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Preface

xi

The first edition of this book was born in the fire of youth. In the 32 years since

then, much has changed in physics, in higher education, and needless to say in my

own outlook.

In physics, there was the triumph of the Standard Model of particles and fields,

a development recognized in the second edition by the addition of a nineteenth

chapter. But particle physics has now been on somewhat of a plateau for two

decades, while cosmology has burgeoned, rescued from scientific marginality by a

number of theoretical and instrumental advances, some of which were by-products

of particle research.

In recognition of this, I have chosen in this fifth edition to give greater emphasis

to the close interaction between fundamental physics and our picture of the universe,

and have added a twentieth chapter describing the current cosmological consensus. I

fully recognize that any such narrative is vulnerable to rapid obsolescence.

I am also convinced that there has been notable progress on the bewildering

topic of the “meaning of” the quantum theory. The concept of “decoherence” has, in

my view, resolved the problem of the transition from quantum ambiguity to ob-

served actuality without demanding involvement of the human consciousness. In-

teraction of a system with its environment has replaced measurement as the defining

process. I regard the “collapse of the wave function” as a dead letter. Of course, this

development does not resolve the more perplexing weirdness of quantum nonlocal-

ity. Chapter 18 has been revised to reflect this change in the somewhat agnostic

views expressed in earlier editions. I realize that many of my readers may not accept

this defection from neutrality.

In response to the requests of many of the faculty who have used this book in

their teaching, I have increased the number of exercises offered, and added some

worked examples as an aid to the student. The minimal offering in the first four edi-

tions was deliberate, and reflected a personal pedagogical quirk. I happen to regard

mathematical problem solving as a worthy skill, but one that is separable from con-

ceptual understanding, and not necessarily helpful for the audience for which this

book is intended.



But I am now persuaded that a physics course provides a golden opportunity to

improve the “numeracy” of students in nontechnical fields, certainly a laudable

goal. We have too long written off the mathematical potential of liberal arts majors.

I retain, however, the practice of relegating the exercises to an appendix, to sustain

the readability of the main text.

Since the publication of the fourth edition, I have retired from formal university

teaching and research, but not from active involvement in both my university and

my profession. This change in life has allowed me to reflect more deeply on what a

life in science has meant to me, and this perspective is reflected in this new edition.

The fire is still there, but tempered by maturity.

It is impossible to do justice to all of the people who have helped to shape this

work. The thousands of students I have taught over a 40-year career in university

teaching certainly deserve recognition. The wonderful freshmen and dedicated staff

in the Bradley Learning Community, currently my main formal link to the Univer-

sity of Wisconsin, have again and again loaned me some of their energy to inspire

my writing. My faculty colleagues in Bradley and in the Integrated Liberal Studies

Program have provided the exciting intellectual milieu that I dreamed of when I

chose to embark on an academic career.

Given the cosmological focus of this edition, I must acknowledge a particular

debt to Craig McConnell, a physicist and historian of modern cosmology who

served as my teaching collaborator in Integrated Liberal Studies for several of the

most personally rewarding years of my teaching career.

McGraw-Hill and the author would like to thank the following reviewers for

their many helpful comments and suggestions: Dennis Crossley, University of Wis-

consin—Sheboygan; Biman Das, SUNY—Potsdam; Kenneth Hahn, Truman State

University; David Nice, Princeton University; Alvin M. Saperstein, Wayne State

University; Larry Smith, Snow College; John W. Zwart, Dordt College.

We also thank John Mather and David Leisawitz of the National Aeronautics

and Space Administration for helping to obtain the satellite maps that appear on the

cover.

Robert H. March
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Introduction

Why, pray tell, a book entitled Physics for Poets? What does a physicist have to say

to a poet? First and foremost, that scientists (or at least the best of them) practice

their craft because they think it is fun. And what makes it fun can be summarized in

one word: wonder—the sense of awe that comes when the familiar world melts

away and we catch a glimpse of something marvelous behind. This sense provides

a bridge between the spirit of the arts and that of science.

A sense of wonder is a large part of what it means to be human. And one of the

most wonderful spectacles that nature displays to us is the night sky. Because of it,

astronomy is the oldest science, predating even written language. Alas, the progress

of modern urban civilization has made an awe-inspiring night sky a rare experience

for most of us.

Early astronomy had a practical motivation, the development of a reliable cal-

endar. But it was also closely tied to religion and magic. By the fifth century B.C.,

however, philosophers in Greece had proposed a new approach not only to the skies,

but also to nature as a whole: banish magic and the gods. Some have speculated that

they did this because no sensible person would trust the management of an orderly

universe to the quarrelsome and self-indulgent gods of the Greek pantheon.

It is this rejection of the supernatural that defines science to this day. It does not

mean that a scientist must be an atheist, though many of them are. It simply means

that when trying to explain something in nature, “it is the will of God” is not an ac-

ceptable professional explanation. The scientist may believe it to be so but cannot

offer it as a defense of his or her views.

In medieval Europe, this approach to nature was all but forgotten. Fortunately,

it was kept alive by Islamic civilization in its heyday. It enjoyed a remarkable re-

vival in the European Renaissance, with an added feature that can be described as

“organized skepticism.” This is the basis for the often-misunderstood canon of “sci-

entific objectivity.”

Scientific objectivity does not mean that a scientist approaches nature without

an emotional commitment to any particular point of view. What it does mean is that

science is a combat of ideas in which all participants are obliged to “fight fair.” The

exact definition of “fairness” varies from discipline to discipline and from time to
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time. But it always rests on one common element: it is not fair to simply ignore the

work of others, whether this means contrary ideas or embarrassing facts.

In the centuries since the Renaissance, this standard has been institutionalized

in universities, and in scientific societies, meetings, and journals. These institutions

do not always work perfectly, but they have made it possible to create a body of

ideas and facts that a prudent individual may take as a reasonable guide to action.

The later part of the Renaissance, the seventeenth century, witnessed a union of

the heavens and the Earth that gave rise to the modern discipline of physics. It was

the audacious effort to show that the apparent motions of lights in the sky—the Sun,

Moon, and planets—could be understood in terms of laws of nature that can be

tested on Earth.

This notable historic development has been called the “Copernican Revolu-

tion.” The word revolution is one of the most abused in the English language, but in

this case it is entirely appropriate. Copernicus revived the idea of a Sun-centered

universe in the classical context of an exercise in geometry. Tycho Brahe, Galileo

Galilei, and Johannes Kepler groped toward a physical explanation that culminated

in the work of Isaac Newton.

The offspring of the wedding of physics and astronomy was classical mechan-

ics, probably the most successful scientific theory of all time. For two centuries, this

theory swept all before it, one phenomenon after another yielding to explanation in

mechanical terms. By the end of the nineteenth century, it seemed on the verge of

absorbing all of science.

Indeed, to many scientists of that time, Newtonian physics appeared already to

have done so, except for a few minor details. Yet, as a result of the effort to account

for these details it was not just modified, but essentially abandoned. Just how such

a successful intellectual edifice, erected on an immense and solid base of fact, can

be replaced by something dramatically different, is a central theme of this book.

The triumph of Newton’s mechanics had wide repercussions. Leaving aside the

legion of (mercifully) forgotten Deist theologians who came to look upon the Cre-

ator as a sort of master clockmaker, we can trace its impact on nearly all aspects of

Western culture. To many intellectual leaders Newton’s physics became a model

that all of human knowledge should strive to emulate. This was unfortunate, for

much of the power of grand theories comes from ignoring the messy but important

details that rule our practical, day-to-day lives.

The effect has been particularly pernicious in the field of economics, where the

Newtonian model dominates to this day. Modern physics has taught us that no mat-

ter how clever our theories, how careful our measurements, or how powerful our

computers, the future must always remain largely unpredictable.

A twentieth-century revolution saw the overthrow of the Newtonian system. It

did not produce anything like the comfortable unity of Newtonianism, for it struck

out in two very different new directions: relativity and quantum theory. Relativity

was largely the creation of one man, Albert Einstein. Quantum theory grew from the

contributions of many (including Einstein). Relativity is popularly regarded as

bizarre and abstruse, but quantum theory is, in many ways, far more so.

The realm of the quantum theory is the very small, while relativity deals with

the very large or the very fast. Where they come together, in the very small very fast
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world of elementary particles, they have not yet achieved a final unity. The key un-

resolved problem is the oldest one in physics, the one that launched Galileo’s revo-

lution, that of gravity. It can truly be said that this remains, as it always has been, the

central mystery of our physical universe. Nonetheless, just as Newton provided a

physical basis for understanding the solar system, relativity and the quantum theory

hold the promise of understanding the whole universe.

Both theories were conceived, at least in part, in much the same spirit—that of

critical evaluation of the process by which we actually observe the world. Both deal

mainly with phenomena that lie outside the realm of ordinary experience. It is partly

for this reason that they are so difficult to teach—the phenomena themselves are far

removed from anything we can see, touch, or feel.

The same, however, could have been said of Newton’s physics, which won its

spurs by accounting for the motions of the planets, a problem far removed from the

concerns of home, hearth, and the workbench. Most of us approach practical mat-

ters through commonsense precepts that can only be regarded as pre-Newtonian.

In the twentieth century, science became a large and well-organized profession.

It is this professionalism that has made so much of science inaccessible to the gen-

eral public. In their working lives, scientists need only communicate with fellow

specialists. To communicate with “outsiders” takes time and effort, and is not likely

to advance an academic career. Even when they make the effort, many scientists

have no idea what to say. This is because it is perfectly possible to contribute to sci-

ence without thinking too hard about the deeper significance of what one is doing.

In physics, the most serious barrier to communication is mathematics. Some of

the beauty of this science is most readily apparent only when it is written in its na-

tive tongue, which is partly mathematical. A lot of this beauty is unavoidably lost in

translation. To ask someone to study mathematics merely to appreciate physics is as

unreasonable (or as reasonable) as asking them to study Italian merely to properly

appreciate Dante. Of course, like Italian, mathematics is beautiful in itself and is

likely to be useful for a variety of other purposes.

In this book, mathematics is kept to a minimum, the criterion being that the ef-

fort must make a point, or illuminate a concept, in an indispensable way. It never

goes beyond arithmetic and first-year high school algebra, except in a few places

where, for the benefit of the mathematically adept, something more advanced is put

on display. These sections are clearly designated, and may be skipped without los-

ing the continuity of the story. Simply regard these cases as akin to the brief ex-

cerpts from the original that are occasionally inserted in a literary translation.

Like most successful human ventures, science prospers largely by sticking

strictly to business. There are problems that lend themselves to its methods, and the

solution of them can enrich the human experience, both materially and intellectu-

ally. But abstract science, powerful as it may be in its own domain, is neither uni-

versal nor magic. Most of what humanity holds dear must remain beyond its scope.

If science has achieved much, it has been by limiting its reach to those things that

most easily fall within its grasp.

People raised in Western cultures are taught that science is the place to go when

you want hard, incontestable truths. This is unfortunate because, if anything, science

shows what an elusive commodity truth can be. Despite all professional training and
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care, observations are often in error, and even more often their implications are mis-

interpreted or overlooked. Even a simple report of a fact can bear the stamp of a the-

oretical framework. A scientist who has never had to give up some cherished

precept has probably been working in a pretty dead area. It is this experience of hav-

ing been wrong, rather than any smug conviction of always being right, that char-

acterizes the scientific outlook.

What science should teach us is to doubt—to consider that many of the beliefs

we take for granted may arise from custom or prejudice, or may simply be wrong.

There is no more important lesson that a citizen of our troubled world can learn, and

if this book can contribute to teaching that lesson, it will have done its job.

xvi Introduction



C H A P T E R  1

A Vast and Most
Excellent Science

How often at night

When the heavens were bright

With the light of the glittering stars

Have I stood there amazed

And asked as I gazed

If their glory exceeds that of ours.

Home on the Range (Traditional)

Long ago on the high plains of the African savanna, our earliest human ancestors

surely gazed at the night sky in awe and wonder. And being human, they doubtless

made up stories to help them make sense of what they saw. Most of our ancient civ-

ilizations boasted a well-developed astronomy before they had a written language

with which to record it. The skies are so appealing not only because of their beauty,

but because they offer us an order and predictability unlike anything on Earth. In a

dangerous, confusing, and uncertain world, it is reassuring to know that somewhere

there is order.

We are still making up stories to explain the heavens. Today they tell of objects

that no eye can ever see, of distances too vast to be imagined, and of a history that

spans more than ten billion years. The first step in the creation of our modern story

was to remove the human race from its place at the center of a tidy universe created

for its benefit. For this radical new vision to gain acceptance, there had to be a sci-

entific revolution that led to a new understanding of motion and the laws that

govern it.

A revolution must have its heroes, and the one that gave birth to modern

physics was blessed with two of truly mythic stature, Galileo Galilei and Isaac

Newton. In the heroic legend, Galileo is cast as the Martyr of Truth, and Newton as

the Saintly Hermit of Reason. In the flesh and blood, they were considerably more

complicated—and more interesting—than these figures of myth.

The earliest astronomers soon discovered that the heavenly order was not quite

perfect. The stars, to be sure, are well behaved. They wheel in unison across the

night sky, tracing out perfect circles as if fixed on some immense sphere. But the

Sun and Moon do not keep step with them. Each slowly advances through the starry

backdrop, tracing paths that repeat once in a year for the Sun and once in a month
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for the Moon. And their progress is not quite steady. The Sun traverses half of the

sky in the 184 days between the spring and fall equinoxes, while it takes only 181

days to complete the other half of the year.

The planets wander even more fitfully. Mercury and Venus swing back and

forth across the Sun, accompanying its journey through the skies. Mars, Jupiter, and

Saturn trace repeatable paths, but from time to time they reverse direction (go “ret-

rograde”) for a few months, as do the three remaining planets discovered in the era

of the telescope. Any deviation from the mathematical purity of circular motion dis-

turbed the Greek philosopher Plato considerably, and he enjoined the astronomers

of his day to find the hidden order that would “save the phenomena.”

The idea that the Earth is itself a planet, and like the others tracks an orbit

around the Sun, is very old. We first hear of it from Aristarchus of Samos, in the

fourth century B.C. The orbits of Mercury and Venus lie inside ours, so they never

appear far from the Sun. The others move in orbits bigger than the Earth’s and tra-

verse them more slowly. When the Earth passes between one of these outer planets

and the Sun, that planet appears to be moving backward.

But the notion that the Earth could be moving seemed to fly in the face of both

common sense and the physics of the time. If anything is moving, surely it is not the

solid, heavy Earth but those brilliant lights in the sky. So when Greek astronomy

reached its final flowering with the work of Claudius Ptolemy of Alexandria, in the

second century A.D., he proposed a scheme with the Earth at its center. The motion

of each planet was compounded of several coordinated circular motions, as illus-

trated in figure 1.1. Each planet moved on a circle, called an epicycle, the center of

which moved on another circle, and so on to a final circle, the deferent, which

ringed the Earth.

It cannot be emphasized too strongly that this was excellent empirical science,

of the sort still practiced today under the name “Fourier analysis.” The underlying

mathematics today is calculus rather than geometry, but the basic idea is the same:

decompose a complex repeated motion into the combined effects of several simple

ones. It could predict the positions of the planets in the sky with reasonable accu-

racy, for many decades into the future.

Aristarchus’s idea was revived in 1543 by the Polish astronomer Nicolaus

Copernicus. His scheme was no more accurate in its predictions than Ptolemy’s.

Neither was it noticeably simpler. The epicycles were still there, for planets do not

move in simple circles. What made it appealing to thinkers like Galileo was that it

avoided the curious coincidences of the Ptolemaic scheme, in which each planet fol-

lows an independent path, but with motions carefully coordinated to the Sun, so that

Mercury and Venus stay close to it, while the other planets go retrograde only when

opposite the Sun.

The gifted Danish astronomer Tycho Brahe (we will see more of him in chap-

ter 4), devised a way to borrow this feature for an Earth-centered system. Let the

Sun lie at the center of all the planetary epicycles, and carry them with it as it cir-

cled the Earth. The Sun’s orbit is the deferent for the epicycles of all the planets. All

of the relative motions of the heavenly bodies would be the same as in Copernicus’s

scheme. As seen from Earth they would follow the same tracks across the sky. But

Earth could remain comfortably, and reassuringly, at rest.
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A RENAISSANCE MAN

Galileo lived from 1564, the year of Shakespeare’s birth and Michelangelo’s

death, until 1642, the year Newton was born. He was the eldest son in a respected

Pisan family of modest means. His father, a musician and scholar who wrote one

of the first modern treatises on harmony, hoped his clever son might recoup the

family’s fortunes by means of a medical career. But at the university, Galileo be-

came fascinated with mathematics, then as now a far more precarious way to earn

a living.

Even Galileo’s greatest admirers must admit that he could be boorish, pugna-

cious, and petty. He was sometimes unscrupulous in his ambition, on several occa-

sions claiming credit for the work of others. He had a remarkable gift for the written

word and could not resist the temptation to sprinkle his works with elegant insults

to his rivals. In short, he was very much the late Renaissance man, a prodigy who

could paint or versify as well as solve an equation.

By the age of 25, Galileo’s writings and inventions had made him enough of a

reputation to land the poorly paid position of lecturer in mathematics at the Univer-

sity of Pisa. Within three years he moved on to a more prestigious post, a profes-

sorship at the University of Padua. This university and its neighbor in Bologna were

CHAPTER 1: A Vast and Most Excellent Science 3
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FIGURE 1.1. Ptolemy’s depiction of motion of one planet.



the two oldest in Italy, and were generally regarded as the best in the world. With

such an affiliation, he could become someone to reckon with.

Though he was paid a reasonable salary for his day, Galileo was obliged to help

out a younger brother and sister, as well as provide for his own small family, and the

fees from the few students of mathematics who came his way were never enough.

He supplemented these by his writing and from the sale of measuring instruments

of his own improved design.

A major turning point in his life came at the age of 45, when he developed the

astronomical telescope, his refinement of a novelty invented by the eyeglass mak-

ers of Holland. In a celebrated pamphlet, The Starry Messenger, he reported the

wonders it revealed: the moons of Jupiter, mountains on our own moon, and the

phases of Venus. These discoveries were dedicated to an illustrious and powerful

former student, Cosimo di Medici, the young grand duke of Tuscany.

As Galileo had hoped, Cosimo was flattered to the point of opening his fam-

ily’s bountiful coffers. Galileo was invited to become “Chief Philosopher and

Mathematician” to the celebrated Medici court. He would serve as a sort of resi-

dent wise man who could offer technical advice, cast an occasional horoscope, and

participate in debates that were a common after-dinner diversion for late Renais-

sance princes and their guests. But most of all he was there to lend some up-to-date

intellectual glitter to the artistic splendor of Florence, a city that, even in decline,

was still a wonder of the world.

With a patron as wealthy as Cosimo, Galileo enjoyed not only an incomparably

higher standard of living than his professorship could provide, but the opportunity

to reach a wider audience that included the most influential leaders of his time. But

all of this comfort and acclaim carried a price tag. In Padua, Galileo had been some-

what insulated from the political and religious infighting of his day. In the palace

life of Florence, his position was both more public and more vulnerable, and his

sharp tongue soon earned him powerful enemies.

A demonstration of his wondrous instrument before the papal court in Rome

was greeted with enthusiasm. This emboldened him to claim that the things the tel-

escope made visible were incontrovertible proof of Nicolaus Copernicus’s claim

that the Earth and the planets all revolved about the Sun. Throughout the half cen-

tury since this idea first appeared in print, the Church had taken no official stand on

the question. Galileo had kept his own opinions private. Going public proved as

rash as it was impulsive.

In retrospect, it is easy to see why his arguments were unconvincing, even to

the many people sympathetic to his point of view. Many quite skillful astronomers,

especially those who belonged to the Jesuit order, had embraced Tycho’s scheme,

which could account for all of Galileo’s observations without the embarrassment of

a moving Earth.

Galileo had made himself a sitting duck for his enemies, who brought the dispute

before Church authorities. But these were not the prelates of a century before, whose

haughty disdain for public opinion had brought forth Martin Luther’s 95 theses.

Though Copernicus’s great work was banned, Galileo himself escaped censure. He

was simply warned that while he could continue to discuss the Copernican view as

a “hypothesis,” he must stop claiming to have established it as an indisputable fact.
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With the accession to the papal throne of his old friend Cardinal Barberini, who

became Pope Urban VIII in 1623, Galileo saw a chance to cap his career in a book

that would persuade the Church to tolerate, or even to adopt, the Copernican sys-

tem. Urban was receptive, but proposed his own formulation of how to establish a

peaceful harmony between science and theology: we poor humans cannot presume

to know how things really are—that is reserved for an all-knowing God. Science

can at best improve the description of how things appear to be. Accepting this for-

mula, Galileo was allowed to publish, in 1632, the Dialogue on the Two Great

World Systems.

The work was widely acclaimed from the day of publication, and the tone was

Galileo at his devious best. It was cast as a Platonic dialogue, like the script of a

play. Arguments for both sides were there, to be sure, but the Earth-centered view

was defended by a character named Simplicio, who was portrayed as a dull-witted,

pedantic nitpicker. And Galileo was not content to rest his case on the book alone.

At social gatherings in Florence and Rome, he would regale the guests by taunting

his adversaries and mocking their views.

Furthermore, like The Starry Messenger, this new book was not completely

convincing on its most controversial point, the motion of the Earth. Pope Urban felt

flagrantly double-crossed, even by the loose standards of that age. In trouble him-

self because of the failure of military adventures, he decided that this time Galileo

had gone too far. Urban could be a patient man, willing to give considerable latitude

to scientific debate, but the Church must at least be allowed to make the rules. A

special tribunal summoned Galileo to Rome, where he was forced to renounce his

opinion that the Earth moved. He was never officially condemned, but was removed

from public life.

The Church, however, had put itself in a no-win situation. In order to assert its

authority, it had to swim against the tide of history. The Renaissance had elevated

science to a high status. The printing press had opened the way to wide, rapid dis-

semination of new ideas, ending the monopoly on learning of the academies and

monasteries. A worldly humanism, with a growing faith in the power of man’s rea-

son, was the spirit of the time.

Galileo played this game well, writing in Italian rather than scholarly Latin, to

take his case to the growing educated lay public instead of confining it to polite dis-

cussion in academic circles. This further infuriated his enemies.

But he was not playing a lone hand. Galileo was a member of the Accademia

dei Lincei (Academy of the Lynxes), which was something between a learned soci-

ety and a secret social club of the young nobles of Rome. It met to dine and debate,

fostered scientific correspondence, and helped members and their protégés get their

works in print. They were the wave of the future, and both they and the more per-

ceptive leaders of the Church knew it.

Galileo’s most enduring legacy to science was, if anything, the least controver-

sial product of a life filled with controversy. His Discourses and Mathematical

Proofs Concerning Two New Sciences, usually referred to simply as Two New Sci-

ences, was published in 1636. By then the author was in his seventies with failing

vision, living under a genteel sort of house arrest. The book was largely a summary

of work done decades before in Padua.
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Forbidden by order of the Church to claim that the Earth was moving, Galileo

chose a more devious stratagem—to undermine the old physics that led people to

believe that it couldn’t move. When he made the seemingly innocent observation

that something dropped from the top of the mast of a moving ship will land at the

base, Galileo was speaking in a kind of code. He was really trying to persuade his

readers that the Earth could be hurtling through space without our being the least

aware of its motion.

The centerpiece of the book is a mathematical description of how things move as

they fall. It was a model for a new kind of science. According to the myth, this was a

science more faithful to the evidence of the eye than the dogmas it would replace. But

Galileo was not all that concerned with the real world. His new science was rooted in

an abstraction, an imaginary world without any air to complicate the motion.

For Galileo’s greatest gift to his successors was to liberate his infant science

from the obligation to deal with the full, confusing hurly-burly of mundane reality.

Unfettered, physics was free to move ahead. Half a century later, the stratagem of

Two New Sciences bore fruit in the work of Isaac Newton, whose law of gravity fi-

nally convinced the world that the Earth really does move.

GALILEO TAKES ON ARISTOTLE

The central intellectual event of the early Renaissance had been the rediscovery of

classical Greek philosophy. The Greek intellectual heritage had been preserved

through the Middle Ages more by the world of Islam than by anyone in Christian

Europe, which was pretty much a barbarous backwater right up to the thirteenth

century. The ancient philosophers had not been entirely forgotten, but only frag-

ments of their writings were available in Europe, and many of these were kept un-

der lock and key lest they infect the reader with the pagan religion of their authors.

Algebra and a bit of trigonometry, both Arab embellishments of Greek and Indian

achievements, represented the pinnacle of mathematical knowledge. If your own

mathematical education stops short of calculus, most of what you know was taught in

Moslem universities from Toledo to Timbuktu before the fourteenth century.

In the early stages of Europe’s recovery, Thomas Aquinas and others molded

ideas taken from Greek thought, notably the work of Aristotle, into an all-

encompassing worldview known as scholasticism. This system was most highly de-

veloped in areas that connected to moral philosophy and theology, adding little to

Greek and Arab science. Mathematics and astronomy were respected as exercises to

discipline the mind, but otherwise these profane sciences did not count for much.

The unifying principle of scholasticism was teleology, the study of the purposes

of things. For readers familiar with the Aristotelian system, this is what he called the

“final cause” of anything. It could be something quite mundane: the final cause of a

chair is “to be sat on.” But in the context of natural science, it acquires a religious

significance. The philosopher observes nature in order to discern God’s will at

work, thus providing a harmonious link between science and theology.

It is unfair to accuse scholastic scholars of disdain for the evidence of their own

eyes. Aristotle himself had been a first-rate biologist. One-fifth of his surviving
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writings are on this topic, and for thoroughness of observation and clarity of insight

they set the standard for centuries to come. He was a careful, systematic observer

who believed in an order that resided in nature, waiting to be uncovered through ob-

servation, comparison, and classification. The great descriptive sciences, such as ge-

ology and zoology, were primarily Aristotelian in their methods right up to the

middle of the twentieth century.

Galileo’s approach was a bit more sophisticated. His Aristotelian schooling had

taught him to respect the value of observation. But he had even greater admiration

for Aristotle’s teacher Plato, who had worshipped the sublime abstract beauty of

geometry. Brute nature offered nothing as perfect as the ideal triangle of dimen-

sionless points and lines. What we scrawl on paper can be only a feeble approxima-

tion. Yet that wondrous perfect triangle exists only in the human mind, visible only

to pure reason. We must look beyond the imperfect world revealed by our fallible

senses to uncover a higher, more perfect reality, the only fit object of study.

Galileo found a happy fusion of these contrasting approaches. Like Plato, he

quested after hidden truth, written in the deep language of mathematics. But expe-

rience had shown him that reason, unaided by the senses, can easily be led astray.

Passive observation, however, is no better, for nature is too sly an adversary to re-

veal her most treasured secrets to any fool. You must confront her armed with the

best instruments human ingenuity can devise. Even then, she cannot be taken on her

own ground. She must be tricked into showing her hand by contriving situations

that emphasize the hidden reality. This is the essence of experimental science, and

Galileo’s notebooks reveal that he practiced it with a master’s hand.

But above all, Galileo rejected teleology. It is labor enough to uncover the how

of nature; the why must remain forever beyond the methods of science. To this day,

teleological arguments are strictly off limits in science, although privately some sci-

entists may believe that they discern a purpose behind the workings of nature.

Aristotle had devised a rule for dealing with motions that continue at constant

speed. In the heavens, the stars move in this fashion, wheeling about the Earth like

points of light in a giant sphere, turning slowly and evenly. On Earth, ships and

horse-drawn carts also maintain a fairly constant speed for long periods of time, so

this was of practical interest as well.

Aristotle saw this kind of motion as a contest between propulsion and resistance.

The resulting speed, he guessed, would depend on the ratio between the two. Double

the effort, by adding rowers or sails, and a boat might well move twice as fast. Cut-

ting the resistance was another way to add speed, which was why the wheel was in-

vented, and why boatbuilders carefully smoothed their hulls. Though Aristotle lacked

any means of putting his rule to a quantitative test, we will see in chapter 5 that he

was not far from the mark.

Even Aristotle realized, however, that there was one familiar form of motion

that was hard to explain within this scheme. Falling objects quite obviously pick up

speed as they drop. What is happening here? Is the resistance decreasing, or is the

propulsion growing? Over the centuries, Aristotelians debated the point, but could

offer no ready answer.

There was another embarrassing problem. If it is the weight of an object that

propels its fall, shouldn’t heavy objects fall faster than lighter ones? Indeed, a literal
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reading of Aristotle would suggest a speed of descent that was fully in proportion to

weight, while experience teaches us that light objects fall nearly as fast as heavy

ones. Though Aristotle never thought of his science in terms of immutable laws, but

simply as generalizations from experience that might allow for some exceptions,

Galileo chose this weak point to bear the thrust of his assault.

In a key passage from Two New Sciences, cast like the banned Two World Sys-

tems as a Platonic dialogue, the character Salviati is the author’s mouthpiece. The

hapless Simplicio is clearly no match for him, and can only fall back on the author-

ity of the written word. The third interlocutor, Sagredo, represents the intelligent,

pragmatic humanist that Galileo hopes to win to his side.

SALVIATI: I greatly doubt that Aristotle ever tested by experiment whether it be true

that two stones, one weighing ten times as much as the other, if allowed to

fall, at the same instant, from a height of say, 100 cubits, would so differ in

speed that when the heavier had reached the ground the other would not have

fallen more than 10 cubits.

SIMPLICIO: His language would seem to indicate that he had performed the experi-

ment, because he says: “We see the heavier”: now the word see shows that he

had made the experiment.

SAGREDO: But I, Simplicio, who have made the test can assure you that a cannon

ball weighing one or two hundred pounds, or more, will not reach the ground

by as much as a span ahead of a musket ball weighing only half a pound.

However, tearing down is always easier than building up, and there had been

many critics of Aristotle. Galileo earned his present place in scientific esteem by of-

fering an alternative description of the motion of falling bodies, in two succinct

statements:

1. In a medium totally devoid of resistance all bodies will fall at the same speed.

2. During equal intervals of time a falling body receives equal increments of

speed.

The words totally devoid of resistance may seem innocent enough, but they are

in fact words of defiance. First of all, they are a clear break with the Aristotelian for-

mulation, in which zero resistance would imply an infinite velocity. They also sug-

gest a vacuum, which the prevailing scientific thought considered a most unnatural

state: “nature abhors a vacuum.” Finally, since a vacuum was then impossible in

practice, the words proclaimed Galileo’s refusal to take nature as he found it. It was

his intent to describe a state of perfection to which nature can only approximate.

Nonetheless, Galileo could not cavalierly dismiss Simplicio’s objections.

Feathers do indeed fall more slowly than cannonballs. Here the master of experi-

ment asserts himself. If he cannot make resistance go away, he will prove his point

by making it worse! Salviati reports the result:

Have you not observed that two bodies which fall in water, one with a speed a hun-

dred times as great as that of the other, will fall in air with speeds so nearly equal

that one will not surpass the other by as much as a hundredth part? Thus, for ex-

ample, an egg made of marble will descend in water one hundred times more rap-
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idly than a hen’s egg, while in air falling from a height of twenty cubits, the one

will fall short of the other by less than four finger-breadths.

In short, if the deviations from his law are far worse in a dense medium than in

a thin one, is it not reasonable to suppose that they would disappear if the medium

were absent altogether?

As a final touch, Galileo insisted that the question of the possibility or impossi-

bility of a vacuum was quite irrelevant to the validity of his law. It is possible to un-

derstand nature in terms of approximation to an ideal state, even if that state cannot

possibly exist in nature.

The second part of Galileo’s description—how falling bodies gain speed—was

not a particularly radical departure. Aristotle might well have applauded it as an ex-

tension of his own style of physical thinking. But it does serve to illustrate the two

roles that mathematics would have in the “new science.” First of all, it would extend

our ordinary language. Second, it would provide a means of producing quantitative

predictions that would be the acid test of his ideas.

THE MATHEMATICAL LANGUAGE OF MOTION

The word speed is familiar, and so is its mathematical definition:

speed  

The word velocity is a synonym for speed in ordinary English. As used by physi-

cists, it has a slightly different meaning, as will be explained in chapter 2.

In order to deal with things whose speed changes, such as Galileo’s falling bod-

ies, we should qualify the above definition by calling it average speed.* The speed

at any instant can be measured by choosing a time interval that is short enough.

Isaac Newton’s calculus is a way of describing things by imagining infinitesimal in-

tervals, but we will not need to go that far. The simple cases we will treat may be vi-

sualized with the aid of a graph of distance vs. time.

When something moves at constant speed, the graph is a straight line, as in the

two examples in figure 1.2. The steeper the slope of this line, the greater the speed.

If the speed is changing, the slope of the line must change. In that case, we get a

curved line, like the one in figure 1.3. When we see a graph like this, we describe

the motion as accelerated.

In everyday speech, acceleration means just one thing, speeding up. As a physi-

cist uses the word, however, it can also stand for slowing down. In that case, the ac-

celeration is negative. In chapter 3, we will see this definition extended even further,

nearly losing contact with common usage. This tendency to borrow words from or-

dinary language, and then modify their meanings to suit a mathematical definition,

is one of the things that helps make physics confusing.

distance moved

elapsed time
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The mathematical definition of acceleration is contained in the formula

acceleration  

For example, a car that can go from zero to 45 miles per hour in 5 seconds ex-

periences an acceleration of 45/5  9 miles per hour per second.

If we allow acceleration to be a negative quantity, it serves equally well to de-

scribe slowing down. For example, if a car slows from 50 to 20 miles per hour in

6 seconds, the change in speed is 20  50   30 miles per hour, and thus the ac-

celeration is a   30/6   5 miles per hour per second.

In these examples, we have deliberately chosen different time units for speci-

fying speed (hours) and acceleration (seconds). Physicists usually use the same

units for both. In their favorite system of measures, the SI or “metric” system, that

9 miles per hour per second becomes 4 meters per second per second, which is then

shortened to meters per second squared or, in abbreviation, m/s2. The term can be

a source of confusion—what on Earth is a “square second”? The answer is that the

square merely signifies that to get from measurements of distance to those of ac-

celeration you must divide by time twice.

change in speed

elapsed time
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Had Galileo’s readers been more familiar with this language, he might have

condensed his description of falling body motion to a single succinct statement:

In the absence of resistance, all falling bodies experience the same constant

acceleration.

If the car in our example gains speed in that fashion, at the end of one second it

will hit 9 mph, 18 mph at the end of two, and after ten seconds would be at 90 mph.

Similarly, if it slows down at a constant  5 mph/s it will take ten seconds to come

to a dead halt from 50 mph.

But in Galileo’s day, there were no instruments that could directly measure either

acceleration or speed. Here is where a second role of mathematics comes in. Galileo’s

law was stated in terms of something that could not be directly observed. Mathemat-

ics would now derive from it a statement about things that could be. With the help of

a bit of simple algebra, Galileo was able to convert his statement about constant ac-

celeration into a relation between the things he could measure, distance and time.

The relation he derived was that for an object accelerating uniformly from rest,

the distance was proportional to the square of the time.

x  at21

2
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For example, an object released from rest will drop about 5 meters in the first

second. Then it will fall four times as far, or 20 meters, in two seconds, 45 meters in

three seconds, and so on.

The reason for squaring the time is straightforward. To go from acceleration to

speed, multiply by time. To get from speed to distance, multiply by time again, and

you have time squared. The factor 1/2 attests to the fact that the average speed of a

body accelerating uniformly from rest is half the final speed.

Getting down to measurables was not the end of Galileo’s difficulties. With the

best time-measuring instruments of his era, he could scarcely measure intervals to a

fraction of a second. Yet a heavy object dropped from the highest towers available

to him would be in flight for little more than three seconds. He had to find a way to

stretch out the time.

To remove this difficulty, Galileo chose not to study freely falling objects. In-

stead, he made measurements on a ball rolling down an inclined plane. He asserted

(but could not actually prove) that this would “dilute” the motion (i.e., reduce the

acceleration) without fundamentally altering its character.

Using a smooth board with a small tilt and a groove to guide the ball, Galileo

was able to study a motion that took about ten seconds to complete. His timer was

a water jar with a spigot at the base. The ball was released from various positions

along the board, and while the ball rolled the spigot was opened and water flowed

into a cup. Afterward, the cup was weighed, and the weight taken as a measure of

the time. The distance traveled was in proportion to the square of the weight of the

water, bearing out Galileo’s prediction.

Here is the essence of Galileo’s experimental method. Start with an idealized

description, stated in terms of unmeasurable quantities. Use your mathematical skill

to convert that into a statement about things you can measure. Does nature move too

quickly for you to follow? Slow her down in a way that you think changes nothing

important. This is a far cry from the Aristotelian scientist out in the field, taking na-

ture as given and carefully observing and sketching in a notebook.

But neither was it pure Platonism. An effort to understand free fall from that

perspective had been made a generation earlier, by none less than the quintessential

Renaissance man, Leonardo da Vinci. Searching for a simple mathematical rule,

Leonardo guessed that the distances traveled in successive seconds would follow

the sequence of ordinary numbers, for example, 1, 2, 3, 4, . . . . This was pure nu-

merology, and it was not quite right.

What gave Galileo the edge over Leonardo? One asset was of course his math-

ematical training. But it is perhaps more significant that he had started knowing the

correct relation of distance to time, having already discovered it experimentally!

The principle of uniform acceleration was not his starting point, but the conclusion

of a long chain of discovery, as we shall see in the next chapter.

WAS ARISTOTLE SO WRONG AFTER ALL?

If pure reason can lead a scientist astray, so too can unreasoned experimentation. If

Galileo had been able to observe the fall of fairly light objects from great heights,

and present the results in graphical form, he would have obtained the curve shown
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in figure 1.4. The reason for this curious behavior is very simple: As a body speeds

up, the resistance of the air to its motion increases. Eventually, a speed is reached

where the force resulting from the rush of air matches that pulling the object down

and no further acceleration takes place. Until it hits the ground, the object will con-

tinue to descend at a constant speed, called the terminal velocity.

If we compare bodies of the same size and shape, their terminal velocities are

proportional to their weights, a result quite compatible with Aristotelian physics. A

heavy steel ball falling from an airplane might require thousands of feet to achieve

terminal velocity. A human body acquires it in a few hundred feet. That is the secret

of sky diving, which is a long fall at terminal velocity, followed by opening a para-

chute to increase air resistance, and thus lower the terminal velocity to a safe value

for landing.

It is far easier to study the motion of something with a low terminal velocity,

such as a golf ball descending in water. There is no a priori reason why this ap-

proach to slowing down falling-body motion is any less legitimate than Galileo’s

inclined plane. An object can reach terminal velocity in a fraction of a second in wa-

ter. Had he chosen this route, Galileo might have concluded that Aristotle was basi-

cally right after all, and decided to ignore the period of fall before the object reaches

terminal velocity as a short term effect that soon goes away. Instead, he chose to ig-

nore the equally obvious small differences in the fall of heavy objects.

Galileo made the right choice, but that is clear only in the light of the subse-

quent history of his science. In some respects, Aristotle’s approach might have led

to a better description of nature. But Galileo’s idealization helped guide Newton to

his law of gravity, a half century after Two New Sciences. Surprisingly, more than

two centuries further down the line it still had the power to inspire scientific ad-
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vance. In 1908, Albert Einstein found in Galileo’s insight a deeper meaning than

anyone had imagined.

The lesson to be learned from this exercise is that there is nothing automatic

about scientific progress. Suppose this particular problem were currently on the re-

search frontier. A team of modern Ph.D. physicists might well receive a generous

research grant to study falling bodies, rapidly filling computer files with heaps of

data on falling objects in all possible combinations of shape, size, weight, medium,

and so on. Professors and graduate students would churn out a deluge of papers for

the scholarly journals, to advance their careers and justify all that expenditure of

public funds.

Chances are that faced with the necessity for explaining the data to a reasonable

degree of accuracy without a complete theory, they would move toward a point of

view like that of Aristotle, missing Galileo’s insight altogether. Science is more than

a mere attempt to describe nature as accurately as possible. Frequently the real mes-

sage is well hidden, and a law that gives a poor approximation to nature can prove

more significant than one that works fairly well but misses an essential point.

As important as it proved to be, Galileo’s idealization of falling-body motion

was no more than a starting point for a new science the old man could not hope to

live to see bear fruit, as he fully realized:

here have been opened up to this vast and most excellent science, of which my

work is only the beginning, ways and means by which other minds more acute than

mine will explore its most remote corners.

Summary

Galileo wrote the Two New Sciences late in life, after he had been barred from writ-

ing on astronomy. The centerpiece of the book was a new, idealized mathematical

description of the motion of falling bodies, a problem area for the established Aris-

totelian physics. In the absence of resistance all objects, regardless of weight, would

fall at exactly the same speed, and gain speed through uniform acceleration, where

the change in speed is proportional to the time. To make the latter statement exper-

imentally testable, he showed that it implies that the distance fallen is proportional

to the square of the time. Even then, he was obliged to test it not on freely falling

objects but on a ball rolling down an inclined plane. This was an outstanding exam-

ple of the distinction between experimental science and the passive observation of

nature. Though Galileo’s description was inadequate for understanding of the fall of

real objects subject to resistance, it led to later progress by others and plays a cen-

tral role in our understanding of gravity to this day.
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C H A P T E R  2

Toward a Science of Mechanics

If I have seen farther than others, it has been by standing on the shoulders

of giants.

—ISAAC NEWTON

Today, few of us have much trouble accepting the notion that we live on “spaceship

Earth,” that wonderful blue ball in the astronauts’ photographs, hurtling through the

cosmos at an unimaginable speed. It helps that many of us have ample experience

with smoothly moving conveyances like jumbo jets and ocean liners. If the air or sea

is smooth, it is hard to tell we are moving without looking out the window.

But Galileo and his contemporaries had little opportunity for a comparable ex-

perience. Thus it took quite a feat of abstraction to realize that it is not motion itself,

but deviation from smooth, steady motion, that we are able to sense. Underlying this

revelation are two important physical principles. Galileo did not invent either of

these principles, nor did he give them their modern names, but he did demonstrate

their power in his studies of the motion of projectiles.

This was Galileo’s most sophisticated contribution to science. If he was forbid-

den to state directly that the Earth could be moving without our being aware of its

motion, he would let projectiles make the argument for him. His celebrated falling

body law was actually a by-product of this research.

The two principles Galileo illustrated in his analysis of projectile motion were:

The Principle of Inertia. An object moving on a level surface will continue to

move in the same direction at constant speed unless disturbed.

The Principle of Superposition. If an object is subjected to two separate influ-

ences, each producing a characteristic type of motion, it responds to each with-

out modifying its response to the other.

Both principles are needed to counter the argument that if the Earth were mov-

ing, any time you jumped in the air you would find it impossible to come down in

the same place. The Principle of Inertia allows you to continue to share the motion

of the Earth, which is nearly a straight line, and the Principle of Superposition 

ensures that your jump will respond to gravity in the same fashion as if the Earth

were standing still.

The Principle of Inertia, like the description of falling-body motion, was a

choice between two extreme ways of idealizing a phenomenon. The motions we ob-



serve in the real world all have some tendency to continue after whatever causes the

motion is removed, but they persist for only a limited time. To cite two extreme ex-

amples, consider a stone dragged across rough ground or a hockey puck sliding on

smooth ice. The Aristotelian approach to motion concerned itself with the first case

and dismissed the persistence of motion as a temporary condition. By Galileo’s

time, however, there was considerable support, even among Aristotelians, for the

idea that motion has a natural tendency to continue unless something interferes.

Both Galileo’s and Aristotle’s approaches have some appeal to the intuition, and

there is no obvious basis for a choice between them. Once again, the most significant

test in the final reckoning was not which more nearly described a larger share of the

motions commonly found in nature, but which ultimately led to a deeper under-

standing. By accepting inertia, Galileo pointed the way to the triumphs of Newton.

One of the more dramatic illustrations of the Principle of Superposition is the

observation that if a gun is fired horizontally and, at the same instant, a bullet is

dropped from the height of the muzzle, both bullets will hit the ground at the same

time. In the absence of air resistance, the rapid horizontal motion has no effect on

the vertical motion. The winging bullet falls at exactly the same rate as the one

dropped from rest, and they remain always at the same height until they reach the

ground, as illustrated in figure 2.1.

Galileo’s work on projectiles began with experimental studies of exactly this

case. In place of a gun, he used a miniature “ski jump,” shown in figure 2.2. A ball

rolled down a ramp and flew off the end horizontally. To be sure that the ball always

flew off at the same speed, he always started its roll at the same point. The whole

apparatus was mounted on a support that could be raised or lowered.

Placing the ramp at various heights, Galileo measured how far away the ball

landed on the floor. He found that the vertical height through which the ball fell was

proportional to the square of the horizontal travel. To get the ball to land twice as far

away, you would have to raise the ramp not just two, but four times as high. As we

shall see below, it was this observation that first led him to the rule that for falling-

body motion the distance is proportional to the square of the time.

The first result of this work was that Galileo settled a long-standing argument

over how to describe the path of a projectile. You probably learned in high school

algebra that the graph of the formula y  ax2 is a parabola. Galileo was familiar

with this rule, and announced that he had demonstrated that a projectile follows a
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parabolic arc. For a lesser scientist, that would have been achievement enough. But

Galileo had far bigger fish to fry.

Guided by the Principle of Superposition, Galileo analyzed the horizontal and

vertical motions separately. The horizontal would be the simpler of the two because,

by the Principle of Inertia, the ball must continue its horizontal motion at the same

speed at which it left the incline. With the Sun directly above, the shadow of the ball

would move at constant speed. In this kind of motion, the distance covered is sim-

ply proportional to the time. So, he reasoned, the horizontal distance was a measure

of the time of flight!

Once he saw that, the conclusion was clear. For the vertical motion, which was

that of a freely falling body, the height was proportional to the square of the time of

descent. This, then, was the origin of this result, through an experimental obser-

vation. Only later did he test the rule on an inclined plane, as a further check of his 
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reasoning. Only later still did he realize that this behavior is a consequence of uni-

form acceleration.

Experiment had pointed the way, but simple facts demonstrate nothing. Only

with the aid of two scientific principles, neither of which were yet universally ac-

cepted, could Galileo uncover the deeper meaning of that parabolic path. Theory

without facts is blind, but facts without theory are lame.

In most practical examples of projectile motion, an object starts its flight near

the ground, with some upward vertical motion, rises to the top of its arc, and then

descends. It is easy to handle this case by means of Galileo’s analysis. One need

merely note that in uniform acceleration, the rising projectile loses speed at the

same rate the falling one gains it. It will take just as long to fall as it took to rise.

The starting point is to split the motion into horizontal and vertical components,

as indicated in figure 2.3. The vertical motion determines how long the projectile

will be in flight, while the horizontal specifies how far away it will land.

For example, let a football punt leave the kicker’s toe with a vertical velocity

component of 20 m/s, and a horizontal one of 15 m/s. Since the acceleration due to

gravity is around 10 m/s2, it will take two seconds for gravity to eliminate the rising

vertical motion, and another two to fall, for a “hang time” of four seconds. In that

time it will travel 4  15  60 meters (about 65 yards) down the field. This is an

ideal example—in actual practice air resistance will significantly shorten the punt’s

travel.

In general, one analyzes the vertical motion of a projectile to determine how

long it will be in flight, and then uses that result to determine how far it will go. If

the projectile has an initial vertical motion vv, it will rise to the top of its trajectory

in a time t  Vv /a. If it is moving above level ground, it returns to the same height

at which it started in an equal amount of time, so the total time in flight is double
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this value. One then multiplies by the horizontal velocity vh to get the distance trav-

eled, which is usually called the “range” R of the projectile.*

R  2 

Demonstrating two new principles and uncovering the law of falling bodies were the

payoff of this analysis. But to many of his readers, the discovery that the trajectory is

a parabola was the selling point, because next to a circle, the parabola is the simplest

curve in geometry. And in basic science, simple is usually taken to mean “important.”

For most of the history of modern physics, simplicity has been an aesthetic cri-

terion taken for granted. If a problem does not have a simple solution, physicists

tend to dismiss it as not fundamental. Today, the advent of computers powerful

enough to deal with complicated situations has begun to erode this faith in simplic-

ity as a test of the fundamental importance of a problem.

The true path of a projectile subject to air resistance is a difficult curve with no

simple mathematical formula, and is thereby dismissed as less fundamental than

Galileo’s parabola, even though the latter is a useless approximation to nature for

nearly all practical purposes. Indeed, the details of projectile motion in air were not

really worked out until well into the twentieth century.

DESCARTES, HUYGENS, AND MOMENTUM

The next major contribution to the understanding of motion came from the French

philosopher René Descartes, who was born a generation after Galileo. While

Galileo had made a good start at building his science from the bottom up, Descartes

tried to work from the top down.

Descartes fully embraced the rising rational spirit of his time, but he feared that

something valuable would be lost if the majestic worldview of scholasticism was

simply cast aside, with no intellectual system of comparable scope and grandeur to

take its place. How were the young to be educated? It would be tragic if they con-

cluded that reason was the implacable enemy of religious faith. Accordingly, he set

himself the life’s work of constructing a new general philosophy that would harmo-

nize the new science with theology.

His methods were far more Platonist than Galileo’s. He put great stress on the

discovery and use of first principles by pure thought, reasoning that since God is

good, He would not allow a clear thinker to have a wrong idea. As a young man of

the lower gentry, raised far from the center of French culture in Paris, he bypassed

a university education for training in practical matters.

For much of his life, Descartes earned his living as a military engineer, but

hardly had a soldierly temperament. In his day, civil engineering was the province

vvvh

a
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*For those familiar with trigonometry, this can be reduced to a statement in terms of the overall
speed of the projectile v and its starting angle  above the horizontal. Since vv  v sin  and vh  v

cos  , we have 2vvVh  2v2 sin  cos   v2 sin(2 ).



of the military, and his work was as concerned with roads and bridges as with guns

and fortifications. Given a frail constitution, much of his life was spent in semicon-

valescence, often living off the generosity of others.

To this day, French academic training encourages the use of his style of argu-

ment, which is called Cartesian. A basic principle is isolated and followed by im-

peccable deduction to conclusions of truly astonishing and often infuriating scope,

a practice that does not always sit well with more empirically minded scientists in

other lands.

Descartes’s contributions to mathematics went far beyond those of Galileo, but

his physics is best described as flawed and incomplete. The trial of Galileo took

place when Descartes was in his prime, and left a strong impression. He was loath

to compromise his larger goals by getting too involved in that controversy. Most of

his physics was published posthumously, in a form that reads more like a prelimi-

nary draft than a finished work.

Indeed, much of the credit for Descartes’s achievements in physics should go to

Christian Huygens, the son of a Dutch diplomat at whose home Descartes was a

frequent guest. Though he ultimately rejected Descartes’s philosophical system,

Huygens salvaged the best parts of his physics and corrected some of its more ob-

vious defects.

The achievements of Descartes’s mechanics fell far short of his projected goals,

but he left two indelible marks on the history of physics. First, he directed attention

to the problem of how one object transfers motion to another, an emphasis that

helped set Newton on the right path. Second, in the process of studying this prob-

lem, Descartes demonstrated the power of a remarkable format for constructing a

law of nature, the conservation law.

A conservation law might be called the scientific equivalent of the French apho-

rism, plus ça change, plus c’est la même chose (the more things change, the more

they remain the same). Applied to a complicated situation in which things are con-

stantly changing, a conservation law is an assertion that some simple quantity re-

mains the same. Present-day physicists are so accustomed to thinking in terms of

conservation laws that attempts to formulate new basic laws of physics are often

phrased in this form.

A conservation law rarely provides a complete description of a process, for in

spirit it implies that the details need not be considered—they will work themselves

out. Herein lies its power, for it is exempt at the outset from the necessity of dealing

with a phenomenon in all its complexity. To make an analogy with the social sci-

ences, it is as if a political scientist worked out a means of predicting the exact elec-

toral vote of a presidential candidate without being able to tell which way any

particular state would go.

The seventeenth century was a wonderful era for the craftsmen who were fash-

ioning better and more intricate machines, clocks being the most outstanding exam-

ple. Like many scientists, Descartes came to regard the universe as simply a

machine, the work of an Almighty Inventor. The key to understanding a machine, he

concluded, was to study how motion is transferred from one part to another through

direct contact. As the simplest example of this process, he focused on collisions. Ob-

jects are in contact for a brief moment, after which both have changed their motion.
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The law that Descartes used to analyze the simple problem of the collision of

two bodies was that of the conservation of momentum. Momentum to Descartes was

the product of the weight of a moving body and its velocity. In modern physics jar-

gon, we substitute the word mass for weight. Weight is used to describe the force

that gravity exerts on an object, which varies from place to place. But the physicist’s

term mass is closely related to the common-language meaning of weight.

As applied to collisions, the law of momentum conservation asserts:

When two objects collide, momentum may be transferred from one to the other, but

the total momentum does not change.

As an example, illustrated in figure 2.4, imagine two objects on one of the “friction-

less” surfaces beloved by writers of physics texts. One is stationary and has a mass

of 3 kilograms (kg), while the other is moving at 10 m/s with a mass of 2 kg. (This

book will, in most instances, use the highly Cartesian SI* or “metric” system of units.

We will shun English measures, a modern patchwork codification of medieval trade

units, adopted to minimize commercial dislocation, a practice the French might call
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typically Anglo-Saxon.) Before collision, the total momentum (in kilogram-meters

per second) is

p  2 kg  10 m/s  3 kg  0 m/s  20 kg-m/s

The use of p for momentum is another peculiar tradition, and the unit kilogram-

meters per second unfortunately has no shorter name of its own.

The law says that after the collision this sum will be the same. That is all it says.

It does not pretend to predict what speed either object will have. Further informa-

tion is necessary to settle that question.

The simplest case comes if the additional information is merely the qualitative

assertion that the objects stick to each other. Then we have a combined object of

mass 5 kg. In order to have a momentum of 20 kg-m/s, the same as before the col-

lision, this must have a speed of

 4 m/s

To give another example, the additional information could be a measurement of

the speed of one object after the collision. For example, we might find that the

struck one is moving at 8 m/s after the collision, in the original direction of motion

of the moving object. Its momentum is then

3  8  24 kg-m/s

What are we to make of this curious situation? We find we actually have 

4 kg-m/s more momentum than we started with! Descartes himself was baffled by

this case and concluded that when a light object strikes a heavier one, it must recoil

without budging it one iota, a conclusion that flies in the face of common sense. Here

Huygens came to the rescue. He realized that momentum must not merely take into

account the speed of motion but also its direction. Motions in opposite directions

cancel one another. If we count a body moving to the right as having positive mo-

mentum, one moving to the left must have negative momentum.

Thus the 2-kg body must have momentum of  4 kg-m/s. To find its velocity,

we divide the momentum by the mass, getting  4/2   2 m/s.

This example was not chosen at random. Note that after the collision the larger

ball is moving 8 m/s to the right and the lighter one is moving 2 m/s to the left. Thus

they are moving apart with a combined relative speed of 10 m/s. This is the same as

the speed at which they came together, before the collision. When this happens, the

collision is referred to as elastic. Its significance will become apparent later when

we introduce yet another conservation law, that of energy.

This is the basis for the distinction between the words speed and velocity, men-

tioned in chapter 1. When a physicist cares only how fast something is moving,

speed is the word of choice. If the direction is specified, the correct term is velocity.

The law of momentum conservation would also cover a situation in which the

2-kg body is moving 95 m/s backward while its partner moves 70 m/s forward. If

your intuition tells you that in this case we must be dealing with something more

than mere passive balls, you are perfectly right. But that is beyond the scope of the

20 kg-m/s

5 kg
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law of momentum conservation, which sees no fundamental distinction between the

three cases illustrated.

We have simplified the problem by assuming that the collision is head on and

that the bodies move along the original line of motion after collision. If we consider

motion in two dimensions, like the balls on a billiard table, we need simply invoke

the Principle of Superposition and apply momentum conservation separately in two

perpendicular directions. This complicates the mathematical description, but adds

nothing to the physical principle.

The examples we have chosen all involve the motion of two bodies. But the

principle can be generalized to any number of objects. Simply add up all their mo-

menta, and at any time in the future that will be the same, as long as none of the

bodies interacts with something outside the system.

THE CENTER OF MASS DOESN’T MOVE

To close this chapter, we derive a curious result of the law of momentum conserva-

tion. It is of no great significance in itself, but it provides a good example of the ap-

plication of the law. Furthermore, it will prove useful later in the development of the

theory of relativity:

If the center of mass of a group of objects is stationary, no interaction among

the objects can cause it to move.

The concept of center of mass was familiar to the ancient Greeks and is equally

familiar to any child who has played on a seesaw, for the center of mass is nothing

but another name for the “balance point.” If a 90-lb girl wishes to balance her 45-lb

brother on a seesaw, she must sit half as far from the center as he does. Stated math-

ematically, a seesaw is in balance if the product of weight and distance is the same

for both riders.

If we consider the somewhat more difficult case of two moving objects, it is

clear that if the center of mass is to stay put, the heavier must move more slowly

than the lighter. If a 90-lb object and a 45-lb one are approaching each other, as long

as the heavier one moves half as fast the center of mass remains at rest.

But from Huygens’s point of view, this is merely the situation where the total

momentum is zero. Two objects approach (or recede from) each other, the heavier

at the proportionally slower speed. Their momenta remain equal and opposite. As

long as no external influences come into play, the total momentum will remain zero.

As a final example, consider figure 2.5, in which a 150-lb man is standing at

one end of a 75-lb plank set on the ice so that it moves freely. As he starts to walk

to the other end, the plank slips in the opposite direction. Since it weighs half as

much, momentum conservation dictates it must move twice as fast. If the plank is

12 ft long, the man actually moves 4 ft while the plank slides back 8. When he gets

to the other end and stops, the plank stops too. Since he has moved half as far as the

plank, which weighs half as much, the center of mass has not moved.

In chapter 11, this seemingly innocent example will serve as the basis for de-

riving Einstein’s most celebrated formula, E mc2!



Summary

Galileo used his description of falling-body motion to analyze a more complicated

situation, the motion of a projectile. Horizontal and vertical motions were treated

separately, and Galileo’s assertion that they would not interfere with one another

was an early application of the Principle of Superposition. Horizontal motion con-
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tinues at constant speed, an example of the Principle of Inertia. The vertical motion

is that of a falling body, and the two combined lead to a parabolic path. Galileo had

discovered this path experimentally and reasoned back to uniform acceleration.

René Descartes and Christian Huygens developed the principle of conservation of

momentum, which provided both a way to quantify motion and a way to analyze

how motion is transferred from one object to another. One consequence of this prin-

ciple is that the center of mass of a group of objects remains in the same place as

motion is transferred between them. These three principles laid the groundwork for

Newton’s laws of motion.
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C H A P T E R  3

The Denouement:
Newton’s Laws

He has so clearly laid open and set before our eyes the most beautiful

frame of the System of the World, that if King Alphonse were now alive he

would not complain for want of the graces of simplicity or of harmony in it.

—ROBERT COATES, Preface to the Principia

In 1665, a mere 29 years after the publication of Two New Sciences, a student from

Trinity College of Cambridge University sat in Woolsthorpe, the quiet Lincolnshire

manor house where he had been born, putting the finishing touches on Galileo’s

“vast and most excellent science.” Driven from the crowded university town by the

last of the great plagues to devastate Europe, Isaac Newton made remarkable use of

his period of forced isolation from academic life, returning to the small freehold

where he had been born only 22 years before, on Christmas day.

A comparison of Galileo with Newton is a study in contrasts. Galileo’s worldli-

ness and boisterousness could hardly be more remote from Newton’s haughty, mys-

tical reserve. Galileo thought on his feet and was adept at public debate; Newton was

moody and temperamental and let others fight most of his battles for him, for he had

a neurotic fear of controversy and would often fly into a rage over even a minor dis-

agreement. Galileo barely hid his skepticism behind a formal capitulation to a church

tribunal without unduly burdening his conscience. Newton, on the other hand, re-

mained throughout his life a fanatically committed Christian with a personal theol-

ogy that would have branded him a heretic, had he not kept his views to himself.

Isaac Newton never knew his father, a prosperous but illiterate farmer who died

two months before his son’s birth. His mother’s family had enjoyed higher social

standing, and an uncle saw to young Isaac’s education. By his midteens he had de-

veloped an irritable, withdrawn, and studious temperament. At age 17, he left school

to take up management of the family estates, a task at which he failed miserably be-

cause of lack of interest. Accordingly, he was sent on to Cambridge University,

where several of his relatives had been educated. Like nearly all students at the uni-

versity, Isaac was expected to train for the clergy.

By the 1660s, this once-great intellectual center had deteriorated into little more

than a diploma mill. Degrees were handed out to just about anyone who hung

around (and paid fees) for the requisite number of terms. Most of the instructional

burden fell on the college fellows, who were supposed to tutor the students. But the

majority of the fellows were aspiring clergymen who had obtained their positions

by patronage or out-and-out bribery, and were simply biding their time until a more
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lucrative church position came open. Their stipends provided a reasonably com-

fortable life whether they actually tutored or not, and most would have been content

to remain in the college for life if they had been allowed to marry.

The new intellectual currents that were sweeping the European continent had

scarcely touched Cambridge, where the now-outdated Aristotelian canon still reigned

supreme. But this troubled young Isaac not a bit. Free at last from the dreary provin-

cialism of his boyhood, he quickly dismissed the required readings, realizing that he

would never be seriously examined on them. Books became his life, and he devoured

with great relish the new works that defined the growing scientific revolution.

Newton’s first two years at Trinity were undistinguished and uneventful. But

midway through his third year he discovered mathematics through the lectures of

Isaac Barrow, a swashbuckling figure who had returned from exile at the end of the

period of Puritan rule. Barrow held the newly created post of Lucasian Professor of

Mathematical Philosophy, the bequest of one Henry Lucas who hoped to rescue

Cambridge from its intellectual slough. Within six months, studying on his own,

Newton had mastered the subject to the limits of human knowledge. For the next six

months he navigated masterfully through uncharted waters, until one month after

the award of his B.A. degree he hit upon the central idea of what he called fluxions,

which we know today as calculus.

Though he was reasonably adept at mathematics, Barrow’s passion was to write

on theology, in hopes of finding a formulation that could cool the enmity between

Catholics and Protestants that had torn Europe apart. After six years, he relinquished

the Lucasian chair in hopes of securing an office more to his liking. As a close

friend of the executors of the Lucas estate, he was in a position to name his own

successor, and he startled the serene world of Cambridge by naming the obscure,

26-year old Isaac Newton. Thus began the distinguished history of this chair, which

today is held by Stephen Hawking.

For a natural recluse like Newton, the isolation of a scientist at Cambridge held

no terrors. He often found the hall empty when he came to deliver his lectures,

though his conscience obliged him to speak for at least a few minutes to earn his

keep. Otherwise free from any onerous duties he immersed himself in thought, often

laboring late into the night and sometimes going for days without bothering to eat.

He had little direct contact with other scientists, aside from an occasional din-

ner with a chemistry professor. Even this tenuous relationship was abruptly ter-

minated when his guest offended Newton by telling an off-color story that

involved a nun. In his heart Newton considered himself the world’s greatest math-

ematician and philosopher, but though he yearned for recognition he dreaded the

controversy and, most of all, the intrusions on his precious privacy that publica-

tion of his ideas might evoke. Unfinished manuscripts piled up in his study. For

more than twenty years, the world learned of his work mainly through tantalizing

fragments that appeared in his correspondence; but these alone were enough to

brand him a genius.

The natural milieu for English science was London, home to the astronomer

Edmund Halley, the architect Christopher Wren, and the philosopher John Locke, as

well as a rival physicist, Robert Hooke. Much of their life revolved around Britain’s

first scientific organization, the Royal Society. Its Latin motto was nullum in verbis,

28 The Denouement: Newton’s Laws



which translates roughly as “don’t take anybody’s word for it.” Only ideas that had

met the test of experiment were to be believed.

Members of this circle had grown up in a world torn by religious strife. They

had seen thousands die in battles at least nominally fought to settle the meaning of

a few lines of Holy Scripture. In their eyes, traditional religion had forfeited any

claim to be the ultimate fount of truth or the guarantor of a harmonious social order,

and they were looking for something to replace it. The new sciences seemed to of-

fer a better and more certain source of knowledge.

In their beliefs there was no place for the supernatural, nor any limit to the power

of reason to unravel the mystery of the cosmos. Though most accepted the basic

tenets of the Christian faith, they tended to be deists believing in a God who had set

down the laws of nature at the creation, but who did not intervene in the daily affairs

of the world.* They admired the mechanical philosophy of Descartes but distrusted

its adherents, whom they suspected of cloaking a new scholasticism in the garb of

science in order to reassert the intellectual authority of the Church. They saw in New-

ton a potential champion who could meet this threat on the highest intellectual plane.

Newton had little stomach for any such struggle. By the age of 40 he had largely

given up on mathematics and physics, and had spent nearly a decade secretly preoc-

cupied with alchemy and Biblical prophecy. But a fortuitous visit from Halley jolted

him out of this obsession. His scientific interest rekindled, he at last resolved to share

with the world his proudest accomplishments. Eighteen months of feverish labor

brought forth in 1686 the Philosophiae Naturalis Principia Mathematica (Mathemat-

ical Principles of Natural Philosophy), commonly referred to simply as the Principia.

NEWTON’S SYSTEM

The Principia was conceived as a showcase for Newton’s solution to one key prob-

lem, the one regarded by his contemporaries as the supreme test for science.

Christopher Wren had even offered a prize for the first person to solve it. Many of

the best minds in science had tried and failed.

This benchmark problem was to explain, rather than simply describe, the motions

of the planets. Newton was, first and foremost, the most accomplished and creative

mathematician of his age, but the task before him took more than mere computational

skill. On an intuitive and computational level, he had apparently solved the heart of

the mystery in his Woolsthorpe exile. But now, in his more mature vantage point, he

realized that his arguments would not be fully convincing until he devised a system

that could, in principle, be employed to study any kind of motion whatsoever. For the

first time, he resolved, a work that dealt with the real world would display a logical

clarity and completeness that rivaled that of Euclid’s geometry.

Newton’s key insight was that the work of Galileo, Descartes, and Huygens was

missing one key ingredient—a way to predict the transfer of motion. He would rec-

tify this omission by treating the transfer as a continuous flow, rather than the one-

shot transaction that Descartes had considered. To name this flow of momentum
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between objects, he formalized the definition of a word already in wide use—force.

In his usage, it stands for “momentum transfer per unit time.”

Newton introduced his scheme, in the manner of Euclid, by formulating three

postulates, which are known today as Newton’s Laws of Motion. It is instructive to

see these in Newton’s own language, with translations into modern terminology in

brackets:

Law I. Every body continues in its state of rest, or of uniform motion in a right

[straight] line, unless it is compelled to change that state by a force impressed

on it.

Law II. The change in motion [rate of change of momentum] is proportional to the

motive force impressed; and is made in the direction of the right line in which

that force is impressed.

Law III. To every action [change of momentum] there is always opposed an equal

reaction; or, the mutual actions of two bodies are always equal, and directed to

contrary parts [opposite directions].

We recognize the first law as Galileo’s Principle of Inertia, now elevated to a

general law that applies in all directions. It sets aside motion in a straight line at con-

stant speed as a special kind of motion, akin to rest, which needs no explanation or

cause. Any deviation from this kind of motion means a force must be present. Mo-

tions of this type are now called inertial motions. It is now clear that Newton only

came to finally accept this law during the writing of the final drafts of the Principia.

The third law is simply Newton’s restatement of momentum conservation, in

Huygens’s version of the law. But the second law is pure Newton. In our era, it

serves to define the SI unit of force, which has been appropriately named the new-

ton (abbreviated N). Force is momentum transfer divided by time, and a newton is

a transfer of one kilogram-meter per second per second.

In most transfers of momentum, the masses of both objects remain the same.

Only the velocities change. In these cases, we can express the second law as

F  ma

In chapter 1 we saw a car accelerating at 4 m/s2. If that car had a mass of 1000

kg, the required force would be 4000 N.

THE CRUCIAL PEG

The real power of Newton’s second law lies in the possibility of discovering laws of

force that allow us to predict the forces that come into play when two bodies interact.

This gives the scientist a clearly defined task, and a peg on which to hang the results.

For example, the force exerted by a well-made spring depends solely on how

much it is compressed or stretched. If two balls have this property, their collisions

will be elastic. Newton allows us to examine the brief moment of contact in detail.

In the early stages the balls deform, generating a force that eliminates their relative
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motion. Then they spring back with a force that has exactly the same strength,

restoring the original relative motion.

Once a force law is known, every detail of the motion can be predicted. Galileo

had been content with an approximate, idealized description of nature, but Newton

offered far more. If all the forces acting on an object could be taken into account, it

would be possible to predict its motion exactly. One could, for example, find the law

of force for air resistance. For anything more complicated than a smooth sphere,

however, this turns out to be terribly difficult.

In effect, this is the ultimate reconciliation of Platonist and Aristotelian science.

The observer’s real world does exactly mirror the mathematician’s ideal one, as

long as all the details are understood. In practice, however, this is usually impossi-

ble. To this day, test pilots must risk their lives in order that new airplanes can be

made to fly safely.

With the publication of the Principia, Newton’s physics achieved the status of

what Thomas Kuhn, a philosopher and historian of science, calls a paradigm. This

term is now widely used (and abused!), though there is some confusion as to exactly

what Kuhn intends it to mean. In this book, it will designate a group of related con-

cepts and methods that, at least in principle, enable one to completely understand

some well-defined class of phenomena.

For the Newtonian paradigm, the phenomena are all forms of motion, the con-

cepts are Newton’s laws plus the Principle of Superposition, and the method is the

formulation and use of laws of force. The later chapters of this book will concern

how this paradigm was replaced, in the twentieth century, by two new paradigms,

relativity and quantum theory.

GALILEAN RELATIVITY

Newton’s first law opened a philosophical quandary that was not resolved until the

twentieth century. Because of this law it is not possible, by means of any mechani-

cal experiment, to say absolutely whether something is standing still or moving in a

straight line at constant speed.

Put another way, in Newton’s physics, velocity is always relative, while accel-

eration is absolute. Two observers, moving with respect to one another in an inertial

fashion, will obtain different values for the velocity of every object they see, but

will always obtain the same value for acceleration. Because Galileo is credited as

the true originator of the Principle of Inertia, this feature of Newtonian physics is

called Galilean relativity.

A reference frame is a scheme for specifying the position of an object in three

dimensions, starting from some point of reference. For example, the directions

“north, east, and up” and their negative counterparts “south, west, and down” meas-

ured from some agreed-upon survey marker, constitute a reference frame.

An inertial frame is a reference frame in which Newton’s first law holds true. It

is to be contrasted with an accelerated reference frame, such as the interior of an ac-

celerating automobile, where things will not stay put unless held in place. A formal

statement of Galilean relativity can be phrased
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All inertial frames are equivalent; no mechanical experiment can tell you which is

moving and which is standing still.

This disturbed Newton, and he stubbornly insisted that despite the first law,

there must be some absolute standard for rest or motion, even if it be known only to

God. This lapse in logical self-consistency disturbed philosophers from Bishop

Berkeley in the eighteenth century to Ernst Mach in the twentieth. Only the work of

Albert Einstein finally put this question to rest.

GOING AROUND IN CIRCLES

The ancients regarded motion in a circle at constant speed as the purest form of mo-

tion, for it was the way most heavenly bodies appear to move. Newton’s scheme,

however, makes circular motion a bit more complicated. It is a deviation from iner-

tial motion, and as such requires a force.

This is intuitively reasonable. To swing a stone in a circle, you must tie it to a

string, which exerts a force. The motion is perpendicular to the force, for when the

string is taut the only direction the stone can move is perpendicular to the string.

Airplanes bank in order to turn; the lifting force on their wings, which is perpendi-

cular to the motion of the plane, is then no longer directly opposite gravity. It has a

horizontal component that causes the plane to turn.

The only problem with this form of motion is one of terminology. Physicists re-

fer to all deviations from inertial motion as accelerated motions. It is already a

strain on the common-language meaning of this word to use it to encompass slow-

ing down as well as speeding up. Now it is being stretched to cover a pure change

of direction, with no change of speed! Biologists, with their love for Greek and

Latin neologisms, might well have invented a new word. Keeping in mind that this

is a peculiar use of a common word, let us go along with the physics usage.

It should be fairly obvious that in circular motion the force, and therefore the

acceleration, is directed toward the center of the circle. For this reason Newton des-

ignated it as centripetal acceleration. The quantitative formula for the acceleration

of an object moving in a circle of radius r with velocity v was discovered by Huy-

gens and independently rediscovered by Newton:

a  

To derive this formula rigorously takes a bit of calculus, and is in any event

hardly worth the effort, so let us simply try to justify it intuitively. The r in the de-

nominator shows that it takes more force to hold an object in a small circle than in

a large one. Thirty miles per hour may be a placid speed on a freeway interchange,

but if you round a city street corner at this speed, you will hear a great squealing of

tires. The v in the numerator is squared because the speed makes the situation worse

in two ways: there is more velocity to change, and the change takes place more rap-

idly. A curve that is safe at 60 miles per hour must have a radius that is four times

larger than that of one safe at 30.

v2

r
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As a final example of this formula, consider the path taken by a racing car

rounding a curve, as shown in figure 3.1. A good racing driver enters the turn in the

outside lane, moves to the inside midway through the turn, and winds up on the out-

side. This path has the largest possible radius and thus permits the car to maintain

the highest possible speed.

MAKING PEACE WITH GALILEO

The central concern of the Principia was one force law, the law of gravity. The first

thing that had to be done was to accommodate Galileo’s law of falling-body motion

in Newton’s scheme.

Constant acceleration was no problem; it simply implies a constant force, the

force that physicists call the weight of the object. The awkward point was that 

the acceleration must be the same for all falling bodies. This is a surprising feature.
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The only way to produce it is with a force that is proportional to the mass of the

object.

We can see this by rewriting Newton’s second law as a  F/m. If one object is

twice as massive as the other, it will also have twice the force acting on it. The two

effects cancel, and the acceleration remains the same.

The acceleration due to gravity on the Earth’s surface, designated by the sym-

bol g, is about 9.8 m/s2. It varies a bit from place to place, because the Earth is not

a uniform sphere. For most purposes, 10 m/s2 is a good enough approximation. The

second law tells us that the force gravity exerts on an object of mass m is mg, so in

physicists’ usage, a kilogram “weighs” about 9.8 newtons.

The coincidence of a force exactly proportional to mass disturbed physicists for

generations after Newton. In our own century, it disturbed Einstein so much that it led

him to abandon Newtonian gravity altogether. That story will be told in chapter 12.

THE NEWTON CULT

The publication of the Principia put an end to Newton’s isolation, and made him a

public figure. More and more he found himself drawn to London, sometimes as an

official representative of his university. He found the stimulating city life more to

his liking than he had imagined, now that fame allowed him to enter it on his own

terms. His early support for the Glorious Revolution that dethroned King James II

and brought William and Mary of Orange to the English throne entitled him to a

public position, though it took several years of intrigue by powerful friends in Lon-

don to secure it for him. In 1696 he abandoned Cambridge for good to take up the

post of Warden of the Royal Mint. Though this was intended as a sinecure, Newton

took it seriously. Finding the affairs of the mint in serious disorder, he attacked his

work with his characteristic energy, displaying administrative skills surprising in a

man who had spent most of his life in isolation.

Most of all Newton was on display, an intellectual adornment for a Britain re-

born after decades of civil and religious strife. His London home became a salon for

British and visiting foreign scientists. When Peter the Great, the tsar who was drag-

ging a reluctant Russia into modern Europe, paid a state visit to England he made it

clear that the one person he truly wished to meet was Isaac Newton. Only one ves-

tige of Newton, the Cambridge recluse, remained: he never married, though his

household was graced by the presence of a young niece whose beauty and intelli-

gence added further luster to his reputation.

Once settled in London, Newton pretty much abandoned serious scientific

work, other than completing a few of his unpublished Cambridge manuscripts. He

served as president of the Royal Society, which he rescued from financial ruin by

running it with a dictatorial hand. His fame protected him from rumors of religious

unorthodoxy, and the true extent of his heresy, which rejected not only the doctrine

of the Trinity but the very legitimacy of the established Christian churches, re-

mained a secret up to the twentieth century.

After his death in 1727, the Newton legend continued to grow. The cult was nur-

tured by the otherwise skeptical thinkers of the Enlightenment. French rationalists
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embraced his system even more enthusiastically than the British. The coming of the

industrial revolution brought new, more practical concepts that went far beyond his

own ideas, but these were easily accommodated within his intellectual legacy, the

framework of the Principia. This monument was to endure unchallenged until the

first decade of the twentieth century.

Summary

The study of motion culminated in Newton’s Principia, which expounded his cele-

brated three laws. What is truly new is the second law, which defines force as a

steady flow of momentum from one object to another. If all of the forces acting on

an object can be quantified, its motion can be predicted. This elevates mechanics to

what Thomas Kuhn calls a paradigm. The goal of physical research is thus defined

as the discovery of quantitative laws of force. One by-product of this paradigm is

that the meaning of acceleration is expanded to encompass change of direction as

well as change of speed. Newton was helped in his career by a circle of thinkers that

included Edmund Halley, Christopher Wren, and John Locke, who extolled the lim-

itless power of human reason. In private, however, his religious and philosophical

views had little in common with their own.
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C H A P T E R  4

The Moon and the Apple

He lives below the senseless stars and writes his meanings in them.

—THOMAS WOLFE

Newton’s fame rested on linking the divine heavens with the profane Earth, hold-

ing out the implied promise that his science might someday bring celestial certainty

to Earthly affairs. To understand the nature of this achievement, let us review the

history of the central problem in the Principia.

By Newton’s time, the Copernican scheme had been refined by a new and

mathematically simpler description of the planetary orbits. This was the product of

two of the most unusual figures in the history of science: Tycho Brahe, who ob-

served the planets with an unprecedented precision, and Johannes Kepler, who

found in Brahe’s observations a new response to Plato’s plea.

THE MANGY DOG AND THE MAN WITH THE

GOLDEN NOSE

Johannes Kepler was born eight years after Galileo in the town of Weil der Stadt in

the Duchy of Wurttemberg, in southwest Germany. His father was a ne’er-do-well

soldier of fortune who somehow won the hand of the daughter of the town’s mayor.

He simply vanished when Johannes was in his teens.

The Dukes of Wurttemberg were enlightened rulers, and provided scholarships

to the University of Tubingen for bright students who, like Kepler, could not other-

wise afford to go. There he fell under the influence of the astronomer Michael

Maestlin, who spotted and cultivated Kepler’s mathematical talents.

Kepler nonetheless persevered in his intention to study for the ministry, until

it became clear that he could not fully accept the Lutheran credo. To spare every-

one embarrassment, the university senate posted him as mathematics teacher to the

Lutheran school at Graz in western Austria. He also served as court mathematician

to the Catholic rulers of the province. A few lucky astrological predictions kept

him in their good graces, while a book of mathematical speculations about astron-

omy, the Mysterium Cosmographicum, earned him a modest reputation among 

astronomers.
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Though rewarded by fame, Kepler was never to know either prosperity or peace

of mind. Tortured by real and imaginary illnesses, denied his salary by some of his

patrons, forced to break off his labors to defend his somewhat dotty mother from a

charge of witchcraft, his life was a frantic juggling act to keep the wolf from the

door and the demons in his mind at bay. He chose for his own person the metaphor

of the mangy dog.

The turning point in Kepler’s life came in 1600 when a ban on Protestants

forced him to flee Graz for Prague, where he was offered refuge as an assistant to

Tycho Brahe, the foremost astronomer of his time. Tycho had deserted his native

Denmark for rather different reasons.

Tycho’s origins were as splendid as Kepler’s were mean. Born of the union of

two of the leading families of the Danish nobility, he was pointed by family tradi-

tion toward a career in the service of the crown. But as a 14-year-old student at the

University of Copenhagen, he witnessed a total eclipse of the Sun, always an awe-

some and terrifying sight. What most impressed Tycho was the fact that it had been

predicted, with seemingly uncanny precision, by astronomers. Tycho decided that

any calling capable of such a feat was well worth devoting one’s life to.

Studying astronomy on the sly while supposedly preparing for a legal career, Ty-

cho soon discovered that the precision that had attracted him to the subject still left

a great deal to be desired; in particular, tables of planetary motion could be trusted

only for a few decades or so. After this, they were likely to be off by days or even

weeks. He correctly perceived that any improvement must rest on better instruments,

and he combed northern Europe in search of artisans who could build them.

His big break came in 1572, in his twenty-fifth year, when a supernova erupted

in the northern sky. It was a sensational event, a new star that for months far out-

shone every star and planet in the heavens. His superior measurements proved that

this astounding object lay far beyond the atmosphere or even the planets, in the do-

main of the supposedly unchanging stars. This discovery became the basis for a

book expounding his scientific philosophy, which made him an international

celebrity. Capitalizing on his fame, he toured Europe’s great centers of learning, and

resolved to settle in Basel.

Compared to southern Europe, sixteenth-century Denmark was an uncivilized

nation, but it was a rich one. Its prosperous farms fed much of northern Europe. The

Protestant Reformation had placed much of its wealth, the former church lands, in

the hands of King Frederick II. This sovereign was determined not to lose his most

celebrated subject, and made Tycho an offer unprecedented in the history of science.

He would get the island of Hven as a site for his observatory, the income from sev-

eral parishes to support it, and generous grants from the royal purse to build the finest

instruments skilled hands could fashion. Tycho adorned the island with a splendid

Italian Renaissance palace, in sight of Hamlet’s brooding medieval castle of Elsinore.

This was “big science,” even by present-day standards. Tycho presided over a

large staff of artisans and students, with duplicate equipment that permitted four

simultaneous independent observations, all but eliminating human error. Tycho

and his students improved the precision of astronomy, frozen at ten minutes of arc

since the days of Ptolemy, to one minute. All this was done with the naked eye, for

Galileo’s telescope was still several decades in the future.
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Tycho was far from a hero to many of his noble peers. A great bear of a man,

fully endowed with the arrogance of his class, he upbraided the nobility for their

preoccupation with hunting, gluttony, lechery, and dueling (Tycho himself, in his

youth, lost most of his nose in a duel, replacing it with one fashioned from an alloy

of silver and gold). He further scandalized them by marrying the daughter of a peas-

ant from one of the Brahe estates, which by Danish custom made his children

illegitimate.

For more than 20 years Tycho scanned the skies from Hven. The end product

was a superb catalog of the thousand brightest stars, and the most accurate and con-

tinuous log of planetary positions ever taken. But King Frederick passed on and his

son Christian IV had little patience with his father’s expensive hobby. In addition,

he was strapped for revenue for a war with Sweden that was going badly.

Citing as an excuse Tycho’s exactions of labor from the peasants of Hven,

which were undeniably excessive, and his neglect of the churches given over to his

care, Christian deprived the observatory of much of its income. Incensed, Tycho left

for Prague to enter the service of Rudolf II, the Holy Roman Emperor, who was

himself an amateur astronomer.

Tycho carried with him his instruments and his precious tables of observations.

He hoped to crown his fame with his own cosmic model, which would incorporate

the virtues of the Copernican scheme while allowing the Earth to sit still, as Aris-

totelian physics said it must. Kepler was hired to carry out the arduous calculations

required to complete this task. Confident of his own powers of persuasion, Tycho

cared little that his new assistant was a convinced Copernican.

As indicated in chapter 1, Tycho’s model was indistinguishable from the Coper-

nican scheme—the apparent position in the sky of the Sun and planets would be the

same. A mechanical model of Tycho’s system would be the same as the Copernican.

The only difference would be whether the Sun or the Earth was attached to the sup-

port stand.

This scheme was widely accepted among astronomers, especially by a group of

Jesuits who had used the strong discipline of their quasi-military society to coordi-

nate a well-organized program of observation. It was on the basis of Tycho’s

scheme that they rejected Galileo’s arguments for the Copernican system in the

Siderius Nuncius. Galileo’s telescope had revealed that Venus shows phases like the

moon, with the illuminated side always facing the Sun. But that merely proved that

Venus moved in an orbit centered on the Sun. It was still possible to believe the Sun

orbited around the Earth.

Only physics, not observation, could settle this question, and Kepler was one of

the first astronomers to fully grasp this. In his most important work, Astronomia

Nova (New Astronomy), he proclaimed “You physicists, prick up your ears! I am

about to invade your territory.”

KEPLER CHARTS THE MOTIONS OF THE PLANETS

Tycho was to live less than one year after Kepler’s arrival in Prague. Kepler inher-

ited both Tycho’s job and his notebooks, though his rights to the latter were chal-

lenged by Tycho’s heirs. What he did with them was a tour de force of data analysis,
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one that looks impressive even from the vantage point of the computer age. His sen-

sitivity to both the value and the limitations of precision measurement was centuries

ahead of its time.

The record of Kepler’s labors survives in two great works, Astronomia Nova and

Harmonice Mundi, and in notebooks that detail nine hundred pages of laborious hand

calculations. They are a unique legacy, for Kepler carefully reported not just his con-

clusions but a complete account of the tortuous path he took to arrive at them, replete

with false starts, blind alleys, and wrong hypotheses discarded only after months of

patient toil. Interspersed are fragments of verse in which he castigates himself mer-

cilessly for his temporary failures and exults wildly in his final triumphs.

Most of all, however, Kepler’s writings reveal the mystical vision that drove

him to this great rational triumph. He put the Sun at the center of his universe be-

cause, as the giver of light and life, it was closer to God than the base Earth and thus

more worthy of the honor. He pursued the planetary orbits relentlessly, certain that

they would provide a divine lesson in geometry and the laws of musical harmony.

This, the dominant vision of Kepler’s life, proved a false lead. But on the way to this

personal disappointment, he left behind a description of planetary motion in three

“laws” that endure to this day. Since the first two are geometric, they are illustrated

in figures 4.1 and 4.2.

1. The planets travel in ellipses with the Sun at one focus.

2. The area swept out by a line drawn from the Sun to a planet is the same in

equal time intervals.

3. The square of the length of each planet’s year is proportional to the cube of

the major [long] axis of its orbit.

The second law indicates how the planets vary in speed through their orbits,

moving fastest when nearest the Sun and slowest when farther from it. The third

shows that the outer planets move more slowly in their orbits than the inner ones,

and thus the length of the year increases more rapidly than the size of the orbit. If

there were a planet with an orbit four times the size of Earth’s, its period would be

eight years, since 43  82  64.
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Kepler’s third law also applies to satellites of the Earth. The space shuttle,

launched into low orbits only a bit larger than one Earth radius, takes about an hour

and a half to go around once. At 6.8 Earth radii, the period is 24 hours; a satellite

placed in this orbit above the equator will appear to be stationary in the sky. That’s why

this orbit is used by communications satellites: a dish antenna can be aimed once and

will continue to track the satellite. Finally the Moon, in an orbit 60 times larger than

the radius of the Earth, takes 29 days to complete one month. In each case, if you take

the ratio of orbit radii and cube it, you get the square of the ratio of orbital periods.

Though Kepler’s orbits are ellipses, they are not very elongated ones. In a scale

drawing, it would be hard to distinguish them from circles by the naked eye. But the

small deviations from perfect circles are important, because they allowed Newton to

convincingly demonstrate that only one kind of force could produce such motions.

Kepler’s abandonment of uniform circular motion was a daring break with the

traditions of astronomy. It was guided by physical insight: he could not stomach

epicycles, because he wanted the planets to be moved and steered by forces ema-

nating from material objects. The center of an epicycle, whether it be in Ptolemy’s,

Copernicus’s, or Tycho’s scheme, is nothing but a moving geometric point. Kepler

even insisted that gravity was a universal force of attraction among all objects, our

modern view. But he had not yet fully embraced inertia, so he also imagined a

propulsive force to keep the planets moving.

Today we recognize Kepler’s second law as an example of the conservation of

angular momentum, a measure of rotary motion. The formula for angular momen-

tum is mvr cos  , where r is the distance to the center of rotation and  is the angle

between the direction of motion and the line drawn to the center. Dancers and fig-

ure skaters put this law to good use when they pull in their arms close to their bod-

ies in order to increase the speed of a spin. For a planet, it means the planet moves

fastest when it is closest to the Sun.

Kepler’s laws were eagerly embraced by the new philosophers of the seven-

teenth century, except for Galileo, who stayed true to his Platonism by embracing

the empirically indefensible circular orbits in his Dialogue. Perhaps he was jealous

of Kepler’s achievement, which threatened his status as the foremost advocate of

the Copernican view. The followers of Descartes claimed that the laws could be ex-
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plained by assuming that “empty” space is filled with a material substance moving

as a vortex (whirlpool) centered on the Sun. But they never succeeded in construct-

ing a mathematical proof to back up this claim. By Newton’s time, Kepler’s laws

were recognized as the supreme achievement of empirical science, and explaining

them was accepted as the supreme test that any new philosophy must meet. That

was the basis for Wren’s offer of a prize for the solution of this problem.

While he may not have gotten the physics quite right, Kepler had set the table.

It was Newton who would fill it with a sumptuous feast.

THE LAW OF GRAVITY

In chapter 3, we noted how Galileo’s law forced Newton to make gravity propor-

tional to mass. Accepting Kepler’s notion of a universal attraction, it seemed logical

to make it proportional to the masses of both objects. This was a blessing in disguise,

for Newton had no way of estimating the mass of the Earth, Sun, or planets. With

Galileo’s law extended to heavenly bodies, Newton could ignore the planetary

masses and move on to Kepler’s laws.

A major portion of the Principia is devoted to detailed, difficult geometric argu-

ments designed to explain the significance of Kepler’s work. First, he proved that the

second law requires that the planets move subject to a force directed toward the Sun.

Newton then demonstrated that Kepler’s first and third laws were possible only

for a force that diminished with distance in one particular mathematical way. It must

wane in proportion to the square of the distance. Move twice as far from the Sun,

and the force would be four times weaker. This is known as the inverse-square law.

Newton’s law of gravity can be summarized in one formula:

F  G

where F is the force of attraction between two objects, m and M are their masses, r

is the distance between them, and G is a fundamental constant that sets the strength

of the force.

Wren and Halley had guessed the inverse-square character of the law of grav-

ity. First, if you treat the planetary orbits as circles, ignoring the slight deviations, a

little simple algebra will get you from an inverse square law to Kepler’s third law.

Second, an inverse square law seemed reasonable. Anything (such as light) that ra-

diates equally in all directions will spread over an area that increases as the square

of the distance, so it must diminish in strength in the same fashion.

To show that the inverse-square law gave all three of Kepler’s laws took all the

mathematical skill that Newton could muster. For example, he had to prove that for

an inverse-square law it is the distance between the centers of spherical objects that

counts. These proofs would have been a considerable achievement, admired by

Newton’s fellow mathematicians, but unlikely to have a strong emotional impact on

the public at large. What crowned Newton with fame was finding a connection be-

tween this force and the familiar pull of gravity we experience here on Earth.

mM
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The perceptive reader may have noticed by now that while the Moon is featured

in the title of this chapter, it is the one heavenly body whose motion has not yet been

discussed. All the cosmic schemes we have outlined concede that this one body, at

least, orbits the Earth. By Newton’s time, its distance from Earth was known to rea-

sonable accuracy. This gives the Moon a crucial role in our story, for it provided

Newton his indispensable link between the heavens and Earth.

THE MOON IS THE KEY

In his later years, Newton always maintained that he had happened upon the law of

gravity at the age of 23, when the fall of an apple at his Woolsthorpe home provoked

him to wonder whether the force that made it fall might extend as far as the Moon.

He knew that the distance to the Moon was 60 times the radius of the Earth. A quick

calculation to check this idea (in English units, of course, though we shall stick with

SI) showed him the Moon’s acceleration was far less than that of the apple. The

Moon is 380 million meters from the center of the Earth, moving at an average

speed of 1016 m/s. By the formula for centripetal acceleration,

a      0.00272 m/s2

much smaller than the typical value of 9.8 m/s2 at the Earth’s surface. The natural-

ness of an inverse-square law then popped into his mind. Since the apple is just 1

Earth radius from the Earth’s center, while the Moon is 60, the acceleration of the

moon should be 602  3600 times smaller:

a   0.00271 m/s2

Given the small variations of all the numbers involved, this was close enough. The

result was electrifying. A quantitative link had been found between a phenomenon on

Earth and one in the heavens. The Moon was the one heavenly body known to orbit the

Earth, and it had been shown to move in response to a force that could be connected

quantitatively to the gravity that caused the apple to fall. A new and truly universal sci-

ence had been born. Why, then, did Newton wait another 20 years to tell the world?

His own explanation makes for an odd tale, resting on a peculiarity of English

measures. Away from the libraries of Cambridge, Newton had to fall back on his

prodigious memory. He knew the acceleration due to gravity in feet per second

squared. To compare this to the Moon’s acceleration, Newton needed to know the

distance to the Moon in feet, and its speed in feet per second. He got this from two

other facts: a mile has 5280 feet, and the circumference of the Earth is 21,600 miles.

But there are two kinds of miles: 5280 feet is a statute mile, whereas 21,600 is the

Earth’s circumference in nautical miles, which are 6071.1 feet each! He was left

with a 15 percent discrepancy, which caused him to drop the problem until solicited

by Halley to try for Wren’s prize.

This story is a bit hard to swallow—not that he could have made such an error,

but that it would have caused him to give up. It must be remembered that this was

9.8 m/s2

3600

(1016 m/s)2

380,000,000 m

v2

r
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a tale told by the later Newton, the London social climber. It supports the claim

that Newton discovered the inverse-square law long before Halley and Wren

guessed at it.

Be that as it may, this peculiar tale in no way diminishes the luster of Newton’s

accomplishments. Today, the study of Newton’s private papers has revealed that

while he owed many of his key insights to his hiatus at Woolsthorpe, it took some

time to fully realize their consequences. Still, prior to Newton there had never been

a work quite like the Principia, and there have been few comparable scientific

achievements since. And we must not forget the calculus, the mathematics of contin-

uous change, the first body of mathematics that was wholly a product of European

culture. Newton worked out most of his problems with the aid of this tool, but did not

actually use it in the Principia, which he wrote for the broadest possible audience.

HYPOTHESES NON FINGO

If the theory of gravity was Newton’s greatest accomplishment, one feature of it

was to provide his most severe trial. This was the notion of action at a distance, that

two bodies could attract one other with nothing intervening but empty space. Pri-

vately, Newton dismissed this idea as absurd and was sure that some “agency” must

transmit the force, though he had no clue to what it might be.

But his public stance was far different. With his disdain for the give-and-take of

scientific debate, he opted out of the dispute with a haughty “hypotheses non fingo,”

by which he meant “I do not engage in idle speculation.”

In his own time, this disclaimer left Newton vulnerable to attack from the Carte-

sians, who scented in it the very kind of “occult” explanation of nature that science

was supposed to have banished forever. Forces, they felt, should be transmitted by

direct contact. Newton regarded such literal mechanical models of the universe as

naive, and was willing to accept unseen influences that fell outside their scope.

Indeed a dominant theme in the history of modern physics has been the strug-

gle to expunge the intangible and unseen in favor of things substantial and material.

On several occasions, this effort has seemed on the verge of success, only to be

thwarted once again. Today, as we shall see in the final chapters of this book, the in-

substantial has triumphed utterly, and the “agency” that Newton so cavalierly dis-

missed has taken primacy over matter itself.

A TRULY UNIVERSAL FORCE?

Newton’s law of gravity is an outstanding example of a scientific law that is far

more than a simple summary of observed facts. It contains elements that were put

in for formal or aesthetic reasons. Many things it implies were untestable by exper-

iment in his day, and some remain so today.

In all the cases Newton dealt with, one or both of the pair of attracting objects

was of astronomical size and unknown mass, for gravity is in fact a very weak force.

The attraction between objects small enough to pick up and weigh is undetectable
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by any but the most sensitive instruments. Thus he had no way of obtaining a nu-

merical value for the constant G. The assumption that gravity is a universal force in

which both partners are equivalent was an aesthetic choice.

It was not until early in the nineteenth century that Henry Cavendish developed

an instrument that could detect the feeble force between two objects in the labora-

tory. By then the faith in Newton’s law of gravitation was so great that Cavendish

did not call his experiment a “confirmation of the law of gravity,” but instead styled

it “weighing the Earth.” Since he had measured the force between objects of known

mass a known distance apart, he could solve for G as the one remaining unknown in

the equation. Once G was known, the force on an object could be used to calculate

the mass of the Earth.

Indeed, to this day the only way we know the mass of any astronomical body is

by assuming that the law of gravity is correct. If the dependence on mass is some-

44 A Truly Universal Force?

TABLE 4.1.

There is a force Required assumption to fit gravity into Newton’s system.

Whenever motion is accelerated, there must be a force. There is no

other basis for this assertion.

of attraction Newton proved that Kepler’s second law shows the force points

along the line joining the Sun and planet.

between all objects 130 years would elapse before the force between two objects one

can pick up and handle was observed. But assuming no distinction

between a planet and a rock other than mass was aesthetically

pleasing.

across empty space, Most objectionable aspect of the theory to Newton’s

contemporaries. Regarded by some as a return to prescientific

“occult influences.” Lacking any observable mechanism to

transmit the force, Newton found it unavoidable.

proportional to m In cases available to Newton, only motion of the smaller object

was observable. The evidence that the force on it was proportional

to mass was essentially negative: Galileo’s falling-body law

shows no dependence of acceleration on mass.

and to M There was no way to measure the mass of the Sun or a planet, so

the dependence on the larger mass was untestable. It remains

largely so today. But treating both objects symmetrically preserved

an aesthetic quality appropriate to a universal force.

and to 1/r2. Kepler’s first and third laws both indicate that the accelerations

of planets vary in this fashion. The comparison of the Moon’s

acceleration to that of falling bodies on Earth shows that Earth’s

gravity also obeys the rule. Thus this feature had strong empirical

support.



what different for very large objects, we would have no way of knowing it. Even the

inverse-square character is not established beyond challenge: in the 1980s some

measurements of variations of the Earth’s gravity over distances of hundreds of me-

ters suggested that for short distances the law might be wrong by as much as 1 per-

cent. These measurements have been disputed, but such is our faith in gravity that

their authors never claimed to have found a violation of Newton’s law, but simply

to have discovered a new force that interferes with it.

The search for deviations from the inverse square law at even shorter dis-

tances—fractions of a millimeter—is now an area of active research because they

might shed light on the relation of gravity to other fundamental forces. We will re-

turn to this topic later.

Table 4.1 breaks Newton’s law of gravity into seven statements with the justifi-

cation for each. Empirical evidence is cited in boldface type, to emphasize how

much the law rests on other considerations.

Summary

The conflict between an Earth-centered and a Sun-centered universe was brought to

a head through the work of Tycho Brahe and Johannes Kepler. Tycho improved the

precision of astronomy through better instruments and a team approach. He hoped

to establish a system in which the Earth was at rest, but all the other planets moved

in orbits centered on the Sun. Observationally, such a system would be indistin-

guishable from one with the Sun at its center. After Tycho’s death Kepler used his

data to find the correct mathematical form of the orbits in a Sun-centered system.

The central problem of Newton’s Principia was to derive these orbits from his law

of gravity, in which force was proportional to the masses of both objects and the in-

verse of the square of the distance between them. Through the Moon’s motion he

was able to link this force to the acceleration of gravity on Earth, the first quantita-

tive connection between celestial and terrestrial phenomena.
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C H A P T E R  5

The Romance of Energy

may God us keep

from single vision, and Newton’s sleep.

—WILLIAM BLAKE

Throughout its history, science has experienced a creative tension between two con-

trasting approaches to nature, which today go by the names reductionism and holism.

Reductionism holds that true understanding of nature is to be sought beneath the sur-

face, in the hidden workings of a few simple principles. Holism takes nature as it is,

and looks for the complex web of interconnections between its parts, connections that

it holds to be more important in shaping the world we live in than the parts themselves.

Put another way, reductionists view the world as a machine, and a machine is

best understood by discerning the operations of its parts. Holists see it as an organ-

ism whose parts draw significance from the way in which they relate to the func-

tioning of the whole.

Since at least the time of Galileo, physics has been unabashedly reductionist in

its approach. Still, from time to time holistic ideas have had a significant impact on

its development, though in these instances it eventually returned to its reductionist

roots. The story of energy is an outstanding example of this process.

The century following the publication of the Principia was one of unbroken tri-

umphs for Newtonian physics and the astronomy it served so well. Calculus was

honed into a fine analytic tool and the motions of the Moon and planets were

charted to astonishing precision. Nonetheless, toward the end of this period, quite a

few scientists began to realize that Newton’s laws and the concept of momentum

were not as complete a science of motion as one might want. The Newtonian para-

digm had to be extended to deal with a number of practical questions.

The problem was that Newtonian physics simply took force as a given and went

on from there. It offered no way to even ask a question that the pioneers of the in-

dustrial revolution confronted daily: What does it take to generate a force? Engi-

neers and inventors wanted to move machines, goods, and people more effectively,

and all Newton had to offer them was the assurance that however they managed to

do it, an equal and opposite motion would inevitably arise in the process. In most

instances, this was of little practical help.

At the same time many poets and philosophers, who once applauded the liber-

ating influence of the Newtonian spirit, began to speak of its darker side. The cool
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analytic method, seeking precision through a reductionist process of dissection, of-

ten lost sight of the beauty and unity of nature. While they still extolled the power of

human reason, they feared a sterile rationalism that seemed to leave no room for the

emotional wellsprings of creative thought.

The impact on physics of these two criticisms, which arose from seemingly op-

posite poles, would be a happy fusion in the concept of energy. Today, energy ranks

as the central unifying core of physical science, one by which physics reaches out

to embrace all other sciences and the practical world.

MUST WE “PAY” FOR A FORCE?

A few examples will serve to reveal the practical shortcomings of strictly Newton-

ian physics and point the way to new concepts that make it more practical.

Consider first a bullet fired from a gun. Momentum conservation requires that

the gun recoil with momentum equal and opposite to that of the bullet. Their com-

bined momentum was zero before and remains zero afterward. Yet simple common

sense tells us that something significant has changed. Something was taken from a

bit of gunpowder and was transformed into the motion of the bullet and gun. In the

process, the powder was transformed and lost the capacity to do this again. Some-

how, physics should be able to make a clearer distinction between the situation be-

fore and after.

Another very familiar practical use for a force is propelling a car. Much of the

time, the car moves at a fairly constant speed, yet some force is still needed to over-

come friction and air resistance. From the point of view of Newton’s laws, this is a

thoroughly uninteresting case. The motive force exactly balances the resistance, so

the net force and acceleration are zero. The only recourse for the designer is to

measure the force required and see to it that the motor is up to the task.

Newton’s laws are not entirely useless in this situation. They do tell the de-

signer how much additional force is needed to accelerate the car and how much

force the brakes must exert to stop it. They also give a reminder that these forces

produce equal and opposite reactions on the road.

But we know that the motor needs fuel while the brakes do not. The brakes,

however, do heat up, and to get rid of this heat air must flow over the brakes. The

questions of how much fuel the motor must burn and how much heat the brakes

must shed seemingly lie beyond the whole science of motion.

When the car is rounding a curve at constant speed, the situation is entirely dif-

ferent. The driver hardly exerts any effort at all, even in a car without power steer-

ing. But if the curve is taken at close to the maximum safe speed, the acceleration is

nearly as great as it is in a jackrabbit start with the engine roaring.

To speed up a car, we take something from the fuel; to stop it, we discard heat;

to simply change direction, nothing is taken from or lost to the outside world. Yet in

each case, the force has about the same strength. It is the direction of the force that

makes these situations different. A forward force must be paid for; one to the rear

obliges us to get rid of something; while a force perpendicular to the motion costs

nothing.
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Using these examples as a guide, we can outline a three-step program for a

more practical science of motion:

1. We need a new conservation law based on a nondirectional measure of

motion, which, unlike momentum, does not cancel out motions in opposite

directions.

2. The connection of this measure to Newtonian physics must take into account

the direction of the force relative to the motion, so that a forward force has a

positive effect, a backward force a negative one, and a perpendicular force no

effect at all.

3. Finally, we must find connections to things that seem at first glance to have

nothing to do with motion, such as heat or the power that resides in fuels and

explosives.

It is time to give a name to the mysterious something we are looking for, which

manifests itself sometimes as motion and sometimes in other forms. It is called en-

ergy, a word borrowed from the same poets and philosophers who assailed New-

tonian science. We will begin our quest for energy by building outward from the

Newtonian paradigm.

WORK AND KINETIC ENERGY

The first two steps are taken care of by expanding the Newtonian language of mo-

tion. We introduce a new measure of motion that stands on an equal footing with

momentum but does not replace it. It is called kinetic energy (K), which is defined

by the formula:

K  mv2

Squaring the velocity is what makes kinetic energy a nondirectional quantity.

Whether the velocity is positive or negative, its square is always positive. The ki-

netic energy of motions in opposite directions does not cancel out.

To see that this is also an intuitively satisfying way to measure motion, con-

sider the case of a recoiling gun. Newton tells us that the bullet and gun get equal

and opposite momenta: if the gun is one hundred times heavier, the bullet moves

one hundred times faster. But common sense cries out that somehow, that bullet

packs more wallop. We don’t mind absorbing the recoil of the gun, but we cer-

tainly don’t want be hit by the bullet. Since kinetic energy depends on the square

of the velocity, the gun and bullet are not equal by this measure. The bullet gets one

hundred times as much kinetic energy as the gun, and absorbing this energy is what

damages the target.

The next step is to define a quantity called work, which is a measure of energy

transfer by the action of a force. Work is calculated by multiplying the force by the

distance an object moves in the direction the force acts. For example, if the force is

gravity, we count only the vertical distance moved. This definition is most easily put

in mathematical form by using the cosine function from trigonometry:

1

2
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W  Fx cos  

where  is the angle between the force and the direction of motion, and x the dis-

tance moved. If  is in the forward region, between 0 and 90 degrees, the cosine is

positive and the work adds energy to the object being pushed. From 90 to 180 de-

grees the cosine is negative, and energy is removed. At exactly 90 degrees the co-

sine is zero, so no work is done. This is precisely what was demanded in step 2 of

our three-step program.

For example, if a car accelerates from rest, the work transfers energy to the car.

The force is in the direction the car is moving, so cos   1 and the work is simply Fx.

If there were no other force acting, we could simply equate this to kinetic energy, but

in the spirit of this more practical approach to motion, it must be pointed out that not

all work appears as kinetic energy; some is always lost to friction and air resistance.

The concept of work is equally applicable to the Aristotelian scenario of a car

moving at constant speed. In this case, the force generated by the motor is still do-

ing work, but this work does not go into increased kinetic energy. The work, how-

ever, does not simply disappear; it is transferred to other forms of energy.

WATTS, POWER, AND ARISTOTLE

Because energy is a commodity in our civilization, and a terribly vital one at that, it

is worthwhile to pause briefly to take up the practical question of energy units.

The metric unit of energy is the joule (J). It is defined as the work done by a force

of 1 newton operating over a distance of 1 meter. The joule, however, is a unit used

mainly by scientists, because it is far too small for commercial use. The most com-

mon energy unit in commerce is based on the metric unit for something called power.

Power is defined as the rate at which energy is transferred. Thus it plays the

same role in our new extended paradigm that force played in the original Newtonian

one. There is an important difference, however. In Newton’s scheme an unopposed

force always leads to a transfer of motion from one object to another, while power

can mean other things, such as the transformation of electrical energy into light.

If 1 joule of energy is transferred per second, the power is 1 watt (W), named af-

ter James Watt, the designer of the first really practical steam engine, which trans-

ferred heat energy into motion. If you multiply watts by a unit of time, you get a unit

of energy. To meter electrical energy, it is common to use the hour as the time unit. But

even a watt-hour (Wh) is a terribly small amount of energy, so the unit in commercial

use is the kilowatt-hour (kWh), 1000 times larger. Since there are 3600 seconds in an

hour, a kilowatt-hour is 3.6 million joules! Since this much energy is delivered to your

home for only a few cents, you can see what a small unit the joule is.

The horsepower (hp) is another familiar unit of power. It is not an official SI unit,

but is usually defined as 750 W. The horsepower rating of a car’s engine represents

the maximum power it can deliver. Unless you have a stick shift and are an unusually

aggressive driver, you have never run the engine of a car at anywhere near its rating.

A close examination of the concept of power reveals one of the things that we

have appended to Newtonian physics. If we consider motion at constant speed, we

CHAPTER 5: The Romance of Energy 49



will find we have resurrected the shade of our old friend Aristotle! When a car

moves at constant speed on a level road, work is being done at a constant rate, and

the power required is the force times the velocity:

P   Fv

For example, a typical passenger car moving at 20 m/s (45 mph) on a level surface

requires a force of 900 newtons (about 200 pounds) to keep it moving. The power

required is P  Fv  900  20  18,000 W  24 horsepower. Since that is con-

siderably less than the horsepower rating of a car of this sort, the engine is not la-

boring heavily under these conditions.

The force impelling the car is exactly equal to the force of resistance opposing

it. Making this substitution, and solving for the velocity, we are back to a familiar

relationship: velocity is the ratio of power to resistance! It is power, rather than

Newtonian force, that should be used to quantify propulsive effort in Aristotle’s

physics. There was some value, after all, in his approach to the study of motion.

Still, we must not forget that this formula applies only to the particular case of an

object moving at constant speed with propulsive force balanced by resistance. It

cannot pretend to the generality of Newton’s laws.

THE MANY FACES OF ENERGY

The third step in the development of the broader energy concept begins with the ob-

servation that when motion disappears through friction, heat is produced. This led

Robert Boyle, a generation before Newton, to conjecture that heat might itself be

the motion of the invisible atoms that make up matter. But the eighteenth-century

scientists who put the study of heat on a quantitative basis found it intuitively satis-

fying to think of it as a substance called caloric, and this view generally prevailed

well into the nineteenth century.

What changed the minds of most scientists was the work of James Joule, a Scot

who originally accepted the caloric theory. In 1842, Joule demonstrated that a pad-

dle wheel turning in a sealed, insulated tank could produce heat indefinitely, and the

amount of heat generated was strictly proportional to the amount of work done in

turning the paddle wheel. Since heating water was the basis for the accepted unit of

heat, the calorie, Joule established a quantitative connection between heat and mo-

tion. That is why his name is used for the SI unit of energy.

Joule’s discovery came while the industrial revolution was in full swing. The

symbol of the age was the steam engine. The practical demands of technology pro-

vided a strong motive for a theory of this process, but in the early days the tech-

nology was far ahead of the science. Engineers made improvements in steam

engines, and the scientists came along later to explain why they worked. The rela-

tion of science to technology is many-faceted, and the view that science is the en-

gine that drives all technological advance is a bit naive. The two advance hand in

hand, and communications between scientists and technologists must be a two-way

street.

Fx

t
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Energy exists in, and can be transferred to, many other forms, for example,

electrical and chemical. Thus, a complete law of energy conservation takes a holis-

tic form that quantitatively enshrines the connections between different phenomena:

[motion]  [heat]  [electricity]  [sound]  [   ]  [   ]  const.

For each form of energy, the procedure for finding a quantitative measure is dif-

ferent. For heat, it involves the temperature, the amount of material, and a number

called the heat capacity. For electricity, it involves the voltage and the current. The

formulas vary, but ultimately all can be measured in the same units. To a reduction-

ist, the fact that all these disparate elements of nature, each with its own quantitative

measures, add up in this fashion is almost too good to be true: it is an invitation to

look to a deeper, hidden level of reality that accounts for this unity.

The holistic view of energy as a kind of “quick-change artist” with a whole

trunkful of disguises was very much in the spirit of a cultural movement of the late

eighteenth and early nineteenth centuries. The artistic, literary, and musical mani-

festations of the movement went by the name romanticism, which we will use to de-

note the movement as a whole.

The romantic movement was a reaction to the extreme rationalism of the En-

lightenment, to the sterile formalism of the music, art, and architecture of that pe-

riod, and to the horrors of the new industrial society, with its “dark satanic mills.”

While romantics did not reject reason per se, they extolled the creative powers of

emotion and intuition.

Romanticism had a scientific offshoot called naturphilosophie. The exponents

of this school came from many branches of science, but put heavy stress on the or-

ganic wholeness of nature. Energy was their word for the vital principle behind all

change, motion, growth, creativity, and passion. This movement was particularly

strong in the German-speaking universities of central and northern Europe.

Without this sort of passionate conviction, the energy concept might never have

made much headway, for in its early stages of development the law of energy con-

servation had to be taken pretty much on blind faith. Most forms of energy were lit-

tle understood, so there were very few processes in which all the energy could be

accounted for.

In retrospect, it is hard to say whether the holists won or whether they were

simply co-opted. Though the energy concept grew to encompass a wide range of

natural phenomena, truth, beauty, and wisdom remained beyond its scope. With the

introduction of the atom, nearly all forms of energy came to be understood in re-

ductionist terms. But before we move on to this topic, we must investigate one of

energy’s most mysterious guises, potential energy.

A MONEY-BACK GUARANTEE

All the transformations of energy we have considered so far involve some noticeable

change in the world; gasoline is burned, brakes heat up, and so forth. But with cer-

tain forces, especially gravity, something mysterious happens. A falling stone picks
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up energy as it descends. Where does this energy come from? Nothing has apparently

changed except the location of the stone, but energy has miraculously appeared.

This puzzle can be illustrated by the example of a stone lifted by a hoist, as

shown in figure 5.1. From the point of view of energy, this is the reverse of free fall,

for energy is expended with no visible return other than a change in the height of the

stone.

From the older Newtonian point of view nothing very interesting is happening.

Through most of its rise the stone moves at constant speed, its weight exactly bal-

anced by the force exerted by the rope. In terms of Newton’s laws, the stone might

as well be standing still. Yet the person turning the crank may be working up a con-

siderable sweat. Work is going into the process, the product of the weight mg of the

stone and the height h it is lifted. Yet this work does not go into increasing the

stone’s kinetic energy, nor does it disappear as heat. The counterbalancing force of

gravity has taken it right out again. Is that work lost forever?

The answer, of course, is no. If the rope is cut, the stone will fall. Gravity will

work on the stone, and the energy put into lifting it will be returned, mostly as ki-

netic energy. The stone reaches the ground moving at the same speed it would have

acquired if the work done to lift it had not been opposed by gravity.

Thus, gravity seems to be an “honest” force; work done to overcome its effect

may produce no immediate reward in the form of motion, but it can be recovered
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later. Not all forces have this nice property; the work done dragging a stone across

rough ground is forever lost.

Energy “stored” in this form is called potential energy. The sense of the word is

self-explanatory. By raising the stone we have created a situation that can poten-

tially lead to motion. Allowing the stone to return to its starting point will convert

that potential to an actual motion. The direction of the force is vertical, so only the

vertical portion of the motion counts. The symbol V is customary for potential en-

ergy, and the formula for gravitational potential energy is V  mgh.

The process of converting potential energy into kinetic energy is a gradual one.

When the stone has fallen only one-tenth of the way to the ground, gravity has done

only one-tenth of the work it will finally do; one-tenth of the energy has become ki-

netic, the other nine-tenths remain potential. As the stone continues its fall, the po-

tential energy shrinks and the kinetic energy grows. Ignoring all nonmechanical

forms of energy, at all times the kinetic and potential energy must add up to the

work done in lifting the stone. We can predict the speed of the stone at any point of

its descent.

But Galileo could have done the same thing without introducing all these new

concepts. If this were applicable only to a stone in free fall, it would hardly be

worth the trouble. But consider the roller coaster depicted in figure 5.2. The for-

mula applies equally well to it. Once it is hoisted to the top of the first rise and re-

leased, it moves subject to only two forces: gravity and the support provided by the

rails. But the support force is perpendicular to the motion, and therefore does no

work. The speed acquired while dropping a given vertical distance is the same

whether an object falls freely or goes down an incline! Galileo knew this too, but

had to employ a far more difficult argument to prove it.

Just as the roller coaster draws on its supply of potential energy as it falls, it

puts energy back as it rises. Anywhere along the roller coaster’s track, its speed de-

pends solely on how high it is above the ground. The relationship can be expressed

in a simple formula:
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mv2  mgh  const.

To find the value of the constant term, simply evaluate the expressions on the left-

hand side of the equation using the height and speed of the coaster when it is re-

leased from its towing mechanism at the top of the first rise. To keep it constant, the

higher h gets the smaller v must be. Of course for a real roller coaster there is a third

force, that of friction, so an additional term must be added to the formula. This term

grows continually throughout the ride, because energy removed by friction is never

returned to the system. Then at each successive return to the same height the car is

going a bit slower. The friction term depends on the speed and the distance traveled,

and is a bit complicated to deal with here.

Gravitational potential energy has been a major energy source for the human

race since before the dawn of civilization. From the primitive water wheel to the tur-

bogenerators at the Grand Coulee Dam, we have exploited the potential energy of

water as it descends to the sea. This is a self-renewing energy resource, because the

ultimate source of water power is solar energy. Sunlight is absorbed in lakes and seas

and converted into heat. This heat evaporates water, which is carried to the high

clouds, to come down again as rain and keep the rivers flowing. Of course, damming

this flow to tap its potential energy can have serious ecological consequences.

You may well be wondering at this stage where the energy goes while it is in

the invisible “bank” of potential energy. If we stick to the strict action at a distance

interpretation of gravity, the answer is “nowhere,” and the mystery remains. But in

chapter 6 we will see that the field concept does give a sensible answer to this

question.

ENERGY AND ATOMS

One of the greatest advances of nineteenth-century science was the discovery that if

matter is regarded as being composed of atoms, all conversions of heat to other

forms of energy could be understood in detail. Imagine, as in figure 5.3, a collision

between two balls of soft clay of equal mass, heading toward each other at equal

speed; after the collision they will be fused together and standing still. Without even

bothering to look into the internal structure of the clay balls, we find that total mo-

mentum is conserved, for momentum conservation holds at all levels. But the ki-

netic energy seems to have been lost.

But if we examine things on a deeper level, we find that the energy of motion

was merely transferred to the atoms of which the clay balls are composed; this can

be demonstrated by noting the increase in temperature of the clay balls, for temper-

ature is a measure of the average energy of these atoms. This motion is complex,

chaotic, and random, and there is no way to reverse the process; to get the atoms of

a clay ball moving in one direction to restore the original energy of gross motion

would be impossible.

When we go from the macroworld of clay balls to the microworld of atoms, the

law of energy conservation becomes purely mechanical. Not only does heat yield to

1
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this analysis; chemical energy can be seen as potential energy of the forces that bind

atoms together. This brought forth a hope that all natural phenomena might ulti-

mately yield to a mechanical interpretation, if only their microscopic details could

be understood. Then kinetic and potential would be the only remaining disguises for

energy. Thus atomism allowed physicists to accept energy without deserting their

deep-felt reductionist views.

To illustrate how the evolution of a science leads to new ways of understanding

old problems, it should be noted that we now have yet a third way of understanding

elastic collisions. From the Cartesian point of view, they arise from the mysterious

property of certain objects to emerge from a collision with the same relative speed

they had when they went in. Newton’s laws allowed us to connect this behavior

with a particular law of force. Now we see that, as with gravity, such a force must

store potential energy during the instant of collision, and return it as the objects

move apart. An elastic collision is thus one in which both momentum and kinetic

energy are simultaneously conserved. If the collision is inelastic, energy is still con-

served, but some of it is converted into other forms.

We can classify the three collision examples in chapter 2 in terms of what kinds

of energy transfer take place (see figure 2.4). In the first example, where the balls
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stick together, part of the kinetic energy is converted into heat. In the elastic colli-

sion, all the kinetic energy is retained. The third example requires that a substantial

amount of energy be converted from some other form into kinetic energy at the mo-

ment of collision, perhaps by attaching an explosive cartridge to one of the balls.

BINDING ENERGY

The potential energy concept is a very useful tool for dealing with situations in which

objects are bound together by forces of attraction. The Earth and Moon are bound to

one another in this fashion, and the Earth and its sister planets are bound to the Sun.

In the microworld, atoms are bound into molecules by a form of electrical attraction.

From the energy viewpoint, such objects are bound because they do not have

enough energy to escape one another. To move the Moon away from the Earth, one

would have to put in energy in the form of work against their mutual gravity.

For example, if an object leaves the Earth’s surface with a speed greater than

about 11 km/s, it is free to “escape” the Earth’s gravity. It still slows as it moves away,

but gravity can never do enough work to bring it to a halt. No matter how far it goes,

there will still be some energy left. This is the meaning of the term escape velocity.

Escape would not be possible if gravity did not drop off as the square of the distance.

Were the force to remain constant, for example, one could do sufficient work to stop

the object and bring it back simply by going far enough. The formula mgh is valid

only for short distances, where h is small compared with the Earth’s radius.

In situations like this, it becomes convenient and logical to choose a scale for

potential energy in such a way that an object barely free to escape has zero total en-

ergy. When this convention is adopted, all potential energies for forces of attraction

are negative. The formula for gravitational potential energy is then

V   G

An object gains kinetic energy as it moves inward in response to an attractive force.

Thus, its potential energy must decrease. In a chemical reaction that releases energy,

the binding energy becomes more negative.

This gives us a convenient scheme for classifying the motion of objects under

attractive forces. If the total energy is positive, that is, the positive kinetic energy ex-

ceeds the magnitude of the negative potential energy, the object is free to escape. If

the total energy is negative, it is bound. There is a distance at which the potential en-

ergy itself is equal to the negative total energy of the object. Since kinetic energy

cannot be negative, it can never go beyond this point.

This is, of course, an arbitrary convention, a mere bookkeeping device. As we

shall see in chapter 6, objects attract one another because they can draw upon an

enormous positive store of energy called a field. The negative potential energy sim-

ply represents a “debit,” a loan from this store.

As an example, consider the lunar missions flown by the Apollo astronauts.

They approached the Moon from a great distance; with respect to its gravity, they

had positive total energy. To become bound to the Moon in a lunar orbit, and then
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descend to the surface, they had to slow down by firing their rockets in reverse,

“giving away” energy. The maneuver was not undertaken without some trepidation;

once they had thus obtained negative total energy with regard to the Moon, they

could not escape it without putting energy in. Had their rockets been unable to

restart and boost them to a positive energy with regard to the Moon, they would

have been trapped.

When we study relativity, we shall see that binding energy takes on a more con-

crete manifestation, a defect in mass.

Stars and planetary systems are formed from the collapse of immense, diffuse

clouds of gas and dust. In this process, a great deal of gravitational potential energy

is converted to heat. If enough mass is present, the temperature at the center be-

comes high enough to kindle thermonuclear reactions, and a star is born. The mini-

mum required is about one-twentieth the mass of our Sun.

Almost inevitably, the cloud has some angular momentum. As it collapses, it

must turn more and more rapidly, just as skaters or dancers create a faster spin by

pulling in their arms. Eventually, the outer portions of the cloud reach orbital ve-

locity and can fall no further. It is from this material that planets form. The fact that

all the planets in our solar system move in orbits in the same direction, and the Sun

itself rotates in this direction, is a clear indication of this history.

In many cases, one or more of the planets grows big enough to become a star in

its own right. A substantial fraction of the nearer stars in the sky can be seen,

through a powerful telescope, to consist of double stars bound in orbits. Even when

one of the partners is too small to be seen by its own light, its effect on the motion

of its senior partner can reveal its presence. It seems unlikely that many stars are

truly solitary. They have either stellar partners or planets. We now know of more

than 50 planets around other stars, and the number grows each year.

Still, this gives us no assurance that anywhere in the universe there is a planet as

lush with life as our own. Even in our solar system, it appears that Earth is the sole

planet now hospitable to life. Perhaps life is a matter of such delicate balance that it is

extremely rare. Science cannot yet tell us whether or not we are alone in the universe.

CONSERVATION AND SYMMETRY:

EMMY NOETHER

We have now seen three conservation laws, for momentum, angular momentum,

and energy. When these laws were first proposed, it was assumed that they were ir-

reducible truths, like the axioms of geometry. Today, thanks to the insight of Emmy

Noether, a gifted German mathematician, we realize that conservation laws have

deeper roots: they reflect fundamental symmetries of nature.

Noether worked for most of her career at the University of Göttingen in Ger-

many, until she was forced to emigrate to America by the Nazi takeover. In 1918,

she proved a theorem that established the conservation-symmetry connection.

Momentum conservation follows from the symmetry of space against displace-

ment. If moving a system to a new position in space changes nothing, it follows that

momentum must be conserved. Angular momentum conservation follows from
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symmetry of rotation. Finally, energy conservation is a consequence of symmetry

against displacements in time. If the laws of nature remain unchanged next week, or

in the next millennium, it follows that energy must be conserved.

It seems almost magical that laws of such depth can follow from such simple

premises. Today, the search for symmetry in nature has become a prime tool for the-

oretical physics.

Emmy Noether was a member of a small heroic band, the generation of women

that earned doctorates in the sciences early in the twentieth century. For these pio-

neers, the going was rarely easy. Very few ever attained university positions com-

mensurate with their accomplishments. When Emmy’s mentor David Hilbert

sponsored her for a permanent position at Göttingen, the faculty turned her down on

the grounds of her gender. Hilbert, who was noted for his acid wit, asked: “Are we

then a university, or a bathing club?”

Summary

Holism is an approach to science that seeks connections between the parts of nature,

while reductionism seeks to understand the whole by studying the parts. The con-

cept of energy originated as a holistic concept that linked motion to phenomena

such as heat, electricity, and chemical reactions. It is connected to the Newtonian

scheme through a nondirectional measure of motion, kinetic energy, and through a

measure of energy transfer by the action of a force, work. The concept originated

with holistic philosophers influenced by the romantic movement, and gained ac-

ceptance in mainstream science through the work of James Joule, who found the

quantitative connection between motion and heat. The SI unit of energy is the joule.

A useful auxiliary concept is power, energy transfer per unit time. Its unit, the watt,

is 1 joule per second. Power can be seen to be the appropriate quantifier for “propul-

sion” in Aristotle’s analysis of motion at constant speed in the face of resistance.

Viewed on the atomic level, heat is a mechanical form of energy. Thus through

atomism, energy acquires a reductionist significance. An elastic collision can be de-

fined as one in which kinetic energy is conserved. Gravity and similar forces are ca-

pable of “storing” energy, giving rise to the concept of potential energy. This

provides a basis for understanding systems of objects bound by mutual attraction,

such as the solar system. Gravitational potential energy plays a key role in the for-

mation of stars. Energy conservation, as well as other conservation laws, reflect fun-

damental symmetries of nature.
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C H A P T E R  6

One Last Part for the Machine

With Earth’s first Clay they did the Last Man Knead

And there of the Last Harvest sow’d the Seed:

And the first Morning of Creation wrote

What the last Dawn of Reckoning shall read.

—FITZGERALD,The Rubáiyát of Omar Khayyám

The vision of the universe as one vast machine was not buried with Descartes. The

triumph of Newtonian physics only whetted the appetite of the mechanists who pur-

sued this dream. To their dismay, Newton had left them a machine from which one

crucial part was missing. As long as gravity remained based on action at a distance,

it was simply a law without an underlying mechanism. Though some Newtonians

were quite content with this situation, a few tried to do something about it.

Gravity, however, does not readily lend itself to experimental science. On a lab-

oratory scale, the force is too feeble to do much with. And the strong gravity of the

Earth is simply there—it cannot be controlled or altered in any way.

For that reason, the breakthrough to a more complete understanding of forces

that act at long range had to come through studies of two stronger and more con-

trollable forces, electricity and magnetism. This research established the field con-

cept, which mechanists eagerly embraced as their long-sought missing part. One

unexpected consequence of this work was the solution to the age-old mystery of the

nature of light. By the end of the nineteenth century, some physicists were con-

vinced that the physical universe was now completely understood, and nature had

no more secrets to disclose in that realm. Bright young students were advised to find

something else to work on.

ELECTRICITY AND MAGNETISM

Electrical research began in earnest during the “enlightened” eighteenth century.

Some of the most important discoveries were the work of scientific amateurs with

little formal education. None of these contributed more than Benjamin Franklin.

Franklin was born in 1706, when Newton was the most revered living English-

man, and science was proclaimed the noblest calling to which an intelligent human

being could aspire. Raised in Boston in a family of skilled craftsmen, he left school

at the age of ten, the normal stopping point for someone in his circumstances. To es-

cape from an onerous apprenticeship, Franklin fled to Philadelphia while still in his

teens. He landed in the Quaker city practically destitute, but Philadelphia was then



a rapidly growing boomtown, the largest city in British America and the premier

gateway for immigration.

Through hard work and political skill, Franklin quickly built an enormously

successful printing business. With other young tradesmen he organized the “Leather

Apron Club,” which was devoted to civic works and the advancement of knowl-

edge, as well as to rollicking good times. By the age of 43, he was well enough es-

tablished to sell out to his partner and retire in modest comfort. Franklin had no

intention to remain idle—he hoped to devote the rest of his life to science. Just two

years later, in 1751, he published his Experiments and Observations on Electricity.

This work set the standard for electrical research for more than a generation. It

was entirely nonquantitative, but its principles and terminology endure to this day.

Electricity arises from two forms of “electrical charge” that he called positive and

negative. Like charges repel one another, while opposite charges attract. Normal

matter contains equal amounts of both signs of charge, so it is electrically neutral.

Various physical and chemical processes, however, could destroy this balance. Here

was a force stronger than gravity, and furthermore one that could be turned on or off

at the experimenter’s will.

Worldwide fame soon brought an end to Franklin’s leisure to engage in fulltime

scientific work. The troubles with the mother country that ultimately led to the War

of Independence had begun. His international reputation as a scientist made

Franklin too valuable as a representative abroad for the American cause.

Franklin’s example inspired the French engineer Charles Coulomb to put the

study of electricity on a sound Newtonian basis through a law of electrical force. In

1789, Coulomb demonstrated that electricity, like gravity, obeyed the inverse-

square law. To take the role played by mass in Newton’s gravity, Coulomb used

Franklin’s electrical charge, so the force was proportional to the product of the

charges divided by the square of the distance apart, a formula exactly like Newton’s:

F  k

where q and Q are the electric charges and k is a universal constant like that in New-

ton’s formula.

As the nineteenth century dawned, Count Alessandro Volta of Como, Italy, de-

veloped the electrical battery, which could maintain a current, or steady flow, of

electric charge. This opened a wide range of new experimental possibilities. In

1820, these bore fruit in the discovery of a connection between electricity and mag-

netism by a Danish professor, Hans Christian Ørsted, a naturphilosoph who was

specifically looking for such a connection. He found that a compass needle will

align itself perpendicularly to a wire carrying a strong electric current. A host of sci-

entists rushed to exploit this discovery, but one young Englishman managed to get

ahead of the pack and remain there for the rest of his life.

FARADAY AND THE FIELD

In London in 1812, a 21-year-old apprentice bookbinder presented himself to

Humphry Davy, who had advertised for an assistant to help with his chemical re-
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searches. Michael Faraday’s credentials consisted solely of a set of neatly illustrated

bound notes taken from Davy’s public lectures. That these notes were enough to

land him the job was due in part to the ideology of the institution of which Davy

was the director.

The Royal Institution had been founded for the express purpose of improving

the lot of the British working class through science. It provided a laboratory for re-

search that could lead to technology that would upgrade their standard of living, and

also served as a beacon of light through evening public lectures. Faraday was one of

the very few actual manual workers to attend; work weeks of 70 hours left little time

for “self-improvement.” But the London middle class found charities of this sort

less burdensome to the pocketbook than decent schools and a living wage. As an

embodiment of the raison d’être of the institution, Faraday could hardly be dis-

missed out of hand.

It soon became obvious that Faraday was a talented researcher in his own right.

He gradually won his independence from Davy and, at the age of 34, succeeded him

as director. Shortly thereafter, he abandoned chemistry and turned his hand to elec-

trical research, following up on Ørsted’s discovery.

Though he had no more formal schooling than Franklin, Faraday was by no

means unsophisticated. He had been active for some time in a reading circle of

young men in situations similar to his own. Through independent study, he had be-

come extremely well versed in all branches of natural philosophy. He was much in-

fluenced by the writings of the Jesuit Father Rudjer Boscovich, a native of Ragusa

(now Dubrovnik, Croatia) on the Adriatic coast.

Boscovich, a contemporary of Franklin, had argued that in the Newtonian

scheme there was no longer any need for separate concepts of force and matter. The

ultimate atoms of matter might well be nothing more than points that served as cen-

ters of force. This idea is now central to our current picture of the nature of matter,

and we will return to it in chapter 20; the penultimate chapter of this book. But in its

time, it was no more than an untestable speculation. Faraday, however, found in it

something of immediate utility. If force was to be the ultimate reality, he was sure

that it must be based on something more substantial than action at a distance.

Faraday believed that long-range forces worked by filling the space around ob-

jects with something he called a field. Each object contributes to the field, and re-

sponds to the combined field of all of them. As an aid to visualization, he developed

a pictorial scheme called lines of force, illustrated in figure 6.1. These lines repre-

sent the field in two ways: the direction of the force at any point in space is along

the lines, and the strength of the force is greatest where the lines are closely spaced.

To express this in a formula, we define something called the “field strength” E,

and Coulomb’s law becomes two formulas:

E  k F  qE

The power of this concept is not very evident when dealing with a single

charge. The lines of force produced by a system of two opposite charges is depicted

in figure 6.2. In this situation, one of the rules for drawing these lines of force is that

each one begins on one charge and ends on the other. Lines of force become even

more useful when we move from electricity to magnetism, a complicated force that
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is not a simple matter of attraction or repulsion. Magnetic fields are generated only

by moving charges; if the charges are standing still, there is no magnetic field. The

simplest case is the magnetic field of a steady electric current, shown in figure 6.3.

The lines of force do not radiate out from a current-carrying wire, but form rings

around it. Ørsted’s compass needle aligned itself with these lines of force.

The magnetic field also only affects moving charges. The force on a charge q

moving at velocity v at an angle  with respect to a magnetic field of strength B is:

F  qvB sin  

Furthermore, this force is perpendicular to both the direction in which the particle is

moving and the field! It is awkward to express such complicated geometric relations

as a simple matter of action at a distance, so in magnetism the field concept truly

comes into its own.
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Faraday and his wife.

(The Royal Institution. London, UK/The Bridgeman Art Library)



In a brilliant series of experiments, Faraday discovered that the relation be-

tween electricity and magnetism is completely reciprocal. A moving or changing

electric field generates a magnetic field, and a moving or changing magnetic field

generates an electric field. With this intimate a connection, it made sense to think

of the two fields as different forms of a single electromagnetic field.

The familiar “permanent” magnets that grace our refrigerator doors produce

magnetic fields from rotating electric charges—the electrons in their atoms. In most

materials these fields point in random directions and cancel one another out. In a

few substances, some of the electrons interact in such a way as to point their fields

in the same direction.

An electrical conductor is a material in which electrons are free to move. When a

conductor moves through a magnetic field, the force on the electrons causes them to

move, generating an electric current. This is the principle underlying the dynamos we

now use to generate electricity. Faraday built a crude prototype dynamo, which could

not yet compete with batteries as a source of electric current. On a visit to the Royal

Institution, Chancellor of the Exchequer John Peel asked him, “Of what use is it?”
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Faraday’s reply is now classic: “One day, sir, your government will tax it!” Within a

generation, the descendants of Faraday’s dynamo were beginning to light up the world.

It must be emphasized that fields and action at a distance have exactly the same

observable consequences as long as the field is constant in time. Thus while Fara-

day’s discoveries were widely admired, his fields were not taken very seriously un-

til his work was refined and extended by a very sophisticated mathematical

physicist, James Clerk Maxwell.

THE FIELD IS REAL

Maxwell, born to the minor gentry of Scotland, had begun his scientific career as a

teenage mathematical prodigy. But he also had a bit of the tinkerer in him, with a

love for mechanical invention and a well-developed physical intuition. So while he

pursued physics on the highest levels of mathematical abstraction, he had a deep re-

spect for the intuitive depth of Faraday.

Examining Faraday’s discoveries in order to embellish them with a proper

mathematical formalism, Maxwell discovered a startling implication: the transfer of

momentum and energy via electromagnetic fields is not instantaneous. There is a

time delay, equal to the time it would take light to pass from one object to the other!

This brief delay was far too short to observe in the laboratory; only mathematics

could reveal its presence.

When objects interact with one another via electromagnetic fields, each is con-

tinually exchanging energy and momentum with the field. Some or all of this mo-

mentum and energy may end up on the other object, but only some time later. If

energy and momentum conservation are to survive, energy and momentum must be

credited to the field itself.
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This put a more solid foundation under the concept of potential energy. Maxwell

showed that wherever a field exists, energy is distributed throughout that region of

space. It is this bank of energy on which an object draws when it converts potential

energy into kinetic energy. Negative binding energy arises from the fact that when two

objects that attract one another are close together, their combined field contains less

energy than their separate fields did when they were far apart.

Maxwell also found the speed of electromagnetic force transmission terribly

suggestive. Perhaps light itself could be some arrangement of electromagnetic

fields. He quickly discovered a pattern that would do the trick. An electric and

magnetic field are at right angles to one another and in motion. The moving elec-

tric field generates a magnetic field, and the moving magnetic field generates an

electric one. If they move at the speed of light, the two fields exactly sustain one

another, without any need for an outside source. Light is such an arrangement, in a

repeated wave pattern as shown in figure 6.4. We will learn more about these

waves in chapter 7.

There was a clear implication in this work that other kinds of electromagnetic

waves might exist. Within a few years, these were discovered in Germany by Hein-

rich Hertz. Modern radio and television are based on these waves. So a revolution

in communications, and a worldwide industry, can be traced to the effort to find

mathematical unity in electricity, magnetism, and light.

Once light or any other electromagnetic wave is sent on its way, it can travel

across the Earth—or even across the universe—until something gets in its way and

absorbs it. Its existence no longer depends on the electrical charges and currents that

produced it. Faraday’s fields had now acquired momentum, energy, and an inde-

pendent existence. What more need one demand to call them real!

Maxwell’s ideas had implications that went beyond electromagnetism and light.

It seemed likely that any fundamental force, such as gravity, might act through a

field. If this field did not propagate instantaneously, but at a finite velocity like that

of light, then it too must produce some form of radiation to carry the momentum

and energy when the field is somehow changed. In chapter 12, we will see how this

insight encouraged Albert Einstein to invent the field theory for gravity that brought

him worldwide fame.

Maxwell’s electromagnetic theory was to be the high-water mark of Newtonian

physics, its last great triumph. His principal work, the Treatise on Electricity and

Magnetism published in 1873, rivals the Principia in its significance.

To the mechanists, only one seemingly small step remained, to find a mechan-

ical interpretation of electromagnetism. Maxwell tried to do this by imagining a

substance called the aether, which would fill all space. This was not a new idea—

light was known to have a wave nature, and there had been a great deal of specula-

tion about what medium light traveled in. But Maxwell hoped his mathematical

laws would nail down the properties of the aether precisely.

Electric and magnetic fields would be strains and flows of the aether, while

light would move through it as sound waves move in air. But the aether had too

many contradictory properties. It had to be as rigid as a solid, yet flow like a liq-

uid, while never impeding in any way the motion of the Earth and the planets.

Even worse, Maxwell found that he could not tie down a single unique set of prop-
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erties. And if he wanted to account for gravity as well, he would need a different

sort of aether entirely. Though he remained convinced of the reality of his aether,

he reluctantly concluded that it was not yet good solid science, and left it out of his

Treatise.

It was a wise decision, for the attempt to install this one last part in Descartes’s

universal machine was to end the long reign of Newtonian physics.

The careers of Faraday and Maxwell spanned the period when scientific re-

search became a profession. When Faraday was hired at the Royal Institution, he

became one of only a handful of people in the entire world who were paid a

salary primarily to do scientific research. But starting in Germany in the early

nineteenth century, the practice of founding research institutes affiliated with uni-

versities spread rapidly. Maxwell was to spend his later years as the first director

of one of the most eminent of these, the Cavendish Laboratory at Cambridge Uni-

versity. Most of the support for this laboratory came from the nascent electrical

industry, and the first order of business was to improve the accuracy of electrical

measurements.

At these institutes, young scientists learned research by the oldest and most ef-

fective form of teaching yet devised, apprenticeship under a master. In most nations,

the students were working toward the Ph.D. degree, but at Oxford and Cambridge

the English prejudice that “gentlemen don’t dirty their hands” delayed this form of

certification for several decades.

CHAPTER 6: One Last Part for the Machine 67

Whole wave moves this way

Magnetic
field

Electric field

FIGURE 6.4. Electric and magnetic fields in a light wave.



THE NIGHTMARE OF DETERMINISM

The spectacular rise of Newtonian science led many thoughtful people to give con-

siderable credit to its claims of universal validity. This view of reality ultimately led

to the conclusion that everything that happens in the universe is a consequence of

the motions and interactions of atoms.

In Newton’s physics, motion is governed by perfectly deterministic laws. Early

in the nineteenth century, the mathematical physicist Pierre Simon de Laplace spec-

ulated that if one could only observe at some instant all the atoms in the universe

and record their motions, both the future and the past would hold no secrets. Put an-

other way, all of history was determined, down to the last detail, when the universe

was set in motion. The rise and fall of empires, the passion of every forgotten love

affair, represent no more than the inevitable workings of the laws of physics; the

universe marches to its unalterable destiny like one gigantic clockwork. The poetic

expression of this vision in the Rubáiyát serves as the epigraph of this chapter.

What room did this leave for free will, for salvation and damnation, for love

and hate, when the most trifling decision any human being can make was deter-

mined more than ten billion years ago? It gave the ethical thinkers of the nineteenth

century something to ponder. Admittedly, it is inconceivable that one could actually

achieve the omniscience required by Laplace. But the fact that it was possible in

principle was viewed as a genuine nightmare.

This sort of social determinism was exemplified in the tactics of the celebrated

attorney Clarence Darrow. Defending a client who was patently guilty of the offense

as charged, Darrow would point to him as the prisoner of his own heredity, placed

in an environment not of his own choosing. Under such circumstances, following

from a chain of causes leading back to time immemorial, what was the meaning of

“responsibility for one’s actions”?

Even those untroubled by this admittedly abstract nightmare felt the impact of

physics. For the first time, all the details of a tremendous range of natural phenom-

ena were understood in terms of a few simple principles. Newtonian physics be-

came a model that all of human knowledge should aspire to. As the social sciences

began to emerge, they tended to distance themselves from the humanistic studies

from which they had sprung. Social thought turned reductionist, seeking general

laws to explain history and human behavior. In the wake of this movement, figures

such as Karl Marx and Sigmund Freud have had a profound impact on history.

DOES CHAOS RULE THE UNIVERSE?

It is important to remind ourselves that faith in determinism rests on one achieve-

ment that was without precedent in science, and that has not been duplicated since.

Newton’s derivation of Kepler’s laws seemingly described the solar system as it has

existed for all time, and will exist into an unending future. But Newton himself was

fully aware that this could not be the whole story. Kepler’s laws apply perfectly only

in a solar system ruled by the Sun’s gravity alone. They take no account of the

forces that the planets, through their gravity, exert on one another.
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There is a fundamental reason for this omission. There is no simple exact math-

ematical solution for the motion of more than two objects interacting with one an-

other. This was true in Newton’s day and remains so today. Kepler’s laws work

because the Sun is much heavier than any of the planets. Jupiter, the largest, is a

thousand times lighter than the Sun. Still, the Earth receives, over thousands of

years, transfers of momentum from Jupiter that equal in magnitude the effects of the

Sun’s gravity over one year. Thus it would not be surprising to see major changes in

the Earth’s orbit on a time scale of thousands of years.

Newton considered this problem and found it reassuring rather than alarming.

He secretly had little use for the remote God of his deist friends, preferring an Old

Testament deity, involved in the day-to-day management of His creations. The so-

lar system would be kept stable by the direct intervention of a benevolent Lord.

Laplace later showed that the mutual attractions of the planets tend to average

out, and the instability that Newton feared amounts to a number of slow, cyclical vari-

ations of the planetary orbits. But these were only approximate calculations. Later in

the nineteenth century, the French mathematician and philosopher Henri Poincaré ad-

dressed the general question of the mutual interaction of just three bodies, and found

that some arrangements were highly unstable. Indeed, if one of the bodies is much

lighter than the other two it is very likely to simply be ejected from the system. He

was prescient enough to realize that, given the complexity of the real world, unpre-

dictable situations must be far more common than predictable ones, and that in prac-

tical terms most of what happens in the world is beyond our power to predict.

Confessing that thinking about these problems actually made him ill, Poincaré

abandoned them. Given the paper-and-pencil tools available to the theorist in that

era, he had little choice. Today, cheap and powerful computers enable scientists to

study systems far more unstable or complex than those that so upset Poincaré. The

manuscript for this edition of Physics for Poets was written on a modest desktop

workstation with more than the combined computing power of all the computers in

the world at the time the author received his Ph.D. Studies with such machines have

revealed just how unpredictable our world can be.

Even a system as simple as Poincaré’s three bodies has a property that today

goes by the name of “chaos.” In such a system, a tiny, unmeasurable change in the

starting conditions grows—sometimes rapidly—with time. This leads to a radical

difference in the final consequences.

Today we realize that the motions of the two outer planets of the solar system

may be chaotic. This is hard to recognize because they are so far from the Sun that

they move very slowly. Their orbits may be unstable, but it will take hundreds of

millions of years for them to go seriously awry.

In the 1960s, weather forecasters turned to the computer as the answer to their

hopes of better long-range predictions. The atmosphere obeyed physical laws that

were well understood, but it was so large and complicated that only a super com-

puting machine could hope to track its future development. In the years since then,

the power of computers has increased by more than a million times, and satellites

now feed them ever-more detailed weather information. Yet the predictability of lo-

cal weather remains locked at a five- to ten-day limit, because the atmosphere is

chaotic. It has been suggested that just one flap of a butterfly’s wings in a sensitive

CHAPTER 6: One Last Part for the Machine 69



location might well determine whether weeks later and thousands of miles away a

tornado will crash through a crowded residential area, or spend itself harmlessly on

a barren plain.

Today, we have come to realize that there are limits to our ability to foresee the

future. Some things, such as planetary motions, can be predicted for millennia. Oth-

ers are good for a matter of hours, some only for fractions of a microsecond. The

nightmare of determinism is exactly what the word implies—a bad dream with lit-

tle connection to reality. Any small defect in our knowledge of the present can lead

to drastic changes in our vision of the future. In chapter 17, we shall see that quan-

tum theory has shown that we can never know the present perfectly. The future, just

as common sense and the old popular song “Que Sera” tell us, is not ours to see.

TOWARD A SCIENCE OF COMPLEXITY

In the latter years of the twentieth century, the computer became the holist’s best

friend. Though chaos rules out the possibility of predicting all the details of the fu-

ture of anything as complicated as the world we live in, it does allow us to discern

certain stable patterns that are likely to occur. Computer simulations of very compli-

cated situations both inside physics and in other realms, such as ecology or econom-

ics, have shown that complicated systems have a way of generating their own order.

For example, ecologists have done repeated simulations in which a hundred

species are placed on an imaginary “island” and allowed to interact. As time pro-

gresses, species go extinct. Eventually, a residue of 20 or so species achieves a sta-

ble equilibrium. But if they start the process over again, there is no assurance that

they will find the same pattern of surviving species. There are many stable patterns,

and which one arises can be largely a matter of chance, but once it establishes itself

it can last almost indefinitely—unless there is some radical change in conditions.

One such radical event was the cometary impact that ended the reign of the di-

nosaurs some 70 million years ago, paving the way for the dominance of mammals

as the large terrestrial animals. As a result of this catastrophe, the worldwide ecosys-

tem went from one state of comparative equilibrium to another. Were it not for that

event—completely unpredictable given the chaotic motion of such minor bodies in

our solar system—neither the author nor the readers of this book would be here to-

day. It is sobering to contemplate that this was not the first event of its kind in

Earth’s long history, and is unlikely to be the last.

Nineteenth-century evolutionists saw the emergence of the human race as the

inevitable consequence of the ascending evolution of life toward higher stages of

perfection. Today, this comfortable notion is hardly tenable. It seems more likely

that we are the rather arbitrary—and temporary—consequence of a long train of his-

torical accidents.

Though the future may never be predictable in detail, there is some value in

studying the “islands of stability” that emerge in complex systems. Such studies

now go by the name complexity theory. This is cross-disciplinary science, embrac-

ing physics, embryology, ecology, evolution, and even economics. Its mecca is the

Santa Fé Institute in New Mexico.
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Complexity studies tend to focus on “emergent” qualities, features of a system

that are consequences of the interactions of its parts, rather than inherent in their na-

ture. One familiar example is the doctrine of the “invisible hand,” promulgated in

the eighteenth century by the Scottish economist Adam Smith. In a free economy,

individuals pursuing their own selfish ends create a market that serves the common

good. Interestingly, complexity researchers have found that the invisible hand is not

what they call a “robust” emergent quality. It easily falls victim to monopolies,

price-fixing agreements, and other restraints on trade. This coincides with real-

world experience, in which we find we need the Securities and Exchange Commis-

sion, antitrust laws, bankruptcy courts, and other artificial stabilizers to keep free

markets healthy.

But by far the most outstanding example of emergence is the phenomenon that

is at once the most familiar and most mysterious thing we know—our own con-

sciousness. No modern scientist seriously doubts that everything that happens in the

human brain is a consequence of the physics of the atoms and molecules of which

it is formed. Nonetheless, few have enough faith in reductionism to suggest that

physics alone will ever explain how this amazing bundle of subatomic particles be-

comes self-aware. The trillions of interconnections within one human brain dwarf

the millions found in the most powerful computers ever made. There are far too

many connections in the brain to program in our genes. The brain organizes itself as

we grow and learn. But from the earliest moments of life there is the amazing

awareness of self, expressed in Descartes’s most famous assertion: “I think, there-

fore I am.”

Unflinching reductionism still rules the roost in some of the proudest bastions

of science, ranging from neoclassical economics to particle physics, and most no-

tably in molecular biology, where the fruits of reductionism have been a revolution

in science and technology. Nonetheless, holistic ideas are on the march, and it

would not be surprising to find holism a significant theme in the science of the

twenty-first century.

Be that as it may, one thing is abundantly clear: modern science has finally laid

to rest both the mechanistic dream of Descartes and the deterministic nightmare of

Laplace. We can never again pretend to understand our universe as a mere machine,

regular and unerringly predictable over the vast span of time.

Summary

The one missing piece in a completely mechanical picture of the universe was a

mechanical interpretation of forces like gravity, which act at a distance. An attempt

at this was provided by the concept of a field, which distributes energy in space. It

was developed not in connection with gravity, but through studies of electricity and

magnetism. Benjamin Franklin made significant contributions to the understand-

ing of electricity, which proved to be like gravity, an inverse-square force. The con-

nection between electricity and magnetism was discovered by Hans Christian

Ørsted, and studied in detail by Michael Faraday, who found that a moving or

changing magnetic field produces an electric field, and vice versa. A mathematical

formulation of these ideas by James Clerk Maxwell revealed that a field is not
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transmitted instantly, but at the speed of light. Thus light came to be understood as

an electromagnetic wave, and the new technology of radio transmission, using

longer electromagnetic waves, followed as a consequence. The attempt to find a

mechanical model for a field led to the concept of an all-pervading fluid called the

aether. Though physics at this point seemed nearly complete and wholly determin-

istic, modern studies of chaos have revealed this to be an illusion. Through com-

puter studies of complex systems, however, patterns of order within this chaos can

be studied.
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C H A P T E R  7

Waves

There is something fascinating about science. One gets such wholesale re-

turns of conjecture out of such trifling investments of fact.

—MARK TWAIN, Life on the Mississippi

While the planets were the key to the triumphs of seventeenth century physics and

astronomy, in the twentieth century waves were to play this role. So in this chapter

we will break off our historical narrative to introduce a few simple wave concepts,

the terminology used to describe them, and two significant effects that play a dom-

inant role in contemporary physics.

A wave is not a material object, but is instead a pattern that moves. As a water

wave sweeps across a lake, the water does not move with it, but simply bobs up and

down as the wave passes. The word wave has recently been used to describe a

crowd activity now fashionable at sports events, and this use of the word is entirely

appropriate. Spectators simply rise and lift their arms when the wave reaches them,

while the wave itself sweeps around the stadium much faster than any human being

could run.

Wave patterns can arise in a wide variety of circumstances. They can be defor-

mations of a music string or bumps on the surface of a body of water. Sound waves

are small variations in the pressure of air, and light and radio waves are patterns in

an electromagnetic field.

Nearly everything important about waves can be understood in terms of two

simple principles. These are not deep natural laws like Newton’s, but Aristotelian-

style generalizations that are not exact in all circumstances. These principles are:

1. Waves move at a constant velocity that is determined by the medium that

supports them, rather than the waves themselves.

2. Waves obey a superposition principle: If two or more waves arrive

simultaneously at the same place, the resulting effect is simply the sum of

the effects of each of the waves.

Exceptions to the first principle include water waves, in which the dimensions

of the wave influence its velocity. The second principle is violated when waves are

so strong that they alter the medium in which they travel. Violent shock waves from

explosions have this property. But there are many examples of waves that follow

them almost perfectly, such as sound waves in air and light waves in a vacuum.
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As simple as these principles are, they give rise to some effects that are far

from trivial. For our purposes, the two most important are standing waves and in-

terference patterns. The main goal of this chapter is to acquaint you with these 

effects.

MOVING BUMPS

The simplest examples of waves are single wave pulses traveling on a one-

dimensional medium, such as a string. Left to itself, a taut string will remain

straight. But if we pluck it near one end, we create a deformation, the “bump” illus-

trated in figure 7.1. The tension in the string immediately acts to eliminate the

bump, but Newton’s third law prevents it from disappearing. If the portion of the

string to the right of the bump pulls it down, it must in turn be pulled up. When the

part of the string we plucked returns to its normal position the bump has not disap-

peared, but has simply moved to the right. As this process continually repeats itself,

the bump keeps moving along the string.

Note that it is the bump that travels, not the string, which simply returns to its

original position. The speed at which the wave moves depends on the tension and

the mass of the string; the higher the tension, or the lighter the string, the faster the

wave will move.

To show the versatility of waves, let us look at another example totally devoid

of any connection with physics. Imagine a marching band formed in a long single

line. Each member of the band is given the instruction, “Watch the players on either

side of you—if one of them moves, you do the same thing on the next beat of the

music.” We then go to the end of the line and ask the musician there to take two

steps out, then two steps back.
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Tension in string pulls bump down
and adjoining section of string up. 

Thus bump moves to the right.
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The resulting effect is illustrated in figure 7.2. As viewed from above, a bump

travels down the line of musicians from left to right, yet not one of them has moved

either left or right. This is a true wave phenomenon in the full meaning of the word,

except that the “medium” is not continuous, as it is in most cases. Nonetheless, our

two principles can be applied in exactly the same way they are to more physical

waves. To get superposition, we tell our players that if the neighbors on both sides

move on the same beat, simply execute both movements on the next beat. If they

move in opposite directions, simply stay put.

Again, the speed of the wave is set by the medium. If the musicians stand 5 feet

apart and the music has two beats per second, the wave will move 10 feet per second.

Let us return to the example of the string to illustrate wave superposition. In

this one-dimensional case, two waves can meet only if they are moving in opposite

directions, as in figure 7.3. To distinguish the two waves, we make one much big-

ger than the other. The small wave is simply a moving bump on the big wave as they

pass, and neither is altered by the encounter.

The example gets more interesting if the waves are the same size and shape. In

figure 7.4 we see two versions of this, one where the bumps point in the same di-

rection and one in which they are opposite. In the first case, at the instant they pass

we simply have a wave that is twice as big as the individual waves. In the second

case, there is a brief instant when the string is absolutely flat. But segments of the
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string are moving at this instant, and they will overshoot, recreating the two indi-

vidual waves.

This phenomenon goes by the name interference. When the waves reinforce,

the interference is called constructive, and when they cancel it is destructive 

interference.

Some of the more interesting applications of the principle of superposition are

the “backward” ones. These are the cases in which we analyze a wave and predict

its future development by decomposing it into the sum of two other waves, much as

Galileo analyzed projectile motion by decomposing it into horizontal and vertical

motions.

As an example, let us ask what happens if we form a bump in the middle of a

string. It is equally free to move in both directions, with no inherent tendency to go

one way or the other. What will it do?

Note that this situation is exactly the same as we had in the first example in fig-

ure 7.4, at the moment of constructive interference. There is no difference in the

shape or motion of the string in the two situations. Even though in one case the

bump formed as the fusion of two waves and in the other we formed it ourselves,

there can be no difference in the subsequent behavior of the wave. We thus predict
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that the bump will split into two waves, each of half its height, moving off in oppo-

site directions, and observation verifies that this is the case.

In two or more dimensions a wave will spread in all directions, the pattern of

ripples that form when we drop a stone in a pond, as illustrated in figure 7.5.

PERIODIC WAVES

Single wave pulses are easy to follow, but are not very interesting. More challeng-

ing possibilities arise when there are trains of repeated, identical waves. Such waves

are called periodic. They follow the same principles as individual wave pulses, so

we can deal with them by simply adding a bit of descriptive terminology.

Two of the common terms are illustrated in figure 7.6. The wavelength, for

which we use the lowercase Greek letter lambda ( ), is the interval at which the pat-

tern repeats. It is measured in units of length. The amplitude measures the size of

the displacement produced by the wave. Here the units depend on the type of wave.
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For a water wave it is simply the height, but for a radio wave the amplitude would

be the maximum electric field strength.

One more word is required to complete the description: since the wave is mov-

ing, any point on the medium goes through a motion that repeats itself as each wave

passes. The number of times per second this happens is called the frequency, usually

denoted by the lowercase Greek letter nu ( ). Frequency is measured in cycles per

second, renamed Hertz (Hz) in honor of the discoverer of radio waves.

Sometimes, in place of wavelength, it is more convenient to use the wave num-

ber k, the number of waves per unit length. This is simply the inverse of the wave-

length; that is, k 1/ .

The wavelength and frequency are closely related, because the wave travels at

a constant speed. For example, if a wave has a frequency of 5 Hz, five waves pass

each second, and if each is 4 m long, the wave must be traveling 20 m/s. This rela-

tionship can be summarized in the formula

c    
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(a) Sectional view

(b) View from above

FIGURE 7.5. Circular wave form radiating out from its source.



where c is the conventional symbol for the wave velocity. This is not a scientific law

in the usual sense, but merely a relation that follows from the definitions of wave-

length and frequency.

The velocity of sound depends on the air temperature, but on a typical day it

moves at about 340 m/s (765 mph). Light and other electromagnetic waves are

much faster, moving 300,000,000 m/s, or 300,000 km/s. Audible sound waves have

frequencies ranging all the way from about 20 Hz to 18,000 Hz, and thus have

wavelengths that range from about 2 cm to nearly 20 m. Light waves are extremely

short and span only a narrow range of wavelengths, from 0.4 to 0.7 micrometer

( m, millionths of a meter). Their frequencies are extremely high, around 5  1015

Hz (5 quadrillion Hz).

The smooth wave shown in figure 7.6 is called a sine wave because its mathe-

matical description uses the trigonometric sine function. A sound wave that has this

shape is heard as a pure musical tone whose pitch is determined by the frequency. A

sine wave of light gives a pure spectrum color. Waves, however, can have almost

any imaginable shape. As long as the shape is faithfully repeated for many wave-

lengths, waves can be built up by combining sine waves of different wavelengths.

STANDING WAVES

When a wave is confined between fixed boundaries, such as the ends of a music string,

there are severe restrictions on the kinds of wave motion allowed. The wave reflects off

both ends of the string, so there is no net tendency to move in one direction or another.

Instead, we get patterns that look like waves standing still, one of which is shown in

figure 7.7. All musical instruments generate their sounds in some such fashion.

A standing wave can exist on a string only if it fits in such a way that the ends do

not have to move. Since a wave pattern crosses the centerline once each half wave-

length, the only waves that survive are those for which 1, 2, 3, . . . half wavelengths

fit evenly into the length of the string. The case of three half wavelengths is shown

in figure 7.7. The points that do not move are called the nodes of the wave. The Prin-

ciple of Superposition allows several patterns to coexist on the same string, so the ac-

tual pattern of motion can get a great deal more complicated than these simple ones.
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Since shorter wavelengths mean higher frequencies, the pattern with one half

wavelength, called the fundamental or first harmonic, has the lowest frequency. The

shorter waves are called overtones or higher harmonics. Real musical instruments

are deliberately designed to produce a rich mixture of the fundamental and over-

tones, because a pure sine wave is a rather uninteresting sound.

A radio transmitter sets up a standing electrical wave in its antenna. A laser gen-

erates a standing light wave, confined between mirrors at either end, with a mecha-

nism for pumping energy into the wave. When we get to quantum theory, we will

find that standing waves play a crucial role in the structure of atoms.
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INTERFERENCE PATTERNS

When periodic waves arrive at the same place from two synchronized sources, or

from the same source by traversing two different paths, they produce an interference

pattern. These patterns can be both strikingly beautiful and terribly useful. They

provided a way to establish the wave nature of light, and also were the basis for a

historic experiment that was crucial in the development of relativity. That experi-

ment is the topic of chapter 8.

An interference pattern with sound waves is illustrated in figure 7.8. Two

speakers are sounding the same signal, an uninteresting pure tone. At the speakers,

both sound waves are perfectly in step. But most places in the room in front of

them are closer to one speaker than the other, so the waves no longer arrive per-

fectly synchronized, since they have traveled different distances to reach their

common destination.

Point A in the figure is exactly one wavelength farther from the right speaker

than from the left one. The waves from the two speakers arrive exactly one wave-

length out of step. But since periodic waves are all identical, that is the same as ar-

riving in step. The interference here is constructive. The waves reinforce one

another, and a strong tone is heard. The same condition applies at point B, which is

equidistant from the two speakers.

Point C, however, is one-half wavelength closer to its nearest speaker. Here the

waves arrive exactly out of step. Maximum air pressure for one wave coincides with

minimum air pressure for the other. In this case we get destructive interference. The

waves cancel one another, and little or no sound is heard.
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The key to understanding an interference pattern is straightforward: take the

difference between the distances from the two sources, and divide by the wave-

length. The resulting quotient q is given by the formula

q  

The value of q tells you what kind of interference will take place. If it is an integer

(i.e.,  1, 0, 1, 2, 3, . . .), the interference will be constructive. If it lies halfway

Intermediate values will give intermediate results: Quotients close to an integer

give not-quite-perfect reinforcement, while those close to a half integer give not-

quite-perfect cancellation.

For example, in figure 7.8, if we take L1 to be the distance from the left

speaker and L2 the distance to the right speaker, at the points labeled A, B, and C,

It is hard to synchronize two light sources, so interference patterns with light are

generally produced by splitting a light beam into two parts and recombining them.

This effect was used by Thomas Young in 1789 to settle the long-standing contro-

versy over the nature of light, which dated from the time of Newton and Huygens.

Newton pioneered in the study of light. It was he who proved that white light is

a mixture of all the colors of the rainbow. His book Opticks, though not as Earth-

shaking as the Principia, was a scientific milestone. He personally found it congen-

ial to think of light as a hail of tiny particles. Huygens favored a wave theory, and

his Treatise on Light was on a par with Opticks.

Young was, at various times in his life, a professor of physics, a practicing

physician, and an amateur philologist who played a significant part in cracking the

code of the Rosetta Stone, the key to the Egyptian hieroglyphics.

Young’s apparatus was terribly simple, but adequate to the task. He blackened

a small square of glass with soot from a candle, until it was opaque. With a razor

guided by a straight edge, he scribed two thin parallel grooves in the soot, as close

together as he could, because he knew light waves must be very short. In a darkened

room, he allowed a beam of sunlight to pass through the glass.

Light passed through the two slits, and by the time it reached a sheet of paper

held a few feet away the beams had spread out enough to overlap. What Young saw

was the striking pattern illustrated in figure 7.9. The bright bands represent con-

structive interference, while the dark ones are destructive. The bands are closely

spaced, because light waves are so short that one need not move very far along the

screen to change the difference in path lengths by a half wavelength.

Young’s experiment was not all that new. Interference effects had been ob-

served before—one was even discovered by Newton himself! But such was the

prestige of Newton’s name that many physicists clung to the particle theory until

well into the nineteenth century. We will see later that this was not entirely foolish.

L1  L2

 

82 Interference Patterns

then q   1, 0, and  , respectively.
1
2

between two integers (i.e.,  , , 1 , 2 , . . .) the interference is destructive.
1
2

1
2

1
2

1
2



THE ELECTROMAGNETIC SPECTRUM

Today, we have developed technologies for handling electromagnetic waves of

nearly all imaginable wavelengths and frequencies. We will close this chapter by

sorting these out on a chart of the electromagnetic spectrum, illustrated in figure

7.10, and defining some of the terms used to describe them.

The long-wavelength end of visible light is the red end. Beyond this lies in-

frared, which we normally detect through its heating effects. This fades gradually
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into microwaves and radio, with no clear boundaries. Today, our communications

exploit all wavelengths from around 1  m in the near infrared, which are used in

fiber-optic systems, to ELF (extremely low frequency) signals with wavelengths of

thousands of kilometers, which are used to contact submerged submarines. At the

short-wavelength end, ultraviolet gradually fades into X-rays, with wavelengths

comparable to atomic dimensions, and then to gamma rays, which extend out to

wavelengths far smaller than an atomic nucleus.

All these forms of radiation except light were discovered since the days of

Maxwell. His unified theory of electricity, magnetism, and light led directly to the

discovery of some of them, and enabled us to understand the rest. There is probably

no more outstanding example of pure science leading to practical results of over-

whelming importance. So when scientists seek to justify spending the taxpayers’

money on matters of no obvious or immediate practical importance, they thank the

shade of James Clerk Maxwell.

Summary

Waves are patterns, usually distortions of a medium such as a string or a fluid, that

travel out from their point of origin. In most instances they move at a constant speed,

and several waves can be present in the same place at the same time. The terms am-

plitude, frequency, and wavelength are used to describe repeated identical waves.

Two important wave phenomena are standing waves, which arise when waves are

confined rather than allowed to spread freely, and interference, when waves from dif-

ferent sources arrive at the same place. Only certain specific patterns of standing

waves may persist, and interference sets up patterns in which waves cancel in some

places and reinforce in others.
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Does the Earth Really Move?
It may be that it does not move,

Or moves but for some other reason;

Then let it be your boast to prove

(Though some may think it out of season

And worthy of a fossil Druid)

That there is no Electric Fluid.

—JAMES CLERK MAXWELL

The experiment that opened the first rift in the seamless garment of Newtonian

physics was performed in 1887 by a young professor at the Case School of Applied

Sciences in Cleveland, Ohio. Like so many who have contributed to the building of

America, Albert A. Michelson was an immigrant. Born in 1852 in the town of

Strzelno in the German section of partitioned Poland, he was brought to the United

States as an infant by parents who were fleeing the wave of intolerance and repres-

sion that followed in the wake of the failed revolutions of 1848. His father was an

itinerant Jewish merchant, and his mother was Polish, a most uncommon match for

that part of the world at that time.

Rather than settle into the teeming cities of the East and Midwest, Michelson’s

father had the daring to join the California gold rush—not as a miner, but as a mer-

chant catering to the miner’s needs at Murphy’s Camp in the Sierra foothills. Within

the walls of their home the Michelsons provided some of the cultural amenities that

the rough boomtown so conspicuously lacked. To ensure him a proper education,

Albert was sent to high school in San Francisco, where he boarded with the princi-

pal. Recognizing Albert’s aptitude for science, his host made him an assistant in the

physics and chemistry laboratories. Blessed with good looks, a nimble mind, and

skills that ranged from boxing to the violin, Albert was a self-confident young man

with seemingly brilliant prospects.

But before Albert graduated high school the lode at Murphy’s Camp played out,

and his family followed the silver rush to Virginia City, Nevada. Short of capital to

reestablish their business, the Michelsons simply could not afford to send a son to

college. One way around this problem was to have him attend one of the service

academies. Albert took the competitive examination for Nevada’s lone appointment

to the U.S. Naval Academy at Annapolis, but tied for first with a young man who

was given preference as the son of a disabled Civil War veteran.

Undaunted, Albert made the long journey east, for Annapolis was changing. In

the new Navy of iron steamships and long-range gunnery, a naval officer would

have to be something more than a good sea dog, and a new curriculum had been

adopted with hefty doses of science and mathematics. A few of the new plebes
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weren’t up to the challenge, and withdrew in a matter of days. Michelson’s name

cleared the waiting list.

Albert graduated with high marks in everything but seamanship, so it seemed

logical to keep him on as an instructor at the Academy for his first tour of duty. He

had married, brilliantly, the daughter of a New York stockbroker. Soon he advanced

his prospects even more with an experiment that defined his career, a precise mea-

surement of the speed of light.

Michelson improved on a method illustrated in figure 8.1, which had been de-

veloped by Jean Foucault, then France’s leading experimental physicist. A beam of

light was reflected off one face of a rotating octagonal mirror, and sent on a long

path to a stationary mirror that reflected it back. On its return it reflected off another

face of the mirror to a viewing eyepiece. In the microsecond or so of the round trip,

the mirror rotated almost imperceptibly, but enough to shift the image a measurable

amount. The known rate of rotation of the mirror was the “clock” that timed the

light beam, and the result was good to about 1 percent.

Foucault had worked indoors, which limited the round trip to less than 100 feet.

With a flair for the grandiose that would characterize his style, Michelson took the

experiment outdoors to allow a half-mile path. The technical difficulties were enor-

mous, but Michelson startled the world by coming up with a measurement more

than 20 times more precise than Foucault’s. This was front-page news in the New

York Times, and the young man was ready to make his move in science.
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Taking leave from the Navy, Michelson headed for Europe in 1879. For all the

ingenuity of her inventors, America was still a backwater in basic science, so it was

imperative to get at least some training abroad. His father-in-law offered to cover a

year’s living expenses, and telephone tycoon Alexander Graham Bell agreed to fund

the construction of the prototype of an instrument that was to make Michelson fa-

mous. Bell operated an informal program designed to encourage young Americans

to choose science over more practical careers. He was tickled by the young naval

officer’s audacity, for what Michelson had proposed was nothing less than measur-

ing the absolute velocity of the Earth!

CLOCKING THE EARTH

A nineteenth-century physicist did not need to be a diehard mechanist to believe in

the aether. It is terribly hard to imagine a wave without some kind of medium to

transport it. Sound waves have air, ocean waves propagate on water, and so on.

Thus from the start, the aether was so intimately associated with the wave theory of

light that few scientists could separate the two in their minds; to challenge the aether

was to deny the wave nature of light.

In order not to impede the Earth in its orbit around the Sun, Maxwell’s aether

would have to flow either around or through the Earth without friction. As a result,

light on Earth would move at different speeds in different directions. To see why,

consider the movement of sound on a windy day. With a wind from the west at a

steady 20 m/s, sound waves moving to the east will get a boost and travel at 340  

20  360 m/s. Conversely, if headed west they will be slowed to 320 m/s. Only if

we drift with the wind in a balloon will we find sound waves moving at the same

speed in all directions. With the aether moving with respect to the Earth, a similar

effect would be expected for light.

Even without an aether, common sense seemed to indicate that the wave theory

of light should provide a standard of absolute rest or motion. If light waves travel at

the same constant speed in all directions, surely they can only do so in one reference

frame. In a frame that is moving with respect to that one, the wave travels at differ-

ent speeds in different directions. There is one privileged frame that is different from

all other inertial frames, the only one in which light moves the same speed in every

direction. So although we will explain Michelson’s experiment in terms of the aether

theory, as he did, his analysis does not require the actual existence of the aether.

Still, in the minds of most physicists of Michelson’s era, three concepts were in-

dissolubly linked, as illustrated in figure 8.2. These were:

1. The wave nature of light

2. The existence of a privileged frame

3. The existence of a physical aether

The existence of light waves seemingly implied a medium for them to move in,

as well as a privileged frame in which they moved at the same speed in all direc-

tions. And if there is such a privileged frame, what has nature provided that makes
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it different from all other frames? An aether that is at rest in that frame seemed a

logical answer.

As fast as light travels, the Earth’s orbital motion is rapid enough to have a

small but measurable effect on its speed. The Earth circles the Sun at about 30 km/s,

one ten-thousandth the speed of light. And Michelson had already measured the

speed of light to nearly a part in ten thousand. Unfortunately, however, a direct as-

sault on this problem would not do. Michelson’s measurement, like every other, had

timed light over a round-trip course. If light were speeded up in one direction, it

would be equally retarded in the opposite direction.

But Michelson had stumbled on a better idea, based on two significant insights:

(1) the effect of the Earth’s motion on the speed of light does not cancel exactly on

a round-trip path, and (2) the tiny dimensions of light waves allow light itself to

serve as a “ruler” for measurements of incomparable precision.

The effect for a round-trip would be ten thousand times smaller than on a one-

way trip, so it would be necessary to measure to a part in one hundred million.

Michelson realized that while he could never measure the speed of light that pre-

cisely, with the aid of interference effects he could compare the speeds of light over

two different paths to an even greater accuracy.

SWIMMING ACROSS A STREAM

Michelson’s experiment rested on the realization that it takes less time to swim

across a stream and back than to swim the same distance upstream and back. The

mathematics required to understand this effect is not important in itself, but it does

give rise to one key mathematical expression that is the basis for the quantitative

aspects of Einstein’s theory of relativity, so it is worth the trouble to go through it

here. The result is more significant than the argument that leads to it, so the alge-

bra that follows is not as important as the discussion that follows the formula.
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Let a swimmer set out to cross a stream, headed straight for a point on the shore

directly opposite, swimming at speed c in a current of speed v. To compensate for

the current, the swimmer must point somewhat upstream. To someone standing on

the shore the swimmer may appear to head directly across the stream, but to some-

one in a boat drifting with the current the swimmer follows a diagonal path, the hy-

potenuse of the triangle in figure 8.3.

To estimate how much extra distance the swimmer must cover, we compare

the hypotenuse of the triangle to its cross-stream side. The hypotenuse represents

the swimmer’s path in the water, at speed c. The downstream side of the triangle is

the motion of the current, at v. By the theorem of Pythagoras, the squares of the

two sides should add up to the square of the hypotenuse. We know the hypotenuse

and one side, so we subtract and take the square root to find that the swimmer’s

speed, as seen from shore, must be 1c2  v2 . The ratio of the distance covered in

the water to the width of the stream is the ratio of the hypotenuse to this side.

In relativity, this ratio is known as the Lorentz factor and is usually represented

by the lowercase Greek letter gamma ( ). Completing the calculation, we get 

Because of its importance, the way  varies with velocity is shown in the graph in

figure 8.4.
As a numerical example, suppose the swimmer can do 5 mph in a stream that
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moves at 3 mph. Then  0.6, its square is 0.36, and 1    2  0.64; since the

square root of 0.64 is 0.8, we have   1.25, which means that the distance the

swimmer travels with respect to the water is 25 percent more than the width of the

stream.

If v  0, that is, the stream is stationary, then   1 as we might expect, for the

distance swum is exactly the width of the stream. This is as low as  gets. It is al-

ways 1.0 or greater, which means that if you are trying to cross a stream in a per-

pendicular direction, the current is always a hindrance rather than a help.

v
c

v
c
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Of far greater significance is the fact that the formula cannot be used at all if v

is greater than c, for we would then have to take the square root of a negative num-

ber. In this situation, the stream moves faster than the swimmer, so there is no way

to cross it without being swept downstream. In the theory of relativity, this restric-

tion takes on a far more profound meaning.

The trip up and down the stream is somewhat more complicated, so we shall

not derive the result. The swimmer moves upstream with velocity c  v and returns

with velocity c  v. But more time is spent on the upstream trip, so the average

speed for the round trip is less than c. The ratio of average velocities is in fact  2, as

readers adept in algebra are invited to verify for themselves.

For speeds much less than the speed of light, there is a simpler approximate for-

mula for the Lorentz factor:

This formula should be used only if v is less than about one-hundredth the speed 

of light.

A RACECOURSE FOR LIGHT

Now we turn to Michelson’s apparatus. The reader has probably anticipated the

next step. Replace the stream with the aether, and the swimmer with a ray of light,

which is why we chose the symbol c, the conventional symbol for the velocity of

light. But in this case, v is expected to be only about 0.0001c, and  thus differs

from 1.0 by half a part in one hundred million! How can we measure such a tiny

difference?

The answer is that light carries its own yardstick, and a remarkably fine one it

is. The marks on this yardstick are light waves—typically, about 0.5  m long. What

Michelson built was a device that set up a race between two light rays, with a way

to judge the winner to a fraction of a light wave.

The racecourse, known as a Michelson interferometer, is depicted in figure 8.5.

A partially silvered mirror transmits half of the light falling on it, reflecting the rest,

thus setting up two light beams at right angles. Two ordinary mirrors send these

back along their paths, returning to the half-silvered mirror, which recombines half

the light in each beam. If the waves arrive crest to crest, the center of the pattern in

the eyepiece will be bright. If they arrive trough to crest, it will be dark.

To make matters easier, he tilted one of the mirrors imperceptibly, so light in

different parts of one beam would travel slightly different distances. The result was

a pattern of parallel light and dark bars, like the ones observed by Young. It is eas-

ier to judge a change in such a pattern than a change in the brightness of light. If the

relative length of the two arms of the interferometer changes by one wavelength, the

whole pattern will shift to the left or right by a distance equal to the spacing between

two bright bands.
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Michelson then set the interferometer in a very slow rotation. If the aether

were moving horizontally through the laboratory*, each light path would get a turn

heading up and down stream and then, after 90 degrees of rotation, would become

the cross-stream leg. The difference in length between the two paths—the key to

the interference pattern—would change continually as the interferometer rotated,

and the pattern should shift from side to side. The magnitude of the shift is given

by the formula

f    2

where L is the total path-length the light travels,  is the wavelength of the light, and

f is the shift in the pattern, in units of the fringe separation. For example, f  0.5

means each fringe would move halfway to the position of its neighbor, and then re-

turn, twice each rotation of the apparatus.

L
 

v

c
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*Measurements were made around midnight when the direction of the Earth’s orbital motion is
due east.



Building a successful interferometer was a technical challenge. It must rotate

without changing its dimensions by even a small fraction of a wavelength of light.

For his first attempt, in Berlin in 1880, Michelson tried using a structure of precision-

machined steel. It was so sensitive to vibrations that when an assistant outside the

laboratory stamped on the ground the effect was visible. Michelson saw no shift in

the pattern, but his first interferometer had been a trial run, and the expected shift

could have been too small to see. Simply getting the device to work had left a strong

impression on the European professors to whom he gave demonstrations.

And in America in those years, a scientific name recognized in Europe was a

saleable commodity. Michelson applied for and won a position at the Case Institute,

resigning his Navy commission. There he teamed up with Edward Morley, an as-

tronomer who taught chemistry at the nearby Western Reserve University, which

had better laboratory facilities than Case.

In the Cleveland version, the mirrors were mounted on a huge sandstone slab

floated on a pool of mercury, with multiple mirrors to send each beam back and

forth several times, lengthening the racecourse to 10 meters. So L/ was 20 million

with (v/c)2 equal to 1/(100 million), he expected a shift of one-fifth of a band spac-

ing. Michelson was sure he could detect a shift of one-hundredth of a band spacing,

so this time there would be no doubt.

But there was also no shift! Michelson was bitterly disappointed, but did not let

that slow him down. Leaving a puzzle for others to explain, he went on to a series

of triumphant displays of experimental virtuosity, nearly all of which worked on

variants of the interferometer idea.

The full story of attempts to explain away the Michelson-Morley experiment is

interesting and at times amusing, for it still ranks as one of the biggest surprises in

the history of physics. Hardly anyone was willing to abandon the aether theory on the

basis of this one puzzling result. Most felt that Michelson had revealed a new feature

of the aether, one that would help nail down some of the unknown properties of that

mysterious substance. One attempt to follow this line of reasoning is worth mention-

ing, for it was the one that was on the right track, at least mathematically.

Following a suggestion by the Irish astronomer C. F. FitzGerald, the Dutch

theoretical physicist H. A. Lorentz thought the key to the puzzle might be the elec-

trical structure of atoms, which was discovered a few years after the Michelson re-

sult. If matter is held together by electrical forces that are transmitted by the

aether, it might be that moving through aether wind “flattens” objects in the direc-

tion they are moving. It must flatten them by exactly the required amount,  , to

make the Michelson race come out in a dead heat. Of course, no material ruler

could detect the effect, for it would conveniently shrink the same amount as what-

ever it was measuring.

PUBLISH AND PROSPER

This experiment and others gave Michelson’s career a spectacular boost, for a new

era had begun in American higher education, and gifted researchers were in short

supply and great demand.
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From colonial days, the model for American higher learning had been the Eng-

lish college. Teaching emphasized tutoring and student recitations, labor-intensive

methods that left professors with little time for study or research. Serving a small and

scattered population, colleges tended to be small, and professors had to be versatile

enough to teach several subjects. Most colleges offered only a handful of strictly de-

fined courses of study, with few or no electives.

But to the America of the late nineteenth century, growing rapidly in population

and industrial might, another model of higher education was beckoning. The 

spectacular rise of the German economy, with particular emphasis on technically 

sophisticated industries like chemicals, steel, and electrical machinery, had 

impressed the world. Rightly or wrongly, the university system was given much of

the credit for this growth.

At a German university, students launched on a specialized program of study

from the first year, taught largely through lectures by august professors with plenty

of time for personal research and the close supervision of candidates for the Ph.D.

The faculty was organized into specialized departments, the strongest of which

boasted well-established research institutes where a single professor dominated the

work of a large team of scholars in junior positions.

After a protracted struggle between these two systems, America arrived at its

own formula, which persists to this day. The German organizational structure was

adopted, but democratized to preserve the more egalitarian collegiality of the Eng-

lish system. The lecture method became dominant, and in the larger colleges and

universities the old general curriculum gave way to an elective system. Some liberal

arts colleges preserve the vestiges of the English curriculum, though most have

adopted the dominant system. The recent call for restoring a “core curriculum” is an

echo of the English tradition.

In the last decades of the nineteenth century, one American university after an-

other hopped on the bandwagon. The first was Johns Hopkins, followed by a num-

ber of large Eastern private universities. Among the public colleges, the Universities

of Michigan, Wisconsin, and California followed soon after. Two new universities,

Chicago and Stanford, were research universities from day one. Getting in early

clearly paid off, for these schools remain among the leading research centers to 

this day.

Michelson played the game well, moving up from the Case Institute to Clark

University, and then moving again to found the physics department at Chicago, with

its generous libations of Rockefeller money. In his latter years, he moved one last

time to the California Institute of Technology. Sticking to large optical instruments,

Michelson had a number of celebrated successes. One of the most notable, for sheer

physical size, was his last. To improve the measurement of the speed of light that

launched his career, he built a mile-long vacuum pipe on the California desert. On

his deathbed, he wrote the paper reporting the result.

Despite its growth, especially during and after World War II, American physics

retains some of the Michelson flavor. Physicists in the English-speaking world tend

to feel that experiment is the driving engine of progress, and many regard better in-

struments as the surest path to better experiments. Michelson is enshrined in the

pantheon of great instrument builders. But the quality of his chisels was not what
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made Michelangelo a great sculptor, and experimental science, like sculpture, re-

mains an art in which the creative imagination is as indispensable as it is intangible.

Be that as it may, building research instruments on a stupendous scale has long

been a distinguishing feature of the American style. Many a physicist in the United

States has carved an illustrious career out of skillful gadgeteering, without person-

ally contributing much to physical thought. The giant particle accelerators, which

are among the most expansive (and expensive) monuments ever erected to human

curiosity, would probably have tickled Michelson’s fancy.

Summary

An unsuccessful attempt by Albert A. Michelson to measure the “absolute” motion

of the Earth, using the speed of light as a reference, had an important historical im-

pact. For this measurement he invented an interferometer, a device that exploits in-

terference effects to make measurements of exceptional precision. Michelson was

the first United States Nobel laureate, and his career was closely linked to the rise

of science and research universities in the United States. The analysis of this exper-

iment introduces the Lorentz factor, a mathematical function that will prove useful

in Einstein’s theory of relativity.
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The Birth of Relativity
But in physics I soon learned to scent out the paths that led to the depths,

and to disregard everything else, all the many things that clutter up the

mind, and divert it from the essential. The hitch in all this was, of course,

the fact that one had to cram all this stuff into one’s mind for the examina-

tion, whether one liked it or not.

—ALBERT EINSTEIN

Biographical sketches of famous scientists routinely claim that their brilliance

was obvious from earliest childhood. Like many other stereotypes, this one does

not fit Albert Einstein, by all odds the most celebrated scientist of the twentieth

century, the only one whose face is recognized by nearly every educated person on

Earth. But Einstein in his early years could only have been described as a “serious

underachiever.”

Einstein was born in 1879 in reasonably comfortable circumstances in Ulm, in

the south of Germany, and raised in Munich. His family was in the electrical busi-

ness, which in his youth represented the cutting edge of technology. Across the Eu-

ropean continent, city after city was installing electric power. His uncle, an electrical

engineer, and his father, a man perhaps a bit too gentle to be a real success in busi-

ness, were partners in an effort to capture a small place in this growing market.

In his early years, young Albert alarmed his parents by being slow to talk,

though when he finally got around to it, he spoke in complete sentences. He did

seem alert and curious, and soon showed considerable talent for music. His uncle

also noticed and cultivated Einstein’s flair for mathematics. From the outset, he dis-

played an ability to willingly lose himself in deep thought.

Albert’s happy childhood in the bosom of a warm and indulgent family took a

turn for the worse when he entered high school at Munich’s Luitpold Gymnasium.

The watchwords at that institution were discipline and authority, two things that

Einstein would detest throughout his life.

Though he did well in most subjects, Einstein’s classroom demeanor infuriated

his teachers. He would sit at the back of the room, dreamy-eyed and half smiling,

denying them the respect and servility that they felt was their due. The headmaster

was particularly offended. On the playground Einstein stood apart, averse to the

rough-and-tumble of sports. At the end of his school day, he would retreat with relief

to his home, his beloved violin, and what he later called his “holy geometry book.”

Before the start of his final year, the Einstein brothers moved their failing busi-

ness to the city of Pavia in Italy, leaving Albert behind to finish school. Deprived

of emotional support, Einstein watched with apprehension the approach of his 
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seventeenth birthday, a significant deadline for a young German of that era. After

that date, he was liable for military service and could not leave the country without

being regarded as a deserter. Not only would he be cut off from his family, but

given his troubles with people in authority, he was sure that exchanging his school

uniform for a military one could only mean disaster.

With an excuse provided by a friendly physician, Albert withdrew from school,

renounced his German citizenship, and joined his parents in Italy. But their move had

done little to improve the prospects for the family business. It became clear that Al-

bert must train for some profession. He decided to take the entrance examination for

the prestigious Swiss Federal Polytechnic School in Zurich, where he could study in

his native German without having to return to Germany. His goal was modest

enough—to become a teacher of physics and mathematics at the high school level.

In his chosen fields, Einstein’s test scores were impressive, but he was terribly

weak in foreign languages, chemistry, and biology. The director of the Polytechnic

pointed out that he could bypass the examination if he could simply manage to grad-

uate from a Swiss high school, which required a less demanding examination. He

was steered to a school in the city of Aarau with a reputation for dealing kindly with

free-spirited youth. It had been founded by educational reformers who stressed the

visual imagination, which was Albert’s strongest point. He later insisted that his best

ideas always came to him in the form of visual images. The math and the words to

explain them followed months or even years later. Aarau proved a happy and com-

fortable route to the Polytechnic.

Einstein’s record in Zurich was decidedly uneven. He was disappointed that

many of his courses were not up-to-date, so he cut lectures to study the latest text-

books on his own. He survived by cramming for the two batteries of exams that

counted, with the help of careful lecture notes taken by his friend Marcel Gross-

mann. In the end, he led the class on the final exams for his teaching certificate. His

school companions found him charming and witty, and a few even recognized his

spark of brilliance. But by the time he graduated, he had antagonized several influ-

ential professors by his ill-concealed lack of respect. Furthermore, he was not yet a

Swiss citizen. His job prospects seemed less than radiant.

For two years he struggled along as a substitute teacher and private tutor, until

Marcel Grossmann made use of some family connections to land him the modest

post of patent examiner in the Swiss capital of Bern. In this unlikely bureaucratic

niche he was to enjoy some of the most productive years in the history of science. It

provided him with a shelter from the pressures that normally beset a young scien-

tist. In his later years Einstein was to comment:

For an academic career puts a young man into a kind of embarrassing position by re-

quiring him to produce scientific publications in impressive quantity—a seduction

into superficiality which only strong characters are able to withstand. Most practical

occupations, however, are of such a nature that a man of normal ability is able to ac-

complish what is expected of him. His day-to-day existence does not depend on any

special illuminations. If he has deeper scientific interests he may plunge into his fa-

vorite problems in addition to doing his required work. He need not be oppressed by

the fear that his efforts may lead to no results. I owed it to Marcel Grossmann that I

was in such a fortunate position.
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Einstein during his Bern days. (Lotte Jacobi Archives/University of New Hampshire)
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Life in Bern proved comfortable. His position actually paid better than the high

school teaching posts he had aspired to, and he quickly acquired a small but lively

circle of friends who met to drink and discuss deep ideas. In their youthful enthusi-

asm, they dubbed themselves the “Olympia Academy.”

The fruits of this idyll were not just the theory of relativity, perhaps the 

greatest single-handed contribution to physics since the time of Newton, but some

important steps toward the quantum theory. Einstein also played a significant role

in persuading the last few skeptical scientists that atoms were real. Landmark 

papers on all these subjects appeared in one feverish 11-month spree during 1905

and 1906.

Part of the Einstein legend holds that he had to labor for years in obscurity be-

fore the world finally recognized his achievements. In fact, his career after 1906 can

be described only as meteoric. He was aided by the culture of central Europe, which

set high value on the very qualities that set him apart.

Central Europeans of that era had seen too much social and political turmoil to

put much faith in the enduring value of wealth, fame, or political power. They rested

their cosmopolitan hopes for humanity not on established institutions, but on the

power of the mind. The knowledge imparted by a good education was the one thing

nobody could take away. Furthermore, they tended to believe that all human

progress flowed from the work of a small number of geniuses. Once one was tagged

as a potential genius, all doors were open and the rule book of career advancement

went out the window.

Einstein was fortunate in that not only his friends but also a few influential sci-

entists, especially Max Planck, professor of theoretical physics at the University of

Berlin, ranked him as a genius. Planck formed that opinion simply by reading

those 1905 papers, long before he met Einstein. Whatever their author might lack

in credentials or position, these works displayed an exceptional clarity of thought.

With his dreamy, intense gaze, Albert even looked the part of a genius. He rushed

to completion his dissertation for the Ph.D., and aimed his sights higher than he

had previously dared.

In the year 1909, Einstein had his “coming-out.” Just turned 30, he was

awarded an honorary degree, invited to address the leading figures in his field at a

major scientific meeting, and offered an associate professorship at the University of

Zurich. After two quick steps up the academic ladder, he was called in 1914 to a

specially created chair at the University of Berlin, which granted him a generous

salary and freedom from teaching duties any time he wished.

Einstein accepted this honor with mixed emotions. He was happy to be at the

pinnacle of his profession, in daily contact with some of its best minds, for Germany

was the world leader in scientific research, and Berlin was its most prestigious uni-

versity. But he feared that he was now “a goose that is expected to lay many golden

eggs.” He decided to hang on to his Swiss citizenship.

On his way to Berlin, Einstein stopped off in his boyhood home and paid a visit

to his old school. The headmaster greeted him with reserve, convinced that this un-

promising student must by now be destitute and had probably come to beg for

money.



THE POSTULATE OF RELATIVITY

The central postulate of Einstein’s theory of relativity is deceptively simple:

The velocity of light is the same for all observers, in all directions, regardless of the

motion of either the observer or the light source.

In terms of the “privileged reference frame” discussed in the preceding chapter,

Einstein is saying all frames are equally privileged. How could this be so?

Obviously, it would take care of the Michelson-Morley result by fiat. One sim-

ply chooses a reference frame in which the interferometer is at rest. But the paradox

is inescapable: If an observer finds a beam of light moving at c, how can another ob-

server moving in the direction of the signal expect to measure its speed and get the

same answer?

Though Einstein’s step was a bold one, it was not totally out of harmony with

the thinking of others. At nearly the same time, Henri Poincaré had come to a simi-

lar conclusion. Poincaré interpreted the failure of Michelson’s and other attempts to

measure the Earth’s motion as evidence for some sort of general principle of rela-

tivity that would forever forbid the detection of absolute motion. But Poincaré was

nearing the end of a long and distinguished career, and was hoping to solve this

problem within the context of the aether theory. It took the nimbler mind of a

younger man, experienced enough to understand the problem but not yet committed

to conventional answers, to dare the final step—to take this principle as the starting

point of his argument, rather than a conclusion to be worked up to.

Einstein’s insight was to see that while the apparent problem was the motion of

light, the questions it raised went far deeper than that. He was ready to reexamine

concepts as basic and seemingly unalterable as space and time.

The arguments by which Einstein developed relativity are not mathematically

difficult, but in order to follow them one must engage in a kind of thinking that is

very unusual. One must follow logic even when it seems to contradict common

sense. Most people—even most scientists—rarely think in that fashion. Good think-

ing usually moves forward on two legs, with logic and intuition both playing their

part. Because of the unfamiliarity of this mode of thinking, as much as the strange-

ness of the conclusions it leads to, it is wise to remember that you should find them

baffling, at least on first acquaintance.

HOW TO USE THE POSTULATE OF RELATIVITY

Einstein developed the theory of relativity largely by visualizing situations that he

called gedanken experimenten, or “thought experiments,” because for practical rea-

sons they could not actually be performed. This has become one accepted way to

teach the subject, and we will adopt it here. But it helps to lay down some guidelines

to steer you through the thickets of logic to come:

1. You may always assume you are at rest, and light travels at c with respect

to you.
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2. Observers you regard as moving are equally free to assume they are at rest

and to construct their own pictures of reality.

3. Nonetheless, all observers must accept all observations, their own or

another’s, as valid. If we can imagine a situation that leads, through the

application of the postulate, to an unavoidable dispute over observations, then

either the postulate of relativity is false or that situation may not occur in

nature!

4. The disagreements will concern things inferred from observations. Relativity

will teach us that certain things we instinctively take to be observable features

of the world are really constructs of the human mind.

5. All disputes arise from one kind of inference: estimating when a remote event

happened, by calculating how long it took the news to reach you at the speed

of light.

SHIPS THAT PASS IN THE NIGHT

Two of the most direct consequences of Einstein’s postulate are that the speed of

light is the upper limit for all velocities, and that observers moving with respect to

one another may not agree that two events happened at the same time. Our first

gedanken experiment will demonstrate these points.

Imagine two spaceships passing each other in the far reaches of outer space

with a relative velocity just below the speed of light. As they meet, let a bright

strobe light go off between their ships, as illustrated in figure 9.1. Rule 1 allows the

crew of each ship to believe that it sits serenely at the center of a sphere of light,

which is expanding in all directions at velocity c. The other ship is, of course, some-

where else. A sphere can, after all, have only one center. Still, rule 2 obliges us to

find a way for both of these pictures to be right.

Let us allow the two crews to turn around and have another go at it, to resolve

the disagreement by observation. At this point, rule 4 plays a crucial role, for it
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reminds us that the sphere is not something we can observe! Light is moving in all

directions, and we can see it at only one place and time. We must translate the state-

ment “I am in the center of a sphere” into something that can be tested by observa-

tion. It then becomes “at any instant, all the light heading out from the flash is the

same distance from me, regardless of direction.”

The simplest way to test this assertion is to reflect some of the light back. One

crew agrees to rig reflectors far from their ship, at equal distances ahead and behind.

If the flashes from both reflectors return to the ship at the same time, it must be at

the center of the sphere. To prove their point they can even produce a photograph,

taken by a camera with a fast shutter, showing both reflections at once. But this does

not resolve the dispute, for reasons illustrated in figure 9.2.

The other crew has an equally ready explanation of what happened. Since they

see both ship and reflectors in rapid motion, the rear reflector rushed forward to

meet the light headed toward it, while the reflector in front rushed away. Clearly,

light must strike the rear reflector first, and the front reflector some time later. After

reflection, the two light beams have reversed direction. The rear beam now must

catch up with a fleeing spaceship, while the one from the front finds the ship rush-

ing to meet it. As the illustration clearly shows, each round-trip consists of a short

and a long leg. For the light ray that heads to the rear, the short leg comes first, and

the long leg later. For the ray toward the front, the order is reversed. But the lengths

of the two legs are the same in both cases, so for both beams the round-trip times are

the same, regardless of the order of the short and long legs.
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So this crew concedes that the flashes from both reflectors reach the ship at the

same time. What they deny is that they hit the mirrors at the same time! They 

concede the validity of the observation but deny that it proves their rival was in the

center of the sphere.

So the dispute is reduced to the question of whether light hit the two mirrors at

the same time, which cannot be resolved by observation! Each crew can cling se-

curely to its own interpretation. Since no one can experience directly what is hap-

pening in two different places, there is no way to settle the argument. They are both

right. The postulate of relativity has withstood its first test. We must pay a price,

however. We are obliged to discard the idea that the phrase “happened at the same

time” has an unambiguous meaning that all observers must accept, as long as two

things happen in different places. This seemingly innocent assertion has been re-

moved from the realm of fact and consigned to the realm of convention.

AN UNBREAKABLE SPEED LIMIT

Imagine, in the preceding example, that the relative velocity of the two ships was

greater than c. In that event, each crew would insist that the other is actually outside

the expanding sphere. Indeed, they could not possibly have even seen the original

flash! But rules 1 and 2 assure us that both crews must always see the flash. Since

rule 3 allows no disagreements on actual observations, speeds greater than c must

be ruled out.

This is the relativistic significance of the rule that v must be less than c to com-

pute  in the preceding chapter (chapter 8). Velocities greater than c are simply ille-

gal. Of course, rule 3 allows us another option—to abandon the postulate of

relativity—but given our lack of experience with things moving this fast, nothing

obliges us to do so.

Put another way, if something moves at a speed that is the same in all reference

frames, there is only one such speed and it is the limit of all possible speeds. There

cannot be two different speeds both of which obey the Einstein postulate. This ar-

gument drives home a subtle but crucial point: the postulate of relativity is not a

statement about light itself, but simply a statement about the speed of light!

This represents a drastic change in our attitude toward the speed of light. No

longer is it an accidental property of light or of the medium in which light travels,

for the logic of this argument makes no reference to the nature of light or to any

medium. The only thing we have assumed about light is that it has the same speed

in all reference frames. Thus we must have stumbled upon something more univer-

sal. We shall see in chapter 10 that the true significance of the speed of light is not

that it is an accidental property of electromagnetic waves, but that it is a fundamen-

tal scale factor in the universe between space and time.

At this point we are in no position to say how this speed limit is enforced. Why

can’t a rocket simply continue to accelerate until it exceeds the speed of light? In

chapter 11, when we come to grips with the changes in Newton’s laws required by

relativity, we shall find the speed limit is self-enforcing.
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THE ELASTIC TRAIN

We move now to our second gedanken experiment, one of Einstein’s own favorites,

measuring the length of a moving object, which he dreamed up while riding to work

at the Patent Office through the narrow streets of Bern. Of course, in his mind’s eye

he replaced his lumbering streetcar with a fast express moving close to the speed of

light.

It is important to be perfectly clear that a moving object means one that is mov-

ing with respect to the ruler that is being used to measure its length. If the ruler is

moving with the object, then you are measuring the object’s length in a reference

frame in which it is not moving.

Let us imagine that alongside the track is a string of telegraph poles, spaced at

a known interval, with each pole bearing a clearly visible number. This is our ruler.

To measure the length of the train against this ruler, simply note which pole is at the

front of the train, and which at the rear, at the same instant. After our first gedanken

experiment, we realize that this requirement is not as innocent as it sounds.

One way of doing this is illustrated in figure 9.3. At the center of the train, place

a light visible from both ends. When they see the light flash, conductors at each end
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of the train note the number of the nearest pole. But a signalman on the ground im-

mediately yells “foul”—the measurement is invalid, because the poles were not ob-

served at the same time!

He sees it as illustrated in the bottom half of figure 9.3. The conductor at the

rear of the train was moving toward the flash of light and saw it before his colleague

at the front, who was moving away and made his observation later. In the meantime,

the train moved, so the poles are farther apart than the length of the train. The sig-

nalman believes the train is shorter than the distance between the poles noted by the

conductors.

There is a logically consistent way to resolve this dilemma: moving objects

must shrink along their line of motion. Then both the train crew and the observer on

the ground can agree that the distance between the poles, in the ground frame of ref-

erence, is greater than the length of the train.

The train crew believes this is so because the “ruler” has shrunk—the poles are

closer together, so more can be fit in between the ends of the train. The signalman

explains that the distance between the poles is greater than the length of the train

measured at rest because it is not a valid measurement of the train alone. Instead, it

is the sum of two distances—the length of the train plus the distance that it moved

between the observation at the rear and the one at the front. Thus the length of the

train could actually be shorter than when it is at rest, and still have the poles farther

apart than the rest length of the train.

There is no quarrel about observations. The signalman accepts that each con-

ductor noted the number of the nearest pole at the moment he saw the flash. What

he disputes is that both did so at the same time. That is an inference—there is no

way to compare times in two places by direct observation. It is not part of the sen-

sory experience of any participant, nor can it come from reading a single instru-

ment. Instead, it is part of the picture of reality we make in our minds. Einstein has

redefined the boundary between what is “out there” and what is in our heads. Na-

ture doesn’t make reference frames—we do.

Though the choice of a reference frame is arbitrary, Einstein assures us that it is

still valid and useful, as long as one takes into account some of his peculiar effects.

Thus two signalmen could stand a distance apart that is shorter than the length of the

train at rest, and safely cross the tracks at what they regard as the same time, with

the train safely between them.

This was Einstein’s analysis of the Lorentz contraction, and we shall see in

chapter 10 that it is quantitatively the same. But where Lorentz viewed it as a me-

chanical effect based on motion with respect to the aether, Einstein saw it as a con-

sequence of the choice of reference frame. For the signalman, the train has shrunk,

while its crew sees no such effect. For Lorentz, the v in his formula is the velocity

with respect to the aether. For Einstein, it is the velocity of an object in some arbi-

trarily chosen reference frame. Why not make life easy for yourself, and choose one

in which it is zero?

In the light of this, let us reconsider the Michelson-Morley experiment. In the

Earth frame of reference, there is no shrinkage and no effect, since light moves at

the same speed in both arms of the interferometer. In a frame in which the Earth is

moving, the shrinkage assures that both beams travel the same distance, as Lorentz
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described. Both reference frames give the same observed result. There is no privi-

leged frame, which makes it hard to go on believing in the aether.

All of this flies in the face of common sense only because we intuitively assume

that what we are seeing now is happening now. This is perfectly reasonable; all of

our experience tells us that nothing moves or changes much in the microseconds or

less that it takes for light to reach us from objects nearby. But when dealing with

fast-moving objects, these brief delays become very important.

We can exploit Einstein’s train to hint at yet one more relativistic effect. Sup-

pose the conductors, in order to avoid problems with light signals, meet at the cen-

ter of the train to synchronize watches, and then take up their stations at the ends

and observe the poles at a prearranged time. In a self-consistent world, this must

give the same result as the previous method. The signalman must still deny that the

poles were observed at the same time. So something must happen to these watches

in the time between when they were set and when the observation was made. We

will see just what it is in chapter 10.

THE GARAGE PARADOX

We close this chapter with a third gedanken experiment. Imagine a garage with

doors at both ends, set to open automatically when a car approaches and close when

it clears the door. Imagine also a car that at rest would be as long as the garage. The

car sails through the garage at a speed approaching that of light; it is thus shortened,

at least from the point of view of someone in the garage. The rear door opens to ad-

mit the car, and then closes behind it before the front door opens to let it out. For an

instant, the car is inside a closed garage.

But from the point of view of the car’s rather reckless driver, it is the garage that

gets shortened. As he sees the process, the car must at some point stick out at both

ends, and both doors must have been open at once! These two conflicting pictures are

illustrated in figure 9.4. Common sense tells us one or the other must be wrong.

Again, relativity insists that this is not a question with an unambiguous answer.

The secret lies in the difference in the sequence of door openings and closings, as

seen by the two observers. These are summarized below:

Garage Frame: Car Frame:

rear door opens rear door opens

rear door closes front door opens

front door opens rear door closes

front door closes front door closes

Note the reversal of the order of the second and third events. The question of

whether or not a garage is “closed” turns out to be yet another example of compar-

ing times in different places. In chapter 10, we will examine what the driver and an

observer in the garage really see, in order to develop this example more fully.

It cannot be emphasized too strongly that relativity does not deny that there

exists a single reality, and admit only the multiple, conflicting personal realities of



different observers. Einstein insisted that science describes things that exist

independent of any observer. In this example, the car is real, the garage is real, all

the openings and closings of doors are real, and so is everything the driver and oth-

ers see. It is the pictures shown in the illustration that are, in a sense, not “real.”

They are conventional ways of representing reality. In chapter 10 we will show that

these pictures do not represent what either observer actually sees!

The word that best describes how one obtains such a picture is the verb con-

struct. The picture does not represent immediate experience. Instead, it is constructed

from observations by correcting for the time it takes for light to reach the observer. It

takes the quantitative apparatus developed in chapter 10 to do this properly.

There is nothing new or even particularly “scientific” about this procedure.

Artists may portray three-dimensional reality on a two-dimensional canvas by the
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use of one convention, that of perspective. Engineers, on the other hand, tend to pre-

fer the three-view mechanical drawing. Nature does not tell us which to choose.

Neither can depict the totality of an object, any more than a balance sheet tells you

all there is to know about a business.

If the books don’t properly or conveniently reflect the state of a business, a new

system of bookkeeping can be adopted. In chapter 10, we will see that this is also true

in physics. The “better bookkeeping” system is called four-dimensional space-time.

Summary

Albert Einstein’s temperament, upbringing, and education prepared him to think in

novel ways, but did not seem to point to a brilliant career until 1905, when he pro-

duced five papers of exceptional quality. Two of these outlined what came to be

known as the theory of relativity. Its starting point was the postulate that light will

travel at the same speed in all directions in all reference frames. He then accepted

modifications to our notions of space and time that were required to make this pos-

sible, stipulating only that they must not conflict with observations. Through a se-

ries of “thought experiments” (gedanken experimenten) we demonstrate that the

postulate rules out motion faster than the speed of light, and that it leads to dis-

agreements over whether two events in different places happen at the same time.

These in turn lead to disagreement as to the length of a moving object.

108 Summary



109

C H A P T E R  1 0

The Wedding of
Space and Time

Alice laughed: “There’s no use trying,” she said; “one cannot believe im-

possible things.”

“I daresay you haven’t had much practice,” said the Queen. “When I

was your age, I always did it for half-an-hour a day. Why, sometimes I’ve

believed in as many as six impossible things before breakfast.”

—LEWIS CARROLL, Through the Looking Glass

There are two ways to resolve a disagreement. One is to learn to live with it, as

long as all parties thoroughly understand and tolerate each other’s points of view.

The other is to find a common ground on which all parties can agree. The theory of

relativity offers both of these ways to resolve the disputes between observers im-

plied by Einstein’s postulate.

The “live with it” approach was outlined in Einstein’s first paper on relativity,

submitted to the journal Annalen der Physik in June 1905. It allows any observer to

translate the picture of reality in any reference frame to that in any other. The task

of this chapter is first to show how to carry out these translations.* This exercise

will reveal that our usual way of describing nature is actually more formal and

artificial than we realize. This will prepare the way for the “common ground,” the

four-dimensional space-time convention.

We found in chapter 9 that whenever we use information gathered in one refer-

ence frame to construct a picture in another frame, we must accept three adjust-

ments that seriously conflict with our commonsense notions of space and time:

1. Moving clocks appear to run slow.

2. Moving objects appear shortened along their line of motion.

3. Events that are simultaneous in one reference frame may not be in another

frame.

To reduce the confusion, it is essential to deal with these effects one at a time.

We will treat them in the order stated above.

HOW SLOW DOES THE CLOCK RUN?

The postulate of relativity requires that any measurement of the speed of light, re-

gardless of the frame of reference in which it is made or the direction in which the

*In the standard terminology of relativity, they are called Lorentz transformations.



light is moving, must give the same numerical result. To examine the implications

of this postulate for measurements of time, we will consider a measurement of the

speed of light made on a moving train.

The result must show that light moves at the expected speed with respect to the

train. But an observer on the ground should be able to use the same measurements

to show that light moves at the very same speed with respect to the ground.

This measurement is made with a single clock located on the train, timing a light

ray that makes a round-trip across the train, perpendicular to its motion. The single

clock removes the problem of synchronizing clocks in different places. A path across

the train is chosen because there is no argument about the width of the train, since

there is no motion of the train with respect to the ground in that direction.

The observer on the ground is bound to accept the validity of all measurements

made on the train, but is otherwise free to interpret them in whatever way it takes to

show that light moves at the expected speed with respect to the ground.

It is clear from figure 10.1 that the two observers disagree about the distance

traveled by the light ray. While an observer on the train believes it has returned to

its starting point, the one on the ground believes it has traveled forward and thus has

gone farther. That is why no measurements are made in the ground frame, for that

would require two clocks in different places. Geometrically, the situation is exactly

the same as for the swimmer in chapter 8. Thus if the train has width w, the observer

on the train believes the light travels exactly 2w, while the one on the ground

believes the true distance is 2 w.
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Now let each observer calculate the speed of light. The postulate of relativity

insists that both should get the same answer, c, which is 300 million meters per sec-

ond. The observer on the train divides by the time t measured on the clock:

 c

but to the observer on the ground, the numerator should be 2 w. How can the an-

swer still be c? One can’t tamper with w—both observers agree on the width of the

train. There is only one way to make the answer come out right: multiply the de-

nominator t by  also! Then the gammas will cancel and the result will be the same:

 c

What is the significance of the  t in the denominator? Since the numerator rep-

resents the distance traveled by light in the ground frame, the denominator must be

the time elapsed on a clock in that same frame, so that the speed of light is its speed

in that frame. Since multiplying by  increases the value of t, it means that more

time elapses in the ground frame than is recorded on the moving clock. This is the

meaning of the statement moving clocks run slow.

But the observer on the train is free to consider any clock on the ground to be

moving, so it is the one that runs slow. Each observer believes the other is using a

slow clock.

If you balk at the notion that two observers can simultaneously believe that the

other’s clock is slow, keep one important fact in mind: two observers in relative mo-

tion get at most one chance to compare clocks face-to-face as they pass. Thereafter

they are moving rapidly apart. They can communicate only by light or radio signals

that take a noticeable time to reach the other party, and as they move farther and far-

ther apart successive replies take longer and longer. Each estimates the other’s clock

reading by correcting for this time lag, assuming the other party is the one who is

moving. The discrepancy in their corrections just continues to grow. A numerical

example later in this chapter will show exactly how this works.

Returning to the train example in the preceding chapter, let the conductors meet

at midtrain to synchronize their watches. The signalman will claim that by walking

on the train in opposite directions, the conductors change their speeds with respect

to the ground. The conductor who walks toward the front of the train moves faster,

so his watch runs slower than a watch at rest with respect to the train. The other con-

ductor experiences the opposite effect, so his watch runs faster. By the time they

reach the ends of the train their watches are no longer synchronized. So once again,

the pole opposite the rear is observed earlier than the one at the front.

THE FITZGERALD SHRINKAGE

Now that we have the quantitative measure of the apparent slowdown of a moving

clock, we can use the result to derive the apparent shrinkage of a moving object

along its direction of motion. Again we roll out Einstein’s beloved train. One easy

2 w
 t

2w
t
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way to measure its length without ever having to be in two places at the same time

is to measure its speed and then time its passage with a stopwatch.

An observer on the train would challenge the validity of that measurement—

“You did it with a slow clock, so your value is too short.” As in the measurement of

the speed of light, he would multiply the time on the stopwatch by  to get a value he

believes. Since he then multiplies the time by the velocity to get the length of the

train, his value for it is  times longer than the estimate of an observer on the ground.

If relativity is self-consistent, this corrected measurement must agree with one

made with a ruler that is at rest with respect to the train. Thus if the observer on the

train makes such a measurement and reports it to the observer on the ground, that

observer must divide by  to get the “moving length” of the train. This is of course

an odd way to measure the length of a train, but if relativity is valid, this way is as

good as any other and will yield the same result.

To summarize these two effects, here are the “translation rules” for converting

measurements in one reference frame to those in another:

If a moving observer reports a time interval, then multiply by  to get the time

interval in your frame.

If a moving observer reports a length along the direction of motion, then

divide by  to get the length in your frame.

If you prefer to see this expressed in formulas (if not, skip this paragraph and the

equations that follow it), let L be the length of a moving object (along the line of 

motion), W be its width (perpendicular to the motion), and t be a time interval. Let

the subscript zero stand for the quantity as measured in its rest frame (L0 and W0

measured by rulers at rest with respect to the object, t0 in the rest frame of the clock).

Then we have, as measured in a frame in which the object or clock are moving:

L  

W  W0

t   t0

If the reader is now thoroughly dazed (a common feeling at this stage in the

study of relativity) by a world in which moving objects shrink and moving clocks

lose time, a numerical reminder may prove reassuring. The most rapid large human

artifacts (interplanetary rockets) move at speeds around one ten-thousandth of the

speed of light. Thus,  differs from one by about one part in one hundred million.

For more leisurely vehicles, such as supersonic jets, the effect is more like one part

in one hundred billion.

A CASE STUDY OF RELATIVISTIC TIME

This example, cast in the form of a brief dialogue, is designed to show how it is pos-

sible for two people in motion relative to one another to each believe that the other’s

clock is slow. The point to be made is that any comparison of the clocks involves

L0
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communications over distances that are both large and changing. In order to under-

stand what is going on, they must take into consideration the long time lags in-

volved in communications over immense distances. We will show that if they ignore

the relativistic corrections, they will disagree as to what they should observe, while

if they perform them properly, they will agree on observations, though they disagree

on other features of the process.

Two astronauts (Joe and Sue) pass one another in the far reaches of interstellar

space, at a relative velocity of 0.6c. At the instant they flash by one another, they

synchronize watches, and Sue agrees to send a radio message (which travels at the

speed of light) ten minutes later. The ensuing dialogue follows:

SUE: Ten minutes at the tone—ding!

JOE: Aha! Just like Einstein said, you have a slow clock! If you’d really called

back in 10 minutes, you’d have been 6 light minutes away, and I would have

gotten your message in 10 plus 6 equals 16 minutes. I must sadly inform you

that my clock read 20 minutes at your ding. But relativistically, for your mo-

tion, gamma is 1.25. You really transmitted at 12.5 minutes, when you were

7.5 light minutes away. That adds up to 20, like I said.

SUE: Okay, knucklehead, reread your Einstein! He allows two to play at this

game, and I can just as easily show that your clock is the slow one! I say

you’re moving, and were only 6 light minutes away when I sent. But you

were running away from my message, which had to catch up at a relative

speed of 0.4c. It took 15 minutes to make up your 6 light minute lead, so you

really got it at 25 minutes. You say 20, so yours is the slow clock.

JOE: I guess I gotta concede that you know what your clock said when you sent—

I know what mine read when I received—and these are the only facts we

have to work with. We’re arguing about what my clock read when you sent,

or yours read when I received, which has nothing to do with actual experi-

ence, since we’re hundreds of millions of miles apart!

SUE: Right you are! Isn’t it odd how we must disagree on these calculations, in

order to agree on the observations!

Without the relativistic corrections, Joe would have expected his clock to read

16 minutes when he got Sue’s message, while Sue would have expected it to read

25. With the corrections, both agree it should read 20.

It must be emphasized that each is perfectly free to adopt the other’s point of

view, or to regard both spaceships as moving (that makes for a much more tedious

calculation). The point is that relativity insists that it makes no difference which

reference frame you use—all account equally well for the two observable facts.

What happens if one of the astronauts turns around and comes back for a direct

face-to-face comparison of clocks? The answer is that it matters crucially which

does the turning around. This is the famous “twin paradox,” of which we shall hear

more later.

The 2 to 1 ratio between time on the sender’s clock and the time on the re-

ceiver’s clock applies to all subsequent transmissions. Joe’s reply, sent when his

clock read 20, arrived when Sue’s read 40, and her reply reached him at 80 minutes.

For v  0.8c the ratio would be 3 to 1.
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The calculations are summarized in table 10.1. For convenience, distances are

measured in light-minutes (lmin), the distance light travels in a minute, which is

more than 10 million miles! The speed of light is then 1.0, and the relative velocity

of the ships is 0.6, measured in light-minutes per minute.

Note that of all the numbers in this table, only two—the ones in boldface—rep-

resent actual observations. The rest are part of the superstructure we erect to obtain a

working picture of reality, one in which everything we experience is understandable.

BACK TO THE GARAGE

It is appropriate at this point to give substance to the “pictures of reality” referred to

in rule 2. When dealing with rapidly moving objects, these pictures are not what is

seen, which shows different parts of things at different distances and therefore at

different times. In this gedanken experiment we will see how two observers, mo-

mentarily in the same place at the same time, see essentially the same image, but use

it to construct contradictory pictures.

Assume the car and garage in chapter 9 have a relative velocity of 0.6c, and let

each be 20 feet long. The use of feet is justified by a simple relationship; the speed

of light is about 1 foot per nanosecond (ns, a billionth of a second). Let our friend

Sue be the driver, and have her seated halfway between the front and rear bumpers

of the car. Standing midway in the garage is Joe.

TABLE 10.1 Comparison of Joe’s and Sue’s corrections.

Sue’s Sue’s Joe’s Joe’s
Quantity Analysis Value Value Analysis

What Sue’s clock I know what 10 min 10 min I accept Sue’s

read when she I saw! observations

transmitted (rule 4)

The “true” time I trust my own 10 min 12.5 min Moving clock,

when Sue clock (rule 1) runs slow by

transmitted   1.25

How far apart the Time  velocity 6 lmin 7.5 lmin Time  velocity

ships then were  10  0.6  12.5  0.6

Relative velocity He’s moving, so 0.4c c I’m standing still

of the message c  0.6c (rule 1)

and Joe (rule 2)

Time the message Distance  velocity 15 min 7.5 min Distance  velocity

spent in transit  6  0.4  7.5  1.0

Total time since Add the times: 25 min 20 min Add the times:

the ships met (15  10) min (12.5  7.5) min

What Joe’s clock Moving clock, 20 min 20 min I know what

read when he runs slow by I saw!

received   1.25



Let us focus in on the instant when Sue passes Joe, at the center of the garage.

Since both observers are instantaneously in very nearly the same place, what they

actually observe at this instant must be roughly the same.

If both are looking in the direction in which the car is moving, they will see that

the front bumper of the car is halfway to the door.* Each realizes this is old news—

it took some time for the light to reach them. In the meantime, motion has taken

place, and in order to decide where things are now, a correction must be made for

this motion.

Joe is concerned with the front bumper of the car—has it moved far enough to

reach the door? In Sue’s reference frame it is the door that is moving, and she wants

to know if it has reached the front bumper. The key to the matter is that each makes

the correction differently, because they use different scales to measure distance.

Each uses a yardstick that he or she regards as at rest. For Joe, this is the door,

which he knows is 10 feet away. Hence the car’s front bumper must be 5 feet away.

Sue chooses the car as reference, and since its front bumper is 10 feet from her, the

door must be 20 feet away! Table 10.2 summarizes how each corrects the observed

picture for the motion that took place while the light was on its way.

Since the door is the farthest point of the garage, and the front bumper the far-

thest point of the car, Joe concludes the car is shrunken, while Sue is equally sure

the garage is shrunken. The difference comes about because Joe is correcting for the

motion of the bumper, which he sees as only 5 feet away, while Sue is correcting for

the motion of the door, which she sees as 20 feet away. Thus her time correction is

four times as big as Joe’s, allowing for four times as much relative motion.

This is the very essence of relativity: we never see remote objects as they are

now, only as they were some time ago. If they are moving, one must correct for this

motion, and there is no one unique correct way to do this. The “slice in time”—an

extended region of space all at the same instant in time—is a fiction, a construct of

the human mind that does not correspond exactly to the way we actually

experience reality.
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*This can be shown by working backward the calculations presented in table 10.2.

TABLE 10.2. Corrections to positions of moving objects.

Quantity Joe’s Value Sue’s Value

Distance to fixed 10 ft (door) 10 ft (bumper)

reference point

Apparent distance to 5 ft (bumper) 20 ft (door)

moving object

How long ago light left it 5 ns 20 ns

Motion since then  0.6 ft/ns  5 ns   3 ft  0.6 ft/ns  20 ns   12 ft

( means away)

Distance to moving 5 ft  3 ft  8 ft 20 ft  12 ft  8 ft

object now



Of course, in our everyday world, where things don’t move so fast and nanosec-

onds are ridiculously short time delays, it is a pretty good fiction, so we intuitively

think that way. Also, it is mathematically convenient to do so. What Einstein is say-

ing is that we can go on using this fiction, but must recognize it for what it is, and

allow that different observers may construct it differently.

One might ask “why bother with these corrections—isn’t what we actually see

a reasonable working picture of reality?” The answer can be gleaned from this ex-

ample by asking what our two observers would see if they looked toward the rear

of the car.

Here the situation will be reversed; the car is protruding, and the door is

halfway along the rear half of the car. This is a general rule: objects that pass near

you at close to the speed of light appear hideously distorted. The part that has gone

by you appears compressed, while the part coming toward you looks stretched. This

is because you see the farther parts as they were at an earlier time. If they are com-

ing toward you, you see them farther away, and if they are headed away, you see

them closer. To Joe, the rear half of the car looks four times as long as the front half!

Sue sees the garage similarly distorted.

Given these distortions, they would probably prefer to correct by the relativis-

tic rules. What they see is even farther from an acceptable picture of reality in an or-

derly world. At least Einstein allows the car to retain a constant shape!

Einstein has, in effect, relocated the boundary between what is out there in na-

ture, and what is constructed in our minds. To a previous generation of scientists,

the pictures in figure 9.4 and the corrected positions in table 10.2 would have been

considered just as real as observations. Einstein realized that they are true only by

convention, in an arbitrarily chosen reference frame. Useful as reference frames

may be, nature doesn’t hand them to us—we make them up for ourselves.

We will soon see that there is yet another way to represent reality—the four-

dimensional space-time picture. Though it is less intuitively satisfying than our nor-

mal pictures, it has the advantage that all observers can agree on a common view.

THE RELATIVITY OF SIMULTANEITY

As a final step in developing the relativistic translations, let us put in quantitative

terms the gap in time in one reference frame between two events that are simultane-

ous in another frame. This comes about because each observer feels that the other has

moved while the light signals that bring the news of the events were in transit. If one

observer believes an event occurred a distance L away, the signal took the time T  

L/c to get there. During this time the other observer moved a distance vT. Thus their

estimates of the time that the signal was in transit must differ by the time it takes light

to travel this additional distance, which we get by dividing this distance by c:

t     

Two events that are simultaneous in a frame moving with velocity v with respect

to your frame in which they are separated by a distance L will differ in time by t in

Lv

c2

L

c

v

c

vT

c

116 The Relativity of Simultaneity
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your frame. Because of that c squared in the denominator, the times involved tend to

be very small. But at speeds close to that of light, the effect can take on great signif-

icance, as we shall see in the “twin paradox” example at the end of this chapter.

SPACE-TIME: THE FOURTH DIMENSION

Einstein’s first few papers on relativity explored the subject so thoroughly that by

the time others took notice of his work there was little left for them to add. One out-

standing exception was the work of Hermann Minkowski, who had been one of Ein-

stein’s teachers in Zurich.

Minkowski was troubled by one feature of Einstein’s approach: a single reality

gives rise to multiple descriptions. Surely there must be another way to describe

things, one that gets closer to the underlying reality. He found that he could do this

by treating time as if it were a fourth dimension of space.

The words as if are crucial. Minkowski never meant to imply that space and

time have lost their separate identities. He merely found that the postulate of rela-

tivity implies a connection between space and time that is analogous, but not iden-

tical, to the relation between different space dimensions.

In space alone, dimensions are connected via the Pythagorean theorem. If some-

thing is 3 miles east of here and 4 miles north, we can calculate the distance to it as

the crow flies: 132  42  19  16  125  5 miles. If the object is also at a dif-

ferent altitude than we are, just add in the square of that third dimension.

This calculation works only when we measure “north,” “east,” and “up” in the

same units. So the first thing we must do to treat time as a fourth dimension is to

measure it in units of distance. That is simple enough to do—we simply multiply by

c to get the distance light would travel in that time. Astronomers sometimes use the

reverse conversion, expressing the distance to a star in light-years.

Minkowski found that time can be appended to the Pythagorean theorem, but in

a peculiar way that reminds us that we are not dealing simply with another dimen-

sion of space. Instead of adding its square to the squares of the space dimensions,

we must subtract it! If we do this, we get a quantity that remains the same in all ref-

erence frames.

To illustrate this, let us return to the measurement of the length of the train in

chapter 9. We indicated that in the train frame, both telegraph poles were observed at

the same time, but in the ground frame there was a time lag between the two meas-

urements. As a result, the distance L between the two poles was greater than L0, the

length of the train at rest. By Minkowski’s rule, in the ground frame we should sub-

tract the square of the time interval from the square of this distance. In the train

frame, the time interval is zero, so the space-time separation S is equal to L0:

S2  L2  (ct)2  L

That way, both observers agree that the distance between the two observations, in

four-dimensional space-time, is L0. To the conductors on the train, the observations

2
0
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were simultaneous, and the distance is the length of the train. What the conductors

call a pure length the signalman sees as a combination of a length and a time interval.

If the train is 1000 meters long, and moving at 0.6c, the separation of the poles

in the ground frame of reference is   1000  1250 meters. Using the formula

from the last section, the time separation t  1250  0.6/c  2.5  s (microsec-

onds). Converting this to a time by multiplying by c, it corresponds to 750 meters.

Thus the space-time separation as calculated by the signalman is

the rest length of the train.

The simplest element of reality in this four-dimensional world is the event,

something that happens at a particular place and time. The train conductors’ obser-

vations of the two poles were two such events. The combined four-dimensional

space-time separation of two events is the same in all reference frames, and is thus

called an invariant. In the train frame, the two sightings were simultaneous, so the

time separation is zero and the events are separated by the rest length of the train. In

the ground frame the signalman must subtract the square of the time interval be-

tween sightings, the t in the preceding section, from the square of the distance be-

tween poles. Then he too gets the rest length of the train. The “contracted” length of

the train is peculiar to his frame of reference, and is not an invariant, so it is not part

of our four-dimensional picture.

Of course, we pay a price for this convenience. It is almost impossible to visual-

ize a four-dimensional world. It can be dealt with only symbolically, through the

medium of algebra. For this reason Einstein, who depended so heavily on visualiza-

tion, initially rejected Minkowski’s idea, but as he came to see its advantages, he em-

braced it wholeheartedly and made it the focus of his attempts to extend his theory to

new phenomena. The fruits of this union will be explored in chapter 12.

One factor that helps make relativity so baffling is the enormous disparity be-

tween our senses of space and of time. The eye can look upon objects a few inches

away or gaze upon a grand vista covering tens or at most hundreds of miles. But we

can scarcely imagine the time it takes light to cover such distances, which is less

than a thousandth of a second. Thus there is no practical purpose to be served by re-

minding ourselves that we are not seeing remote objects now. But if we daily dealt

with things moving at nearly the speed of light, we would ignore the time lag at

great peril, and relativity might seem natural to us.

Our customary view of reality is like a motion picture—a series of still frames

showing events in different places at successive instants in time. The problem is that

two different movies are constructed in two different reference frames. Both contain

all the same events, but those that are in the same still picture in one reference frame

may be in different pictures in another. By adding the fourth dimension, we put

every event in one big (but admittedly abstract) picture, with the space-time rela-

tions between things properly represented.

Treating time as a fourth dimension should be recognized for what it is—simply

a bookkeeping device that better enables us to keep track of fast moving objects. The

garage paradox reveals that neither what we see, nor the three-dimensional picture

S  312502  7502  31,000,000  1000m
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we construct from it by correcting for the time lags, is entirely satisfactory. In the

four-dimensional picture, regardless of which frame we choose the door openings

and closings are separated by the same distance, a bit less than 20 feet of space-time.

If we accept this convention, the speed of light becomes no more than a con-

version factor between units of space and time, much as 2.54 is the conversion be-

tween centimeters and inches. This is now so widely accepted that it has become

enshrined in our system of weights and measures. At present, we can measure time

to an accuracy of about one part in one hundred trillion. No measurement of dis-

tance can come close to this precision. Accordingly, a separate standard of length

has been abandoned. The International Bureau of Weights and Measures simply

took the best value for the speed of light, 299,792,458 m/s, and made it a standard.

The meter is now defined as the distance light travels in 1/ 299,792,458 of a sec-

ond. Michelson might be disappointed to learn that there is now no reason to ever

again carry out his favorite experiment, measuring the speed of light. Its value has

been fixed, once and for all, by international agreement.

ADDING VELOCITIES

Galilean relativity gives a simple rule for translating velocities from one reference

frame to another. It is merely a matter of addition. If an object is moving at veloc-

ity u in a reference frame that is moving at velocity v with respect to you, you will

see it moving at velocity

U  v  u

Obviously, this formula cannot apply in relativity. Among other things, it could al-

low U to become greater than c. The corresponding relativistic formula must take

into account both the time and length translations. The result turns out to be

U  

Two important consequences of this formula are worth noting:

1. If either u or v is small compared to c, the Galilean formula is nearly correct.

2. If u  c, then U  c, as can be shown by making this substitution and

multiplying both numerator and denominator by c. This is of course what the

postulate of relativity says—if a velocity is c in one reference frame, it must

be c in every reference frame.

If both u and v are c, the formula tells us U is not c, as in the Galilean case,

but 0.8c. Similarly, in the examples we have studied of rockets moving at 0.6c with

respect to one another, in the frame in which both are moving with equal but

opposite velocity this velocity is not 0.3c but c.*
1

3

1

2

v  u

1  uv/c2

*This can be shown by setting v  c and u   0.6c in the formula, which gives U   c.
1
3

1
3
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THE TWIN PARADOX

One of the most startling predictions of relativity is illustrated by the following sci-

ence fiction story.

A young astronaut takes a trip to a star 25 light-years away in a spaceship that

can travel at 99.98 percent the speed of light, giving him a Lorentz factor of 50. The

astronaut has a twin brother, who remains home on Earth. Fifty years pass, and the

Earthbound twin, a graybeard bent with age, goes to the spaceport to welcome his

adventurous brother. The astronaut bounds down the gangplank, because for him

only one year has elapsed, and he is still young and vigorous!

From the point of view of the twin on Earth, this is because time itself slowed

down on the ship. Clocks, and biological aging processes, are slowed to one-fiftieth

their normal speed on this fast spaceship. To the astronaut himself, however, things

seemed perfectly normal. From his point of view it was the Earth and the star that

were moving, so the distance between them shrank to half a light-year, for a one-

year round-trip at close to the speed of light. But both agree that the astronaut is

now 49 years younger than his twin!

Early in the history of relativity, this story was offered as a refutation of the

theory. Why isn’t the twin on Earth the younger? After all, from the point of view

of the astronaut, it is the Earthbound clock that ran slower! There appears to be

a contradiction.

The answer is that one can make a distinction between the astronaut and his

brother. The astronaut had to leave the Earth, accelerate to a stupendous speed, and

turn around (another period of acceleration) at the star. Thus, he is not in uniform

motion at constant speed, and the symmetry of relativity, by which he feels the

Earthbound clock runs slow, does not apply. Analyzed in detail, the problem reveals

that from the point of view of the astronaut, most of the 50 years passed on Earth

during the short time he was turning around at the star.

That this is the resolution of the paradox can easily be seen if we imagine that,

at the star, there is an unmanned artificial satellite, sent there from Earth in advance

of the trip, with a clock set to “Earth time.” Since the astronaut regards this clock

and one on the Earth as moving clocks, they are indeed running very slow. But since

the one near the star is far back along the line of apparent motion, it is also set ahead

of the Earth clock. In the formula t  Lv/c2, L is 25 years times c, and v is only

slightly less than c, so the numerator is 25c2. In the astronaut’s view the clock is

nearly 25 years ahead of Earth time.

When the astronaut reaches the star and fires his rocket to stop and then turn

around, he reverses the situation. The two “Earth time” clocks are now headed in

the opposite direction, with the one on Earth trailing. Thus Earth time is now 25

years ahead of the clock at the star. If the remote clock on Earth switched from be-

ing almost 25 years behind to almost 25 years ahead, nearly 50 years must have

passed on Earth in the brief time he spent turning around. Thus, the astronaut agrees

with his twin brother: more time has passed on Earth than on the spaceship, and he

is now some 49 years the younger of the two!

This 50-year “leap” in Earth time came about because the astronaut changed

reference frames in midvoyage. The theory of relativity as it stands has no way to
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explain this peculiar effect. In chapter 12 we will come back to it again, for it rep-

resents one of the loose ends that drove Einstein to go beyond the theory we have

studied so far.

Today, taking into account the twin paradox has become part and parcel of our

normal technology of timekeeping. The cesium beam atomic clocks that are the ba-

sis for the world’s time standards are accurate to a few nanoseconds a day. But ra-

dio time signals can be trusted to only about a tenth of a millisecond, because of

uncertainty in estimating the distance traveled by radio waves, which in our atmos-

phere do not exactly follow straight lines. To keep other clocks in time with the

world standards, portable atomic clocks used to be flown on ordinary commercial

airliners. With the help of a careful log of the plane’s course, corrections are made

for relativistic time changes, which can amount to tens of nanoseconds on a long

flight. To test this procedure, in 1972 the U.S. Naval Observatory flew portable

clocks on a round-the-world commercial flight, and compared them with clocks that

had stayed in Washington, providing a direct experimental confirmation. Today, the

Global Positioning System (GPS) of satellite navigation puts atomic clocks in orbit,

providing even more accurate comparisons of time standards. But these clocks re-

quire large relativistic corrections. So without relativity, the GPS navigators now

appearing in cars couldn’t help you find that Pizza Hut!

The literary possibilities of the twin paradox have been fully exploited by sci-

ence fiction writers. One series of stories visualized an age when humanity has

spread to habitable planets scattered throughout the galaxy, a civilization spanning

thousands of light-years. In their powerful, speedy spaceships, a breed of astronauts

maintains the skimpy “commerce” of this vast civilization, condemned to a strange

existence in which they return to a familiar port only after centuries or millennia

have elapsed, thus enjoying a peculiar sort of alienated immortality within a normal

life span.

Summary

Relativity offers two remedies for conflicting pictures in different reference frames.

One is to provide rules to translate from one frame to another, while the other con-

structs a new mode of representation on which all can agree. The translation rules

involve the Lorentz factor g introduced in chapter 8. Examples of the time and

length translations show that these give pictures that differ only in unobservable fea-

tures. The new mode of representation is to formally treat time somewhat as if it

were a fourth dimension of space. This means two things: converting times to dis-

tances by multiplying by the speed of light, and using the Pythagorean theorem. The

distinction between time and space remains because the time dimension is sub-

tracted, rather than added, in the Pythagorean sum of squares. If this is done, the to-

tal “space-time distance” between two events is the same in all frames. The

celebrated “twin paradox,” in which an astronaut takes a long round-trip in space at

close to the speed of light and winds up significantly younger than his stay-at-home

twin brother, is analyzed. It turns out to be crucial that the astronaut change his ref-

erence frame in midvoyage.
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C H A P T E R  1 1

E  mc2 and All That

What is matter?—never mind.

What is mind?—it doesn’t matter.

—ANONYMOUS

Up to now, we have been obliged to pay a heavy price for Einstein’s simple postu-

late. If we embrace relativity, as experiments seem to say we must, we must learn to

put up with a great deal of outrage to our common sense. We have no choice but to

radically revamp our notions of space and time. Since these concepts are the very

basis of the description of motion, it is reasonable to expect equally radical changes

in Newtonian physics. Must we discard two centuries of progress, sweep away

Newton’s laws, energy and momentum conservation, and the like?

It turns out that the answer is no. This should hardly be surprising, for we must

remember that Einstein had set out to preserve a feature of Newtonian physics that

was under assault—the equivalence of inertial reference frames. Thus, most of the

Newtonian edifice emerges from this part of Einstein’s revolution intact.

Intact, yes, but by no means unchanged. And the major changes center on the

concept of mass. Newton’s first and third laws are obviously untouchable; unless

we insist that mechanics concern itself with changes of motion that come about

through mutual interactions of bodies, nothing recognizably Newtonian would sur-

vive. We will find that momentum conservation and the second law can be rescued

simply by allowing mass to depend on velocity in a way that is now familiar,

through the Lorentz factor. Moving on to energy conservation, we will find that this

result leads to the duality between mass and energy expressed in the most widely

publicized formula of twentieth-century physics, E  mc2.

But the arguments in this chapter should be far less of a strain on your

credulity than those in chapter 10, because their consequences will not seem quite

so outrageous.

THE MASS INCREASE

The first task is to establish the dependence of mass on velocity, through a gedanken

experiment based on a grazing collision between two identical spaceships. This kind

of collision is familiar to all billiard players. The moving object is hardly deflected



and loses little speed, while the struck one comes out at a slow speed nearly at a

right angle to the original motion. How this looks to the spaceship crews is shown

in figure 11.1.

The trick to understanding this situation is to consider only the part of the mo-

tion that is perpendicular to the original line of motion. In this direction we need not

concern ourselves with disagreements in measurements of length, but need only

consider the moving-clock effect. And Galileo gave us the right to study compo-

nents of motion on perpendicular directions separately.

We now ask what we must accept in order that momentum will continue to be

conserved in the perpendicular direction. In order to test this law, let each crew start

a timer at the moment of collision, and time how long it takes to drift a given dis-

tance x in the perpendicular direction. From the symmetry of the situation, it is clear

that both crews will get the same value for the time t, and thus report the same per-

pendicular component of velocity. Since both ships have the same mass, both crews

will get the same value for the momentum, mx/t.

It would seem as if we are home free, but we must remember that neither crew

accepts the time measured on the other’s clock as valid for its own reference frame.

Each immediately multiplies t by  . Each thus adds a  to the denominator of the

momentum of the other ship, destroying the balance in momentum. To restore it,
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Collision as seen by observer at rest with respect
to body a before the collision (observer A)

Same collision from point of view of observer
at rest with respect to b (observer B)

b

b

a

a

FIGURE 11.1. A “grazing” collision in space.



they also need a  in the numerator. Since both crews agree on the distance x, there

is no place to put this factor except on the mass.

The conclusion is that momentum conservation holds only if a fast-moving

body behaves as if it has more mass than a slow-moving one. The same argument

works along the direction of motion, but the proof is more difficult. So when we

speak of mass, we must introduce the symbol m0 to designate the mass of an object

at rest. The relativistic mass* is then defined as

m    m0

Like the rest length L0, the rest mass m0 is an invariant. The mass m is correct for

only one reference frame.

This modification does not change the essence of the concept of mass, which is

“the tendency to resist a change in motion.” It should not puzzle us unduly to find

that fast-moving objects are more resistant to a change in motion than slow ones.

Moreover, this effect ties up a loose end that has been dangling since chapter 9: how

do we enforce c as an absolute speed limit?

NEWTON’S LAWS AND

THE RELATIVISTIC SPEED LIMIT

In chapter 3 we saw that Newton’s second law defines force as the rate of momen-

tum transfer. Because changes in momentum normally involve changes in velocity

with no change in mass, we could write the formula as F  ma. But in relativity,

both mass and velocity change. Newton’s definition still holds, but the simple for-

mula is reduced to the status of an approximation that holds at low speeds, where  

does not change rapidly.

Let an object be accelerated from rest by a constant force. At first, the mass

changes very little, so all the increase in momentum comes about through changing

the velocity. But as it begins to approach the speed of light, the object becomes

more and more massive and more and more resistant to a change in velocity. Mo-

mentum is still increasing at the same rate, but most of it goes into a change in mass,

with very little change in velocity.

As we approach the speed of light, the Lorentz factor approaches infinity. The

mass becomes an impassible barrier to further acceleration. In modern particle 

accelerators, subatomic particles such as electrons or protons are acted on by

powerful electromagnetic forces. As of the year 2001, the record speed for a parti-

cle in one of these machines was 0.999999999987c, achieved at the LEP (Large

Electron-Positron) accelerator near Geneva, Switzerland, a 17-mile ring of mag-

nets and vacuum pipes that cost more than a billion dollars to build. If simply push-

ing hard enough or long enough could do the trick, the speed limit would have

been violated long ago.

124 Newton’s Laws and the Relativistic Speed Limit

*Some relativity texts reserve the term “mass” for rest mass alone and put the  in the definition of
momentum. This is simply a semantic choice.
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One might reasonably ask just what is that particle accelerator doing? Surely it

is not worth all that money and effort to get a tiny increment of speed. The answer,

of course, is that the electric field is still transferring momentum to the particle—

and it is also doing work. Work transfers energy. And the visible signs of that energy

are the increase in the particle’s mass. The electrons whirling around LEP are

200,000 times heavier than an electron at rest.

This points the way to a deeper, more general result, of which the increase of

mass with velocity is only one special case: all forms of energy have mass.

ENERGY AND MASS

It can be shown that the work done on an electron in LEP is just the change in its

mass multiplied by c squared. But energy conservation transcends motion itself. Let

us therefore establish the relation between mass and energy by a gedanken experi-

ment that emphasizes the universal character of energy conservation.

As we saw in chapter 6, electromagnetic forces can conserve momentum and

energy only if we ascribe these qualities to the field (and hence to light) itself. If an

object emits light in one direction, in order to conserve momentum it must itself

“recoil” in the opposite direction. Maxwell’s theory leads to a simple relation be-

tween momentum and energy for light, E  pc. From the definition of momentum,

we get p  mv. Since the velocity is that of light, we can write p  mc and substi-

tute this value in the Maxwell relation, obtaining

E  mc2

Since it is light we are dealing with, what is the meaning of this mass? Is it

more than a mathematical fiction? Consider the situation depicted in figure 11.2. In

a closed box floating in space, a flash of light is produced by a battery-operated

flash lamp at the left end. If this process conserves momentum, the box must recoil

ever so slightly to the left. Then let the light flash be absorbed at the right end. The

momentum of the light is transferred back to the box, bringing it to a halt.

Without any external force acting on it, an initially stationary box was displaced

to the left. This is exactly what would happen if a mass inside the box moved from

left to right, leaving the center of mass stationary, as in the example in chapter 3.

One might argue that this merely proves that light can be used to transfer mass,

not that there is any general relation between mass and energy. But consider the

state of the box after it stops. The light no longer exists. None of the actual material

of the box has been removed from the left and transferred to the right, yet mass has

been transferred between the two ends! What other changes have taken place? What

evidence remains of the transfer of the light?

The answer is that the absorbed light heated the right end of the box. Con-

versely, at the left end, energy was removed from the battery. Some chemical energy

at the left end of the box was transformed into electricity, and then into light, and fi-

nally into heat at the right end. At the same time, mass was transferred from the left

to the right! Thus, all these forms of energy must obey a mass-energy relationship.



A discharged battery must be lighter than a charged one, a hot object heavier than

the same object when it is cold. But since heat is nothing but the energy of motion

of molecules, this too must obey a mass-energy relationship. And through the law

of the conservation of energy, the mass-energy equivalence can be extended to any

form of energy whatsoever.

It must be emphasized that E  mc2 is the one and only formula for energy in

relativity. What then has become of our old definition of kinetic energy,     mv2, which 

still ought to work at low speeds? The answer is that the kinetic energy represents

merely the tiny increase in mass of a slow-moving body. Remember the approximate

formula for  , valid at low speeds, in chapter 8. Multiplying by m0c
2 we get

 1    m0c
2  m0c

2  mv2

The m0c
2 term is called the rest energy of the object, the energy it has simply by

existing. It reflects the fact that it takes energy to create matter. The second term is

the familiar definition of kinetic energy, the additional energy due to motion.

1

2
1v2

2c2
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Closed box at rest…

begins to move to left when light flashed
at left end,

(Momentum of box equals momentum of light)

stops when light absorbed at right end.

Thus, light has transferred mass from one
end of the box to the other.
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It is reasonable to ask how light can move at c when it has mass. The answer is

that all of light’s mass is “kinetic”—it has no rest mass at all.

THE MEANING OF E  mc2

Ever since Hiroshima, this formula has been associated in the public mind with nu-

clear energy. At the risk of repetition, it must be stated emphatically that it applies

equally well to all forms of energy; it is a quite universal and unique formula, as

valid for a bonfire as for a nuclear weapon. The only distinction of nuclear energy

is that it is the one energy source powerful enough for the changes in mass to be

really substantial.

Heating water from its freezing point to its boiling point increases its mass by

only about one part in one hundred billion, or 1011. In an ordinary chemical reaction,

such as a fire, the combustion products are lighter than the fuel and oxygen used in

the fire by about one part in 109. Such small changes are beyond the range of meas-

urement. But in the more violent nuclear reactions, mass changes of about a part in

a thousand can take place. From a table of nuclear masses, a physicist can use Ein-

stein’s formula to predict the energy release of a previously unstudied reaction.

The crucial factor for the development of nuclear energy and nuclear weapons

was the discovery of the nuclear fission chain reaction, in which each disintegrating

nucleus triggers several neighbors. The formula E  mc2 gave no hint of the exis-

tence of any such reaction, nor is it essential to the understanding of the process.

Einstein himself played no role in the discovery of fission or in the development of

the atomic bomb, aside from the initial one of affixing his signature to a letter to

President Franklin D. Roosevelt, drafted by other scientists, warning of the possi-

bility of an atomic bomb and of evidence for a German effort to build one. Had rel-

ativity not yet been discovered, it would probably have hampered the efforts of the

Manhattan Project very little.

The formula is sometimes mistakenly referred to as a formula for the conver-

sion of energy into mass. It is more than that; it is a statement that, for all practical

purposes, the two are identical. All forms of energy have mass, and what we used to

call mass, which we now call rest mass, is just one more form of energy. This is a

perfectly natural extension of nineteenth-century ideas of energy conservation.

For example, if a bonfire occurs in a sealed box, insulated so that the heat can-

not escape, no change in its weight can occur. Despite the transformation of chem-

ical energy into heat, which represents kinetic energy of the molecules, no change

in mass has taken place. If we allow the heat to escape, however, the box will be-

come slightly lighter.

As a last example to illustrate the generality of the mass-energy equivalence, let

us apply it to potential energy. Whenever a force binds two objects together, their

combined mass is less than the sum of their separate masses. The negative potential

energy appears as what is called a defect in mass. This is the real source of nuclear

energy: the potential energy of the powerful forces that bind the component parti-

cles of the nucleus together. A rearrangement of a large, loosely bound nucleus into

smaller, more tightly bound ones increases the strength of the binding, lowering the
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128 The Meaning of E = mc2

mass of the nuclei. Since this mass is field energy, it is distributed in space. Thus, as

the concept of field matures in physics, it acquires more and more of the qualities

we associate with matter.

A typical nucleus weighs about 0.8 percent less than the combined mass of its

component particles. The atomic bomb derives its awesome power from the fact

that the heaviest nuclei weigh about 0.1 percent more per particle than nuclei near

the middle of the table of elements, and from a process (fission) that splits certain

heavy nuclei into two smaller parts, releasing that one part in a thousand of their

mass in the form of heat.

Outside the nucleus, the mass defects are much smaller. A hydrogen atom, for

example, weighs about one part in 600,000 less than the proton and electron of

which it is made. And the solar system weighs about one part in a trillion less than

the combined mass of the Sun and the planets and other bodies that circle it.

The energy-mass equivalence once again illustrates the role of the velocity of

light as a conversion factor between quantities that were originally regarded as dis-

tinct. Had the equivalence of mass and energy been understood from the outset,

there might not have been separate units for the two. Today, physicists working with

subatomic particles, where grams are horrendously large and awkward units, use

energy units for mass as a matter of course. Viewed in this context, c squared has no

more profound significance than the conversion factor 0.621 from kilometers to

miles.

The square of the speed of light is, however, a rather large conversion factor.

Energy doesn’t weigh much. To get just 1 kilogram of energy, you need (3  108)2

 9  1016 90,000,000,000,000,000 joules! The bombs that destroyed Hiroshima

and Nagasaki lost about 1 gram of mass each to produce their devastating results.

One kilogram of energy is in fact just about what our larger electrical generat-

ing plants produce in the way of heat in a year (only about a third of this heat is

converted to electricity). If the plant is nuclear, that kilogram comes from the fission

of about 1 ton of fissionable material, which is part of a fuel assembly weighing per-

haps 50 tons. If instead it is a coal-fired plant, it must consume nearly a million tons

of coal—more than one hundred mile-long trains of hopper cars each year!

The dependence of mass on velocity was one of the first predictions of relativ-

ity to be experimentally confirmed. Electrons are so light that it is rather easy to ac-

celerate them to considerable velocities. Those in a typical TV color picture tube

travel at nearly one-fourth the velocity of light and have a mass nearly 3 percent

greater than when standing still. And even higher velocities are easy to obtain. A

measurement of the mass increase of electrons was performed as early as 1906. The

energy-mass relation in nuclear reactions was confirmed to high precision in 1932

in the first artificial disintegration of a nucleus.

Today, experimental confirmations of all aspects of relativity are commonplace.

Physicists studying subatomic particles work daily with objects traveling close to

the speed of light. In particle collisions, these particles bear out all the details of

Einstein’s predictions. For example, some particles are highly unstable and break up

spontaneously in the time it takes for a light signal to travel several centimeters. Yet,

at close to the velocity of light, they can be transported many meters with no diffi-

culty, because of the slowdown in their internal “clocks.”



From the point of view of the particle, it is not the slowing of time but the con-

traction of the laboratory that is responsible for the effect. Yet the end result is the

same: it reaches the detector. And when a particle that would be very light when

standing still is brought up to a high speed, it acts like a heavy particle in collisions.

Finally, the extra mass obtained by accelerating a particle close to the speed of light

can be used to produce new particles not previously present.

The final triumph of relativity was to complete the work of Faraday and

Maxwell in uniting electricity and magnetism. Einstein was able to show that a

magnetic field appears when a purely electric field is seen by a moving observer,

and an electric field appears when a purely magnetic one is seen from a moving

vantage point.

A RELUCTANT REVOLUTIONARY

Einstein had a deep respect for Isaac Newton, and was by temperament a most re-

luctant revolutionary. The 1905 papers on relativity saved Newtonian physics by re-

formulating it in a manner consistent with Maxwell’s theory of light. But Einstein

went on to a deeper and more revolutionary insight. Thereafter, he called the theory

we have studied so far special relativity. In 1915, after a struggle of eight years, he

presented to the world a theory he called general relativity. This extended the rela-

tivity principle to accelerated reference frames, and brought gravity within its

scope.

Einstein’s goal was a complete reformulation of physics in which the concept

of force disappears altogether. Instead, gravity is described as a distortion of the

very fabric of space itself, until a straight line is no longer the shortest path between

two points.

It is general relativity that gave birth to the oft-cited (but decidedly false) leg-

end that only 12 people in the entire world could fathom what Einstein was talking

about. Hundreds of physicists and mathematicians understood the theory in Ein-

stein’s day, and thousands do today. Though it is based on formidably difficult

mathematics, the basic principles of general relativity are neither difficult nor ob-

scure. They are the topic of chapter 12.

Summary

Despite relativistic reinterpretations of space and time, momentum conservation

survives if we simply allow mass to vary with velocity according to the Lorentz fac-

tor. This automatically enforces the relativistic speed limit, for mass would be infi-

nite at the speed of light. Through analysis of light in a closed box the energy-mass

relation E mc2 is obtained. Though popularly associated with nuclear energy, this

formula applies to all forms of energy, and simply means that “energy has mass.” It

is a natural extension of energy conservation.
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C H A P T E R  1 2

Did God Have Any Choice?

Within every creature incarnate sleeps the Infinite Intelligence unevolved,

hidden, unfelt, unknown—yet destined from all eternities to waken at last,

to rend away the ghostly web of sensuous mind, to break forever its

chrysalis of flesh, and to pass to the extreme conquest of Space and Time.

—LAFCADIO HEARN, The Diamond Cutter

At some time in the fall of 1907 Albert Einstein, by then promoted to technical as-

sistant second class at the Swiss Patent Office, had what in later years he would call

“the happiest thought of my life.” As he explained it,

I was sitting in a chair in the Patent Office in Bern when all of a sudden a thought

occurred to me. “If a person falls freely he will not feel his own weight.” I was star-

tled. This simple thought made a deep impression on me. It impelled me toward a

theory of gravitation.

Nothing immediate, however, came of this happy thought, for he would soon

find that between him and his goal lay eight years of false leads and fresh starts, as

well as mastery of some of the most daunting mathematics ever invented.

All Einstein had done, of course, was to “rediscover” Galileo’s law of falling

bodies: all of them fall with the same acceleration. If one falls freely—or orbits the

Earth, which is a form of free fall—in a closed capsule, everything in the capsule

falls with the same acceleration, leaving no relative motion to indicate the presence

of gravity. Today, with live telecasts from manned spacecraft, we are all familiar

with this effect, but in Einstein’s day it took a stroke of the imagination.

Newton’s way of dealing with this peculiar property of gravity had been to

make the force proportional to mass. But Einstein had redefined mass somewhat,

into a quantity that was different in different reference frames, and was not yet sure

what this might do to Newton’s law of gravity. Furthermore, the law of gravity

needed to be reformulated from Newton’s instantaneous action at a distance to a

field whose propagation was limited to the speed of light. Finally, gravitational field

energy itself now had mass. It was not yet clear how to deal with these matters, but

at least he had a test that any new theory must pass: it must preserve Galileo’s law.

And as he had done with the postulate of relativity, Einstein once again chose this

fundamental rule not as the goal of his theory but at its logical starting point!

Einstein’s happiest thought leads naturally to its converse: in a closed capsule

moving with constant acceleration, it will seem as if a gravitational field is present.

Consider the rocket in figure 12.1, which is out in interstellar space, accelerating
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with its rockets firing. Any loose object in it will “fall” toward the tail with uniform

acceleration. Of course, in Newtonian terms, no force is acting on the object; it is

really the rocket that is accelerating. Thus all objects will appear to have the same
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acceleration—that of the rocket. Galileo’s law is automatic in an accelerated

reference frame.

Thus Einstein set out to construct a single theory that would apply equally well

to both accelerated reference frames and gravitational fields.

THE PRINCIPLE OF EQUIVALENCE

To develop his theory of gravity, which he called general relativity, Einstein added

one more postulate to the theory of relativity:

No experiment performed in one place can distinguish a gravitational field from an

accelerated reference frame.

The words “in one place” are important. Einstein did not eliminate all distinc-

tions between gravity and accelerated reference frames. If we compare the fall of

objects in different places on Earth, we will find that they all head toward the

Earth’s center. No accelerated reference frame can duplicate that pattern, though a

rotating frame can have acceleration directed away from a central axis. What Ein-

stein is saying is simply that all objects respond to a gravitational field in the same

way they respond to being in an accelerated frame.

As with the special theory, this seemingly innocent hypothesis, which is known

as the Principle of Equivalence, turns out to have unexpected consequences. Before

we explore them, let us spell out our destination and the route we shall take to it.

Our conclusion will be that there is absolutely no need for a “force” of gravity.

The acceleration of falling bodies or planets is simply a case of inertial motion, of

objects coasting along on the shortest paths available to them. But these paths are

not straight lines, because space-time itself is not flat!

The problem with these words is that we can scarcely imagine what they mean.

It is hard enough for us to accept the fact that the surface of our Earth is curved.

Looking at a flat map, it is hard to visualize that the curved paths we call great cir-

cle routes or, to use their mathematical name, geodesics, are really the shortest

routes between points on the Earth’s surface.

But at least we can be reassured that the Earth sits in a perfectly flat space, and

if we could tunnel through the Earth, that would be the shortest route. But space it-

self curved? What do the words mean?

We shall try to remove some of their mystery through the tried-and-true device

of gedanken experiments. These are designed to show in turn:

1. In an accelerated reference frame, space-time is curved in a trivial way.

2. Light moves in curved paths in accelerated frames and thus also in

gravitational fields.

3. If we accept the above as meaning that space-time itself is curved, we can

explain everything we know about gravity without ever having to mention a

force.

4. Gravity affects time, turning the 50-year time leap in the twin paradox

example into a real effect.
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5. People who live in round worlds but insist they are flat are bound to invent

forces like gravity.

6. There are ample experimental tests of all the above, and some important

effects that can be explained in no other way.

The payoff for climbing this path will be a physics that contains some fascinat-

ing curiosities like black holes, and gives insight into the origin of the universe itself.

The rules of the road are simpler than for the arguments we used to develop

special relativity. We must simply accept that once we have demonstrated that

something happens in an accelerated reference frame, it must also happen in a grav-

itational field.

THE WARP AND THE WOOF

Galileo could have drawn figure 12.2 if he had known about graphs, which were in-

vented by Descartes. But it is more than a graph; in our new four-dimensional lan-

guage, it is a map of a two-dimensional slice of space-time, showing the path of an

object moving freely in an accelerated reference frame or a gravitational field. It is

obviously a curved line.

Newton would immediately ask whether there is in fact a true gravitational field

present. If so, the path is really curved. If not, we are seeing what is really a straight-

line path distorted into a curved one by viewing it from an accelerated reference

frame. For Einstein, this distinction is meaningless. In either case, the object is

obeying the Law of Inertia, as it applies in the local reference frame: inertial paths

are curved here.

Now let us extend the principle to light. Suppose we are inside the rocket in

figure 12.1 and shine a laser beam across it from wall to wall. Since the opposite

wall will speed up while the light is in transit, the beam will hit that wall to the rear

of the rocket from the point it was aimed at, and the path of light across the rocket

will in fact be a parabola. The Principle of Equivalence forces us to concede that

the same thing must happen in a gravitational field.
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The curvature is so small that we would have a hard time proving this. Suppose

that on a very clear day, we shine a beam from one mountain peak to another, 20

miles distant. It would get there in a ten-thousandth of a second. In that short time,

a falling body drops by only a distance not much larger than the diameter of an

atom! We could never distinguish the path of a beam that curved that little from a

straight line.

There is nothing in this example that would have caused Newton to lose a

night’s sleep. In his second most celebrated work, Opticks, he raised the possibility

that gravity could affect the path of a light beam. The real argument is about how we

describe the cause of what we see. So let us move on to an ordinary falling body and

see how Einstein accounts for its motion.

You may now object that such a slight curvature could hardly account for the

motion of falling bodies. But we must remember that the curvature is not of space

alone but of space-time. The fact that we do not notice the curvature is yet another

consequence of the disproportion between our sense of space and our sense of time.

If you drop a coin from waist height, it reaches the floor in about a half second.

While we regard this as a small interval of time, its space equivalent for our four-

dimensional picture is immense. In that brief time a light beam covers about

100,000 miles. The equivalent of figure 12.2 for that coin is a graph with vertical 

dimensions of a few feet but horizontal dimensions of 100,000 miles. We have sam-

pled a huge two-dimensional slice of our four-dimensional space-time, and its tiny

curvature is quite sufficient to explain the motion of the coin.

Einstein says that when the coin is released, it simply follows its natural curved

path in space-time. This brings it, after its long journey, in contact with the space-

time path of a point on the floor. This other space-time path is straight, because

gravity is not the only game in town. Whatever gives solid matter its hardness must

also be able to influence the geometry of space-time. It can overcome gravity and

straighten out the floor’s space-time path.

There is no quarrel between Newton and Einstein over the description of these

space-time tracks. What they disagree about is their significance. Newton says the

tracks are curved by the action of a force. Einstein insists that no force is necessary:

space-time itself is curved.

We have now completed the first three (and the easiest) steps of our argument,

and still we have no way to choose between the Newtonian and relativistic expla-

nations of gravity. The last three will remedy this situation.

DOES ANYBODY HAVE THE RIGHT TIME?

We are now ready to resolve the quandary of the astronaut in the twin paradox.

Figure 12.3 shows an accelerating rocket ship, equipped with a clock in its nose

that sends time signals ten times each second, to be received further down in the

ship. 

But the rocket is accelerating, so that in the time it takes for the signals to

reach the receiver, it has gained additional speed and is headed toward them.

Suppose, for example, that it gains one-tenth the speed of light. Then adding this
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movement to that of the signals themselves will allow the receiver to pick up one

additional signal each second. We then have a clock sending ten signals each sec-

ond, but a receiver picking up eleven! This is a familiar phenomenon, known as the

“Doppler shift.” Whenever a source of signals and a receiver are moving with re-

spect to one another, the interval between signals changes.

But how do we explain this effect in the rocket’s reference frame? Surely we are

not manufacturing additional signals along the way! We have only one way out, and

that is to admit that a second at the bottom of the rocket must be different from one at

the top. Since the receiver is picking up 10 percent more signals than the clock sends,

its second must be 10 percent longer. This means that a clock at the bottom of the

rocket actually runs 10 percent slower than one at the top. The Principle of Equiva-

lence then insists that the same thing must happen in a gravitational field.

To see how this helps the astronaut get his story straight, let us find a formula

for the clock slowdown, which is simply the ratio of the speed gained while the sig-

nal is in transit to the speed of light. If the acceleration is a and the height of the

rocket h, over a time interval t the upper clock will get ahead of the lower one by

 t  t
ah

c2
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In a gravitational field, a is simply the acceleration due to gravity, roughly 10

meters per second squared on Earth. That c squared in the denominator is a pretty

big number, so the result is usually tiny. In a balloon at a height of 10,000 meters, a

clock would gain only 4 nanoseconds an hour compared to a clock on the ground.*

Small as this is, atomic clocks are good enough to measure it. It is also roughly

comparable to the loss of time due to the speed of a commercial jet plane. Thus both

effects must be taken into account when portable atomic clocks are flown around

the world.

For the astronaut in the twin paradox, however, this effect would not be tiny at

all. In order to reverse a speed close to that of light in a few days, his acceleration

would have to be billions of times that of Earth’s gravity, and the Earth quadrillions

of meters away in the “up” direction. Thus during his turnaround, Earth’s time

would pass many times faster than his. Since firing his rockets in this remote loca-

tion could not have had any effect on Earth time, he must conclude that time, for

him, was essentially “frozen” during his turnaround, and 50 years passed on Earth

in what seemed to him a very short period.

His stay-at-home twin can now only reply, “I think you’re ridiculous to use

such a silly reference frame, but I have to admit that your version of the story,

bizarre as it may be, is at least self-consistent.” Note that this is not a case of two ob-

servers each believing the other’s clock is slow. Everyone agrees that in an acceler-

ated reference frame the speed of a clock depends on its position and clocks higher

“up” run faster.

THE FLAT-EARTHERS

Don’t be disappointed if you still can’t fathom curved space-time. After all, there

are still people around who believe the Earth is flat!

Let two of these benighted individuals begin a journey due north, one starting

100 miles east of the other, traveling at the same speed. We who believe in a round

earth know what will happen to them. They will draw inexorably closer to each

other, eventually meeting at the North Pole.

If they keep track of their separation along the way, they will find that initially

the approach is very gradual, but it speeds up toward the end; accelerated motion!

If they persist in using plane geometry, they will be hard-pressed to explain what

went wrong. One way would be to say they were drawn toward one another by a

force. Just like gravity, their “accelerations” would be independent of their masses,

so it would have to be a force proportional to mass.

This is just a simplified example, on the two-dimensional curved surface of

our planet, of the consequences of failing to recognize the curvature of four-

dimensional space-time. Since this example did not include a time dimension, we
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substituted the steady progress of our travelers for the familiar steady march of

time. Otherwise, the analogy is exact.

But to arrive at this point, Einstein needed help, and it came from a familiar

quarter. Curved geometry is one of the most difficult problems in mathematics, and

was far beyond Einstein’s training. In 1912, when he returned from Prague to

Zurich to take a professorship at his alma mater, he approached his old friend

Grossmann, who by then was the professor of mathematics. “Grossmann,” he

pleaded, “you must help me, or else I’ll go crazy!”

Fortunately, sanity was near at hand. Fifty years earlier the mathematician 

Bernhard Riemann had constructed a geometry tailor-made to Einstein’s needs, and

had even suggested that it might be worthwhile to check the geometry of the space

we live in on a large scale, to see if it is really Euclidean after all! Though Grossmann

was no expert in this area, he at least knew Riemann’s geometry existed. The two

joined forces for just a few months, until Einstein’s departure for Berlin broke up the

collaboration. But that was enough to set him on the proper path.

The help proved crucial, for this time Einstein was not laboring in obscurity.

Preliminary versions of his theories had appeared in print, only to be withdrawn

when they failed to work. He was in a race with others, some of whom, such as the

mathematicians David Hilbert and Emmy Noether, were far more adept than he at

this sort of mathematics. Nonetheless, guided by superior physical insight and aided

by his phenomenal powers of concentration, he beat them all to it.

NEWTON’S LAST STAND

We have already seen that the curvature of space near the Earth is far too small to

have a measurable effect on a light ray. But the Sun’s gravity is much stronger, at

least up close. Figure 12.4 shows what happens to the image of a star when its light

must pass near the Sun to reach us.

The curvature of space near the Sun is sufficient to bend light through an an-

gle of 1.7 seconds. Small as this angle is, in a photograph taken by a telescope 20

feet long the star’s image will be about 0.05 millimeter from its normal position,

which is within the limit of measurement on good glass-backed photographic

plates.

Newton, of course, would have expected a similar effect. Indeed in 1801, the

astronomer Johann von Soldner used Newton’s Law of Gravity to calculate the path

of an object traveling at the speed of light that just grazes the surface of the Sun,

getting a deflection of 0.84 second. Without knowing of this result, Einstein had du-

plicated it in 1911, from the bending of a light wave due to the gravitational clock

effect in flat Euclidean space, for he had not yet discovered that space-time is

curved. In curved geometry, the effect is twice as great.

Of course, to photograph stars near the Sun you must wait for a total eclipse and

take your telescopes to it. On the strength of Einstein’s reputation, a German expe-

dition went to the Crimea to photograph a total eclipse in August 1914. They never

got to take their pictures: by the time of the eclipse, Germany and Russia were at

war and the astronomers were in temporary detention as enemy aliens.
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A year later Einstein had his theory, and with it the new prediction. Had the

German expedition succeeded, Einstein would have been guided to the right theory

by the unanticipated failure of his earlier prediction, and his triumph would have

seemed a lesser feat. Yet again, Einstein’s luck had held out.

As World War I drew to a close, the British astronomer Arthur Eddington

learned of Einstein’s prediction through contacts in neutral Holland. Here was a

chance for a historic head-to-head confrontation of two theories. He noted that in

the spring of 1919 there would be an eclipse in the south Atlantic. Furthermore, it

would take place in a part of the sky where the stellar backdrop was the Hyades, a

dense cluster of stars bright enough to see during an eclipse, greatly improving the

accuracy of the test.

Expeditions were sent both to Africa and South America—Eddington wanted to

take no chances that bad weather would rob him of his prize. When the photographs

were compared with others taken by the same telescopes earlier in the year, with the

Sun out of the picture, Einstein’s prediction was borne out.

Today, in the era of radio telescopes, we are far more fortunate, for our Sun is a

comparatively dim radio star and we need no longer wait for an eclipse. The meas-

urement has been repeated many times since the 1970s, and every new refinement

confirms Einstein more precisely.

As soon as he was sure of the result, Eddington relayed the news to Berlin,

again via Holland. It was received with Einstein’s usual equanimity. When his sec-

retary asked how he would have felt if it had turned out wrong, he replied, “Then I

would have felt sorry for the dear Lord, for the theory is correct!”

An even more serious blow to Newtonian gravity came from a little spacecraft

named Mariner 9, the first to orbit Mars, in 1972–1973. It carried a radar transpon-

der that beamed back radar signals sent from Earth. When the line of sight to Mars

passed near the Sun, another dimension was added to the situation in figure 12.4,

measuring the transit time of the radar signal, which is about 20 minutes each way.

In flat Euclidean space, it is easy to predict the result. Trace the curved path of

the signal on a flat plane and see how much longer it is than a straight line. The 
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answer is about 30 feet, so the signal would arrive only 30 nanoseconds later than

would be expected from the known positions of Earth, Mars, and the spacecraft.

But in Einstein’s curved space-time, this estimate is as useless as trying to get

the exact distance from New York to London off a flat map. Near the Sun, time is

slowed down, so a light signal is further delayed. The formulas of curved geometry

give a delay of 200 microseconds, over six thousand times longer than the flat-space

figure. Irwin Shapiro of MIT headed the team that confirmed the longer delay.

There are other theories of gravity, and Einstein’s may not win the final beauty

prize. But all the remaining contestants are curved-space theories. Flat space-time

is dead.

GOODBYE PHYSICS, HELLO GEOMETRY

With the acceptance of curved space-time, the science of mechanics is reduced to

utter triviality. Physics disappears, leaving nothing but a geometry. No laws of mo-

tion are needed any more, just a single statement:

All objects follow the geodesics of curved space-time.

Or, as the American theoretical physicist John Archibald Wheeler put it, “mat-

ter tells space how to curve, and space tells matter how to move.”

But what a geometry! That part is anything but trivial. To get just a hint of how

complex it is, consider the following. To specify the curvature of a one-dimensional

line at some particular point takes but one number, the radius of curvature. Since a

two-dimensional sheet can be bent in two directions, with any desired angle between

them, to specify its curvature takes three numbers. Though we cannot visualize what

curved three- and four-dimensional spaces are like, we do know how many numbers

we need: six and ten, respectively.

Ten numbers! Newton’s theory of gravity got by with just one, the force.

Clearly, Einstein’s is more complex. A terribly abstruse mathematical language,

tensor differential geometry, is needed even to describe it.

It is so complex that it is useless in most practical situations. Its role in physics

is like that of a sacred text, locked away from the multitude but consulted by high

priests on sacramental occasions. It is used to verify formulas that apply to fairly

simple situations or approximate ones that give the effects of curved space-time as

small corrections to Newton’s law of gravity.

Do not expect your intuition to be a reliable guide in a curved four-dimensional

world. You would be bucking hundreds of millions of years of evolution of the hu-

man central nervous system. Our eyes are our most precious sense organs, and our

brains are wired to process the information they deliver by the rules of Euclidean

geometry. The only reason we can grasp the fact that the two-dimensional surface

of the Earth is curved is because there is a third dimension for it to curve through.

But it would be a mistake to assume that if four-dimensional space-time is curved,

there must be a “fifth dimension” for it to curve through. Those ten numbers are

enough to tell the whole story. We need no outside reference. It’s all the space we’ve

got, and it is fundamentally, undeniably curved.
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THE TAO OF SPACE-TIME

The last link in our new geometric worldview is to plug in the mass-energy equiva-

lence and see what wonders ensue:

1. Curved space-time means that a field is present.

2. Fields store potential energy.

3. Energy has mass.

4. Mass is the source of gravitational fields; so back to 1!

What a long way Faraday’s little lines of force have carried us! They started as

a way to avoid the problem of action at a distance. Now they generate their own

matter. And at the same time, they are the very fabric of space-time.

We began with a physics that needed four kinds of reality; space, time, matter,

and a cause of motion, first force and later energy. Special relativity forged links

between space and time and between matter and energy. Now the unification

is complete:

Matter is energy is space-time.

There is harmony enough in these nine syllables to please a Zen master. But

while we admire the austere simplicity of this worldview, let us recognize it for

what it is not as well as what it is. It is not a completed task but a commitment to a

project, a frame in which to hang our picture of the universe. And that picture is by

no means complete, for gravity is not the only field there is. Einstein spent most of

the last 25 years of his life trying to build electromagnetism into his geometry, and

in the end he failed.

The structure of matter is ruled by electromagnetism, and also by other fields

that operate on the subatomic scale. We cannot understand the universe until we un-

derstand the atom.

Modern physics began with the study of gravity, and its first triumph was to

resolve the dispute as to whether the Earth moved. Now, in the light of Einstein’s

theory, we can declare the whole argument moot! For Einstein, there are now no

privileged reference frames. At least in principle, it is possible to account for the

apparent motions of the Sun and planets, not to mention the rest of the universe, in

a frame of reference in which the Earth is at rest. In practice, however, the geome-

try of such a space-time would be monstrously distorted. Einstein would say “stick

with your Sun-centered system—that way the geometry is closer to Euclidean.”

What had been a matter of principle has become a matter of convenience.

A COSMIC VACUUM CLEANER

There are two neat cases in which the geometry of space-time can be solved exactly.

One of these is the universe as a whole, and the other is a large spherical mass, such

as our Sun or the Earth. The latter case leads to one of general relativity’s most

bizarre predictions, which John Wheeler in 1963 dubbed the black hole.
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The idea of a black hole is much older than its name. Laplace pointed out as

early as 1796 that if a star contains enough mass in a small enough package, the

velocity of escape from its surface is greater than that of light. No light can then get

out, though light and matter can fall in.

In 1916, only a few months after Einstein completed the general theory, Karl

Schwarzschild showed that the same effect should still be present. Of course, in

general relativity the light does not just fall back. It simply travels on curved paths

smaller than the size of the star. Since in relativity the speed of light is the limit for

all speeds, nothing that is inside the black hole can escape. The star is, for all intents

and purposes, plucked out of space-time.

The density of matter required is phenomenal. The radius of a black hole of

mass M is

rs  3.0 km  M/M 

where M is the mass of the Sun. Our Sun would have to be less than 3 km in radius

to become a black hole. The pressure generated by the nuclear “flame” in its heart

prevents it from collapsing. Even when the Sun finally exhausts its fuel, we do not

expect it to become a black hole. It should slowly collapse to a compact form called

a white dwarf, roughly the size of the Earth.

A white dwarf can be no more than about 30 percent heavier than our Sun. Be-

yond that, a star will collapse until it becomes a neutron star, essentially one huge

atomic nucleus some tens of miles in diameter. This will spin rapidly, throwing bea-

cons of electromagnetic energy across the sky like a lighthouse. If the Earth happens

to be in the path of one of these beams, which can consist of anything from radio

waves to X rays, we detect signals that steadily repeat like the ticking of a high-

quality clock. A signal like this is known as a pulsar.

The first few pulsars were discovered in 1967 by Jocelyn Bell, then a graduate

student working with the radio telescope at Jodrell Bank, England. Since then, hun-

dreds more have been found. Bell’s first hopeful guess as to what she had discov-

ered was extraterrestrial life, so she fondly referred to the sources as LGMs, for

“little green men.”

A pulsar can serve as a very precise clock located outside the solar system, and

this provides yet another test of the relativity of time. The Earth’s orbit is not a cir-

cle, and in early January it comes nearest to the Sun. This slows down earth clocks

in two ways: the Earth is moving at its fastest, and it is at its lowest altitude in the

Sun’s gravitational field. The gravitational effect is twice as big as the one due to the

Earth’s motion. This discrepancy has been verified by comparing atomic clocks on

Earth to one particularly accurate pulsar “clock” in the sky.

The formation of a neutron star releases, for a few seconds, as much energy as

is produced by all the stars in our galaxy. This blows away the outer layers of the

star to form a brightly glowing, expanding cloud called a supernova. The Crab Neb-

ula, the debris of a supernova recorded by Chinese astronomers in 1054, has a pul-

sar at its center, as do the residues of the supernovas seen by Tycho and Kepler. The

supernova in the Large Magellanic Cloud in January 1987 gave the telltale signal of

the formation of a neutron star, a titanic burst of subatomic particles called neutri-

nos, which will be discussed further in chapter 19.
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At somewhere above two times the mass of the Sun, a neutron star can no longer

fight gravity and collapse must continue to a black hole. Given the small margin of

additional mass required, many supernovas must ultimately take this route.

For obvious reasons, however, a black hole is hard to detect. Our best bet is to

catch one that is sucking up matter at a substantial rate. This can happen if the black

hole has a nearby binary partner that is a normal star. The black hole draws in hot

gases from its companion’s atmosphere. As they fall, the tremendous acceleration

makes the gas radiate light; the higher the acceleration, the greater the frequency. A

black hole has strong enough gravity to generate X rays.

X rays can be observed only from outside the atmosphere with orbiting tele-

scopes. These have discovered many binary sources with heavy unseen compan-

ions, which must be either neutron stars or black holes. From its effect on the

motion of its visible partner, the mass of the invisible partner can be calculated. In

several cases, the mass is well above the theoretical limit for a neutron star. So it

seems likely that these are black holes.

Additional clues come from a number of so-called active galaxies that pour out

stupendous amounts of radiation from dense concentrations of matter at their cen-

ters. The only known way to power them would be a giant black hole with a mass

of a hundred million Suns. Our own galaxy is tamer, but our view of its center is ob-

scured by clouds of dust. Observers peering through this haze see hints of the pres-

ence of a more modest black hole.

So it is a safe bet that black holes are rather common. But given what happens

to time in their vicinity, they can hardly be described as commonplace.

The ratio of time at the boundary of a black hole to that on the outside actually

becomes infinite! The reader is urged to get a firm grip on something solid while

contemplating the implications of that little tidbit. As seen from the outside, the

black hole never quite forms! The last little bit of mass that would push it over the

limit halts at the boundary. For practical purposes, however, it gets very close to the

boundary in a few of thousandths of a second, so the “almost” black hole behaves

just like a fully formed one.

But the point of view of an observer falling into the black hole is the real jolt.

At the moment the boundary is crossed, the outside universe speeds up, flits through

its entire history, and is snuffed out! As for the fate of our friend the observer, we

must leave it to the imaginations of the science fiction writers.

GRAVITY WAVES

General relativity requires the existence of gravity waves. The logic is the same as

Maxwell’s for electromagnetic waves. If the action of gravity is restricted to the

speed of light, then any change in a gravitational field must cast energy and mo-

mentum out into space.

Since gravity is the geometry of space-time, a gravity wave alternately

“stretches” and “squeezes” the distance between objects. But gravity is such a weak

force that these waves are hard to produce and detect. Nonetheless, nature has

handed us a remarkable demonstration that gravity waves are in fact produced, even
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though no one has yet detected one. The story of the discovery of this heavenly gift

is one of the best yarns in the history of science.

In 1974, Russell Hulse, a graduate student at the University of Massachusetts,

was conducting a search for pulsars, using the world’s largest radio telescope near

Arecibo, Puerto Rico. The telescope boasts a 1000-foot-diameter “dish” of alu-

minum mesh, suspended over a natural depression. Though it stares straight up, ob-

jects that come within 15 degrees can be observed. Thus, each day it sweeps across

a 30 degree band of the sky. Pulsars are rather faint objects, and even the Arecibo

dish can only see them if they are in our immediate galactic neighborhood.

Hulse had already discovered several pulsars when a decidedly odd one swam

into view. While most pulsars are as regular as a fine clock, this one ticked at a

slightly different rate each time it was observed. Hulse dropped everything to fol-

low this pulsar. After a few weeks it was clear that its period rose and fell in a reg-

ular cyclic fashion that repeated every 7 hours and 45 minutes.

This suggested that the pulsar was moving in an orbit. The Doppler shift would

then shorten its period when it was moving toward the Earth and lengthen it as it

moved away. The orbit could be traced with some precision, and it became clear

that the pulsar and its unseen companion came very close, leaving no room for an

ordinary star. It must be another pulsar whose beam did not sweep across the Earth,

or perhaps a black hole.

Either way, Hulse and his supervising professor, Joseph Taylor, realized that the

powerful accelerations involved in this close encounter would generate substantial

gravity waves. As the two-star system lost energy, the two objects would gradually

spiral in toward one another, with the orbit time gradually decreasing.

In the 1970s, jobs in astrophysics were hard to come by, so on graduation Hulse

switched to a more practical field of research. Taylor continued to observe the pul-

sar. By 1978 it was clear that the orbit was indeed shrinking, at exactly the rate pre-

dicted by Einstein’s theory. By 1993, these observations constituted the most

accurate test to date of general relativity. Hulse and Taylor were awarded the Nobel

Prize, lifting Hulse from comparative obscurity to the ranks of the immortals.

In 2002, several huge gravity wave detectors were under construction. These

are Michelson interferometers with arms several kilometers long. Sensitive as they

are, they cannot see the faint waves from the Hulse-Taylor pulsar. It will take a re-

ally cataclysmic event, such as the collision of two black holes or neutron stars, to

trigger them.

AN EXPANDING UNIVERSE

You may find it surprising that the universe as a whole is one of the easier problems

in space-time geometry, but the explanation is simple: the universe is so huge that

the individual stars or even galaxies are of no more consequence than atoms. We

can take the distribution of matter as smooth and continuous.

When Einstein solved the problem in 1915, he got a big surprise; the universe

cannot be static. It must either expand or contract. Since the idea of an eternal, un-

changing universe was at that time firmly implanted in the human mind, Einstein
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did not take the result seriously but added a fudge factor, the so-called cosmologi-

cal constant, to make a static universe work. It represents energy uniformly distrib-

uted in space, creating a pressure that resists gravity. He was later to call this “the

biggest mistake of my life,” for in 1927 the American astronomer Edwin Hubble

demonstrated that the universe really is expanding!

What Hubble showed was that all remote galaxies are moving away from our

own, as if it were some cosmic untouchable. The farther away they are, the faster

they flee. This is revealed by the Doppler shift in the light coming from the galax-

ies. General relativity tells us that matter and space-time are inseparable. The galax-

ies are not simply spreading out in infinite, empty space, but space itself is finite in

size, and it is growing.

The balloon in figure 12.5, illustrates how this can happen. Let the galaxies be

spots on the balloon. As it inflates, each spot moves farther from its neighbors. The

farther apart they are, the faster they move away.

This is of course a two-dimensional example. Our space has three dimensions.

The fourth dimension, time, is the expansion itself. And there being no additional

space dimension, there is no “inside” to our cosmic balloon.

Because of gravitational attractions, the expansion should continually slow

down. Will it eventually go into reverse and become a contraction? The answer is

that we don’t know, because we are not sure how much mass there is in the uni-

verse. The mass we do see is not enough to turn the trick, by a wide margin. But

there may well be more mass out there unseen, waiting to be discovered. The mo-

tions of stars within galaxies show gravitational effects that point to a “halo” of

“dark matter” many times greater than that which is seen.

In fact, some recent measurements open the possibility that the expansion may

actually be speeding up, which has led to a revival of Einstein’s cosmological con-

stant! The evidence is not yet conclusive, but it reminds us that our knowledge of

the structure of our universe is far from perfect.

However, we do know that the total mass of the universe is close to the critical

value that determines its future. If it were much less, the universe would have
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expanded too rapidly to allow stars and galaxies to form. If it were much more, the

universe would have died aborning from gravitational collapse.

THE BIG BANG

Projecting the expansion 12 to 14 billion years backward in time, we see the birth

of our universe in a titanic explosion, called the big bang by cosmologists, special-

ists in the esoteric art of contemplating the origins of absolutely everything.

Most scientific disciplines shun speculation that goes much beyond what can be

tested by observation. But solid observations relevant to the early universe are few

and far between, and we are too human to avoid speculating about anything so in-

herently fascinating. So in cosmology, normal scientific caution goes out the win-

dow and fanciful theories are up for grabs.

Anything that rapidly expands must cool, and our universe is no exception. It

must have been born incredibly hot. Under such conditions, matter conducts elec-

tricity freely and is opaque to all forms of light. The universe remained in this state

for a few hundred thousand years. When it became cool enough, light and matter

parted company in a brilliant flash that should still be rattling around the universe

today. It is called the cosmic background radiation (CBR). It has been seen, and

looks exactly as predicted back in 1948 by Ralph Alpher, an American theorist, with

the assistance of George Gamow, a Russian-born American physicist of whom we

shall hear more in chapter 17.

Light, too, cools as it expands. What this means is that it shifts to longer wave-

lengths. Today, this “echo” of the big bang has been stretched into radio and infrared

waves ranging in wavelength from micrometers to millimeters. They are known as

the “2.7 K background,” because their effective temperature is 2.7 kelvins (K),

which means 2.7 Celsius degrees above absolute zero. The big bang theory is quite

explicit about this temperature; how it is measured will be explained in chapter 15.

But the fact that the theory predicts it so precisely is the same sort of “crucial link”

that the Moon’s acceleration was for Newton’s gravitational theory.

Interestingly, the CBR does define a reference frame that one can regard as

somewhat privileged. While this radiation moves at the same speed in all reference

frames, there is only one frame in which there are equal amounts of it moving in all

directions, for a total momentum of zero. If we are moving with respect to that ref-

erence frame, we run into a bit more of the radiation from the direction toward

which we are moving. This effect has been detected, and shows that the Sun and

Earth are moving at 370 km/s in that frame. If it were privileged in Michelson’s

sense, he would have seen a dramatic effect—a shift of 40 wavelengths!

Another important feature of the CBR is that it is not entirely equal in all direc-

tions. Precise measurements conducted since 1992 have revealed tiny irregularities

at a level of about 1 part in 100,000. This, as it turns out, is very welcome news, for

it shows that the matter that emitted this radiation was not quite uniformly distrib-

uted in space.

In a uniform cloud of matter, gravity would have pulled equally in all direc-

tions. There would have been no way for matter to form concentrated clumps that
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would eventually become galaxies and stars. For this process to get started there had

to be “seeds” of higher density toward which neighboring matter would be attracted.

The final chapter of this book, chapter 20, will discuss the CBR in greater detail.
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But how about the very instant of creation, when our universe burst forth from

what may have been a geometric point? We can do little more than guess. But our

guesses will be far more intelligent after we learn something about the quantum the-

ory, the physics of the microworld. So we must now reluctantly drop this fascinat-

ing topic, and pick it up again in chapter 20.

THE EINSTEIN CULT

Like Newton before him, Einstein lived to be a legend in his own time, the only

twentieth-century scientist whose name and face bring instant recognition. One of

the reasons for this, as it had been for Newton, was the urgent need of the scientific

community for a hero to put on public display. Einstein was ideally cast in the role.

With his modesty, his rumpled clothing, his bemused expression, and above all his

warm humanity, he personified the brighter side of science.

Fame came to Einstein in 1919, in the wake of the eclipse expedition. Edding-

ton was a master at milking a discovery for the maximum of publicity. In this case,

he also had a political ax to grind. World War I had ripped the international fabric of

science asunder. In the wake of the carnage wrought by modern weapons, science

and technology stood tarnished with blood. Science needed above all to show the

world its humanist face and proclaim anew a tradition that stood above the petty ha-

treds that set nation against nation.

The eclipse measurements were announced in a fashion that can only be de-

scribed as high stagecraft. At a large scientific meeting at Cambridge University, a

packed house was told that Einstein had been proved right. Overlooking the lectern

was a bust of Newton, and Eddington dramatically turned its face to the wall. Over

the next few days, the world’s newspapers proclaimed, in sensational headlines, a

revolution in science. “Stars All Askew in the Heavens . . . Nothing Where it Seems

to Be . . . Even the Multiplication Tables in Doubt . . . But No Worry, Dr. Einstein

Understands All.”

Eddington proudly boasted that British scientists had traveled thousands of

miles to test the ideas of a German colleague, in an expedition launched while the

two nations were still technically at war. It was known that Einstein had lived under

somewhat of a cloud in Germany for opposing the war, as had Eddington, who was

a Quaker, in Britain. The world was ready for heroes like that. Moreover, Einstein

looked the part of the gentle “sage on the mountain,” deciphering the mystery of the

heavens.

However well Einstein may have suited the role, it most emphatically did not

suit him. He had done his best work in obscurity and relished his solitude. The

perquisites of celebrity had little appeal to his simple tastes. Near the end of a tri-

umphal world tour in 1921, the year of his Nobel Prize, Einstein was conveyed

across Spain in the king’s own private railway car. He found the experience so dis-

tasteful that he completed the journey to Berlin by third class.

Liberal social thinkers climbed on the Einstein bandwagon, professing to see in

his theory a reflection of their own principles of moral and cultural relativism. How

could anyone still believe in absolutes in morals, customs, or politics, when not even
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the perfect world of physics had room for them? Einstein demurred: he had been

misunderstood. Relativity had not abandoned absolute truth, only the false absolutes

of space and time. Once he accepted Minkowski’s four-dimensional invariants, Ein-

stein even made a feeble try to change the name of relativity to invariantstheorie.
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Within his own profession, Einstein was to remain a loner, aloof from the main-

stream. The better physicists became adept at relativistic calculations, at least with

the special theory, and most admired its beauty. But Einstein, however celebrated

and respected, never took a leadership role in the physics community.

This was due in part to Einstein’s career, much of which was spent in positions

that brought him little or no contact with students. His solitary work habits were an-

other barrier, preventing younger colleagues from mastering his style. And the the-

ories themselves were partly to blame. Special relativity was complete within a few

years after 1905. There was no need for a large school of specialists to grind out

predictions or for a corps of experimenters to test them. The general theory was

even worse, since until after his death it was largely inaccessible to experiment.

But most of all, Einstein was isolated by his own personal worldview, which

swam against the intellectual tides of his day. Albert Einstein was an uncompromis-

ing rationalist, with a deep faith in the underlying logic of the universe. He often

personified this faith with the name of God, or “the Old One,” though he steadfastly

refused to practice any organized religion.

In his youth, Einstein had been strongly influenced by the positivist philosopher-

physicist Ernst Mach, whose insistence that physics be firmly rooted in a critical ex-

amination of the process of observation was an obvious guidepost in the

development of relativity. But as he matured, Einstein came to view purely empiri-

cal science as “Mach’s little horse,” a creature “who can only exterminate harmful

vermin” but “who cannot give birth to anything living.” In this attitude Einstein re-

vealed a spirit even more Platonist than that which animated Galileo.

In Einstein’s universe there was no room for the arbitrary, irreducible fact.

There must be no limit to the power of the human mind to reveal why the universe

must be exactly as it is. Niels Bohr and his disciples, on whose work we shall soon

focus, rejected this view utterly, and even professed to have shown there are limits

to the power of reason to fully comprehend nature.

But Einstein clung tenaciously to his lonely stand. In his later years, he sum-

marized his approach to nature in one phrase: “What really interests me is whether

God had any choice in the creation of the world.”

Summary

General relativity grows out of special relativity by adding the Principle of Equiva-

lence, which formalizes a connection between gravity and accelerated reference

frames. This leads to a reformulation of mechanics in which gravity is accounted for

through curved geometry for space-time, and there is no need for force. This leads

to a dependence of time on altitude in a gravitational field. It also predicts deflec-

tion of light by the Sun’s gravity that is twice that calculated from Newtonian grav-

ity. The resolution of this test in Einstein’s favor through measurements made

during an eclipse made Einstein a celebrity. The theory also implies a nonstatic uni-

verse, confirmed by later observations, and allows for extreme distortions of space-

time now known as black holes and for gravity waves similar to electromagnetic

ones. Though general relativity is now the basis for cosmology, it remains an in-

complete framework until forces other than gravity are brought into the geometry.
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C H A P T E R  1 3

The Atom Returns

The telescope at one end of his beat, And at the other end the microscope,

Two instruments of nearly equal hope.

—ROBERT FROST, The Bear

It was his early work on relativity that marked Einstein as a genius in the eyes of a
few first-class theorists, such as Planck and Lorentz. But the questions it addressed
were not, at that time, uppermost in the minds of most physical scientists, who were
preoccupied with what was considered a more urgent crisis—the debate over
whether atoms were “real.” Einstein played a role in bringing this debate to a deci-
sive conclusion through work that displayed him as a solid professional capable of
advancing and influencing the work of others, rather than as simply a creative loner
with his own private agenda. This contribution helped to solidify his position in the
broader community of science.

To put this dispute in context, in this chapter we recapitulate the story of how
the atom reentered respectable scientific thought during the nineteenth century.

THE ANCIENT ORIGINS OF ATOMISM

It is mandatory to preface any discussion of atoms by paying homage to Democri-
tus of Abdera, a philosopher of the fifth century B.C. Though he is generally classi-
fied as an early or “pre-Socratic” philosopher, Democritus actually outlived
Socrates and is known to have written on nearly as broad a range of topics as Aris-
totle. Unfortunately, only fragments of his writings survived, and we know of his
ideas largely through the admiring commentaries of Aristotle and others. Through
these, he has become celebrated as the father of the atom. It was he who coined its
name, the Greek word for “uncuttable.”

Plato embraced the atom, as did Epicurus, founder of another influential school
of Greek philosophy. The word “school” can here be taken in its customary sense:
these philosophers were professional educators who founded institutions that en-
dured for centuries, training the elite of Greek and later Roman youth. The Roman
poet/philosopher Lucretius immortalized Democritean atomism in De Rerum
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Natura, a widely read and influential work. Thus in the ancient world, the atom was
widely (but by no means universally!) accepted.

The idea of the atom was appealing in several ways. Chief among these, it ex-
plained how matter could be transformed, but never created or destroyed. Nothing
comes from nothing, and nothing disappears without a trace. Atoms may be re-
arranged, but they endure forever.

To the scientist confronted by the sheer variety and complexity of nature, atom-
ism promised hope. Perhaps nature on the small scale might be far tidier than the
world of everyday experience. Underlying all this confusion might be a level of re-
ality of stark simplicity, with the turmoil we perceive representing only the nearly
infinite variety of arrangements among a myriad of small parts.

Nonetheless, from the outset atomism had its critics. One of the most distin-
guished was Anaxagoras, an older contemporary of Democritus who asked what
atoms might be made of. If they were simply little blocks of some continuous sub-
stance, it would be that substance that would be of scientific interest: a brick wall
derives most of its properties from the fired clay of which bricks are made, rather
than the size or shape of the bricks themselves. The alternative was for atoms to
have smaller parts, which would in turn have even smaller parts, for an infinite
chain of “seeds within seeds,” leaving simplicity forever an illusion to be sought in
the next layer of the cosmic onion.

Viewed this way, atoms looked far less appealing. And modern scientists, com-
mitted as they are to the atom, can only admit that so far the history of atomism has
followed Anaxagoras’s scenario faithfully.

It was not arguments such as these but rather the rise of Christianity that
brought atomism into disfavor. It was condemned for its association with the phi-
losophy of Epicurus and Lucretius, a tolerant and skeptical worldview incompatible
with the zealotry of the Church fathers. Furthermore, some Christian theologians
saw in the enduring unalterability of atoms a denial of transubstantiation, the mira-
cle of the Eucharist, in which bread and wine literally become the body and blood
of Christ.

Thus, throughout the Middle Ages atomism was regarded in the Christian world
as bordering on heresy. But it was never completely suppressed, because it ex-
plained in a qualitatively satisfying way many simple properties of matter. Its most
notable success was the way in which it accounted for the properties of the three
phases of matter—gas, liquid, and solid. The rigidity of a solid shows that its atoms
are hooked firmly together. In a liquid they are still in contact but free to move
around, which is why fluids settle into the shapes of their containers and yet remain
as difficult to compress as solids. A gas, finally, can expand to fill any container be-
cause its atoms are widely separated and are moving rapidly. This picture survives
to this day.

Galileo, Descartes, and Newton were atomists, though they did little to extend
the theory. It remained for the chemists of the early nineteenth century to find the
first solid empirical support for atomism. Without stretching the point too far, it is
fair to say that in 1800 the atomic theory was something physicists believed but
couldn’t prove, while the chemists were proving it but didn’t believe it. Thus, at this
point a brief digression into chemistry is in order.



THE BIRTH OF MODERN CHEMISTRY

The latter half of the eighteenth century had been to chemistry what Galileo’s time
had been for physics. The outstanding achievement had been to put chemistry on a
sound quantitative basis. This approach helped lead to a number of important dis-
coveries. One of the most significant was clarifying the distinction between a true
chemical reaction and a mere process of mixing. This distinction had been dimly
perceived before; mixtures displayed properties that were a blend of those of their
components, in a manner that depended on their relative proportions. A chemical re-
action, however, might produce a substance totally unlike the materials that went
into its formation.

Common water, for example, arises from the union of the gases oxygen and hy-
drogen. Similarly, the puttylike metal sodium reacts with the gas chlorine to form
ordinary table salt. But at times the basis for the distinction seemed hazy, until
precise weighing revealed the key. Mixtures could be formed in any desired pro-
portions, but chemical reactions must follow an exact recipe. The constituents had
to be present in some exact proportion of weights. If too much of one of them was
present, some would be left over after the reaction. Finally, the founders of modern
chemistry had clarified the distinction between elements, which could not be broken
down into other substances, and compounds, which could.

The whole picture was terribly inviting to an atomist. Elements must represent
the different kinds of atoms. Compounds are then substances formed by attaching
atoms of different elements together. Mixtures arise from the free mingling of inde-
pendent atoms without any ties between them. But atomism, and indeed the whole
intellectual style of imaginary model building that lay behind it, was mainly the
province of physicists. One such, the Italian Amedeo Avogadro, pushed the atomic
idea in chemistry before 1800.

Throughout its history, chemistry has tended to be a far more conservative sci-
ence than physics, sticking close to its empirical roots and practical techniques and
disdaining abstraction and speculation. The chemists paid little attention to atomism
until one of their own number, the English chemist Thomas Dalton, brought it force-
fully to their attention by showing that an atomic structure to matter could explain the
peculiar regularities that kept popping up in the recipes for chemical compounds.

This regularity was expressed in the law of constant proportions. Stated
crudely, it indicated that the amounts of an element that entered into forming all its
compounds were related. Hydrogen, for example, was always vastly outweighed by
its partner when entering into combination, while lead always dominated its com-
pounds. In more exact terms, it was found that each element seemed to have a
characteristic equivalent weight. Hydrogen was the lightest and could be taken as
the starting point on the scale. Oxygen was 8 times heavier, sodium 23 times, chlo-
rine 35, and so on. All recipes for compounds could be formed from these equiva-
lent weights.

In the first decade of the nineteenth century, Dalton pointed out that the whole
scheme could be simply understood by taking the equivalent weights to represent
the relative weights of the atoms of the elements. Then the recipe for common salt,
23 parts sodium to 35 parts chlorine, merely represented the fact that chlorine atoms
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were 35/23 as heavy as sodium atoms, and salt was formed by joining each sodium
atom to one chlorine atom. Such a combination Dalton called a molecule. The mol-
ecule is the smallest constituent of a chemical compound, just as an atom represents
the smallest unit of an element.

Still, a lot of facts remained unexplained. Some elements seemed to have more
than one equivalent weight. It gradually became clear that the pairing off of elements
into two-atom molecules proposed by Dalton was too simple; some molecules must
contain three or more atoms. For example, oxygen atoms prove to be 16, not 8 times
as heavy as hydrogen. The proportion 8:1 of oxygen to hydrogen in the recipe for
water reflects the fact that two hydrogen atoms join each oxygen atom when a mol-
ecule of water is formed.

As is usual in such situations, there was a certain amount of bad data in circu-
lation to confuse the issue further. It took 50 years to untangle the mass of chemi-
cal data, but in 1858 a young Sicilian chemist, Stanislao Cannizzaro, published a
compendious review that finally established the correct relative weights of the
atoms of the better-known elements and gave the atomic composition of their
known compounds. The atomic theory has been the foundation stone of chemistry
ever since. Nearly all chemists spoke of atoms, though many still refused to accept
them as real. Cannizzaro, however, was revolutionary by temperament: he went on
to join Giuseppe Garibaldi in the Risorgimento, the revolution that gave birth to
modern Italy.

THE PHYSICISTS PICK UP THE BALL

The success of atomism in chemistry was bound to encourage the physicists in their
natural predilection for the theory. Old ideas were resurrected, cloaked in a new
mantle of respectability. One important idea dated back to Newton’s contemporary
Robert Hooke, a confirmed atomist. Hooke speculated that the outward pressure ex-
erted by a gas on the walls of its container might originate in a hail of atoms. Each
atom exerts a force on the wall when it hits, and there are so many such impacts that
the result seems a steady outward push.

Hooke found support for his view in the work of Robert Boyle, performed a
generation before Newton and Hooke. Boyle found that if a gas is compressed in a
closed container, as shown in figure 13.1, the pressure on the walls varies inversely
with the volume. If the piston is pushed in far enough to reduce the volume by half,
the pressure of the gas will double.

This effect is quite easy to understand in atomic terms. With half the volume to
roam in, the atoms are packed in closer, so there are twice as many of them in any re-
gion of the cylinder. If their motion is unaltered by this crowding they strike the walls
with the same impact, but twice as many impacts take place, doubling the pressure.
Later experiments on the effects of heat on gases gave this idea further support.

Even before the days of Galileo the notion that heat might represent some form
of microscopic motion enjoyed some vogue. Francis Bacon, the fifteenth-century
English philosopher, accepted the idea. The work of Joule on the conversion of mo-
tion to heat made it even more appealing.
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Heating a gas in a sealed container always causes a rise in pressure. Studies on
the behavior of gases heated in closed containers showed that the pressure seemed
to rise and fall linearly with temperature, as shown in figure 13.2. No matter what
gas was used, the pressure always behaved as if it would reach zero at the same tem-
perature,  273˚C. All these studies, of course, were carried out at much higher tem-
peratures: it was only by extending the straight line graph to lower temperatures that
this feature was discovered. Atomists christened this temperature “absolute zero”
and argued that it represented the cessation of all atomic motion.

In 1847, Rudolf Clausius showed that one could account completely for the be-
havior of gases by assuming that the “absolute” temperature, that is, that measured
from absolute zero, is simply a measure of the kinetic energy of molecules. If pres-
sure is due to a hail of molecules, speeding them up raises the pressure in two ways.
First, the rate of collisions with the walls of the container increases. Second, the
force due to each molecular impact is increased. Since the first effect is proportional
to velocity, and the second to momentum, the pressure must be proportional to mass
times velocity squared, and thus to the kinetic energy.

It soon became clear that it was unreasonable to assume that all molecules in a
gas were moving at the same speed. The kinetic energy Clausius spoke of was sim-
ply the average value. The details of the picture were filled in over the next few
decades by a number of gifted contributors, including James Clerk Maxwell, the
Austrian theorist Ludwig Boltzmann, and an American named Willard Gibbs. The
theory in its most sophisticated form is called statistical mechanics, and was com-
pleted by the end of the nineteenth century. As its name suggests, the theory does
not attempt to describe the motions of individual atoms, but treats them statistically,
as demographers do census data.
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HOW BIG IS AN ATOM?

One vexing problem remained to cloud the success of atomism: neither physicists
with their gas laws nor chemists with their reaction recipes could say with any cer-
tainty what the actual masses of atoms were. Pressure depends on the sum of mo-
lecular masses, not the mass of an individual molecule. Chemistry showed that an
oxygen atom was 16 times heavier than one of hydrogen, but no one knew how
much either actually weighed.

At about the same time, the microscope reached its theoretical limit of perfec-
tion. Objects a bit smaller than a wavelength of light could be seen, but still the
atom remained invisible. On the philosophical side, the movement called positivism

was at its zenith, and exponents such as Ernst Mach were urging that everything un-
observable be expunged from science. In these circumstances, the natural conser-
vatism of chemists reasserted itself. Wilhelm Östwald, the father of modern
physical chemistry, spearheaded an attack on the atomic theory.

The successes of atomism, some of which were Östwald’s own work, could
hardly be ignored. He was willing to retain the atom as a “heuristic” concept, one
used as an aid to understanding but not taken literally, like the classification
schemes employed in biology. Ultimately, he hoped, atomism could be replaced by
an extension of the energy concept. Though this remained a minority view, its ad-
herents were prestigious and their arguments could not be dismissed out of hand.

In the eyes of most scientists, the dispute hinged on measuring “Avogadro’s
number,” N, the number of atomic mass units in a gram. A variety of techniques had
been devised, but none were yet terribly reliable. In the 1890s, the highest estimates
of N were more than one hundred times the lowest values. If several methods could
be perfected, and gave the same result, the atom was on solid ground. If not,
Östwald might well be right.

The debate was raging in 1905, Einstein’s “miracle year,” and despite his other
interests he did not ignore it. Statistical mechanics had in fact been the focus of his
scientific work prior to that year. Thus three of the six papers (five published) he
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wrote in 1905 concerned the measurement of N. One was his doctoral thesis (un-
published) for the University of Zurich, which proposed studies of the diffusion of
large molecules such as sugar in solutions. What earned him more attention were
two published papers on the phenomenon of Brownian motion.

In 1827 the English botanist Robert Brown had used a microscope to study
pollen grains suspended in water. He found that the grains refused to sit still, hop-
ping about in a jerky erratic fashion. Convinced in advance that pollen consisted of
inert spores with no means of locomotion, Brown showed that similar motions took
place when pollen was replaced by similar-sized particles of dust or soot.

A few of Brown’s contemporaries suggested that the motions might be due to
random imbalances in the molecular impacts on opposite sides of a pollen grain.
But the topic was soon forgotten, and late-nineteenth-century physicists and
chemists had to rediscover Brown’s work on their own. By 1905, many had realized
that quantitative studies of this effect might be a good way to measure N, and sev-
eral attempts had been made.

In the first and fourth of his 1905 papers, Einstein outlined a particularly sim-
ple experiment. Prepare a suspension of spherical particles of equal size. Under a
microscope, focus on one particle at a time and record how long it takes to wander
from the center to the edge of a circle of known radius. Since this is a random
process, the measurement must be repeated many times and the results averaged,
but with each successive measurement the average becomes more reliable.

The advantages of this method impressed a young but established French ex-
perimenter named Jean Perrin. He had been working on the problem from a some-
what different angle, but quickly adopted Einstein’s approach. This endorsement,
above all, solidified Einstein’s reputation.

By 1909, measurements of N by this and other techniques had narrowed to the
range of 6 to 9 times 1023.* Östwald graciously conceded defeat, proclaimed the
Brownian motion the decisive factor in his conversion to atomism, and praised the
contributions of Einstein to the debate. He was acknowledging more than just a sci-
entific misjudgment. In 1900, he had turned down an application for the position of
research assistant from one A. Einstein of Zurich!

WHAT’S “INSIDE” AN ATOM?

The natural next step was for a few bold souls to speculate on what an atom might
really look like. Though atomists expected atoms to be simple and nearly structure-
less, by 1900 there was plenty of evidence to the contrary. First and foremost, some
means had to be found for hooking atoms together into molecules. Second, the ex-
istence of trends and similarities in chemical properties indicated by the periodic
table of the elements was strongly suggestive of underlying structure.

Still, “atom” meant indivisible, and it seemed futile to speculate about dividing
the indivisible until two sensational discoveries just before the turn of the century.
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These were the discovery of radioactivity by Henri Becquerel in 1896 and of the
electron by J. J. Thomson one year later.

Becquerel’s discovery had the more sensational popular impact. One of the
marvels of the nineties had been the discovery of X rays. The practical implications
of a form of “light” that could penetrate opaque objects titillated the late Victorian
public and led to sensationalized and amusing newspaper articles. Following a
hunch, Becquerel tried to find a substance that would give off X rays when placed
in ordinary light. Instead, he found that pitchblende, an ore containing uranium, did
indeed give off radiation, but it was not as penetrating as X rays and seemed to arise
spontaneously not only in the absence of light, but in fact oblivious to all outside in-
fluences. No amount of heating, treating, or cajoling could change the inborn rate at
which a radioactive substance gave off rays.

Becquerel’s student Marie Curie discovered that pitchblende contained not one
but several radioactive elements, the most powerful of which she gave the name ra-

dium. Every few days it radiated as much energy as would be released by an equal
weight of the most powerful explosives, but continued to radiate undiminished!

The practical implications of this were realized immediately. Within a few
years, the novelists Anatole France and H. G. Wells were writing fantasies about
“atomic bombs,” though 30 years would elapse before the discovery of nuclear fis-
sion made these a reality. What was the source of this fearsome energy?

The chemist Frederick Soddy and the physicist Ernest Rutherford (of whom
we shall hear a great deal more in chapter 14) guessed energy came from within the
atom, and established that radiation was accompanied by the transformation of one
kind of atom into another. When Soddy proposed the word “transmutation” to de-
scribe this process, Rutherford was aghast—“They’ll hang us for alchemists!”
Nineteenth-century chemists had proudly boasted that they had shown the futility
of the alchemist’s quest to turn base metals into gold. Atoms were immutable, and
that was that.

This discovery made probing within the atom not only respectable but impera-
tive. Anything that could spontaneously change in such a dramatic fashion must
have internal workings of quite a complex order. And one of its parts—the elec-

tron—had just been discovered.

IONS AND CATHODE RAYS

Back in the 1830s Michael Faraday had studied the conduction of electricity in liq-
uids. There the flow of electricity is usually accompanied by an actual movement
of matter to the electrodes through which the current enters and leaves the liquid.
For example, the passage of electric current through water results in the liberation
of hydrogen at one electrode and oxygen at the other, a phenomenon known as,
electrolysis.

Faraday found that the amount of an element that arrived at an electrode was
proportional to the total electric charge and to the equivalent weight. To anyone who
believed in an atomic picture of matter, the interpretation of this law was obvious:
all one needed was that electricity be transported in the form of an electric charge
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on the atoms. For some unknown reason all atoms regardless of type carried the
same unit of electric charge or a simple multiple of that unit. Faraday called his
charged atoms ions, a Greek word meaning “wanderer” and thus a fit companion for
the term atom itself.

J. J. Thomson had followed in the giant footsteps of Maxwell as director of the
Cavendish Laboratory. In keeping with that institution’s ties to the mushrooming
electrical industry, he was studying the conduction of electricity in tubes filled with
gases at low pressure, research that eventually led to neon signs and fluorescent
lights. Others working on this problem had discovered cathode rays, so named be-
cause they moved from the negative electrode, or cathode, to the positive one, the
anode. These behaved the same whatever gas was used to fill the tube. Thus it was
unlikely that they were Faraday’s ions, but what else could they be?

Thomson reasoned that if the gas were sufficiently rarefied, cathode rays could
travel great distances without colliding with an atom. In unimpeded flight, they
could be probed by seeing how they react to electric and magnetic forces.

Thomson suspected he was dealing with some new sort of particle, carrying a
negative electric charge. The force on an object in an electric or magnetic field is pro-
portional to its electric charge, and the acceleration produced by that force depends
on the object’s mass. Thus, any electromagnetic experiment measures the ratio of
charge to mass. For ions, of course, Faraday had measured that ratio years before, so
Thomson would have a standard against which to compare his measurement.

When a hole is pierced through the anode, a beam of cathode rays passes
through and leaves a telltale glowing spot where it strikes the walls of the tube, as
shown in figure 13.3. Thompson found that moderate magnetic fields easily de-
flected the beam, but it took enormous electric fields to budge it at all. This sug-
gested that the cathode rays were moving very fast. The magnetic force on a
charged particle is proportional not only to its electric charge but also to its speed,
whereas electric force depends on the charge alone. Thus magnetic fields are far
more effective in deflecting fast-moving particles than electric fields, which do not
benefit from the increased velocity.

Comparing the relative strengths of the electric and magnetic fields required to
produce equal deflections of the cathode-ray particles enabled Thomson to calculate
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their velocity.* They proved to be fast, indeed—more than one-tenth the speed of
light, an unprecedented speed for material objects!

Once the speed was known, Thomson could use the deflection to calculate the
acceleration, and thus the ratio of charge-to-mass. The result was surprising: nearly
two thousand times higher than the charge to mass ratio of hydrogen, the lightest
known ion. Since the ratio proved independent of the gas in the tube, Thomson in
1897 announced the discovery of a new form of matter, which was christened the
electron.

Either Thomson’s electrons carried an enormous charge compared with ions, or
they were far lighter. But if they originated from atoms in the gas, which then be-
came positive ions, how could one get the charges to balance? This conjecture,
along with their speed and penetrating power, pointed to a startling conclusion:
cathode rays consisted of streams of particles that carried the same charge as ions,
but were nearly two thousand times lighter than a hydrogen ion.

THE ELECTRON AND THE ATOM

Thomson’s electron was immediately hailed by some as the “atom of electricity,”
the solution to the mystery of the nature of electricity. The existence of this unsus-
pected light object seemed to explain the great mobility of electricity. But the true
significance of his discovery was by no means lost on Thomson. His electron must
be a component of the atom itself.

Where lesser minds saw the solution to an old mystery, Thomson saw the open-
ing of a new adventure. A potential building block of the atom had been uncovered,
and the rush was on. Led by Thomson himself, the more daring citizens of the world
of physics began inventing hypothetical models of the atom, not as a mere pastime
or for purposes of illustration, as a few years earlier, but in dead earnest. A few
clever experiments might tell physicists what really went on in an atom!

In their bold optimism, these early speculators on atomic structure little realized
that they had opened a Pandora’s box, and that the demons that would emerge from
it had no place in the tidy world of classical physics.

Summary

Though widely accepted in antiquity, the atomic hypothesis was rejected in the Mid-
dle Ages for theological reasons. It reentered mainstream science in the nineteenth
century, first in chemistry and later in physics, where a statistical treatment of atomic
motions was able to explain many kinds of transformation of energy. But as long as
atoms remained unobservable and their true size was unknown, many good scientists
refused to accept their reality. Developments in the first decade of the twentieth cen-
tury ended these doubts, and Einstein’s analysis of Brownian motion played a sig-
nificant role. By then three discoveries—X rays, radioactivity, and the electron—had
paved the way for serious attempts to determine the internal structure of atoms.
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C H A P T E R  1 4

Rutherford Probes the Atom

The universe is not only queerer than we imagine, it is queerer than we can

imagine.

—J. B. S. HALDANE

Imagine a group of proud and inventive people quarreling over the contents of a

sealed box and you have a pretty good picture of the mood of the early thinking on

atomic structure. Electrons were clearly an important constituent, but how were

they arranged? And given that they weighed so little, and only carried negative elec-

tricity, there was a great deal of mass and positive electric charge to be accounted

for. Most of the speculation centered on one of two models: the planetary and the

plum-pudding schemes.

Given the similarity between Coulomb’s Law of Electrical Force and Newton’s

Law of Gravitation, an atom that resembled the solar system, with a massive, elec-

trically positive “Sun” and negative electrons swinging around it in Keplerian orbits

was too pretty an analogy to pass up. Furthermore, it placed some powerful compu-

tational tools developed over two centuries of study of planetary orbits at the dis-

posal of the theorist.

But the opposing camp had as its prime asset the formidable authority of its

founder, none other than the illustrious J. J. Thomson himself, who became one of

the first Nobel laureates in physics for his discovery of the electron. He proposed a

sphere of positive charge in which the electrons were embedded, as shown in figure

14.1; the descriptive term plum pudding was his own choice.

LIGHT EMISSION IS THE TEST

Thomson’s model would have been regarded as idle speculation had there not been

a body of data crying for explanation by an electrical model of the atom. These were

the data on the emission of light by atoms.

Light from a source containing a single element in a gaseous state, such as a

neon sign or a mercury lamp, always has a characteristic color. When this light is

broken up into its component colors by a prism, a striking result is obtained. Instead

of a continuous spectrum (rainbow), which occurs when a solid or liquid is heated to

glowing, one finds the light is composed of a few very pure, sharply defined colors.

160



CHAPTER 14: Rutherford Probes the Atom 161

The best way to observe this is to pass the light through a thin slit, as illustrated

in figure 14.2. On a viewing screen or photographic plate it will form a pattern of

thin lines, each of a different color. For this reason, this type of pattern is called a

line spectrum. (See figure 14.3 for a portion of the line spectrum of helium.) For

most elements, only a few lines are bright enough to be seen with the naked eye. But

if a long photographic exposure is made, many fainter lines appear; for some ele-

ments, hundreds have been cataloged.

Maxwell’s electromagnetic theory allows for only one way to produce light of

pure colors: somewhere, an electric charge must be going through a regular, periodic

motion. The frequency of this motion determines the frequency of the light. This was

one reason why Thomson’s insistence that his electrons must be part of ordinary mat-

ter was so readily accepted; anything that emitted light had to be electrical in nature.

It was also clear that in a gas the light must be emitted by individual atoms. Not

only are the atoms separated by many times their own size, but the oscillations of

light waves have enormous frequencies. There are many oscillations in the time be-

tween encounters with another atom, and thus there is no way for several atoms to

cooperate in such a rapid oscillation. Furthermore, the striking differences between

the continuous spectrum of light emitted by densely packed solids or liquids and the

line spectrum from rarefied gases gave support to the notion that line spectra repre-

sent light from individual atoms.

Thomson’s model gave a quite natural explanation for this light emission. He

imagined that his electron “plums” were able to move freely in their positively

charged pudding, held in place by a delicate balance between their attraction to the

center of the positive charge and their mutual repulsion. A single electron would rest

at the center of a sphere, while three would form an equilateral triangle and four a

tetrahedron. If disturbed from these patterns by a collision between atoms, they

would oscillate around their normal positions, just as a pendulum oscillates when

disturbed from its equilibrium point.

Whenever a charge is accelerated, an electromagnetic field radiates out as light,

carrying away the energy of motion. The vibration must quickly die out. The natu-

ral frequency of these oscillations set the frequency of the waves emitted. For atoms
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around the known atomic diameters of a few times 10 10 m, they could be shown to

be appropriate frequencies for visible light. This was a very encouraging result: that

the electron had just the right amount of charge and mass to connect the size of the

atom to the frequency of light had to be more than a coincidence. The plum-pudding

atomists were sure they must be on the right track.

But the same numerical coincidence also encouraged the planetary enthusiasts.

Orbits of atomic diameter gave the right frequencies of rotation to produce visible

light. But this also proved the undoing of the model. Unlike Thomson’s atom, there

was no natural way to stop the light emission or to give it a constant natural fre-

quency. An orbit could have any size and thus could radiate light at any frequency.

As the electron lost energy, its orbit would gradually shrink. Spiraling in to its

doom, the electron would gradually increase its frequency of rotation. Thomson’s

electron oscillations kept the same frequency as their amplitude decreased.

Even worse, simple calculations using Maxwell’s laws showed that it took no

longer than a millionth of a second for the orbit to shrink to a tiny fraction of its

original diameter. The planetary atom was unstable and gave no natural explanation

of the line spectrum. Despite heroic and ingenious efforts to eliminate these faults,

the model fell into disfavor.

Still, until the Thomson model could be shown to explain the observed spec-

trum lines in all their quantitative detail, the field was open to all comers. And the
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(Mount Wilson and Palomar Observatories.)



quantitative detail was immense. The wavelengths of spectral lines are among the

easiest physical quantities to measure to high precision, and precise data had been

piling up for decades, thanks in part to their practical value. The set of spectro-

graphic lines produced by an element is its fingerprint, and spectrography was a

marvelous tool for chemical analysis. One bright line could reveal a small trace of

one element in the presence of another that had only faint lines near the same

wavelength.

While the chemists were content to assemble their fingerprint file, physicists

were doing much of the actual experimental work, because the techniques involved

fell in the realm of optics. And the physicists could not resist the temptation to

search for regularities in their data.

ORDER IN THE CONFUSION OF SPECTRAL LINES

For most elements, a list of frequencies of spectrum lines shows no more order than,

for example, a list of social security numbers. The exceptions are those elements

that fall in column 1 of the periodic table of the elements, hydrogen and the so-

called alkali metals. A regular pattern in the hydrogen spectrum was first noticed in

the 1880s by Johann Balmer, a teacher at a Swiss technical school. Today we ex-

press this regularity by the formula

v  v0    
where v0 is a constant and n and m are integers, with m greater than n. Every pair of

integers gives a different spectrum line. It was soon found that the same formula

very nearly held true for the alkalis.

The plum-pudding model offered no explanation for this formula, or for the

chaotic pattern found in other elements. Indeed, it was hard pressed to come up with

enough different frequencies of oscillation to explain the complexity of most line

spectra. Nonetheless, these patterns were regarded as offering the best clues to the

actual structure of the atom. The first model that came up with quantitative predic-

tions would be bound to gain widespread acceptance.

But while the model builders were struggling with the problem of how to get

the right light frequencies from the plum-pudding atom, a surprise experimental re-

sult from the Manchester laboratory of Ernest Rutherford indicated they were bet-

ting on the wrong horse. Rutherford was such a towering figure in the physics of his

time that it is fitting to pause here and introduce the man.

ERNEST RUTHERFORD

In the 1920s, when he was at the zenith of his fame and recently elevated to the

peerage as Lord Rutherford of Nelson, Ernest Rutherford was told by an envious

colleague that he was, “lucky to be riding the crest of a wave.” Rutherford retorted,

“Lucky, nothing!—I made the wave.” While this rebuke hardly shows an excess of

1

m2

1

n2
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modesty, it was perfectly justified. Practically everything known about radioactiv-

ity and the atomic nucleus, and by then a great deal was known, had come from the

work of Rutherford, his students, and his coworkers.

Rutherford’s fierce competitiveness never allowed him to forget the few impor-

tant discoveries in his chosen field that did not bear his name. Not since Faraday had

one researcher so completely dominated an experimental discipline. There was no

way to beat Rutherford—you just had to join him. Young physicists flocked to his

laboratory, and in an environment where several startling discoveries per year were

regarded as commonplace, they stretched and developed their talents to the full.

It wasn’t even safe to stay out of his field; if an exciting problem arose in any

area of physics, Rutherford might very well pounce on it. For other scientific disci-

plines he had nothing but disdain: “In science, there is only physics; all the rest is

stamp collecting.”

Rutherford’s fame began almost the moment he stepped off the boat in England

in 1895, a raw colonial from the remotest outpost of the British Empire,

Christchurch, New Zealand. Some clever studies on the response of magnetic iron

to radio waves, conducted under unbelievably primitive conditions in a converted

cloakroom at Canterbury College, had earned the ambitious 24-year-old a scholar-

ship to Cambridge as a research student at the Cavendish.

J. J. Thomson permitted a great deal of independence to the junior staff, and in

this free environment Rutherford quickly made his mark. In just three years he had

attracted enough attention to be offered a chair at McGill University in Montreal,

Canada. Though a native-born Englishman might have regarded this as an exile

with a dubious future, as a colonial Rutherford had few qualms about taking his

chances at a fast-rising institution that was already one of the best in the Empire out-

side the mother country.

Despite Rutherford’s youth, his own reputation and the praise of Thomson were

sufficient to attract a stream of first-class assistants from Britain, the United States,

and Europe, as well as Canada itself. The productivity of his laboratory over his

nine years in Montreal was phenomenal, and in 1907 he returned to England to as-

sume a chair at the University of Manchester. Later he was to cap his career by suc-

ceeding Thomson as the director of the Cavendish, but it is on his Manchester days

that we will focus, for it was there that he administered the coup de grâce to the

plum-pudding atom.

THE CANNONBALL IN THE HAILSTORM

Observing what happened to radiation when it passed through matter had been just

part of Rutherford’s bag of tricks at McGill, where his primary task had been to

identify the composition of the radiation. This problem solved (and the 1908 Nobel

Prize earned), Rutherford had the insight to guess that the technique might be turned

around. The now well-understood radioactive emanations might serve as a probe to

see what was inside the atom. He had noticed that alpha radiation, which he had

shown to consist of helium atoms with two electrons stripped away, was deflected

somewhat when passing through thin sheets of mica.
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This was a small effect that might well have been overlooked. But Rutherford

realized that his alpha particles were too heavy and too fast-moving to be budged

from their paths except by a strong electrical force. Careful measurements of the de-

flection could be used to reason back to the size of the force, which might in turn

give a clue to how electrons were arranged in an atom.

He had powerful new tools to bring to this task, for Rutherford had made the

detection of individual particles of radiation a fine art. On a fluorescent screen such

as that on a present-day TV picture tube, an alpha particle made a flash barely visi-

ble under a low-power microscope. In Rutherford’s own laboratory, his German as-

sistant Hans Geiger was perfecting the electrical counter that bears his name. Thus,

while the controversy over the reality of atoms raged, Rutherford had no doubt.

When asked over a dinner table whether he believed that alpha particles really ex-

isted, Rutherford bellowed: “Not exist—not exist! Why I can see the little beggars

there in front of me as plainly as I can see that spoon!”

But like most of his contemporaries, Rutherford had little doubt that Thomson

had found the right picture of the atom. A mere corroborative experiment, and one

that might prove difficult to interpret, was hardly worth his personal attention. How-

ever, there was a new student, Ernest Marsden, looking for a research topic. A check

on whether there might be anything interesting in alpha scattering would make an

ideal assignment for Marsden to cut his teeth on.

The prospects for the experiment were interesting but hardly exciting. An alpha

particle approaching one of Thomson’s plum puddings, as shown in figure 14.4,
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would experience no force until it got very close to or inside the atom, for the neg-

ative electrons would balance the positive charge. Once inside, the forces would be

considerable, but they would be exerted mainly by the electrons. Since these were

many times lighter than the alpha particle, the electrons rather than the heavy, swift

projectile would be the most disrupted by the encounter.

It would be like a cannonball fired into a hailstorm. After traversing many

atoms, the cumulative effect of many small encounters with electrons might have

deflected the alpha particle a bit, but no large deflections could be expected. If the

deflections resulted from many small scatters, it seemed unlikely that much detailed

information about the structure of the atom would be retained. At best, the experi-

ment might give an estimate of how many electrons each atom contained, which

was still very much an open question.

The task Marsden faced is illustrated in figure 14.5. Inside a vacuum chamber

(to prevent atoms in the air from interfering), he had to place a thin tube containing

a source of alpha radiation. This produced a narrow beam of alphas emerging from

the tube. Their target was a thin sheet of gold leaf. Gold was chosen because since

medieval times craftsmen had mastered the art of hammering this soft metal to an

incredible thinness; good gold foil is translucent. This was essential, because even

a sheet of cardboard is sufficient to stop a beam of alphas (it is the more penetrating

beta and gamma particles that are primarily responsible for the fearsome reputation

of radiation).

Marsden had to patiently count the tiny flashes produced when the alpha parti-

cles struck a fluorescent screen. To see these flashes reliably required long hours of

tedium in a completely dark room.

The first results were not terribly surprising. On the average, the alphas were

deflected by only a few degrees. But a very few of them, perhaps one in a thousand,
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FIGURE 14.4. Passage of an alpha particle through a plum-pudding atom.



were deflected through substantial angles. Fewer still—about one in ten thousand—

even came off backwards!

Again, many physicists might have been content that the average scattering was

reasonable. Any number of spurious effects might have produced those one in ten

thousand unexpected flashes. But Rutherford had a hunch they were real. He asked

Geiger, Marsden’s immediate research supervisor, to give the experiment some per-

sonal attention.

By 1911, though the data were still crude, Rutherford was sure the results ruled

out the plum-pudding atom. Instead, he suggested that the positive charge on the

atom might be confined to a tiny region that he called the nucleus. The large-angle

scatters came from single close encounters with this nucleus.

With this picture of the atom, shown in figure 14.6, it is easy to explain both the

small average scattering angle and the occasional large one. With the atom mostly

empty space, the alphas rarely came near a nucleus. Those that did would experi-

ence tremendous forces, since Coulomb’s law gives a force that varies inversely as

the square of the distance. Since the nucleus contains most of the mass of the atom,

the cannonball is meeting a bigger cannonball off which it can recoil backward. So

the small average deflection comes from the fact that most of the alphas traverse the

gold foil without ever getting near a nucleus. The few large deflections come from

the rare near misses. More important, it was possible to exactly calculate the pattern

of this type of scattering. In the Thomson model, the scattering resulted from many

tiny deflections from encounters with individual electrons. The result would thus be

a pattern that followed the familiar bell-shaped curve of random processes. But in

Rutherford’s picture the paths of the alphas could be calculated exactly from orbit

theory. The result could be expressed in a simple mathematical statement: the num-

ber of alphas per minute hitting the fluorescent screen at some particular angle was

inversely proportional to the sine of one-half the angle, raised to the fourth power.

Though we will encounter this formula several times again, it is not, in itself,

terribly significant. What does matter is that it fit the data well enough to rule out

the plum-pudding model.
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We now know that Rutherford’s alphas had in fact nearly touched the nucleus,

which has a radius of 8 fm (femtometers, or 10 15 meter), about five thousand times

smaller than the radius of a gold atom.

Table 14.1 gives the actual data as they appeared in an article in Philosophical

Magazine (vol. 25, p. 604), a physics journal whose name betrays its origins in the

era when physics was still “natural philosophy.” It is the fourth column of this table

that spelled the death of the Thomson atom. Though four thousand times as many

flashes are seen on the screen at 15 degrees as when it is placed at 150 degrees,

dividing the measured numbers of the third column by the computed ones in the

A few rare “near misses”
produce large scatter

About 10–12 cm

Most alphas too far from nucleus to experience
a significant force; thus, little or no deflection

FIGURE 14.6. Scattering of alphas by a nucleus.

TABLE 14.1

Angle of Theoretical Number of
Deflection Scattering Rate Flashes Col. 3
 , Degrees Observed  Col. 2

1/(sin  )4

150.0 1.15 33.1 28.8

135.0 1.38 43.0 31.2

120.0 1.79 51.9 29.0

105.0 2.53 69.5 27.5

75.0 7.25 211.0 29.1

60.0 16.00 477.0 29.8

45.0 46.60 1,435.0 30.8

37.5 93.70 3,300.0 35.3

30.0 223.00 7,800.0 35.0

22.5 690.00 27,300.0 39.6

15.0 3445.00 132,000.0 38.4

Source: E. Rutherford, H. Geiger, and E. Marsden, Philosophical Magazine 25 (1911): 604.

1
2



second column results in a number that is nearly the same for all measurements. The

differences between values in the fourth column merely reflect the fact that the data

are only accurate to about 15 percent.

The values of the numbers represent estimates of the number of flashes per hour

seen on a standard screen. In the backward direction, counts extended over many

hours, while at small angles the flashes came so quickly that a smaller screen had to

be used. What is important is that dividing by the theoretical rate gives numbers that

do not vary a great deal. The remaining small variation was of no importance, for

with Thomson’s atom one could have waited all day without seeing a single flash

beyond 75 degrees!

The Geiger-Marsden data serve to illustrate that while physics is often de-

scribed as a “precise” science, most experiments are no more precise than they need

to be. The discrepancy between the predictions of the plum-pudding and nuclear

atoms was so enormous that a 15 percent measurement was enough to settle the is-

sue. To strive for greater precision would have been a waste of time and

effort.

In a more modern paper, the data would be presented in a graph, as in figure

14.7, to show the agreement between theory and experiment more vividly. In order
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to graph such a wide range of values of number of counts, a logarithmic scale is

used: that is, the vertical height of each point on the graph represents the logarithm

of the number of counts. This has the effect of compressing the larger numbers, so

that the region 1000 to 10,000 occupies no more space on the graph than the region

100 to 1000, rather than taking up ten times as much space. It is a common device

to represent graphically numbers that vary over a wide range.

This is the first time in this book we have presented the detailed results of an

experiment. It was done in part because of the historical importance of the experi-

ment and also because it came in the era when reporting the data and experimental

details, rather than merely the conclusions, became standard practice. But this par-

ticular experiment has further historical significance. It was the first demonstration

of the power of particle scattering as a tool for studying the forces that operate in the

subatomic world. Most of the experiments conducted today with nuclei and subnu-

clear particles are in a sense variations on a theme by Rutherford, Geiger, and Mars-

den. Shooting things at atoms and nuclei and studying where they go after the

collision is one of the few probes physicists have to get at the workings of matter on

the submicroscopic level.

Of course, Rutherford’s work raised more questions than it answered. If the

positive charge and most of the mass were concentrated in a tiny core of the atom,

where were the electrons? Rutherford himself had no idea how to proceed. If the

theorists said it couldn’t work, let them figure out why it worked nonetheless.

Rutherford dealt in experimental fact.

A MOMENTOUS MEETING

There was at least one young theorist who seized upon Rutherford’s results with de-

light. His enthusiasm would eventually make Niels Bohr the guiding spirit in the de-

velopment of the new physics, the one who dared to make the final break with three

centuries of physical thought.

Bohr had come in the autumn of 1911 to the Cavendish Laboratory, to cap his

Danish training in theory with an exposure to the British style of experimental

physics. He shared a prejudice that a really good physicist ought to have some ex-

perience in the laboratory, and there was no place better than the Cavendish to get

it. Though he arrived highly recommended and bubbling with enthusiasm, this boy-

ish 26-year-old found Cambridge no bed of roses. One source of annoyance was the

petty arrogance of the English academic tradition. His easygoing character rebelled

against the stuffiness of an English university town. In a letter home, he complained

that his tutor had presented him with “a whole book” on the dos and don’ts of aca-

demic protocol.

In the laboratory itself Bohr fared little better. The Cavendish had grown in re-

sponse to Thomson’s reputation and was by then far too large for him to handle.

Bohr described the atmosphere of the laboratory as “a state of molecular chaos.” Fi-

nally, Thomson had shown little interest in Bohr’s doctoral thesis, which was based

in large measure on Thomson’s own work on electrons. Bohr had translated it into

English, hoping that his host could help find a publisher that would guarantee a

170 A Momentous Meeting



wider audience than was available in Denmark. But it remained on the busy profes-

sor’s desk, unread.

When Rutherford visited Cambridge for a reunion of Thomson’s “old boys,” he

was introduced to Bohr. By a curious circumstance, the young Dane’s name rang a

bell. Bohr’s brother Harald, who was to become an important mathematician in his

own right, was at that time better known as “the shock-haired Dane,” star of the

Danish football (soccer) team that had unexpectedly won the silver medal at the

1908 Olympic Games in London. Though Niels had never advanced beyond reserve

status on his college team, Rutherford, an avid sports fan, referred to him from that

day forward as “that football player.” An invitation was extended to visit Ruther-

ford’s new Manchester laboratory. Bohr returned to Cambridge with stars in his

eyes, preaching the gospel of the planetary atom.

To Thomson this was the last straw. It was bad enough that his most illustrious

student was challenging his model of the atom. That Rutherford should seduce a

guest at the Cavendish into his heresies was too much. By mutual agreement of all

parties, Bohr left in April 1912 to finish out his English sojourn at Manchester.

The industrial Midlands were a far cry from the formality of Cambridge. The

laboratory was young, the university was young, and above all Bohr was in day-to-

day contact with physicists as young and enthusiastic as himself. At the helm was

Rutherford, who would stride through the laboratory, every morning, giving en-

couragement to the students and singing “Onward Christian Soldiers” at the top of

his voice as he made his rounds. Religion was not his motivation, it was simply the

only song he could remember. This was hardly the sort of place where one had to

apologize for one’s crazier ideas. Bohr was in his element.

This was the beginning of a deep friendship and a long collaboration. Bohr and

Rutherford shared a love of vigorous physical activity and a robust sense of humor:

otherwise, they had little in common. With a deep mutual respect that grew through-

out the years, they above all others shaped the physics of the first half of the twen-

tieth century.

SCIENTIFIC GENEALOGY

A scientist, like the biblical patriarchs of old, can have many offspring. The great

ones have their pick of doctoral and postdoctoral students, and can easily train 50 or

more in a working lifetime. With the reputation of their mentors behind them, these

students have an advantage in finding choice positions, with a chance to make a rep-

utation and attract their own legion of students. And the generation time is short: a

professor’s early students are only a few years younger than their teacher. Within a

few decades, the intellectual descendants of one influential professor can dominate

a discipline.

In this fashion, as well as by their ideas and discoveries, Bohr and Rutherford had

a telling impact on scientific generations to come. Both drew students from around

the world, who became the founders of atomic research in their home countries.

At a recent international conference, about 40 physicists went to dine at a coun-

try inn in Hungary. They represented the United States, several nations in eastern and
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western Europe, and East Asia. With them was a historian of science working on the

scientific “genealogy” of physicists. As an after-dinner diversion, he worked out the

ancestry of all those present. A large majority of the experimenters could be traced

back to Rutherford,* and all but one of the theorists was a descendant of Bohr.

Summary

Early speculation on atomic structure favored the so-called plum pudding, electrons

embedded in a sphere of positively charged material. Its rival, the “planetary” atom,

was unstable and gave no natural explanation of light spectra. But using alpha par-

ticles as a probe, Ernest Rutherford discovered that most of an atom’s mass is con-

centrated in a nucleus about ten thousand times smaller than the atom itself. A lucky

accident brought young Danish theorist Niels Bohr to Rutherford’s laboratory to

help resolve the problem. These two figures had a strong influence on later genera-

tions of physicists.

*The author of this book, who was present at this gathering, is “third-generation” Rutherford.
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The Atom and the Quantum
Hail to Niels Bohr from the worshipful Nations!

You are the Master by whom we are led,

Awed by your cryptic and proud affirmations,

Each of us, driven half out of his head,

Still remains true to you

Wouldn’t say boo to you,

Swallows your theories from alpha to zed,

Even if (drink to him,

Tankards must clink to him!)

None of us fathoms a word you have said!

—GEORGE GAMOW

Relativity, like the goddess Athena, was born full-grown and fully armed. The

quantum theory, in contrast, had a long and troubled childhood. Born in 1900, it

took more than ten years to mature to the point where most physicists realized that

something new and important was happening, and it was nearly 30 when it finally

reached adulthood by becoming logically coherent.

Newtonian physics, even as modified by relativity, is above all a science of con-

tinuity and determinism. Nature shows no unexpected fits and starts—all change is

smooth, gradual, and the inevitable consequence of definable causes. In the quan-

tum theory, on the other hand, nature on the atomic scale is not only discontinuous

but also fundamentally unpredictable. It is ironic that this theory entered physics

through the study of incandescence, a phenomenon that is neither atomic nor dis-

continuous, and that seems on first inspection to be as orderly as anything in New-

ton’s universe.

MAX PLANCK’S DESPERATE ASSUMPTION

The problem that led to the birth of the quantum theory was the continuous spec-

trum of light that is produced when a solid or liquid is heated to glowing, as in the

filament of a lightbulb or a bar of red-hot steel. The phenomenon is not atomic, be-

cause the atoms are closely packed and in continuous interaction with one another,

completely disrupting their natural way of producing light. When atoms are iso-

lated, as in a gas, each element has its characteristic line spectrum. But in a more

condensed state, all materials produce pretty much the same incandescent glow.

The spectrum of incandescent light is certainly continuous: light is emitted at

all frequencies. The relative brightness of the different colors depends on the tem-



perature. As an object is heated, it first glows red, but as the temperature rises the

color shifts toward the blue. This effect became an important research area in the

last two decades of the nineteenth century, partly as the result of the success of Edi-

son’s incandescent electric light. Experimenters measured the energy radiated at

various frequencies, with the results shown in figure 15.1.

Understanding this spectrum from a theoretical standpoint was viewed as a

problem in statistical mechanics, which had already successfully dealt with the con-

version of heat into other forms of energy, such as in steam engines and in chemical

reactions. The theory had shown that the detailed properties of the materials in-

volved in these transformations were of little importance, as seemed to be the case

with incandescent light.

The first attempts showed encouraging results. It proved simple to account for

the fact that the total energy radiated increased as the fourth power of the absolute

temperature; the theory also explained why, when an object is heated, the color of

light emitted changes from a dull red through orange to white and on to blue, as the

temperature rises. But the exact spectrum shown in figure 15.1 eluded mathemati-

cal description.

Just before the turn of the century, Max Planck of the University of Berlin took

on this problem. Planck was a true professional in his field, the first German physi-

cist to specialize in theory from the start of his training. He also enjoyed the advan-

tage of proximity to the leading experimenters in this area, who were working at his

university. Thus he had access to their results before publication, giving him a head
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start over his competitors. Given this advantage, he decided to let the data guide him

to the right formula.

His search was rewarded early in 1900. But finding an empirical formula that

fits the data but is not based on any underlying theory does little to advance our un-

derstanding. Statistical mechanics was a well-developed theory, and Planck set high

standards for his own work. He felt obliged to come up with a rigorous derivation

of his formula.

Moreover, the formula contained an embarrassing adjustable parameter, a kind

of “fudge factor” that could be determined only by tinkering with its value until the

predictions of the formula fit the measurements. Today this mysterious parameter is

known as Planck’s constant, is designated by the symbol h, and ranks with the grav-

itational constant G and the speed of light c as one of the fundamental factors that

determine the nature of our universe. Planck knew he would either have to derive

this number from statistical mechanics, or insert it through some new hypothesis.

By the end of the year, Planck had found his rigorous derivation. But it brought

in h through an assumption that looked terribly implausible. He was forced to as-

sume that the conversion of heat into light could not occur in any amount whatso-

ever. Just as every currency in the world has a smallest coin, the conversion of heat

to light had a smallest unit of exchange. The size of this unit depended on the fre-

quency of the light produced, and it came to be called a quantum. For light of fre-

quency  the energy unit was

E  h 

which ranks with E  mc2 as one of the most significant formulas of the twentieth

century. The introduction of this formula at a meeting of the German Physical Soci-

ety on December 14, 1900, is usually taken as the birthdate of the quantum theory.

With this assumption, discontinuity had entered physics. Never before had an

important physical quantity been restricted to a discrete set of values. Planck him-

self was far from sure the quantum should be taken seriously. Perhaps there was

some way to eliminate the rule, or explain it away. The quantum might be no more

than a way station on the route to a deeper understanding, and many physicists

working on the problem expected it to eventually disappear.

But both the formula and the idea of the quantum survive to this day. The cos-

mic microwave background signal, the evidence for the “big bang” discussed in

chapter 12, exactly follows the Planck spectrum for a body of temperature 2.7 K.

EINSTEIN AND 1905 AGAIN

There are always a few bold thinkers who, confronted with a puzzling new idea,

will look not for ways around it but for new ways to build on it. As we have seen,

hardly anyone was bolder than Einstein in 1905. He was intrigued by the possibil-

ity that Planck might have uncovered a general rule that would operate everywhere

in the atomic domain, rather than simply for this one phenomenon. One test of this

would be to see if it applied to light itself in other situations.
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Searching the experimental literature for possible examples, Einstein noticed

some peculiarities in the photoelectric effect. Today this effect has a wide range of

technological applications, from TV cameras to automatic doors and solar energy.

But in 1905 it was relatively obscure. It had been discovered by Heinrich Hertz as a

by-product of his radio-wave experiments. Hertz had found that when strong light

from the blue end of the spectrum shines on a metal carrying a negative electric

charge, the charge quickly leaks away. If the charge on the metal is positive, or the

light is red, there is no such effect.

Following Thomson’s discovery of the electron, Hertz’s student Philipp Lenard

correctly interpreted this effect. Light must be knocking electrons out of the metal.

He showed that electrons were given off at a rate proportional to the brightness of

the light. But when he measured the energies of the electrons, he got a surprising re-

sult. The brightness just didn’t seem to matter!

Lenard’s apparatus is represented in figure 15.2. Light shining on the cathode

liberates electrons, which are collected at the anode, producing a measurable elec-

tric current. By charging the anode negatively, so that it repels electrons, the current

can be stopped. From the size of the force required to repel the electrons, their en-

ergies can be calculated.

By simple reasoning, brighter light meant stronger electric fields that should

have accelerated electrons to higher speeds. But Einstein pointed out that if Planck’s

quanta were little bundles of light energy, things would be different. Since metals

are opaque, light must act only at the surface. An electron absorbs one quantum of

energy and immediately breaks free before it can absorb another.

To free an electron from a metal, a fixed “ransom” of energy, called the work

function (W) must be paid. No electron may have more energy than one quantum,

minus the ransom W, which leads to a formula for the maximum electron energy,

Emax h  W, illustrated by the graph in figure 15.3. At low frequencies, the quan-

tum energy is less than W, so there is insufficient energy to liberate an electron. This

explains why light from the red end of the spectrum doesn’t do the job.

This formula permitted a clear experimental test. The slope of the graph in fig-

ure 15.3 is Planck’s constant. If it appears in measurements on the photoelectric
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effect, which has nothing to do with incandescence, surely Einstein must be right

about the broader significance of h. But the experiment required strong light sources

that produced pure colors, a difficult achievement in that era. Eleven years were to

pass before the American physicist Robert Millikan confirmed the prediction.

This analysis was presented in the first of the five papers Einstein submitted to

the Annalen der Physik in 1905. The editor who reviewed it was none other than

Lenard himself, who was at that time feeling a bit beleaguered. He was considered

the world’s leading expert on cathode rays, but he had missed the two great discov-

eries to come out of this work, X rays and the electron. It may be that Einstein’s at-

tention to his photoelectric studies encouraged Lenard to accept the unconventional

arguments in this paper and in the two on relativity that Einstein submitted later in

that year. In the closing section of this chapter, we shall see Lenard in a more sinis-

ter role later in Einstein’s life.

The theory of light quanta was the most controversial of all of Einstein’s ideas.

How could it be reconciled with the overwhelming evidence for the wave theory of

light? His quanta must obviously be more like particles than waves, so how could

they produce all the wave effects that had been observed in the century since the

work of Young? How could light be both a particle and a wave at the same time?

Einstein’s attempts to struggle with this dual character of light, today a central con-

cept in the quantum theory, reassured nobody.

When he was put up for membership in the Prussian Academy of Sciences in

1913, Einstein’s sponsors felt compelled to excuse this peculiar lapse of an other-

wise obviously brilliant man. Millikan undertook his own photoelectric measure-

ments not to confirm Einstein’s prediction but to shoot it down, and nobody was

more surprised than he when Einstein turned out to be right. The photoelectric ef-

fect, rather than the theory of relativity, was the basis for awarding Einstein the

1921 Nobel Prize, for relativity was still a bit controversial. Nonetheless, not even

the Nobel committee fully accepted the light quantum. They were careful to cite the

formula for the electron energy as the basis for the prize!
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In 1923, another American experimenter, Arthur Holly Compton, demonstrated

that when X rays collide with electrons, they rebound with their energy altered ex-

actly as does a particle in an elastic collision. Only then did a majority of physicists

accept Einstein’s light quantum, and adopt a name that pointed to its particlelike

character. Today, a light quantum is known as a photon.

This was not Einstein’s last word on Planck’s quanta. In 1906, he applied the

formula E h to the vibrations of atoms in solids to explain some peculiarities in

the absorption of heat at very low temperatures. This came in a period when newly

developed refrigerators first permitted research on temperatures close to absolute

zero, so Einstein was dealing with a fashionable new topic. It allowed him to show

his mastery of statistical mechanics, and to produce results that were of immediate

value for the interpretation of experiments, the best way for a theorist to establish

his reputation. Though he left the elaboration of this idea to others, he had founded

the theoretical branch of a new discipline, solid-state physics. This is now the

largest and most practical branch of modern physics.

THE WITCHES’ SABBATH

Success in the chemical industry had made Ernest Solvay one of the wealthiest men

in Belgium. Still, he was not entirely satisfied with what he had accomplished in

life. He would have found it far more worthy to be celebrated as a scientist and

philosopher. And so he agreed to sponsor a meeting, in the autumn of 1911, at which

the world’s greatest luminaries would be assembled to discuss some exciting new

ideas. If he could not advance knowledge himself, at least he could lend a helping

hand to the process and bask in the radiance of some of the world’s most creative

thinkers.

This kind of “all-star” meeting was a new idea. The physicist Walther Nernst

chose the topic and the guest list. With the reality of atoms now safely established,

he felt it was time to alert the world to this hodgepodge of new ideas, the quantum

theory.

Lorentz was chosen to chair the proceedings, but Einstein was given the high-

est honor—the summary talk that would wind up the conference. By then, he was

enough of an insider in the academic establishment to be amused by its preten-

sions!* He was convinced that the assembled dignitaries would simply preen and

pontificate for one another’s benefit, and would in the end settle nothing. Noting

that the conference would take place over Halloween, he referred to it in letters to

friends as “this witches’ sabbath.”

Despite Einstein’s misgivings, the first Solvay Conference was an unqualified

success, and launched a series of such meetings that continues to this day. It en-

couraged young theorists to make bold claims for the new theory. One after another,

they proclaimed the doom of Newtonian physics at the atomic level. It was time for

the small band of quantum physicists to move out boldly and conquer new ground.
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*In later years, when he settled in the United States, Einstein wrote back to friends in Europe de-
scribing Princeton as “a quaint ceremonious village of puny demigods on stilts.”
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Einstein’s own summary talk, though more restrained, demonstrated impressively

how far the new ideas had come.

Though the guest list leaned heavily toward theorists, Rutherford was there.

Like many British experimenters he tended to be disdainful of professional theo-

rists, but his own situation now put matters in a different light. He had just made his

first public claims for the nuclear atom, knowing that he would have a fight on his

hands because the accepted wisdom said it must be unstable. Thus he was receptive

to any suggestion that new rules might apply on the atomic level.

So when Bohr arrived in Manchester the following April, Rutherford directed

his attention to the printed proceedings of the conference. Though Bohr had heard

of the quantum theory, he as yet knew little about it. It was only fitting and proper

that he be introduced to it by a document replete with ringing calls to scientific rev-

olution. That sort of adventure was exactly what Bohr was looking for.

BOHR ASKS THE RIGHT QUESTION

Niels Bohr had been raised in the comfortable, supportive bosom of one of the lead-

ing families of Denmark’s liberal intelligentsia. His father, professor of physiology

at Copenhagen University, had used his professorial prerogatives to admit women

to his university for the first time. Among the earliest had been Ellen Adler, daugh-

ter of a leading Jewish banker who was also a liberal member of the Danish parlia-

ment. Christian Bohr was struck by her intelligence and charm, and within a few

years they were married.

The Bohr and Adler families were a force in Danish cultural life. Ellen’s sister

Hannah had studied under the philosopher and educational reformer John Dewey in

the United States, and came home to found the first “progressive” school in Den-

mark. These values held inside the family: the Bohr brothers and their older sister

Jenny were encouraged to express themselves freely, to seek their own directions in

life, and to participate in organized sports, then considered a “liberal” idea.

The Bohr home served as the social center for a lively circle of philosophers,

scientists, and writers, and the children were encouraged to participate in adult dis-

cussions. Coming as they did from a small nation with a difficult language, edu-

cated Danes of that era tried to keep one foot in the English-speaking and the other

in the German-speaking world, so young Niels was exposed to as broad a range of

ideas as could be found anywhere in Europe.

Bohr thrived in this free environment, but always had a great deal of difficulty

expressing himself verbally. To start with, he had an exceptionally soft voice, which

sometimes made it difficult to hear what he was saying. And he tended to speak in

half-constructed poetic images, sharing his stream of consciousness with his baffled

listeners. In later years, Bohr explained this trait as essential to his manner of

thought: “Never express yourself more clearly than you think!”

Nonetheless, Bohr’s own father saw something through the barrier of muddled

words, and pronounced a judgment that was borne out in time: Harald was the quick

one, and would go far. But Niels was deep, and would do great things.



The Danes preserve the charming custom of holding oral examinations for the

doctorate as public events. Niels and Harald defended their theses before packed

houses, to rave reviews in the daily press! With such a background, Niels Bohr

never hesitated to believe he could turn the world upside down with the products of

his mind.

Rutherford was bound to be flattered that such a well-recommended young man

viewed his nuclear atom with enthusiasm, rather than the dismay expressed by most

of his own contemporaries. Whatever may be the value of scientific journals, emo-

tional commitment to ideas is best transmitted by personal contact. Elsewhere in the

world, Rutherford’s nuclear atom seemed a possibility. At Manchester, Bohr was in

the midst of a group of talented young researchers who took it as established fact.

The planetary atom had to be made to work, and the quantum theory just might hold

the key. In his four months at Manchester, he had three key insights that set him on

the right path.

The first was the key to the stability of atoms. If the essence of the quantum

theory is that a system is allowed only certain values of energy, there could be a

lowest energy level, the smallest possible orbit, below which the electron could

not descend. There would be other allowed energies, represented schematically in

figure 15.4. The lowest energy is the ground state, in which an undisturbed atom
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is normally found. The higher levels are excited states, which appear only if the

atom is disturbed by a process that can insert energy, such as a violent collision.

An atom would not stay very long in an excited state. It would return to the

ground state in a series of steps. Both the ground state and the excited states are

bound states, so the total energy is negative. An electron with positive energy is

free to wander away.

Bohr then moved to his second insight. Something must set the size of the first

orbit, and thus the size of the atom itself. Bohr reasoned that it must depend on m

and e, the mass and charge of the electron. But if the quantum theory was to play a

role, Planck’s constant must also enter the picture. He then noted that the combina-

tion h2/me2 is a length unit roughly in the range of known atomic diameters.

Others had already noticed that combination, but had understood it differently.

They had tried to explain away Planck’s constant as a consequence of the size of the

atom and the charge and mass of the electron. Bohr had reversed their line of rea-

soning. It is not the job of the atom to explain the size of Planck’s constant, but for

the constant to explain the size of the atom!

Bohr’s third insight was that an atom with a restricted set of energy levels could

change its internal energy only by moving from one allowed level to another. This

would be the way it could emit light. Here was a natural explanation for line spec-

tra, for the relation E h could then be stood on its head. Up to then, the formula

had set the size of an energy quantum when the frequency was known. But in

Bohr’s picture, the energy levels would be set by some other rule. The frequency

was determined by dividing the change in energy by Planck’s constant.

The task ahead of him was clear: find a rule that gave the energy levels. But

Bohr had run out of time. He had to return to Copenhagen, for his wedding day had

been set. But he did call off the planned honeymoon in Norway, bringing his bride

back to Manchester. Starting his first teaching job in the fall, he had little time to con-

centrate on the problem. He played with orbit calculations, but had no idea which

way to go. It had not occurred to him that atomic spectra might provide a clue.

Early in February 1913 H. M. Hansen, an old classmate of Bohr’s and a spec-

troscopist, paid a visit to Copenhagen. He reminded Bohr of the Balmer formula,

which both had learned in a class long before but Bohr had forgotten. Going back

to his notes he found it and, as he later put it, “everything was immediately clear.”

It was impossible to miss the parallel between Balmer’s formula

v  v0    
and Bohr’s prescription for calculating the frequency of light emitted in a transition

between energy levels n and m:

v   En  Em 

These formulas look very similar. We can make them exactly the same by setting

v0  E1/h, where E1 is the energy of the ground state, and letting the energy of the

nth state be E1/n
2. The pattern of energy levels suggested by the Balmer formula is

illustrated in figure 15.5.
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Bohr’s engagement photo, taken shortly before his departure for England.

(AIP Emilio Segrè Visual Archives, Margrethe Bohr Collection)
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From the foregoing discussion, it would be natural to assume that Bohr eagerly

accepted Einstein’s light quantum. Curiously, this was one aspect of the quantum

theory that Bohr steadfastly resisted, clinging to this opinion for two years after the

Compton experiment had made it untenable.

Bohr correctly guessed that the hydrogen atom contained only one electron,

which simplified his calculations. Now his task was to find a new quantum rule,

something different from E  h that led to the right numerical values for the

0 Energy

–0.85 eVE4

–1.5 eVE3

–3.4 eVE2

–13.6 eVE1

FIGURE 15.5. Hydrogen energy levels.



184 The Wrong Picture, the Right Numbers

energy levels. Bohr quickly found it, but at this point it is important to break off the

narrative and issue a warning.

THE WRONG PICTURE, THE RIGHT NUMBERS

Up to now, all of Bohr’s ideas were on the right track, and they remain valid today.

In this section we present his model of the atom, Bohr’s picture of how the elec-

tron moves. It cannot be emphasized too strongly that this picture is entirely

wrong, even though it leads to the correct energy levels! Thus we will touch on it

briefly, and then move on to a more satisfactory picture that emerged some 13

years later.

There is a methodological lesson in this that should be taken to heart. Model

building is a dangerous business, particularly when one is guided by very good ex-

perimental data. If a model can be devised that explains the data, it seems only rea-

sonable that that model, or something very much like it, must be the way things

really are. But this may prove a snare—another entirely different model may serve

just as well.

With only a single electron to consider, Bohr decided to adopt Newton’s deri-

vation of Kepler’s laws as the basis for his model. He then added three assumptions,

all three of which were later abandoned:

1. The energy levels are those circular orbits in which the electron’s angular

momentum is an integer multiple of Planck’s constant divided by 2 , that is,

mvr  nh/2 .

2. Maxwell’s theory does not apply to the electron’s motion, so it will not radiate

light while orbiting.

3. The electron moves from one orbit to another by an instantaneous process

called a quantum jump.

The combination h/2 appears so often in the quantum theory that to simplify

formulas it has been assigned a symbol of its own,  , which is pronounced “aitch-

bar.” Though Bohr’s orbit rule did not endure, his surmise that  is a natural unit for

angular momentum was correct.

To give Bohr full credit, he was the first to acknowledge that he was on thin ice.

The old physics had three centuries of work to back it up; all he had was Ruther-

ford’s experiments and the Balmer formula. So he warned his readers not to take the

model too literally. It was a statement in the language of the old physics. Its mean-

ing would be clear only when it was restated in the language of the new physics that

was bound to emerge, and which he correctly guessed would have little in common

with Newton’s system.

It took a special kind of mind to accept the contradictions and confusions of this

kind of reasoning and still forge through to a conclusion, knowing that many mis-

takes may have been made along the way. Einstein, with his passion for consistency

and logical clarity, could never have done it. He was astonished and delighted by



Bohr’s “unique instinct,” and praised his achievements as “the highest form of mu-

sicality in the sphere of thought.”

NUMBERS ARE POWERFUL CONVINCERS

Nobody could dispute the fact that Bohr’s theory came up with those marvelous lit-

tle convincers, experimental numbers. Frequencies of spectrum lines can be meas-

ured to great accuracy, and Bohr hit them right on the head. Let us summarize his

quantitative results. If complicated mathematical expressions make your eyes glaze

over, read the text and ignore the formula, which is there primarily for illustration.

The radius of Bohr’s ground state orbit is in fact the length he originally

guessed at, with h replaced by  ,  2/me2, which is around 5  10 11 meter. This

leads to the following expression for the energy of the nth state:

En    eV

Here we have introduced the electron-volt (eV), the unit of energy commonly

employed on the atomic scale. It is equal to 1.6  10 19 joule. In these units,

h  4.14  10 15 eV-second and   6.6  10 16 eV-second.

The point of displaying this curious formula is that it is, in fact, a peculiar-

looking combination of tiny quantities. That it turns out to give the right answer

could hardly be a mere coincidence. Any model that replaced Bohr’s would have to

duplicate this achievement, and leave this formula unchallenged.

THE BATTLE IS JOINED

Bohr’s theory was greeted with considerable skepticism. Rutherford, to whom Bohr

sent the paper for criticism before submitting it for publication, was not yet prepared

to stake that big a change in the foundations of physics on the slender base of his

alpha scattering experiment. But Bohr seemed determined to go public with the

theory, so Rutherford acquiesced. A number of readers of the article expressed baf-

flement that Planck’s quantum, a creature of statistical mechanics, could be relevant

to spectroscopy, which dealt with individual atoms. As Bohr himself realized, he

had taken only a first step on the road to the new physics, and more work had to be

done.

But suddenly it was August 1914, and there was nobody left to do the work.

With the assassination of an Austrian archduke in the little-known Bosnian city of

Sarajevo, young scientists who had been working side by side suddenly found them-

selves conscripted into rival armies, to face one another across fields of barbed wire.

Rutherford’s Manchester laboratory was quickly denuded of the students and

assistants who had made it hum. Rutherford patriotically resigned himself to re-

search on submarine detection, while his friends and former coworkers in the Ger-

man laboratories worked to frustrate his efforts. Rutherford had good personal

reasons to reflect bitterly on the futility of the slaughter. His own prized student and

protégé, Henry Moseley, died in the disastrous British attack on the Dardanelles.
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Moseley’s greatest achievement, just before he left for the army, had been to show

by experiment that the Bohr theory explained the production of X rays. But this did

not exempt him from the horror that cut down a major share of European youth of

his age.

PHYSICS IN THE TWENTIES

When the surviving young physicists returned from the trenches at the end of 1918,

the intellectual world was in no mood for caution. The three great emperors who

had dominated European politics had lost their thrones. European civilization had

itself been discredited in the eyes of many intellectuals. The Bolshevik revolution in

Russia had aroused the passions of the whole world.

Physics often seems the most insulated of intellectual endeavors. Perhaps it was

mere coincidence that classical physics seemed on the verge of ultimate triumph in

the complacent 1890s, only to be replaced by a new physics born in the turbulent

1920s. In purely scientific terms, the time was ripe. Not all sciences experienced a

similar flowering. And great science is usually done by people who, for the time be-

ing at least, are thinking of little else.

Yet one can imagine the mood of a young physicist whose diversions might in-

clude the plays of Bertolt Brecht, the music of Paul Hindemith, the novels of

Thomas Mann, and Dada art exhibits. The European educated elite was still small,

and a scientist was bound to have neighbors who were surrealist painters, radical

poets, Bauhaus architects, or devotees of the daring psychological theories of Sig-

mund Freud. The mood of the cabarets of Berlin and Munich, a blend of high spir-

its and decadence, quickened the pulse. Was this the time to dwell contentedly on

the ancient traditions of physics, to add one’s little bit to the great edifice built on

the foundations of Newton?

Science had ridden high in imperial Germany, a state that claimed to rest its le-

gitimacy on scientific principle. In the new Weimar Republic, science lost much of

its status. To keep afloat, the great research institutes of the German universities had

to draw a major share of their students, and even some of their financial support,

from abroad. It should be noted that a similar situation exists in graduate-level sci-

ence education in the United States today.

Physics was in particular disfavor because of the role assigned it in one of the

most influential books of the era, Oswald Spengler’s Decline of the West. Spengler

condemned Western civilization for having made a Faustian bargain to gain mastery

over nature. The dead hand of determinism, epitomized by the laws of Newtonian

physics, had traced the West’s signature in blood. Echoing the romanticism of a cen-

tury earlier, Spengler proclaimed mysticism, intuition, and chance the stuff of life

on which a new civilization would arise.

The quantum physicists did not take this criticism lying down. There was mys-

tery aplenty in quantum jumps and intuition in their methods. A new physics was

aborning, and determinism was finished.

Einstein and Planck were wary of the new mood. By all means build the new

physics, they warned, but to capitulate to the forces of unreason was to let in the
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hounds of hell. Already these were very much in evidence on the streets, with their

brown shirts and swastika armbands, and listed among their targets was the “Jewish

science” of theoretical physics. Philipp Lenard, one of the few eminent scientists to

join the Nazi party, organized pickets and hecklers to disrupt Einstein’s public ap-

pearances, and called for the creation of an “Aryan physics” in which experimenters

would rule the roost and theories formulated by Jews would be rejected.

Most German intellectuals deplored these excesses and endorsed Germany’s

first experiment with democracy. But they maintained a haughty, aristocratic dis-

dain for the give-and-take of parliamentary politics. The Weimar Republic

foundered not so much on the hatred of its enemies as the indifference of its sup-

posed friends.

But in this inhospitable climate, German physics rose to its greatest heights. In

the eye of the hurricane sat the great Georgia Augusta University at Göttingen, a

provincial university city reminiscent of an American college town. Göttingen had

been a center of intellectual ferment and political rebellion since its foundation in

the eighteenth century by George II, Elector of Hanover and King of Great Britain.

The key figure at Göttingen was David Hilbert, perhaps the most influential

mathematician of the century. He cultivated an atmosphere of intense scientific de-

bate that cut across traditional disciplinary boundaries. A visiting speaker ap-

proaching a Göttingen lecture faced an audience that would accept nothing short of

daring original ideas. There were discussions long into the night on the shape of the

new physics. The students were in no mood to be polite to their elders.

But the mecca of this new religion was unquestionably Copenhagen, and its un-

challenged prophet was Niels Bohr. Barely into his thirties, Bohr headed a new in-

stitute supported in part by the profits of the venerable and world-renowned

Carlsberg brewery. Since Denmark was a small country, it was understood from the

outset that this would be an international institute, attracting the best young schol-

ars from throughout the world. Bohr was to make Copenhagen nearly as famous for

physics as for good beer and rollicking high times. Rumors of an important new de-

velopment anywhere in Europe brought a reflex reaction to the young guard of

physics—catch the next train to the charming and fun-loving city on the Øresund.

Only in “The Presence” could the true significance of a new idea be evaluated, and

the debates became legendary.

Bohr’s work habits enhanced his influence. Unlike Einstein, who craved soli-

tude, Bohr thought best out loud, in a madcap environment full of people to bounce

ideas off. Work at his institute might be conducted across a Ping-Pong table (Bohr

was almost unbeatable) or on a tour through the Tivoli amusement park. Diversions

included Western movies and the in-house Journal of Jocular Physics, edited by

George Gamow, in which the latest ideas were promulgated through the medium of

Mickey Mouse cartoons. When a visitor remarked that disrespect seemed to be the

hallmark of his institute, Bohr impishly replied: “Yes, and we don’t even take dis-

respect seriously!”

Bohr’s own ideas often began as metaphors, poetic images with meanings his

listeners could scarcely fathom, but which encouraged them to let their own imagi-

nations run free. In Copenhagen, the new physics was not so much built as slapped

together in a riotous spree of individual and collective creative effort. When the
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time came to put it all down in solid, rigorous mathematics, there was Harald’s own

institute, right next door.

The settings were familiar—the institutes of the German and French universi-

ties, the Cavendish Laboratory, a bit less stuffy after Rutherford succeeded J. J.

Thomson in 1919, the gentle Scandinavian frivolity of Copenhagen. But the mood

was new, and every bit as romantic as Hemingway’s Paris or Brecht’s Berlin.

In Munich, in the same era that witnessed Hitler’s beer hall putsch, the waiters

at one cafe near theorist Arnold Sommerfeld’s institute had peculiar instructions.

When the young physicists who passed their evenings there left the marble-topped

tables covered with equations, they were under no circumstances to be cleaned; a

number of the key ideas of the new physics went straight from those tables to the

pages of the leading journal of the quantum-mechanical revolution, Zeitschrift für

Physik.

HEISENBERG AND PAULI

The story of Sommerfeld’s two most illustrious students puts in bold relief the cul-

tural conflicts that wracked Weimar Germany. Werner Heisenberg and Wolfgang

188 Heisenberg and Pauli

Wolfgang Pauli (left) and Niels Bohr contemplate a spinning top.

(AIP Emilio Segrè Visual Archives)
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Niels and Margrethe Bohr in the 1920s.

(AIP Emilio Segrè Visual Archives, Uhlenbeck Collection)



Pauli were together in Munich in the early 1920s, and for a decade or so remained

close friends, despite striking differences in background and personality.

Heisenberg was physically almost a caricature of the archetypical German—

tall, fair, and athletic. He came from a respectable Bavarian family, with a father

who was the principal of a gymnasium. Young Werner was taught to value disci-

pline and self-denial. As a student, he was respectful toward his teachers and metic-

ulous in his study habits.

Pauli, by contrast, was a coddled child prodigy from the Jewish community of

Vienna, though he was baptized as a Christian. Short and stocky, he was given to

self-indulgence, with a weakness for fine wines, imported cigars, and ice cream. He

also had a well-deserved reputation for arrogance. If a professor had not made his

point clear enough for Wolfgang to understand, he was likely to be ordered to “stop

talking nonsense.”

Heisenberg was a member of the Youth Movement (Jügendbewegung), a pecu-

liarly German institution that strove for a romantic “renewal in body and spirit”

along the lines championed by Spengler. Civilization and rationalism were shackles

on the German soul, and young people ought to flee from cities and books and head

for the lakes and mountains to commune with the old pagan gods. Theoretical

physics was, to say the least, not looked upon with favor.

Pauli’s preferred recreations were ones that Youth Movement stalwarts would

brand as “degenerate”—late evenings in a smoky cafe or cabaret, with worldly con-

versations lubricated by generous libations of beer and wine.

As a member of the movement, Heisenberg would spend a weekend camping

with his companions beside a mountain lake, rising well before dawn on Monday to

board the milk train back to Munich in time to catch Sommerfeld’s lecture. Often as

not, Pauli would be home asleep, having spent the evening in some low dive and the

wee hours working on deep physics problems that went far beyond what the pro-

fessor was teaching.

Heisenberg set himself the task of “reforming” Pauli, once persuading him to

take an extended bicycle trip through the foothills of the Bavarian Alps, sleeping in

haylofts or wherever they could. Pauli’s reaction was to marvel that an apparently

intelligent person would willingly subject himself to such acute discomfort. When

Heisenberg offered to reciprocate by accompanying Pauli on one of his nightly

prowls, he was rebuffed with “That wouldn’t do at all—it’s not your kind of life.”

Nonetheless, Heisenberg and Pauli maintained a high level of respect for each

other and even managed to collaborate on some significant projects, until the rise of

Nazism separated them. Pauli saw the handwriting on the wall, and fled Germany

for the safety of a post in Zurich well before Hitler’s takeover. Heisenberg, always

the good German, deplored the Nazi excesses but nonetheless remained at home,

faithfully serving the regime. In their rare encounters after the end of World War II,

Pauli never felt comfortable with Heisenberg again.

Summary

The quantum theory originated in 1900 through Planck’s theory of incandescent

light emission, which contained the assumption that energy could not be trans-

190 Heisenberg and Pauli



formed from heat to light except in discrete units that depended on frequency of the

light. Einstein reinterpreted this as a general rule and constructed a theory of the

photoelectric effect, the least accepted of his early ideas, but later the basis for his

Nobel Prize. Bohr learned of the theory through a conference Rutherford had at-

tended and developed a theory that explained the light spectrum of hydrogen. Its

key ideas were that atoms have a limited repertoire of energy states, and radiate

light only when changing states. The specific model for these states as circular

orbits did not endure.
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CHAPTER 16

Particles and Waves

We are trapped by language to such a degree that every attempt to formu-

late insight is a play on words.

—NIELS BOHR

A research scientist is sometimes compared to a hunter stalking an elusive beast.

The physicists who built quantum theory in the early 1920s more nearly resembled

a rowdy band of schoolchildren chasing a rabbit across a rocky meadow. The order

of the day was “anything goes,” and the approach was scandalously ad hoc. Invent

a quantum rule, derive a formula, check against the data, and go on to the next prob-

lem. An understanding of what sort of physical reality might underlie a successful

computation would come in its own good time. The hope was that after enough

lucky guesses a pattern might emerge to guide physicists to a deeper level. In the

meantime, the new game was just plain fun.

THE BOHR ATOM IS NOT ENOUGH

The central problem in the early 1920s was to make Bohr’s model work for heavier

elements, which would have many electrons orbiting the nucleus. This was an ex-

traordinary challenge, for even Newtonian physics had been unable to deal with

more than two objects at a time, except in cases like the solar system in which one

center of force dominated all the others. In an atom, the forces that electrons exert

on each other are comparable to their attraction to the nucleus.

A new quantum rule developed by Arnold Sommerfeld gave some of the

circular orbits a few elliptical companions, each as long as the diameter of the

circle. Such an orbit has the same energy as the circular one. Where would all this

arbitrary rulemaking end? It seemed that every new problem brought into being a

new rule. It was great fun, but was it science? What lay behind all these strange,

arbitrary rules?

As is often the case when a group of scientists is deeply immersed in a prob-

lem, the key to the muddle came from outside, from a more isolated thinker with

the leisure to contemplate the problem in a detached manner. And it came not from

Germany or even Denmark but from France, where a less frenzied and more re-

flective style dominated theoretical physics. The protagonist, Prince Louis Victor
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de Broglie, was one of the most improbable characters in a drama full of improba-

ble people.

A PRINCE HAS A CRAZY IDEA

Few families in Europe outrank the de Broglies in the Almanach de Gotha, the

quasi-official register of nobility. The eminence of his lineage is attested to by the

fact that Louis bore the title of Prince as a mere cadet honor; following the death of

his older brother he assumed the higher title of Duc. The de Broglies have provided

France with diplomats, cabinet ministers, and generals for centuries. One of Louis

de Broglie’s ancestors even fought on the American side in the War of Indepen-

dence. Accordingly, de Broglie received the standard humanist education that is the

traditional preparation for a role in the French ruling elite, taking a licènce, the

equivalent of a master’s degree, in political science.

But the family also had a modest scientific tradition. Louis’s elder brother

Maurice was an experimental physicist with a strong enough reputation to be

elected to the presidency of the French physical society. He studied X rays in a pri-

vate laboratory funded out of his own pocket, one of the last professional scientists

to work in this fashion.

Through his brother’s influence the young prince took an interest in the work of

Einstein. He was particularly intrigued by the possibility of finding a connection be-

tween Einstein’s two most original ideas. He hoped that relativity itself might shed

some light on the problem of the particle characteristics of light implied by Ein-

stein’s treatment of the photoelectric effect. Work in this field naturally went slowly

for this rank amateur, who had in effect to start his education all over again. He

completed his physics licènce shortly before the outbreak of World War I.

Returning from five years of military service, Louis decided to see his interest

in physics through to the doctorate, with a thesis on the wave-particle problem. But

in the meantime, the success of the Bohr model had changed the whole picture in

the quantum theory. No longer was the quantization of light the central mystery. The

strange limits on the motion of electrons in atomic orbits were even more disturb-

ing. Convinced that the wave-particle duality was the key to the earlier quantum

theory, de Broglie wondered whether it might also explain Bohr’s restricted orbits.

If light could be a particle, why couldn’t an electron be a wave?

The idea had many inviting aspects. While it was difficult to imagine a way 

to force a particle to avoid all but a limited repertoire of motions, similar restric-

tions on waves were quite normal. After all, musical instruments work because the

standing-wave motions allowed on a taut string or in an enclosed column of air are

severely restricted. If the electron could in some sense be regarded as a wave, per-

haps the Bohr orbits would prove to be standing waves and the ground and excited

states would become the atom’s “fundamental” and “overtones.”

But treating an electron as a wave was not quite as simple as treating light as a

particle. Light always travels at the same velocity, so its frequency determines its

wavelength. An electron, capable of moving at any velocity whatsoever, would need
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separate rules for the wavelength and the frequency. E  h might be enough for

the photon, but a separate rule giving the wavelength was essential for the electron.

Reasoning by analogy rather than by rigorous mathematics, de Broglie decided

that if the frequency of a wave is related to the energy of a particle, the wavelength

might be related to the momentum. Accordingly, de Broglie set forth, in his cele-

brated 1924 doctoral thesis, the following formula:

p  

relating the momentum of an electron to the wavelength  of a wave associated in

some mysterious way with the electron.

Now de Broglie could test his surmise about Bohr’s orbits. If they were really

standing electron waves, the Bohr orbits must be the ones in which a whole number

of wavelengths fit, as shown in figure 16.1. The electron wave would travel around

the orbit, reinforcing itself constructively at each turn, just as the wave on a music

string is reinforced by its successive reflections. The waves must fit evenly into the

circumference of the orbits. Stated mathematically, the allowed standing waves are

those for which an integral number n of waves fit in the circumference of the circle:

 n

Since his wavelength rule gives   h/mv, we can substitute this value for  
and get

2 rmv  nh

which is Bohr’s orbit rule!

To summarize the reasoning, if an electron is somehow associated with a wave,

with its wavelength determined by the momentum, then the allowed standing-wave

patterns for an electron circling a nucleus are the very same circles as Bohr’s al-

lowed orbits.

De Broglie’s dissertation was a hot potato for the faculty of sciences of the

University of Paris. A thesis, while expected to be original, isn’t often that original.

A solid contribution to an established topic is safer, even for the most brilliant
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FIGURE 16.1 De Broglie’s picture of a Bohr orbit.



student. And here was a convert from the humanities, writing on a theory not yet

well known in France, promulgating an outrageous idea. De Broglie couldn’t ex-

plain how the electron, which showed every sign of being a particle, could at the

same time be a wave. In his own words, de Broglie characterized his theory as “a

formal scheme whose physical content is not yet determined.” And apart from the

striking coincidence of duplicating the Bohr orbits, no theoretical or experimental

justification was offered.

The problem was resolved by de Broglie’s sponsor, Paul Langevin, the only

member of the committee who was actively working in quantum physics. To sup-

port his own judgment he went for an outside opinion, from no less a personage

than the great Einstein. The response was encouraging: “It may look crazy, but it

really is sound!”

Now matters were working to de Broglie’s advantage. In Germany, home of the

quantum theory, Einstein himself was promoting the idea of the electron wave. The

story has the sort of ending one might find in a fairy tale: the student prince became

the first physicist to receive a Nobel Prize for his doctoral thesis.

HELP FROM AMERICA

The money for Michelson’s first interferometer was not Alexander Graham Bell’s

only gift to fundamental science in America. He also founded the Bell Telephone

Laboratory, an institution that has earned no less than four Nobel Prizes in physics.

Two of these were for the sort of practical accomplishments one might expect from a

leading industrial laboratory—the development of the transistor and the maser (a

microwave amplifier that is the ancestor of the laser). But the other two fall in the do-

main of pure science, even though both were by-products of more practical research.

One was the discovery of the cosmic 2.7 K background radiation, which came

out of a search in the 1960s for radio noise that might interfere with satellite com-

munications. The other, and the first of the four prizes, came for showing that the

French prince was not crazy after all.

Clinton Davisson had been hired by Bell Labs to conduct studies of collisions

of electrons with metal surfaces in a vacuum. At that time the vacuum tube was rap-

idly becoming the mainstay of the communications industry, but the science under-

lying the device was still full of unknowns, so improvements had to be made by trial

and error. In a vacuum tube, electric fields control the flow of electrons from one

metal electrode to another. Some electrons bounce off the target electrode, creating

a cloud of negative charge that disrupts and limits the flow of current.

Davisson found that electrons were reflected much more strongly at some angles

than at others. To make matters worse, the preferred angles depended on how fast the

electrons were moving. With no theoretical framework to account for this curious re-

sult, he simply reported it. But at Göttingen, James Franck and Walter Elsasser, who

were also working on electron scattering, had seen a copy of de Broglie’s thesis. To

their eyes, Davisson’s results looked like a clear case of wave interference.

Their interpretation of Davisson’s result is illustrated in figure 16.2. If the elec-

tron is a wave, only at certain angles would the portions of the wave scattered from
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different atoms interfere constructively. The most suggestive clue was the way in

which the angles for strong reflection depended on velocity. This must result from

the changing wavelength of the electron. The spacing of atoms in nickel, the metal

used by Davisson, was known. Franck and Elsasser could calculate the wavelengths

from Davisson’s angles, and also by using the electron velocities and de Broglie’s

formula. Within the somewhat limited accuracy of the measurements, both esti-

mates gave the same wavelength.

Once again, the value of publishing raw experimental data had been demon-

strated. Davisson was hardly likely to have seen a speculative doctoral thesis printed

in French and circulated informally. But the German physicists were on the quan-

tum “grapevine” and carried the day for de Broglie’s crazy idea.

Davisson’s superiors didn’t need to ask what Alexander Graham Bell himself

would have done in this situation. He was told to forget about the damned vacuum

tubes—this could be something big! For two years Davisson refined his work. A trip

to a scientific meeting in England brought him into the world of quantum physics.

G. P. Thomson, son of the illustrious J. J., was confirming Davisson’s results, and

both experiments were soon too conclusive to leave any room for doubt. Davisson

and Thomson joined de Broglie in the ranks of Nobel laureates, prompting one wag

to remark that if old J. J. had gotten the prize for proving the electron was a particle,

why shouldn’t his son get it for proving it was a wave?

But no measurement could shed any light on just how one object could be both

a particle and a wave. This became the central issue in the development of the quan-

tum theory. But while the experiments were nearing completion there were devel-

opments on the theoretical front that promised to make the quantum theory, for the

first time, a reputable successor to the Newtonian system.

If angle is correct,
difference between paths
A and B will be exactly
an integer number of
wavelengths; strong
reflection results.

Orderly arrangement of atoms in crystal

A
Source of e

lectrons

B

AB
Detector

FIGURE 16.2. Wave effects in the scattering of electrons off metals.
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A WAVE EQUATION

Einstein spread the word about de Broglie’s thesis to a number of his friends. One

of these was Pieter Debye, his successor at the Polytechnic in Zurich, who asked his

colleague at the University of Zurich, Erwin Schrödinger, to report on it for their

joint seminar. The winds of fate had carried de Broglie’s seed to fertile ground.

Debye remarked that de Broglie had visualized a one-dimensional wave, but an

atom is three-dimensional. The remark did not fall on deaf ears.

Schrödinger was a true son of the city of Vienna, raised in the brilliance and

decadence of its last years as the capital of a great empire. Endowed with consider-

able personal charm and a flair for self-advancement, he had rapidly ascended the

academic career ladder by the time-honored route of job-hopping. His reputation

was based not so much on his own ideas as on his mathematical virtuosity. He spe-

cialized in elegant refinements of the half-formulated works of others, exactly the

treatment that de Broglie’s idea called for.

At the time he set eyes on de Broglie’s thesis, Schrödinger was nearing 40 years

of age and was beginning to fear that his colleagues no longer took him seriously. It

was not merely his lack of originality that harmed his reputation. He had written on

a wide range of topics without ever becoming an expert in any one. His outside in-

terests were equally broad, encompassing poetry, the theater, and Indian Vedantic

philosophy, as well as physics and mathematics. Furthermore, he had a cosmopolitan

disregard for conventional morality and a penchant for amorous liaisons that proved

a drain on his time and energy. Like many European (and especially Viennese) intel-

lectuals of his era, he combined a deep pessimism about the world with a sensual in-

dulgence in whatever poor pleasures it might have to offer. All in all, he seemed

spread a bit too thin to have much impact in his chosen profession. Einstein summa-

rized Schrödinger’s character in three words: “a clever rogue.”

De Broglie’s electron wave gave him a new lease on life. Characteristically, he

had come close to the same idea four years earlier, only to flit away to new interests.

Now he summoned his highest powers of concentration. Holed up in a Swiss ski re-

sort for the Christmas break of 1925, he found the answer in a matter of weeks. There

followed six months of astonishing creativity. In four lucid and elegant papers he out-

lined the new paradigm of wave mechanics, a system nearly as all-encompassing and

logically self-contained as Einstein’s relativity or Newton’s mechanics.

What he constructed was a single definitive equation whose solutions would

describe the de Broglie wave in any situation in which the force was known. It is re-

produced below simply for the historical record; its mysterious symbols make sense

only to those with at least two years of training in the calculus. What is important is

that it takes the form of a partial differential equation. Since the late nineteenth cen-

tury, physicists had been trained to formulate all theories encompassing three di-

mensions, from field theories like Maxwell’s to Newton’s laws themselves, in this

mathematical form.

   2  V   i 

The symbol  is a mathematical representation of the de Broglie wave. In order

to satisfy the Schrödinger equation, it must meet the following requirements:
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1. The wave must obey p  h/ and E  h 
2. The force present is taken into account by means of the potential energy V it

produces.

3. Energy and momentum are conserved, in their nonrelativistic form.

A free particle is the simplest case, and one example is illustrated in figure 16.3.

An electron passes through a thin metal foil. When the electron reaches the surface

of the metal, it is attracted to the atoms on the surface and it speeds up. Its kinetic

energy and momentum increase, so its wavelength becomes shorter. Once inside the

metal, the electron is equally attracted in all directions, since it is surrounded by

atoms. At its exit, it once again is attracted by surface atoms, slowing it down to its

original speed.

The prescription for finding the standing waves allowed in a bound system is

more involved, but is quite straightforward. Nowadays it can be turned into an al-

gorithm that allows a computer to do the work. Start by making a guess at the par-

ticle’s energy. At some position inside the atom, subtract the potential energy to get

the kinetic energy. From the kinetic energy one can calculate the momentum and

obtain the wavelength. This is repeated at many locations, to obtain little pieces of

the wave. If these pieces fit together smoothly, the guess at the energy was right and

is one of the allowed energy levels of the system.

But the 1920s were well before the computer era, and Schrödinger had to rely

on pencil-and-paper mathematics. Fortunately, he found a way to break the problem

down into three one-dimensional problems that had already been solved. Drawing

upon these solutions, which bore such esoteric names as confluent hypergeometric

functions and spherical harmonics (the latter term has always struck the author as a

bit poetic), Schrödinger was able to give an exact picture of the standing electron

waves that replace Bohr’s orbits. Several of these corresponding to some of the

smaller Bohr orbits are shown in figure 16.4. Where the pattern is brightest, the

wave has its greatest amplitude.
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FIGURE 16.3. Wave picture of an electron passing through thin metal foil.



By themselves, these patterns were impressive but not terribly informative.

What really mattered was the formula for the energy levels that went with them.

Schrödinger had met the supreme test: the formula was exactly the same as Bohr’s!

Here at last was a complete theory, free from the ad hoc postulates of Bohr. Any

force, any situation whatsoever was covered by it, without any need for additional as-

sumptions or arbitrary rules. It also clarified the meaning of Planck’s constant: it is

the link between a particle’s energy and momentum and a wave’s frequency and mo-
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FIGURE 16.4. Examples of Schrödinger wave solutions for the electron in the hydrogen
atom. The upper left picture corresponds to Bohr’s original ground state: the others
correspond to higher orbits.
(Department of Physics, University of Wisconsin.)



mentum. Finally, it provided a way to visualize what was happening on the atomic

scale, one that was intuitively appealing to those who were not experts in this area.

The wave picture of the hydrogen atom did more than remove the arbitrariness

of the Bohr orbits. It also reconciled the quantum theory with Maxwell’s, and elim-

inated the vexing instantaneous quantum jump. Applying the Maxwell theory to the

wave patterns in figure 16.4 showed that they should not radiate light. The transi-

tion from one pattern to another becomes a continuous process much like a motion

picture “dissolve.” One pattern fades out, while the new state fades in. During this

time, interference between the two patterns produces oscillations that generate light

of exactly the right frequency. The whole process typically takes around 10 8 sec-

ond, a long time on the atomic scale.

To Einstein and Planck, disturbed by the irrational features of quantum physics,

Schrödinger appeared as a savior. At last the accursed quantum jump had been re-

placed by a smoothly shifting wave pattern. It was Schrödinger’s shining moment,

and led to his most glittering job-hop. Planck retired in 1927, and Schrödinger was

named his successor in Berlin. In 1933 he was awarded the Nobel Prize for wave

mechanics.

THE PAULI PRINCIPLE AND CHEMISTRY

One of the most persuasive triumphs of the quantum theory of atomic structure was

the way in which it provided a natural explanation of the regularities in chemical

properties of the elements expressed in the periodic table. This explanation was

originally worked out in the context of the Bohr model, but is most naturally ex-

pressed in the context of Schrödinger’s wave model. By the time this explanation

was proposed, the periodic table had been around for half a century, and represented

one of the outstanding mysteries of science. Thus it was the solution of this problem

that persuaded scientists outside the realm of atomic physics that the quantum the-

ory was a valuable addition to science.

The first step toward a quantum theory of chemistry was the realization that the

atomic number Z of an element, which was originally simply its sequence number

in the periodic table, represents the number of electrons in an atom, which is equal

to the number of positive charges in the nucleus.

The Pauli Exclusion Principle, an early contribution of Wolfgang Pauli to the

quantum theory, is the key to understanding atomic (also nuclear) structure. It states

that electrons are “territorial.” To be specific, no more than one electron can occupy

a quantum state. Each Schrödinger wave actually stands for two electron states, be-

cause the electron has an internal property named (somewhat misleadingly) spin,

which has two allowed values. Spin corresponds to an angular momentum of  .

Though electrons are often visualized as literally spinning on some axis, like many

things in the microworld this simple visualization can be misleading. But roughly

speaking, the two spin states correspond to clockwise and counterclockwise rotations.

Particles that obey the Pauli principle, which also applies to the particles that

make up the nucleus, have a very special role in nature: they are the enduring

1
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“building blocks” of matter. This class of particles is known as fermions. We shall

learn more about what makes them special in chapter 19.

In the wave model, as in the modified Bohr model mentioned at the beginning

of this chapter, each value of n corresponds not to just one state, but to n2 different

states. While for Bohr the additional states were arbitrarily added by allowing ellip-

tical orbits, for Schrödinger they arose naturally from the allowed standing-wave

patterns. All patterns with the same value of n are very nearly equal in energy. Elec-

trons with the highest n values are also, on the average, much farther from the nu-

cleus, so each set of electrons that share the same n is called a “shell.” If we take

into account spin, the nth shell is allowed 2n2 members, leading to the sequence (2,

8, 18, . . .). Though the additional forces present in many electron atoms disrupt the

energy levels, all electrons in a shell tend to have roughly the same energy. Beyond

n  2 the shells tend to further subdivide into “subshells.”

Atoms form chemical bonds through the interactions of the outer electrons, the

ones in partially filled shells or subshells. In some cases, an electron actually moves

from one atom to another, leaving two charged atoms (ions) that stick together by

electrical attraction. This is called an ionic bond. In others, electrons take on com-

plex patterns surrounding two or more nuclei, covalent bonds.

Only the electrons in the outermost shell or subshell participate in chemical

binding, since it takes much less energy to remove them from the atom. These elec-

trons are called valence electrons. Atoms with equal numbers of electrons in the out-

ermost shell are similar in how they bond—this is the source of the regularity

expressed in the periodic table. For example, hydrogen, lithium, and sodium each

have one electron in their outermost shells, which are the n  1, 2, and 3 shells, re-

spectively. All have similar chemical behavior, that is, one can replace the other in

most molecules. Subshells that contain eight electrons have a dominant role in

atomic structure, which is why the periodic table has eight columns.

Elements with only a few valence electrons tend to give them up easily, as they

are loosely bound. Similarly, elements with a nearly filled shell or subshell have

room for an extra electron or two. Thus oxygen, which has six electrons in the n  2

shell, can accept two electrons from two hydrogen atoms to form a molecule of wa-

ter, H2O.

Atoms with completely filled outer shells—the so-called noble gases helium,

neon, argon, etc.—are essentially chemically inert because it is not energetically

favorable for them to either donate or accept electrons.

Atoms with four valence electrons, for example, carbon, silicon, germanium,

are the most chemically versatile, for each can form as many as four chemical bonds

at the same time. With four bonds available, carbon can serve as the backbone for

complicated molecules containing many atoms, much as the “spools” in a tinkertoy

set make complicated structures possible. The large molecules formed with the aid

of carbon are the basis for life.

Protein molecules, for example, are a major constituent of living things, and

some are built of more than 10,000 atoms. The pattern for building these molecules

is recorded on nucleic acids, RNA or DNA, which can string together billions of

atoms. Without four-valent atoms, no such molecules could be built.
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LASERS

Today, the quantum theory is the basis for much of what we call “high technology.”

The most outstanding example is the computer chip, which rests on the quantum

model of electrical conduction. This model is beyond the scope of this book but an-

other important device, the laser, can be understood in terms of the simple quantum

concepts we have outlined.

Again, as so often in our narrative, the name of Albert Einstein crops up. In

1919 he wrote a paper that described the “stimulated emission of radiation,” the

“ser” in the word laser (“la” stands for light amplification).

If an excited atom is bathed in light of exactly the frequency it would emit on

returning to the ground state, it would emit that light perfectly synchronized with

the incoming signal. With many such atoms available, a powerful wave of a single

frequency would emerge. This kind of “high coherence” light can be brought to a

fine focus, or create interference effects over long distances.

For this to happen, a “population inversion,” in which more atoms are in an ex-

cited state than the ground state, must be created. It took until the 1960s to learn

how to do this.

Most lasers rely on a “quasistable” state, one that would naturally return to its

ground state very slowly. There are many ways to do this, using light, atomic colli-

sions, electric currents, and even chemical reactions to provide the energy.

Lasers are everywhere, in CD players, bar code scanners, metal-cutting beams,

and above all in the fiber optical networks that have revolutionized modern com-

munications. They range from the size of a grain of rice to machines that fill large

buildings. We are truly in an era of quantum technology.

WHERE IS THE ELECTRON?

Though what the Schrödinger equation had done was remarkable, there was one im-

portant thing that it did not do. It shed no light on the connection between the parti-

cle and the wave. In some ways, it even made matters worse.

For bound electrons, Schrödinger was content to view his standing waves as

representing the electron itself. Though each wave filled the volume of the atom,

that was still reasonably small. It could, with some stretch of the imagination, still

be considered a particle.

But there was a more serious problem with the Schrödinger solution for the

simplest situation in mechanics, a particle moving at constant velocity free from the

influence of any force. The particle is represented as a wave packet, shown in figure

16.5, a bundle of waves confined to a small region in space. But a wave is not a par-

ticle, and this packet refused to stay small. Like the wake of a boat, which spreads

out from being a single sharp bow wave to a whole train of waves, the wave packet

would spread out and spread fast. If initially confined to a space the size of an atom,

it would spread in a fraction of a second to the size of the Great Pyramid! While
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Schrödinger’s imagination might accept an electron the size of an atom, he could

hardly reconcile himself to one as big as a pyramid. The problem clearly had to be

resolved. And its resolution touched off the greatest controversy in physics since the

time of Galileo.

Summary

The key to moving beyond Bohr’s model of the atom came from someone outside

the mainstream of quantum physics, Prince Louis de Broglie. While restrictions on

allowed patterns of motion were unnatural for particles, they were normal for stand-

ing waves. If Einstein had shown light could be both a particle and a wave, why

couldn’t the same hold true for electrons? A formula for the wavelength confirmed

that Bohr orbits could be standing waves. Einstein promulgated de Broglie’s idea

among German-speaking physicists. One of these, Erwin Schrödinger, developed de

Broglie’s idea into a full-fledged three-dimensional wave equation that was fully as

general as Newton’s laws. His model for the hydrogen atom duplicated Bohr’s en-

ergy levels but eliminated both the orbits and the quantum jumps. With the aid of a

rule called the Pauli Exclusion Principle, the quantum theory of atomic structure

provided a satisfying explanation of the chemists’ periodic table of the elements, a

triumph that helped the quantum theory gain acceptance in the scientific community

at large. Still, the connection between the wave and the particle remained a mystery.
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Wave “packet” representing free electron

Same packet a very short time later

FIGURE 16.5.
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Does God Play Dice?
But you tell me of an invisible planetary system where electrons gravitate

around a nucleus. You explain this to me with an image. I realize then that

you have been reduced to poetry: I shall never know. Have I the time to be-

come indignant? You have changed theories. So that science that was to

teach me everything ends up in a hypothesis, that lucidity founders in

metaphor, that uncertainty is resolved in a work of art.

—ALBERT CAMUS, The Myth of Sisyphus

The Bohr model cast microphysics loose from the long Newtonian tradition. But

the interpretation of Schrödinger’s wave proved an even more serious break with

history. In one stroke, it banished determinism completely. No longer could the fu-

ture be predicted, even in principle. No degree of care in measurement could stay

the inexorable hand of chance. Physicists could still speak of motion, but could no

longer imagine that an object moves by orderly progress along a path. Reality on the

atomic scale was reduced to a cosmic game of dice.

The formulation of this viewpoint took little more than a year from the publi-

cation of Schrödinger’s theory. It took place in three main steps. First, Max Born

saw a probabilistic connection between the wave and the particle it represented.

Then Werner Heisenberg showed that any observation leads to an unpredictable

change in the future of whatever is being observed. Finally, Niels Bohr interpreted

this unprecedented situation as the revelation that science could no longer pretend

to describe an objective “reality” in the traditional sense of the word. This chapter

will outline the first two developments.

MAX BORN’S DICE GAME

Like Schrödinger, Max Born in 1926 was an established theorist who was facing

middle age without a really big, original achievement to his name. But unlike

Schrödinger, he was a man of modest ambition, content with his status in the pro-

fession. Everyone knew that the graduate students who came out of his institute at

Göttingen were soundly trained. And he was happy to be of service to experi-

menters. It was this willingness to serve that brought him face-to-face with the

wave-particle problem.

As Born explained it, “My Institute and that of James Franck were housed in

the same building. . . . Every experiment by Franck and his assistants on electron

collisions . . . appeared to me as a new proof of the corpuscular nature of the elec-

tron.” Franck was following in the tradition of Rutherford, but using electrons rather



than alphas as probes for the structure of matter. His experiments revealed without

question that the electron was a particle. One could even follow an electron in a

Wilson cloud chamber, where it left a trail of water droplets to mark its path. It cer-

tainly did not blow away into nothingness, like Schrödinger’s wave packet.

Born set out to develop an analysis of particle scattering based on wave me-

chanics. Rutherford’s formula for the scattering of alphas, the inverse fourth power

of the sine of half the angle of deflection, was by then well-tested. Born knew that

one sure way to check the soundness of his calculations would be to reproduce that

result. He visualized an alpha particle as a series of waves approaching a nucleus,

as illustrated in figure 17.1. With the aid of the Schrödinger equation, he asked what

the encounter with the nucleus would do to these waves. As he expected, most of the

wave amplitude emerged unchanged. But a small portion was reflected, in a pattern

radiating out from the nucleus in all directions.

But the wave was not equally strong in all directions. In fact, its amplitude was

proportional to the inverse square of the sine of the half-angle! Rutherford’s

formula was almost there before his eyes, but all he had was a wave. Where was the

alpha particle? He realized that to get from his wave picture to Rutherford’s formula

he needed a quantitative connection between the wave and the particle. And the

only connection that would do the trick was through a statement about probability:
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FIGURE 17.1. Wave representation of Rutherford scattering.



The probability of finding the particle in some particular place* is proportional to

the square of the amplitude of Schrödinger’s wave at that location.

Since the square of a squared quantity is its fourth power, this assumption con-

nected Born’s wave amplitude to Rutherford’s probability that an alpha particle will

be deflected at some particular angle. Rutherford’s formula gave only a probability

because the experimenter had no way of knowing how close a particular alpha

would come to a particular nucleus. The orbits themselves were perfectly determin-

istic. Born, however, had enshrined probability at the heart of physical reality: if

Schrödinger’s wave described what was happening, then only probabilistic predic-

tions could ever be made!

So the wave does not tell the physicist where a particle is at any given moment,

but merely where it is likely to be. For example, one could measure the position of an

electron in the ground state of an atom as precisely as the instruments will allow. Re-

peating this measurement many hundreds of times and plotting the results in the form

of dots on a picture, as in figure 17.2, would give a pattern of dots resembling the

wave patterns shown in the preceding chapter. No individual measurement can be

predicted with any greater precision than to say it will fall somewhere in the pattern.

Determinism itself had been abandoned. No longer could a measurement be

used to predict the exact future. The wave itself is perfectly well-behaved and pre-

dictable in its development, but it has only a random connection with observable
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*To be exact, it is the probability per unit volume, because the chances of finding the particle depend
on how big the region is where you search for it.

FIGURE 17.2. Results of repeated measurements of the position of an electron in the
first Bohr orbit.
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Schrödinger.
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reality. We can still predict the average of a large number of repeated measurements,

but the result of any individual measurement must forever remain a surprise.

Probabilistic laws were no novelty in physics—they were the stock in trade of

statistical mechanics. There one always spoke of average speeds of atoms, or aver-

age distances between collisions, without trying to trace the motions of the individ-

ual atoms in detail. This merely reflected practical ignorance, the impossibility of

coping precisely with the motion of 1023 incredibly tiny atoms as individual objects.

No one doubted that the details of the motion were subject to Newton’s laws, and if

one were given the staggering amount of information required, one could exactly

describe the future motion of every atom. What Born seemed to be saying was that

there was no way whatsoever to predict the precise future position of even one iso-

lated atom.

UNCERTAINTY

Schrödinger’s theory was welcomed in Copenhagen, especially after Born’s proba-

bility interpretation made it clear that it was not the beginning of a retreat back to

the old physics. But the same intuitive clarity that made it popular in the broader

community made it somewhat suspect to Bohr. In the world of the atom, Bohr was

sure, visualization could only lead one astray. Better to deal in abstractions, and not

be tricked by images and words.

Working closely with the Copenhagen physicists, Werner Heisenberg, a post-

doctoral fellow at Göttingen, had developed his own approach to the quantum the-

ory. He never mentioned either particles or waves, but spoke only of quantum

states. Even the name of this theory proclaimed its austere neutrality: it was called

matrix mechanics, for the abstract algebraic forms (matrices) in which it was

expressed.

Without intuition as a guide, Heisenberg was unable to get much mileage from

his theory. Only after Schrödinger showed the way did Pauli succeed in solving the

hydrogen problem by Heisenberg’s methods, and it was soon discovered that the

theory’s abstract “states” were in fact solutions to the Schrödinger equation.

Nonetheless, Heisenberg’s formulation is favored by most physicists to this day, be-

cause of its mathematical elegance.

After Born had shown that it was unlikely that any version of the quantum the-

ory would ever give deterministic answers, Heisenberg explored his abstract alge-

bra for a clue to the origins of this lack of definiteness. He soon found a rule that set

quantitative limits to our ability to know what is going on in the microworld. He de-

cided that this indeterminacy was indeed the result of ignorance, but ignorance of

an inherent and unavoidable kind. His interpretation was that the indeterminacy

arose from the disturbance of an object in the act of observing it. Today we have

come to realize that Heisenberg’s rules are far more general than that, and apply to

situations in which no measurement, in the usual sense, is involved.

The specific rules Heisenberg developed to quantify the degree of disturbance

are called uncertainty relations. They state that there are certain pairs of physical

quantities that cannot be determined simultaneously to any desired accuracy. The
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measurements themselves may be as accurate as the instrument maker’s skill al-

lows, but repeated measurements will not exactly agree, and a certain error must be

assumed when using such a measurement to predict the future.

One such pair of variables is position and momentum, and another is energy and

time. The uncertainty relations state that the product of the uncertainties of the two

variables may not go below a certain minimum value, which turns out to be  .

That means that if one of the variables is well-determined, the other must be assigned

a larger error to make the product of the two uncertainties come out large enough.*

An error in momentum must mean an error in velocity, since mass is usually

well determined. And it is precisely the simultaneous knowledge of position and ve-

locity that is essential to knowing where an object will be in the future. If we know

where an object is but have only a rough estimate of its velocity, it is hard to say

where it will be some time later. But if we know how fast it is going but are uncer-

tain where it is now, we are just as badly off.

Heisenberg derived his law on quite general and abstract grounds. Its true sig-

nificance becomes apparent only when one shows how it enters into any specific sit-

uation. This is another gedanken experiment game, like those we played in the

development of relativity. The law works differently in every imaginable process,

but its consequences are inescapable.

In a measurement of the position of an electron, at least one photon must inter-

act with the electron and then be detected. The measurement cannot be much more

accurate than the wavelength of the photons employed. But a short wavelength

means a high momentum, causing the electron to recoil from the photon, changing

its momentum.

The significance of the energy-time uncertainty relation is somewhat different.

It implies that in order to have a well-defined energy, a physical state must last for

a long time. The energy of a short-lived excited atomic state is slightly “smeared

out,” as revealed by a good spectrograph. The lines are not perfectly sharp, but each

has a natural width that depends on how long the state it came from survived. The

ground state energy is well defined because this state can last as long as the atom re-

mains undisturbed.

The momentum of the electron in the hydrogen ground state, however, is not

well defined. We have no idea of what direction it is moving in at any given time, or

of how its total energy divides up between kinetic and potential energy. The spread

in space of the standing wave represents our uncertainty as to its position. The prod-

uct of uncertainty in momentum and position exactly match the lower limit set by

Heisenberg.

In the final section of this chapter, we will see that the indefiniteness demanded

by the Heisenberg relations is terribly significant for the way the microworld func-

tions. It permits things to happen that would be quite impossible in Newtonian

physics.

1

2

210 Uncertainty

*For readers familiar with statistics, Heisenberg’s rules relate the standard deviations, e.g.,  p and

 x for momentum and position:  p x   .
1
2
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With the formulation of the uncertainty relations, Heisenberg could at long last

make his life all of one piece, and hold up his head before his Youth Movement

companions. In a popular article for the Jügendbewegung newspaper, Heisenberg

proclaimed the demise of determinism, struck down by the work of dedicated young

German physicists!

THE “OLD MEN” WON’T BUY IT

The work of Born and Heisenberg brought shock and dismay to Einstein, Planck, de

Broglie, and Schrödinger. They had seen order and continuity restored to the mi-

croworld, only to see it snatched away a few short months later. Einstein in particu-

lar simply refused at first to accept the validity of the uncertainty principle, a

position summarized in a celebrated remark to Bohr: “God does not play dice!”

Bohr replied, “Einstein, stop telling God what He can and cannot do!”

Einstein’s first reaction was to search for counterexamples, gedanken measur-

ing procedures that would be exempt from the principle. But these proved as futile

as the similar attempts made earlier against his own relativity theory. The others

gradually and reluctantly came to accept the new view.

A celebrated visit by Schrödinger to Bohr’s institute in the fall of 1926 was the

turning point. After days of debate lasting well into the night, Schrödinger finally

conceded defeat with the outburst: “If one has to stick to this damned quantum

jumping, then I regret ever having gotten involved!”

THE PROBLEM OF PREDICTION

The degree to which an uncertainty relation restricts our ability to predict the future

position of an object depends on its mass. The relation limits our knowledge of mo-

mentum, while it is velocity that is used to predict the future position. The more

mass an object has, the less important the uncertainty in its momentum becomes,

because it corresponds to a smaller uncertainty in velocity.*

Objects big enough to be visible to the naked eye have large masses by atomic

standards. On this scale, errors in position as large as a light wavelength are inconse-

quential, so a fairly large  x is tolerable. Thus the uncertainty in momentum is small

to begin with, and when we divide it by mass to get the uncertainty in velocity we

find it is completely negligible. We can use Newtonian physics in the world of every-

day experience with complete confidence. On the atomic scale, masses are smaller

and the required precision is greater, so prediction becomes nearly impossible.

This is illustrated quantitatively in table 17.1, which shows how far in the fu-

ture we can make useful predictions, working at various scales of size. It was

*Rewriting the uncertainty relation as a relation between errors in position and velocity, we get
 x v  /2m. A large mass in the denominator makes the uncertainty small. This formula is the ba-
sis for table 17.1.



obtained in the following fashion. In the first column we indicate the accuracy of

length measurement appropriate to a particular scale of size. In the second, we show

the mass of a typical object found on that scale. The third column gives the uncer-

tainty in velocity of the object, calculated from the uncertainty relation for position

and momentum. The fourth column tells us how long it will be before the uncer-

tainty in velocity will lead to a position error larger than that specified in the first

column. After this time, the uncertainty in velocity dominates, and our predictions

get worse and worse.

The first example, the electron, illustrates the “expansion of the wave packet”

described at the end of chapter 16. With a velocity uncertainty of 10 million meters

per second, the electron could be anywhere in a volume the size of the Great Pyra-

mid in a terribly short time. On the atomic scale, predictions are good for roughly the

time between atomic collisions in a gas. Biochemical processes are predictable on a

time scale of milliseconds, in which some fairly significant things can take place.

Anything visible in a microscope, however, is pretty much Newtonian. Brown’s

pollen grains danced about not because of quantum mechanics, but because of the

randomness of molecular impacts. The motion of a pea is supposedly predictable for

the entire age of our universe, but it would have to be a terribly isolated pea, lost in

intergalactic space, for this to really hold true. Even on these levels of reality, most

of our predictions eventually go wrong for reasons having little to do with quantum

effects, as the computer studies of chaos mentioned at the end of chapter 6 force-

fully remind us.

ATOMS LEAVE NO TRACKS

One of the more disturbing consequences of the quantum theory is that it does not

allow us to think of an electron in an atom as having any kind of path at all, much
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TABLE 17.1

Scale, in Object and Uncertainty in Prediction Time
Meters Mass, kg Velocity, m/s Limit, Seconds

Subatomic Electron

10 1 10 30 107 10 18

Atomic Atom

10 10 10 25 10 10 11

Biochemical Big molecule

10 8 10 21 10 5 10 3

Microscopic Pollen

10 6 10 15 10 13 107

Macroscopic Pea

10 5 10 4 10 25 1020



less a tidy Keplerian orbit. To do so would require us to observe the electron in one

position, and then repeat the observation at short intervals, mapping out a path.

But each observation involves the exchange of at least one quantum with the

electron. An electron in an atom is not free to interact with just any quantum, for it

is not free to assume any energy. The very least reaction it can have is to be kicked

into some higher energy state. Thus an electron can be observed only once in any

given state. We must accept that if the electron did follow an orderly path in the

atom, we would never be able to map it out.

Even worse, despite its lack of a well-defined path, the electron stubbornly re-

tains all the other attributes of motion—momentum, velocity, and so on. It seems

absurd to speak of motion without a path, but the quantum theory leaves us no other

choice.

QUANTUM TUNNELING

Heisenberg interpreted his uncertainty relations in the context of the theory of meas-

urement. Our final example in this chapter will concern an effect that shows the

consequences of uncertainty are far broader. They can turn up in situations that do

not directly involve measurements at all.

The effect is called tunneling, and it is impossible to overstate its practical im-

portance. It is an essential mechanism for the nuclear reactions that power the Sun

and other stars, as well as for nuclear fission. Much of modern microchip technol-

ogy is based on tunneling. In chapter 19, we shall see that it permits the key process

by which all of the fundamental fields of force operate.

Though many physicists contributed to this idea, its clearest and most useful

formulation came from the Bohr Institute’s merriest prankster, the Russian émigré

George Gamow, whom we have already mentioned in conjunction with the big bang

cosmology, one of his later achievements. He arrived in Copenhagen in 1928 from

Leningrad riding a motorcycle, an appropriate conveyance for a restless spirit who

throughout his life steadfastly refused to settle down. He was an entertaining public

lecturer, and authored a number of very successful (and sometimes hilarious) popu-

lar books.

But along with the highjinks came a prodigious flow of original ideas. Gamow

was a pioneer in applying the quantum theory to the mysteries inside the nucleus.

He is also the source of our modern understanding of supernovas, and even con-

tributed one key insight to early speculation about the genetic code. Gamow’s

work on tunneling was done in a brief stopover at Cambridge University in

the 1930s. Following a brief sojourn in his native land, he moved in 1934 to the

United States.

Simply stated, the idea behind tunneling is that the uncertainty relations allow

you to get away with anything, as long as you do it fast enough! In a process that

happens rapidly, the energy is simply not well-defined. A particle may quickly en-

ter and leave a state that it doesn’t have enough energy to remain in. Put another

way, a process that would be impossible in Newtonian physics is merely improba-

ble in quantum physics.
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Imagine a car coasting up a hill with the engine turned off. If it has too little

speed to make it over the top, it will come to a stop and start to roll back. If it could

somehow be miraculously transported to the same level on the other side of the hill,

it could coast downhill and continue on its journey. In the microworld, this sort of

thing can really happen, as long as it happens quickly enough.

For another kind of analogy, a quantum system can be something like a dishon-

est bank official who borrows money on the sly, but always manages to pay it back

before the bank examiners can tell it is missing.

A classic example of tunneling is the nuclear fusion reactions that power the

Sun. If two hydrogen nuclei can get close enough, a reaction can take place that

fuses them together, and energy is released. But the strong mutual repulsion of nu-

clei keeps them apart: even at the temperatures found in the Sun’s core, they do not

have enough energy to overcome this barrier. But they can come close enough to

give a small but significant probability that they will tunnel through and fuse. Since

the nuclei collide frequently, before long a reaction does take place.

Tunneling is possible in any situation in which a system with a given amount of

energy must pass through a state of higher energy in order to reach one with the

same or lower energy, illustrated schematically in figure 17.3. The intermediate

state is like the hilltop in the example of the car. An object passing quickly through

this forbidden state is said to be in a virtual state. The probability of tunneling is

very sensitive to the difference in energy of the allowed and forbidden states, and to

the time it takes to pass through. Gamow developed the formula that gives this

probability.

Tunneling demonstrates that the uncertainty relations don’t merely limit how

well things can be measured—it shows that they limit how well they can be defined,

whether measured or not. There is a kind of inescapable “fuzziness” to physical

quantities in the quantum world. In chapter 19, we will see that this fuzziness is in
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fact a welcome feature of the theory. Without it, we could not have fields, the very

fabric of both matter and the universe.

Summary

Through an analysis of particle collisions using Schrödinger’s waves, Max Born

concluded that the wave represents not the particle itself, but the probability of find-

ing the particle in any particular place. Though the wave form can be predicted ex-

actly, only statistical predictions can be made for the particle. Werner Heisenberg

quantified this through his uncertainty relations, which set limits on the accuracy to

which certain pairs of variables can be simultaneously determined. Heisenberg

viewed this as a consequence of the disturbance of a system by the act of observing

it, but the relations have more general significance. They limit our ability to predict

the future, and give rise to a process called tunneling through which things that

would be impossible in classical physics become simply improbable.
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Schrödinger’s Cat

The law of chaos is the law of ideas,

Of improvisations and seasons of belief.

—WALLACE STEVENS,

Extracts from Addresses to the

Academy of Fine Ideas

The quantum theory had become a complete paradigm by 1927. Over the years

since, the theory has been refined, applied, and extended, but none of this elaboration

has in any way shaken the fundamental principles on which quantum physics rests.

The probability interpretation and the uncertainty relations stand unchallenged.

But the debate over what it all means continues unabated to this day. This con-

troversy has generated hundreds of books and thousands of articles. Physicists,

philosophers, mystics, and even poets have had their say. In this chapter we will ex-

plore some of the more compelling or amusing viewpoints on this issue, through a

series of examples.

The source of the controversy is that the quantum theory assigns only probabil-

ities to possible outcomes of an experiment. Nowhere does the theory indicate that

the experiment will, in fact, have one and only one actual outcome. Niels Bohr

thought he had the answer to this problem: by the act of measurement we push

nature into giving us one answer or another. Thus if we include the measuring pro-

cedure and apparatus in the description of a physical situation, all will be well.

Unfortunately, however, matters do not end there. When measurements are in-

cluded, the theory still gives only probabilities, now assigned to all the possible

readings of the measuring instruments. This led Bohr and others under his influence

to a line of reasoning that came to be called the Copenhagen Interpretation of the

quantum theory. To illustrate this interpretation, let us examine how it treats the “ex-

panding wave” that describes a free particle.

The uncertainty relations show us the significance of the expanding wave

packet. Its initial size represents the uncertainty in our knowledge of the position of

the particle. The spread of the wave packet with time arises from the momentum

uncertainty. Since there is some uncertainty as to how fast the particle is going, as

time passes, the region in which it might be grows bigger and bigger.

When we look at the expansion in purely wave terms, the uncertainty in mo-

mentum corresponds to a spread in wavelengths. The wave packet is therefore a mix-

ture of waves of varying wavelength. Since, in the case of the Schrödinger wave,
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waves of different length travel at different speeds, the packet will naturally expand.

But if we observe the electron, the wave “collapses” to its measured position.

This collapse does not come out of the quantum theory itself: it must be im-

posed on the theory to represent the effects of the measurement, which converts the

possibilities that the wave represents to the actualities of instrument readings. But

since the theory only assigns probabilities to these readings, when does the collapse

take place? The Copenhagen answer is that it occurs when the experimenter

becomes aware of the result of the measurement! It is important to note that this is

today a minority view among scientists who think about this problem.

After his celebrated confrontation with Bohr, Schrödinger had become more

favorably disposed toward Born’s probability interpretation of the wave, at least as

a working hypothesis. But this business of dragging the experimenters mind into

physics was, for him, the last straw. After a few years of brooding, he struck back in

1935 with a parable that has come to symbolize the whole debate.

THE PARABLE OF SCHRÖDINGER’S CAT

Schrödinger’s assault on the Copenhagen Interpretation took the form of what he

called a “quite burlesque case,” which may be paraphrased as follows:

A cat is placed in a sealed box. The box is equipped with a diabolical apparatus,

triggered by a Geiger counter that contains a few radioactive atoms. The device

will release a lethal gas that kills the cat. There is a 50 percent probability that the

mechanism will trigger in any given hour. At the end of one hour, a physicist opens

the box and finds out whether the cat is alive or dead.

In this situation, the Copenhagen Interpretation regards the cat as simply a furry

component of the measuring apparatus. It is a link in the chain leading from the mi-

croscopic quantum indeterminacy of a radioactive atom to the concrete macroscopic

image of a live or dead cat in the experimenters mind. Since the “wave function” that

describes the system must include the state of the entire measuring apparatus, and in-

stant before the box is opened it contains an equal admixture of “live cat” and “dead

cat.” The cat’s fate is settled only when awareness comes to the observer’s mind, at

which time the pattern collapses into one state or the other.

In Schrödinger’s view, the experimenters mind is just another part of physical

reality, with no particular privileged status. Why doesn’t the cat’s mind rule the col-

lapse of the wave function? For that matter, what happens if we replace the cat with

a human being or, at the other extreme, a mechanism that stamps the time on a slip

of paper? Why doesn’t the wave collapse then? The Copenhagen Interpretation

would burden science with the “mind-body distinction,” the notion that human con-

sciousness has a special character above and beyond the physical brain that harbors

it. Schrödinger had no objection to this view, but insisted that it had no legitimate

place in physics.

For Bohr himself, the parable posed no problems. Since science is about what

we know, he was perfectly happy to let the cat and the experimenter know different 
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things. That “half dead, half alive” wave pattern, and its “collapse” into one out-

come or the other, are simply mathematical artifacts, parts of the calculus we use to

estimate the probability that the cat will live or die. They should not be taken as rep-

resenting the reality of the situation, which he regarded as essentially unfathomable

by minds attuned to the realities of our macroscopic world.

But some of Bohr’s more ardent followers, notably John von Neumann, Eugene

Wigner, and John Wheeler, actually welcomed the situation. They were perfectly

happy to give the human mind a special role in the universe. Wheeler calls this a

participatory role: the human consciousness actually creates reality by observing it!

The big bang created our universe in some sense because ten billion years later

there would be human beings with minds that could decipher the clues that point

back to the cosmic explosion. No mind, no universe.

This view goes way beyond Bohr’s, and should probably be distinguished from

the Copenhagen Interpretation. Since its three most celebrated supporters spent a

major part of their careers in Princeton, New Jersey, it might be more appropriate to

call it the Princeton Interpretation.

It would have seemed quite natural for Schrödinger to embrace this view with

enthusiasm. In his inaugural lecture at Zurich in 1922, he had pointed out that the

assumption that atoms follow deterministic laws was unnecessary and possibly

false. And he was an adherent of Vedantic philosophy, with its “world soul,” a cos-

mic intelligence shared by all things living and non-living. To many adherents of the

Princeton Interpretation, the quantum theory moves physics toward this worldview.

Most physicists have little use for speculative philosophy, dismissing it as a

“soft” discipline in which arguments are never definitively settled. Some, like Bohr,

value philosophy and see physics as a route to new philosophical insights.

Schrödinger felt that physics was a lower form of knowledge that should stick to the

mundane world and not pretend to shed light on deeper questions. Thus he rejected

an interpretation of the quantum theory that seemed in harmony with his own philo-

sophical views.

There are even more bizarre interpretations of the quantum theory. One, also

associated with Wheeler and some of his students, is the many-worlds hypothesis.

In this vision, Schrödinger’s cat both lives and dies. Somehow, our minds are

aware only of one part of this vast reality, which includes all the things that might

have happened in the entire history of our universe! Thus true reality consists of a

myriad of parallel universes, in half of which the cat lives and in the other half it

dies. Whether all our minds perceive the same universe remains an open question.

The most unorthodox school is the “physics and consciousness” movement, of

which the principal spokesman is Jack Sarfatti. They embrace the many-worlds hy-

pothesis and see in it the basis for such “occult” phenomena as extrasensory per-

ception (ESP). If the experimenter cultivates his or her psychic powers, perhaps he

or she can consciously will the fate of the cat! In honor of the domicile of most

adherents to this viewpoint, we might call it the California (where else?)

Interpretation.

At the other extreme, Einstein remained convinced to his dying day that the

cat’s fate was sealed when it went into the box. If the quantum theory can’t predict

it, then it is an incomplete theory that will someday be supplanted. Motivated by
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deep mutual respect, Einstein and Bohr fought this battle for 25 years, each failing

to budge the other from his point of view.

Einstein pointed out that when two objects interact and then move apart, con-

servation laws enable us to tell such things as the momentum of one object from

measurements on the other, even though they are then too far apart to influence one

another. This convinced Einstein that the outcome of the measurement must some-

how have been predetermined while the objects were still in contact, rather than at

the time of measurement as the Copenhagen school insisted. The paper outlining

this view was written with two young colleagues of Einstein, Boris Podolsky and

Nathan Rosen, so it goes by the name EPR Paradox. But this position turns out to

be one of those that has been effectively eliminated from contention in recent years.

In 1964 John Bell, an Irish theorist working at an international laboratory in

Switzerland, proved a theorem that applies to experiments similar to those cited by

Einstein. In Bell’s case, it is the spins of particles that have moved far apart that are

measured. He showed that if we simply assume that no measurement can influence

another unless they are connected by either a common cause or a causal link that is

transmitted no faster than the speed of light, we calculate correlations between the

spin measurements that differ from those predicted by the quantum theory. Such

experiments were performed in the 1980s, and the quantum predictions won out.

While the quantum theory may someday be supplanted, it seems highly unlikely

that any successor paradigm will restore simple Newtonian determinism.

Bell’s theorem has deeper philosophical implications. It appears to rule out the

view that reality can be separated into the sum of individual realities found in differ-

ent locations in space and time. Particles too far apart to have causal ties nonetheless

prove to be connected, a situation called “entanglement.” It suggests a “wholeness”

to reality that can extend over vast regions of the universe. This feature can be sum-

marized as follows: “reality is nonlocal.”

This feature of the quantum theory was emphasized by Richard Feynman, an

American whose personality and ideas dominated theoretical physics for much of

the latter half of the twentieth century. He will be the principal hero of chapter 19.

Though revered within his profession, Feynman was little known to the general

public until shortly before his death in 1989, when he served on the panel investi-

gating the fatal accident of the space shuttle Challenger. There, with the aid of a

glass of ice water, he demonstrated on live television the rigidity of the rubber seal

that had led to such tragic consequences. The stunt was vintage Feynman, both in its

simplicity and its flair.

The hallmark of Feynman’s style, like that of Bohr, was irreverence. But, unlike

Bohr, he extended this principle to the philosophical ruminations of distinguished

scientists. In his view, researchers are merely “kibitzers” observing the “game” of

nature and trying to figure out the “rules” by which it is played. It is hard enough to

figure out the rules without the help of a rule book—it is sheer arrogance to insist

that the rules should also make sense. He regarded thinking about the deeper

significance of the quantum theory as a blind alley, at the end of which lies not en-

lightenment but madness.

It was more constructive, in Feynman’s view, to try to define the essence of

how the quantum rules differ from those that applied in Newton’s universe. We
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could then admire these rules for whatever aesthetic qualities they might possess,

but in the long run we can only humbly accept that they are what they are, forever

inexplicable. And he felt that the essential quality was best revealed in the very ex-

periment that established the wave nature of light.

YOUNG’S EXPERIMENT WITH ELECTRONS

Young’s experiment, the interference of light passing through two closely spaced

slits, was introduced in chapter 7 as a wave phenomenon. To emphasize the particle

aspects of the effect, let us imagine it to be performed with electrons, because the

electric charge they carry makes it possible to observe them in flight. This is not

possible with photons, which can only be created or absorbed. The Schrödinger

wave represents each electron individually. At a reasonable beam intensity, only one

wave packet moves through the apparatus at a time.

If we view the electron as a wave, our analysis of the experiment is precisely the

same as Young’s. On a viewing screen behind the slits, there are places where waves

arrive crest to crest. There the wave is strong, and many electrons are observed.

Where the waves meet trough to crest and cancel, few electrons appear. The result-

ing pattern of light and dark bands is shown in figure 18.1. The only change intro-

duced by quantum mechanics is that instead of a continuous glow, there is a series of

flashes.

But from the particle point of view, the result is most perplexing. Surely each

electron that reaches the screen must have passed through one or another of the slits.

It is hard to imagine that the presence or absence of the other slit, the one it didn’t

go through, can have any influence on where it hits the screen. Nonetheless, if we

220 Young’s Experiment with Electrons

Source

Phosphorescent
screen

Pattern of flashes on screen

FIGURE 18.1. Young’s experiment with electrons.



close one of the slits the interference pattern will disappear, to be replaced by the

blurred image produced by a wave that diffracts through the slit. If each electron

passes through just one slit, why don’t we simply get two overlapping single-slit

images, as shown in Figure 18.2?

Does each electron, as it passes through one slit, somehow “know” whether the

other slit is open or closed? The answer, of course, is that the electron wave de-

scribing a single particle does pass through both slits. But this merely deepens the

mystery. What then does this schizophrenic wave have to do with a particle? The

electron left its source in one piece, and wound up at a particular location on a

screen, where it made one tiny flash. And with a simple modification of the appara-

tus, we can even tell which slit each electron went through.

This modification is shown in figure 18.3. It is the same as before, except we

now have a loop of wire around each slit to sense the magnetic field that the elec-

tron generates as it passes. Observing the electrons one by one, we find that only

one loop at a time will give a signal. The particle indeed passes through one hole or

the other. But that is not all we discover. On the screen, the interference bands have

vanished! The pattern is that of figure 18.2.

We have added another measurement to the experiment, and the effects of this

measurement must be taken into account. To generate a signal in the loop of wire,

the electron had to emit or absorb at least one photon. This changed its momentum
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and wavelength by an unknown amount, destroying the synchronization with the

wave from the other slit.

In Feynman’s view, this example pinpoints the distinction between quantum

physics and Newtonian physics. In Newton’s world, the electron would move from

its source to its destination along a well-defined path, and only the forces it en-

counters along that path affect its destiny. In the quantum theory, not only is the

electron’s path indeterminate, but the probability of reaching any particular destina-

tion depends on what happens on all of its possible paths. If we reduce the number

of possibilities, either by obstruction or by observation, we simplify the situation

and the interference effect disappears.

No longer can we regard the present as the final consequence of a single, un-

breakable chain of events. Instead, we must consider all the “undismissed possible

pasts” that might have contributed to the present. Causation ceases to be particular

and becomes somewhat holistic. This is another example of the “nonlocality” im-

plied by Bell’s theorem. Since it is the nature of waves that each part of the wave

can influence the future of all other parts of a wave, it is in this sense that a particle

is “wavelike.”

One idea that dominates current thinking on the meaning of the quantum theory

is decoherence, the process by which multiple possibilities become one actuality.

Wojciech Zurek points out that the Schrödinger equation describes something arti-

ficial, a system isolated from its environment. Any interaction with the environment

can remove the ambiguity—it need not involve measurement.

Furthermore, like Schrödinger’s treatment of a quantum transition, decoherence

is not instantaneous. It takes time, and in suitable situations the timing can be meas-

ured. The “collapse” of the wave function is replaced by a gradual “condensation.”

The more complex the system, the more quickly it decoheres. The radioactive

nucleus that triggers the demise of the cat is simple and well isolated from the envi-

ronment, so it can take hours to decohere. The cat, however, would decohere in-

stantly. So the half-alive, half-dead cat is not a meaningful description of reality.

Chance and ambiguity are banished to the microworld, where they can survive.

This view is widely accepted as at least part of the answer to the meaning of the

quantum theory. We can be comfortable with our dice-throwing God, because we

can watch the dice roll. But this does not completely “tame” the quantum theory.

Nonlocality remains as an insult to our intuition. As Feynman said, the theory is

fundamentally, irreducibly weird.

Summary

Faced with the philosophical problem of connecting a probability wave with the re-

ality that consists of actual individual events, Bohr proposed that the act of obser-

vation turns the many possibilities into a single actuality, a position called the

Copenhagen Interpretation. Schrödinger attacked this view through his “cat para-

ble,” which can serve as a vehicle for presenting a variety of interpretations of the

quantum theory. The debate rages to this day, though a simple deterministic inter-

pretation is now definitely ruled out by measurements suggested by John Bell.
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The Dreams Stuff is Made Of

Like a gleam in the darkness, we have appeared for an instant from the

black nothingness of the ever-unconscious matter, in order to make good

the demands of Reason and create a life worthy of ourselves and of the

Goal we only dimly perceive.

—ANDREI SAKHAROV

Up to now, this narrative has been concerned with ideas that are many decades old.

Like fine wine, age has mellowed them and taken away some of their initial rough-

ness. In this chapter we will explore more recent developments. Like a construction

site, frontier science is never tidy. There is still a great deal of machinery and scaf-

folding lying about, and it sorely needs landscaping. In science, this means a

plethora of confusing facts and baffling terminology. So it is important to keep in

mind a central theme: seemingly solid matter is nothing more than a manifestation

of fields that do not “occupy” space at all.

Modern physics has accepted Rudjer Boscovich’s challenge, which was briefly

touched upon in chapter 6. The search for the ultimate particles of matter can end

only with the discovery of structureless, pointlike objects. But space is far from

empty, because on a small enough scale the uncertainty relations allow little bundles

of energy to pop in and out of existence. It is of such “virtual” objects that fields are

made.

Unfortunately, the step to the level of reality we are about to explore did not

bring with it the reductionists’ hoped-for simplicity. All we can say is that Anaxago-

ras gave us fair warning: deeper levels of reality are not necessarily simpler levels.

So this chapter will explore a realm that may seem dauntingly complicated.

The development of this picture began with the emergence of the modern quan-

tum theory in 1927, and now engages the talents of thousands of experimenters and

theorists around the globe. Though remarkable discoveries have been made, the pic-

ture is by no means complete. Before presenting the most up-to-date version, which

bears the rather uninspiring name of the Standard Model, let us review some of this

history.

FAREWELL TO INNOCENCE

Though the quantum theory that emerged in 1927 was logically complete and self-

consistent, the physicists who developed it knew enough about the history of their



science to realize that their work was far from over. Like Newton, they had created

a kinematics, a scheme for describing and predicting motion, without a full under-

standing of dynamics, the origins of the forces that govern that motion.

Newton’s scheme had to wait nearly two hundred years for its dynamics, the

Law of Energy Conservation and field theory. The quantum physicists expected far

more rapid progress, however, because they knew precisely what had to be done.

They needed a quantum description of the fields themselves.

Schrödinger’s treatment of the hydrogen atom had used Maxwell’s classical

electromagnetic field. But surely this could be only an approximate picture. The

“free” electromagnetic field—light itself—was known to be quantized. Einstein’s

photons were now universally accepted. What remained was to bring photons into

the theory of electric and magnetic fields, and then repeat this conversion for grav-

ity and whatever other fields were needed to account for all the known forces.

The quantum theorists had expected to make short work of this problem, but

they had underestimated the magnitude of the task. There are more fields in nature

than they realized, and they are so closely related that it is not possible to fully un-

derstand one in isolation from the others. And far too little was known about the

subatomic particles themselves.

They soon ran out of time. In 1933, Europe’s golden age of “modernism” came

to a sudden and violent end. Within months of Hitler’s ascent to power the German

scientific community was in shambles. Nearly all Jewish professors had been

dismissed, and though they were few in number they were concentrated in frontier

areas of research. A few liberals followed them into exile. Einstein had been fortu-

nate enough to be on his way to what had been planned as a six-month stay at the

newly created Institute for Advanced Study in Princeton, New Jersey, when the

takeover occurred, for the new regime immediately put a price on his head. Prince-

ton became his home for the remainder of his life.

Though few Germans realized it at the time, the future of German science had

been dealt a blow from which it has not fully recovered to this day. Even

Schrödinger, though a gentile and haughtily disdainful of politics, soon left his pres-

tigious post in Berlin, convinced that such a pack of bloodthirsty idiots could only

lead Germany to disaster.

Bohr’s institute took on a less frivolous air, as it became a way station for flee-

ing exiles. Bohr himself became increasingly preoccupied with the task of finding

them jobs in safe countries. And then, in the Christmas season of 1938, nuclear fis-

sion was discovered at the Kaiser Wilhelm Institute in Berlin. Within a matter of

weeks, the wizards of the microworld knew that their days of happy innocence were

at an end. A nuclear bomb might well be possible, and Nazi Germany appeared to

have a head start.

As if to underscore their apprehensions, a lid of military secrecy was clamped

on work in a new wing at the Kaiser Wilhelm, and the Nazi state seized the

uranium-rich tailings of Czechoslovakia’s radium mines. Refugee physicists pushed

Great Britain and then the United States into the race for the bomb. In a world gone

mad, quantum fields would have to wait.

By the time the physicists were free to return to their first love, the torch had

been passed to America. The quantum theory of electromagnetism, known as
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quantum electrodynamics, or QED, was completed in 1947 by two New Yorkers

still in their twenties, Richard Feynman and Julian Schwinger. Since this theory

served as a model for all later theories, we will introduce it at this point.

QUANTIZING THE FIELD

Feynman would have been in his element in the halcyon days of Bohr’s institute.

Fond of high jinks and high living, he was known to jolt his mind out of a rut by

working at a back table in a night club, inspired rather than distracted by the glare

of stage lights and the blare of the sound system. Schwinger, on the other hand, pre-

ferred Einsteinlike solitude. Working independently, they completed their theories

within weeks of one another. As with Schrödinger and Heisenberg, the theories

looked on the surface so different that it took a considerable effort to prove they

were in fact the same.

The essence of Feynman’s style is simplicity, so it is his version of the theory

that we present here. Figure 19.1 shows the quantum version of how the electro-

magnetic field transfers energy and momentum between two electrons. Newton’s

continuous force is replaced by a “package” transfer in the form of a photon. The

force law is replaced by a formula that gives the probability that any given amount

of momentum and energy will be transferred.

This figure, known as a Feynman diagram, is more than a way to visualize the

process. It contains an exact recipe for calculating the probability. The calculations
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are tedious and will not be discussed in detail, but once the right diagrams have

been drawn they are so automatic that they can be turned over to a computer.

QED finally settles the old question of the nature of electric charge. It is noth-

ing but the ability to emit and absorb photons. When one particle can emit or absorb

another, the particles are said to be coupled. A quantitative measure of this ability is

the coupling strength, which for electromagnetism can be expressed as

  

This is a pure number, independent of the choice of units, and its value (which is

somewhat less that 1/100) determines the strength of the force. For each emission

or absorption of a photon, the probability of the process is multiplied by this factor,

so adding more photons to a diagram reduces the probability. For example, the dia-

gram in figure 19.2 shows an inelastic collision of two electrons, in which part of

the collision energy is used to create a free photon. Because there is one more pho-

ton emission, this is roughly one hundred times less probable than the elastic colli-

sion shown in figure 19.1.

The exchange of a photon is of course a form of “quantum tunneling,” because

the electron has no internal source of energy from which it can create a photon.

The energy and momentum must be “borrowed” for the short time that the photon

is in flight. The uncertainty relations allow one to calculate the probability that this

will happen. For the one-photon diagram in figure 19.1, it turns out to be 1/p4,

e2

 c
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where p is the momentum transferred by the photon. This result is not terribly im-

portant, but we mention it because when a light object collides with a heavy one, p

is proportional to the sine of half the angle through which it is deflected. Does that

sound familiar? Rutherford’s alpha-particle scattering law, which he derived from

Newtonian orbit theory and Born obtained from wave mechanics pops up again, in

an entirely different sort of model, yet another example of the hazards of model

building.

In a collision on the nuclear scale, this exchange of a single photon is the dom-

inant process. But electromagnetic fields can extend to vast distances because a

photon has no rest mass and can have as little energy as we please. Long-range

forces are transmitted by a nearly continuous flow of photons of negligible energy.

On the scale of electrons moving in atoms, this is very nearly the case, which is why

Schrödinger’s hydrogen calculation worked. Feynman and Schwinger made only

small corrections to the hydrogen energy levels. But these were crucial in establish-

ing the validity of their theory, for they had recently been measured.

Other fields are transmitted by quanta other than the photon. Quantum field the-

ories rest on a completely reciprocal relationship between particles and fields:

The nature of a field is completely determined by the properties of the particle that

transmits it, while the nature of a particle depends solely on the ways in which it

couples to fields.

After we have examined the full list of known fields, we will return to this rule to

see how it operates in practice. Just as in general relativity, the field concept that be-

gan so modestly as a substitute for action at a distance materializes as matter itself!

Thus the task of subatomic physics is clear: find all the fundamental particles

and their fields. But unfortunately, this turned out to be far more complicated than

anyone in those bright heroic days of the 1920s or even the 1940s realized. The

“zoo” of fundamental particles is much larger, and is filled with far more exotic

specimens, than anyone had reason to suspect. And other fields are considerably

CHAPTER 19: The Dreams Stuff is Made Of 227

Real
photon

Virtual
photon

Electron

Electron

FIGURE 19.2. Inelastic electron collision (photon emitted).



more complicated than electromagnetism. Before we can go on, we must pause to

deal with a few messy facts.

MATTER AND ANTIMATTER,

FERMIONS AND BOSONS

One of the more interesting features of quantum field theory, discovered by the

British theorist Paul Dirac in the 1920s, is that for each type of particle there must

exist an antiparticle, opposite in electrical charge but equal in mass. Within a few

years of the prediction, it was confirmed by the discovery of the positron, identical

to the electron in all respects save that it carries a positive electric charge.

The matter-antimatter distinction is the basis for another division of particles

into two classes, fermions and bosons. The electron is a fermion, while the photon

is a boson. Particles with spin that is zero or an integer multiple of  are bosons,

while half-integer spins belong to fermions.

A fermion can be created only if at the same time its own antiparticle is cre-

ated. Similarly, it can be destroyed only if it encounters its own antiparticle, al-

though it can be transformed into another kind of fermion. Bosons, however, can

be freely created or destroyed as long as enough energy is available. Thus, fermi-

ons have a kind of permanence, and they serve as the building blocks of matter.

Bosons are more ephemeral, and serve as the field quanta, the “glue” that holds

matter together.

One of the great puzzles of cosmology is how the universe came to contain

matter without an equal quantity of antimatter. We know that our corner of cre-

ation, meaning our galaxy and its near neighbors, consists entirely of matter, ex-

cept for an occasional antiparticle produced in a collision. Nowhere in the universe

do we find the kind of titanic explosions that happen when large hunks of matter

and antimatter meet. In 1967 Andrei Sakharov suggested that certain irreversible

processes that could have happened during the first instants of creation gave rise to

a slight excess—less than a part in a billion—of matter over antimatter. Soon af-

terward, the rest of the matter and antimatter annihilated, and all the matter in the

universe today comes from that tiny excess. Sakharov’s idea will be explored fur-

ther in chapter 20.

THE ATOM SMASHERS

It sometimes strikes even the physicists who work with them as ironic that some of

the largest machines ever built are used to look at the smallest things we know

about. The current generation of particle accelerators consists of machines whose

dimensions are measured in miles, with price tags measured in billions of dollars. In

effect, these machines are gigantic “microscopes.”

In an ordinary microscope we see things by means of light, photons with ener-

gies of a few electronvolts. To see much smaller details, we need probes with much

shorter wavelengths, and thus with far greater momentum and energy. The study of
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subatomic particles involves looking for details that are far smaller than the size of

a nucleus, which is measured in femtometers, 10 15 meter. Today’s most powerful

accelerators can show details ten thousand times smaller than this, using protons or

electrons with billions or trillions of electronvolts of energy.

The rest energy (henceforth we shall simply use the word mass, for we are now

in the realm where energy units are used for mass) of a proton is 938 million elec-

tronvolts, while that of an electron is about a half million. Thus these particles must

be pushed to speeds within an eyelash of that of light, making them hundreds or

thousands of times heavier than at rest. When a particle is that heavy, only another

particle as massive as itself is a suitable target, for a heavy object can transfer only

a small portion of its momentum to a lighter one—if you punch a balloon, the mo-

mentum of your fist doesn’t change very much. Thus the largest accelerators pro-

duce two beams of particles that collide head-on. There are only a handful of these

machines in the entire world.

When particles collide, much of their energy is converted into rest energy of

new and unstable particles. From a single collision of two particles, dozens of new

ones emerge. They are carefully tracked by tens of thousands of electronic “eyes”

wired to computers that reconstruct what happened in the collision. These arrange-

ments are so complicated that teams of hundreds of scientists are required to build

and operate them. A picture emerges slowly, from the study of billions of individual

collisions. Much of the effort is concerned with simply identifying new and unsta-

ble particles that flash briefly into existence.

QUARKS AND LEPTONS

By the 1960s, the accelerators had revealed that the two particles that make up

atomic nuclei, protons and neutrons, simply did not qualify as fundamental. They

were fairly large, and seemed to have a fairly complex inner structure, like little

“atoms within the atom.” Murray Gell-Mann and George Zweig of Caltech pro-

posed in 1963 that they were combinations of smaller fermions that, unlike any par-

ticle previously known, carried fractions of the fundamental unit of electric charge.

To emphasize the uniqueness of these particles, Gell-Mann chose the fanciful

name quarks. This peculiar choice of terminology proved to be fateful. Following

Gell-Mann’s lead, particle theorists have tended to play a game of “one-upmanship”

with terminology, resulting in a lexicon of “cute” names that tend to baffle (and

sometimes outrage) nonspecialists. This practice has often proved a barrier to wider

understanding, however much fun it may provide for insiders. Thus one of the more

confusing and annoying tasks you will face in the rest of this chapter will be to wade

through a lot of verbiage that is far from self-explanatory.

It takes two kinds of quarks to make protons and neutrons: u-quarks, which

carry  units of electric charge, and d-quarks with charge  . A proton consists

of two u’s and a d, while a neutron is two d’s and one u.

The electron remains a fundamental particle, a member of a family called lep-

tons. It is closely related to an electrically neutral object called an electron neutrino,

1
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represented by the symbol ve. These neutrinos play an important role in radioactiv-

ity, and in the nuclear fusion reactions that power the stars.

These two leptons and two quarks are pretty much all we need to make ordinary

matter as we know it. Unfortunately, however, this basic pattern of four is repeated

twice over. Each of the three charged fermions has two heavier, unstable versions.

Each spontaneously breaks up into combinations of particles from the generation

below it. Table 19.1 lists the complete roster of fundamental fermions, with their

rest masses in millions of electronvolts (MeV). Each repeat of the fundamental

quartet is called a generation. Neutrinos have masses that are too small to measure

as yet, probably on the order of a hundredth of an electronvolt, there is evidence that

they are not actually zero.

The second and third generations have a fleeting existence in ordinary matter as

“virtual” particles, and a few are produced when high energy radiation from space

reaches our atmosphere, but otherwise they have little role in our universe today.

They were, nonetheless, crucially important in the early moments of the big bang,

when all fermions were equally abundant. Sakharov’s process for circumventing the

balance of matter and antimatter requires the participation of particles from all three

generations. Without them, we could not be here today!

The existence of these six quarks and six leptons is something that no theory

pretends to explain. For now, they must simply be taken as given. The letters d, u, s,

c, b, t stand for down, up, strange, charmed, bottom, and top.* The heavier leptons

are the muon and tau, and their neutrinos the mu-neutrino and tau-neutrino.

The first of the unstable fermions, the muon, was discovered in 1938. Within

ten years, it had become clear that it was exactly like an electron in all measurable

properties, save that it was two hundred times heavier. This provoked Isidore I.

Rabi, a leader of the scientific community in the United States, to exclaim, “Who
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ordered that?” We now know that whoever it was ordered up a whole menu of such

objects! The last one, the t-quark, was discovered in 1994.

It is important to note that each generation contains a neutrino, and neutrinos

have so far proved to have little rest mass. In the early 1990s, an extended search for

additional varieties of neutrino was conducted. It would have detected any neutrino

with a mass of less than 45,000 MeV, but found only the three familiar kinds. If

there is no fourth lightweight neutrino, it seems highly unlikely that there is a fourth

generation. Thus at this level, the search for the building blocks of matter seems to

have come to an end. The knowledge of quarks was hard-won because, unlike any

particles studied before, quarks are never found alone. Instead, they appear only in

combinations, of which three kinds are allowed: three quarks, three antiquarks, or

one quark and one antiquark. The quark model was developed by studying these

composite particles and imagining how to build them up from a few smaller con-

stituents. Because quarks have never been observed apart from other quarks and the

fields that bind them together, the estimates of their masses given in table 19.1 are

only approximate.

The confusion created by the inseparability of quarks led even Gell-Mann to

harbor doubts as to whether they really existed. Two decades of heroic efforts to

blast loose free quarks in violent collisions, or to find them in trace amounts in or-

dinary matter, met only with failure. Their fractional charges raised a few eyebrows,

because the combination rules all too neatly ensured that the particles built up out

of quarks would always have whole-number charges, concealing the fractional na-

ture of the quark charges. Ever since the debacle with the aether, whenever nature

seems to be conspiring to hide something from experimental view scientists tend to

“smell a rat” and begin to wonder whether it really exists. Nonetheless, a variety of

reactions studied since the 1970s reveals the presence of these fractional charges.

And both the peculiar combination rules and the refusal of quarks to remain sin-

gle turned out in the end to have a perfectly natural explanation. By the late 1970s,

these clues led to an understanding of the strongest and most complicated field of

all. This theory is called QCD, which stands for Quantum Color Dynamics.

THE SORCERER’S MAGIC BROOM

The quanta of the QCD field are remarkably similar to photons. They are electri-

cally neutral objects with zero rest mass, and are called gluons. In a moment we will

see how appropriate the name is, for gluons “stick” to quarks quite tenaciously. The

theory was formulated in 1976, and the existence of gluons was confirmed in 1979.

The QCD coupling, the property that is analogous to charge in electrodynamics,

is called color. It does not, of course, have anything to do with color in the ordinary

sense of the word. This term gained acceptance because of a neat analogy between

the quark combination rules and the mixing of primary colors to obtain white.

Electric charge can be positive or negative. Color is similar, but has three kinds

each of positive and negative, designated R, G, B, for red, green, and blue. The dis-

tinction is qualitative rather than quantitative, the force on a quark is the same what-

ever color it carries. The coupling strength of color, designated by the symbol  s, is
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about 1/10, so the gluon force is much stronger than electromagnetism, which is

governed by the photon coupling strength  , more than ten times smaller.

Quarks carry positive colors, while antiquarks have negative colors (“anticol-

ors”), designated by R , G , B . Leptons carry no color at all, so it is the color coupling

that makes quarks different from leptons.

Since opposite charges attract, electric forces always act in such a way as to

keep a system neutral. The same is true for QCD, but because of the additional di-

mension of color there are two ways to achieve neutrality (keeping the color anal-

ogy, the term equivalent to “neutral” is “white”):

1. A color paired with its anticolor (RR , GG , BB )

2. An equal mix of three colors or anticolors (RGB or R G B)

This is the origin of the two kinds of allowed quark combinations. The first

combination is called a meson, the second a baryon or antibaryon. The proton and

neutron are the lightest and most stable baryons—no other baryon lives more than

a nanosecond. All mesons are unstable, since the pairing of matter with antimatter

must eventually lead to annihilation.

There is a crucial distinction between photons and gluons, and it makes the

QCD field very different in its action from electromagnetism. Photons carry no

electric charge, but gluons do carry color. Each gluon, in fact, carries one color and

one anticolor. It is this feature that is responsible for the inseparability of quarks.

Remember that electric charge is the ability to emit and absorb photons. Color is

then the ability to emit and absorb gluons. Photons have a very passive role—one

charged particle emits a photon, and another later absorbs it. But gluons have a more

active role—one gluon can emit another gluon, because its color gives it the power

to do so. Since photons have no electric charge, one photon cannot emit another.

Thus gluons proliferate in flight, adding strength to the force they transmit. This

more than compensates for the natural tendency of fields to diminish with distance.

If two quarks try to move apart, the force binding them actually gets stronger, and

the coupling strength becomes larger.

A gluon can also turn into a quark-antiquark pair, since it already carries the

requisite color and anticolor. In an undisturbed particle it has to “borrow” the energy

to do this, and the virtual pair quickly reverts to gluons. But if energy is available

from some external source such as the kinetic energy of a collision, the new quark

and antiquark may become real, and a new particle is created.

Taken together, these effects explain why it has proved impossible to separate a

single, isolated quark from its partners. An attempt to do that is illustrated in figure

19.3. Protons are bombarded by high-energy electrons from a particle accelerator. A

quark in one proton is given a strong push by a close encounter with an electron. It

starts to fly free, but cannot escape the pursuing gluons, moving at the speed of

light. They proliferate in flight, deriving their energy from the fleeing quark.

Some of this energy goes into making quark-antiquark pairs, and the quark

“mating game” begins. After a very short time, the struck quark is no longer “free,”

but has acquired an antiquark partner, to form a swift-moving meson. It is escorted

by more mesons and possibly some baryon-antibaryon pairs. A quark has dropped



into the proton, to fill the empty slot. All of these states are “white,” so color bal-

ance is restored.

What emerges from the collision is a “jet” of particles, all moving in nearly the

same direction. By summing their momenta and energies, experimenters can recon-

struct the motion of the struck quark and the forces that acted on it.

Thus quark combinations are “indestructible” in a very funny sense. They are

like the “magic broom” in the legend of The Sorcerer’s Apprentice, which was por-

trayed in Walt Disney’s celebrated animated feature film Fantasia. With his master

away, an apprentice sorcerer tries to save himself some labor by charming a broom to

come to life and carry water. But he doesn’t know the spells required to make it stop,

and when he tries to do so by chopping it to bits with an ax, each fragment regener-

ates its missing parts and he winds up with a veritable army of water-toting brooms.

And so it is with quark combinations. Any attempt to break them up leads to the

creation of new partners, assuring that no quark will long remain single.

A COSMIC RECYCLER

From the earliest beginnings of quantum field theory, it was known that there must

be another field operating on the nuclear scale, in addition to the one that holds
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FIGURE 19.3. An electron collides with a quark inside a photon.



nuclei together. In terms of the modern quark picture, we know that this field trans-

forms one kind of fermion into another.

For example a d-quark may be transformed into a u-quark by emitting an elec-

tron and an electron antineutrino. If this happens to one of the d-quarks inside a neu-

tron, the particle is transformed into a proton, a process known as nuclear beta

decay. The Feynman diagram for this reaction is depicted in figure 19.4. The back-

ward arrow on one of the lines is a convention marking it as an antiparticle, in this

case an anti-electron-neutrino. This antiparticle must be emitted to maintain the

matter/antimatter balance. A u may also transform into a d, changing a proton into a

neutron. Because d-quarks are heavier than u’s, energy must be supplied to drive

this reaction. All the heavy charged fermions are disposed of by reactions of this

sort, transformed into their first-generation counterparts.

The quanta that mediate these reactions come in electrically charged forms, the

W , and a neutral form, the Z0. Their masses are given in table 19.2, which lists all

the known and presumed fundamental bosons. The weak coupling treats all fermi-

ons equally.

For historical reasons, this field is called the weak interaction. Today we know

that it has the same coupling strength as electromagnetism. The reason it appears

weaker is because the quanta that transmit it have very large rest masses. Thus it

takes a considerable “minimum investment” to create one of these particles, which

makes the tunneling probability very small. The uncertainty relation only allows

them to exist for a very short time, so that any force they produce can only extend

to a short range.

The role of the weak interaction in our universe is terribly important. First of

all, it is the reason why nearly all the matter in our universe is made of first-

generation fermions, because it is only through the weak interaction that one kind

of fermion can be transformed into another. Second, it is essential to the reactions

that power stars such as our Sun. These stars derive most of their energy from fusing

four hydrogen nuclei into a helium nucleus. But most hydrogen nuclei consist of a

lone, isolated proton, while a helium nucleus consists of two neutrons and two

protons. Along the way, two protons must be transformed into neutrons, releasing
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two positrons and two electron neutrinos. Without the weak interaction, the Sun and

other stars could not shine.

Neutrinos are not coupled to either photons or gluons: the weak interaction is

their main link to the world. The tunneling probability for weak interactions is so

small that a neutrino can pass right through a nucleus with only a small chance of

interacting. This makes neutrinos the most penetrating form of radiation known.

Most of the neutrinos produced in the core of our Sun pass right through its outer

layers and, when they reach the Earth, pass right through it, too. To monitor this

process, a detector the size of a railroad car has been operating since 1970 deep in

the Homestake Mine in South Dakota. Though more than a million billion neutrinos

pass through the detector each second, only once every two or three days does one

interact with a nucleus in the detector, leaving a trace of its existence.

One of the greatest surprises in astrophysics is that far fewer neutrinos are de-

tected than would be expected from the rate at which the Sun radiates energy. This

is because the electron neutrinos that the Sun produces change to other types before

reaching Earth. This process requires neutrinos to have mass.

Two more bosons are required to round out the Standard Model. One of these is

the graviton. Gravity seems to us like a strong force, because we feel the cumula-

tive effects of the attraction of the huge mass of the Earth. But in atomic terms,

gravity is terribly feeble. The gravitational attraction of an electron to a nucleus is

1041 times weaker than the electrical attraction. For this reason, no one has yet suc-

ceeded in detecting an individual graviton. But since the force of gravity is well un-

derstood on the macroscopic level, we know exactly what a graviton must be like.

Reconciling this picture of gravity with Einstein’s geometric theory has proved a

mathematically difficult task, but some progress has been made.

Finally there is an empty slot waiting for a particle called the Higgs boson, af-

ter theorist Peter Higgs, who first suggested its existence. Its role is to create rest

mass, for those particles that have it. In the year 2000, tantalizing hints that a Higgs

boson of mass 114,000 MeV may exist were found, but this discovery needs to be

confirmed. Hints of the existence of the Higgs boson have been seen, but are not yet

conclusive as of 2001.
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TABLE 19.2. Fundamental Bosons

Field Particle Mass Spin Couples to:

Electromagnetic Photon 0 1 Charge

Strong nuclear Gluon 0 1 Color

Weak nuclear W 80,420 1 All

Z0 91,190 1 Fermions

Gravity Graviton? 0 2 Energy

Higgs? Higgs? ? 0 Rest mass



PARTICLES AND FIELDS

We are now equipped to examine in detail the mutual interdependence of particles

and fields. Starting with the fermions, we look back to table 19.1, and consider the

ve, the lightest and simplest. It couples only to the weak bosons and, like everything

else, to the graviton. This gives it its elusive character. But add electric charge  1,

and it would become an e, a stable constituent of an ordinary atom. Give it instead

color, and you have a u-quark. Each of these particles is differentiated from its

second- and third-generation counterparts by a different coupling to the Higgs field.

Bosons carry integer units of spin, indicated in table 19.2, and the value of the

spin plays a major role in determining the character of the force it transmits. If the

spin is an even number, as is the case with the graviton, the force will always be at-

tractive. When it is odd, as with the photon or gluon, the force can either attract or

repel.

Thus electricity is an inverse-square force because the photon has no rest mass.

It can either attract or repel because the photon has one unit of spin. All the won-

drous phenomena of electromagnetism expressed in Maxwell’s theory derive from

the starkly simple properties of the photon.

Still, it must be stressed that just like the geometric picture of fields in general

relativity, quantum field theory remains an incomplete scheme. We know next to

nothing about the Higgs field, so until the right sort of boson is actually discovered

it remains a conjecture. Speculations about a field responsible for generating spin

are even more fanciful. A theory called superstrings, dating from the early 1980s,

purports to unify quantum fields with Einstein’s geometric scheme and eliminate all

the loose ends in both theories, so its promulgators have dared to call it the Theory

of Everything. But formidable mathematical difficulties prevent it from coming up

with testable predictions, so for the time being it remains a theory of nothing.

THE QUANTUM FOAM

One of the obvious questions, in the wake of the triumph of the Standard Model, is

how big is a point? Do quarks and leptons have smaller parts, on a scale smaller

than the limit of detail revealed by our present accelerators, which is 10 19 meter?

Will there ever be an end to this game?

In the early days of the quantum theory, Max Planck reflected on what it could

mean if his constant h joined the speed of light c and Newton’s gravitational con-

stant G as one of the fundamental constants of nature. He noted that there was one

way to combine these three constants to obtain a length,

rp  A  1.6  10 35 meter

now called the Planck length. We have taken the modern liberty of replacing h with

 . This length was so small that he speculated it might be a fundamental minimum

“unit” of length. In the 1960s, John Wheeler resurrected this speculation and inter-

preted it in the light of general relativity and the uncertainty relations.

G 

c3
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The uncertainty relations say that we cannot be sure how much energy (and

therefore mass) is contained within a small region of space-time. The smaller we

make the region, the larger the uncertainty. In a sphere whose radius is the Planck

length, it is about 20 micrograms, which is just enough to make the sphere a black

hole. The energy-time uncertainty relation allows it to exist for no more than 10 43

second, the time equivalent of the Planck length. Wheeler pointed out that on this

scale, space can no longer be regarded as smooth and continuous, for it is filled with

these tiny virtual black holes rapidly popping in and out of existence. It becomes

what he calls a quantum foam. Thus Planck’s speculation was on the right track:

though the Planck length is not exactly a “unit” of length, it probably represents the

smallest meaningful size for anything.

The smallness of the Planck length must give us pause. There is plenty of room

for more Chinese boxes between the 10 19 scale we can now study and this ultimate

limit. But at least we can be reassured that the game must eventually come to an end.

One trend that may prove significant is that as particles move closer together,

the differences between fields tend to diminish. Move close enough to an electron,

and  gets larger, while close to a quark  s gets smaller. Eventually, somewhere ap-

proaching the Planck length, the two become equal. Since it is only their couplings

that distinguish one particle or field from another, on the smallest scale all particles

and fields become indistinguishable. This holds out hope that they are really differ-

ent guises for one fundamental kind of field, the kind of unified field theory that

Einstein sought in vain for the last 25 years of his life.

Summary

The last step in the development of quantum physics was to quantize fields. New-

ton’s continuous momentum transfer is replaced by a “package” of energy and mo-

mentum via the tunneling process. In the case of the electromagnetic field, the

package is a virtual photon. The world of quantum fields is one in which matter

consists of particles that are pointlike field sources held together by the transfer of

such virtual particles. The role of a particular particle in this scheme depends on

whether it is a fermion or a boson. Fermions are the building blocks, while bosons

transmit the forces. Subatomic physics is complicated by the existence of several

kinds of each. There are two 12-member families of fundamental fermions, leptons

(the electron and its relatives) and quarks (subunits of the particles found in the nu-

cleus). Most of these are unstable and play no major role in ordinary matter. Several

types of boson are required to account for all the known forces. Gravity has not yet

been fully integrated into this scheme.
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The Whole Shebang

I’m astounded by people who want to “know” the universe when it’s hard

enough to find your way around Chinatown.

—WOODY ALLEN

As we saw in the first chapter of this book, modern physics was born in the sev-

enteenth century out of the attempt to understand our immediate cosmic surround-

ings—the solar system. The twentieth century has provided us with even more

potent weapons, relativity and the quantum theory. Thus armed, we are prepared to

go for bigger game—nothing less than the whole universe. And not just how it is at

present, but its history back to the earliest moments of creation.

What impudence! Do we honestly believe that our band of puny featherless

bipeds can presume to really know all about the universe? On sober reflection, the

answer is probably “no.” But by our nature some of us can’t resist giving it our best

shot. And most of what follows in this chapter is probably close to the mark, though

it would not be surprising if some of it looks embarrassing before the decade is out.

With that caveat, let us proceed to outline the universe as seen at the beginning of

the twenty-first century.

This picture, of course, does not rest on theory alone. Astronomy remains, as it

was at its birth, preeminently an observational science. And modern technology has

extended our ken far beyond that of Tycho Brahe’s naked eye or Galileo’s crude

telescope.

Today we have vastly improved telescopes with remarkable instrumentation,

and some of them are in space. There we can study radiation that cannot easily

reach the surface of the Earth—ultraviolet, X rays and gamma rays, and mi-

crowaves. We can also capture particles from the solar wind.

On Earth we can study radio waves and also cosmic rays, nuclei raining down

on us that have been accelerated to incredible energies by violent processes we are

only beginning to understand. Neutrino and gravity-wave astronomy are in their in-

fancy, but it seems likely that they too have their share of wonders to reveal.

Over the last 50 years new instruments have opened new windows on the cos-

mos. In every case, the most important discoveries were things that no one had ever

dreamed of.



THE NEIGHBORHOOD

Our solar system resides in the Milky Way galaxy, a flat disk with a small central

bulge, containing about one hundred billion stars. These are concentrated in a pair

of spiral arms, and we are located about two-thirds of the way out from the center

on one of these arms. Our nearest stellar neighbors are around four light years from

the Sun—about 250 thousand times farther than Earth itself. The diameter of the

disk is about 150 thousand light years.

The Milky Way contains more than stars. Much of it is filled with clouds of gas

and dust, in which new stars are continually forming. The dust obscures our view of

the center of the galaxy, but infrared telescopes can peer through this to obtain a

hazy picture of the center. The motions of stars in this region suggest they are orbit-

ing a black hole of perhaps a million solar masses.

Observations of the motions of stars in other galaxies show that nearly all have

something massive at their cores, most likely a black hole. In addition, they show

that a great deal of invisible mass is present in a “halo” surrounding each galaxy.

The exact nature of this “dark matter” is still unknown, but for reasons that will be

explained later in this chapter it is unlikely to consist of ordinary matter. It amounts

to several times more mass than that of visible matter.

Our galaxy belongs to the “local group,” about 30 galaxies bound together by

gravity and spread over three million light years of space. The Milky Way is sec-

ond in size to the M31 (“Andromeda”) galaxy. Two small galaxies—the so-called

Magellanic Clouds—are close to the Milky Way and will eventually be absorbed

into it.

The local group is dwarfed by the Virgo cluster, which is about 50 million light

years away. It contains about a thousand galaxies, several of which are as large as

the entire local group. Even larger clusters have been observed.

A survey of space on a larger scale reveals huge regions, tens or hundreds of

millions of light years across, nearly devoid of galaxies. Most galaxies reside on

thin walls between these bubbles. Thus the universe on the large scale resembles a

“foam.”

As we look out in space, we look back in time. The most remote objects we can

see are “quasars” (for quasi-stellar objects), which probably represent the very ac-

tive cores of young galaxies. The most remote quasars may have formed as little as

a billion years after the big bang.

THE NEIGHBORS

Stars generate energy by thermonuclear fusion, which combines small atomic nu-

clei into larger ones. This can only take place at very high temperatures, which give

the nuclei enough kinetic energy to offset their mutual repulsion and approach close

enough for quantum tunneling to bring them together. To confine matter at high

temperatures takes high pressures, which are generated at the core of a star by the

weight of all the material above it.
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We cannot actually see what goes on inside a star. What we know about this

comes from elaborate computer programs. But these programs seem to correctly

predict the surface properties and “life histories” of stars.

Our Sun is a small- to middle-sized star. The smallest stars large enough to gen-

erate energy in their cores are about a twelfth the mass of the Sun. The largest ever

observed have one hundred to two hundred solar masses. Stars like this are very

rare, because they do not last very long. A star 20 times heavier than the Sun burns

so rapidly that it will exhaust its fuel in a few million years. Even more massive

stars shrink rapidly by ejecting most of their mass.

The Sun is also a “main sequence” star, one that generates energy by combin-

ing four hydrogen nuclei into one helium nucleus. Since helium nuclei contain two

neutrons and two protons, while most hydrogen nuclei are single protons, two pro-

tons must be converted into neutrons by a weak interaction that emits a positron and

an electron neutrino for every neutron created. Though several reactions contribute

to this process, the total energy output of the Sun leads to a quite accurate estimate

of the total number of neutrinos emitted.

This weak interaction acts as a brake on the fusion reaction, keeping it slow, so

that most stars spend the bulk of their lives on the main sequence. Our Sun, now

about 4.7 billion years old, has lived out a bit less than half of its expected main se-

quence lifetime. The active core of the Sun is slowly building up helium.

When the hydrogen in the Sun’s core is exhausted, it will begin to burn helium

into carbon and oxygen. The core must contract and get hotter, but with the weak-

interaction brake removed, energy will be generated at a faster rate. This energy will

cause the outer layers of the Sun to expand into a “red giant” star, eventually becom-

ing large enough to engulf the Earth. It will also cast off much of its outer layer in

space. When the helium is exhausted, it will stop making energy from nuclear reac-

tions and gradually contract into a “white dwarf,” an ember that shines by converting

gravitational potential energy into heat. It will end up roughly the size of the Earth.

This is the fate of any star less than four times the mass of the Sun. More mas-

sive stars can burn carbon and oxygen into even heavier elements. Above eight so-

lar masses, giant stars can go all the way to iron. Here the process must stop: iron is

the most stable nucleus and to make heavier nuclei, energy must be added.

Thus, a high-mass star accumulates an inert iron core. Fusion of lighter elements

continues in layers around the core, but eventually the core becomes too heavy to sus-

tain itself and collapses. In the center of the core there is enough gravitational energy

to convert protons into neutrons. In a second or so, a neutron star is created. During

this time the star emits as much energy as the entire galaxy. Most of the energy is car-

ried away by the neutrinos. Enough of these are absorbed by the outer layers of the

star to drive it out in space as the brightly glowing shell of a type II supernova.

The neutrinos also provide the energy to drive reactions that create nuclei heav-

ier than iron, all the way up to the top of the periodic table. Because our solar sys-

tem contains such heavy elements, we know it was formed from the debris of one

or more supernovas.

In January 1987, a supernova explosion was seen in the Large Magellanic

Cloud. Two underground particle detectors observed neutrinos coming from its di-

rection, confirming the scenario just described.
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COSMIC YARDSTICKS

The picture of our universe depends crucially on knowing the distance to faraway

stars and galaxies. Developing reliable ways to do this is an ongoing task in

astronomy.

The simplest and most reliable way to do this is by simple parallax. A nearby

star, viewed against a backdrop of more remote stars, will appear to shift in the

heavens as the Earth moves in its orbit. Unfortunately, the nearest stars shift by less

than one second of arc. It was not until 1838 that a German mathematician and as-

tronomer named Friedrich Bessel succeeded in measuring parallax.

Because for nearly a century parallax was the only way to measure the distance

to a star, professional astronomers reckon cosmic distances not in light-years but in

parsecs. A parsec (pc) is the distance at which a star will have a parallax of one sec-

ond, 3.26 light years. Thus a star that shows a parallax of one hundredth of a second

(the smallest that can be measured with Earth-based telescopes) is 100 parsecs from

Earth. Our Sun has only about one hundred neighbors this close.

Space-based telescopes can do about ten times better. Since the volume of

space scanned goes as the cube of the distance, this increases the sample by a factor

of a thousand. The “Hipparcos” satellite has mapped 118,000 stars. They represent

the “gold standard” against which all other cosmic yardsticks are calibrated.

A thousand parsecs is still our immediate galactic neighborhood. To measure

the size of our own galaxy, and the distances to other galaxies, required a new yard-

stick. It was provided in 1912 by Henrietta Leavitt, an astronomer working for the

Harvard Observatory.

Harvard had just acquired a telescope in South America, which enabled it to ob-

serve the Small Magellanic Cloud (SMC), which is close to the southern celestial

pole and cannot be seen from the Northern Hemisphere. Leavitt used this telescope

to search for a type of star known as a cepheid variable, so-called because the first

to be studied was the star Delta Cephei. The “north star” (Polaris) is the best-known

cepheid.

The outer layers of a cepheid swell and contract in a regular rhythm, brighten-

ing and dimming as they pulsate, with a period of a few days. Leavitt had guessed

that there might be a connection between the length of the period of a cepheid and

its brightness. With a large population of stars that could be assumed to be nearly

the same distance from Earth, the SMC enabled her to verify her conjecture.

An object of known brightness serves as a “standard candle.” Comparing its

apparent brightness to that of an identical object at a known distance, and applying

the inverse-square law, gives an estimate of the distance. For example, a star that is

16 times dimmer than a similar nearby star must be 4 times as far away.

Using a handful of nearby cepheids of known parallax, Leavitt used this tech-

nique to estimate the distance to the SMC. New telescopes then under construction

could resolve individual stars in other galaxies. Cepheids are thousands of times

brighter than the Sun and are visible for millions of light years. So Leavitt’s discov-

ery enabled astronomers to measure the distances to other galaxies.

Henrietta Leavitt never obtained a regular faculty position, but she was given

credit for her discovery. It was Leavitt’s cepheid scale that enabled Edwin Hubble,
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starting in 1923, to measure the distances to remote galaxies and establish that the

universe was expanding.

Still, most of our universe is too far away to see a cepheid. A longer yardstick

is needed, and in recent years one has been developed that employs objects known

as type Ia supernovas.

A type Ia supernova originates from a heavy white dwarf that is part of a binary

star system. In the 1930s the Indian-born theorist Subrahmanyan Chandrasekhar

showed that a white dwarf must be lighter than about 1.4 solar masses to avoid col-

lapsing under its own gravity. A white dwarf that is near this limit is generally com-

posed mainly of oxygen and carbon.

If the white dwarf has a nearby stellar companion, it may gradually steal mass

from its companion’s atmosphere. If this mass drives it over the Chandrasekhar

limit, it collapses. This rapid contraction reheats the star to temperatures that allow

carbon nuclei to be fused into silicon in an explosive flash. No neutrinos are re-

leased in this process, so type Ia supernovas can be brighter than type II, even

though the latter release more energy. They can be identified from the prominent sil-

icon lines in their spectrum.

Since all type Ia supernovas have nearly the same mass and chemical composi-

tion, they are nearly equal in brightness. What small differences remain can be esti-

mated by measuring the rate at which they cool down, making them an excellent

standard candle. They are visible out to several billion light years, so they are for the

present our “longest yardstick.”

The problem with type Ia supernovas is that in any particular galaxy they are

rare events. A systematic search of the whole sky will reveal less than a dozen per

year. Very few have been seen in galaxies that also contain visible cepheids, so the

exact calibration of this yardstick rests on a small sample.

Nonetheless, a careful search through older observations has uncovered about

ten at distances greater than two billion light years. These appear to be moving away

from us at a slower speed than would be expected if the expansion of the universe

were constant. Since they represent the universe billions of years ago, this observa-

tion suggests the expansion of the universe, contrary to expectations, may actually

be speeding up!

Einstein’s cosmological constant—which he called his “greatest mistake”—

could account for this effect. It suggests that in addition to “dark matter,” the uni-

verse is permeated with “dark energy” that generates a pressure to drive the

expansion. This conclusion is by no means certain, but automated telescopes are

now scanning the skies to find more remote supernovas, so any doubts should be re-

solved within a few years.

As indicated in chapter 12, we know that the total mass of the universe is close

to the critical value below which it would eventually contract. Our best estimate is

that it consists of about 5 percent ordinary matter, 30 percent dark matter, and 65

percent dark energy. Some unknown fraction, probably less than 1 percent, is in the

form of neutrinos created in the big bang.

Most of our universe lies beyond the reach of the type Ia yardstick. Here as-

tronomers simply assume the Hubble expansion is constant and measure the

Doppler shifts of remote galaxies to estimate their distances (the correction for ac-
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celerated expansion is small compared to the uncertainty in the average rate of

expansion).

Despite all the wonderful new instruments and methods, there is still some lin-

gering uncertainty as to the exact age of our universe, though it has been narrowed

down to between 10 and 15 billion years. But a number of observations allows us to

form a picture of the early history of our universe that is beginning to look more and

more plausible. This picture is the topic of the next section of this chapter.

IN THE BEGINNING

In the beginning there was the Planck time, the space-time equivalent of the Planck

length. Our present physics does not allow us to probe earlier than that, and even

suggests that it may not be meaningful to try. In any event, the universe was born

unimaginably dense and hot.

In the 1980s, an American theorist, Alan Guth, and a Russian one, Alexei

Starobinsky, independently added a new chapter to the picture of the big bang. Ex-

amining Einstein’s gravitational field equations, they found that it was possible for

the universe to go through a brief period of rapid expansion that Guth called

inflation.

Starting shortly after the Planck time, the diameter of the universe grew from

a few Planck lengths to around a centimeter in about 10 24 seconds. The astute

reader might note that this expansion was faster than the speed of light, but this

was growth of space-time itself. No object in the universe was traveling faster than

light with respect to anything in its vicinity. This model was adopted to explain,

among other things, why the distribution of mass in the universe is so nearly

uniform.

The same energy that drove the inflation created matter and radiation. The

universe emerged from inflation in a state called a quark-gluon plasma (QGP). It

was so crowded that quarks were much closer than their normal separations in

mesons or baryons, allowing them to roam and interact freely. Initially, there were

also equal amounts of matter and antimatter. Then how is it that today we find only

matter in the universe?

As indicated in chapter 19, a possible answer to that question was proposed in

1967 by the Russian physicist Andrei Sakharov. This was the first work Sakharov

did after leaving the Soviet nuclear weapons program, the beginning of his transi-

tion from being the Soviet Union’s premier designer of hydrogen bombs to being its

most celebrated dissident.

The Sakharov mechanism required the existence of two reactions that had not

yet been seen. The first would operate at different rates in matter and antimatter,

while the second would convert matter to antimatter and vice versa. The first was

discovered about the time his paper was published. The second is regarded as a nec-

essary part of any unified theory of all subatomic forces.

In the quark-gluon plasma, tiny differences in reaction rates created a slight

imbalance between matter and antimatter—about a part in ten billion. The unsta-

ble heavy quarks and leptons disappeared in a few microseconds. The rest of the
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antimatter and matter continued to annihilate for about a second. The tiny imbal-

ance survives today as all of the matter in the universe.

With the QGP era over, the universe consisted of protons, neutrons, electrons,

and neutrinos bathed in a sea of electromagnetic radiation. The fact that our uni-

verse today contains about ten billion photons for every particle of matter is our ear-

liest “footprint in the sands of time.”

The universe continued to cool and many of the neutrons, which when free are

unstable particles with a half-life of about ten minutes, decayed to protons. After

three minutes it was cool enough for neutrons and protons to cling together, and

nearly all of the neutrons were gobbled up to form helium, with some traces of

lithium and deuterium.

All of the heavier elements formed later in stars. Clouds of “primordial” gas

that has never been part of a star are 28 percent helium, with traces of the other light

elements. These abundances are the second “footprint” of the early universe, be-

cause they are very sensitive to the total density of matter at that time. If the dark

matter now present had been made up of protons and neutrons, these ratios would

be significantly different.

MINING THE COSMIC BACKGROUND

It took four hundred thousand years for the universe to cool enough for nuclei to

hang on to their electrons, the so-called recombination that liberated the cosmic mi-

crowave background radiation (CBR) discussed in chapter 12. As we indicated, this

radiation is nearly uniform, with tiny fluctuations at the level of a part per hundred

thousand.

During the inflationary period, microscopic random fluctuations were magni-

fied to cosmic scale. As the universe continued to expand, plasma waves (density

variations similar to sound waves) echoed throughout the universe, enhancing some

of these fluctuations and suppressing others. Recombination stopped the plasma

waves, leaving the pattern frozen in to this day.

The distribution of sizes of these fluctuations is a mother lode of information

about the early universe, such as its expansion rate, the density of matter and radia-

tion, and other parameters. To extract this information, the CBR must be studied

with new instruments that produce fine-scale pictures.

Thus CBR has become a hot research topic. It is best studied in space, but in-

struments in high-altitude balloons and even at the Earth’s surface can contribute.

The CBR provides a veritable stampede of cosmic footprints that has turned cos-

mology into a respectable observational science.

The three oval pictures on the cover of this book are whole-sky maps of the

CBR, constructed from data gathered by the Cosmic Background Explorer (COBE)

satellite. The color represents the temperature of a region, with blue regions being

cooler and red hotter. The temperature reflects the density of matter at the time the

light was emitted.

The orange oval represents the raw data, which show an astonishingly uni-

form average temperature of 2.728 K. If more precise measurements are made, it
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is possible to detect nonuniformities at a level of thousandths of a degree Kelvin

(mK). These are depicted in the bottom oval, and are due to the motion of our so-

lar system at 370 Km/s with respect to a frame in which the CBR is uniform in all

directions. This makes the signal slightly more intense (red) in the direction in

which we are moving, in the upper right portion of the oval, and weaker (blue) in

the opposite direction. As the label on the figure indicates, the range of tempera-

tures  T from hottest to coldest is 3.353 mK.

If even more precise measurements are made, and the variation due to motion

is corrected for, we can see a pattern of seemingly random variation at the level of

millionths of a degree ( K) shown in the top oval. The dark red band across the

center is the plane of our galaxy, which contains local sources of microwave radia-

tion. Outside this band, the range of temperatures is 18  K.

It took nearly a billion years for gravity to act on these fluctuations and con-

centrate enough matter in the denser regions to allow stars and galaxies to begin

forming. Star formation continues to this day.

PLANETS AND LIFE

The most compelling question about our universe is, of course, “are we alone in

it?” We are a long way from being able to answer that one.

The first precondition for life is a habitable planet. But what does “habitable”

mean? On Earth, life is found everywhere, from polar ice caps to deep underground.

What other environments might life exploit?

Planets are common enough. New ones are discovered every year, despite the

fact that the glare of a star makes it impossible to actually see a planet. A planet and

star orbit one another around a common center of mass. Though the star is far more

massive and thus moves very little, a Jupiter-sized planet can induce a measurable

Doppler shift in the star’s spectrum.

Naturally, we are more interested in Earthlike planets and, surprisingly, as-

tronomers have devised a stratagem for finding them. An interferometer can cancel

out the image of a star by destructive interference, leaving its planets visible. The

device would have to be in space for a clean cancellation and the mirrors would

have to be kilometers apart. Such an instrument, the Terrestrial Planet Finder

(TPF), is being designed. It will take the form of a group of satellites flying in for-

mation, and is scheduled for launch sometime after 2010.

But even finding an Earthlike planet would not be a guarantee of finding life,

for we have no idea how, or even where, life originated on Earth. Was it inevitable

as long as the right conditions were present, or did it depend on some fantastically

lucky accident?

Even if life is common, it took several billion years for life on Earth to evolve

out of the single-cell stage. How often does a planet get this long a period of stable

conditions?

The final question (and, of course, the one we’re most curious about) is whether

there is anyone out there we can talk to? Our own history is sobering. The human

species has been around for something like a hundred thousand years, a blink of the

CHAPTER 20: The Whole Shebang 245



246 Planets and Life

eye on the scale of cosmic time. The kind of technology that would permit inter-

stellar communications, even with our near neighbors, is less than a century old.

And given our propensity for fouling our own nests, not to mention blowing each

other up, it is not clear how long we are likely to be around.

Even if we had a definite sign of life on some remote planet, we would need to

expend a great deal of energy to produce a beamed message detectable at the other

end. Our regular radio and TV transmissions don’t come close. And if life is pres-

ent, but thousands of light years away, communication seems out of the question.

Still, the Search for Extraterrestrial Intelligence (SETI) goes on, with a large vol-

unteer “army” of amateurs and professionals scanning the skies for a signal. Soft-

ware to search for it is running on a network of thousands of home computers. SETI

is a monument to the unquenchable curiosity (and optimism) of the human race.

AN ACCIDENTAL UNIVERSE?

To close this chapter, let us keep a promise made at the end of chapter 12. What can

we learn by putting the Standard Model into our picture of the big bang?

The first answer is something about the fields themselves. In the theory as it

stands, the rest masses of particles must be inserted as experimental numbers that

cannot be explained. The dream of a field that generates its own matter remains un-

realized. One school of thought holds that this can be achieved only through the uni-

fied field that must have dominated the first instants of the big bang, when particles

were so crowded together that gravity was as strong as the gluon field.

As the universe expanded, the individual fields “condensed out.” Some parti-

cles that were originally massless acquired mass, and each field thus acquired its in-

dividual character. The subtle interplay of fields in this process left its mark in the

pattern of masses, which can be read as a “recording” of the early moments of the

big bang.

A question comes immediately to mind: Did the pattern of masses arise out of

logical necessity, or was it simply random?

There are hints in both directions; on the one hand, our present incomplete field

theory does not leave the choice of masses entirely free. In the weak interaction the

masses of the W and Z0 are closely related. If a more complete theory finds enough

such connections and extends them to quarks, perhaps God really did have no

choice after all.

On the other hand John Wheeler insists that during the early moments of the big

bang, the universe was so small that quantum fluctuations must have played a ma-

jor role. He would expect particle masses to be random, but also to have just those

lucky values that allowed us to evolve. This is called the anthropic principle. Since

we know that we are here, but otherwise know little about why the universe is the

way it is, let us examine how things had to be in order to allow us to eventually

come upon the scene. For example, it can be shown that if the fundamental unit of

charge is changed by even a fraction of 1 percent, a stable star like our Sun becomes

impossible.



This viewpoint takes on a fascinating dimension if we imagine that our universe

was born as a fluctuation, a mere fleck in the cosmic foam of some larger entity that

we might call a superuniverse. Most such fluctuations would last only the charac-

teristic Planck time. But an occasional terribly rare one might deviate from the norm

by just enough to cross a threshold that enables it to tap some source of energy and

grow rapidly, launching the process of inflation. Such might be the origin of our

universe.

What can happen once can happen again and again, so this conjecture suggests

that ours is not the only universe. Furthermore, we can imagine that each universe

comes with its own toss of the cosmic dice. The particle masses and with them the

structure of matter go up for grabs. The process repeats in endless variety, each uni-

verse as unique as a snowflake. In the unending span of space and time, every imag-

inable universe will get its turn!

Herein lie the seeds of a possible synthesis of the rival visions of Bohr and Ein-

stein. God does have choices—an infinity of them—and is obliged to try them all.

There may be reason enough here to satisfy Einstein’s yearnings, yet disorder

enough to delight Bohr’s sense of humor.

How and when (if ever) such outrageous ideas will touch base with reality is

anyone’s guess. Each generation of scientists finally comes to the shores of its con-

tinent of solid fact. For the time being the ocean beyond can be crossed only in

the imagination. This has always been the driving wheel of scientific creativity. The

thrill of holding such visions in one’s mind is one of the sweetest rewards of

the calling of scientist.

Such heady wine calls for a note of caution, and so it is appropriate to close this

work with the sage words of a celebrated American philosopher and psychologist,

William James:

I am convinced that the desire to formulate truths is a virulent disease. It has con-

tracted an alliance lately in me with a feverish personal ambition, which I never

had before, and which I recognize as unholy in such a connexion. I actually dread

to die until I have settled the Universe’s hash in one more book!…Childish idiot—

as if formulas about the Universe could ruffle its majesty, and as if the common

sense world and its duties were not eternally the really real!
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AFTERWORD

To be human is to wonder. Children wonder for a while, before we teach them to

be smug about the obvious and to stop asking silly questions. It is easier to pay

someone to retain a little of the child and do our wondering for us. We then take

comfort in the assumption that anyone devoted to such esoteric pursuits must be in-

sensitive, perhaps even inhuman. With our artists, we perform the equal disservice

of regarding them as too sensitive.

Occasionally we are given a glimpse of the finished product. The baby is dis-

played behind glass, well-scrubbed, and one need not know about the delivery room

(it is soundproofed). Thus we are spared the agony of wonder, which is not unlike

love and makes as little (or as much) sense as love. But wonder is just too human to

fully repress, and it does turn up elsewhere. Some of us turn to fads for the occult,

which interpreted by our twenty-first-century minds becomes a cartoon science.

More often, we find ourselves left with nothing to wonder about (or to love) but

what remains of ourselves after the loss of yet another portion of our humanity.

I, for one, refuse to believe that nothing can be done about this empty place, or

about the more general disease of which it is but a minor symptom. But as long as

we are sundered so, let me remain one of the children and wonder.

R. H. M.
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It is customary, in conventional physics courses, to equate understanding with the

ability to calculate. While this book is predicated on the assumption that these are

independent achievements, working a few numerical exercises can help clarify the

meaning of the principles involved.

The exercises in this section were devised for use in an organized course, with

an instructor to show you examples and otherwise assist you in learning how to

work them. If you are using this book for self-study, you may find it difficult to

work many of the exercises.

The questions are designed to stimulate your thinking about nonquantitative as-

pects of the concepts introduced in the text.

CHAPTER 1

Questions

A. Give an example of two objects in which the lighter one falls faster than

the heavier one.

B. Give an argument against Galileo’s claim that a body rolling down an

inclined plane is not different in kind from one falling freely.

Hints

For motion at constant speed, or in calculating average speed, use the

formula x  vt, where x, v, t, are distance, speed, and time.

In all exercises involving acceleration, assume the acceleration is uniform.

The simplest exercise on accelerated motion involves comparing velocity

v1 at the start of the acceleration to v2 at the end of a time t. The relevant

formula is then at  v2  v1.

•

•

•

.
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To simplify arithmetic, in all problems that involve the acceleration due to

gravity, use the value g  10 m/s2.

The formula x  1⁄2 at2 applies only to accelerated motion starting from rest.

Worked Example

1. An object falls from a height of 20 m in 5 s.

Its average speed v  x/t  20 m/5 s  4 m/s.

For uniform acceleration from rest the final speed is twice the average: vf

 2v  2  4 m/s  8 m/s.

The acceleration a  vf /t  8 m/s  5 s  1.6 m/s2.

(Why is the answer not 10 m/s2? We’re on the Moon!)

Exercises

1. An airliner flies 2040 miles in 4 hours. What is its average speed, in miles per

hour?

2. A sprinter does the 100-meter dash in 10.0 seconds.

a. What is his average speed?

b. If he could maintain this pace for a mile (1610 meters), what would his

time for the mile be?

3. A sports car can accelerate at 5 m/s2. How long will it take to reach a speed of

30 m/s (about 68 mph) from a standing start?

4. A car speeds up from 22 m/s to 28 m/s in 3 seconds. What is its acceleration,

in m/s2?

5. A car moving at 48 m/s brakes to a stop in 6 seconds. What is its acceleration?

6. How far does a freely falling body drop in 3 seconds?

7. How far can the sports car in exercise 3 travel in 4 seconds, starting from rest?

8. How long does it take an object dropped from atop a 320-meter-high tower to

reach the ground?

9. A jet plane starts from rest on the runway and accelerates uniformly. It takes

off 25 seconds later, having rolled 1000 meters. Find

a. its average speed.

b. its speed at takeoff.

c. its acceleration.

10. A car moving at 30 m/s brakes to a stop with acceleration  6 m/s2.

a. How long does it take to stop?

b. How far does it travel?

11. A car travels 100 m in 5 s from a standing start. Find:

a. its average speed.

b. its final speed.

c. its acceleration.

12. A car brakes uniformly to a halt in 5 seconds, traveling 100 meters from the

moment the brakes were applied.

a. What was its average speed while braking?

b. What was its acceleration?

c. What speed was it going at the moment the brakes were applied?

•

•
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CHAPTER 2

Questions

A. It has been observed that the more languages a person can speak, the

easier it is to learn another language. Does this argue for or against the

existence of a “Principle of Superposition” for this kind of learning?

B. Propose a principle analogous to a conservation law for a field outside the

natural sciences (it need not be true).

C. Explain how Galileo’s analysis of projectile motion supports his forbidden

argument that the Earth can be moving without our sensing it.

D. Cite at least three everyday examples that illustrate momentum

conservation.

Hints

In exercises on momentum conservation, find the sum of the momenta of

the two objects, m1v1  m2v2. In most cases only one is moving. The sum

of momenta must be the same after the collision.

If you are told the objects stick together, treat them as one object with a

mass equal to the sum of their masses.

If you are given the velocity of one of the objects after the collision,

calculate its momentum and subtract it from the momentum before the

collision to find the momentum of the other object.

Don’t forget—motions in opposite directions have opposite signs of

momentum!

An elastic collision is one in which the difference in velocity of the two

objects changes sign but has the same magnitude after the collision as

before.

Worked Examples

1. A daredevil motorcyclist attempts a jump over a canyon 120 m wide. He takes

off from a ramp that gives him a vertical velocity of 25 m/s and a horizontal

velocity of 30 m/s. Using the formula for range,

R  2vhvv /a  2  30 m/s  25 m/s  10 m/s2  150 m

So he should make it, if he can land safely!

2. An object of mass 2 kg moving at 10 m/s strikes a stationary object of mass

3 kg. After the collision, the struck object has velocity 8 m/s.

The momentum before is

2 kg  10 m/s  20 kg - m/s

The momentum of the struck object after is

3 kg  8 m/s  24 kg - m/s

•

•

•

•

•
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Thus to conserve momentum the other object must then have momentum

20 kg  m/s  24 kg - m/s   4 kg - m/s

Its velocity is then

 4 kg - m/s  2 kg   2 m/s

The relative velocity (difference in velocities) is

8 m/s  ( 2 m/s)  10 m/s

Since this is the same as the relative velocity before, the collision was elastic.

Exercises

1. A ball is dropped from a moving train, and is observed by one observer on the

train and another on the ground.

a. Sketch the path of the ball, as seen by each observer.

b. Repeat these sketches, assuming the train was speeding up when the ball

was dropped.

2. A car drives off a sheer vertical cliff moving horizontally at 30 m/s. It strikes

the ground 2 seconds later.

a. How far from the base of the cliff does the car land?

b. How high is the cliff?

3. A baseball is thrown with a horizontal velocity component of 30 m/s and a

vertical component of 20 m/s.

a. How long is it in flight?

b. How far does it travel?

4. A football is punted with a “hang time” (time in flight) of 6 seconds, and is

caught 54 meters from where it was kicked.

a. What was its horizontal velocity component?

b. What was its vertical component?

c. How high was it at the top of its trajectory?

5. A baseball leaves the bat with a velocity of 30 m/s, moving upward at 45

degrees to the horizontal. How far does it travel?

6. Using the trigonometric relationship shown in the footnote on the range of a

projectile, prove that:

a. The maximum range for a projectile with a given velocity comes when it is

projected at a 45-degree angle.

b. For any range shorter than this maximum range, there are two values of  
that will give that range.

7. A long jumper can run at a speed of 9 m/s and then jump vertically to a height

of 0.8 m.

a. How long is she in flight?

b. How far does she jump?

8. A car is on a ferryboat that is stationary on the water. The car weighs 2 tons,

while the ferryboat weighs 10 tons. The car is driven at a speed of 12 mph

with respect to the deck for a distance of 60 feet, and then stops.

a. While the car is in motion, how fast is the ferryboat moving?
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b. When the car stops, does the ferryboat also stop?

c. After the car stops, how far has the ferryboat moved?

9. A clay ball of mass 1 kg and velocity of 6 m/s strikes a stationary ball of mass

2 kg. After the collision the balls are stuck together and moving at 2 m/s.

Show that momentum is conserved in the collision.

10. A clay ball of mass 3 kg and velocity of 16 m/s strikes a stationary ball of

mass 5 kg and sticks to it.

a. What was the momentum of the 3-kg ball before the collision?

b. What was the momentum of the 5-kg ball before the collision?

c. What was the combined momentum of the balls after the collision?

d. What was the velocity of the balls after the collision?

e. What is the momentum of the 3-kg ball after the collision?

f. How much momentum was transferred between the balls during the

collision?

11. A ball of mass 2 kg and velocity 10 m/s strikes a stationary ball of mass 1 kg.

After the collision the 2 kg ball is moving at 4 m/s in the same direction it was

going before the collision.

a. What was the momentum of the 2-kg ball before the collision?

b. How much momentum was transferred between the balls during the

collision?

c. What is the velocity of the 1-kg ball after the collision?

d. Show that this was not a perfectly elastic collision.

12. An object moving at 7 m/s collides elastically with a stationary object. After

the collision, the velocity of the moving object is reduced to 1 m/s. What is

the velocity of the struck object?

13. A 50-kg figure skater moving 10 m/s meets her 70-kg partner moving 5 m/s in

the opposite direction and they hang on to one another. What is their speed

after they meet?

14. A 1-kg object moving at 9 m/s collides elastically with a stationary 2-kg

object. What are the velocities of the two objects after the collision? (Hint:

You will need to set up two equations to solve for these two unknowns.)

CHAPTER 3

Questions

A. The normal method of comparing masses is to weigh them on a balance.

What assumptions must be made in order for this to be a valid procedure?

B. Explain why it is possible for a roller coaster to go upside down in a

vertical loop without falling off the track.

C. Explain the operation of a rocket in terms of Newton’s laws.

Hints

Force is defined as momentum transfer divided by time. In most cases, this

is equal to the mass times the acceleration.
•



For circular motion in a circle of radius r at speed v, the acceleration is a  
v2/r.

Worked Examples

1. A glider of mass 600 kg is launched by towing it with an acceleration of 5 m/s2.

The required force is

F  ma  600 kg  5 m/s2  3000 N

2. A car negotiates a turn of radius 100 m at a constant speed of 20 m/s. Its

acceleration is

A  v2/r  (20 m/s)2  100 m  4 m/s2

Exercises

1. In a collision, two objects are in contact for 1/10 second and 50 kg-m/s of

momentum is transferred. What is the average force acting in the collision?

2. A force of 10 N acts on an object of mass 5 kg. What is its acceleration?

3. What is the force on an object of mass 3 kg accelerating at 7 m/s2?

4. a. Convert your own mass to kilograms (1 kg  2.2 lb).

b. Calculate the force of gravity on your body, in newtons.

5. A car that can normally accelerate at 4 m/s2 is towing an identical car. What is

the fastest it can accelerate?

6. A car is moving at 15 m/s around a curve of radius 75 meters. What is its

acceleration?

7. A tire will skid if subjected to a sideways acceleration of more than 4 m/s2.

What is the fastest speed at which a car equipped with such tires can round an

unbanked curve of radius 100 meters without skidding?

8. What force must be exerted to keep a 6-kg mass moving in a circle of radius

10 meters at a speed of 20 m/s?

9. A roller coaster executes a complete vertical loop of radius 10 meters. What is

the minimum speed it must have at the top of the loop in order to not fall off

the track?

10. A rocket exhaust spews out 100 kg of mass moving at 200 m/s each second.

What is the force exerted on the rocket?

11. A car of mass 1000 kg brakes uniformly to a stop from 20 m/s in 4 s. What is

the force exerted on the car?

12. The velocity due to the Earth’s rotation of an object on the equator is about

400 m/s and the radius of the Earth is 6.4  106 m. Calculate the acceleration

of this object due to the Earth’s rotation.

13. A car can safely negotiate a flat turn of radius 50 m at 30 mph. What would be

the radius of a flat turn that is safe at 60 mph?

•
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CHAPTER 4

Questions

A. The four satellites of Jupiter discovered by Galileo obey Kepler’s laws.

Going down table 4.1, indicate which aspects of Newton’s Law of Gravity

are supported by this observation.

B. Although the gravitational constant was unknown in Newton’s time, it

was still possible to compare the mass of the Earth to that of the Sun.

Explain.

C. One of Galileo’s arguments in favor of the Copernican theory was that

Venus had phases like the Moon. Explain how this is was relevant. Could

Tycho’s scheme also explain this observation?

Hints

If the long axis a of a planetary orbit is measured in units of the a of the

Earth’s orbit, and the period is measured in Earth years, Kepler’s third law

becomes an equality: T 2  a3.

The constant G in Newton’s Law of Gravity is 6.67  10 11 for distances

measured in meters, masses in kilograms, and force in newtons.

Worked Examples

1. An asteroid has an orbit that takes eight Earth years to complete. To obtain the

major axis of the asteroid, Aa, in units of the Earth’ s major axis Ae, we may

use Kepler’s third law:

(Aa/Ae)
3  (8 yr/1 yr)2

(Aa/Ae)
3  64. Taking the cube root,

Aa  4 Ae

2. Two objects of mass 100 kg each are separated by 0.3 m. The force of

attraction is 7.4  10 6 N. To find the value of Newton’s gravitational

constant,

F  GmM/r2

G  r2F/mM  0.32  7.4  10 4  (100  100)  6.66  10 11 N - m2/kg2

Exercises

1. The table on the next page gives the length of the major axis, in units of the

Earth’s, and the orbital period in Earth years, for the five innermost planets.

Verify that these satisfy Kepler’s third law.

•

•
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Planet Major Axis Orbital Period

Mercury 0.39 0.24

Venus 0.72 0.61

Earth 1.00 1.00

Mars 1.52 1.90

Jupiter 5.20 12.00

2. The orbital velocity of the Earth is about 30,000 m/s and the distance from the

Sun is about 1.5  1011 meters.

a. Assuming the orbit is a circle, calculate the Earth’s orbital acceleration.

b. The acceleration due to gravity is 9.9 m/s2 at the Earth’s surface, and the

Earth’s radius is 6,400,000 meters. Use these values and the result of (a) to

estimate the mass of the Sun, in units of the Earth’s mass.

3. Calculate the force between two objects of mass 10 and 100 kg, separated by

0.2 meter.

4. Show that for circular orbits, Kepler’s third law implies that the accelerations of

the planets are proportional to the inverse-square of their distances from the Sun.

5. An Earth satellite in low orbit (r  6500 km) goes around the Earth in 80

minutes. What is the orbital radius for a geosynchronous satellite that goes

around once in 24 hours, thus appearing to remain stationary as seen from

Earth?

6. Show that the acceleration due to gravity at the surface of the Earth (r  6.4

 106 m and M  6.0  1024 kg) has the expected value (around 9.9 m/s2).

7. The radius of the Moon is 0.27 times that of the Earth, and its mass is 1/80 the

mass of Earth. Using 9.8 m/s2 for the Earth’s surface acceleration due to

gravity, find the Moon’s surface acceleration due to its gravity.

CHAPTER 5

Questions

A. Cite examples of “holistic” and “reductionist” thinking in a field outside

the natural sciences.

B. A baseball is hit a long distance, slowed by air resistance, and then caught.

Detail the energy conversions that take place from the moment it leaves

the bat.

C. Explain why more work must be done to accelerate a car from 60 mph to

70 mph than to accelerate it from 0 mph to 10 mph.

Hints

The work done by a force is always equal to the force multiplied by the

motion in the direction of the force, Fx cos  . If the force is unopposed, all

this work goes into increasing the kinetic energy of the object.

•
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If a force is opposed by friction, the work done against friction becomes

heat. This will not be all the energy—that is only true if the friction is

equal to the propulsive force. Friction is usually opposite the direction of

motion (cos    1).

Work done in raising an object of mass m to a height h goes into

gravitational potential energy, mgh. For simplicity use g  10 m/s2 for the

acceleration due to gravity.

For motion at constant speed, power is force times velocity.

Worked Example

1. An airplane flying at a steady 100 m/s climbs 1000 m in 80 s. Its mass is

2000 kg and its engines generate 6000 N of force.

The power generated by the engines is

P  fv  6000 N  100 m/s  600,000 W  600,000/750 hp  800 hp

The total distance traveled is 100 m/s  80 s  8000 m, so the work done is

W  fx cos (0)  fx  6000 N  8000 m  48,000,000 J

The increase in gravitational potential energy is

mgh  2000 kg  10 m/s2  1000 m  20,000,000 J

The remaining 28,000,000 J are lost to air resistance.

Exercises

1. How much work is done by a force of 10 N on an object that moves 100

meters:

a. In the same direction as the force

b. Perpendicular to the force

2. How much work is done in lifting a 5-kg mass a height of 30 meters?

3. A force of 5 N pushes on an initially stationary object of mass 4 kg for a

distance of 10 meters in the direction of the force.

a. How much work is done?

b. What is the final speed of the object?

4. A force of 50 N acts on an object, opposed by a frictional force of 10 N, over

a distance of 100 meters.

a. How much work is done by the 50-N force?

b. How much of this work goes into increased kinetic energy?

5. A cyclist climbs a hill 10 meters high on a road 100 meters long, at a constant

speed of 5 m/s. The combined mass of bike and rider is 70 kg, and the force

exerted to propel the bike is 100 N.

a. How much work is done by the force?

b. What is the increase in gravitational potential energy?

c. What happens to the rest of the energy?

d. How much power (in watts) must the cyclist generate? Convert this to

horsepower.

•

•
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6. A car moving at steady 20 m/s is propelled by a force of 150 N. What is the

required power, in watts and in horsepower?

7. A ball dropped on a hard floor bounces back to 4/9 of the height it was

dropped from. Calculate:

a. The fraction of the ball’s energy that is lost.

b. The ratio between the ball’s speed just after it leaves the floor to its speed

just before hitting the floor.

8. A cyclist approaches a hill moving at 10 m/s. If she coasts without pedaling,

what is the maximum height she can reach?

9. Refer back to the example of an elastic collision in chapter 2 and verify that

the kinetic energy is unchanged in the collision.

10. Show that in an elastic collision of a moving object with one of equal mass at

rest, the moving object stops and the other continues at the original speed of

the moving object.

11. In a 30-day month, how many kilowatt-hours of electrical energy must be

used to keep a 50-watt light bulb burning continuously?

12. a. Using the formula for a spherical gravitational field, find the potential

energy of a 1-kg mass at the Earth’s surface (r  6.4  106 m and M  
6.0  1024 kg).

b. Find the velocity at which the kinetic energy of this mass would be equal in

magnitude to your answer to (a) (this is the so-called escape velocity).

CHAPTER 6

Questions

A. Explain how the concept of field makes potential energy “less

mysterious.”

B. A charged object moving parallel to a magnetic line of force will

experience no force at all. Explain why.

C. A steady magnetic field does no work on a charge. Explain why.

D. Though he worked only on the electromagnetic field, Maxwell in effect

proved that any field whose action is not instantaneous, but which

propagates at a finite speed, must be capable of producing some form of

radiation. Explain why.

Worked Example

1. The unit of electric charge is called the coulomb (C) and the constant in

Coulomb’s law is k  9  109 Nm2/C2. Thus, the force between two charges

of 0.1 C each separated by 10 m is

F  kqQ/r2  9  109 Nm2/C2  0.1 C  0.1 C  (10 m)2  900,000 N

This shows that the coulomb is a rather large unit.
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Exercises

1. Gravity can also be regarded as a field. In this case, the field strength is the

force per unit mass.

a. From Newton’s Law of Gravity, write a formula for gravitational field

strength.

b. To what other physical quantity is gravitational field strength identical?

2. A charge of 0.001 C experiences a force of 1000 N when placed 3 m from an

unknown charge. What is the value of the unknown charge?

CHAPTER 7

Questions

A. Give three examples of wave phenomena not mentioned in the text.

B. An octave in music is a doubling of the frequency. Which harmonic of a

music string is one octave above the fundamental?

C. Explain how “fingering” a stringed instrument changes the pitch of the

note sounded.

D. Radio stations are frequently required to avoid broadcasting in certain

directions in order not to interfere with faraway stations. One way to do

this is to broadcast from two towers exactly one-half wavelength apart.

Explain why this works, and make a sketch indicating the directions in

which the signal from such a station would be strong or weak.

E. An audiophile mistakenly hooks up a stereo so that the leads to one

speaker are reversed from the way they should be. How should that affect

the sound of the system?

Hints

The speed of light is 300,000,000 (3  108) m/s. The speed of sound in air

varies a bit with temperature, but is in the vicinity of 340 m/s.

Wave interference is determined by the difference between the distances

traveled by the waves, measured in wavelengths: (x1  x2)/ . If this

quantity is an integer the waves reinforce perfectly, while if it is a half

integer they cancel.

Worked Example

1. A church organ sounds a base note of frequency 85 Hz. It reaches a listener by

three paths: a direct path of length 15 m, a reflection from the ceiling with

path length 25 m, and a reflection from the back wall with path length 27 m.

How do these three signals interfere?

The wavelength is

  c/v  340 m/s  85 Hz  4 m

•

•

QUESTIONS AND EXERCISES 259



The difference between the direct and the ceiling paths is 25 m  15 m  10 m.

The difference between the direct and back wall paths is 27 m  15 m  12 m.

Dividing by the wavelength, we have 10 m  4 m  2.5 for the direct-ceiling

difference, so the interference is destructive. The direct-back difference is 12

m/4 m  3 so the interference is constructive. Since the reflections are probably

not as strong as the direct signal, the cancellation and reinforcement are not 

perfect.

Exercises

1. An FM station broadcasts at 100 MHz. What is the length of the waves it

transmits?

2. Humans can typically hear sounds of frequencies from 20 Hz to 17,000 Hz.

What are the corresponding wavelengths?

3. What are the wavelengths of the first three harmonics on a music string that is

0.3 meter long?

4. A radio station broadcasts from two antennas spaced one-half wavelength

apart. On a sketch, show the location of the towers and draw lines heading out

from them along which the signals cancel, and another line along which they

reinforce perfectly.

5. Two speakers are placed 3 meters apart and are sounding a note of wavelength

2 meters. A listener walks along a line 4 meters in front of the speakers.

a. Show that the waves from the two speakers will cancel at the points along

the line that are directly in front of the speakers.

b. In all, at how many points along the line will the waves reinforce?

6. Lightning strikes a point 3 km from you.

a. How long does it take the light to reach you? Is that a noticeable delay?

b. How long does it take the sound of the lightning (the thunderclap) to reach

you? Is that a noticeable delay?

7. A piano string of length 1 m sounds a fundamental frequency of 440 Hz (A

above middle C).

a. What is the wavelength of these waves on the string?

b. Find the speed of waves on the string.

8. Waves travel around a hoop of radius R. Derive a formula that gives the

allowed wavelengths of standing waves on the hoop.

9. A sound wave of wavelength 2 m reaches a listener by two paths, of lengths

15 m and 22 m. Is the interference constructive or destructive?

CHAPTER 8

Questions

A. Explain why it is necessary to rotate the Michelson-Morley apparatus.

B. Describe what Michelson expected to see as he looked through the

eyepiece with the apparatus in rotation.
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C. Suppose a Michelson experiment were performed with sound rather than

light, with a microphone connected to headphones in place of the

eyepiece. The experiment is performed outdoors on a day when a steady

wind is blowing. Would there be an effect? What would the observer hear

as the apparatus rotated?

D. One early critic of the Michelson-Morley experiment pointed out that they

should have repeated the experiment several times at different seasons of

the year. Can you guess why?

Hints

The exact formula for the Lorentz factor  should be used whenever the

speed is an appreciable fraction (greater that 1/10) of the speed of light.

When it is much less than the speed of light, the approximate formula is

more appropriate.

In most exercises on relativity you will be given the velocity as a fraction

of the speed of light, for example, v  0.5c. In these cases you already

have v/c to use in the formula for  —you need not divide by c.

Worked Example

1. An object is moving at 60,000 km/s

v/c  60,000 km/s  300,000 m/s  0.2

This is large enough so one should use the exact formula

  (1  0.22) 1/2  0.96 1/2  1.02062

If we had used the approximate formula, we would have

  1  0.5  0.22  1.02

Though this may seem close enough, in most calculations we are interested in the

difference between  and 1.0, and this is already wrong by more than 3 percent.

Exercises

1. Calculate  for v  0.8c.

2. Calculate  for v  1.5  108 m/s.

3. Calculate  for v  0.002c.

4. A ferryboat that moves at 5 mph crosses a river that is 2 miles wide and

moves at 3 mph, reaching a point on the other side directly opposite its

starting point. How far does the ferryboat travel in the water?

5. How long would it take the ferryboat in exercise 4 to make a round-trip to and

from a destination 2 miles upstream

a. in still water?

b. with the stream flowing at 3 mph?

•
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6. Divide the answer to exercise 5b by that to 5a, and show that it is equal to  2

for v/c  3⁄5.
7. Show algebraically that an upstream-downstream round-trip is lengthened

by  2.

8. In a Michelson interferometer with two paths of equal length L, the expected

difference in path lengths due to the Earth’s motion was L( 2   ). In the

Cleveland instrument, L  10 meters and the wavelength of light employed

was around 0.5  m (5  10 7 meter). Show that from the Earth’s orbital

motion, 30,000 m/s, Michelson expected the interference bands to shift by 1/5

of their separation.

CHAPTER 9

Questions

A. Devise a procedure for synchronizing clocks at two ends of a train by

means of light signals, and show that an observer who regards the train as

moving will not consider them synchronized.

B. Does the postulate of relativity require gravity, as well as light, to have a

finite velocity of propagation?

C. In the train example, which observers believe that the distance between

the telegraph poles is equal to the length of the train? In what reference

frame do they believe this to be true?

D. In the example of the spaceship with mirrors, state the observable fact on

which both observers agree.

E. Show that the assumption that there are two different velocities both of

which satisfy the postulate of relativity leads to a logical contradiction.

CHAPTER 10

Questions

A. Explain one sense in which the Lorentz contraction is “real,” and another

sense in which it is “not real.”

B. Criticize the following statement: “In relativity, there is no one reality,

only the mutually irreconcilable realities of different observers.”

C. Critique the following statement: “Time is now regarded as simply a

fourth dimension of space, in no way different from the other three.”

Hints

To convert the length of an object in its rest frame to its length in a frame

in which it is moving, divide by  .

To convert time elapsed on a clock to time elapsed in a frame in which the

clock is moving, multiply by  .
•
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To simplify your arithmetic in exercise 3, use c  300 m/ s (meters per

microsecond).

Exercises

1. If an observer moving at 0.6c with respect to you reports that 10 minutes

elapsed on her clock, how much time would you estimate elapsed on your

clock?

2. What is the length of an object moving at 0.6c, if its rest length is 10 meters?

3. Assume the train in chapter 9 has rest length 1000 meters and is moving at

0.6c. According to observers on the ground, the conductor at the rear of the

train makes his observation of the telegraph pole 2.5  s (0.0000025 second)

before the conductor at the front observes his.

a. How far does the train move between the two observations?

b. Use the Lorentz factor to obtain the length of the train while moving.

c. Add your answers to (a) and (b) to get the distance between the poles,

according to the observers on the ground.

d. Multiply the time interval between observations by c.

e. Subtract the square of your answer to (d) from the square of your answer to

(c) and take the square root. This is a four-dimensional invariant and

should equal the rest length of the train.

4. By calculating the difference in the times it took light to reach the two ends of

the train in exercise 3, verify that the time interval was in fact 2.5  s.

5. An artificial Earth satellite orbiting at a speed of 7500 m/s carries a precision

clock.

a. Calculate the difference between  and 1.0 for this speed.

b. How much time will this clock lose in one day (86,400 seconds) due to the

moving-clock effect? (We will see in chapter 12 that there is another

relativistic phenomenon that also affects this clock.)

6. If the astronaut in the twin paradox example tries to follow events at home by

listening to radio broadcasts from Earth, the transmission that reaches him just

as he arrives at the star will have been broadcast a bit less than 2 days after his

departure.

a. Show that this is true in the Earth reference frame.

b. Show that this is true in the astronaut’s reference frame.

7. In the spaceship example, if Joe replies immediately to Sue’s first message,

calculate what her clock reads when she receives it.

8. Repeat the calculation in the spaceship example for v  0.8c, showing that

both observers agree that Joe’s clock reads 30 min when he receives Sue’s

communication.

9. Two spaceships are heading toward one another at 0.8c. Find their relative

velocity in the rest frame of one of the ships.

10. Show that in the frame in which both Joe’s and Sue’s spaceships are traveling

with equal and opposite velocities, the velocity is 1⁄3c.

11. An event occurs at position x  100 m, t  4  s, and another occurs at x  
600 m, t  5  s. Find the space-time interval between these events.
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CHAPTER 11

Questions

A. Discuss how relativity has modified the laws of energy conservation and

momentum conservation.

B. For each of the processes listed below, indicate whether the mass

increases, decreases, or remains the same.

(1) An automobile battery is charged.

(2) A hot steel bar is allowed to cool down.

(3) A rubber band is stretched.

(4) Hydrogen and oxygen burn to form water in a sealed, insulated

container.

(5) Repeat (4) in a container that allows heat to escape.

(6) Two atoms bound together in a molecule are separated.

C. State whether two observers in relative motion in spaceships will agree or

disagree about each of the following quantities:

(1) Their relative speed

(2) The mass of either ship

(3) The rate at which a clock on the other ship runs

(4) The length of the other ship

(5) The width of the other ship

(6) The velocity of light

(7) The velocity of an object moving inside one of the ships

Hints

The energy equivalent of a kilogram of mass is 9  1016 joules. One

kilowatt-hour (a few cents’ worth) of electricity is 3.6 million joules.

Worked Example

1. The customary unit of energy employed on the atomic scale is the electron-

volt (eV). The energy equivalent of the mass of a hydrogen atom is 939

million eV. The energy required to ionize hydrogen (remove its electron) is

13.6 eV. Thus a hydrogen atom is lighter than a free electron plus a free

proton by 13.6 eV  939,000,000 eV  14  10 9 or 14 parts per billion.

Exercises

1. What is the mass of an object with 3 kg rest mass if it is moving at v  0.8c?

2. How fast must an object move in order to have a mass double that when it is

standing still?

3. Using the approximate formula for  , show that the total energy  m0c
2 of a

moving object is simply the sum of its rest energy and the prerelativistic form

of kinetic energy.

•
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4. The fastest interplanetary rockets have attained speeds of 60 km/s. If such a

rocket has a rest mass of 1000 kg, how much greater is its mass when moving

at full speed?

5. A large power plant produces 15 million kilowatt-hours of electricity per day,

enough to power a medium-sized city.

a. Convert this amount of energy to joules.

b. What is the mass of this much energy?

6. The Tevatron is a particle accelerator that produces a beam of protons moving

at v  0.99999946c. How many times more massive are these protons than

they would be at rest?

7. It takes 2.25 million joules of energy to boil 1 kg of water. How much more

mass does the steam have than the water it was boiled from?

8. The power of nuclear weapons is measured in kilotons of TNT equivalent.

One kiloton is 4  1012 joules. How much rest mass is converted to energy in

a 900-kiloton bomb?

9. A chemical reaction releases 180,000 joules of energy per kilogram of

material involved. By what fraction is the mass of the reagents reduced?

CHAPTER 12

Questions

A. Explain the relationship between Galileo’s falling body law and the

Principle of Equivalence.

B. Explain why Newton’s instantaneous action at a distance is not admissible

in a relativistic theory.

C. Describe in words why one twin in the twin paradox ends up younger than

his brother by describing how time passes on Earth and on the ship during

the voyage, from the point of view of each of the twins.

D. Describe the space-time track of an orbiting Earth satellite.

E. The expanding universe should look the same no matter where you are in

it. Explain why this is so.

F. Indicate what ultimate end you would prefer for the universe, and why you

feel that way.

Hints

Exercises 3 and 4 use the formula for the gravitational time effect in a

constant field, ah/c2.

Worked Example

1. The master clocks of all the world’s nations are at different latitudes and altitudes.

Thus, to obtain a common time standard they must be corrected for differences in

velocity from the rotation of the Earth, and for the gravitational time effect. The

•
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U.S. standard clocks are located at the National Institute of Standards and Tech-

nology in Boulder, Colorado. The altitude is 1800 m and the velocity 350 m/s.

Thus, the velocity correction is

  1  0.5 (v/c)2  0.5  (350  3  108)2  6.8  10 13

while that for altitude is

ah/c2  1800 m/s  10 m/s2  9  1016 m2/s2  2  10 13

The velocity effect slows the clocks, and the altitude effect speeds them up. Since

these clocks are accurate to about a part in 1014, these are significant corrections.

Exercises

1. With a world globe and a string, verify that the shortest path from Chicago to

Rome does not follow the east-west line on which they both lie.

2. How long does it take light to travel 30 km? How far would a falling body

drop in this time?

3. A precision clock is placed on top of a mountain 4500 m high. How much

would this clock gain in 100,000 seconds (a bit more than a day), compared to

a clock at sea level?

4. The clock in exercise 5 of chapter 10 is orbiting at an altitude of 300 km. How

much time does it gain in 100,000 s from the gravitational time effect?

5. Compare the rate of a clock on the surface of the Sun (r  700,000 km, m  
2  1030 kg) to one at the surface of the Earth (r  6400 km, m  6  1024

kg, orbit radius 150,000,000 km, orbital velocity 30k m/s), taking into account

the Earth’s motion and the gravity of both the Earth and the Sun. Newton’s

constant G  6.67  10 11 for mass in kilograms and distances in meters.

6. A neutron star has a mass of 3  1030 kg and a radius of 10 km. Calculate the

gravitation time shift at its surface.

CHAPTER 13

Questions

A. Describe the following phenomena in terms of the atomic theory:

(1) Boiling of a liquid

(2) Surface tension in a liquid

(3) The fact that when a gas is compressed by a piston, it gets hotter

B. Give arguments supporting Thompson’s conclusion that what he had

discovered was a very light object carrying a single unit of charge, rather

than a heavy one carrying many units.

C. Cite what you consider the three most convincing arguments for the

atomic nature of matter.
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Worked Example

1. There are 6.02  1026 atomic mass units in a kilogram. This is known as the

Avogadro constant, NA. Water has a molecular weight of 18. Thus 1 kilogram

of water contains NA / 18  6.02  1026  18  3.3  1025 molecules.

Exercises

1. Look up a table of atomic weights, and give the recipes by weight for forming

the following compounds:

a. Hydrogen chloride (HCl)

b. Carbon dioxide (CO2)

c. Sulfuric acid (H2SO4)

2. The boiling point of hydrogen is  253˚ Celsius. How many degrees is that

above absolute zero?

3. Since gas temperature is simple a measure of the average kinetic energy of

molecules, what is the ratio between the speeds of hydrogen and oxygen

molecules (H2 and O2) at the same temperature?

4. Sodium carbonate has molecular weight 106. What is the mass in kilograms

of 1025 sodium carbonate molecules?

CHAPTER 14

Questions

A. The behavior of atoms in solids and liquids suggests that they act pretty

much like hard spheres. Explain how this is possible using the plum-

pudding model and the planetary model.

B. Explain why Rutherford considered it especially significant that at least a

few of the alphas Marsden observed actually came off backward.

C. In a Wilson cloud chamber, alpha particles leave a trail of water droplets

and in most cases this trail is straight, though a few tracks exhibit a “kink”

at which the direction changes suddenly. Use this as evidence to support

Rutherford’s nuclear hypothesis.

Exercises

1. The diameter of a gold atom is about 0.25 nanometer (a nanometer is 10 9

meter). Marsden used gold foil about 1  m (10 6 m) thick. How many gold

atoms did each alpha particle pass through?

2. In order to be deflected backward, an alpha particle had to pass within 2  
10 14 meter of the nucleus. Imagine each nucleus to be the center of a “target”

this size and estimate the probability that the alpha would be deflected

backward in passing through the gold foil of exercise 1.
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3. If in a Geiger-Marsden experiment 1200 alphas per hour are observed at 30

degrees from the beam, how many will be seen at 90 degrees? At 150

degrees?

4. The constant v0 in the Balmer formula is 3.3  1015 Hz. Find the frequency of

the spectrum line corresponding to n  1, m  2.

CHAPTER 15

Questions

A. The particle features are more evident when using X rays rather than

visible light. Explain why.

B. Which two Bohr orbits are farthest apart in energy?

C. List all the physical principles used in Bohr’s model of hydrogen, and

indicate which of these were:

(1) Carried over from Newtonian physics.

(2) Taken from the earlier quantum theory of Planck and Einstein.

(3) New ideas original to Bohr.

Hints

For some of these exercises, you will need the relation between frequency

and wavelength,  v  c.

Planck’s constant h  4.14  10 15 eV-s.

Worked Example

1. Robert Millikan tested Einstein’s photoelectric formula by using it to measure

Planck’s constant. Measure the maximum energy of electrons ejected by light

of two different colors, then divide the difference in energy by the difference

in frequency. For example, suppose light of wavelengths 0.3  m and 0.5  m

ejects electrons with Emax  1.91 eV and 0.25 eV, respectively. First we must

convert the wavelengths to frequencies:

v  c/  3  108 m/s  0.3  10 6 m  1.0  1015 Hz

v  c/  3  108 m/s  0.5  10 6 m  0.6  1015 Hz

Then we can obtain

h  (1.91  0.25) eV  (1.0  0.6)  1015 Hz  4.15  10 15 eV-s

Since this was nearly exactly the same as the result obtained from Planck’s 

formula, Millikan was forced to conclude that Einstein had been right.

Exercises

1. What is the energy, in eV, of one photon of light of frequency 1015 Hz?

•
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2. The human eye can see light between wavelengths of 0.4 and 0.7  m. What is

the range of photon energies the eye can see?

3. Calculate the wavelength of a gamma-ray photon with an energy of 1 billion eV.

4. What is the frequency of light given off when the electron in a hydrogen atom

drops from:

a. The n  2 state to the ground state?

b. The n  3 state to the n  2 state?

5. In a photoelectric experiment, the threshold frequency (the lowest light

frequency that can eject electrons) is 1.5  1015 Hz.

a. How much energy (in eV) must be provided to liberate an electron?

b. If light of frequency 3.5  1015 Hz is used, what is the maximum energy of

the emitted electrons?

6. How much energy (in eV) is required in a hydrogen atom in order to:

a. Lift an electron from the ground state to the n  2 state.

b. Completely remove an electron from a ground state atom.

7. There is a subatomic particle called a muon that is identical to an electron in

most respects but is 207 times heavier. If a muon replaced the electron in a

hydrogen atom, what would be the ground state energy E1?

CHAPTER 16

Questions

A. As you move from low Bohr orbits to high ones, do the wavelengths get

longer or shorter?

B. If a photon and electron have the same kinetic energy, which has the

shorter wavelength?

C. List the arbitrary or paradoxical aspects of Bohr’s model that are

eliminated in the Schrödinger picture. Do any remain?

D. Does wave mechanics shed light on the significance of Planck’s constant?

Explain.

Hints

Planck’s constant in conventional units is h  6.6  10 34 joule-second.

At velocities below 0.1c, ignore relativistic effects and use the formulas 

p  mv and K  1/2mv2 for momentum and kinetic energy.

Worked Example

1. A television tube uses electrons of energy 25,000 eV. To obtain their

momentum in conventional units, we first convert the kinetic energy to Joules:

K  25,000 eV  1.6  10 19 J/eV  4  10 15 J

•

•
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Since K  0.5 mv2  0.5(mv)2/m, and the electron mass is 9  10 31 kg, we

can solve to obtain the momentum in conventional units:

p  mv  (2 mK)1/2  (2  9  10 31 kg  4  10 15 J)1/2

 8.5  10 23 kg - m/s

We can then obtain the wavelength of the electrons,

  h/p  6.6  10 34 J  s  8.5  10 23 kg - m/s  7.8  10 12 m

which is much smaller than any feature on the TV screen (indeed, smaller than an

atom!). Thus, it is reasonable to treat the electrons as particles rather than waves.

Exercises

1. Show that the de Broglie formula gives the right wavelength for a photon,

given that the energy carried by light is its momentum multiplied by c.

2. Show algebraically that an electron always has a wavelength that is shorter

than that of a photon of equal energy (kinetic energy).

3. The electrons in Davisson’s experiments typically had velocities of around 107

m/s. Given that the electron mass is 9  10 31 kg, calculate the wavelengths

of these electrons. (The answer is comparable to the spacing of atoms in

crystals.)

4. Rutherford’s alpha particles had mass 6.6  10 27 kg and velocity v  0.03c.

Calculate their wavelengths. (The answer is comparable to the sizes of

nuclei.)

CHAPTER 17

Questions

A. If Planck’s constant were smaller, would that make uncertainty more or

less significant?

B. Critique the following statement: “The uncertainty relations show that

there is always a limit to how accurately one can measure something.”

C. Explain why the heavier an object is, the less important is uncertainty in

limiting predictions of its future.

D. Some of the most recently discovered subatomic particles show a large

spread of values when repeated measurements are made of their masses.

How can this be interpreted in the light of the uncertainty relations?

Hints

For problems in which energy is involved, use Planck’s constant in eV-s.

Where momentum is given, use the value for conventional units.
•
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Worked Example

1. The “Z” is a highly unstable subatomic particle of which we will hear more in

chapter 19. It is so unstable that its mean lifetime can be measured by using

only the uncertainty relations. Repeated measurements of the mass (rest

energy) of the Z give a value of 91 billion eV with a standard deviation of

about 1.1 billion eV. Thus, the mean life is

 t  0.5  /  E  h / 4   E  4.14  10 15 eV-s / (4   1.1  109 eV)

 3  10 25 s

Exercises

1. An excited state of a nucleus has a lifetime of  t  10 18 second. What is its

uncertainty in energy, in eV?

2. Use the formula E  hv to convert the energy-time uncertainty relation to one

relating uncertainties in frequency and time. Can you see any intuitive

significance in the result?

3. How far in the future can predictions be made at the scale of a small molecule

(mass  10 25 kg, size  10 9 meter)?

CHAPTER 18

Questions

A. Which interpretation of the Schrödinger’s Cat parable do you consider

best (you can make up your own, if you wish)? Explain why you favor

this one.

B. Do you feel the debate over the interpretation of the quantum theory is a

worthwhile activity? Explain why or why not.

CHAPTER 19

Questions

A. Explain why it is regarded as desirable that the ultimate constituents of

matter have no size at all.

B. If no simpler level of reality underlies that of the Standard Model, would

you still consider reductionism a valid approach to science? Defend your

point of view.

C. What field coupling is shared by all fermions? By all particles whether

bosons or fermions?

D. List all the fields to which each of the following fermions is coupled: mu-

neutrino, electron, t-quark.
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Worked Example

1. The rest masses of the light quarks u and d are so small that they are ill defined,

because they cannot be easily separated from the energy of the gluon field that

binds them to one another. Note that in the proton, with rest mass 938 MeV, the

rest masses of the three quarks (uud) make up only 3  3  6  12 MeV, or a

bit more than 1 percent of that. The remainder is some combination of the gluon

field and the kinetic energy of the quarks. With the heavier quarks, the rest mass

is far more important. For example the  -meson, which consists of a b and an

anti-b, the mass is 9460 MeV, of which about 2  4300 MeV  8600 MeV is

the mass of the quark and antiquark.

Exercises

1. What is the electric charge of each of the quark combinations listed below,

and what class of particle (i.e., meson, baryon, antibaryon) is each?

a. uss

b. ub 

c. u
 

u
 

u
 

2. The  0 is the baryon uds, and may be thought of as a neutron with one d-

quark replaced by an s. The neutron mass is 939 MeV. Using the masses in

table 19.1, estimate the mass of the  0. (The actual mass, 1116 MeV, is

somewhat lower than this estimate because higher-mass quarks tend to bind

more tightly.)

3. The   lepton is unstable. It is transformed into a   by the weak interaction

  
→    e    e.

a. What virtual boson mediates this reaction?

b. Draw the Feynman diagram.

4. How many different kinds of meson quark combination are there?

5. How many baryon combinations are there? (Hint: Consider separately

baryons with three identical quarks, two identical, and all quarks different.)
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CHAPTER 1

1. 510 mph

3. 6 seconds

5.  8 m/s2

7. 40 meters

9. (a) 40 m/s (b) 80 m/s (c) 3.2 m/s2

11. (a) 20 m/s (b) 40 m/s (c) 8 m/s2

CHAPTER 2

3. (a) 4 s (b) 120 m

5. 90 meters

7. (a) 0.8 s (b) 7.2 m

9. The momentum is 6 kg-m/s both before and after.

11. (a) 20 kg-m/s (b) 12 kg-m/s (c) 12 m/s (d) the relative 

velocity falls to 8 m/s

13. 1.25 m/s

CHAPTER 3

1. 500 newtons

3. 21 newtons

5. 2 m/s2

7. 20 m/s

9. 10 m/s

11. 5000 newtons

13. 200 m

Answers to

Odd-Numbered Exercises
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CHAPTER 4

3. 4.17  10 7 newton

5. 41,300 km

7. 1.64 m/s2

CHAPTER 5

1. (a) 1000 joules (b) 0 joules

3. (a) 50 joules (b) 5 m/s

5. (a) 10,000 joules (b) 7000 joules

(c) frictional heat (d) 500 watts, or 2/3 horsepower

7. (a) 5/9 (b) 2/3

11. 36 kWh

CHAPTER 6

1. (a). (b) acceleration due to gravity

CHAPTER 7

1. 3 meters

3. 0.6 meter, 0.3 meter, 0.2 meter

5. (b) 3

7. (a) 2 m (b) 880 m/s

9. destructive

CHAPTER 8

1. 5/3 or 1.667

3. 1.000002

5. (a) 0.8 hr (b) 1.25 hr

CHAPTER 10

1. 12.5 minutes

3. (a) 450 meters (b) 800 meters (c) 1250 meters

(d) 750 meters (e) 12502  7502  10002

5. (a) 3.125  10 10 (b) 27  s (2.7  10 5 second)

7. 40 minutes

9. 0.976c

11. 400 m

G
M

r2
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CHAPTER 11

1. 5 kg

5. (a) 5.4  1013 joules (b) 0.6 gram (0.0006 kg)

7. 2.5  10 11 kg

9. 2 parts per trillion

CHAPTER 12

3. 50 ns (5  10 8 second)

5. Sun’s gravity  2.1  10 6, Earth faster

Earth’s gravity  7  10 10, Earth slower

Earth’s motion  5  10 9, Earth slower

CHAPTER 13

1. (a) 1:35 (b) 12:32 (c) 2:32:64

3. 4:1

CHAPTER 14

1. 4000

3. 22/hr and 6/hr

CHAPTER 15

1. 4.14 eV

3. 1.2  10 15 m

5. (a) 6.2 eV (b) 8.3 eV

7. 2800 eV

CHAPTER 16

3. 7.3  10 11 meter

CHAPTER 17

1. 4140 eV

3. 2 ns (2  10 9 s)
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CHAPTER 19

1. (a) 0, baryon (b)  1, meson (c)  2, antibaryon

3. (a) W 

5. 56 (6 with 3 identical, 30 with 2 identical, 20 all different)
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