of 

2.0  ×  10 5  Pa from a temperature of  − 73 ° C to a tempera-

ture of  + 27 ° C. The initial volume of the gas is 0.10 m 3 . 

The heat energy supplied to the gas in this process is 

25 kJ. What is the increase in internal energy of the gas?  

     60. If the pressure on a fish increases from 1.1 to 1.2 atm, 

its swim bladder decreases in volume from 8.16 mL to 

7.48 mL while the temperature of the air inside remains 

constant. How much work is done on the air in the 

bladder?    

  Comprehensive Problems 

     61.  A monatomic ideal gas 

follows the cyclic pro-

cess shown in the figure. 

The temperature of the 

point at the bottom left of 

the triangle is 470.0 K. 

(a) How much net work 

does this engine do per cycle? (b) What is the maximum 

temperature of this engine? (c) How many moles of gas 

are used in this engine?      

     62. For a reversible engine, will you obtain a better effi-

ciency by increasing the high-temperature reservoir by 

an amount Δ T  or decreasing the low-temperature reser-

voir by the same amount Δ T?   

    63. A 0.50-kg block of iron [ c   =  0.44 kJ/(kg·K)] at 20.0 ° C 

is in contact with a 0.50-kg block of aluminum [ c   =  

0.900 kJ/(kg·K)] at a temperature of 20.0 ° C. The sys-

tem is completely isolated from the rest of the universe. 

Suppose heat flows from the iron into the aluminum 

until the temperature of the aluminum is 22.0 ° C. 

(a) From the first law, calculate the final temperature of 

the iron. (b) Estimate the entropy change of the system. 

(c) Explain how the result of part (b) shows that this 

process is impossible. [ Hint:  Since the system is iso-

lated, Δ S  System   =  Δ S  Universe .]  

     64. List these in order of increasing entropy: (a) 1 mol of 

water at 20 ° C and 1 mol of ethanol at 20 ° C in separate 

containers; (b) a mixture of 1 mol of water at 20 ° C and 

1 mol of ethanol at 20 ° C; (c) 0.5 mol of water at 20 ° C 

and 0.5 mol of ethanol at 20 ° C in separate containers; 

(d) a mixture of 1 mol of water at 30 ° C and 1 mol of 

ethanol at 30 ° C.  

    65.  Suppose you mix 4.0 mol of a monatomic gas at 20.0 ° C 

and 3.0 mol of another monatomic gas at 30.0 ° C. If the 

mixture is allowed to reach equilibrium, what is the 

final temperature of the mixture? [ Hint:  Use energy 

conservation.]  

   66. A balloon contains 160 L of nitrogen gas at 25 ° C and 

1.0 atm. How much energy must be added to raise the 

temperature of the nitrogen to 45 ° C while allowing the 

balloon to expand at atmospheric pressure?  

     67. The efficiency of a muscle during weight lifting is equal 

to the work done in lifting the weight divided by the 

total energy output of the muscle (work done plus inter-

nal energy dissipated in the muscle). Determine the effi-

ciency of a muscle that lifts a 161-N weight through a 

vertical displacement of 0.577 m and dissipates 139 J in 

the process.  

    68.  (a) What is the entropy change of 1.00 mol of H 2 O when 

it changes from ice to water at 0.0 ° C? (b) If the ice is in 

contact with an environment at a temperature of 10.0 ° C, 

what is the entropy change of the universe when the ice 

melts?  

    69.  Estimate the entropy change of 850 g of water when it 

is heated from 20.0 ° C to 50.0 ° C. [ Hint:  Assume that the 

heat flows into the water at an average temperature.]  

   70. For a more realistic estimate of the maximum coeffi-

cient of performance of a heat pump, assume that a heat 

pump takes in heat from outdoors at  10 ° C below  the 

ambient outdoor temperature, to account for the tem-

perature difference across its heat exchanger. Similarly, 

assume that the output must be  10 ° C hotter  than the 

house (which itself might be kept at 20 ° C) to make the 

heat flow into the house. Make a graph of the coefficient 

of performance of a reversible heat pump under these 

conditions as a function of outdoor temperature (from 

 − 15 ° C to  + 15 ° C in 5 ° C increments).  

   71. A 0.500-kg block of iron at 60.0 ° C is placed in contact 

with a 0.500-kg block of iron at 20.0 ° C. (a) The blocks 

soon come to a common temperature of 40.0 ° C.  Esti-

mate  the entropy change of the universe when this 

occurs. [ Hint:  Assume that all the heat flow occurs at an 

average temperature for each block.] (b) Estimate the 

entropy change of the universe if, instead, the tempera-

ture of the hotter block increased to 80.0 ° C while the 

temperature of the colder block decreased to 0.0 ° C. 

[ Hint:  The answer is negative, indicating that the process 

is impossible.]  

    72.  A container holding 1.20 kg of water at 20.0 ° C is placed 

in a freezer that is kept at  − 20.0 ° C. The water freezes 

and comes to thermal equilibrium with the interior of 

the freezer. What is the minimum amount of electrical 

energy required by the freezer to do this if it operates 

between reservoirs at temperatures of 20.0 ° C and 

 − 20.0 ° C?  

5.00 atm
P

1.00 atm

0.500 m3 2.00 m3 V
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    73.  A reversible heat engine has an efficiency of 33.3%, 

removing heat from a hot reservoir and rejecting heat to 

a cold reservoir at 0 ° C. If the engine now operates in 

reverse, how long would it take to freeze 1.0 kg of water 

at 0 ° C, if it operates on a power of 186 W?  

   74. Consider a heat engine that is  not  reversible. The engine 

uses 1.000 mol of a diatomic ideal gas. In the first 

step (A) there is a constant temperature expansion 

while in contact with a warm reservoir at 373 K 

from  P  1   =  1.55  ×  10 5  Pa and  V  1   =  2.00  ×  10  − 2  m 3  to 

 P  2   =  1.24  ×  10 5  Pa and  V  2   =  2.50  ×  10  − 2  m 3 . Then (B) a 

heat reservoir at the cooler temperature of 273 K is used 

to cool the gas at constant volume to 273 K from  P  2  to 

 P  3   =  0.91  ×  10 5  Pa. This is followed by (C) a constant 

temperature compression while still in contact with 

the cold reservoir at 273 K from  P  3 ,  V  2  to 

 P  4   =  1.01  ×  10 5  Pa,  V  1 . The final step (D) is heating the 

gas at constant volume from 273 K to 373 K by being in 

contact with the warm reservoir again, to return from 

 P  4 ,  V  1  to  P  1 ,  V  1 . Find the change in entropy of the cold 

reservoir in step B. Remember that the gas is always in 

contact with the cold reservoir. (b) What is the change 

in entropy of the hot reservoir in step D? (c) Using this 

information, find the change in entropy of the total sys-

tem of gas plus reservoirs during the whole cycle.  

       75. A fish at a pressure of 1.1 atm has its swim bladder 

inflated to an initial volume of 8.16 mL. If the fish starts 

swimming horizontally, its temperature increases from 

20.0 ° C to 22.0 ° C as a result of the exertion. (a) Since 

the fish is still at the same pressure, how much work is 

done by the air in the swim bladder? [ Hint:  First find 

the new volume from the temperature change.] (b) How 

much heat is gained by the air in the swim bladder? 

Assume air to be a diatomic ideal gas. (c) If this quan-

tity of heat is lost by the fish, by how much will its tem-

perature decrease? The fish has a mass of 5.00 g and its 

specific heat is about 3.5 J/(g· ° C).  

     76. Consider the heat engine described in Problem 74. 

(a) For each step in the cycle, find the work done by the 

gas, the heat flow into or out of the gas, and the change 

in internal energy of the gas. (b) Find the efficiency of 

this engine. (c) Compare to the efficiency of a reversible 

engine   that uses the same two reservoirs.

      77.  A town is considering using its lake as a source of 

power. The average temperature difference from the top 

to the bottom is 15 ° C, and the average surface tempera-

ture is 22 ° C. (a) Assuming that the town can set up a 

reversible engine using the surface and bottom of the 

lake as heat reservoirs, what would be its efficiency? 

(b) If the town needs about 1.0  ×  10 8  W of power to be 

supplied by the lake, how many m 3  of water does the heat 

engine use per second? (c) The surface area of the lake 

✦✦

✦✦

✦✦

is 8.0  ×  10 7  m 2  and the average incident intensity (over 

24 h) of the sunlight is 200 W/m 2 . Can the lake supply 

enough heat to meet the town’s energy needs with this 

method?  

     78. In a heat engine, 3.00 mol of a monatomic ideal gas, 

initially at 4.00 atm of pressure, undergoes an isother-

mal expansion, increasing its volume by a factor of 

9.50 at a constant temperature of 650.0 K. The gas is 

then compressed at a constant pressure to its original 

volume. Finally, the pressure is increased at constant 

volume back to the original pressure. (a) Draw a  PV  

diagram of this three-step heat engine. (b) For each 

step of this process, calculate the work done on the 

gas, the change in internal energy, and the heat trans-

ferred into the gas. (c) What is the efficiency of this 

engine?     

  Answers to Practice Problems 

     15.1  The internal energy increase is greater than the heat 

flow into the gas, so positive work was done on the gas. Pos-

itive work is done by the piston when it moves inward.  

    15.2  360 kJ  

    15.3  Heat flows into the gas;  Q   =  3.8 kJ.  

    15.4  The fire is irreversible: smoke, carbon dioxide, and ash 

will not come together to form logs and twigs.  

    15.5  20%  

    15.6  4.0 kW·h  =  14 MJ  

    15.7  1200 K  

    15.8  178 MW  

    15.9  0.03 J/K    

  Answers to Checkpoints 

     15.2  (a) Yes. The heat flow during an adiabatic process is 

zero ( Q   =  0), but work can be done. The work done on the 

system changes its internal energy, which can cause a tem-

perature change. (b) Yes. If a system is in thermal contact 

with a heat reservoir, heat flows between the reservoir and 

the system to keep the temperature constant. (c) Yes. During 

a phase transition such as freezing or melting, the internal 

energy of the system changes but the temperature does not.  

    15.4  An inelastic collision involves the conversion of kinetic 

energy into internal energy, an irreversible process.  

    15.8  No, in an irreversible process the  total  entropy of the 

universe increases. If the entropy of one system increases by 

10 J/K while the entropy of its surroundings decreases by 

10 J/K, the process would be reversible (Δ S  tot   =  0).    

✦✦



     Review Exercises 

     1.  How much does the internal energy change for 1.00 m 3  

of water after it has fallen from the top of a waterfall 

and landed in the river 11.0 m below? Assume no heat 

flow from the water to the air.  

    2.  At what temperature will nitrogen gas (N 2 ) have the 

same rms speed as helium (He) when the helium is at 

20.0 ° C?  

    3.  A bit of space debris penetrates the hull of a spaceship 

traversing the asteroid belt and comes to rest in a con-

tainer of water that was at 20.0 ° C before being hit. The 

mass of the space rock is 1.0 g and the mass of the water 

is 1.0 kg. If the space rock traveled at 8.4  ×  10 3  m/s and 

if all of its kinetic energy is used to heat the water, what 

is the final temperature of the water?  

   4. A pot containing 2.00 kg of water is sitting on a hot stove 

and the water is stirred violently by a mixer that does 

6.0 kJ of mechanical work on the water. The temperature 

of the water rises by 4.00 ° C. What quantity of heat flowed 

into the water from the stove during the process?  

    5.  (a) How much ice at  − 10.0 ° C must be placed in 0.250 kg 

of water at 25.0 ° C to cool the water to 0 ° C and melt all 

of the ice? (b) If half that amount of ice is placed in the 

water, what is the final temperature of the water?  

   6. A Pyrex container is filled to the very top with 40.0 L of 

water. Both the container and the water are at a temper-

ature of 90.0 ° C. When the temperature has cooled to 

20.0 ° C, how much additional water can be added to the 

container?  

   7. A 75-g cube of ice at –10.0 ° C is placed in 0.500 kg of 

water at 50.0 ° C in an insulating container so that no heat 

is lost to the environment. Will the ice melt completely? 

What will be the final temperature of this system?  

    8.  A hot air balloon with a volume of 12.0 m 3  is initially 

filled with air at a pressure of 1.00 atm and a tempera-

ture of 19.0 ° C. When the balloon air is heated, the vol-

ume and the pressure of the balloon remain constant 

because the balloon is open to the atmosphere at the 

bottom. How many moles are in the balloon when the 

air is heated to 40.0 ° C?  

    9.  A star’s spectrum emits more radiation with a wave-

length of 700.0 nm than with any other wavelength. 

(a) What is the surface temperature of the star? (b) If the 

star’s radius is 7.20  ×  10 8  m, what power does it radi-

ate? (c) If the star is 9.78 ly from Earth, what will an 

Earth-based observer measure for this star’s intensity? 

Stars are nearly perfect blackbodies. [ Note:  ly stands 

for light-years.]  

   10. A wall that is 2.74 m high and 3.66 m long has a thick-

ness composed of 1.00 cm of wood plus 3.00 cm of 

insulation (with the thermal conductivity approxi-

mately of wool). The inside of the wall is 23.0 ° C and 

the outside of the wall is at  − 5.00 ° C. (a) What is the 

rate of heat flow through the wall? (b) If half the area 

of the wall is replaced with a single pane of glass that 

is 0.500 cm thick, how much heat flows out of the 

wall now?  

    11.  In a refrigerator, 

2.00 mol of an ideal 

monatomic gas are 

taken through the 

cycle shown in the 

figure. The tempera-

ture at point  A  is 

800.0 K. (a) What are the temperature and pressure at 

point  D?  (b) What is the net work done on the gas as it 

is taken through four cycles? (c) What is the internal 

energy of the gas when it is at point  A?  (d) What is the 

total change in internal energy of this gas during four 

complete cycles?      

    12.  Boiling water in an aluminum pan is being converted to 

steam at a rate of 10.0 g/s. The flat bottom of the pan 

has an area of 325 cm 2  and the pan’s thickness is 

3.00 mm. If 27.0% of all heat that is transferred to the 

pan from the flame beneath it is lost from the sides of 

the pan and the remaining 73.0% goes into the water, 

what is the temperature of the base of the pan?  

    13.  A 2.00-kg block of ice at 0.0 ° C melts. What is the 

change in entropy of the ice as a result of this process?  

    14.  A sphere with a diameter of 80 cm is held at a tempera-

ture of 250 ° C and is radiating energy. If the intensity of 

the radiation detected at a distance of 2.0 m from the 

sphere’s center is 102 W/m 2 , what is the emissivity of 

the sphere?  

   15. A 7.30-kg steel ball at 15.2 ° C is dropped from a height 

of 10.0 m into an insulated container with 4.50 L of 

water at 10.1 ° C. If no water splashes, what is the final 

temperature of the water and steel?  

   16. Michael has set the gauge pressure of the tires on his 

car to 36.0 psi (lb/in 2 ). He draws chalk lines around 

the edges of the tires where they touch the driveway 

surface to measure the area of contact between the 

tires and the ground. Each front tire has a contact area 

of 24.0 in 2  and each rear tire has a contact area of 20.0 in 2 . 

(a) What is the weight (in lb) of the car? (b) The 

center-to-center distance between front and rear tires 

is 7.00 ft. Taking the straight line between the centers 

of the tires on the left side (driver’s side) to be the  

y -axis with the origin at the center of the front left 

tire (positive direction pointing forward), what is the  y -

coordinate of the car’s  cm?   
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    17.  Your hot water tank is insulated, but not very well. To 

reduce heat loss, you wrap some old blankets around 

it. With the water at 81 ° C and the room at 21 ° C, a 

thermometer inserted between the outside of the origi-

nal tank and your blanket reads 36 ° C. By what factor 

did the blanket reduce the heat loss?  

    18.  An ideal refrigerator keeps its contents at 0.0 ° C and 

exhausts heat into the kitchen at 40.0 ° C. For every 

1.0 kJ of work done, (a) how much heat is exhausted? 

(b) How much heat is removed from the contents?  

    19.  The outdoor temperature on a winter’s day is  − 4 ° C. If 

you use 1.0 kJ of electric energy to run a heat pump, 

how much heat does that put into your house at 21 ° C? 

Assume that the heat pump is ideal.  

   20. A copper rod has one end in ice at a temperature of 0 ° C, 

the other in boiling water. The length and diameter of 

the rod are 1.00 m and 2.00 cm, respectively. At what 

rate in grams per hour does the ice melt? Assume no 

heat flows out the sides of the rod.  

      21.  (a) Why is the coolant fluid in an automobile kept under 

high pressure? (b) Why do radiator caps have safety 

valves, allowing you to reduce the pressure before 

removing the cap? [ Hint:  See Fig. 14.7a, the phase dia-

gram for water.]  

   22. A steam engine has a piston with a diameter of 15.0 cm 

and a stroke (the displacement of the piston) of 20.0 cm. 

The average pressure applied to this piston is 1.3  ×  10 5  Pa. 

What operating frequency in cycles per second (Hz) 

would yield an average power output of 27.6 kW?  

   23. Two aluminum blocks in thermal contact have the same 

temperature. (a) Under what condition do they have the 

same internal energy? (b) Is there an energy transfer 

between the two blocks? (c) Are the blocks necessarily 

in physical contact?  

    24.  A power plant burns coal to produce pressurized steam 

at 535 K. The steam then condenses back into water at a 

temperature of 323 K. (a) What is the maximum possi-

ble efficiency of this plant? (b) If the plant operates at 

50.0% of its maximum efficiency and its power output 

is 1.23  ×  10 8  W, at what rate must heat be removed by 

means of a cooling tower?  

    25.  A heat engine consists of the following four step cyclic 

process. During step 1, 2.00 mol of a diatomic ideal gas 

at a temperature of 325 K are compressed isothermally to 

one-eighth of the original volume. In step 2, the tempera-

ture of the gas is increased to 985 K by an isochoric pro-

cess. During step 3, the gas expands isothermally back 

to its original volume. Finally, in step 4, an isochoric 

process takes the gas back to its original temperature. 

(a) Sketch a qualitative  PV  diagram, showing the four 

steps in this cycle. (b) Make a table showing the values of 

 W,   Q,  and Δ U  for each of the four steps and the totals for 

one cycle of this process. (c) What is the efficiency of this 

engine? (d) What would be the efficiency of a Carnot 

engine operating at the same extreme temperatures?  

   26. On a day when the air temperature is 19 ° C, a 0.15-kg 

baseball is dropped from the top of a 24-m tower. After 

the ball hits the ground, bounces a few times, and comes 

to rest, by how much has the entropy of the universe 

increased?  

   27. In a certain bimetallic strip (see Fig. 13.7) the brass strip 

is 0.100% longer than the steel strip at a temperature of 

275 ° C. At what temperature do the two strips have the 

same length?  

     28. A 0.360-kg piece of solid lead at 20 ° C is placed into an 

insulated container holding 0.980 kg of liquid lead at 

420 ° C. The system comes to an equilibrium tempera-

ture with no loss of heat to the environment. Ignore the 

heat capacity of the container. (a) Is there any solid lead 

remaining in the system? (b) What is the final tempera-

ture of the system?  

      29.  (a) Calculate Earth’s escape speed—the minimum speed 

needed for an object near the surface to escape Earth’s 

gravitational pull. [ Hint:  Use conservation of energy and 

ignore air resistance.] (b) Calculate the average speed of 

a hydrogen molecule (H 2 ) at 0 ° C. (c) Calculate the aver-

age speed of an oxygen molecule (O 2 ) at 0 ° C. (d) Use 

your answers from parts (a) through (c) along with what 

you know about the distribution of molecular speeds to 

explain why Earth’s atmosphere contains plenty of oxy-

gen but almost no hydrogen.  

     30. A 10.0-cm cylindrical chamber has a 5.00-cm-diameter 

piston attached to one end. The piston is connected to 

an ideal spring with a spring constant of 10.0 N/cm, as 

shown. Initially, the spring is not compressed but is 

latched in place so that it cannot move. The cylinder is 

filled with gas to a pressure of 5.00  ×  10 5  Pa. Once the 

gas in the cylinder is at this pressure, the spring is 

unlatched. Because of the difference in pressure between 

the inside of the chamber and the outside, the spring 

moves a distance Δ x.  Heat is allowed to flow into the 

chamber as it expands so that the temperature of the gas 

remains constant; thus, you may assume  T  to be the 

same before and after the expansion. Find the compres-

sion of the spring, Δ x.         

✦✦
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  MCAT Review 
 The section that follows includes MCAT exam material and is 

reprinted with permission of the Association of American Medical 

Colleges (AAMC).

    1. Suppose 2 identical copper bars, A and B, with initial 

temperatures of 25 ° C and 75 ° C, respectively, are placed 

in contact with each other. If the specific heat of copper 

is independent of temperature, and if A and B do  not  

exchange heat or work with the surroundings, is it likely 

that A and B will reach 24 ° C and 76 ° C, respectively?

   A. Yes, because the bars are identical.  

  B. Yes, because heat will flow from B to A.  

  C. No, because heat will not flow from A to B.  

  D. No, because energy will not be conserved.     

   2. Some ocean currents carry water from the polar regions 

to warmer seas. What is the approximate temperature of 

a solution resulting from mixing 1.00 kg of seawater at 

0 ° C with 1.00 kg of seawater at 5 ° C?

   A. 1.25 ° C     B. 2.50 ° C     C. 3.25 ° C     D. 4.00 ° C     

   3. How much energy is gained by 18.0 g of ice if it melts 

at the polar ice caps?

   A. 4.18 kJ   

  B. 5.87 kJ  

  C. 6.02 kJ  

  D. 6.17 kJ      

 Read the paragraph and then answer the following 

questions:  

 The steam engine pictured here demonstrates principles 

of thermodynamics. Water boils, creating steam that pushes 

against a piston. The steam then changes back to water in the 

condenser, and the water circulates back to the boiler. The 

efficiency of this engine is

     e = W/ Q  H   = 1 −  Q  C  / Q  H     

where  W  is the output work,  Q  H  is the heat put in, and  Q  C  is 

the heat that flows out as exhaust. It is not possible to con-

vert all of the input heat into output work. 

 A refrigerator works like a heat engine in reverse. Heat 

is absorbed from a refrigerator when the liquid that circu-

lates through the 

refrigerator changes to 

gas. The gas is then 

changed back to liquid 

in a compressor, and 

the refrigerant is then 

recirculated.     

    4. Making which of the following changes to the steam 

engine will increase its efficiency?

   A. Increasing the exhaust temperature  

  B. Decreasing the exhaust temperature  

  C. Increasing the amount of heat input  

  D. Decreasing the amount of heat input     

   5. The amount of heat that a unit of mass of a refrigerant 

can remove from a refrigerator is primarily dependent 

on which of the following characteristics of the 

refrigerant?

   A. Heat of vaporization  

  B. Heat of fusion  

  C. Specific heat in liquid form  

  D. Specific heat in gaseous form     

   6. Surrounding the condenser with which one of the fol-

lowing would be most effective for changing steam to 

water?

   A. High-pressure steam  

  B. Low-pressure steam  

  C. Stationary water  

  D. Circulating water     

   7. The amount of useful work that can be generated from a 

source of heat can only be

   A. less than the amount of heat.  

  B. less than or equal to the amount of heat.  

  C. equal to the amount of heat.  

  D. equal to or greater than the amount of heat.     

   8. What energy transformation causes the piston of the 

steam engine discussed in the passage to move to the 

right?

   A. Mechanical to internal  

  B. Mechanical to chemical  

  C. Internal to mechanical  

  D. Internal to electrical     

   9. Which of the following accurately contrasts the boiling 

or freezing points of water and of a refrigerant used in a 

household refrigerator?

   A.  The boiling point of the refrigerant should be higher 

than the boiling point of water.  

  B.  The boiling point of the refrigerant should be lower 

than the freezing point of water.  

  C.  The freezing point of the refrigerant should be 

higher than the boiling point of water.  

  D.  The freezing point of the refrigerant should be 

higher than the freezing point of water.      
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  Read the paragraph and then answer the following 

questions:  

 An engineer was instructed to design a holding tank 

for synthetic lubricating oil. Two requirements were that 

the amount of time necessary to drain the tank and the 

force needed to lift the drain plug be minimized. In the ini-

tial design, the drain plug, which weighed 500 N, rested on 

the drain hole and was lifted by a thin rod that extended 

through the top of the tank. The tank was insulated and had 

10 electric immersion heaters that each use 5 kW of power. 

The oil has a boiling point of 220 ° C, a specific gravity of 

0.7, and a specific heat that is 60% that of water. The heat 

capacity of the tank was negligible compared to the fluids 

contained in it. 

MCAT Review Questions 10 and 11

Drain plug
500 N

Immersion heaters

Rod for lifting drain plug

 The tank was built and then tested by filling it with 

water. The air pressure inside and outside the tank was 1 atm. 

The force required to lift the plug was found to be 5310 N. 

In testing the heater capability, the tank was filled to the top 

with water at 20 ° C. With all 10 heaters operating, the water 

temperature reached 100 ° C 15 h later. The technician who 

conducted the evaluation reported that the full tank of water 

was completely discharged approximately 30 s after open-

ing the drain. 

    10. With the heaters operating, how long would it take to 

raise the temperature of a full tank of oil from 20 ° C to 

60 ° C?

   A. 3.2 h  

  B. 6.3 h  

  C. 7.5 h  

  D. 9.0 h     

   11. It is suggested that the air in the tank above the oil be 

pressurized at 4 atm above normal air pressure. Which 

of the following is the  least  likely to occur along with 

this increase in pressure?

   A.  The time required to heat the oil would be greatly 

extended.  

  B.  The drain plug would be more difficult to lift.  

  C.  Fluid velocity would be increased when the tank is 

drained.  

  D. The time required to drain the tank would 

decrease.               
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  Appendix A 

 Mathematics Review 

    A.1  ALGEBRA 

  There are two basic kinds of algebraic manipulations.

   • The same operation can always be performed on both sides of an equation.  

  • Substitution is always permissible (if  a   =   b,  then any occurrence of  a  in any equa-

tion can be replaced with  b ).    

 Products distribute over sums

     a(b + c) = ab + ac   (A-1)  

The reverse—replacing  ab   +   ac  with  a ( b   +   c )—is called  factoring.  Since dividing by  c  

is the same as multiplying by 1/ c, 

       a + b _____ c   =   a __ c   +   b __ c     (A-2)   

 Equation (A-2) is the basis of the procedure for adding fractions. To add fractions, 

they must be expressed with a  common denominator. 

      a __ 
b
   +   c __ 

d
   =   a __ 

b
   ×   d __ 

d
   +   c __ 

d
   ×   b __ 

b
   =    ad ___ 

bd
   +   bc ___ 

bd
    

Now applying Eq. (A-2), we end up with

       a __ 
b
   +   c __ 

d
   =   ad + bc _______ 

bd
     (A-3)   

 To divide fractions, remember that dividing by  c / d  is the same as multiplying by  d / c: 

      a __ 
b
   ÷   c __ 

d
   =   

   a __ 
b
   
 __ 

   c __ 
d
   
   =   a __ 

b
   ×   d __ 

c
   =   ad ___ 

bc
    

A product in a square root can be separated:

      √
___

 ab   =  √
__

 a   ×  √
__

 b     (A-4)    

   Pitfalls to Avoid 

 These are some of the most common  incorrect  algebraic substitutions. Don’t fall into 

any of these traps!

     √
_____

 a + b   ≠  √
__

 a   +  √
__

 b  

  a _____ 
b + c

   ≠   a __ 
b
   +   a __ c  

  a __ 
b
   +   c __ 

d
   ≠   a + c _____ 

b + d
  

(a + b ) 
2
  ≠  a 

2
  +  b 

2
   

In the last one, the cross term is missing: ( a   +   b ) 2   =   a  2   +  2 ab   +   b  2 .  

  Graphs of Linear Functions 

 If the graph of  y  as a function of  x  is a straight line, then  y  is a  linear function  of  x.  The 

relationship can be written in the standard form

     y = mx + b   (A-5)  
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where  m  is the  slope  and  b  is the  y-intercept.  The slope measures how steep the line is. 

It tells how much  y  changes for a given change in  x: 

     m =   
Δy

 ___ 
Δx

   =   
 y  2  −  y  1  ______  x  

2
  −  x  

1
      (A-6)  

The  y -intercept is the value of  y  when  x   =  0. On the graph, the line crosses the  y -axis at 

y   =   b.       

   A.2  SOLVING EQUATIONS 

  Solving an equation means using algebraic operations to isolate one variable. Many 

students tend to substitute numerical values into an equation as soon as possible. In 

many cases, that’s a mistake. Although at first it may seem easier to manipulate numer-

ical quantities than to manipulate algebraic symbols, there are several advantages to 

working with symbols:

   • Symbolic algebra is much easier to follow than a series of numerical calculations. 

Plugging in numbers tends to obscure the logic behind your solution. If you need 

to trace back through your work (to find an error or review for an exam), it’ll be 

much clearer if you have worked through the problem symbolically. It will also 

help your instructor when grading your homework papers or exams. When your 

work is clear, your instructor is better able to help you understand your mistakes. 

You may also get more partial credit on exams!  

  • Symbolic algebra lets you draw conclusions about how one quantity depends on 

another. For instance, working symbolically you might see that the horizontal 

range of a projectile is proportional to the  square  of the initial speed. If you had 

substituted the numerical value of the initial speed, you wouldn’t notice that. In 

particular, when an algebraic symbol cancels out of the equation, you know that the 

answer doesn’t depend on that quantity.  

  • On the most practical level, it’s easy to make arithmetic or calculation errors. The 

later on in your solution that numbers are substituted, the fewer number of steps 

you have to check for such errors.    

Solution The y-intercept is −2. To find the slope, we 

choose two points on the line and then divide the “rise” (Δy) 

by the “run” (Δx). Using the points (0, −2) and (18, 4),

m =   rise ____ run   =   
 y  2  −  y  1  ______  x  2  −  x  1 

   =   
4 − (−2)

 _______ 
18 − 0

   =   1 __ 
3
  

Then y = mx + b =   1 _ 
3
  x − 2.

Example A.1

What is the equation of the line graphed in Fig. A.1?

y

x15 205 10

5

–5

Figure A.1



 When solving equations that contain square roots, be careful not to assume that a 

square root is positive. The equation  x  2   =   a  has  two  solutions for  x,      x = ± √
__

 a  .   (The sym-

bol  ±  means  either   +   or  −.)  

   Solving Quadratic Equations 

 An equation is quadratic in  x  if it contains terms with no powers of  x  other than a 

squared term ( x  2 ), a linear term ( x  1 ), and a constant ( x  0 ). Any quadratic equation can be 

put into the standard form:    

  ax 
2
  + bx + c = 0   (A-7)   

 The quadratic formula gives the solutions to any quadratic equation written in 

standard form:

     x =   
−b ±  √

________

  b 2  − 4ac  
  _____________ 

2a
     (A-8)   

 The symbol “ ± ” (read “plus or minus”) indicates that in general there are two solu-

tions to a quadratic equation; that is, two values of  x  will satisfy the equation. One 

solution is found by taking the  +  sign and the other by taking the − sign in the qua-

dratic formula. If  b  2  − 4 ac   =  0, then there is only one solution (or, technically, the two 

solutions happen to be the same). If  b  2  − 4 ac  < 0, then there is no solution to the equa-

tion (for  x  among the real numbers). 

 The quadratic formula still works if  b   =  0 or  c   =  0, although in such cases the equa-

tion can easily be solved without recourse to the quadratic formula.    

We identify a = −5, b = 15, c = −6. Then

                      x =   
−b ±  √

________

  b 2  − 4ac  
  _____________ 

2a
  

  =    
−15 ±  √

__________________

  1 5 2  − 4 × (−5) × (−6)  
   ________________________  

−10
  

 ≈   −15 ± 10.25 __________ 
−10

   = 0.475 or 2.525

Example A.2

Solve the equation 5x(3 − x) = 6.

Solution First put the equation in standard quadratic 

form:

15x − 5 x 2  = 6

−5 x 2  + 15x − 6 = 0

  Solving Simultaneous Equations 

 Simultaneous equations are a set of  N  equations with  N  unknown quantities. We wish 

to solve these equations  simultaneously  to find the values of all of the unknowns. We 

must  have at least as many equations as unknowns. It pays to keep track of the number 

of unknown quantities and the number of equations in solving more challenging prob-

lems. If there are more unknowns than equations, then look for some other relationship 

between the quantities—perhaps some information given in the problem that has not 

been used. 

 One way to solve simultaneous equations is by  successive substitution.  Solve one 

of the equations for one unknown (in terms of the other unknowns). Substitute this 

expression into each of the other equations. That leaves  N  − 1 equations and  N  − 1 

unknowns. Repeat until there is only one equation left with one unknown. Find the 

value of that unknown quantity, and then work backward to find all the others.      

A.2  SOLVING EQUATIONS A-3
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   A.3  EXPONENTS AND LOGARITHMS 

  These identities show how to manipulate exponents.

      a −x  =   1 __ 
 a x 

     (A-9)  

     ( a x ) × ( a y ) =  a x+y    (A-10)

        a x  __ 
 a y 

   = ( a x ) × ( a −y ) =  a x−y    (A-11)

     ( a x ) × ( b x ) = (ab ) x    (A-12)

     ( a x  ) y  =  a xy    (A-13)

  a 1/n  = n  √
__

 a    (A-14)

      a 0  = 1 (for any a ≠ 0)   (A-15)

      0  a  = 0 (for any a ≠ 0)   (A-16)

A common mistake to avoid: ( a   x  )  ×  ( a   y  ) ≠  a   xy   [see Eq. (A-10)].  

   Logarithms 

 Taking a logarithm is the inverse of exponentiation:

     x = l og b  y means that y =  b x    (A-17)

Thus, one undoes the other:

      log b   b x  = x   (A-18)

      b lo g b  x  = x   (A-19)

 The two commonly used bases  b  are 10 (the  common  logarithm) and  e   =  2.71828 . . . 

(the  natural  logarithm). The common logarithm is written “log 10 ,” or sometimes just “log” 

if base 10 is understood. The natural logarithm is usually written “ln” rather than “log  e  .” 

 These identities are true for any base logarithm.

     log xy = log x + log y   (A-20)

     log   x __ y   = log x − log y   (A-21)  

     log  x a  = a log x   (A-22)

 Here are some common mistakes to avoid:

    log (x + y) ≠ log x + log y

This can be solved for y:

−10 − 10y = 3

−10y = 13

y =   13 ____ 
−10

   = −1.3

Now that y is known, use it to find x:

x = −5 − 3y = −5 − 3 × (−1.3) = −1.1

It’s a good idea to check the results by substituting into the 

original equations.

Example A.3

Solve the equations 2x − 4y = 3 and x + 3y = −5 for x and y.

Solution First solve the second equation for x in terms 

of y:

x = −5 − 3y

Substitute −5 − 3y for x in the first equation:

2 × (−5 − 3y) − 4y = 3



log (x + y) ≠ log x × log y

log xy ≠ log x × log y

log  x 
a
  ≠ (log x ) 

a
     

  Semilog Graphs 

 A semilog graph uses a logarithmic scale on the vertical axis and a linear scale on the 

horizontal axis. Semilog graphs are useful when the data plotted is thought to be an 

exponential function. If

    y =  y 
0
  e 

ax
   

then

    ln y = ax + ln  y 
0
   

so a graph of ln  y  versus  x  will be a straight line with slope  a  and  y -intercept ln  y  0 . 

 Rather than calculating ln  y  for each data point and plotting on regular graph paper, 

it is convenient to use special semilog paper. The vertical axis is marked so that the values 

of  y  can be plotted directly, but the markings are spaced proportional to the log of  y.  (If 
you are using a plotting calculator or a computer to make the graph, log scale should be 

chosen for one axis from the menu of options.) The slope  a  on a semilog graph is  not  
Δ y /Δ x  since the logarithm is actually being plotted. The correct way to find the slope is

    a =   
Δ(ln y)

 ______ 
Δx

   =   
ln  y  2  − ln  y  1  __________  x  2  −  x  1 

    

Note that there cannot be a zero on a logarithmic scale. 

 The two graphs of  Figs. A.2  and  A.3  are linear and semilog plots, respectively, of 

the function  y   =  3 e  −2 x  .          

  Log-Log Graphs 

 A log-log graph uses logarithmic scales for both axes. Log-log graphs are useful when 

the data plotted is thought to be a power function

    y = A x 
n
   

For such a function,

    log y = n log x + log A  

so a graph of log  y  versus log  x  will be a straight line with slope  n  and  y -intercept 

log  A.  The slope ( n ) on a log-log graph is found as

    n =   
Δ(log y)

 _______ 
Δ(log x)

   =   
log  y  2  − log  y  1   ____________  
log  x  2  − log  x  1 

    

x

y

21.50 10.5

3.5

3

2.5

2

1.5

1

0.5

0

  Figure A.2 Graph of the exponential function  y   =  3 e  −2 x   

on linear graph paper.

x

y

21.50 10.5

10

1

0.1

0.01

Figure A.3 Graph of the exponential function  y   =  3 e  −2 x   

on semilog graph paper.
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The graphs of  Figs. A.4  and  A.5  are linear and log-log plots, respectively, of the func-

tion  y   =  130 x  3/2 .        

   A.4  PROPORTIONS AND RATIOS 

  The notation

    y ∝ x  

means that  y  is directly proportional to  x.  A proportionality can be written as an equation

    y = kx  

if the constant of proportionality  k  is written explicitly. Be careful: an equation can  look 
like  a proportionality without being one. For example,  V   =   IR  means that  V  ∝  I   if and 
only if   R  is constant. If  R  depends on  I,  then  V  is not proportional to  I.  

 The notation

    y ∝   1 __ x    

means that  y  is inversely proportional to  x.  The notation

    y ∝  x 
n
   

means that  y  is proportional to the  n th power of  x.  
 Writing out proportions as ratios usually simplifies solutions when some common 

items in an equation are unknown but we do know the values of all but one of the pro-

portional quantities (    tutorial: ball toss). For example if  y  ∝  x   n  , we can write

      
 y 1  __  y  2 

   =   (    x  1  __  x  2 
   )  

n

     

   Percentages 

 Percentages require careful attention. Look at these four examples:

    “B is 30% of A” means B = 0.30A

“B is 30% larger than A” means B = (1 + 0.30)A = 1.30A

“B is 30% smaller than A” means B = (1 − 0.30)A = 0.70A

“A increases by 30%” means Δ  A = +0.30A        

x

y

100.1 1

10000

1000

100

10

1

Figure A.5 Graph of the power function  y   =  130 x  3/2  on 

log-log graph paper.

x

y

1020 1 43 65 87 9

4500

4000

3500

3000

2500

2000

1500

1000

500

0

Figure A.4 Graph of the power function  y   =  130 x  3/2  on 

linear graph paper.



Example A.4

If P ∝ T  4, and T increases by 10.0%, by what percentage does P  increase?

Solution 

ΔT = +0.100 T  i 

 T  f  =  T  i  + ΔT = 1.100 T  i 

  
 P  f  __ 
 P  i 

   =   (    T  f  __ 
 T  i 

   )  
4

  = 1.10 0 4  ≈ 1.464

Therefore, P increases by about 46.4%.

   A.5  APPROXIMATIONS 

   Binomial Approximations 

 A binomial is the sum of two terms. The general rule for the  n th power of an algebraic 

sum is given by the binomial expansion:

    (a + b ) 
n
  =  a 

n
  + n a 

n−1
 b +   

n(n − 1)
 _______ 

1 × 2
    a 

n−2
  b 

2
  +   

n(n − 1)(n − 2)
  _____________ 

1 × 2 × 3
    a 

n−3
  b 

3
  + ⋅ ⋅ ⋅   

 The binomial approximations are used when a binomial in which one term is much 

smaller than the other is raised to a power  n.  Only the first two terms of the binomial 

expansion are of significant value; the other terms are dropped. A common case for 

physics problems is that in which  a   =  1, or can be made equal to one by factoring. The 

basic approximation forms are then given by

     (1 + x ) n  ≈ 1 + nx     when  x  << 1   (A-23)

     (1 − x ) n  ≈ 1 − nx     when  x  << 1   (A-24)

The power  n  can be any real number, including negative as well as positive numbers. It 

does not have to be an integer. (  
 

 tutorial: small percentage changes) An  estimate  of 

the error—the difference between the approximation and the exact expression—is given 

by

     error ≈   1 _ 
2
  n(n − 1) x 2    (A-25)   

 Of course, the larger term in a binomial is not necessarily 1, but the larger term can 

be factored out and then Eq. (A-23) or Eq. (A-24) applied. For instance, if  A  >>  b,  then

    (A + b ) 
n
  =   [ A ×  ( 1 +   b __ 

A
   )  ]  

n

  =  A 
n
    ( 1 +   b __ 

A
   )  

n

   

Another common expansion is

     e 
x
  = 1 + x +    x 2  __ 

2!
   +    x 3  __ 

3!
   + ⋅ ⋅ ⋅  

where, for any integer  n,   n!   =   n   ×  ( n  − 1)  ×  ( n  − 2)  ×  . . .  ×  [ n  − ( n  − 1)]; for example, 

3!  =  3  ×  2  ×  1  =  6.  

  Small-Angle Approximations 

 Approximations for small angles appear in Section A.7 on trigonometry.    
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   A.6  GEOMETRY 

   Geometric Shapes 

  Table A.1  lists the geometric shapes that commonly appear in physics problems. It is 

often necessary to determine the area or volume of one of these simple shapes to com-

plete the solution of a problem. The formulae for the properties associated with each 

geometric form are listed in the column to the right.    

  Angular Measure 

 An angle between two straight lines that meet at a single point is specified in degrees. 

If the two lines are perpendicular to each other, as shown in  Fig. A.6a , the angular 

separation is said to be a right angle or 90 ° . In  Fig. A.6b  two such 90 °  angles are placed 

side by side; they add to 180 ° , so a straight line represents an angular separation of 

180 ° . When four right angles are grouped as shown in  Fig. A.6c , the angles add to 360 °  

and a full circle contains 360 °  as shown in  Fig. A.6d . An angle that is less than 90 °  is 

called an    acute    angle; one greater than 90 °  is called an    obtuse    angle. 

 When two lines meet, as shown in  Fig. A.7 , there are two possible angles that might 

be specified; one is the acute angle  a  and the other is the obtuse angle  b  . The symbol 

used to indicate an angle is ∠. When two angles placed adjacent to each other form a 

straight line, they are called supplementary angles; angles  a  and  b  in  Fig. A.7  are sup-

plementary angles. When two angles placed adjacent to each other form a right angle, 

they are called complementary angles. 

(b)

(d)(c)

(a)

90° 90° 90°

90° 90°

90° 90°

360°

180°

  Figure A.6 (a) A right angle; 

(b) two adjacent right angles, or 

a straight line; (c) four adjacent 

right angles; (d) a full circle.

a
b

∠b is obtuse ∠a  is acute

a + b  = 180°

  Figure A.7 Acute and obtuse 

angles.  

 Table A.1  Properties of Common Geometric Shapes

Geometric Shape Properties Geometric Shape Properties

d

r

Circle

Diameter d = 2r

Circumference C = p d = 2p r

Area A = p r2

r

Sphere

Surface area A = 4p r2

Volume V =   4 _ 
3
  p  r 

3
 

b

h

Rectangle

Perimeter P = 2b + 2h

Area A = bh
b

c
a

Parallelepiped

Surface area A = 2(ab + bc + ac)

Volume V = abc

b

c a

Right triangle

Perimeter P = a + b + c

Area A =   1 _ 
2
  base × height =   1 _ 

2
  ba

Pythagorean theorem c2 = a2 + b2

Hypotenuse c =  √
______

  a 2  +  b 2   

h

r

Right circular
cylinder

Surface area A = 2p r2 + 2p rh

                          = 2p r(r + h)

Volume V = p r2h

b

h

Triangle

Area A =   1 _ 
2
  bh



 Various triangles are shown in  Fig. A.8 . The sum of the interior angles of any tri-

angle is 180 ° . An isosceles triangle has two sides of equal length; the angles opposite 

to the equal sides are equal angles. An equilateral triangle has all three sides of equal 

length; it is also equiangular. Right triangles have one right angle, 90 ° , and the sum of 

the other two angles is 90 ° , so those angles are acute angles. Commonly used right 

triangles have sides in the ratio of 3:4:5 and 5:12:13.     

 Triangles are similar when all three angles of one are equal to the three angles of 

the other. If two angles of one triangle are equal to two angles of the other, the third 

angles are necessarily equal and the triangles are similar. The ratio of corresponding 

sides of similar triangles are equal, as shown in  Fig. A.9 . Similar triangles of the same 

size are called congruent triangles. 

  Figure A.10  shows other useful relations among angles between intersecting lines. 

When two angles add to 180 ° , as ∠ a    +  ∠ b   in one of the small figures, the angles are 

supplementary. Another small figure shows two angles, ∠ a   +  ∠ b   adding to 90 ° , so in 

that case the angles are complementary.     

 For many physics problems it is convenient to use angles measured in radians 

rather than in degrees; the abbreviation for radians is rad. The arc length  s  measured 

along a circle is proportional to the angle between the two radii that define the arc, as 

shown in  Fig. A.11 . One radian is defined as the angle subtended when the arc length 

is equal to the length of the radius.  

For  q   measured in radians,

    s = rq   

 When the angular displacement is all the way around the circle, 360 ° , the arc length 

is equal to the circumference of the circle:

    s = 2p r = rq   

 The equivalent to 360 °  measured in radians is thus  q    =  2 p   radians and the equiva-

lence between radians and degrees is

    1 rad =   360° ____ 
2p 

   ≈ 57.3°       or       1° =   2p  ____ 
360°

   ≈ 0.01745 rad  

Note that the radian has no physical dimensions; it is a ratio of two lengths so it is a 

pure number. We use the term  rad  to remind us of the angular units being used.    

Figure A.8 Triangles.

a

a a a a

b

a

b

g

a + b + g  = 180°

Equilateral
triangle

Isosceles
triangle

a

a a aa

b

  Figure A.9 Similar triangles.  

q1

q 2

q 3a

b

g

b

e
d

f

c
a

a = q1  b = q 2  g  = q 3  

a_
d

b_
e

c_
f

= =

  Figure A.10 Angles formed by intersecting lines.     Figure A.11 Radian measure.  

q
s r

r

If s = r, q = 1 radian

Two parallels
cut by a

transversal

Vertically opposite
angles are equal

Alternate interior
angles are equal

a

a

a

a

aa

ab

b

b

f

g

a = f  + g  = 180° –  b

a  = 90° – b

90°

90°
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   A.7  TRIGONOMETRY 

  The basic trigonometric functions used in physics are shown in  Fig. A.12 . Note that in 

determining the function values, the units of length cancel, so the sine, cosine, and 

tangent functions are dimensionless.     

 The side opposite and the side adjacent to either of the acute angles in the right 

triangle are of lesser length than the hypotenuse, according to the Pythagorean theorem. 

Therefore, the absolute values of the sine and cosine cannot exceed 1. The absolute 

value of the tangent can exceed 1. 

  Figure A.13  shows the signs (positive or negative) associated with the trigonometric 

functions for an angle  q   located in each of the four quadrants. The hypotenuse  r  is 

positive, so the sign for the sine or cosine is determined by the signs of  x  or  y  as mea-

sured along the positive or negative  x - and  y -axes. The sign of the tangent then depends 

on the signs of the sine and cosine. The angle  q   is measured in a counterclockwise direc-

tion starting from the positive  x -axis, which represents 0 ° . Angles measured from the 

 x -axis going in a clockwise direction (below the  x -axis) are negative angles; an angle of 

−60 ° , which is located in the fourth quadrant, is the same as an angle of  + 300 ° .  Figure 

A.14  shows graphs of  y   =  sin  q   and  y   =  cos  q   as functions of  q   in radians. Also graphed 

  Figure A.12 Trigonometric 

functions used in physics 

problems; angles  q   and  f  are 

complementary angles.

q

f = 90° – q

f

90°

b
c

a

Right triangle ______________sin q = = = cos f
hypotenuse

side opposite ∠q _
c

b

______________cos q = = = sin f
hypotenuse

side adjacent ∠q _
c

a

______________tan q = =
side adjacent ∠q

side opposite ∠q _
a

b
= ____

cos q

sin q
= ____

tan f

1

y

xx

Quadrant II:  90° < q  < 180°
  sin q = y/r is positive
  cos q = x/r is negative
  tan q = y/x is negative

q
r

x

III

III IV

y

y

Quadrant I:  0 < q  < 90°
  sin q = y/r is positive
  cos q = x/r is positive
  tan q = y/x is positive

q
r

x

III

III IV

y

y

x

q

r

x

III

III IV

y

y

x

Quadrant IV:  270° < q  < 360°
  sin q = y/r is negative
  cos q = x/r is positive
  tan q = y/x is negative

Quadrant III:  180° < q < 270°
  sin q = y/r is negative
  cos q = x/r is negative
  tan q = y/x is positive

q

r

x

III

III IV

y

    Figure A.13 Signs of trigonometric functions in various quadrants.  

Figure A.14 (a) Graphs of  y   =  sin  q   and  y   =   q . Note that sin  q   ≈  q  for small  q . (b) Graphs of  y   =  cos  q   and   y = 1 −    1 _ 
2
   q 

  2
 . 

Note that cos     q  ≈ 1 −    1 _ 
2
   q 

  2
    for small  q .

y

3p__
2

2p q (radians)

1

–1

3p__
2

p_
2

p_p_2p p_
2

 
_  

 
_   

y = sin q
y = q

y

3p__
2

2p q (radians)

1

–1

3p__
2

p_
2

p_p_2p

p_
2

 
_  

 
_   

y = cos q

y = 1 –    q
2

(a) (b)

1_
2



sin2 q + cos2 q = 1
tan 2q  =   2 tan q  _________ 

1 − ta n 
2
  q 

  

sin (–q ) = −sin q

cos (–q ) = cos q sin (a ± b ) = sin a  cos b ± cos a  sin b

tan (–q ) = −tan q
cos (a ± b ) = cos a  cos b +− sin a  sin b

sin (180° ± q ) = +− sin q

cos (180° ± q ) = −cos q

tan (a ± b ) =    
tan a  ± tan b 

  ____________  
1 +− tan a tan b 

  

sin a  + sin b  = 2 sin  [   1 _ 
2
  (a  + b ) ]  cos  [   1 _ 

2
  (a  − b ) ] 

sin a  − sin b  = 2 cos  [   1 _ 
2
  (a  + b ) ]  sin  [   1 _ 

2
  (a  − b ) ] 

tan (180° ± q ) = ± tan q

sin (90° ± b ) = cos b

cos (90° ± b ) = +− sin b cos a  + cos b  = 2 cos  [   1 _ 
2
  (a  + b ) ]  cos  [   1 _ 

2
  (a  − b ) ] 

cos a  − cos b  = −2 sin  [   1 _ 
2
  (a  + b ) ]  sin  [   1 _ 

2
  (a  − b ) ] sin 2q = 2 sin q  cos q

cos 2q  = co s 
2
  q  − si n 

2
  q

            = 2 co s 
2
  q  − 1 = 1 − 2 si n 

2
  q

 Table A.2   Useful Trigonometric Identities 

are two functions that are useful approximations for the sine and cosine functions when 
  q        is sufficiently small (see the section titled Small-Angle Approximations, p. A-12).     

      Table A.2  lists some of the most useful trigonometric identities.    

   Inverse Trigonometric Functions   The inverse trigonometric functions can be writ-

ten in either of two ways. To use the inverse cosine as an example: cos −1   x  or arccos  x.  
Both of these expressions mean  an angle whose cosine is equal to x.     A calculator returns 

only the   principal value   of an inverse trigonometric function (   Table A.3   ), which may or 

may not be the correct solution in a given problem.    

  Law of Sines and Law of Cosines   These two laws apply to any triangle labeled as 

shown in  Fig. A.15 :

    Law of sines:      sin a  _____ a   =   
sin b 

 _____ 
b
   =   

sin g  
 ____ c  

Law of cosines:     c 2  =  a 2  +  b 2  − 2ab cos g  (where g  is the

interior angle formed by the intersection of sides a and b)         
Figure A.15 A general 

triangle.

a g

bc a

b

Function Principal Value To Find Value in a Different Quadrant

Range (Quadrants)

sin−1 −   p   __ 
2
   to   p  __ 

2
  (I and IV) Subtract principal value from p

cos−1 0 to p (I and II) Subtract principal value from 2p

tan−1 −   p  __ 
2
   to   p 

 __ 
2
  (I and IV) Add principal value to p

 Table A.3  Inverse Trigonometric Functions
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  Small-Angle Approximations 

 These approximations are written for  q    in radians  and are valid when  q   << 1 rad.

     sin q   ≈ q   (A-26)  

     cos q  ≈ 1 −   1 _ 
2
    q  2    (A-27)  

     tan q  ≈ q   (A-28)  

The sizes of the errors involved in using these approximations are roughly       1 _ 
6
   q  

3
 ,   1 __ 

24
   q  

4
 ,   

and       2 _ 
3
   q  

3
 ,   respectively. In  some  circumstances it may be all right to ignore the       1 _ 

2
   q  

2
    term 

and write

     cos q  ≈ 1   (A-29)   

 The origin of these approximations can be illustrated using a right triangle of 

hypotenuse 1 with one very small angle  q   ( Fig. A.16 ). If  q   is very small, then the adja-

cent side (cos  q  ) will be nearly the same length as the hypotenuse (1). Then we can 

think of those two sides as radii of a circle that subtend an angle  q  . The relationship 

between the arc length  s  and the angle subtended is

    s = q r  

Since  sin  q   ≈  s  and  r   =  1, we have sin  q   ≈  q  . To find an approximate form for cos  q   (but 

one more accurate than cos  q  ≈ 1), we can use the Pythagorean theorem:

    si n 
2
 q  + co s 

2
 q  = 1

cos q  =   √
________

 1 − si n 2 q     ≈  √
______

 1 −  q   2     

Now, using a binomial approximation,

    cos q  ≈ (1 −  q  
2
  ) 
1/2

  ≈ 1 −   1 _ 
2
    q  

 2
    

      A.8  VECTORS 

  The distinction between vectors and scalars is discussed in Section 3.1. Scalars have 

magnitude while vectors have magnitude and direction. A vector is represented graphi-

cally by an arrow of length proportional to the magnitude of the vector and aligned in 

a direction that corresponds to the vector direction. 

 In print, the symbol for a vector quantity is sometimes written in bold font, or in 

roman font with an arrow over it, or in bold font with an arrow over it (as done in this 

book). When writing by hand, a vector is designated by drawing an arrow over the 

symbol:      A⃗.   When we write just plain  A,  that stands for the  magnitude  of the vector. We 

also use absolute value bars to stand for the magnitude of a vector, so     A =   A⃗ .    

   Addition and Subtraction of Vectors 

 When vectors are added or subtracted, the magnitudes and directions must be taken into 

account. Details on vector addition and subtraction are found in Sections 3.1 and 3.2. 

Here we provide a brief summary. 

 The graphical method for adding vectors involves placing the vectors tip to tail and 

then drawing from the tail of the first to the tip of the second, as shown in  Fig. A.17 . 

  Figure A.17 Graphical 

(a) addition and (b) subtraction 

of two vectors.

A

A

A + B = C

A – B = D

D –B

B

C

(a)

(b)

    Figure A.16 Illustration of the 

small angle approximations 

sin  q   ≈  q  and     cos q  ≈ 1 −    1 _ 
2
   q  

2
    

(for  q   in radians) using a right 

triangle with  q   << 1 rad.  cos q

sin q
q 1



To subtract a vector, add its opposite. In  Fig. A.17 ,     −  B⃗   has the same magnitude as      B⃗   but 

is opposite in direction. Then      A⃗ +  B⃗ =  A⃗ − (−  B⃗).   

      Figure A.18  shows both the graphical and component methods of vector addition.  

  Product of a Vector and a Scalar 

 When a vector is multiplied by a scalar, the magnitude of the vector is multiplied by the 

absolute value of the scalar, as shown in  Fig. A.19 . The direction of the vector does not 

change unless the scalar factor is negative, in which case the direction is reversed.  

  Scalar Product of Two Vectors 

 One type of product of two vectors is the  scalar product  (also called the  dot product ). 
The notation for it is

    C =  A⃗⋅  B⃗  

As its name implies, the scalar product of two vectors is a scalar quantity; it can be 

positive, negative, or zero but has no direction. 

 The scalar product depends on the magnitudes of the two vectors and on the 

angle  q    between them. To find the angle, draw the two vectors starting  at the same 
point  ( Fig. A.20 ). Then the scalar product is defined by

     A⃗ ⋅  B⃗ = AB cos q       

 Reversing the order of the two vectors does not change the scalar product:      B⃗ ⋅  A⃗ =  A⃗ ⋅  B⃗.   

The scalar product can be written in terms of the components of the two vectors:

     A⃗ ⋅  B⃗ = AxBx + AyBy + AzBz    

  Cross Product of Two Vectors 

 Another type of product of two vectors is the  cross product  (also called the  vector prod-
uct ), which is introduced in Chapter 19. It is denoted by

     A⃗ ×  B⃗ =   C⃗  

      Figure A.18 Adding two 

arbitrary vectors by two different 

methods.

f

A + B = C

Graphical method

Component method
Ax + Bx = Cx

Ay + By = Cy

Bx

Ax

By

Ay

Ax

Cx
Cx

Cy

CyAy

ByBx

tan f =

A

B

A

B C

A

B

C

= –A cos a
= –A sin a

Ax 
Ay 

= B sin b
= B cos b

Bx 
By 

Cx

Cy___



√Cx2 + Cy
2C =

a

b

  Figure A.19 Multiplication of 

a vector by a scalar.  

A

3A B
–2B

  Figure A.20 Two vectors are 

drawn starting at the same point. 

The angle  q    between the vectors 

is used to find the scalar product 

and the cross product of the 

vectors.

A

B

q
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The cross product is a  vector  quantity; it has magnitude and direction.      A⃗ ×  B⃗   is read as 

“     A⃗   cross      B⃗.  ” 

 For two vectors,      A⃗   and      B⃗,   separated by an angle  q   (with  q   chosen to be the  small-
er  angle between the two as in  Fig. A.20 ), the magnitude of the cross product       C⃗   is

      C⃗  =   A⃗ ×  B⃗  = AB sin q  

The direction of the cross product       C⃗   is one of the two directions perpendicular to both       A⃗   

and      B⃗.   To choose the correct direction, use the right-hand rule explained in Section 19.2. 

 The cross product depends on the order of the multiplication.

     A⃗ ×  B⃗ = −  B⃗ ×  A⃗  

The magnitude is  AB  sin  q   in both cases, but the direction of one cross product is oppo-

site to the direction of the other.    

   A.9  SELECTED MATHEMATICAL SYMBOLS          

     ×  or ·     multiplication   

   Δ     change in, small increment, or uncertainty in   

   ≈     is approximately equal to   

   ≠     is not equal to   

   ≤     is less than or equal to   

    ≥      is greater than or equal to   

<<        is much less than   

   >>     is much greater than   

   ∝     is proportional to   

   | Q|      absolute value of  Q    

        a ⃗        magnitude of vector     a ⃗     
   ⊥     perpendicular   

   ||     parallel   

    ∞      infinity   

    ′      prime (used to distinguish different values of the same variable)   

        Q  av ,  
__

 Q ,   or  〈 Q 〉     average of  Q     

  ∑     sum    

  Π   product

 log  b  x the logarithm (base b) of x      

  ln  x      the natural (base  e ) logarithm of  x     

   ±      plus or minus    

   +−      minus or plus    

  . . .     ellipsis (indicates continuation of a series or list)    

  ∠     angle    

  ⇒     implies    

  ∴     therefore                                                                                                                                         



Atomic 
Number Z Element Symbol Mass Number A

Mass of 
neutral atom (u)

Percentage Abundance 
(or Decay Mode)

Half-life 
(if Unstable)

 0 (Neutron) n 1 1.008 664 9 b  − 10.24 min

 1 Hydrogen H 1 1.007 825 0 99.985

(Deuterium) (D) 2 2.014 101 8 0.015

(Tritium) (T) 3 3.016 049 3 b  − 12.32 yr

 2 Helium He 3 3.016 029 3 0.000 137

4 4.002 603 2 99.999 863

 3 Lithium Li 6 6.015 122 3 7.6

7 7.016 004 0 92.4

 4 Beryllium Be 7 7.016 929 2 EC 53.22 d

8 8.005 305 1 2a 6.8 × 10−17s

9 9.012 182 1 100

 5 Boron B 10 10.012 937 0 19.8

11 11.009 305 5 80.2

 6 Carbon C 11 11.011 433 8 EC 20.334 min

12 12.000 000 0 98.89

13 13.003 354 8 1.11

14 14.003 242 0 b  − 5730 yr

15 15.010 599 3 b  − 2.449 s

 7 Nitrogen N 12 12.018 613 2 EC 11.00 ms

13 13.005 738 6 EC 9.965 min

14 14.003 074 0 99.634

15 15.000 108 9 0.366

 8 Oxygen O 15 15.003 065 4 EC 122.24 s

16 15.994 914 6 99.762

17 16.999 131 5 0.038

18 17.999 160 4 0.200

19 19.003 579 3 b  − 26.88 s

 9 Fluorine F 19 18.998 403 2 100

10 Neon Ne 20 19.992 440 2 90.48

22 21.991 385 5 9.25

11 Sodium Na 22 21.994 436 8 EC 2.6019 yr

23 22.989 769 7 100

24 23.990 963 3 b  − 14.9590 h

12 Magnesium Mg 24 23.985 041 9 78.99

13 Aluminum Al 27 26.981 538 4 100

14 Silicon Si 28 27.976 926 5 92.230

15 Phosphorus P 31 30.973 761 5 100

32 31.973 907 2 b  − 14.262 d

16 Sulfur S 32 31.972 070 7 95.02

17 Chlorine Cl 35 34.968 852 7 75.77

18 Argon Ar 40 39.962 383 1 99.6003

19 Potassium K 39 38.963 706 9 93.2581

40 39.963 998 7 0.0117; b  − 1.248 × 109 yr

20 Calcium Ca 40 39.962 591 2 96.94

24 Chromium Cr 52 51.940 511 9 83.789

25 Manganese Mn 54 53.940 363 2 EC 312.0 d

55 54.938 049 6 100

26 Iron Fe 56 55.934 942 1 91.754

(continued)
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Atomic 
Number Z Element Symbol Mass Number A

Mass of 
neutral atom (u)

Percentage Abundance 
(or Decay Mode)

Half-life 
(if Unstable)

27 Cobalt Co 59 58.933 200 2 100

60 59.933 822 2 b  − 5.271 yr

28 Nickel Ni 58 57.935 347 9 68.077

60 59.930 790 6 26.223

29 Copper Cu 63 62.929 601 1 69.17

30 Zinc Zn 64 63.929 146 6 48.63

36 Krypton Kr 84 83.911 507 3 57.0

86 85.910 610 3 17.3

92 91.926 153 1 b  − 1.840 s

37 Rubidium Rb 85 84.911 789 3 72.17

93 92.922 033 8 b  − 5.84 s

38 Strontium Sr 88 87.905 614 3 82.58

90 89.907 737 6 b  − 28.90 yr

39 Yttrium Y 89 88.905 847 9 100

90 89.907 151 4 b  − 64.00 h

47 Silver Ag 107 106.905 093 6 51.839

50 Tin Sn 120 119.902 196 6 32.58

53 Iodine I 131 130.906 124 2 b  − 8.0252 d

55 Cesium Cs 133 132.905 447 3 100

141 140.920 044 1 b  − 24.84 s

56 Barium Ba 138 137.905 241 3 71.698

141 140.914 406 9 b  − 18.27 min

60 Neodymium Nd 143 142.909 810 3 12.2

62 Samarium Sm 147 146.914 893 3 14.99; a 1.06 × 1011 yr

79 Gold Au 197 196.966 552 3 100

82 Lead Pb 204 203.973 029 3 1.4 ≥1.4 × 1017 yr

206 205.974 449 3 24.1

207 206.975 881 3 22.1

208 207.976 636 3 52.4

210 209.984 173 3 b  − 22.20 yr

211 210.988 731 3 b  − 36.1 min

212 211.991 887 5 b  − 10.64 h

214 213.999 798 1 b  − 26.8 min

83 Bismuth Bi 209 208.980 383 3 100

211 210.987 258 6 a 2.14 min

214 213.998 699 1 b  − 19.9 min

84 Polonium Po 210 209.982 857 3 a 138.376 d

214 213.995 186 3 a 164.3 μs

218 218.008 965 8 a 3.10 min

86 Radon Rn 222 222.017 570 5 a 3.8235 d

88 Radium Ra 226 226.025 402 6 a 1600 yr

228 228.031 064 1 b  − 5.75 yr

90 Thorium Th 228 228.028 731 3 a 1.91 yr

232 232.038 050 4 100; a 1.405 × 1010 yr

234 234.043 595 4 b  − 24.10 d

92 Uranium U 235 235.043 923 1 0.7204; a 7.038 × 108 yr

236 236.045 561 9 a 2.342 × 107 yr

238 238.050 782 6 99.2742; a 4.468 × 109 yr

239 239.054 287 8 b  − 23.45 min

93 Neptunium Np 237 237.048 167 3 a 2.144 × 106 yr

94 Plutonium Pu 239 239.052 156 5 a 24 110 yr

242 242.058 736 8 a 3.75 × 105 yr

244 244.064 198 5 a 8.00 × 107 yr

EC = electron capture.
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  AP-1

 Answers to Selected Questions 
and Problems 

   CHAPTER 1 

  Multiple-Choice Questions 

1.  (b)      2.  (a)      3.  (b)      4.  (c)      5.  (d)      6.  (b)      7.  (d)      8.  (b)     

9.  (d)      10.  (c)    

  Problems 

1.  2.5 m      3.  7.7%      5.  6/ s       7.  10  – 8       9.  11.8 yr      11.  36.0%      

13.     (a) 1.29  ×  10 8  kg      (b) 1.3  ×  10 8  m/s         15.     (a) 3.63 × 10 7  g

    (b) 1.273 × 10 2  m         17.  1.7 × 10  – 10  m 3       19.  459 m/s      

21.  2.8 × 10  – 7  inches      23.     (a) 4.863 × 10 2  m; 10 2      

(b) 1.834 × 10 3  m; 10 3          25.     (a) 8.6 m/s     (b) 19 mi/h         

27.  0.12 or 12%      29.  13.6 g/cm 3       31.  1.7 × 10  – 10  km 3      

 33.     (a) 2.7 × 10  – 3  ft/s     (b) 1.9 × 10  – 3  mi/h         35.  kg·m 2 ·s  – 2       

37.       [T] 
2
  =   

 [L] 
3
 
 ____________  

  
 [L] 

3
 
 _______ 

[M] [T] 
2
 
   × [M]

   =   
 [L] 

3
 
 ____ 

[M]
   ×   

[M] [T] 
2
 
 _______ 

 [L] 
3
 
   =  [T] 

2
         39.     (a) [L 3 ]     

(b) volume         41.  30– 40 cm      43.     (a) 10 kg     (b) 10 m         

45.  Answers may vary.      47.  100 m  

   49.    

 Time

10 A.M. 11 A.M. 12 P.M. 1 P.M.

T
em

p
er

at
u
re

 (
°
F

)

103.00

102.00

101.00

100.00

 

   (a) 101.8 ° F     (b) 0.9 ° F/h     (c) No; the patient would die before 

12 hours passed and the temperature reached 113 ° F.     

   51.  104.5 ° F      53.     (a)  a      (b)  +  v  0      

   55.     (a)     

Time (min)

10 20 30 40 50 60 8070 10090

D
ec

ay
 R

at
e 

(d
ec

ay
s/

s)

450

300

150

0
0

  (b)       

Time (min)

10 20 30 40 50 60 8070 10090

N
at

u
ra

l 
L

o
g
ar

it
h
m

 o
f 

th
e

D
ec

ay
 R

at
e

6.0

4.0

2.0

0
0

 The presentation is useful because the graph is linear.  

57.     (a) 186.303     (b) 186.297     (c) 0.56     (d) 62 000  

  (e) Case (a): 0.0016%; Case (b): 0.0016%; For case (c), ignoring 

0.0030 causes you to multiply by zero and get a zero result. For 

case (d), ignoring 0.0030 causes you to divide by zero.  

  (f ) You can neglect small values when they are added to or sub-

tracted from sufficiently large values. The term “sufficiently large” 

is determined by the number of significant figures required.     

59.  4.0      61.  434 m/s      63.     (a) 3; 5.74 × 10  – 3  kg     (b) 1; 2 m  

  (c) 3; 4.50 × 10  – 3  m     (d) 3; 4.50 × 10 1  kg     (e) 4; 1.009 × 10 5  s  

  (f) 4; 9.500 × 10 3  mL         65.     (a) 6 Mm     (b) 2 m     (c) 1  μ m  

  (d) 3 nm     (e) 0.3 nm         67.     (a) 3.3 × 10  – 8  m     (b) 3.3 × 10  – 2   μ m  

  (c) 1.3 × 10  – 6  in         69.  2.2 × 10 2  m 3       71.     (a)      a = K    v 2  ___ r  ,   where 

 K  is a dimensionless constant.     (b) 21.0%         73.  2.24 mi/h  =  1 m/s; 

for a quick, approximate conversion, multiply by 2.  

   75.  10 11  gal      77.        
kg ⋅ m

 ______ 
 s 

2
 
          79.  $59 000 000 000  

   81.     (a) 2.4 × 10 5  km/h     (b) 10 min         83.     (a)      √
___

   hG
 ___ 

 c 
5
 
           

(b) 1.3 × 10  – 43  s         85.  0.46 s  – 1       

87.     (a)     

Time (h)

0.0 5.0 10.0 15.0 20.0 25.0

T
o
ta

l 
M

as
s 

o
f

Y
ea

st
 C

el
ls

 (
g
)

100.0
90.0
80.0
70.0
60.0
50.0
40.0
30.0
20.0
10.0
0.0

     (b) about 100 g  

     (c)  

0.0 2.0 4.0 6.0

2.0

1.0

0.0

ln

t (h)

m
m0

   ; 0.30 s  – 1         



     CHAPTER 2 

  Multiple-Choice Questions 

    1.  (c)      2.  (d)      3.  (a)      4.  (b)      5.  (c)      6.  (a)      7.  (b)      8.  (a)     

9.  (a)      10.  (c)      11.  (a)      12.  (a)      13.  (d)      14.  (c)      15.  (d)

     16.  (a)      17.      (a)  (b)      (b)  (a)      (c)  (d)      (d)  (c)       

  Problems 

    1.  16 cm, east      3.     (a)  − 80 m, or 80 m west     (b)  − 20 m, or 20 m 

west     (c)  + 80 m, or 80 m east     (d) 240 m         5.     (a) 8 km, north 

of its position at 3  p.m.      (b) 116 km, south of its starting 

point     (c) 104 km, north of its position at 4  p.m.          7.  14.3 m/s, 

east      9.  53.1 mi/h due west      11.  160 m      13.     (a) DE     (b) 4 s 

and 5 s     (c) 20 m         15.  27 m/s west      17.  16.5 m      19.  1.0 m/s      

21.     (a) 170 cm to the left     (b) 28 cm/s     (c) 9.4 cm/s to the left        

 23.  1.05 m/s to the north      25.  7.0 m/s 2  in the direction opposite 

the car’s velocity      27.  28 m/s 2  toward the paddle      29.  2.5 m/s 2       

31.     (a)  − 10 m/s 2      (b) 0     (c) 5.0 m        

 33.     (a) 
vx (m/s)

t (s)

2

0

4

6

8

10

12

14

0 2 4 6 8 10 12

16

      

(b) 86.4 m     (c) 14.4 m/s     

(d)

 

0.0 x (m)60.040.020.0 80.0

t = 0 t = 6.0 s

t = 4.0 s

t = 2.0 s

t = 8.0 s t = 10.0 s t = 12.0 s

          

 35.     (a) 
vx (m/s)

t (s)0 4 8

8

16

24

12
0

       

(b) 2.00 m/s 2  north     (c) 135 m        

 37.     (a) 4.0 m/s     (b) 5.0 m/s         39.  No; it takes 236 m for the 

train to stop.      41.  80 m      

43.     (a)

       

vx (m/s)

t (s)
10

0 2 4 6 8

14

18

22

 

(b) 11 m/s     (c) 130 m     

(d)

 

0 x (m)1208040

t = 0 t = 6.0 st = 4.0 st = 2.0 s t = 8.0 s

          

 45.  85.0 m/s down      47.  5.0 m/s      49.  1.22 s      51.     (a) 44 m     

(b) 7.0 m/s     (c) 29 m/s     (d) 17.1 m below the top of the tower         

53.     (a) 120 m/s 2  toward Lois     (b) 170 m/s         55.  46 m      

57.     (a) 224 m     (b) 0.99 m/s 2          59.     (a) 330 m/s up     (b) 16 m/s 2  up        

61.  2 v       63.     (a) 420 m/s 2  opposite the direction of motion     

(b) 4200 m/s 2  opposite the direction of motion         65.  59 mi north; 

96 mi/h north; 11 mi/h 2  south      67.     (a) higher     

(b) vy

tt1 t2 t3       

 

(c)

 

y

tt1 t2 t3

           

69.     (a) 25.0 km     (b) 152 s     (c) 76.0 km     (d) 1220 m/s down-

ward         71.  3.0 cm/s 2  in the direction of the velocity      

73.     (a) 1.0 mm/s     (b) 20 ms     (c) 100 m/s        

  CHAPTER 3 

  Multiple-Choice Questions 

    1.  (d)      2.  (b)      3.  (b)      4.  (d)      5.  (a)      6.  (c)      7.  (e)      8.  (c)     

9.  (a)      10.  (d)      11.  (d)      12.  (a)      13.  (b)      14.  (c)    

  Problems 

    1.     (a) 10.00 km west     (b) 4.88 km east     (c) 4.88 km west        

 3.     (a) same direction       (b) perpendicular       (c)        opposite 

directions; 1.0 

 5.  

x

20 km
20 km

60°

60°

20 km in the +x-direction
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7.     (a)

 

B

D

A

D = A + B

C

E

A

E = A + C

      

(b) 

B

A

A + B = B + A

B

A

A + B

B + A

          

 9.     (a) 45 km     (b) 16 km         13.   x -comp  =   − 17.3 m;  y -comp  =  10.0 m     

15.     (a) 2.0 units at 30 °  CCW from the  +  y -axis     (b) 2.0 units at 

30 °  CW from the  +  y -axis     (c)  x -comp  =   − 1.0 unit;    y-comp = 

− √
___

 3.0   units            17.  1.4 cm      19.   A   x    =  6.6 m,  A   y    =  2.4 m;  B   x    =  6.6 m/s,

 B    y     =    −  2 . 4  m / s ;   C   x     =    −  2 . 4  m ,   C    y     =   6 . 6  m ;   D    x     =    −  2 . 4  m / s ,

 D   y    =   − 6.6 m/s      21.     (a)     A ⃗ = 9.4   m/s, 32 °  CCW from the  +  y -axis    

(b)     B ⃗ = 130   m, 27 °  CW from the  +  x -axis     (c)     C ⃗ = 16.3   m/s, 

33 °  CCW from the − x -axis     (d)     D ⃗ = 2.3 m/ s 
2
 ,   1.6 °  CCW from the 

 +  x -axis         23.     (a)  B   x    =  6.9,  B   y    =   − 1.7     (b) 6.9 at 15 °  CW from the 

− y -axis     (c) 9.8 at 31 °  CCW from the − y -axis     (d) 10 at 30 °  

CCW from the − x -axis     (e)  x -component:  − 8.7,  y -component: 

 − 5.0         25.  4.92 mi at 24.0 °  north of east      27.  29 nautical miles at 17 °  

south of east      29.     (a) 5.03 m/s     (b) 0.996 m/s at 12.4 °  west of north        

31.     (a)

 

W E

N

S

Illium

15°  

25°  

Atkins Glen

Cornwall

73
.6

 k
m

27.2 km

       

(b) 59.9 km at 85 °  north of east     (c) 80 km/h at 85 °  north of 

east         33.  26 km/h at 31 °  north of east      35.     (a) 102 km/h    

(b) 90.8 km/h at 16.6 °  south of west         37.     (a) 76.2 km     (b) 102 km/h 

at 22.0 °  north of west     (c) 32.6 km/h at 22.0 °  south of east

    (d) 0     (e) 63.3 km/h         39.  13 m/s 2  up      41.     (a) 9.82 m/s    

(b) 13.9 m/s southeast     (c) 8.68 m/s 2  southeast         

43.     (a) 180 km/h at 24 °  south of east     (b) 280 km/h 2  at 24 °  south 

of east         45.  0.8 s      47.  It is on the ground after 1.32 s, so the 

horizontal distance along the ground is 26.3 m.      49.     (a) 5.9 m    

(b) 17.0 m/s         51.     (a) 202 m     (b) 51.1 °  below the horizontal        

 53.     (a) 37 m     (b) 170 m     (c) 32 m/s;  − 27 m/s         

55.     (a) x

t

vx

t

vy

t

y

t

       

(b) 27.6 m/s at 25.0 °  above the horizontal     (c) 37.5 m     (d) 44.4 m 

above the ground         57.     (a)       
2 v i  sin q 

 ________ g         (c)       
 v  i  

2
 
 ___ g             

59.     (a)  v   x    =   v  i  cos  q   and  v   y    =  0        (b) vi sin q/g  61.  15.8 m    

 63.  11 m/s; 2.5 m      65.  130 km/h north      67.  63 km/h at 40 °  south 

of west      69.  50 m/s east      71.     (a) 9.6 °  north of west     (b) 38 m/s       

 73.   v   x    =  50 km/h east;  v   y    =  40 km/h south      75.     (a) 30.0 °  north of 

west     (b) 9.1 min         77.     (a) 1.00 m/s     (b) 1.12 m/s       

 79.     (a) 1.1 m     (b) down         81.     (a) 873 km     (b) 9.90 °  south of east    

(c) 2.250 h     (d) 2.18 h       

 83.     (a) 160 km/h at 20 °  north of east     (b) 150 km/h at 21 °  north 

of east     (c) 10 km/h west         85.  68 m/s      87.  12 m east and 40 m 

north            89.     (a) 28.6 cm     (b) smaller     (c) larger     (d)  H   =  21.3 cm; 

 R   =  85.1 cm         91.     (a) 33.1 h     (b) 34.1 h     (c) 33.6 h        93. 63° 

below the horizontal  95.     (a) 15 km/h due west     (b) 5.8 °  west 

of north         97.  step 4     

  CHAPTER 4 

  Multiple-Choice Questions 

    1.  (b)      2.  (b)      3.  (a)      4.  (d)      5.  (b)      6.  (c)      7.  (b)      8.  (c)    

 9.  (b)      10.  (d)      11.  (e)     12. (e)  13.  (a)      14.  (b)    

  Problems 

    1.  the weight of the person      3.  778 N      5.  20 N in the positive 

 x -direction      7.  2 N to the east      9.  120 N north      11.    13 °  from 

the vertical      

13
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45°

45°45°

4 N 2 N

4 N

2 N

2 N

2 N

A B    

 ANSWERS TO SELECTED QUESTIONS AND PROBLEMS AP-3



 The net force magnitude on object  B  is greater than that on object 

 A  because two of the forces acting on  B  are directed at an angle 

greater than 45 °  with respect to the horizontal and contribute more 

to the downward directed net force.      

15.    2 kN east      17.  0.30 N      19.     (a) 1.3 kg     (b) 0.90 m/s at 18 °  

south of west         21.  4.0 kg      23.     (a) 3.5 m/s 2  up     (b) 15 m/s up       

 25.  20 N      27.  2.40 m/s 2  forward      29.  4.22 km      

31.     (a) 
Fpc

Fpe

       (b) 

Fce

Fch

Fcp

       (c) 

FhC

FhcFhe

       (d) 
FsC

Fse

          

33.     (a) 50.0 N upward (total for both feet)     (b) 650.0 N upward     

(c) s  =  woman and chair system; e  =  Earth; f  =  floor

Fsf

Wse

           

  35.  One force acting on the fish is an upward 

force on the fish by the line; its interaction part-

ner is a downward force on the line by the fish. 

A second force acting on the fish is the down-

ward gravitational force on the fish; its interac-

tion partner is the upward gravitational force on 

the Earth by the fish.      37.     (a) 543 N    

(b) contact force of Margie’s feet     (c) 588 N     (d) contact force 

on the Earth due to the scale                 

 39.     (a) 670 N     (b) 2.5 N     (c) a stick of butter         41.  82 kg    

 43.  2 nN      45.  9.3  ×  10 3  km      47.     (a) 1432 km     (b) 4664 km       

 49.  2639 km      51.  1.5  ×  10  − 9  N      53.  (a) and (b)      57.     (a) 160 N 

up the slope     (b) 0.19         59.  61 N up the ramp      61.  b  =  book; 

t  =  table; e  =  Earth; h  =  hand

   (a) 
Nbt

Fbhfbt

Wbe

       (b) 
Nbt

fbt

Wbe

       

(c) 
Nbt

Wbe

        (d) (a) and (b)     (e) 2.0 N opposite the direction 

of motion     (f ) The FBD would look just like the 

diagram for part (c). The book would not slow 

down because there is no net force on the book.         

63.     (a) 0.41     (b) 40 N         65.  0.4      67.  17 °       

69.  

Wsg

Fsl

Nsw

FsW

s = sailboat

l = line

w = water

W = wind

g = gravity

  

   1) the force of gravity     2) the vertical force of the water oppos-

ing gravity     3) the force of the wind     4) the force of the line tied 

to the mooring         71.  1.38 kN      73.  lower cord: 8.3 N; upper 

cord: 12.4 N      75.  Scale A reads 120 N.     Scale B reads 240 N.

 77.     (a)      √
__

 2   Mg       (b) 45 °          79.   T  15   =  30 N;  T  25   =  18 N      81.  2.0 N 

toward the back of the mouth      83.        
 m  1  _______  m  1  +  m  2 

          85.     (a) 20 N

    (b) 12 N         87.     (a)     a ⃗1 = 3.9 m/ s 
2
    to the right;   a ⃗   2 = 3.9 m/ s 

2
   down-

ward     (b) 4.7 m/s to the right     (c) 2.8 m to the right     (d) block 1: 

0.31 m to the right; block 2: 0.31 m down         89.      (a)  m  1 : 2.5 m/s 2  

up;  m  2 : 2.5 m/s 2  down     (b) 37 N         91.  0.81 s      

93.  0.365 ° ; 
vx (cm/s)

t (s)
0

0 1 2 3 4

10 

20

30 

     95.     (a)  m   s   > 0.48     (b) 0.60     (c) 0.48         97.  642 N      99.  1 kN 

upward      101.     (a) 1.4 m/s 2  downward     (b) no         103.  620 N

     105.  the weak force      107.  electromagnetic and gravitational 

forces      109.  the strong force      111.      (a) 23 m/s     (b) 0.19       

 113.     (a) zero     (b) 2.6  ×  10 4  N         

115.  

Ffb

Ffu

Ffw

Ffe

         117.     (a) 

N

Fg

T

10.0°

5.0°

y

x

       

(b) 860 N         119.  0.027 N/kg      121.     (a) 80 N     (b) 160 N        

 123.     (a) 1360 N     (b) 21.5 °          125.   F /3 to the right      

127.     (a) 22 °  with respect to the horizontal     (b) 0.9 m/s 2  down the 

incline         129.     (a) no     (b) yes     (c) 0.6 m/s 2      (d) The force of 

friction will be less on the Moon; more.         131.  120 N      133.  90.0% 

of the Earth-Moon distance      135.     (a) 1.5 N upward     (b) 2.4 N 

upward     (c) 0.85 N downward     (d) 0.85 N downward; 9.80 m/s 2  

downward         137.     (a) 110.0 N     (b)  T  A   =  115.0 N  =   T  C  and  T  B   =  

110.0 N  =   T  D .         139.     (a)    1) the gravitational forces between the 

magnet and the Earth     2) The contact forces, normal and fric-

tional, between the magnet and the photo     3) The magnetic forces 

between the magnet and the refrigerator        

(b) 
fmp

Wme

NmpFmr

       

(c) The long-range forces are gravity and magnetism. The contact 

forces are friction and the normal force.     (d)  W  me   =  0.14 N, 

 F  mr   =  2.10 N,  f  mp   =   W  me   =  0.14 N, and  N  mp   =   F  mr   =  2.10 N         

141.     (a) A  =  137 N; B  =  39 N     (b) A  =  147 N; B  =  39 N        

 143.     (a)  mg  tan  q      (b)  mg  tan  q      (c)     mg tan q +   ma _____ 
cos q 

             

145.     (a) 1.10 mg      (b) 1.10 mg          147.  1810 N; 5 times the force 

with which Yoojin pulls; the oak tree supplies additional force.     

 149.     (a) 2.60  ×  10 8  m from Earth     (b) away from         151.  15 m/s 2     

AP-4  ANSWERS TO SELECTED QUESTIONS AND PROBLEMS



 153.     (a)     a =   
 m  2  −  m k  m  1  _________  m  1  +  m  2 

   g; T = (1 +  m k )   
 m  1  m  2  _______  m  1  +  m  2 

   g       

(b) For  m  1  <<  m  2 :  a  ≈  g  and  T  ≈ (1  +   m   k  )  m  1  g  <<  m  2  g,  so the 

tension is negligible compared to the weight of  m  2 ; it’s essentially 

in free fall. For  m  1  >>  m  2 :  a   =  0 and  T   =   m  2  g.  For      m  1  =  m  2 : 

a =   1 _ 
2
   (1 −  m k )g    and     T =   1 _ 

2
   (1 +  m k )mg.       (c)  a   =  0 only for  m  2   =  0; 

thus, there is no value at which the two masses slide with con-

stant velocity. For  m  2   =  0, there is no tension in the cord.         

  CHAPTER 5 

  Multiple-Choice Questions 

    1.  (b)      2.  (a)      3.  (f )      4.  (b)      5.  (a)      6.  (b)      7.  (b)      8.  (a)      

9.  (e)      10.  (c)      11.  (b)      12.  (b)    

  Problems 

    1.  17 m      3.  0.105 rad/s      5.  26 rad/s      7.     (a) 3.49 rad/s  

  (b) 0.45 m/s         9.  3800 ft      11.     (a) 31 m/s     (b) 31 rad/s     

   13.  3.37 cm/s 2       15.  5.74 m/s      17.     (a)       m v 2  ____ 
L

      

  (b)     T = m √
_____________

   g 2  +   (    v 2  _______ 
L cos q 

   )  
2

              19.     (a)      √
_____

  m s gR      

  (b) The static frictional force is not large enough to keep the car in 

a circular path; the car skids toward the outside of the curve.     

   21.  7.9 m/s      23.  59 °       25.     (a) 2300 N     (b) 19 m/s     

   27.       tan 
−1

     v 2  __ rg          29.  2.99 × 10 4  m/s      31.  130 h  

   33.   r  Io   =  420 000 km;  r  Europa   =  670 000 km      35.  2.04 × 10 7  m  

   37.  16 h      39.     (a) 13 N     (b) The bob has an upward accelera-

tion, so the net  F   y   must be upward and greater than the weight of 

the bob.         41.  23.2 m/s      43.  4.0 rad/s 2       47.   a  t   =  2.54 m/s 2 ;  a  r   =  

2.45 m/s 2 ; 11.9 N      49.     (a) 1.7 rad/s 2      (b) 0.56 rev         51.     (a) 17.7 m/s  

  (b) 6.28 m/s 2      (c) 6.59 m/s 2  at an angle of 17.7 °  east of south     

   53.     (a) 1.3 × 10 6  s     (b) 5.0 × 10 10  rev         55.  16 g       57.  7.0 rad/s  

   59.     (a) 0.034 m/s 2      (b) less     (c) 0.34% smaller     (d) at the poles     

   61.     (a) 518.5 N     (b) 521.5 N     (c) 45 m         63.  0.40 w       65.  150 m/s  

   67.     (a) 3.00 m/s east     (b) 3.00 m/s west         69.  2.9 rotations for  A;  

5.7 rotations for  B       71.     (a) 38 m/s     (b) You would need 

135 km of tape to record one hour.         73.     (a) 8.0 p   2   m/s 2   =  79 m/s 2   

  (b) 4.0 p   2  N  =  39 N         75.  smallest; 4.1 s      77.  110  μ m/s  

   79.  8 cm      81.  120 km/h      83.     (a) 90g     (b) 7.9 × 10  – 11  N  

  (c) 4.4 × 10  – 18  N     (d) 5.0 × 10 5   g          85.  1.4 rev/s      87.  42 200 km  

     REVIEW AND SYNTHESIS: CHAPTERS 1–5 

  Review Exercises 

    1.  N/m  =  kg/s 2       3.     (a) 220 markers     (b) 221 markers     

   5.     (a) 1.74 m/s     (b) 0.332 m/s in his original direction of motion     

   7.     (a) 3300 ft or 1000 m         9.  The cart will go off the road toward 

south.      11.     (a) 19 m     (b) 3.6 m/s         13.  1.7 m/s      15.     (a) 15.1 N  

  (b) 34.3 N         17.  Stefan’s plan is superior and thus more likely to 

work.      19.  29 km/h at 83 °  north of west  

   21.     (a) The rocks will have the same speed when they hit the 

ground.     (b) 19.8 m/s         23.  2.40 s      25.     (a) 3.6 × 10 7  m  

  (b) 55 N         27.  11.5 m/s      29.  2.02 s; 1.65 m to the left of  B ’s 

initial position      31.  0.98 m/s directed downward  

   33.     (a)     R =   
2 v  i  

2
 sin q  cos q 

  _____________ g         (b) 221 m     (c) 4 m         35.     (a) 283 m  

  (b) 84.9 m         37.     (a) 216 billion solar masses     (b) 0.46       

  MCAT Review 

     1.  D      2.  C      3.  D      4.  C      5.  C      6.  D      7.  A     

  CHAPTER 6 

  Multiple-Choice Questions 

    1.  (c)      2.  (b)      3.  (b)      4.  (a)      5.  (c)      6.  (c)      7.  (c)      8.  (c)     

 9.  (b)      10.  (b)      11.  (f )    

  Problems 

    1.  75 J      3.  No work is done.      5.  210 kJ      7.     (a) 0     (b) 8.8 J     

   9.  1.3 m      11.  15.6 J      13.     (a) 0.70 J     (b) 0.37 m/s         15.  0  

   17.  –4.17 kJ      19.  5.8 MJ (meteoroid); 0.46 MJ (car); the meteor-

oid has more than 12 times the kinetic energy of the car.  

   21.     (a) 0     (b) 3.4 kJ     (c) dissipated as heat         23.      (a) 0  

  (b) –2.9 J         25.     (a) 2     (b) 1.88 kJ     (c) 1.88 kJ     (d) 8.00 m     

   27.     (a) 14.3 m/s     (b) Yes; the cart will reach position 4.     

   29.  8.42 m/s      31.  –52 kJ      33.     (a)      √
_________

  v 2  + 2gh          (       b) The final 

speed is independent of the angle.         35.     (a) 0.286 N/cm     

(b) 11.0 cm         37.  2.37 km/s      39.  13.0 km/s      41.  2      43.  10.0 km/s    

 45.  1.6 km/s      47.  8 J      49.  5.2 J      51.     (a) 4.9 cm     

(b) 1.4 N/cm     (c) 88 mJ         53.     (a) 1.9 N/cm     (b) 0.49 J    

(c) 2.4 kg         55.  zero      57.  0.35 m      59.  13 m      61.  8.7 cm     

 63.     (a) 2.2 m/s     (b) 0.21 m     (c) 0.50 m         67.     22 W         

69.     (a) 20 N     (b) 6.7 m/s         71.  60 kW      73.  6.2 g; the other 

90% of the energy is dissipated as heat.      75.  930 kW      

77.  4.8 m/s      79.  16 m/s      83.     (a)  k /2     (b) 2 k          85.  27 N     

 87.  0.33 m      89.  1.6 m/s      91.     (a) 10 kW     (b) 5.8 °          

93.     (a) 2.62 kW     (b) 7.85 kW         95.     (a) 2200 kcal/day  

  (b) more than 0.51 lb         97.     (b) 4.9 m/s     (c) 1.24 m         99.    2 _ 
3
   R   

   101.     (a)  k   =   k  1   +   k  2      (b) 0.16 J         103.  1.3 cm; 32 J  

   105.     (a) 26 cm     (b) 34 cm         109.  No; because the kinetic energy 

cannot be negative as would be the case in the region 3 cm <  x  < 8 cm. 

The particle must remain in the region  x  < 3 cm.     

  CHAPTER 7 

  Multiple-Choice Questions 

    1.  (c)      2.  (d)      3.  (c)      4.  (b)      5.  (d)      6.  (b)      7.  (f)      8.  (d)  

   9.  (a)      10.  (e)      11.  (d)      12.  (b)    

  Problems 

    1. 0 5.  3 kg·m/s north      7.  20 kg·m/s in the − x -direction     

 9.  1.0 × 10 2  kg·m/s downward      11.  320 s      13.  6.0 × 10 3  N oppo-

site the car’s direction of motion      15.      (a) 750 kg·m/s upward  

  (b) 990 N·s downward     (c) 2500 N downward         17.     (a) 11 m/s  

 ANSWERS TO SELECTED QUESTIONS AND PROBLEMS AP-5



  (b) 1300 N         19.     (a) 33 m/s     (b) 0.94 N down         21.  2.6 × 10 5  m/s      

23.  0.30 m/s      25.  0.10 m/s      27.  (8.0 cm, 20 cm)      29.  4.0 cm 

in the positive  x -direction      31.  (0.900 m,  – 2.15 m)      33.  21 cm     

 35.  (6 m/s,  – 4 m/s)      37.     (a) (–0.13 m/s,  – 4.1 m/s)     (b) The center 

of mass of the system remains at the origin after the explosion.        

 39.  270 m/s to the right  

   41.     (a) 0.20 m/s     (b) 0.25 m/s         43.  5.0 m/s      45.  2.0 kg·m/s 

to the right            47.  43 m/s      49.  3.0 m/s      51.  0  .20 kg

   53.  0.49 m      55.  5.0 m/s      57.  170 m/s  

   59.     (a) Δ p  1 x    =   – 1.00 m  1  v  i ; Δ p  1 y    =  0.751 m  1  v  i       (b) Δ p  2 x    =   m  1  v  i ; 

Δ p  2 y    =   – 0.751 m  1  v   i  ; the momentum changes for each mass are 

equal and opposite.         61.  1.73 v  1f       63.  8.7 kg·m/s      65.  6.0 m/s 

at 21 °  south of east      67.  1.7 m/s at 30 °  below the  x -axis  

   69.  20 m/s at 18 °  west of north      71.  10.2 m/s  

   73.  5.0 × 10 9  kg·m/s      75.  34 N      77.  (2.0, 0.75, 0.25) in  

   79.  Inexperienced: 5000 N; experienced: 500 N      80.  37 m/s in 

the  +  x -direction      81.     (a) 5.3 kg·m/s opposite the ball’s direc-

tion of motion     (b) 5.3 kg·m/s opposite the ball’s direction of 

motion     (c) 1.8 kN opposite the ball’s direction of motion     

   83.     (a) 148.6 °  CCW from the electron’s direction  

  (b) 9.60 × 10  – 19  kg·m/s in the direction found in (a)     

   85.  The lighter car was speeding.      87.  10  – 18  N      89.        1 _ 
9
   h    

   91.  10 m/s      93.     (a)       111 ____ 
2
         (b) 1     (c)       111 ____ 

2
            

  CHAPTER 8 

  Multiple-Choice Questions 

    1.  (b)      2.  (d)      3.  (a)      4.  (c)      5.  (e)      6.  (b)      7.  (a)      8.  (f )  

   9.  (e)      10.  (c)    

  Problems 

    3.     (a) reduced by a factor of 8     (b) reduced by a factor of 32     

   5.     (a) 1.5 kg·m 2      (b) 0.75 kg·m 2      (c) 1.5 kg·m 2      

   7.        2 __ 
5
     
 R  E  

2
  
 ___ 

 R  o  
2
 
  ,   where  R  E  is the Earth’s radius and  R  o  is Earth’s orbital 

radius about the Sun.      9.     (a) no     (b) 0.017         11.  4.0 N·m  

   13.  780 N·m      15.  25 N·m      19.  57.4 N·m      21.  1.2 cm toward 

the doorknob as measured from the center of the door  

   23.  150 J      25.     (a) 5.5 kJ (b) 29 N·m             27.  98 N      29.  17.0 °   
   31.  The center of mass  =  0.8542 m < 0.8600 m; the system bal-

ances.      33.  180 N toward the wall      35.   T   =  350 N;  F   x    =  290 N; 

 F   y    =   – 2 N; the magnitude of  F   y   is small.      37.  22.3 °       39.  palms: 

390 N; feet: 270 N      41.  tendon, 2100 N upward and tibia, 2800 N 

downward      43.  130 N      45.  3.0 kN; about 5.5 times larger  

   49.  0.0012 N·m      51.  4.3 N·m            53.  0.09 N·m  

   55.     (a) 0.11 rad/s 2      (b) 0.44 rad/s         59.  2.9 m/s      61.  1.79 m  

   63.  2.75 s      65.     (a)       5 __ 
2

   r       (b)       27 ___ 
10

   r           67.   h  will decrease. The 

smaller the rotational inertia, the less gravitational energy will go 

into rotational energy, and the more will go into translational 

energy. Problem 66 had a minimum of  h   =  3 r.  With a solid sphere, 

the minimum is  h   =  2.7 r,  which is a little less than 3 r.   

   69.  0.0864 kg·m 2 /s      71.  1.4 × 10 7  kg·m 2 /s      73.  1.60 s  

   75.  15.6 rad/s      77.  0.125 rad/s      79.     (a) 3.0     (b) 1.6     

   81.  2.10 × 10 6  N·m      83.  1.14      85.  98 N·m      87.  5.4 rad/s  

   89.  The objects reach the bottom in the following order from first 

to last: cube, solid sphere, solid cylinder, hollow sphere, and hollow 

cylinder.      91.  0.792 m      93.     (a) 16 kg·m 2      (b) 8.0 × 10 7  J  

  (c) 320     (d) 120 km         97.  110 N      99.     (a) 1.35 × 10  – 5  kg·m 2   

  (b) 524 N         101.  0.19 kg·m 2 /s      103.     (a) 9.4 × 10  – 4  kg·m 2 /s  

  (b) 1.2 × 10  – 6  kg·m 2 /s         105.  230 N      107.     (a) 735.0 N  

  (b) 0.88 m     (c) 0.55 h          109.  23 N      111.  1.3 rev/s  

   113.     (a) 9.6 m/s     (b) 3.1 m/s     (c) 21 m/s        

  REVIEW AND SYNTHESIS: CHAPTERS 6–8 

  Review Exercises 

    1.     (a) 0.20 m     (b) 250 N/m         3.  2 mg       5.     (a) 940 J     (b) 0.734     

   7.  2.3 m      9.  30 m/s      11.     (a) 0.502 kg·m 2      (b) 17 N·m     

   13.  1.53 m/s      15.  0.73 m      17.  10.3 J      19.   h  A   =  0.57 m;  h  B   =  

2.3 m      21.  1.27 m      23.  2.0 m/s      25.  2.06 m/s at 41.6°   south 

of east  

   27.     (a)   
     w i  ________ 

1 +    mr 
2
  ____ 

 MR 
2
 
  

      

  (b) The total angular momentum does not change, since no external 

torques act on the system.     (c) Yes; the kinetic energy changes.     

   29.     (a) The Vulcan ship will have the greater kinetic energy. The 

ships will have the same momentum.     (b) The ships will have the 

same kinetic energy. The Romulan ship will have the greater 

momentum.     (c) In part (a), the momenta are the same, 

9.5 × 10 8  kg·m/s, but the kinetic energies differ: Vulcan at 

6.9 × 10 12  J and Romulan at 3.5 × 10 12  J. In part (b), the kinetic 

energies are the same, 9.5 × 10 8  J, but the momenta differ: Vulcan 

at 1.1 × 10 7  kg·m/s and Romulan at 1.6 × 10 7  kg·m/s.     

   31.     (a)  U   =   – 550 J;  K   =  450 J     (b)  E   =   – 100 J;  U   =   – 100 J; 

 K   =  0     (c) 200 J     (d) The particle has a kinetic energy of 450 J 

at  t   =  0, and we are told the motion is to the left. The particle will 

continue moving left but the kinetic energy will decrease by 

450/4.5 J for every cm of travel until it reaches  x   =  1  cm. At this 

point  K   =  0, and the particle has stopped instantaneously. It will next 

move to the right with an increasing  K  until it reaches  x   =  5.5  cm. 

At this point  K   =  450 J, and this kinetic energy will be maintained 

as it continues moving right until it reaches  x   =  11  cm. At this 

point, its kinetic energy will decrease by 450/2.5 J for every cm of 

travel until it reaches  x  =   13.5  cm. At this point  K   =  0, and the 

particle has again stopped instantaneously. It will then turn around 

again.         33.     (a) 19.4 m/s     (b) no         35.  13 m/s    

  MCAT Review 

    1.  D      2.  D      3.  B      4.  B      5.  D      6.  C      7.  B      8.  B      9.  D  

   10.  A      11.  B      12.  D      13.  B      14.  C      15.  A      16.  D      17.  C     

  CHAPTER 9 

  Multiple-Choice Questions 

    1.  (b)      2.  (b)      3.  (d)      4.  (a)      5.  (a)      6.  (b)      7.  (a)      8.  (a)  

   9.  (d)      10.  (c)    

  Problems 

    1.  49 atm      3.  22 kPa      5.  The baby applies 2.0 times as much 

pressure as the adult.      7.  4.0 kN southward      9.  1.0 m  

AP-6  ANSWERS TO SELECTED QUESTIONS AND PROBLEMS



   11.     (a) 30 N     (b) 5.8 N·m         13.  2.0 atm      15.        
 V  Pt  ___ 
 V 

Al
 
   = 0.126    

   17.  1.0 MN      19.     (a) 343 kPa     (b) 410 Pa         21.     (a) 2.2 × 10 5  Pa  

  (b) 1700 torr     (c) 2.2 atm         23.  114.0 cm Hg      25.     (a) 5.6 cm  

  (b) 0.37 cm         27.  250 kg/m 3       29.     (a) 91.7%     (b) 0.917     

   31.     (a) 8.8 N upward     (b) 9.6 N upward         33.  100%      35.  0.78  

   37.  yes      39.     (a) 9.8 m/s 2  upward     (b) 3.3 m/s 2  upward  

  (c) 68.6 m/s 2  upward         41.  50 m/s      43.     (a) 39.1 cm/s  

  (b) 78.5 cm 3 /s     (c) 78.5 g/s         45.  1.12 × 10 5  Pa      47.  1.9 × 10 5  N  

   49.  310 kPa      51.  8.6 m      55.     (a) 6850 Pa     (b) 0.685 N     

   57.  0.040 m 3 /s      59.     (a) 50 Pa     (b) 1100 Pa     (c) approximately 

13 kPa         61.  0.4 Pa·s      63.     (a) 1.3 × 10  – 10  N  

  (b) 2.6 × 10  – 14  W         65.  Since  m / v  t  is constant, the drag force is 

primarily viscous.      67.  3.0 mm/s      69.  5 Pa      71.     (a)  g   L Δ s   

  (b) Δ E   =   g  Δ A          73.     (a) 1.54 N     (b) 1.54 × 10 4  N     (c) For 

a given depth the pressure is the same everywhere, so the very 

tall, narrow column of water is as effective as having a whole 

barrel of water filled to the same height and pushing upward on 

the barrel top.         75.     (a) 7.43%     (b) 1060 kg         77.     (a) 5.94 m/s    

(b) As long as we can assume Bernoulli’s equation applies, it 

doesn’t matter what fluid is in the vat.     (c) The speed would be 

reduced by a factor of 0.40.         79.  230 kg      81.  23.0 m      83.  110 m  

   85.  1.1 cm      87.  27 kPa      89.     (a) 2.2 m/s up     (b) 21 kPa/s     

   91.     (a) 1.4 N     (b) 0.43 N upward     (c) 6.8 m/s 2  downward         

93.   d  is not a linear function of     r : d =   m ____ 
pr r 

2
 
  ,     

   95.     (a) 26 m/s     (b) 2.6 m/s     

   97.  0.83 g/cm 3       99.     (a) 5.2 kPa  =  0.051 atm     (b) 11.8 Pa/m  

  (c) 8.61 km     (d) A decreasing air density means that the atmo-

sphere extends to a higher altitude.         101.     (a) 220%     (b) 0.68        

  CHAPTER 10 

  Multiple-Choice Questions 

    1.  (c)      2.  (b)      3.  (b)      4.  (a)      5.  (a)      6.  (a)      7.  (c)      8.  (b)  

   9.  (c)      10.  (a)      11.  (f)      12.  (e)      13.  (e)      14.  (f)      15.  (f)  

   16.  (e)      17.  (c)      18.  (c)      19.  (j)      20.  (k)    

  Problems 

    1.  0.097 mm      3.  2.2 cm      5.  0.80 mm      7.  5.0 mm  

   9.  tension: 1.5 × 10 10  N/m 2 ; compression: 9.0 × 10 9  N/m 2   

   11.  8.7 × 10  – 5  m      13.  630 N      15.  human: 3 cm 2 ; horse: 7.1 cm 2   

   17.     (a) 2.8 × 10 7  Pa     (b) 4.7 × 10  – 4      (c) 9.3 × 10  – 4  m  

  (d) 5.0 × 10 5  N         19.  volume: 7.7 × 10  – 4 ; radius: 2.6 × 10  – 4   

   21.  The volume of the steel sphere would decrease by 

57 × 10  – 6  cm 3 .      23.  7.5 × 10 5  N      25.  0.30 N      27.  7.9 m/s 2   

   29.  3.10 m/s; 8560 m/s 2       33.     (a) high frequency  

  (b) 1.3 × 10  – 6  m/s; 1.6 × 10  – 4  m/s 2      (c) 0.0013 m/s; 160 m/s 2      

   35.  5.0 rad/s      37.  2.5 Hz      39.     (a) 1.7 × 10  – 4  m     (b) 0.13 m/s    

(c) 510 N         41.     (a) 1.4 kN     (b) 0.13 J         43.     (a) 0.39 m     (b) 2.0 m/s     

   45.  0.70 s      47.  0.250 Hz      49.     (a) a vertical straight line of 

length 24 cm     (b) a positive cosine plot of amplitude 12 cm 

24 cm

       

   51.     ( a)        2 __ p   wA       ( b)   w   A      ( c)        2 __ p       

  (d) 

0
t

vx

2p

A

− A

w

w

w

p

w

      

 If the acceleration were constant so that the speed varied linearly, 

the average speed would be 1/2 of the maximum velocity. Since the 

actual speed is always larger than what it would be for constant 

acceleration, the average speed must be larger.  

   53.     (a)     

     (b) 

0
t (ms)

K (mJ)

0 250 500

116

    

     (c) 

0
t (ms)

E (mJ)

0 250 500

116

    

     (d)  U,   K,  and  E  would gradually be reduced to zero.     

   55.  4.0 s      57.  1.5 s      59.     (a)  v   x   =    w   A  cos  w   t   

0
t

vx

wA

–wA

p

w

2p
w

  (b)       1 __ 
2
   m w 

2
 A2          

   61.  1.11      63.  1st method: 3.14 cm/s; 2nd method: 3.14 cm/s  

   65.  11 mJ      67.     (a) 6.1 mJ     (b) 1.1%         69.  –9.75%      71.  2.5 s  

   73.     (a) more     (b) 56 N         75.     (a) The frequency and period don’t 

vary with amplitude, they only vary with  m  and  k.  Since these two 

values remain constant, so do the frequency and period.  

  (b) The total energy for an amplitude of 2 D  is four times that for 

an amplitude of  D.      (c) The frequency and period are still the 

same.     (d) The energy is greater when given an initial push, since 

it has an amplitude > 2 D.  The increase in energy is       1 _ 
2
   m v  i  

2
        .

0
t (ms)

U (mJ)

0 250 500

116

0
t (ms)

U (mJ)

0 250 500

116
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77.

  10

t (s)

x (cm)

0
1.0

10

−

3.0 4.02.0

   

 The distance between adjacent dots should be the least at the endpoints 

and greatest at the center, so its speed is lowest at the endpoints and 

fastest at its equilibrium position.      81.   y   =  (1.6 cm)  cos[(25 rad/s) t ]      

83.     (a) 0.395 m     (b) 1.11 m/s     (c) 0.960 m/s     

   85.  8.0 × 10 8  Pa; it is just under the elastic limit.      87.  0.63 Hz  

   89.     (a)  r   gh      (b) 7.6 km     (c) no         91.     (a) 42.2 °      (b) 48 g  

  (c) 9.1 cm         93.     (a)      √
____

 2gL         (b)       p 
 __ 

2
    √

___
 gL  ;   larger     

   95.     (a)     2p  √
__________

   
L (   

 m  1  ___ 
3
   +  m  2  ) 
 __________ 

g (    m  1  ___ 
2
   +  m 

2
  ) 
     = 2p  √

____________

    
2L( m  1  + 3 m  2 )  ____________  
3g( m  1  + 2 m  2 )

        

  (b) For      m  1  >>  m  2 , T = 2p  √
___

   2L ___ 
3g

    ,   and for      m  1  <<  m  2 , T = 2p  √
__

   L __ g    .          

  CHAPTER 11 

  Multiple-Choice Questions 

    1.  (b)      2.  (c)      3.  (d)      4.  (f)      5.  (a)      6.  (b)      7.  (d)      8.  (a)  

   9.  (b)      10.  (d)    

  Problems 

    1.  52 W/m 2       3.  170 mW/m 2       5.  4.0 × 10 26  W      7.     (a) 6.0 m  

  (b) 1.7 s         9.  168 m/s      11.  16 ms      13.  0.375 m      15.     (a) 340 Hz  

  (b) 3.0 × 10 8  Hz         17.  0.33 Hz      19.  0.83 cm/s      21.     (a) 4.0 mm  

  (b) 1.0 m     (c) 0.010 s     (d) 100 m/s     (e) in the  +  x -direction (to 

the right)         23.   y ( x,   t )  =  (0.120 m) sin [(134 s  – 1 ) t   +  (20.9 m  – 1 ) x ]  

   25.     (a) 2.6 cm     (b) 14 m     (c) 20 m/s     (d) 1.4 Hz     (e) 0.70 s     

   27.   v  m   =  0.063 m/s;  a  m   =  0.79 m/s 2  

      

0.25 0.50

0.79

0

0.79

ay (m/s2)

t (s)

x = 0

     

   29.     (a)

 

10

0.80

0

0.80

y (mm)

x (cm)

t = 0

5.0

t = 0.96 s

t = 1.92 s

    

     (b)

 

10

0.50

0

0.50

y (mm)

x (cm)

t = 0

5.0

t = 0.96 s

t = 1.92 s

    

   (c) y(x, t) = (0.80 mm) sin (kx − w t) represents a wave traveling 

in the +x-direction.

y(x, t) = (0.50 mm) sin (kx + w t) represents a wave traveling in the 

−x-direction.

   31.        

10 20 30 40

1.5

1.0

0.5

0

y (cm)

x (cm)

t = 0.15 s

10 20 30 40

1.5

1.0

0.5

0

y (cm)

x (cm)

t = 0.25 s

10 20 30 40

1.5

1.0

0.5

0

y (cm)

x (cm)

t = 0.30 s

10 20 30 40

1.5

1.0

0.5

0

y (cm)

x (cm)

t = 0.15 s

10 20 30 40

1.5

1.0

0.5

0

y (cm)

x (cm)

t = 0.25 s

10 20 30 40

1.5

1.0

0.5

0

y (cm)

x (cm)

t = 0.30 s

0.25 0.50

0.0050

0

0.0050

y (m)

x = 0

t (s)

0.25 0.50

0.063

0

0.063

vy (m/s)

t (s)

x = 0
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   33.     (a) 

300⬚ 420⬚

4

0

2

y (cm)

q

–2

–4

60⬚ 180⬚

   

; 6.9 cm  

  (b)           ; 5.7 cm     

   35.  96.0 °       37.  1.7 s      39.     (a) 0 ° ; 8.0 cm     (b) 180 ° ; 2.0 cm  

  (c) 4:1         41.  79 mW/m 2       43.     (a) 0.25 W/m 2      (b) 0.010 W/m 2   

  (c) 0.130 W/m 2          45.  7.8%      47.  0.016 m      49.     (a) 33 Hz  

  (b) 300 N         51.  4.5 × 10  – 4  kg/m      53.     (a) 260 Hz     (b) 2.8 g     

   55.  0.050 kg      57.  190 m      59.  3.3 m      61.  80 km      63.  3.64 cm, 

7.07 cm, 10.32 cm      65.  470 Hz      67.     (a) Hooke’s law: 

 T   =   k ( x   –   x  0 ) ≈  kx  for  x  >>  x  0 .     (b) 4.00 s         69.      v ∝  √
____

   
g 
 ___ 

lr 
    ;   dis-

persive      71.     (a) upward     (b) downward     (c)  A          73.  12  

    77.  

10

0

5

y (cm)

x = 3.9 m

x = 4.0 mx = 0

       

  CHAPTER 12 

  Multiple-Choice Questions 

    1.  (c)      2.  (a)      3.  (b)      4.  (c)      5.  (b)      6.  (c)      7.  (b)      8.  (c)  

   9.  (b)      10.  (d)    

  Problems 

    1.  3.4 mm      3.  173 ms   5. 4.7 s ≈ 5 s          7.  1.4 km/s      11.  1.1  μ J  

   13.  95 dB; this is not much different than with only one machine 

running.      15.     (a) 28.7 N/m 2      (b) 1.58 mN         19.  8.58 mm  

   21.     (a) 65.6 cm     (b) 252.4 Hz         23.  43.3 cm      25.  34 ° C  

   27.  3/4      29.     (a) There is a displacement node (pressure anti-

node) at the center of the rod and displacement antinodes (pressure 

nodes) at the ends.     (b) 5100 m/s     (c) 13.1 cm     (d) The ends 

move in opposite directions and, thus, they are out of phase.        

      31.     (a) 290.0 Hz     (b) 1.4%         33.     (a) 85.6 N     (b) 432 m/s    

(c) 335 Hz     (d) 0.256 m     

   35.  580 Hz      37.  6.35 Hz      39.     (a) 1.5 kHz     (b) 500 Hz     

   41.     (a) 3.0 kHz     (b) 330 Hz     (c) 1.0 kHz      45.   (a) 670 m

  (b) 2.8 s    47.  403 m      49.  83.6 kHz      51.  640 Hz               

   53.     (a) 319 Hz     (b) 319 Hz; 1.1 m         55.  17.9 Hz; 53.6 Hz; 89.3 Hz; 

125 Hz      57.  (b) First object: 110%; second object: 46%  

   59.  2.3 kHz      61.  0.0955 s      63.     (a) 5.05 m     (b) 16.35 Hz     

   65.  196 Hz      67.  0.019      69.  29.0 dB     

60⬚ 180⬚ 300⬚ 420⬚

4

0

2

–2

–4

y (cm)

q60⬚ 180⬚ 300⬚ 420⬚

4

0

2

–2

–4

y (cm)

q

  REVIEW AND SYNTHESIS: CHAPTERS 9–12 

  Review Exercises 

    1.     (a) Aluminum, since it is less dense it occupies more volume.  

  (b) Wood, since it displaces more water than the steel.     (c) Lead: 

0.87 N; aluminum: 3.6 N; steel: 1.2 N; wood: 9.8 N         3.  0.116 m/s  

   5.  0.88 m/s      7.     (a) Eq. I; 1.50 cm/s     (b) Eq. II; 2.09 cm  

  (c) Eq. II; 13.5 cm/s     (d) Eq. II         9.     (a) 58 N     (b) 49 cm     

   11.  21.4 cm      13.  1500 Hz; 22.9 cm      15.  about 1 min  

   17.  346 Hz      19.     (a) 41.7 cm/s; 118 kPa     (b) 5.98 cm     

   21.     (a) 1.28 m     (b) 141 m/s     (c) 4.48 × 10  – 4  kg/m  

  (d) 1.60 m/s     (e) 110.0 Hz     (f) 3.12 m         23.     (a) 5.13 × 10  – 2  N  

  (b) 2.69 s         25.  (a) 6.17     × 10–4 m (b) 8.61 J (c) 0.536 s

  MCAT Review 

    1.  A      2.  A      3.  D      4.  C      5.  C      6.  B      7.  D      8.  B      9.  B  

   10.  A      11.  B      12.  D      13.  C      14.  C     

  CHAPTER 13 

  Multiple-Choice Questions 

    1.  (e)      2.  (d)      3.  (b)      4.  (c)      5.  (b)      6.  (d)      7.  (a)      8.  (c)  

   9.  (c)      10.  (e)    

  Problems 

    1.     (a) 29 ° C     (b) 302 K         3.     (a) –40     (b) 575     

   5.   T  J   =  (0.750 ° J/ ° C) T  C   +  85.5 ° J      7.  2.0 mm      9.     (a) 3.6 mm  

  (b) 10.8 mm         11.  3.8 × 10  – 4  mm 2       13.  (b) 2.4 × 10  – 3   

   15.  1.67 mL      17.  75 ° C      19.  1.3 m      21.  150 ° C      23.  24.98 cm  

   29.  7.31 × 10  – 26  kg      31.  1.7 × 10 27       33.  2.650 × 10 25  atoms  

   35.  8.9985 mol      37.  2.5 × 10 19  molecules      39.  10 18  atoms  

   41.  400 ° C      45.  135 kPa  

   47.     (a) 1.3 kg/m 3      (b) 1.2 kg/m 3          49.  1.3 × 10 3  m 3       51.  1.50  

   53.  1.3 × 10 26       55.  2.1 mm      57.     (a) 28 min     (b) 11 min     

   59.  (b) 3410 × 10  – 6  K  – 1       61.  152 J      65.  3.4 kJ      67.        1 ___ 
 √

__

 2  
      

   69.     (a) 493 m/s     (b) 461 m/s     (c) 393 m/s          71.  yes  

   73.  2220 K      77.  0.14 ° C      79.     (a) 100 nm     (b) 200 nm  

  (c) 8 μm         81.  2.5 × 10 4  s      83.  140 atm      85.  165 ° C      87.  HNO 3   

   89.     (a) 6.42 × 10  – 21  J     (b) 0.25%         91.     (a) The number of 

moles decreases by 25%.     (b) –48 ° C         

   93.  average: 78.1; rms: 78.6; 83      95.     (a) 0.400 mm Hg/ ° C  

  (b) 3.21 × 10  – 3  mol         97.  4 nm      99.     (a) 5.2 × 10 24  m  – 3   

  (b) 1.9%         101.  630 ° C      103.  1.9 × 10 14  molecules      105.  25 m/s  

   107.  3.05 mm       109.  7.4 × 10 3  N/m     

  CHAPTER 14 

  Multiple-Choice Questions 

    1.  (a)      2.  (b)      3.  (d)      4.  (d)      5.  (c)      6.  (b)      7.  (c)      8.  (d)  

   9.  (d)      10.  (b)      11.  (c)      12.  (c)    
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  Problems 

    1.     (a) 34 J     (b) Yes; the increase in internal energy causes a slight 

temperature increase.         3.  4.90 kJ      5.     (a) 250 J     (b) all three     

   7.  5.4 J      9.  2.78 × 10  – 4  kW·h      11.  6.40 × 10  – 4  kJ/K  

   13.  0.50 MJ      15.  700 m      17.     (a) 2430 kJ/K     (b) 3500 kJ/K     

   19.  742 kJ      21.  0.13 kJ/(kg·K)      23.  0.090 J      25.  57 kJ  

   27.  58 ° C      29.     (a) B to C, solid to liquid; D to E, liquid to gas  

  (b) B     (c) D         31.  330 J/g      33.  461 g      35.  157 g      37.  242 g; 35%  

   39.  46.3 g      41.  2 g      43.  36 g      45.  22.8 kJ/kg      47.     (a) 2.0 cm  

  (b) 29 m               49.     (a) 0.12 K/W     (b) 2.5 × 10  – 4  K/W  

  (c) 5.0 × 10  – 5  K/W         51.  6.67 W/m 2       53.  –37 ° C      55.     (a) 300 W  

  (b) 4500 W         57.     (a) 0.32 W     (b) 800 K/m     (c) 0.16 W  

  (d) 0.64 W     (e) 64 ° C         59.  1.76  μ m      61.  150 W      63.  390 W  

   65.  2800 K      67.  2.24 kW      69.  Coffeepot: 4.5 W; teapot: 24 W  

   71.     (a) 39 ° C     (b) 182 W/m 2          73.  320 s      75.     (a) 180 ° C  

  (b) 20.9 ° C         77.     (a) 9.9 kJ     (b) 360 g         79.  0.0065   ° C 

     81.  4.0 times higher            83.  0.792 kJ/(kg·K)      85.  10.4 W   

   87.  5400 kcal/h            89.  4.0 g      91.     (a) 190 W     (b) 31 ° C  

  (c) Wearing clothing slows heat loss by radiation because air lay-

ers trapped between clothing layers act as insulation.         93.  140 m  

   95.  35 ° C      97.     (a) 7.00 times higher     (b) 35.7 ° C; the dog is a much 

better regulator of temperature and, as a result, has more endur-

ance.         99.  0.84 kJ/(kg·K)      101.  15.2 kJ/mol               

  CHAPTER 15 

  Multiple-Choice Questions 

    1.  (b)      2.  (d)      3.  (c)      4.  (c)      5.  (d)      6.  (c)      7.  (a)      8.  (c)  

   9.  (d)      10.  (d)      11.  (e)      12.  (b)      13.  (d)    

  Problems 

    1.  2.9 J      3.  100 J of heat flows out of the system.      5.  202.6 J  

   7.     (a) 98.0 kPa; 1180 K     (b) –200 J     (c) 66 J     (d) Δ U   =  0 

because Δ T   =  0 in a cycle.         9.     (a) 436 J     (b) 1.23 L     (c) 125 J  

  (d) 312 J         11.     (a) –1372 J     (b) Δ U   =  1216 J;  Q  =   2588 J     

   13.     (a) 182 kJ     (b) 182 kJ         15.  240 MJ      17.     (a) 210 J  

  (b) 790 J         19.     (a) 1.2 × 10 17  J     (b) 1.4 × 10 13  kg         21.  0.182  

   23.  3.0 kJ      25.  171 K      27.  25.0 kJ      29.  14 W      31.  The coal-

fired plant and the nuclear plant exhaust 0.43 MJ and 0.60 MJ of 

heat, respectively.      33.     (a) 0.3436     (b) 275.7 kJ         35.  4.2%  

   37.  0.0174      39.  110 kJ      41.  4.5 GW      43.   + 250 W      47.  (b), 

(a), (c), (d)      49.   + 6.05 kJ/K      51.     (a) 3.4 × 10  – 3  J/K  

  (b) –2.8 × 10  – 3  J/K     (c) 6 × 10  – 4  J/K         53.  0.102 J/(K·s)  

   55.     (a) 97 W     (b) 0.33 W/K         57.  The engine will not work.  

   59.  15 kJ      61.     (a) 304 kJ     (b) 2350 K     (c) 13.0 mol     

   63.     (a) 15.9 ° C     (b) – 0.03 J/K     (c) The entropy of the universe 

never decreases.         65.  24 ° C      67.  0.401 or 40.1%      69.  350 J/K  

   71.     (a) 0.90 J/K     (b) –2.7  J/K         73.  15 min      75.     (a) 6.2 mJ  

  (b) 22 mJ     (c) 1.2 mK         77.     (a) 0.051     (b) 31 m 3      (c) yes        

  REVIEW AND SYNTHESIS: 

CHAPTERS 13–15 

  Review Exercises 

    1.  108 kJ      3.  28.4 ° C      5.     (a) 74 g     (b) 11 ° C         5.  467 mol  

   7.  The ice will melt completely; 32 ° C              

   9.     (a) 4140 K     (b) 1.09 × 10 26  W     (c) 1.01 × 10  – 9  W/m 2      

   11.     (a) 8.87 kPa; 1200 K     (b) 23 kJ     (c) 20.0 kJ     (d) 0     

   13.  2.44 kJ  /K    15.  10.9 ° C        

         17.  reduced to 75% of the original            19.  12 kJ      21.     (a) The boil-

ing temperature of water varies with pressure. If the pressure is 

high, the water molecules are pushed close together, making it 

harder for them to form a gas. (Gas molecules are farther apart 

from each other than are liquid molecules.) A higher pressure 

raises the temperature at which the coolant fluid will boil.     (b) If 

you were to remove the cap on your radiator without first bringing 

the radiator pressure down to atmospheric pressure, the fluid would 

suddenly boil, sending out a jet of hot steam that could burn 

you.         23.     (a) if they have the same mass     (b) Since they are at 

the same temperature, there is no net energy transfer between the 

two blocks.     (c) The blocks need not touch each other in order to 

be in thermal contact. They can be in thermal contact due to con-

vection and radiation.     

   25.     (a) P

VV1 V2

P2

P1
1

2
3

4

    

  

(b)

    

Process W (kJ) ΔU (kJ) Q (kJ)

Step 1 11.2 0 –11.2

Step 2 0 27.4 27.4

Step 3 –34.1 0 34.1

Step 4 0 –27.4 –27.4

Total –22.8 0 22.8

(c) 0.371 or 37.1%     (d) 0.670 or 67.0%         27.  132 ° C  

   29.     (a)     11 200 m/s (b) 1850 m/s     (c) 461 m/s     (d) The 

atoms in the high end of the distribution are much faster than the 

average. Some of the hydrogen atoms have speeds greater than 

the escape speed, thus they can escape. This is not the case for 

oxygen, which is much more massive and, thus, much slower.       

  MCAT Review 

    1.  C      2.  B      3.  C      4.  B      5.  A      6.  D      7.  A      8.  C      9.  B  

   10.  A      11.  A                                
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 Index 

 Page numbers followed by  f  and  t  refer 

to figures and tables respectively. 

  A 

   Aaron, Hank,   263 f    

   Absolute temperature  

  problems,   484–485  

  and speed of sound,   423–424, 446  

  units of,   423   

   Absolute zero,   459, 459 f,  467 ,  467 f   

  and third law of thermodynamics,   549   

   Acceleration,   45  

  angular ( See  Angular acceleration)  

  average ( See  Average acceleration)  

  constant,   37–43, 67–73  

  essential relationships in,   37  

  definition of,   33  

  direction of,   34  

  in free fall, without horizontal motion,  

 43–44  

  gravitational field strength and,  

 101–102  

  in harmonic transverse oscillation,   400  

  instantaneous ( See  Instantaneous 

acceleration)  

  mass and,   96–97, 128  

  in Newton’s second law of motion,  

 96–97, 96 f,  97 f   

  problems,   49–51  

  of sailboat,   66  

  in simple harmonic motion, 

  368–369, 382  

  SI units of,   33  

  of skater,   65–66  

  of sports car,   35–36, 35 f,  36 f   

  as vector,   64–66, 77  

  problems,   82–83  

  velocity and,   35  

  visualization of,   40–41, 40 f,  42 f    

   Acoustic energy, description of,   188 t    

   Activation rate,   475   

   Acute angle,   A8, A8 f    

   Addition  

  of displacement,   57, 58, 58 f   

  of scalars,   56  

  and significant figures,   6–7, 17–18  

  of vectors,   56, 57, 57 f,  58 ,  58 f,  59 – 63 ,  77  

  problems,   80–81   

   Adiabatic processes,   532, 533 t,  549   

   Air  

  buoyant force in,   331, 331 f   

  coefficient of volume expansion,   461 t   

  speed of sound waves in,   423–424, 

424 t,  446  

  thermal conduction in,   507 t,  509  

  thermal convection in,   510, 510 f,  

511 ,  511 f    

   Air bubbles, formation of,   344   

   Airplane  

  jet engine, sound intensity of,   427 t,  429  

  net force on,   91–92, 92 f   

  relative velocity of,   75, 75 f   

  sailplane,   87, 87 f,  120 – 121 ,  120 f   

  sound barrier and,   443, 443 f   

  wing, lift generated by,   236, 

338, 338 f    

   Air pressure,   319, 345   

   Air resistance,   126, 129  

  of hill-climbing car,   212–213, 212 f    

   Algebra review,   A1–A2   

   Alligator, thermal radiation and,   512   

   Aluminum, nuclides,   B15 t    

   Ampere (A),   9 t    

   Amplitude,   368  

  of harmonic wave,   425  

  of periodic wave,   399, 400  

  of sound waves,   425, 427 t   

  problems,   449   

   Angle(s)  

  small angle trigonometric 

 approximations,   A12  

  types and properties of,   A8–A9   

   Angle of elevation,   67   

   Angular acceleration, of physical 

 pendulum,   378   

   Angular frequency  

  in mass-spring system,   371–372, 382  

  of periodic wave,   399–400  

  in physical pendulum,   378  

  in simple pendulum,   376–377   

   Angular momentum  

  conservation of,   290, 295, 295 f   

  definition of,   289, 295  

  in planetary orbits,   292–293, 292 f   

  problems,   305–306  

  right-hand rule for,   293, 293 f   

  torque as rate of change of,   289  

  units of,   289  

  vector nature of,   293–295, 306   

   Angular velocity, of simple pendulum,  

 367–377   

   Animal(s)  

  cold-blooded,   457, 457 f,  476 – 477  

  echolocation by,   443–444, 444 f   

  warm-blooded,   457, 476–477, 477 f    

   Anomalies in data,   16   

   Antinodes, of standing wave,   410, 410 f,  

411 ,  446  

  displacement,   429–430, 431 f,  446  

  pressure,   429–430, 431 f,  446   

   Apparent weight,   123–125, 129  

  problems,   139   

   Approximation  

  binomial,   A7  

  problems,   20–21  

  techniques for,   14–15, 14 f   

  trigonometric, for small angles,   A12  

  uses of,   14, 18   

   Archimedes,   328, 330   

   Archimedes’ principle,   328–329, 345  

  problems,   349–350   

   Area expansion,   463   

   Argon, nuclides,   B15 t    

   Aristotle,   93   

   Arrow, trajectory of,   71, 72, 72 f    

   Atmosphere (atm),   318, 319, 345  

  converting to pascals,   318, 345   

   Atmospheres of planets, Maxwell-

Boltzmann distribution and,  

 475, 475 f    

   Atmospheric pressure,   319  

  measurement of,   325, 326 f    

   Atom(s)  

  collision of,   242–243  

  in fluid,   317–318, 318 f   

  in gas,   471–475, 471 f,  477 – 479 ,  

478 f,  480  

  problems,   486  

  velocity following,   243, 243 f   

  mass of,   465, 480  

  measurement of,   465–466, 480  

  problems,   484   

   Atomic mass unit,   465, 480   

   Atwood’s machine,   265–266, 265 f    

   Audible range,   423, 446   

   Auditory ossicles,   435, 435 f    

   Average acceleration  

  calculation of,   33  

  definition of,   33   

   Average power,   211   

   Average speed,  vs.  average 

velocity,   29   

   Average velocity,   28–29, 30 f,  45  

   vs.  average speed,   29  

  definition of,   28  

  as vector,   63   

   Avogadro’s law,   468   

   Avogadro’s number,   465, 480   
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   Axis (axes), selecting, for adding 

 vectors,   60–61, 77   

   Axis of rotation, selection of,   273, 295    

  B 

   Back-of-the-envelope estimates,   7, 15   

   Ball(s)  

  angular momentum of,   294  

  colliding with floor,   244, 244 f   

  elastic deformation of,   357, 357 f   

  on incline, rotational inertia of,  

 287, 287 f   

  internal energy of,   491   

   Balloon, hot-air,   331, 331 f,  534 – 535   

   Barbells, rotational inertia of,   264, 264 f    

   Barium, nuclides,   B16 t    

   Barometers,   325–326, 326 f,  345   

   Barometric pressure,   325–326   

   Barrel, draining of,   336, 336 f    

   Bar (unit),   324   

   Base SI units,   7, 9 t,  18   

   Basilar membrane,   435, 435 f    

   Bat, choking up on,   263, 263 f    

   Beats,   437–439, 437 f,  446  

  problems,   450   

   Bell, Alexander Graham,   426   

   Bels,   426   

   Bernoulli, Daniel,   335   

   Bernoulli effect,   334   

   Bernoulli’s equation,   334–338, 345  

  problems,   350   

   Beryllium nuclides,   B15 t    

   Best-fit line, graphing of,   16   

   Bicycle wheel, spinning  

  angular momentum of,   294–295, 295 f   

  torque of,   266, 266 f,  268 – 269 ,  268 f    

   Binomial approximation,   A7   

   Biological systems.  See  Human body   

   Biomechanics, tensile forces,   111, 112 f    

   Bismuth nuclides,   B16 t    

   Blackbody,   512, 516   

   Blackbody radiation,   512–513, 516   

   Block and tackle arrangement,   119, 119 f    

   Blood.  See  Human body   

   Blood pressure,   319, 324, 340  

  measurement of,   327, 327 f    

   Boat  

  acceleration of,   66  

  change in velocity of,   66  

  relative velocity of,   75–76, 75 f,  76 f    

   Body temperature,   457, 459 f,  460 ,  

476–477, 477 f    

   Boiling point.  See  Phase transitions   

   Boltzmann, Ludwig,   548   

   Boltzmann’s constant,   468, 480, 548   

   Bone  

  brittleness of,   360, 360 f   

  shear stress in,   363, 365 f   

  tensile and compressive forces and,  

 359–360, 359 f,  361   

   Boron nuclides,   B15 t    

   Bow(s)  

  compound, work done in drawing,  

 210–211  

  tension in bowstring,   110–111, 110 f    

   Boyle’s law,   468   

   Braking, of car,   36   

   Breaking point,   360, 360 f,  382   

   Bridges  

  and resonant frequency,   381  

  thermal expansion and,   461, 461 f    

   Brittle substances,   360, 360 f    

   Brown Creeper bird,   425–426   

   Brownian motion,   318   

   Buffalo, speed and acceleration of,   25, 

25 f,  34   

   Buildings  

  and resonant frequency,   381, 411  

  thermal expansion and,   461   

   Bulk modulus,   364 t,  365 – 366 ,  382, 423   

   Bullet(s)  

  angular momentum of,   294  

  recoil of gun from,   236  

  trajectory of,   73   

   Bungee jumping, work done by 

cord,   197   

   Buoyant force,   327–331, 345    

  C 

   Calcium nuclides,   B15 t    

   Calorie (cal),   492, 517   

   Calorie (nutritional unit),   492   

   Calorimetry,   496–497, 496 f    

   Candela (cd),   9 t    

   Cantilevers,   275, 275 f    

   Car(s)  

  acceleration of,   35–36, 35 f,  36 f   

  air resistance of,   212–213, 212 f   

  braking,   36  

  collision damage in,   196  

  collision force,   231, 232–233, 232 f,  

233 f   

  collision momentum,   243–244, 244 f,  

245 – 256 ,  246 f   

  engine ( See  Internal combustion 

engine)  

  estimating velocity from skid marks,  

 225, 245–246  

  momentum of,   228  

  pressure of air in tires,   469  

  safety features of,   230–231, 230 f   

  speed, determining from horn 

 frequency,   442  

  temperature of air in tires,   469   

   Carbon, nuclides,   B15 t    

   Carbon dioxide, phase diagram for,   505 f    

   Carnot, Sadi,   543   

   Carnot cycle, problems,   553–554   

   Cart(s), under constant acceleration,  

 40–41, 40 f,  42 f    

   Catapults,   70–71, 70 f    

   Celsius scale,   459, 459 f   

  conversion to/from Fahrenheit,   459  

  conversion to/from kelvins,   423, 459, 480   

   Center of gravity  

  definition of,   271  

  in human body,   280 f,  290   

   Center of mass,   237–240, 238 f,  

239 f,  250  

  motion of,   240–242, 250  

  problems,   254–255   

    Centi-  (prefix),   9 t    

   Centrifuge, and sedimentation 

velocity,   343   

   Cesium,   B16 t    

   Charles, Jacques,   466   

   Charles’s law,   466–467, 467 f,  468   

   Chemical energy,   188 f,  188 t    

   Chest  

  lifting, work done in,   188–189, 189 f,  

192 – 193 ,  192 f   

  sliding, contact forces with floor,   95, 95 f    

   Chlorine, nuclides,   B15 t    

   Chord, definition of,   30   

   Chromium nuclides,   B15 t    

   Circular motion, uniform, rolling.  See  

Rolling   

   Clarinets,   432, 432 f    

   Clausius, Rudolf,   546   

   Clausius statement,   537   

   Climate Orbiter,   1, 9   

   Clock, grandfather,   377   

   Closed cycle,   531   

   Cobalt nuclides,   B16 t    

   Cochlea,   435, 435 f    

   Cochlear duct,   435 f    

   Cochlear partition,   435, 435 f    

   Coefficient of kinetic friction,   104   

   Coefficient of linear expansion,   461 t    

   Coefficient of performance,   541, 541 f,  549   

   Coefficient of static friction,   104, 108   

   Coefficient of thermal expansion,   460, 

461 t,  480 ,  494   

   Coefficient of volume expansion,   461 t,  

463 ,  480, 494   

   Coherent waves,   406, 407 f,  412   

   Cold-blooded animals,   457, 457 f,  

476 – 477   

   Cold welds,   107   

   Collision(s)  

  of atoms or molecules,   242–243  

  in fluid,   317–318, 318 f   

  in gas,   471–475, 471 f,  477 – 479 ,  

478 f,  480  

  problems,   486  

  velocity following,   243, 243 f   

  of cars ( See  Car(s))  

  elastic,   244–246  

  inelastic,   244–246  

  in one dimension,   242–246  

  problems,   255–256  
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  perfectly inelastic,   244  

  of spaceships,   226–227, 227 f   

  in two dimensions,   247–249  

  problems,   255–256   

   Compass headings, specifying vectors 

with,   57, 57 f,  58 ,  58 f,  62   

   Complementary angles,   A8, A9   

   Component(s), of vector  

  adding vectors using,   59–63, 77  

  problems,   80–81  

  choosing axes with,   60–61  

  direction from,   60  

  equations,   64  

  finding,   59–60, 77  

  magnitude from,   60  

  problems,   80–81   

   Compressions, in waves,   396, 396 f,  

421 – 422 ,  422 f    

   Compressive forces.  See  Tensile and 

compressive forces   

   Compressive strength,   360   

   Concrete  

  expansion joints in,   461  

  tensile and compressive strength of,  

 361, 361 f   

  thermal conductivity of,   507 t    

   Conduction, thermal.  See  Thermal 

 conduction   

   Conductivity, thermal,   506–510, 507 t    

   Conservation laws  

  angular momentum,   290, 295, 295 f   

  definition of,   187, 213, 249  

  energy,   187–188, 213  

  linear momentum,   226, 227, 234–237, 

249, 250  

  problems,   253–254  

  value of,   226, 292   

   Conservation of angular momentum,  

 290, 295, 295 f    

   Conservation of energy  

  and entropy,   537  

  law of,   187–188, 213  

  rotating objects and,   265   

   Conservative forces,   199, 202   

   Constant acceleration,   37–43, 67–73  

  essential relationships in,   37   

   Constant pressure gas thermometers,   467   

   Constant pressure processes,   532, 

533–534, 533 t,  534 f,  549   

   Constant temperature processes,   532, 

532 f,  533 t,  535 ,  535 f    

   Constant volume gas thermometers,  

 467, 467 f    

   Constant volume processes,   532, 533, 

533 f,  533 t    

   Constructive interference,   406, 

407 f,  412   

   Contact forces,   88–89, 95, 95 f,  102 – 109 ,  

128–129  

  as distributed forces,   279  

  friction ( See  friction)  

  normal force ( See  Normal force)  

  problems,   135–136   

   Continuity equation,   332–333, 345   

   Convection.  See  Thermal convection   

   Copper, nuclides,   B16 t    

   Cord, ideal,   110, 129  

  free-body diagram for,   116, 116 f    

   Cosines, law of,   A11   

   Crane, diameter of cable needed for,  

 361–362   

   Critical point,   505 f,  506   

   Cross product,   A13–A14   

   Cute angle,   A8   

   Cylinder, rotational inertia of,   263 t     

  D 

   Damped oscillation,   380, 380 f,  411  

  problems,   388–389   

   Dart guns, speed of dart from,   209 f    

   Data  

  anomalies in,   16  

  precision of, estimating,   14  

  recording,   15   

   Data tables, making,   15   

   Decibels (dB),   426, 427 t,  446   

    Deci-  (prefix),   9 t    

   Deformation, 357, 382.  See also  Elastic 

deformation; Shear deforma-

tion; Volume deformation   

   Degrees, converting to/from radians,   A9   

   Delta (∆),   16   

   Density  

  average,   321, 345  

  of common substances,   322 t   

  definition of,   321  

  determining,   329  

  pressure and,   321, 322 t   

  temperature and,   321, 322 t   

  units of,   321   

   Dependent variables,   15   

   Depth, and pressure,   321–324, 345   

   Derived units,   7–8, 18   

   Descartes, René,   93   

   Destructive interference,   407, 407 f,  412   

   Deuterium,   B15 t    

   Diatomic ideal gas, molar specific heat 

of,   498, 498 f,  517   

   Differential expansion,   462–463   

   Diffraction,   408, 409 f,  412  

  problems,   416–417   

   Diffusion, of gas,   478–479, 480   

   Diffusion constant,   478, 479 t,  480   

   Dilute gas,   468, 471   

   Dimension(s), of unit, defined,   11   

   Dimensional analysis  

  checking equations with,   11–12, 18  

  problems,   20  

  solving problems with,   11–12   

   Disk, rotational inertia of,   263 t    

   Displacement,   26–28, 45  

  addition of,   57, 58, 58 f   

  in constant acceleration,   37–43  

  essential relationships,   37  

  definition of,   26  

   vs.  distance,   27  

  of gas molecule,   478–479, 480  

  problems,   48  

  in simple harmonic motion,   382  

  as vector,   77  

  from velocity,   32, 32 f   

  velocity from  

  average,   30 f,  32  

  instantaneous,   29, 30 f    

   Displacement amplitude,   425, 446   

   Displacement nodes and antinodes,  

 429–430, 431 f,  446   

   Dissipation  

  definition of,   195  

  of energy  

  by friction,   490–491  

  and reversibility,   536–537   

   Dissipative forces, work done by,   195   

   Distance,  vs.  displacement,   27   

   Distance equation, dimensional analysis 

of,   11   

   Distributed forces,   279–280   

   Diver  

  air supply of, and pressure,   470  

  pressure on eardrum of,   323   

   Diving board, as cantilever,   275   

   Division, and significant figures,   17–18   

   Door, rotational inertia of,  

 262–263, 262 f    

   Doppler, Christian Andreas,   439   

   Doppler effect,   439–443, 440 f,  446  

  problems,   450   

   Drag, viscous,   341–343, 346  

  problems,   351–352   

   Drag (air resistance),   126, 129  

  of hill-climbing car,   212–213, 212 f    

   Driving force, in forced oscillation,  

 380–381, 381 f    

   Drops and droplets, terminal speed of,  

 342–343   

   Dry ice,   506   

   Dumbbell, torque on,   278 f     

  E 

   Ear.  See  Human body   

   Eardrum,   435, 435 f    

   Earth  

  angular momentum of,   294, 294 f   

  atmosphere, composition of,   210, 475  

  global warming,   511  

  gravitational force,   100–101  

  escape speed for,   204–205  

  near surface,   43  

  variations in,   101  

  greenhouse effect,   516–517, 517 f   

  ocean convection currents,   511, 511 f   
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Earth—Cont.

  orbital speed of,   292–293  

  surface area of,   10  

  thermal radiation absorption and 

 emission,   516, 517 f    

   Earthquake.  See also  Seismic waves  

  epicenter of,   393  

  in Japan,   392, 392 f,  393 ,  393 f,  411  

  reducing damage from,   406, 411   

   Echolocation,   443–445, 444 f   

  problems,   450–451   

   Efficiency, of heat engines,   538–539, 

540, 541–542, 549   

   Egg, playing catch with,   231   

   Elastic collision,   244–246   

   Elastic deformation of solids, 357, 357 f.  

 See also  Tensile and com-

pressive forces   

   Elastic energy, description of,   188 t    

   Elastic limit,   360, 360 f,  382   

   Elastic modulus.  See  Young’s modulus   

   Elastic object, definition of,   357, 382   

   Elastic potential energy,   214  

  problems,   219–220   

   Electric force  

  as fundamental force,   127, 127 f   

   vs.  gravity,   127   

   Electrocardiograms (EKGs),   370, 370 f    

   Electromagnetic energy, description 

of,   188 t    

   Electromagnetism, as fundamental force,  

 127, 127 f    

   Elevator, apparent weight in,  

 123–125, 124 f    

   Emissivity,   513, 514–515, 518   

   Energy.  See also  Heat; Internal energy; 

Kinetic energy; Mechanical 

energy; Potential energy  

  conservation of ( See  Conservation 

of energy)  

  dissipation of ( See  Dissipation)  

  forms of,   187, 188 t   

  kinetic ( See  Kinetic energy)  

  potential ( See  Potential energy)  

  transport of, by waves,   393–395, 394 f   

  problems,   414  

  units of,   189, 212, 214   

   Engine(s).  See  Heat engines   

   Entropy,   546–548, 550  

  energy conservation and,   537  

  problems,   554–555  

  and second law of 

thermodynamics,   537  

  statistical interpretation of,   548   

   Epicenter, of earthquake,   393   

   Equation(s).  See also  Solving equations  

  dimensional analysis of,   11–12   

   Equilateral triangle,   A9, A9 f    

   Equilibrium  

  on incline,   107–108, 107 f   

  rotational,   273–280, 296  

  definition of,   273  

  problems,   301–302  

  problem-solving strategies,   274  

  stable and unstable,   367, 367 f,  382  

  thermal,   458, 479, 493  

  translational  

  definition of,   94–95  

  on incline plane,   107–108, 107 f    

   Escape speed,   204–205, 475   

   Euler, Leonhard,   335   

   Europe, and global warming,   511   

   Eustachian tube,   435 f    

   Evaporation,   504–505   

   Evolution, second law of  thermodynamics 

and,   548   

   Exponents, review of,   A4   

   External combustion engine,   527   

   External forces,   99   

   Eye.  See  Human body    

  F 

   Factor, definition of,   17   

   Fahrenheit scale,   459, 459 f   

  conversion to/from Celsius,   459, 459 f    

    Femto-  (prefix),   9 t    

   Fermi, Enrico,   15   

   Fermi problems,   15   

   Figure skaters, spinning of,   290, 290 f    

   File cabinet, on incline, toppling of,  

 279–280, 279 f    

   First law of motion (Newton),   92–93, 

93 f,  128  

  and inertial reference frames,  

 122–123, 123 f   

  problems,   133  

  for rotation,   266  

  statement of,   92   

   First law of thermodynamics,   528–529, 

528 f,  529 t,  549  

  problems,   552   

   Fish, buoyance of,   331   

   Flea, jumping mechanics of,   210, 210 f    

   Flow.  See  Fluid(s), flow of   

   Fluid(s)  

  Archimedes’ principle,   328–331, 345  

  problems,   349–350  

  characteristics of,   317, 345  

  flow of,   333–341  

  Bernoulli’s equation,   334–338, 

339, 345  

  problems,   350  

  continuity equation,   332–333, 345  

  laminar,   332, 345  

  mass flow rate,   333  

  Poiseuille’s law,   339–340, 346  

  pressure gradient and,   338–339, 

338 f   

  problems,   350  

  steady,   332  

  Stokes’s law,   342, 346  

  streamline of,   332, 333, 345  

  and thermal convection,   510–512, 

510 f,  518  

  turbulence,   341, 341 f,  345  

  viscosity,   338–341  

  problems,   351  

  units of,   339  

  of various fluids,   340 t   

  viscous drag,   341–343, 346  

  problems,   351–352  

  volume flow rate,   333  

  ideal, characteristics of,   332, 333, 345  

  pressure of ( See  Pressure)  

  sound waves in,   423, 424 t,  446  

  static, force exerted by,   317–318  

  surface tension,   343–344, 343 f,  346  

  problems,   352  

  and surface waves,   396  

  volume stress in,   365   

   Fluorine nuclides,   B15 t    

   Flutes,   432, 432 f    

   Food, frozen, taste of,   506   

   Force(s).  See also  Contact forces; 

Friction; Fundamental forces; 

Gravitational force(s); 

Impulse; Normal force; 

Tensile and compressive 

forces; Torque  

  buoyancy,   327–331, 345  

  conservative,   199, 202  

  constant, work done by,   188–195, 213  

  contact,   88–89, 95, 95 f,  102 – 109  

  definition of,   88, 128  

  distributed,   279–280  

  external,   99  

  of ideal spring,   214  

  interaction pairs,   97–99  

  internal,   99  

  line of action of,   269  

  long-range,   88  

  measurement of,   89, 89 f   

  net ( See  Net force)  

  point of application of,   267  

  problems,   132–133  

  as rate of change of momentum,  

 233–234, 250  

  restoring,   367, 367 f,  382  

  and wave speed,   397, 412, 423  

  SI units of,   89, 96, 128  

  on spring scale,   89, 89 f   

  variable, work done by,   210–213, 214  

  problems,   219  

  as vector quantity,   89  

  viscous,   332  

  viscous drag,   341–343, 346  

  problems,   351–352  

  weight as,   88   

   Forced convection,   510–511   

   Fourier, Jean Baptiste Joseph,   434   

   Fourier analysis,   434   

   Fourier’s law of heat conduction,   506–507   
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   Four-stroke engine,   527   

   Free-body diagrams (FBDs),   128   

   Free fall,   43–44, 45, 46  

  gravitational field and,   101–102  

  with horizontal motion (projectiles),   44 f   

  problems,   51   

   Frequency, 370.  See also  Angular 

 frequency  

  of mass-spring system,   371–372  

  natural,   380–381, 381 f,  411  

  of periodic wave,   399  

  resonant,   380–381, 381 f,  411  

  of sound waves,   423  

  of standing wave,   411, 412, 431  

  of transmitted wave,   405   

   Friction,   103–107, 128–129  

  air resistance,   126  

  direction of force,   104–105  

  dissipation of energy by,   490–491  

  finding force of,   114–115, 114 f   

  kinetic ( See  Kinetic (sliding) friction)  

  on molecular level,   107, 107 f   

  and potential energy,   199, 202  

  problems,   135–136  

  on rolling ball, torque provided 

by,   287  

  static ( See  Static friction)  

  work done by,   194, 195, 199   

   Frozen food, taste of,   506   

   Functions, linear, graphing of,   A1–A2   

   Fundamental forces,   126–128, 127 f,  129  

  problems,   139   

   Fundamental particles, interaction of. 

 See  Fundamental forces   

   Fundamental standing wave,   411, 431, 

431 f,  432 f,  434 ,  434 f    

   Fusion, latent heat of,   500, 501 t,  517   

   Fusion curve,   505, 505 f,  518    

  G 

   Galilei, Galileo,   93, 93 f,  326   

   Gas(es).  See also  Ideal gas  

  Avogadro’s law,   468  

  Boyle’s law,   468  

  characteristics of,   317, 345  

  Charles’s law,   466–467, 467 f,  468  

  density of,   321, 322 t   

  diffusion of,   478–479, 480  

  dilute,   468, 471  

  Gay-Lussac’s law,   467–468  

  ideal gas law,   468–469  

  problems,   484–485  

  problem-solving tips for,   470  

  mass density of,   464–466, 465 f   

  molecular structure of,   317  

  number density of,   464–465, 465 f   

  problems,   484–485  

  shear and bulk moduli for,   364 t   

  sound waves in,   423–424, 424 t,  446  

  thermal expansion of,   466–470, 467 f   

  viscosity of,   340 t   

  volume stress in,   365   

   Gas thermometers,   467, 467 f    

   Gauge pressure,   325, 345, 421, 446   

   Gay-Lussac’s law,   467–468   

   General Conference of Weights and 

Measures,   7   

   Geometric shapes, common, properties 

of,   A8 t    

   Geometry review,   A8–A9   

   Geothermal engine,   538   

    Giga-  (prefix),   9 t    

   Glass, heat flow through,   507 t,  508 ,  509 f    

   Glider,   87, 87 f,  120 – 121 ,  120 f    

   Global warming,   511   

   Gold, nuclides,   B16 t    

   Gram,   329   

   Grandfather clock,   377   

   Graph(s),   15–17  

  axes, selecting ( See  Axis (axes), 

selecting)  

  dependent variable of,   15  

  independent variable of,   15  

  of linear functions,   A1–A2  

  log-log,   A5–A6  

  problems,   21  

  procedures for,   15–17, 18  

  of projectile motion,   69–70, 69 f   

  semilog,   A5  

  uses of,   15, 18  

  of waves,   401–403, 402 f   

  problems,   415–416   

   Gravitation, universal law of.  See  

Newton’s law of universal 

gravitation   

   Gravitational constant,   99   

   Gravitational energy, description of,   188 t    

   Gravitational field strength,   100–101, 128  

  free fall and,   101–102  

  at high altitude,   100  

  on other planets,   102  

  variations in,   100   

   Gravitational force(s),   99–102  

  of Earth ( See  Earth)  

  in free fall,   43–44  

  problems,   134–135   

   Gravitational potential energy  

  assigning  y   =  0,   200–201  

  as function of radius,   203, 203 f   

  problems,   217–219  

  for two bodies at distance  r,    203 ,  214  

  in uniform gravitational field,  

 197–202, 213   

   Gravity  

  center of ( See  Center of gravity)  

  on earth ( See  Earth)  

   vs.  electric force,   127  

  and fluid pressure,   321–324  

  problems,   348–349  

  as fundamental force,   126–127, 127 f   

  magnitude of,   128  

  and natural convection,   510  

  work done by,   190, 192–193, 192 f,  

197 – 198   

   Greenhouse effect,   516–517, 517 f    

   Grinding wheel, torque in,   285–286   

   Gulf Stream,   510 f,  511   

   Guns.  See  Bullet(s)   

   Gyroscopes,   294    

  H 

   Half-life, of selected nuclides,  

 B15 t– B16 t    

   Hancock Tower (Boston),   356, 356 f,  381   

   Harmonic analysis,   434   

   Harmonic functions,   371   

   Harmonic motion, simple.  See  Simple 

harmonic motion   

   Harmonics,   434, 434 f    

   Harmonic synthesis,   434, 434 f    

   Harmonic waves, 399–400, 400–401, 

412.  See also  Simple 

 harmonic motion  

  amplitude of,   425, 446   

   Heat,   492–499  

  definition of,   458, 492, 517  

  and entropy,   546–548  

  history of concept,   492  

  latent,   500, 501 t   

  molar specific ( See  Molar specific 

heat)  

  problems,   421  

  specific ( See  Specific heat)  

  units of,   492  

   vs.  work,   493   

   Heat capacity,   494, 518  

  problems,   521  

  specific ( See  Specific heat)   

   Heat engines,   538–540, 549  

  cycle of,   538, 538 f,  549  

  definition of,   537–538  

  efficiency of,   538–539, 540–541, 549  

  heat exhausted by,   538–539  

  internal combustion engine,   538, 539 f   

  problems,   553  

  reversible  

  definition of,   542  

  efficiency limitations and,  

 542–543, 549  

  problems,   553   

   Heat flow, 479, 493–495.  See also  Heat 

engines; Heat pumps; 

Thermal conduction; Thermal 

convection; Thermal 

 radiation; Thermodynamics  

  and phase transition,   500–506  

  from skin,   510–511  

  through glass,   507 t,  508 ,  509, 509 f    

   Heat pumps,   540–541, 541 f   

  efficiency of,   540–541, 549  

  problems,   553–554   
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   Helium  

  in Earth’s atmosphere,   210, 475  

  gas, heating,   499  

  nuclides,   B15 t    

   Hieron II,   330   

   Hippopotamus, buoyance of,   316, 

316 f,  329   

   Hooke’s law  

  for ideal spring,   214  

  problems,   219  

  for shear deformation,   363  

  for tensile and compressive forces,  

 358–359, 382  

  problems,   385  

  for volume deformation,   366   

   Hoop, rotational inertia of,   263 t    

   Horsepower,   212   

   Human body.  See also  Medical 

 applications  

  aneurysms,   337–338  

  arterial flutter,   337–338  

  blood  

  circulation of,   510  

  flow rate,   334, 340  

  specific gravity of,   329  

  speed of flow,   334  

  viscosity,   339, 340 t   

  blood pressure,   319, 340  

  measurement of,   327, 327 f   

  bone  

  brittleness of,   360, 360 f   

  shear stress in,   363, 365 f   

  tensile and compressive forces and,  

 359–360, 359 f,  361  

  cells, estimating number of,   14  

  center of gravity in,   280, 280 f   

  cooling of,   510–511  

  ears  

  anatomy of,   435–436, 435 f   

  audible range of,   423, 446  

  perception of loudness,   423, 425, 

436 f,  446  

  “popping” of,   321, 323  

  reconstruction of frequencies by,  

 435–436  

  sound perception in,   435–436  

  foot in traction apparatus,   90, 90 f   

  and heavy lifting,   283–284, 284 f   

  problems,   302–303  

  lungs  

  function of,   344–345, 344 f   

  oxygen diffusion in,   478  

  pressure in,   344–345  

  muscles  

  extensor,   281, 281 f   

  flexor,   281, 281 f   

  force exerted by,   260, 260 f,  

281 – 285 ,  282 f   

  problems,   302–303  

  operation of,   281–285, 281 f   

  torque in,   271  

  oxygen diffusion in,   478  

  perspiration,   504  

  reducing impact on,   229–231, 230 f   

  senses, inaccuracy of,   458, 458 f   

  skin, convection heat flow from,  

 510–511  

  temperature of,   459 t,  460  

  tensile forces in,   111, 112 f   

  thermal radiation from,   515, 515 f   

  voice sound waves,   399, 400 f   

  walking frequencies and speeds,  

 378–379   

   Humidity,   504   

   Hurricane, angular momentum in,   291   

   Hydraulic lifts,   320–321, 320 f    

   Hydrogen  

  in Earth’s atmosphere,   210, 475  

  nuclides,   B15 t    

   Hydrogen atom, mass of,   466   

   Hydrostatics, assumptions in,   317   

   Hydroxyapatite,   361    

  I 

   Ice, frictionless, traveling across,   237   

   Iceberg, percentage beneath water,  

 330–331   

   Ideal fluids, characteristics of,   332, 

333, 345   

   Ideal gas  

  collision of molecules in,   471–475, 

471 f,  477 – 479 ,  478 f,  480  

  problems,   486  

  expansion and contraction  

  entropy change in,   547  

  work done in,   527, 528 f,  530 – 531 ,  

530 f,  535  

  ideal gas law,   468–469  

  problems,   484–485  

  problem-solving tips for,   470  

  internal energy of,   533, 549  

  kinetic theory of,   471–475, 480  

  problems,   485–486  

  molar specific heat of,   498, 498 t,  

517 ,  549  

  specific heat of,   498–499  

  problems,   521  

  thermodynamic processes for,  

 533–536  

  constant pressure processes,  

 533–534, 534 f   

  constant temperature processes,  

 532 f,  535 ,  535 f   

  constant volume processes,  

 533, 533 f   

  problems,   552   

   Ideal gas law,   468–469, 480  

  problems,   484–485  

  problem-solving tips for,   470   

   Ideal spring.  See  Spring   

   Identification, of unknown substance,   330   

   Igloos,   508   

   Impulse  

  of changing force,   231–232, 232 f   

  definition of,   228–229, 250  

  graphical calculation of,   231–232, 

232 f,  250  

  total,   229, 250  

  units of,   229  

   vs.  work,   229 t    

   Impulse-momentum theorem,   228–234, 233   

   Incline  

  dissipation of energy on,   490–491  

  equilibrium on,   107–108, 107 f   

  gravitational potential energy increase 

on,   212–213  

  normal force on,   103, 103 f   

  pushing object up,   107–108, 107 f   

  work done in,   192–193, 192 f   

  rotational inertia of balls on,   287, 287 f   

  toppling of object on,   279–280, 279 f    

   Incoherent waves,   406, 407 f,  412   

   Incompressibility, of liquids,   317, 345   

   Independent variable,   15   

   Industrial revolution,   538   

   Inelastic collision,   244–246   

   Inertia,   93–95  

  definition of,   93  

  mass and,   96–97  

  problems,   133  

  rotational ( See  Rotational inertia)  

  in snow shoveling,   93–94, 94 f   

  and wave speed,   397, 412, 423   

   Inertial reference frames, Newton’s first 

law and,   122–123, 123 f    

   Infrared detectors,   515   

   Infrared radiation (IR), wavelengths of,   513   

   Infrasound,   423, 446   

   Instantaneous acceleration,   34, 78   

   Instantaneous velocity,   29–30  

  definition of,   29  

  from displacement,   29–30, 30 f   

  time and,   30 f,  31  

  on time graph,   31  

  as vector,   63–64, 78   

   Insulation, thermal, water and,   489, 

489 f,  500   

   Insulators, thermal,   507   

   Intensity  

  of sound wave,   394, 395 f,  425 ,  427 t,  

436 ,  446  

  problems,   449  

  of wave,   394–395, 395 f,  400 ,  412   

   Interaction pairs,   97–99  

  in frictional forces,   103  

  problems,   133–134   

   Interaction partners,   97   

   Interference,   406–408, 407 f,  412  

  and beats,   437–439, 437 f,  446  

  constructive,   404 f,  406 ,  412  

  destructive,   407, 407 f,  412  

  problems,   416–417   
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   Internal combustion engine,   538, 539 f   

  efficiency of,   527, 538–539, 544   

   Internal energy  

  definition of,   490, 517  

  description of,   188 t   

  first law of thermodynamics,   528–529, 

528 f,  529 t   

  of ideal gas,   533, 549  

  problems,   520–521  

  temperature and,   490, 533, 549   

   Internal forces,   99   

   Inverse trigonometric functions,  

 A11, A11 t    

   Iodine nuclides,   B16 t    

   Iron, nuclides,   B15 t    

   Iron cross,   260, 260 f,  282 – 283 ,  282 f    

   Irreversible processes,   536–537, 536 f,  549   

   Isobaric processes,   532, 533 t   

  for ideal gas,   533–534, 534 f    

   Isochoric processes,   532, 533 t   

  for ideal gas,   533, 533 f    

   Isosceles triangle,   A9, A9 f    

   Isotherm,   532, 532 f    

   Isothermal processes,   532, 533 t   

  for ideal gas,   532 f,  535 ,  535 f    

   Isotropic source,   395, 395 f,  412    

  J 

   Jackhammer, sound intensity of,   427   

   Japan, earthquake in,   392, 392 f,  393 ,  

393 f,  411   

   Jet engines, and momentum,   236   

   Joule, James Prescott,   188, 492   

   Joule (J),   189, 214, 517    

  K 

   Kangaroo, jumping mechanics of,   186, 

186 f,  209 – 211 ,  210 f    

   Kelvin (K),   423, 459, 459 t,  479  

  conversion to/from Celsius,   423, 

459, 480  

  definition of,   9 t    

   Kilogram (kg), definition of,   9 t    

    Kilo-  (prefix),   9 t    

   Kilowatt-hours,   212   

   Kinetic energy,   195–196  

  in collision,   244, 247–248  

  definition of,   188  

  increase in,   12  

  problems,   216–217  

  in rolling object,   286–287, 295  

  rotational ( See  Rotational kinetic  energy)  

  translational ( See  Translational kinetic 

energy)  

  and work,   195–196   

   Kinetic (sliding) friction,   128–129  

  definition of,   104  

  direction of,   104–105  

  force of,   104  

  on molecular level,   107  

  problems,   135–136   

   Kinetic theory of ideal gases,  

 471–475, 480  

  problems,   485–486   

   Krypton, nuclides,   B16 t     

  L 

   Ladder, torque on,   276–277, 276 f    

   Laminar flow,   332, 345   

   Latent heat,   500, 501 t   

  in sublimation,   506   

   Latent heat of fusion,   500, 501 t,  517   

   Latent heat of vaporization,   500, 

501 t,  517   

   Lathes, sound intensity of,   429   

   Law of cosines,   A11   

   Law of inertia,   93   

   Law of sines,   A11   

   Law of universal gravitation (Newton),  

 99–100, 127   

   Laws of conservation.  See  Conservation 

laws   

   Laws of motion.  See  Newton’s laws of 

motion   

   Laws of thermodynamics.  See  

Thermodynamics   

   Lead, nuclides,   B16 t    

   Length, as dimension,   11   

   Lever arms,   269–271, 270 f    

   Lift, banking airplane and,   236, 338, 338 f    

   Lifting heavy objects, and torque,  

 283–284, 284 f   

  problems,   302–303   

   Light  

  diffraction of ( See  Diffraction)  

  interference and,   408  

  reflection of ( See  Reflection)  

  refraction of ( See  Refraction)  

  visible, wavelengths of,   513   

   Limit (lim),   30   

   Linear functions, graphing of,   A1–A2   

   Linear mass density,   397   

   Linear momentum.  See  Momentum   

   Linear relations, graphing of,   16   

   Line of action, of force,   269   

   Lion, speed and acceleration of,   25, 

25 f,  34   

   Liquid(s)  

  density of,   321, 322 t   

  incompressibility of,   317, 345  

  molecular structure of,   317  

  shear and bulk moduli for,   364 t   

  thermal conduction in,   507  

  thermal convection in,   510–512, 510 f   

  thermal expansion of,   463–464, 

463 t,  480  

  problems,   482–483  

  viscosity of,   340 t   

  volume stress in,   365   

   Lithium, nuclides,   B15 t    

   Localization, of sound,   437   

   Locke, John,   458   

   Logarithms, review of,   A4–A6   

   Log-log graphs,   A5–A6   

   Longitudinal waves,   395–397, 396 f,  412   

   Long-range forces,   88   

   Loudspeaker cone,   375–376    

  M 

   Macrostates, of thermodynamic system, 

and entropy,   548, 549   

   Magnesium nuclides,   B15 t    

   Magnetic force  

  as fundamental force,   127, 127 f   

   vs.  gravity,   127   

   Magnetic Resonance Imaging (MRI),   2 f    

   Magnitude, of vector,   56   

   Manganese nuclides,   B15 t    

   Manometers,   324–326, 325 f,  345   

   Mars, exploration of,   1, 1 f,  9   

   Mars Climate Orbiter Mission Failure 

Investigation Board,   9   

   Mass  

  and acceleration,   96–97, 128  

  of atom,   465, 480  

  atomic mass unit,   465  

  center of ( See  Center of mass)  

  definition of,   3  

  as dimension,   11  

  inertia and,   96–97  

  molar mass,   465  

  of molecule,   465, 480  

  in Newton’s second law of motion,  

 96–97, 96 f,  97 f   

   vs.  weight,   96–97, 128   

   Mass density,   465–466, 465 f    

   Mass flow rate,   333   

   Mass-spring system.  See  Spring-mass 

system   

    The Mathematical Principles of Natural 

Philosophy  (Newton).  See  

 Principia  (Newton)   

   Mathematics  

  need for,   3, 17  

  review of,   A1–A14  

  ways to test mastery of,   3   

   Matter, states of,   317   

   Maxwell-Boltzmann distribution,  

 474–475, 474 f,  475 f,  480   

   Mayer, Julius Robert von,   187   

   Mean free path,   477–478, 480   

   Measurement  

  of atmospheric pressure,   326, 326 f   

  of atoms or molecules,   465, 480  

  problems,   484  

  of blood pressure,   327, 327 f   

  of forces,   89, 89 f   
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Measurement—Cont.

  precision of,   14  

  of temperature, 459–460 ( See also  

Thermometers)   

   Mechanical energy,   199–202  

  definition of,   199, 214  

  in simple harmonic oscillator,   

367–368, 383   

   Medical applications  

  electrocardiograms,   370, 370 f   

  magnetic resonance imaging (MRI),   2 f   

  thermal radiation,   515, 515 f   

  traction apparatus,   90, 90 f   

  ultrasonic imaging,   420, 420 f,  

444 – 445  

  problems,   450–451   

    Mega-  (prefix),   9 t    

   Melting point.  See  Phase transitions   

   Mercury, orbit of,   204   

   Merry-go round, rotational intertia in,  

 264, 264 f    

   Metal(s)  

  density of,   322 t   

  differential expansion of,  

 462–463, 463 f   

  specific heat of,   495 t    

   Meter (m),   9 t    

   Metric system,   7   

    Micro-  (prefix),   9 t    

   Microstates, of thermodynamic system, 

and entropy,   549, 550   

    Milli-  (prefix),   9 t    

   Model rockets,   369   

   Molar mass,   465, 480   

   Molar specific heat, of ideal gas,   498, 

498 t,  517 ,  549   

   Molecular/atomic level.  See also  

Atom(s); Molecule(s)  

  entropy on,   548  

  friction on,   107, 107 f   

  phase transition on,   501  

  pressure on,   317–318, 318 f,  471 – 475 ,  

471 f,  480  

  thermal conduction on,   507  

  thermal expansion on,   494   

   Molecule(s)  

  collision of,   242–243  

  in fluid,   317–318, 318 f   

  in gas,   471–475, 471 f,  477 – 479 ,  

478 f,  480  

  problems,   486  

  velocity following,   243, 243 f   

  displacement of, in gas,   478, 480  

  mass of,   465, 480  

  measurement of,   465–466, 480  

  problems,   484  

  speed of, in gas,   472, 474–475, 480   

   Mole (mol),   9t, 465, 480   

   Moment arm.  See  Lever arms   

   Moment of inertia.  See  

Rotational inertia   

   Momentum  

  angular ( See  Angular momentum)  

  linear,   226–228  

  in collisions of one dimension,  

 242–246  

  problems,   255–256  

  in collisions of two dimensions,  

 247–249  

  problems,   256–257  

  conservation of,   226, 227, 

234–237, 249, 250  

  problems,   253–254  

  definition of,   227, 249  

  impulse-momentum theorem,  

 228–234  

  problems,   252–253  

  of system,   240, 250  

  transfer of,   227, 249  

  units of,   229   

   Monatomic ideal gas, molar specific 

heat of,   498, 498 t,  517   

   Moon  

  atmosphere of,   475  

  weight on,   102   

   Motion.  See also  Acceleration; 

Displacement; Orbit(s); 

Rolling; Rotation; Simple 

harmonic motion; Velocity  

  Brownian,   318  

  of center of mass,   240–242  

  with constant acceleration  

  essential relationships in,   37  

  in plane,   67–73  

  free fall  

  with horizontal motion,   44 f   

  without horizontal motion,   43–44  

  Newton’s laws of ( See  Newton’s laws 

of motion)  

  of projectiles,   44 f,  67 – 73   

   Motion diagrams,   40–41, 40 f,  42 f,  194 f    

   Motor scooter, deceleration of,   34   

   Mouse on a wheel, angular momentum 

in,   291–292   

   MRI.  See  Magnetic Resonance Imaging   

   Multiplication  

  and significant figures,   7, 17–18  

  of vectors ( See  Vector(s))   

   Muscles.  See  Human body    

  N 

    Nano-  (prefix),   9 t    

   NASA,   9   

   Natural convection,   511   

   Natural frequency,   380–381, 381 f,  411   

   Natural philosophy,   2   

   Neodymium nuclides,   B16 t    

   Neon, nuclides,   B15 t    

   Neptunium nuclides,   B16 t    

   Net force,   91–92, 96–97, 96 f,  97 f   

  problems,   133   

   Net work.  See  Work, total   

   Neutron(s)  

  as hydrogen nuclide,   B15 t   

  mass of,   465   

   Neutron stars, and angular 

momentum,   291   

   Newton, Isaac,   7, 92, 532   

   Newton (N)  

  definition of,   89, 128  

  naming of,   7   

   Newton’s law of universal gravitation,  

 99–100, 127   

   Newton’s laws of motion,   92–102  

  first,   92–93, 93 f,  128  

  and inertial reference frames,  

 122–123, 123 f   

  problems,   133  

  for rotation,   266  

  problems,   133–134  

  second,   96–97, 96 f,  97 f,  128  

  application of,   113–122  

  as approximation,   187  

  for center of mass,   240  

  for momentum,   233–234  

  problems,   133, 138–139  

  for rotation,   285, 289, 296  

  problems,   303–304  

  third,   97–99, 103, 128   

   Nickel nuclides,   B16 t    

   Nitrogen nuclides,   B15 t    

   Nodes, of standing wave,   410, 410 f,  411 ,  

411 f,  412  

  displacement,   429–430, 431 f,  446  

  pressure,   429–430, 431 f,  446   

   Nonlinear relations, graphing of,   16   

   Nonuniform circular motion.  See  

Circular motion, 

nonuniform   

   Normal, of boundary,   406, 406 f    

   Normal force,   102–103, 103 f,  114 – 115 ,  

114 f,  128  

  frictional force and,   103   

   North Star,   294   

   Notation, change in (delta),   16   

   Nuclear energy, description of,   188 t    

   Nuclear power plant, as heat engine,   538   

   Nuclides, selected,   B15 t –B16 t    

   Number density,   464–465, 465 f     

  O 

   Obtuse angle,   A8, A8 f    

    Opportunity  Mars rover,   1, 1 f    

   Orbit(s)  

  angular momentum of,   292–293, 292 f   

  of Mercury,   204  

  of satellites,   98  

  work done by gravity in,   191, 191 f    

   Order of magnitude solutions,   7, 18   

   Oresme, Nicole,   73   
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   Organ of Corti,   435 f,  436   

   Oscillation.  See also  Simple harmonic 

motion  

  damped,   380, 380 f,  411  

  problems,   388–389  

  forced,   380–381, 381 f   

  of pendulum  

  physical,   378–379  

  simple,   376–377   

   Oval window,   435, 435 f    

   Overtones,   434   

   Oxygen  

  diffusion through cell membranes,   478  

  nuclides,   B15 t    

   Ozone layer,   516, 517 f     

  P 

   Paper, and air resistance,   126   

   Particle(s)  

  characteristics of,   393  

  fundamental, interaction of ( See  

Fundamental forces)  

  point,   99   

   Pascal, Blaise,   318   

   Pascal (Pa),   318, 345  

  converting to atmospheres,   318, 345   

   Pascal’s principle,   320–321, 320 f,  345  

  problems,   348–349   

   Pendulum  

  physical, oscillation of,   378–379  

  problems,   388  

  simple  

  oscillation of,   376–377  

  work done by string on bob,  

 191, 191 f    

   Percentages,   A6–A7   

   Period  

  of periodic wave,   399  

  in simple harmonic motion,   370  

  physical pendulum,   376–377  

  problems,   386–387  

  simple pendulum,   376–377   

   Periodic waves  

  characteristics of,   398–399, 412  

  harmonics of,   434  

  problems,   414–415   

    Peta-  (prefix),   9 t    

   Phase, of wave,   401, 412  

  and interference,   407–408, 407 f,  437   

   Phase diagrams,   505–506, 505 f,  517   

   Phase transitions,   500–506, 517  

  definition of,   500  

  evaporation,   504–505  

  molecular view of,   501  

  problems,   521–522  

  sublimation,   506, 517   

    Philosophiae Naturalis Principia 

Mathematica  (Newton).  See  

 Principia  (Newton)   

   Physics  

  purpose and value of,   2  

  terminology, precision of,   2–3   

   Piano tuning,   438–439   

    Pico-  (prefix),   9 t    

   Piñata,   398   

   Pinna,   435   

   Pipe, standing waves in,   429–430, 431 f,  

432 f,  446   

   Pitch,   436–437   

   Planet(s)  

  atmosphere of,   475, 475 f   

  gravitational field strength on 

other,   102  

  orbit of ( See also  Orbit(s))  

  angular momentum of,  

 292–293, 292 f    

   Plutonium nuclides,   B16 t    

   Point of application, of force,   267   

   Point particles,   99   

   Poise,   339   

   Poiseuille, Jean-Louis Marie,   339   

   Poiseuille’s law,   339–340, 346   

   Polaris (North Star),   294   

   Polonium nuclides,   B16 t    

   Polyatomic ideal gas, molar specific heat 

of,   498 t    

   Pool balls, and conservation of 

 momentum,   248–249, 249 f    

   Popsicles,   502   

   Position,   26, 30–33  

  problems,   48  

  as vector,   77   

   Potassium nuclides,   B15 t    

   Potential energy  

  assigning  y   =  0,   200–201  

  conservative forces and,   199  

  definition of,   188, 197  

  elastic,   214  

  problems,   219–220  

  gravitational  

  assigning  y   =  0,   200–201  

  as function of radius,   203, 203 f   

  problems,   217–219  

  for two bodies at distance  r,    203 ,  

214  

  in uniform gravitational field,  

 197–202, 213   

   Potter’s wheel, work done by,   272–273   

   Power,   211–213  

  average,   211, 214  

  of constant torque,   272  

  definition of,   211  

  dissipation of, by lightbulb,   4  

  instantaneous,   212, 214  

  problems,   220–221  

  units of,   211–212, 214   

   Power plant, nuclear, as heat engine,   538   

   Precision  

  of data, estimating,   14  

  of measurement,   14   

   Prefixes, of SI units,   9 t    

   Pressure,   317–319  

  atmospheric,   319  

  average, definition of,   318  

  Bernoulli’s equation for,   334–338, 345  

  problems,   350  

  column height and,   323–324  

  definition of,   345  

  and density,   321, 322 t   

  depth and,   321–324, 345  

  gauge,   325, 345  

  gravity’s effect on,   321–324  

  problems,   348–349  

  hydrostatic paradox and,   323–324  

  in lungs,   344–345  

  measuring,   324–327, 345  

  problems,   349  

  molecular view of,   317–318, 318 f,  

471 – 475 ,  471 f,  480  

  Pascal’s principle for,   320–321, 

320 f,  345  

  problems,   348–349  

  phase diagrams and,   505–506  

  problems,   348  

  PV diagrams,   530–531, 530 f,  532 f   

  units of,   318, 324, 345  

  and volume deformation,  

 365–366, 365 f    

   Pressure amplitude,   425, 427 t,  446   

   Pressure drop per unit length.  See  

Pressure gradient   

   Pressure gradient, and fluid flow,  

 338 f,  339   

   Pressure nodes and antinodes,   429–430, 

431 f,  446   

    Principia  (Newton),   92   

   Principle of superposition.  See  

Superposition   

   Probability, entropy and,   548   

   Problem solving.  See  Solving problems   

   Projectiles, motion of,   67–73, 78  

  problems,   82–83   

   Proportion(s),   3–4, A6–A7   

   Proportional limit,   359, 382   

   Proportional to, definition of,   3–4, 17   

   Proton(s), mass of,   465   

   Pucks, momentum of,   234, 234 f,  247 – 248   

   Pulleys  

  acceleration of blocks hanging on,  

 117–118, 117 f   

  Atwood’s machine,   265, 265 f   

  block and tackle arrangement,  

 119, 119 f   

  ideal,   112  

  in traction apparatus,   90, 90 f   

  two-pulley system,   112–113, 113 f,  

189 ,  189 f    

   Pulsars, and angular momentum,   291   

   PV diagrams,   530–531, 530 f,  532 f,  549  

  isotherms on,   532, 532 f    

   P waves,   396 f,  397    
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  Q 

   Quadratic equations, solving,   A3    

  R 

   Radians,   A9, A9 f   

  converting to/from degrees,   A9   

   Radiation  

  infrared, wavelengths of,   513  

  ultraviolet,   513   

   Radiation spectrum, of thermal radiation,  

 513, 513 f,  518   

   Radius, of sphere, proportionality to 

 volume,   4   

   Radon, nuclides,   B16 t    

   Raft, walking on,   235–236, 235 f    

   Random walk trajectory,   478   

   Rappelling, work done by friction in,  

 199–200   

   Rarefactions,   396 f,  421 – 422 ,  422 f    

   Ratios,   3–4, A6–A7   

   Reaction rate, temperature and,  

 475–476, 480  

  problems,   486   

   Rectangular plate, rotational inertia 

of,   263 t    

   Reference frames  

  inertial ( See  Inertial reference frames)  

  Newton’s first law and,   122–123, 123 f   

  and relative velocity,   73–77, 74 f,  75 f    

   Reflection,   404–405, 405 f,  408 ,  412  

  problems,   416   

   Refraction,   406, 406 f   

  problems,   416   

   Refrigerator(s),   540–541, 541 f   

  efficiency of,   540–541, 549  

  problems,   553   

   Relative velocity,   73–77, 74 f,  75 f,  78  

  problems,   83–84   

   Repetition distance, of wave,   399   

   Repetition time, of wave,   399   

   Reservoir, heat,   532, 550   

   Resilin,   210   

   Resistance, electrical, thermal,   507   

   Resonance,   380–381, 411, 432–433   

   Resonant frequency,   411   

   Rest energy,   188, 188 t    

   Restoring force,   367, 367 f,  382  

  and wave speed,   397, 412, 423   

   Reversible engines  

  definition of, efficiency limitations 

and,   542  

  efficiency limitations and,  

 542–543, 550  

  problems,   553–554   

   Reversible processes,   536–537, 536 f    

   R-factors,   509   

   Right angle,   A8, A8 f    

   Right-hand rule, for angular momentum,  

 293, 293 f    

   Right triangle,   A9   

   rms speed,   473, 480   

   Rockets  

  engine of, and momentum,   233, 236  

  falling, in parts,   241–242, 241 f   

  model,   369   

   Rod  

  rotational inertia of,   263 t   

  sound waves in,   424, 424 t   

  thermal expansion of,   460, 461, 461 f    

   Rolling.  See also  Wheel(s)  

  translational and rotational kinetic 

energy in,   286–287, 296  

  problems,   304–305   

   Root mean squared displacement, of gas 

molecule,   478, 480   

   Rotation  

  axis of rotation, selection of,   273  

  Newton’s first law for,   266  

  Newton’s second law for,   285, 

289, 296  

  problems,   303–304  

  quantities analogous to translation,  

 296 t    

   Rotational equilibrium,   273–280, 296  

  definition of,   273  

  problems,   301–302   

   Rotational inertia  

  of barbells,   264, 264 f   

  changing,   290–291  

  definition of,   261–262, 295  

  finding,   262  

  of human limbs,   282  

  of merry-go round,   264, 264 f   

  problems,   299–300  

  of rolling object,   286  

  for various geometric objects,   263 t    

   Rotational kinetic energy,   261–266  

  and conservation of energy,   265  

  definition of,   261, 295  

  description of,   188 t   

  problems,   299–300  

  of rolling object,   286–287, 295  

  problems,   304–305  

   vs.  translational kinetic energy,   261   

   Round window,   435, 435 f    

   Rubidium,   B16 t    

   Ruh, Lucinda,   290 f    

   Rumford, Count (Benjamin 

Thompson),   492    

  S 

   Safety, auto safety features,   

230–231, 230 f    

   Sailplane,   87, 87 f,  120 – 121 ,  120 f    

   Samarium nuclides,   B16 t    

   San Jacinto monument,   362 f    

   Satellites  

  orbit of,   98  

  work done by gravity on,   191, 191 f    

   Scalar(s)  

  addition and subtraction of,   56  

  multiplication of vector by,   A13  

  temperature as,   56  

   vs.  vectors,   56   

   Scalar product,   A13   

   Scala tympani,   435   

   Scala vestibuli,   435   

   Scale(s).  See also  Spring scale  

  and apparent weight,   123–125, 124 f    

   Scientific notation,   5, 17  

  on calculator,   5  

  problems,   19–20  

  and significant figures,   5–6   

   Scissors, cutting action of,   363–364, 

364 f    

   Screen door closer,   270–271, 270 f    

   Second law of motion (Newton),   96–97, 

96 f,  97 f,  128  

  application of,   113–122  

  as approximation,   187  

  for center of mass,   240  

  for momentum,   233–234  

  problems,   133, 138–139  

  rotational form of,   285, 289, 296  

  problems,   303–304   

   Second law of thermodynamics  

  Clausius statement of,   537, 550  

  and efficiency of heat engine,  

 542–543  

  entropy statement of,   546, 550  

  and evolution,   548   

   Second (s), definition of,   9 t    

   Sedimentation velocity,   343   

   Seismic energy, description of,   188 t    

   Seismic waves,   393, 396, 396 f,  

406 ,  411   

   Semicircular canals,   435 f    

   Semilog graphs,   A5   

   Shaum’s Outlines series,   3   

   Shear deformation,   363–364, 364 f,  382  

  problems,   386   

   Shear modulus,   363, 364 t,  382 ,  424   

   Shear strain,   363, 382   

   Shear stress,   363–364, 382   

   Ships, buoyance of,   329   

   SHM.  See  Simple harmonic motion   

   Shock absorbers,   380, 380 f    

   Shock waves,   443, 443 f    

   Shoes, spike-heeled, pressure exerted 

by,   319   

   Shuffleboard,   97 f    

   Sign, on cantilever, maximum weight of,  

 278–279, 278 f    

   Significant figures  

  in calculations,   6–7, 17–18  

  in data recording,   15  

  definition of,   5  

  problems,   19–20  

  rules for identifying,   5   

   Silicon, nuclides,   B15 t    
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   Silver  

  nuclides,   B16 t   

  phase transition in,   501, 501 t   

  thermal conductivity of,   507 t    

   Similar triangles,   A9, A9 f    

   Simple harmonic motion (SHM),  

 367–376, 382–383  

  frequency,   370  

  graphical analysis of, problems,  

 387–388  

  period ( See  Period)  

  problems,   386–387  

  as sinusoidal function,   374–375, 382   

   Simultaneous equations, solving,   A3–A4   

   Sines, law of,   A11   

   Sinusoidal function  

  harmonic wave as,   400–401, 412  

  simple harmonic motion as,   374–375, 382   

   SI  (Système International)  units,   7–8, 9 t,  18  

  of acceleration,   33  

  of amount of substance,   465, 480  

  of angular momentum,   289  

  of density,   321  

  of energy,   189, 214, 517  

  of entropy,   546  

  of force,   89, 96, 128  

  of heat,   492, 517  

  of impulse,   229  

  of internal energy,   492  

  of momentum,   229  

  of power,   211, 214  

  prefixes,   8, 9 t   

  of pressure,   318, 345  

  of specific heat,   495  

  of stress,   358  

  of temperature,   423, 459, 479  

  thermal resistance,   507  

  of torque,   267  

  of work,   189, 214, 517   

   Skating, average acceleration in,   65–66   

   Skiing, speed at bottom,   201–202, 201 f    

   SLAC.  See  Stanford Linear Accelerator 

Center   

   Sleighs and sleds  

  and Newton’s third law,   105–106  

  work done in pulling,   194–195   

   Sliding friction.  See  Kinetic (sliding) 

friction   

   Slope  

  of displacement curve,   30, 30 f   

  interpretation of,   16  

  of straight-line graph,   16   

   Snow shoveling, and inertia,   93–94, 94 f    

   Soaps and detergents, as surfactants,   343   

   Sodium, nuclides,   B15 t    

   Solids  

  characteristics of,   317  

  density of,   321, 322 t   

  elastic deformation of, 357, 357 f  ( See 

also  Tensile and compressive 

forces)  

  shear and bulk moduli for,   364 t   

  sound waves in,   424, 424 t,  446  

  thermal expansion of,   460–464, 

461 f,  480  

  problems,   482–483   

   Solving equations,   A2–A4  

  back-of-the-envelope estimates,   7, 15  

  consistency of units,   9  

  estimating answer, as accuracy 

check,   7  

  order of magnitude solutions,   7, 18   

   Solving problems  

  with dimensional analysis,   11–12  

  strategies,   13  

  for collision of two objects,   245  

  divide-and-conquer technique,   262  

  for ideal gas law,   470  

  for standing waves,   433   

   Sonar,   444, 444 f    

   Sonic boom,   443, 443 f    

   Sound barrier,   443, 443 f    

   Sound intensity level ( b  ),   426, 427 t,  446   

   Sound waves  

  amplitude of,   425, 427 t   

  problems,   449  

  beats,   437–439, 437 f,  446  

  problems,   450  

  decibels,   426, 427 t,  446  

  diffraction of,   408  

  Doppler effect,   439–443, 440 f,  446  

  echolocation,   443–445, 443 f   

  problems,   450–451  

  frequency ranges of,   423  

  intensity of,   394–395, 395 f,  425 ,  427 t,  

436 ,  446  

  problems,   449  

  interference and,   408  

  localization of,   437  

  as longitudinal wave,   396  

  and loudness,   425, 436, 436 f,  446  

  periodic and aperiodic,   398–400, 400 f   

  pitch,   436–437  

  problems,   448–450  

  production of,   420 f,  421 – 422 ,  422 f   

  reflection of,   404  

  speed of,   423–424, 424 t,  446  

  problems,   448–449  

  standing,   429–433, 431 f,  432 f   

  problems,   449  

  timbre,   433–434, 434 f   

  ultrasonic imaging,   420, 420 f,  445  

  problems,   450–451   

   Spaceships  

  collision of,   226–227, 227 f   

  displacement under constant accelera-

tion,   42–43, 42 f    

   Specific gravity,   329–331, 345   

   Specific heat,   494–496, 495 t,  517  

  of ideal gas,   498–499  

  molar, of ideal gas,   498, 498 t,  517  

  problems,   521   

   Spectrum, sound,   434 f    

   Speed  

  of dart from dart gun,   209 f   

  in elastic collisions,   245  

  escape speed,   204–205, 475  

  of fluid flow,   334, 339–340, 346  

  pressure and,   334–337, 346  

  of gas molecule,   473, 474–475, 480  

  of point, in harmonic transverse oscil-

lation,   399–400  

  rms speed,   473, 480  

  in simple harmonic motion,   367–369  

  of sound waves,   423–424, 424 t,  446  

  problems,   448–449  

  tangential,   265  

  of wave,   397–398, 400–401, 412  

  problems,   414   

   Sphere  

  hollow, rotational inertia of,   263 t   

  radius of  

  proportionality to area,   4  

  proportionality to volume,   4  

  solid, rotational inertia of,   263 t    

   Sphygmomanometer,   327, 327 f    

    Spirit  Mars rover,   1   

   Spring(s)  

  ideal  

  elastic potential energy in,   214  

  problems,   219–220  

  force exerted by,   214  

  Hooke’s law for,   214  

  problems,   219  

  simple harmonic motion in,  

 367–373  

  length of, with varying weights,  

 16–17, 16 f    

   Spring constant,   16–17, 214   

   Spring-mass system  

  length of, with varying weights,  

 16–17, 16 f   

  simple harmonic motion in,   367–373   

   Spring scale, forces on,   89, 89 f,  96   

   Stable equilibrium,   367, 367 f,  382   

   Standing waves,   409–411, 410 f,  411 f,  

412 ,  446  

  frequency of,   431  

  fundamental,   411, 431, 431 f,  432 f,  434 f   

  problems,   417  

  problem-solving strategy for,   433  

  sound waves,   429–433, 431 f,  432 f   

  problems,   449  

  wavelength of,   431, 431 f,  432 f    

   Star system, center of mass of,   239, 239 f    

   State variables,   530, 546, 549   

   Static fluid, force exerted by,   317–318   

   Static friction,   129  

  definition of,   104  

  direction of,   104  

  maximum force of,   104  

  on molecular level,   107  

  problems,   135–136   
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   Statistics and probability, entropy 

and,   548   

   Steam engine,   538   

   Stefan’s constant,   512–513, 518   

   Stefan’s radiation law,   512–513, 

517, 518   

   Stirring paint, temperature change 

in,   529   

   Stokes’s law,   342, 346   

   Stone(s)  

  in free fall,   43, 44–45, 44 f   

  tossed upward, maximum height of,  

 198, 198 f    

   Straight line  

  in data graphing,   16–17  

  equation, slope-intercept form,   16   

   Strain,   358, 382  

  shear,   363, 382  

  volume,   365, 382   

   Streamline,   332, 333, 345   

   Stress,   358, 382  

  shear,   363–364, 382  

  volume,   365, 382   

   String(s)  

  natural (resonant) frequency of,   411  

  waves on  

  energy transfer in,   394, 394 f   

  harmonic transverse wave,  

 400–401  

  mathematical representation of,  

 400–401  

  reflection of,   405, 405 f,  409  

  sound created by,   421  

  transverse waves, speed of,  

 397–398, 411, 423  

  traveling wave,   401   

   Strong force, as fundamental force,  

 127 f,  128   

   Strontium nuclides,   B16 t    

   Stuntman, landing on air bag,  

 229–230, 229 f    

   Sublimation,   506, 517   

   Sublimation curve,   505 f,  506 ,  518   

   Submarine depth,   323   

   Subtraction  

  of scalars,   56  

  and significant figures,   17–18  

  of vectors,   57, 57 f,  59–63, 77, 

A12–A13  

  problems,   80–81   

   Subway, inertia on,   94   

   Suitcase, pulling,   114–115, 114 f    

   Sun  

  temperature of,   514  

  thermal radiation from,   512, 514, 

516–517, 517 f    

   Superposition, of waves, 403–404, 403 f,  

412.  See also  Interference  

  and beats,   437–439, 437 f,  446  

  problems,   416   

   Supplementary angles,   A8, A9   

   Surface tension,   343–344, 343 f,  346  

  problems,   352  

  and surface waves,   396   

   Surfactants,   343   

   S waves,   396 f,  397   

   Swimming, and Newton’s third law,   98   

   Symbols, mathematical,   A14   

   System(s)  

  definition of,   99, 490  

  external forces of,   99  

  internal energy of,   490–491, 517  

  problems,   520–521  

  internal forces of,   99  

  momentum of,   240, 250   

    Système International d’Unités.   See  SI 

 (Système International)  units    

  T 

   Tacoma Narrows Bridge,   381, 381 f    

   Tangent, of displacement curve,   30, 30 f    

   Tangential speed,   265   

   Temperature.  See also   entries under 

thermal   

  absolute ( See  Absolute temperature)  

  definition of,   458, 479  

  and density,   321, 322 t   

  and internal energy,   490, 533, 549  

  measurement of, 458, 459–460 ( See 

also  Thermometers)  

  phase diagrams and,   505–506  

  and reaction rate,   475–476, 480  

  problems,   486  

  as scalar,   56  

  scales,   459, 459 t   

  problems,   482  

  thermodynamic ( See  Absolute temper-

ature)  

  units of,   459  

  and viscosity,   339  

  and wavelength of thermal radiation,  

 513, 513 f,  518  

  zeroth law of thermodynamics,   

458, 479   

   Temperature gradient,   507   

   Tensile and compressive forces,  

 358–363, 382  

  breaking point,   360, 360 f,  382  

  elastic limit,   360, 360 f,  382  

  Hooke’s law for,   358–359, 382  

  problems,   385  

  problems,   382  

  ultimate strength,   360, 360 f,  382   

   Tensile strength,   360   

   Tension,   109–113  

  in block and tackle arrangement,  

 119, 119 f   

  definition of,   110  

  problems,   136–137  

  tensile forces in body,   111, 112 f    

    Tera-  (prefix),   9 t    

   Terminal velocity,   126, 342   

   Terminology, precision in,   2–3, 17   

   Thermal conduction,   506–509, 508 f,  

509 f,  518  

  Fourier’s law of heat conduction,   507  

  problems,   522–523  

  R-factors,   509   

   Thermal conductivity,   507, 507 t    

   Thermal contact,   458, 479   

   Thermal convection,   510–513, 510 f,  518  

  and global warming,   511   

   Thermal equilibrium,   458, 479, 493   

   Thermal expansion  

  area,   463  

  cause of,   494  

  differential,   462–463, 463 f   

  of gas,   463 t,  467 f   

  of liquids,   463–464, 463 t,  480  

  on molecular level,   494  

  problems,   482–483  

  of solids,   460–464, 461 f,  480  

  problems,   482–483  

  volume ( See  Volume expansion)   

   Thermal insulators,   507   

   Thermal radiation,   511–517, 518  

  and Greenhouse effect,   516–517, 517 f   

  medical applications,   515, 515 f   

  problems,   523–524  

  radiation spectrum of,   513, 513 f,  518  

  simultaneous emission and absorption,  

 511–512, 511 f,  514 – 515 ,  518  

  Stefan’s radiation law,   512–513, 517, 518   

   Thermal resistance,   507   

   Thermal updrafts,   511 f    

   Thermodynamic processes,   

530–536, 533 t   

  adiabatic processes,   532, 533 t,  549  

  constant pressure processes,   532, 

533–534, 533 t,  534 f,  549  

  constant temperature processes,   532, 

532 f,  533 t,  535 ,  535 f   

  constant volume processes,   532, 533, 

533 f,  533 t   

  definition of,   530  

  problems,   552   

   Thermodynamics  

  definition of,   458  

  first law of,   528–529, 528 f,  529 t,  549  

  problems,   552  

  second law of  

  Clausius statement of,   537, 549  

  and efficiency of heat engine,  

 542–543  

  entropy statement of,   546, 550  

  and evolution,   548  

  third law of,   549, 550  

  zeroth law of,   458, 479   



 INDEX I-13

   Thermodynamic temperature.  See  

Absolute temperature   

   Thermography,   515, 515 f    

   Thermometers  

  gas,   467, 467 f   

  instant-read,   515  

  liquid-in-glass,   459   

   Third law of motion (Newton),   97–99, 

103, 128  

  problems,   133–134   

   Third law of thermodynamics,   549, 550   

   Thompson, Benjamin (Count 

Rumford),   492   

   Thorium nuclides,   B16 t    

   Threshold of hearing,   426, 427 t,  436 f    

   Tightrope walker, balancing of,  

 285, 285 f    

   Timbre,   433–434, 434 f    

   Time  

  in constant acceleration, essential 

 relationships,   37  

  as dimension,   11  

  instantaneous velocity and,   30 f,  31   

   Tin nuclides,   B16 t    

   Tone quality.  See  Timbre   

   Tops, angular momentum of,   294   

   Torque,   266–271  

  definition of,   267, 295  

  due to gravity,   271  

  lever arms and,   269–271, 270 f   

  of physical pendulum,   378  

  power of,   272  

  problems,   300–301  

  as rate of change of angular 

 momentum,   289  

  sign of,   268, 268 f,  296  

  units of,   267  

  vector nature of,   293–295  

  work done by,   271–273, 272 f,  296  

  problems,   301   

   Torr,   324, 326   

   Torricelli, Evangelista,   326   

   Torricelli’s Theorem,   336   

   Traction apparatus,   90, 90 f    

   Train  

  average velocity of,   28–29  

  displacement of,   26, 26 f   

  Doppler effect and,   441–442  

  force on couplings in,   115–116, 

115 f,  116 f   

  instantaneous velocity of,   31, 31 f   

  velocity of walker in,   73–74, 74 f    

   Trajectory, of projectile,   67, 68 f,  69 ,  

69 f,  78   

   Translation  

  definition of,   188  

  quantities analogous to rotational 

motion,   296 t    

   Translational equilibrium.  See  

Equilibrium, translational   

   Translational kinetic energy  

  definition of,   196, 213  

  description of,   188 t   

  of gas molecules,   472, 480  

  of rolling object,   286–287, 295  

  problems,   304–305  

   vs.  rotational kinetic energy,   261   

   Transverse waves,   395–397, 396 f,  412  

  on string, speed of,   397–398, 412, 423  

  problems,   414   

   Traveling wave,   400, 412   

   Triangle(s), properties of,   A9, A9 f    

   Trigonometry,   A10–A11  

  small angle approximation,   A12  

  trigonometric functions,   A10, A10 f   

  inverse,   A11, A11 t   

  trigonometric identities,   A10 t    

   Triple point,   505, 505 f    

   Tritium,   B15 t    

   Tuned mass damper (TMD),   381   

   Turbulence,   341, 341 f,  345   

   Tympanum,   435, 435 f     

  U 

   Ultimate strength,   360, 360 f,  382   

   Ultrasonic imaging,   420, 420 f,  444 – 445  

  problems,   450–451   

   Ultrasound,   423, 446   

   Ultraviolet radiation, wavelengths 

of,   513   

   Unification, fundamental forces and,   126   

   Uniform circular motion, rolling.  See  

Rolling   

   Unit(s), 7–10.  See also  Metric system; SI 

 (Système International)  units  

  consistency of,   9, 18  

  in solving equations,   9  

  conversion of,   9–10  

  derived,   7–8  

  importance of,   3  

  problems,   20  

  U.S. Customary Units,   9   

   Universal gas constant,   468, 480   

   Universal gravitational constant,   99   

   Unknown substance identification,   330   

   Unstable equilibrium,   367, 367 f    

   Uranium nuclides,   B16 t     

  V 

   Vaporization, latent heat of,   500, 

501 t,  517   

   Vapor pressure curve,   505 f,  506 ,  518   

   Variable(s)  

  dependent,   15  

  independent,   15  

  state,   530   

   Vault door, pushing open,   267, 267 f    

   Vector(s),   45  

  acceleration as,   64–66, 77  

  problems,   82–83  

  addition of,   A12–A13  

  graphically,   56, 57, 57 f,  77  

  problems,   80–81  

  using components,   59–63, 77  

  problems,   80–81  

  components of ( See  Component(s), 

of vector)  

  definition of,   56  

  direction of,   56  

  finding from components,   60  

  displacement,   57, 77  

  force as,   89  

  magnitude of,   56  

  finding from components,   60  

  multiplication of  

  cross product of,   A13–A14  

  by scalar,   A13  

  scalar product of two,   A13  

   vs.  scalars,   56  

  subtraction of,   57, 57 f,  59–63, 77, 

A12–A13  

  problems,   80–81  

  velocity as,   63–64, 77  

  problems,   81–82   

   Vector product.  See  Cross product   

   Velocity,   28–33, 45  

  acceleration and,   35  

  angular ( See  Angular velocity)  

  average ( See  Average velocity)  

  in constant acceleration, essential 

 relationships,   37  

  definition of,   2–3  

  from displacement,   30 f,  32  

  displacement from,   32, 32 f   

  graphical relationship with position,  

 30–33  

  instantaneous ( See  Instantaneous 

velocity)  

  problems,   48–49  

  relative,   73–77, 74 f,  75 f,  78  

  problems,   83–84  

  of sailboat,   66  

  in simple harmonic motion,   382  

  terminal,   126, 342  

  as vector,   63–64, 77  

  problems,   81–82   

   Venturi meter,   337, 337 f    

   Vibration,   367   

   Vibrational energy, description of,   188 t    

   Violin string, frequency of,   12   

   Viscosity,   338–341  

  problems,   351  

  units of,   339  

  of various fluids,   340 t    

   Viscous drag,   341–343, 346  

  problems,   351–352   

   Viscous force,   332   



I-14  INDEX

  definition of,   3, 88, 128  

  in elevator,   123–125, 124 f   

  at high altitude,   100, 100 f   

   vs.  mass,   96–97, 128  

  on Moon,   102  

  normal force and,   102–103, 103 f   

  work done in lifting,   188–189   

   Wheel(s), rotational inertia 

of,   291–292   

   Wien’s law,   513   

   Windows, heat flow through,   508   

   Wingspread (Wright house),   275 f    

   Wire, stretching of,   357   

   Work  

  conservative forces and,   202  

  by constant force,   188–195, 213  

  problems,   216  

  definition of,   189, 213  

  by dissipative forces,   195  

  first law of thermodynamics,   528–529, 

528 f,  529 t,  549  

   vs.  heat,   493  

   vs.  impulse,   229 t   

  kinetic energy and,   195–196  

  negative,   190–191, 191 f   

  net (total),   193–195  

  PV diagrams and,   530–531, 530 f,  

532 f,  549  

  by torque,   271–273, 272 f,  296  

  problems,   301  

  total,   193–195, 213  

  units of,   189, 214  

  by variable force,   210–213, 214  

  problems,   219  

  zero,   189   

   Work-kinetic energy theorem,   196   

   Wright, Frank Lloyd,   275, 275 f     

  X 

   Xenon gas, heating,   499    

  Y 

   Young’s modulus,   358–359, 359 t,  382 ,  

424   

   Yttrium nuclides,   B16 t     

  Z 

   Zeroth law of thermodynamics,   458, 479   

   Zinc nuclides,   B16 t     

   Volume  

  conversion of,   10  

  PV diagrams,   530–531, 530 f,  532 f   

  of sphere, proportionality to radius,   4   

   Volume deformation,   365–366, 365 f,  382  

  problems,   386   

   Volume expansion  

  of gas,   466–470, 467 f   

  of solid or liquid,   463–464, 480   

   Volume flow rate,   333   

   Volume strain,   365, 382   

   Volume stress,   365, 382    

  W 

   Wagon, displacement of,   27   

   Walking frequencies and speeds,  

 378–379, 379 f    

   Warm-blooded animals,   457, 476–477, 477 f    

   Water  

  annual human consumption of,   15  

  convection currents in,   511 f   

  insulating properties of,   489, 489 f,  500  

  phase diagram for,   505–506, 505 f   

  phase transition in,   500–502, 500 t,  

501 t,  505 – 506 ,  505 f   

  projectile motion of,   71, 71 f   

  specific heat of,   495, 495 t   

  thermal conductivity of,   507 t   

  triple point of,   505, 505 f   

  waves in,   396 f,  397 ,  397 f,  399 ,  406  

  diffraction in,   408, 409 f    

   Water striders,   343, 343 f    

   Watt, James,   211   

   Watt (W),   211, 214   

   Wave(s)  

  amplitude of, 399 ( See also  

Amplitude)  

  angular frequency of,   399–400  

  antinodes of ( See  Antinodes)  

  aperiodic,   398  

  characteristics of,   393, 398–399  

  coherent and incoherent,   406, 407 f,  412  

  diffraction of ( See  Diffraction)  

  energy transport by,   393–394, 394 f   

  problems,   414  

  frequency of, 399 ( See also  

Frequency)  

  graphing of,   400–401, 402 f   

  problems,   415–416  

  harmonic, 399–400, 412 ( See also  

Simple harmonic motion)  

  amplitude of,   425  

  intensity of,   394–395, 395 f,  400 ,  412  

  interference of ( See  Interference)  

  light ( See  Light)  

  longitudinal,   395–397, 396 f,  412  

  mathematical description of,   

400–401, 400 f   

  problems,   415  

  nodes of ( See  Nodes)  

  periodic  

  characteristics of,   398–399, 412  

  harmonics of,   434  

  problems,   414–415  

  period of,   399  

  phase of,   401, 412  

  and interference,   407–408, 407 f,  437  

  problems,   414–417  

  P type,   396 f,  397  

  reflection of,   404–405, 405 f,  409 ,  412  

  problems,   416  

  refraction of, 406, 406 f  ( See also  

Refraction)  

  problems,   416  

  repetition distance of,   399  

  repetition time of,   399  

  seismic,   393, 396 f,  397 ,  406, 411  

  shock,   443, 443 f   

  sound ( See  Sound waves)  

  speed of,   397–398, 399–400, 412  

  problems,   414  

  standing ( See  Standing waves)  

  S type,   396 f,  397  

  superposition of, 403–404, 403 f,  412 

( See also  Interference)  

  and beats,   437–439, 437 f,  446  

  problems,   416  

  surface,   396 f,  397  

  S waves,   396 f,  397  

  transverse,   396 f,  402 – 403 ,  412  

  transverse and longitudinal,   397  

  traveling,   400, 412  

  water,   396 f,  397 ,  397 f,  399 ,  406  

  diffraction in,   408, 409 f   

  wavelength of ( See  Wavelength)  

  wavenumber,   401, 412   

   Wavelength  

  of periodic wave,   399, 401, 412  

  of standing wave,   411, 431, 431 f,  432 f   

  of thermal radiation,   513, 513 f,  518  

  of transmitted wave,   405   

   Wavenumber,   401, 412   

   Weak force, as fundamental force,   

127 f,  128   

   Weight.  See also  Newton; Pound  

  apparent,   123–125, 129  

  problems,   139  
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